
 

  

 
 
 
 
 

ABSTRACT 
 
 
 

 
Title of Thesis: Heavily Loaded Vehicle Tires: 

Analysis and Characterization 
  
 Nicholas Garcia, Master of Science, 2008 
  
Thesis directed by: Dr. Balakumar Balachandran  

Department of Mechanical Engineering 
 
 
 Vibration characterization and experimental modal analysis were carried out 

with a heavily loaded vehicle tire.  These tires are typically subjected to loads that are 

over two times those experienced by a passenger car tire.  The results obtained 

through experimental modal analysis were compared to similar results obtained for 

standard passenger car tires.  The comparisons show that the heavily loaded tire has 

unique dynamic characteristics.  Complex damping and nonlinear behavior were 

considered to explain these characteristics.  A flexible ring tire model was used to 

investigate these nonlinear characteristics.  Complex damping was also examined to 

explain the experimental observations.  This thesis contains some of the first results 

on vibration characterization of heavily loaded vehicle tires.  The incorporation of the 

results into a multi-degree-of-freedom tire model for use with the Effective Road 

Profile Control scheme used for vehicle durability simulation studies was also 

investigated. 
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Chapter 1 

Introduction 

 
The study of vehicle dynamics starts with the interaction between the tires of the 

vehicle and the road.  A large portion of all of the loads on the vehicle can be tracked 

back to the loads on the tires.  Since the tires are the only part of the vehicle that is in 

direct contact with the environment, the loads in the suspension and steering components 

can all be traced back to the loads at the tire patch, where the flexible tire contacts the 

road.  In order to predict vehicle dynamics loads it is important to have an accurate tire 

model.  As the performance requirements for vehicles increase a more precise 

understanding of vehicle dynamics is needed.  This requires a much better understanding 

of the dynamic properties of vehicle tires.  Modal analysis of passenger vehicle tires 

started in the 1960’s.  A major contributor to this study was Pacejka (1993) who proposed 

a semi-empirical tire model known as the “magic” tire formula.  These experiments 

focused on comparing the behavior of bias ply with new radial tires.  These early tests 

utilized a fixed axle test set up with radial excitations.   

 

1.1 Literature Review 

1.1.1 Tires: Experimental Characterization 
 
 

Over the last decade, considerable amount of work has been done by Zegelaar 

(1997) and Yam, Guan, and Zhang (2000) to examine the three dimensional mode shapes 
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of passenger tires.  These experiments use a free tire set up with the tire suspended from 

above with radial and tangential excitations.  Zegelaar (1997) examined the in-plane 

vibrations of such a tire in a free condition and a loaded (standing) condition and 

compared the experimental results with analytical results derived from the flexible ring 

modal proposed by Gong (1993).  The loaded condition consisted of a vertical force, Fz, 

of 4000 N.  By comparison, the heavily loaded tire analyzed in this thesis is subjected to 

a static loading force of 9000 N.  This is over two times as much as the static load a 

passenger tire is subjected to in Zegelaar and Yam et al.’s analyses.  Zegelaar’s analyses 

show modes starting around 100 Hz with the first flexible mode of the free tire to be at 

115.9 Hz, see Figure 1.2.  In Figures 1.1 to 1.3, the experimental arrangement and results 

obtained by Zegelaar are shown.  

Zegelaar (1997) performed experimental modal analysis by placing tri-axial 

accelerometers around the tire tread and hitting the tire in various places with a modal 

hammer.  The input force from the hammer is recorded along with the outputs of the 

accelerometers in order to determine the frequency response function between the input 

and an output force.  In Figure 1.1a the force excitations used are shown and in Figure 

1.1b the positions and orientations of the accelerometers are shown.  The input radial 

force is applied at point 3, as shown in figure 1.1a.  This experiment is not truly 

indicative of the response of the tire, since the input force is in general applied at the 

contact patch; that is point 11.  The experimental modal analysis performed in this thesis 

will make use of an input force at the contact patch of the tire.  The experimental set-up 

used by Zegelaar and others is similar to the one that is used in this thesis work, except 

that a harmonic excitation produced by a shaker table is used instead of a modal hammer 
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excitation.  Modal hammer strikes could not impart enough force to sufficiently excite the 

much stiffer heavily loaded tire studied in this thesis. 

Yam, Guan, and Zhang (2000) used a similar test set up and analyzed the full 

three-dimensional motion of the tire to get in-plane and out-of-plane vibrations of the tire.  

Their results showed the first flexible mode occurs around 120 Hz, which agrees with 

Zegelaar’s findings.  In the analysis by Yam et al only the free tire modes were 

examined.  In Figure 1.4 the modes found in Yam et al’s analyses in all three dimensions 

for a radial excitation are shown. 

In this thesis the author examines the three dimensional vibrations of a heavily 

loaded military grade tire due to radial excitations.  The first flexible mode is seen at 54 

Hz which is significantly lower than those found for a standard passenger tire.  The 

natural frequencies of these modes are important since the vehicle can excite the lower 

frequencies during normal operation.  Out-of-plane motion was also observed in response 

to a radial in-plane excitation.  The modes for the passenger tire analyzed by Zegelaar are 

at significantly higher frequencies than those of the much stiffer and heavier tire studies 

in this work. 

 

 

 
Figure 1.1:  Experimental set-up: a) positions and directions of the force 
excitations and b) positions and orientations of the accelerometers (Zegelaar, 
1997). 

Fz 

a) b) 



 

 4 
 

  

 

 

Figure 1.2:  Modes of a standing tire from experimental modal analysis due 
to radial impulse at point 3: Fz=4000N (Zegelaar, 1997). 

Static load=4000N 

Radial impulse 
input location 
and direction 

Tire tread 

Tire rim 
Spindle 
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Figure 1.2 (continued):  Modes of a standing tire from experimental modal 
analysis due to radial impulse at point 3: Fz=4000N (Zegelaar, 1997).  
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 The mode numbering convention used in Zegelaar’s work is shown in Figure 1.3.  

The peaks in the frequency response function (FRF) correspond to the natural frequencies 

of the modes of a particular system.  The modal peaks for the free tire are easy to see, 

with evenly spaced distinct peaks.  These modes are numbered in ascending order.  The 

modal peaks from the free tire (unloaded) are compared to the modes from the standing 

(loaded) tire.  If a modal frequency for the standing tire lines up with that of the free tire, 

the standing tire mode is given the corresponding integer value used for the free tire 

mode.  If a peak from the standing tire frequency response function does not line up with 

a peak in the free tire frequency response function, then the standing tire is classified by a 

real number with one half.

Figure 1.3:  Measured frequency response functions in the radial direction at point 3 
of Figure 1.1 due to a radial excitation at point 3 for two different boundary 
conditions (Zegelaar, 1997). 
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Figure 1.4:  Mode shapes due to radial excitation (Yam et al., 2000). 
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1.1.2 Tires: Modeling Efforts 

 
The flexible ring model uses a circular beam that is supported by an elastic spring 

foundation to describe the motion of tread of the tire.  The beam can bend and deform 

along its axis just as the tread of the tire would deform.  So this model differs from the 

classic string model, in that the ring can deform (Pacjeka, 2005).  The equations of 

motion of the flexible ring model are based on the PhD dissertation of Gong (1993). 

The tire ring model, which is shown in Figure 1.5, is comprised of a circular ring 

that is supported on an elastic foundation.  The flexible ring model allows for 

displacement of the ring elements beyond the standard spindle displacement as it takes 

into account the tire tread deformation.  In Figure 1.6, the coordinate system used to 

develop this model is shown.  

 

 

 

 Figure 1.5: Tire ring model (Zegelaar, 1997). 
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The initial position on a ring element is shown as point O, the position reached 

after the spindle displacement is shown as point A, and the position reached after both 

spindle displacement and the tire ring deformation is shown by the point B.  In the 

doctoral work of Gong (1993) the steps undertaken are provided.  These steps are based 

on the strain displacement relations, strain energy, and virtual work for determining the 

equations of motion.  The resulting equations have the form 
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where the following notation has been used. 

qcv, qcw: external distributed force on the ring 

Fax, Faz: external forces acting on the ring 

May: external torque acting on the ring 

vb, wb: tangential and radial displacements 

xa, za: horizontal and vertical rim displacements 

 : rotational speed 

a : small deviation of the angular displacement of the rim due to   

EI : bending stiffness of ring 

E: Young’s modulus of the ring material 

I: inertia moment of the cross-section of the ring 

22
0  ARRbpF Rs  : pretension in the ring 

cbv : tangential sidewall stiffness 
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cbw : tangential sidewall stiffness 

R: radius of the ring 

bR: width of the ring 

p0: tire inflation pressure 

ma: mass of rim 

Ia: moment of inertia of rim 

(see Figure 1.6 for the coordinate orientations) 

 

In this thesis it is assumed that the distributed forces on the ring, the rim 

displacements, the angular displacement of the rim, and the rotational speed are all zero.  

In addition, the substitution for the pretension in the ring is carried out. 

22
0  ARRbpF Rs   

This leads to the following two equations of motion: 
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1.1.3 Nonlinearities and Modal Analyses 
 
 
 There are principal assumptions that form a basis for modal analysis, which is 

strictly valid for linear systems.  One of them is that the system invariants, including the 

natural frequencies, damping ratios, mode shapes, and frequency response functions are 

not affected by the level of input excitation applied during the test.  A second assumption 
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is that there is no nonlinear coupling between the modes, that is, the response of one 

mode does not affect the response of another mode in a nonlinear fashion.  Both of these 

assumptions can break down when nonlinearities are inherent in the system (e.g.,Worden 

and Tomlinson, 2000).  In nonlinear systems, various phenomena such as jumps, 

nonlinear resonances, and bifurcations can occur that can affect the results (Nayfeh and 

Balachandran, 1995). 

 There are a number of methods that have been used for examining the presence of 

nonlinearities in experimental modal testing.  Sine sweep and harmonic input tests can be 

particularly useful for detecting effects like nonlinear resonances.  Exciting the system at 

one-half, one-third, twice, and three times the linear natural frequency can reveal 

nonlinear resonances that are common in nonlinear systems (Zavodney, 1987).  It is quite 

common for sinusoidal inputs at one frequency to excite a resonance at a different 

frequency in a nonlinear system.  This does not happen in a linear system, and a slow sine 

sweep test of a harmonic excitation is useful to detect such an occurrence.  

 Superposition is only strictly valid for linear systems.  The superposition principle 

can be used to detect nonlinearities in a system by observing deviations from linear 

superposition (Nayfeh and Balachandran, 1995).  Nyquist plots are also a way to detect 

nonlinearities in a system.  A Nyquist plot is a polar plot showing the gain and phase of a 

frequency response.  For a linear system excited close to resonance and exhibiting a 

response that contains only one mode, Nyquist plots are circular.  For a nonlinear system 

the Nyquist plots can become distorted into ellipses or other shapes (Zavodney, 1987). 

 Nonlinear resonances can be a problem in experimental modal analysis.  The 

excitation of one mode at a particular frequency can lead to a response at another 
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frequency as well as participation of other modes.  For a set of given damping and 

frequency values, it is possible for a system to undergo bifurcations in which a fixed 

point of a dynamical system loses stability and the system experiences a continuous 

exchange of energy from one mode to another.  These nonlinear phenomena can occur at 

extremely low excitation levels (Zavodney, 1987). 

 

1.1.4 Effective Road Profile Control (ERPC) 
 
 
 

One important use for accurate tire models is in corrective signal response 

algorithms for experimental vehicle dynamics simulations.  Effective Road Profile 

Control (ERPC) is a simulation control method developed by MTS Systems Corporation. 

ERPC makes use of the vehicle response with a non vehicle specific control algorithm to 

determine changes in a vehicle’s performance over time.  The Roadway Simulator group 

of the U.S. Army at the Aberdeen Testing Center, Aberdeen Proving Ground, Maryland 

is interested in this technique for carrying out experimental vehicle simulations.  The 

principle behind ERPC is that by using a standard tire model one can determine the 

effective road profile (ERP) due to a random input signal.  The ERP is then used as a 

feedback input to drive the simulation inputs.  Normally, control algorithms require for a 

new vehicle road response to be taken for each vehicle for each test course being 

analyzed.  With ERPC, this is not necessary.  With an accurate tire model, it is expected 

that the ERP can be determined for any vehicle over any test course.  The variance in the 

ERP is determined to find out when the performance characteristics of a vehicle have 

changed.  This could occur due to a failure or wear-out of a suspension component.
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The current tire models being used for ERPC are simple single degree of freedom 

mass-spring-damper models in the vertical direction, see Figure 1.7.  It may be possible 

to make the process more accurate by using a three-dimensional tire model based on the 

results of this thesis, where it is proposed to use both in plane and out of plane tire modes 

to determine the ERP.   

The tire model is used to predict a specific road profile based upon a set of spindle 

dynamic response data.  The control algorithm then changes the input forces to match an 

expected road profile.  In this way, once one has a tire model in place for each vehicle the 

same effective road profile can be used for different vehicle configurations which result 

in different force inputs but correspond to the same road profile for a test course.  The tire 

Figure 1.7:  Mass-spring-damper tire model used in 
ERPC. 
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model needs to enable both accuracy and efficiency.  The control process necessitates 

that the prediction of the ERP from the spindle dynamics with the tire model must be 

computationally fast enough so that the control feedback can work in real time at high 

frequencies. 

 

Another use for accurate tire modeling efforts is in dynamics modeling efforts.  

Tire models are required for all vehicle dynamics models.  These models are created by 

using special software packages such as DADS, VirtualLab, and ADAMS dynamics 

modeling software.  One of the largest sources of error in these models is the loads 

generated at the tire patch of the vehicles.  Generic tire models are used to determine 

vertical, lateral, and longitudinal forces due to the rolling contact of the tire and the 

ground.  If these tire models are not accurate, the loads and subsequent response of the 

rest of the vehicle can be significantly affected causing large errors in the overall 

response of the vehicle.  Refined tire models are critical for improving the accuracy of 

these models.  The results from this study will hopefully lead to a better understanding of 

the tire dynamics and eventually to more accurate tire models for use with these software 

packages, in particular, for heavily loaded vehicles. 

 

1.2 Objectives and Scope 
 
 
 A main objective of this study is to determine the natural frequencies and mode 

shapes of a heavily loaded tire.  These results are to eventually be used to for the creation 

of an accurate three-dimensional tire model for use in dynamics modeling and 

experimental input response control algorithms, that is, algorithms like ERPC.  To 
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achieve this objective, an experiment was designed and conducted to measure the 

response of the tire tread to various input signals. 

 A second objective of this study is to determine if any non-linear characteristics 

are present in the response of the heavily loaded tire system and carry out an attempt to 

determine the forms and characterize them.  Predictions made with the flexible ring 

model are compared with results obtained from the experimental modal analysis in an 

effort to understand the tire vibratory response characteristics. 

 

1.3 Outline of Thesis 
 
 
 
 The rest of this thesis is organized as follows.  In the second chapter, the 

experimental modal analysis work is described.  The experiment setup and procedure are 

discussed in detail.  The results are shown, and the mode shape information is examined.  

In the third chapter, the analysis is carried out with the flexible ring model.  The predicted 

modal response from the flexible ring model is compared with the results obtained from 

the experimental modal analyses.  Nonlinear terms are added to the flexible ring model 

and the resulting dynamics is studied to explain some of the observations made in the 

experiments.  In the fourth chapter, the tire model for the Effective Road Profile Control 

algorithm is expanded into three dimensions.  The feasibility of using tire modes found in 

the experimental modal analysis and the tire model used in the third chapter for the ERPC 

process is discussed.  In the final chapter, concluding remarks are given along with 

suggestions for future work.  An appendix containing the programs used in this work is 

also included 



 

 17 
 

Chapter 2 

 

Experimental Characterization 
 

2.1 Experimental Setup 
 
 
 To determine the modes and mode shapes of the tire, experiments were performed 

by using a shaker table at the Aberdeen Test Center in Aberdeen Proving Grounds.  The 

tire was mounted to the outer frame of the table and a plate fixed to the table was used to 

load the tire and subject it to various inputs.  The fixture was machined out of steel and 

was clamped to the outer frame of the table.  A plate was bolted to the shaker table by 

using a separate machined fixture to apply the loading input on the tire.  The bolts 

holding the plate to the shaker table were tightened by using a hydraulic hammer.  The 

plate and fixture were carefully aligned after every installation. 

 The tire was mounted with a MTS Spinning Wheel Integrated Force Transducer 

(SWIFT) to measure the forces and moments at the center of the tire.  This transducer is 

attached between the hub and wheel, and it is used to measure the forces and moments 

being input into the hub and spindle by the tire.  Accelerometers were mounted on the 

loading plate, the spindle of the tire, and at various points on the circumference of the 

tire.  The accelerometers on the tire tread were placed at 45o, 75 o, 90 o, 120 o, 150 o, 180 o, 

210 o, 240 o, 270 o, 285 o, 315 o, and 330 o, as shown in Figure 2.1.  As a reference, the 

loading plate was placed at 0 o.  The accelerometer blocks (including the accelerometers) 

weighed only a few ounces, compared to the tire, which weighed hundreds of pounds.  
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The depth of the tire tread and the size of the accelerometer blocks hindered attempts to 

attach the blocks to the tire tread in a conventional fashion.  The accelerometers were 

mounted to the tire by using modeling clay that was pressed into the tread of the tire and 

molded around the accelerometer blocks.  This mounting procedure took a few tests to 

get it right, but in the final tests, it was possible to use the clay was able to attach the 

accelerometers to the tire tread with only a slight change in the orientation of the blocks 

during a test.  The problems experienced while attaching the accelerometers is further 

discussed in Section 2.3. Both SoMat and ATC’s Advanced On-Board Computing 

System (ADOCS) data acquisition systems were used.  The radial tire accelerations, 

spindle accelerations, and the SWIFT vertical force were recorded on the SoMat while 

the table accelerations and three SWIFT forces were acquired with the ADOCS system.  

In Table 2.1, the list of data channels collected during the experiments are listed.   

 The input signals used during the experiment were a 10-g impulse comprised of a 

10ms saw tooth, a linear sine sweep from 5 Hz to 200 Hz, and a random excitation input.  

The experiments were repeated for tire pressures of 30psi, 40psi, and 50psi.  The static 

load was kept around 9000 N.  The static load is one of the uncontrolled variables in the 

test that caused some minor inconsistencies throughout the testing.  The airbag used to 

apply the static load for the shaker table was unreliable and would lose pressure over the 

course of a test. 
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 SOMAT   ADOCS 
     
1 Radial Acceleration of Pt 1, x  1 SWITFT Force, Vert 
2 Radial Acceleration of Pt 1, y  2 SWITFT Force, Lat 
3 Radial Acceleration of Pt 1, z  3 SWITFT Force, Long 
4 SWIFT Force, Vert  4 Table Acceleration, Lat 
5 Radial Acceleration of Pt 2, x  5 Table Acceleration, Long 
6 Radial Acceleration of Pt 2, y    
7 Radial Acceleration of Pt 2, z    
8 Radial Acceleration of Pt 3, x    
9 Radial Acceleration of Pt 3, y    

10 Radial Acceleration of Pt 3, z    
11 Radial Acceleration of Pt 4, x    
12 Radial Acceleration of Pt 4, y    
13 Radial Acceleration of Pt 4, z    
14 Spindle Acceleration, Vertical    
15 Spindle Acceleration, Lateral    
16 Spindle Acceleration, Longitudinal    

 

Figure 2.1:  Experimental arrangement. 

Shaker 
Table 

Impact Plate 

Heavily 
Loaded Tire 

Accelerometer
s 
SWIFT Transducer 

Table 2.1: Data channels. 

Input 
direction 

Static Load, 
Fz=9000 N 
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2.2 Assumptions Made 
 
 
 There are some assumptions underlying the analysis.  The first is that the modes 

are decoupled or well separated in terms of their frequency responses.  This means that 

we can excite each mode separately.  It is speculated that this may not actually be the 

case, and that the analysis will prove or disprove this assumption.  The previous work 

done in the subject of tire dynamics has used this assumption, and for standard passenger 

tires this assumption has held up through the analysis (Zegelaar, 1997).  Well separated 

modes means that the peaks of the frequency response functions where the natural 

frequencies of the modes are located are not too close to each other that the identification 

of each separate mode becomes difficult.  If the modes are well separated and decoupled 

they can be solved for separately as discussed in Section 2.4. 

 

 Another assumption that is made is that the spindle dynamics is negligible in 

comparison to the radial tire dynamics at the frequencies of interest.  Spindle 

accelerations were taken and the analysis of the results is shown in Figure 2.6.  In Figures 

2.2 to 2.5, different frequency response functions are shown.  The spindle dynamics is 

predominantly relegated to frequencies under 30 Hz.  The modes of interest all have 

natural frequencies above 30 Hz, with only a few rigid body modes even being close to 

the spindle frequencies.  The amplitude of the FRF of the spindle dynamics is also much 

lower than the amplitude of the radial tire dynamics for frequencies above 40 Hz.  Thus, 

it is justifiable to assume that the spindle dynamics can be neglected in the analysis.   
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2.3 Sources of Error 
 

As mentioned previously the static load on the tire was another source of error in 

the experiment.  The static load was not constant as it dissipated throughout each test.  

The load was created by a large airbag within the shaker table apparatus.  The airbag 

would lose pressure over every test and the static load would lose close to one thousand 

Newtons over the course of a test.  The static load was reconfigured between each test but 

it was still a large source of inconsistency in the experiment.  To offset the drift in the 

airbag load, the initial static load was increased to around 10,000 N so that the average 

load would stay close to 9,000 N. 

The triaxial accelerometer blocks were attached to the tire by using modeling 

clay.  A visual inspection was carried out before and after every test run but the 

alignment of each block did change during and between each test.  The blocks could start 

to sag as the molding clay deformed during the test.  As the clay deformed during the test 

the orientation of the accelerometer blocks changed slightly.  The changes in the 

orientations of the blocks caused the measured accelerations to be skewed slightly as the 

directions of the accelerometer axes were not exactly the same for each position around 

the circumference of the tire.  This variance was not recorded and was visually noticeable 

after the rest runs, and this is believed to be the leading cause of the variance in the peaks 

of the FRF’s associated with a particular accelerometer location.  The changes in the 

orientations of the accelerometers were below 10o over the course of a test.  During some 

tests, one or more accelerometer completed detached from the tire as the clay fixture 

failed.  These tests were repeated, although at least one test had a failed accelerometer 

block that was not detected in between tests. 
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The natural frequencies of the system correspond to the peaks in the frequency 

response functions (FRF’s) between the radial accelerations measured around the tire and 

the table excitation acceleration.  During the experiments, the data for the input 

acceleration of the table and the output accelerations at different locations on the tire 

were acquired by using two different data acquisition systems that had slightly different 

sampling rates.  Without taking this difference into account the phase of the FRF,  H , 

between the table excitation, measured from the ADOCS, and the tire excitation, 

measured from the SoMat, grows toward infinity as the frequency increases during the 

sine sweep test.   

     

   AdocsAAdocsA

AdocsASoMatA

TT

Tr

P
P

H         (2.1)  

In equation (2.1),  SoMatAr  is the radial acceleration of the tire,  AdocsAT  is 

the table acceleration, XXP  is the power spectral density of X , and YXP  is the combined 

power spectral density of X and Y. 

In order to correct the expression given by (2.1), the author multiplied the FRF 

between the wheel force and the radial tire excitation from the SoMat system with the 

FRF between the table acceleration and the wheel force from the ADOCS system.  This 

resulted in 

     

   

   

   AdocsAAdocsA

AdocsAAdocsF

SoMatFSoMatF

SoMatFSoMatA
new

TT

Tr

P
P

P
P

H       (2.2) 

The vertical tire force was recorded with both systems.  The resulting FRF, which 

is given by equation 2.2, is the FRF between the table acceleration and a radial tire 
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acceleration.  This helped correct the phase problems that occurred during the original 

analysis. 
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2.4 Analysis Procedure 

  

 To determine the mode shapes of the system, it is assumed that the damping in the 

system is low and that the modes do not influence each other (there is no cross coupling 

between the modes) (Ewins, 2000).  Thus the total response of the system is the sum of 

all of the modes of the system and their respective amplitudes.  This can be written as 

    tAtU ii ,,           (2.3) 

In equation (2.3),  tU ,  is the response of different points along the circumference of 

the tire,  tAi ,  is the modal response of the system, and i  is the contribution of the ith 

mode to the response. 

 The peaks in the FRF’s are fitted to individual mass-spring-damper (single 

degree-of-freedom) systems with natural frequency n  and damping factor n .  The 

equation of motion for a single degree-of-freedom spring-mass-damper system is  

  xfkxxcxm   . 

Defining the natural frequency and damping factor as 

 
m
k

n           (2.4) 

 
km
c

n 2
  

The equation of motion can be written as 

  xgxxx nnn  22          (2.5) 
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After performing a Laplace transform and setting the initial conditions to zero one 

obtains 

  shXsXXs nnn  22 2        (2.6) 

Setting js  , leads to 

   jhXXjX nnn  22 2       (2.7) 

 

  
  22 2

1

nnnjjh
jX





        

Based on this, the contribution of each mode, is given by 

   22 2
1







nnn
n j

jG , where nn  05.195.0    (2.8) 

The analysis is performed over a small band of frequencies, , around the natural 

frequency, n of the considered mode.  The total response of the system, Hi(j) the FRF 

of the ith point, is the sum of the products of mode shape coefficients, ai,n, and the modal 

excitations, Gn(j), that is 

    



mn

n
nnii jGajH

1
,         (2.9) 

where nm is the number of modes to be determined.  

Solving for the mode shape, ai,n, one obtains 

   
   


jGjG
jHjG

a
n

T
n

i
T

n
ni , ,  mnn ,...,1       (2.10) 

where nn  05.195.0  , and  jnG  is the complex conjugate of  jnG .  This 

equation help obtain an average mode shape in the frequency band in question.  To 
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determine the actual mode shape, one must minimize the error between the actual FRFs, 

Hi, and the calculated FRFs,  


mn

n
nni jGa

1
,  , by varying the parameter n . 

The error associated with the system is given by 

     nnnniini jGajHE  05.195.0,,,      (2.11) 

For twelve frequency locations, the total error for a mode is given by 





12

1
,

i
nin EE          (2.12) 

and, considering 5 modes, the total error for each n  is 


 


5

1

12

1
,

n i
niEE .        (2.13) 

The n  value that gives the lowest total error is determined for all values of n  

from 10 Hz to 200 Hz.  The values of n  for each n  are compared with those assocatied 

with the peaks from the original FRFs.  Since it has been assumed that there is no cross 

coupling between the modes, one can work with each mode separately.  The peaks from 

the FRFs are not at exactly the same frequency for every location around the tire, see 

Figure 2.3.  This is due to inconsistencies in the test set up, and possibly, nonlinearities in 

the system.  The value for n  that gives the lowest n  near a peak from the FRFs is 

taken to be a mode of the system.  The circles in Figure 2.3 show the candidate regions 

for modes of the system.  The analysis helps find the optimal values for n  and n  to get 

the smallest error possible.  In Table 2.2, the natural frequencies for the modes and their 

respective damping values determined from the sine sweep tests are shown.  These values 
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are the optimal values that minimize the error between the measured and calculated FRFs 

as described above. 

With the natural frequencies determined, one can now look at the modes 

themselves.  The modal amplitudes are complex values that correspond to the magnitude 

and the lag of the oscillating point.  These can be plotted as 

   ninini tatu ,,, sin         (2.14) 

where  tu ni,  is the radial displacement of the ith point of the nth mode, nia ,  is the modal 

amplitude, and ni,  is the phase of nia , . 

The sine sweep data was used to determine the natural frequencies and mode 

shapes in this analysis.  The first five mode shapes found are shown in the next section. 

The first mode is a vertical rigid body mode, while the second mode is a lateral rigid 

body mode. 
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2.5 Experimental Results 
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 In Figure 2.2, a representative FRF is shown for the free tire for an input radial 

force from a modal hammer.   The overall response for the free tire tests was insufficient 

to perform effective, complete modal analyses, since the input force from the modal 

hammer was too low to excite the entire tire.  The free tire FRF has distinct peaks at 

steady intervals.  These peaks correspond to the modes of the system.  The standing tire 

does not have the same shape and it is clear that the peaks for the standing tire FRF do 

not match up with the peaks from the free tire FRF.  If one uses the mode numbering 

scheme from Zegelaar (1997), the modes for the standing tire would all be half modes.

Figure 2.2:  FRFs for the free and standing tire due to a 
modal hammer impulse 

Frequency (Hz) 



 

 29 
 

 

 

 

 

 

 

 

0 20 40 60 80 100 120 140 160
0

0.5

1

1.5

2

2.5
FRF, Table Accel to Radial Accel

0 20 40 60 80 100 120 140 160
-4

-2

0

2

4

Mode 30psi 50psi ς (50psi) 

1 33 Hz 34 Hz 0.06563 

2 38Hz 40 Hz 0.11100 

3 54 Hz 64 Hz 0.09919 

4 72 Hz 80 Hz 0.03819 

5 90 Hz 100 Hz 0.04678 

Figure 2.3:  FRF of the radial acceleration to the input table acceleration.  The 
circles show the areas of potential natural frequencies.  Sine sweep test for the 
standing tire (Fz=9000 N) at 50 psi. 
Twelve different color plots are shown for the twelve accelerometers used in 
the experiments. 

Table 2.2: Natural frequencies and damping factors 
associated with the first five modes found through 
experimental modal analysis. 

Phase 

Amplitude 

Frequency (Hz) 
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Figure 2.4:  FRF of radial acceleration to vertical tire force. Sine sweep test 
for the standing tire (Fz=9000 N) at 50psi. 
Twelve different color plots are shown for the twelve accelerometers used in 
the experiments. 

Phase 

Amplitude 

Frequency (Hz) 



 

 31 
 

 

 

 

 

0 20 40 60 80 100 120 140 160
0

1

2

3
FRF, Table Accel to Tire Force

 

 
test1
test2
test3

0 20 40 60 80 100 120 140 160
-4

-2

0

2

4

 

Figure 2.5:  FRF of vertical tire force to table acceleration.  Sine sweep 
test for the standing tire (Fz=9000 N) at 50psi. 
The three colors correspond to three different runs. 
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 In Figures 2.3 to 2.6, the frequency-response functions for various combinations 

of input and output measurements are shown.  In Figure 2.3, the frequency-response 

functions that were obtained in the experimental model analyses are shown.  Each FRF 

corresponds to a particular radial acceleration measurement on the tire and the table 

acceleration input from the shaker table.  The sampling rate for all of the data channels 

was set to be 1000 Hz.  The FRFs were calculated using the “tfestimate” command in 

MatLab.  This command takes averages and is windowed using a Hamming window 

(MatLab, 2005).

Figure 2.6:  FRF of spindle acceleration to table acceleration.  Sine 
sweep test for the standing tire (Fz=9000 N) at 50psi. 
The three different color plots correspond to three different 
accelerometer orientations. 
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Mode shapes of a heavily loaded tire. 
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In Figure 2.7, the rigid body modes and the first three flexible modes for the 

heavily loaded tire that is excited in the radial direction are shown for two different tire 

pressures, 30 psi and 50 psi.  The arrow shows the direction of the input harmonic force 

corresponding with the vertical orientation of the tire.  The first mode shown at 33Hz is a 

vertical rigid body mode while the next at 38 Hz is a horizontal rigid body mode.  The 

72 Hz 80 Hz 

90 Hz 100 Hz 

30 psi 50 psi 

d) i) 

d) j) 

Figure 2.7:  Mode Shapes for the standing tire (Fz=9000N).  
Sine sweep test.  The two colors show the extremes of the 
mode shapes as it expands (one color) and contracts (the 
other) 
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horizontal mode is unexpected given that the input force is limited to the vertical 

direction.  The next three modes correspond to the first three flexible modes of the tire.  

The first mode, at 54 Hz, is fairly hard to make out but it corresponds to a 2
11  mode (94.1 

Hz) from Zegelaar’s work, shown for comparison in Figure 2.8.  The 2nd mode, 72 Hz, is 

much easier to make out and this corresponds to a 2
12  mode (125.7 Hz) of Zegelaar 

(1997).  The third mode at 90 Hz corresponds to a 2
13  mode (156.8 Hz) of Zegelaar 

(1997).  The modes for the passenger tire are at frequencies nearly double those seen for 

the heavily loaded tire.  The passenger tire analyses do not pick up the rigid body modes 

that this thesis analyses did for the heavily loaded tire. 
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 The modes for the passenger tire analyzed by Zegelaar (1997) are at 

significantly higher frequencies than those observed for the much stiffer and heavier tire 

considered in this thesis.  The modes shown below are the results obtained by Zegelaar 

for a standing passenger tire. 
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Figure 2.8: Comparison of passenger tire modes and heavily 
loaded vehicle tire modes 
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Figure 2.8 (continued): Comparison of passenger tire modes 
and heavily loaded vehicle tire modes 
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 In Figure 2.9, the tangential mode shapes are shown.  The tangential modes are 

harder to see than the radial modes.  The tangential modes for the passenger car tire 

found by Yam et al. (2000), shown back in Figure 1.4, resemble slightly distorted 

versions of the radial modes.  The modes found for the heavily loaded vehicle tire follow 

this trend, although they are more distorted.  There are no rigid body modes present and 

the second modes shown, Figure 2.9 b and h, are discernible leaf modes with elongation 

in one direction and then in another direction orthogonal to the first.  Further analysis into 

the mode shapes in the tangential and lateral directions is needed as all of the mode 

shapes are not clearly discernible. 

 

In Figure 2.10, the FRFs between the tangential accelerations at different 

locations around the tire and the input table accelerations are shown.  The FRFs for the 

tangential response contain much more noise than those for the radial response.  This is 

especially noticeable in the phase plots for the FRFs.  In Figure 2.11, the FRFs between 

the lateral accelerations at different points around the tire and the input table 

accelerations are shown.  The frequencies of the first few flexible modes in the tangential 

and lateral directions start around 50-60 Hz.  This is similar to the frequencies at which 

the modes for the radial direction were observed.  In comparison to the tangential and 

lateral modes found by Yam et al. that started around 120 Hz, as shown in Figure 1.4. 
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Figure 2.9:  Tangential Mode Shapes for the 
standing tire (Fz=9000N).  Sine sweep test. 
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Figure 2.9 (continued):  Tangential Mode Shapes 
for the standing tire (Fz=9000N).  Sine sweep test. 
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Figure 2.10:  FRFs of tangential acceleration at different tire 
locations to table acceleration.  Sine sweep test for the standing tire 
(Fz=9000 N) at 50psi.  The different accelerometer locations 
around the tire are shown by a different color in the figure.  All 
twelve sensor locations are present in the plot.  The figure below 
shows the Phase of the FRF for only 3 points around the tire.  The 
noisy channels were removed to give a clearer picture. 
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Figure 2.11:  FRFs of lateral acceleration at different tire locations to 
table acceleration. Sine sweep test for the standing tire (Fz=9000 N) at 
50psi.  The different accelerometer locations around the tire are shown 
by a different color in the figure.  All twelve sensor locations are 
present in the plot. 
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Chapter 3  

 

Modeling Efforts and Comparisons with Experimental Results 

 

In this chapter, a flexible ring model is used to make predictions and these predictions are 

compared with the experimental results presented in Chapter 2.  Nonlinear terms are 

added to the flexible ring model and the resulting dynamics is studied to explain some of 

the observations made in the experiments.  The comparisons made between the predicted 

modal response of the flexible ring model and the experimental results for the heavily 

loaded vehicle tire are used to try to identify nonlinear characteristics in the heavily 

loaded tire dynamics 

 

3.1 Flexible Ring Model 

 

As discussed in Chapter 1, the flexible ring model being used in this analysis was 

proposed by Gong (1993) and it takes the form 
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 (3.1) 

where the parameters are as defined in Chapter 1. 
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For the modal analysis, the flexible ring model is used along with an added 

damping term, which in some cases has a complex component.  The results are obtained 

by solving for the responses of the partial differential equations describing the flexible 

ring when it is subjected to a sine sweep input at the bottom edge of the tire.  This 

represents the experimental setup where the tire is loaded by a plate in the vertical 

direction.  The output response is than analyzed with the input sine function just as the 

experiment data were analyzed, by using a single degree-of-freedom system to fit a curve 

to every point around the tire in order to determine the modal amplitudes. 

  

 The partial differential equation from the flexible ring model was solved by using 

the MATLAB function “pdepe.”  In MATLAB, the initial-boundary value problem for 

the parabolic PDE is solved in one dimension by using an iterative solver of the strong-

form equation (MATLAB, 2005).  The “pdepe” solver converts the PDEs to ODEs by 

using a second-order accurate spatial discretization method.  The time integration is done 

with the function ode15s.  After discretization, the elliptical partial-differential equations 

are converted to algebraic equations.  The solver is an iterative solver that uses numerical 

time integration to determine the response of the system. 

 

The function pdepe solves PDEs of the form described below: 
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with the initial conditions 
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for 0tt   and all x; that is, 

   xutxu 00,           (3.3) 

 

For all t and either x=a or x=b, the solution satisfies the boundary conditions of the form: 

    0,,,,,, 











x
uutxftxqutxp        (3.4) 

 

 The function pdepe solves PDEs involving first derivatives of time and up to 

second derivatives of space.  The equations of motion for the flexible ring model include 

second derivatives of time and fourth derivatives of space.  These terms must be reduced 

to first derivatives of time and, at most, second derivatives of space before they can be 

substituted into the “pdepe” function.  In order to reduce the order of the equations, one 

must introduce a couple of new variables.  The value of m in equation (3.2) is zero in this 

analysis. 

 

For this analysis, five variables will be used as follows: 
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The equations of motion (equation 3.1) in terms of the variables u transform to the 

following five equations, which are first order in time and at most second order in space 

in terms of the respective derivatives. 
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The coefficients, initial conditions, and boundary conditions to be used in equation (3.2) 

for “pdepe” are as follows: 
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The boundary conditions corresponding to the experiments of Chapter 2 read as follows: 

    03555  
bb vv   (3.10a) 

    03555    bb vv   (3.10b) 

 

       03.02sin*01.03555  dttww bb    (3.10c) 

          tdtdttww bb 222cos*01.03555       (3.10d) 
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The initial conditions are written as 
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    03.00,3550,5  
bb ww        (3.11a) 

    dww bb 2*01.00,3550,5           (3.11b) 

For all other   
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For the MATLAB code, the initial and boundary conditions are constructed as shown 

below. 
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For 355  
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 (3.13e) 

The points around the circumference of the tire are discretized into a set of one hundred 

and one equally distributed points around the tire starting at 5 from the bottom of the tire 

and ending at 355  from the bottom of the tire.  The gap in the solution at the bottom of 
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the tire mimics the contact patch where the tire is loaded by the ground (or test fixture).  

The MATLAB file used to perform these analyses and the coefficients used are provided 

in the Appendix. 

 

The initial and boundary conditions presented above describe a fixed sine sweep input at 

the bottom of the tire that takes the form 

 

    03.02sin01.0  dttu         (3.14) 

 

The sine sweep has amplitude of .01 meters, and this sweep has an initial loaded offset of 

.03 meters.  The variables   and d  are varied throughout the test runs in order to excite 

the desired range of frequencies. 

 

An attempt was also made to analyze the flexible ring model with added damping and 

nonlinear stiffness terms.  Damping terms took the form 

 bd wKf           (3.15) 

where Kd is the damping coefficient, which could take real or imaginary values. 

Nonlinear cubic stiffness terms took the form 

 3
bn wKf           (3.16) 

where Kn is the stiffness coefficient and took strictly real values. 

 

These additional terms were added to the Matlab function in the “s” coefficient in 

equation (3.9).  The new “s” coefficient reads as 
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with the damping terms, and as 
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with the cubic stiffness terms. 
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3.2 Parameters and Numerical Solution 

 
  
 

 
 
 

 In Table 3.1, the parameters used for these analyses are shown.  These are the 

same as those used by Zegelaar (1997) for a passenger vehicle tire.  The author was 

unable to determine accurate values for many parameters for the heavily loaded tire.  

Since the parameter values do not correspond to the heavily loaded tire of this analysis, 

Table 3.1: Parameters used in model studies 
following Zegelaar (1997) 
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the goal is to carry out a qualitative comparison with the experimental results showed 

earlier.  The frequencies of the modes are not expected to match up, but the mode shapes 

and the general profile of the frequency response functions may. 

 The analysis was attempted by using the flexible ring model with only the radial 

direction terms.  These attempts showed results that were not reasonable for the system in 

question.  This analysis showed that the flexible ring model is not valid for only one 

variable when the tangential displacement is neglected. 

 If the errors that accumulated during the experiment had been handled better, the 

spread of the FRFs could have come out looking more like those of the analytical model.  

It is easy to pick out the peaks of the FRFs for the flexible ring model since there are no 

errors stemming from the test setup and the orientations of all measured points around the 

tire are identical.  The sharp peaks in the flexible ring model also suggest that the actual 

tire system has a significantly larger amount of damping. 

 In most modal experiments, the phase values at the peaks of the FRFs and the 

output response tend to be around 90.  The fact that the phase of the FRFs for the 

experimental data are spread over the entire phase band and was not around 90 degrees 

suggest that there may be complex damping in the system that could spread the phase 

response (Ewins, 2000). 

 
 

3.3 Model Results 

 

In this section, the results obtained from the MATLAB PDE solver are shown for 

the flexible ring model when it is excited by a harmonic excitation at the base of the tire.  
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The modal response is obtained for the basic flexible ring model as well as for the 

flexible ring model with added real damping, complex damping, and cubic stiffness 

terms.  The FRFs between the radial displacements at multiple locations around the tire 

and the input displacements at the base of the tire are obtained and presented. 

In Figure 3.1, the modal response for the flexible ring model with no damping is 

shown.  The flexible modes shapes for the flexible ring model with no damping are 

shown in Figure 3.2.  In Figures 3.3, 3.4, and 3.5 the modal response FRFs for the 

flexible ring model with added complex damping, combined damping, and cubic stiffness 

terms respectively are shown. 

In Table 3.2, a summary of the systems solved is shown.  The nature and 

amplitude of the nonlinear terms, the frequency range solved, and the frequencies of the 

first three modes are presented.  The flexible ring model system with regular damping of 

magnitude 1.0E+4 Ns/m is over damped as seen in Figure 3.4.  The flexible ring model 

systems with complex damping were all missing the first mode from the normal flexible 

ring model with no damping that corresponds to the rigid mode of the tire. 

Table 3.2: Flexible Ring Model Results Summary 
 

Type Amplitude, K 
Frequency 
range solved 

Frequency of 
the 1st mode 

Frequency of 
the 2nd mode 

Frequency of 
the 3rd mode note 

Normal - 80-150 97.19 120.2 140.8  
Damping 1.0E+3 Ns/m 0-250 97.2 120.2 140.8  
Damping 1.0E+4 Ns/m 0-250 - - - overdamped 
       
Cubic 
Stiffness 1.0E+6 N/m3 0-200 100.2 121.6 140.6 No change 
Cubic 
Stiffness 1.0E+7 N/m3  0-200 100.2 121.6 140.6 No change 
Cubic 
Stiffness 1.0E+8 N/m3 0-200 99.8 122.2 145  
       
Damping 1.0E+5j Ns/m 0-250 - 38.2 47.6 no rigid mode 
Damping 1.0E+6j Ns/m 0-10 - 4.26 5.28 no rigid mode 
Damping 5.0E+5j Ns/m 0-5 - 8.15 9.8 no rigid mode 
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a)  FRFs for one hundred and one equally distributed points around the tire. 
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b)  Representative plots at 90o and 180o. 
 

Figure 3.1:  FRFs of radial displacement at different locations on the tire to input 
displacement. Predictions of the flexible ring model are shown. The different locations 
around the tire where the flexible ring model predictions were made are shown by a 
different color.  The red line with amplitude of one for all frequencies correspond to the 
points at the base of the tire where the input was applied, hence, the corresponding FRF 
magnitude is 1. 
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a)  1st flexible mode, 97.19 Hz, flexible ring model with no damping 
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b)  2nd flexible mode, 120.2 Hz, flexible ring model with no damping 
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 c)  3rd flexible mode, 140.8 Hz, flexible ring model with no damping 

 
Figure 3.2: First three modes predicted by the flexible ring model with no 
damping.  The dashed line in each figure corresponds to the nominal position, and 
the lines in blue and green correspond to the extremes of the mode shape motions. 
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a) FRFs for one hundred and one equally distributed points around the tire. 
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b)  Representative plots at 90o and 180o. 
 

Figure 3.3:  FRFs of radial displacement at different locations on the tire to input 
displacement. Predictions of the flexible ring model with regular damping, with 
magnitude 1e3 Ns/m, are shown. The different locations around the tire where the 
flexible ring model predictions were made are shown by a different color.  The red line 
with amplitude of one for all frequencies correspond to the points at the base of the tire 
where the input was applied, hence, the corresponding FRF magnitude is 1. 
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a) FRFs for one hundred and one equally distributed points around the tire. 
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b)  Representative plots at 90o and 180o. 
 

Figure 3.4:  FRFs of radial displacement at different locations on the tire to input 
displacement. Predictions of the flexible ring model with regular damping, with 
magnitude 1e4 Ns/m, are shown. The different locations around the tire where the 
flexible ring model predictions were made are shown by a different color.  The red line 
with amplitude of one for all frequencies correspond to the points at the base of the tire 
where the input was applied, hence, the corresponding FRF magnitude is 1. 
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a)  FRFs for one hundred and one equally distributed points around the tire. 
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b)  Representative plots at 90o and 180o. 
 

Figure 3.5:  FRFs of radial displacement at different locations on the tire to input 
displacement. Predictions of the flexible ring model with complex damping, with 
magnitude 1e5j Ns/m, are shown. The different locations around the tire where the 
flexible ring model predictions were made are shown by a different color.  The red line 
with amplitude of one for all frequencies correspond to the points at the base of the tire 
where the input was applied, hence, the corresponding FRF magnitude is 1. 
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a) 2nd flexible mode, 38.2 Hz, flexible ring model with complex damping Kd=1e5j 
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b) 3rd flexible mode, 47.6 Hz, flexible ring model with complex damping Kd=1e5j 

 
Figure 3.6: First three modes predicted by the flexible ring model with complex 
damping of magnitude Kd=1e5j.  The dashed line in each figure corresponds to the 
nominal position, and the lines in blue and green correspond to the extremes of 
the mode shape motions. 
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a)  FRFs for one hundred and one equally distributed points around the tire. 
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b)  Representative plots at 90o and 180o. 
 

Figure 3.7:  FRFs of radial displacement at different locations on the tire to input 
displacement. Predictions of the flexible ring model with complex damping, with 
magnitude 5e5j Ns/m, are shown. The different locations around the tire where the 
flexible ring model predictions were made are shown by a different color.  The red line 
with amplitude of one for all frequencies correspond to the points at the base of the tire 
where the input was applied, hence, the corresponding FRF magnitude is 1. 
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a)  2nd flexible mode, 8.15 Hz, flexible ring model with complex damping Kd=5e5j 
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b) 3rd flexible mode, 9.80 Hz, flexible ring model with complex damping Kd=5e5j 

 
 
Figure 3.8: First three modes predicted by the flexible ring model with complex 
damping of magnitude Kd=5e5j.  The dashed line in each figure corresponds to the 
nominal position, and the lines in blue and green correspond to the extremes of 
the mode shape motions. 
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a)  FRFs for one hundred and one equally distributed points around the tire. 
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b)  Representative plots at 90o and 180o. 
 

Figure 3.9:  FRFs of radial displacement at different locations on the tire to input 
displacement. Predictions of the flexible ring model with complex damping, with 
magnitude 1e6j Ns/m, are shown. The different locations around the tire where the 
flexible ring model predictions were made are shown by a different color.  The red line 
with amplitude of one for all frequencies correspond to the points at the base of the tire 
where the input was applied, hence, the corresponding FRF magnitude is 1. 
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 a) 2nd flexible mode, 4.26 Hz, flexible ring model with complex damping Kd=1e6j 
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 b) 3rd flexible mode, 5.28 Hz, flexible ring model with complex damping Kd=1e6j 

  
Figure 3.10: First three modes predicted by the flexible ring model with complex 
damping of magnitude Kd=1e6j.  The dashed line in each figure corresponds to the 
nominal position, and the lines in blue and green correspond to the extremes of 
the mode shape motions. 
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a)  FRFs for one hundred and one equally distributed points around the tire. 

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4
Flexible Ring Model FRF, Cubic Stiffness=1e6

A
m

pl
itu

de

 

 
90
180

0 20 40 60 80 100 120 140 160 180 200
-4

-2

0

2

4

Frequency

P
ha

se

 
b)  Representative plots at 90o and 180o. 
 

Figure 3.11:  FRFs of radial displacement at different locations on the tire to input 
displacement. Predictions of the flexible ring model with cubic stiffness, with magnitude 
1e6 N/m3, are shown. The different locations around the tire where the flexible ring 
model predictions were made are shown by a different color.  The red line with amplitude 
of one for all frequencies correspond to the points at the base of the tire where the input 
was applied, hence, the corresponding FRF magnitude is 1. 
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a)  FRFs for one hundred and one equally distributed points around the tire. 
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b)  Representative plots at 90o and 180o. 
 

Figure 3.12:  FRFs of radial displacement at different locations on the tire to input 
displacement. Predictions of the flexible ring model with cubic stiffness, with magnitude 
1e7 N/m3, are shown. The different locations around the tire where the flexible ring 
model predictions were made are shown by a different color.  The red line with amplitude 
of one for all frequencies correspond to the points at the base of the tire where the input 
was applied, hence, the corresponding FRF magnitude is 1. 
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a)  FRFs for one hundred and one equally distributed points around the tire. 
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b)  Representative plots at 90o and 180o. 
 

Figure 3.13:  FRFs of radial displacement at different locations on the tire to input 
displacement. Predictions of the flexible ring model with cubic stiffness, with magnitude 
1e8 N/m3, are shown. The different locations around the tire where the flexible ring 
model predictions were made are shown by a different color.  The red line with amplitude 
of one for all frequencies correspond to the points at the base of the tire where the input 
was applied, hence, the corresponding FRF magnitude is 1. 
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 The natural frequencies for the loaded original flexible ring model from this 

analysis matched the results from Zegelaar’s work for the passenger tire, in which natural 

frequencies of 98.1 Hz, 121.8 Hz, and 143.9 Hz were observed for the first three modes 

(Zegelaar, 1997).  The natural frequencies for the flexible ring model with added 

nonlinear terms did not change significantly unless there was complex damping present 

in the system. 

 The frequency response functions for the flexible ring model with no damping, 

conventional damping, and nonlinear stiffness terms all have fairly sharp peaks and they 

do not have the slight peak variations from one point on the tire to the next that the results 

of the experimental modal analyses for the heavily loaded tire show, see Figures 3.1, 3.3, 

3.11, 3.12, and 3.13.  The addition of these terms does not affect the overall shapes of the 

frequency response functions or the mode shapes.  The modes appear at consistent 

frequency intervals from one another.  The cubic stiffness terms did not significantly 

affect the natural frequencies of the modes until the magnitude reached 3/81 mNe . 

  When a larger complex damping term is added to the flexible ring model, a large 

change in the frequency response function is seen.  In Figure 3.8, there is a lot of noise in 

the response of the system due to the sine sweep input.  The mode shapes should be 

smooth curves and the noise can be attributed to inaccuracies in the numerical solution 

provided by the ‘pdepe’ function in MATLAB.  In Figure 3.7 and Figure 3.9, the 

amplitude and the phase of the frequency-response functions are shown for the flexible 

ring model with a large complex damping term.  The modal frequencies are no longer at 

consistent frequency intervals, and the peaks of the frequency response function for all of 

the points around the circumference of the tire do not all match up around the natural 



 

 70 
 

frequencies as was seen in the previous cases.  This phenomenon is very similar to what 

was observed in the experimental modal analyses.  The variance was attributed to errors 

accumulated during the experimental setup but it could also be caused by a large complex 

damping inherent in the system (Ewins, 2000).  The present analysis is not conclusive 

about the influence of nonlinearities.  Further studies are needed to understand them. 
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Chapter 4 

 

Extension of ERPC Framework 

 

4.1 Transfer Function for a Multi-Degree-of-Freedom Tire Model 

 

 The current ERPC tire model uses a single degree-of-freedom model to represent 

the tire system, as shown in Figure 4.1.  The different parameters shown in this figure are 

as follows: 

 1M :  mass of the sprung mass, M 

 2M : effective tire mass in the vertical direction, MMtm 

 spx : vertical displacement of the spindle mass 

 0x : vertical displacement of the tire mass 

 Rx : vertical displacement of the road 

  

  The goal of the tire model is to determine xR in terms of the spindle 

displacement, xsp, and the spindle force, Fsp.  The relationships between the road 

displacement and the spindle displacement and forces are used in the ERPC process to 

predict the road profile for a measured set of spindle parameters.  The equations of 

motion for the two masses are given by 
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Figure 4.1:  Spring and damper tire model used in 
ERPC. 
 

xR 

yR 

      tFxxCxxKxM spspxxspxxsp  001      (4.1) 

         0000002  spxxspxxRxxRxx xxCxxKxxCxxKxM    (4.2) 

After carrying out Laplace transforms of equations (4.1) and (4.2) and setting the initial 

conditions to zero, the result is 

      xxxxspxxxxsp sCKXsFsCKMsX  01
2     (4.3) 

       022 02
2  xxxxspxxxxRxxxx sCKXsCKXXsCKMs   (4.4) 

Solving for X0 from (4.3) leads to  

 
   

 xxxx

spxxxxsp

sCK
sFsCKMsX

X



 1

2

0      (4.5) 

On substituting (4.5) into (4.4), the result is 

      
  sp

xxxx

spxxxxsp
xxxxR X

sCK

sFsCKMsX
sCKMsX 




 2

1
2

2
2 22   (4.6) 

This is the formula used for prediction of the Effective Road Profile in the ERPC scheme. 
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 When an additional degree of freedom is included in the longitudinal directions, 

the system gets a little more complex.  The upper portion of the tire model between the 

spindle and the tire mass is not directly connected by an axial spring-damper system in 

the longitudinal direction.  It is instead connected by a torsional spring about the mass M, 

as shown in Figure 4.2.  The location of the tire mass stays the same for the vertical and 

longitudinal directions; it is between the spindle and the road contact point.  This makes 

things a little more complicated since the spring and damper values are not the same 

between the spindle and the tire mass and the tire mass and road, in the longitudinal 

direction.  The parameters used for the longitudinal direction areas follows: 

 3M :  effective tire mass in the longitudinal (y) direction 

 1I : rotational inertia of the sprung mass, M 

 spy :  longitudinal displacement of the spindle 

 0y : longitudinal displacement of the tire mass 

Ry : longitudinal displacement of the road 
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 The equations of motion for the longitudinal direction are 

        tTCKI spspsp   
 ˆˆ

1̂       (4.7) 

         0ˆˆ
0003  spspRyyRyy CKyyCyyKyM  

    (4.8)  

where sp  can be approximated as  

 
R

yy sp
sp


 0         (4.9) 

and the coefficients K̂  and Ĉ have the appropriate dimensions. 

After substituting (4.9) into (4.7) and (4.8) and altering the coefficients to absorb R, the 

respective equations become 

        tTyyCyyKyyI spspsp   0001      (4.10) 

         0000003  spspRyyRyy yyCyyKyyCyyKyM    (4.11) 

θ 

ysp 

T 

yR 

y0 

Kθθ, 
Cθθ 

Kyy, Cyy 

1̂I

R 

3M

Figure 4.2:  Spring and damper tire model for use in 
ERPC in the longitudinal direction. 
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After carrying out Laplace transforms of equations (4.10) and (4.11) and setting the 

initial conditions to zero, the result is 

      1
2

1
2

0 IssCKYIssCKYsT sp      (4.12) 

       003
2   sCKYsCKYYsCKsCKMs spyyyyRyyyy   (4.13) 

Solving for Y0 from equation (4.12), the result is 

 
   

 1
2

1
2

0 IssCK
IssCKYsT
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

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On substituting (4.14) into (4.13), the result is 
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1
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1
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3
2   (4.15) 

 

 The tire model becomes complex when one starts to include coupling terms 

involving the vertical and longitudinal motions.  If one assumes that there is no coupling 

between the spindle and the tire mass, but that there is coupling between the tire mass and 

the road, the equations of motion simplify to 

      tFxxCxxKxM spspxxspxxsp  001      (4.16) 

        tTyyCyyKyyI spspsp   0001      (4.17) 

            000000002  RxyRxyspxxspxxRxxRxx yyCyyKxxCxxKxxCxxKxM   (4.18) 

            000000003  RyxRyxspspRyyRyy xxCxxKyyCyyKyyCyyKyM    (4.19) 

After carrying out Laplace transforms and setting the initial conditions to zero, the result 

is 
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      xxxxspxxxxsp sCKXsFsCKMsX  01
2     (4.20) 

      sTIssCKTIssCKY sp  1
2

1
2

0     (4.21)  

         022 002
2  xyxyRxxxxspxxxxRxxxx sCKYYsCKXsCKXXsCKMs  (4.22) 

         0003
2  yxyxRspyyyyRyyyy sCKXXsCKYsCKYYsCKsCKMs   (4.23) 

It is possible to solve these equations for RX  and RY , but it is easier to deal with system 

matrix form; that is, 
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If we assume that there is coupling between the spindle and the tire mass, the equations 

of motion become 
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 (4.26) 
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After taking Laplace transforms and setting the initial conditions to zero, the result is 
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Solving for 
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One can then solve for 
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 (4.31) 

While solvable this system is much more complicated than the single-degree-of-freedom 

model with no coupling that is currently being used in ERPC. 
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4.2 Connections with Earlier Work 

 
 
 Determining the value for the parameters in the tire stiffness model is not very 

complicated for a single degree-of-freedom system.  It is much more complicated to 

determine the parameters for a multi-degree-of-freedom system.  The coupling stiffness 

and damping terms are especially difficult to determine.  The previous work done in the 

earlier chapters of this thesis can be used to help determine these parameters. 

 The natural frequencies and mode shapes of the tire obtained in the experimental 

modal analysis can be used to help determine the stiffness and mass parameters to be 

used with the tire stiffness model for ERPC.  The coupling terms are not be easily 

extractable but that is a possibility for future work. 

 The flexible ring model proposed in Chapter 3 with added damping values can 

also be used to determine the parameters needed for the ERPC tire stiffness model.  By 

performing a parameter study on the flexible ring model, the stiffness terms could be 

identified for use in the ERPC model.  Further investigation into finding an accurate 

value for the complex damping term used in the flexible ring model may also lead to 

accurate damping terms for use in the ERPC tire model. 

 One way to incorporate the modal analysis data into the ERPC process is to use a 

modal superposition method for the tire model.  Once one knows the modes, the response 

of the system can be defined as some linear combination of its modes.  If one knows all 

of the modes of the tire in all directions, one would just need an accurate way to 

determine the modal excitations for a given input signal to determine the tire tread 
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response.  The modal excitation for a given mode is the amount that mode is excited by a 

given input.  Since one is interested in only the displacement of the tire contact patch, one 

can limit the points on the spatial profile to just to those at the contact patch, which would 

make the computations much easier.  The only hard part is to determine the modal 

excitations for a given input signal. 
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Chapter 5 

 

Concluding Remarks 

 

5.1 Contributions to the Field 

 

 The work in this thesis is one of the first on vibration characteristics of heavily 

loaded vehicle tires.  The experimental modal analysis and the resulting natural 

frequencies and mode shapes obtained provide some information reported for the first 

time for this class of vehicle tire.  Natural frequencies and mode shapes were obtained in 

the radial, tangential, and longitudinal directions, and this information can be used in any 

number of vehicle handling and durability studies.  The mode shapes are similar to those 

found in passenger vehicles but located at much lower frequencies, and the modes could 

be easier to excite during normal operations.  The spacing of the natural frequencies for 

the heavily loaded vehicle tire differs from the spacing of the corresponding modes for a 

passenger vehicle tire.  The profile of the FRFs used to determine the natural frequencies 

and mode shapes also differ significantly from a heavily loaded vehicle tire to a 

passenger vehicle tire.  Also, in the experiments, some coupling between modes in 

different spatial directions was observed.  This has not been reported before for passenger 

vehicle tires. 

 The flexible ring model has been studied along with the addition of complex 

damping terms and nonlinear terms in the form of cubic stiffness terms.  The addition of 
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these nonlinear terms may explain some of the differences between the response of 

passenger car tires and heavily loaded vehicle tires seen in the experimental modal 

analysis.  However, further work is needed before any conclusive statements can be 

made.  The flexible ring model with a large amount of complex damping has response 

FRFs that look qualitatively similar to those found in the experimental modal analysis for 

a heavily loaded vehicle tire. 

 The study into expanding the single degree-of-freedom tire model used in ERPC 

into one with multiple degrees of freedom and inclusion of coupling between the degrees 

of freedom could enhance the accuracy of the model if coupling is found to be significant 

in heavily loaded vehicle tires.  This tire model could also be used in various dynamics 

modeling packages where any increase in the accuracy of tire models greatly increases 

the accuracy of the predicted response of the vehicle.  The Army Materiel Systems 

Analysis Activity at the Aberdeen Proving Grounds, MD uses many such dynamics 

modeling packages, such as DADS, VirtualLab, and ADAMS, where accurate tire 

models are necessary for performing physics of failure analyses on military vehicles. 

 
 

5.2 Suggestions for Future Work 

 
 There is a lot of work that remains to be done for the characterization of heavily 

loaded vehicle tires.  The experimental modal analysis performed in this thesis helps 

understand the modes and mode shapes for the heavily loaded tire in all three dimensions.  

However, one of the main assumptions used in the analysis is that there is no coupling 

between the modes of the tire.  The coupling between motion along different directions is 
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an area where more analysis is needed.  Determining a method to perform experimental 

modal analysis on the data gathered for this thesis while taking into account possible 

coupling effects between the modes along different directions in the system would be a 

large endeavor and a definite possible area for future work. 

 The analytical model presented in this paper is the flexible ring model proposed 

by Gong (1993).  The parameters used in the analysis are not quantitatively relevant to 

the heavily loaded tire analyzed.  The refining of these parameters for the heavily loaded 

tire is needed, if the model is to be used effectively to determine the response of the 

heavily loaded tire.  The effect of the complex damping term needs to be studied.  In this 

thesis, it was shown that by adding a complex damping term to the flexible ring model, a 

large difference is made in the response of the tire and it could be indicative of the 

irregular tire response in the experimental modal analysis.  Determining an accurate value 

for the complex damping term could be very useful for the eventual incorporation of the 

multi-degree-of-freedom tire model in the ERPC process. 

 In this thesis, the author has looked at a very simple form of coupling in the tire 

stiffness model that could be used in the ERPC process.  Further investigations into 

possible coupling terms and multi-degree-of-freedom tire models would be of great 

benefit to the ERPC efforts at the Roadway Simulator in Aberdeen Proving Ground, 

Maryland.  The refinement of the multi-degree-of-freedom model and the parameters 

used within is also an area that could use more work in the future. 
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 Appendix and Programs 
 

loadRPCdata_generic_all_Accel 

This program loads the data obtained from testing and then performs the experimental 
modal analysis by creating FRF’s, fitting single-degree-of-freedom systems to each point 
around the tire and approximating the modal amplitudes by minimizing the resulting 
error.  The modal analysis is repeated for a large frequency range and the natural 
frequencies are picked up as the minimum of the errors. 
 

clear 

 
%************************************************************************** 
% YOU MUST ADD THE atcplotter FOLDER TO YOU MATLAB PATH BEFORE YOU RUN THIS 
% M-FILE 
%************************************************************************** 
 
load 50psi_sweep.mat %Insert file name and directory here 
% [userData.timeHistory, full_scales, units, desc, samplePeriod] = 
RPCread3([filename]); 
% % generate time vector and channel list 
% numSamples  = size(userData.timeHistory, 1); 
% userData.time = (0:(numSamples-1)) * samplePeriod; 
% chan_list = chanlist(desc); 
 
 
num1=size(sweep_50psi_1_somat.data); 
time1 =(0:(num1(1)-1))/1000 ; 
num1a=size(sweep_50psi_1_adocs.data); 
time1a =(0:(num1a(1)-1))/1000 ; 
num2=size(sweep_50psi_2_somat.data); 
time2 =(0:(num2(1)-1))/1000 ; 
num2a=size(sweep_50psi_2_adocs.data); 
time2a =(0:(num2a(1)-1))/1000 ; 
num3=size(sweep_50psi_3_somat.data); 
time3 =(0:(num3(1)-1))/1000 ; 
num3a=size(sweep_50psi_3_adocs.data); 
time3a =(0:(num3a(1)-1))/1000 ; 
 
 
% [B,A]=butter(2,5*2*pi,'high','s') 
% [B,A]=butter(2,[5 150]/500) 
[B,A]=butter(2,5/500,'high'); 
 
 
%somat 
 
A1x1 = filtfilt(B,A,sweep_50psi_1_somat.data(:,1)); 
A1y1 = filtfilt(B,A,sweep_50psi_1_somat.data(:,2)); 
A1z1 = filtfilt(B,A,sweep_50psi_1_somat.data(:,3)); 
A2x1 = filtfilt(B,A,sweep_50psi_1_somat.data(:,5)); 
A2y1 = filtfilt(B,A,sweep_50psi_1_somat.data(:,6)); 
A2z1 = filtfilt(B,A,sweep_50psi_1_somat.data(:,7)); 
A3x1 = filtfilt(B,A,sweep_50psi_1_somat.data(:,8)); 
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A3y1 = filtfilt(B,A,sweep_50psi_1_somat.data(:,9)); 
A3z1 = filtfilt(B,A,sweep_50psi_1_somat.data(:,10)); 
A4x1 = filtfilt(B,A,sweep_50psi_1_somat.data(:,11)); 
A4y1 = filtfilt(B,A,sweep_50psi_1_somat.data(:,12)); 
A4z1 = filtfilt(B,A,sweep_50psi_1_somat.data(:,13)); 
F1=filtfilt(B,A,sweep_50psi_1_somat.data(:,4)); 
 
A1x2 = filtfilt(B,A,sweep_50psi_2_somat.data(:,1)); 
A1y2 = filtfilt(B,A,sweep_50psi_2_somat.data(:,2)); 
A1z2 = filtfilt(B,A,sweep_50psi_2_somat.data(:,3)); 
A2x2 = filtfilt(B,A,sweep_50psi_2_somat.data(:,5)); 
A2y2 = filtfilt(B,A,sweep_50psi_2_somat.data(:,6)); 
A2z2 = filtfilt(B,A,sweep_50psi_2_somat.data(:,7)); 
A3x2 = filtfilt(B,A,sweep_50psi_2_somat.data(:,8)); 
A3y2 = filtfilt(B,A,sweep_50psi_2_somat.data(:,9)); 
A3z2 = filtfilt(B,A,sweep_50psi_2_somat.data(:,10)); 
A4x2 = filtfilt(B,A,sweep_50psi_2_somat.data(:,11)); 
A4y2 = filtfilt(B,A,sweep_50psi_2_somat.data(:,12)); 
A4z2 = filtfilt(B,A,sweep_50psi_2_somat.data(:,13)); 
F2=filtfilt(B,A,sweep_50psi_2_somat.data(:,4)); 
 
A1x3 = filtfilt(B,A,sweep_50psi_3_somat.data(:,1)); 
A1y3 = filtfilt(B,A,sweep_50psi_3_somat.data(:,2)); 
A1z3 = filtfilt(B,A,sweep_50psi_3_somat.data(:,3)); 
A2x3 = filtfilt(B,A,sweep_50psi_3_somat.data(:,5)); 
A2y3 = filtfilt(B,A,sweep_50psi_3_somat.data(:,6)); 
A2z3 = filtfilt(B,A,sweep_50psi_3_somat.data(:,7)); 
A3x3 = filtfilt(B,A,sweep_50psi_3_somat.data(:,8)); 
A3y3 = filtfilt(B,A,sweep_50psi_3_somat.data(:,9)); 
A3z3 = filtfilt(B,A,sweep_50psi_3_somat.data(:,10)); 
A4x3 = filtfilt(B,A,sweep_50psi_3_somat.data(:,11)); 
A4y3 = filtfilt(B,A,sweep_50psi_3_somat.data(:,12)); 
A4z3 = filtfilt(B,A,sweep_50psi_3_somat.data(:,13)); 
F3=filtfilt(B,A,sweep_50psi_3_somat.data(:,4)); 
 
 
 
%adocs 
 
Fvert1=filtfilt(B,A,sweep_50psi_1_adocs.data(:,1)); 
Flat1=filtfilt(B,A,sweep_50psi_1_adocs.data(:,2)); 
Flong1=filtfilt(B,A,sweep_50psi_1_adocs.data(:,3)); 
ATlat1=filtfilt(B,A,sweep_50psi_1_adocs.data(:,4)); 
ATlong1=filtfilt(B,A,sweep_50psi_1_adocs.data(:,5)); 
 
Fvert2=filtfilt(B,A,sweep_50psi_2_adocs.data(:,1)); 
Flat2=filtfilt(B,A,sweep_50psi_2_adocs.data(:,2)); 
Flong2=filtfilt(B,A,sweep_50psi_2_adocs.data(:,3)); 
ATlat2=filtfilt(B,A,sweep_50psi_2_adocs.data(:,4)); 
ATlong2=filtfilt(B,A,sweep_50psi_2_adocs.data(:,5)); 
 
Fvert3=filtfilt(B,A,sweep_50psi_3_adocs.data(:,1)); 
Flat3=filtfilt(B,A,sweep_50psi_3_adocs.data(:,2)); 
Flong3=filtfilt(B,A,sweep_50psi_3_adocs.data(:,3)); 
ATlat3=filtfilt(B,A,sweep_50psi_3_adocs.data(:,4)); 
ATlong3=filtfilt(B,A,sweep_50psi_3_adocs.data(:,5)); 
 
% fits 
 
%%1 
% t1i=24; 
% p1i=t1i*1000+1; 
% t1f=600; 
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% p1f=t1f*1000+1; 
% dt1=9.347+.062-.0420; 
% dp1=dt1*1000; 
%  
% F1f=F1(p1i:p1f); 
% time1f=time1(p1i:p1f); 
% Flong1f=Flong1(p1i+dp1:p1f+dp1); 
%  
% ATlong1f=ATlong1(p1i+dp1:p1f+dp1); 
% A1y1f=A1y1(p1i:p1f); 
% A2y1f=A2y1(p1i:p1f); 
% A3y1f=A3y1(p1i:p1f); 
% A4y1f=A4y1(p1i:p1f); 
 
% [T1y1f,w1y]=tfestimate(ATlong1f,A1y1f,[],[],[],1000); 
% [T2y1f,w2y]=tfestimate(ATlong1f,A2y1f,[],[],[],1000); 
% [T3y1f,w3y]=tfestimate(ATlong1f,A3y1f,[],[],[],1000); 
% [T4y1f,w4y]=tfestimate(ATlong1f,A4y1f,[],[],[],1000); 
[T1y1,w1y]=tfestimate(F1,A1y1,[],[],[],1000); 
[T2y1,w2y]=tfestimate(F1,A2y1,[],[],[],1000); 
[T3y1,w3y]=tfestimate(F1,A3y1,[],[],[],1000); 
[T4y1,w4y]=tfestimate(F1,A4y1,[],[],[],1000); 
%2 
% t2i=15; 
% p2i=t2i*1000+1; 
% t2f=600; 
% p2f=t2f*1000+1; 
% dt2=.4750+.012-.023+.006+.056; 
% dp2=dt2*1000; 
%  
% F2f=F2(p2i:p2f); 
% time2f=time2(p2i:p2f); 
% Flong2f=Flong2(p2i+dp2:p2f+dp2); 
%  
% ATlong2f=ATlong2(p2i+dp2:p2f+dp2); 
% A1y2f=A1y2(p2i:p2f); 
% A2y2f=A2y2(p2i:p2f); 
% A3y2f=A3y2(p2i:p2f); 
% A4y2f=A4y2(p2i:p2f); 
 
% [T1y2f,w1y]=tfestimate(ATlong2f,A1y2f,[],[],[],1000); 
% [T2y2f,w2y]=tfestimate(ATlong2f,A2y2f,[],[],[],1000); 
% [T3y2f,w3y]=tfestimate(ATlong2f,A3y2f,[],[],[],1000); 
% [T4y2f,w4y]=tfestimate(ATlong2f,A4y2f,[],[],[],1000); 
[T1y2,w1y]=tfestimate(F2,A1y2,[],[],[],1000); 
[T2y2,w2y]=tfestimate(F2,A2y2,[],[],[],1000); 
[T3y2,w3y]=tfestimate(F2,A3y2,[],[],[],1000); 
[T4y2,w4y]=tfestimate(F2,A4y2,[],[],[],1000); 
%3 
% t3i=15; 
% p3i=t3i*1000+1; 
% t3f=600; 
% p3f=t3f*1000+1; 
% dt3=0-1.345+.028; 
% dp3=dt3*1000; 
%  
% F3f=F3(p3i:p3f); 
% time3f=time3(p3i:p3f); 
% Flong3f=Flong3(p3i+dp3:p3f+dp3); 
%  
% ATlong3f=ATlong3(p3i+dp3:p3f+dp3); 
% A1y3f=A1y3(p3i:p3f); 
% A2y3f=A2y3(p3i:p3f); 
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% A3y3f=A3y3(p3i:p3f); 
% A4y3f=A4y3(p3i:p3f); 
 
% [T1y3f,w1y]=tfestimate(ATlong3f,A1y3f,[],[],[],1000); 
% [T2y3f,w2y]=tfestimate(ATlong3f,A2y3f,[],[],[],1000); 
% [T3y3f,w3y]=tfestimate(ATlong3f,A3y3f,[],[],[],1000); 
% [T4y3f,w4y]=tfestimate(ATlong3f,A4y3f,[],[],[],1000); 
[T1y3,w1y]=tfestimate(F3,A1y3,[],[],[],1000); 
[T2y3,w2y]=tfestimate(F3,A2y3,[],[],[],1000); 
[T3y3,w3y]=tfestimate(F3,A3y3,[],[],[],1000); 
[T4y3,w4y]=tfestimate(F3,A4y3,[],[],[],1000); 
 
[T1,W1y]=tfestimate(ATlong1,Flong1,[],[],[],1000); 
[T2,W2y]=tfestimate(ATlong2,Flong2,[],[],[],1000); 
[T3,W3y]=tfestimate(ATlong3,Flong3,[],[],[],1000); 
 
T1y1f=T1y1.*T1; 
T2y1f=T2y1.*T1; 
T3y1f=T3y1.*T1; 
T4y1f=T4y1.*T1; 
T1y2f=T1y2.*T2; 
T2y2f=T2y2.*T2; 
T3y2f=T3y2.*T2; 
T4y2f=T4y2.*T2; 
T1y3f=T1y3.*T3; 
T2y3f=T2y3.*T3; 
T3y3f=T3y3.*T3; 
T4y3f=T4y3.*T3; 
 
 
[C,D]=butter(2,5/500,'low') 
HH(5,:)=filtfilt(C,D,T1y1f); 
HH(7,:)=filtfilt(C,D,T2y1f); 
HH(2,:)=filtfilt(C,D,T3y1f); 
HH(10,:)=filtfilt(C,D,T4y1f); 
HH(4,:)=filtfilt(C,D,T1y2f); 
HH(8,:)=filtfilt(C,D,T2y2f); 
HH(1,:)=filtfilt(C,D,T3y2f); 
HH(11,:)=filtfilt(C,D,T4y2f); 
HH(6,:)=filtfilt(C,D,T1y3f); 
HH(9,:)=filtfilt(C,D,T2y3f); 
HH(3,:)=filtfilt(C,D,T3y3f); 
HH(12,:)=filtfilt(C,D,T4y3f); 
 
% H11=HH(5,1:2.5e5); 
% H21=HH(7,1:2.5e5); 
% H31=HH(2,1:2.5e5); 
% H41=HH(10,1:2.5e5); 
% H12=HH(4,1:2.5e5); 
% H22=HH(8,1:2.5e5); 
% H32=HH(1,1:2.5e5); 
% H42=HH(11,1:2.5e5); 
% H13=HH(6,1:2.5e5); 
% H23=HH(9,1:2.5e5); 
% H33=HH(3,1:2.5e5); 
% H43=HH(12,1:2.5e5);     
% w01=linspace(w0(1)*.95,w0(1)*1.05,100); 
% w02=linspace(w0(2)*.95,w0(2)*1.05,100); 
% w03=linspace(w0(3)*.95,w0(3)*1.05,100); 
% w04=linspace(w0(4)*.95,w0(4)*1.05,100); 
% w05=linspace(w0(5)*.95,w0(5)*1.05,100); 
W11=w1y; 
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ii11=0; 
ii12=0; 
ii21=0; 
ii22=0; 
ii31=0; 
ii32=0; 
ii41=0; 
ii42=0; 
ii51=0; 
ii52=0; 
 
 
 
 
mm=1; 
Wcount1=resample(W11,1,1); 
Wcount=Wcount1(1:25000); 
 
w=[Wcount1';Wcount1';Wcount1';Wcount1';Wcount1';Wcount1';Wcount1';Wcount1';Wcou
nt1';Wcount1';Wcount1';Wcount1']; 
Jj=0; 
% w1=58.6 
w01=linspace(80,140,101) 
w02=linspace(43,68.4+2,7) 
w03=linspace(75,82+2,7) 
w04=linspace(84,101+2,7) 
w05=linspace(90,55,11) 
 
for j1=1:101 
for j2=1:1 
    for j3=1:1 
        for j4=1:1 
            for j5=1:1 
     
nn11=1; 
nn12=4; 
nn21=1; 
nn22=4; 
nn31=1; 
nn32=4; 
nn41=1; 
nn42=4; 
nn51=1; 
nn52=4;     
% w0=[w01(j1),w02(j2),w03(j3),w04(j4),w05(j5)] 
% w0=[52.1470,69.6147,81.4533,90.9244,101.3838] 
w0=[w01(j1),100,100,100,100] 
% w0=[44,53.28,63.31,79,93.88] 
Jj=Jj+1 
 
 
for i=1:5 
W0(i,:)=linspace(w0(i)*.95,w0(i)*1.05,100); 
end 
 
 
for j=1:5 
for i=1:100 
count(i,j)=find(min(abs(Wcount-W0(j,i)))==abs(Wcount-W0(j,i))); 
end 
end 
% k=1 
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kk1=linspace(0,10,4); 
kk2=linspace(0,10,4); 
kk3=linspace(0,10,4); 
kk4=linspace(0,10,4); 
kk5=linspace(0,10,4); 
% if Jj==1 
%     mm=1 
% else 
%     mm=20     
% end 
 
 
for ii=mm:20 
if ii==1 
kk1=linspace(0,10,4); 
kk2=linspace(0,10,4); 
kk3=linspace(0,10,4); 
kk4=linspace(0,10,4); 
kk5=linspace(0,10,4); 
else 
 kk1=linspace(kkk1(ii11),kkk1(ii12),4); 
kk2=linspace(kkk2(ii21),kkk2(ii22),4); 
kk3=linspace(kkk3(ii31),kkk3(ii32),4); 
kk4=linspace(kkk4(ii41),kkk4(ii42),4); 
kk5=linspace(kkk5(ii51),kkk5(ii52),4); 
end 
 
kkk1=kk1; 
kkk2=kk2; 
kkk3=kk3; 
kkk4=kk4; 
kkk5=kk5; 
 
% k=linspace(0,.2,6); 
 
% k=linspace(0,.2,6); 
% kk1=linspace(.2532,.2573,6); 
% kk2=linspace(.1158,.1199,6); 
% kk3=linspace(.0379,.0420,6); 
% kk4=linspace(.0474,.0515,6); 
% kk5=linspace(.0648,.0689,6); 
 
% 1:4,3,4,4,3 
% 2:2,5,3,4,3 
 
 
kk=0; 
for i1=nn11:nn12 
% for i2=nn21:nn22 
%     for i3=nn31:nn32 
%         for i4=nn41:nn42 
%             for i5=nn51:nn52 
 for i2=1:1 
    for i3=1:1 
        for i4=1:1 
            for i5=1:1              
kk=kk+1;                 
kkk(kk,1)=i1; 
kkk(kk,2)=i2; 
kkk(kk,3)=i3; 
kkk(kk,4)=i4; 
kkk(kk,5)=i5; 
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k1(1)=kk1(i1); 
k1(2)=kk2(i2); 
k1(3)=kk3(i3); 
k1(4)=kk4(i4); 
k1(5)=kk5(i5);    
 
 
 
 
% 32,31,33,12,11,13,21,22,23,41,42,43 
 
% for r=1:10000 
%     k=linspace(-5,5,10000); 
 
 
for l=1:5 
    for o=1:100 
    G(l,o)=1./(w0(l)^2+2*sqrt(-1)*k1(l)*w0(l).*W0(l,o)-W0(l,o).^2); 
%     G(l,o)=1./(w0(l)^2+2*k(m)*w0(l).*W0(l,o)+W0(l,o).^2); 
%     GP(m,l)=mean(angle(G(l,:))); 
    end 
end 
% end 
 
 
 
for p=1:5 
    for n=1:12 
for j=1:100 
    Wplot(n,j)=Wcount(count(j,p)); 
    H(n,j)=HH(n,(count(j,p))); 
%     HP(m,n)=mean(angle(H(n,:))); 
%     G(i,:)=1./(w1^2+2*i*k(1)*w01*w1-w01.^2); 
%     G(n,j)=1./( 
end 
end 
     
    for q=1:12 
         
         
         
         
         
    a(q,p)=(conj(G(p,:))*H(q,:).')/(conj(G(p,:))*G(p,:).'); 
    E(q,p)=norm(real((H(q,:)-a(q,p)*G(p,:)))); 
    Ei(q,p)=norm(imag((H(q,:)-a(q,p)*G(p,:)))); 
    En(q,p)=norm(((H(q,:)-a(q,p)*G(p,:)))); 
    EE(kk,p)=sum(E(:,p)); 
    EEE(kk,q)=sum(E(q,:)); 
    EEEE(kk)=sum(sum(E)); 
    EEi(kk,p)=sum(Ei(:,p)); 
    EEEi(kk,q)=sum(Ei(q,:)); 
    EEEEi(kk)=sum(sum(Ei)); 
    EEn(kk,p)=sum(En(:,p)); 
    EEEn(kk,q)=sum(En(q,:)); 
    EEEEn(kk)=sum(sum(En)); 
     
    end 
end 
 
% b=[zeros(1,7);a(12,:);a;zeros(1,7)]; 
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%  
end 
        end 
    end 
end 
 
end 
 
 
b=[zeros(1,5);a(12,:);a;zeros(1,5)]; 
% plot(Wcount1(1000:100000),abs(HH(:,(1000:100000))')) 
Emin=min(EEEEn) 
Kk=find(min(EEEEn)==EEEEn) 
kmin=kkk(Kk,:) 
if ii==20 
nn11=kmin(1); 
nn12=kmin(1); 
nn21=kmin(2); 
nn22=kmin(2); 
nn31=kmin(3); 
nn32=kmin(3); 
nn41=kmin(4); 
nn42=kmin(4); 
nn51=kmin(5); 
nn52=kmin(5); 
else 
ii11=kmin(1)-1; 
ii12=kmin(1)+1; 
ii21=kmin(2)-1; 
ii22=kmin(2)+1; 
ii31=kmin(3)-1; 
ii32=kmin(3)+1; 
ii41=kmin(4)-1; 
ii42=kmin(4)+1; 
ii51=kmin(5)-1; 
ii52=kmin(5)+1; 
end 
 
if ii11==0 
    ii11=1; 
elseif ii12==5 
    ii12=4; 
end 
if ii21==0 
    ii21=1; 
elseif ii22==5 
    ii22=4; 
end 
if ii31==0 
    ii31=1; 
elseif ii32==5 
    ii32=4; 
end 
if ii41==0 
    ii41=1; 
elseif ii42==5 
    ii42=4; 
end 
if ii51==0 
    ii51=1; 
elseif ii52==5 
    ii52=4; 
end 
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end 
kkmin=[kk1(kmin(1)),kk2(kmin(2)),kk3(kmin(3)),kk4(kmin(4)),kk5(kmin(5))] 
Emin=min(EEEEn) 
Eminj(Jj)=Emin 
kkminj(Jj,:)=kkmin 
            end 
        end 
    end 
end 
end 
 
% %  
plot(W11,abs(T1y1f),W11,abs(T2y1f),W11,abs(T3y1f),W11,abs(T4y1f),W11,abs,(T1y2f
),W11,abs(T2y2f),W11,abs(T3y2f),W11,abs(T4y2f),W11,abs(T1y3f),W11,abs(T2y3f),W1
1,abs(T3y3f),W11,abs(T4y3f)) 
T=[0,30,45,75,90,120,150,180,210,240,270,285,315,330,360]'*pi/180; 
% T1=[45,75,90,120,150,180,210,240,270,285,315,330]'*pi/180; 
% note, the column number is the appropriate channel name in chan_list 
% Fvert=filtfilt(B,A,userData.timeHistory(:,1)); 
% Flat=filtfilt(B,A,userData.timeHistory(:,2)); 
% Flong=filtfilt(B,A,userData.timeHistory(:,3)); 
% ATlat=filtfilt(B,A,userData.timeHistory(:,4)); 
% ATlong=filtfilt(B,A,userData.timeHistory(:,5)); 
% you need to change the variable name and the column number to get the 
% appropriate data vector 
 
% [T1y,w1y]=tfestimate(F,A1y,[],[],[],1000); 
% [T2y,w2y]=tfestimate(F,A2y,[],[],[],1000); 
% [T3y,w3y]=tfestimate(F,A3y,[],[],[],1000); 
% [T4y,w4y]=tfestimate(F,A4y,[],[],[],1000); 
% plot(w1y,abs(T1y),w2y,abs(T2y),w3y,abs(T3y),w4y,abs(T4y)) 
% % plot(w1y,angle(T1y),w2y,angle(T2y),w3y,angle(T3y),w4y,angle(T4y)) 
% legend('1','2','3','4') 
%  
% [Pxx1,W1]=pwelch(A1y,[],[],[],1000); 
% [Pxx2,W2]=pwelch(A2y,[],[],[],1000); 
% [Pxx3,W3]=pwelch(A3y,[],[],[],1000); 
% [Pxx4,W4]=pwelch(A4y,[],[],[],1000); 
% plot(W1,Pxx1) 
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pdetestboth_sweep3.m 

This program performs the modal analysis on the flexible ring modal with a complex damping term added 
in.   
 

function pdex4 
m =0; 
% x = [0 0.005 0.01 0.05 0.1 0.2 0.5 0.7 0.9 0.95 0.99 0.995 1]; 
% t = [0 0.005 0.01 0.05 0.1 0.5 1 1.5 2]; 
x=linspace(5*pi/180,355*pi/180,101); 
% x=linspace(0,360*pi/180,11); 
% t=linspace(0,10*pi/22,101); 
co=4001 
t=linspace(0,16,co); 
aa=1; 
d=0; 
xxx=sin(2*pi*t.*(aa*t+d))*.01-.03; 
xx=xxx(1:co); 
options=odeset('RelTol',1e-3,'AbsTol',[1e-4],'NormControl','on'); 
% options=odeset('RelTol',1e-4,'AbsTol',[1e-6],'NormControl','on'); 
sol = pdepe(m,@pdex4pde,@pdex4ic,@pdex4bc,x,t,options); 
size(sol) 
u1 = sol(1:co,:,1); 
u2 = sol(1:co,:,2); 
u3 = sol(1:co,:,3); 
u4 = sol(1:co,:,4); 
save pdesweep_fixed_normal100_0_20_damp_3e3 
  
 
% -------------------------------------------------------------- 
function [c,f,s] = pdex4pde(x,t,u,DuDx) 
EI=4; 
EA=4.9e6; 
R=.3; 
p0=2.2e5; 
br=.152; 
cbw=1.93e6; 
cbv=6.49e5; 
% pA=3.81; 
pA=3.81*1e2; 
a1=EI/R^4; 
a2=p0*br/R; 
a3=(EA/R^2-p0*br/R+cbw); 
% a4=pA*1e1; 
K=3e3*(1+0*i); 
% K=0; 
% sqrt(5*(EA/R^2-p0*br/R+cbw)/pA)/2/pi 
AAA=EA/R^2-p0*br/R+cbw; 
% W=sqrt(a3/a4) 
c = 1/1*[1;pA;1;pA;0]; 
% c=[1;1]; 
% f = [0;EI/R^4*(DuDx(3)^2-DuDx(1))-
EA/R^2*(u(3)+DuDx(1));0;EI/R^4*(DuDx(3)^3-DuDx(1)^2)+EA/R^2*(u(1))-
p0*br/R*DuDx(3)]; 
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f = -1/1*[0;-EA/R^2*DuDx(1);0;EI/R^4*DuDx(5)-a2*DuDx(3);DuDx(3)]; 
% f = 1/AAA*[0;-1*EI/R^4*(DuDx(3)^2-DuDx(1))+EA/R^2*(u(3)+DuDx(1));0;-
1*EI/R^4*(DuDx(3)^3-DuDx(1)^2)-EA/R^2*(u(1))+p0*br/R*DuDx(3)]; 
% f=[0;EI/R^4*(DuDx(3)^2-DuDx(1))-
EA/R^2*(u(3)+DuDx(1));0;a1*(DuDx(3)^3-DuDx(1)^2)+a3*( 
  
% f=[0;0]; 
% f=[0;-DuDx(1)-DuDx(1)]; 
% y = u(1) - u(2); 
% F = exp(5.73*y)-exp(-11.47*y); 
% s = -1/1*[-u(2);EI/R^4*DuDx(5)-EA/R^2*DuDx(3)+cbv*u(1);-
u(4);EA/R^2*(u(3))-a2*u(3)+cbw*u(3)+EA/R^2*DuDx(1);-u(5)-DuDx(1)]; 
s = -1/1*[-u(2);EI/R^4*DuDx(5)-EA/R^2*DuDx(3)+cbv*u(1);-
u(4);EA/R^2*(u(3))-a2*u(3)+cbw*u(3)+EA/R^2*DuDx(1)+K*u(4);-u(5)-
DuDx(1)]; 
% s = 1/AAA*[u(2);-cbv*u(1);u(4);-1*(EA/R^2-p0*br/R+cbw)*u(3)-K*u(3)]; 
% KK=.06*(EA/R^2-p0*br/R+cbw) 
% pA 
% sqrt(KK/pA) 
% s=[u(2);u(1)+u(2)]; 
% s = [u(2);a3*u(1)+K*u(1)^2]; 
% s = [u(2);a3*u(1)+K*u(2)]; 
% -------------------------------------------------------------- 
function u0 = pdex4ic(x); 
% u0 = [cos(x); 0]; 
% u0=[.01;0]; 
d=0; 
if x==5*pi/180 
    u0=[0;0;-.03;.01*2*pi*d;0]; 
elseif x==355*pi/180 
    u0=[0;0;-.03;.01*2*pi*d;0]; 
else 
    u0=[0;0;0;0;0]; 
end 
% u0=[0,0]; 
% -------------------------------------------------------------- 
function [pl,ql,pr,qr] = pdex4bc(xl,ul,xr,ur,t) 
% if t<=1e-4 
%     o=.01; 
% else 
%     o=0; 
% end 
aa=1; 
d=0; 
% pl = [ul(1);ul(2);ul(3)-sin(2*pi*t*(aa*t+d))*.01+.03   ; ul(4)-
.01*cos(2*pi*t*(aa*t+d))*(2*pi*(aa*t+d)+aa*2*pi*t);ul(5)]; 
pl = [ul(1);ul(2);ul(3)-sin(2*pi*t*(aa*t+d))*.01+.03   ; ul(4)-
.01*cos(2*pi*t*(aa*t+d))*(2*pi*(aa*t+d)+aa*2*pi*t);0]; 
% pl = [ul(1)-sin(50*t)*.01; ul(2)]; 
% pl = [ul(1)-o; ul(2)]; 
ql = [0;0;0; 0;1];                                   
% pr = [ur(1);ur(2);ur(3)-sin(2*pi*t*(aa*t+d))*.01+.03; ur(4)-
.01*cos(2*pi*t*(aa*t+d))*(2*pi*(aa*t+d)+aa*2*pi*t);ur(5)]; 
pr = [ur(1);ur(2);ur(3)-sin(2*pi*t*(aa*t+d))*.01+.03; ur(4)-
.01*cos(2*pi*t*(aa*t+d))*(2*pi*(aa*t+d)+aa*2*pi*t);0]; 
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% pr = [ur(1)-sin(50*t)*.01; ur(2)]; 
% pr = [ur(1)-o; ur(2)]; 
qr = [0;0;0; 0;1]; 
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pdesweep_config2.m 

This file compiles the results obtained from pdetestboth_sweep3.m and computes the FRFs 

 

% xxx=sin(2*pi*t.*(100/100*t+5))*.01; 
% xx=xxx(1:10001); 
F=1/t(2); 
FF=floor(F*50) 
 
[tt,www]=tfestimate(xx,u3(:,3),[],[],FF,F); 
zzz=size(tt); 
ZZ=zzz(1); 
% T=x([2,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100])'; 
T=x; 
for i=1:101 
% [TT,W1]=tfestimate(xx,u3(:,i),[],[],[],F); 
% size(TT) 
if i==1 
    TTT(:,i)=repmat(1,ZZ,1); 
elseif i==101 
    TTT(:,i)=repmat(1,ZZ,1); 
else 
    [TT,W1]=tfestimate(xx,u3(:,i),[],[],FF,F); 
    TTT(:,i)=TT; 
end 
end 
 
 
W=repmat(W1,1,101); 
HH=TTT'; 
 
NN=101 
 
mm=1; 
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testest3final_pde_2., 

This file uses the FRFs from the above program to perform the modal 
analysis that was done on the experimental data on the analytical data 
from the flexible ring model. 
 
mm=1; 
% Wcount1=resample(W11,1,1); 
% Wcount=Wcount1(1:25000); 
 
% 
w=[Wcount1';Wcount1';Wcount1';Wcount1';Wcount1';Wcount1';Wcount1';Wcount1';Wcou
nt1';Wcount1';Wcount1';Wcount1']; 
Jj=0; 
% w1=58.6 
% w01=linspace(30,130,401) 
w01=1.1 
% w02=linspace(43,68.4+2,7) 
% w03=linspace(75,82+2,7) 
% w04=linspace(84,101+2,7) 
% w05=linspace(90,55,11) 
 
for j1=1:1 
Jj=Jj+1 
 
 
% for i=1:1 
W0(j1,:)=linspace(w01(j1)*.95,w01(j1)*1.05,100); 
% end 
 
 
% for j=1:1 
for i=1:100 
% count(i,j1)=find(min(abs(W1-W0(j1,i)))==abs(W1-W0(j1,i))); 
count1=find(min(abs(W1-W0(j1,i)))==abs(W1-W0(j1,i))); 
count(i,1)=count1(1); 
end 
% end 
% k=1 
 
 
kk1=linspace(0,1,1001); 
 
 
for ii=1:1001 
 
kkk1=kk1; 
 
 
    for o=1:100 
    G(ii,o)=1./(w01(j1)^2+2*sqrt(-1)*kk1(ii)*w01(j1).*W0(j1,o)-W0(j1,o).^2); 
 
    end 
 
 
 
% for p=1:1 
    for n=1:NN 
for j=1:100 
%     Wplot(n,j)=W1(count(j,j1)); 
    H(n,j)=HH(n,(count(j,j1))); 
%     HP(m,n)=mean(angle(H(n,:))); 
%     G(i,:)=1./(w1^2+2*i*k(1)*w01*w1-w01.^2); 
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%     G(n,j)=1./( 
end 
end 
      AV(j1)=mean(mean(abs(H)));   
    for q=1:NN 
         
         
         
         
         
    a(q,ii)=(conj(G(j1,:))*H(q,:).')/(conj(G(ii,:))*G(ii,:).'); 
%     E(q,ii)=norm(real((H(q,:)-a(q,ii)*G(j1,:)))); 
%     Ei(q,j1)=norm(imag((H(q,:)-a(q,j1)*G(j1,:)))); 
    En(q,ii)=sum(abs((((abs(H(q,:))-abs(a(q,ii)*G(ii,:))))))); 
%     EE(ii,j1)=sum(E(:,j1)); 
%     EEE(ii,q)=sum(E(q,:)); 
%     EEEE(ii)=sum(sum(E)); 
%     EEi(ii,j1)=sum(Ei(:,j1)); 
%     EEEi(ii,q)=sum(Ei(q,:)); 
%     EEEEi(ii)=sum(sum(Ei)); 
    EEn(ii,j1)=sum(En(:,ii)); 
     
 
    EE(ii,j1)=sum(En(:,ii))./AV(j1); 
     
%     EEEn(ii,q)=sum(En(q,:)); 
%     EEEEn(ii)=sum(sum(En)); 
     
    end 
% end 
 
% b=[zeros(1,7);a(12,:);a;zeros(1,7)]; 
%  
% end 
 
 
 
end 
% kkmin=[kk1(kmin(1))]; 
% Emin=min(EEEEn); 
% Eminj(Jj)=Emin; 
% kkminj(Jj,:)=kkmin; 
 
% 
kkminr=[kk1(kminr(1)),kk2(kminr(2)),kk3(kminr(3)),kk4(kminr(4)),kk5(kminr(5))]; 
% Eminr=min(EEEE); 
% Eminjr(Jj)=Eminr; 
% kkminjr(Jj,:)=kkminr; 
%  
% 
kkmini=[kk1(kmini(1)),kk2(kmini(2)),kk3(kmini(3)),kk4(kmini(4)),kk5(kmini(5))]; 
% Emini=min(EEEEi); 
% Eminji(Jj)=Emini; 
% kkminji(Jj,:)=kkmini; 
% Eminw(j1)=Emin; 
% kminw(j1)=kmin; 
kk(j1)=find(min(EEn(:,j1))==EEn(:,j1)); 
kmin(j1)=kk1(kk(j1)); 
emin(j1)=EEn(kk(j1),j1); 
eemin(j1)=EE(kk(j1),j1); 
aa([1:NN],j1)=a(:,kk(j1)) 
end 
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% t=linspace(0,2*pi,100); 
% for i=1:12 
%     aaa(i,:)=abs(aa(i))*sin(t+angle(aa(i))); 
% end 
% %  
plot(W11,abs(T1y1f),W11,abs(T2y1f),W11,abs(T3y1f),W11,abs(T4y1f),W11,abs,(T1y2f
),W11,abs(T2y2f),W11,abs(T3y2f),W11,abs(T4y2f),W11,abs(T1y3f),W11,abs(T2y3f),W1
1,abs(T3y3f),W11,abs(T4y3f)) 
% T=[0,30,45,75,90,120,150,180,210,240,270,285,315,330,360]'*pi/180; 
% T=[45,75,90,120,150,180,210,240,270,285,315,330]'*pi/180; 
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