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Many fundamental algorithmic techniques have roots in applications to com-

puter networks. We consider several problems that crop up in wireless ad hoc net-

works, sensor networks, P2P networks, and cluster networks. The common challenge

here is to deal with certain bottleneck resources that are crucial for the performance

of underlying system. Broadly, we deal with the following issues.

Data: The primary goal in resource replication problems is to replicate data objects

on server nodes with limited storage capacities, so that the latency of client nodes

needing these objects is minimized. Previous work in this area is heuristic and

without guarantees. We develop tight (or nearly) approximation algorithms for

several problems including basic resource replication - where clients need all objects

and server can store at most one object, subset resource replication- where clients

require different subsets of objects and servers have limited non-uniform capacity,

and related variants.

Computational resources: To facilitate packing of jobs needing disparate amounts



of computational resources in cluster networks, an important auxiliary problem to

solve is that of container selection. The idea is to select a limited number of “con-

tainers” that represent a given pool of jobs while minimizing “wastage” of resources.

Subsequently, containers representing jobs can be packed instead of jobs themselves.

We study this problem in two settings: continuous- where there are no additional

restrictions on chosen containers, and discrete - where we must choose containers

from a given set. We show that the continuous variant is NP-hard and admits a

polynomial time approximation scheme. Contrastingly, the discrete variant is shown

to be NP-hard to approximate. Therefore, we seek bi-approximation algorithms for

this case.

Energy resources: Wireless ad hoc networks contain nodes with limited battery

life and it is crucial to design energy efficient algorithms. We obtain tight approxi-

mation (up to constant factors) guarantees for partial and budgeted versions of the

connected dominating set problem, which is regarded as a good model for a vir-

tual backbone of a wireless ad hoc network. Further, we will discuss approximation

algorithms for some problems involving target monitoring in sensor networks and

message propagation in radio networks.

We will end with a discussion on future work.
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Chapter 1

Introduction

Computer networks play a pivotal role in various communication aspects of our lives

as is evident from their wide applicability. Perhaps less obvious is the fact that op-

timization problems arising from various applications in such networks have led to

much of the development in the field of algorithms over several decades. Most of

the problems in this domain are NP-hard [1] and therefore it is considered highly

unlikely that we can design efficient optimal algorithms for these problems. Con-

sequently, we allow algorithms to come up with sub-optimal solutions that are not

much worse compared to optimal solutions. Formally, an approximation algorithm

(for a minimization problem) can be defined as follows.

Definition 1.0.1 (α-approximation algorithm) An α-approximation algorithm

for a minimization problems runs in polynomial time and yields a solution whose

cost is within α times the optimal cost.

Our main focus in this thesis is to design efficient approximation algorithms

for problems arising in wireless ad hoc networks, P2P networks, sensor networks,

and cluster networks. The common goal in all these problems is to handle bottleneck

resources, i.e., resources available in limited quantities. Any reasonable algorithm

must use such resources effectively. Depending on the type of bottleneck resource,

we broadly classify our problems into following groups.
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Data. Problems involving data replication are of fundamental importance

in P2P networks (such as content distribution networks). Video content providers

(e.g. Netflix) need to distribute content types on their servers such that client latency

is minimized. As the amount of content keeps growing, where as the infrastructure

essentially remains static, the storage capacity of nodes is the primary bottleneck on

the performance of such systems. In this part, we study several variants of resource

replication problems that were originally proposed by Ko and Rubenstein [2, 3].

Computation. The need to consolidate computational resources in clus-

ter network frameworks has resulted in the development of several cross platform

schedulers like dominant resource fairness (DRF) [4] and X-Flex [5]. Data sets and

procedures, abstracted as “jobs”, emerging from disparate sources, referred to as

“platforms”, must be allocated their fair share of the available computational re-

sources. To simplify this task, X-Flex solves an important auxilliary problem called

the container selection problem. The key goal in the container selection problem is

to determine a specified (small) number of “container jobs” that can represent the

given set of jobs while minimizing the “wastage” of resources. The main idea here

is to pack fewer different kinds of container jobs instead of jobs themselves.

Energy. Wireless ad hoc networks are typically characterized by nodes with

limited battery life. It is therefore essential to design systems that use the available

energy effectively. In the third part, we tackle some interesting covering problems

that arise in wireless ad hoc networks.

Routing is one of the most important challenges in wireless ad hoc networks,

primarily due to the non-existence of a concrete communication backbone. Ephremides
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et. al. [6] introduced the concept of a virtual backbone that simulates the function of

a network backbone. Bharghavan and Das [7] suggest using the well studied prob-

lem of connected dominating set [8–10] as a good model for a virtual backbone. We

consider partial and budgeted versions of the connected dominating set problem as

a more robust model for the virtual backbone.

Target monitoring is another important issue in wireless ad hoc networks such

as sensor networks (imagine a swarm of robots trying to sense an unknown envi-

ronment). The goal here is to monitor the targets as long as possible while having

access to limited energy resources. The idea is to partition sensor nodes into as many

disjoint groups as possible such that each group can monitor all or most of the tar-

gets. Another interesting problem that we consider has applications in message

propagation in radio networks. Along with limited energy resources, these networks

are characterized by interference issues. The objective is to minimize the number of

rounds in which we can propogate a message to all or most the receiver nodes, while

making sure that each transmitter is used as few times as possible (typically once).

Finally, we study the classic network design problems of Steiner tree and cheap-

est tour in the oracle model. Thorup and Zwick [11] introduced the basic oracle

framework in a seminal work on so called distance oracles. The framework involves

two algorithms: preprocessing - that works on an input graph to generate a data

structure, query processing - that uses the data structure to answer queries quickly.
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1.1 Data replication in P2P networks

In Chapter 2, we consider several problems related to data placement and replication.

Such problems are of fundamental interest both in the areas of large scale distributed

networking systems as well as centralized storage systems. The performance of dis-

tributed systems such as P2P file sharing systems, wireless ad hoc networks, sensor

networks, where resources are shared among clients, can be significantly impacted

by placement of the replicated resources [2, 3, 12]. On the other hand, centralized

storage systems, such as Netflix, might have data distributed across different data

centers to keep data closer to the demand to prevent over loading the network. De-

mand patterns for data can also vary widely, especially in the context of video on

demand distribution.

A lot of research exists on centralized storage systems [13] that addresses

the problem of data layout when all the storage units are centrally located in a

single location and thus the “distance” of each client from any storage unit is the

same. However, this assumption is not valid in modern storage management systems.

Internet content providers rent storage space all over the world from different data

centers in different locations. As said earlier, most interesting objective functions

are NP-hard and it is of interest to consider efficient approximation algorithms.

The general framework is the following: given a collection of data items, with

clients needing a subset of these items and servers having a limited capacity to hold

data items. Servers and clients are modeled by a graph embedded in a metric space

and we wish to distribute data items on to the servers. The goal is to minimize the
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Figure 1.1: The framework of resource replication.

maximum distance any node has to travel to access all its required data items.

Formally, in the most general setting we are given: a set of vertices V , a metric

d : V × V → R+ ∪ {0}, and a set of resources or colors C. Every vertex v ∈ V has

a subset Cv ⊆ C of “required” colors and a non-negative integer sv as the storage

capacity, i.e., we can assign sv colors to vertex v. A valid assignment of colors to

vertices allocates a list of colors φ(v) ⊆ C to each vertex v such that |φ(v)| ≤ sv. The

objective is find a valid assignment such that the following quantity is minimized:

δ = Min
φ

Max
v∈V
r∈Cv

dr(v), where dr(v) is the shortest distance from v to some vertex u

such that color r ∈ Cu. We illustrate this by an example.

Example 1.1.1 We refer to Figure 1.1 for an example of the resource replication

framework. The set of data items is {A,B,C,D,E}, subsets of data items required

by various clients are depicted next to them and each server has capacity to store

two data items. The figure shows one way of distributing data items on servers,

while respecting the capacity constraints. Clearly, for this distribution, the maximum

5



distance a client has to travel to obtain its required data items is 6 units.

We will formally define several variants in this general framework and study

them in Chapter 2.

1.2 Container selection in cluster networks

In Chapter 3, we deal with the issue of limited computational resources such as mem-

ory, processing cores, bandwidth etc. These issues lead to an interesting special case

of the non-metric k-median problem called the container selection problem. This

is a geometric resource allocation problem that occurs naturally in any distributed

computer environment. The goal here is to maximize resource utilization. This

environment may, for example, consist of a private cloud [14], or it may consist of a

collection of in-house, physical computers processors employing a cluster manager

such as Mesos [15] or YARN [16].

We describe and motivate the container selection problem as follows. The

input points correspond to tasks, each of which can be described in terms of multiple

resource requirements. These dimensions typically include both CPU and memory,

sometimes also network and I/O bandwidth. The tasks are then placed and executed

in virtual containers, and of course each task must “fit” into its assigned container.

For a variety of reasons, including ease of selection, maintenance and testing, it

is important to create only a modest number k of container sizes. Amazon’s EC2

cloud offering [17], for example, allows its customers to choose from k = 13 standard

“instance types”. The goal is to select k container sizes so that the aggregate

6



resource usage (when each task is assigned its “smallest” dominating container)

is minimized. We use the (normalized) sum of resources as the aggregate resource

usage of a container. In these applications, the container sizes are usually determined

in advance, before the actual tasks arrive: so suitably massaged historical task data

is used as input. We refer the reader to work by Wolf et. al. [5] for more details.

Formally, an instance of the continuous container selection problem consists

of a set of input points C in a d-dimensional space Rd, and a budget k. We say that

a point c(c1, c2, . . . , cd) dominates (alternatively contains) a point p(x1, x2, . . . , xd)

if xi ≤ ci, for all i ∈ [d]. The cost of assigning any input point p to a container

point c(c1, c2, . . . , cd) is the `1-norm of the container point, i.e, c1 + c2 + . . . + cd, if

c dominates p; else, the assignment cost is ∞. The goal is to choose a set S ⊆ Rd

of k container points, such that each input point is assigned to a container point

in S, and the total assignment cost is minimized. In the discrete version of the

problem, we have a further restriction that S ⊆ F , where F ⊆ Rd is an arbitrary,

but finite, subset of points in the space. This problem variant is motivated by the

fact that each container must itself “fit” into at least one physical processing node,

or by the fact that certain resources (memory, for instance) are only allocated in

fixed increments.

Example 1.2.1 Figure 1.2 shows an instance of the continuous container selection

problem. Here, we are allowed to choose k = 3 container points. We note that

an input point can be assigned to a container point only if the former lies on the

rectangle formed by the latter and the origin as shown. In this example, the input

7
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Figure 1.2: Container selection problem.

points in a given closed region is assigned to the (only) container point in that region.

Clustering problems such as k-median, k-center, and k-means have received

considerable attention in recent decades. (See, for example, [18–20] and the ref-

erences therein). Below, we only discuss the highlights directly relevant to our

work. Our problem is a special case of the non-metric k-median problem, and it

also bears some similarity to the `1-norm Euclidean k-median problem. There is a

(1 + ε, (1 + 1
ε
) lnn) bi-approximation algorithm for non-metric k-median [21], which

finds a solution whose cost is within a (1 + ε) factor of optimal, for any constant

ε > 0, while using at most k(1 + 1
ε
) lnn centers. The paper [21] also shows, us-

ing a reduction from the set cover problem, that these guarantees are the best one

can hope for. On the other hand, the metric variant of the k-median problem is

known to have small constant-factor approximation algorithms, with no violation of

k. The best known ratio 2.611 + ε is due to Byrka et. al. [22]. For the Euclidean

k-median problem, which is a special case of metric k-median, there is a polynomial

8



time approximation scheme (PTAS) [23].

We note that our problems, due to their “non-metric” characteristics, are

fundamentally different from the Euclidean k-median problem.

1.3 Virtual backbone in wireless ad hoc networks

A connected dominating set (CDS) in a graph is a dominating set that induces a

connected subgraph. The CDS problem, which seeks to find the minimum such set,

has been widely studied [8,9,24–31] starting from the work of Guha and Khuller [8].

The CDS problem is NP-hard and thus the literature has focused on the development

of fast polynomial time approximation algorithms. For general graphs, Guha and

Khuller [8] propose an algorithm with a ln ∆ + 3 approximation factor, where ∆ is

the maximum degree of any vertex. Better approximation algorithms are known in

special classes of graphs. For the case of planar [32] or geometric unit disk graphs [10]

polynomial time approximation schemes (PTAS) are known. This problem has also

been extensively studied in the distributed setting [24, 25]. Not surprisingly, CDS

problem in general graphs is at least as hard to approximate as the set cover problem

for which a hardness result of (1 − ε) log n (unless NP ⊆ DTIME(nO(log logn)))

follows by the work of Feige [33].

CDS has become an extremely popular topic, for example, the recent book

by Du and Wan [28] focuses on the study of ad hoc wireless networks as CDSs

provide a platform for routing on such networks. In these ad hoc wireless networks,

a CDS can act as a virtual backbone so that only nodes belonging to the CDS are

9



responsible for packet forwarding and routing. Minimizing the number of nodes in

the virtual backbone leads to increased network lifetime, and lesser bandwidth usage

due to control packets, and hence the CDS problem has been extensively studied

and applied to create such virtual backbones.

One shortcoming of using a CDS as a virtual backbone is that a few distant

clients (outliers) can have the undesirable effect of increasing the size of the CDS

without improving the quality of service to a majority of the clients. In such scenar-

ios, it is often desirable to obtain a much smaller backbone that provides services to,

say, (at least) 90% of the clients. Liu and Liang [29] study this problem of finding

a minimum partial connected dominating set in wireless sensor networks (geometric

disk graphs) and provide heuristics (without guarantees) for the same.

A complementary problem is the budgeted CDS problem where we have a

budget of k nodes, and we wish to find a connected subset of k nodes which dominate

as many vertices as possible. Budgeted domination has been studied in sensor

networks where bandwidth constraints limit the number of sensors we can choose

and the objective is to maximize the number of targets covered [30,31].

Example 1.3.1 Figure 1.3a shows a connected dominating set. Figure 1.3b depicts

a partial connected dominating set with quota 19 (15 shaded and 4 darkened nodes),

which is also a budgeted connected dominating set with budget 4 (darkened nodes).

Another application of BCDS arises in the context of social networks. Consider

a social network where vertices of the network correspond to people and an edge

joins two vertices if the corresponding people influence each other. Avrachenkov et

10



(a) A connected dominating set (b) A partial/budgeted CDS

Figure 1.3: Illustration of CDS, PCDS and BCDS.

al. [34] consider the problem of choosing k connected vertices having maximum total

influence in a social network using local information only (i.e., the neighborhood

of a vertex is revealed only after the vertex is “bought”) and provide heuristics

(without guarantees) for the same. Borgs et al. [35] show that no local algorithm

for the partial dominating set problem can provide an approximation guarantee

better than O(
√
n). As the influence of a set of vertices is simply the number of

dominated vertices, these problems are exactly the budgeted and partial connected

dominating set problems with the additional restriction of local only information.

Budgeted versions of set cover (known as max-coverage)1 are well understood

and the standard greedy algorithm is known to give the optimal 1 − 1
e

approxima-

1Here instead of finding the smallest sub-collection of sets to cover a given set of elements, we
fix a budget on number of sets we wish to pick with the objective of maximizing the number of
covered elements.
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tion [36]. Khuller et al. [37] give a (1− 1
e
) approximation algorithm for a generalized

version with costs on sets. In addition, we may consider a partial version of the

set cover problem, also known as partial covering, in which we wish to pick the

minimum number of sets to cover a pre-specified number of elements. Kearns [38]

first showed that greedy gives a 2Hn + 3 approximation guarantee (where n is the

ground set cardinality and Hn is the nth harmonic number), which was improved by

Slav́ık [39] to obtain a guarantee of min(Hn′ , H∆)(where n′ is the minimum coverage

required and ∆ is the maximum size of any set). Wolsey [40] considered the more

general submodular cover problem and showed that the simple greedy delivers a best

possible lnn approximation.

For the case where each element belongs to at most f (called the frequency)

different sets, Gandhi et al. [41], using a primal-dual algorithm, and Bar-Yehuda [42],

using the local-ratio technique, achieve an f -approximation guarantee.

Unfortunately, for both the budgeted and partial versions of the CDS problem,

greedy approaches based on prior methods fail. The fundamental reason is that while

the greedy algorithm works well as a method for rapidly “covering” nodes, the cost

to connect different chosen nodes can be extremely high if the chosen nodes are

far apart. On the other hand if we try to maintain a connected subset, then we

cannot necessarily select nodes from dense regions of the graph. In fact, none of the

approaches in the work by Guha and Khuller [8] appear to extend to these versions.

We will discuss this further in Chapter 4

Partial and budgeted optimization problems have been extensively studied in

the literature. Most of these problems, with the exception of partial and budgeted
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set cover, required significantly different techniques and ideas from the corresponding

“complete” versions. We will now cite several such problems.

The best example is the minimum spanning tree problem, which is well known

to be polynomial time solvable. However, the partial version of this problem where

we look for a minimum cost tree which spans at least k vertices is NP-hard [43]. A

series of approximation techniques [44–47] finally resulted in a 2-approximation [48]

for the problem.

Partial versions of several classic location problems such as k-center and k-

median have required new techniques as well. The partial k-center problem, which

is also called the outlier k-center problem or the robust k-center problem, requires

us to minimize the maximum distance to the “best” n′ nodes (while the complete

version requires us to consider all the nodes) to the centers. Charikar et al. [49]

gave a 3-approximation algorithm whose analysis was significantly different from

the classic k-center 2-approximation algorithm [50, 51]. Chen [52] gives a constant

approximation for outlier k-median problem, while Charikar et al. [49] gave a 4-

approximation for the outlier uncapacitated facility location problem.

Several other optimization problems need special techniques to tackle the cor-

responding partial versions. Notable examples of such problems, include partial ver-

tex cover [41, 53–57], quota Steiner tree problems [58], budgeted and partial node

weighted Steiner tree problems [59, 60], and scheduling with outliers [61, 62]. We

end this subsection by noting that partial versions of some optimization problems

are completely inapproximable even though, the corresponding complete version has

a small constant approximation algorithm. The best example of this is the robust
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subset resource replication problem studied in Chapter 2.

1.4 Coverage in sensor and radio networks

One of the key challenges in designing algorithms and protocols for sensor and

radio networks is efficient energy utilization. For instance, in sensor networks a

trivial solution to monitor all targets is to keep all the sensors active. However,

such a scheme is bound to have a very limited lifetime because the battery life of

the sensors is limited. Slijepcevic et al. [63] propose partitioning the sensors into

disjoint set covers and keeping only one set active at a time in order to extend the

network lifetime. Similarly in radio networks where we have a set of transmitters and

receivers, it is beneficial to use one transmitter only once in sending a particular

message. However, in such a radio network we need to deal with the additional

issue of network interference. One of the theoretical frameworks proposed to handle

interference in radio networks is called unique coverage. Here, a receiver gets the

message only if exactly one of the transmitters in its range transmits the message

at a time.

In Chapter 5, we consider two important problems as described below that

arise in these scenarios. In both these problem, we are given a bipartite graph with

parts S and T . For A ⊆ S (respectively ⊆ T ), we represent the set of neighbors of

A in T (resp. in S) by N (A). For A ⊆ S, we define the coverage of A, denoted by

C(A), as the size of its neighborhood, i.e. C(A) = |N (A)|. We say that a partition

P of S uniquely covers a vertex t ∈ T , if there is at least one subset of Si ∈ P such
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that Si uniquely covers t. Further let |S| = n and |T | = m.

Scenario 1. The primary goal of a sensor network is to monitor targets for

as long as possible. Due to energy constraints, it is infeasible to keep all the sensors

active for long. One approach to prolong the network lifetime is to partition the

sensors into k disjoint sets such that each set covers all the targets in T . This is

exactly the well studied domatic partition problem that is known to have a tight

O(log n) approximation algorithm [64, 65]. However, requiring each set to be a

full set cover is often too strict a requirement in practice. Wang and Kulkarni

[66] show that empirically the network lifetime can be improved significantly if

we allow each set to only cover most (and not all) targets. Indeed, Abrams et

al. [67] consider the set k-cover problem of partitioning the sensors into exactly k

sets with the objective of maximizing the total number of targets covered by each

set, i.e., maximize
k∑
i=1

C(Si). One potential drawback of this formulation is that,

while the sum of targets covered is high, a particular set of sensors might have

very low coverage. To tackle this problem, we study the following max-min k-cover

problem: partition the sensors into k sets such that the minimum coverage of any

set is maximized, i.e., maximize Min
i∈[k]

C(Si).

Scenario 2. Our second scenario is motivated by interference issues in radio

networks. The interference effect is modeled in the following way: a receiver gets a

message if and only if exactly one of the transmitters in its neighborhood is active

at a time. In such a setting, the unique coverage problem [68] asks for a set of

transmitters that maximizes the number of receivers who acquire the message. We

consider the situtation where all receivers need to get the message. This can be
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achieved by grouping the transmitters into sets and activating only one set at a

time. As long as every receiver is covered uniquely in at least one set, all receivers

will obtain the message at the end. Thus, the number of sets we create will equal

the time it takes for all receivers to get the message. Further as the transmitters

have limited energy resources, it is desirable to use them only once, i.e. the sets

are disjoint. Even et al. [69] introduce the minimum conflict-free coloring problem

that seeks to minimize the number of such sets2. As this problem is NP-hard

to approximate with a factor of max(n1−ε,m
1
2
−ε), we consider two of its natural

relaxations and obtain polylogarithmic approximation algorithms.

t1 t2 t3 t4 t5

s1 s2 s3 s4 s5 s6

(a) Scenario 1

t1 t2 t3 t4 t5

s1 s2 s3 s4 s5 s6

(b) Scenario 2

Figure 1.4: The max-min k-cover and minimum conflict-free coloring problems.

Example 1.4.1 Figure 1.4a depicts an optimal solution for a max-min 3-cover in-

stance, i.e., S1 = {s1, s6}, S2 = {s2, s3}, S3 = {s4, s5}. The respective coverages of

S1, S2 and S3 are 5, 5 and 4. Hence, the max-min coverage is 4. Figure 1.4b shows

an optimal solution for an ASDF instance: S1 = {s1, s2, s3}, S2 = {s4, s5, s6}. When

S1 is activated to transmit the message, in the first round, t1, t4 and t5 uniquely

receive it. Subsequently, in the second round, when S2 is activated t1, t2, t3 and t5

receive it. Thus, in two rounds all the receivers get the message.

2A trivial solution is to have each transmitter as a singleton set. Clearly all receivers will be
uniquely covered but the number of sets is too large
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Abrams et al. [67] study the set k-cover problem and show that a simple

randomized scheme provides a (1− 1
e
) approximation. Deshpande et al. [70] introduce

the max-min k-cover problem that we address in this paper and provide an LP-based

heuristic for the same. While Deshpande et al. [70] provide an approximation ratio

of (1− 1
e
), in their work the sensor sets are not guaranteed to be disjoint and only

the expected number of sets to which a sensor belongs is one. We resolve this

open problem by guaranteeing disjoint sets of sensors and obtaining a 1
3
(1 − 1

e
)

approximation. Cheng et al. [71] also consider the max-min k-cover problem but

do not provide any approximation guarantees for this problem. The max-min k-

cover problem and its variants have been extensively studied in geometric graphs

as they model wireless networks well. A number of authors [72,73] provide efficient

heuristics for the same. Survey articles such as [74, 75] succinctly summarize the

vast body of work on energy efficient monitoring in sensor networks.

Related to Scenario 2, is the unique coverage problem where the goal is to

choose a set of transmitters such that the number of receivers covered uniquely is

maximized. Demaine et al. [68] obtain an approximation algorithm with an Ω( 1
logn

)

guarantee and also prove a semi-logarithmic (O(1/log1/3−ε n)) hardness of approx-

imation. Even et al. [69] introduce the minimum conflict-free coloring (MCFC)

problem and study it in the special case of set systems induced by geometric regions

in the plane. In this setting, the receivers are simply points in the plane and each

transmitter defines a region such that it can send messages to all receivers in that

region. The MCFC problem is now to color all regions using minimum number of col-

ors so that for each point there is an uniquely colored region that contains it. They
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show that for a number of geometric structures such as disks, axis parallel rectan-

gles, and regular hexagons, O(log n) colors (i.e. partitions) are sufficient. Pach and

Tardos [76] show that O(
√
m) colors are enough to uniquely cover all elements in

general set systems.

Closely related to the conflict-free coloring is the concept of an ad-hoc selec-

tive family introduced by Clementi et al. [77]. Motivated by broadcasting in radio

networks, they describe a procedure to find a small family of sets of transmitters

(called ad-hoc selective family), with size O(log n logm), such that every receiver

is uniquely covered by at least one member set. But the key property that this

solution lacks is disjointness among the member sets of the family, which is critical

to ensure network longevity.

1.5 Oracles in massive networks

With the proliferation of social networks, it is not uncommon to have networks with

billions of nodes, e.g., Facebook. The use of classic algorithms on such networks for

processing even simple distance queries may not be acceptable in a realistic setting.

For example, using the Dijkstra’s shortest path algorithm to answer distance queries

on a billion node graph might take hours (if not days) to complete, as the running

time depends on the entire graph size. A natural approach to handle this problem is

to preprocess and generate a data structure that allows the query algorithm running

time to depend only on the query size. In the case of distance queries, a naive way

to do this is to preprocess and store distances between all the pairs of vertices in
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the graph so as to obtain a constant query time. Unfortunately, in this approach we

require space quadratic in the network size and therefore is infeasible. Ideally, it is

desirable to obtain a data structure whose size is nearly linear in the input size and

which enables query processing algorithms with running times that depend only on

the query size instead of the entire graph size.

A significant amount of research [7,11,78–84] has been dedicated to the prob-

lem of constructing data structures, called the distance oracles, that require space

sub-quadratic in the network size while answering distance queries approximately in

constant query time. Thorup and Zwick (referred to as TZ, from now on) [11] design

a preprocessing algorithm that runs in time O(`mn1/`) on a graph with n nodes,

m edges, and a parameter `, and constructs a data structure of size O(`mn1+1/`).

Using this data structure they then design a query algorithm that can answer dis-

tance queries in time O(`) with an approximation guarantee of 2`−1. Following this

work, there is has been a flurry of research work [7, 78–81] dealing the problem un-

der special conditions. For example, improved distance oracles have been obtained

when the graph is sparse [78], planar [81] or other special graphs like power law

graphs [84].

We study the problems of Steiner tree and cheapest tour in the oracle setting,

in the same vein as the seminal work of Thorup and Zwick [11] on distance oracles.

Besides their theoretical importance, these classic problems have a number of appli-

cations in a variety of domains including social networks [85], computer vision [86],

very large scale integration [87], relational databases [85], evolutionary biology [88],

planning [89], and vehicle routing [90].
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Cygan et. al. [91] consider the problem of Steiner tree (along with other prob-

lems) in the oracle model, under the special case when the metric is a doubling

metric, and obtain near optimal approximation guarantees. Unfortunately, their

approach depends heavily on the doubling metric properties and do not seem to

extend to the general metric case. Gubichev and Neumann [85] study the (gen-

eral metric) Steiner tree problem in the oracle model and obtain heuristic based

algorithms but with no approximation guarantees.

A classic result due to Kou, Markowsky and Berman [92] shows that if we

construct the shortest path metric over the terminal set and then compute a mini-

mum spanning tree on the metric graph we obtain a 2-approximation guarantee. An

immediate corollary of this result is that if we have access to an α approximate dis-

tance oracle we obtain a Steiner tree with a 2α approximation guarantee. Therefore,

this result along with TZ’s distance oracle gives a 2(2`− 1) = 4`− 2 guarantee for

the Steiner tree query problem. A similar result for the cheapest tour problem due

to Christofides [93] yields a 3/2 approximation guarantee. Again, this result along

with TZ’s result yields a guarnatee of 3/2(2`− 1) = 3`− 1.5 on the approximation

ratio for the cheapest tour problem. In Chapter 6, we discuss improved algorithms

for these both these problems.

We note that both these problems have been studied extensively in the classical

setting. Kou, Markowsky and Berman [92] gave the first non-trivial 2-approximation

algorithm for the Steiner tree problem. This was followed by a series of improve-

ments [92,94–99] finally resulting in the current best of 1.39 [100]. From a hardness

point of view, it has been shown that, unless P 6= NP , we cannot obtain a 1 + ε
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approximation guarantee, for an arbitrarily small ε [101]. Focus has also been on

obtaining better approximation guarantees for special graphs. For example polyno-

mial time approximation schemes (PTAS) are known for the Steiner tree problem

in planar graphs [102] and geometric graphs [103].

The cheapest tour is a special case of the metric travelling salesman problem

when the underlying metric is the shortest path. Christofides [93] gave a famous

1.5 approximation algorithm for this problem. Gharan et al. [104] improved this

guarantee to 1.5− ε, for some small constant ε > 0. Arora [103] and Mitchell [105]

simultaneously and independently came up with a PTAS for this problem when

the underlying metric is Euclidean. The problem also admits a PTAS on planar

graphs [106]. It is known to be MAX SNP-hard [107] and therefore no polynomial

time approximation scheme is possible assuming P 6= NP .

1.6 Contributions

In this section, we briefly describe various results that form the content of this thesis.

Resource replication problems. In Chapter 2, we obtain approximation results

for several resource replication problems. These range from small constant factor

approximation guarantees to proving non-existence of any non-trivial approximation

guarantees.

• In Section 2.2, we consider the basic replication problem where each client

needs all k data items (basic resource replication) and its generalization where

each client might need a subset of data items (subset resource replication).
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For the first problem, we give a distributed polynomial time 3-approximation

algorithm and show that there does not exist any polynomial time algorithm

achieving a 2 − ε (for any ε > 0) approximation (Theorem 2.2.3 and Theo-

rem 2.2.12). For the later, we give the first polynomial time 3-approximation

algorithm (in a centralized setting) along with matching hardness (Theorem

2.2.11 and Theorem 2.2.12).

• In Section 2.3, we consider the outlier version of the basic as well as subset

resource replication problem. For the former, we give a polynomial time 3-

approximation algorithm while for the latter, somewhat surprisingly, we show

that there does not exist any non-trivial approximation guarantee (in polyno-

mial time). We also consider the case where each resource can be replicated

at most K times and give polynomial time 5-approximation algorithm for it.

• In Section 2.4, we consider another natural generalization of the basic resource

replication problem where each node has an upper bound (load) on the number

of clients it can serve. We give a polynomial time 4-approximation algorithm

for this version when load L ≥ 2k−1 (k is the number of resources). A simple

counting argument shows that this problem is infeasible if L < k. This implies

our 4-approximation algorithm is a bicriteria approximation algorithm and the

load capacity is not violated by more than a factor of 2.

This is joint work with Khuller and Saha [108,109].

Container selection problems. As noted before, the container selection problem

is a special case of non-metric k-median, which is inapproximable unless we violate k
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significantly [21]. However, this problem still has sufficient geometric structure. This

structure allows us to obtain near optimal algorithms that, in the case of continuous

container selection, do not violate k, and in the discrete case violate k mildly. In

particular, in Chapter 3, we discuss the following results.

• We show that the continuous container selection problem admits a PTAS, for

any fixed dimension d. On the negative side, we show that the problem is

NP-hard for d ≥ 3.

• We show that the discrete variant (for d ≥ 3) is NP-hard to approximate

within any guarantee if the budget k is not violated. On a positive note, we

obtain constant factor bi-approximation algorithms for this variant. For any

constant ε > 0, the guarantees are (1+ε, 3), for d = 2, and (1+ε, O(d
ε

log dk)),

for any d ≥ 3.

Section 3.2 discusses the continuous variant, while Section 3.3 deals with the discrete

problem. Section 3.4 describes the hardness results for these problems.

This is joint work with Nagarajan, Schieber, Shachnai and Wolf [110]. The corre-

sponding systems version of this work is joint work with Wolf, Nabi, Nagarajan,

Saccone, Wagle, Hildrum and Pring [5].

Connected dominating set problems. Chapter 4 will focus on some variants

and generalizations of the connected dominating set problem.

• In Section 4.2, we obtain the first O(ln ∆) approximation algorithm for the

PCDS problem. To be precise, our approximation guarantee is 4 ln ∆+2+o(1),

where ∆ is the maximum degree.
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• In Section 4.3, we obtain a 1
13

(1− 1
e
)-approximation algorithm for the BCDS

problem. This is the first constant approximation known for BCDS.

• We generalize the above problems to a special kind of submodular optimization

problem (to be defined later) which has the weighted profit connected domi-

nating set problem as a special case. Again we obtain O(ln q) and 1
13

(1 − 1
e
)

approximation algorithms for the partial and budgeted version of this problem

respectively where q denotes the quota for the partial version. These results

form the content of Sections 4.4, and 4.5.

This is joint work with Khuller and Purohit [111].

Covering problems in radio and sensor networks. We now briefly outline the

main results of Chapter 5.

• In Section 5.2, we obtain a polynomial time algorithm with an approximation

guarantee of 1
3
(1− 1

e
) for the max-min k-cover problem. We extend this result

to a more general submodular max-min k-cover problem and obtain the same

approximation ratio.

• As the minimum conflict-free coloring problem is hard to approximate, we

relax it in two ways, in Section 5.4

1. We allow a small fraction of vertices in T to be left uncovered. We show

that we can obtain a partition of expected size O( logm logn
ε

) such that at

least (1− ε)m vertices in T are uniquely covered in expectation.

2. We relax the disjointness requirement by allowing a vertex s ∈ S to ap-
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pear in at mostO(log n) sets. We now obtain a family of sizeO(log n logm)

that uniquely covers every t ∈ T .

• Matching the guarantee obtained by Pach and Tardos [76], in Section 5.3, we

obtain an alternate 2
√
m approximation algorithm for the minimum conflict-

free coloring problem in general networks.

This is joint work with Khuller and Purohit [112].

Steiner and cheapest tour oracles. Thorup and Zwick’s work [11] directly yields

oracles for Steiner tree and cheapest tour problems that can answer these queries

with an approximation guarantee of 4`− 2 and 3`− 1.5 respectively, for any given

parameter ` ≥ 1. The preprocessing time for these data structures is O(`mn1/`)

time and the data structure size itself is O(`n1+1/`) - same as the distance oracle.

In Chapter 6, we obtain improved guarantees of 3` + 2 and 2.5` + 1.5 respectively

for Steiner tree and cheapest tour oracles, while maintaining the same time space

time complexity.

This is joint work with Bhatia and Gupta [113].
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Chapter 2

Resource Replication Problems

2.1 Road map to the chapter

We consider several variants of problems in the following framework: given a collec-

tion of k data items, we wish to distribute them to a collection of n nodes modeled

by a graph, where the vertices are embedded in a metric space. In the basic model,

each node wishes to access each of the k data items and the goal is to minimize the

maximum distance any node has to travel to access all k items. For this problem,

Ko and Rubenstein [3] give a distributed algorithm based on a local search idea and

also show that this algorithm delivers a solution with a worst case approximation

guarantee of 3. Although the algorithm is claimed to converge reasonably quickly

in practice, it is unknown if it does so in polynomial time. In a followup piece

of work [2], Ko and Rubenstein introduced a generalization of the basic problem

in which each node only required a subset of the items. For this problem, they

develop a heuristic; however, for this heuristic, unlike the other case, there is no

approximation guarantee any more.

In Section 2.2, we study both these problems, i.e., the basic resource repli-

cation, where each client needs all k data items and its generalization, the subset

resource replication, where each client might need a subset of data items. For the

first problem, we give a distributed polynomial time 3-approximation algorithm and
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show that there does not exist any polynomial time algorithm achieving a 2− ε (for

any ε > 0) approximation (Theorem 2.2.3 and Theorem 2.2.12). For the latter, we

give the first polynomial time 3-approximation algorithm (in a centralized setting)

along with matching hardness (Theorem 2.2.11 and Theorem 2.2.12).

In Section 2.3, we consider the outlier version of the basic as well as subset

resource replication problem. In an outlier version of a resource replication problem,

the goal is satisfy a specified fraction (say 90%) of nodes, instead of all nodes. The

motivation to consider these problems, is that a few “outlier” nodes might have

an adverse effect on optimal solution distance and therefore it might be useful to

optimize the solution that ignores some such nodes. For the outlier version of the

BRR problem, we give a polynomial time 3-approximation algorithm while for the

general problem, somewhat surprisingly, we show that there does not exist any non-

trivial approximation guarantee (in polynomial time). We also consider the case

where each resource can be replicated at most K times and give polynomial time

5-approximation algorithm for it.

In Section 2.4, we consider another natural generalization of the basic resource

replication problem where each node has an upper bound (load) on the number of

clients it can serve. We give a polynomial time 4-approximation algorithm for this

version when load L ≥ 2k − 1 (k is the number of resources). A simple count-

ing argument shows that this problem is infeasible if L < k. This implies our

4-approximation algorithm is a bicriteria approximation algorithm and the load ca-

pacity is not violated by more than a factor of 2.
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2.2 Satisfying everyone: Resource replication

We start with the basic and subset resource replication problems in this section, and

subsequently look at more general variants. Subsection 2.2.1 will consider the basic

version, while the Subsection 2.2.2 is dedicated to the subset resource replication

problem.

2.2.1 Basic resource replication problem

Formally, the basic resource replication problem can be defined as follows.

Definition 2.2.1 (The basic resource replication (BRR) problem) In an in-

stance of the problem, we are given, a set of nodes or vertices V = {v1, v2, . . . , vn},

a metric space defined by the function d : V × V → R+ ∪ {0}, a set of resources (or

colors) C = {C1, C2, C3, . . . , Ck}. We seek to find an optimal mapping φ : V → C of

colors to vertices, with respect to the following objective: Min
φ

Max
v∈V
Cr∈C

dr(v), where

dr(v) to be the shortest distance between a vertex assigned the color Cr
1 and the

vertex v.

This is the central problem of the work of Ko and Rubenstein [3] who give a dis-

tributed algorithm with a 3-approximation guarantee. Unfortunately, their algo-

rithm has no proven polynomial running time bound. We give a simple distributed

polynomial time 3-approximation algorithm for this problem.

All the algorithms in this work use a technique called threshold graph construction

introduced by Edmonds and Fulkerson [114] and used extensively for k-center type

1We may abuse the notation and use same expression, dr(v), when r represents a color.
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problems [50,115–117]. We observe that the use of this approach enables the design

of very simple and efficient algorithms for several resource replication problems.

Given δ ∈ R+ ∪ {0}, the threshold graph, denoted by Gδ, is constructed by adding

edges between every pair of vertices u, v which are at distance at most δ.

Our distributed algorithm (Algorithm 1) for BRR works in the following way. In the

first step, each vertex v determines the distance of the (k−1)th closest neighbor - call

this lk−1(v). Now in a distributed fashion each vertex obtains the maximum value

δL = maxv lk−1(v). We observe that the threshold graph GδL has minimum degree

at least k − 1. Let δOPT be the minimum value of δ for which a feasible solution

exists. δL must be a lower bound on this optimal δ value (δOPT ) - because δL is the

least value such that the threshold graph has degree at least k − 1 and GδOPT has

minimum degree at least k − 1. We set δ = δL, and construct the graph G2
δ which

is the graph formed by squaring Gδ. In other words, each vertex v maintains a list

of all vertices within two hops in Gδ as its neighbors. Using standard distributed

algorithms (see for e.g., [118]), we compute a maximal independent set I in G2
δ .

Finally, each vertex in I colors itself with C1 and picks k − 1 vertices from its list

of neighbors in Gδ (NGδ(v)) and assigns them a distinct color from the remaining

k − 1 colors.
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Algorithm 1 Distributed 3-approximation algorithm for BRR

1: Choose δ = δL, where δL is the smallest value such that GδL has minimum degree

≥ k − 1.

2: Each node maintains a list of its neighbors in G2
δ .

3: Compute a maximal independent set I in a distributed fashion [118].

4: for v ∈ I do

5: Color v with C1, and arbitrarily pick (k− 1) vertices from the set NGδ(v) say

{v′1, v′2, . . . v′k−1} and colors them with C2 . . . Ck respectively.

6: end for

7: Assign arbitrary colors to vertices which have not received any color so far.

We illustrate Algorithm 1 by a simple example.

Example 2.2.2 We refer to Figure 2.1 for various steps of the example: (a) given

a BRR instance with k = 3 and the edge weights representing pairwise distances;

(b) computation of δk−1 values for various vertices and the threshold δL is set to the

maximum of these values; (c) threshold graph, GδL: delete all edges with weights

greater than δL and keep the rest (d) compute G2
δL

: if u, v are within two hops of

each other in GδL, then we add an edge between them in G2
δL

and find a maximal

independent set I, for example, I = {v3, v6} is a candidate; (e) each member v of

I, assigns itself the color C1 and colors its neighbors (in GδL) arbitrarily using the

remaining k − 1 colors, using every color at least once.

Theorem 2.2.3 Algorithm 1 gives a 3-approximation for the BRR problem.

Proof: We prove that for every vertex v and every color r, dr(v) ≤ 3× δL. Since

δL ≤ δOPT , the result follows. If v ∈ I, by construction dr(v) ≤ δL. For vertices v,

which are adjacent to some vertex (i.e., one hop distance) of I in Gδ, dr(v) ≤ 2× δL

and for vertices at two hop distance from I, dr(v) ≤ 3 × δL. There are no vertices
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Figure 2.1: An illustrative example for the BRR algorithm.
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at ≥ 3 hop distance from I, since the latter is a maximal independent set in G2
δL

.

Limiting the amount of resource replicated. We first consider the following

generalization of BRR: each color Ci has a bound K ∈ N, which is the number of

copies of Ci that can be used. This problem is also a natural generalization of the

K-center problem (where there is a single resource with bound K). We note that

a simple modification to Algorithm 1 solves this generalized version of BRR with

capacity bound on colors. In fact the only difference between the algorithms for

BRR and this version is how we choose δ (and we do not follow step 7). For this

case, we must try out all the possible values of optimal δ (there are at most O(n2)

such values) and choose the smallest δ which satisfies the following two properties :

(1) each vertex of Gδ has degree ≥ k − 1; (2) the computed maximal independent

set in G2
δ has size at most K. Clearly, this gives a feasible solution for the problem,

as we follow steps 4-6 of Algorithm 1 to assign color.

Lemma 2.2.4 The optimal distance δOPT , for an instance of the generalized BRR,

where at most K copies of each color may be used, must satisfy the following prop-

erties: (1) each vertex of GδOPT has degree ≥ k − 1; (2) any maximal independent

set in G2
δOPT

has a size at most K.

Proof: The first condition is obvious. To see the second condition, suppose there

exists a maximal independent set {u1, u2, . . . , uL} in G2
δOPT

whose size L > K. Then,

in GδOPT , it is not possible to satisfy all u1, u2, . . . , uL by at most K copies of a single

color, because then there exists at least a pair of vertices ui and uj, i, j ∈ [1, L],
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within at most two hops.

The above lemma guarantees that the computed, δ ≤ δOPT . Now, a 3-approximation

guarantee follows immediately by an analogous argument to Theorem 2.2.3. For-

mally, we have the following theorem.

Theorem 2.2.5 There is a polynomial time 3-approximation algorithm for the gen-

eralized BRR problem.

Consider a further generalization of the BRR problem. Apart from the input given

to the BRR instance, we are provided with placement cost of each resource j on a

vertex i, cij. There can be two possible definitions of the weighted version of the

problem (abbreviated as WBRR1 and WBRR2 respectively) -

1. WBRR1: Given a budget B, solve the BRR problem such that the total (sum

of) cost of placement of various resources on the vertices must not exceed B.

2. WBRR2. Given budgets for each resource Br, solve the BRR problem such

that total cost of placement associated with each resource Cr does not exceed

Br.

For the first version of the problem, Algorithm 1 can be easily extended. This result

generalizes the 3-approximation algorithm for weighted k-center problem [119].
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Algorithm 2 3-approximation algorithm for weighted BRR

1: let D be the list of possible δ values, i.e., the list of pairwise distances between

the vertices of G, arranged in the non-decreasing order.

2: for all δ ∈ D such that the minimum degree in Gδ is k − 1 do

3: construct the threshold graph Gδ and the two-hop graph G2
δ .

4: compute a maximal independent set I in G2
δ .

5: for v ∈ I do

6: construct a weighted complete bipartite graph as follows: neighbors of v,

including v itself, in Gδ, are on one side (call left) and k vertices, one for

each color, on the other side (call right); the weight of an edge incident on

the vertex i and the color j is assigned to cij, i.e., the cost of placing color

j on i.

7: on the above bipartite graph, compute a minimum weight matching that

saturates all the k nodes on the right.

8: we assign the color j to a neighbor i of v, if the edge īj is in the matching.

9: end for

10: if total weight of all matchings (corresponding to all v ∈ I) is at most B

then

11: return current assignment of colors to vertices and exit.

12: end if

13: end for

14: if no solution has been returned so far then

15: return φ indicating no feasible solution exists.

16: end if

Theorem 2.2.6 Algorithm 2 gives a 3-approximation for the WBRR1 problem.

Proof: For the optimal δ, each v ∈ I has at least k neighbors (including itself) in

Gδ. Hence, a minimum weighted matching saturating all the k nodes on the right

side of the bipartite graph, defined on the Line 6 of Algorithm 2, is well defined.

This ensures that v will have all k colors in its neighborhood and we are opening

these in the cheapest possible way. Thus, for an optimal δ, the total cost should not

34



exceed the budget B. We are returning a solution with minimum value of δ for which

the total cost is at most B; hence this value serves as a lower bound to the opti-

mum. Also, clearly, each vertex obtains all the required colors with in 3δ distance.

We now observe that there is no constant approximation for the second version of

weighted basic resource replication (WBRR2) problem. We reduce the classic NP-

hard problem of subset sum [120] to an instance of this problem. In an instance of

the subset sum problem, we are given a set of elements S, with each element e ∈ S

having a weight we and an real number bound B. The goal is to compute a subset

S ′ of S such that the total sum of weights of elements in S ′ is exactly B.

Theorem 2.2.7 Assuming P 6= NP , there is no polynomial time constant approx-

imation algorithm for the WBRR2 problem.

Proof: For some constant c > 0, suppose there is a c-approximation algo-

rithm, denoted by A, for the WBRR2 problem. Given an instance of the sub-

set sum problem, I = (S,B), we construct the following instance of WBRR2,

I ′ = (G, C = {C1, C2},B = {B1, B2}). The graph G is of a collection of inde-

pendent edges, one for each element of S. The distance between any vertices on two

distinct edges is ≥ c+1 and that between end points of the same edge is 1. There are

two colors in the instance C1, C2 and every vertex requires both of them. We mark

one vertex on each edge as positive and other vertex as zero: the placement cost of

either colors on the positive vertex is the weight of the corresponding element in the

set S and the placement costs on the zero vertices is 0. We now place the weight

35



bounds, on colors C1 and C2 respectively as, B1 = B and B2 = (
∑

e∈S we) − B,

where we is the weight of element e. It is easy to observe that I is a yes instance if

and only if the c-approximation algorithm A returns the value 1 as the solution.

2.2.2 Subset resource replication problem

In the BRR model each client requires all the data items. But in general each

client might be interested in a subset of resources instead of all the resources. The

servers might also have capacity to hold several data items. This substantially more

generalized version of resource replication problem, which we call the subset resource

replication problem (SRR) was considered by Ko and Rubenstein in a subsequent

paper [2]. Formally,

Definition 2.2.8 (The subset resource replication (SRR) problem.) In an in-

stance of the problem, we are given, a set of vertices V = {v1, v2, . . . , vn}, a metric

d : V ×V → R+∪{0}, and a set of colors C = {C1, C2, . . . , Ck}. Every vertex v ∈ V

has a subset Cv ⊆ C of “required” colors and a non-negative integer sv as the storage

capacity, i.e., we can assign sv colors to vertex v. The goal is to assign a list of

colors φ(v) ⊆ C to each vertex v, such that |φ(v)| ≤ sv, with the following objective:

δ = Min
φ

Max
v∈V
r∈Cv

dr(v), where dr(v) is the shortest distance from v to some vertex

u, such that Cr ∈ Cu.

Ko and Rubenstein [2] extended their basic approach to this problem but had no

guarantee on either the approximation ratio or the running time. We give the
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first centralized polynomial time 3-approximation algorithm (Algorithm 3) for the

problem. Later, in Theorem 2.2.12, we will prove that this is the best possible

approximation one can expect, assuming P 6= NP .

We again use the threshold graph technique. The optimal distance δ has to be

the distance between one of theO(n2) pairs of vertices. Hence, it has only polynomial

number of possible values and we can assume that the value of δ is known (trying

out all possible values of δ will only add a polynomial factor). Assuming δ is known,

we construct the threshold graph Gδ. We now square the graph Gδ to obtain G2
δ ,

i.e., add an edge between two vertices u, v ∈ V if they are at a distance at most two

in Gδ. Consider a color r and let Hr ⊆ G2
δ be the induced subgraph on vertices that

need color r (among possibly other colors). Let Ir be a maximal independent set in

the subgraph Hr. The following is a key observation about an optimal solution.

Observation 2.2.9 For every vertex v ∈ Ir, the optimal solution must assign a

unique copy of r in the neighborhood of v in Gδ. (†)

Indeed, in Gδ the neighborhoods corresponding to vertices in Ir must be mutually

disjoint. If the neighborhoods corresponding to vertices u, v ∈ Ir intersect, there

must exist an edge between u, v in G2
δ , which is impossible as Ir forms an indepen-

dent set in this graph. Since every vertex in Ir must be satisfied by some copy of r

in its neighborhood in Gδ our observation holds. If for every vertex v ∈ Ir dr(v) ≤ δ,

then every vertex u ∈ Hr has dr(u) ≤ 3 × δ. Thus, to find a 3-approximation we

focus on satisfying vertices of such independent sets Ir, for each color r ∈ C. We

cast this as a b-matching problem [121] on the graph B = (X, Y ) - where X is the
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union of independent sets Ir, ∀r ∈ C (i.e., if a vertex belongs to s independent sets

of the form Ir, we add s copies of the vertex to X) and Y is a copy of V with

b−matching bounds sv on each vertex v ∈ V . We add an edge across the partitions

if its end points are at distance at most δ from each other. From observation (†),

there must exist a b-matching that saturates all the vertices of X. The following

example explains this construction.

Example 2.2.10 We refer to the Figure 2.2 for various steps in the construction:

(a) guess δ and construct the threshold graph, Gδ; the required color set for each

vertex is shown next to it; (b) construction of G2
δ; (c) for each color Ci, HCi is the

subgraph of G2
δ over vertices that require Ci; the “dashed” circles represent maximal

independent set ICi in each HCi; (d) bipartite graph construction: on one side we

have copies of vertices in ICi and on the other side we have all the vertices in Gδ;

we add edges (“dashed lines”) between copies of two vertices, if they had an edge in

the threshold graph Gδ; we then compute a b-matching on this graph; the solid lines

represent a valid b-matching (where each vertex has a capacity of 1); (e) using the

b-matching, we compute the final color assignments for each vertex.
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Figure 2.2: Illustrative example for the SRR algorithm.
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Algorithm 3 A 3-approximation algorithm for SRR

1: let D be the list of possible δ values, i.e., the list of pairwise distances between

the vertices of G, arranged in the non-decreasing order.

2: for all δ ∈ D do

3: for all colors c do

4: let Hc be the subgraph of G2
δ induced by the set of vertices that require

color c.

5: compute Ic, which is a maximal independent set of Hc.

6: end for

7: let X denote the set of vertices formed in the following way: if a vertex v is

contained in the independent set Ic, corresponding to ` distinct colors c, then

` copies of v are added to X. Let Y be a copy of set of vertices in V with

non-zero storage capacities.

8: construct the bipartite graph B = (X, Y ) : add an edge between x ∈ X and

y ∈ Y , if the nodes they represent are at distance at most δ.

9: compute a maximum b-matching in B with bounds : 1 on vertices of X and

respective storage capacities on the nodes of Y .

10: for every node v ∈ Y having Sv ⊆ X as the matched subset of nodes, assign

the list of colors Lv of nodes of Sv to v. Call this coloring φ.

11: if the requirement of every vertex of G is satisfied within a distance of 3δ

then

12: return φ (and exit the function)

13: end if

14: end for

Theorem 2.2.11 Algorithm 3 is a 3-approximation for the subset resource replica-

tion problem.

Proof: Assuming δ is the optimum distance, we start by proving that the maximum

b-matching, found in Step 9 of Algorithm 3, completely saturates X. It is sufficient

to show that there exists of b-matching which saturates X because this in turn

implies the maximum b-matching also does so. In an optimal list coloring, i.e., an
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assignment of colors to nodes that satisfies every vertex within distance δ, let Loptv

denote the list of colors placed on v ∈ V . For feasibility, |Loptv | ≤ sv, where sv is the

storage capacity of v. For a color i and a vertex v ∈ Ii, we denote the corresponding

copy of v in X by vi. We note that, for every v that requires a color i, there exists

a vertex u ∈ Y that is within a distance δ of v and has i in its list of colors Loptu .

We now claim that the following edge set forms a b-matching that saturates X. The

edge set, denoted by bM , consists one edge for each vi ∈ X, namely viu, where u is

some vertex within distance δ of vi such that i ∈ Loptu . We only have to show that

bM is a feasible b-matching because it saturates X by its definition.

In order to prove that bM is a feasible b-matching, we show that the number

of edges incident on each vertex is within the allocated bounds, sv, for v ∈ Y and 1

for vi ∈ X. The latter bounds are, by definition, satisfied. To prove that the bounds

sv are not violated, we observe that no two vertices of X with same color index i,

say vi and wi, are matched to the same vertex u ∈ Y with respect to bM . Indeed,

this would imply that v and w are adjacent in G2
δ , which is a contradiction to the

fact that they belong to a maximal independent set (in some induced subgraph of

G2
δ). Thus, the number of edges of bM incident on u is at most |Loptu | ≤ su. Hence,

bM is a valid b-matching which saturates all the vertices of X.

To finish the proof, we now show that every node v requiring a color i finds a

node hosting i at distance at most 3δ. Indeed, there exists some ui ∈ X, such that u

is a neighbor of v in Hi (note that the distance between such u and v is at most 2δ).

Now, if uiw ∈ bM , w is the vertex hosting i at distance at most 3δ. Hence, Algo-

rithm 3 is a 3-approximation algorithm for the subset resource replication problem.
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2.2.3 Hardness results for resource replication problems

We now prove some lower bounds on the above problems. The following theorem

shows that Algorithm 3 provides the best possible guarantee for the SRR problem,

while there is a small gap between the algorithm and the lower bound proven for

the BRR problem.

Theorem 2.2.12 Assuming P 6= NP , there is no polynomial time algorithm that

guarantees an approximation ratio better than, (1) 2− ε for the basic resource repli-

cation problem, and (2) 3− ε for the subset resource replication problem.

Proof: (1) The following problem is called the domatic partition problem and was

shown to be NP-complete in [120]: given a simple undirected graph G = (V,E) and

an integer k, does there exist a partition of V into k disjoint subsets Vi : i ∈ [1, k]

such that each Vi is a dominating set of G. We reduce any instance (G = (V,E), k)

of the domatic partition problem into an instance of BRR (V, C = {C1, C2 . . . Ck}, d :

V × V → {0, 1, 2}) in the following way. The function d is defined as follows, for

any u 6= v,

d(uv) =


1 if uv ∈ E

2 otherwise

It is easy to check that d is a metric. We note that, for the above instance of BRR,

there are only two possible values for optimal distance, namely 1 or 2 (assuming a

non-trivial instance with non-zero optimal distance). We claim that (G, k) is a yes
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instance of the domatic partition problem if and only if the optimum distance for

the BRR instance is 1. Indeed, if V can be partitioned into k dominating sets, we

assign colors to nodes in V such that the members of each set get a unique color.

Every vertex, by the definition of dominating sets, must be adjacent to some vertex

in each of the other dominating sets. Hence, each vertex will find all the k colors

within distance 1. On the other hand, if every vertex finds a color within distance 1,

each color group forms a dominating set, hence (G, k) will be a yes instance for the

domatic partition problem. Thus, if (G, k) is a yes instance the optimal distance

value is 1 and if it is a no instance the optimal distance is 2. Thus, if there exists an

algorithm A with polynomial running time such that it approximates BRR within a

factor 2− ε, it will be able to differentiate yes and no instances of domatic partition

problem, in polynomial time. But this would imply P = NP .

(2) The following problem is NP-complete [122]: given a bipartite graph B =

(X, Y ) partition Y into k subsets such that each subset dominates X. This prob-

lem is called, the one-sided domatic partition (ODP) problem. Now, given an

instance of ODP, (B, k), we reduce it to an instance of the SRR, I ′ = (V, C =

{C1, C2 . . . Ck}, {Cv ⊆ C : v ∈ V }, {sv : v ∈ V }, d : V × V → {0, 1, 2, 3}) in the

following way. Set V = X ∪ Y . All vertices of X have 0 capacity (sv = 0 : v ∈ X)

and all vertices of Y have 1 capacity (sv = 1 : v ∈ Y ). All vertices of X require every

color in [1, k] (Cv = C : v ∈ X) and all vertices of Y require no color (Cv = φ : v ∈ X).
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The distance metric is

d(uv) =



1 if uv ∈ E(B)

2 if u, v ∈ X or u, v ∈ Y

3 otherwise

Following the same argument as in part (1), it is easy to show (B, k) is a yes in-

stance of ODP if and only if I ′ has an optimum distance 1. We observe that the

above instance only takes values 1 or 3. Hence, if we could solve the SRR problem

within an approximation guarantee of 3 − ε, ODP could be solved in polynomial

time, thereby implying P = NP .

2.3 Dealing with outliers: Robust resource replication

The objective of minimizing the maximum distance over all vertices may result in a

much larger distance if there are few distant “outliers”. Even a good approximation

algorithm, in this case, will raise δ to a very high value and many nodes could get a

bad solution. It is therefore natural to study outlier versions of such problems. In

such a model, the objective remains the same but we are allowed to ignore a few far

away vertices (the outliers).

Example 2.3.1 Figure 2.3 shows a simple example where “ignoring” a few far

away vertices improves the quality of solution significantly. For k = 4, the non-
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outlier version has a cost of 100, while if we ignore the vertices in the “dotted”

circle, the solution has a cost of 1.

distance = 1

distance = 100

Scale

Figure 2.3: A case for the outlier version.

Several well known problems have been studied under the “outlier” model like

outlier versions of k-center problem [49] (called robust k-centers), scheduling with

outliers [62, 123,124], outlier versions of facility location type problems [49,125].

2.3.1 Robust basic resource replication

In this section, we initiate the problem of robust basic resource replication (RBRR)

or the resource replication problem with outliers. In the RBRR problem the input

is the same as the BRR problem except that we now have a lower bound M , which

is the number of vertices that must be satisfied. Formally,

Definition 2.3.2 (The robust basic replication (RBRR) problem) In an in-

stance, I = (V, C,M, d), we are given a set of vertices V = {v1, v2, . . . vn}, a metric

d : V × V → R+ ∪ {0}, a set of colors C = {C1, C2 . . . Ck}, an integer M ∈ N. The

goal is to find an optimal mapping φ : V → C with objective: Min
φ

S⊆V
|S|≥M

Max
v∈S
Cr∈C

dr(v),

where dr is defined as the distance from v to a closest node u such that φ(u) = Cr.
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We show that a simple extension to Algorithm 1 gives a 3-approximation for

the RBRR. Algorithm 4 describes the procedure. Again, we begin by guessing the

optimal value δ and construct the threshold graph Gδ. We note that there should be

at least M vertices with degree at least k−1 for δ to be a feasible solution distance,

because at least M vertices should get k − 1 colors from their neighborhood to be

satisfied. We then construct an independent set in G2
δ by adding only these “high”

degree vertices as long as possible. Finally, for each vertex v in the independent set,

we pick k− 1 of its neighbors in Gδ and assign k colors one to each of the k vertices

(v and its k − 1 neighbors).

Algorithm 4 A 3-approximation algorithm for RBRR

1: let D be the list of possible δ values, i.e., the list of pairwise distances between

the vertices of G, arranged in the non-decreasing order.

2: for all δ ∈ D do

3: construct Gδ and G2
δ , and mark vertices that have degree ≥ k − 1 in Gδ.

4: construct an independent set I of G2
δ by adding marked vertices as long as

possible, i.e., maximal with respect to marked vertices.

5: for all v ∈ I do

6: choose k−1 vertices from neighborhood of v in Gδ and color these k vertices

with k colors arbitrarily.

7: end for

8: color all uncolored vertices arbitrarily.

9: if the number of vertices that are satisfied with in a distance of 3δ is at least

M then

10: return the current assignment and exit.

11: end if

12: end for

Theorem 2.3.3 Algorithm 4 gives a 3-approximation for the RBRR problem.
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Proof: Let δ be the optimum distance, such that at least M vertices have all the

k colors within distance δ. We prove that Algorithm 4 satisfies at least M vertices

within distance 3δ. We claim that every vertex of degree at least k − 1 (in Gδ) has

all the k colors within a distance 3δ. Indeed, if a vertex u has degree k − 1 then

either it belongs to I or has a node in I at distance at most 2δ. Since each v ∈ I

has all colors within δ, every such vertex u is completely satisfied within 3δ. Clearly

every vertex satisfied by the optimal algorithm must have degree k−1 and therefore

there are at least M nodes of degree k − 1. Hence, Algorithm 4 will satisfy at least

M nodes within 3δ.

2.3.2 Budgeted robust basic resource replication

We now consider a more interesting generalization of the RBRR problem called

the K-robust basic resource replication (K-RBRR) problem. In this problem, we

only allow K copies of each resource, while the rest of input and output structure

remains the same as RBRR. This problem is a natural generalization of the robust

K-center problem, latter having k = 1 resource. The robust K-center problem is the

outlier version of K-center problem and was studied, along with several other outlier

variants of facility location type problems by Charikar et al. [49]. One variant of

particular interest to our work is the robust K-supplier problem, for which Charikar

et al. [49] give a 3 -approximation algorithm. The robust K-supplier is the outlier

variant of K-supplier problem. In the K-supplier problem, we have a set of suppliers
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and a set of clients, embedded in a metric. The goal is to choose K suppliers which

can hold a resource (there is only one resource here) such that the maximum “client

to nearest resource distance” is minimized over all clients. In the robust K-supplier

problem, we have the same objective but we must satisfy at least M clients, instead

of all. We use the 3-approximation algorithm of [49] as a sub-routine and obtain a

5-approximation algorithm for K-RBRR problem. For the sake of completeness, we

briefly describe the algorithm from [49] here.

For a given value δ, the algorithm of [49] proceeds in the following way.

• For each supplier v, construct Gv as the set of clients within distance δ and

Ev as the set of clients within distance 3δ of v.

• Repeat the following steps K times:

– Greedily pick a supplier v as a center whose set Gv covers most number

of yet uncovered clients. (†)

– Mark all the clients in Ev as covered.

• If at least M vertices are satisfied return the centers, or else return no.

For a proof on why this algorithm guarantees a 3-approximation, we refer the reader

to [49]. We make a small modification to the above algorithm before using it as a

sub-routine. In the step(†), if there are no more clients to be covered we can stop.

Doing this will clearly not affect the performance or feasibility of the algorithm, but

will make sure that there is at least one, so far uncovered, client that is covered on

picking v as a center. We pick one such newly covered client arbitrarily and label it
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U(v). Note that this process assigns a distinct client to each supplier. Algorithm 5

gives a 5-approximation for the K-RBRR problem. We make the following claims

about Algorithm 5.

Claim 2.3.4 If δ is the optimum distance for an instance of K-RBRR, it is a feasible

distance for the K-supplier instance in step 4 of Algorithm 5.

Proof: Consider an optimal coloring of the graph which gives distance δ for the

K-RBRR instance. Now, there are at least M vertices of degree at least k − 1,

which have a particular color C1 within distance δ (in fact, these vertices have all

the colors within δ). Now, just pick those nodes colored with color C1 as centers.

This implies M vertices of Vc (the set of clients in Algorithm 5) are satisfied, as

all vertices with at least k − 1 degree in Gδ are represented in Vc. Therefore δ is

a feasible distance for the K-supplier instance constructed in step 4 of Algorithm 5.

Claim 2.3.5 The set I, formed in the Step 11 of Algorithm 5, is an independent

set in G2
δ.

Proof: We prove that any two elements U(v), U(w) are at distance strictly greater

than 2δ from each other. Let us assume this is not the case. Let v be chosen as a

center before w. Since the distance between v and U(v) is ≤ δ and distance between

U(v) and U(w) is ≤ 2δ, the distance between v and U(w) must be ≤ 3δ. But this

implies U(w) would be covered when v was picked (as U(w) ∈ Ev, as described

in the robust K-supplier algorithm), a contradiction to the fact that U(w) is an

uncovered vertex when w was picked.
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Algorithm 5 A 5-approximation algorithm for K-RBRR

1: let D be the list of possible δ values, i.e., the list of pairwise distances between

the vertices of G, arranged in the non-decreasing order.

2: for all δ ∈ D do

3: construct Gδ and mark the subset, Vc, of “high” degree (≥ k − 1) nodes.

4: with Vc as the set of clients, Vs = V as the set of suppliers, distance between

copies remaining the same as the original vertices, we solve the robust K-

supplier problem [49] with δ as the input distance.

5: if δ is infeasible for the above robust K-supplier instance then

6: Claim 2.3.4 implies that δ is not the correct guess for optimal solution.

7: continue to next δ value.

8: else

9: let S ⊆ Vs be the set of centers returned.

10: end if

11: let I = {U(v) : v ∈ S}. By Claim 2.3.5, I is an independent set in G2
δ .

Further, each member of I has degree ≥ k − 1 in Gδ (because I ⊆ Vc and

each v ∈ Vc is of degree ≥ k − 1).

12: for v ∈ I do

13: pick k− 1 neighbors of v in Gδ. Assign each of these vertices along with v,

one color each of the k colors.

14: end for

15: if the number of vertices satisfied within a distance 5δ is at least M then

16: return the current assignment and exit.

17: end if

18: end for

Theorem 2.3.6 Algorithm 5 is a 5-approximation for the K-RBRR.

Proof: Claim 2.3.4 guarantees S is valid and Claim 2.3.5 guarantees there is

no clash during the coloring phase (Step 12) of Algorithm 5. Hence, Algorithm 5

generates a valid coloring. We now prove that at least M vertices get all k col-
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ors within 5δ distance. We note that S has the property that, at least M vertices

are at distance at most 3δ from S (i.e., each of the M vertices has a vertex of S

at distance at most 3δ). Since I was obtained by shifting the centers of S by at

most δ, at least M vertices are at distance 4δ from I. But each element of I has

all k colors within δ, hence at least M vertices have all k colors within distance 5δ.

2.3.3 Robust subset resource replication

Let us now consider the robust subset resource replication (RSRR) problem. In this

problem, we are provided with the input for the SRR problem along with a lower

bound M on the number of vertices that must be satisfied with their requirement.

The objective function is: Min
φ

S⊂V
|S|≥M

Max
v∈S
r∈Cv

dr(v)

Given that the outlier version of BRRand its extension with bound on each

color has simple constant factor approximation algorithms, it is a natural question to

ask whether similar bounds can be obtained for RSRR. But, somewhat surprisingly,

we show not only there does not exist any constant factor approximation algorithm

for RSRR, but in fact, assuming P 6= NP , there is no polynomial time algorithm that

provides any nontrivial approximation guarantee. In Theorem 2.3.7, we prove that

deciding if a given instance of RSRR is feasible, is NP-hard. We give a polynomial

time reduction of the maximum k-clique problem to the problem of deciding the

feasibility of RSRR.

Theorem 2.3.7 Assuming P 6= NP , there is no polynomial time algorithm which
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Figure 2.4: Reduction of maximum k-clique instance to an RSRR instance: (a) given
instance of the maximum k-clique problem (for this example, k = 3); (b) a RSRR
instance: the vertex set comprises of 3 parts: V1 with k = 3 vertices, V2 with vertices
corresponding to the edges of G; each v ∈ V2 has a m2 clique Gv associated with
it as shown; these gadgets form the set V3; each edge represents distance 1 and the
remaining distances are computed using shortest path metric.
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gives a positive approximation ratio for robust subset resource replication problem,

even in the case where all the storage capacities are unit.

Proof: In the decision version of the maximum k-clique problem, we have an

instance of the form I = (G, k) and the goal is to decide if there is a complete

subgraph (clique) of G with k vertices. We assume that |V | = n and |E| = m

Reduction. Given an instance of maximum k-clique problem, I = (G = (V,E), k),

we construct an instance of RSRR, I ′ = (G′,M, C, {Cv : ∀v ∈ G′}) as follows. First,

color the vertices in V with distinct colors c1, c2, . . . , cn arbitrarily. The vertex

set of G′ has 3 parts, namely, V1, V2, and V3. V1 has k vertices and V2 has m

vertices corresponding to the edges of G. The distance between any two vertices

u ∈ V1, v ∈ V2 is 1. Each vertex v ∈ V2 has a set of m2 vertices, Gv, associated with

itself. The distance between any vertex pair of v∪Gv is 1. Rest of the distances are

computed using the shortest path metric. The set {Cv : ∀v ∈ G′} is specified in the

following way - each vertex u ∈ V1 requires 0 colors and hence is trivially satisfied.

Each vertex v ∈ V2 requires colors {av, ci, cj} where av is a color associated uniquely

with vertex v and ci, cj are the colors of the end points of the edge in G associated

with v. Each vertex w ∈ Gv requires colors {av, biv : i ∈ [1 : m2]}. Each one of

av, b
i
v : v ∈ V2, i ∈ [1,m2] is a distinct color. Let L =

(
k
2

)
. Set M = m3 + L+ k, the

lower bound on the number of vertices that must be satisfied. Figure 2.4 shows the

construction for a simple instance.

Claim: I is a yes instance of maximum k-clique problem if and only if I ′ is a feasible

solution of RSRR problem. In other words, we prove that the feasibility question
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of RSRR problem is NP-hard. This would imply that there is no approximation

algorithm for this problem.

Proof of the Claim. Let I be an yes instance of the maximum k-clique problem and

let H = {v1, v2 . . . vk} be the k vertices that induce a clique, that is L =
(
k
2

)
edges

in G. We present a feasible coloring for I ′ as follows -

• The k vertices of V1 are colored with the k colors of H

• Each vertex v ∈ V2 is colored with its associated color av.

• For each vertex v ∈ V2, its m2 associated vertices Gv are colored with m2

colors of type biv.

It is straightforward to check that the above coloring satisfies M = m3 + k + L

vertices - all the vertices of V3 are satisfied, all the vertices of V1 are satisfied and

at least L vertices of V2 are satisfied. Now, we consider the other direction. Let

there be a coloring of vertices of G′ which certifies that I ′ is a feasible instance. We

first observe that, all the m3 colors of type biv and the m colors of type av must be

used - otherwise, there will be at least m2 vertices out of m3 +m+ k vertices which

go unsatisfied and hence the bound M is not met. Since, we are only interested in

the feasibility question, we can assume that m2 vertices of Gv are colored with m2

colors of type biv and the m vertices v ∈ V2 are colored with color av. Now at least

L =
(
k
2

)
vertices of V2 must be satisfied and the k vertices of V1 must be colored

with k colors from {c1, c2 . . . cn} - say {c1, c2 . . . ck}. We observe that the union of

colors required by the L =
(
k
2

)
vertices, apart from their associated colors, must be

{c1, c2 . . . ck}. Hence, the L edges in G corresponding to these L vertices in V2 must
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be completely incident on the vertices in V corresponding to these k colors. This

implies the existence of k vertices in G that induce
(
k
2

)
edges, that is an existence

of a k clique. Hence the theorem.

Remark. If we insist only on a lower bound on the number of satisfied node-resource

pairs as opposed to the number of completely satisfied nodes, the problem becomes

significantly easier. We just need to create a copy of a vertex for each color that it

desires and then run the robust version of BRR. The main hardness stems from the

fact that in order for a vertex to be satisfied it requires all the desired colors.

2.4 Serving fairly: Capacitated basic resource replication

Another desired quality of an assignment scheme in client-server type problems is

load balancing [115, 126, 127]. In this setting, we are not allowed to “overload” a

server by assigning more than a bounded number of clients. Bar-Ilan, Kortsarz

and Peleg [127], Khuller and Sussman [115] study the load balancing version of

the k-center problem which is called the capacitated k-center problem. Khuller and

Sussman [115] provide the current best approximation ratio of 5 for this problem.

We initiate the study of basic resource replication problem in the load balancing

setting. We call it the capacitated basic resource replication problem (CBRR). In

this problem, the input instance is defined as I = (V, C = {C1, C2 . . . Ck}, d, L) and

the goal is the same as the basic resource replication problem with an additional

restriction that a vertex with a certain color is not allowed to serve more than L
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other vertices (including itself). We give a 4-approximation algorithm (Algorithm 6)

for this problem, provided L ≥ 2k− 1. First we prove that the problem is infeasible

if L < k.

Preposition 2.4.1 Given an instance of CBRR, I = (V, C, d, L), with |C| = k, the

following statements are true:

1. If L ≤ k − 1, then I is infeasible.

2. If L = k, then I is feasible with value δ ⇐⇒ the number of vertices in each

component of Gδ (threshold graph on V ) is a multiple of k.

Proof: 1. Let if possible, there exist a feasible solution when L < k. We construct

the following directed graph D, on the vertex set V . For every pair of vertices

u, v ∈ V × V (note that u and v need not be distinct), we add a directed edge uv

them if v serves u in the feasible solution. Since each vertex requires all k colors,

the out-degree of each vertex is at least k. Also we note that, since each vertex can

serve at most L vertices the in-degree of each vertex is at most L . Given that the

problem is feasible, we have:

k × |V | ≤
∑
v∈D

out-degree of v

=
∑
v∈D

in-degree of v

≤ L× |V |
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This implies L ≥ k, a contradiction.

2. Fixing a component C of Gδ, we will first prove that for the instance to be

feasible, |C| must be a multiple of k. Firstly, we note that the vertices of C can

only be satisfied by other vertices of C. Consider the feasible assignment of colors

Ci i ∈ [1, k] to C. Group all the vertices that are given a color Ci into a class Bi.

Let Bs be the smallest cardinality color class. Construct the directed graph on C as

described in the part(a). Now, every vertex in C (including those in Bs) must have

an edge directed into Bs (because every vertex requires the color Cs). Each vertex

of Bs has an in degree ≤ L = k. Hence, we have |C| ≤ k×|Bs|. This implies all the

color classes have the same cardinality, which in turn implies |C| is a multiple of k.

We now give a 4-approximation algorithm for the CBRR problem where L ≥ 2k −

1. We refer to Algorithm 6 for pseudocode. The algorithm starts by guessing

the optimal δ and constructs the threshold graph Gδ. Let I be some maximal

independent set of G2
δ . We divide all the vertices into three levels - level 0, level 1

and level 2. All the elements in I are at level 0. All vertices not in I but adjacent

(with respect to Gδ) to some element in I are at level 1. Finally all the vertices

not in level 0 or level 1 are in level 2. For each element v at level 0, its empire

Empire(v) consists of itself along with all the adjacent(with respect to Gδ) level 1

vertices. Since I is independent in G2
δ , all the empires defined so far are mutually

disjoint. Finally, all the level 2 vertices are adjacent to at least one level 1 vertex.

For each level 2 vertex, we pick one such level 1 vertex arbitrarily and assign the

former to the same empire as the latter. Thus we have assigned every vertex to
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exactly one empire.

Algorithm 6 A 4-approximation for CBRR

1: let D be the list of possible δ values, i.e., the list of pairwise distances between

the vertices of G, arranged in the non-decreasing order.

2: for all δ ∈ D do

3: construct the graph Gδ and G2
δ .

4: if minimum degree of Gδ < k − 1 then

5: continue onto the next δ value.

6: end if

7: let I be a maximal independent set in G2
δ .

8: for all v ∈ V do

9: if v ∈ I then

10: Empire(v) = {v}
11: end if

12: if v /∈ I then

13: if v has a vertex u ∈ I at distance δ. then

14: Such a vertex is unique owing to the property that I is an independent

set. Add v to the empire of u, Empire(u) = Empire(u) ∪ {v}.
15: else if v has a vertex in I at distance 2δ. then

16: Pick one such vertex u arbitrarily and add v to the empire of u.

17: end if

18: end if

19: end for

20: for all v ∈ I do

21: Each vertex v has degree at least k − 1 in Gδ. Hence, |Empire(v)| ≥ k.

Divide Empire(v) into blocks, all of which have size exactly k - except

possibly the last one which has size at most k.

22: Color each block of size exactly k using k colors, arbitrarily. The final block,

whose size is at most k, has its color requirement satisfied from one such

block. Since there is at least one block of size exactly k, such an assignment

is valid.

23: end for

24: end for
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In the next step, we consider one empire at a time and split it into “blocks” of

vertices. Every block consists of exactly k vertices, except the last block which

might have less than k vertices. A key property of vertices in a block is the following

- any two vertices are at a distance of at most 4δ from each other. We now color

each block of size exactly k using all k colors (since the degree of each vertex is at

least k − 1 in Gδ, every empire has at least one block of size exactly k). A vertex

in a block only serves other vertices in the same block, hence the load is not more

than k currently on any vertex. The vertices of the final block (which might have

≤ k vertices) are now served by some block of size exactly size k. Thus the load on

each vertex is at most 2k − 1.

Theorem 2.4.2 Algorithm 6 is a 4-approximation algorithm for the problem of

capacitated basic resource replication problem where the allowed load L ≥ 2k − 1.

Proof: As mentioned in the discussion above, the key observation needed is that

any two vertices in the same empire (of say a vertex v) are at distance at most 4δ

from each other. Indeed, all the vertices in the empire of vertex v are at distance

at most 2δ from v and hence at distance 4δ from each other. The only detail that

needs to be verified is that the maximum load on any vertex is at most 2k − 1. A

block of size exactly k satisfies the requirement of its own members along with at

most one other block (of size < k). Hence the maximum load is ≤ 2k − 1 ≤ L.

By using Preposition 2.4.1, we observe that Algorithm 6 is in fact a bicriteria

approximation algorithm (for arbitrary load capacity) - it gives an approximation
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guarantee of 4 while exceeding the load by a factor of 2 at most.

We now show a simple 8-approximation algorithm for the CBRR problem,

when the capacity L = k. We use the construction of [115] to obtain a maximal

independent set, I on G2
δ , which has the following useful property -

Property 2.4.3 I can be represented as a rooted tree, T , where any given vertex

(apart from the root) has its parent (immediate ancestor) at distance ≤ 3δ.

We also adopt the terminology of [115] and call each vertex in I a monarch, the

rooted tree T a monarch tree and all the vertices assigned to it in a feasible solution

its empire. Every monarch has all its neighbors in Gδ added to its empire. Every

non-assigned vertex is at distance at most 2δ from some monarch (otherwise such a

vertex can be added to I) and we add the former to the latter’s empire (breaking

ties arbitrarily, if more than one such monarch exists).

Algorithm 7 8-approximation for load = k

1: Let D be the list of possible δ values, i.e., the list of pairwise distances between

the vertices of G, arranged in the non-decreasing order.

2: for all δ ∈ D do

3: Construct Gδ.

4: if minimum degree of Gδ < k − 1 then

5: continue onto next δ value.

6: end if

7: Construct G2
δ .

8: Construct the monarch tree T . Let r be its root.

9: Call the recursive procedure, ProcessMonarch(r, T )

10: end for
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Algorithm 8 Recursive procedure: ProcessMonarch(r, T )

1: Let C be the set of children of r in T .

2: LeftOver = φ

3: for all Child c ∈ C do

4: LeftOver = LeftOver ∪ ProcessMonarch(c, T ).

5: end for

6: Divide the set empire(r) ∪ LeftOver, into blocks of size exactly k, with the

possible exception of the final block, which is of size < k. In constructing such

blocks, we give least preference to the vertices in the neighborhood of r in Gδ.

Since the degree of r in Gδ is at least k (otherwise δ is infeasible), the final block

F is completely in the neighborhood of r in Gδ.

7: Color all the blocks of size exactly k with k colors.

8: if F is uncolored then

9: return F as the set of “left over” vertices.

10: else

11: return φ.

12: end if

Theorem 2.4.4 Algorithm 7 is an 8-approximation algorithm for CBRR with L =

k.

Proof: We prove the following two properties of Algorithm 7 which will imply the

statement of the theorem:

1. Every vertex belongs to some “colored block”, i.e., a block of size k which is

colored using k colors. This will imply that every vertex has its requirement

satisfied within the block.

2. For a given block, the maximum distance between any two vertices is at most

8δ. This will imply that Algorithm 7 is an 8-approximation.

61



From Preposition 2.4.1, we know that the number of vertices in a component is a

multiple of k. This along with the fact that every block is of size k, implies that

the LeftOver set must be empty when the Procedure 8 is called on the root r. For

the second claim, lets consider a arbitrary block B which is colored when processing

some monarch m. If B is completely contained in the empire of m, the maximum

distance between any two vertices of B is 4δ. On the other hand, if B contains

left over elements, we observe that these left over elements are from the empires of

monarchs which are children of m in T . Indeed, when we are creating blocks for

a monarch, the left over vertices of its children are preferred and made into blocks

first . Hence, each monarch has to deal with the left overs of its children alone. We

also note that the only vertices passed on from a monarch to its parent monarch

are the former’s neighbors in Gδ. Hence, if u is an element in the set LeftOver of

a monarch m, it must be at a distance 3δ + δ = 4δ (since the monarch m′, whose

empire contains u, is a child of m and hence is at distance 3δ from it) from m. Thus,

any two elements of the block are at a distance at most 4δ + 4δ = 8δ.
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Chapter 3

The Container Selection Problem

3.1 Road map to the chapter

As mentioned in Chapter 1, the container selection problem is a special case of

non-metric k-median, which is inapproximable unless we violate k significantly [21].

However, our problem still has sufficient geometric structure. This structure al-

lows us to obtain near optimal algorithms that, in the case of continuous container

selection, do not violate k, and in the discrete case violate k mildly.

In Section 3.2, we show that the continuous container selection problem ad-

mits a PTAS, for any fixed dimension d. Our analysis crucially relies on showing the

existence of a near-optimal solution where every container point lies on one among

a constant number of rays. Ensuring this structure costs us a 1 + ε factor in the ap-

proximation ratio. The algorithm is itself then a dynamic program which optimally

solves such a “restricted” container selection problem.

On the negative side, we show that the continuous container selection problem

is NP-hard for d ≥ 3. Interestingly, the flexibility of using container points in the

continuous space is essential not just for our algorithm but for any approach: we

show the discrete version is NP-hard to approximate to any factor when d ≥ 3. The

reduction is from a restricted version of planar vertex cover [128]. We also reduce the

discrete container selection problem to the continuous version (not approximation
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preserving) which proves its NP-hardness when d ≥ 3. All these hardness results

form the content of Section 3.4.

On a positive note, in Section 3.3, we will discuss two different algorithms

for the discrete container selection problem, both of which provide bi-approximation

guarantees. The first algorithm (Section 3.3.1) is specialized to dimension two and is

a (1 + ε, 3)-approximation. The main idea here is a partitioning of R2
+ into O(log n)

“cells” where all points in a cell have roughly the same `1-norm and which allows

a decoupling of “local assignments” within a single cell and “distant assignments”

from one cell to another. This partitioning uses the definition of rays from the

algorithm for the continuous problem. (Using a more standard partitioning yields

O(log2 n) cells which is too large for a polynomial-time algorithm.) The algorithm

then uses enumeration to handle distant assignments and a dynamic-program for the

local assignments. This decoupling is what necessitates the violation in the bound

k.

The second algorithm for the discrete version (Section 3.3.2) works for any

dimension d and yields a (1 + ε, O(d
ε

log dk))-approximation. This is based on the

natural linear programming relaxation used even for the non-metric k-median prob-

lem [21]. However, we obtain a sharper guarantee in the violation of k using the

geometry specific to our setting. In particular, we show an LP-based reduction to

hitting-set instances having VC-dimension O(d). Then our algorithm just uses the

well-known result of [129, 130] for such hitting-set instances. We note that a con-

stant bi-approximation algorithm for d = 2 also follows from this approach, using a

known O(1
ε
)-size ε-net construction for “pseudo-disks” [131]. However the constant
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obtained here is much larger than our alternative direct approach.

Notation. For integers a < b, we use [b] := {1, 2, · · · b} and [a, b] := {a, a+1, . . . , b}.

A point c(c1, c2, . . . , cd) ∈ Rd dominates or contains another p(x1, x2, . . . , xd) ∈ Rd if,

for all i ∈ [d], xi ≤ ci. By p ≺ c, we mean c dominates p. Two points p1 and p2 are

called incomparable if p2 ⊀ p1 and p1 ⊀ p2. The `1-norm of a point c(c1, c2, . . . , cd)

is denoted by ‖c‖, i.e., ‖c‖ = c1 + c2 . . .+ cd. For a subset of container points, S, we

denote the total cost of assignment by cost(S). The cartesian product of two sets

A and B is denoted by A × B. Finally, we note that all the co-ordinates of points

considered here are non-negative real numbers.

3.2 The continuous container selection problem

In this section, we describe a polynomial time approximation scheme for the con-

tinuous container selection problem. We start with a formal definition.

Definition 3.2.1 (continuous container selection) In an instance of the prob-

lem, we are given a set of input points C in Rd and a budget k. The goal is to find

a subset S of k container points in Rd, such that the following cost is minimized:

Min
S⊆Rd
|S|≤k

∑
p∈C

Min
c∈S
p≺c

‖c‖

We first describe the algorithm for d = 2 in Section 3.2.1 and subsequently, in

Section 3.2.2, we extend this to general fixed dimension d > 2.
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3.2.1 Two dimensions

We denote the set of input points by C = {pi(xi, yi) : i ∈ [n]}. Let Sopt denote some

optimal set of k container points. We start with the following simple observation.

Observation 3.2.2 (potential container points) For a given set of input points

C = {pi(xi, yi) : i ∈ [n]}, let X = {xi : i ∈ [n]} and Y = {yi : i ∈ [n]}. Then,

Sopt ⊆ X × Y . We call the set X × Y the set of potential container points and

denote it by F = {cj(uj, vj) : j ∈ [m]}, where m ≤ n2 .

Algorithm outline. Given an instance of the problem, we transform it into an

easier instance where all the chosen container points must lie on a certain family of

rays. The number of rays in this family will be bounded by a constant that depends

on ε, where 1 + ε is the desired approximation ratio. Subsequently, we show that

the restricted problem can be solved in polynomial time using a dynamic program.

Transformation. Fix a constant θ ≈ ε
2
∈ (0, π

4
], such that η = π

2θ
is an integer.

Define the following lines lr ≡ y cos (r − 1)θ− x sin (r − 1)θ = 0, for r ∈ [η+ 1]. We

define the following transformation of any point cj(uj, vj) ∈ F to construct the set

of potential container points F T . If cj lies on some line lr, for some r ∈ [η], then

cTj = cj. Otherwise, cj is contained in the region bounded by the lines lr and lr+1,

for some r ≤ η. Now define two points cuj (uj +∆u, vj) and cvj (uj, vj +∆v), such that
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cuj is on lr and cvj is on lr+1. Now, the transformed point can be defined as follows:

cTj =


cuj , if ∆u ≤ ∆v

cvj , otherwise

Figure 3.1a illustrates this transformation.

l1

l2

l3

lη−3
lη−2

lη−1

lη

(a) Transformation of containers

(r − 1)θ

θ

(uj, vj)

≥ vj cot rθ

= vj cot(r − 1)θ

≥ uj tan(r − 1)θuj tan rθ

lr+1

lr

∆u

∆v

(b) Measurement of error

Figure 3.1: The continuous container selection problem.

We now show that under this transformation the optimal solution is preserved within

an approximation factor of (1 + ε).

Lemma 3.2.3 For instance I = (C, k), let Sopt = {o1, o2, . . . , ok} be an optimal

solution. Further, let STopt = {oT1 , oT2 , . . . , oTk } ⊆ F T be the set of transformed points

corresponding to Sopt. Then, STopt is a feasible solution to I and cost(STopt) ≤ (1 +

ε)cost(Sopt).

Proof: Recall that η = π
2θ

and θ ≈ ε
2
. The feasibility of STopt follows from the

observation that if a point pi ∈ C is dominated by a container oi ∈ Sopt, it is also

dominated by the point oTi . We now argue that cost(STopt) ≤ (1 + ε)cost(Sopt). It
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suffices to show that for every point oj = (uj, vj), u
T
j + vTj ≤ (1 + ε)(uj + vj),

where oTj = (uTj , v
T
j ). The claim holds trivially in the case where oj lies on a line

lr, for r ∈ [1, 2, . . . , η + 1]. Hence, assume that oj lies in the region bounded by the

two lines lr and lr+1, where r ∈ [1, 2, . . . , η]. Further, let ouj = (uj + ∆u, vj) and

ovj = (uj, vj +∆v), be the points on lines lr and lr+1 respectively. By geometry (refer

to the Figure 3.1b), we have the following equations:

∆u ≤ vj

(
cos(r − 1)θ

sin(r − 1)θ
− cos rθ

sin rθ

)
= vj

sin θ

sin rθ sin(r − 1)θ
(3.1)

∆y ≤ uj

(
sin(r − 1)θ

cos rθ
− sin(r − 1)θ

cos(r − 1)θ

)
= uj

sin θ

cos rθ cos(r − 1)θ
(3.2)

Let ∆ = min(∆u,∆v). From Equations 3.1 and 3.2, we have,

(uj + vj) sin θ ≥ ∆(sin rθ sin(r − 1)θ + cos rθ cos(r − 1)θ) = ∆ cos θ.

So ∆ ≤ (uj + vj) tan θ ≤ (uj + vj)(2θ) = (uj + vj)ε. (3.3)

Now, the claim follows from Equation 3.3 and the fact that uTj +vTj = (uj +vj) + ∆.

In Section 3.2.3, we show that the following restricted problem can be solved in

polynomial time, for any fixed dimensions, d ≥ 2: given a set of input points C, and

a constant number of rays through the origin, choose k container points that lie on

these rays, such that the total assignment cost of the input points is minimized. By

Lemma 3.2.3, this implies a (1+ε) approximation for the original problem. We have

the following theorem.
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Theorem 3.2.4 There is a PTAS for the 2D continuous container selection prob-

lem.

3.2.2 Higher dimensions

We now consider the container selection problem in higher, but fixed, dimensions.

Formally, an instance, I = (C, k), of the d-dimensional container selection problem

consists of a set of input points, C = {pi(xi1, xi2, . . . , xid) : i ∈ [n]} and a budget k.

Potential container points. For each dimension j ∈ [d], we define Xj = {xij :

i ∈ [n]}, as the set of jth coordinates of all input points. An easy observation

is that any container point chosen by any optimal solution must belong to F =

X1 ×X2 × . . .×Xd = {ci(ui1, ui2, . . . , uid) : i ∈ [m]} where, m ≤ nd.

Algorithm outline. As in the two dimensional case, the main idea is a reduction

to the following restricted problem. An instance is I = (C, k, Ld) where C is a

set of input points in Rd, k is an integer and Ld is a family of rays in Rd+ with

|Ld| = Od(1)1. The goal is to choose k container points that lie on the rays in Ld,

such that the total assignment cost of C is minimized.

Transformation. Fix a constant θ ≈ ε
2
∈ (0, π

4
], such that η = π

2θ
is an integer. In

order to construct Ld, we use the recursive procedure described in Algorithm 9. Let

ūi denote the ith unit vector (i ≤ d), i.e., ūi is a 0-1 vector with value 1 at the ith

coordinate and 0 elsewhere. Starting from the family L2 of rays in two dimensions

(using the transformation in Section 3.2.1), we add one dimension at a time and

construct the corresponding families for higher dimensions. In the recursive step,

1Od(1) is a constant assuming that d is a constant
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we start with the family Lr−1 and observe that each of these rays will induce a 2-D

plane in r-dimensions. Then, we use the two dimensional construction to handle

the extra dimension. Observe that |Ld| ≤ (π/θ)d = O(1) for any fixed θ and d.

Algorithm 9 Construction of the family of lines in r-dimensions: Lr

1: let ū1, ū2, . . . , ūr be the unit vectors along the axis lines
2: if r = 2 then return equiangular rays in R2

+ from the Section 3.2.1 (see also
Figure 3.1a)

3: construct the family Lr−1, recursively, with r − 1 dimensions, ū1, ū2, . . . , ūr−1

4: initiate: Lr ← ∅
5: for all ` ∈ Lr−1 do
6: let ¯̀ be the unit vector along the line `
7: consider the (two dimensional) plane Π` formed by the vectors ūr and ¯̀

8: let Q` be the family of rays obtained by applying the transformation of Sec-
tion 3.2.1 to the plane Π`

9: Lr ← Lr ∪Q`

10: end for
11: return Lr

Algorithm 10 describes a recursive procedure to transform a point c(u1, u2, . . . , ud) ∈

F to a point cT that lies on some line in Ld. The idea is as follows: for any

r ≥ 3, first recursively transform the point cr−1(u1, u2, . . . , ur−1) ∈ Rr−1 into a

point cTr−1(u′1, u
′
2, . . . , u

′
r−1) that lies on some line ` ∈ Lr−1. Now, consider the point

c′r(u
′
1, u
′
2, . . . , u

′
r−1, ur), where ur is the rth coordinate of the original point c. The

point c′r lies on the 2D plane spanned by ¯̀, the unit vector along the line `, and ūr.

Using the 2D transformation we move c′r to a point cTr that lies on some line in Lr.

Lemma 3.2.5 For any θ = ε
2
∈ (0, 1

2d−2
] and point c(u1, u2, . . . , ud) ∈ F , applying

Algorithm 10, we obtain cT = (uT1 , u
T
2 , . . . , u

T
d ) where c ≺ cT and:

‖cT‖ ≤ (1 + 2(d− 1)ε)‖c‖.
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Algorithm 10 The transformation of cr = (u1, u2, . . . ur) onto Lr, r ≤ d

1: if r = 2 then use the 2D transformation from the Section 3.2.1 (see also Fig-
ure 3.1b)

2: cr−1 ← (u1, u2, . . . , ur−1)
3: recursively transform cr−1 into a point on some line ` in Lr−1 and compute the

transformed point cTr−1 = (u′1, u
′
2, . . . , u

′
r−1)

4: c′r ← (u′1, u
′
2, . . . , u

′
r−1, ur), which lies on the plane Π` spanned by ūr and ¯̀

5: let Q` denote the lines on plane Π` from Algorithm 9 step 8.
6: use the 2D transformation (Section 3.2.1) on plane Π` to move c′r onto a line in
Q` and obtain cTr = (uT1 , u

T
2 , . . . , u

T
r−1, u

T
r )

7: return cTr

Proof: It is straightforward to see c ≺ cT . Using induction we will show that

‖cTr ‖ ≤ (1 + ε)r−1‖cr‖

The base case r = 2 follows from Lemma 3.2.3. Now consider r ≥ 3 and assume the

statement for r− 1. In Algorithm 10, cTr is obtained by transforming the point c′r in

the 2D plane Π`. Note that c′r has coordinates
√

(u′1)2 + (u′2)2 + . . .+ (u′r−1)2 and

ur in plane Π`. Hence, as shown in Lemma 3.2.3, we can obtain the following:

uT1 + uT2 + . . .+ uTr−1 + uTr ≤ (1 + ε)(
√

(u′1)2 + (u′2)2 + . . .+ (u′r−1)2 + ur)

≤ (1 + ε)(u′1 + u′2 + . . .+ u′r−1 + ur) (3.4)

By the inductive hypothesis, u′1 + u′2 + . . .+ u′r−1 = ‖cTr−1‖ ≤ (1 + ε)r−2‖cr−1‖, i.e.

u′1 + u′2 + . . .+ u′r−1 ≤ (1 + ε)r−2(u1 + u2 + . . .+ ur−1) (3.5)
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Using Equations 3.4, 3.5, we have

uT1 + uT2 + . . .+ uTr−1 + uTr ≤ (1 + ε)((u′1 + u′2 + . . .+ u′r−1) + ur)

≤ (1 + ε)((1 + ε)r−2(u1 + u2 + . . .+ ur−1) + ur)

≤ (1 + ε)r−1(u1 + u2 + . . .+ ur)

Now since (d−1)ε ≤ 1, using r = d above, ‖cT‖ ≤ (1+ε)d−1‖c‖ ≤ (1+(2d−2)ε)·‖c‖.

Thus, we have reduced the original instance to a restricted instance, where

the potential container points lie on a family with a constant number of lines. Sec-

tion 3.2.3 describes a polynomial time algorithm for this problem in d-dimensions.

For any ε′ > 0, setting ε = ε′

2(d−1)
, we can restrict the loss to a (1 + ε′) factor in this

process.

Theorem 3.2.6 There is a PTAS for continuous container selection in fixed di-

mension d.

3.2.3 Dynamic program for the restricted problem

In this section, we discuss a dynamic programming based algorithm to solve the

following restricted problem in d-dimensions.

Definition 3.2.7 (restricted container selection) For a constant η ≥ 0, let

Ld = {l1, l2, . . . , lη} be a given family of η rays in Rd+. The input is a set of points
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C ⊆ Rd, a set of potential container points F that lie on the lines in Ld and a budget

k. The goal is to find a subset S ⊆ F with |S| ≤ k such that cost(S) is minimized.

Theorem 3.2.8 There is a poly-time algorithm for the restricted container selection

problem.

We need the following notion of a profile of a given subset of container points.

Profile of a subset. For a given line li and S ⊆ F , let ci ∈ S be the container point

on li with maximum `1-norm; if there is no such point then ci is set to the origin.

We define the profile of S, denoted by Π(S), as the ordered tuple (c1, c2, . . . , cη).

The feasible region of a profile Π(S) = (c1, c2, . . . , cη), denoted by feas(Π(S)), is the

set of those input points that are dominated by at least one of the points ci, i ∈ [η].

We slightly abuse this notation and refer to the tuple itself as a profile, without any

mention of S. The following is a simple combinatorial argument.

Observation 3.2.9 The number of distinct profiles is at most
(
|F |
η

)η
.

Proof: Let ni be the number of potential container points on the line li. The

total number of distinct profiles is simply the number of ways of choosing the tuple

(c1, c2, . . . , cη), which is equal to n1n2 . . . nη ≤
(∑η

i=1 ni
η

)η
=

( |F |
η

)η
.

For a given profile Π = (c1, c2, . . . , cη), let cm denote the profile point with maximum

`1-norm, i.e., cm = argmax
ci

‖ci‖. Further, let c′m < cm be some potential container

point such that both the points are on the line lm; if c′m does not exist we set it to the

origin. We define the child profile of Π corresponding to c′m, denoted by chld(Π, c′m),

as the profile (c1, c2, . . . , cm−1, c
′
m, . . . , cη). We note that for a specific subset S, the

child profile of S is unique, because cm and c′m are uniquely defined. However, a
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given profile tuple could have multiple child profiles. The following observation is

immediate from the definition of a child profile.

Observation 3.2.10 Any profile tuple Π has at most |F | child profile tuples.

The DP variable. For every possible profile tuple Π = (c1, c2, . . . , cη) and all

budgets k′ ≤ k, define the dynamic program variable, M (Π, k′) as the cost of an

optimal solution S ⊆ feas(Π) ∩F , to assign all the input points in feas(Π), such

that |S| ≤ k′, and ci ∈ S, for i ∈ [η]. The following lemma allows us to set up the

dynamic program recurrence.

Lemma 3.2.11 Let Π = (c1, c2, . . . , cη) be a profile with cm as the point with max-

imum `1-norm. For a given child profile chld(Π, c′m) of Π, let n(c′m) = |feas(Π)\

feas(chld(Π, c′m))|. Then, for any k′ ≥ 1, the following holds.

M (Π, k′) = Min
c′m

(M (chld(Π, c′m), k′ − 1) + n(c′m)‖cm‖)

Proof: We denote the optimal solution corresponding to the variable M (Π, k′) by

S(Π, k′). Firstly, note that, for any c′m, the solution S(chld(Π, c′m), k′ − 1) ∪ {cm} is

a feasible candidate for the computation of M (Π, k′). Hence, we have

M (Π, k′) ≤ Min
c′m

(M (chld(Π, c′m), k′ − 1) + n(c′m)‖cm‖) (3.6)

Let lm be the ray containing the point cm. Further, let q0 = (0d), q1, . . . , qj−1, qj = pi

be the container points, on lm and in S(Π, k), in the increasing order of `1-norm.

Now, we set q′ = qj−1 and prove that the child profile corresponding to q′ satisfies
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the following equation:

M (Π, k′) = M (chld(Π, q′), k′ − 1) + n(q′)‖cm‖

To this end, we first observe that, without loss of generality, no point in feas(chld(Π, q′))

is assigned to cm. Indeed, this follows from the fact that cm is the container point

with maximum cost and therefore, any point in the above feasible region can be

assigned to some container point on the profile chld(Π, q′) without increasing the

solution cost. Further, any point in feas(Π) \ feas(chld(Π, q′)) must be assigned to

cm, since it is the only potential container point that dominates these points. Now,

M (Π, k′) = M (chld(Π, q′), k′ − 1) + n(q′)‖cm‖

≥ Min
c′m

(M (chld(Π, c′m), k′ − 1) + n(c′m)‖cm‖) (3.7)

From Equations 3.6 and 3.7, we have our lemma.

Algorithm 11 describes the dynamic program.

3.3 The discrete container selection problem

In this section, we consider the discrete version of the container selection problem.

We start with the problem definition.

Definition 3.3.1 (discrete container selection) In an instance of the problem,

I = (C,F , k), we are given a set of input points C ⊂ Rd, a set of potential container

points F ⊂ Rd and a budget k. The goal is to find a subset of container points
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Algorithm 11 Dynamic program for the restricted container selection problem

Input: Family of lines Ld = {l1, l2 . . . , lη}, input points C, potential container points
set F on Ld and a budget k

1: for all profile tuples Π (w.r.t Ld) and integers k′ ≤ k do
2: if k′ = 0 then
3: if Π = ((0d), (0d), . . . , (0d)) then
4: M (Π, k′) = 0
5: else
6: M (Π, k′) =∞
7: end if
8: else
9: let cm be the container point with maximum `1-norm in Π

10: for all c′m ≺ cm such that both cm and c′m lie on the same line lm do
11: n(c′m)← |feas(Π) \ feas(chld(Π, c′m))|
12: f(c′m)← (M (chld(Π, c′m), k′ − 1) + n(c′m)‖cm‖)
13: end for
14: M (Π, k′)← Min

c′m
f(c′m)

15: end if
16: end for
17: return profile Π with least cost M (Π, k) such that C = feas(Π).

S ⊆ F , such that |S| ≤ k and the total assignment cost of all the input points,

cost(S) is minimized.

This problem is considerably harder than the continuous version, as we show

that there is no true approximation algorithm for this problem, unless P = NP ,

for d ≥ 3. Hence, we look for bi-approximation algorithms defined as follows. An

(α, β) bi-approximation algorithm obtains a solution S such that |S| ≤ βk and

cost(S) ≤ αcost(Sopt).

Theorem 3.3.2 (two-dimenions) For d = 2, and any constant ε > 0, there is a

(1 + ε, 3)-bi-approximation algorithm for the discrete container selection problem.

Theorem 3.3.3 (higher-dimensions) For any dimension d > 2 and ε > 0, there

is a
(
1 + ε, O(d

ε
log dk)

)
-bi-approximation algorithm for the discrete container selec-
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tion problem.

3.3.1 Two dimensions

Algorithm Outline. The first step is to partition the plane into a logarithmic

number of “cells” such that the `1-norms of points in a particular cell are approxi-

mately uniform. One standard way of doing this, where we create a two-dimensional

grid with logarithmic number of lines in each dimension, fails because such a pro-

cess would yield Ω(log2 n) cells. Our approach uses the rays partitioning idea.

pemax

Cell e

pemin

Figure 3.2: Description of the cells.

Given such a partitioning, we “guess” the

“good” cells that have any container points

belonging to a fixed optimal solution. For

each one of these good cells, we then pick

two representative container points. These

points are chosen such that if in the opti-

mal solution an input point i outside a cell

e is assigned to a container point inside e,

at least one of the representative points in e dominates i. This enables us to make

“local decisions” for each cell independently. We then solve this localized instance,

using k more container points. Hence, in total we use 3k container points.

The algorithm. Fix δ = ε
11

, be chosen such that π
4δ

= η is an integer. We first use

a simple scaling argument to bound the maximum to minimum ratio of `1-norms by

O(n). We guess the maximum norm container point pmax that is used in some fixed
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optimal solution (there are only |F | guesses) and delete all larger points from F .

Let pmin be the point in C ∪F with minimum norm. We increase the x-coordinates

of all the input points and the container points by δ
n
‖pmax‖ and then divide all the

co-ordinates of all points by ‖pmin‖.

Observation 3.3.4 Let Sopt and S ′opt be the optimal solutions of a given instance

before and after scaling respectively. ‖pmin‖cost(S ′opt) ≤ cost(Sopt)(1 + δ)

Proof: Since all the points are increased and scaled uniformly, the feasibility

is maintained. Further, we note that cost(Sopt) ≥ ‖pmax‖ since our guess pmax ∈ Sopt.

If the cost of assignment of any input point is C in the original instance, the new

cost is = (C + δ
n
‖pmax‖)/‖pmin‖ and the lemma follows.

From now on, we assume that all the points are scaled as above and therefore

‖pmin‖ = 1 and ‖pmax‖ ≤ n
δ
. Let t = log1+δ ‖pmax‖ and define the following families

of rays.

L1 = {x sin(rδ)− y cos(rδ) = 0 : r ∈ [0, η)} L3 = {y = (1 + δ)i : i ∈ [0, t]}

L2 = {x sin(rδ)− y cos(rδ) = 0 : r ∈ [η, 2η]} L4 = {x = (1 + δ)i : i ∈ [0, t]}

Cells. We define the notion of cell as exemplified in the Figure 3.2. A cell is

a quadrilateral formed with the following bounding lines: either, two consecutive

lines in L1 and two consecutive lines in L4, or, two consecutive lines in L2 and two

consecutive lines in L3. We observe that the number of cells formed is at most

(2η + 1)t = O(log n)
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Lemma 3.3.5 For a given cell e, let pemin and pemax be the points of minimum and

maximum cost, respectively. Then,

‖pemax‖ ≤ (1 + ε)(‖pemin‖)

Proof: Without loss of generality, let e be formed by lines y = (1 + δ)i, y =

(1 + δ)i+1, x sin θ − y cos θ = 0 and x sin(θ + δ) − y cos(θ + δ) = 0, where θ ≥ π
4
.

Clearly, as shown in the Figure 3.2, we have

pemin = ((1 + δ)i cot(θ + δ), (1 + δ)i)

pemax = ((1 + δ)i+1 cot θ, (1 + δ)i+1)

‖pemax‖
‖pemin‖

=
(1 + δ)i+1(1 + cot θ)

(1 + δ)i(1 + cot(θ + δ))
= (1 + δ)

(sin θ + cos θ) sin(θ + δ)

(sin(θ + δ) + cos(θ + δ)) sin θ

= (1 + δ)
sin θ sin(θ + δ) + cos θ sin(θ + δ)

sin(θ + δ) sin θ + cos(θ + δ) sin θ

= (1 + δ)

(
1 +

cos θ sin(θ + δ)− cos(θ + δ) sin θ

sin(θ + δ) sin θ + cos(θ + δ) sin θ

)
= (1 + δ)

(
1 +

sin δ

sin(θ + δ) sin θ + cos(θ + δ) sin θ

)
≤ (1 + δ)

(
1 +

sin δ

sin2 θ

)
≤ (1 + δ)(1 + 2δ) = (1 + 3δ + 2(δ)2) ≤ (1 + ε)

We note that the last inequality follows from the fact that sin2 θ ≥ sin2 π
4
≥ 1

2
.

Representative points. For a given optimal solution, a cell is good if at least one

container point is chosen from it (we break the ties between two cells sharing an edge
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arbitrarily). Since, there are O(log n) cells, there are a polynomial number of good-

bad classifications. Therefore, we can try out all possible configurations and assume

that we know which cells are good. For each good cell e, let pex be the container point

with maximum x-coordinate and pey the one with maximum y-coordinate. We define

the set of representative points, R = { pex, pey : ∀ e good cell }. Clearly |R| ≤ 2k.

We will show (in Lemma 3.3.7) that any input point that is not assigned to a “local

container” (one in the same cell) in the optimal solution, can be re-assigned to some

point of R at approximately the same cost.

Localized container selection problem. In an instance of the localized container

selection problem, {C,F1,F2, k}, we are given a set of input points C, a set of

potential container points F1, a set of pre-chosen container points F2 and a budget

k. Moreover, for each cell e, the points in F1∩ e are all incomparable to each other.

For a cell e, let ∆e
max = Max

p∈F1∩e
‖p‖, be the maximum `1-norm of any container point

in e. The cost of assignment of any input point to any point, in F1 ∩ e, is uniform

and equal to ∆e
max. The cost of assignment of an input point to a container point

c ∈ F2 is ‖c‖. Further, any input point p in the cell e, can only be assigned to:

• a container point c ∈ F2 such that p ≺ c, or

• a container point c ∈ F1 such that c belongs to e and p ≺ c.

Given an instance of the discrete container selection problem, I = (C,F , k), we

construct the following instance of the localized container selection problem, I ′ =

(C,F1,F2, k).
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Construction 3.3.6 The input point set C, remains the same and F2 is the set

of representative points, i.e., F2 = R. F1 is constructed as follows: starting with

F1 = F \ R, while there are two points p and p′ in F1 that belong to same cell e

and p ≺ p′, delete p from F1.

Lemma 3.3.7 For a given instance of the discrete container selection problem, I =

(C,F , k), with the optimal solution cost OPT , the corresponding localized container

selection instance I ′ = (C,F1,F2, k) has an optimal cost of at least (1 + ε)OPT .

Proof: Suppose S is an optimal solution for the instance I. We iteratively

construct a solution, S ′, for the instance I ′. Initiating S ′ = φ, we add exactly one

container point for every container point c ∈ S in the following way: let c belong to

a cell e. If c ∈ F1, then we add c to S ′; otherwise, we add some c′ ∈ F1 ∩ e, such

that c ≺ c′, which must exist by Construction 3.3.6. Clearly |S ′| ≤ |S| ≤ k. We

show that S ′ is a feasible solution, with a cost at least (1 + ε)OPT , for the instance

I ′.

Consider an input point p that is assigned to some container point c ∈ S, in

the optimal solution for I. Suppose, firstly, that c and p are contained in the same

cell e. By the construction of S ′, there must be some c′ ∈ S ′ ∩ e (possibly c = c′)

such that c ≺ c′ and we can assign p to c′. Further, note that since p and c′ belong

to the same cell this is a valid “local” assignment and by Lemma 3.3.5, the cost of

assignment equals ∆e
max ≤ ‖c‖(1 + ε).

Subsequently, assume that p belongs to a cell e1 and c belongs to a cell e2,

such that e1 6= e2. We show that p can be assigned to one of the two representative
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points of e2, namely pe2x or pe2y . Recall that pe2x (resp. pe2y ) is a container point in e2

with maximum x-coordinate (resp. y-coordinate). We first claim that there must

exist a separating line y = mx + C with slope m ≥ 0, such that e1 and e2 lie on

the opposite sides of this line (they could share a boundary along this line). We

overload notation and allow m =∞ in which the line is x+C = 0. So when m = 0

the line (y = C) is parallel to the x-axis and when m = ∞ the line (x = −C) is

parallel to the y-axis.

Observe that by our construction, all the boundary lines have non-negative

slopes. Therefore, if e1 and e2 share a boundary line segment, this will be our

separating line. Suppose, on the other hand, that they do not share a boundary line

segment and therefore are disjoint. If e1 and e2 are on the opposite sides of the line

y = x, this will be our separating line. So, we assume that both the cells are on the

same side of y = x, without loss of generality say above y = x. Then both these

cells must be bounded by lines from the families L2 and L3. Let the lines bounding

e1 and e2, respectively be, B1 = {y = (1 + δ)i, y = (1 + δ)i+1, x sin θ − y cos θ =

0, x sin(θ+ δ)− y cos(θ+ δ) = 0} and B2 = {y = (1 + δ)j, y = (1 + δ)j+1, x sin θ′−

y cos θ′ = 0, x sin(θ′ + δ) − y cos(θ′ + δ) = 0}. Now, if i = j, then for the cells not

to intersect, we must have θ ≥ θ′ + δ or θ′ ≥ θ + δ. Without loss of generality, let

θ ≥ θ′ + δ. In this case, clearly the separating line is x sin θ − y cos θ = 0. In the

case, where i > j (resp. i < j), y = (1 + δ)j (resp. y = (1 + δ)i) is a separating line.

We consider two different cases based on the value of m and prove that p can

be assigned to some representative point in e2.

Case 1: m ∈ {0,∞}. The separating line between e1 and e2 is axis parallel, say
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x = a, without loss of generality. Since p ≺ c, we have that the x-co-ordinates of all

points in e1 are less a and x-coordinates of all points in e2 are more than a. Hence,

clearly the point with maximum y-coordinate in e2, namely pe2y must dominate p.

Case 2: m > 0 and finite. Let the separating line be y = mx + C. There are two

further cases here. First assume that p lies below the y = mx+ C and c lies above

it. Letting p = (x1, y1), c = (x2, y2) and pe2x = (x3, y3), we have y1 ≤ mx1 + C and

y2 ≥ mx2 + C and y3 ≥ mx3 + C. By definition, x1 ≤ x2 ≤ x3 and we focus on

showing that y1 ≤ y3. Indeed we have y1 ≤ mx1 + C ≤ mx2 + C ≤ mx3 + C ≤ y3.

Thus, p ≺ pe2x . Next, we assume that p lies above y = mx + C and c lies below

it. Letting p = (x1, y1), c = (x2, y2) and pe2y = (x3, y3), we have y1 ≥ mx1 + C,

y2 ≤ mx2 + C and y3 ≤ mx3 + C. By definition, y1 ≤ y2 ≤ y3. Further, x1 ≤

y1/m − C/m ≤ y2/m − C/m ≤ y3/m − C/m ≤ x3. Hence, p ≺ pe2y . Therefore,

we have shown that if p is assigned to c, we can assign it to a representative point,

cr, that lies in the same cell as c. From Lemma 3.3.5, this implies that our cost of

assignment is ‖cr‖ ≤ (1 + ε)‖c‖. Hence, the lemma.

We describe a polynomial time algorithm to solve the localized container selection

problem. The approach is dynamic program based.

Dynamic program for the localized container selection problem. We define

the dynamic program variable, M(e, ke), for a given cell e, as the optimal cost of

assigning all input points in e, to ke ≤ k newly chosen container points in e, along

with the set R of representative container points. We note that this variable can be

computed in polynomial time using ideas in [132]. For completeness, we describe a

simple algorithm to compute this variable for every e and ke ≤ k.
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Dynamic program to compute M(e, ke). We recall that by the problem

definition, all the container points in e are incomparable and have the same cost, C.

Let c1(x1, y1), c2(x2, y2), . . . , cl(xl, yl) be the ordering of the container points in e, in

the descending order of the yi. That is y1 ≥ y2 ≥ . . . ≥ yl and x1 ≤ x2 ≤ . . . ≤ xl.

For a given index i ∈ [l] and integer ki ≤ ke, we define the variable N (i, ki, j) is

the optimal cost of assigning every input point, (x, y), in e, such that y > yi+1, by

choosing ki container points with index ≤ i, with j ≤ i being the highest index

container point chosen (that is cj is chosen and none of cj+1, . . . , ci are chosen).

The following recurrence computes the variable N (i, ki, j). Let ni be the number of

input points contained by ci, whose y-co-ordinates are > yi+1. If ci is chosen,

N (i, ki, i) = Min
j<i
N [i− 1, ki − 1, j] + ni × C

Now, if ci is not chosen and cj is the highest index container point chosen, with j ≤ i,

we assign the input points contained in ci with x-coordinate > xj and y-coordinate

> yi+1 to the nearest representative container point (if no such point exists, then

the cost of assignment is ∞). Further, we assign those, so far, unassigned input

points with y-co-ordinate > yi+1 and x-co-ordinate ≤ xj to cj. Let Ci denote the

total cost of assignment of all these input points. We have

N (i, ki, j) = M [i− 1, ki, j] + Ci

We can compute M, using the following equation: M(e, ke) = Min
j≤l
N [l, ke, j]
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Let there be µ cells in total. We order them arbitrarily as e1, e2 . . . eµ. We

define the variable D(i, ki) as the total cost of assigning all the input points in the

cells ej, for j ∈ [i], while choosing ki new container points from these cells and

using the representative set R. The following simple recurrence defines the dynamic

program: D[i, ki] = Min
`≤ki

D[i− 1, ki − `] +M[ei, `]

The optimal solution has a cost D[µ, k]. This completes the proof of Theo-

rem 3.3.2.

Remark. This approach does not extend directly to dimension d = 3. There are

issues in both main steps of the algorithm (1) we do not know a similar construction

with O(log n) cells, and (2) the localized container selection problem also appears

hard.

3.3.2 Higher dimensions

Min
∑
i∈F

‖i‖
∑
j∈C

yij

s.t. yij ≤ xi, ∀i ∈ F , j ∈ C,

yij = 0, ∀j 6≺ i,∑
i∈F

yij ≥ 1, ∀j ∈ C,

∑
i∈F

xi ≤ k,

x, y ≥ 0.

Figure 3.3: LP relaxation.

We now consider the discrete container selection

problem in any dimension d > 2. Recall that

C denotes the input points and F the potential

container points. We prove Theorem 3.3.3. Our

algorithm is based on the linear programming

relaxation in Figure 3.3.

When the x and y variables are restricted

to lie in {0, 1} note that we obtain an exact for-

mulation. This LP relaxation is similar to the
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one for (non-metric) facility location [21]. In-

deed, our problem is a special case of non-metric

k-median, for which the result of [21] implies a(
1 + ε, O(1

ε
log n)

)
-bicriteria approximation algorithm. Our result (Theorem 3.3.3)

is an improvement for fixed dimensions since k ≤ n.

The first step in our algorithm is to solve the LP. Let (x, y) denote an optimal

LP solution. The second step performs a filtering of the y variables, as in [21]. Let

C∗j =
∑

i∈F ‖i‖ · yij denote the contribution of input point j ∈ C to the optimal LP

objective. Define:

yij =


(1 + 1

ε
)yij if ‖i‖ ≤ (1 + ε)C∗j

0 otherwise.

Also define xi = (1 + 1
ε
)xi for all i ∈ F , and Cj = (1 + ε)C∗j for j ∈ C.

Claim 3.3.8 For each j ∈ C,
∑

i∈F yij ≥ 1. For each j ∈ C and i ∈ F , yij ≤ xi.

Proof: Fix any j ∈ C and let Fj = {i ∈ F : ‖i‖ > (1 + ε)C∗j }. By Markov’s

inequality we have
∑

i∈Fj yij <
1

1+ε
. So

∑
i∈F yij = (1 + 1

ε
)
∑

i∈F\Fj yij ≥ 1.

The third step of our algorithm formulates a geometric hitting-set problem

with VC-dimension d. For each input point j ∈ C, define a polytope Pj ⊆ Rd given

by:

Pj = {v ∈ Rd : j ≺ v and ‖v‖ ≤ Cj} =

{
v ∈ Rd : vr ≥ jr ∀r ∈ [d],

d∑
r=1

vr ≤ Cj

}
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Note that each Pj is described by d+ 1 parallel inequalities of the form:

{−etrv ≤ −jr}dr=1 ∪ {etv ≤ Cj}.

Above er denotes the rth coordinate unit vector and e = (1, 1, · · · 1).

Claim 3.3.9 For each j ∈ C,
∑

i∈F∩Pj xi ≥ 1.

Proof: This follows directly from Claim 3.3.8 since yij = 0 for all j ∈ C and i 6∈ Pj.

VC dimension bound. We use the following fact about the VC-dimension of a

range space (F ,P) where P is a finite set of points in Rd and P consists of all

positive scaling and translations of a fixed polytope Q ⊆ Rd with q ≥ d facets.

Lemma 3.3.10 The VC-dimension of (F ,P) is at most q.

Proof: This may be a known result; in any case we give a short proof here. Let

polytope Q = {x ∈ Rd : αtrx ≤ βr, ∀r ∈ [q]} where each αr ∈ Rd and βr ∈ R.

The VC-dimension is the size of the largest subset A ⊆ F such that {A ∩ P :

P ∈ P} = 2A. Consider any such set A. Suppose (for contradiction) that |A| > q,

then we will show a subset A′ ⊆ A such that there is no P ∈ P with A ∩ P = A′.

This would prove the claim.

For each constraint r ∈ [q] let ar ∈ A denote a point that maximizes {αtrx :

x ∈ A}. Set A′ = {ar}qr=1. Note that there is some a′ ∈ A \ A′ since |A| > q and

|A′| ≤ q; moreover, by the choice of ars, we have αtra
′ ≤ αtrar for all r ∈ [q].
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Suppose P ∈ P is any polytope that contains all points in A′. Note that

P = {x ∈ Rd : αtrx ≤ γr, ∀r ∈ [q]} for some {γr ∈ R}qr=1 since it is a scaled transla-

tion of the fixed polytope Q. Since ar ∈ P for each r ∈ [q], we have γr ≥ αtrar ≥ αtra
′.

This means that a′ ∈ P as well. Hence there is no set P ∈ P with P ∩ A = A′.

Applying Lemma 3.3.10 we obtain (F , {Pj : j ∈ C}) has VC-dimension at

most d+ 1. Moreover, by Claim 3.3.9 the hitting set instance (F , {Pj : j ∈ C}) has

a fractional hitting set {xi : i ∈ F} of size (1 + 1
ε
)k. Thus we can use the following

well-known result:

Theorem 3.3.11 ( [129,130]) Given any hitting set instance on a set-system with

VC-dimension d and a fractional hitting set of size k, there is a polynomial time

algorithm to compute an integral hitting set of size O(d log(dk)) · k.

This completes the proof of Theorem 3.3.3.

Remark: We can also use this LP-based approach to obtain a constant-factor

bicriteria approximation for the discrete container selection problem in R2. This is

based on the ε-net result for “pseudo-disks” in R2 [131] and the observation that

in dimension two the above set-system (F , {Pj : j ∈ C}) is a collection of pseudo-

disks. However, the constant factor obtained via this approach is much worse than

the direct approach in Section 3.3.1.
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3.4 Hardness results

In this section, we provide hardness results for the continuous and discrete container

selection problems in dimension d = 3. The reductions are based on the planar

degree 3 vertex cover problem. The following restriction of this problem is also

known to be NP-hard [128].

Definition 3.4.1 (Plane degree 3 vertex cover (PVC)) The input is a bound

k and a plane drawing of a degree 3 planar graph G = (V,E) with girth at least 4,

where the distance between any pair u, v ∈ V of vertices is exactly one if (u, v) ∈ E

and at least
√

3 if (u, v) 6∈ E. The decision problem is to determine whether G has

a vertex cover of size at most k.

We first show that the following auxiliary problem is NP-hard.

Definition 3.4.2 (∆-hitting problem) The input is a bound k, a set V of points

in the plane where each pairwise distance is at least one and a set {∆e}e∈E of

equilateral triangles with side s := 2√
3

that are all translates of each other. The goal

is to find a subset T ⊆ V with |T | ≤ k such that T ∩∆e 6= ∅ for all e ∈ E.

Theorem 3.4.3 The ∆-hitting problem is NP-hard.

Proof: We reduce from the NP-hard PVC problem. An instance of PVC consists of

a plane drawing of graph G = (V,E) and bound k. We construct an instance of the

∆-hitting problem as follows. The set of points is V and the bound is k. Note that

the the distance between each pair of points is at least one, by Definition 3.4.1. For

each edge e = (u, v) ∈ E we can find (in polynomial time) an equilateral triangle
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∆e with side s = 2√
3

such that V ∩ ∆e = {u, v}. To see this, first note that we

can easily find ∆e 3 u, v as d(u, v) = 1. Since the diameter of ∆e is 2√
3
<
√

3 the

vertices V ∩∆e form a clique in G, and as G has girth 4 we must have |V ∩∆e| = 2.

The set of triangles in the ∆-hitting problem is {∆e}e∈E. Moreover, we can ensure

that the triangles {∆e}e∈E are all translates of some canonical triangle. It is now

clear that the ∆-hitting problem is a yes-instance if and only if the PVC instance

has a vertex cover of size at most k.

Theorem 3.4.4 The 3-dimensional discrete container selection problem is NP-

hard.

Proof: We reduce from the ∆-hitting problem. Consider an instance as described

in Definition 3.4.2. We construct an instance of the discrete problem in R3 as follows.

Set A = 2|V | and let Π denote the plane x + y + z = A. We place the points V

and triangles {∆e}e∈E of the ∆-hitting instance on plane Π oriented so that every

triangle ∆e is parallel to the triangle {(A, 0, 0), (0, A, 0), (0, 0, A)}. We can ensure

that all points in V are in the positive orthant since A is large. The potential

container points are V . Observe that for each triangle ∆e there is a unique point

pe ∈ R3 such that ∆e = Π ∩ {x ∈ R3 : pe ≺ x}. The set of input points is {pe}e∈E.

The bound k is same as for the ∆-hitting problem.

It is easy to see that the discrete container selection instance has a feasible

solution with k containers if and only if the ∆-hitting instance is a yes-instance.
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We immediately have the following corollary of the Theorem 3.4.4.

Corollary 3.4.5 It is NP-hard to approximate the 3-dimensional discrete container

selection problem within any approximation guarantee.

Theorem 3.4.6 The 3-dimensional continuous container selection problem is NP-

hard.

Proof: We reduce from the discrete container selection problem. We also rely on

the structure of hard instances from Theorem 3.4.4. Let I1 = (C,F , k) denote an

instance of the discrete container selection problem from Theorem 3.4.4 where C are

the input points and F denotes the potential container points. Note that all points

of F lie on the plane x+ y + z = A, and the distance between every pair of points

in F is at least one. Observe that the latter property implies that the points in F

are incomparable.

We construct an instance I2 = (C ′, k′), of the continuous problem in the fol-

lowing way. Fix parameter δ < 1
2
. For every point c ∈ F we define another point

ĉ := c+ δ(1
3
, 1

3
, 1

3
); note that ‖ĉ‖ = ‖c‖+ δ and ĉ dominates c but no other point in

F \ {c}. Let F̂ = {ĉ : c ∈ F}. Observe that this is well-defined: since the distance

between every pair of points in F is at least one, any point dominating more than

one point of F costs at least A+ 1.

Now, the set C ′ of input points is constructed as follows. Let M1 � |C|A and

M2 � 2(|C|A+ |F |M1) be two sufficiently large integers. For each c ∈ F , we create

M1 input points at c and M2 input points at ĉ, which are added to C ′. Finally we also

add the points C to C ′. The bound k′ := k+ |F |. We claim that I1 is feasible if and
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only if I2 has a solution of cost at most T := |C|A+ |F |(M1 +M2)(A+ δ)− kM1δ.

Forward direction. Let S = {c1, c2, . . . , ck} be the set of container points chosen

by a feasible solution of I1. Consider the set S ′ = S ∪ F̂ . Observe that S ′ is a

feasible solution for the instance I2. We now compute the assignment cost of this

solution.

• The assignment cost for each point in C is A (it is covered by S).

• The input points at locations of S have assignment cost A (there are kM1 such

points).

• The remaining (|F |−k)M1 + |F |M2 input points have assignment cost A+ δ

each.

Therefore the total cost of this solution is exactly T .

Backward direction. Let S ′ with |S ′| = k+ |F | be a feasible solution to I2 of cost

at most T . We first argue that F̂ ⊆ S ′. Indeed, assume that it is not true. Observe

that, in this case, the input points at F̂ should be dominated by < |F | container

points. So some container point s ∈ S ′ should dominate input points at two distinct

locations ĉi and ĉj. Note that |s| ≥ A + 1 since ci, cj ≺ s (using the distance one

separation between points of F ). Hence any such solution has assignment cost at

least AM1|F |+ (A+ δ)M2|F |+ (1− δ)M2 > T using the definition of M2. We now

assume F̂ ⊆ S ′. Next we show that each of the remaining k container points in S ′

dominates at most one point of F . If s ∈ S ′ dominates two distinct locations ci and

cj, its cost |s| ≥ A + 1 as noted above. However, any input point can be assigned
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to one of the container points in F̂ at cost A + δ < A + 1, which makes point s

redundant.

Now we show that each of the k container points S ′ \F̂ dominates some point

of F . If not, consider a container point s′ ∈ S ′ that does not dominate any F point.

Let f ∈ F be some point which is not dominated by any S ′\F̂ ; note that this must

exist since each S ′ \ F̂ dominates at most one F -point and |S ′ \ F̂ | = k ≤ |F |.

Suppose we modify the solution by removing s′ and adding f : the increase in cost

is at most |C|(A+ δ)+M1A−M1(A+ δ) < 0 by the definition of M1. Thus, F̂ ⊆ S ′

and S ′′ = S ′ \ F̂ ⊆ F . We now claim that S ′′ dominates every point of C. For a

contradiction, suppose there is some point of C that is not dominated by S ′′ : then

this point has assignment cost A+δ. Every other points of C has assignment cost at

least A. The assignment cost of points at F̂ ∪F is |F |(M1 +M2)(A+ δ)− kM1δ.

So the total assignment cost is at least T + δ, a contradiction. Hence S ′′ is a feasible

solution for I1.
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Chapter 4

Partial and Budgeted Connected Dominating Set.

4.1 Roadmap to the chapter

This chapter discusses nearly tight (upto a constant factor) approximation algo-

rithms for the partial and budgeted variants of the connected dominating set prob-

lem. As we will discuss later in this section, none of the previous approaches that

work for CDS problem give any good guarantees for these problem. The key idea is

to define a natural, greedy based, profit function and use a classic result of the well

studied problem of quota Steiner tree. The quota Steiner tree problem is an integral

component of all our results in this chapter. Formally, the problem is the following.

Definition 4.1.1 (Quota Steiner tree problem(QST)) Given an undirected graph

G = (V,E), a profit function p : V → Z+ ∪ {0} on the vertices, a cost function

c : E → Z+ ∪ {0} on the edges, and an integer (quota) q, find a subtree T that

minimizes
∑

e∈E(T ) c(e), subject to
∑

v∈V (T ) p(v) ≥ q.

An important special case, where the profit function is uniform, is called the

k-minimum spanning tree (k-MST) problem. Johnson et al. [58] studied the QST

problem and showed that an α-approximation algorithm for the k-MST problem can

be adapted to obtain an α-approximation algorithm for the QST problem. Using

this result along with the 2-approximation for k-MST by Garg [48], gives us the
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following theorem.

Theorem 4.1.2 ( [48,58]) There is a 2-approximation algorithm for the QST prob-

lem.

In Section 4.2, we discuss a O(ln ∆) approximation algorithm for the PCDS

problem. To be precise, our approximation guarantee is 4 ln ∆ + 2 + o(1), where

∆ is the maximum degree. Section 4.3 details a 1
13

(1− 1
e
)-approximation algorithm

for the BCDS problem. This is the first constant approximation known for BCDS.

In Section 4.4, we generalize the above problems to a special kind of submodular

optimization problem (to be defined later), which has the weighted profit connected

dominating set problem as a special case. Again, we obtain O(ln q) and 1
13

(1 −

1
e
) approximation algorithms for the partial and budgeted version of this problem

respectively where q denotes the quota for the partial version.

Previous approaches. We now describe the three approaches taken by Guha and

Khuller [8] to solve the CDS problem and show why none of these approaches extend

directly for the budgeted and partial coverage variants.

Algorithm 1. The first algorithm is a “one step look-ahead” greedy algorithm where

they iteratively grow a tree by selecting a pair of vertices that together cover the

most number of previously uncovered vertices. Figure 4.1 shows a bad instance

on which a c-step look-ahead greedy algorithm fails for the BCDS and PCDS. The

instance contains k “spiders” whose heads (vertices with degree > 2) are connected

by paths of length c + 1. The spider heads are the only vertices that offer profit

greater than 3. We show that on this graph, there are BCDS and PCDS instances
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that can perform very poorly. Consider a BCDS instance on the graph, with a budget

k+(c+1)(k−1). Clearly the optimal solution picks the path connecting all the spider

heads, so that the total coverage is (M+1)k+(c+1)(k−1). On the other hand, the

c-step look-ahead greedy algorithm, might get stuck inside one of the spiders and

may end up selecting as many as M+1 vertices from it. This is because, despite the

look-ahead capability of the algorithm, the spider legs will become indistinguishable

from the optimal path. For a sufficiently large value of M , the c-step look-ahead

algorithm might use up all its budget on a single spider, there by obtaining a coverage

of O(M + k). Thus in the worst case the look-ahead greedy algorithm could have a

Ω(k) approximation guarantee. Using a similar argument, we can show that, for the

PCDS instance on the graph with quota Mk, the approximation guarantee could be

Ω(M).

M

c + 1

c + 1

c + 1 c + 1

M M

Opt

k spiders

Figure 4.1: A bad example for the c-step look-ahead greedy algorithm

Algorithm 2. The second algorithm is to find a dominating set D and run a Steiner

tree algorithm with the vertices in D as terminals. Since the optimal connected

dominating set, by definition, is a tree that dominates D, we can show that there

exists a Steiner tree of low cost with the set D as terminals. Using a constant

factor approximation algorithm for the Steiner tree problem, we obtain a O(lnn)

approximation for the connected dominating set. However, for the partial and bud-

geted versions, the optimal solution does not dominate all vertices and hence it’s
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not possible to bound the cost of the Steiner tree in terms of the optimal solution.

Algorithm 3. The final algorithm builds unconnected components greedily and owing

to the fact that every vertex has to be dominated, makes sure that the constructed

components be connected cheaply. Again this approach fails in the partial and

budgeted case because the components created when we have dominated a specified

number of vertices could be far apart.

4.2 Partial connected dominating set

The partial connected dominating set can be defined formally as follows.

Definition 4.2.1 (The partial connected dominating set (PCDS)) Given an

undirected graph G = (V,E), and an integer (quota) n′, find a minimum size subset

S ⊆ V of vertices such that the subgraph induced by S is connected, and S dominates

at least n′ vertices.

We will discuss a 4 ln ∆ + 2 + o(1)-approximation algorithm for the PCDS

problem in this section.

4.2.1 Algorithm

We now give a high level overview of the algorithm. The algorithm itself is very

simple but to show that it is indeed a O(log ∆) approximation requires non-trivial

analysis. The algorithm proceeds in the following manner. We first run a simple

greedy algorithm to find a (not necessarily connected) dominating set D. In each it-

eration, the greedy algorithm chooses a vertex that dominates the maximum number
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of previously undominated vertices.

We call this number the “profit” associated with the chosen vertex. Given this

profit function on the nodes, we now apply a 2-approximation algorithm for the QST

problem, with quota of n′ to obtain a connected solution. This is a little surprising,

since the profit function depends on the choices made by the greedy algorithm in

the first phase. However, we can show that there is a subset of vertices D′ ⊆ D, of

cardinality at most |OPT| ln ∆+1 whose profits sum up to at least n′ where |OPT| is

the size of the optimum solution of the PCDS instance. Furthermore the vertices in

D′ can be connected with additional (ln ∆ + 1)|OPT|+ 1 vertices. Thus, if we could

find the smallest tree with total profit at least n′, such a tree would cost (number of

edges in the tree) no more than (2 ln ∆ + 1)|OPT|+ 2− 1 =(2 ln ∆ + 1)|OPT| + 1.

This is a special case of the QST problem (with unit edge costs) and hence we can

apply Theorem 4.2.3 to obtain a tree of size (cost) no more than 2((2 ln ∆+1)|OPT|+

1) = (4 ln ∆+2)|OPT|+2. Thus, we obtain a (4 ln ∆+2+o(1))-approximate solution

for the PCDS problem.

Algorithm 12 Greedy profit labeling algorithm for PCDS.

Input: graph G = (V,E) and n′ ∈ Z+ ∪ {0}.
Output: tree T with at least n′ coverage.

1: compute the greedy dominating set D and the corresponding profit function

p : V → N using the Algorithm 13.

2: use the 2-approximation algorithm for QST problem [58] on the instance (G, p)

to obtain a tree T with profit at least n′.
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Algorithm 13 Greedy dominating set.

Input: graph G = (V,E).

Output: dominating set D and its profit function p.

1: initiate: D ← φ and U ← V

2: for all v ∈ V do

3: p(v)← 0;

4: end for

5: while U 6= φ do

6: compute: v ← argmax
v∈V \D

|NU(v)|

7: update: p(v)← |Cv|, U ← U \NU(v) and D ← D ∪ {v}
8: end while

4.2.2 Analysis

We first introduce some required notation.

Notation: For every vertex v ∈ D that is chosen by the greedy algorithm, let

Cv denote the set of new vertices that v dominates i.e., we have p(v) = |Cv|. We

say that v “covers” a vertex w if and only if w ∈ Cv. For the sake of analysis, we

partition the vertices of the graph G into layers. Let L1 = OPT be the vertices

in an optimal solution for the PCDS instance, L2 be the set of vertices that are

not in L1 and have at least one neighbor in L1, and R = V \ {L1 ∪ L2} be the

remaining vertices. Let L3 be the subset of vertices of R that have a neighbor in

L2. Furthermore let L′i = D ∩ Li, 1 ≤ i ≤ 3 where D is the dominating set chosen

by the greedy algorithm. Figure 4.2 clarifies this notation regarding the layers Li.

We first show the following.

Lemma 4.2.2 There is a subset D′ ⊆ L′1 ∪L′2 ∪L′3 such that |D′| ≤ |OPT| ln ∆ + 1
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Figure 4.2: Pictorial representation of different layers. (a) L1 is an optimal solution
(b) L2 is set of the vertices adjacent to L1 (c) L3 is the subsequent layer (d) R is
the set of all vertices other than L1 ∪ L2 and (e) L′i = Li ∩D.

and the total profit of vertices in D′ is at least n′, i.e.
∑

v∈D′ p(v) ≥ n′.

Proof: Let L′1∪L′2∪L′3 = {v1, v2, . . . , vl} where the vertices are arranged according

to the order in which they were selected by the greedy algorithm. Since all vertices

in L1∪L2 are dominated by L′1∪L′2∪L′3, we have
∑l

i=1 p(vi) ≥ |L1∪L2| ≥ n′ where

the second inequality follows from the fact that L1 is a feasible solution (in fact

optimal feasible solution). Choose t such that
∑t

i=1 p(vi) < n′ and
∑t+1

i=1 p(vi) ≥ n′.

Let S = {v1, v2, . . . , vt} denote the set of the first t vertices chosen from the set

L′1 ∪ L′2 ∪ L′3. We now show that |S| = t ≤ |OPT| ln ∆ and hence D′ = S ∪ {vt+1}

satisfies the requirements of the claim.

Let C12 be the set of vertices in L1 ∪ L2 that are covered by S in the original

greedy step i.e., C12 = ∪v∈S{Cv ∩ (L1 ∪ L2)}. Let UC12 = (L1 ∪ L2) \ C12 be the

vertices in L1 ∪ L2 that are not covered by S. Similarly define CR = ∪v∈S{Cv ∩R}

as the set of vertices in R covered by S (as per the greedy step). Then, we have

that |CR|+ |C12| < n′ ≤ |L1∪L2| = |C12|+ |UC12|, where the first inequality follows

from the definition of S. Therefore we have |CR| < |UC12|.
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We can thus assign every vertex in CR to a unique vertex in UC12, i.e. let

I : CR → UC12 denote a one to one function from CR to UC12. In the subsequent

charging argument, any cost that we charge to a vertex x ∈ CR is transferred to

its assigned vertex I(x) ∈ UC12. Hence, after this charge transfer, only vertices

in L1 ∪ L2 will be charged. We will now use a charging argument to show that

|S| ≤ |OPT| ln ∆.

Consider a vertex u ∈ S. We recall that Cu is the set of vertices covered for the

first time by u in the greedy step. We assign every w ∈ Cu a charge ρ(w) = 1
|Cu| . It is

clear that the total charge on all vertices is equal to the size of S. As described above,

the charge of a vertex in w ∈ R is transfered to its mapped vertex in I(w) ∈ UC12.

Let v be a vertex in the optimal solution set L1. We denote the set of neighbors of

v, including itself, by N (v). We claim that the total charge on the vertices of N (v)

is at most ln ∆. Initially, none of the vertices in N (v) are charged. Let u1, u2 . . . , ul

be the vertices in S which charge some vertices of N (v) in that order. This charge

could either be the direct charge or a transfer of charge from some vertex in R.

For i ∈ [l], let Oi ⊆ N (v) denote the set of vertices that remain uncharged (either

directly or through a transfer), after the vertex ui is picked into S.

Let O0 = N (v). We will now show that, for every ui, |Cui | ≥ |Oi−1|. Let us

consider the iteration of the greedy algorithm in which ui is picked. We claim that

none of the vertices in Oi−1 can be dominated by any vertex chosen before ui in the

greedy algorithm. Let w ∈ Oi−1 be some vertex which is dominated by some vertex

u′ chosen by greedy before ui, such that w ∈ Cu′ . Clearly u′ ∈ L′1 ∪ L′2 ∪ L′3 should

hold, because no vertex in R \ L3 can dominate w. But since u′ was chosen before
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ui and u′ ∈ L′1 ∪ L′2 ∪ L′3, u′ must be chosen into S before ui. Hence, w cannot be

an uncharged vertex in the current iteration leading to a contradiction.

Thus, in the iteration where the greedy algorithm was about to choose ui,

none of the vertices Oi−1 have been dominated. Hence if the greedy were to choose

v, then p(v) ≥ |Oi−1|. Since the greedy algorithm chooses vertex ui instead of v, we

have |Cui | ≥ |Oi−1|.

The total charge in this iteration (Cui ∩ N (v)) is thus at most |Oi−1|−|Oi|
|Oi−1| .

Adding these charges over all l iterations, we get, using an analysis very similar

to the set cover analysis [133],
∑

w∈N (v) ρ(w) ≤ H(∆), where H is the harmonic

function and ∆ is the maximum degree. Adding up the charges over all vertices in

L1, we get
∑

u∈C12∪UC12
ρ(u) ≤ ∑v∈L1

∑
w∈N (v) ρ(w) ≤ |OPT| ln ∆. Hence we have

|S| ≤ |OPT| ln ∆. Since S was a maximal set having profit at most n′, we obtain

a set D′ with |D′| = |S| + 1 with profit at least n′ by adding a single vertex to S,

which gives us the desired result.

Theorem 4.2.3 Let OPT be the optimal solution set for an instance of PCDS.

There exists a tree T̂ with at most 2|OPT| ln ∆+|OPT|+1 edges such that
∑

v∈T̂ p(v) ≥

n′.

Proof: In Lemma 4.2.2, we have shown that there exists a subset D′ ⊆ L′1∪L′2∪L′3

of size |OPT| ln ∆ + 1 that has profit at least n′. However this set D′ need not be

connected. We now show that this set D′ can be connected without paying too

much. Firstly we note that for every vertex v ∈ L3 ∩ D′, there exists a vertex
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w ∈ L2 such that w dominates v. Thus we can pick a subset D′′ ⊆ L2 of size at

most |L3 ∩D′| ≤ |OPT| ln ∆ + 1 which dominates all vertices of L3 ∩D′. Now, it is

sufficient to ensure that all the vertices of (D′ ∩ L2) ∪D′′ are connected. This can

be achieved by simply adding all the vertices of L1 to our solution. Thus we have

shown that D̂ = D′ ∪D′′ ∪ L1 induces a connected subgraph with profit at least n′

and the number of vertices in D̂ ≤ |D′| + |D′′| + |L1| ≤ 2|OPT| ln ∆ + |OPT| + 2.

Hence there exists subtree T̂ on these vertices with at most (2 ln ∆ + 1)|OPT| + 1

edges with the requisite total profit.

Corollary 4.2.4 Algorithm 12 is a 4 ln ∆ + 2 + o(1)-approximation algorithm for

PCDS.

Proof: Let OPT be the optimal solution of the PCDS instance. As per Theorem

4.2.3, we know that there exists a Steiner tree T̂ with at most 2|OPT| ln ∆+|OPT|+1

edges whose total profit exceeds the quota n′. Hence, the tree T returned by the 2-

approximation algorithm for the QST problem has at most 4|OPT| ln ∆+2|OPT|+2

edges. Thus, we obtain a 4 ln ∆ + 2 + o(1) approximation algorithm.

4.3 Budgeted connected dominating set

We now turn our attention to the budgeted connected dominating set (BCDS) prob-

lem. Formally,

Definition 4.3.1 (The budgeted connected dominating set (BCDS)) Given
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an undirected graph G = (V,E), and an integer (budget) k, find a subset S ⊆ V of

at most k vertices such that the graph induced by S is connected, and the number of

vertices dominated by S is maximized.

4.3.1 Algorithm

Algorithm 14 is very similar to the one we used to obtain a partial connected domi-

nating set. We start by running the standard greedy algorithm to find a dominating

set D in the graph. We set the profits of vertices in D as the number of newly

covered vertices at each step of the greedy algorithm, while we assign zero profit

for the remaining vertices in V \D. In the analysis section, we show that there is

a tree on at most 3k vertices that has a total profit of at least (1 − 1
e
)OPT where

OPT is the number of vertices dominated by an optimal solution. Note that we may

assume that we have guessed OPT by trying out values between k and n using, say,

binary search. We run the 2 approximation algorithm for the QST problem on this

instance with the quota being set to (1− 1
e
)OPT. This will result in a tree with at

most 6k nodes with total profit at least (1 − 1
e
)OPT. Thus we obtain a (6, 1 − 1

e
)

bicriteria approximation algorithm. To convert this bicriteria approximation into a

true approximation, we use a dynamic program (Section 4.3.2.2) to find the “best”

subtree on at most k vertices from this tree of 6k vertices. We use a simple tree

decomposition scheme to show that the best tree dominates at least 1
13

(1− 1
e
)OPT

nodes.
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Algorithm 14 Greedy profit labeling algorithm for BCDS.

Input: graph G = (V,E) and k ∈ N.

Output: tree T̃ with cost at most k.

1: compute the greedy dominating set D and the corresponding profit function

p : V → N using the Algorithm 13.

2: OPT← number of vertices dominated by an optimal solution (guess using binary

search between k and n).

3: use the 2-approximation algorithm for QST problem [58] to obtain a tree T with

profit at least (1− 1
e
)OPT (we show that |T | ≤ 6k).

4: use the dynamic program of Section 4.3.2.2 to find T̃ , the best subtree of T

having at most k vertices.

4.3.2 Analysis

Let L1 denote the vertices in an optimal solution. Let layers L2, L3, R, and L′i be

defined as in Section 4.2. OPT = |L1 ∪ L2| is the number of vertices dominated by

the optimal solution.

Let L′1 ∪ L′2 ∪ L′3 = {v1, v2, . . . , vl} where the vertices are according to the

order in which they were selected by the greedy algorithm. Let D′ = {v1, v2, . . . , vk}

denote the first k vertices from L′1 ∪ L′2 ∪ L′3. In Lemma 4.3.3, we prove that the

total profit of D′ =
∑

v∈D′ p(v) is at least (1 − 1
e
)OPT. Next, we can show that

these k vertices can be connected by using at most 2k more vertices, thus proving

the existence of a tree with at most 3k vertices having the desired total profit.

Let gi denote the total profit after picking the first i vertices from D′, i.e.,

gi =
∑i

j=1 p(vj). We start by proving that the following recurrence holds for every

i = 0 to k − 1.
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Claim 4.3.2 gi+1 − gi ≥ 1
k
(OPT− gi)

Proof: Consider the iteration of the greedy algorithm, where vertex vi+1 is being

picked. We first show that at most gi vertices of L1 ∪ L2 have been already been

dominated. Note that any vertex w ∈ L1 ∪ L2 that has been already dominated

must have been dominated by a vertex in {v1, v2, . . . vi}. This is because no vertex

from R \ L3 can neighbor w. Since gi =
∑i

j=1 p(vj) is the total profit gained so far,

it follows that at most gi vertices from L1 ∪ L2 have been dominated. Hence we

have that there are at least OPT− gi undominated vertices in L1 ∪ L2. Since the k

vertices of L1 together dominate all of these, it follows that there exists at least one

vertex v ∈ L1 which neighbors at least 1
k
(OPT− gi) undominated vertices.

We conclude this proof by noting that since the greedy algorithm chose to

pick vi+1 at this stage, instead of the v above, it follows that p(vi+1) = gi+1 − gi ≥

1
k
(OPT− gi).

Lemma 4.3.3 Let OPT be the number of vertices dominated by an optimal solution

for BCDS. Then there exists a subset D′ ⊆ D of size k with total profit at least

(1− 1
e
)OPT. Further, D′ can be connected using at most 2k Steiner vertices.

Proof: From the Claim 4.3.2, the profit after i+ 1 iterations is given by

gi+1 ≥
OPT

k
+ gi(1−

1

k
).

By solving this recurrence, we get gi ≥ (1 − (1 − 1
k
)i)OPT. Hence, we obtain the
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following. ∑
v∈D′

p(v) = gk ≥ (1− (1− 1

k
)k)OPT ≥ (1− 1

e
)OPT

We show that D′ can be connected by at most 2k Steiner nodes to form a

connected tree. Note that for every vertex v ∈ L3∩D′, there exists a vertex w ∈ L2

such that w neighbors v. Thus we can pick a subset D′′ ⊆ L2 of size at most

|L3 ∩D′| ≤ k which dominates all vertices of L3 ∩D′. Now, it is sufficient to ensure

that all the vertices of (D′∩L2)∪D′′ are connected. This can be achieved by simply

adding all the k vertices of L1. Thus we have shown that D̂ = D′∪D′′∪L1 induces a

connected subgraph with profit at least (1− 1
e
)OPT and |D̂| ≤ |D′|+|D′′|+|L1| ≤ 3k.

Lemma 4.3.4 There is a (6, (1 − 1
e
)) bicriteria approximation algorithm for the

BCDS problem.

Proof: Lemma 4.3.3 shows that there exists a Steiner tree with at most 3k ver-

tices having total profit greater than a quota of (1 − 1
e
)OPT. Hence, using the

2-approximation algorithm for the QST problem, we obtain a tree T of at most 6k

nodes and total profit at least (1− 1
e
)OPT. Thus we obtain a (6, (1− 1

e
)) bicriteria

approximation algorithm for the BCDS problem.
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4.3.2.1 Obtaining a true approximation

In order to obtain a true approximate solution (solution of size k), we need a tech-

nique to find a small subtree T̃ ⊆ T of k vertices which has high total profit. In

Section 4.3.2.2, we show that this problem can be easily solved in polynomial time

using dynamic programming. However, simply finding the subtree which maximizes

the profit is not enough to give a good approximation ratio. We need a way to

compare the total profit of the subtree T̃ with the entire profit P =
∑

v∈T p(v). We

now show that if n = 6k, we can obtain a subtree having profit at least 1
13
P .

The following lemma is well known in folklore and can be easily proven by

induction. It can also be seen as an easy consequence of a theorem by Jordan [134].

Lemma 4.3.5 (Jordan [134]) Given any tree on n vertices, we can decompose it

into two trees (by replicating a single vertex) such that the smaller tree has at most⌈
n
2

⌉
nodes and the larger tree has at most

⌈
2n
3

⌉
nodes.

(a) Decomposes into 6 subtrees (b) Decomposes into 7 subtrees

Figure 4.3: Decomposition of trees into 13 subtrees
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(a) Decomposes into 5 subtrees (b) Decomposes into 8 subtrees

Figure 4.4: Decomposition of trees into 13 subtrees

We now show the following:

Lemma 4.3.6 Let k be greater than a sufficiently large constant. Given a tree T

with 6k nodes, we can decompose it into 13 trees of size at most k nodes each.

Proof: We use Lemma 4.3.5 to decompose the tree into two trees T1 and T2 such

that |T1| ≤ |T2|. In this decomposition, at most one vertex is duplicated, therefore

|T1|+ |T2| ≤ 6k + 1. Also, we have |T1| ≤ 3k. We now have two cases:

Case 1: |T1| ≥ 3k − 1. In this case, |T2| ≤ 6k + 1− |T1| ≤ 3k + 2. Now repeatedly

using Lemma 4.3.5 we can see that T1 can be decomposed into at most 6 trees and

T2 can be decomposed into at most 7 trees of size at most k. This is shown in the

Figure 4.3. Hence, in this case, we can decompose the tree T into 13 trees.

Case 2: |T1| ≤ 3k − 2. In this case, |T2| ≤ 4k. In this case, we can decompose T1

into 5 trees and T2 can be decomposed into 8 trees. This is shown in Figure 4.4.

Thus in this case, we can decompose T into 13 trees.

Using Lemma 4.3.6, we can convert the bicriteria approximation algorithm for BCDS

to a true approximation algorithm. In particular, we show the following -
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Theorem 4.3.7 There is a 1
13

(1− 1
e
) approximation algorithm for the BCDS prob-

lem.

Proof: By Lemma 4.3.4, we obtain a tree T with at most 6k nodes with profit

(1 − 1
e
)OPT. Now using Lemma 4.3.6, we obtain 13 trees in the worst case, say

T1, T2, . . . T13. Finally, out of these 13 trees (each of size at most k), we pick the

tree T̃ with the highest total profit. Let, p(T ) =
∑

v∈T p(v) denote the total profit

of tree T . Then we have,

p(T̃ ) ≥ 1

13

13∑
i=1

p(Ti) ≥
1

13
p(T ) ≥ 1

13
(1− 1

e
)OPT

Thus we have a 1
13

(1− 1
e
) approximation guarantee.

4.3.2.2 Finding the best subtree

Although the decomposition Lemma 4.3.6 is useful to prove a theoretical bound,

from a practical perspective it is better to use a dynamic programming approach

to find the best k sub-tree. Formally, we have the following problem. Given a tree

T = (V,E) of n vertices, profits on vertices p : V → Z+∪{0}, and an integer k, find

a subtree T̃ of k vertices which maximizes the total profit P̃ =
∑

v∈T̃ p(v). We show

that this problem can be solved in polynomial time using dynamic programming.

Let the tree T be rooted at an arbitrary vertex and Tv denote the subtree rooted at

a vertex v. We define the following:

F (v, i)← best solution of at most i vertices completely contained inside Tv.
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G(v, i) ← best solution of at most i vertices completely contained inside Tv

such that v is a part of the solution.

The desired solution is thus at F (root, k). The base cases (when v is a leaf) are

trivial. Let v1, v2, . . . , vl denote the children of vertex v. We now have the following

recurrence :

F (v, i) = max

{
max
1≤j≤l

{F (vj, i)}, G(v, i)

}

G(v, i) = p(v) +M(l, i− 1)

Here M(j, i′) denotes the best way to distribute a budget of i′ among the first j

children of v. In other words,

M(l, i− 1) = max
i1+i2+...+il=i−1

{∑
j

G(vj, ij)

}

M(j, i′) is computed using another dynamic program as follows. Again the base

cases when j = 0 or i′ = 0 are trivial. For 1 ≤ j ≤ l and 1 ≤ i′ ≤ i− 1, we have the

following recurrence:

M(j, i′) = max
0≤i∗≤i′

{M(j − 1, i∗) +G(vj, i
′ − i∗)}

4.4 Budgeted generalized CDS

In this section, we show that our approach extends to more general budgeted con-

nected domination problems. We first define a special kind of submodular function.

Let G = (V,E) be an arbitrary graph. A function f : 2V → Z+ ∪ {0}, is said

111



to have the special submodular property if it satisfies the following-

• f is submodular. That is f(A ∪ {v})− f(A) ≥ f(B ∪ {v})− f(B) ∀A,B, v

such that A ⊆ B ⊆ V .

• fA(X) = fA∪B(X), if N(X) ∩N(B) = φ ∀X,A,B ⊆ V .

where fA(X) = f(A ∪ X) − f(A) is the marginal profit of X given A and N(X)

denotes the neighborhood of X, including X itself.

Definition 4.4.1 (Budgeted generalized connected dominating set (BGCDS))

Given a graph G = (V,E), a budget k, and a monotone special submodular profit

function f : 2V → Z+ ∪ {0}, find a subset S ⊆ V which maximizes f(S) such that

|S| ≤ k and S induces a connected subgraph of G.

This problem captures the budgeted variant of the weighted profit connected

dominating set problem. Weighted profit connected dominating set. In this variant,

each vertex has an arbitrary profit which is obtained if it is dominated by some

chosen vertex.

4.4.1 Algorithm.

Algorithm 15 begins by running the standard greedy algorithm to find a basis of

the polymatroid associated with f . In other words, we greedily pick a vertex v

with the maximum marginal profit f(D ∪ {v}) − f(D) until all vertices have zero

marginal profit. With every selected vertex, we associate the marginal profit gained,

and associate zero profit with the other vertices. Finally, we run a quota Steiner
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tree algorithm using these profits to find the smallest tree that yields a profit of at

least (1− 1
e
)OPT where OPT is the optimal profit (which we guess). In the analysis

section, we show that there exists a tree T̂ of size at most 3k with f(T̂ ) ≥ (1− 1
e
)OPT.

Hence, the 2-approximation approximation for the quota Steiner tree yields a tree T

of size at most 6k yielding the desired profit. Finally using the tree decomposition

described earlier, we show that we can obtain a tree T̃ of size at most k with

f(T̃ ) ≥ 1
13

(1− 1
e
)OPT.

4.4.2 Analysis.

Let the L1 denote the vertices in the optimal solution and f(L1) = OPT. Let L2

denote the set of vertices which have at least one neighbor in L1, and similarly

let L3 denote the set of vertices having a neighbor in L2 (and NOT in L1). Let

R = V \ {L1 ∪L2 ∪L3} denote the rest of the vertices. Let L′i = D ∩Li where D is

the set of vertices chosen by the greedy algorithm.

Further, let D′ denote the first k vertices picked by the greedy algorithm from

L′1 ∪ L′2 ∪ L′3. To simplify notation, let D′ = {v1, v2, . . . , vk} and let Di denote

the the set of vertices already picked by the greedy algorithm when the vertex vi+1

is being chosen. Hence we have vi+1 = argmaxv∈V \Di f(Di ∪ {v}) − f(Di) and

p(vi+1) = f(Di ∪ {vi+1}) − f(Di). Note that in particular Di ⊆ D but may not

be a subset of D′. Also let D′i = ∪ij=1vj denote the first i vertices in D′. Let

P (D′i) =
∑

v∈D′i
p(v) denote the total profit associated with the set D′i. Finally let

D′′i = Di \D′i be the vertices in Di ∩R.
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Claim 4.4.2 p(vi+1) = P (D′i+1)− P (D′i) ≥ 1
k
(OPT− P (D′i))

Proof: Consider the marginal profit of the set L1 \ D′i. Since N(D′′i ) does not

intersect with N(L1), we have,

fD′i(L1 \D′i) = fD′i∪D′′i (L1 \D′i)

= fD′′i (D′i ∪ (L1 \D′i))− fD′′i (D′i)

≥ fD′′i (L1)− fD′′i (D′i)

= f(L1)− fD′′i (D′i)

= OPT− fD′′i (D′i) (4.1)

Let us now consider the term fD′′i (D′i). Adding up over successive marginal profits,

fD′′i (D′i) =
i∑

j=1

fD′′i ∪D′j−1
(vj) ≤

i∑
j=1

fDj−1
(vj) (4.2)

=
i∑

j=1

p(vj) = P (D′i)

From Eq (4.1) and Eq (4.2),

fD′i(L1 \D′i) ≥ OPT− P (D′i)
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As f is submodular, we have

fD′i(L1 \D′i) ≤
∑

w∈L1\D′i

fD′i({w})

Since |L1 \D′i| ≤ k, there exists at least one vertex w ∈ L1 \D′i satisfying

fD′i({w}) ≥
1

k
fD′i(L1 \D′i) ≥

1

k
(OPT− P (D′i))

Using fDi({w}) = fD′i({w}) and the fact that greedy picked vi+1 at this stage

p(vi+1) = fDi({vi+1}) ≥ fDi({w})

≥ 1

k
(OPT− P (D′i))

Solving the recurrence of Claim 4.4.2, we have P (D′) ≥ (1− 1
e
)OPT. We thus

have a set D′ of size k which yields a total profit of at least (1 − 1
e
)OPT. We now

proceed to show that the above set D′ can be connected at a relatively low cost.

Since every vertex in D′ can be connected to L1 using at most one vertex (from

L2), we can obtain a connected subset T̂ of size at most 3k by choosing D′, L1 and

vertices in L2 as described. Hence, the 2-approximation for the QST problem will

yield a tree T of size at most 6k which would give a profit of at least (1 − 1
e
)OPT.

Finally applying the tree decomposition described earlier we obtain a tree T̃ of size
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≤ k with f(T̃ ) ≥ P (T̃ ) ≥ 1
13

(1− 1
e
)OPT.

Algorithm 15 Greedy profit labeling algorithm for BGCDS.

Input: graph G = (V,E), a monotone special submodular function f : 2V →
Z+ ∪ {0} and k ∈ Z+ ∪ {0}.
Output: tree T̃ with at most k vertices.

1: run the generalized greedy dominating set routine (Algorithm 16) on (G, f) to

obtain a subset D and a profit function p : V → N.

2: OPT← profit of an optimal solution. (Guess using binary search 0 and f(V )).

3: T ← 2-approximation for QST with quota (1− 1
e
)OPT.

4: use the dynamic program of Section 4.3.2.2 to find T̃ , the best subtree of T

having at most k vertices.

Algorithm 16 Generalized greedy dominating set.

Input: graph G = (V,E) and a monotone special submodular function f : 2V →
Z+ ∪ {0}.
Output: D ⊆ V such that f(D) = f(V ) and profit function p : V → Z+ ∪ {0}.

1: initiate: D ← φ

2: while f(D) 6= f(V ) do

3: compute: v ← argmax
v∈V \D

f(D ∪ {v})− f(D)

4: update: p(v)← f(D ∪ {v})− f(D) and D ← D ∪ {v}
5: end while

6: for all v ∈ V \D do

7: p(v)← 0

8: end for

4.5 Partial generalized connected domination

We now consider a partial coverage version of the generalized connected domination

presented in Section 4.4. In this problem, the goal is to find the smallest subset of

vertices which induce a connected subgraph and have total profit at least q (quota).
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Just as for the budgeted case, the algorithm proceeds by finding a spanning subset

greedily. Using profits as defined by the greedy algorithm, we then find a QST having

total profit at least q. In the analysis section, we show that there exists a tree T̂ of

size at most 2k ln q + k with total profit at least q. Hence, the 2-approximation for

QST yields a tree T of size at most 4k ln q+2k leading to a O(4 ln q) approximation.

4.5.1 Analysis

We reuse notation from Section 4.4 regarding the layers Li and L′i. Let D′ denote

the first k ln q + 1 vertices picked by the greedy algorithm from L′1 ∪ L′2 ∪ L′3. We

now show that the total profit of vertices in D′ is at least q.

Claim 4.5.1 P (D′) ≥ q

Proof: As per Claim 4.4.2, we obtain the following recurrence

P (D′i+1) ≥ (1− (1− 1

k
)i+1)q (4.3)

Substituting i+ 1 = k ln q, we get,

P (D′k ln q) ≥ (1− (1− 1

k
)k ln q)q (4.4)

≥ (1− 1

q
)q ≥ q − 1 (4.5)
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Since profit function f is integral, we have

P (D′k ln q+1) ≥ q (4.6)

Theorem 4.5.2 Given that the optimal solution is of size k, there exists a tree T̂

of size at most k ln q + k + 2 such that
∑

v∈T̂ p(v) ≥ q

Proof: In Claim 4.5.1 above, we have demonstrated the existence of a set of size

at most k ln q + 1 with the requisite total profit. We now show that this set can be

connected at low cost. As in Theorem 4.2.3, we can see that by selecting at most

k ln q + 1 more vertices from layer L2 and at most k vertices from layer L1, the set

D′ can be connected to form a tree T̂ .

Finally using the 2-approximation for QST, we obtain a O(4 ln q) approximation.

118



Chapter 5

Covering Problems in Sensor and Radio Networks

5.1 Roadmap to the chapter

In Section 5.2, we study the max-min k-cover problem and describe a 1
3
(1 − 1

e
)

approximation algorithm for it. In fact, we present the same result for a more

general submodular max-min k-cover problem.

The minimum conflict-free coloring problem is hard to approximate and an

algorithm, with tight approximation guarantee, was obtained by Pach and Tar-

dos [76]. We describe an alternate 2
√
m approximation algorithm for the minimum

conflict-free coloring problem in general networks. These are detailed in Section 5.3.

We relax the minimum conflict-free coloring problem in the following two

ways, in Section 5.4

1. We allow a small fraction of vertices in T to be left uncovered. We show

that we can obtain a partition of expected size O( logm logn
ε

) such that at least

(1− ε)m vertices in T are uniquely covered in expectation.

2. We relax the disjointness requirement by allowing a vertex s ∈ S to appear

in at most O(log n) sets. We now obtain a family of size O(log n logm) that

uniquely covers every t ∈ T .
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5.2 The max-min k-cover problem

As mentioned in Chapter 1, one of the drawbacks of the set k-cover problem is that

some set Si in even the optimal solution can have very low coverage. In this section,

we consider the max-min k-cover problem, defined formally as follows:

Definition 5.2.1 (max-min k-cover) Given a sensor-target network N = (S, T,E),

the max-min k-cover problem is to partition S into exactly k disjoint sets P =

(S1, S2 . . . , Sk), such that we maximize the minimum coverage of any Si, i.e., Max
P

Min
i
C(Si).

Interestingly, we now show that an α-approximation algorithm for the set k-

cover problem can be used to obtain comparable guarantees for the max-min k-cover

problem.

Theorem 5.2.2 Given a polynomial time α-approximation algorithm for the set

k-cover problem, we can obtain a polynomial time α/3-approximation algorithm for

the max-min k-cover problem.

Theorem 5.2.2 immediately yields the following result, as a corollary.

Corollary 5.2.3 There is a 1
3
(1 − 1

e
) approximation algorithm for the max-min

k-cover problem.

Proof: Theorem 5.2.2 along with the (1− 1
e
)-approximation algorithm for the set

k-cover problem by Abrams et al. [67] gives the result.

Instead of proving Theorem 5.2.2, we prove the theorem for the following more

general submodular optimization problem.
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Definition 5.2.4 (submodular max-min k-cover) Given a set S (of sensors),

an integer k, and a monotone, submodular profit function f : 2S → Z+ ∪ {0}, the

goal is to find a partition P = {S1, S2 . . . Sk} of S so as to maximize Min
i

f(Si).

This problem has the max-min version of the capacitated set k-cover problem

studied by Deshpande et al. [70] as a special case. We now show the following.

Theorem 5.2.5 Given a polynomial time α-approximation algorithm for the sub-

modular set k-cover problem, we can obtain a polynomial time α/3-approximation

algorithm for the submodular max-min k-cover problem.

Proof: Given the sensors set S and k, we first guess the optimal value, say M1,

such that there exists some partitioning of S into k sets such that each set Si has

f(Si) ≥M .

We will first deal with the large profit vertices in S. For a constant µ1 (to be

specified later), if there is a sensor s with f({s}) ≥ µ1M , we construct a singleton

set with that sensor alone and delete it from S. Let H (resp. H) be the family

of singleton sets (resp. set of high profit vertices) corresponding to high profit

sensors and let |H| = k1. If k1 ≥ k, we stop. Otherwise, our goal is to now

construct k2 = k− k1 more sets. Consider the reduced set S ′ = S \H after deleting

the high profit sensors. We first observe that the optimal submodular set k-cover

partitioning, into k2 sets, has a total profit at least Mk2 on this reduced instance.

To see this, consider the optimal submodular max-min k-cover partitioning of the

original instance. The removal of the k1 high profit sensors affects at most k1 sets

1Clearly, since M ≤ f(U), we have at most f(U) different choices for M . Although f(U) might
be exponential, using a standard binary search approach, we can restrict ourselves to at most
log f(U) different choices, i.e., a polynomial number of choices in the input size
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in the optimal solution. Thus, there is a partitioning of the reduced instance into

k2 = k − k1 sets, such that each set has a profit of at least M .

We now use the α-approximation algorithm for submodular set k-cover prob-

lem, to obtain a partition P = {S1, S2 . . . Sk2} of S\H such that such that
∑

i∈[k2] f(Si) ≥

αMk2. We will now describe a procedure that will construct a partition P ′ such

that the minimum profit of each set is at least αM/3.

Let µ2 be a constant to be determined later. Let the set Si have profit f(Si) ∈

[riM(µ1 +µ2)−Mµ2, riM(µ1 +µ2)+Mµ1), where ri ≥ 0. We will now show that we

can decompose Si into at least ri disjoint subsets such that each subset has a profit of

at least Mµ2. It is easy to see that the claim is true when ri = 0. We construct a new

subset of Si namely Snew, by removing arbitrary sensors from Si and adding them

to Snew until its profit just crosses Mµ2. We note that since we have deleted all the

sensors of profit≥Mµ1, we have, by submodularity of f , that f(Snew) ≤M(µ1+µ2).

Clearly now, f(Si \ Snew) ≥ f(Si)− f(Snew) ≥ (ri − 1)M(µ1 + µ2)−Mµ2 and the

claim follows from mathematical induction. In this way, we decompose each set Si

into ri subsets.

At the end of the above decomposition, we call a subset “big” if its profit

≥ Mµ2, otherwise it is “small”. Let B and S be the families of big and small

subsets respectively. We now need to choose µ1 and µ2 to be such that the size of

B is at least k2. For this, we need the following to hold:

∑
i∈[k2]

ri ≥ k2 (5.1)
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But, by definition of ri, we have the following:

∑
i∈[k2]

(riM(µ1 + µ2) +Mµ1) ≥
∑
i∈[k2]

f(Si) ≥ αMk2

∴ (
∑
i∈[k2]

ri)(µ1 + µ2) + k2µ1 ≥ αk2

Thus for Equation 5.1 to hold, it is sufficient to have

2µ1 + µ2 ≤ α

Once this condition is satisfied, notice that B ∪H together have a cardinality

of at least k1 + k2 = k such that the minimum profit of any set is Min (µ1, µ2)M .

The best approximation guarantee is thus obtained when µ1 = µ2 = α
3
. Thus we

obtain a 1
3
(1− 1

e
) approximation.

Corollary 5.2.6 There is a 1
3
(1 − 1

e
) approximation algorithm for the submodular

max-min k-cover problem.

Proof: We first obtain a (1 − 1
e
)-approximation algorithm for the submodular

set k-cover problem. To achieve this, we reduce it to the well known monotone

submodular maximization problem subject to a matroid constraint [135], where the

goal is : given a ground set U , a matroid M = (U, I) and a monotone submodular

function f ′ : 2U → Z+∪{0}, compute a subset U ′ ∈ I such that f ′(U ′) is maximized.

This problem has a well known deterministic 1− 1
e

approximation algorithm.
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Given an instance of the submodular set k-cover problem, define U = {(v, j) :

v ∈ S, j ∈ [k]} and for any U ′ ⊆ U , f ′(U ′) =
∑

j f({v : (v, j) ∈ U ′}). To com-

plete the reduction, we need to impose the restriction of the form if (u, j) ∈ U ′

and (u, j′) ∈ U ′, then j = j′. This is achieved by imposing the (partition) matroid

constraint where we set that at most one element can be chosen from the group

Gv = {(v, j) : j ∈ [k]}. Now, the corollary follows from Theorem 5.2.5.

5.3 The minimum conflict-free coloring problem

In this section, we study the minimum conflict-free coloring (MCFC) problem, that

can be formally defined as follows:

Definition 5.3.1 (conflict-free coloring (MCFC)) We are given a radio network

N = (S, T,E) where n = |S| and m = |T |. The goal is to find a partition P of S of

minimum size, such that every vertex t ∈ T is uniquely covered by P.

Equivalently, the goal is to color vertices of S using minimum number of colors

such that for every t ∈ T there is at least one color that is assigned to exactly one

vertex in t’s neighborhood. This problem can be viewed as a “disjoint” variant of

the well studied selective families problem [77, 136, 137]. Clementi et al. [77] show

that it is possible to choose O(log n logm) subsets of S that cover all the vertices in

T uniquely. However, the additional restriction of requiring disjoint subsets makes

the problem significantly harder. The following theorem is implicit in the work of

Even et al. [69] and we include the proof for completeness.
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Theorem 5.3.2 It is NP-hard to approximate the MCFC problem within a factor

of Max (n1−ε,m1/2−ε).

Proof: We show that if we can solve this problem within an approximation factor

of Max (n1−ε,m1/2−ε) then we can approximate the chromatic number of a graph

with an approximation factor of n1−ε which is known to be NP-hard [138]. Given an

instance G = (V,E), k of the graph coloring problem, we construct a bipartite graph

N = (S, T,E ′) as follows. Set S = V and T = E. For every edge e = (u, v) ∈ E,

we add edges (e, u) and (e, v) in E ′. We claim that G is k-colorable if and only if S

can be partitioned into k sets such that every vertex in T is covered uniquely by at

least one part.

Forward direction. If G has a feasible k-coloring, consider the partition of

S where every set is a color class. Now, consider any vertex e ∈ T and let e = (u, v)

be the corresponding edge in G. By definition of a feasible coloring u and v are

assigned to different color classes, and hence e is uniquely covered (by both the

color classes).

Backward direction. On the other hand, suppose S can be feasibly par-

titioned into k sets. As each e ∈ T is uniquely covered, it must be the case that

it’s endpoints belong to different sets. Hence, assigning a unique color to each set

creates a valid k-coloring of G.

Clearly in the above instance m = |T | ≤ n2. Therefore a m1/2−ε approximation

directly gives a n1−ε approximation for the k-coloring problem. As it is NP-hard to

approximate the chromatic number within n1−ε, the minimum conflict-free coloring
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problem is hard to approximate better than Max (n1−ε,m1/2−ε).

To complement the Ω(m
1
2
−ε) hardness result for MCFC, Pach and Tardos [76] show

that a simple greedy algorithm can be used to find a partition of S of size O(
√
m)

that uniquely covers all vertices of T . We present an alternate simple algorithm that

provides a similar guarantee. The details are shown in Algorithm 17. The algorithm

proceeds in iterations and constructs one new subset Snew in each iteration. We

construct Snew to be a set such that every s ∈ (S \ Snew) is adjacent to a vertex t

having degree 1 and every t ∈ T has a neighbor in S \Snew. We then remove all the

degree 1 vertices in T and repeat this process until there are at most
√
m vertices

left in S. The key insight here is that once a vertex t ∈ T attains degree 1 in some

iteration, it can essentially be eliminated as it is guaranteed to be uniquely covered

in some future iteration.
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Algorithm 17 An O(
√
m)-approximation for the minimum conflict-free coloring

problem

1: Input: given a network N = (S, T,E) with |S| = n and |T | = m

2: Output: partition of size k = 2
√
m

3: F = φ

4: while |S| ≥ √m do

5: Snew = φ

6: U = set of degree 1 vertices in T

7: while ∃v ∈ S such that N(v) ∩ U = φ do

8: S = S \ {v}
9: Snew = Snew ∪ {v}

10: add all newly formed one degree vertices to U

11: end while

12: F = F ∪ {Snew}
13: T = T \ U
14: end while

15: for v ∈ S do

16: S = S \ {v}
17: F = F ∪ {{v}}
18: end for

Theorem 5.3.3 Given a radio network N = (S, T,E), such that |S| = n and

|T | = m, there is a polynomial time algorithm that constructs a partition of size

2
√
m, such that every vertex in T is covered exactly once by some subset of the

partition. Thus, there is an algorithm with 2
√
m/k approximation guarantee for the

MCFC problem, where k is the optimal partition size.

Proof: For the Algorithm 17, we show that the following hold true -

1. Every vertex in T is uniquely covered: A vertex t ∈ T is deleted in some

iteration only if it has a single neighbor s ∈ S. Such a vertex t is guaranteed
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to be uniquely covered by s irrespective of which subset s ends up in. On

the other hand, if t is not deleted in any iteration, then it is uniquely covered

trivially as all its neighbors form singleton sets.

2. The size of the partition obtained is at most 2
√
m: We create one set in each

iteration of the loop at step 4. By construction of Snew, every vertex in S at

the end of an iteration is adjacent to a vertex in t ∈ U . Thus, |U | ≥ |S| at the

end of each iteration. As |S| ≥ √m (except after the last iteration), we delete

at least
√
m vertices from T and hence can have at most

√
m iterations. In

addition, we create at most
√
m singleton sets in Step 15.

5.4 Two relaxations of the MCFC problem

From Theorem 5.3.2, we infer that in the MCFC problem, the condition of “satis-

fying” all the vertices while maintaining disjointness property of various subsets of

S, is too strict to achieve anything useful. In this subsection, we relax at least one

of these conditions to obtain two interesting problems, that will hopefully be more

tractable.

1. R1-MCFC. In this relaxation, we still require disjoint subsets of S but we only

need to uniquely cover almost all vertices in T .

2. R2-MCFC. In this case, we are required to uniquely cover all the vertices,
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however we relax on the disjointness property. We are now allowed to re-use

a vertex a bounded number of times.

We now consider both of these relaxations.

5.4.1 The R1-MCFC problem

Interestingly, we show that if an ε > 0 fraction of vertices in T are “sacrificed”, it

is possible to obtain much better solutions. Specifically, our algorithm partitions S

into O(1
ε

log n logm) disjoint sets, so that at least (1 − ε)m of the nodes in T are

uniquely covered.

Our algorithm is very simple: iteratively, use a subroutine for the unique

coverage problem as long as possible. The key challenge in the analysis is to bound

the number of vertices in T that are not uniquely covered and instead are left with

no neighbors. The subroutine we use is a slightly modified version of Demaine et

al. [68]’s algorithm. Algorithm 18 gives a formal description of this subroutine.

Algorithm 18 Modified subroutine for unique coverage

1: Input: graph N = (S, T,E) and ε > 0

2: partition vertices of T into log n groups by degree as follows : Gi ← {t ∈
T | 2i ≤ deg(t) ≤ 2i+1 − 1}

3: i∗ ← argmaxi |Gi|
4: S ′ ← sample each vertex from S with probability ε

2i∗

5: return S ′

The following proposition was essentially proved in [68], with slightly different

probability calculations. We give the proof for completeness

Proposition 5.4.1 (Demaine et al. [68]) In expectation, the number of vertices

in T uniquely covered by S ′, returned by Algorithm 18, is at least εm
e2 logn

.
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Proof: Since Gi∗ is the group with the highest cardinality, |Gi∗| ≥ m
logn

. Consider

any vertex v ∈ Gi∗ having degree d. The probability that v is uniquely covered by

S ′ is d( ε
2i∗

)(1− ε
2i∗

)d−1 ≥ ε
e2

. Thus in expectation, S ′ covers at least εm
e2 logn

vertices

uniquely.

It is now easy to describe our algorithm (refer to Algorithm 19). In each iteration,

we pick a subset of vertices in S using the modified unique coverage subroutine

(Algorithm 18). To ensure that different subsets chosen are disjoint, we delete the

vertices in S that have already been selected. We also delete any vertex t ∈ T that

has been uniquely covered or is left without a neighbor in S.

Algorithm 19 Algorithm for R1-MCFC

1: Input: graph N = (S, T,E), ε > 0

2: initialize : F = φ and i = 1

3: while T 6= φ do

4: Si ← modified unique coverage algorithm (Algorithm 18) on (N, ε)

5: S = S \ Si Ui ← vertices uniquely covered by Si

6: Di ← {v : v ∈ T and deg(v) = 0}
7: update : T = T \ (Ui ∪Di), F = F ∪ {Si} and i = i+ 1

8: end while

9: return F

Theorem 5.4.2 For ε > 0, the following hold true in Algorithm 19

(a) The expected size of the partition is O(1
ε

log n logm).

(b) The expected number of vertices in T that are uniquely covered is at least

(1− ε)m.

Proof: (a) In Algorithm 19, we create a new subset in each iteration and thus the
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size of the partition is equal to the number of iterations. In iteration i, let ti be the

random variable corresponding to the cardinality of Ui∪Di, i.e., ti = |Ui∪Di|. Also

let Ti be a random variable denoting the number of vertices in T remaining after i

iterations. We have,

Ti = Ti−1 − ti

E(Ti) = E(Ti−1)− E(ti)

From Proposition 5.4.1, we know that, for c ≥ e2

ε

E(ti) ≥
E(Ti−1)

c log n

E(Ti) ≤ E(Ti−1))(1− 1

c log n
) (5.2)

Solving the above recurrence (Equation 5.2), we obtain that E(Ti) ≤ me
−i

c logn .

Thus, if we stop after c log n logm iterations, the expected number of vertices in Ti

is at most 1. The last remaining vertex t ∈ Ti has at least one remaining neighbor

s ∈ S (otherwise t ∈ Dj for some j < i) and can thus be satisfied by adding s as

singleton. Hence we obtain a partition of expected size O(1
ε

log n logm).

(b) We first note that a vertex of T is not uniquely covered if and only if it was

included in the set Di of some iteration of Algorithm 19. We now upper bound the

probability of this “bad” event occurring by ε. To this end, we fix a vertex t ∈ T ,
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an iteration j of Step 3 and an integer d ≥ 2. We now define the following events:

Egood
t � Event that t is uniquely covered in some iteration

Ebad
t � Event that t is not uniquely covered in any iteration

Et,j,d � Event that t has d neighbors at the start of iteration j

Elast
t,j,d � Event that Et,j,d holds and t is removed from T at the end of iteration j

We claim that, Pr(Ebad
t |Elast

t,j,d) ≤ ε. Let pj(=
ε

2i∗
< 1

2
) be the sampling probability

for iteration j. We now have the following equations,

Pr(Ebad
t |Elast

t,j,d)

Pr(Egood
t |Elast

t,j,d)
=

Pr(Ebad
t ∧ Elast

t,j,d)

Pr(Egood
t ∧ Elast

t,j,d)
=

Pr(Ebad
t ∧ Elast

t,j,d|Et,j,d)
Pr(Egood

t ∧ Elast
t,j,d|Et,j,d)

=
(pj)

d

dpj(1− pj)d−1

The second equality follows from Elast
t,j,d∧Et,j,d = Elast

t,j,d. Also, we have that Pr(Ebad
t |Elast

t,j,d)+

Pr(Egood
t |Elast

t,j,d) = 1 and hence,

Pr(Ebad
t |Elast

t,j,d) =
(pj)

d

(pj)d + dpj(1− pj)d−1
≤ pj ≤ ε

The second inequality follows from basic algebra using pj <
1
2

and d ≥ 2. Finally,

we have the following

Pr(Ebad
t ) =

∑
j,d

Pr(Ebad
t |Elast

t,j,d)Pr(E
last
t,j,d) ≤ ε

∑
j,d

Pr(Elast
t,j,d) ≤ ε

Thus Pr(Egood
t ) ≥ (1 − ε). Hence, we have E[# vertices covered uniquely] ≥ (1 −
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ε)m.

5.4.2 The R2-MCFC problem

We now consider the second relaxation, where we are allowed to re-use a vertex from

S in a bounded number of subsets and our goal is to uniquely cover all the vertices in

T . It is interesting to note that the randomized algorithm of Clementi et al. [77], that

yields a partition of size O(log n logm), also implicitly guarantees that a vertex is

used O(logm) times in expectation. Our algorithm improves this result, by obtaining

a partition of size O(log n logm) such that every vertex is (deterministically) used

O(logm) times. As a byproduct, we show that we can obtain a partition of size

O(log n) that uniquely covers at least a constant number of vertices in T . The key

ingredient of our algorithm is to sample vertices in a dependent fashion, in contrast

with the previous approaches.

Theorem 5.4.3 Given any bipartite graph N = (S, T,E), we can partition S into

log n sets such that at least m
e2

vertices in T are uniquely covered.

Proof: Consider the following randomized scheme:

• create log n empty sets - S1, S2, . . . , Slogn

• for every vertex s ∈ S

– assign s to one of S1, S2, . . . , Slogn such that the probability that s is

assigned to Si = 1
2i
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The random process described above is well defined as :

∑
i

Pr(s is assigned to Si) =

logn∑
i=1

1

2i
≤

∞∑
i=1

1

2i
= 1

For the sake of analysis, partition the nodes in T by their degree. Let Gi

denote the nodes in T having degree d such that 2i ≤ d < 2i+1. We now show that

set Si uniquely covers at least 1
e2

fraction of nodes in Gi in expectation. Let v be

any node in Gi.

Pr(v is uniquely covered by Si) = (
d

2i
)(1− 1

2i
)d−1 ≥ 1

e2

∴ E[# of vertices uniquely covered by Si] ≥
1

e2
|Gi|

Summing over all i, we get

E[# of vertices uniquely covered] ≥ 1

e2

∑
i

|Gi| =
m

e2

It is easy to derandomize the above algorithm, using the standard technique of

conditional expectation [139].

Corollary 5.4.4 There is a polynomial time algorithm, that given a network N =

(S, T,E) with |S| = n and |T | = m, yields a family of subsets F , such that |F| =

O(log n logm) and every vertex of T is covered exactly once by at least one subset

and every vertex s ∈ S, belongs to O(logm) different subsets.
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Proof: Repeat the algorithm in Theorem 5.4.3, until all the vertices in T are

uniquely covered, while removing the vertices in T that have already been uniquely

covered. Since, in each iteration, the number of vertices in T decreases by a constant

factor, in O(logm) iterations, all the vertices in T are uniquely covered. Clearly,

every vertex is “reused” at most once in every iteration. Hence, we have our claim.
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Chapter 6

Steiner Tree and Cheapest Tour in Oracle Model

6.1 Road map to the chapter

As discussed in Chapter 1, Thorup and Zwick’s work [11] directly yields oracles

for Steiner tree and cheapest tour problems that can answer these queries with an

approximation guarantee of 4`−2 and 3`−1.5 respectively, for any given parameter

` ≥ 1. The preprocessing time for these data structures is O(`mn1/`) time and the

data structure size itself is O(`n1+1/`), same as the distance oracle. A natural open

problem that we consider in this chapter is to improve the approximation guarantees

for the Steiner tree and cheapest tour queries while maintaining the same space-time

complexity for the preprocessing and query algorithms.

Given a weighted graph G = (V,E) with n = |V |, m = |E|, and a query set,

S, with |S| = k. In Section 6.3, we prove the following main result.

Theorem 6.1.1 For a given ` ≥ 1 ∈ N, we can preprocess G in O(`mn1/`) time

and construct a data structure of size O(`n1+1/`) such that a Steiner tree query can

be answered in O(`k2) time with an approximation guarantee 3`+ 2.

Subsequently, we will show a similar result for the cheapest tour problem.

Theorem 6.1.2 For a given ` ≥ 1 ∈ N, we can preprocess G in O(`mn1/`) time

and construct a data structure of size O(`n1+1/`) such that a cheapest tour query
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can be answered in O(`k2) time with an approximation guarantee 2.5`+ 1.5.

Our preprocessing algorithm is a modified version of TZ’s data structure. The

key technical difficulty comes in the query processing algorithm and its analysis.

Since we rely on the distance oracle ideas heavily, we start with a brief discussion

in Section 6.2.

6.2 A brief introduction to distance oracles

We start with some notation. The graph that we work on is generally denoted by

G = (V,E), where |V | = n and |E| = m. The query set for the Steiner tree and

cheapest tour problems is a subset of vertices denoted by S ⊆ V , where |S| = k.

The distance between a pair of vertices u, v in G is denoted by dG(u, v) or when clear

from the context just d(u, v). A shortest path metric graph on a subset of vertices

K is a complete graph on K where edge weights are the lengths of the shortest

paths between the end points. For a given set of terminals K and a subgraph H we

denote

- the shortest path metric graph on K with respect to H by H[K]

- an optimal Steiner tree and cheapest tour on K with respect to G by OST(K) and

OCT(K) respectively

- a minimum spanning tree in a subgraph H by MST(H)

- the sum of edge weights of H by cost(H).

We start with a brief overview of the work of Thorup and Zwick [11]. There are

two aspects involved namely a preprocessing stage that generates a data structure
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from the given graph, a query processing algorithm that uses this data structure to

answer queries.

Sampling preprocessing algorithm [11]. The algorithm works by randomly and

recursively sampling vertices of the graph. Given a graph G = (V,E), it constructs

a series of randomized subsets A`−1 ⊆ A`−2 ⊆ A`−3 . . . ⊆ A1 ⊆ A0 = V , as shown

in Algorithm 20. We denote the distance between two vertices u, v by d(u, v).

Algorithm 20 constructs for every vertex a set of landmark nodes Bv and computes

and stores distances from v to each vertex in Bv. TZ show that the size of each Bv

is O(`n1/`) and therefore the total size of the data structure is O(`n1+1/`). Slightly

modifiying Dijkstra’s algorithm, TZ further show that all such distances may be

computed in time O(`mn1/`).

Algorithm 20 TZ’s sampling preprocessing algorithm

1: initialize A0 ← V

2: for all i = 1 to `− 1 do

3: sample vertices of Ai−1 with uniform probability n−1/` to obtain Ai

4: end for

5: for all v ∈ V do

6: for all i ∈ [0, `− 1] do

7: si(v)← argminw∈Ai d(v, w)

8: Bi
v ← {w : w ∈ Ai−1 and d(v, w) ≤ d(v, si(v))}

9: end for

10: Bv =
⋃
i∈[0,`−1]B

i
v

11: compute and store distances from v to every vertex in Bv

12: end for

Oscillating query algorithm [11]. The second phase is the query processing

algorithm. Given two vertices u, v, the query processing algorithm returns the

(approximate) distance between them. Algorithm 21 is a formal description of TZ’s
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query algorithm. We call it an oscillating algorithm because in every iteration we

swap x (initialized to u) and y (initialized to v). TZ show that if the algorithm does

not terminate when the iterator i = l, then d(x, sl+1(x)) ≤ (l+1)×d(u, v). Further,

it can be shown [11] that d(x, z)+d(y, z) ≤ d(x, z)+d(x, z)+d(x, y) ≤ (2`−1)d(u, v).

Algorithm 21 TZ’s oscillating query algorithm

1: initialize x← u, y ← v

2: for all i ∈ [0, `− 1] do

3: z ← si(x)

4: if z ∈ By then

5: return d(x, z) + d(z, y)

6: end if

7: swap x↔ y

8: end for

Facts [11]. We now state some of the facts established by TZ [11].

1. Fact 1. If the oscillating algorithm does not terminate when i = l, then

d(x, sl+1(x)) ≤ (l + 1)× d(u, v). This is shown in Lemma 3.3 of [11].

2. Fact 2. If the oscillating algorithm does terminate when i = l, d(x, z) +

d(z, y) ≤ (2l + 1)d(u, v). This is the approximate distance between (u, v)

found by the Algorithm 21, denoted by dalg(u, v). Since i ≤ ` − 1, we have

dalg ≤ (2`− 1)d(u, v). This is proven in the Lemma 3.3 of [11].

3. Fact 3. The expected size of Bv is O(`n1/`) and we can check membership in

Bv in O(1) amortized time using a 2-hashing data structure. This is shown in

Lemma 3.2 of [11].

4. Fact 4. The expected size of Ai is atmost n1−i/`. This follows from the fact

the Ai is formed by sampling vertices of Ai−1 with probability n−1/`.
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6.3 Steiner tree and cheapest tour oracles

As mentioned earlier, Kou, Markowsky and Berman [92] showed that computing

the shortest path metric on a given set of vertices S, followed by the computation

of a minimum spanning tree yields a 2-approximation algorithm for the Steiner tree

problem. Formally, the problem of Steiner tree can be defined as follows.

Definition 6.3.1 (Steiner tree) In an instance (G(V,E), S, w), we are given an

undirected simple graph G = (V,E), a weight function w : E → R+ ∪ {0} and a

subset of vertices S ⊆ V , the goal is to find a minimum cost tree that contains all

the vertices in S.

Theorem 6.3.2 ( [92]) Let (G(V,E), w, S) be an instance of the Steiner tree prob-

lem. If ξ is an edge of maximum weight in MST(G[S])

cost(MST(G[S])) ≤ 2cost(OST(S))− w(ξ)

In a slightly weaker sense, a minimum spanning tree onG[S] is a 2−1/|S|-approximation

of the optimal Steiner tree on S in G. A direct corollary of Theorem 6.3.2 is that

if we use an α approximate shortest path metric (where weights of an edge is the α

approximate distance between its end points), we obtain a 2α approximation for the

Steiner tree problem. Therefore, using the 2` − 1 approximate distance oracle, we

can compute a 2` − 1 approximate shortest path metric in time O(`k2). From the

corollary of Theorem 6.3.2, this directly yields a 2(2` − 1) = 4` − 2 approximation

guarantee for the Steiner tree query problem.
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Formally the cheapest tour problem can be defined as follows.

Definition 6.3.3 (cheapest tour) In an instance (G(V,E), S, w), we are given

an undirected simple graph G = (V,E), a weight function w : E → R+ ∪ {0} and a

subset of vertices S ⊆ V , the goal is to find a minimum cost tour that contains all

the vertices in S.

In the case of this problem, an algorithm due to Christofides [93] gives a 3/2

approximation guarantee. Algorithm 22 is a brief description of the Christofides

algorithm. It can be shown that the cost of TS is at most the cost of the optimal

cheapest tour on S, in G and cost(MO) is at most half the cost of the optimal

cheapest tour. Thus, this algorithm gives a 3/2 approximation guarantee. Clearly,

if we have access to an α approximate distance oracle, this approximation guarantee

blows up to 3α/2. Hence, using TZ’s distance oracle, we immediately obtain a

3(2`− 1)/2 = 3`− 1.5 approximation guarantee for the cheapest tour problem.

Algorithm 22 Christofides algorithm for the cheapest tour problem

1: compute the shortest path metric G[S] on S

2: compute a minimum spanning tree TS on G[S]

3: let O be the set of odd degree vertices in TS and let MO be the minimum weight

perfect matching, in G[S], on the vertices of O

4: return TS ∪MO

We now our describe our new preprocessing and query algorithms for the

problems of Steiner tree and cheapest tour.
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6.3.1 Preprocessing algorithm

We use a slightly modified version of TZ’s preprocessing algorithm. In this modified

data structure, along with the distances stored by TZ’s distance oracle, we store

the distances corresponding to every pair of vertices in Ar, where r = d `−1
2
e. Al-

gorithm 23 gives a formal description of our modified preprocessing algorithm. We

prove the following easy observation.

Observation 6.3.4 The total additional space required by the data structure is

O(n1+1/`)

Proof: From the Fact 4, in Section 6.2, we have |Ar| ≤ n1−r/` ≤ n1−(`−1)/2` =

n1/2+1/2`. Therefore, the total space required isO(|Ar|2) = O(n(1/2+1/2`)2) = O(n1+1/`).

We note that the total size of our data structure is of the same order as that of the

TZ’s data structure.

Algorithm 23 Modified preprocessing algorithm

1: Input: edge weighted graph G = (V,E) and ` ≥ 1

2: Output: distance oracle data structure: D
3: construct TZ [11]’s distance oracle, D′, on G with parameter ` r ← d `−1

2
e

4: compute and store the distance between every pair of vertices in Ar.

5: let D′′ denote these additional shortest paths

6: return D = D′ ∪ D′′
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6.3.2 Query algorithms

In this subsection, we describe improved query algorithms for the Steiner tree and

cheapest tour problems. We begin with some notation.

Notation. We recall that the preprocessing step constructs a family of recur-

sively sampled subsets A`−1 ⊆ A`−2 ⊆ . . . ⊆ A0. For any vertex v, let si(v) denote

a vertex in Ai (for any i ∈ [0, `− 1]), that is closest to v. We call the vertex sr(v),

where r = d `−1
2
e, the hook vertex of v denoted by h(v), and the shortest path con-

necting v to h(v) as the hook path of v, denoted by hp(v). We note that all the hook

path weights are stored in our modified distance oracle. Further for any S ′ ⊆ S, we

define the hook vertex set, as the set of hook vertices H(S ′) = {h(v) : v ∈ S ′} and

the hook path set, as the set of hook paths HP(S ′) = {hp(v) : v ∈ S ′}.

Intuition. The intuition behind our query algorithm is the following. If the

total cost of the hook paths of S (i.e., HP(S)) is “low”, then the cost of optimal

Steiner tree (similarly cheapest tour) on S and that on H(S) must be nearly equal.

Indeed, adding HP(S) to an Steiner tree on H(S), directly yields an Steiner tree on

S (and vice-versa). Now, since we have stored the exact distances between all pairs

of vertices in H(S) ⊆ Ar, we can use Theorem 6.3.2 to obtain a 2 approximation

guarantee for Steiner tree on H(S). This in turn yields a good approximation for

Steiner tree on S. On the other hand if the cost of hook paths set is “high” in

some sense, it can be shown that TZ’s algorithm terminates within r iterations for

most of the pairs of vertices in S and therefore, on these pairs we only loose a factor

of ` − 1 on the distance computation (instead of 2` − 1). This prompts us to run
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the oscillating algorithm only upto r iterations. For a given pair of vertices, if the

oscillating algorithm terminates within r iterations, we will use that approximate

distance. Otherwise, we will “hook” these vertices to Ar and compute a Steiner tree

on the resulting hook vertex set. To capture this intuition, we introduce the notion

of a gray-black graph.

Gray-black graph construction. Given a query set S, the gray-black graph

is a complete weighted graph, with weight function w : S×S → R+∪{0}, constructed

in the following way. For every pair of vertices u, v, we run the oscillating algorithm

for r = d `−1
2
e iterations. If the algorithm terminates within r iterations, we have a

2r− 1 approximate distance between the pair of vertices u, v, denoted by dalg(u, v).

We color such an edge gray and set the weight of the edge w(u, v) to dalg(u, v).

Otherwise, we color the edge black and set the weight of the edge to 2 times the

maximum of the hook edges of u and v. The gray edges are “real” as they represent

true paths of weight within an `−1 factor of the actual distance. On the other hand,

black edges are merely placeholders and need to be further handled. The formal

details of the construction are given in Algorithm 24.
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Algorithm 24 Construction of gray-black graph.

1: Input: a distance oracle D on graph G = (V,E) and a query set S ⊆ V

2: Output: a gray-black graph GB on S

3: r ← d `−1
2
e

4: for v ∈ S do

5: mv ← d(v, sr(v))

6: end for

7: initialize the gray-black graph GB = (S,EGB = φ)

8: for u, v ∈ S do

9: add e = uv to EGB, that is, EGB ← EGB + e

10: run the oscillating algorithm on u, v for at most r iterations

11: if oscillating algorithm terminates before j < r iterations then

12: set w(u, v) = d(u, sj(u)) + d(v, sj(v)) and color e gray

13: else

14: set w(u, v) = 2Max(mu,mv) and color e black

15: end if

16: end for

17: return GB

Query algorithm for the Steiner tree problem. Algorithm 25 is a formal

description of the query algorithm for computing a Steiner tree on S. We begin by

constructing a gray-black graph GB on S and a minimum spanning tree MST(GB)

over GB. As noted earlier, while gray edges represent “real” paths, black edges do

not and therefore cannot be used. Hence, the black edges are deleted from MST(GB)

to obtain a forest Fgr with components C1, C2, . . . , Cp. Now, to obtain a valid Steiner

tree, we need to connect these components in some way. This is done by choosing

representative vertices in Ar, for each component Ci, and then connecting these

representative vertices. More precisely, we do the following. From each component

Ci, we choose a vertex, wi, with least cost hook path. We call the hook path of wi

as the hook path of the component Ci and denote, the set of all such vertices wi, by
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R. Now, since H(R) ⊆ Ar and because the distance between every pair of vertices

is Ar is stored in our data structure, we have access to the shortest path metric on

H(R). Hence, using Theorem 6.3.2 we can compute a good Steiner tree, denoted

by T̂ , on H(R). We return Fgr ∪ T̂ ∪ HP(R) as the final Steiner tree, denoted by

Talg.

Algorithm 25 Steiner tree query algorithm.

1: Input: a distance oracle D on graph G = (V,E) and a query set S ⊆ V

2: Output: a Steiner tree Talg on S

3: construct the gray-black graph on S, GB, using Algorithm 24

4: compute the minimum spanning tree MST(GB) on GB
5: delete all the black edges from MST(GB) to obtain a forest Fgr that has

C1, C2, . . . , Cp as components

6: let R = {wi : wi ∈ Ci, where wi is a vertex in Ci with least cost hook path}
7: use Theorem 6.3.2 to compute the Steiner tree T̂ on H(R)

8: return Talg = T̂ ∪ Fgr ∪HP(R)

Query algorithm for the cheapest tour problem. Algorithm 26 gives the

formal details of the query algorithm for the cheapest tour problem. Again, we start

by constructing the gray-black graph GB on S and compute the minimum spanning

tree MST(GB) on GB. We then delete all the black edges of MST(GB) to obtain

a forest Fgr with components C1, C2 . . . Cp. As in the query algorithm for Steiner

tree we then define the set R and compute an approximate cheapest tour Ĉ on the

vertices H(R). For any given subgraph H, we denote by Hdbl the subgraph obtained

by duplicating the edges of H. We return the tour Calg = Ĉ ∪HP(R)dbl ∪ F dbl
gr .
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Algorithm 26 Cheapest tour query algorithm.

1: Input: a distance oracle D on graph G = (V,E) and a query set S ⊆ V

2: Output: a tour Calg on S

3: construct the gray-black graph on S, GB, using Algorithm 24

4: compute the minimum spanning tree MST(GB) on GB
5: delete all the black edges from MST(GB) to obtain a forest Fgr that has

C1, C2, . . . , Cp as components

6: let R = {wi : wi ∈ Ci}, where wi is a vertex with least cost hook path in Ci

7: using Christofides [93] algorithm compute the cheapest tour Ĉ on H(R)

8: return Calg = Ĉ ∪ F dbl
gr ∪HP(R)dbl

Analysis. We denote the shortest path metric on the set of vertices S, with respect

to the original graph G by G[S]. We start by bounding the cost of the minimum

spanning tree T = MST(GB) on the gray-black graph in terms of the minimum

spanning tree MST(G[S]) on G[S]. For a weighted graph H, let cost(H) denote the

aggregate weight of its edges. Further, let ξ denote an edge of maximum weight in

T . We recall that OST(S) denotes the optimal Steiner tree on S.

Lemma 6.3.5 cost(T ) ≤ `× cost(MST(G[S])) ≤ 2`× cost(OST(S))− w(ξ)

Proof: We show that for any pair of vertices, u, v, in the gray-blak graph GB, we

have w(u, v) ≤ ` · d(u, v). Indeed, if e = uv is colored gray, then by definition the

oscillating algorithm terminates before i < r = d `−1
2
e iterations. From Fact 2, in

Section 6.2, it follows that w(u, v) = dalg ≤ (2(r − 1) + 1)d(u, v) ≤ (` − 1)d(u, v).

On the other hand, let e be colored black. From Fact 1, in Section 6.2, we have

Max(mu,mv) = Max (d(u, sr(u)), d(v, sr(v))) ≤ r · d(u, v). Therefore, w(u, v) =

2Max(mu,mv) ≤ 2r · d(u, v) ≤ ` · d(u, v). For the sake of analysis, we consider the

metric G′[S] on S with distance function d′(u, v) = ` · d(u, v). We have established

147



that w(u, v) ≤ d′(u, v). Let e′ be the edge with maximum weight in G′[S]. We have

the following equations

cost(T ) ≤ cost(MST(G′[S])) = ` · cost(MST(G[S])) (6.1)

By Theorem 6.3.2 and Equation 6.1

cost(T ) ≤ 2` · cost(OST(S))− w(ξ′) (6.2)

Also, since w(ξ) ≤ ` · d(ξ) ≤ ` · d(ξ′), by Equation 6.2

cost(T ) ≤ 2` · cost(OST(S)))− w(ξ)

Hence, the lemma.

We now proceed to prove a crucial lemma that bounds the cost of hook path

set HP(R) and the gray forest Fgr.

Lemma 6.3.6 Let Fgr and HP(R) be as defined by Algorithm 25 and Algorithm 26.

The following bounds hold.

1. cost(Fgr) ≤ 2` × cost(OST(S)) − 2cost(HP(R)); Therefore, cost(HP(R)) ≤

`× cost(OST(S))

2. cost(Fgr) ≤ ` × cost(OCT(S)) − 2cost(HP(R)); Therefore, cost(HP(R)) ≤

`
2
× cost(OCT(S))
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Proof: We recall that Fgr is formed by deleting all the black edges from the

minimum spanning tree T of the gray-black. Let the components of Fgr be C1, C2,

. . ., Cp. We construct a tree Tblk from T by shrinking each component Ci to a single

vertex vi. Among all the hook paths of vertices in Ci we pick the least hook path

mi and associate it with vi.

We first obtain a lower bound on the weight of Tblk in terms of the cost of

HP(R). To this end, we use a charging argument to show that we can pay for every

hook path, except one, twice using the weight on the edges of Tblk. We note that

each vertex of Tblk has at most one hook path in HP(R) associated with it.

Charging Scheme. We root Tblk at a vertex r that has the least weight

hook path mr in HP(R). Now, we recursively use the following charging scheme

until all the edges from Tblk deleted. Pick a leaf of Tblk, say i. Let Ci be the

component in Fgr that on contraction resulted in the leaf i. Also, let mi be the

hook path in HP(R) associated with Ci and e = (u, v) be the only black edge

incident on Ci (since i is a leaf in Tblk), with v ∈ Ci. By definition, since e is

a black edge - 2mv ≤ 2Max(mu,mv) = w(u, v). By the choice of mi, we have

mi = (min
w∈Ci

mw) ≤ mv. Therefore, 2mi ≤ w(u, v). Hence, we can charge off mi

twice onto the edge e. We now delete the hook path mi from HP(R) and e from

Tblk. Clearly, at the end of the above charging scheme, each edge of Tblk is charged

twice by exactly one hook path. Additionally, the only hook path that we did not

charge is mr. Thus, we have cost(Tblk) ≥ 2cost(HP(R))− 2mr.

Now, for any black edge e′b = (u, v) incident on r, where v ∈ Cr, we have
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2mr ≤ 2mv ≤ w(e′b). The following holds.

cost(Tblk) ≥ 2cost(HP(R))− 2mr ≥ 2cost(HP(R))− w(e′b) (6.3)

Choosing e′b to be a black edge in Tblk and incident on r, and recalling that ξ is the

edge of maximum weight in T , we have

cost(Tblk) ≥ 2cost(HP(R))− w(ξ) (∵ w(e′b) ≤ w(ξ))

Applying Lemma 6.3.5

cost(Fgr) = cost(T )− cost(Tblk) ≤ (2`× cost(OST(S))− w(ξ))− (2cost(HP(R))− w(ξ))

≤ 2`× cost(OST(S))− 2cost(HP(R))

Using a similar computation for the cheapest tour, we obtain that cost(Fgr) ≤ ` ×

cost(OCT(S))−2cost(HP(R)). Finally, since cost(Fgr) ≥ 0, we have cost(HP(R)) ≤

`× cost(OST(S)) and cost(HP(R)) ≤ `
2
× cost(OCT(S))

Theorem 6.3.7 Algorithm 25 yields a 3` + 2 approximation for the Steiner tree

problem.

Proof: Let Talg = T̂ ∪ Fgr ∪ X. It is easy to verify that Talg is indeed a

Steiner tree on the set of terminals S. We will first bound the cost of T̂ . Since,

we have access to the shortest path metric on Ar and hence on H(R), using
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Theorem 6.3.2 we can construct a Steiner tree on H(R) with a 2 approxima-

tion guarantee. As OST(S) ∪HP(R) is a feasible Steiner tree on H(R), we have

cost(OST(H(R))) ≤ cost(OST(S)) + cost(HP(R)). Also, from Theorem 6.3.2 we

have cost(T̂ ) ≤ 2cost(OST(H(R))). Thus cost(T̂ ) ≤ 2cost(OST(S))+2cost(HP(R)).

From Lemma 6.3.6, we have cost(HP(R)) ≤ `× cost(OST(S)). Therefore, we have

cost(Talg) ≤ cost(T̂ ) + cost(Fgr) + cost(HP(R))

≤ 2cost(OST(S)) + 2cost(HP(R)) + cost(Fgr) + cost(HP(R))

≤ 2cost(OST(S)) + 3cost(HP(R)) + 2`× cost(OST(S))− 2cost(HP(R))

≤ (2`+ 2)cost(OST(S)) + cost(HP(R)) ≤ (3`+ 2)cost(OST(S))

Hence, the theorem.

Theorem 6.3.8 Algorithm 26 yields a 2.5` + 1.5 approximation for the cheapest

tour problem.

Proof: We have the following

cost(F dbl
gr ) = 2cost(Fgr) ≤ 2[`× cost(OCT(S))− 2cost(HP(R))]

≤ 2`× cost(OCT(S))− 4cost(HP(R)) (6.4)
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Since, OCT(S) ∪HP(R)dbl is a feasible tour on H(R)

cost(Ĉ) ≤ 1.5× cost(OCT(H(R))) ≤ 1.5× cost(OCT(S)) + 3cost(H(R)) (6.5)

Finally, we have

cost(Calg) ≤ cost(Ĉ) + cost(F dbl
gr ) + cost(H(R)dbl)

≤ 3cost(H(R)) + 1.5cost(OCT(S)) + 2`× cost(OCT(S))− 4cost(H(R)) + 2cost(H(R))

≤ 1.5cost(OCT(S)) + 2`× cost(OCT(S)) + cost(H(R)) ≤ (2.5`+ 1.5)cost(OCT(S))

Hence, the theorem.
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Chapter 7

Future Work

In this thesis, we consider several optimization problems that arise from applications

in computer networks. In all these applications, nodes of the networks have a

certain limiting resource like storage capacity, computational resource or energy

resources. Several problems remain widely open. We now list these problems,

arranged according to the topic.

Resource replication problems. Although most of our results for the variants

of resource replication problems are reasonably tight, some questions still remain

open.

1. For the basic resource replication problem, Theorem 2.2.3 gives a 3 approxi-

mation guarantee. On the negative side, Theorem 2.2.12 shows that it is hard

to obtain an algorithm with better than 2 approximation guarantee. An inter-

esting problem is to close this gap, i.e., is there a better than 3 approximation

algorithm for the basic resource replication problem? Similarly, is there a

better than 5 approximation algorithm for the K-robust resource replication

problem studied in Section 2.3?

2. Another interesting question arises in the context of capacitated resource

replication problem. We obtain a (4, 2) bi-approximation algorithm (Theo-

rem 2.4.2) for the basic version of this problem. Is there a true approximation
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algorithm for this problem? It would also be interesting to study the capaci-

tated version of the subset resource replication problem.

Container selection problem. In Chapter 3, we study discrete and continuous

variants of the container selection problem in d dimensions. We make considerable

progress on this problem and yet several basic questions still remain unanswered.

1. In Section 3.4, we show prove that for d ≥ 3 both the problems are NP-

hard. Unfortunately, we do not have a reduction to prove the hardness in

the case of d = 2. Further, for the discrete version of the problem, we know

that there is no true approximation algorithm possible in the case of d ≥ 3

dimensions. But is there a true approximation algorithm for the discrete

problem in two dimensions? As noted in Chapter 3, the discrete version (even

in higher dimensions) is a special case of the non-metric k-median problem.

Hence, there is a known (1, O(log n)) bi-approximation algorithm. We improve

this guarantee to (1, O(log k)) but we leave the question of whether one can

find a (1, O(1)) bi-approximation guarantee open.

2. All our results have been focused on the fixed dimensions case. An interest-

ing question is to study the problem in general arbitrary (non-fixed) number

of dimensions. Interestingly here, although the discrete version is still a spe-

cial case of the non-metric k-median, it is unclear how to approximate the

continuous version with a guarantee of (1, O(log n)) or better.

Connected dominating set problem. In Chapter 4, we considered partial and

budgeted versions of the well studied connected dominating set problem. We obtain
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the first O(log n) approximation for the partial connected dominating set problem

and a 1
13

(1− 1
e
) approximation for the budgeted version. We also extend our results

to a special submodular problem, which includes capacitated and weighted profit

versions of the PCDS and BCDS problems as special cases. Our results are tight

up to a constant factor in all the cases. Apart from the natural open question of

improving the constants in these approximation guarantees, the following are the

key questions left open in this area.

1. Polynomial time approximation schemes (PTAS) are known for the basic con-

nected dominating set problem in the special graphs like geometric graphs [10]

and planar graphs [32]. Are there similar schemes for the partial and budgeted

versions of the problem ?

2. The connected dominating set problem is well studied in the distributed frame-

work [9]. It would be very interesting to also study the partial variants in this

setting.

Miscellaneous. Finally, improving the approximation guarantees of the max-min

k-cover problem, and query results for the Steiner tree and cheapest tour oracles are

some of the important open problems for future work.
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[65] Uriel Feige, Magnús M Halldórsson, Guy Kortsarz, and Aravind Srinivasan.
Approximating the domatic number. SIAM Journal on computing, 32(1):172–
195, 2002.

[66] Limin Wang and Sandeep S Kulkarni. Sacrificing a little coverage can substan-
tially increase network lifetime. In Sensor and Ad Hoc Communications and
Networks, 2006. SECON’06. 2006 3rd Annual IEEE Communications Society
on, volume 1, pages 326–335. IEEE, 2006.

160
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