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All insects have a segmented body. The genes controlling segment development have 

been well characterized in the fruit fly, Drosophila melanogaster.  These genes were 

divided into three categories:  gap genes specify several continuous segments over a 

broad region of the embryo; Pair-Rule Genes (PRG) are responsible for segment 

formation and are the first set of genes to be expressed in repetitive patterns in the 

embryo; Segment polarity genes define anterior and posterior polarities within each 

segment.To understand how PRGs evolve, I took a comparative approach in this thesis.  

First, I compared the function of the Drosophila PRG ftz-f1 to that of its mammalian 

orthologs by expressing them all in Drosophila embryos.  I found that the molecular 

function of this family of nuclear receptors has been highly conserved during evolution.  

 Next, I set out to establish new insect model systems to study PRG function.  

While, some PRGs have been studied in other insects, most of these studies focused on 

holometabolous insects. My work focused on the sister group to the holometabolous 



  

insects, the Hemipteroid Assemblage. I participated in the genome annotation of a 

hemiptera insect, Oncopeltus fasciatus. I annotated nuclear receptor super family, Hox 

and PRGs in Oncopeltus.  I further studied the expression and function of four PRGs in 

Oncopeltus. Using in situ hybridization and RNAi, I found that, Of-ftz and Of-hairy do 

not have segmentation function, while Of-ftz-f1 has function in oogenesis and 

segmentation. Of-runt was found to induce cell death in oocytes, but its function in 

segmentation needs further analysis.  Using the knowledge and expertise I gained from 

Oncopeltus, I successfully set up in situ hybridization, antibody staining and parental 

RNAi in an invasive hemipteran insect pest, the Brown Marmorated Stink Bug (BMSB) 

Halyomorpha halys.  These studies show that the expression and function of PRGs varies 

extensively in diverse insects, despite the overall conservation of a segmented body plan. 
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Chapter 1: Introduction 

Section 1.1: A cascade of genes controls Drosophila development 

 
The genes controlling embryonic development have been well characterized in the 

fruit fly, Drosophila melanogaster. Decades of study culminating in a few massive 

genetic screens led to the identification of a cascade of genes that sequentially specify 

the basic body plan of the fly (Jürgens et al., 1984; Lewis, 1978; Nüsslein-Volhard et 

al., 1985; Nüsslein-Volhard and Wieschaus, 1980; Nüsslein-Volhard et al., 1984). In 

those screens, genes were divided into three categories based on mutant phenotypes: 

gap genes specify several continuous segments over a broad region of the embryo; 

mutations in pair-rule genes resulted in loss of every other segment; segment polarity 

genes affect each segment (Nüsslein-Volhard and Wieschaus, 1980). The Pair-Rule 

Genes (PRGs) are responsible for segment formation and are the first set of genes to 

be expressed in repetitive patterns in the embryo. Finally, the homeotic, Hox genes, 

confer unique identities to specific segments (Figure 1.1).  
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Figure 1.1 The regulatory hierarchy of egg-polarity, gap, segmentation, and 
homeotic selector genes. A cascade of regulatory genes divides the embryo into 
segments which have unique identifies.  The genes were classified into categories on 
the basis of mutant phenotype.  Genes are expressed in pre-patterns in the regions of 
the embryo they specify. Figure from Molecular Biology of the Cell. 4th edition, 
Alberts B, Johnson A, Lewis J, et al. 2002. 

 

Among these genes, it is the PRGs that generate periodic, striped expression 

patterns from non-periodic signals. Their functions are thus critical to the 

establishment of the basic segmented patter of Drosophila. The fact that all insects 

share a segmented body plan suggests the function of PRGs is highly conserved 

throughout insects. However, data from our lab and others have suggested unexpected 

variation in the PRG network. In this chapter, I summarize a body of literature on 

PRGs in Drosophila and other insects. The expression patterns and functions of these 

genes from these studies are summarized in Figure 1.2.    



Figure 1.1 Sum
m

ary of Pair-rule gene expression and function in insects. Inform
ation on

Ftz is m
odified from

 H
effer et al. (H

effer et al., 2010).
Left, C

ladogram
 of m

ajor arthropod taxa is show
n w

ith divergence tim
eline below

. The presence ofcofactor interaction m
otifs (LX

X
LL m

otif, green; Y
PW

M
 

m
otif, blue; absent, red) and observed

expression patterns (stripes; H
ox-like) are indicated.Inform

ation for orthologs of the eight D
rosophila PR

G
s, as indicated. 

A
bbreviations: Exprs,

expression, Func, function. G
,gap-like; P,pair-rule; S;segm

ental, U
,ubiquitous;N

,N
on-pair-rule, hP ,head pair-rule;SS,severe 

segm
ental phenotype, in w

hich m
ost of  segm

ents are m
issing.If there is m

ore than one letter, the
firstletter indicates an early expression pattern, the second,a

later expression pattern. For an exam
ple, PS m

eans the expression pattern is pair-rule like in early developm
ent stagesand sw

itchesto segm
ental late. U

nder 
function, letters separated by “&

” m
eans the phenotypes of these letters represent are seen in the sam

e em
bryo in different segm

ents. Letters separated by  / 
indicates thatphenotypes are observed w

ith different alleles.  # refers to pby1 and pby2.  M
ost of the expression patterns are m

R
N

A
 expression patterns. 

R
eferences are listed in the text in order to save space.



 

 4 
 

Section 1.2: Pair-rule genes in Drosophila melanogaster are required for 
formation of body segments 

 
As mentioned above, the PRGs are a class of genes that was first identified in 

Drosophila on the basis of mutant phenotype. Mutations in PRGs result in lethality 

accompanied by loss of alternate body segments (Jürgens et al., 1984; Nüsslein-

Volhard and Wieschaus, 1980; Sander et al., 1980).  In the original screens, a total of 

eight PRGs were identified.  These genes are: even-skipped (eve), hairy (h), runt (run), 

fushi-tarazu (ftz), odd-skipped (odd), paired (prd), odd-paired (opa), and sloppy-

paired (slp) (Nüsslein-Volhard and Wieschaus, 1980; Nüsslein-Volhard et al., 1984; 

Sander et al., 1980; Wakimoto and Kaufman, 1981).  Subsequent screens for maternal 

effects of zygotic lethal alleles revealed one additional pair-rule gene, ftz-f1 (Chou 

and Perrimon, 1996; Yu et al., 1997).  All PRGs encode DNA-binding transcription 

factors. Below I describe each pair-rule gene, how it was discovered, its mutant 

phenotype, expression pattern, transcription factor activity and evolutionary 

conservation.  

fushi tarazu 

  Drosophila fushi tarazu (ftz) is located in the Drosophila Hox complex (HOM-C) 

between the homeotic genes Antennapedia (Antp) and Sex combs reduced (Scr) 

(Lewis et al., 1980; Lindsley and Zimm, 1992).  Although Drosophila ftz (Dm-ftz) is a 

homeobox-containing gene, it has lost its homeotic function in Drosophila where it 

acts as a pair-rule segmentation gene to direct the development of even-numbered 

parasegments (Hafen et al., 1984; Kuroiwa et al., 1984; Wakimoto et al., 1984). Dm-

ftz is expressed in seven stripes in the primordia of these parasegmental regions 
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(Carroll et al., 1988a; Hafen et al., 1984). Dm-Ftz is required for expression of 

alternate engrailed (en) stripes, directly regulating en by binding to an intronic 

enhancer along with its partner Ftz-F1 (see below).  Dm-Ftz binds to similar DNA 

sequences as other Antp-class homeodomain proteins and functions as a transcription 

activator (Pick, 1990; Florence 1997).  Dm-Ftz has been shown to directly regulate 

the expression of ftz, en, drm and likely regulates the expression of 50-100 genes in 

total in early embryos, all in conjunction with Ftz-F1 (Bowler and Field – manuscript 

in preparation; Florence et al., 1997; Han et al., 1998; Hou et al., 2009; Pick et al., 

1990; Yu et al., 1997).   

ftz-f1 

Ftz-F1 (Ftz-Factor 1) was first isolated as a transcription factor that binds to the 

zebra element, a cis-regulatory element of ftz, potentially activating ftz gene 

expression (Ueda et al., 1990). However, the pair-rule function of ftz-f1 was revealed 

in a genetic screen for maternal effects of zygotic lethal alleles (Yu et al., 1997) and 

simultaneously  in a screen for maternal-effect genes (Guichet et al., 1997). Ftz-F1 

encodes an orphan nuclear receptor and is the founding member of the NR5A nuclear 

receptor proteins that includes mammalian SF-1 and LRH-1 (Pick et al., 2006). 

Embryos derived from ftz-f1 germline clones (Yu et al., 1997) or from mothers 

expressing a maternal allele of ftz-f1 (Guichet et al., 1997) display pair-rule 

phenotypes indistinguishable from ftz, deletion of the even-numbered parasegments. 

Similar to opa, ftz-f1 is expressed ubiquitously in embryos, despite the fact that loss 

of function mutations result in pair-rule defects.  As discussed in more detail below, 

this phenotype is explained by the obligate interaction of Ftz-F1 with Ftz. These 
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proteins function as partners to coordinately bind DNA and regulate transcription 

(Guichet et al., 1997; Schwartz et al., 2001; Yu et al., 1997; Yu et al., 1999; Yussa et 

al., 2001a).   

  even-skipped   

   even-skipped (eve) was first isolated by Nüsslein-Volhard and co-workers in the 

genetic screen described above (Nüsslein-Volhard and Wieschaus, 1980). As its name 

indicates, eve mutations resulted in a typical pair-rule phenotype with embryos 

missing portions of the even-numbered segments, corresponding to loss of odd-

numbered parasegments. Note that parasegments correspond to segmental-width 

regions of the embryo that are offset by a half-segment unit from the body segments 

that form later during development.  The parasegments appear to be directly specified 

by the PRGs and are likely the first step in the establishment of metameric units in the 

embryo (Lawrence, 1981).  It was later found that the mutations associated with the 

eve pair-rule phenotype are hypomorphic, while null mutations result in embryos with 

a “lawn of denticles” phenotype, similar to en mutants, lacking overt signs of 

segmentation (Macdonald et al., 1986; Nüsslein-Volhard et al., 1985; Nüsslein-

Volhard and Wieschaus, 1980; Nüsslein-Volhard et al., 1984). At the early syncitial 

blastoderm stage, eve mRNA and protein were found to be expressed in a broad band 

spanning the central region of the embryo (Frasch et al., 1987; Macdonald et al., 

1986). In keeping with the pair-rule phenotype, eve is then expressed in seven stripes 

at the blastoderm stage, in the primordia of regions missing in eve pair-rule mutants.  

At slightly later stages, an additional seven eve stripes arise de novo between the 

seven primary stripes, resulting in a total of 14 stripes in the presumptive posterior 
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compartments of each segment (Macdonald et al., 1986). eve encodes a transcription 

factor containing a divergent homeodomain that binds to DNA and represses the 

expression of ftz, Ultrabithroax (Ubx) and wingless (wg) (Carroll and Scott, 1986; 

Ingham et al., 1988; Martinez-Arias and White, 1988) 

runt 

  runt was first identified in a screen for X-linked lethals (Lifschytz and Falk, 

1968) but its pair-rule function was recognized by Nüsslein-Volhard and Wieschaus 

(Nüsslein-Volhard and Wieschaus, 1980). At the syncitial blastoderm stage, runt is 

expressed in a broad central region and during cellularization runt is expressed in 

seven pair-rule stripes, which later split into 14 stripes (Klingler and Gergen, 1993). 

runt encodes a unique transcription factor with a DNA binding domain named the 

Runt domain (Gergen and Butler, 1988), different from the homeodomain, zinc finger 

or other previously characterized DNA binding domains (Kagoshima et al., 1993; 

Pepling and Gergen, 1995).  Drosophila Runt is the founding member of the Runx 

(Runt-related transcription factor) transcription factor family.  In Drosophila, there 

are three homologues of runt, named lozenge (lz), runxA and runxB (Bao and 

Friedrich, 2008). Dm-runt functions in segmentation (Nüsslein-Volhard and 

Wieschaus, 1980), neurogenesis  (Dormand and Brand, 1998; Duffy et al., 1991) and 

sex determination (Cline, 1986; Duffy and Gergen, 1991).  In Drosophila, lz plays 

roles in eye and antenna development, hematopoiesis, and fertility (Batterham et al., 

1996; Gupta and Rodrigues, 1995). The function of RunxA and RunxB have not been 

studied (St Pierre et al., 2014). In mamals, there are three Runt homologues RUNX1, 

RUNX2 and RUNX3. RUNX1 plays a similar role in hematopoiesis as its Drosophila 
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homolog Lz; RUNX2 is involved in skeletal development and RUNX3 is considered 

to be a major tumor suppressor in many tumor types, while both RUNX1 and 

RUNX2 were found to have oncogenic potenial (Ito, 2008; Levanon and Groner, 

2008).  All Runt domain family members have a VWRPY motif at the C terminus of  

the protein. The VWRPY motif  interacts with Groucho and plays a very important 

role in  repression of some target genes, although Runt appears to repress en 

expression independently of VWRPY (Aronson et al., 1997).  

  hairy 

  The hairy (h) mutation was first found by Dr. O.L. Mohr in the early 1900’s 

(Lindsley and Zimm, 1992).  The name hairy was given to these mutants because of 

their phenotype: hairy flies possess hair on the scutellum in a region lacking hair in 

wild type flies. The role of hairy in Drosophila development was first discovered by 

Nüsslein-Volhard and co-workers who initially named this mutation barrel. Later 

barrel and hairy were found to be the same gene (Nüsslein-Volhard et al., 1984). 

hairy  was cloned by Holmgren (Holmgren, 1984). hairy encodes a basic helix-loop-

helix (bHLH) transcription factor and binds to DNA (Holmgren, 1984). Hairy has a 

WRPW motif, which interacts with the co-repressor Groucho, functioning as a 

repressor (Jimenez et al., 1997), While most of Hairy’s repressive effects depend on 

WRPW, its repression of Scute was found to be independent of the WRPW motif and 

Groucho (Dawson et al., 1995). hairy is expressed in stripes in Drosophila embryos 

(Carroll et al., 1988b; Ingham et al., 1985) and mutants are missing the posterior part 

of odd-numbered segments (Jürgens et al., 1984). In addition to playing an important 

role in Drosophila segmentation, hairy is also required for bristle patterning 
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(Rushlow et al., 1989) and has been found to be a quantitative trait locus for 

Drosophila sternopleural bristle number (Robin et al., 2002).  In Drosophila, a few 

hairy related genes have been found including Hey (Hairy/E(spl)-related with YRPW 

motif) and E(spl) (Enhancer of Split), both of which are transcription repressors that 

play important roles in neurogenesis (Fisher and Caudy, 1998). 

paired 

  paired (prd) was discovered by Nüsslein-Volhard et al. and Sander et al. around 

the same time (Nüsslein-Volhard and Wieschaus, 1980; Sander et al., 1980). prd 

mutants show deletions of the posterior part of the odd-numbered segments and the 

anterior part of even-numbered segments.  prd is expressed in seven primary stripes at 

the syncitial blastoderm stage; each primary stripe later splits into two stripes, giving 

rise to 14 stripes at the cellular blastoderm stage (Kilchherr et al., 1986). prd encodes 

a transcription factor with two DNA binding domains: a Paired-Domain (PD) and 

Prd-type Homeodomain (HD).  Both the PD and HD are required to activate 

expression of target genes such as en, wg and eve (Gutjahr et al., 1993b; Ingham and 

Hidalgo, 1993; Lan et al., 1998). 

In Drosophila, there are two homolgs of paired, gooseberry (gsb) and gooseberry-

neuro (gsbn) (Baumgartner et al., 1987; Gutjahr et al., 1993). All of them belong to 

the PAX group III family (Noll, 1993). gsb was first discovered as a segment polarity 

gene (Nüsslein-Volhard and Wieschaus, 1980). Both gsb and gsbn are expressed in 

the central nervous system and gsb regulates the expression of gsbn, which in turn is 

involved in neural specification (Gutjahr et al., 1993; Gutjahr et al., 1994; He and 

Noll, 2013).   
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odd-skipped 

  odd-skipped (odd) was first identified in the genetic screen described above based 

on its mutant phenotype - posterior denticle rows of the odd-numbered segments are 

deleted (Nüsslein-Volhard and Wieschaus, 1980). odd is expressed in seven primary 

stripes at the cellular blastoderm stage;  at gastrulation, those seven primary stripes 

narrow and at the same time eight new stripes arise (Coulter et al., 1990; Coulter and 

Wieschaus, 1988). Odd encodes a transcription factor with a zinc finger DNA-

binding domain (Coulter et al., 1990; Coulter and Wieschaus, 1988). It negatively 

regulates en, limiting the expression of en within even-numbered parasegments. In 

Drosophila, there are two genes related to odd, sister of odd (sob) and brother of odd 

with entrails limited (bowl), which play roles in embryonic hindgut development 

(Iwaki et al., 2001).  

odd-paired  

  odd-paired was first identified by Jurgens et al. on the basis of phenotype 

(Jürgens et al., 1984). Although opa mutants display a typical pair-rule phenotype 

with deletion of odd-numbered parasegments, opa is not expressed in a pair-rule 

pattern (Benedyk et al., 1994). Rather, from cellularization to gastrulation, opa is 

ubiquitouslly expressed in a broad region of the central of the embryos; as germ band 

extension begins, its expression changes to 14 weak stripes with low backgroud level 

of expression throughout the embryo (Benedyk et al., 1994). opa encodes  a zinc 

finger transcription factor that is thought to regulate the expression level of wg 

(Benedyk et al., 1994). 
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sloppy paired 

  sloppy paired (slp)  was first identified by Nüsslein-Volhard et al. on the basis of 

its pair-rule mutant phenotype – deletion of odd-numbered abdominal segments and 

the mesothorax segment (Nüsslein-Volhard et al., 1984). When Grossnikilaus et al. 

cloned the slp locus, they found that slp is composed of two genes, slpl and slp2 

(Grossniklaus et al., 1994). slp1 is first expressed in a broad region (gap-like) in the 

anterior of the embryo at the syncitial blastoderm stage; towards the end of the 

syncitial blastoderm stage the broad expression pattern narrows into a  

circumferential ring; during cellular blastoderm, seven primary stripes appear and 

seven more secondary stripes are added between the primary stripes. Expression of 

slp2  starts later than slp1, and follows a similar pattern to slp1 except that it is not 

expressed in a gap-like pattern, and the circumferential ring is one to two cells 

narrower than that of slp1 (Grossniklaus et al., 1992).  slp1 is required for head 

formation, while slp2  is redundant to slp1 for segmentation but plays no role in head 

formation (Cadigan et al., 1994a). slpl and slp2  encode related  transcription factors 

with forkhead DNA binding domains.  Both Slp1 and Slp2 regulate expression of the 

segmentation polarity genes en and wg (Cadigan et al., 1994b).  

Interactions between pair-rule genes  

A large body of work has documented regulatory interactions between the 

Drosophila PRGs.  These studies suggest that in Drosophila, the PRGs are not 

created equal. Some, known as primariy PRGs, are activated by the maternal and gap 

genes and regulate other PRGs. Others are regulated by primary PRGs and are called 

secondary or tertiary PRGs (Ingham, 1988; Noll, 1993). Traditionally, hairy, runt and 
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eve were thought to be the primary PRGs; other PRGs were thought to be secondary 

or tertiary PRGs (Akam, 1989). This classification is likely oversimplified as, for 

example, the ftz pair-rule stripes were found to be activated by non-periodic cues (Yu 

and Pick, 1995); prd stripes are established by gap genes (Gutjahr et al., 1993a); and 

runt, classified as a primary PRG, is regulated by the so call secondary PRGs such as 

ftz and prd (Klingler and Gergen, 1993). 

  In Drosophila, Hairy was found to negatively regulate runt and ftz (Ingham and 

Gergen, 1988). Runt was found to negatively regulate h, eve and odd (Ingham and 

Gergen, 1988; Jaynes and Fujioka, 2004). Eve negatively regulates slp, prd, odd,and 

run (Baumgartner and Noll, 1990; Coulter and Wieschaus, 1988; DiNardo and 

O'Farrell, 1987; Fujioka et al., 1995; Jaynes and Fujioka, 2004). Ftz activates odd 

(Nasiadka and Krause, 1999) but Odd negatively regulates ftz, slp, prd (Baumgartner 

and Noll, 1990; DiNardo and O'Farrell, 1987; Mullen and DiNardo, 1995). Slp 

negatively regulates ftz, odd, eve (Cadigan et al., 1994b; Jaynes and Fujioka, 2004). 

Prd positively regulates the expression of eve, but does not regulate other PRGs as the 

expression of  runt and eve are unchanged in prd null mutants (Frasch and Levine, 

1987; Hooper et al., 1989; Klingler and Gergen, 1993).  

  In addition to this, runt and slp1 have been found to have gap-like functions 

(Tsai and Gergen, 1994). runt is expressed in a broad domain in the central region of 

the embryo (Klingler and Gergen, 1993) and regulates the express of two gap genes, 

Kruppel and hunchback (Tsai and Gergen, 1994). Slp1  has gap-like functiona in the 

head where it is expressed in a gap-like pattern. This  early expression of slp1 in the 

head is not regulated by any other PRG (Grossniklaus et al., 1994). Overall, the 
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interactions among PRGs and interactions between PRG and gap genes are 

complicated. Some interactions are partially redundant, for an example, both Runt 

and Slp repress eve, setting up the anterior border of the odd-numbered eve-stripes. 

This complexity and redundancy indicate the importance of correct expression 

patterns of PRGs in Drosophila development.  

Section 1.3: Evolution of PRGs in insects  
  In order to understand how the PRG network changed during evolution, these 

genes have been examined in other insects.  Based on how their germ band deveolps, 

insects have been classified into two categories, sequentially segmenting and long 

germ band (Peel et al., 2005).  In sequentially segmenting insects, the anterior 

segments are specified in blastoderm and posterior segments are formed by sequential 

addition from a cellularized growth zone after gastrulation. In long germ insects, all 

their segments are patterned in the blastoderm. Sequential segmentation is believed to 

be more basal (Anderson, 1973). Below, I summarize what is known about the 

sequence, expression and function of orthologs of the Drosophila PRGs in other 

insect species, including sequentially segmenting species and others with a long germ 

mode of development similar to Drosophila.  

fushi tarazu (ftz) and fushi tarazu- factor 1 (ftz-f1) 

    As mentioned above, Ftz and Ftz-F1 function as obligate partners in Drosophila.  

Accordingly, the functional evolution of these two genes is presented in one section 

here. Years of works from many labs, especially the Pick lab demonstrated extensive 

variation in the expression and function of these genes, providing a broad view about 

the evolution of this partner pair.  



 

 14 
 

      ftz is thought to have arisen from a duplication of an Antp-like ancestral 

homeotic gene and it is expressed in a Hox-like pattern in distant arthropods (Figure 

1.3 C), such as the  mite Archegozetes longisetosus (Telford, 2000), the water flea 

Daphnia pulex (Papillon and Telford, 2007), the centipede, Lithobius atkinsoni. 

(Hughes and Kaufman, 2002) and a spider Cupiennius (Damen et al., 2005). ftz is 

expressed in pair-rule stripes in Drosophila melanogaster (Figure 1.3 B), D. hydei 

(Jost et al., 1995), Tribolium (Brown et al., 1994a), Apis mellifera (Dearden et al., 

2006) and Thermobia domestica (Hughes et al., 2004).  For Drosophila, these stripes 

are localized to the primoridia of regions missing in ftz mutants and striped 

expression is necessary for proper segmentation, expression of alternate en stripes, 

and viability.  

 

 
  Studies in our lab showed that Dm-Ftz changed its function during evolution due to 

changes in its protein sequence and its expression pattern (Lohr and Pick, 2005; Lohr 

et al., 2001).  Dm-Ftz acquired an LXXLL motif which mediates interaction with Ftz-

A 
B 

C 

 

Figure 1.3 The expression of ftz switched from Hox-like to stripes.  (A) 
Drosophila Scr expressed in a Hox-like pattern, showing how a typical Hox 
gene expression pattern in Drosophila. (B) Drosophila ftz expressed in seven 
stripes in the primordia of the parasegments it promotes. (C) Archegozetes 
longisetosus ftz is expressed in a Hox-like pattern, thought to reflect the 
ancestral state. Panel C from (Telford, 2000). 
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F1 and is required for its segmentation function; it lost its ancestral YPWM motif 

which mediates interaction with the Hox co-factor Extradenticle (Exd) (Lohr and Pick, 

2005; Lohr et al., 2001). 

  As discussed above, ftz likely arose from an Antp-like ancestor, and it changed its 

expression pattern from Hox-like to a seven stripe pattern, seen in Drosophila. 

Therefore, its function in segmentation may be explained solely by its changed  

expression pattern. If this were the case, Dm-Ftz would retain the ability to function 

as a homeotic/Hox protein. To test this, Lohr et al. ectopically expressed Dm-ftz in 

imaginal discs to see whether it would mimic the homeotic phenotype seen when 

classic Hox genes are expressed in this way.  To do this, they generated UAS-Dm-ftz 

transgenic flies and crossed them with  dll-GAL4, which drives expression of UAS-

Dm-ftz in the imaginal discs (Lohr and Pick, 2005). When Antp was expressed in the 

same way, it caused antenna-to-leg transformation, which serves as a indicator of its 

homeotic function.  Using this approach, Lohr et al. found that Dm-ftz lost its 

homeotic potential (Figure 1.4 B), while distant ftz genes such as Tribolium 

castaneum ftz (Tc-ftz) and Schistocerca gregaria ftz (Sg-ftz) caused  antenna-to-leg 

transformations in Drosophila (Figure1.4 D and E) (Lohr and Pick, 2005). Since the 

YPWM motif had been found to play an important role in the interaction between 

Hox proteins and Exd (Johnson et al., 1995), as expected, when a YPWM motif was 

added to Dm-Ftz,  it increased the homeotic potential of Dm-Ftz (Lohr and Pick, 

2005). Surprisingly, when the YPWM motif was changed to AAAA in Tc-Ftz,  the 

mutated Tc-Ftz still had homeotic potential (Figure 1.4 H) (Lohr and Pick, 2005). 

This suggests that Tc-Ftz has another domain necessary for homeotic function. Since 
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without the YPWM motif, Dm-Ftz does not have homeotic potential, it is possible 

that Dm-Ftz lost the second motif which confers Tc-Ftz  homeotic potential.  

Alternatively, Tc-Ftz independently acquired this motif or Dm-Ftz acquired another 

motif which  inhibits homeotic function. 

  

Figure.1.4 Addition of YPWM is enough to confer homeotic function to Dm-FTZ 
but is not necessary for Tc-Ftz homeotic activity. (A)Control. Arista (Ar) expressing 
lacZ. All antennal segments (A1–A3) developed normally. (B) Expression of Dm-Ftz caused 
the deletion of the arista and the truncation of the A3 segment.(C) Dm-FtzLRAAA caused a 
similar phenotype. (D) Dm-FtzYPWM caused weak antenna-to-leg transformations. (E) 
Expression of Dm-FtzLRAAA/YPWM caused a strong antenna-to-leg transformation. (H) 
Expression of Tc-FtzAAAA, in which the YPWM was changed to AAAA. 
 
    As mentioned above, Ftz depends on the interaction with Ftz-F1 for its function in 

segmentation in Drosophila.  Ftz-F1 belongs to the nuclear receptor (NR) superfamily, 

and has been classified as an orphan receptor (reviewed in Pick, 2005). Like all NRs, 

Ftz-F1 has a conserved DNA-binding domain (DBD) and a ligand-binding domain 

(LBD). At the C-terminal end of the LBD, there is highly conserved activating factor 

(AF-2) motif, which had been shown to interact with LXXLL motifs in other nuclear 
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receptor co-factors. Dm-Ftz-F1 is ubiquitously expressed in the Drosophila embryo 

during development (Figure 1.5 d). Dm-ftz-f1 mutants lack all ftz-dependent segments 

and are missing the Dm-Ftz-dependent en stripes, resulting in an embryonic 

phenotype identical to that of ftz mutants (Figure. 1.5 b and 1.5 c). Dm-Ftz and Dm-

Ftz-F1 were found to interact with each other both in vitro and in vivo (Florence et al., 

1997; Guichet et al., 1997; Yu et al., 1997; Yu et al., 1999; Yussa et al., 2001b).  

 

 

The function of Ftz has been studied in two holometabolous insects in addition to 

Drosophila. In the honeybee Apis mellifera, Am-ftz was expressed in a pair-rule 

pattern.  Knockdown of Am-ftz with embryonic RNAi (eRNAi) affected the formation 

of anterior segments but the thoracic and abdominal segments were  unaffected 

(Wilson and Dearden, 2012). In the sequentially segmenting  beetle Triboliu castanem, 

ftz is expressed in pair-rule stripes, and its stripes partially overlap with the primary 

stripes of Tc-eve  (Brown et al., 1994a). Surprisingly, Ftz does not have any 

Figure 1.5.  Mutations in ftz and ftz-
f1 cause identical pair-rule mutant 
phenotypes (a) Wild-type cuticle, (b) 
ftz mutants are missing every other 
parasegment, (c) ftz-f1 mutants are 
identical to ftz mutants, (d) Expression 
of ftz-f1 (green) overlapping ftz (red; 
overlap yellow). From Yu et. al, 1997; 
Yussa et. al, 2001. 
 
 

d 
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segmentation function, as embryos with a deletion of part of the homeotic complex 

that includes Tc-ftz did not display segmentation defects (Brown et al., 1994b; Stuart et 

al., 1991). Similarly, parental RNAi (pRNAi) of Tc-ftz did not cause defects in 

segmentation (Choe et al., 2006). Note that when Tc-ftz was expressed in Drosophila 

embryos, it showed both segmentation and homeotic activity.  Further, Tc-Ftz has an 

LXXLL motif and interacted in vitro with Ftz-F1 (Lohr and Pick, 2005). Therefore, its 

apparent lack of function in Tribolium segmentation is unexpected. 

In Drosophila, in addition to its role in segmentation, Ftz is also expressed and 

functions in the central nervous system (CNS) (Carroll and Scott, 1985; Doe et al., 

1988). Its CNS expression has been found in all the arthropods examined, which 

includes myriapods (Damen, 2002; Hughes and Kaufman, 2002; Janssen and Damen, 

2006), crustaceans (Heffer et al., 2010; Mouchel-Vielh et al., 2002), and insects 

(Brown et al., 1994a; Dawes et al., 1994; Hughes et al., 2004). Thus, despite change 

in protein sequence and expression pattern during embryonic development, Ftz 

expression in the CNS seems to be maintained in all arthropods. It was proposed that 

ftz is maintained in the arthropod genome because of an indispensable and conserved 

function in the CNS (Heffer and Pick, 2013).  

   Ftz-F1 is required for segmentation of Drosophila (Guichet et al., 1997; Yu et 

al., 1997).  Its role is as important as Ftz if not more, especially if we consider the 

observation that the segmentation defects in ftz mutants can be rescued by a partial 

Ftz protein without the DNA binding domain (Copeland et al., 1996; Fitzpatrick et al., 

1992). The function of Ftz-F1 orthologs in other insects has only been studied in 

Tribolium (Heffer et al., 2013). Heffer et al. found that Tc-ftz-f1 is expressed in one 
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single stripe at blastoderm stage, and in a pair-rule pattern at the germband extension 

stage (Heffer et al., 2013).  Using eRNAi,  Heffer et al. found that Tc-ftz-f1 dsRNA 

injected embryos lost even-numbered abdominal segments and when the 

concentration of dsRNA was increased, embryos failed to hatch with no cuticle 

formed. These findings indicate that in Tribolium, Tc-ftz-f1 functions as a pair-rule 

gene and is necessary for cuticle development (Heffer et al., 2013).   Interestingly, Tc-

ftz-f1 is expressed in stripes in Tribolium that overlap with the Tc-ftz stripes (Heffer et 

al., 2013; Heffer, 2012). This differs from the ubiquitous Ftz-F1 expression pattern 

seen in Drosophila.  The authors suggested that the dependence of Dm-Ftz-F1 on Ftz 

released constraints on ftz-f1 expression, allowing it to be expressed throughout the 

embryo without causing activation of target gene expression outside of the stripe 

domains in which ftz is expressed. Thus, for ftz, both the expression pattern and 

protein sequence vary in different extant arthropod, while the expression pattern of 

ftz-f1 has changed at least once during insect radiations.  

even-skipped 

Orthologs of eve have been studied in a number of holometabolous insects.  In a 

long germ band insect, the mosquito Anopheles gambiae (Diptera, Culicidae), 

expression of eve mRNA was found to be similar to that seen in  Drosophila (Goltsev 

et al., 2004). No functional analysis was performed in this study. In another long 

germ band insect, the honeybee Apis mellifera (Hymenoptera: Apidae), Wilson et al. 

detected Am-eve expression in the ovarioles of the queen ovary, maturing oocytes and 

the posterior nurse cells (Wilson and Dearden, 2012). During embronic development, 

Am-eve mRNA was detected throughout the embryo in early embryos (stage 1-4), and 
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later in a broad domain similar to that seen in Drosophila (Wilson and Dearden, 

2012). In early stage 5, Am-eve is expressed in stripes with  dual segment periodicity 

that later split into segmental stripes at stage 5 and stage 6. RNAi produced larva with 

fused central, posterior and terminal segments or larva without segments (Wilson and 

Dearden, 2012).  

eve has also been studied in several sequentially segmenting holometabolous 

insects. In the silk worm Bombyx mori (Lepidoptera), a sequentially segmenting 

insect, Nakao et al. found that Bm-eve is expressed in a broad domain in the central 

region of the embryo (Nakao, 2010). Eight pair-rule stripes then emerge from this 

broad domain in an anterior to posterior order. According to the authors, all the eight 

pair-rule stripes appear before “marked elongation occurs.” No functional data are 

available for Bm-eve. In the mothmidge Clogmia albipunctata (Diptera, Psychodidae), 

another sequentially segmenting insect, Ca-eve was found to be expressed in seven 

stripes but the secondary eve stripes seen in Drosophlia were not observed (Rohr et 

al., 1999). Again, no functional analysis was performed. However, functional studies 

were carried out for one sequentially segmenting holometabolous insect, the jewel 

wasp Nasonia vitripennis (Hymenoptera, Pteromalidae). Nv-eve was found to be 

expressed first in  a broad domain of the embryo, then a stripe appeared at the 

posterior region (stripe 6) and the broad expression domain later split into three 

stripes (stripe 1, 2 and 3); at the start of cellularization, a faint stripe (stripe 4/5) 

appeared between stripe 3 and stripe 6. Then from anterior to posterior, each stripe of 

stripe 1 to stripe 5 split into two stripes; stripe 6 then gave rise to six segmental 

stripes (Rosenberg et al., 2014). Using morpholinos to target  Nv-eve, Rosenberg et al. 
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found that knocking down Nv-eve caused partial pair-rule phenotypes for anterior 

segments and truncation of A5-A10 segments (Rosenberg et al., 2014), which 

represents a segmental phenotype. 

In the sequentially segmenting red flour beetle Tribolium castaneum (Coleoptera, 

Tenebrionidae), Tc-eve was expressed in primary stripes and secondary stripes similar 

to that seen in Drosophila, except that the secondary stripes split off from the primary 

stripes (Brown et al., 1997; Patel et al., 1994). Tc-eve RNAi produced asegmental 

embryos that contained labrum, antennae, and telson but no gnathal or trunk segments 

(Choe et al., 2006).  Eve expression was examined in two other beetle species, the 

sequentially segmenting beetle, Dermestes frischi (Coleoptera, Dermestidae) and a 

long germ beetle, Callosobruchus maculatus (Coleoptera, Chrysomelidae). eve 

orthologs were found to be expressed in stripes in both species in similar patterns to 

those see in Tribolium but functional studies were not carried out (Patel et al., 1994).  

 eve expression and function have also been examined in hemiptera (sister group to 

the holometabolous insects) and in more basally branching species. In the 

sequentially segmenting insect Oncopeltus fasciatus (Hemiptera, Lygaeidae), Of-eve 

was found to be expressed in a broad region of the early blastoderm stage embryo, 

spanning  the posterior two thirds of the blastoderm. At late blastoderm stage, the 

broad expression pattern of Of-eve changed into six stripes (Liu and Kaufman, 2005). 

Since Of-en is also expressed in six stripes pattern at late blastoderm (Liu and 

Kaufman, 2004a), it appears that Of-eve is expressed in each segment in blastoderm 

stage embryos. In germband extension stage embryos, Of-eve was also expressed in a 

segmental pattern in contrast to the pair-rule expression in alternate segment 
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primordia seen in Drosophila (Liu and Kaufman, 2005). Knockdown of Of-eve with 

parental RNAi resulted in embryos with large deletions of almost the entire body (Liu 

and Kaufman, 2005). In mildly or weakly affected embryos, almost all had defective 

abdomens, with normal head segments but posterior thoracic segments were affected 

in some embryos (Liu and Kaufman, 2005). Further study indicated that Of-eve  

affects the expression of two gap genes, hunchback and Krüppel. Based on the RNAi 

phenotypes and the fact that Of-eve affects expression of gap genes, Liu et al. (Liu 

and Kaufman, 2005) classified Of-eve as a gap gene in Oncopeltus. The broad Of-eve 

expression pattern observed in early blastoderm is consistent with a gap gene function.  

In the more basally branching sequentially segmenting cricket Gryllus bimaculatus 

(Orthoptera, Gryllidae), Gb-eve was found to expressed in a pair-rule pattern from  

the maxillary to the T2  segment, and secondary stripes arose by splitting of the 

primary stripes. A mandibular stripe formed in a segmental manner, while it is not 

clear if the T3 and A1 stripes  were expressed in pair-rule or segmental patterns (Mito 

et al., 2007; Mito et al., 2006).  In segments A4, A5, A8, and A9 , Gb-eve arose in a 

pair-rule to segmental pattern (one primary stripe split into two stripes), while in 

segments A2, A3, A6, A7, and A10, Gb-eve arose in a segmental pattern (Mito et al., 

2007). Gb-eve embryonic  RNAi resulted in embryos with defects in anterior 

segmentation, showing reduction of thoracic legs and fusion of labial and T1 

segments, fusion of T2 and T3 segments, and some showing a deletion from T1 to T3 

(Mito et al., 2007). Mito et al. interpreted  these phenotype as pair-rule like and gap 

like (Mito et al., 2007).  The Gb-eve RNAi embryos also had abdominal segmentation 

defects. Some embryos lost one, two or three abdominal segments; some embryos had 
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irregular abdominal segment borders; some embryos had defective, short posterior 

regions (Mito et al., 2007). These experiments also showed that Gb-eve regulates the 

gap genes hunchback and Krüppel. The authors suggested that the Gb-eve functions 

partially as a pair-rule gene in posterior segmentation. In one additional Orthoptera 

insect, the grasshopper Schistocerca americana, Eve protein was not expressed in 

stripy pattern; its expression was only detected in the CNS and growth zone (Patel et 

al., 1992). The absence of segmental expression suggests that Sg-eve does not 

function in that process at all in Schistocerca. 

runt  

In the long germ band insect Apis mellifera, Am-runt was found to be expressed in 

nurse cells and the oocytes. In early embryos, weak expression of Am-runt was 

detected broadly in the abdominal region; at stage 6, pair-rule stripes appeared in the 

thoracic and abdominal regions and those stripes then split to generate secondary 

stripes expressed in a segmental pattern (Wilson and Dearden, 2012).  Am-runt RNAi 

larvae showed defects in segmentation.  Segments appeared to be more widely spaced 

than in controls with segmentally-organized trachea less densely spaced (Wilson and 

Dearden, 2012). The authors suggested that this may indicate loss of alternating 

segments or an expansion of remaining segments. 

 In Nasonia, a sequentially segmenting insect, Nv-runt was found to be expressed 

in six pair-rule stripes before cellularization and two more posterior pair-rule stripes 

are added during gastrulation. At full germ band extension, Nv-runt’s expression 

changes into single-segment stripes (Rosenberg et al., 2014). Functional analysis has 

not been reported.  In a sequentially segmenting insect Manduca sexta (Lepidoptera), 
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Ms-runt was expressed in eight pair-rule stripes at the blastoderm stage before germ 

band elongation starts (Kraft and Jackle, 1994). Finally, in Tribolium, a sequentially 

segmenting insect, Tc-runt was reported to be expressed in primary pair-rule stripes 

and no secondary segmental stripes were detected (Brown and Denell, 1996). Tc-runt 

pRNAi created almost completely asegmental larvae; only labium, antennae and 

mandibles were found in the embryonic cuticles (Choe et al., 2006). I did not find any 

study of runt in more basally branching insects that have been published to date.  

hairy 

The expression and funciton of h have been examined in several holometabolous 

insects in addition to Drosophila. In a long germ band insect, the honeybee Apis 

mellifera (Hymenoptera:  Apidae), hairy (Am-h) is expressed in mid-stage oocytes 

with a weak expression in the nurse cells, and during embryonic development, first as 

a broad thoracic stripe, and later in eight stripes (Wilson and Dearden, 2012). Given 

the fact that en is expressed in 16 stripes in Apis at the late germ band extension stage 

(Fleig, 1990), the eight-stripe expression pattern suggests that Am-h  is expressed in a 

pair-rule pattern.  Am-h dsRNA injected embryos developed into larva with fused 

thoracic and anterior abdominal segments, and some larva had all segments fused 

(Wilson and Dearden, 2012).  The most severly affected Am-h RNAi larva lost all en 

(e30) stripes and mildly affected  larva had disorganized en  stripes (Wilson and 

Dearden, 2012). This suggests that Am-h has a role in segmentation but one that is 

different from that of its Drosophila ortholog. 

 hairy orthologs have been studied in two sequentially segmenting holometabolous 

insects, both Coleoptera: the red flour beetle (Tribolium castaneum) and the confused 
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flour beetle (Tribolium confusum). In Tribolium castaneum, Tc-h is expressed in pair-

rule stripes (Aranda et al., 2008; Sommer and Tautz, 1993). However, pRNAi knock 

down affected head development but the posterior thoracic and abdominal segments 

developed normally (Choe et al., 2006). Aranda et al. compared the expressionof 

hairy between T. castaneum and T. confusum (Aranda et al., 2008). They found that 

in both species hairy is expressed in stripes, but the stripes in T. confusum  were more 

distinct and more persistent. Using pRNAi, Aranda et al. confirmed the results from 

Choe et al. (Aranda et al., 2008; Choe et al., 2006), in T. castaneum, showing that Tc-

h does not have a function in the formation of the abdominal segments. In T. 

castaneum, using Tc-gsb as a segmental marker, Aranda et al. found that Tc-h RNAi 

mainly affected mandibular and labial segments.  This suggested to the authors that 

Tc-h could have pair-rule function at the blastoderm stage, when Tc-h appears to be 

expressed in a stripy pattern. 

paired  

prd expression and function have been studied in two holometabolous insects, in 

addition to Drosophila. In the long germ band insect Apis mellifera, Am-prd was 

found to be expressed in a primary pair-rule pattern and every primary stripe split into 

two stripes (Osborne and Dearden, 2005). Different from Drosophila, in Apis the 

anterior primary stripes split before posterior primary stripes appear (Dearden et al., 

2006). Functional data are not available.  

In the sequentially segmenting insect Tribolium castaneum, Tc-prd was expressed 

in a primary pair-rule pattern and  the primary stripes split to create secondary stripes 

(Choe and Brown, 2007). Similar to the Am-prd, Tc-prd anterior primary stripes split 
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before posterior primary stripes appear (Choe and Brown, 2007). Knockdown of Tc-

prd with pRNAi revealed pair-rule function for this gene, with loss of odd-numbered 

segments and alternate en stripe expression, similar to what is seen in Drosophila 

(Choe and Brown, 2007). 

  Prd has only been examined in one non-holometabolous insect, the sequentially 

segmenting insect Schistocerca americana.  Here,  two paired  homologs were found 

(Davis et al., 2001). These were named pairberry1(pby1) and pairberry2 (pby2). Both  

pby1 and pby2 were found to be expressed in segmental stripes (Davis et al., 2001). 

Phylogenetic analysis indicates that both pby1 and pby2 belong to PAX group III, and 

pby1 and pby2 are more closely related to each other than to Drosophila prd, gsb or 

gsbn (Davis et al., 2001). The authors suggesetd that pby1 and pby2 arose through a 

duplication event independent of that leading to the Drosophila paralogs .  

odd-skipped 

As for several other Drosophila PRG orthologs, odd has been studied in only two 

other insects, both holometabolous.  In a sequentially segmenting insect Nasonia, Nv-

odd was found to be expressed in double-segment stripes (Rosenberg et al., 2014). 

The authors stated that the third Nv-odd  pair-rule stripe arises from the second pair-

rule stripe; pair-rule stripes 4 to 6 are all generated by an advancing “wave” 

(Rosenberg et al., 2014). Knocking down  Nv-Odd  with  morpholinos generated 

embryos missing most posterior segments (A5-A10) or embryos missing  T2, A1, A3 

and A5 segments (Rosenberg et al., 2014), which indicates that Nv-odd  acts as a pair-

rule gene in the central region of the embryo. In the sequentially segmenting insect 

Tribolium, Tc-odd is expressed in a pair-rule pattern (Choe et al., 2006). Tc-odd 
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RNAi embryos are severely affected, with most embryos being truncated and 

asegmental (Choe et al., 2006).  In a separate study, Sarrazin et al. found that over 

time, expression of Tc-odd in the growth zone changes from high to low levels, and 

back to high levels during production of new primary stripes. Using transgenic 

Tribolium expressing nuclear-localized GFP to  monitor  cell movements with live 

imaging, they showed that this oscillating expression is due to changes in expression 

level. They concluded that there is a segmentation clock in the growth zone of 

Tribolium (Sarrazin et al., 2012).  

odd paired 

 Opa is a zinc finger transcription factor. Since zinc finger transcription factors 

comprise the largest group of transcription factors, it is hard to find the ortholog of 

opa in other insects. This may be the reason why we have very limited data on its 

expression or function in other insects. So far it has only been studied in Tribolium 

castaneum (Choe et al., 2006). Choe et al. used pRNAi to knock down Tc-opa and 

reported that larvae shown no segmentation defects (Choe et al., 2006). No 

expression data were shown. 

sloppy-paired 

  slp has been studied in one insect outside Drosophila.  In the sequentially 

segmenting insect Tribolium, Tc-slp was found to be expressed in one stripe and then 

two stripes at the blastoderm stage; during germ band elongation, pairs of Tc-slp 

stripes are generated in the anterior region of the growth zone, with the anterior stripe 

usually narrower and weaker than the posterior stripe (Choe and Brown, 2007). The 

authors suggested that the difference in intensity within each pair of stripes may 
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indicate they have different roles in segmentation.  By double-staining with en, Tc-slp 

stripes were confirmed to be expressed in a single segment pattern (Choe and Brown, 

2007).  In Tc-pRNAi embryos, all the gnathal segments are affected; in the thoracic 

and abdominal regions, T1, T3 and A4 or A5 segments were deleted (Choe and 

Brown, 2007). The authors concluded that Tc-slp acts like a head gap gene, and a 

pair-rule gene in the thoracic and abdominal segments (Choe and Brown, 2007).  It is 

interesting that in Drosophila, slp mutations affect odd-numbered segments 

(Grossniklaus et al., 1992), while in Tribolium, slp RNAi affects even-numbered 

segments (Choe and Brown, 2007; Choe et al., 2006) 

Section 1.4: Other genes that have pair-rule function in insects 

  In Oncopeltus, Ecdysone-induced protein 75A (E75a) was found to be expressed 

in a pair-rule pattern at the blastoderm stage. During germ band elongation, Of-E75A  

abdominal segmental stripes appeared by splitting from primary stripes, which 

mimics the expression pattern of several Drosophila PRGs (Erezyilmaz et al., 2009).  

Interestingly, no stripes were detected after the en stripe is formed in A6. This 

suggested that Of-E75A  may not be expressed in segments A7 to A10. In Of-E75A  

pRNAi treated animals, fusion between labial and T1, T2 and T3, T3 and A1 were 

seen; segmentation defects were observed between A3 and A4, A5 and A6, A7 and 

A8 (Erezyilmaz et al., 2009). These observations indicate that Of-E75A  primarily 

affects odd-numbered parasegments. The authors did find rare defects in even-

numbered parasegments (ps12 and ps14 ), and more frequent defects in ps6 

(Erezyilmaz et al., 2009). In contrast to this pair-rule function in Oncopeltus, 
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Drosophila E75A is required for regulation of ecdysteroid biosynthesis, and null 

mutations do not affect segmentation (Bialecki et al., 2002).  

In the silk worm Bombyx mori, Liu et al. found that knockdown of Bm-groucho 

resulted in larvae with very typical pair-rule phenotypes (Liu, 2012). The larvae miss 

mandibles, labium, one thoracic segment and half of the abdominal segments. The 

identity of missing segments in thoracic and abdominal region could not be 

unequivocally determined. However, the author assumed they are T2, A1, A3, A5, A7 

and A9, which would be suggestive of pair-rule function. No expression data are 

available for Bm-groucho. In Drosophila, the pair-rule proteins Hairy, Runt, Eve and 

Slp depend on Groucho, which functions as a corepressor (Andrioli et al., 2004; 

Aronson et al., 1997; Jimenez et al., 1997; Kobayashi et al., 2001). Some groucho 

alleles do cause segmentation defects but not a typical pair-rule defect, since Groucho 

interacts with multiple PRG repressors (Chen and Courey, 2000; Paroush et al., 1994). 

Interestingly, a mutant in a histone deacetylase Rpd3, another corepressor, causes 

pair-rule defects in Drosophila (Mannervik and Levine, 1999). The authors proposed 

that Rpd3 functions as a corepressor with Eve (Mannervik and Levine, 1999). It is 

possible that the phenotype in Bm-groucho knockdown animals may be caused by a 

similar mechanism. 

 

  In a genetic screen for Tribolium mutants with larval cuticle patterning defects, 

Maderspacher et al. isolated four mutants with segmentation defects (Maderspacher et 

al., 1998). Two of them, Scratchy and itchy have clear pair-rule defects.  In Scratchy 

mutants, a point mutation in the homeodomain of Paired was detected, and in Itchy, a 
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mutation was found in the forkhead domain of Slp (Choe and Brown, 2007).  It is 

likely that those mutations are responsible for the phenotypes of Scratchy and Itchy, 

but the possibility that other genes may be involved is not ruled out. 

Section 1.5: Conclusions 

 
Except for ftz and eve, the evolution of other PRGs has not been studied 

systematically. Some of the pair-rule orthologs were only studied in one or two 

species, such as opa, slp and odd.  Most of the others were only studied in 

Holometabolous insects. In T. castaneum, all the Drosophila PRG orthologs have 

been studied. Tc-h, Tc-ftz, and Tc-opa do not have segmentation function, and 

interaction between other PRGs differs dramatically from that in Drosophila (Choe 

and Brown, 2007; Choe et al., 2006).  Apparently, the function of Drosophila PRGs 

are not as conserved as segmentation polarity genes such as engrailed, and Hox genes, 

which confer segment identity. However, studies in more basally branching insects 

are quite limited.  

 Not only do the function of PRGs vary during evolution, the mechanism 

underlying similar phenotypes caused by orthologous genes can be different too.  For 

example, in Drosophila, eve hypermorphic mutations cause pair-rule phenotypes and 

eve null mutation produce asegmental embryos covered by a continuous lawn of 

ventral hairs (Nüsslein-Volhard et al., 1985; Nüsslein-Volhard and Wieschaus, 1980). 

The null mutant phenotype was explained as a result of the deletion of both the odd-

numbered parasegments and portions of the even-numbered parasegments 

(Macdonald et al., 1986). In Oncopeltus and Tribolium, eve RNAi generates 

asegmental embryos in both species.  According to Liu et al., Of-eve acts as a gap 
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gene and causes segmental defects (Liu and Kaufman, 2005). Of-eve is not expressed 

in a pair-rule pattern but in a segmental pattern.  The gap-gene properties of Of-eve 

were explained by its early gap-like expression pattern (the same pattern is observed 

in early Drosophila and Tribolium embryos), and disruption of expression of other 

gap genes (Liu and Kaufman, 2005). In Tribolium, Tc-eve is first expressed in a pair-

rule pattern, and later each pair-rule stripe generates a secondary stripe.  Tc-eve was 

considered to be a primary pair-rule gene. Tc-eve does not regulate other gap genes 

and the asegmental phenotype observed in Tc-eve RNAi was explained by Tc-eve’s 

role in activating Tc-run and Tc-odd (Choe et al., 2006).  

In Tribolium, a few Drosophila pair-rule gene orthologs do not have segmentation 

function. Instead of assuming Tribolium does not need as many as PRGs as 

Drosophila does, it is tempting to think that their roles in segmentation are overtaken 

by some of their homologues. For example, gene Tc-opa, which encodes a zinc-finger 

transcription factor, does not play a role in segmentation of Tribolium. It is possible 

that another zinc-finger transcription factor replaced the segmentation function of Tc-

opa. Substituting one gene with its homolog may cause less disruption to a regulatory 

network than replacing it with an unrelated transcription factor. Gene homologues 

usually bind to very similar DNA sequences, and their requirements for co-factors 

may also be very similar. Thus, once a gene acquires a new expression pattern, 

making it is possible to interact in the segmentation process, it can easily take over 

the function of its homolog. In Drosophila, homologues slp1 and slp2, en and inv, and 

prd, gsb and gsbn all have functions in segmentation and most of these are redundant 

to each other. This supports the idea homologues can substitute each other’s roles 



 

 32 
 

without disrupting an existing regulatory network. The discovery of E75A as a pair-

rule gene in Oncopeltus is in agreement with this hypothesis. E75A, a homolog of 

Ftz-F1, belongs to the nuclear receptor superfamily. Its role in Oncopeltus can be 

viewed as a substitution/redundancy to the function of Ftz-F1 in the pair-rule network. 

RNAi in Tribolium with dsRNA targeting the most conserved domains of some of the 

PRGs that do not show segmentation function would test this hypothesis.  

 

There are limited PRG expression data in two Lepidoptera insects, Bombyx mori 

and Manduca sexta. In B mori, eight Bm-eve stripes appeared before “marked 

elongation occurs” (Nakao, 2010). In M. sexta, a similar phenomenon was observed 

with Ms-runt (Kraft and Jackle, 1994). If these two genes have pair-rule function in 

these two species, then their expression patterns suggest a long germ band 

development mode, since all their pair-rule stripes have been established before germ 

band elongation. In these two species, the way their embryos develop is unique. For 

example, in M. sexta, at the cellular blastoderm stage, a large round germ anlage 

develops, then two head lobes form at the anterior part. The ventral furrow then forms 

and extends from anterior to posterior and, at the same time, the germ anlage 

constricts laterally. When the ventral furrow reaches the posterior end, segmentation 

starts from anterior to posterior. This germ band elongation is driven by cell 

movements rather than cell proliferation (Kraft and Jackle, 1994). This mode of 

embryonic development is hard to classify into either long or sequentially segmenting 

modes, leaving their classification controversial (Davis and Patel, 2002; Nakao, 2010; 

Peel, 2008; Xu et al., 1997).  It was suggested that B.mori might represent an 



 

 33 
 

intermediate state in the transition from sequentially segmenting to long germ band 

development (Nakao, 2010). More PRG expression and functional data could help us 

better understand the embryonic development in these species. 

In the studies of Drosophila PRGs and their evolution in other insects, there are 

many examples which indicate that the function of a gene cannot be automatically 

inferred from its expression pattern. For example, in Tribolium, Tc-ftz is expressed in 

stripes, but it does not have any function in segmentation. In Drosophila, ftz-f1 and 

rdp3 are expressed ubiquitously, by interact with other co-factors, and thus regulate 

genes in only a subset of the cells in which they are expressed.  These studies 

highlight the need for functional analysis, as opposed to only analysis of spatio-

temporal gene expression patterns, in additional species.  

In this thesis, I address some of the issues raised here. From the above review, we 

noticed that most studies of segmentation focused on holometabolous insects. Data 

about PRGs in non-holometabolous are sparse and indispensable for a better 

understanding of PRG evolution.   

I studied the ligand dependency of mammalian Ftz-F1 homologues. Structural 

evidence suggested that SF-1 and human LRH-1 bind regulatory ligands, but mouse 

LRH-1 and Drosophila FTZ-F1 are active in the absence of ligand. I found that Dm-

Ftz-F1 and mLRH-1, though not to binding ligand, or mSF-1 and hLRH-1, predicted 

to bind ligand, each efficiently rescued the defects of Drosophila ftz-f1 mutants. This 

result indicates that the activation of NR5A family members is not initiated by ligand 

binding.  
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In order to facilitate the study of non-holometabolous insects, I participated in the 

genome annotation of a Hemiptera insect, Oncopeltus fasciatus. I annotated nuclear 

receptor super family genes, a few Hox genes and PRGs in Oncopeltus.  I further 

studied the function and expression pattern of four PRGs in Oncopeltus. Using in situ 

hybridization and RNAi, I found that Of-ftz and Of-hairy do not have segmentation 

function, while Of-ftz-f1 functions in oogenesis and segmentation. Of-runt was found 

to induce cell death in oocytes.  Using the knowledge and expertise I gained from 

Oncopeltus, I successfully set up in situ hybridization, antibody staining and pRNAi 

in an invasive Hemiptera insect pest, the brown marmorated stink bug (BMSB) 

Halyomorpha halys.  
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Chapter 2: Functional conservation of Drosophila FTZ-F1 and 
its mammalian homologs suggests ligand-independent 
activation of NR5A family members 
 

[Published Lu et al., Development Genes and Evolution, 2013] 
 

Section 2.1 Abstract  
 

Drosophila Ftz-F1 is an orphan nuclear receptor required for segmentation and 

metamorphosis. Its mammalian orthologs, SF-1 and LRH-1, function in sexual 

development and homeostasis, and have been implicated in stem cell pluripotency 

maintenance and tumorigenesis. These NR5A family members bind DNA as 

monomers and strongly activate transcription. However, controversy exists as to 

whether their activity is regulated by ligand-binding. Structural evidence suggested 

that SF-1 and human LRH-1 bind regulatory ligands, but mouse LRH-1 and 

Drosophila FTZ-F1 are active in the absence of ligand. We found that Dm-Ftz-F1 and 

mLRH-1, thought not to bind ligand, or mSF-1 and hLRH-1, predicted to bind ligand, 

each efficiently rescued the defects of Drosophila ftz-f1 mutants. Further, each 

correctly activated expression of a Dm-Ftz-F1 target gene in Drosophila embryos. 

The functional equivalence of ftz-f1 orthologs in these sensitive in vivo assays argues 

against specific activating ligands for NR5A family members. 

Section 2.2 Introduction 

Diverse nuclear receptors (NRs) play important roles in development, 

differentiation, reproduction and homeostasis. The activity of some of these 
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transcription factors is regulated by small molecule ligands that act as molecular 

switches to control transcriptional activity (McKenna et al., 2009). For a number of 

NRs, no natural ligand has been identified. These so-called ‘orphan’ NRs share with 

ligand-activated NRs a typical domain structure, including a variable N-terminal 

domain, a DNA-binding domain, a hinge region and a ligand-binding domain (Benoit 

et al., 2006). For ligand-regulated NRs, the binding of ligand induces a 

conformational change that exposes the AF-2 domain at the C-terminus of the LBD to 

allow for interaction with LXXLL motifs in NR coactivators and thus, activation of 

transcription. Although orphan receptors harbor AF-2 domains, it is not certain how 

their activity is modulated. Protein–protein interaction, post-translational 

modifications such as phosphorylation, acetylation and sumoylation affect the activity 

of many NRs and could potentially substitute for ligand-mediated activation. 

Drosophila Ftz-F1 is the founding member of the NR5A family of orphan 

receptors (Pick et al., 2006). Ftz-F1 proteins bind DNA as monomers and appear to 

be constitutive activators of transcription in a range of cell types (Pick et al., 2006). In 

Drosophila, two isoforms of Ftz-F1 have been identified: αftz-f1 is maternally 

expressed and is required in the early embryo to establish the basic segmented body 

plan of the fly (Guichet et al., 1997; Yu et al., 1997). βftz-f1 is expressed during larval 

molting and is required for elaboration of the cuticle pattern in larvae (Ruaud et al., 

2010). It further serves as a competence factor for metamorphosis in part by 

regulating the breakdown of fat for fueling this process (Bond et al., 2011; Broadus et 

al., 1999). Drosophila αftz-f1 mutant embryos (derived from germline clones or from 

females homozygous for maternal-specific alleles; referred to here collectively as ftz-
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f1 mutants) display a pair-rule segmentation phenotype in which alternate, even-

numbered parasegments are missing (Guichet et al., 1997; Yu et al., 1997), and see 

Figure 2.2. This phenotype is identical to that of Drosophila ftz, a homeobox-

containing gene, which is expressed in stripes in the primordia of the alternate 

parasegments that are missing in ftz and ftz-f1 mutants. Thus, although Ftz-F1 is 

present in all somatic cells of the embryo, its activity is limited to cells in which Ftz is 

present (Ftz+ cells). In these Ftz+ cells, Ftz and Ftz-F1 interact to form a stable 

complex, immunoprecipitable from wild-type Drosophila embryos (Yu et al., 1997). 

Ftz and Ftz-F1 bind cooperatively to heterodimeric DNA target sites in vivo where 

they activate the transcription of at least 10 genes involved in segmentation 

(manuscript in preparation), while also positively auto-regulating the expression of ftz 

in stripes (Yu et al., 1997). The interaction between Ftz and Ftz-F1 is dependent upon 

an LRALL sequence (LXXLL motif) in Ftz (Schwartz et al., 2001). This NR 

coactivator-like LXXLL motif in Ftz led our lab and others to propose that the 

binding of Ftz to Ftz-F1 obviates ligand binding, with the protein–protein interaction 

between Ftz and Ftz-F1 serving as the molecular switch that activates the 

transcriptional potential of Ftz-F1 (Schwartz et al., 2001; Suzuki et al., 2002; Yussa et 

al., 2001a). This explains why Ftz-F1, although present and constitutively nuclear 

throughout the Drosophila embryo, only activates target genes in cells that co-express 

Ftz. This is much like the situation noted first for mammalian SF-1: protein–protein 

interaction with the homeodomain protein Ptx1 activates its transcriptional potential 

(Tremblay et al., 1999a). Similarly, protein–protein interaction seems to be sufficient 

to regulate the biological activity of Dm-Ftz-F1. 
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In mammals, two NR5A family members, SF-1 and LRH-1, play important roles 

in development, differentiation, tumorigenesis and embryonic stem cell pluripotency 

(Fernandez-Marcos et al., 2011). The potential clinical importance of these NR5A 

family members bolstered interest in finding small molecule regulators of their 

activity. However, searches for endogenous NR5A family ligands have led to 

controversial findings. Several groups published crystal structures of mammalian 

NR5A LBDs. These studies revealed the presence of phospholipids in the binding 

pockets of human and mouse SF-1 (hSF-1, mSF-1) and human LRH-1 (Krylova et al., 

2005; Li et al., 2005; Ortlund et al., 2005). In contrast, the LBD of mouse LRH-1 

(mLRH-1) was found to adopt an active conformation in the absence of bound ligand 

(Sablin et al., 2003). Recently, the LBD of Dm-FTZ-F1 was shown to be in an active 

conformation without ligand binding (Yoo et al., 2011b). For all of these studies, 

proteins were produced in bacteria, raising the possibility that the small molecules 

identified were fortuitous ligands. However, mutations in the ligand-binding pocket 

decreased transcriptional activity in cell based assays. Further, removal of 

phospholipid from bound receptors decreased their ability to activate transcription of 

a number of target genes in cell culture experiments, and “humanization” of mLRH-1 

rendered its transcriptional activity ligand-dependent (Forman, 2005; Krylova et al., 

2005; Wang et al., 2005). More recently, sphingosine was identified as a candidate 

repressory ligand for SF-1 (Urs et al., 2007). Together, these findings, while revealing 

the importance of occupancy of the LBD pocket, do not distinguish between 

activating ligands and stabilizing compounds that are necessary as constitutive 

cofactors for protein folding (Forman 2005). Phosphatidylcholine and 
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phosphatidylethanolamine bind SF-1 with very high affinity (~100 nM), are abundant 

in mammalian membranes, and are present in the nuclear matrix (Forman 2005). Thus, 

it is possible that there is sufficient phospholipid in the nucleus under most 

physiological conditions to constitutively bind and stabilize NR structure. In sum, 

despite extensive analysis, there is still controversy as to whether ligand binding 

serves as a switch to activate NR5A family proteins. 

Here, we compared the ability of mammalian orthologs of Drosophila Ftz-F1 to 

functionally substitute for Ftz-F1 in vivo. Our expectation was that if orthologs 

differed in their requirements for activation by ligand they would differ in their 

abilities to activate target gene expression. We found that mSF-1 and hLRH-1, which 

binds ligand in vitro, as well as mLRH-1, which does not bind ligand, each rescue ftz-

f1 mutants with no obvious difference in efficiency. These results, combined with 

analysis of the crystal structure of the Ftz-F1 LBD, suggest that specific activating 

ligands are not required for the function of NR5A family members in vivo. Rather, 

activity of all family members was limited by Ftz in Drosophila embryos, suggesting 

control by protein-protein interaction. 

Section 2.3 Material and methods 
 

Plasmid construction and transgenic flies 

For expression in Drosophila, cDNAs were inserted into the P-element vector 

pUAS-T and transgenic flies were generated by P-element mediated transformation. 

To express Dm-Ftz-F1, a BamHI/EcoRI fragment from pGEX5X1-αftz-f1 was 

isolated and inserted along with a PCR generated fragment encoding a 3xFLAG 
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epitope, to which EcoRI/BamHI sites had been added, into the EcoRI site of pUAS-T 

to produce Dm-Ftz-F1 protein with an N-terminal FLAG tag. Reading frame and 

directionality were verified by sequencing. To express mammalian NR5A proteins, 

cDNAs encoding full-length NR5A family members with N-terminal HA tags were 

inserted into pUAS-T as follows: mouse Lrh-1 was isolated from pCI-Neo-HA-

mLRH using EcoRI and inserted into the EcoRI site of pUAS-T to generate UAS-

mLrh-1; mouse Sf-1 was isolated from pCI-Neo-HA-mSf using EcoRI and NotI, and 

inserted into the EcoRI/NotI sites of pUAS-T to generate UAS-mSf-1; human LRH-1 

was isolated from pCI-Neo-HA-hLRH using EcoRI and NotI, and inserted into the 

EcoRI/NotI sites of pUAS-T to generate UAS-hLRH-1. The full-length sequence of 

each insert in pUAS-T was verified. Transgenic Drosophila were generated by 

Rainbow Transgenic Flies, Inc. (Newbury Park, CA, USA). Multiple independent 

lines were established for each transgene. At least three independent lines were tested 

for each and all gave similar results. 

Functional assays in Drosophila 

To test the ability of mammalian NR5A family members to functionally substitute 

for Dm-Ftz-F1 in vivo, they were expressed in embryos derived from females 

homozygous for a maternal-specific ftz-f1 allele  (Guichet et al., 1997). Transgenes 

were expressed ubiquitously in these ftz-f1 mutant embryos with the UAS/GAL4 

system using an NGT40 driver that directs expression ubiquitously in blastoderm 

embryos, mimicking the endogenous expression pattern of Dm-ftz-f1. The 

experiments were carried out as follows: NGT40; ftz-f1 209/ftz-f1 209 virgin females 

were crossed to males carrying UAS transgenes: UAS-Dm-ftz-f1 (positive control), 
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UAS-lacZ (negative control), UAS-mSf-1, UAS-mLrh-1 or UAS-hLRH-1. The 

ability of transgenes to rescue the ftz-f1 mutants was assessed by examining larval 

cuticles using standard methods. Except for the UAS-lacZ negative control, three 

independent lines were tested for each transgenic construct. For each individual line 

tested, at least 100 cuticles were counted. Statistical analysis was carried out using 

SAS software. Immunofluoresence staining with an anti-Engrailed antibody was 

carried using standard methods. The anti-Engrailed antibody (4D9) was obtained 

from the Developmental Studies Hybridoma Bank (University of Iowa). 

Section 2.4 Results and discussion 

 
Mouse and human Ftz-F1 orthologs correctly regulate target gene expression in 

Drosophila 

Drosophila Ftz-F1, with its partner Ftz, directly regulates expression of the 

engrailed gene (en) in alternate parasegments via direct binding to an en enhancer 

(Florence et al., 1997). Thus, in ftz-f1 mutants, as in ftz mutants, alternating En stripes 

are missing (Figure. 2.11 A). As shown previously (Yussa et al., 2001a), expression 

of Dm-Ftz-F1 at the blastoderm stage in ftz-f1 mutant embryos rescued expression of 

alternate en stripes (Figure 2.1 B). We reasoned that if NR5A proteins from mouse 

and human have differential requirements for ligand binding, different effects on 

target gene expression would be seen in Drosophila embryos. For example, if an 

activating ligand were constitutively present in Drosophila embryo, ligand-responsive 

hLRH-1 would be transcriptionally competent throughout the embryo, and could 

potentially interact with ubiquitously expressed NR coactivators to activate en 

expression outside of its endogenous striped domain. If Drosophila embryos lack an 
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activating ligand, ligand-dependent NRs would remain inactive and only the ligand-

independent family members would rescue en expression. However, we found that 

mSF-1 (Figure. 2.1 C), mLRH-1 (Figure. 2.1 D) and hLRH-1 (Figure 2.1 E) each 

correctly activated En expression in alternate stripes. In addition, no ectopic En 

expression was observed in any of these experiments, suggesting that proteins were 

not ectopically activated outside of the Ftz expression domain. 

 

Figure 2.1 Mammalian NR5A family members correctly regulate a Ftz-F1 
target gene in vivo. The UAS/GAL4 system was used to express NR5A family 
members ubiquitously in Drosophila embryos. Embryos were analyzed for expression 
of the Dm-Ftz-F1 target gene engrailed, revealed by staining with an anti-Engrailed 
(En) antibody. (A) UAS-lacZ served as a negative control, revealing loss of alternate 
En stripes in ftz-f1 mutants. (B) Dm-Ftz-F1, (C) mSF-1, (D) mLRH-1, (E) hLRH-1. 
Each mammalian NR5A family member tested rescued expression of alternate En 
stripes. Embryos are oriented anterior (left), dorsal (top). 

 

Mouse and human Ftz-F1 orthologs rescue Drosophila ftz-f1 mutants 

As shown above, mouse and human Ftz-F1 orthologs rescued the expression of 

En in ftz-f1 mutant embryos. To test whether they could substitute for Dm-Ftz-F1 in 
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other aspects of segmentation, transgenes were expressed as described above and 

cuticle preparations were examined. In Drosophila, loss of maternal ftz-f1 results in 

embryonic lethality due to defects in segmentation (Guichet et al., 1997; Yu et al., 

1997).  Embryos fail to hatch and display a typical pair-rule phenotype–missing 

alternate parasegments (Figure 2.2 A). Ubiquitous expression of UAS-Dm-ftz-f1 at 

the blastoderm stage in ftz-f1 mutants rescued these cuticle defects (Yussa et al., 

2001a). Using a Flag-tagged Dm-Ftz-F1 generated similar results, with complete 

rescue of cuticle defects in most embryos (Figure 2.2 B and Table 2.1). Similarly, 

expression of mSf-1 (Figure 2.2 C), mLrh-1 (Figure 2.2 D) or hLRH-1 (Figure 2.2 E) 

rescued the cuticle defects in the ftz-f1 mutants. No defects were observed in the Ftz-

F1 independent portions of the cuticle, suggesting that none of the transgenes were 

active outside of the Ftz+ cells, although they were expressed throughout the embryo. 

 

Figure 2.2 Mammalian NR5A family members rescue Dm-ftz-f1 mutants. The 
UAS/GAL4 system was used to test the ability of NR5A family members to rescue ftz-
f1 mutant phenotypes in Drosophila embryos. Embryos were analyzed for rescue of 
defects in larval cuticle preparations. (A) UAS-lacZ served as a negative control, 
revealing the typical ftz-f1 pair-rule defect, with alternate parasegments missing. (B) 
Dm-Ftz-F1, (C) mSF-1, (D) mLRH-1, and (E) hLRH-1. Each mammalian NR5A 
family members tested rescued pair-rule segmentation defects of ftz-f1 mutants 
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Table 2.1. Rescue efficiency of NR5A family member transgenes.  

Transgenic line      Rescued      Not rescued       Percent Rescued 

                               (n=number of embryos)              (%) 

 

UAS-lacZ                 27                  316                         7.9 

UAS-Dm-ftz-f1       310                     9                        97.2 

UAS-mSf-1            260                   60                        81.3 

UAS-mLrh-1          318                   63                        83.5 

UAS-hLRH-1         268                   82                        76.6 

  

 

To test the relative effectiveness of different orthologs, transgenes were expressed 

in ftz-f1 mutant embryos and larval cuticles were scored as “rescued:” presence of 

three thoracic and eight abdominal denticle belts, or “non-rescued:” absence of all 

ftz/ftz-f1-dependent denticle belts. Absence of only a few segments, defined as partial 

rescue in previous analyses, was very rare in the experiments reported here. Three 

independent transformant lines were tested for each transgene and the data were 

pooled (Table 1). In the absence of functional Ftz-F1 (UAS-lacZ), 7.9 % of embryos 

display wild-type cuticles in these experiments because of leakage of the ftz-f1 209 
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allele (Florence et al. 1997; Guichet et al. 1997). Ubiquitously expressed Dm-ftz-f1 

rescued ~97 % of the ftz-f1 mutants. For mammalian NR5A family members, rescue 

efficiency was slightly lower: mSf-1 rescued ~81 % of the mutants, mLrh-1 rescued 

~84 % of the mutants, and hLRH rescued ~77 % of the mutants. A Chi-square 

experimental-wise comparison between the rescue efficiency of human and mouse 

orthologs was carried out using SAS. The calculated chi value was 5.688, with a p 

value of 0.058. In sum, although the rescue efficiency of mammalian NR5A family 

members is slightly lower than that of Drosophila ftz-f1, the mammalian NR5A 

transgenes all effectively rescue ftz-f1 mutants, with no significant difference 

(p > 0.05) between the ligand-bound and ligand-independent orthologs. 

Section 2.5 Discussion 

After their initial discovery, many orphan nuclear receptors have been ‘adopted’ 

as ligands have been identified (reviewed in Forman 2005; Benoit et al. 2006). In 

some cases, ligands were identified by virtue of crystal structures that revealed 

ligands residing in pockets of various sizes in the LBDs of purified proteins. In other 

cases, these fortuitous ligands, bound to the receptor after expression in bacteria, were 

either not endogenous ligands or were shown to function as structural rather than 

activating ligands (reviewed in Forman 2005). Studies to date on the ligand status for 

NR5A family members do not distinguish between structural and activating ligands 

for the phospholipid bound family members (see “Introduction” section). Yoo et al.  

studied the crystal structure of the Dm-Ftz-F1 LBD (Yoo et al., 2011b). A surprising 

finding was that the LBD of Dm-FTZ-F1 was in an active conformation in the 

presence of the Dm-Ftz LRALL motif, without any ligand. Further, the ligand-
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binding pocket of Dm-Ftz-F1 was filled with helix 6 of its own LBD (Yoo et al., 

2011). These data suggest that Dm-Ftz-F1 functions in a ligand-independent fashion, 

similar to mLRH-1. 

Previous parsimony analysis of mammalian NR5A proteins suggested that the 

ancestral NR5A family member was ligand activated and that loss of ligand 

dependence occurred in rodents (Krylova et al. 2005). The results presented here add 

an outgroup to this analysis and extend the data available for reconstruction of the 

origins of ligand binding for the NR5A family. Together, they suggest that if the 

ancestral NR5A family member was ligand activated, at least two independent losses 

of ligand dependence occurred, one within insect lineages and one in rodent lineages. 

Alternatively, if ancestral NR5A was ligand independent, one gain of ligand 

dependence occurred in lineages leading to mammals and one subsequent loss 

occurred in rodents. Thus, with the additional data on Dm-Ftz-F1, strict parsimony 

analysis cannot distinguish between a ligand dependent or independent ancestral state 

for NRA5 family members, as two independent events must have occurred, either two 

independent losses or one gain and one loss of ligand binding. 

To further analyze potential functional differences between the ligand-bound and 

ligand-independent NR5A family members, we used Drosophila as an in vivo model. 

These experiments tested whether mammalian orthologs were sufficiently similar to 

Dm-Ftz-F1 to be able to complement loss-of-function mutations. This very stringent 

assay—rescue of a whole animal mutant phenotype—requires proper regulation of 

multiple target genes to allow progression through development of the embryo to the 

fully differentiated larval stage. Further, this assay is highly sensitive in that it 
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requires that target genes be activated in the correct cells at the correct times, as either 

lack of activation or the opposite, ectopic activation, would cause changes in the 

patterns of segmentation that are readily observed in cuticle preparations (Figure 2.2). 

Despite these rigorous requirements, we found that human LRH-1, mouse Lrh-1 and 

Sf-1 could each fully rescue Dm-ftz-f1 mutants. This suggests that the molecular 

function of these proteins has been highly conserved since the divergence of 

mammalian and insect lineages over 500 MY ago. 

What does this tell us about the status of ligand-dependent activation for those 

family members found to bind phospholipids? As discussed above, Dm-Ftz-F1 

appears to activate target gene expression in the absence of a ligand, with its activity 

in the embryo limited to the cells that co-express the homeodomain protein Ftz. 

However, if other family members require a specific activating ligand and a general 

cofactor, that ligand would have to be present in the Drosophila embryo at the correct 

time, in the correct cells and in sufficient quantity during development to allow for 

function of the receptor. If such a ligand is not present in Drosophila, no activity 

would be expected for ligand dependent NRs. If ligand were expressed only in 

discrete regions of the embryo, ligand-dependent NRs would be active only in those 

domains. At the other extreme, if a ligand were present ubiquitously, ligand-

dependent NRs would be transcriptionally competent throughout the embryo. Several 

NR coactivators are ubiquitously expressed in Drosophila embryos, including dCBP, 

the mammal ortholog of which interacts with SF-1 (Monte et al., 1998; Waltzer and 

Bienz, 1999), Taiman, whose mosquito orthologs interacts with βFtz-F1 (Bai et al., 

2000; Zhu et al., 2006), Cryptocephal  (Gauthier et al., 2012) and others. Thus, it is 
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reasonable to expect that ubiquitously ligand-activated NR5A family members would 

activate transcription of engrailed and/or other target genes ectopically in this case. 

Given these constraints, a minimal expectation is that some difference in function 

would be seen between ligand-dependent and ligand-independent family members. 

In contrast to this, we found mSF-1, mLRH-1 and hLRH-1 were all remarkably 

effective in recapitulating the activity of endogenous Dm-Ftz-F1 with respect to 

activation of one key target gene (Figure 2.1) and rescue of segmentation defects 

(Figure 2.2 and Table 2.1). There was little qualitative or quantitative difference in 

the activity of mammalian NR5A family members tested and no ectopic activity of 

any family member was observed. Rather than showing specificity for ligand, these 

family members appear to share with Drosophila Ftz-F1 the requirement for 

interaction with Ftz for function. This is rather surprising as the ftz gene is not present 

in mouse or human and these proteins have been diverging for millions of years. 

One final potential interpretation of this Ftz-restricted activity of NR5A proteins 

is that an activating ligand is present in only the Ftz+ cells of the embryo. This 

scenario is very difficult to test, but we think it unlikely for the following reasons: At 

the time of Ftz/Ftz-F1 expression, cells have only recently formed from a syncytium 

and there would be little to restrict the movement of small molecules (potential 

ligands) to specific domains of the embryo. Zygotic transcription is also beginning 

around this time and the only gene that is expressed in only the Ftz+ cells is ftz itself. 

Thus, if an enzyme or other protein that synthesizes (or binds, releases or modulates) 

a ligand were responsible for presence of a ligand in only Ftz+ cells, the gene 

encoding this product would have to be regulated by Ftz. However, the evidence that 
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Ftz cannot activate specific gene expression without Ftz-F1 is compelling. Thus, it 

becomes a logical improbability that Ftz would activate transcription of a gene 

product required to generate a localized ligand that then activates Ftz-F1 

transcriptional activity. 

Taken together, these arguments, along with the finding that different NR5A 

family members function similarly—in an in vivo environment with full-length 

proteins—argue against a specific activating ligand for a subset of these proteins. 

Rather, it is more likely that a phospholipid(s) fortuitously and ubiquitously 

distributed in the Drosophila embryo functions as a stabilizing ligand for mSf-1 and 

hLRH-1. In keeping with this, Laudet and co-workers proposed that ancient NRs 

were orphan receptors and that the ability to bind ligand was acquired during 

evolution (Escriva et al., 2004). The NR5A family may represent a family in the 

proposed intermediate stage of evolution in terms of ligand binding: They have the 

ability to bind to some small molecules (“ligands”) but the binding does not change 

the status of their activity. 
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  Chapter 3: Expression and function of pair-rule genes in Oncopeltus 
fasciatus 
 

Section 3.1 Oncopeltus fasciatus is an emerging model system 

The studies described in this section give general intro to the section 

Oncopeltus fasciatus (large milkweed bug) is a member of the diverse order 

Hemiptera (Superoder, Paraneoptera). Paraneoptera includes a group of 

hemimetabolous insects, phylogenetically positioned as the sister group of 

Holometabola (Kristensen, 1991). Both Drosophila melanogaster and Tribolium 

castaneum, which are the two best-studied insect model systems in term of molecular 

biology and developmental biology, belong to Holometabola. Studies in 

hemimetabolous insects can provide useful information, helping to elucidate ancestral 

states and the sequence of evolutionary events within insects. 

3.1.1 FTZ evolution in insects 

As discussed in Chapter 1, our data suggest that the LXXLL motif of Ftz was 

acquired at the stem of Holometablous insects while the presence of a YPWM motif 

varies (Figure 3.1). The stripy expression of ftz and the LXXLL motif has been 

observed in all holometabolous insects examined, suggesting that these traits were 

acquired and stably maintained in groups such as Coleoptera, Hymemptera and 

Diptera (Figure 3.1; )(Heffer et al., 2010). Ftz from basally branching insects such as 

Orthoptera, Dermaptera, Thysanura and Archeaognatha do not have LXXLL motifs 

and the stripy expression pattern has only been found in Thysanura (Heffer et al., 

2010). Oncopeltus fasciatus belongs to the Hemipteroid Assemblage, which is the 

sister group of Holometabolous insects. Since the LXXLL motif of Ftz was acquired 
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at the stem of holometabolous insects, it is interesting to know the expression pattern 

and function of Ftz before acquiring LXXLL motif.  Thus, in terms of both ftz 

evolution and insect phylogeny, Oncopeltus serves as intermediate group.  

 

Figure3.1  FTZ evolution in insects.  Cladogram of major insect taxa is shown. The 
Paraneoptera is indicated by an arrow, the Holometabola is indicated by a *. The 
presence of cofactor interaction motifs (LXXLL motif, green; YPWM motif, blue; 
absent, red) and observed expression patterns (stripes; Hox-like) are indicated.  
Modified from Heffer (Heffer et al., 2010) 
 

3.1.2 Sequentially segmenting and long germ band modes of insect development. 

All insects have a segmented body plan. Their metameric bodies have a head of six 

segments, a thorax of three and an abdomen of 8 to 11 segments (Chapman, 1998). 

Although their body plan is conserved, how these segments develop during 

embryogenesis varies. Based on how many segments have been specified by the end 

of the blastoderm stage, insects have been classified as short, intermediate or long 

germ band (Sander, 1976). For the long germ band insects, all the segments are 

specified simultaneously during the blastoderm stage (Figure 3.2 A). On the other 
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hand, short and intermediate germ band insects only pattern the anterior segments at 

the blastoderm stage (Figure 3.2 B). The posterior segments are specified during a 

phase of secondary growth and arise from the posterior region of the germ band, the 

growth zone (Figure 3.2 C). Posterior segments are added one-by-one in an anterior 

to posterior progression (Sander, 1976). 

 

 Figure 3.2 Long germ band and sequential segmentation. (A) In long germ 
band insect Drosophila, all segments are specified before the end of blastoderm stage. 
(B) In sequentially segmenting insects such as Tribolium (short germ band), only the 
head and thorax segments are specified at the end of blastoderm stage. (C) Posterior 
segments form from the growth zone. 

 
Recently, this classification has been challenged (Davis and Patel, 2002; Peel et al., 

2005). Peel at al. suggested the use of “sequentially segmenting” instead of 

“short/intermediate germ” for insects, in which the segments are added sequentially 

(Peel et al., 2005). Sequential segmentation is found among basally branching insect 

orders, while long germ band segmentation has only been found in the more derived 

holometabolous insects, such as Drosophila. Thus, sequential segmentation is thought 

to be ancestral (Anderson, 1973; Davis and Patel, 2002). 
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 Oncopeltus is an sequentially segmenting (intermediate germ band) insect (Liu et 

al., 2004a). Its segmentation is thus expected to be different from the long germ band 

Drosophila, in which the segmentation regulation network had been intensively 

studied (Gilbert, 2010). For the purpose of comparison, studying the segmentation of 

Oncopeltus will allow us to better understand ancestral insect development and will 

provide information about the functional evolution of segmentation gene networks. 

 

3.1.3 Oncopeltus fasciatus as a research model 

Hemiptera is the fifth largest group of insects after Coleoptera, Diptera, 

Hymenoptera, and Lepidoptera (Forero, 2008). Many of them are important pest 

species to crops and gardens, such as aphids and brown marmorated stink bugs, and 

some are significant vectors of human diseases, such as lice and kissing bugs 

(Panstrongylus megistus and Paratriatoma hirsuta) (Bern et al., 2011). Studying their 

molecular developmental biology may lead to new methods to control these insect 

pests. 

Compared with other Hemiptera, Oncopeltus also have many characteristics that 

are advantageous for development as a model system. They are easy to culture in the 

lab, and they only need water and sunflower seeds to survive and breed. Their life-

cycle is relatively short: the eggs hatch within seven days, and the adults only live for 

about 30 days (Feir, 1974). Both adults and eggs are relatively large, making them 

easy to handle. 

Kaufman’s lab has shown that RNA in situ hybridization and RNAi work very 

well in Oncopeltus (Hughes and Kaufman, 2000). Liu et al. showed that injecting 

female Oncopeltus with dsRNA, referred to as parental RNAi (pRNAi), led to gene 
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knockdown effects in the eggs laid by those females (Liu and Kaufman, 2004a; Liu 

and Kaufman, 2005). The effectiveness and efficiency of parental RNAi in 

Oncopeltus makes it a good tool for knocking down gene expression for functional 

studies.  

Using pRNAi, several labs have carried out studies in Oncopeltus. For example, 

Liu et al. showed that knockdown of Krüppel caused a gap phenotype similar to that 

seen in Drosophila,   while eve-skipped RNAi caused deletion of almost the entire 

body, which suggests that even-skipped does not act as a PRG  in Oncopeltus (Liu 

and Kaufman, 2004b, 2005).  Chesebro et al. injected Scr dsRNA into Oncopeltus 

nymphs. This allowed them to study the function of Scr in post-embryonic stages 

(Chesebro et al., 2009). They found that pRNAi of Scr caused only minor changes in 

the labium, while injecting dsRNA into nymphs caused T1 to T2 leg transformation 

and ectopic wings on T1. These kinds of phenotypes indicate that the function of Scr 

is conserved in both holo- and hemi-metabolous insects. 

As discussed above, Oncopeltus provides an excellent outgroup for the 

Holometabola, the best studied insect clade, both in terms of insect development and 

molecular evolution. As a group of sequentially segmenting insects, it provides a 

good comparison with long germ band insects such as Drosophila. Parental RNAi 

provides an easy and quick way to study gene function, and RNA in situ 

hybridization has been established, allowing examination of the expression patterns 

of genes of interest. All these features make Oncopeltus an ideal research subject for 

biological studies. 



 

 55 
 

3.1.4 The embryonic development of Oncopeltus fasciatus 

 
The embryonic development of Oncopeltus fasciatus had been studied by Butt and 

his student Paz (Butt, 1949; Paz, 1958). According to Butt and Paz, the development 

of Oncopeltus is summarized as follows:  

(1) Early embryogenesis: When eggs are kept at 25°C, the male and 

female pronuclei fuse near the middle of the yolk mass within the first half-

hour after egg laying (AEL). After pronuclear fusion, the nuclei go through 

several rounds of synchronous divisions without concomitant cell divisions, 

forming a syncytium. The nuclei and their associated cytoplasm then migrate 

towards the outside of the egg, and reach the periphery at ~15 hours AEL. The 

nuclei in the periphery increase in number and cell membranes begin to form 

within the next two hours, forming the blastoderm. 

(2) Blastoderm formation: From 17-32 Hours AEL, cell numbers increase 

in the blastoderm embryo (Figure 3.3 A.). Many mitotic figures can be seen, 

and cell number continues to increase until they are closely packed and 

cuboidal in shape at 32 hours AEL.  At ~24 hours AEL, a clump of cells 

(germ cells) appears at the posterior pole of the egg. From 30 hours AEL, the 

blastoderm begins to thicken on the ventral side of the egg and to thin out on 

the opposite side. The thickened area will form the germ band, the thinner 

area will form the serosa. According to Liu et al. (Liu and Kaufman, 2004a), 

at the end of the blastoderm stage (34-36 hours AEL, Figure 3.3 B), only six 

segments have been specified. These six segments correspond to the 

mandibular through third thoracic segments (Figure 3.3 C, D1, and D2). Thus, 
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in keeping with its status as a sequentially segmenting insect, only the anterior 

segments are specified at the end of the blastoderm stage. 

(3) Germ band invagination: At ~35 hours AEL, a slight depression 

appears at the caudal end of the rudiments of the germ band,. The depression 

progresses rapidly, forming a slender tube-like invagination in the yolk.  The 

wall on the ventral side of the tube migrates into the yolk to form the germ 

band.  

(4) Germ band extension: The germ band begins to extend after 

invagination. As germ band invagination continues, the tip of the germ band 

eventually reaches the anterior pole of the egg and the head of the resulting 

germ band stage embryo reaches the posterior of the egg. 

 

 
Figure 3.3 Oncopeltus embryogenesis and engrailed expression. (A) Early 
blastoderm at 24-28 hours. (B) Late blastoderm at 36-40 hours. Arrowhead indicates 
site of germ band invagination. (C) Late blastoderm at 36-40 hours hybridized with 
engrailed probe (purple color). (D1) Embryo stained for engrailed at slightly later 
stage than in C. Note that only the four anterior en stripes are now visible on the 
blastoderm surface. (D2) Same embryo as in D1, with `dorsal' region of blastoderm 
dissected away to reveal developing germ band and rotated to view dorsal aspect. (E-
H) Dissected germ bands stained for engrailed, showing growth of the posterior and 



 

 57 
 

the sequential addition of the abdominal segments. Anterior is towards the top. From 
Liu et al (Liu and Kaufman, 2004a)  

 

 Section 3.2 Annotation of genes of interest in Oncopeltus fasciatus 

3.2.1 Background 

Because of the advantages of Oncopeltus as a research model, described above, 

several labs are using Oncopeltus for a variety of different developmental and applied 

studies. For example, Alves et al. studied the immune response of Oncopeltus after 

infection with Phytomonas serpens (Alves e Silva et al., 2013); de Almeide et al. 

studied the role of an Oncopeltus  Laminin-like protein in pest-host interactions (de 

Almeida Dias et al., 2012); Moore et al. studied ecological interactions of Oncopeltus 

under poor quality food feeding (Moore and Attisano, 2011); taking advantage of 

Oncopeltus’s unique  phylogenetic position, Weisbrod was able to reconstruct the 

evolution of the terminal patterning system (Weisbrod et al., 2013); and, as 

summarized above (Section 3.1.3), many developmental studies have been carried out 

(Ben-David and Chipman, 2010; Chesebro et al., 2009; Erezyilmaz et al., 2009; 

Hughes and Kaufman, 2000; Liu and Patel, 2010).  

A handful of genes have been characterized in Oncopeltus to date. These genes 

were isolated by virtue of similarity to genes in other species by techniques such as 

RT-PCR, 5’ and 3’ RACE (Erezyilmaz et al., 2009; Liu and Patel, 2010), which are 

time consuming and labor intensive. Having sequence of the complete transcriptome 

and/or genome of Oncopeltus will allow researchers to more rapidly access specific 

gene sequences and to study gene regulatory networks. In 2011, Ewen-Campen et al. 

used 454 pyrosequencing technology to sequence mRNAs from Oncopeltus ovaries 
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and embryos (Ewen-Campen et al., 2011). They were able to identify 10,775 unique 

genes from their mRNA data. Those data provide a useful resource for molecular 

research. However, since those data were generated with 454 pyrosequencing, which 

can recover fewer genes and shorter assembled contigs than Illumina (Luo et al., 

2012), several of the genes that were of interest for my studies were not found in the 

454 data. For example, I was unable to identify orthologs of E75A, Scr, Dfd , even-

skipped and giant, all of which had been isolated by other researchers using RT-PCR 

and RACE (Erezyilmaz et al., 2009; Hughes and Kaufman, 2000; Liu and Kaufman, 

2005; Liu and Patel, 2010). I was also unable to find sequences corresponding to 

paired, odd-paired, sloppy paired and runt from the 454 transcriptome data. This 

suggested that the available RNA-seq data may be missing a lot of genes. 

 Fortunately, Oncopeltus was accepted by the i5k Insect and other Arthropod 

Genome Sequencing Initiative as one of the insect species whose genome would be 

sequenced at the early stages of the i5K project (i5k Consortium, 2013). As the 

genome sequence itself devoid of content, in order to make use of it, the genome must 

be annotated.  The first draft of annotation of the Oncopeltus genome was carried out 

by a group of researchers from all over the world during the spring of 2014.  Since 

our lab is interested in using Oncopeltus as a model organism for our studies, we 

participated in this effort.  

As mentioned in the first chapter, Ftz-F1 is an orphan nuclear receptor involved in 

segmentation in Drosophila.  In Oncopeltus, a different nuclear receptor functions as 

a pair-rule gene: E75A. Erezyilmaz et al. found E75A in Oncopeltus is expressed in a 

pattern resembling typical PRGs, and E75A RNAi caused loss of odd-numbered 
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parasegments (Erezyilmaz et al., 2009).  These findings peaked my interest in the role 

nuclear receptors play in embryonic development. The nuclear receptor (NR) family 

of transcription factors is one of the largest transcription factor families, functioning 

in diverse biological processes such as homeostasis, proliferation, reproduction, 

development and disease (Chambon, 2005; Gurnell and Chatterjee, 2004; 

Mangelsdorf et al., 1995; Margolis et al., 2005). In insects and other arthropods, NRs 

play important roles in a regulatory cascade, initiated by ecdysone that controls 

metamorphosis (Hill et al., 2013; Rewitz et al., 2013). Founding NR family members 

were ligand-activated receptors characterized by a common structure and regulated by 

the binding of small molecules. The NR family was greatly expanded by the 

identification of a large number of orphan receptors for which no cognate ligand was 

known but which possess a typical NR structure (Nuclear Receptors Nomenclature, 

1999). While ligands have since been found for many such orphan receptors, many 

others remain orphaned (Benoit et al., 2006; Escriva et al., 2000; Giguere, 1999; 

Ingraham and Redinbo, 2005; Mangelsdorf et al., 1995; Repa and Mangelsdorf, 2000; 

Shiau et al., 2001; Sluder et al., 1999). It has been proposed that the ancestral NR 

functioned in the absence of ligand, with the ability to bind ligand being acquired 

(Laudet, 1997) during evolution as a mechanism of modulating receptor activity in 

different biological contexts (Laudet, 1997). More detailed information can be found 

in Chapter2.  Both ligand-activated and orphan NRs share a similar, modular protein 

structure comprised of a variable N-terminal region, a highly conserved zinc-finger 

DNA binding Domain (DBD), a second variable hinge region, and a less conserved 

Ligand Binding Domain (LBD) that includes the AF-2 domain (Figure 3.4).  
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Figure 3.4 Nuclear receptors share a common structure: An AF1 (Activation Function 1), 
DBD (DNA Binding Domain), Hinge, LBD (Ligand Binding Domain), and AF2 (Activation Function 
2) located within LBD. Modified from Germain et al (Germain et al., 2006) 
 
 

  For ligand-regulated NRs, the role of ligand binding is to induce a conformational 

change that repositions the activation domain-2 (AF-2 domain), releasing co-

repressors and creating a surface for co-activator binding, thus switching the NR 

between repressive and activating states  (Glass and Rosenfeld, 2000) . Orphan NRs 

are activated by protein-protein interactions and post-translational modifications with, 

at least in several cases, the LBD folding in an active conformation in the absence of 

ligand (Tremblay et al., 1999b; Yoo et al., 2011a). 

3.2.2 Methods 

To identify NRs in the Oncopeltus genome, a combination of tblastn/blastp results, 

mRNA-seq data (Illumina short reads) and GENESCAN prediction was used.  The 

only two exceptions were E75A, for which the annotation was based on a published 

cDNA (Erezyilmaz et al., 2009) and Ftz-F1, for which we have carried out 5’ and 3’ 

RACE to identify the full length sequence.  For other cases, and when there was no or 

limited experimental data to rely on, annotation was based on sequence similarity to 

known members of the NR family (tblastn), and GENESCAN data were used as 

reference to determine both exon-intron boundaries and variable regions.   

AF1 DBD LBD hing AF
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For the annotation of Runt, neither BLAST nor gene prediction methods revealed 

an mRNA sequence which includes the most important VWRPY motif (Aronson et 

al., 1997). To find the VWRPY motif, more than 25kbps of sequence was checked 

manually. A 50bp sequence, in which the VWRPY motif was found, was used to 

design a reverse primer. This reverse primer was then used together with a forward 

primer from the nearest upstream exon, which is identified based on homology. RT-

PCR reactions were carried out with cDNA made from Oncopeltus embryos. The 

PCR product was isolated and sent out for sequencing 

3.2.3 Results 

As mentioned above, our lab participated in the group annotating the first draft of 

the Oncopeltus genome. We were assigned to annotate the nuclear receptor family 

genes. Since we are also interested in pair-rule genes, we voluntarily annotated some 

of the pair-rule genes in the Oncopeltus genome.  Here I summarize results on the 

nuclear receptors. In the following sections, I combine my annotation and 

experimental results on Oncopeltus pair-rule orthologs. 

In this first release of the Oncopeltus genome, I identified 16 nuclear receptors. 

This compares to 18 nuclear receptors in Drosophila, the insect in which these genes 

have been best characterized (King-Jones and Thummel, 2005). The two Drosophila 

NRs not found in the Oncopeltus genome are ERR and HR83. The details of each 

annotated NRs are listed in Table3.1. In the table, “NRNC Nomenclature” refers to 

the official gene name given by NRNC, (Nuclear Receptors Nomenclature, 1999).  

Under “Location in the Genome”, the scaffold, where a NR was found, is indicated. 

“Number of exon” indicates how many exon each gene has in the annotation; 
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“Protein Length” shows the number of amino acids encoded by each predicted gene. 

“Experimental data support” shown if any experiment data is available for each gene; 

“DBD/LBD, % identity to Dm ortholog” indicates the identity of DBD/LBD of each 

gene when compared to the orthologs in Drosophila melanogaster .  
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Table 3.1 List of identified Oncepeltus NRs. * Isolation of Of-ftz-f1 is described in 
Section 3.3 
 

I found that most of the NRs have very long introns.  Thus, for almost all the NRs I 

annotated, the coding regions were much larger than those generated by the 

automated genome annotation program MAKER (Cantarel et al., 2008). (For example, 

see Figure 3.5). 

Figure 3.5 Seven up annotation and gene models from gene prediction.  Seven-up 
gene covers a genomic region of 156Kbps, with 5 exons (Blue blocks). Three gene 
models were predicted in this region and each of them is much shorter (Light blue 

*
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blocks, named as OfasTmpS010929-RA, OfasTmpS010930-RA and 
OfasTmpS010931-RA). 

 

Of the 16 nuclear receptors that were found in the Oncopeltus genome, Seven Up 

retains the highest degree of similarity to its Drosophila ortholog, with its DBD 100 

percent identical to that of the Drosophila, and its LBD is 94 percent identical to that 

of the Drosophila. In scaffold 1872, there is a processed NR pseudogene, most likely 

an ortholog of HNF4.  This psuedogene would encode a protein 470aa; the DBD of 

the predicted protein shares 79% identity with that of Drosophila HNF4, and the LBD 

shares 60% identity with that of Drosophila HNF4. For the 16 NRs identified, all 

appear to be present in single copy in the Oncopeltus genome.  This is similar to the 

situation in other insects, including Drosophila, Anopheles, Aedes, Tribolium and 

Apis.  Finally, no novel NRs were identified in Oncopeltus that are not also found in 

Drosophila and other insects.  

In addition to these NRs, I identified three pair-rule genes in the Oncopeltus 

genome:  ftz, runt and hairy (see section 3.3 in this chapter ). 

Two insulin-like peptides (ILPs) were also been found and annotated in the 

genome. Finally, I identified buttonless, which is a homeobox gene reported to be 

missing in the Oncopeltus genome by other annotator (personal communication).   

3.2.4 Discussion 

 
Next generation sequencing provides us with a powerful tool for genome 

sequencing. It dramatically increased the speed and throughput capacities of genome 

sequencing, while annotation a genome is time consuming and many annotated 

genomes contain a lot of errors (Klimke et al., 2011; Salzberg, 2007). From my own 
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experience, it is clear that combining all available data and methods in annotation 

improved the quality of the annotation. Of the 16 NRs we annotated, four of them 

were also annotated by other annotators. For three out of those four annotations, our 

annotations included more exons. And our annotations are the ones that accepted as 

the only annotation for those three genes in the final version of annotation. For one 

out of those four annotations, our result is in agreement with the annotation from 

other annotator.  

The i5K project also provided RNA-seq data from juvenile and adult Oncopeltus. I 

found that the RNA-seq data, when available, are very helpful in determining intron-

exon boundaries. As shown in Figure 3.6 A, at one position (red dotted line indicated 

by red arrow) all the Illumina reads (blue sticks) stopped, most of them have big gaps 

(light blue) when aligned to the genome. This is strong evidence there is an intron-

exon boundary.  However, the RNA-seq data were generally not useful in 

determining the 5’ and 3’ ends of mRNAs, as is doesn’t show unanimous cutoffs at 

the ends. An example of this is shown in Figure 3.6 B.  
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Figure 3.6 RNA-seq A screenshot of the gene “seven up” region.  (A) A zoom in 
view of the third exon.  (B) Part of the 3’ end of seven-up gene annotation, the RNA-
seq data spread in a large region without a unanimous termination site. 
 

When mRNA-seq data are not available, annotation of a gene is mainly dependent 

on homology. The sequences of the DBD and LBD are highly conserved both in 

terms of length and sequence for family members across many species and could be 

predicted reliably.  However, since the N-terminal region and the hinge region are 

variable in terms of both sequence and length, these regions can’t be predicted by 

homology and were annotated using GENESCAN data, which is less accurate.  Thus, 

the sizes of the NRs predicted here may be significantly different from the true genes.  
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Section 3.3 Orthologs of Drosophila pair-rule genes in Oncopeltus fasciatus 

3.3.1 Background 

As I discussed in Chapter one, most comparative studies of the pair-rule genes 

(PRGs) were done in holometablous insects. To better understand how PRGs have 

changed during the radiation of insects, more work needs to be done outside of the 

holometablous insects. As I also discussed in the section 3.1, Oncopeltus fasciatus is 

located in a unique phylogenetic position, within the Hemipteroid Assemblage, the 

sister group to the holometabolous insects. In addition, many molecular tools have 

been developed for this species. These features make Oncopeltus a good choice for 

studies of PRG expression and function. The only PRG studied in this clade when I 

began my work was even-skipped. I set out to identify other embryonic regulatory 

genes in Oncopeltus and to study the function of a selected group of PRG orthologs in 

this species. 

3.3.2 Methods 

Insect husbandry and embryo collection 
 

Laboratory colonies of Oncopeltus fasciatus were bought from Carolina Biological 

Supply Company (Burlington, North Carolina) and reared according to the provider’s 

recommendation. Briefly, Oncopeltus were kept in transparent plastic cages (14.5 x 

8.5 x 10 inches), and organic raw sunflower seeds and water saturated cotton balls 

were provided as food and water sources. The cages were changed every week or two, 

depending on the cleanliness of the cages. The cages were kept in the laboratory with 

a temperature of ~25°C, without extra efforts to control humidity or light cycle. Dry 

cotton balls were placed in the cages for egg collecting. The eggs were collected 
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every four hours from the dry cotton balls with brushes. Once collected, the eggs 

were kept in an incubator with a temperature of 25°C and 16 hour light: 8 hour dark 

photoperiod, before fixation at the appropriate stage. 

 Isolation of genes of interest  

For isolation of Of-ftz, two forward primers and one reverse primer were used to 

amplify the homeobox. The two forward primers used are ftzdegenS1 5'AAR CGN 

WSN CGN CAR ACN TAY TCN, and ftzdegenS2 5'AAR CGN WSN CGN CAR 

ACN TAY AGY. Both are degenerate primers corresponding to the conserved N-

terminal of ftz homeodomain sequence KRS(/T)RQTYS(/T); the reverse primer used 

was designed by Heffer (Heffer and Pick, 2011). Three reverse primers for 5’ RACE 

and two forward primers for 3’ RACE were designed and used to isolate the 5’ and 3’ 

end sequences of Of-ftz, along with primers provided by the kit (RLM-RACE Kit, 

Life Technologies). The sequences of the three reverse primers are offtzp1 5'-TAC 

GTC TGT CTC TTC CGC TTC G-3', offtzp2 5'-GGA GAT ATC TTG TCA GGC 

GGA AT-3' and offtzp3 5'-CGC CAG GTC TAT TCT ACG TTT CC-3'. The 

sequence of the two forward primers are offtz3in 5'-TCT CCC GAG GAA ACG TAG 

AA-3, offtz3out 5'-GAA AAG GAA TTC CGC CTG AC-3'. For identification of Of-

ftz sequences from Roche 454 sequencing data (Ewen-Campen et al., 2011), raw 

RNA-seq data were downloaded from NCBI 

(http://www.ncbi.nlm.nih.gov/sra?term=SRP002610). The downloaded “sra” format 

data were converted into “fastq” format using the SRA toolkit provided by NCBI. 

Fastq data were then converted into “fasta” format with python v2.7. Local BLAST 
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was carried out using the BLAST+ package (Altschul et al., 1990) with the Of-ftz 

homeobox sequence as subject.  

For isolation of Of-ftz-f1, sequence of the LBD was isolated using degenerate 

primers corresponding to the conserved region of Ftz-F1 and designed by Heffer 

(Heffer and Pick, 2011; Heffer, 2012). Primers used for 5’ RACE are offf5inNew 5'- 

CCT CTG GGT CTT GTC GAT GT -3' and offf5outNew 5'- ACT TTT GAA AGC 

GGC AGA AA -3'. Primers used for 3’ RACE are offf3inNew 5'- CTC TTA TCC 

CTC GGC CTT CT -3', offf3outNew 5'- ATG GTC GGA TAT GCT GGT TC -3'. 

For isolation of Of-hairy, Dm-Hairy protein sequence was used to BLAST the 

Oncopeluts genome. Scaffolds that had BLAST hits were further analyzed. Briefly, 

upstream and downstream sequences surrounding the BLAST hit were used to do 

BLASTX and GENESCAN analysis. Possible protein sequences were used for 

reciprocal BLAST searches in order to determine the true ortholog. The scaffold 

which contained the most probable ortholog was compared to data provided by i5K, 

including RNA-seq data (pooled Illumina and 454 data), BLASTX-Arthropoda data 

and protein2genome-Arthropoda data. Final annotation was based on all these 

comparisons.  

Embryo Fixation 

Embryos were brushed off cotton balls and put into 2 mL eppendorf tubes, with no 

more than 50 microliters of embryos per tube. The fixation protocol was based on a 

protocol kindly shared by Dr. Chipman’s lab (Ben-David and Chipman, 2010). In 

brief, 600ul tap water was added to each tube of embryos which was placed in boiling 
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water for three minutes and then placed on ice for six minutes. After the water was 

removed, 600ul of heptane and 600ul 4% PFA in PBS were added. Gentle shaking 

brought the embryos to the interface. Tubes were shaken vigorously on a Vortex 

mixer for 20 minutes. After shaking, the heptane and PFA were removed and the 

embryos were rinsed once with heptane, then twice with methanol. The embryos 

together with methanol were then put into wells on depression concave slides. The 

embryos were monitored under a dissection microscope. Within about one minute, 

the eggshells began to pop open. Within 30 seconds most of the eggshells had an 

opening. For the ones that don’t have an opening, the unopened shells were poked 

and peeled with forceps to create a big hole on the shell. The embryos were then 

transferred to 75%, 50%, and 25% methanol in PBST for 2-3 minutes each and then 

to PBST for 2-3 minutes. The rehydrated embryos were fixed with 4% PFA in PBST 

for 90 minutes on a nutator. The fixed embryos were then washed three times with 

methanol and stored in methanol at -20 °C for future use. 

 Whole mount in situ hybridization 

Step one: The in situ hybridization protocol was modified from that previously 

used for Oncopeltus (Ben-David and Chipman, 2010). The fixed embryos were 

removed from -20 °C and passed through 75%, 50% and 25% methanol/PBST for 

rehydration. After rehydration, the embryos were pre-hybridized with hybridization 

buffer (50% formamide, 5XSSC, 0.1% Tween-20, 50µg/ml yeast tRNA, 5% Dextran, 

50µg/ml heparin) at 55°C for 1-4 hours. After pre-hybridization, probe was added to 

the embryos (1ul probe per 100ul hybridization buffer), and incubated at 55 °C 
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overnight (16-18 hours). For Step two, the protocol differs for blastoderm and germ 

band stage embryos. 

Step two: For the germ band stage embryos, the next day the probe was removed 

and the embryos were washed twice with hybridization buffer at 55 °C for 30 minutes 

each, followed by one wash with 2XSSC at 55 °C, one wash with 2XSSC at room 

temperature for 30 minutes, and one wash in 0.2XSSC at room temperature for 30 

minutes. Follow step three from here. 

For blastoderm stage embryos, the next day, after removing the probe, the embryos 

were washed once with hybridization buffer at 55 °C for 30 minutes, and once with 

hybridization buffer at room temperature for 30 minutes followed by two washes with 

2XSSC at room temperature for 30 minutes each and one wash in 0.2XSSC at room 

temperature for 30 minutes. Follow step three from here. 

Step Three: The embryos were rinsed three times with PBST. After rinsing, the 

embryos were incubated with 10% sheep serum in PBST for 1-4 hours at room 

temperature to block non-specific binding. Embryos were next incubated with anti-

DIG-AP antibody (1:1500, Roche) at 4 °C overnight. After incubation, the antibody 

was removed and the embryos were washed five times in PBST for 20 minutes each. 

For detection, the embryos were washed with staining buffer (100mM NaCl, 50 mM 

MgCl2, 100mM Tris pH 9.5, 0.1% Tween 20) three times for five minutes each. 

Staining was carried out using NBT/BCIP solution (Roche) diluted in staining buffer. 

The color reaction usually takes about two hours, so after one and a half hours, the 

embryos were checked under a dissection microscope every ten minutes until the 

desired color had developed. The color reaction was stopped by adding PBST to the 
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staining solution. The embryos were then washed with PBST three times for five 

minutes each to remove the staining solution from the embryos. The embryos were 

washed with 50% methanol in PBST for five minutes and 100% methanol for another 

five minutes. The embryos were then treated with 100% ethanol for 30 – 120 minutes. 

The embryos were washed with 50% methanol in PBST for five minutes, and washed 

with PBST three times for five minutes each. Blastoderm stage embryos were 

transferred to depression concave slides and germ band stage embryos were dissected 

away from the yolk and mounted on to slides in 90% glycerol. Photographs were 

taken under a dissection microscope (Leica M420, 16-20X). 

Double-Strand RNA (dsRNA) preparation 

Primers were designed to amplify 200 -400 bp of Oncopeltus genes of interest with 

T7 promoter sequences added to the 5’ end of both forward and reverse primers. The 

primer sequences are listed in the Appendices. PCR was carried out with cDNA that 

had been made from 0-7 day old embryos using the manufacturer’s recommended 

standard conditions (Reverse Transcription system, Promega). The PCR products 

were separated on an agarose gel and sent out for sequencing (Genewiz) to confirm 

that the correct gene was amplified. The purified PCR product (Gel Extraction Kit, 

Qiagen) was use as a template for in vitro transcription using MEGAscript® T7 

transcription (Life Technologies) Kit following the manufacturer’s recommendations. 

The final product was treated with DNase from the transcription kit to get rid of the 

DNA template. In order to anneal the in vitro transcription products’ single stranded 

RNAs, in vitro transcription products were heated to 94°C for five minutes and 

slowly cooled by decreasing temperature 0.8°C every minute, until 45°C was reached, 
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in a PCR machine (TPersonal, Biometra). The annealed double-strand RNA was 

precipitated with 1/10 volume of 3M sodium acetate (pH, 5.2), 2X volume of ethanol, 

and then dissolved in 10-20ul injection buffer (0.1mM NaH2PO4, 5mM KCl, pH 6.8), 

and stored in -20°C. The concentration of double-strand RNA was measured with a 

spectrophotometer. 

RT-PCR 

In order to compare expression levels of Of-ftz between eggs laid by dsRNA 

injected females and eggs laid by uninjected females, total RNA was extracted from 4-

72 hours eggs (about 100ul in volume) AEL with TRIzol® reagent (Life 

Technologies), following standard protocols. For all samples, 1ug of RNA was used to 

make cDNA with a QuantiTect Rev. Transcription Kit (Qiagen). RT-PCR was carried 

out with primers designed to amply a 203bp Of-ftz sequence downstream of the 

homeobox .  

In order to compare expression levels of  Of-ftz-f1 and Of-runt in the ovaries from 

dsRNA inject females and that from uninjected females, ovaries were dissected out 

from injected females one to two weeks after injection. Ovaries were also dissected 

out from two to three weeks old uninjected females.  Primers to amply a 217bp region 

between Orange domain and VWRPY of  Of-runt  and  318bp variable region between 

DBD and LBD of Of-ftz-f1 were designed.  

For relative gene expression comparison, Of-actin 4 was isolated by using 

TBLASTN to BLAST the mRNA-seq data published by Ewen-Campen (Ewen-

Campen et al., 2011). Of-actin primers was designed to amplify a 179bp conserved 
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region. All primer sequences and Of-actin 4 can be found in the Appendices.  A 

separate round of RT-PCR was carried out using the same cDNA from the above and 

Of-actin 4 primers. 

5ul PCR products from Of-actin 4 and 10ul PCR products from Of-ftz , Of-ftz-f1 

and Of-runt were loaded onto a 2% agarose gel and electrophoresis was carried out.  

dsRNA injection 

For parental dsRNA injection, modifications of the protocol of Chesebro et al. 

were used (Chesebro et al., 2009). Briefly, newly hatched females were separated 

from the main cage, and put into a new cage with about equal numbers of 2-3 week 

old adult males. After five to seven days, the females were picked out and used for 

injection. I also used virgin females for Scr dsRNA injection,.  No differences in 

RNAi effects were observed between virgin and pre-mated females (data not shown).  

Each female was injected with about 5ul of dsRNA at a concentration of 2ug/ul into 

the abdomen. After injection, each female was kept in a single 150mm petri dish, 

with a water saturated cotton ball and sunflower seeds as water and food source. 

About 24 hours after injection, one male Oncopeltus was added to each petri dish, and 

a dry cotton ball was added at the same time for egg collecting. The dry cotton ball 

was checked twice a day for eggs. Once eggs were found on the cotton ball, that 

cotton ball was removed together with the eggs and a new cotton ball was added. The 

eggs were kept in a new petri dish in an incubator with a temperature of 25° C and 16 

hour light: 8 hour dark photoperiod. 
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For embryonic dsRNA injection, embryos younger than 4 hours after egg lay (AEL) 

were used. The embryos were first aligned along a piece of Scotch® Double Sided 

Tape on a slide.  dsRNA solution with 1/10 volume of food grade green dye was back 

loaded into glass needles. Injection was carried out with pressures between 60 and 80 

psi using a Pneumatic PicoPump PV-820 (World Precise Instrument). After injection 

the embryos were kept in a humid petri dish at 25°C.  

For both parental RNAi and embryonic RNAi, 1/10 volume of food grade green 

dye dissolved in injection buffer was used as a control.  

3.3.4 Results 

 
A putative Oncopeltus orthologs Of-ftz has unusual sequence features and may not 
have a function in embryonic development 

As mentioned above, the ftz gene has changed during the radiation of insects from 

an ancestral homeotic gene to a pair-rule segmentation gene in Drosophila. In order 

to determine the role of ftz in an outgroup of the holometabolous insects, the gene was 

isolated from the genome of Oncopeltus. Using primers pairs designed by Heffer 

(Heffer et al., 2010), I first tried to amplify the homeobox of Of-ftz. These primers 

had been used successfully to isolate ftz orthologs from several other species, 

including the more distant crustacean Artemia salina (Heffer et al., 2010). I tried 

many times with different PCR conditions, different DNA templates and different 

primers combinations. However, I still could not get a PCR product, although I was 

able to amplify other genes such as Of-ftz-f1 (see below). I then re-designed the 

forward primer. By aligning Ftz sequences from a few species, I found that the 

forward primer designed by Heffer corresponded to amino acids 2 to 8 at the N-
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terminal arm of the homeodomain. The amino acid at position 9 is also conserved, 

usually either a threonine or a serine. I decided to extend the forward primer at the 3’ 

end to include codons for position 9. By extending the forward primer at 3’ end, I 

increased the possibility that my primer would bind to corresponding genome 

sequences even if there were mismatch(es) between my primer and genome 

sequences. In order to decrease the degree of primer degeneracy, two primers were 

designed, with one corresponding to a threonine at position 9, the other corresponding 

to a serine at position 9.  These two new forward primers were then used along with 

the same reverse primer designed by Heffer. Using forward primer ftzdegenS2 and 

reverse primer ftzDEGEN6 I still could not get a PCR product. Using forward primer 

ftzdegenS1 and ftzDEGEN6 as reverse primer, I amplified a PCR product of 

approximately 160bp. After sequencing, it was confirmed to be a sequence of a 

homeobox. With this sequence information, 5’ RACE and 3’ RACE were done to 

isolate full length Of-ftz mRNA from 0-6 days embryos. The 3’RACE product 

included the remaining 48 nucleotides of the homeobox and sequence downstream of 

homeobox including a 3’ UTR. The 5’RACE product included an additional ~ 100bp 

upstream of the homeobox. Combining all these data, a gene of a total of 443 

nucleotides was revealed (Appendices). The homeobox of the gene could encode a 

full length homeodomain. Reciprocal BLAST and comparison to Ftz homeodomains 

from other species indicate it is an ortholog of Ftz. Specifically, amino acids in 

homeodomain positions 1, 4, 6, 7, 37 and 56, considered to be diagnostic amino acids 

(Telford, 2000), suggested it is a Ftz ortholog. Of-Ftz matches five diagnostic amino 

acids in other Ftz orthologs. There is one more diagnostic amino acid located in HD 
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at position 4. At this position, all previously reported Ftz orthologs have either a 

serine (S) or a threonine (T). However, the Of-Ftz I isolated, encodes a HD protein 

with a lysine (K) at position 4. Amino acids in HD at position 1, 4, 6 and 7 have been 

found to determine the functional specificity of homeotic proteins (Furukubo-

Tokunaga et al., 1993). Serine and threonine have a neutral side chain, lysine has a 

positively charge side chain, a change from serine/threonine to lysine may have a big 

impact on the function of the protein. In order to better find potential amino acid 

variations in Of-Ftz, I collected four more Ftz sequences from four hemipteroid 

assemblage insects, and aligned them with MUSCLE.  In order to compare the Ftz 

HD variation I saw in hemipteroid assemblage insects, I also arbitrarily picked five 

Ftz HDs from five different orders， ranging from diptera to crustacea. These 

alignments are shown in Figure 3.7. As shown in Figure 3.6 A, All other Ftz 

orthologs from hemipteroid assemblage have conserved amino acid at position 4, 6, 

and 7, except Oncopeltus Ftz, which has a lysine instead of serine or threonine. The C 

terminal part of the HDs are conserved as indicated by overwhelming blue amino 

acids.  

In addition, for these Hemipteroid assemblage insect Ftz proteins, none of them 

have an LXXLL motif (data not shown). Figure 3.7 B shows Ftz homeodomains 

alignment from five species in five order, including four insects and one crustacean. 

The columns that have BLOSUM62 scores (Henikoff and Henikoff, 1992) higher 

than three are labeled in blue, scores higher than 0.2 was indicated by light gray, 

scores lower than 0.2 are not colored.  Comparing Figure 3.7 A and B, I noticed that 

the Ftz proteins from the Hemipteroid Assemblage got lower BLOSUM62 scores 
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(more grey and un-colored amino acids) than Ftz proteins from different orders.  This 

means that the Ftz homeodomains in hemipteroid assemblage insects have more un-

conserved variations than those in other orders. Within hemipteroid assemblage 

insects, Ap-Ftz and Of-Ftz have the least conversed homeodomains. 

A 
Ap.--YdWh----KRsRQTYSkYQTavLEtvFqtsRYivRnkRqqmSaELsLTERQIKIWFQNRRMKeKKE 
Ph.--YPWM---gKRTRQsYSRrQTLELEqEFHsNRYLtRskRIEIarsLgLTERQvKIWFQNRRMKwKrE 

   Of.---------pKRkRQTYSRFQTLELEKEFrltRYLpRKRRIdlaesLgLTERQIKIWFQNRRMKqKKE 
Rp.--fPWM---nKRTRQTYSRYQTLELEKEFHyNkYLsRKRRIEISnELcLTERQIKIWFQNRRMKlKKE 
Hh.--YPWM---tKRTRQTYSRYQTLELEKEFHyNkYLsRKRRIEISnELrLTERQIKIWFQNRRMKqKKE 

B 
  As.    qKRTRQTYTkYQTLELEKEFlyNRYLTRvRRmdIsSkLqLTERQIKIWFQNRRMKAKKE 
  Dm.    sKRTRQTYTRYQTLELEKEFHFNRYiTRRRRIdIANaLsLsERQIKIWFQNRRMKsKKD 
  Fa.    sKRsRQTYsRYQTLELEKEFHFNkYLTRRRRIEIANaLhLTERQIKIWFQNRRMKeKKt 
  Ps.    pKRTRQTYTRvQTLELEKEFHFNRYLTRRRRIEIAHvLgLTERQIKIWFQNRRMKAKKE 
  Tc.    nKRTRQTYTRYQTLELEKEFHFNkYLTRRRRIEIAesLrLTERQIKIWFQNRRMKAKKD 
 
Figure 3.7 Alignment of putative Ftz proteins. (A) Ftz homeodomains and YPWM 
motifs from five species in the hemipteroid assemblage. The YPWM motifs vary in 
the lineage. (B) Ftz homeodomains from five species in five different orders different 
colors are used to indicate the average BLOSUM62 score. light blue>=3, light 
gray>=0.2, no color otherwise. Ap. Acyrthosiphon pisum , Ph. Pediculus humanus 
corporis, Of. Oncopeltus faciatus , Rp. Rhodnius prolixus, Hh. Halyomorpha halys. 
As. Artemia salina, Dm. Drosophila melanogaster, Fa. Forficula auricularia, Ps. 
Pedetontus saltator, Tc. Tribolium castaneum 

Examination of the full length Of-ftz sequence (Fig. 3.8, ftz 5’RACE) revealed only 

55 bp upstream of the homeobox. There is no start codon. Further, there is one stop 

codon in each reading frame upstream of the homeobox (Figure 3.8, red). This 

suggests that this Of-ftz isoform is not translated into protein. However, the sequence 

isolated encodes a full length homeodomain with no stop codons, which suggests that, 

if the protein were translated, it could have some function.  To determine whether the 

sequence isolated was just a non-functional isoform of Of-ftz, I tried to isolate other 

possible isoforms. I designed three reverse primers for 5’RACE. Since I expect all 

potential ftz isoforms to share the same homeobox, all these three reverse primers are 
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located in the homeobox. Using two primers for each 5’RACE, I had three 

combinations of primer pairs. It is possible there is an isoform that is only expressed 

in a narrow time window. Narrowing down the time window during mRNA 

extraction may increase the relative concentration of that isoform, thus increasing the 

chances of isolating this isoform. I also noticed that Oncopeltus rarely lay eggs at 

night. Therefore, a 24 hour continuous collection contains few eggs laid during that 

night. I thus did eight hours collections during the day and extracted mRNAs every 8 

hours, such that I have mRNAs from 8-16 hours, 16-24 hours, 24-32 hours, 40-48 

hours, 48-56 hours, 64-72 hours, until 88-96 hours AEL. 1st, 2nd and 3rd instar nymphs 

were put in one pool, and 4th and 5th instar nymphs in another pool for mRNA 

preparation. 5’RACE was carried out with these primers and mRNA combinations. 

Three to five different annealing temperatures during PCR amplification were also 

tried with different primer-mRNA combinations. All the mRNAs collected gave a 

short 5’RACE product (70-100bp depending on primer combinations), under some of 

the conditions. None of them gave a 5’ RACE product of different length. This means 

that none of the experiments revealed a different isoform. I tried a Northern blot 

hoping to find a different isoform, but I didn’t get a signal, probably due to low 

concentration of the RNA.  

While I was thinking of trying some different approaches, Ewen-Campen kindly 

shared their Oncopeltus mRNA-seq data with us before publication (Ewen-Campen et 

al., 2011). The ftz gene Ewen-Campen sent me is 788 nucleotides long (named ftz E-

C in figure 3.8) and is longer than the sequence I isolated by RACE. ftz E-C has a 

shorter 3’ UTR and a longer 5’ UTR than my sequence ftz 5’RACE. In the 5’ UTR 
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region, ftz E-C includes 300 nucleotides not present in ftz 5’RACE. Intron/exon 

junctions GT and AT were found at the ends of this 300 nucleotide sequence (Figure 

3.8, green). These features suggest that ftz E-C contains an unprocessed intron. In this 

putative intron, nine, seven and seven stop codons can be found in each reading frame 

respectively (data not shown). Both ftz 5’ RACE and ftz E-C share identical 

homeobox sequences (Figure 3.8, highlighted in blue) and stop codons in each 

reading frame (Figure 3.8, red). Thus, even if the Of-ftz sequence in the RNA-seq data 

from Ewen-Campen is a processed mRNA, it may not be translated into protein. 

Finally, since short sequences are more readily amplified than longer sequences in 

PCR reactions, I tried to clone the 5’RACE products without a second PCR 

amplification. A total of twenty colonies were sent out for sequencing: nine colonies 

have a sequence that is clearly part of Of-ftz. Five out of nine sequences matched ftz 

5’RACE and four out of nine sequences matched ftz E-C. No other ftz isoforms and 

no additional or different sequence variants were found, while I see some nucleotides 

substitution in the putative intron region, none of these substitutions would result in 

an open reading frame in the putative intron region. 

 

Figure 3.8 Alignment of the Of-ftz sequences. Only the first part of the sequence is 
included in this alignment, since the only difference between these two isoforms is 
located in this part. Stop codons are labeled in red, stop codons in the 292 
nucleotide(nts) omitted sequence are not shown. GT-AG is labeled in green. Partial 
Homeodomain and homeobox are highlighted in blue.  

ftz 5’RACE ----------------TTTGAACCCACAGCGTAAGGATTGAGATCCCTTAGCCGCCCGAA---- 

ftz E-C   TCTTGCTCTGGGCGGGATTTGAACCCACAGCGTAAGGATTGAGATCCCTTAGCCGCCCGAAGTGA 

                    

                                          P  K  R  K  R  Q  T  Y  S  R  F                         

ftz 5’RACE(--------------)----ATCCAAGTAGGCCGAAGCGGAAGAGACAGACGTATTCTCGATTCC 

ftz E-C   (292nts omitted)CCAGATCCAAGTAGGCCGAAGCGGAAGAGACAGACGTATTCTCGATTCC 
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In order to determine whether Of-ftz is expressed in a pattern reminiscent of a 

Drosophila PRG, in situ hybridization was carried out using as probe complimentary 

to sequence 3’ of the homeobox, including partial coding sequence and 3’ UTR. In 

early blastoderm stage embryos, Of-ftz was expressed in two broad and diffuse stripes 

in the central region of the embryo (Figure 3.9 A). Later, as development progresses, 

the embryo anlagen moves posteriorly and internally towards the yolk. As these shifts 

occur, the two Of-ftz stripes moved towards the anterior of the embryos, and the 

posterior stripe became narrow and sharp (Figure 3.9 B). At germ band invagination, 

one broad, diffuse stripe was evident with two weaker, narrower stripes more 

posterior (Figure 3.9 C). At the germ band extension stage, the two weak and narrow 

stripes (Figure 3.9 D, green arrows) were barely visible outside of the embryos, while 

the broad stripe became more intense (Red arrow in Figure 3.9 D). As the germ band 

extended inside, these stripes moved toward the end of the embryo until they 

disappeared (Figure 3.9 D from top to bottom). No specific expression was detected 

in the germ band elongated embryos (Figure 3.9 E).  
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Figure 3.9 Of-ftz expression in embryos. (A) Early blastoderm embryo. Of-ftz is expressed 
in two broad stripes. Green arrows point to the stripes; (B) Later blastoderm embryo, stripes 
move towards anterior, narrower and sharper than early stripes; (C) Germ band invagination 
embryo, one broad stripe and two weak and narrow stripes can be seen. (D) Germ band 
extension embryos. Black arrows indicate germ bands beneath the yolk; two weak stripes 
barely can been seen (green arrows); as embryos growth, the broad stripe tends to split into two 
(red arrows); all the stripes move towards the posterior as embryos grow; (E) Germ band 
embryos were dissected out from the embryos shown in D, no staining can been seen. Embryos 
are aligned such that the anterior is to the left, and posterior is to the right. 
 

To test the function of Of-ftz, parental RNAi using dsRNA targeting the 3’ part of 

homeobox region (120bp) and part of sequence downstream of homeobox (118bp) 

was carried Oncopeltus females injected with this dsRNA laid eggs and the embryos 

died within two days after egg laying. Two more dsRNA targeting Of-ftz were made. 

One targets a 199bp region located in the region upstream of homeobox, within the 

putative intron. The other targets a 201bp region downstream of homeobox , 

including part of the CDS and 3’UTR. When I used these two dsRNAs for injection, 

eggs laid by injected females developed normally with no obvious phenotype. Since 

the 3’ end part of the Of-ftz homeobox is very conserved, it is possible that a dsRNA 

targeting the homeobox would have off-target effects on other homeobox-containing 
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genes. Since the two dsRNAs that did not include the homeobox resulted in no 

observable phenotype, we suggest that Of-ftz does not have a function in Oncopeltus 

embryonic development. 

RT-PCR suggests pRNAi knockdown Of-ftz expression in embryos 

Since it is possible that the injection of Of-ftz dsRNA did not  knockdown  the 

expression of  Of-ftz. I did RT-PCR with 4-72 hours AEL embryos laid by dsRNA 

injected females and uninjected females (Figure 3.10). In embryos laid by both 

injected and uninjected females, the expression level of actin are similar, while in the 

dsRNA injected embryos, ftz expression levels decreased dramatically. 

 

Figure 3.10 Of-ftz pRNAi knockdown expression of Of-ftz in 4-72 hours 
AEL embryos. Samples from Of-ftz dsRNA injected females are labeled as 
RNAi, samples from uninjected females are labeled as Control. Actin 
expression levels  are similar. ftz expression level in RNAi sample decrease 
dramatically.  

 
Sequence and segmental expression of Of-ftz-f1. 

Full length Of-Ftz-f1 was isolated and is 2081 nucleotides in length. It has a 1962 

nucleotide Coding DNA Sequence (CDS), which encodes a protein that is 564 amino 

acids long (Appendices).  

In early blastoderm embryos, Of-ftz-f1 is expressed in a broad central region of the 

embryos with a diffuse stripe at the anterior (Figure 3.11 A). At the germ band 

invagination stage (Figure 3.11 B), six stripes can be seen (green arrows), with a 
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diffuse background expression in the anterior region. Since Of-en had been found to 

expressed in six stripes (Figure 3.2 C) at germ band invagination (Liu and Kaufman, 

2004a), the six stripe expression pattern of  Of-ftz-f1 suggests that Of-ftz-f1 is 

expressed in every segment at germ band invagination. 

  

 

 

In germ band stage embryos, Of-ftz-f1  is expressed in striped pattern (Figure 

3.12 ). In early germ band stages, it is expressed in two stripes (Figure 3.12 A and B). 

Later only one stripe can be seen (Figure 3.12 C and D). From these experiments, it 

was not possible to determine in which segment(s) Of-ftz-f1 is expressed. However, it 

seems that in the late germ band, Of-ftz-f1  is only expressed in the growth zone, 

where new segments are generated.   

Figure 3.11 Expression of Of-ftz-f1 at blastoderm stage. (A) At early blastoderm, 
Of-ftz-f1 is expressed in a broad central region of the embryo. (B) At germ band 
invagination, six stripes can be seen (green arrows).
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In order to determine the register of the Of-ftz-f1 stripes,  I carried out double in situ 

hybridization with Of-en and Of-ftz-f1. Since I was unable to work out a way to stain 

them with two different colors, I had to use one color to stain Of-en and Of-ftz-f1. I 

first did in situ hybridization with Of-en only to determine its expression pattern 

(Figure 3.13).  In agreement with previous reports, Of-en  was expressed in the 

posterior portions of each segment and was  not expressed in the growth zone region 

(Liu and Kaufman, 2004a). As the germ band grows, more and more segments are 

added and Of-en stripes appear (Figure 3.13 A to D). 

 

Figure 3.12 Expression of Of-ftz-f1 during germ band elongation. (A) In 44-
48 hour germ band stage embryos, two stripes can be seen. (B) Two stripe 
expression pattern persists as the germ band grows. (C) One stripe can be seen in 
56-60 hour germ band embryo. (D) One stripe can be seen in a 72-76 hour germ 
band embryo. Green arrows point to stripe(s). 
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  I then did in situ  hybridization with both Of-ftz-f1 and Of-en  probes (Figure 

3.14). The first Of-ftz-f1 stripe  was observed in the T3 segment (Figure 3.14 A, green 

arrow). Then a stripe appeared in A1 from growth zone as the T3 stripe moved 

anterior (Figure 3.14 B, green arrow). As the A1 stripe  moves out of growth zone, 

the T3 stripe disappeared and a new A2 stripe emerged in growth zone. After the A2 

stripe, all other posterior stripes (A3-A10 ) only appeared  in the growth zone, leading 

to a one stripe pattern. as seen in Figure 3.11 C and D and Figure 3.14 D, E and F. 

The  last Of-ftz-f1 was observed when the en A9 stripe appeared. After the A10 stripe 

of en appeared, no expression of Of-ftz-f1 was observed. These findings suggest that 

after the A5 segment forms, Of-ftz-f1 stripes only appear in the newly formed 

Figure 3.13 Expression of Of-en in the growing germ band. (A) Of-en is 
expressed in five stripes in 28-32 hour embryo. (B) Six stripes can be seen as 
embryos grow. (C) Seven strips can be seen in a 48-52 hour embryo. (D) A 72-
76 hours embryo with nine abdominal segments. Abbreviations: T, Thoracic 
segment, A, Abdominal segment, Mn, Mandible, Mx, Maxillae, Lb, Labium 
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segments in the growth zone region, and they are seldom seen to leave the growth 

zone region. 

 

Figure 3.14  Of-ftz-f1 and Of-en double in situ hybridization. (A) The first Of-
ftz-f1 stripe is seen in T3. (B) Later, an Of-ftz-f1 A1 stripe  emerges from growth 
zone and the T3 segment stripe moves out of growth zone. (C) Of-ftz-f1 A2 stripe 
appears and the A1 stripe moves out of growth zone; the T3 stripe has disappeared. 
(D) Of-ftz-f1 A7 stripe emerges in growth zone; A6 expression has disappeared.  (E) 
Of-ftz-f1 A9 stripe emerges in the growth zone.  (F) Of-ftz-f1 A10 stripe emerges in 
the growth zone, without A9 stripe.  Segments  expressing Of-en are labeled in red; 
segments expressing Of-ftz-f1 are labeled in black. Green arrows point to Of-ftz-f1 
stripes.  Abbreviations: T, Thoracic segment, A, Abdominal segment , Mn, 
Mandible, Mx, Maxillae, Lb, Labium. 

 

Knockdown of Of-ftz-f1 with RNAi 

To determine the function of Of-ftz-f1, RNAi was used. For parental RNAi, a total 

of 28 Oncopeltus one week old females were injected with Of-ftz-f1 dsRNA. Two of 

them died within 24 hours, all others lived for 4-5 more weeks after injection. Of 

these 26 females, none of them laid any eggs in their whole life. I then tried to inject 

20 females that were about two weeks old. These females had started laying eggs for 

one week without disruption. After injection they all stopped laying eggs. I then 

dissected their ovaries out and compared them with normal ovaries. As shown in 
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Figure 3.15 A, a normal ovary contains a few ovarioles. As the oocytes move from 

anterior to posterior, they grow in size gradually and oocytes of different in sizes can 

be seen. When they reach the posterior end of the ovariole, most of them are mature 

and have a yellow shiny color (Figure 3.15 A arrows). In the Of-ftz-f1 dsRNA 

injected females, the oocytes stopped growth right before maturation and all the 

ovarioles contained oocytes of about the same in size (Figure 3.15B). No shiny, 

yellow mature oocytes were evident. It is clear that the oogenesis is blocked by Of-

ftz-f1 RNAi. 

 

Figure 3.15 Of-ftz-f1 RNAi blocks oogenesis. (A) Ovary from a normal female. 
Oocytes of different sizes can be seen, including mature oocytes (arrows). (B) 
Ovary from an Of-ftz-f1 dsRNA injected female. Oocytes are similar in size to each 
other and no mature oocyte can be seen. 

 
In order to test whether the oogenesis blocking phenotype is related to knockdown 

of Of-ftz-f1 expression, RT-PCR was used to determine the relative concentration of 

Of-ftz-f1 mRNA in ovaries from injected and uninjected females (Figure 3.16). In 

both injected and uninjected females, actin expression levels in were similar., while 
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in dsRNA injected females, Of-ftz-f1 expression levels in ovaries decreases to barely 

detectable levels. 

 

Figure 3.16 Of-ftz-f1 pRNAi knockdown of Of-ftz-f1 in ovary. 
Samples from Of-ftz-f1 dsRNA injected females are labeled as RNAi, 
samples from uninjected females are labeled as Control. Actin 
expression levels  were similar in both samples but Of-ftz-f1 
expression levels decreased in RNAi-treated ovaries.  
 

Since we are interested in Of-ftz-f1 function in embryonic development, I tried to 

injected the dsRNA into eggs (eRNAi). It is very hard to do injection with Oncopeltus 

eggs. There is no way that I could get rid of the chorion without killing the embryo. 

The chorion remained intact after treatment with undiluted bleach for 24 hours. I 

therefore had to do injection with the chorion on the embryos. Another property of 

the embryos is that the pressure inside of the chorion is very high, making the 

injection very difficult to do. I needed to increase the holding pressure to 20-30 PSI to 

prevent cytoplasm from flowing back into the injection needle, which caused the 

dsRNA solution flow out of the needle slowly before or after injection. The injection 

pressure is 60-80 PSI, which sometimes blew the embryos into pieces. Most of the 

solution injected into the embryos will be squeezed out due to high pressure inside of 

the embryos. I practiced injection for a few thousand embryos using injection buffer 

with 1/10 food grade green dye. During my practices the  survival rate ranged from 

about 30% to  50% (survival here means the embryos developed into pre-hatch stage, 

when all the segments can be seen). In these embryos, I never saw an embryo with 

obvious segmentation defects (data not shown). 



 

 90 
 

In one Of-ftz-f1 dsRNA injection, 12 out of 12 embryos injected at the same time 

hatched with same phenotype. They had a head with eyes (Figure 3.17 B, red arrows 

pointed to eyes) and thoracic segments with three pair of legs (Figure 3.17 B, black 

arrows pointed to legs). The head and thoracic segments apparently did not fully 

develop. They did not have the reddish color that can be seen in normal embryos 

(Figure 3.17 A). Once put under a cover slide, the head and thoracic parts burst into 

pieces (Figure 3.17 B), which indicates a defect in cuticle development. Further, their 

abdomens were severely affected. Normal embryos have ten abdominal segments, 

while the RNAi treated embryos had only two or three segments (Figure 3.17 C and 

D). There is one macrochaete (Figure 3.17 A black arrows) on each side of every 

abdominal segment (Erezyilmaz et al., 2009). In the Of-ftz-f1 RNAi embryos, only 

one macrochaete was found (Figure 3.17 C and D, black arrows). Judging from the 

color of the abdomen, there may be one more segment anterior to the segment with a 

macrochaete and one more segment posterior to the segment with a macrochaete. If 

this is ture, it means the other two segments are missing the anterior part of the 

segment, where the macrochaete located. This suggests Of-ftz-f1 may have pair-rule 

function in some of the abdominal segments.  
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Figure 3.17 RNAi suggests that Of-ftz-f1 functions in segmentation. (A) A 
normal embryo, showing mainly the abdomen of the embryo, with 10 abdominal 
segments. Black arrows point to macrochaetes; (B) An Of-ftz-f1 RNAi embryo with 
head, thoracic and abdominal segments. Eyes are indicated by red arrows, leg are 
indicated by black arrows; (C) and (D) abdominal segment of two other RNAi-
treated embryos; macrochaetes indicated by black arrow. 

 
When I tried to repeat this experiment, I never got the same phenotype. Once, with 

injection of 512 embryos, 272 embryos developed to pre-hatched stage. These 

embryos were fixed and observed under microscope for phenotypes. Most of them 

had normal segments. Nine of them had segmentation defects.  I got two embryos 

with exactly the same phenotype as described above; one embryos with only one pair 

of legs (Figure 3.18 A); four embryos with a shortened posterior part (Figure 3.18 B); 

one embryo had segmental fusions on the ventral side (Figure 3.18 C); and one 

embryo had a shrunken abdomen (Figure 3.18 D). For the one with one pair of legs, 

the identity of the legs (red arrows) could not be determined. The antenna and 

proboscis were present (yellow and white arrows in Figure 3.18 A). Since two 
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thoracic segments were deleted, this resembles a pair-rule phenotype. The cuticle of 

the embryo did not develop well, with-light color, and it was easy to break the body. 

The embryos with  shortened posterior segments had either five or six normal 

abdominal segments, with one abnormal segment fused by a few segments (Figure 

3.18 B). For the embryo with a ventral fusion, two segments were seen at the doral-

lateral part of the abdomen, converging together on the ventral side, which indicates a 

partial deletion of these two segments only  ventrally. Notice that all normal segments 

are dark-colored on the dorsal-lateral side, and light-colored on the ventral side. For 

the embryo with a shrunken abdomen, the segments next to the shrunken parts were 

dark colored and the light-colored part was lost. This indicates a total deletion of the 

ventral part of these two segments.  

 

Figure 3.18 RNAi suggests that Of-ftz-f1 functions in segmentation. (A) 
Embryo with one pair of legs. Green arrow, two eye dots; yellow arrows, antenna; 
white arrow, proboscis; red arrows, legs. (B) Embryo with posterior segmental 
defects. Numbers correspond to five normal abdominal segments, after the 5th 
segment, ~3 segments fused. (C) Embryo with partial segmental fusion. Ten 
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segments can be seen, some of which are labeled by numbers. A6 and A7 fused 
together in the ventral region, green arrow. (D) Embryo with a shrunken abdomen. 

 
Isolation and function of additional PRG orthologs from Oncopeltus 

 Since in hemiptera insects, Of-eve is the only PRG whose expression and function 

had been studied, knowing the function of other PRG orthologs will help us better 

understand how PRG evolve in insects. I therefore tried to isolate all other Oncopeltus 

PRG orthologs with the information I got from the i5K project. Some of the PRGs 

belong to big superfamilies with many homolgues having similar sequences. For 

example, Prd homolgues are too similar to each other in their conserved domains, and 

diagnostic motifs were not found in the genome. In addition, the available genome 

sequence is only a first draft and there were genome quality issues that may have 

prevented identification of some PRGs. Therefore, I was able to identify only two 

more PRG orthologs, Of-runt and Of-hairy, from the Oncopeltus genome. Below I 

describe the expression pattern and function of these two genes. 

Isolation of Of-hairy. 

As I described in the Method section, I used Oncopeltus genome information and 

RT-PCR to isolate Of-hairy sequence and reciprocal BLAST to determine orthology 

of the sequence I isolated. An Of-h sequence of 580 nucleotides was isolated, with a 

555 bp full length CDS, which encodes a protein of 185 amino acids (Appendices). 

As shown in Figure 3.19, the Of-Hairy protein has a full length Helix-Loop-Helix 

domain (Figure 3.19 A) and a conserved domain which has limited potential to form 

two amphipathic helices-named - the orange domain (Figure 3.19 B) by Dawson et al. 

(Dawson et al., 1995). Of-H includes a 4-amino acid WRPW motif (Figure 3.19 B to 
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the right) located at the C-terminus of the protein as do all other Hairy family proteins 

(Bier et al., 1992; Delidakis and Artavanis-Tsakonas, 1992; Rushlow et al., 1989).  

Dm-Hey    RKkrrgViEKKRRdRINssLtELKrLvpsAyeKqGS--aKLEKAeILqLTVeHLKsLQ-skldslsyDPq 
Dm-E(spl) RKvtKPllErKRRARmNlyLdELKdLIvDtmdaqGeqvSKLEKADILELTVnyLKaqQqQrvAnpqsppP 
Dm-H      RrsNKPIMEKrRRARINncLNELKtLIlDAtKKDpARHSKLEKADILEkTVKHLqeLQRQQAAmQqAaDP 
Of-H      RrsNKPIMEKrRRARINhcLNELKsLIlDsmKKDpARHSKLEKADILEMaVKHvetLQRsQAAlQvAaDP 

A 
 
Dm-Hey    DyhiiGFrECAaEVARYlvTIeGmDiQdplRlRLMsHLqyfV-------------------yRPW 
Dm-E(spl) DKFrAGYtqaAyEVShifsTVPGLDlK--fgtRLMkqLghqL-------------------WRPW 
Dm-H      nKFkAGFadCvnEVSRF----PGiepa—-qRrRLLqHLSncIng-----------------WRPW 
Of-H      DKFlAGwgECvgEVgRF----PGLDsQ--vRkRLvdHLStvm-------------------WRPW    
B 

Figure 3.19 Alignment Of-H and Drosophila homologs Hey, E(spl) and H. (A) 
Alignment of HLH domain. (B) Alignment of the orange domain and WRPW motif. 
Colors are use to indicate BLOSUM62 score. light blue>=3, light gray>=0.2, no color 
otherwise. 

 

Using a probe complimentary to 179nts of the Of-h mRNA that codes for the C-

terminal of Of-H variable region, two rounds of in situ hybridization were tried with 

18 hours to 96 hours AEL Oncopeltus embryos. I did not detect any specific 

expression pattern in these embryos. Using dsRNA that targets the same region, two 

rounds of dsRNA injection were done with a total of 21 females. All the Of-h dsRNA 

injected females laid eggs which hatched into normal fertile offspring. These findings 

suggest that the Of-h orthologue isolated does not play a role in embryonic 

development. 

 Of-runt RNAi disrupts oogenesis, possibly causing apoptosis 

   For the gene runt, Sanger sequence data was used to extend the annotation. The 

sequencing result revealed two additional exons that were not found by any other 

methods (Figure 3.20). The final annotation of runt includes four exons (Figure 3. 20). 

Only the first and second exon can be predicted based on homology. The second and 



 

 95 
 

third introns are both longer than 12,000 base pairs, thus making them difficult to be 

predicted by software. Both exon three and exon four encode variable regions of Runt.  

 

 
 

A full length Of-runt CDS of 843nts was isolated, which could encode a protein 

with 280 amino acids. It has a VWRPY motif. Three other RUNX family members in 

Drosophila were identified (Appendices). 

Of-runt is expressed in a broad region at the anterior the blastoderm embryos 

(Figure 3.18, green arrow). No expression was detected in the germ band embryos. 

 

 

Figure 3.21 Of-runt expression in blastoderm embryo. Of-runt is 
expressed in a broad band in the head region (green arrow) 
 

To test the function of Of-runt, dsRNA was prepared to target a 219 nt sequence 

which encodes the variable region located between the Runt domain and the WRPY 

motif. 18 Oncopeltus females were injected with Of-runt dsRNA. All of them started 

laying eggs two days after injection. They continued to lay eggs for 3-4 days, and the 

eggs hatched normally. After ~ 4 days, the injected females started to lay eggs that 

were flat in shape, with shrunken embryos inside of the eggshells (Figure 3.22 A, 

Figure 3.20 Gene Structure of runt.  The final annotation shown runt has four 
exons. Numbers on top of the bar indicate the position in the scaffold; exons are 
labeled as dark blue boxes; introns are labeled in light blue.
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green arrows). They never developed to germ band stage. After laying one or two 

batches of eggs like this, injected females started to lay some amorphous yellow 

masses (Figure 3.22 B, red arrow) together with severely shrunken embryos (Figure 

3.22 B, green arrow); later, they laid only amorphous yellow masses (Figure 3.22 C). 

All the injected females died within three weeks, with most of them died within two 

weeks (14 out of 18). In contrast, Of-ftz-f1 dsRNA injected females lived for more 

than 4 weeks after injection. These results suggest that Of-runt is necessary for 

viability of early embryos. 

  

 

Figure 3.22 Of-runt RNAi disrupts oogenesis. (A) 
Shrunken eggs (green arrows) laid after normal eggs (black 
arrow). (B) Shrunken eggs (green arrow) laid with 
amorphous mass (red arrow). (C) Only amorphous mass 
(green arrow) was laid later. 
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To determine whether the dsRNA injections knocked down Of-runt levels, RT-PCR 

was used to determine the relative concentration of Of-runt mRNA in ovaries from 

injected and uninjected females (Figure 3.23). In both injected and uninjected females, 

actin expression level in ovaries were similar. In dsRNA injected females, Of-runt 

expression levels in ovaries decreased to very low levels. 

 

Figure 3.23 Of-runt pRNAi knockdown expression of Of-runt in ovary. 
Samples from Of-runt dsRNA injected females are labeled as RNAi, 
samples from uninjected females are labeled as Control. Actin expression 
levels  are similar. Of-runt expression levels decreased after RNAi 
treatment .  

 

3.3.5 Discussion 

With the goal of assessing the role of  PRG orthologs in the Hemipteroid 

Assemblage, I attempted to isolate and study the function of Oncopeltus PRGs. In 

total, I identified four clear PRG orthologs in Oncopeltus. Of-hairy does not appear to 

have a segmentation function in Oncopeltus. More experiments may need to be done 

to confirm this negative result. Similarly, Of-ftz may be non-functional in this species 

(see below). This result itself is not surprising, since three PRG orthologs did not 

have a segmentation function in Tribolium (Choe et al., 2006). However, both Of-ftz-

f1 and Of-runt appear to be required in different stages of embryonic development. 

Of-ftz may be non-functional 

Two isoforms of Of-ftz were identified. While each maintains a complete ORF for 

the homeodomain, neither includes an upstream initiator methionine and stop codons 
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are present in all three reading frames upstream of the homeodomain for both. This 

suggests that Of-ftz is either not be translated into protein, or a different start codon is 

used to generate a very short peptide including basically only the homeodomain. It is 

also possible that there are other isoforms of Of-ftz that we failed to find. However, I 

tried many different approaches and still did not isolate another isoform. In addition, 

Even-Campen et al. did RNA-seq with Roche 454 (Ewen-Campen et al., 2013) and 

the i5K project did RNA-seq with Illumina, but neither of these projects identified an 

additional isoform. 

pRNAi with Of-ftz dsRNA did not result in abnormal embryos, suggesting that Of-

ftz does not have a function in Oncopeltus embryonic development. This is not the 

first time ftz was shown to have no function in embryonic development, as a similar 

phenomenon was observed for Tribolium Tc-ftz (Brown et al., 1994a; Stuart et al., 

1991). It is interesting that I did not detect Of-ftz expression in the CNS, while Ftz 

expression in CNS seems to be maintained in all other arthropods examined (See 

chapter 1 for more detail about Ftz CNS expression).  These findings suggest that ftz 

has lost function in Oncopeltus or lineages leading to Oncopeltus. It will therefore be 

of great interest to examine ftz function in related hemimetabolous insects. 

ftz-f1 may have a conserved role in segmentation in divergent insects  

Of-ftz-f1 is expressed in segmental pattern in Oncopeltus embryos. Preliminary 

RNAi data suggest that it has function in segmentation. pRNAi of Of-ftz-f1 blocked 

oogenesis. In contrast to this, in Drosophila, Ftz-F1 does not have a function in 

oogenesis. Embryos derived from germline clones for at least six different ftz-f1 

alleles produce eggs with pair-rule mutant phenotypes (Guichet et al., 1997; Guichet 
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et al., 1996; Hacker et al., 2003; Luschnig et al., 2004; Yu et al., 1997). In Tribolium, 

Tc-ftz-f1 RNAi had been found to block oogenesis (Xu et al., 2010). Thus, the 

function of Ftz-F1 in oogenesis is conserved in Tribolium and Oncopeltus and may be 

more broadly conserved in basally branching insects. 

My experiments using eRNAi for Of-ftz-f1 were not definitive.  In Of-ftz-f1 RNAi 

embryos with less severe phenotypes, it was not possible to determine if the defects 

had pair-rule or segmental patterns. The one with one pair of legs did suggest a pair-

rule function. Some Of-ftz-f1 eRNAi embryos also had either shrunken abdomens or 

ventral fusions, which indicates the ventral part of the segments are more sensitive 

than dorsal portions to the knockdown of Of-ftz-f1. 

The Drosophila and Tribolium ftz-f1 orthologs function at several stages of 

development. Both function as pair-rule segmentation genes and both play important 

roles in cuticle development (Heffer et al., 2013; Ruaud et al., 2010). The cuticle 

defects in the head and thoracic segment of Of-ftz-f1 RNAi embryos suggests Of-Ftz-

F1 may have similar rules. Further, in Oncopeltus dsRNA injected embryos, most of 

the abdominal segments were missing in the most severely affected embryos, with 

only three abdominal segments evident morphologically. This suggests that Of-ftz-f1 

may function as a PRG in some of the abdominal segments, despite its segmental 

expression pattern. In Drosophila, Dm-ftz-f1 is expressed ubiquitously in blastoderm 

embryos but it depends on its co-factor Ftz to regulate alternate en stripes and 

functions as a PRG (Guichet et al., 1997; Yu et al., 1997). Since Of-ftz RNAi did not 

effect embryonic development, it is possible that in Oncopeltus, the function of Of-

Ftz-F1 is dependent on another co-factor, which is expressed in a pair-rule pattern. In 
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Gryllus bimaculatus, Gb-eve was found to partially function as a PRG in posterior 

segmentation (Mito et al., 2007). In Oncopeltus, Of-E75A had been found to have 

pair-rule function, and it is not expressed from A7 to A10 segments (Erezyilmaz et al., 

2009). Which gene(s) take over Of-E75A’s function in those posterior segments is 

unknown. Together, these observations suggest that, compared with Drosophila, the 

segmentation network may be more complicated in other insects. 

Of-runt may be necessary for oocyte viability 

In mammals, there are three Runt homologues RUNX1, RUNX2 and RUNX3. 

RUNX1 and RUNX2 were found to have oncogenic potential (Reviewed in Ito, 2008; 

Levanon and Groner, 2008). Recent studies suggest that RUNX proteins play a direct 

role in inhibiting apoptosis induced by p53 (Ozaki et al., 2013a; Ozaki et al., 2013b; 

Wu et al., 2013). In the sea urchin, Sp-runt-1 deficiency leads to extensive cell death 

(Dickey-Sims et al., 2005). Sp-runt-1 was found to directly regulate the expression of 

Protein kinase C (PKC) to support cell growth and inhibit apoptosis (Dickey-Sims et 

al., 2005). In Oncopeltus, I found that Of-runt disrupts oogenesis. Oocytes were 

shrinking as they developed, suggesting that in Of-runt knockdown oocytes, apoptosis 

was induced. It has been found that Drosophila PRG mutants cause pair-rule 

phenotypes by inducing apoptosis (Hughes and Krause, 2001). However, I suggest 

that this kind of apoptosis maybe different from the apoptosis we seen in RUNX 

proteins mutants. During development, if cells can’t be specified correctly, these cells 

will be removed by cell death (Adachi-Yamada et al., 2005; Adachi-Yamada and 

O'Connor, 2002, 2004). This phenomenon have been observed in mutations of not 

only PRGs but also gap genes and segment-polarity genes (Hughes and Krause, 2001; 
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Klingensmith et al., 1989; Magrassi and Lawrence, 1988; Martinez-Arias and Ingham, 

1985; Pazdera et al., 1998; Tepass et al., 1994). Cell death has also been observed in 

mutations related to imaginal development (Fristrom, 1968). It is possible, in these 

scenarios, that loss of function of a gene does not trigger cell death directly, but rather, 

it is the fact that the cells do not take on the fate they are supposed to, triggers the cell 

death. This could be triggered by alterations in the reception of Dpp signals or 

changes in the ratio of multiple morphogens (Adachi-Yamada and O'Connor, 2002). 

The cell death I observed in Of-runt knockdown oocytes may be different from the 

cell death caused by pair-rule gene mutations during embryonic development. Of-

Runt may directly participate in the apoptosis signaling pathway during oogenesis, as 

has been shown in mammals and sea urchin. 
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Chapter 4: Molecular Biology study of the invasive brown 

marmorated stink bug, Halyomorpha halys 

Section 4.1 Background 

Native to East Asia, Halyomorpha halys, commonly known as the Brown 

Marmorated Stink Bug (BMSB) is an invasive species in the United States. It was first 

discovered in North America in Allentown, PA in 1996 (Hoebeke and Carter, 2003). 

According to a recent investigation, BMSB has been found in 41 states in the USA and 

two Canadian provinces. BMSB is a polyphagous insect, which eats tree fruits, 

vegetables, legumes, cotton, ornamentals in the field and in nursery crops (Nielson et 

al., 2008; Panizzi et al., 2000; Zhu et al., 2012). BMSB has caused significant 

agriculture damage in recent years; in 2011, stone fruit growers considered BMSB to 

be the single most important pest in the mid-Atlantic region, as more than 90% of their 

crop was lost due to BMSB (Leskey et al., 2012).  BMSB is also a nuisance for homes 

and businesses, since in the fall BMSB seek overwintering sites in any human-made 

structures. They congregate inside or outside of buildings, in attics, near windows or 

doors, on ceilings, and other similar areas.  BMSB is resistant to common insecticides, 

forcing farmers to use broad spectrum insecticides, including pyrethroids to control the 

population of BMSB (Leskey et al., 2012).  The use of broad spectrum insecticides can 

cause outbreaks of secondary pests such as European red mites, wooly apple aphids 

and others, since their natural enemies are killed by these insecticides (Leskey et al., 

2012). 
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BMSB has spread in the USA and there are no current sustainable integrated pest 

management (IPM) solutions. With funding from USDA, a group of more than 60 

scientists is working on finding pest management solutions for controlling BMSB. 

Understanding the development of BMSB from a molecular biology perspective will 

provide inroads into novel approaches for management and monitoring of BMSB 

populations. 

A promising approach for pest management is the use of RNA interference (RNAi).  

In brief, when a double strand RNA (dsRNA) is introduced into a cell, it initiates a 

process that silences the corresponding endogenous mRNA. RNAi is a 

posttranscriptional gene-silencing mechanism which was first discovered in 

Caenorhabditis elegans (Fire et al., 1998), and subsequently shown to function in 

fungi, plants, insects and other animals (Mello and Conte, 2004). Two major 

pathways mediate the RNAi process: the siRNA and miRNA pathways (Carthew and 

Sontheimer, 2009; Tomari et al., 2007). The miRNA pathway uses endogenous 

dsRNA that is transcribed from the cells’ own genome, and regulates endogenous 

genes. The siRNA pathway responds to foreign or invasive nucleic acids such as 

viruses and transposons, thus serving as a defense mechanism against exogenous 

dsRNAs. The effects of RNAi have been observed to be both cell-autonomous and 

non-cell-autonomous (Whangbo and Hunter, 2008).  In cell-autonomous RNAi, the 

RNAi only affects the cell that expresses the dsRNA or that is directly exposed to 

experimentally introduced dsRNA. In non-cell-autonomous RNAi, the RNAi effect 

spreads from an initiating site to other distant tissues or cells (Fire et al., 1998). For 
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example, non-cell-autonomous RNAi can be initiated by soaking C. elegans in 

dsRNA solution or by feeding them bacteria expressing dsRNAs (Tabara et al., 1998; 

Timmons and Fire, 1998). There are two types of non-cell-autonomous RNAi: 

environmental RNAi, and systemic RNAi (Whangbo and Hunter, 2008). 

Environmental RNAi refers the phenomena by which environmentally encountered 

dsRNA triggers RNAi effects; systemic RNAi refers to the spreading of RNAi effects 

from an initial site to distant tissues.  

 For non-cell-autonomous RNAi to function, cells must have the ability to uptake 

the RNAi signals from the outside. Screens for uptake defects in C. elegans identified 

two proteins, SID-1 (Winston et al., 2002) and SID-2 (Winston et al., 2007) which are 

responsible for systemic distribution of RNAi effects. Orthologs of SID-1 have been 

found in some insects. For example, SID-1 orthologs were discovered in Tribolium 

castaneum (Tomoyasu et al., 2008), Bombyx mori (Tomoyasu et al., 2008), Aphis 

gossypii and Sitobion avenae (Xu and Han, 2008), and Schistocerca  americana 

(Dong and Friedrich, 2005). To my knowledge, no SID-2 has been found to date in 

any insect species whose genome has been sequenced.  

In animals that carry out non-cell-autonomous RNAi, dsRNA that is injected or 

supplied in the diet can trigger systemic gene silencing. This phenomenon makes 

RNAi a very useful tool to knockdown genes in order to study their functions.  This 

approach has been pursued in recent years for several insect model systems. As a 

well-studied model organism, Drosophila melanogaster was the first insect in which 

RNAi was shown to work. Shortly after Fire et al. revealed RNAi in C. elegans (Fire 

et al., 1998), Kennerdell et al. showed that injection of dsRNA corresponding to the 
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segmentation genes fushi tarazu (ftz) or even-skipped (eve) into Drosophila embryos 

phenocopied ftz and eve loss-of-function mutations (Kennerdell and Carthew, 1998).  

Using RNAi, they found that Drosophila frizzled and frizzled 2 act downstream of 

wingless (Kennerdell and Carthew, 1998). Later, the RNAi technique was used in 

Drosophila cell culture for high-throughput screens. With this system, the function of 

thousands of genes can be analyzed (Boutros et al., 2004; Kiger et al., 2003). RNAi 

was also shown to work well in the flour beetle Tribolium castaneum: Injection of Tc-

Dfd dsRNA into Tribolium castaneum embryos resulted in embryos that phenocopy 

the Dfd loss-off-function mutant phenotype (Brown et al., 1999). Further studies 

showed that RNAi works well in all life stages of Tribolium (Bucher et al., 2002; 

Tomoyasu and Denell, 2004). Bucher et al. found that injecting dsRNA into the 

haemocoel of female Tribolium resulted in RNAi effects in the offspring of the 

injected females. This phenomenon is called parental RNAi (pRNAi) and was first 

discovered in C. elegans (Fire et al., 1998; Timmons and Fire, 1998). In addition to 

Tribolium, pRNAi has been proven to be effective in a few other insects, such as the 

silk moth Bombyx mori  (Quan et al., 2002) and  the milkweed bug Oncopeltus (Liu 

and Kaufman, 2004). Overall, many experiments have shown that delivering dsRNA 

into insects by injection is an efficient method to knockdown gene expression.  

 The success of using RNAi to knock down gene function encouraged many 

researchers to explore the possibility of using RNAi as tool for protecting crops 

against insect pests. Most of these researchers choose housekeeping genes to target 

pests.  Delivering dsRNA by injection, which is used broadly in basic research, is not 

feasible for controlling insect pests.  For this purpose, delivering dsRNA through 



 

 106 
 

feeding would be ideal. Baum et al. tested whether RNAi functions  in western corn 

rootworm (WCR, Diabrotica virgifera) by separately targeting 25 different genes 

(Baum et al., 2007). The dsRNAs were sprayed on the surface of the artificial WCR 

diet. They found that many of the dsRNAs caused larval stunting and mortality at a 

concentration of 520 ng/cm2. Further screening revealed that dsRNAs targeting genes 

encoding vacuolar ATPase (V-ATPase) subunits A, D or E and alpha-tubulin, were 

effective at a concentrations below 52 ng/cm2.   A transgenic corn line was 

constructed that expresses both strands of the WCR V-ATPase A gene under the 

CaMV e35S promoter, such that it would be expressed in the whole plant and 

assemble into dsRNA in the transgenic corn. When exposed to WCR infection, the 

transgene effectively protected the corn from root damage.  Around the same time 

Mao et al. analyzed a cDNA library from the midgut of cotton bollworm 

(Helicoverpa armigera) treated with gossypol, and found several gossypol-induced 

genes (Mao et al., 2007). Gossypol is a metabolite of cotton, which is toxic to most 

insects. The gossypol-induced genes could play an important role in the tolerance to 

gossypol in cotton bollworm. Mao et al. tested this hypothesis with one gene, P450 

monooxygenase, CYP6AE14.  Arabidopsis thaliana and Nicotiana tobacum 

transgenic lines were made to express dsRNAs targeting CYP6AE14. When cotton 

bollworm larvae were fed with leaves from those transgenic plants, a decrease in 

CYP6AE14 expression level was observed. Four days after feeding on the transgenic 

plants, the cotton bollworm larvae were transferred to artificial diets. When gossypol 

was added to the diet, the larvae, which had been feed on transgenic plants for four 
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days, did not grow, while larvae fed on diet without gossypol grew normally. This 

indicates that RNAi targeting CYP6AE14 reduced gossypol tolerance in WCR.  

More recently, a broad range of insects and target genes have been tested, 

examining the feasibility of using RNAi for pest control. Gong et al. found that 

spraying dsRNA targeting the Rieske iron–sulfur protein (RISP) gene on cabbage 

leaves killed diamondback moth (Plutella xylostella) larvae feeding on them (Gong et 

al., 2013). Their study showed that RNAi targeted to different regions of the RISP 

gene had different efficiencies. The most efficient dsRNA killed 73% of the larvae, 

while the least efficient dsRNA killed only 38% of the larvae. They also noted that if 

the larvae survived after 72 hours of feeding on dsRNA soaked leaves, the larvae 

would developed normally. Li et al. fed oriental fruit flies (Bactrocera dorsalis) with 

dsRNA expressing-bacteria, similar to what is done routinely for C. elegans (Li et al., 

2011). They found that dsRNA targeting v-ATPase-D did not cause high mortality, 

different from what Baum et al. found in WCR. Of the four genes they tested (Rpl9, 

V type ATPase D subunit, the fatty acid elongase Noa and  GTPase Rab11), only 

Rab11 caused relatively high mortality but targeting Rab11 and Noa decreased egg 

production in adult females(Baum et al., 2007). In the whitefly, Upadhyay et al. tried 

five different genes  (actin ortholog, ADP/ATP translocase,α -tubulin, ribosomal 

protein L9 (RPL9) and V-ATPase), mixing the dsRNA into the diet. All five dsRNAs 

had some effect but dsRNAs targeting RPL9 and V-ATPase A were more efficient 

than the other three in killing whitefly nymphs (Upadhyay et al., 2011). Eastern 

subterranean termites  (Reticulitermes flavipes), were fed high doses of dsRNAs 

targeting two genes (cellulose enzyme gene Cell-1 and a caste-regulatory hexamerin 
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storage protein gene Hex-2) (Zhou et al., 2008). After feeding the termites for 24 days, 

they observed the group fitness and mortality of the treated termites were 

significantly reduced. To test the possibility of controlling peach potato aphid (Myzus 

persica), Mao et al. cloned its hunchback gene and created transgenic tobacco plants 

which express hunchback dsRNA. The aphids that fed on the dsRNA-expressing 

tobacco plants had a smaller population and lower insect biomass compared with 

aphids grown on control plants (Mao and Zeng, 2014).  Overall, these results suggest 

that transgenic plants expressing specific dsRNAs can efficiently knockdown the 

expression of target genes in insects that feed on the plants. Spraying dsRNA on the 

surface of artificial food or leaves can have similar effects.  Thus, RNAi is a 

promising approach for control of pest insects. RNAi can be used to control insect 

pests that develop resistance to standard insecticides. Specially designed dsRNA 

could be used to kill a single species without affecting other species. Finally, 

combining one or more genes as RNAi targets may increase the efficiency of RNAi 

(Huvenne and Smagghe, 2010; Price and Gatehouse, 2008; Zhang et al., 2013).   

When I began this study, there was no molecular information available about 

BMSB.  I sought to establish molecular approaches in BMSB for both basic and 

applied research.  I contributed to the sequencing of the BMSB transcriptome, 

isolated full length sequences of BMSB v-ATPase gene, partial sequence of BMSB 

Scr, engrailed, even-skipped and  moesin (membrane-organizing extension spike 

protein)  genes, established embryo in situ hybridization and immunohistochemistry, 

and demonstrated that RNAi is a feasible approach for gene knock down in BMSB. 
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These tools will be useful for studying genes controlling BMSB embryonic 

development and for development of specific RNAi tools for pest control.   

Section 4.2 Methods 

4.2.1 Insect husbandry and embryo collection 

Laboratory colonies of BMSB were reared as previously described (Taylor et al., 

2014). Briefly, BMSB were collected in soybean fields at the University of Maryland 

Beltsville Research Farm. The collected BMSB were kept in mesh cages (60×30×35 

cm). Potted plants of Phaseolus vulgaris were used as the major food source and 

hiding place for BMSB. Organic green bean pods and raw sunflower seeds were 

added to the cages to provide extra nourishment.  These foods were replaced with 

fresh ones once or twice a week.  Other extra food sources tested for growth were 

blueberries, apples, grapes and carrots. All foods were certified organic and were 

washed extensively before placement in cages.  We did not notice any difference in 

BMSB growth with these more expensive extra food sources. BMSB cages were kept 

at 25°C, RH of 65±5%, and a 16 hour light: 8 hour dark photoperiod. For timed egg 

collections, cages were checked every four hours for newly laid eggs. The eggs were 

removed from the cage by hand, and kept in a petri dish, usually still attached to a 

piece of the leaf they were laid on, under the same environmental conditions 

described above to the desired time points. 

4.2.2 Identification of genes of interest   
 

Assembled BMSB RNA-seq data (Ioannidis et al., 2014) in fasta format was used 

to create a local BMSB BLAST database using the BLAST+ package (Altschul et al., 
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1990).  TBLASTN was carried out using full length Drosophila protein sequence of 

Engrailed or Scr as query sequence with the local BMSB BLAST database as subject 

database. The TBLASTN results were generated in XML format and reviewed with 

BlastViewer.  Sequences of candidate BLAST hits were retrieved using Cdbtools. 

Reciprocal BLAST with the insect non-redundant protein sequences database was 

carried out to find orthologs. Predicted BMSB genes were experimentally verified by 

Reverse Transcription PCR (RT-PCR) followed by Sanger sequencing. 

4.2.3   Embryo Fixation 

 
Embryos were collected from cages and put into 2 mL eppendorf tubes, with ~ 20 

embryos per tube. The fixation protocol was based on that developed for Oncopeltus, 

kindly shared by Dr. Chipman’s lab (Ben-David and Chipman, 2010). In brief, 600ul 

tap water was added to each tube of embryos which was placed in boiling water for 

three minutes and then placed on ice for six minutes. After the water was removed, 

600ul of heptane and 600ul 4% PFA in PBS were added. Gentle shaking brought the 

embryos to the interface. Tubes were shaken vigorously on a Vortex mixer for 20 

minutes. After shaking, the heptane and PFA were removed and the embryos were 

rinsed once with heptane, then once with methanol. The embryos together with 

methanol were then put into wells on depression concave slides and the egg shells 

were manually removed with forceps under a dissection microscope.  The embryos 

were then passed through 75%, 50% and 25% methanol/PBST gradient rinses for 

rehydration. The rehydrated embryos were fixed with 4% PFA in PBST for 90 

minutes on a nutator. The fixed embryos were then washed three times with methanol 

and stored in methanol at -20 °C for future use. 
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4.2.4   Antibody staining 
 

The fixed embryos were removed from -20 °C and passed through a 75%, 50% 

and 25% methanol/PBST gradient for rehydration. Embryos were then rocked on a 

nutator in 5% BSA in PBST for 2-3 hours to block non-specific binding. After 

blocking, the embryos were incubated with a 1:10 dilution of monoclonal anti-

Engrailed antibody 4D9 (Developmental Studies Hybridoma Bank) in 5% BSA at 

4 °C overnight. The 4D9 antibody was then removed and the embryos were washed 

three times for twenty minutes each with PBST. The embryos were then incubated 

with 1:300 Biotinylated Goat Anti-Mouse IgG Antibody (Vector Labs) for two hours 

at room temperature. The secondary antibody was then removed and embryos were 

washed with PBST three times for 20 minutes each. After washing, the embryos were 

incubated one hour with ABC reagent (Vector labs) followed by three 20 minutes 

washes with PBST.  Detection by a color reaction was then carried out using the 

SigmaFast DAB kit (Sigma Aldrich). Expression was monitored under a dissection 

microscope and terminated when stripes were evident, usually within 30 minutes.  

The DAB was then removed and embryos were rinsed three times with PBS. 

Embryos were post-fixed with 4% PFA for 20 minutes and germband embryos were 

removed from the yolk using forceps.   Germ bands were mounted in 90% 

glycerol/PBS. Photographs were taken under a dissection microscope (Leica  M420, 

16-20X). 

4.2.5 Whole mount in situ hybridization 
 

The in situ hybridization protocol was modified from that used for Oncopeltus 

(Ben-David and Chipman, 2010).  Probe was made with in vivo transcription using 
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PCR production as template. The T7 promoter that is needed for in vivo transcription 

was added to the reverse PCR primer and used to amplify PCR template. The primers 

used are Hh-enF 5'-TACCCTTCTCCGTCGACAAC-3’ and Hh-enRT7 5'- 

TAATACGACTCACTATAGGGAGACGGCCTCTTGTCTTCTTTGT-3’ for 

engrailed; and primers for amplifying  3’UTR of eve are hhEve1F 5'-

GATATACTATTGACTCGCGGCTGA-3' and 5’-

TAATACGACTCACTATAGGGAGAACTATCTTCCTGCTATCACTGGT-3' (T7 

promotor sequence underlined). PCR products were purified and used as template for 

in vivo transcription to make probes. Embryos were fixed and rehydrated as described 

above.  After rehydration, the embryos were pre-hybridized with hybridization buffer 

(50%formamide, 5XSSC, 0.1% Tween-20, 50µg/ml yeast tRNA, 5%Dextran, 

50µg/ml  heparin)  at 55 °C for 1-4 hours. After pre-hybridization, probe was added 

to the embryos (1ul probe per 100ul hybridization buffer), and incubated at 55 °C 

overnight (16-18 hours). The next day, the probe was removed and the embryos were 

washed twice with hybridization buffer at 55 °C for 15 minutes each, followed by two 

washes with 2XSSC at room temperature for 30 minutes and one wash in 0.2XSSC at 

room temperature for 30 minutes. The embryos were rinsed three times with PBST. 

After rinsing, the embryos were incubated with 10% sheep serum in PBST for 1-4 

hours at room temperature to block non-specific binding. Embryos were next 

incubated with anti-DIG-AP antibody (1:1500, Roche) at 4 °C overnight. After 

incubation, the antibody was removed and the embryos were washed five times in 

PBST for 20 minutes each. For detection, the embryos were washed with staining 

buffer (100mM NaCl, 50mM MgCl2, 100mM Tris pH 9.5, 0.1% Tween 20) three 
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times for five minutes each. Staining was carried out using NBT/BCIP solution 

(Roche) diluted in staining buffer. The embryos were checked under a dissection 

microscope every ten minutes until the desired color reaction had developed, 

generally within one hour. The color reaction was stopped by adding PBST to the 

staining solution. The embryos were then washed with PBST three times for five 

minutes each to remove the staining solution from the embryos. The embryos were 

washed with 50% methanol in PBST for five minutes and 100% methanol for another 

five minutes. The embryos were then treated with 100% ethanol for 30 – 120 minutes. 

The embryos were washed with 50% methanol in PBST for five minutes, and washed 

with PBST three times for five minutes each. Blastoderm stage embryos were 

transferred to depression concave slides to take pictures, germ band stage embryos 

were dissected out of yolk and mounted on slides with 90% glycerol. Photographs 

were taken under a dissection microscope (Leica M420, 16-20X). 
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4.2.6 Double-Strand RNA (dsRNA) preparation 
Primers were designed to amplify 300 -500 bp of BMSB genes of interest with T7 

promoter sequences added to the 5’ end of both forward and reverse primers. The 

primer sequences are as follow: Hh-ScrFT7 5' –

TAATACGACTCACTATAGGGAGAGCAGGACCTGACTACGTCCTC-3’ and 

Hh-SciRT7   5' –

AATACGACTCACTATAGGGAGATCCAGCTCCAGCGTCTGGTA-3’ (T7 

promoter sequences underlined). PCR was carried out with cDNA that had been made 

from 0-6 day embryos using the manufacturer’s recommended standard conditions 

(Reverse Transcription system, Promega). The PCR products were separated on an 

agarose gel and sent out for sequencing (Genewiz) to confirm that the correct gene 

was amplified. The purified PCR product (Gel Extraction Kit, Qiagen) was use as a 

template for in vitro transcription using MEGAscript® T7 transcription (Life 

Technologies) Kit following the manufacturer’s recommendations. The final product 

was treated with DNase from the transcription kit to get rid of the DNA template.  In 

order to anneal the in vitro transcription product single stranded RNAs, in vitro 

transcription products were heated to 94°C for five minutes and slowly cooled by 

decreasing temperature 0.8°C every minute, until  45°C  was reached, in a PCR 

machine (TPersonal, Biometra).  The annealed double-strand RNA was precipitated 

with 1/10 volume of 3 M sodium acetate (pH, 5.2),  2X volume of ethanol, dissolved 

in 10-20ul injection buffer (0.1mM NaH2PO4,   5mM  KCl, pH 6.8), and stored in -

20°C. The concentration of double-strand RNA was measured with a 

spectrophotometer.  
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Section 4.3 Results: 

4.3.1 The BMSB Transcriptome 
As a first step towards genomic analysis of BMSB, the transcriptome from all 

stages of the life cycle of BMSB was sequenced in collaboration with Dr. J. Dunning-

Hotopp (Ioannidis et al., 2014).  My contribution to this project was the culture and 

collection of representative animals and isolation of RNA from eggs, 1st and 2nd instar 

nymph (Figure 4.1) 

Figure 4.1. Life Stages of BMSB. The life stages of BMSB are shown starting with 
eggs followed by 1st instar nymph, 2nd instar nymph, 3rd instar nymph, 4th instar 
nymph, 5th instar nymph, and an adult in a counter-clockwise spiral outwards and 
from largest to smallest. The bar in the low left represents 1 cm. 

. 
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4.3.2 Establishment of in situ hybridization and immunohistochemistry to monitor 
gene expression in BMSB embryos 

In Drosophila, engrailed (en) is a segment polarity gene expressed in and 

specifying the posterior compartment of each segment (Kornberg, 1981; O'Farrell et 

al., 1985). Similar segmental expression patterns for en were observed in a wide 

range of other species including all insects examined to date as well as more distant 

arthropods (Patel et al., 1989a; Patel et al., 1989b). For example, in grasshoppers 

(Schistocerca americana), shortly after gastrulation, en is expressed in stripes, and the 

stripes are located in the posterior part of every segment (DiNardo and O'Farrell, 

1987; Patel et al., 1989a). Similarly, in some Crustacean, crayfish (Procambarus 

clarki) and lobster (Homarus americanus), en was found to be expressed in the 

posterior part of each segment (Patel et al., 1989b).  This high degree of conservation 

of expression makes en very useful for determining the identity and number of 

segments when a new species of arthropod is studied.  In order to establish techniques 

for examining gene expression in BMSB embryos, we utilized the en gene –whose 

expression would also be expected to be observed in segmental stripes in early 

embryos. This type of clear expression pattern allows one to distinguish false positive 

patterns from true patterns, as it is easy to tell which staining is background and 

which is bona fide signal.  

To carry out in situ hybridization, a portion of the Hh-engrailed (Hh-en) gene was 

isolated. Two degenerate primers DEGNenF 5'- GARAAYMGNTAYYTNACNGA 

and DEGenR 5'- RTGRTTRTANARNCCYTGNGC were used to amply  Hh-en  

from cDNA prepared from 1-5 day BMSB embryos.  A fragment of ~300bp was 

amplified from the cDNA and sequenced. A sequence of 286bp was acquired.  
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Around the same time, the BMSB transcriptome data were made available to us 

(Ioannidis et al., 2014).This sequence was used as subject in a BLASTN query 

against the BMSB transcriptome database and compared with TBLASTN results 

(Method). One 566 base pair sequence was shared by both BLASTN and TBLASTN 

results. This 566bp sequence (Appendices) could encode a 187 amino acid region, 

which includes the 60 amino acid En homeodomain（Figure 4.2).  56% of the 187 

amino acids are identical to Drosophila Engrailed and 49% are identical to 

Drosophila Invected (Inv), which is an en related gene (Coleman et al., 1987; Poole et 

al., 1985).  Reciprocal BLAST result suggests that this sequence is an ortholog of 

Drosophila En. The Hh-En homeodomain is 85% identical to Drosophila En, and 83% 

identical to Drosophila Inv.  

 
 
A 

 
B 
Dm-En   eKRPRTAFSsEQLARLKrEFNeNRYLTERRRQQLSSELGLNEAQIKIWFQNKRAKIKKSt 
Dm-Inv  DKRPRTAFSGtQLARLKhEFNeNRYLTEkRRQQLSgELGLNEAQIKIWFQNKRAKlKKSS 
Hh-En   DKRPRTAFSGEQLARLKtEFsiNRYLTERRRQaLaSELGLNEAQIKIWFQNKRAKIKKaS 
 
Figure 4.2 Hh-En partial sequence and HD alignment. (A) The partial protein 
sequence of the putative Hh-En. (B) Alignment of Homeodomains of Dm-En, Dm-Inv 
and Hh-En. From this figure, it is not obvious to me that it is more closely related to 
En and Inv.  

 

To examine the expression of Hh-en in BMSB embryos, I began with protocols 

used for Oncopeltus fasciatus, another member of the Hemipteroid Assemblage.  The 
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basic in situ hybridization protocol is similar to that used in the model insect 

Drosophila melanogaster.  However, the embryo collection and fixation steps differ, 

which is described in Methods.  The in situ hybridization protocol needs to be 

specially fine tuned for a new species. I tried different time and temperature 

combinations for the hybridization buffer washing step and SSC washing step, which 

are the main steps that determine the signal-to-background ratio. One combination 

that gave a good signal-to-background ratio was found and described in Methods.  

One observation worth mentioning is that the same protocol works well for both 

blastoderm stage and germ band stage embryos. In contrast, for Oncopeltus, the 

protocol that works for germ band embryos did not work for blastoderm stage 

embryos. Using the sequence information I got for Hh-eve (check next subsection for 

detail), I made an RNA probe for Hh-eve mRNA. 

  I encountered some problems when I tried to remove the embryos out of the yolk. 

The yolk is very sticky, and the embryos are very fragile. Trying to completely 

remove the yolk from the embryos resulted inevitably in broken embryos. I found that 

by adding some methanol into the PBST solution, I could decrease the stickiness of 

the yolk, while at the same time, the embryos were more fragile. 50% methanol in 

PBST seems to give reasonably less sticky yolk and embryos with acceptable 

fragileness. 
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Figure 4.3 Engrailed expression in BMSB. (A) In situ hybridization to BMSB germ 
band embryos using an Hh–en probe. Six stripes were detected. The anterior and 
posterior parts of the embryo remained covered with yolk in this photograph. (B) En 
antibody staining to an embryo slightly older than that shown in (A). Nine stripes 
were observed Embryos oriented anterior, top.   

 As shown in Figure 4.3 A, the in situ hybridization technique worked well in 

BMSB embryos.  In the early germ band embryo, en mRNA was detected in 

segmental stripes.  In the embryo shown, six stripes of en can be seen. Note that it is 

quite possible that there were more stripes on the embryo, as both the anterior and 

posterior ends were both covered by the yolk.  

A monoclonal antibody raised against Dm-En (MAb 4D9), has proven to be a 

useful tool to examine En in diverse species as it recognizes an epitope located in the 

variable region of the homeodomain of the En and INV proteins, and does not cross 

react with other homeodomain proteins (Patel et al., 1989b).  To establish 

immunohistochemical techniques in whole mount BMSB embryos, I utilized this 
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antibody.  I used the same fixation protocol that was used for Drosophila in situ 

hybridization.  The fixed embryos were remove from -20°C, re-hydrated in PBST and 

incubated in 5% BSA for 2-3 hours, Antibody 4D9 was added to new 5% BSA and 

incubated at 4°C on a nutator overnight. After washing off the antibody, the embryos 

were incubated with Biotinylated Goat Anti-Mouse IgG Antibody (Vector Labs) for 

two hours at room temperature. Color reaction was carried out using the ABC kit 

from Vector lab. As shown in figure 4.3B, EN protein was detected in stripes at the 

boundary of each segment.   

 As shown in Figure 4.3 B, immunochemistry staining also worked well in BMSB 

embryos. In a germ band embryo, En proteins was detected in segmental stripes. 

 

Figure 4.4 Hh-eve expression in blastoderm stage and germ band stage 
embryos. (A) A blastoderm stage embryo with three Hh-eve stripes in the central 
region of the embryo; B) another blastoderm stage embryo with three Hh-eve 
stripes.( C)  a germ band embryo with two Hh-eve stripes in the growth zone. In A 
and B embryos are orientated from anterior (left) to posterior (right), in C anterior 
(top) to posterior (bottom) 
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To test whether in situ hybridization works for other genes expressed in early 

BMSB embryos, I used BLAST as described in the method to isolate Hh-eve, and 

orthology is confirmed by reciprocal BLAST.The in situ  probe that detects the 

3’UTR of Hh-eve  was made use primers listed in Method part. As shown in Figure 

4.4 Hh-eve in situ hybridization works well in both blastoderm stage embryos (Figure 

4.4 A and 4.4 B ) and germ band embryos (Figure 4.4C).  In Figure 4.4 A and 4.4 B, 

three Hh-eve stripes can been seen in the central region of the BMSB blastoderm 

stage embryos. In Figure 4.4 C, two Hh-eve stripes can be seen in the growth zone 

region of the BMSB embryos. 

In sum, I successfully established embryo collection and fixation protocols for 

BMSB embryos. Both antibody staining and in situ hybridization were carried out in 

this species and can be used to examine the expression of additional genes. 

4.3.2 Parental RNAi in BMSB 
 As mentioned above, RNAi is emerging as a useful method to knock down gene 

expression in both plants and animals. Therefore, I designed experiments to 

determine whether RNAi functions in BMSB.  dsRNA sometimes has off-target 

RNAi effects (Jackson and Linsley, 2010). Tests of mortality caused by dsRNA thus 

may not test specificity of target gene knock down and, in addition, require a large 

sample size due to the traumatic nature of the injection itself. Therefore, instead of 

choosing a gene designed to kill the dsRNA-treated insects, we chose the Scr gene 

which had been shown to have very clear and unique effects in both Oncopeltus and 

the American cockroach (Periplaneta americana) (Chesebro et al., 2009; Hrycaj et al., 

2010). In these species, knock down of Scr resulted in the transformation of proboscis 
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toward leg. This unique phenotype will allow for a definitive determination of the 

effectiveness of dsRNA simply by examining the shape of the proboscises of the 

offspring. 

To test the ability of parental RNAi to function in BMSB, the Hh-Scr gene was 

isolated using a similar approach as that used for Hh-engrailed. In brief, a fragment of 

Hh-Scr was isolated by degenerate PCR with forward primer   scrdegF 5’-

CCRCARATHTAYCCRTGGATG-3’ and revers primer ScrdegR1 5'- 

CATRTGGYANGGNACRATRTTCAT-3’.  The fragment of Hh-Scr gene acquired 

was used to BLAST the BMSB transcriptome data. This result was compared with 

TBLASTN queries. A partial Hh-Scr was found in the transcriptome data. This partial 

Hh-Scr is 816 bp long and spans 76 bp of 5’UTR through a coding region of 246 

amino acids that includes a partial homeodomain of 36 amino acids (Figure 4.4A). It 

is 100% identical to a partial Scr gene (185 amino acids) that was isolated from the 

southern green stink bug (Nezara viridula) (Tian et al., 2011). The partial 

homeodomain has a Scr signature sequence at the N-terminal arm of the 

homeodomain (highlighted in Figure 4.4 B) and is 100% identical to that of 

Drosophila melanogaster Scr. A 327 bp sequence, including 276 bp upstream of the 

homeobox and 51 bp in  the homeobox , was amplified using RT-PCR with forward 

primer bMSBScrFT7 5'-

TAATACGACTCACTATAGGGAGAGCAGGACCTGACTACGTCCTC-3’ and  

reverser primer bMSBScrRT7  5' –

TAATACGACTCACTATAGGGAGATCCAGCTCCAGCGTCTGGTA-3’, and 

used as template to make dsRNA (Methods described in chapter3, section 3.3.2).   
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 A 

 
B 

Hh-Scr  NPPQIYPWMKRVHLGqSTVNANGETKRQRTSYTRYQTLELEKEFHFNRYLTRRRRIEIAH 
Dm-Scr  NPPQIYPWMKRVHLGtSTVNANGETKRQRTSYTRYQTLELEKEFHFNRYLTRRRRIEIAH            
 

Figure 4.4 Sequence of  Hh-Scr and alignment with Dm-Scr. (A) The sequence of Hh-
Scr. A cDNA encoding a portion of the Hh-Scr gene was isolated.  This cDNA would 
encode a protein of 246 amino acids, including a portion of the HD.  (B) Alignment 
of  the partial HD and sequences around YPWM motif of  Hh-Scr and  Dm-Scr. HD 
of Hh-Scr is indicated by  blue. Note 100% conservation of the region around YPWM 
motif and HD. The homeodomain N-terminal arm Scr signature sequence (Furukubo-
Tokunaga et al., 1993) is highlighted in yellow. 

Since parental RNAi was shown to function in another member of the Hemipteroid 

Assemblage, Oncopeltus fasciatus, I began with protocols used for that species and 

modified them as necessary for BMSB.  The dsRNA was injected using a Hamilton 

syringe and needle as described previously for Oncopeltus fasciatus (Liu and 

Kaufman, 2004). dsRNA was loaded into a Hamilton syringe for injection. The 

BMSB females were anesthetized under CO2 and the Hamilton needle was punched 

into abdomen between the third and fourth abdominal sternites (Figure 4.5).   



 

 124 
 

  

Figure 4.5 Injection of dsRNA.  dsRNA was injected into the abdomen of a female 
BMSB with a Hamilton Syringe. The  injection point is located between the 3rd 
abdomen sternum and 4th abdominal sternum, away from ventral midline. N indicates 
the needle. Red arrow indicates the top of the needle and the point of injection. 
 

I first injected five BMSB females with Scr dsRNA at a concentration of 2ng/ul 

and 5ul per bug.  I injected ten female BMSB  with Scr dsRNA at a concentration of 

3ng/ul and 6ul per bug. After injection, the needle was held at the injection site for 

approximately one minute to prevent leakage from the injection site. The injected 

females were kept separately in a new cage for one day before any male BMSB was 

added. 

The eggs laid by the first five injected females did not show any obvious 

phenotype.  For the ten female BMSB which were injected with higher concentrations 
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of Scr dsRNA, three of the ten females died within three days after injection before 

laying any eggs. Five of them died within the first two weeks, one died within the 

third week, and only one dsRNA injected BMSB lived more than four weeks after 

injection.  Within the first two weeks, a total of eight egg masses were laid: 143 out 

of 146 embryos hatched. Of these 143 embryos that hatched into 1st instar nymphs, all 

had abnormal proboscises (Figure 4.6 B, C). The proboscis of wild type 1st instar 

nymphs is needle -like in shape and has a sharp tip (Figure 4.6 A). The most severe 

phenotypes seen in 1st instar nymphs hatched from eggs laid by Scr dsRNA-injected 

females had a bifurcated proboscis, and claws were seen at the tip of the proboscis 

(Figure 4.6 B). Some 1st instar nymphs had less severe phenotypes; for example, in 

some cases, instead of being bifurcated, the end of the proboscises expanded into a 

bat shape but claws were still seen on the tip of the proboscis (Figure 4.6 C). In the 

third week, two egg masses were laid, (a total of 41 eggs) and all hatched without 

obvious defects. No eggs could be collected after the third week. 
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Figure 4.6  Scr pRNAi phenotype. Photos of 1st instar nymphs are shown. (A) Wild 
type. The proboscis has a needle-like shape with pointed tip; (B) Scr pRNAi. 1st instar 
nymph with severe phenotype has a bifurcated proboscis (green square); (C) 1st instar 
nymph with less severe phenotype has a bat-shaped proboscis (red square); (D1) tip 
of the proboscis from figure 4.6 C (red square region), red arrow indicates a claw, 
(D2) tip of the proboscis from figure 4.6 B (green square region), green arrows 
indicates claws. 

We noticed that the severity of the defects attenuated as time went on.  Embryos in 

the first five egg masses, laid in the first two weeks, showed the most severe 

phenotypes (bifurcated proboscises); the last three  egg masses that were laid within 

the first two weeks has less severe phenotypes (bat shape proboscises); by the third 

week, eggs were all normal. Overall, these results show that parental RNAi works 
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well in BMSB.   The phenotype observed with knock down of Hh-Scr was similar to 

that found in other insects (Hrycaj et al., 2010; Passalacqua et al., 2010).  

Section 4.4 Discussion  
 
engrailed as a marker for segments  

engrailed is a homeobox gene, with a divergent homeobox (Poole et al., 1985).  In 

most arthropods, en is expressed in the posterior part of each segment. In Drosophila, 

en was found to specify the identity of the posterior segmental compartments and it is 

believed that this function is conserved in arthropods (Peel et al., 2006). 

In Oncopeltus fasciatus (Hemiptera), en is expressed in the posterior portion of 

each segment (Liu and Kaufman, 2004) and RNAi knock down disrupted body 

segmentation (Angelini and Kaufman, 2004). I showed that in BMSB, en is expressed 

in a similar striped pattern, in the posterior part of every segment. Thus, Hh-en will be 

useful for determining the register of the segments for studies related to BMSB 

segmentation. 

Scr RNAi 

In Drosophila Melanogaster, Sex combs reduced (Scr) plays important roles in 

labial and T1 segment identity specification (Pattatucci et al., 1991; Sato et al., 1985; 

Struhl, 1982). Scr mutations in Drosophila cause the transformation of T1 to T2 legs 

and the transformation of labia into maxillae (Sato et al., 1985; Struhl, 1982; 

Wakimoto and Kaufman, 1981).  In Oncopeltus, Scr parental RNAi caused 

transformation of the labia towards leg-like identity (Chesebro et al., 2009; Hughes 

and Kaufman, 2000). T1 to T2 segment transformation was not observed with 

parental RNAi, while T1 to T2 leg transformation was observed when nymphs were 
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injected with Scr dsRNA (Chesebro et al., 2009). My Scr pRNAi result in BMSB is 

similar to the parental Scr RNAi in Oncopeltus. All abnormal proboscises had claws 

which is a character of legs, and no T1 to T2 leg transformation was observed. In this 

experiment, dsRNA was injected into the abdomen of the female BMSB and the eggs 

laid by the injected females were affected. As mentioned above, this phenomenon is 

defined as systematic RNAi (Whangbo and Hunter, 2008). An effective systematic 

RNAi requires the organism to have the ability to uptake the dsRNA into the cells, 

machinery to amplify the initial RNAi signal (Carthew and Sontheimer, 2009), and to 

export it to other tissues in the organism (Huvenne and Smagghe, 2010).  My results 

indicate that BMSB has the machinery to amplify the dsRNA signal. The amplified 

signal can spread to other tissues and be taken up by individual cells in BMSB.  Thus, 

BMSB is a suitable target for RNAi based pest-control experiments. It also indicates 

that it is possible to use RNAi to knockdown specific genes, which will elucidate the 

function of these genes in BMSB. 

For the Scr RNAi experiments in BMSB, the phenotype seemed to attenuate as 

time went on; the eggs laid after the third week hatched without obvious phenotype. 

In contrast, the phenotype did not attenuate when I carried out similar experiments 

with Oncopeltus  (data not shown). Scr dsRNA injected Oncopeltus females laid eggs 

with proboscis defects for five weeks until they were infertile because of aging or 

until they died; none of the eggs they laid hatched without a defective proboscis. This 

may suggest that BMSB has a less robust RNAi system than that of Oncopeltus. It 

had been shown that targeting different regions of the same housekeeping gene 

generated different mortality effects (Baum et al., 2007; Li et al., 2011; Mao et al., 
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2007). I tried to use one region in the Of-Scr gene for RNAi knockdown, and two 

regions in Of-ftz-f1;  none of these showed attenuation of the phenotype during the 

whole life of the bug.  All our dsRNAs were made about the same length (~300bp), 

so differences in length may not account for the differences seen here.  

In addition, we observed that injected BMSB females died earlier than un-injected 

male bugs, which were kept in the same cage from the second day of injection. 

However, general toxicity of the injection remains to be investigated since the 

dsRNA-injected females and un-injected males were picked randomly from a lab 

population; some of them maybe older than others, which means some of them may 

die quicker even without any intervention. We also noticed that the whole abdomen 

of the injected bugs turned black one week after the injection. This could be a sign of 

infection. In Oncopeltus, the dsRNA-injected females did not have a shorter life time 

than the un-injected Oncopeltus females and we didn’t observe the black-abdomen 

phenomenon in dsRNA-injected Oncopeltus. This difference may be caused by the 

difference between their abdominal structures.  In Oncopeltus there is a membranous 

structure between each sternite. During injection, the needle is punched through this 

membranous structure and when the needle is removed, the hole closes due to the 

properties of the membranous structure. In BMSB, there is no membranous structure 

between each sternite. The injection creates a hole at the injection site and that hole 

never closed.  We suspect that the opening made the dsRNA-injected BMSB more 

susceptible to bacterial infection, which decreased their longevity. If this is true, using 

something to seal this hole after injection may help to increase longevity.  
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Chapter 5: Overall conclusions and future direction 
 
 

Combining results from my studies of PRGs in Oncopeltus with other published 

studies, I conclude that the PRG network is flexible in insects. Some genes that 

function as PRGs in Drosophila do not have pair-rule function in other insets. For 

example, in Tribolium Tc-ftz  does not have a function in segmentation (Brown et al., 

1994a; Stuart et al., 1991). Similarly, in Tribolium,  knockdown of Tc-h or Tc-Opa 

with RNAi showed no effect on segmetation (Choe et al., 2006). In Oncopeltus, my 

study described in Chapter Four indicates that Of-ftz and Of-hairy do not have 

segmentation function. At the same time, some genes, whose orthologs in Drosophila 

are not PRGs, have pair-rule function in other insects. For example, in Oncopeltus, 

E75A was shown to be expressed in pair-rule stripes and RNAi knockdown caused 

pair-rule segmentation defects (Erezyilmaz et al., 2009). The flexibility we observed 

in the PRG network is unexpected, given that changes in the function of embryonic 

regulatory genes are highly deleterious, usually lethal, in the lab, a much less harsh 

environment than the wild. 

Many of the studies in our lab and in my thesis have focused on the partner pair ftz 

and ftz-f1, which have been shown to vary extensively in arthropods. In my work, I 

found that ftz may have even lost function completely in Oncopeltus, since both two 

isoforms of Of-ftz mRNA identified so far do not have a promising ORF. In addition 

to this, when I aligned five Ftz HDs from five hemipteroid assemblage insects and 

compared this to Ftz HD alignments from five other more distantly related species 
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(Figure 3.7), I found big variation in the Ftz HD in this superoder.  Hh-Ftz and Ph-Ftz 

HD are conversed, with YPWM motif upstream of the HD. Of-Ftz and Ap-Ftz are less 

conversed and don’t have a YPWM motif. These findings suggest that there may be 

functional differences among Ftz orthologs in this superorder.  Future studies of the 

function of these genes which will help us to better understand how ftz, and other 

genes involved in segmentation, evolved.   

Further, ftz-f1 varies in its expression pattern in different insects.  In Drosophila, 

Ftz-F1 is present ubiquitously in all somatic cells at the blastoderm stage. I found that 

in Oncopeltus, ftz-f1 is expressed in stripes that appear to have single segment 

periodicity at the blastoderm stage. Although functional studies were inconclusive, 

this result suggests that ftz-f1 may have function in Oncopeltus segmentation.  Future 

studies are needed to firmly elucidate the function of both ftz and ftz-f1 in Oncopeltus 

and other hemipteran insects.  

Another point highlighted by my work is the fact that expression pattern is not 

always predictive of function.  In both Oncopeltus and Tribolium, Ftz orthologs were 

found to be expressed in stripes but neither appears to function in segmentation 

(Chapter Three; Brown et al., 1994a; Stuart et al., 1991). In contrast, some 

Drosophila PRGs do not have a stripy expression patterns but do function as PRGs, 

impacting the development of alternate body segments.  Examples of this are Dm-ftz-

f1 and Dm-Opa. Thus, showing that a gene is expressed in stripes is not sufficient to 

conclude that it functions in segmentation. Further, these findings highlight the 

importance of co-factor interactions in regulating the activity of pair-rule proteins.  In 

Drosophila, Ftz-F1 and Ftz interact with each other and mutually depend on each 
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other for their segmentation function. Dm-ftz-f1 is not expressed in stripes but its 

function is constrained by the stripy expression of Dm-ftz (Guichet et al. 1997; Yu et 

al., 1997).  Given the fact that in both Oncopeltus and Tribolium, ftz-f1 orthologs are 

expressed in stripy patterns and have segmetation function (data in Chapter three, 

Heffer et al., 2013), their co-factor(s) in these species do not need to be expressed in 

stripes. This could also be true in other insects and for other PRGs, which could lend 

some flexibility to the expression patterns of PRGs during evolution.  

When I think about long germ band and sequentially segmenting insects, I expect 

that there will be differences in how PRGs function between these two different 

modes of development. In sequentially segmenting insects, since most of the posterior 

segments are added sequentially during development, I would expect that knockdown 

of any PRG would delete the entire segments posterior to the first sequentially added 

segment that PRG specifies.  This is partially true as RNAi knockdown of Tc-eve, Tc-

Odd and Of-eve generated asegmental embryos (Choe et al. 2006; Liu and Kaufman, 

2005). However, RNAi knockdown of some PRGs (including Tc-ftz-f1, Tc-odd and 

Of-ftz-f1) in some sequentially segmenting insects caused Drosophila-like pair-rule 

phenotypes (Choe et al., 2006; Heffer et al., 2013). One suggestion is that the genes 

that cause asegmental phenotypes are primary PRGs. But why do primary PRGs in 

Drosophila not cause the same kind of phenotypes? I think the answer is to be found 

in the way that PRG expression is generated. As I mentioned in Chapter One, in 

Tribolium, a segmentation clock was found, and expression of Tc-odd was found to 

be oscillating (Sarrazin et al., 2012). This phenomenon may explain the differences 

among the function of different PRGs in sequentially segmenting insects. The PRGs 
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that cause asegmental phenotypes are the genes that participate in the regulation and 

generation of the segmentation clock. Blocking the function of these genes blocks the 

segmentation clock; thus no new stripes can be generated. The PRGs that cause pair-

rule phenotypes are the genes that are regulated by the segmentation clock. Blocking 

the function of these genes does not block the segmentation clock and posteriorly 

located segments are still able to form because of signals from the segmentation clock. 

Tests of this hypothesis would need tools to closely study what happened within the 

growth zone. These tools include transgenic techniques, techniques to generate 

specific mutations, live imaging techniques with deep field depth, and more.   
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Appendices 
 

Gene sequences that I isolated for this thesis.. 

BMSB Scr, partial, length=738 

ccttagtcgagtcttgttcaagtcctgtccggggtgagaccgtgatgtgagtggaacctctgatagctgtgacaagatgagctcgtac

cagttcgtcaattcgctggcctcgtgctaccaacaggccggccgcccgtcccccgatggcccccagagcccagactactacccccaa

gtcagctaccccggttgttactctccgcaacaatatacttcaggctacatgcaacagagtccttccgggatgatggactacacccagc

tgcacggcagcaatcaccagcgtcttgcttcacatttgcagcccctagggcatccagcgggtccggtatcgcctgctctcaacaaca

acacagtgaccaacctgtcaggatcgacctcctgcaagtttgccgacagtaccacgacaagttccgggatcgcctccccgcaggac

ctgactacgtcctctagcggtcctgggggcccaaggagcacgcctccgaagaccgggctccactcgccgtctggagcgcgcgcccc

gtcggctccggctccaacatcccagacatcttcttcaccggcttcttcaatatcctcatcatcgtccacgacacagggaactgccgca

aagagtcccgcccaaccgggacagaacccgccgcagatatatccatggatgaagagagttcatcttggacaaagtacagttaacg

ctaatggggagacgaagaggcaaaggacctcctacacccggtaccagacgctggagctggagaaggagttccacttcaacaggta

cctgacgaggcggaggaggatagagatcgcccacga 

BMSB en, partial, length=556 

actcaatccgaatgcgggtgtgagatggcgttggaagcggagcggcgaccctcggctttccacaggatcgagttgctgacttgcaa

ggatgcacccccggcaccggcatcgttacccttctccgtcgacaacatcctccggccggagttcggccaagccgcccggcgtccggt

caggctatcgaggtccgacgacgaaggaccaagtcccaccaagatcgaccccccaataccggacgatcccaatggacccgtctgg

cctgcttgggtctactgcaccagatactccgaccggcccagttcaggaggtcctcgctcgaggaggataaagaggaaggacaaga

acaaagaagacaagaggccgcggaccgccttcagtggcgaacagctggccaggctaaagaccgagttcagtataaacaggtacc

tgacggagagacggagacaagccctggcttccgaactaggcctcaacgaggctcagatcaagatctggttccagaacaagagggc

caagatcaagaaggcctccggcaacaggaaccccctcgccctccagttaatggc 

BMSB eve, length=1401, full CDS=663 

agttgattcagttctgtgaaagatggagtttggatatactattgactcgcggctgagccagcagatgctgaagtccaacggagttccg

tcacaaattgttgtcgatctcttgccacccgcataccagaagtctttggctccggagagcaacgcggaatcgcccaccagaacagaa

gaaataaaacaacaagaaagtaccaatgtggtccctgaaggcaacataaggcggtataggactgcctttaccagagagcagttaa

acagactggagaaggaattttataaagaaaattatgtttctagaccaaggcggtgtgaactggcaactcaactgcagttaccggaa

gccacgattaaggtgtggtttcaaaatagaaggatgaaagacaaacgacaaagaatggcaatggcctggccctacgcgatgtata

ccgatccaacaatagcggcgtcgctgctcacctccttacattacccttacgccccctattaccacccgcggtactatttgcccccgccg

ccgccacctcctgcaccggtctgcgatggatcatccagctgccgctgcggcatcgtcaactgcgtcgcctcttaccctagccctccatt

gacaacatccccagtcactgttgagcaaaagaaacccctgtttcaaccatataaggagcatgtcatcgagaaggcgtagcaatcttt

cgccgaatttttcctatgtaaataagttcatgcggatccgcttttcgggttcggttgttatttaatttcctttttgaaagagatatcaagt

ataaaaacacacacagacatatatatatgtatgtatgtatgttttaagttaaatttacagaatgttctggactacttatggactaagta

attctgattttttttttaaatctataaagaaacataaccagtgatagcaggaagatagtccgggtggatcttcctccgatctagttcat

agtcaactttcttcttccaatatgaccagtgataatttagatataatgcaatggtaccaaaaccaagtgaaaatgttcgtatccagtg

acaaaatgaacattatcgtatgataataatgaaactaacccccaaaagctactggtagctaaggtgctatatgggtgatttgacatt

gtttattgtatctagattaaaaattaaaactggttttatttttttgtgaaattggaattttctctttacaagtgggtcttctatacatcaat
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gtttagttttgacataatttcataaatttagtttttcttttggtttctgtttttaaactaacttttttttgtagtgtatgtacacgtaaagcac

acttgttaagaaaattcttctaggaaataacagtgataaaatttttatatttatataaatagtttttattatatt 

 

 

 

Of-ftz Isoform A, Ewan-Campen’s data , length=788 

ttagttagggtttcggtcttgcaagctagaagaattaaaaactgatttgtaaaaaaaaatccatgactctggacaatcttttattta
tagataagaagataatcatatttctttatagataagtcttgctctgggcgggatttgaacccacagcgtaaggattgagatccct
tagccgcccgaagtgagggtttacataacatggacagttgtaaaatgatgaatttattttttattatcatgttgttgaagtatctac
tcaaatatactattgtctatattataacttcaccagcttgcactgtattagtaaatgtatctcttgtgagataaactatttttaaattttt
ttattttattaaagttatcaataattagtggttgttcattattttattatgcttatgactgatgaacatttaaattaagtattaaattttactt
taaaattgttaatgtgcatattttacttttcggtttccagatccaagtaggccgaagcggaagagacagacgtattctcgattcc
agactttggaactagaaaaggaattccgcctgacaagatatctcccgaggaaacgtagaatagacctggcggagagcctg
ggcctgacagagagacagatcaagatctggttccagaacaggaggatgaagcagaagaaggaacaggagagcaaacc
catccagtccgaggacctcttggtgcaggcgacgaggaatcccttcccggatatagcgtccttcgtgcaggatctacttccg
acagtgaacccgctccaggc 

 

Of-ftz Isoform B Yong’s 5’ 3’ RACE, length=443 

Tttgaacccacagcgtaaggattgagatcccttagccgcccgaaatccaagtaggccgaagcggaagagacagacgtat
tctcgattccagactttggaactagaaaaggaattccgcctgacaagatatctcccgaggaaacgtagaatagacctggcg
gagagcctgggcctgacagagagacagatcaagatctggttccagaacaggaggatgaagcagaagaaggaacagga
gagcaaacccatccagtccgaggacctcttggtgcaggcgacgaggaatcccttcccggatatagcgtccttcgtgcagg
atctacttccgacagtgaacccgctccaggcttaactgctcatcccgaagaggacatgaggactgaggactataacctcttc
gctgagcacgtcgctagataactagactaaaaaaaaaaaaaagc 

 

Six Of-ftz partial sequences isolated from Ewan-campen’s raw data, listed in fasta 
format 

>noNorAll.1030880 GEQE5QV02JTNX1 length=597 

ttagttgttgtagtaatatactactaataatactattagtctattattataacttactacctacgacttcgtntacttagttactttaagt
taaaattagttattacttacttagttgtagtattaaactaatttaaattttttttaatttttttattttaaagtttaattctaataattaagtgg
ttgttctatatttattattgcttatgtactgatgaacatttaaattaaagtataaatttactttaaaattagttaatagtgcataatttactt
tggtttcctagatccaagtaggccgaagcgaagagacagacgattctcgattccagactttggaactagaaaaggaattac
cgcctgacaagatatctcccgaggaaacgtagaatagacctggcggagagcctgggcctgacagagagacagatcaag
atctggttccagaacaggaggatgaagcagaagaaggaacaggagagcaaacccatccagtccgaggacctcttggtg
caggcgacgaggaatcccttcccggatatagcgtccttcgtgcaggatctacttccgacagtgaacccgctccaggcagtc 

>noNorAll.1267703 GEQE5QV02HHPA6 length=630 
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cttaagttacggtttggttaagtaagttacttacctacctaaactaacttaataactttacgttcgttactatttaattaaacttcttaa
cctaaccgcttaggtcactacgtattagttaaattagtaagttntaccttgttgtagagttaaaacatttaaaattttttttaattttttt
tattttaaagttttaaattctaataatttaagtaggtttggttctatatttttaattattagcttattgactgatgaacatttaattaaagta
taaatttactttaaaattagttaatagtgcatatttactttggtttcctaganccagtaaggccgaagcggaagagacagacgta
tctcgattccagactttggaactagaaaggaatcgcctgacaagatatntcccgaggaaacgtagaatagacctggcgga
gagcctgggcctgacagagagacagatcaagatctggttccagaacaggaggatgaagcagaagaaggaacaggaga
gcaaaccccatccagtccgaggacctcttggtgcaggcgacgaggaatcccttcccggatatagcgtccttcgtgcagga
tctacttccgacagtgaacccgctccaggcagtc 

>NorAll.156560 GESJTKM01BVLD2 length=644 

gttaaaaaattaaacgtaagtttagttaaaaaaattaaaacctaaactagtactacttggtaacgaataatttaccttttattaagtt
ataaagtaagaagtaaattactactaattacttttatttaagtagtaaagtacttgtcgtctaggcgggagttgtaaccgtacaac
gcgtaaggagtagtagatccttacgtccgcccgaacgtagagggttacgtatacaatggacagttgtaaaattagatgaatt
agtttttttatttattctatgttgttgtaagtatctactcaaatataactattagtctatattataacttacaccagcttgcactgtattag
taaatgtatctcttntgagataaacatttaaaattttttatttttattaaagttatcaataattagtggttgttcattattttattatgcttat
gactgatgaacatttaaattaagtattaaattttactttaaaattgttaatgtgctttattttacttttggtttccagatccaagtaggc
cgaagcggaagagacagacgtattctcgattccagactttggaactagaaaaggaattccgcctgacaagcccggcctcg
tggccactctgcgttgataccactgcttagtc 

>NorAll.415171 GESJTKM02GRK1B length=669 

ttttttaacgttattagttaggttttgttaacggttaaagttacttaactttacctaaacttaaattaacttaactttagttacgttattaa
ctttattaaactttacttaacctaacgacgttagtcgtactacgttattaggtttaaaattaagttattacttacttgttgtagtagtta
aactaatttaaaattttttaaatttttttaattttaaagtttaaatttataataattaataggttggtttcgtattattttatttattagtcttatt
gtactgatgtaacattaaatttaaagttattaaatttacttttaaaatttagtttaatagttgtcatatttacttttaggttttcctacgat
ccaacgtaggcagaagcggaagagacagacgattctcgattccagactttggaactagaaaaggaaattaccgcctgaca
agatatctcccgaggaaacgtagaatagacctggcggagagcctgggcctgacagagagacagatcaagatctggttcc
agaacaggaggatgaagcagaagaaggaacaggagagcaaacccatccagtccgaggacctcttggtgcaggcgacg
aggaatcccttcccggatatagcgtccttcgtggcactctgcgttgataccactgcttagtc 

>noNorAll.516047 GEQE5QV01BYSSH length=554 

tttactatgttntttgagtatctatcaatatactattagtctatattataacttatacctaagcttgtcactgtatttgtaaattagtatnt
cttgttgtagntaaanatttaaatttttatttttattaagttatnataattatgttgttcatatttattatgcttatgactgatgaacattta
aattaagtattaaatttactttaaaattgttaatgtgcatatttactttcggtttccagatccaagtaggccgaagcggaagagac
agacgtattctcgattccagactttggaactagaaaaggaaattccgcctgacaagatatctcccgaggaaacgtagaatag
acctggcggagagcctgggcctgacagagagacagatcaagatctggttccagaacaggaggatgaagcagaagaag
gaacaggagagcaaacccatccagtccgaggacctcttggtgcaggcgacgaggaatcccttcccggatatagcgtcctt
cgtgcgggatctacttccgacagtccccggccttcgtggcagtc 

>noNorAll.657448 GEQE5QV01ES05F length=623 

Ttttattntatntgttntagatctaatcaatataactattgtctattattattaaactttactacctaacgcgtttagtctactggtaac
ttaggttaaaattagtattactcttnttagtagattaaacaattttaaattttttttaattttttatttaagtttaattctanaattagttagtt
agtttcattattttatttattagcttattgacttagatgtaacatttaattaaagttataaattttactttaaaatttagtttaattagtgtca
taattttaactttttaggtttttcctacgatccaactaggccgaagcggaagagacagacgtattctcgatttaccagaacctttt
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ggaactagaaaaggaaattaccgcctgacaagatatctcccgnggaaacgtagaatagacctggcggagagcctgggc
ctgacagagagacagatcaagatctggttccagaacagaggatgaagcagaagaaggaacaggagagcaaacccatc
cagtccgaggacctcttggtgcaggcgacgaggaatcccttcccggataaagcgtccttcgtgcaggatctacttccgaca
agtgaacccgctcccccgagtc 

 

 

Of-ftz-f1 sequence, length=2081, full length CDS length=1962 

 

gaagtgcaagtgaagtggcctagagacntacattttgtgggacgttcgattttttaactgtgattctctgctgtagagccttggc
atagaaaagagcccagggctttatggtgttgagaaggtacgcgcttactggaacaggacaagcccaggggaaataaaat
gcgggaagacgagctgcccgtcagcgttccgaccagttctgcccacgaaactagcacagatctggatccattagtatcaa
acgatcaaaataattcgacagagcttcaagtgtcttactcaacgaattcttcagatgcatactctgtcgaaggtaaggtgcttc
gggccgtatctgacgatgctgaagagtgttcctaccagattattttgtgcgggggggagcaagccgcagccttccagcccg
tcctccagaacgtacccgaattgccggacaccaaggagggcatagaggagctctgtccggtctgcggagacaaggtgcc
tgggtaccactacgggctcctcacctgcgagtcctgcaagggcttcttcaaacggaccgttcagaacaagaaagtgtacac
ttgcgtcgccgagaggagctgccacatcgacaagacccagaggaagaggtgtcctttctgccgctttcaaaagtgcctgg
atgtcggaatgaaactcgaagctgttcgagcggacaggatgcgaggcggtaggaacaaattcggcccgatgtacaagcg
cgaccgagcgaggaagctgcagatgatgcgacagaggcagatggcgctgcagacgctgcggaactcggccggctaca
gcagcacgagcggcgaaggcgtctccctcagctacgcgggggccggctccaacttcggctcgctccagatcaagcagg
agatccagatcccgcaagtctcgtcgctcacctcgagccccgactccagtcccagtcccatcaccgtcgccctcggccag
caccagcagtcccagggccagggcctgtaccaggcggccgtcctaccggcccagcagctccaggtcgagcccaggca
ggcccagcagtcccaggtcttcgagcagggcaagtcctggtccgccccgagccccccgccccacaagtccttcccctac
gagggctcgtcctccggcaacagccacaacaaggtggcgcccatgatccgggacttcgtccaggcgatagacgaccag
gagtggcagacctccctctacaacctcctacagaatcagacctacaatcagtgtgaggtggacttatttgaacttatgtgtaa
agtgttggaccaaaatcttttctcacaggttgattgggcacgaaattccacatttttcaaagacctaaaggtggatgaccaaat
gaaattattacagcactcatggtcggatatgctggttctggatcacatccaccaaaggatgcacaataacctcccagatgag
atgaccctcccaaatggacaaaagtttgacctcttatccctcggccttctcggggtgcctagtcttgccgagccctttgccga
gatcacctcacagcttcaggaccttaagttcgatctctctgactacatctgcgtaaagttccttctcctgcttaatccagatgtgc
ggaatctgatgaataggaagcatgtccaggagggccatgaccaagtccagcaagcccttcatgattactgtctcggatcat
atccacaggtccaggacaagttcaacaagctgctcctaatcttgccagaaattcatggggttgccgtgaggggagaggaa
cacctctatatgaagcactgcaatggtggagcacctactcaaacacttcttatggagatgctccatgcaaaaagaaagtagg
atcataggaaaacagataggagtagatgaaaaggcgagctcaccaacctgaagtgcaatatgagtggactggaggggat
gatgtgttcataagtttaatctcgagttacctagcgtgtccacattgaaacggctcatacggctctgtgtgtaaaggactcttctt
cctctantgttanctttgtatgtgttgtgcgttgcgcatgttcgtcttataaggacta 

 

Of-hairy length=580bp, full length CDS length=555 

tacgcgatggtcactggaagtcttgctccgtcagctgcctccaggcctcccgactctaacagaaggagtaacaagcccatc
atggagaaacggcggagggctcggatcaaccattgcctcaatgagctcaagtccctcatcctggactccatgaagaagga
cccggcgcgtcactcaaagctggagaaggcagacatacttgagatggcggtgaagcacgttgagacgctccagcggtc
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ccaggcggcactccaagtagctgccgacccaggagtactggataagttcctggcaggctggggggaatgtgttggagag
gttggcaggttccctggtcttgactctcaggtgagaaaaaggctggttgaccatctctcaacagttatggaaagacgaagtg
aggcaactcctgtagttactctggtccctactaggctggctagtggggagatagcgcttcttgttccttgccaagcagcacct
ccgttacctcagcctcctaaacttcagcagcctatttcctttgttgctgataaggaggagaaaccttggagaccctggtgaca
cggccac 

 

 

Four RUNX family proteins sequences in fasta format 

 

>Of-Run 

MHLPGVTTEMWGEMYGGLCSALSEHHGELIQTGSPSVLCSALPTHWRSKSLPTAFK
VIALDDVSDGTVVTIKAGDEYCAELRSTAVMKQVAKFDLRFVGRSGRGKSFSLTIVI
GSSPHQMATYSKAIKVTVDGPREPRSKSFHYMTGGGAPLGPLGFSLLPPGWLDAAYL
TAYWPDYLRRPPAPPLDLVKVPPLPGHHPQTPTVLPPSPPKESCSPPAIVTPGSELLPPP
LPLLPPLLPPQASAFKPPPISPPKEHTTKTKPTSKATVWRPY 

 

>Of-RuxA 

MHLTPAVVEGGGPLAEVYVKMTSDILAERTLGDFLAEHPGELVRTGSPLFVCTGLPS
HWRSKTLPVGFKVVALGEILKTDLKRDITYTEYMYAIAELYWLSLTRACWKFQRKS
FTLTITVSSSPPQVATYTKAIKVTVDGPREPRSKTICEGIQGEILR 

 

>Of-lz 

MTSDGKKRRRGGGGEAAAASDLWWTERVVVEAQQEHPGELVRTGSPYFLCSALPT
HWRSKTLPVGFKVVALGEVMDGTVVTIRAGDEYCAELRSTAVMKQVAKFDLRFVG
RSGRGEELHTDHHSRLLSPASGHIHQGHQGDCGRTSGTQVQPSVSAIQSSRPGSEAVP
RTPSTFWLQSPTQAAGSPGPLQVAPQPPREHGE 

>Of-RunxB partial 

ELLAERAIESLLAEHPGELVRTGSPHVVCTVLPSHWRSNKTLPVGFKVVALGEVMDG
TVVTIRAGNDENYCAELRKELRNSTAVMKNQVAKFNDLRFVGRSGRGE 
 
 
Of-actin sequence, length=3172, first 1200nts with high confidence  

gactctcctcctggagaccaacggctcaatcctccttcactcccgtcaattgtgtgatagtgtacgcattggctctcgcctcctt
cgtccagtaaagcttatttaactaacccaaaacaaaatgtgtgacgaagaagttgctgcactcgttgttgacaatggatccgg
aatgtgcaaggctggcttcgctggcgatgatgcaccaagggctgtcttcccatcaattgttggaaggccaaggcatcaggg
agtgatggtcggtatgggacagaaagacagctatgtcggtgatgaggcccaaagcaagagaggtatcctcaccctaaaat
accctattgaacacggtatcgtcactaactgggatgacatggagaagatctggcatcatacattctacaatgaactcagagtt
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gcccctgaagaacatcctgtcctccttacagaagctccactcaaccctaaggccaaccgagaaaagatgacccagatcat
gtttgagaccttcaacacccccgccatgtatgtcgctatccaggcagtactgtccctatacgcatctggacgtactactggtat
tgtgttggactcaggtgatggtgtctcccacactgtccccatctacgaaggttatgccctgccccacgctatcctcaggttgg
acctggctggccgagatctcacagattacctcatgaagattcttaccgagaggggatactccttcaccaccactgccgaac
gagaaattgtcagggacatcaaggaaaaactttgctatgttgcccttgactttgaacaggaaatggctacggctgccagctc
cagctcccttgaaaagtcctatgaactccctgatggtcaggttatcacaattggcaacgagaggttccgatgccctgaagcc
ctcttccagccctcgttccttggtatggaagcttgtggaatccatgagactacttacaattccatcatgaagtgtgatgtagaca
tcaggaaggacttgtatgccaacacagtcctctctggaggtaccaccatgtaccctggtattgccgataggatgcagaaag
aaattactgcccttgctccctcaacaatgaagatcaagatcatcgctccccccgagaggaaatactctgtatggattggagg
atctatccttgcttctctttctaccttccagcagatgtggatctcaaagacaggaatacgacgagtctggcccatccattgttca
caggaagtgcttctaagcagtttgttgcattttctcgtctcactccccttttacatattctctttcgggagacagcttattcttttgtat
tatactgtttattatgtttgtttatttgattttaaatattattcagcgacttactaagttaaattgcagttgctcattgagttgatctgcaa
tttcttccattatttaaatccattccatataattggtcttatctccatgtaccatccccctttttttatgcccattttataaagggcttatt
ttttcaaccgttttctattgtactagttatctttataagaaaatattttatataatatatataaatatatttaaaaaagacactttgcattc
caattttttccatgtggctcaaaatgtgcttactttctaagtttgcgattttgaagatttagaaagcgtaggtttgtcttttgtattaag
atcatgttgtctgttggttcctttaatggacatttgagcctgtgaattcggtgacacctatgtatgcactaggccaaagtattattt
attcccatcagcagaactggaattttagattatgggaataataaattataatttattgtacttctctcaaaaaaaaggggatcatg
gtgctggagttggagaaagggatggtgttctcaatgatatggatatgatctcagggacattgggaaaggcttttggcaatatt
ggtggctatgttgcctcgagcgcgaccctcattgacatgatccgtagttatgctgctggatttatattcactacttctcttccacc
aactgttcttgctggtgctctaaaatcgattgaaatactttcctctgatgaagggcgccatttaagaaaacgccaccaagaaa
atgtagcttatttaaaaaatttattgctagaaagaggttttcctgttgagcctactccatctcatatcatacccatctatattggtga
tccctttatttgtactaaaatatcagatgaacttttgaaacaaaagggacattacattcaggccattaactatcctactgtaccaa
aaggagaagaaaaattgcgtctagctcctacaccttttcataccatttctatgatggacgcgtttgttgatgacttcactgaaatt
tggcatagcctgggactaaaacatgctcagccatgtcaacattgcaagaaaatctttgatgtttgccaccaaaatgaatttttct
gtgaaatgccaaattgtcctcaagtaatggctcactaatcttaattttacttaaatatagtggtggctatagtagaaaggatacta
gctccaggtttcttttaatgtaataggatattaaaattctgacagatatgcacaagtcaactcatagatttttaaatcatgttatattt
ctcataatttaatgatttgttttgttcggttgtgtattaaatttttaaacatgattttggttaaccatttggtttgttacttaagttatccta
agatttatttattgaatttcctgaataaacaatgtaaaattctgattttcctttaaagtatgttaaatatttaatttaatgcaaactctttt
attaatgttttatcaagtccagaattggccagaactcttctgatactgaagttagatttaattaaattgtgacattttttaatctatgtt
atcatggttttaaatatatttttttaatcaagtaaatgtgatcttgttaccagttctcaagaaagtgcctgagaggtttagaatttttat
ttataaaagttatttatggggaaaaagtttggaattacaattattaaatttattctgaatacaaattgttatttgattgtcgtatttcttg
ttaatttaaaacatgtattgttgttgtaaaatgtggaagaataaagcttatgtggaagcattaatccttcctctcaaa 



 

 140 
 

 
 
Primers used for making dsRNA in Oncopeltus 
 
Of-ftz  RNAi primers 
 
offtz1exT7F   5’   TAATACGACTCACTATAGGGAGAAAATCCATGACTCTGGACAATCT 
 offtz1intrT7F   5’  TAATACGACTCACTATAGGGAGAAACTTCACCAGCTTGCAC TGT 
 
offFtz T7 5 'TAATACGACTCACTATAGGGGAAAAGGAATTCCGCCTGAC 
offtzR T3 5' AATTAACCCTCACTAAAGGGGATGAGCGTTAAGCCTGGAG 
 
ofFz3UT7F   5’  TAATACGACTCACTATAGGGAGAAGAACAGGAGGATGAAGCAG 
ofFz3UT7R  5’   TAATACGACTCACTATAGGGAGATTATCTAGCGACGTGCTCAG 
 
Of-ftz  RT-PCR primers 
 
ofFz3UF  AGAACAGGAGGATGAAGCAG 
ofFz3UR  TTATCTAGCGACGTGCTCAG 
 
Of-actin RT-PCR primers 
 
of-actin ATGGTCGGTATGGGACAGAA 
of-actinR TGTTCTTCAGGGGCAACTCT 
 
Of-ftz–f1 
 
off1RT7      5’  TAATACGACTCACTATAGGGAGAGCCCAATCAACCTGTGAGAA  
off1FT7      5’  TAATACGACTCACTATAGGGAGAGTCGGAATGAAACTCGAAGC 
Offf1F        5’   GTCGGAATGAAACTCGAAGC 
Off1R         5'   GCCCAATCAACCTGTGAGAA  
 
Of-hairy 
 
ofHairyFT7  5’ TAATACGACTCACTATAGGGAGACGAAGTGAGGCAACTCCTGT 
OfHairyRT7 5’ TAATACGACTCACTATAGGGAGAGTGTCACCAGGGTCTCCAAG 
 
Of-runt 
 
ofRuntFT7;    5’ TAATACGACTCACTATAGGGAGAAGGTCACCACCCTCAGACAC 
ofRuntR1T7;  5’ TAATACGACTCACTATAGGGAGATTGGTGGTATGCTCCTTTGG 
ofRunF           5’  AGGTCACCACCCTCAGACAC  
ofRuntR         5’  GCCTACCAACAGCAAAGCA 
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Abbreviations used in the text 

Al                          Archegozetes longisetosus  

AEL                      After Egg Lay 

Am                        Apis mellifera 

Ap                        Acyrthosiphon pisum 

As                        Artemia salina 

BLAST               Basic Local Alignment Search Tool 

BLOSUM           BLOcks SUbstitution Matrix 

BM                      Bombyx mori 

BMSB                 Brown Marmorated Stink Bug 

Ca                       Clogmia albipunctata 

CNS                     Central Nervous System 

DBD                    DNA Binding Domain 

Dm                      Drosophila melanogaster 

eRNAi                embryonic RNA interference  

en      engrailed 

eve                 even-skipped 

Fa                       Forficula auricularia 

ftz     fushi tarazu 

ftz-f1    fushi tarazu factor-1 

Gb                     Gryllus bimaculatus 

h    hairy 

HD                     Homeodomain 

Hh                      Halyomorpha halys 

odd    odd-skipped 

opa    odd-paired 

ORF                   Opening Reading Frame 

pRNAi    parental RNA interference 



 

 142 
 

prd      paired 

Ph                      Pediculus humanus corporis 

Ps                      Pedetontus saltator 

Tc                      Triboliu castanem 

LBD                  Ligand Binding Domain 

Ms                     Manduca sexta 

Nv                      Nasonia vitripennis 

Of                      Oncopeltus fasciatus 

PCR                  Polymerase Chain Reaction 

PBST                Phosphate Buffered Saline Tween-20 

PFA                  formaldehyde  solution made from Paraformaldehyde 

PRG                  Pair-rule gene 

Rp                      Rhodnius prolixus 

runt   runt 

RT-PCR           Reverse Transcription Polymerase Chain Reaction 

SSC                  Saline-Sodium Citrate 

slp  sloppy paired 
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