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The magnetohydrodynamics (MHD) model describes the flow of electrically

conducting fluids in the presence of magnetic fields. A principal application of

MHD is the modeling of plasma physics, ranging from plasma confinement for ther-

monuclear fusion to astrophysical plasma dynamics. MHD is also used to model

the flow of liquid metals, for instance in magnetic pumps, liquid metal blankets in

fusion reactor concepts, and aluminum electrolysis. The model consists of a non-

self-adjoint, nonlinear system of partial differential equations (PDEs) that couple

the Navier-Stokes equations for fluid flow to a reduced set of Maxwell’s equations

for electromagnetics.

In this dissertation, we consider computational issues arising for the MHD

equations. We focus on developing fast computational algorithms for solving the

algebraic systems that arise from finite element discretizations of the fully coupled

MHD equations. Emphasis is on solvers for the linear systems arising from algo-

rithms such as Newton’s method or Picard iteration, with a main goal of developing



preconditioners for use with iterative methods for the linearized systems. In par-

ticular, we first consider the linear systems arising from an exact penalty finite

element formulation of the MHD equations. We then draw on this research to de-

velop solvers for a formulation that includes a Lagrange multiplier within Maxwell’s

equations. We also consider a simplification of the MHD model: in the MHD kine-

matics model, the equations are reduced by assuming that the flow behavior of the

system is known. In this simpler setting, we allow for epistemic uncertainty to be

present. By mathematically modeling this uncertainty with random variables, we

investigate its implications on the physical model.
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Chapter 1: Introduction

This dissertation is concerned with computational issues that arise in the mod-

elling of magnetohydrodynamics (MHD). In particular, we focus on developing fast

computational algorithms for solving the algebraic systems that arise from finite

element discretizations of the fully coupled MHD equations. Additionally, we math-

ematically model the effects of epistemic uncertainty on the reduced kinematics

model of MHD.

1.1 Overview of Magnetohydrodynamics

The MHD model describes the flow of electrically conducting fluids in the

presence of magnetic fields. For different ranges of physical parameters, the MHD

model can describe such materials as plasma, liquid metal, and brine. MHD has been

used to model plasmas in applications such as plasma confinement for thermonuclear

fusion and astrophysical plasma dynamics governing the behavior of stars and solar

wind [33]. Liquid metal applications of the MHD model include magnetic pumps,

liquid metal blankets in fusion reactor concepts, aluminum electrolysis, and the

geodynamo [18,48].

The MHD model is governed by a system of non-self-adjoint, nonlinear partial
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differential equations (PDEs) obtained from coupling the Navier-Stokes equations

for fluids to Maxwell’s equations for electromagnetics. The two sets of equations are

coupled by the Lorentz force, which governs the effect of a magnetic field on fluid

flow, and the appearance of the fluid velocity in Ohm’s law, which accounts for the

influence of hydrodynamics on the electric current. When fully coupled, the equa-

tions model the complex behavior of MHD materials. Because both hydrodynamic

and electromagnetic effects play a strong role in this system, MHD dynamics can

span over a large range of length- and time-scales. This complex physical behavior

makes the MHD equations difficult to solve and necessitates the development of

robust, accurate numerical methods of approximating their solution.

1.2 Numerical Methods for Magnetohydrodynamics

The MHD equations can be numerically approximated by discretizing in space

and time and linearizing the equations. Many spatial discretization methods have

been applied to the MHD equations, including finite difference, finite volume, and

boundary element methods. In this dissertation, we focus on discretizations of the

MHD equations resulting from the finite element method (FEM). We will consider

linearizations of the equations resulting from fixed point iterations of Picard type

and Newton’s method.

When discretized and linearized, the approximation of the solution to the

MHD equations is reduced to solving a series of large linear systems. In general,

these systems are sparse, highly indefinite, and non-symmetric. Furthermore, the

2



strong physical coupling present in the original system of PDEs is implicit in these

algebraic systems. For these reasons, the development of efficient solution strategies

for these linear systems is imperative for MHD simulations. These strategies should

account for the coupling between hydrodynamic and electromagnetic phenomena

and be robust over a range of physical parameters.

1.2.1 Fully Coupled Solution Strategy

One solution strategy is to develop solvers for the fully coupled linear sys-

tems arising from the MHD equations. Because these systems are large and sparse,

iterative methods, such as the generalized minimum residual (GMRES) and biconju-

gate gradient with stabilization (BiCGStab) methods, are a natural choice of solver.

For fast convergence, iterative methods applied to these systems should be paired

with robust, efficient preconditioners. The challenge of the fully coupled solution

strategy is then to develop preconditioners that effectively account for the complex

physical processes implicit in the discretized MHD equations. The coupling between

hydrodynamic and electromagnetic phenomena must then be accounted for in the

preconditioner.

This strategy has the advantage of requiring only one linear solve for each

iteration of a nonlinear iteration. This quality lends itself to obtaining fast steady-

state solutions. The speed of the algorithm is governed by the rate of convergence

of the nonlinear iteration and the cost of the linear solves.

3



1.2.2 Decoupled Solution Strategies

Alternatively, the MHD system can be split into its fluid and its electromag-

netic parts, and each part can be solved separately. By assuming that the electro-

magnetic behavior is known, the hydrodynamic behavior is modeled by the Navier-

Stokes equations with the Lorentz force appearing as a forcing term. If the flow

has little effect on the magnetic field (e.g. in MHD propulsion applications such as

magnetic pumps and rail guns [18]), this system alone may be a good approximation

the full MHD system. The model then simulates the effects of a known magnetic

field on a fluid’s flow behavior.

If the fluid behavior is treated as known, the electromagnetic behavior is mod-

eled by Maxwell’s equations with the velocity appearing as a constant in Ohm’s

law. This is a linear system of PDEs referred to as the kinematics equations for

MHD. If the elecromagnetics have little influence over the hydrodynamics (e.g. in

kinematic dynamo theory [45, 47]), the full MHD system may be approximated by

the kinematics equations. The model then simulates the magnetic field induced by

a precribed fluid flow profile, providing a means for assessing whether a given flow

can sustain dynamo action.

In order to solve the fully coupled MHD equations, operator splitting methods

[3,43,57] iterate between the hydrodynamic system and the electromagnetic system.

In these algorithms, the solution of one system is used as the data for the other

system. By decomposing the fully coupled MHD system into its component parts,

these methods have the benefit of requiring solving linear systems that are not

4



only smaller than the original system but are also derived from a single physical

process. Existing solvers for the Navier-Stokes equations and Maxwell’s equations

can be applied to these linear systems. Thus, the physical coupling plays no role

in developing iterative solvers for operator splitting methods; instead the coupling

is accounted for by the outer iteration between the two systems. While the linear

systems arising in operator splitting algorithms are smaller and less complex than

fully coupled linear systems, errors may be introduced due to operator splitting and

many outer iterations may be required to obtain accurate solutions to stationary

problems.

1.3 Modeling Uncertainty

If one wanted to model a actual physical system by the kinematics model of

MHD, this would require specifying the flow behavior of the system. Specifically,

the velocity field would need to be measured throughout the physical domain. In

general, the velocity field may be measured at a sampling of discrete points, and it

may be approximated for the rest of the domain. Due to the inaccurate specification

of the flow behavior, the electromagnetic behavior predicted by the kinematics model

may not represent the physical situation very well. This highlights a fundamental

issue in the modeling of real-life physical systems: epistemic uncertainty in the

specification of physical quantities can influence the physical phenomena predicted

by a mathematical model.

In this thesis, we focus specifically on epistemic uncertainty in the MHD kine-

5



matics model. Treating the hydrodynamics as known may introduce uncertainty

because the flow properties of the fluid may not be known on the interior of the do-

main. There are also aspects of the physical model that suggest the importance of

small-scale uncertainty. For instance, the large-scale mean flow of the earth’s outer

core cannot account for the magnitude of the earth’s magnetic field. In geodynamo

theory, it is proposed that small-scale turbulent behavior can give rise to a large-

scale magnetic field through the α-effect [18]. This suggests that small fluctuations

of a velocity field may produce large changes in a magnetic field.

Additionally, the distribution of material properties may be uncertain in phys-

ical applications. When multiple fluids are present, such as when multiple liquid

metals are mixing together, the magnetic resistivity is not homogeneous throughout

the domain and may vary over orders of magnitude [29]. Because the resistivity can

have a strong influence on such physical systems, including changing the topology

of the magnetic field, uncertainty in the distribution of the resistivity may produce

different magnetic effects than predicted by simulations using the mean resistivity.

The mathematical modeling of uncertain quanitities such as these is a primary

concern in the field of uncertainty quantification. When uncertain quantities are

input data for systems of PDEs, one method for quantifying the effect of epistemic

uncertainty is to model the input data as random variables [31]. This provides

a mathematical framework in which the solution to the system of PDEs is also a

random variable. Statistical properties of the solution, such as mean and variance,

can then be obtained from the model. Thus, by following this methodology and

deriving stochastic expressions for hydrodynamic and material properties within the

6



MHD kinematics equations, the effects of epistemic uncertainty on electromagnetic

properties can be modeled.

1.4 Outline of Dissertation

In this dissertation, we consider computational issues arising in both fully

coupled and decoupled approaches to the MHD model. In particular, we focus on

developing fully coupled solvers for the discretized MHD equations and on quanti-

fying uncertainty in the MHD kinematics equations. We begin by introducing the

MHD equations in Chapter 2. We review existing finite element formulations of the

MHD equations, paying particular attention to an exact penalty formulation [36]

and a Lagrange multiplier formulation [59]. We discuss existing fully coupled solu-

tion strategies for the MHD equations as well as existing literature on uncertainty

quantification for systems of PDEs.

Chapters 3 and 4 concern the development of fast, robust fully coupled solvers

for the linear systems arising from finite element discretizations of the MHD system.

In particular, we develop preconditioners for iterative methods applied to these linear

systems. In Chapter 3, we focus on the linear systems arising from the exact penalty

formulation, and in Chapter 4, we focus on the Lagrange multiplier formulation. The

goal of these chapters is to introduce algorithmically scalable preconditioners that

perform well over a range of physical parameters and to demonstrate the effectiveness

of these preconditioners on a number of test problems.

In Chapter 5, we develop a numerical method for the MHD kinematics equa-

7



tions that accounts for epistemic uncertainty. We present stochastic expressions for

the input data and investigate their effects on the electromagnetics predicted by the

model on a series of test problems. Chapter 6 presents some concluding remarks.
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Chapter 2: Problem Statement and Survey of Existing Approaches

2.1 The MHD Equations

The MHD equations are obtained from a coupling of the Navier-Stokes equa-

tions for fluid flow and Maxwell’s equations for electromagnetics. Restricting the

model to the case of a single incompressible, homogeneous fluid, the equations at a

steady state can be written

ρ~u · ∇~u− ν∆~u+∇p−~j × ~B = ~f, (2.1a)

∇ · ~u = 0, (2.1b)

∇×
(

1
µ
~B
)

= ~j, (2.2a)

∇ ·
(
ε ~E
)

= ρc, (2.2b)

∇× ~E = ~0, (2.2c)

∇ · ~B = 0, (2.2d)

~E + ~u× ~B = η~j. (2.3)

The unknowns here are the fluid velocity ~u, the pressure p, the magnetic induction

~B, the electric field ~E, and the current density ~j. The charge density ρc can be

regarded as an auxiliary variable that can be obtained from ~E through (2.2b). The

external forcing term ~f in the momentum equation is assumed to be known. The

9



physical parameters prescribed in these equations are the fluid density ρ, the kine-

matic viscosity ν, the electric permittivity ε, the magnetic permeability µ, and the

magnetic resistivity η. In the single fluid case, each of these parameters is treated

as a fixed constant throughout the domain.

Note that (2.1a) – (2.1b) are the incompressible Navier-Stokes equations,

(2.2a) – (2.2d) are a reduced form of Maxwell’s equations, and (2.3) is Ohm’s law,

which is included to complete the system. The hydrodynamics and the electromag-

netics are coupled through the effect of the Lorentz force ~j × ~B on the motion of

the fluid as well as the influence of the term ~u× ~B on the current density.

On a bounded domain Ω ⊂ Rd, the MHD system is completed by supplying

boundary conditions for ~u, ~B, and ~E. We consider the boundary conditions

~u = ~g, (2.4a)

~B × ~n = ~q × ~n, (2.4b)

~E · ~n = k (2.4c)

on ∂Ω. (Alternatively, we could prescribe ~B ·~n and ~E×~n. Both choices of boundary

conditions can be motivated from a physical perspective depending on the physics

of the particular problem [29]. In Section 2.3, we will consider a finite element

formulation that uses edge elements to discretize ~B. In this setting, it is convenient

to prescribe the tangential component ~B × ~n on the boundary, so we consider only

(2.4) in formulating the problem.)

The equations (2.1a)–(2.3) hold in either two or three dimensions. In three

dimensions, the vector operations are defined in the usual ways. In two dimensions,
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we define extensions of the cross product and curl to apply to two-dimensional

vectors and scalars. The cross product between two vectors ~v = (vx, vy) and ~w =

(wx, wy) is a scalar field defined as

~v × ~w := vxwy − vywx, (2.5)

which defines the curl of a 2D vector to be

∇× ~v :=

(
− ∂
∂y

∂
∂x

)
~v. (2.6)

We also define the cross product of a vector ~v with a scalar φ as the vector

~v × φ :=

 vyφ

−vxφ

 , (2.7)

which defines the curl of a scalar to be

∇× φ :=

 ∂
∂y

− ∂
∂x

φ. (2.8)

We can simplify the MHD system by substituting (2.2a) into (2.1a) and (2.3),

and then substituting (2.3) into (2.2c), to obtain the commonly used form

ρ~u · ∇~u− ν∆~u+∇p+ ~B × (∇× 1
µ
~B) = ~f, (2.9a)

∇ · ~u = 0, (2.9b)

∇× ( η
µ
∇× ~B)−∇× (~u× ~B) = ~0, (2.9c)

∇ · ~B = 0. (2.9d)

Now the MHD equations are expressed as a coupling of the three unknowns ~u, p,

and ~B. These equations are completed using only boundary conditions (2.4a) and

(2.4b). Then ~j and ~E can be recovered from (2.2a) and (2.3) respectively.
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In the reduced MHD equations (2.9), the hydrodynamics and electromagnetics

of the system are clearly expressed as two coupled systems of PDEs with constraints.

The momentum equation (2.9a) with the incompressibility constraint (2.9b) form

the Navier-Stokes equations with the Lorentz force ~B × (∇ × 1
µ
~B) coupling these

equations to the electromagnetic equations. The induction equation (2.9c) with the

solenoidal constraint (2.9d) compose the equations of MHD kinematics. When we

consider the decoupled kinematics model, we refer to the equations (2.9c) - (2.9d).

Now we can nondimensionalize the system by introducing the new quantities

~u∗(ξ) := ~u(Lξ)
ū
, (2.10a)

~B∗(ξ) :=
~B(Lξ)

B̄
, (2.10b)

p∗(ξ) := p(Lξ)ū2

ρ
, (2.10c)

~f∗ :=
~fL̄
ū2
, (2.10d)

where ū, B̄, and L̄ are characteristic values for the velocity, magnetic field, and

length respectively. Then, the stationary MHD equations can be written in terms

of the starred quantities (omitting the stars from our notation for simplicity) as

~u · ∇~u− 1
R

∆~u+∇p+ S ~B × (∇× ~B) = ~f, (2.11a)

∇ · ~u = 0, (2.11b)

1
Rm
∇× (∇× ~B)−∇× (~u× ~B) = ~0, (2.11c)

∇ · ~B = 0, (2.11d)
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where the nondimensional scalars

R = ρūL̄
ν
, (2.12a)

Rm = µūL̄
η
, (2.12b)

S = B̄
µρū2

(2.12c)

are the (fluid) Reynolds number, the magnetic Reynolds number, and the coupling

coefficient, respectively. The system of PDEs is nonlinear due to the fluid convection

~u · ∇~u as well as the nonlinear coupling in the Lorentz force S(∇ × ~B) × ~B and

the magnetic convection −∇ × (~u × ~B). Nondimensionalizing ~g by ū and ~q by

B̄, we complete system (2.11) with the same nondimensional boundary conditions

(2.4a) and (2.4b). It is important to observe that (2.11) is overdetermined in that

it is a system of 2d + 2 equations in only 2d + 1 unknowns. Many strategies exist

for incorporating the solenoidal condition (2.11d) into the other three equations to

ensure the solvability of the system.

One such strategy is to add a penalty term to the induction equation in its

weak formulation which implicitly enforces the solenoidal condition. We refer to this

strategy as an exact penalty formulation of the MHD equations. Stable mixed finite

element [36] and stabilized equal order finite element [28] formulations based on this

strategy have been proposed. We discuss the stable formulation in more detail in

Section 2.2.

Another strategy is to introduce a new unknown, a Lgrange multiplier, into the

system. By adding the gradient of a Lagrange multiplier to the induction equation

with appropriate boundary conditions, the number of unknowns can be made equal
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to the number of equations without changing the solution. We refer to strategies of

this type as Lagrange multiplier formulations. Stable mixed finite element [59] and

stabilized equal order finite element [14, 15] as well as discontinuous Galerkin [40]

formulations have been proposed for this form of the equations. We consider the

stable formulation in Section 2.3.

A generalization of Lagrange multiplier strategies is the divergence cleaning

strategy [19], in which properties of the system of PDEs can be changed by adding

different functionals of the Lagrange multiplier to equations (2.11c) and (2.11d).

Another strategy for enforcing the solenoidal condition is the vector potential ap-

proach [44,60], in which ~B is defined as the curl of another unknown, i.e. ~B = ∇× ~A.

Because ∇ · ∇ × ~A = 0, this implicitly enforces ∇ · ~B = 0.

2.2 A Stable Exact Penalty Finite Element Formulation

In this section, we detail the exact penalty formulation as introduced in [36]. In

order to use the exact penalty weak formulation of the MHD equations, we restrict

our study to the case where Ω is a bounded convex polyhedron. In this setting, note

that H(curl,Ω)∩H(div,Ω) is embedded in (H1(Ω))d [16]. Furthermore, to simplify

the statement of the weak formulation, we consider homogeneous Dirichlet boundary

conditions, i.e. ~g = ~q = ~0. Then, we consider weak solutions ~u ∈ H1
0(Ω), p ∈

L2(Ω), ~B ∈ H1
τ (Ω) to the MHD equations (2.11), where H1

0(Ω) = (H1
0 (Ω))d and

H1
τ (Ω) = {~v ∈ (H1(Ω))d|~v×~n = 0}. Defining the space W = H1

0(Ω)×L2(Ω)×H1
τ (Ω)

and representing the solution as U = (~u, p, ~B) and the test function as V = (~v, q, ~C),
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we state the exact penalty nonlinear weak formulation as: Find U ∈ W such that

NEP (U, V ) = 〈~f,~v〉, ∀V ∈ W, (2.13)

where the nonlinear form NEP is

NEP (U, V ) = (~u · ∇~u,~v) + 1
R

(∇~u,∇~v)− (p,∇ · ~v) + (q,∇ · ~u)

+ S(~v × ~B,∇× ~B)− S(~u× ~B,∇× ~C) (2.14)

+ S
Rm

(∇× ~B,∇× ~C) + S
Rm

(∇ · ~B,∇ · ~C).

(We use the subscript EP to indicate that the form NEP is associated with the

exact penalty formulation.) Every term in this form except the final one is obtained

from multiplying (2.11a) by ~v, (2.11b) by q, and (2.11c) by S ~C, integrating by parts,

and summing. The term S
Rm

(∇ · ~B,∇ · ~C) is the exact penalty term, included to

weakly enforce the solenoidal constraint (2.11d). This follows from the fact that

if ~B ∈ H1(Ω) and Ω is a bounded convex polyhedron, then there exists a scalar

c ∈ H2(Ω) such that

∇ · ∇c = ∇ · ~B, (2.15)

with c = 0 on ∂Ω and ∇c ∈ H1
τ (Ω) [36]. Letting V = (~0, 0,∇c), we obtain from

(2.13) that (∇· ~B,∇· ~B) = 0, and hence that (2.11d) is enforced almost everywhere

in Ω.

Linearizing the nonlinear weak formulation (2.13) leads to a set of systems of

the form

B(n)(δU, V ) = R(n),∀V ∈ W, (2.16a)

U (n+1) = U (n) + δU, (2.16b)

15



where R(n) is the nonlinear residual and B(n) is a bilinear form defined by the lin-

earization method. Two common linearization techniques are Picard iteration and

Newton’s method. A version of Picard iteration that leads to a coercive weak form

gives the bilinear form

B(n)
EP,P (U, V ) = (~a · ∇~u,~v) + 1

R
(∇~u,∇~v)− (p,∇ · ~v) + (q,∇ · ~u)

+ S(~v ×~b,∇× ~B)− S(~u×~b,∇× ~C) (2.17)

+ S
Rm

(∇× ~B,∇× ~C) + S
Rm

(∇ · ~B,∇ · ~C),

where

~a = ~u(n), ~b = ~B(n) (2.18)

are the previous velocity and magnetic field in the Picard iteration. This results in

linear forms of the fluid convection (~a · ∇~u,~v), the Lorentz force S(~v × ~b,∇ × ~B)

and the magnetic convection −S(~u×~b,∇× ~C). It is known that the bilinear form

B(n)
EP,P is continuous and that an associated inf-sup stability condition is satisfied on

W [36]. Thus, when a unique solution to (2.13) exists, there exists a unique solution

to each linear problem in the above Picard iteration. Furthermore, the nonlinear

iteration converges to the unique solution to (2.13) from any initial iterate.

Newton’s method takes as its bilinear form

B(n)
EP,N(U, V ) = (~a · ∇~u,~v) + (~u · ∇~a,~v) + 1

R
(∇~u,∇~v)− (p,∇ · ~v) + (q,∇ · ~u)

+ S(~v ×~b,∇× ~B) + S(~v × ~B,∇×~b)− S(~u×~b,∇× ~C) (2.19)

+ S
Rm

(∇× ~B,∇× ~C) + S
Rm

(∇ · ~B,∇ · ~C)− S(~a× ~B,∇× ~C).

It can be shown that this system is well-posed and Newton’s method converges
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provided that the initial iterate is close enough to the unique solution of (2.13) [36].

In this case, Newton’s method convergences quadratically.

Analogous results are proven when the finite element method is applied and W

is replaced with a finite dimensional subspace Wh. In this case, the major difference

is that the inf-sup condition must be satisfied on Wh, i.e. we require there to exist

a constant β > 0 such that

inf
q∈Wp

sup
~v∈Wu

(∇ · ~v, q)
||~v||1||q||0

≥ β, (2.20)

where Wp is the discrete space for p and Wu is the discrete space for ~u. Note that ~B

does not appear in this condition, and it is exactly the same condition required for

stability of the discrete Navier-Stokes equations [24]. Thus, there is no restriction

on the discrete space chosen to approximate ~B, and any stable element pair for the

Navier-Stokes equations (e.g. Q2-Q1 Taylor-Hood elements) can be used for ~u and p.

For ease of implementation, we will discretize ~B using the same finite-dimensional

space used for ~u (e.g. Q2-Q1-Q2 elements for ~u-p- ~B).

2.3 A Stable Lagrange Multiplier Finite Element Formulation

While the exact penalty formulation holds for convex domains Ω, it may not

capture important features of the magnetic induction in non-convex domains. In

general, ~B may have regularity below (H1(Ω))d. Because the nodal elements used

to approximate ~B in the exact penalty formulation form a finite-dimensional basis

for (H1(Ω))d, the method can converge to a magnetic field that may not capture

physical singularities induced by reentrant corners [16]. One approach to account

17



for these singularities is to let the unknown ~B reside in the less regular Sobolev

space H(curl,Ω). In [58,59], this approach is applied to the MHD equations in the

form

~u · ∇~u− 1
R

∆~u+∇p+ S ~B × (∇× ~B) = ~f, (2.21a)

∇ · ~u = 0, (2.21b)

S
Rm
∇× (∇× ~B)− S∇× (~u× ~B)−∇r = ~0, (2.21c)

∇ · ~B = 0. (2.21d)

These are essentially the same equations as (2.11), except for the additional term

−∇r included in the induction equation. This introduces the new unknown r, a

Lagrange multiplier for the electromagnetics, sometimes referred to as the magnetic

pseudo-pressure. With this additional unknown, (2.21) form a well-posed system of

2d + 2 equations in 2d + 2 unknowns. Notice that taking the divergence of (2.21c)

yields −∆r = 0. Thus, with the boundary condition r = 0 on ∂Ω, r must be

identically zero. Hence, if the system is completed with the boundary conditions

~u = ~g, (2.22a)

~B × ~n = ~q × ~n, (2.22b)

r = 0 (2.22c)

on ∂Ω, the augmented MHD equations (2.21) admit the same solutions ~u, p, and ~B

as system (2.11).

If we let ~q = ~0, the electromagnetic pair ( ~B, r) can be assumed to reside

in the space H0(curl,Ω) × H1
0 (Ω), where H0(curl,Ω) = {~v ∈ H(curl,Ω)|~v × ~n =
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~0× ~n on ∂Ω} is the subspace of H(curl,Ω) with zero tengential component on the

boundary. These spaces have been used previously to pose a mixed finite element for-

mulation for Maxwell’s equations in mixed form where stability and well-posedness

for this pair was proved [20]. As in the exact penalty formulation, the hydrodynamic

pair (~u, p) is assumed to reside in the traditional space (H1
0 (Ω))d × L2(Ω) if ~g = ~0.

Thus, we define the solution U = (~u, p, ~B, r), the test function V = (~v, q, ~C, s),

and the solution space W = (H1
0 (Ω))d × L2(Ω) × H0(curl,Ω) × H1

0 (Ω). Then a

nonlinear weak formulation can be posed as: Find U ∈ W such that

NLM(U, V ) = 〈~f,~v〉, ∀V ∈ W, (2.23)

where the nonlinear form NLM is

NLM(U, V ) = (~u · ∇~u,~v) + 1
R

(∇~u,∇~v)− (p,∇ · ~v) + (q,∇ · ~u)

+ S(~v × ~B,∇× ~B)− S(~u× ~B,∇× ~C) (2.24)

+ S
Rm

(∇× ~B,∇× ~C)− (∇r, ~C) + (∇s, ~B).

This form is obtained from multiplying (2.21a) by ~v, (2.21b) by q, (2.21c) by ~C,

and (2.21d) by −s, integrating by parts, and summing. Note that by leaving the

term (∇r, ~C) and integrating −(∇· ~B, s) by parts to obtain (∇s, ~B), we ensure that

no additional regularity is required of the magnetic field beyond ~B ∈ H(curl,Ω).

The formulation (2.23) is continuous and coercive, and the spaces (H1
0 (Ω))d×L2(Ω)

and H0(curl,Ω)×H1
0 (Ω) satisfy inf-sup conditions for both the hydrodynamic pair

(~u, p) and the electromagnetic pair ( ~B, r). Thus, a solution to (2.23) exists and is

unique for sufficiently small data R,Rm, S, and ~f [59].
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The nonlinear formulation can be linearized to obtain an iteration of the form

(2.16). A Picard linearization yields the bilinear form

B(n)
LM,P (U, V ) = (~a · ∇~u,~v) + 1

R
(∇~u,∇~v)− (p,∇ · ~v) + (q,∇ · ~u)

+ S(~v ×~b,∇× ~B)− S(~u×~b,∇× ~C) (2.25)

+ S
Rm

(∇× ~B,∇× ~C)− (∇r, ~C) + (∇s, ~B)

while Newton’s method yields

B(n)
LM,N(U, V ) = (~a · ∇~u,~v) + (~u · ∇~a,~v) + 1

R
(∇~u,∇~v)− (p,∇ · ~v) + (q,∇ · ~u)

+ S(~v ×~b,∇× ~B) + S(~v × ~B,∇×~b)− S(~u×~b,∇× ~C) (2.26)

+ S
Rm

(∇× ~B,∇× ~C)− S(~a× ~B,∇× ~C)− (∇r, ~C) + (∇s, ~B),

where

~a = ~u(n), ~b = ~B(n). (2.27)

Both Picard and Newton linearizations converge to the unique solution of the non-

linear problem when a unique solution exists. The Picard iteration converges for

any initial guess, and Newton’s method converges for inital guesses sufficiently close

to the exact solution [59].

When the weak formulation is posed on a finite-dimensional subspace of W ,

the finite-dimensional hydrodynamic spaces Wu ⊂ (H1(Ω))d and Wp ⊂ L2(Ω) and

the finite-dimensional electromagnetic spaces WB ⊂ H(curl,Ω) and Wr ⊂ H1(Ω)
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must satisfy the two inf-sup stability conditions

inf
q∈Wp

sup
~v∈Wu

(∇ · ~v, q)
||~v||1||q||0

≥ βu > 0, (2.28a)

inf
s∈Wr

sup
~C∈WB

(∇s, ~C)

||~C||curl||s||1
≥ βB > 0. (2.28b)

Condition (2.28a) is again the stability condition obtained for the Navier-Stokes

equations, and any stable element pair for the Navier-Stokes equations (e.g. Q2-Q1

nodal elements) can be used to approximate ~u and p. The electromagnetic stability

condition (2.28b) is satisfied if Nédélec’s edge elements of the first kind [50] are used

to discretize ~B and standard nodal elements are used to discretize r (e.g. first order

edge elements for ~B and Q1 elements for r). Nédélec’s edge elements are constructed

to span a finite-dimensional subspace of H(curl,Ω). Furthermore, with WB and Wr

defined in this way, the condition ∇s ∈ WB holds for all s ∈ Wr [50]. Thus, we can

set ~C = ∇s in (2.28b) to obtain

inf
s∈Wr

sup
~C∈WB

(∇s, ~C)

||~C||curl||s||1
≥ inf

s∈Wr

||∇s||20
||∇s||0||s||1

≥ 1

γ
, (2.29)

where γ is a Poincaré constant depending only on the domain Ω and satisfying

||s||1 ≤ C||∇s||0. This implies that (2.28b) holds and the inf-sup constant βB

depends only on Ω.

2.4 Preconditioners for the Discretized MHD Equations

After discretization, a linear system

Ax = f (2.30)
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corresponding to the linearized problem (2.16) must be solved at each step of a

nonlinear iteration in order to obtain a discrete solution to the original nonlinear

problem. Here, x is a vector containing the coefficients of δU in terms of the finite

element basis and f contains the coefficients of the residual R(n). The structure of the

matrix A depends on the bilinear form derived from a particular weak formulation

and linearization scheme as well as the finite elements chosen for the discretization.

In general A is a large, sparse, nonsymmetric, and indefinite matrix. Because

A is large and sparse, iterative Krylov subspace methods (e.g. GMRES [56]) should

be particularly effective for solving system (2.30). The performance of these algo-

rithms is influenced by the distribution of the eigenvalues of A, converging fastest

when there are few distinct (clusters of) eigenvalues. The indefinite nature of A sug-

gests that preconditioning is necessary for fast convergence of such methods; that

is, rather than applying the iterative method directly to system (2.30), it is applied

to the system

(AP−1)y = f , (2.31)

where x = P−1y. The challenge is then to choose a preconditioner P such that the

action of P−1 is inexpensive and the preconditioned operator AP−1 has a desirable

features, for example, tightly distributed eigenvalues.

2.4.1 Block Preconditioners for Coupled Linear Systems

Before detailing preconditioners that have been developed specifically for the

discretized MHD equations, we first provide background on a general class of pre-
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conditioners developed for coupled linear systems. A linear system with two coupled

vector unknowns x and y can be written in the generalized saddle-point form A B

C −D


 x

y

 =

 f

g

 (2.32)

(for a review of solution methods for systems of this type, see [5]). Both the dis-

cretized incompressible Navier-Stokes equations and the discretized Maxwell’s equa-

tions in mixed form can be written in the form (2.32) when blocked in terms of their

physical unknowns (u,p and B, r, respectively). Depending on the particular for-

mulation, the discretized MHD equations can also be expressed in this form when

the unknowns are blocked appropriately.

The motivation behind block preconditioning is to take advantage of the block

structure of the linear system (2.32) to decouple the system into its component

parts. For example, if A is nonsingular, a classic block preconditioning strategy [49]

is to consider the block LU decomposition A B

C −D

 =

 I 0

CA−1 I


 A B

0 −S

 , (2.33)

where S is the Schur complement

S = D + CA−1B. (2.34)

A Krylov subspace method preconditioned with the block upper triangular factor

will converge in at most two iterations [49]. Hence, an approximation of the block

upper triangular factor should be an effective preconditioner. The advantage of such

preconditioners is that the form of the preconditioner decouples the two unknowns
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x and y. The original coupling of the system is algebraically embedded in the Schur

complement S. The challenge in developing a preconditioner is then to effectively

approximate the action of the inverse of the operator S.

The block form of the preconditioner as well as the strategy for approximating

S generally depend upon the particular application from which the linear system

arises. For example, many strategies have been developed to approximate the Schur

complement arising in the discretized Navier-Stokes equations, including purely al-

gebraic approximations and approximations based on assumptions that discrete op-

erators commute in the same way that the corresponding differential operators do

(see [22] for a review of these methods). For Maxwell’s equations discretized in

mixed form, the block corresponding to A in (2.32), a discretization of the oper-

ator ∇ × ∇×, is singular and the system does not admit the factorization (2.33).

Consequently, preconditioners that augment A to make it nonsingular have been

proposed [35,63,64].

2.4.2 Existing Preconditioners for Fully Coupled MHD

A growing body of recent research is concerned with the development of pre-

conditioners for linear systems arising from various formulations and discretizations

of the fully coupled MHD equations. Several references have used Schwarz domain

decomposition methods as preconditioners for the full MHD system [17, 44, 55, 60].

These methods exploit parallelism by constructing and solving smaller problems

(e.g. with an incomplete LU factorization) on a set of overlapping subdomains.
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The local solutions are then combined to construct a global approximation. While

Schwarz methods are easily parallelizaed, these preconditioners tend to lead to in-

creased iteration counts as the number of subdomains increases. However, it has

been demonstrated that using such domain decomposition methods as smoothers

for algebraic multigrid produce an effective preconditioner for the full MHD sys-

tem [44, 60]. This approach was applied to a stabilized equal-order finite element

vector potential formulation of the incompressible MHD equations. Multigrid has

also been applied to the fully coupled linear system arising in a first-order sys-

tem least-squares (FOSLS) finite element discretization of the incompressible MHD

equations [1].

Another approach is to use operator splitting techniques as preconditioners.

For example, split preconditioners were proposed for the viscoresistive MHD equa-

tions posed in cylindrical coordinates for tokamak applications [55]. In one such

preconditioner, the three-dimensional MHD problem is approximated by ignoring

the coupling between the three coordinate directions and thereby reducing the sys-

tem to three one-dimensional problems. Another preconditioner takes advantage of

the physics of the tokamak and splits the system into two-dimensional poloidal and

one-dimensional toroidal subsystems.

A series of references has employed parabolic reformulations of the MHD equa-

tions to develop preconditioners [11–13]. This approach has been applied to a re-

duced MHD formulation, a compressible viscoresistive formulation, and the com-

pressible Hall MHD model. The idea is to reformulate the hyperbolic MHD system

as a diagonally dominant parabolic system so that classically smoothed multigrid
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is effective on the reformulated system. The parabolization of the system is effec-

tively equivalent to performing a block LDU decomposition on the discretized MHD

equations and preconditioning the linear system by the block diagonal factor. This

preconditioning strategy is made practical by approximating the Schur complement

that appears. For compressible MHD, this has been done by either approximating

the system at the small flow limit [11] or by assuming that operators appearing

within the Schur complement commute [12].

Both preconditioners based on operator splitting and parabolic reformulation

can be viewed as variants on the block preconditioning strategy. Another block

preconditioner based on an approximate block factorization motivated by operator

splitting was developed for a vector potential formulation of the incompressible

MHD equations [17]. This preconditioner decouples the full system into one system

accounting for the effect of the velocity on the magnetic field and another system

corresponding to the Navier-Stokes equations. Another set of block preconditioners

has been proposed for the inductionless MHD equations in which the unknowns are

~u, p, the current density ~j, and the electric potential φ [2]. These preconditioners

are developed by considering LU decompositions of the discretized MHD equations

with different orderings of the unknowns. The Schur complements are approximated

by selectively incorporating or ignoring the effects of coupling terms.

In this dissertation, we continue in the line of block preconditioners for MHD

by developing preconditioners for the exact penalty and Lagrange multiplier for-

mulations detailed in Sections 2.2 and 2.3. We consider block LU decompositions

of the associated linear systems that embed the coupling between the hydrody-
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namic and electromagnetic processes into Schur complements. Building on precon-

ditioning ideas that were introduced for the discretized Navier-Stokes and Maxwell’s

equations, we develop approximations to these Schur complements that attempt to

account for the effects of coupling. While other block preconditioning techniques

have made approximations that decouple the two physical processes, by focusing on

accurately approximating the effects of coupling, we seek to develop preconditioners

that perform particularly well for strongly coupled MHD systems.

2.5 Uncertainty Quantification

Uncertainty quantification is a growing field in scientific computing focused

on developing models to similuate physical systems in which uncertainty may be

present. This uncertainty may be due to either the inherent irregularity of the

physical processes involved, meaning that a deterministic description is impossible,

or a lack of data about the physical phenomenon [31]. For example, a physical system

to which uncertainty quantification has been applied extensively is flow through a

porous medium such as soil (see, e.g., [30] and the references therein). In this setting,

properties of the soil medium, such as the hydraulic conductivity, are generally not

known with certainty as it is impractical to take the appropriate measurements at

an exhaustive number of points in the domain. Instead, properties of the medium

are modeled as random fields for which there are many realizations.

If a deterministic model exists when material properties are assumed to be

known and not random, the uncertain physical system can be modeled by a stochas-
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tic version of this model. For example, flow through a porous medium is modeled

by a diffusion equation. When the hydraulic conductivity of the soil is treated as

uncertain, the governing equation is a diffusion equation with random data, i.e.

−∇ · (a(~x, ω)∇u(~x, ω)) = 0, (2.35)

for ~x in the physical domain D and ω in the probabilistic sample space Ω [30]. The

diffusivity a is then a random field and the solution u, because it depends on a, is

also random.

Two main questions for problems of this type are then how to represent the

random data to be both reflective of the uncertainty in the physical system and

computable, and how to obtain statistical data about the quantities of interest.

The first question generally depends on the problem. For the random diffusion

equation, several references (e.g. [23, 65, 66]) express the diffusivity as a weighted

sum of identically distributed and independent random variables, i.e.

a(~x, ω) = a(~x, ~y) = a0(~x) +
M∑
i=1

ai(~x)yi(ω), (2.36)

where ~y = (y1(ω), . . . , yM(ω)) is a vector of random variables (a truncated Karhune-

Loève expansion [31], for instance, takes this form). Alternatively, the diffusivity

can be expressed as a polynomial chaos expansion [30].

Once the physical uncertainty is expressed as random data, various computa-

tional methods can be used to obtain statistical data about quantities of interest.

Three of the most popular startegies are Monte-Carlo methods, stochastic Galerkin

methods, and stochastic collocation methods [65]. In a Monte-Carlo simulation [10],

the data is repeatedly sampled, and for each realization, a deterministic problem

28



is solved for the quantity of interest. Statistical data is then approximated by the

solution statistics of the sample. For example, at realization j, the data a(~x, ~yj)

is generated, and (2.35) is solved for uj. Then, after K realizations, E(u) can be

approximated by the sample mean 1
K

∑K
j=1 uj. Traditional Monte-Carlo converges

slowly at a rate of 1√
K

but independently of the number of random variables in the

expansion (2.36). Monte-Carlo methods also require only the solution of determin-

istic problems for different realizations of the data.

Stochastic Galerkin methods [31] treat each random variable in the expansion

(2.36) as an unknown and apply a finite element-like methodology to solve a weak

version of the stochastic problem. Each random variable is projected onto a discrete

space spanned by a basis of polynomials. Discretizing both the spatial domain and

the stochastic domain, the random PDE reduces to a single linear system, its size

being a product of the number of spatial degrees of freedom and the number of

stochastic degrees of freedom. Because the number of stochastic degrees of freedom

depends on the number of random variables M and the degree of the polynomial

space, this linear system can be very large for large values of M .

Collocation methods [23,65] combine the strengths of both Monte-Carlo meth-

ods and stochastic Galerkin methods. Solving deterministic problems at a finite

number of realizations of the data provides values of u at distinct points in the

space of random variables. Using polynomial interpolation, u can be interpolated

as a function of ~y to obtain a finite dimensional approximation. This interpolant

can then be used to obtain statistical data. If sparse grids are used to provide the

collocation points, a relatively small number of deterministic problems need to be
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solved to generate the interpolation values, but the number of collocation points

increases with the number of random variables.

These types of uncertainty quantification techniques have been applied to sev-

eral physical systems. To our knowledge, there has been no published study investi-

gating the effects of uncertain data on either the fully coupled MHD system or the

kinematics model of MHD.
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Chapter 3: Block Preconditioners for an Exact Penalty MHD For-

mulation

In this chapter, we consider the linear systems obtained when the MHD equa-

tions are discretized according to the exact penalty finite element formulation in-

troduced in Section 2.2. Discretizing the linearized formulation (2.16) with a stable

~u− p element pair, we obtain a sequence of linear systems of the form

Ax = f , (3.1)

where x = (u,p,B) contains the coefficients of the discrete solution δU , f is the

discrete nonlinear residual, and A is the discretization of the weak form. (We will

represent vector coefficients in boldface.) The structure of A depends on the bilinear

form associated with the linearization. The matrices resulting from the Picard and

Newton linearizations can be written in block form as

AP =


F Bt Z

B 0 0

−Zt 0 A

 , AN =


F + F̃ Bt Z + Z̃

B 0 0

−Zt 0 A+ Ã

 , (3.2)

respectively, where the component matrices derive from continuous operators as in

Table 3.1. Note that the extra terms F̃ , Z̃, and Ã are are due to the additional

coupling in the Newton weak form, corresponding to the terms in the right-hand
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Discrete Continuous Interpretation Approximate Norm

AB − S
Rm

∆ ~B Magnetic diffusion S
Rmh2

ÃB −S∇× (~a× ~B) Magnetic convection S||~a||
h

−Ztu −S∇× (~u×~b) Magnetic convection S||~b||
h

ZB S~b× (∇× ~B) Lorentz force S||~b||
h

Z̃B S ~B × (∇×~b) Lorentz force S||∇ ×~b||

Fu ~a · ∇~u− 1
R

∆~u Fluid convection-diffusion ||~a||
h

+ 1
Rh2

F̃u ~u · ∇~a Fluid convection ||∇~a||

Btp ∇p Pressure gradient 1
h

−Bu ∇ · ~u Divergence 1
h

Table 3.1: Definitions of discrete operators as they correspond to continuous oper-

ators.
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side of the identity

B(n)
EP,N − B

(n)
EP,P = (~u · ∇~a,~v) + S(~v × ~B,∇×~b)− S(~a× ~B,∇× ~C). (3.3)

For either linearization, A is a large, sparse matrix. Thus, for efficiency, a precondi-

tioned iterative method should be considered for solving the systems (3.1). Because

A is nonsymmetric and indefinite, we use preconditioned GMRES for these solves.

3.1 A Block Preconditioner for the 2D Picard System

We consider preconditioning AP using a strategy based on approximating

Schur complements that generalizes techniques commonly employed for discretiza-

tions of the Navier-Stokes equations. To motivate our preconditioning strategy, we

consider the block LU decomposition of AP ,

AP =


I 0 0

BF−1 I 0

−ZtF−1 ZtF−1BtX−1 I




F Bt Z

0 X −BF−1Z

0 0 Y

 , (3.4)

where

X = −BF−1Bt, (3.5)

Y = A+ ZtF−1Z + ZtF−1BtX−1BF−1Z. (3.6)

It is easy to show that the minimum polynomial for the block lower triangular factor

L = APU−1 is (I−L)3. The minimum polynomial is cubic, which implies that if we

could use U as a right preconditioner for AP , then preconditioned GMRES would

converge in at most three iterations [49]. In practice, it is infeasible to apply the
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action of U−1 exactly. Hence, we construct preconditioners by developing techniques

for approximating the actions of the inverses of the matrices on the block diagonal

of the upper triangular factor. Thus, we consider the preconditioner

PP =


F̂ Bt Z

0 X̂ −BF̂−1Z

0 0 Ŷ

 , (3.7)

where “hatted” operators indicate approximations. The convection-diffusion oper-

ator F can be handled well by multigrid, and many effective approximations exist

for the pressure Schur complement X arising in discretizations of the Navier-Stokes

equations [22]. The new difficulty is the Schur complement Y associated with the

magnetic field. The nesting of multiple inverse operators as well as the summing of

several terms within Y presents an additional challenge in developing expressions

for Ŷ .

Note that the structure of PP in (3.7) derives from the ordering used for

the components of x, (u,p,B). If the components are reordered, then AP has a

different block structure, as do the resulting block LU decompositions. We consider

only reorderings in which the rows and columns have the same ordering, so that

square blocks remain on the diagonal. The only two other orderings that permit

block LU decompositions are (u,B,p) and (B,u,p). Like (u,p,B), the ordering

(u,B,p) gives rise to Schur complements that are nested, multi-term, and for this

reason, we will not pursue this ordering further. We note that preconditioning a

system similar in structure to that obtained from the (u,p,B) ordering has been

studied from another perspective in [17].
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The ordering (B,u,p) gives the expressions below. (We use the same notation

for the complete matrices as above despite the change in ordering. Thus, for the

remainder of this chapter, AP ,AN , X, and Y refer to operators arising from the

(B,u,p) ordering.)

AP =


A −Zt 0

Z F Bt

0 B 0

 , AN =


A+ Ã −Zt 0

Z + Z̃ F + F̃ Bt

0 B 0

 . (3.8)

We then have the block LU decomposition

AP =


I 0 0

ZA−1 I 0

0 BX−1 I




A −Zt 0

0 X Bt

0 0 Y

 , (3.9)

where

X = F + ZA−1Zt, (3.10)

Y = −BX−1Bt. (3.11)

The performance of a preconditioner based on this factorization is now contin-

gent upon developing effective approximations for the operators X and Y . Observe

that X here can be viewed as a perturbed convection-diffusion operator. In Sec-

tion 3.1.1, we will expand on the nature of the perturbation ZA−1Zt. In this light, we

argue that strategies developed for the Navier-Stokes Schur complement −BF−1Bt

can be employed to approximate Y . This will be demonstrated in Section 3.1.2.
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3.1.1 An Approximation for X

Consider the analogue of (3.10) in the continuous space, i.e., where the discrete

operators are replaced with their corresponding continuous operators from table 3.1.

Then X can be viewed as an approximation to the continuous operator

F +K, (3.12)

where

F~u := ~a · ∇~u−R−1∆~u (3.13)

is the convection-diffusion operator and

K~u := S~b× {∇× (− S
Rm

∆)−1[S∇× (~u×~b)]}

= −SRm
~b×∇×∆−1∇× (~u×~b) (3.14)

is an operator resulting from the coupling between ~u and ~B. For two-dimensional

problems, we have the identity

−∆pc = ∇×∇× c (3.15)

for any scalar functions c, where we use the subscript p to indicate the scalar Lapla-

cian as opposed to the vector Laplacian ∆. Furthermore, the Laplacian and the

two-dimensional curl operator commute; that is,

∆∇× c = ∇×∆pc. (3.16)

Replacing c with ∆−1
p c, this yields

∇×∆−1
p c = ∆−1∇× c. (3.17)
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Together with (3.15), this relation implies that

∇×∆−1∇× c = −c. (3.18)

Applying this identity to the expression (3.14) where c = ~u×~b, we obtain

K~u = SRm
~b× (~u×~b). (3.19)

A discretization of this operator can now easily be constructed and we obtain an

approximation for X of the form

X ≈ X̂ := F +K, (3.20)

where K is a discretization of K. K can be written as

K = SRmQu

 diag(b2
y) diag(−bxby)

diag(−bxby) diag(b2
x)

 , (3.21)

where Qu is the velocity mass matrix, bx and by are the x and y components of

~b, and diag(c) is a diagonal matrix containing the values of the function c at each

degree of freedom in the discrete domain. These diagonal matrices can be easily

constructed by taking the discrete values of bx and by from the previous Picard

iterate. The approximation to X can thus be regarded as a convection-diffusion

operator perturbed by a scaled mass matrix. This is similar in structure to a time-

dependent convection-diffusion operator, and preconditioning methods for F , such

as multigrid, will extend well to approximate the action of X−1.

3.1.2 An Approximation for Y

Now consider the discrete operator Y of (3.11). We will proceed by con-

sidering relationships among commutators for the continuous differential operators
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corresponding to our discrete operators. This strategy was presented for the Navier-

Stokes equations [22], where an approximation to the Schur complement BF−1Bt

is needed. It was observed that the divergence and convection-diffusion operators

approximately commute, i.e.

∇ · F ≈ Fp∇·, (3.22)

where Fp is a convection-diffusion operator defined on the pressure space, referred

to as the pressure convection-diffusion operator. This approximation holds when

the convection direction ~a is smooth. A discrete version of (3.22) is given by

Q−1
p BQ−1

u F ≈ Q−1
p FpQ

−1
p B, (3.23)

where Qp is the pressure mass matrix and Fp is the discrete analogue of Fp. We

will discuss how to construct Fp later. Through algebraic manipulation of the

approximation (3.23), the Schur complement approximation

BF−1Bt ≈ QpF
−1
p (BQ−1

u Bt) (3.24)

is obtained, where the operator BQ−1
u Bt can be treated as a discrete Laplacian

operator [24]. The approximation (3.24) is desirable because it circumvents the

nested nature of the exact Schur complement so that the action of its inverse entails

only matrix multiplications and solves with simple operators.

We could make a similar assumption about a commutator on the operator K,

∇ · K ≈ Kp∇· (3.25)

where Kp is an analogue to K on the pressure space. Then the methodology above
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could be applied directly to the operator F + K, and we would obtain an approxi-

mation analogous to (3.24)

B(F +K)−1Bt ≈ Qp(Fp +Kp)−1(BQ−1
u Bt) (3.26)

However, unlike F , which is a diagonal operator, K is a coupled 2D operator, and for

this reason, a direct analogue to K on the pressure space does not exist in general. In

fact, there exists an operator Kp such that (3.25) holds only when SRm
~b ≈ ~0. Thus,

however Kp is defined, the error associated with (3.25) must be at least proportional

to SRm||~b||. Based on this observation, we propose a continuous Schur complement

operator of the form

∇ · (F +K) ≈ (Fp + αKp)∇·, (3.27)

where the scalar parameter α can be regarded as a relaxation parameter; that is,

when (3.25) does not hold, α can be taken to be small to “relax” the error associated

with this approximation. Discretizing this relation, we obtain

Q−1
p BQ−1

u X ≈ Q−1
p (Fp + αKp)Q−1

p B, (3.28)

where Kp is the discrete analogue to Kp. Note that if Fp + αKp is dominated

by Fp then this operator commutes with the divergence operator with little error.

Assuming the norms of Fp and Kp to be approximately the same as those of F and

K, this condition holds when

αH2h2||~b||2 � 1 +Rh||~a||, (3.29)

where H =
√
SRRm is the Hartmann number. From this, we can see that α must

be small when Hh||~b|| is relatively large and α can be large if Rh||~a|| is relatively
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large. Furthermore, for any problem parameters, α can be large if h is made small

enough. Hence, adequate mesh refinement can allow us to take α = 1, resulting in

the approximation (3.26).

Through straightforward algebraic manipulation of (3.28), we obtain

Y = −BX−1Bt ≈ −Qp(Fp + αKp)−1BQ−1
u Bt. (3.30)

We define Fp using a strategy introduced to develop the Least-Squares Commu-

tator (LSC) Schur approximation to the Schur complement for the Navier-Stokes

equations [25]. That is, FpQ
−1
p is computed one row at a time, where each row is

obtained by solving the least-squares problem

min ||[BQ−1
u F ]j∗ − [FpQ

−1
p ]j∗B||Q−1

u
, (3.31)

so that (3.23) is enforced in a least-squares sense row by row. This results in the

definition

Fp := BQ−1
u FQ−1

u Bt(BQ−1
u Bt)−1Qp. (3.32)

Applying the same strategy for Kp to enforce the discrete version of (3.25), we

obtain

Kp := BQ−1
u KQ−1

u Bt(BQ−1
u Bt)−1Qp. (3.33)

Substituting these definitions into (3.30) gives the approximation

Y ≈ Ŷα := −BQ−1
u Bt[BQ−1

u (F + αK)Q−1
u Bt]−1BQ−1

u Bt. (3.34)

In practice, Qu can be replaced by diag(Qu) for ease of computation [62]. Then the

action of Ŷ −1 requires two solves with B(diag(Qu))−1Bt which is a sparse (scaled)
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Laplacian and is easy to handle with multigrid. Observe that when α = 1, this ap-

proximation corresponds to applying the LSC methodology directly to the operator

X = F +K. Thus, the choice of α = 1 is an intuitive choice but does not correct for

the commutation error on K. We will return to the preconditioner resulting from

the choice α = 1 in Section 3.3.

In an effort to develop intuition for a good choice of α, we consider the impact

of the approximation when it is applied to a single component of a Fourier series,

i.e. where p is of the form

p = ei~ω·~x, (3.35)

corresponding to the vector frequency ~ω. We would like to choose α so that the

effect of the exact Schur complement Y on p is comparable to the effect of the Schur

complement approximation Ŷα. Translating this condition to the continuous setting,

we require

∇ · (F +K)−1∇p ≈ ∆p[∇ · (F + αK)∇]−1∆pp. (3.36)

This gives

α ≈||~ω||4 ||~ω||4 +H2(~b · ~ω)2 +R2(~a · ~ω)2

[||~ω||4 +H2(~b · ~ω)2]2 +R2(~a · ~ω)2||~ω||4
(3.37)

+ i
RH2(~a · ~ω)(~b · ~ω)2||~ω||2

[||~ω||4 +H2(~b · ~ω)2]2 +R2(~a · ~ω)2||~ω||4
.

If we restrict α to be a real constant, we should choose α ≈ <(α(~ω)), i.e

α = ||~ω||4 ||~ω||4 +H2(~b · ~ω)2 +R2(~a · ~ω)2

[||~ω||4 +H2(~b · ~ω)2]2 +R2(~a · ~ω)2||~ω||4
(3.38)

for a particular ~ω.
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In general, our experiments have shown that the value of α is insensitive

to the direction chosen for the Fourier mode ~ω as long as the magnitude of ~ω is

chosen properly. We take ~ω to be in the direction of ~a, as ~a can be considered an

approximation to ~u, the direction of fluid flow. With this choice, the expression

(3.38) reduces to

α ≈ ||~ω||
4 +H2||~b||2||~ω||2 cos2(θ) +R2||~a||2||~ω||2

[||~ω||2 +H2||~b||2 cos2(θ)]2 +R2||~a||2||~ω||2
(3.39)

where θ is the angle between ~a and ~b, and this approximation is entirely determined

by the problem parameters and ||~ω||. The discretization of the problem should set

a bound on the magnitude of any Fourier mode resolved by the mesh. That is, the

most oscillatory Fourier mode should oscillate with period proportional to the mesh

size on the pressure space hp. Thus, we propose setting ||~ω|| = 1
hp

, yielding

α ≈ α∗ :=
1 +H2h2

p||~b||2 cos2(θ) +R2h2
p||~a||2

[1 +H2h2
p||~b||2 cos2(θ)]2 +R2h2

p||~a||2
. (3.40)

The value of α∗ can be computed from the mesh Hartmann number Hh and the

mesh Reynolds number Rh, both of which are readily available, and the quantities

||~a||, ||~b||, and cos(θ). In this study, we use the average values of the latter quanities

over the domain from the previous iterate in the nonlinear iteration. Defined this

way, α∗ follows the trends implied by (3.29); that is, α∗ is small if H2h2||~b||2 domi-

nates R2h2||~a||2 and α∗ is close to 1 if R2h2||~a||2 dominates H2h2||~b||2. Furthermore,

as h is refined, α∗ approaches 1.

With approximations to both X and Y , we can now write the form of our
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preconditioner for the linear systems arising from a Picard iteration

PP,α =


Â −Zt 0

0 X̂ Bt

0 0 Ŷα

 , (3.41)

where X̂ is an approximation to X as defined in (3.20) and Ŷα is an approximation

to Y as defined in (3.34).

3.2 A Block Preconditioner for the Newton System

Now consider the block LU factorization for the (reordered) matrix arising

from Newton’s method,

AN =


I 0 0

(Z + Z̃)(A+ Ã)−1 I 0

0 BX̃−1 I




A+ Ã −Zt 0

0 X̃ Bt

0 0 Ỹ

 , (3.42)

where

X̃ = F + F̃ + (Z + Z̃)(A+ Ã)−1Zt, (3.43)

Ỹ = −BX̃−1Bt. (3.44)

Although X̃ does not simplify in its continuous form to an operator that can be

explicitly constructed, because the Picard matrix and its associated block LU de-

composition can be regarded as an approximation of the Newton matrix, we regard

the u-B coupling term (Z+ Z̃)(A+ Ã)−1Zt as a modification of the analogous term

for the Picard iteration ZA−1Zt ≈ K. To illustrate this, consider the identity

(Z + Z̃)(A+ Ã)−1Zt = ZA−1Zt + E, (3.45)
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where E is the perturbation defined to be

E := (Z̃ − ZA−1Ã)(A+ Ã)−1Zt. (3.46)

Considering the approximate norms of the components of E, we find that

||E|| = O

(
SRmh||~b||

||∇ ×~b||+Rm||~a|| ||~b||
1 +Rmh||~a||

)
. (3.47)

Because the magnitude of E is proportional to h, E can be effectively neglected if

the mesh is refined enough. We develop an approximation to E for the cases when

the mesh is not refined enough to neglect it. This approximation is important when

Rm and Rmh are both large.

Translating each discrete operator in (3.46) and simplifying using the relation

(3.15) produces a discrete analogue E of E defined as

E~u := S
[
· × (∇×~b)−Rm

~b× (~a× ·)
] [

1
Rm

∆ +∇× (~a× ·)
]−1

∇× (~u×~b). (3.48)

Assuming that the vectors ~a and ~b are smooth allows us to approximate (3.48) by

E~u ≈ −SRm
~b× (~a · ∇)p(− 1

Rm
∆ + ~a · ∇)−1

p (~u×~b), (3.49)

where we use the subscript p here to denote that the operator functions on the

scalar pressure space. To use (3.49) to construct an approximation to E we make

the approximation

(~a · ∇)p ≈ (− 1
Rm

∆ + ~a · ∇)p (3.50)

when Rm is large. This is the important case to consider because the u-B coupling is

strongest when Rm is large, hence necessitating a good approximation to E. Based

44



on this observation, we make the approximation

(~a · ∇)p ≈ (1− γ)(− 1
Rm

∆ + ~a · ∇)p, (3.51)

where the new parameter γ is included to correct for any error resulting from as-

sumption (3.50) and is assumed to be close to 0 when Rm is large. Given (3.51), we

obtain the approximation

E ≈ (γ − 1)SRm
~b× (~u×~b) = (γ − 1)K, (3.52)

and E can be approximated by

E ≈ (1− γ)K. (3.53)

Notice that when E is negligible, we should set γ = 1, but another value of γ

may be needed if Rm is large. Using the approximation (3.53) and recalling that

−ZA−1Zt ≈ K, we have the approximation

X̃ ≈ X̂γ := F + F̃ + γK. (3.54)

As we did for the Picard iteration, we can use p = ei~ω·x to gain some intuition

about the choice of γ. Evaluating (3.51) with this choice of p, we find that

γ(~ω) ≈ ||~ω||4

||~ω||4 +R2
m(~a · ~ω)2

− i Rm(~a · ~ω)

||~ω||4 +R2
m(~a · ~ω)2

. (3.55)

Restricting γ to be real gives

γ ≈ ||~ω||4

||~ω||4 +R2
m(~a · ~ω)2

(3.56)

for some ~ω.
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We can learn more about a good choice of ~ω by considering a discrete version

of (3.50),

Np ≈ (1− γ)(Ap +Np), (3.57)

where Np is a discretization of (~a · ∇)p and Ap is a discretization of − 1
Rm

∆p. This

can be rewritten as

γI ≈ Ap(Ap +Np)−1. (3.58)

From this we can obtain the order of magnitude of γ to be

γ = O

(
1

1 +Rmhp||~a||

)
. (3.59)

If we let

~ω = ~a

√
Rm

hp||~a||
, (3.60)

then (3.56) satisfies (3.59). This choice of Fourier mode is reasonable from a physical

perspective. It is chosen in the direction of flow ~a and for a given hp, its magnitude

is proportional to
√
Rm||~a||, the width of characteristic layers appearing for the

convection-diffusion operator (~a · ∇ − 1
Rm

∆)p. Furthermore, as the mesh is refined,

higher frequency modes can be resolved, and ||~ω|| increases to reflect this. Hence,

we use the approximation

γ ≈ γ∗ :=
1

1 +Rmhp||~a||
, (3.61)

which depends only on the mesh magnetic Reynolds number Rmhp and the quantity

||~a|| which can be taken as the average over the domain.

Using X̂γ as defined in (3.54) to approximate X̃ and Ŷα as defined in (3.34)
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to approximate Ỹ , we have the preconditioner for the Newton system

PN,α,γ :=


Â+ Ã −Zt 0

0 X̂γ Bt

0 0 Ŷα

 . (3.62)

We note that the choice of α should incorporate γ. It is easy to show that, according

to the same arguments from Section 3.1.2, α should be defined as

α ≈ α∗(γ) :=
1 + γH2h2

p||~b||2 cos2(θ) +R2h2
p||~a||2

[1 + γH2h2
p||~b||2 cos2(θ)]2 +R2h2

p||~a||2
. (3.63)

3.3 Computational Results

In this section, we evaluate the performance of the preconditioners for solving

a set of benchmark problems. Our implementation is in the Trilinos framework de-

veloped at Sandia National Laboratories [38] using the Teko package to construct

the block preconditioners and a GMRES Krylov solver from AztecOO [37]. For com-

ponent solves, we use algebraic multigrid from the ML package [27], with incomplete

factorization smoothers coming from IFPACK. Specifically, for solves on the velocity

and magnetic spaces we use one V-cycle of AMG with two pre- and post-sweeps of a

Schwarz domain decomposition smoother with ILU(0) on each subdomain and one

level of overlap between subdomains. For solves on the pressure space we use one

V-cycle of AMG with five sweeps of a Gauss-Seidel smoother. This AMG technology

has been demonstrated to be algorithmically scalable for both an equal order stabi-

lized finite element formulation of the full MHD system and as a component solve

in physics-based preconditioners [17, 60]. All problems were run on the Red Sky
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computer at Sandia National Laboratories. For all problems we use a stable Q2-Q1

finite element pair for the velocity and pressure and Q2 elements for the magnetic

field to match the velocity. We use uniform grids for every problem. The relative

residual tolerance is 10−5 for the nonlinear iteration and 10−6 for the GMRES inner

iteration. We apply GMRES without any restarting. When considering the perfor-

mance of the preconditioners, reported linear iteration counts are averaged over all

nonlinear iterations up to a maximum of twenty nonlinear iterations. We consider

two two-dimensional test problems, a lid driven cavity in the presence of a magnetic

field (adapted from the fluid problem in [24]) and the Hartmann flow problem (as

detailed in [29]). To explore the robustness of our preconditioning strategies, we

test their performance over a range of R and Rm on these problems. We set S = 1

and let the variation in Rm account for different degrees of fluid-magnetic coupling.

3.3.1 MHD Lid Driven Cavity

The lid driven cavity problem models the flow of a conducting fluid in the

square cavity [0, 1]× [0, 1], driven by the motion of its lid from left to right with the

magnetic field (−1, 0) imposed parallel to the lid. No-flow conditions are imposed

on the bottom, left, and right sides of the cavity, and the horizontal velocity of the

lid is prescribed to be 1. The tangential component of the magnetic field is specified

on the boundary ∂Ω as

~B × ~n = (−1, 0)× ~n. (3.64)

For R < Rc ≈ 7800, the cavity flow problem with no magnetic field has
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Figure 3.1: Streamlines for the MHD lid driven cavity problem with R = 5000

and Rm = 0, 0.1, 0.3, 0.4, 5, 10, 20, 30. The four latter cases are zoomed in to [0, 1]×

[0.8, 1].

a stable solution dominated by one large eddy in the center of the cavity with

smaller secondary eddies in the corners [61]. Imposing the magnetic field leads to

weakening of the flow and, for stronger fields, merging of the secondary eddies.

As the magnetic field is strengthened (that is, as Rm increases), the height of the

primary eddy decreases as an effect of the increasing magnitude of the Lorentz force.

Furthermore, other horizontal eddies of decreasing height develop, stretching from

the left wall to the right wall and stacking on top of each other, with the number

of horizontal eddies increasing with Rm. As a result of the braking effect of the

Lorentz force, the flow in the lower part of the domain is almost stagnant for large

Rm. Using solutions obtained from our code, this behavior is shown in Figure 3.1.

Streamlines are plotted for the case where R = 5000 with increasing Rm. This set of

problems is equivalent to those considered in [61], and our results are qualitatively

very similar, with the same number and height of eddies appearing.
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Figure 3.2: Magnitude of the divergence of ~Bh versus h for R = 64 and Rm =

64, 256, 1024.

To demonstrate that the exact penalty formulation weakly enforces the solenoidal

condition, we have plotted the magnitude of the divergence of the computed mag-

netic field in Figure 3.2. Because we have found that ||∇· ~Bh||L2(Ω) is independent of

the fluid Reynolds number, we only show results for R = 64. It can be seen from the

figure that this quantity is approximately proportional to Rmh. This is consistent

with results obtained in the context of Marder cleaning for Maxwell’s equations [46].

In this context, the penalty term S
Rm

(∇ · ~B,∇ · ~C) is analogous to a pseudo-current

term added to Maxwell’s equations scaled by S
Rm

. For time-dependent problems,

the scaling of the pseudo-current term determines the rate at which the error in the

solenoidal condition vanishes.

Table 3.2 shows the number of steps required by each nonlinear scheme on a

uniform 512×512 element mesh, starting from a zero initial guess. As Rm increases,

the fluid-magnetic coupling strengthens and the nonlinear problems become some-

what more difficult to solve. For entries in the table with asterisks, convergence

was achieved using a backtracking strategy; see [52]. Newton’s method was slightly
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Picard Newton

@
@
@
@
@
@

R

Rm
1 64 256 1024 1 64 256 1024

1 2 × × × 2 3 3 4

64 2 7 × × 2 4 3 3

256 2 4 7∗ × 2 4 5 3

1024 2 3 4 11∗ 2 3 6 16∗

4096 2 3 4 5 2 2 7 7∗

Table 3.2: Iterations required for convergence of the nonlinear iteration. ‘×’ indi-

cates no convergence within twenty iterations. ‘*’ indicates convergence required

backtracking.
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α = 1 α = α∗

@
@
@
@
@
@

R

Rm
1 64 256 1024 1 64 256 1024

1 36 45 44 78 36 45 44 78

64 35 42 47 84 35 42 47 77

256 36 42 60 109 36 42 57 90

1024 44 44 89 193 44 43 77 142

4096 68 60 123 291 68 58 91 174

Table 3.3: Average GMRES iterations required for convergence with PP,α on the

Picard linearization of the MHD lid driven cavity problem with α = 1 and α = α∗.

more robust than Picard iteration. Although backtracking alone was not sufficient

to make the Picard iteration fully robust for these examples, since our emphasis is

on the linear solvers, we did not pursue this further.1

3.3.1.1 Picard Iteration

In this section, we consider the performance of the preconditioner PP,α on the

MHD lid driven cavity problem for a range of parameters, using a 512×512 element

1This type of behavior is often sensitive to the initial guess and also to the properties of the

globalization methods used; see [52] for other ways to enhance robustness. We also note that poor

performance of the nonlinear solver is related to under-resolution of the mesh. For the problematic

cases in Table 3.2, both the Picard iteration and Newton’s method converge on finer meshes without

use of globalization methods.
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@
@
@
@
@
@

R

Rm
1 64 256 1024

1 1.000 1.000 0.998 0.992

64 1.000 0.970 0.889 0.667

256 0.998 0.895 0.677 0.339

1024 0.996 0.777 0.407 0.123

4096 0.998 0.777 0.272 0.046

Table 3.4: Computed values of α∗ for the second Picard iteration.

mesh. To study the impact of the parameter α on the preconditioner, we compare

the performance of PP,α with α = α∗ as defined in (3.40) and α = 1, corresponding

to the LSC preconditioner applied directly to X. GMRES iteration counts with

these two preconditioners for various choices of R and Rm are reported in Table 3.3.

The values of α∗ used at the second nonlinear step are reported in Table 3.4. (Note

that for the first step, ~a = ~0, and therefore α∗ = 1 independent of R and Rm.) From

Table 3.3, it is clear that the automatically computed α = α∗ leads to improved

performance compared to LSC preconditioning. The differences are minimal for

small R and Rm (the iteration counts are identical for R = 1 and Rm = 1), but they

become substantial for larger R and Rm. For example, for R = 4096, Rm = 1024,

the counts for α = 1 and α = α∗ are 291 and 174, respectively, a 40% reduction.

Table 3.4 also shows that α∗ is close to 1 for small R and Rm. These results are

consistent with the observation made in Section 3.1 that when the fluid-magnetic

53



α = 1, γ = 1 α = α∗, γ = 1 α = α∗, γ = γ∗

@
@
@
@
@
@

R

Rm
1 64 256 1024 1 64 256 1024 1 64 256 1024

1 36 42 47 68 36 42 47 68 36 42 47 66

64 34 46 69 171 34 47 69 163 34 47 66 117

256 37 50 99 299 37 50 94 228 37 49 88 164

1024 44 50 169 584 44 50 133 288 44 50 121 249

4096 68 56 208 603 68 54 142 419 68 54 137 364

Table 3.5: Average GMRES iterations required for convergence with PP,α,γ on the

Newton linearization of the MHD lid driven cavity problem.

coupling is strong, the validity of the approximation for the commutator (3.25) is

weaker; the “relaxed” variants (3.27)–(3.28) improve performance. We also found

that an optimal choice of α determined by a brute-force search produced iteration

counts essentially the same as for α = α∗. Thus, the choice of parameter given by

(3.40) determines an essentially automated version of the preconditioner (3.28).

3.3.1.2 Newton’s Method

Here, we consider the performance of the preconditioner PN,α,γ on the linear

systems arising from Newton’s method applied to the MHD lid driven cavity prob-

lem. We consider a 512 × 512 mesh with R between 1 and 4096 and Rm between

1 and 1024. We compare three preconditioners: the fully parameterized precondi-
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@
@
@
@
@
@

R

Rm
1 64 256 1024

1 0.999 0.939 0.794 0.491

64 0.999 0.940 0.796 0.493

256 0.999 0.940 0.796 0.495

1024 0.999 0.940 0.796 0.493

4096 0.999 0.940 0.796 0.493

Table 3.6: Computed values of γ∗ at the second Newton step.

tioner PN,α∗,γ∗ with γ∗ from (3.61) and α∗ from (3.63); the preconditioner PN,α∗,1

parameterized only by α with α∗ from (3.40); and the unparameterized precondi-

tioner PN,1,1. PN,α∗,1 corresponds to applying the strategy derived for the Picard

iteration to the Jacobian system, as though the fluid-magnetic coupling E is negli-

gible. GMRES iteration counts are reported in Table 3.5 and the values of γ∗ are

reported in Table 3.6.

These results show that the (doubly) parameterized preconditioner for the

Jacobian systems nearly always exhibits enhanced performance, with the most sig-

nificant improvements occurring in regimes where the spatial resolution is weakest

(large R or Rm). The impact of the new parameter is comparable to that of α,

and we emphasize that, as above, the enhanced performance is obtained using an

automated strategy for choosing parameters.
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3.3.1.3 Robustness with Respect to Mesh Refinement

In Sections 3.3.1.1 and 3.3.1.2, we explored the robustness of our precondition-

ing strategies with respect to the physical parameters R and Rm, on a fixed mesh.

We are also interested in their performance as the mesh is refined. We investigate this

on the two problems corresponding to R = 256, Rm = 256 and R = 256, Rm = 1024.

Because the multigrid component solves depend on the parallel architecture used,

we also use this as an opportunity to study the parallel scalability of the precondi-

tioners. That is, the Schwarz-ILU smoother for the multigrid solves decomposes the

domain into as many subdomains as there are processors. Hence, we want to make

sure that increasing the number of processors does not cause the performance of the

full preconditioners to degrade. Toward both of these ends, we increase the number

of processors as we refine the mesh so that the number of unknowns per processor

remains approximately constant. That is, we perform a weak parallel scaling study

by considering 64×64, 128×128, 256×256, 512×512, 1024×1024, and 2048×2048

element discretizations on 1, 4, 16, 64, 256, and 1024 processors respectively, keeping

the number of unknowns per processor at approximately 70, 000.

We report average iteration counts and computation times per nonlinear step

for these experiments in Figure 3.3 for the Picard iteration and Figure 3.4 for New-

ton’s method. Newton’s method converges on all grids considered for R = 256, Rm =

256 but only on the three most refined grids for R = 256, Rm = 1024. For the Picard

iteration, we compare the preconditioner PP,α∗ with α∗ from (3.40) with the unpa-

rameterized preconditioner PP,1. As a frame of reference for parallel scalability, we
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Figure 3.3: Mesh refinement results for the MHD lid driven cavity problem for the

Picard iteration. Parameters are R = 256, Rm = 256 on the top and R = 256, Rm =

1024 on the bottom. Average GMRES iterations on the left and average linear solve

time per nonlinear iteration on the right.
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Figure 3.4: Mesh refinement results for the MHD lid driven cavity problem for New-

ton’s method. Parameters are R = 256, Rm = 256 on the top and R = 256, Rm =

1024 on the bottom. Average GMRES iterations on the left and average linear solve

time per nonlinear iteration on the right.
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also compare these preconditioners to a pure domain decomposition preconditioner

using a SuperLU [21] ILUTP factorization with a drop tolerance of 0.0001 and a

zero pivot threshold of 0.01 (labeled DD in the scaling plots). Thresholding and

partial pivoting are necessary here because of the zero block on the diagonal for the

pressure space. From the plots, it can be seen that both PP,α∗ and PP,1 are robust

with respect to mesh refinement, with iteration counts that are nearly constant or

decreasing as the number of unknowns grows. The parameterized preconditioner

also performs uniformly as well or better than the unparameterized preconditioner,

the benefit being more pronounced for problems with fewer unknowns or larger Rm.

The iteration counts for the two preconditioners become similar as h is refined be-

cause α∗ approaches 1 as h decreases. The domain decomposition preconditioner

is not competitive and does not scale well. In fact, for all the tests run on more

than 16 processors, GMRES runs out of memory before convergence with this pre-

conditioner. While iteration counts tend to decrease, we see a slight increase in

computation time as the mesh is refined. This appears to be due to increased com-

munication costs in the component AMG solves as more processors are added, and

we expect that performance can be enhanced by fine-tuning these solves.

For Newton’s method, we compare PN,α∗,γ∗ , the fully parameterized precon-

ditioner, with PN,α∗,1, the preconditioner parameterized only for the matrix arising

from Picard iteration and with PN,1,1, the unparameterized preconditioner. The

plots for R = 256, Rm = 1024 contain only three data points because Newton’s

method diverges for this problem on the three coarsest meshes. We use γ∗ from

defined in (3.61). Iteration counts generally decrease for all three preconditioners as

59



h is refined. Since both α∗ and γ∗ converge to 1 as h decreases, the performances of

the three preconditioners become essentially the same as the problem size increases.

In all but the least refined cases, the fully parameterized preconditioner outper-

forms the others, especially for problems with large Rm. The results then show the

importance of the parameter γ in keeping iteration counts low.

3.3.2 Hartmann Flow

The Hartmann flow problem describes the flow of a conducting fluid through

a channel in the presence of a transverse magnetic field. We consider the channel

[−1/2, 1/2]2 and the transverse field (0, 1). With appropriate boundary conditions,

this problem has the explicit analytic solution ~u = (ux, 0), ~B = (Bx, 1) with

ux =
GR(cosh(H/2)− cosh(Hy))

2H sinh(H/2)
, (3.65a)

Bx =
G(sinh(Hy)− 2 sinh(H/2)y)

2S sinh(H/2)
, (3.65b)

p = −Gx− SB2
x/2, (3.65c)

where G can be any scalar. Given R and Rm, we choose G so the maximum magni-

tude of ~u is normalized to 1. In our implementation, we prescribe the analytic value

of ~u and ~B × ~n = (0, 1)× ~n on the boundary.

Because an analytic solution exists for this problem, we can compute the errors

||~uexact−~uh||L2(Ω) and || ~Bexact− ~Bh||L2(Ω). These errors and the error in the solenoidal

condition ||∇· ~Bh||L2(Ω) are plotted in Figure 3.5. From this figure, it is clear that all

three quantities are proportional to h3. As with the MHD lid driven cavity problem,

||∇· ~Bh||L2(Ω) is also related to Rm, depending to a lesser degree on R. Consequently,
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Figure 3.5: Magnitude of the error in ~uh and ~Bh and the divergence of ~Bh versus h.

the errors in ~u and ~B depend similarly on Rm and R.

We have tested the preconditioner PP,α on the linear systems resulting from the

Picard linearization of the Hartmann flow problem on a fixed 512×512 element mesh.

We found that nonlinear iterations did not converge for Rm > 256 on this mesh,

so we do not consider Rm = 1024 for this problem. In Table 3.7, preconditioned

GMRES iteration counts are compared for the choices α = 1 and α = α∗ as defined

in (3.40). In this case, the difference between the two preconditioners is marginal

for all parameters.

We have also considered the performance of the preconditioner PN,α,γ on the

linear systems resulting from Newton’s method on a 512 × 512 element mesh. We

compare PN,1,1,PN,α∗,1, and PN,α∗,γ∗ in Table 3.8. Here, we see the parameter γ

having a much more profound effect on iteration counts than the parameter α. The

choice of γ = γ∗ over γ = 1 leads to large improvements for moderate values of Rm.

For instance, we can see a 42% improvement in iteration count for R = 4099, Rm =

256.

We note here that the performance of the preconditioners with respect to mesh

refinement for the Hartmann flow problem follows the same trends as for the MHD
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α = 1 α = α∗

@
@
@
@
@
@

R

Rm
1 64 256 1 64 256

1 38 41 40 38 41 40

64 31 37 40 31 37 40

256 29 35 50 29 35 49

1024 36 37 61 36 37 61

4096 32 79 81 32 79 81

Table 3.7: Average GMRES iterations required for convergence with PP,α on the

Picard linearization of the Hartmann flow problem.

α = 1, γ = 1 α = α∗, γ = 1 α = α∗, γ = γ∗

@
@
@
@
@
@

R

Rm
1 64 256 1 64 256 1 64 256

1 39 43 137 39 43 137 39 43 104

64 31 50 144 31 50 144 31 48 99

256 29 49 124 29 49 123 29 46 81

1024 36 55 141 36 55 141 36 52 89

4096 32 158 206 32 158 205 32 113 118

Table 3.8: Average GMRES iterations required for convergence with PP,α,γ on the

Newton linearization of the Hartmann flow problem.
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lid driven cavity problem. For this reason, we do not include a figure analogous to

Figures 3.3 and 3.4.

3.4 Conclusion

We have presented a family of block preconditioners for the linear systems

arising from both Picard and Newton linearizations of the exact penalty formulation

of the stationary MHD equations. For the Picard linearization, we chose an ordering

(B,u,p) that leads to a simple Schur complement on the velocity space that can

be approximated by simplifying the continuous operator corresponding to it. This

results in approximating the velocity Schur complement by a perturbed convection-

diffusion operator. By modifying the Least-Squares Commutator preconditioner for

the Navier-Stokes equations, we have developed an approximation to the nested

Schur complement on the pressure space. The preconditioner resulting from direct

application of the LSC methodology to the perturbed convection-diffusion operator

can be improved by “relaxing” assumptions on the existence of small commutators.

Using the parameterized assumption (3.51), similar strategies can be applied to

Newton’s method.

We have presented an automated method for choosing the two parameters

α and γ based on arguments from Fourier analysis. This method relies only on

data which is readily available in a nonlinear iteration. Our numerical studies on

the Picard linearization have demonstrated that the automated choice of α leads

to significant improvement over α = 1. For Newton’s method, we have shown that
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both α and γ are important for decreasing iteration counts. The preconditioners are

robust with respect to mesh refinement, their performances improving as the mesh

is refined. In terms of parallel scalability, these preconditioners compare very well

against a preconditioner based on domain decomposition.
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Chapter 4: Block Preconditioners for a Lagrange Multiplier MHD

Formulation

In this chapter, we consider the linear systems obtained when the MHD equa-

tions are discretized according to the Lagrange multiplier finite element formulation

introduced in Section 2.3. As in Chapter 3, discretization of the linearized formula-

tion (2.16) leads to a sequence of linear systems of the form

Ax = f . (4.1)

Because the Lagrange multiplier formulation includes the additional unknown r,

the vector x is defined x = (u,p,B, r). Again f is the discrete nonlinear residual,

and A depends on the bilinear form associated with the linearization. The matrices

resulting from the Picard and Newton linearizations can be written in block form

as

AP =



F Bt Z 0

B 0 0 0

−Zt 0 A Dt

0 0 D 0


, AN =



F + F̃ Bt Z + Z̃ 0

B 0 0 0

−Zt 0 A+ Ã Dt

0 0 D 0


, (4.2)

where the component matrices are defined in Table 4.1.
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Discrete Continuous Interpretation Approximate Norm

AB S
Rm
∇×∇× ~B Magnetic diffusion S

Rmh2

ÃB −S∇× (~a× ~B) Magnetic convection S||~a||
h

−Ztu −S∇× (~u×~b) Magnetic convection S||~b||
h

ZB S~b× (∇× ~B) Lorentz force S||~b||
h

Z̃B S ~B × (∇×~b) Lorentz force S||∇ ×~b||

Fu ~a · ∇~u− 1
R

∆~u Fluid convection-diffusion ||~a||
h

+ 1
Rh2

F̃u ~u · ∇~a Fluid convection ||∇~a||

Btp ∇p Pressure gradient 1
h

−Bu ∇ · ~u Divergence 1
h

−Dtr ∇r Pseudo-pressure gradient 1
h

DB ∇ · ~B Divergence 1
h

Table 4.1: Definitions of discrete operators as they correspond to continuous oper-

ators.
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These matrices are similar in structure to those obtained from the exact

penalty formulation but feature significant differences. Whereas the exact penalty

led to block 3 × 3 linear systems, the inclusion of the Lagrange multiplier r leads

to block 4 × 4 systems. These systems feature two subsystems of saddle point

form, the fluid 2 × 2 block in the upper left, which corresponds to the linearized

discrete Navier-Stokes equations, and the electromagnetic 2 × 2 block in the lower

right, which corresponds to a mixed discretization of Maxwell’s equations. Because

a discrete version of the solenoidal condition ∇ · ~B = 0 is enforced explicitly in the

constraint DB = 0, the magnetic diffusion operator A does not include a penalty

but instead reflects the operator S
Rm
∇ × ∇×. In this case, A is a singular ma-

trix whose nullspace is the span of the discrete gradient (i.e. AQ−1
B Dt = 0 and

DQ−1
B A = 0) [20]. Similarly A+ Ã is singular as DQ−1

B (A+ Ã) = 0.

Because AP and AN are structurally similar to the matrices arising from the

exact penalty formulation of the MHD equations, we will focus on extending the

ideas developed in Chapter 3 to develop preconditioners for AP and AN in this

chapter. We focus first on the linear systems arising from a Picard linearization and

then build on these results for the linear systems arising from Newton’s method.

4.1 Block Preconditioners for the Picard System

As in Chapter 3, we are interested in developing block preconditioners for the

matrices AP and AN . We focus first on developing a preconditioner PP for the

Picard matrix AP . As with the exact penalty formulation, we have found it helpful

67



to reorder the unknowns with electromagnetic unknowns first, (B, r,u,p), yielding

AP =



A Dt −Zt 0

D 0 0 0

Z 0 F Bt

0 0 B 0


. (4.3)

Because A is a singular operator, AP does not admit a 4×4 block LU decomposition

in this form. In order to perform a block LU decomposition, we consider the block

3 × 3 matrix obtained from blocking the electromagnetic unknowns together; that

is, we define the 2× 2 electromagnetic subsystem

MP =

 A Dt

D 0

 , (4.4)

which is a discretization of Maxwell’s equations in mixed form. It has been shown

that when Maxwell’s equations in this form are discretized with Nédélec elements

for ~B and nodal elements for r, the discretization is stable and well posed, and thus

that MP is nonsingular [20]. Then, we can compute the block LU decomposition

AP =


MP −Z t 0

Z F Bt

0 B 0



=


I 0 0

ZM−1
P I 0

0 BX−1
P I




MP −Z t 0

0 XP Bt

0 0 YP

 , (4.5)
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where Z =

(
Z 0

)
and the Schur complements XP and YP are defined as

XP := F + ZM−1
P Z

t, (4.6)

YP := −BX−1
P Bt. (4.7)

Motivated by this decomposition, we investigate preconditioners of the form

PP =


M̂P −Z t 0

0 X̂P Bt

0 0 ŶP

 . (4.8)

The challenge is then to develop effective expressions for M̂P , X̂P , and ŶP .

4.1.1 Preconditioners for MP

Several block preconditioners have been developed for the discretized Maxwell’s

equations in mixed form [34, 35, 42, 63, 64]. In this literature, the only linear sys-

tems considered correspond to the case where S
Rm

= 1, but the results are easily

generalized to other values of S
Rm
. In this section, we discuss two block-diagonal

preconditioners for the Maxwell system [35,64]. Both preconditioners work by aug-

menting the singular (1,1) block to make it nonsingular and then approximating

the Schur complement associated with the Lagrange multiplier r. For each pre-

conditioner, we present an analysis of the eigenvalues of the preconditioned system

MPM̂−1
P .
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4.1.1.1 Mass Augmentation

For the first preconditioner we consider [35], the (1,1) block is augmented with

a scaled mass matrix, kQB, yielding A + kQB. We have introduced the parameter

k > 0, which does not appear in [35], to allow for flexibility in the augmentation.

The Schur complement associated with the augmented system is D(A+ kQB)−1Dt.

This operator can be simplified using the relation

DQ−1
B (A+ kQB) = kD, (4.9)

which implies that

D(A+ kQB)−1Dt = 1
k
DQ−1

B Dt. (4.10)

The operator DQ−1
B Dt is spectrally equivalent to a discrete Laplacian on the space

associated with r, Lr [24]. Thus, the Schur complement can be approximated by

1
k
Lr, and using this approximation, we define the block diagonal preconditioner

M̂P,Q :=

 A+ kQB 0

0 1
k
Lr

 . (4.11)

The eigenvalues of the preconditioned system MPM̂−1
P,Q have been analyzed

for the case S
Rm
≡ 1, k = 1 in [35]. We extend the analysis from [35] to the case where

S
Rm

and k are both arbitrary positive constants. In particular, we are interested in

the eigenvalues λ of the generalized eigenvalue problem A Dt

D 0


 B

r

 = λ

 kQB + A 0

0 1
k
Lr


 B

r

 . (4.12)
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Defining n = dim(B) and m = dim(r), this has a total of n+m eigenvalues. From

the bottom row of (4.12), we obtain r = k
λ
L−1
r DB. Substituting this into the top

row of (4.12) gives

λAB + kDtL−1
r DB = λ2(kQB + A)B. (4.13)

Through a discrete Hodge decomposition, B can be written as the sum of its discrete

curl-free part BA and its discrete divergence-free part BD (i.e. B = BA+BD, where

ABA = AtBA = 0 and DBD = 0). Then (4.13) can be rewritten as

λABD + kDtL−1
r DBA = λ2kQB(BA + BD) + λ2ABD. (4.14)

Let the norm induced by a symmetric positive definite matrix M be denoted ||·||M =

〈M ·, ·〉1/2. Taking the inner product of (4.14) with BA and using the relations

〈QBBA,BD〉 = 〈QBBD,BA〉 = 0, (4.15a)

〈DtL−1
r DBA,BA〉 = ||BA||2QB

, (4.15b)

proven in [35], we have

k||BA||2QB
= λ2k||BA||2QB

. (4.16)

Because there are at least m linearly independent vectors satisfying BA 6= 0, this

means that (4.12) has eigenvalues λ = ±1 each with multiplicity at least m.

Insight into the remaining n − m eigenvalues can be obtained by taking the

inner product of B̂D with (4.14), yielding

λk||BD||2QB
= (1− λ)||BD||2A. (4.17)
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From this equation, it is clear that 0 ≤ λ ≤ 1. These eigenvalues can be further

bounded using the discrete coercivity condition [35], which can be written as

Rm

S
||BD||2A ≥ α

(
Rm

S
||BD||2A + ||BD||2QB

)
, (4.18)

where the constant α ∈ (0, 1) is independent of both the mesh and the parameters

S and Rm. Applying this inequality to (4.17), we obtain the bound

α

α + kRm

S
(1− α)

≤ λ ≤ 1 (4.19)

for the remaining n−m eigenvalues.

Because α is independent of the mesh, the eigenvalues of the preconditioned

matrix MPM̂−1
P,Q are bounded independent of h as long as k is independent of

h. If we set k = S
Rm
, then the lower bound in (4.19) reduces to α, making the

preconditioner independent of the problem parameters Rm and S. Furthermore,

as t decreases, the lower bound approaches 1, meaning that the eigenvalues cluster

closer together. On the other hand, as k decreases, A + kQB is more dominated

by the singular operator A, and the component solve for this block may become

more difficult. In fact, A dominates A+ kQB as long as k � S
Rmh2

, and if k is large

enough that A does not dominate, then the lower bound in (4.19) must be O(αh2).

We will discuss practical considerations regarding component solves in more depth

in Section 4.1.4.

4.1.1.2 Grad Div Augmentation

The next preconditioner we consider [64] arises from an application of the aug-

mented Lagrangian methodology to Maxwell’s equations. This methodology comes
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from the idea of augmenting a constrained system so that its solution remains the

same but the numerical properties of the system are changed. This methodoloy has

been employed in many settings of optimization and constrained boundary value

problems [26, 32, 51]. Augmented Lagrangians have also been used to develop ef-

fective block preconditioners for linear systems arising from both Maxwell’s equa-

tions [63, 64] and the Navier-Stokes equations [6, 7].

In the context considered here, we augment the (1,1) block ofMP by the op-

erator DtW−1D, where W is a symmetric positive definite matrix. This corresponds

to scaling the second row ofMP by DtW−1 on the left and adding it to the first row.

Because DB = 0, this does not change the solution of the discrete system. Further-

more, if AB = 0, then DB 6= 0. Thus, the augmented (1,1) block A + DtW−1D

is nonsingular. Then a block LU decomposition of the augmented matrix exists,

and the Schur complement is D(A+DtW−1D)−1Dt. The Schur complement can be

simplified by observing that

DQ−1
B (A+DtW−1D) = (DQ−1

B Dt)W−1D, (4.20)

which implies that

D(A+DtW−1D)−1 = W (DQ−1
B Dt)−1DQ−1

B (4.21)

and furthermore that

D(A+DtW−1D)−1Dt = W. (4.22)

This analysis then suggests a preconditioner of the form

M̂P,AL :=

 A+DtW−1D 0

0 W

 . (4.23)
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The performance of this preconditioner is governed by the eigenvalues of the gener-

alized eigenvalue problem A Dt

D 0


 B

r

 = λ

 A+DtW−1D 0

0 W


 B

r

 . (4.24)

Observing that r = 1
λ
W−1DB from the second row, this system can be reduced to

AB + 1
λ
DtW−1DB = λ(A+DtW−1D)B. (4.25)

Writing B = BA + BD in terms of its discrete Hodge decomposition, this equation

can be rewritten as

ABD + 1
λ
DtW−1DBA = λABD + λDtW−1DBA. (4.26)

Taking the inner product of (4.26) with BA yields

1
λ
||DBA||2W−1 = λ||DBA||2W−1 . (4.27)

Because there are at least m linearly independent vectors satisfying BA 6= 0, this

means that (4.24) has eigenvalues λ = ±1 each with multiplicity at least m. The

remaining eigenvalues are obtained by taking the inner product of (4.26) with BD,

which yields

||BD||2A = λ||BD||2A. (4.28)

This gives λ = 1 with multiplicity n−m. Thus, the preconditioned systemMPM̂−1
P,AL

has n eigenvalues of λ = 1 and m eigenvalues of λ = −1, and this result is indepen-

dent of the mesh size h, the parameters S and Rm, and the matrix W .
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In this study we consider the case where W = 1
k
Qr, yielding a preconditioner

of the form

M̂P,GD :=

 A+ kDtQ−1
r D 0

0 1
k
Qr

 . (4.29)

Then the augmentation operator kDtQ−1
r D corresponds to the continuous operator

−k∇∇·. For a practical preconditioner, we replace Qr by its diagonal Q̄r. Although

the choice of k should not affect the performance of the block preconditioner, the

choice k = S
Rm

may be advantageous for the component solve. With this choice,

the discrete operator A+ kDtQ−1
r D is a discrete version of the continuous operator

S
Rm

(∇×∇×−∇∇·) = − S
Rm

∆. This is attractive since multigrid is known to work

well for the (vector) Laplacian.

4.1.2 An Approximation of XP

We turn our attention now to developing an approximation for XP as defined in

(4.6). We focus first on simplifying the term ZM−1
P Z t. We can derive an expression

for M−1
P by observing that

MP =

 I −DtQ−1
r

0 I


 A+DtQ−1

r D Dt

D 0

 . (4.30)

As shown above, the augmented matrix A+DtQ−1
r D is nonsingular, so the second

factor in (4.30) admits a block LU decomposition. Recalling from (4.22) that the

Schur complement associated with the augmented system simplifies to −Qr, we
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obtain

MP =

 I −DtQ−1
r

0 I


 I 0

D(A+DtQ−1
r D)−1 I


 A+DtQ−1

r D Dt

0 −Qr

 .

(4.31)

Each term can then be inverted explicitly, yielding

M−1
P =

 (A+DtQ−1
r D)−1 (A+DtQ−1

r D)−1DtQ−1
r

0 −Q−1
r


 I 0

−D(A+DtQ−1
r D)−1 I


 I DtQ−1

r

0 I

 .

(4.32)

Using this expression for M−1
P , we can obtain

ZM−1
P Z

t = Z(A+DtQ−1
r D)−1A(A+DtQ−1

r D)−1Zt. (4.33)

We proceed now by considering the continuous operator corresponding to

ZM−1
P Z t as defined in (4.33). This is the strategy we took to approximate the

velocity Schur complement for the exact penalty formulation in Chapter 3. Replac-

ing each discrete operator on the right-hand side of (4.33) with its corresponding

continuous operator from Table 4.1, we have that ZM−1
P Z t is a discretization of

K := S3

Rm

~b×
[
∇×

(
S
Rm
∇×∇×−∇∇·

)−1

∇×
]2

(· ×~b). (4.34)

This operator behaves differently in two and three dimensions, so we consider the

two cases separately.
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4.1.2.1 The Two-Dimensional Case

In two dimensions, the following relation holds:

∇×
(

S
Rm
∇×∇×−∇∇·

)
= − S

Rm
∆r∇× . (4.35)

This is obtained from the facts that ∇ × ∇ = 0 and that ∇ × ∇× = −∆r when

applied to a scalar function (see Section 2.1 for the two definitions of the curl in

2D; the subscript r in ∆r indicates a scalar Laplacian, as opposed to the vector

Laplacian ∆). Equation (4.35) implies that

∇×
(

S
Rm
∇×∇×−∇∇·

)−1

= −Rm

S
∆−1
r ∇×, (4.36)

which, in turn, yields

∇×
(

S
Rm
∇×∇×−∇∇·

)−1

∇× = −Rm

S
∆−1
r ∇×∇× = Rm

S
. (4.37)

Substituting this into the definition of K, we obtain

K = SRm
~b× (· ×~b) (4.38)

in two dimensions. This is exactly the same operator that appeared in the velocity

Schur complement for the exact penalty formulation in Section 3.1.1. Hence, we

know that this operator is readily discretized, and its corresponding discrete operator

can be written as

K := SRmQu

 diag(b2
y) −diag(bxby)

−diag(bxby) diag(b2
x)

 . (4.39)
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Given this discrete operator K, the Schur complement on the velocity space X̂P can

be approximated by

X̂P := F +K. (4.40)

As we know from Chapter 3, X̂P is similar in structure to a time-dependent convection-

diffusion operator or a convection-diffusion-reaction operator, so we can expect that

multigrid will perform well to approximate the action of X̂−1
P in the application of

the preconditioner.

4.1.2.2 The Three-Dimensional Case

In three dimensions, the operator

[
∇×

(
S
Rm
∇×∇×−∇∇·

)−1

∇×
]2

can be

simplified by observing that

(
S
Rm
∇×∇×−∇∇·

)−1

∇×∇× = Rm

S
I+Rm

S

(
S
Rm
∇×∇×−∇∇·

)−1

∇∇·. (4.41)

Now, observe that (
S
Rm
∇×∇×−∇∇·

)
∇ = −∇∆r, (4.42)

which implies that

(
S
Rm
∇×∇×−∇∇·

)−1

∇ = −∇∆−1
r . (4.43)

Substituting of this expression into (4.41) yields

(
S
Rm
∇×∇×−∇∇·

)−1

∇×∇× = Rm

S
I − Rm

S
∇∆−1

r ∇ · . (4.44)
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Using this relation, we can simplify the operator

[
∇×

(
S
Rm
∇×∇×−∇∇·

)−1

∇×
]2

to give

[
∇×

(
S
Rm
∇×∇×−∇∇·

)−1

∇×
]2

= Rm

S
∇×

(
S
Rm
∇×∇×−∇∇·

)−1

∇× .

(4.45)

Using the fact that the commutator

∇× ( S
Rm
∇×∇×−∇∇·)− ( S

Rm
∇×∇×−∇∇·)∇× (4.46)

is exactly zero, we obtain that the inverse operator ( S
Rm
∇ × ∇ × −∇∇·)−1 also

commutes with the curl, so that

( S
Rm
∇×∇×−∇∇·)−1∇× = ∇× ( S

Rm
∇×∇×−∇∇·)−1. (4.47)

With this relation, we have that

∇×
(

S
Rm
∇×∇×−∇∇·

)−1

∇× = ∇×∇× ( S
Rm
∇×∇×−∇∇·)−1 (4.48)

= Rm

S

[
I +∇∇ ·

(
S
Rm
∇×∇×−∇∇·

)−1
]
.

This can be further simplified using the relation

∇ ·
(

S
Rm
∇×∇×−∇∇·

)
= −∆r∇·, (4.49)

which implies that

∇∇ ·
(

S
Rm
∇×∇×−∇∇·

)−1

= −∇∆−1
r ∇ · . (4.50)

Furthermore, it can be shown that

I −∇∆−1
r ∇· = ∆−1(∆−∇∇·) = −∇×∆−1∇×, (4.51)
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using the fact that −∆ = ∇×∇×−∇∇·. Thus, we can rewrite

∇×
(

S
Rm
∇×∇×−∇∇·

)−1

∇× = −Rm

S
∇×∆−1∇× . (4.52)

Using results (4.45) and (4.45), K can be written as

K = SRm
~b×

(
∇×∆−1∇×

)
(· ×~b) (4.53)

or

K = SRm
~b×

(
I −∇∆−1

r ∇·
)

(· ×~b) (4.54)

in the three-dimensional setting

As written, neither expression (4.53) nor expression (4.54) can be used directly

to approximate XP because inverse operators appear in both of them. We now focus

on approximations of the operator ∇ × ∆−1∇× = I − ∇∆−1
r ∇· that can produce

a viable approximation of K. Toward this end, we note that if ∇ · (~u · ~b) ≈ 0,

then (I −∇∆−1
r ∇·) (~u · ×~b) ≈ ~u × ~b. Consequently, K can be approximated by

SRm
~b × (· × ~b), which is the same as what we obtained in the two-dimensional

case. On the other hand, if ∇ × (~u × ~b) ≈ 0, then K ≈ 0. Thus, we have two

conflicting approximations which depend on the character of the quantity ~u×~b. To

account for both of these extremes, we propose introducing a parameter β ∈ [0, 1]

and approximating

K ≈ βSRm
~b×

(
· ×~b

)
, (4.55)

such that β ≈ 1 if ∇ · (~u×~b) ≈ 0 and β ≈ 0 if ∇× (~u×~b) ≈ 0.

While there is no clear way to approximate∇·(~u×~b), the expression∇×(~u×~b)

is the convection term appearing in the induction equation (2.21c), and we can
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approximate its size based on qualities of the MHD equations. Thus, we focus on

deriving an expression for β such that β ≈ 0 when ∇ × (~u × ~b) ≈ 0 and β → 1

as ∇ × (~u × ~b) increases. Note that ∇ × (~u × ~b) = 0 in the diffusion-dominated

limit where Rm → 0 or when ~b = ~0. Furthermore, ∇ × (~u × ~b) becomes more

prominent in the convection-dominated limit where Rm →∞ or ||~b|| → ∞. Hence,

we want β to satisfy β → 0 when the induction equation is diffusion-dominated and

β → 1 when the induction equation is convection-dominated. In the discrete setting,

diffusion-dominated corresponds to the case where ||A|| � ||Zt||. This occurs when

S
Rmh2

� S||~b||
h

. Similarly, convection-dominated corresponds to S
Rmh2

� S||~b||
h

. Hence,

an expression for β that satisfies the desired conditions is

β∗ :=
Rmh||~b||

1 +Rmh||~b||
. (4.56)

In the diffusion-dominated limit, Rmh||~b|| � 1, so β∗ ≈ 0, and in the convection-

dominated limit, Rmh||~b|| � 1, so β∗ ≈ 1.

Thus, motivated by approximation (4.55), we approximate the Schur comple-

ment XP in three dimensions by

X̂P := F + βK, (4.57)

where K is a discretization of the operator SRm
~b × (· ×~b). We expect β∗ to be a

good choice for β and will investigate this further in Section 4.2.5. As in the two-

dimensional setting, K takes the form of a scaled mass matrix and can be written

K := SRmQu


diag(b2

y + b2
z) −diag(bxby) −diag(bxbz)

−diag(bxby) diag(b2
x + b2

z) −diag(bybz)

−diag(bxbz) −diag(bybz) diag(b2
x + b2

y)

 . (4.58)
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Hence, X̂P again has a desirable structure, and we expect multigrid to perform well

in approximating X̂−1
P .

4.1.3 A Commutator for ŶP

In both the two- and three-dimensional settings, the velocity Schur comple-

ment takes the form

X̂P = F + βK, (4.59)

where β is one in 2D and β ∈ [0, 1] in 3D. This is the same form as the velocity

Schur complement expression used for the exact penalty formulation in Chapter 3

(see Section 3.1.1). Hence, we follow the strategy developed in Section 3.1.2 to make

the approximation

YP ≈ −B(F + βK)−1Bt. (4.60)

Specifically, we make the continuous approximation

∇ · (F + βK) ≈ (Fp + αβKp)∇·, (4.61)

where α ∈ [0, 1] is a relaxation parameter included to compensate for the fact that

the commutator ∇·βK−βKp∇· is small only when βSRm||~b|| ≈ 0. A discretization

of (4.61) yields the relation

Q−1
p BQ−1

u (F + βK) ≈ Q−1
p (Fp + αβKp)Q

−1
p B, (4.62)

which, through some algebraic manipulation gives

−B(F + βK)−1Bt ≈ Qp(Fp + αβKp)−1BQ−1
u Bt. (4.63)
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As in Chapter 3, we define the operators Fp andKp following the strategy introduced

to develop the Least-Squares Commutator (LSC) Schur complement approximation

for the Navier-Stokes equations [25]. That is, FpQ
−1
p and KpQ

−1
p are computed one

row at a time, where each row is obtained by solving the least-squares problems

min||[BQ−1
u F ]j∗ − [FpQ

−1
p ]j∗B||Q−1

u
, (4.64a)

min||[BQ−1
u K]j∗ − [KpQ

−1
p ]j∗B||Q−1

u
. (4.64b)

This results in the definitions

Fp := BQ−1
u FQ−1

u Bt(BQ−1
u Bt)−1Qp, (4.65a)

Kp := BQ−1
u KQ−1

u Bt(BQ−1
u Bt)−1Qp. (4.65b)

Substituting these definitions into (4.63) gives the approximation

−B(F + βK)−1Bt ≈ −BQ−1
u Bt[BQ−1

u (F + αβK)Q−1
u Bt]−1BQ−1

u Bt. (4.66)

In practice, we can replace Qu by its diagonal Q̄u for ease of computation [62].

Then the action of the inverse of this approximation requires only two solves with

the scaled Laplacian operator BQ̄−1
u Bt. The Fourier analysis used to specify α for

the exact penalty formulation (see Section 3.1.2) applies directly here. Thus, we

propose using the value

α∗ :=
1 + βH2h2

p
(~a·~b)2
||~a||2 +R2h2

p||~a||2[
1 + βH2h2

p
(~a·~b)2
||~a||2

]2

+R2h2
p||~a||2

(4.67)

for the parameter α. This value can be generated automatically based on the prob-

lem parameters R,Rm, and S, as well as the mesh size for the pressure variable hp

and the previous iterates in the nonlinear iteration ~a and ~b.
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4.1.4 Computational Tasks

With expressions for M̂P , X̂P , and ŶP , we have two block preconditioners for

the Picard matrix AP , which we write

PP,Q =



̂A+ kQB 0 −Zt 0

0 1
k
L̂r 0 0

0 0 X̂P Bt

0 0 0 ŶP


, (4.68)

PP,GD =



̂A+ kDtQ̄−1
r D 0 −Zt 0

0 1
k
Q̄r 0 0

0 0 X̂P Bt

0 0 0 ŶP


, (4.69)

where ̂A+ kQB, L̂r, and ̂A+ kDtQ̄−1
r D are approximations of A + kQB, Lr, and

A + kDtQ̄−1
r D. Because Q̄r is diagonal, the action of its inverse can be applied

explicitly. The operator X̂P in both cases is an approximation of F + βK, where

β ≡ 1 in 2D and β ∈ [0, 1] in 3D. The operator ŶP is then defined as

ŶP := − ̂BQ̄−1
u Bt[BQ̄−1

u (F + αβK)Q̄−1
u Bt]−1 ̂BQ̄−1

u Bt, (4.70)

where ̂BQ̄−1
u Bt is an approximation of BQ̄−1

u Bt. The application of both precondi-

tioners require the action of the inverse of the perturbed convection-diffusion matrix

F + βK and the scaled Laplacian BQ̄−1
u Bt. Furthermore, PP,Q requires the action

of the inverse of the Laplacian Lr. In practice, we replace all these operators these

by one V-cycle of algebraic multigrid.
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The remaining computational task in applying these preconditioners is approx-

imating the inverse of the operators A + kQB and A + kDtQ̄−1
r D. Because of the

prominence of the singular operator A in these expressions, standard multigrid using

traditional smoothers and coarsening algorithms may not necessarily perform well.

That is, traditional multigrid smoothers such as Jacobi and Gauss-Seidel smoothers

rely on errors being well represented in the residual of the discrete operator [41], and

this may not be the case for A+kQB and A+kDtQ̄−1
r D. To see this, we decompose

an error e into its curl-free and divergence-free parts as e = eA + eD, where AeA = 0

and De = 0. Then the residuals can be written as

rQ := (A+ kQB)e = AeD + kQB(eA + eD), (4.71)

rGD := (A+ kDtQ̄−1
r D)e = AeD + kDtQ̄rDeA. (4.72)

If k � S
Rmh2

, then ||A|| � ||kQB|| and rQ ≈ AeD. As discussed in Section 4.1.1.1, we

require k � S
Rmh2

in order for the eigenvalues ofMPM̂−1
P,Q to be mesh-independent.

Thus, in the context of the preconditioner PP,Q, rQ ≈ AeD, meaning that the curl-

free part of the error eA is not represented in the residual rQ. Several sophisticated

multigrid algorithms have been proposed for operators with the same structure as

A + kQB (see, e.g., [39, 41, 54] and the references therein). These operators arise

from the discretization of weak formulations of the form

(∇× ~B,∇× ~C) + (σ ~B, ~C) (4.73)

with edge elements for ~B. An algebraic multigrid method was proposed for such

operators by generating a coarse-grid hierarchy that preserves the kernel of the curl-

curl operator on each level [54]. The prolongation operator for this hierarchy can
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be derived from the prolongator used in coarsening a nodal discretization of the

auxiliary scalar weak formulation

(∇r,∇q) + (σr, q). (4.74)

Improved prolongation operators have since been proposed that lead to better scal-

ability with respect to mesh refinement [8, 41].

If k � S
Rm

, then ||A|| � ||kDtQ̄r|| and rGD ≈ AeD. Similarly, if k � S
Rm

, then

||A|| � ||kDtQ̄r|| and rGD ≈ kDtQ̄rDeA. Thus, unless k is comparable to S
Rm

, rGD

does not represent both components of the error. Because neither the performance

of M̂P,GD as a preconditioner for MP nor the approximation of XP,GD depend on

k, we can safely choose k in preconditioner PP,GD such that both components of the

error e are represented in the residual rGD. A convenient choice of k is then k = S
Rm

,

so that ||A|| ≈ ||kDtQ̄r||. In fact, when k = S
Rm
, A + kDtQ̄−1

r D approximates the

vector Laplacian − S
Rm

∆ = S
Rm

(∇×∇×−∇∇·). In this case, traditional multigrid

should work well to approximate the inverse of A+ kDtQ̄−1
r D.

4.2 Block Preconditioners for the Newton System

Many of the same strategies we used to develop preconditioners for the Picard

matrix AP can be applied to the Newton matrix AN , but they should be adapted to

account for the presence of the additional operators F̃ , Ã, and Z̃. As we did for the

Picard matrix in Section 4.1, we begin by reordering the unknowns as (B, r,u,p)
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and blocking the electromagnetic unknowns together so we can write

AN =


MN −Z t 0

Z + Z̃ F + F̃ Bt

0 B 0

 , (4.75)

where MN is defined to be

MN =

 A+ Ã Dt

D 0

 . (4.76)

This corresponds to a discretization of Maxwell’s equations in mixed form including

the additional convection operator S∇× (~a× ~B). A block LU decomposition of AN

then suggests a block preconditioner of the form

PN =


M̂N −Z t 0

0 X̂N Bt

0 0 ŶN

 , (4.77)

where M̂N is a preconditioner for MN , and

X̂N ≈ F + F̃ + (Z + Z̃)M−1
N Z

t, (4.78)

ŶN ≈ −BX−1
N Bt. (4.79)

We proceed by discussing how to adapt each of the approximations M̂P , X̂P , and

ŶP from the Picard preconditioner for use with the Newton system.

4.2.1 Preconditioners for MN

Because we are not aware of any preconditioners developed specifically for

Maxwell’s equations with a convection term, we adapt the two preconditioners dis-
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cussed above for the matrix MN . Specifically, we propose the two preconditioners

M̂N,Q =

 A+ Ã+ kQB 0

0 1
k
Lr

 , (4.80)

M̂N,GD =

 A+ Ã+ kDtQ−1
r D 0

0 1
k
Qr

 . (4.81)

In each case, the only difference from the Picard case is that we have included the

convection term Ã in the (1,1) block of the preconditioner.

The eigenvalues of the preconditioned system MNM̂−1
N,Q can be analyzed by

modifying the arguments of [35] that we discussed in Section 4.1.1.1. Using the fact

that if ABA = 0, then Bt
AÃ = 0 it can be shown that MNM̂−1

N,Q has eigenvalues

λ = ±1 each with multiplicity m. The remaining n − m eigenvalues satisfy the

relationship

λk||BD||2QB
= (1− λ)

(
||BD||2A + 〈BD, ÃBD〉

)
(4.82)

with BD satisfying DBD = 0. Because no coercivity condition is guaranteed for

the operator Ã, this cannot be simplified further as we did with (4.17), but we

expect the remaining eigenvalues to behave well. We analyze a generalization of

this preconditioner in more depth for the MHD kinematics system in Chapter 5. In

Section 5.3, we empirically demonstrate that the ideal version of this preconditioner

is mesh-independent for a class of systems that includes MN .

The eigenvalues of the preconditioned systemMNM̂−1
N,GD can be analyzed by

modifying the arguments of [64] that we discussed in Section 4.1.1.2. Using the fact

that if ABA = 0, then Bt
AÃ = 0, the same argument as in Section 4.1.1.2 shows
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that MNM̂−1
N,GD has n eigenvalues λ = 1 and m eigenvalues λ = −1.

4.2.2 Approximations of XN and YN

The major difference in developing preconditioners for the Picard and Newton

systems arises in approximating XN because the extra convection term Ã is embed-

ded in the exact Schur complement F + F̃ + (Z + Z̃)M−1
N Z t. Since this was also

the case for the exact penalty formulation in Chapter 3, we build on the techniques

explored in Section 3.2 to approximate XN here. Keeping with this strategy, we

assume that Z̃ does not play a prominent role in the velocity Schur complement and

focus on approximating the operator ZM−1
N Z t.

Using a decomposition analogous to (4.32) for MN , we can compute

ZM−1
N Z

t = Z(A+ Ã+DtQ−1
r D)−1(A+ Ã)(A+ Ã+DtQ−1

r D)−1Zt. (4.83)

As in Section 4.1.2, we simplify this discrete operator by considering its correspond-

ing continuous operator

K̃ :=S2~b×∇×
[
S
Rm
∇×∇×−S∇× (~a× ·)−∇∇·

]−1 [
S
Rm
∇×∇×−S∇× (~a× ·)

]
[
S
Rm
∇×∇×−S∇× (~a× ·)−∇∇·

]−1

∇× (· ×~b) (4.84)

In the two-dimensional setting, the following relationship holds:

[
S
Rm
∇×∇×−S∇× (~a× ·)−∇∇·

]
∇× = −∇×

(
S
Rm

∆r + S~a×
)
. (4.85)

Using this fact, it can be shown that

K̃ = S2~b×∆r

(
S
Rm

∆r + S~a×∇×
)−1

(· ×~b) (4.86)
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in the two-dimensional setting. Employing a similar strategy to that developed in

Section 3.2, we can simplify this expression by approximating

∆r

(
S
Rm

∆r + S~a×∇×
)−1

≈ γ, (4.87)

where γ ∈ [0, 1]. We should have γ ≈ 1 when the operator S
Rm

∆r + S~a × ∇× is

diffusion-dominated and γ ≈ 0 when it is convection-dominated. A discretization of

S
Rm

∆r + S~a ×∇× defined for the unknown r is diffusion-dominated when S
Rmh2r

�

S
||~a||hr, where hr is the mesh size on the magnetic pseudo-pressure space. Thus, an

expression for γ with the desired behavior is

γ∗ :=
1

1 +Rmhr||~a||
, (4.88)

which is exactly the same expression derived for the exact penalty formulation in

Section 3.2.

In the three-dimensional setting, we can use similar techniques to those in

Section 4.1.2.2 to show that

[
S
Rm
∇×∇×−S∇× (~a× ·)

] [
S
Rm
∇×∇×−S∇× (~a× ·)−∇∇·

]−1

= −∇×∆−1∇×.

(4.89)

Furthermore, it can be shown that

∇×
[
S
Rm
∇×∇×−S∇× (~a× ·)−∇∇·

]−1

=
[
S
Rm
∇×∇×−S~a×∇×−∇∇·

]−1

∇×.

(4.90)

Thus, the three-dimensional version of K̃ reduced to

K̃ = S2~b×
[
S
Rm
∇×∇×−S~a×∇×−∇∇·

]−1

∇×∇×
(
−∇×∆−1∇×

)
(· ×~b).

(4.91)
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As in Section 4.1.2.2, we can approximate (−∇×∆−1∇×) (~u×~b) by β(~u×~b) with

β ∈ [0, 1], and a good choice of β given by β∗ as defined in (4.56). Then we have

K̃ ≈ βS2~b×
[
S
Rm
∇×∇×−S~a×∇×−∇∇·

]−1

∇×∇× (· ×~b). (4.92)

We can make a similar approximation to (4.87) here and assume that

[
S
Rm
∇×∇×−S~a×∇×−∇∇·

]−1

∇×∇× ≈ γRm

S
I, (4.93)

where γ should be chosen as

γ∗ :=
1

1 +Rmh||~a||
. (4.94)

Because the approximation (4.93) is defined for vector arguments, we do not use

the scalar mesh size hr here. Furthermore, because −∇∇· arose originally from an

arbitrary augmentation of the Maxwell system, we do not incorporate this term in

the expression for γ∗.

Given the above analysis, we have the approximation

K̃ ≈ βγ S
Rm

~b× (· ×~b) (4.95)

in both the two- and three-dimensional cases, with β = 1 in 2D. Then, an approxi-

mation for the velocity Schur complement XN can be written as

X̂N := F + F̃ + βγK, (4.96)

where K is defined as in (4.39) and (4.58).

Given that the Newton velocity Schur complement X̂N is of the same structure

as the Picard velocity Schur complement X̂P , we use the same approximation ŶP
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for the pressure Schur complement in both cases. As in Section 3.2, we only need

to adjust the parameter α∗ to incorporate γ. This then defines two preconditioners

for the Newton system which we write

PN,Q =



̂A+ Ã+ kQB 0 −Zt 0

0 1
k
L̂r 0 0

0 0 X̂N Bt

0 0 0 ŶN


, (4.97)

PN,GD =



̂A+ Ã+ kDtQ̄−1
r D 0 −Zt 0

0 1
k
Q̄r 0 0

0 0 X̂N Bt

0 0 0 ŶN


. (4.98)

The operator X̂N in both cases is an approximation of F + F̃ + βγK, where β ≡ 1

in 2D, β ∈ [0, 1] in 3D, and γ ∈ [0, 1]. The operator ŶN is defined as

ŶN := − ̂BQ̄−1
u Bt[BQ̄−1

u (F + F̃ + αβγK)Q̄−1
u Bt]−1 ̂BQ̄−1

u Bt. (4.99)

4.2.3 Computational Results

In this section, we evaluate the performance of the preconditioners for solving

a set of benchmark problems. Our implementation is in the Trilinos framework de-

veloped at Sandia National Laboratories [38] using the Teko package to construct

the block preconditioners and a GMRES Krylov solver from AztecOO [37]. For

component solves, we use algebraic multigrid from the ML package [27], with in-

complete factorization smoothers coming from IFPACK. Specifically, for solves on
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the velocity spaces we use one V-cycle of AMG with two pre- and post-sweeps of

a Schwarz domain decomposition smoother with ILU(0) on each subdomain and

one level of overlap between subdomains. For solves on the pressure and magnetic

pseudo-pressure spaces we use one V-cycle of AMG with five sweeps of a Gauss-Seidel

smoother. We reiterate that, because of the large null space of A, the augmented

magnetics blocks tend to be more challenging to approximate than the other oper-

ators appearing in our preconditioners. Thus, we use more computationally intense

solvers for the operators associated with B. For the mass matrix augmented blocks

A+kQB and A+Ã+kQB, we use an auxiliary-space algebraic multigrid as discussed

in Section 4.1.4. Specifically, we use ten V-cycles of the multigrid solver detailed

in [41] as it is implemented in ML. For the grad div augmented blocks A+kDtQ̄−1
r D

and A+ Ã+kDtQ̄−1
r D, we use five V-cycles of AMG with two pre- and post-sweeps

of a Schwarz domain decomposition smoother with ILU(2) on each subdomain and

one level of overlap between subdomains. The number of V-cycles for each of these

was tuned experimentally to balance the number of linear iterations and the cost of

an application to minimize total computation time.

All problems were run on the Red Sky computer at Sandia National Laborato-

ries. For all problems we use a stable Q2-Q1 finite element pair for the velocity and

pressure. We use first order Nédélec elements for the magnetic field and Q1 elements

for the Lagrange multiplier r. We use uniform grids for every problem. The relative

residual tolerance is 10−5 for the nonlinear iteration and 10−6 for the GMRES inner

iteration. We apply GMRES without any restarting. When considering the perfor-

mance of the preconditioners, reported linear iteration counts are averaged over all
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Rm = 0.01 Rm = 0.1 Rm = 1

Rm = 10 Rm = 100 Rm = 1000

Figure 4.1: Velocity streamlines for the two-dimensional MHD lid driven cavity

problem with R = 100, S = 1, and various values of Rm.

nonlinear iterations up to a maximum of fifty nonlinear iterations. We consider two-

and three-dimensional versions of a lid driven cavity in the presence of a magnetic

field (adapted from the fluid problem in [24]) as our test problems.

4.2.4 Two-Dimensional MHD Lid Driven Cavity

In this section, we explore the robustness of our preconditioners on the two-

dimensional lid driven cavity as detailed in Section 3.3.1. We consider the square

domain [−1
2
, 1

2
]2. We impose no-flow conditions on the bottom, left, and right sides
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Rm 0.01 0.1 1 10 100 1000

Picard 4 4 6 8 27 > 50

Newton 3 4 4 4 7 22

Table 4.2: Number of nonlinear iterations needed to obtain convergence for the two-

dimensional MHD lid driven cavity problem with R = 100 on a 100 × 100 element

mesh.

of the domain and a horizontal velocity of 1 on the top. The tangential component

of the magnetic field is specified on the boundary ∂Ω as

~B × ~n = (−1, 0)× ~n. (4.100)

All results in this section were obtained on a fixed 100 × 100 element mesh, un-

less otherwise noted. Whereas we considered multiple values of the fluid Reynolds

number R in Chapter 3, we consider only one value R = 100 here. We have ob-

served that similar trends in preconditioning results can be seen for different values

of R. Consistent with the results of Chapter 3, larger Reynolds numbers tend to

lead to larger iteration counts, but with approximately the same dependence on the

magnetic Reynolds number Rm. Furthermore, we keep the coupling coefficient S

constant at S = 1. The degree of coupling in the problem can then be controlled

by varying Rm, as illustrated in Figure 4.1. This figure shows that for small values

of Rm, the velocity solution is approximately the same as what would be obtained

for the pure fluid lid driven cavity problem. As Rm increases, the coupling between

the hydrodynamics and electromagnetics becomes stronger and the solution devi-
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ates more from the pure fluid case. The number of nonlinear iterations needed to

obtain these results are reported for both a Picard iteration and Newton’s method

in Table 4.2.

4.2.4.1 Picard Iteration

In this section, we consider the performance of the two preconditioners PP,Q

and PP,GD on the linear systems arising in a Picard iteration. Because the choice of

the parameter α appearing in the pressure Schur complement approximation (4.70)

was analyzed at length for the exact penalty formulation in Chapter 3, we consider

here only the case where α = α∗, as defined in (4.67). In our experience with this

benchmark problem, consistent with the findings of Chapter 3, the choice of α = α∗

tends to result in better iteration counts than α = 1.

To assess the dependence of the two preconditioners on the augmentation pa-

rameter k, we report iteration counts with several values of k in Table 4.3. For

each preconditioner, we consider a small, medium, and large value of the magnetic

Reynolds number (i.e. Rm = 0.01, 1, 100). From the table, it is clear that the per-

formance of PP,Q depends strongly on the parameter k. As k increases, the number

of iterations needed for convergence also increases. This is consistent with the eigen-

value bound (4.19) forMPM̂−1
P,Q, which shows that as k increases, the lower bound

on the eigenvalues of the preconditioned system approaches zero. Furthermore, this

effect becomes more pronounced as Rm increases. Some increase in iteration counts

can be seen for PP,Q when k is small. This seems to be due to the fact that when k
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PP,Q PP,GD

@
@
@
@
@
@

k

Rm
0.01 1 100 0.01 1 100

0.01 48 36 40 × × 34

0.1 37 29 36 × 31 46

1 35 28 62 × 31 ×

10 36 36 152 39 40 ×

100 46 71 413 39 × ×

1000 57 133 944 49 × ×

Table 4.3: Average GMRES iterations required for convergence with PP,Q and PP,GD

on the Picard linearization of the two-dimensional MHD lid driven cavity problem

with various values of k. ‘×’ indicates no convergence due to breakdown of the

preconditioner. Bold entries correspond to the choice k = S
Rm

.
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is small, the augmented operator A+kQB is more dominated by the singular matrix

A and thus more difficult for the multigrid solver. While using PP,Q with k = S
Rm

does not always give the best results (e.g. k = 0.1 converges faster than k = 0.01

for Rm = 100), this choice does tend to give close to optimal iteration counts. Thus,

while fine tuning k may result in a slight improvement in performance, the choice

of k = S
Rm

results in a convenient and effective preconditioner.

For the preconditioner PP,GD, the choice of k = S
Rm

is always best among the

values in Table 4.3. Values of k close to S
Rm

also tend to give good results, but when

k is not close to S
Rm

the preconditioner breaks down. This appears to be because

when k is not close to S
Rm

, the two terms in the residual rGD, defined in (4.72), are

not balanced. Thus, one component of the error, either eA or eD, is not represented

in the residual, and the multigrid solver we use for this block no longer works.

Based on these observations, we set k = S
Rm

in comparing PP,Q and PP,GD.

The two preconditioners are compared for a range of Rm in Table 4.4. In terms

of iteration counts, PP,Q is a slightly better preconditioner for moderate Rm, while

PP,GD is better for very small or very large Rm, but in general both preconditioners

are comparable. The most significant difference is at Rm = 1000 where PP,GD

requires 64% of the iterations that PP,Q does. In terms of computation time, the

application PP,Q is always cheaper than PP,GD on this mesh.

To compare the preconditioners in terms of parallel scalability, we perform

a weak scaling study for the case of Rm = 100. That is, we consider 50 × 50,

100× 100, 200× 200, 400× 400, and 800× 800 element discretizations on 1, 4, 16,

64, and 256 processors respectively, keeping the number of unknowns per processor
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PP,Q PP,GD

Rm Iterations Time (s) Iterations Time (s)

0.01 46 11 39 13

0.1 36 8 38 12

1 28 6 31 11

10 25 6 28 10

100 40 9 34 13

1000 85 21 54 23

Table 4.4: Average GMRES iterations and time in seconds required for convergence

with PP,Q and PP,GD on the Picard linearization of the two-dimensional MHD lid

driven cavity problem with various values of Rm.
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Figure 4.2: Weak parallel scaling results for the two-dimensional MHD lid driven

cavity problem with Picard linearization. Average GMRES iterations on the left

and average linear solve time per nonlinear iteration on the right.
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at approximately 20, 000. We report average iteration counts and computation times

per nonlinear step for these experiments in Figure 4.2. The results are compared

against a pure domain decomposition preconditioner using a SuperLU [21] ILUTP

factorization with a drop tolerance of 0.0001 and a zero pivot threshold of 0.01

(labeled DD in the scaling plots). From the plots, it can be seen that the grad

div augmented preconditioner PP,GD scales fairly well, with only slight growth in

iteration count and computation time as the mesh is refined. The mass matrix

augmented preconditioner PP,Q does not perform quite as well, but its performance

is superior to the domain decomposition preconditioner.

4.2.4.2 Newton’s Method

In this section, we consider the performance of the preconditioners PN,Q and

PN,GD on the linear systems arising in Newton’s method. Again, because both γ

and α were studied in Chapter 3, we set γ = γ∗ and α = α∗ as defined in (4.88) and

(4.67).

We investigate the dependence of the two preconditioners on the parameter k

in Table 4.5. As with the Picard iteration, the grad div augmented preconditioner

PN,GD achieves its lowest iteration counts with k = S
Rm

and breaks down if k is not

close to S
Rm

. For the mass matrix augmented preconditioner PN,Q, we again see a

degradation in performance as k increases, but we can now also see breakdown in

the preconditioner when k is too small. This is especially problematic in the case

of Rm = 100 since the preconditioner breaks down for the ideal choice k = 0.01.

100



PN,Q PN,GD

@
@
@
@
@
@

k

Rm
0.01 1 100 0.01 1 100

0.01 49 × × × × 43

0.1 38 32 × × 33 53

1 36 30 × × 33 ×

10 38 35 138 40 42 ×

100 47 58 359 39 × ×

1000 58 105 873 50 × ×

Table 4.5: Average GMRES iterations required for convergence with PN,Q and

PN,GD on the Newton linearization of the two-dimensional MHD lid driven cavity

problem with various values of k. ‘×’ indicates no convergence due to breakdown of

the preconditioner. Bold entries correspond to the choice k = S
Rm

.
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This effect seems to be because we are using a solver designed for A + kQB to

approximate the action of the inverse of A + Ã + kQB. The multigrid algorithm

designed in [41] creates a coarse-grid hierarchy that preserves the null space of A,

but because Ã does not have the same null space, this methodology does not extend

to A + Ã + kQB if Ã dominates. It appears that the solver works when k is large,

because in that case the nonsingular operator kQB is non-negligible. However, as

noted in Section 4.1.1.1, when kQB is not negligible compared to A, the lower bound

in (4.19) must be O(αh2), meaning that the eigenvalues ofMNM̂−1
N,Q must depend

on the mesh. Thus, in order to use preconditioner PN,Q for systems with large Rm,

the parameter k must be very large and depend on the mesh. This makes PN,Q an

impractical preconditioner that does not scale if an auxiliary-space Maxwell solver

is used to approximate the action of the inverse of A + Ã + kQB. We are unaware

of solvers designed for matrices of the form A + Ã + kQB, and the arguments of

Section 4.1.4 imply that traditional multigrid will not work for this matrix. Hence,

the construction of a practical version of PN,Q is beyond the scope of this study.

With the choice k = S
Rm
, we compares the two preconditioners in Table 4.6.

We again see that PN,Q cannot be used for problems with large magnetic Reynolds

number. The grad div augmented preconditioner, on the other hand, performs

fairly well with comparable iteration counts to the Picard preconditioner PP,GD up

to Rm = 100. In general, PN,GD performs very well regardless of Rm. The result for

Rm = 1000 is still favorable considering that this is a very strongly coupled problem

and a Picard iteration does not converge within 50 steps on this problem. Weak

parallel scaling results are plotted for PN,GD on the Rm = 100 problem in Figure 4.3,
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PP,Q PP,GD

Rm Iterations Time (s) Iterations Time (s)

0.01 48 12 37 13

0.1 39 9 34 13

1 29 7 32 12

10 × × 29 10

100 × × 43 15

1000 × × 104 41

Table 4.6: Average GMRES iterations and time in seconds required for convergence

with PN,Q and PN,GD on the Newton linearization of the two-dimensional MHD lid

driven cavity problem with various values of Rm.
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Figure 4.3: Weak parallel scaling results for the two-dimensional MHD lid driven

cavity problem with Newton’s method. Average GMRES iterations on the left and

average linear solve time per nonlinear iteration on the right.
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Rm = 0.1, z = 0 Rm = 1, z = 0 Rm = 10, z = 0 Rm = 100, z = 0

Rm = 0.1, z = 1
4 Rm = 1, z = 1

4 Rm = 10, z = 1
4 Rm = 100, z = 1

4

Figure 4.4: Velocity streamlines at cross-sections z = 0 and z = 1
4

for the three-

dimensional MHD lid driven cavity problem with R = 100, S = 1, and various values

of Rm.

where one can see similar scaling behavior as was demonstrated by PP,GD on the

Picard system.

4.2.5 Three-Dimensional MHD Lid Driven Cavity

In this section, we investigate the performance of our preconditioners on a

three-dimensional lid driven cavity problem. We consider the domain [−1
2
, 1

2
]3 with

no-flow conditions imposed on the bottom, front, back, left, and right sides of the

domain and a horizontal velocity of 1 on the top. An external magnetic field is
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Rm 0.01 0.1 1 10 100

Picard 2 2 3 5 16

Newton 2 2 3 3 5

Table 4.7: Number of nonlinear iterations needed to obtain convergence for the

three-dimensional MHD lid driven cavity problem with R = 100 on a 40× 40× 40

element mesh.

applied by imposing

~B × ~n = (−1, 0)× ~n (4.101)

on the boundary. We consider the case where R = 100 and S = 1 with various values

of Rm to control the degree of physical coupling. All results in this section were

obtained on a fixed 40×40×40 element mesh, unless otherwise noted. Some solutions

to this problem are plotted in Figure 4.4. The number of nonlinear iterations needed

to obtain these results are reported for both a Picard iteration and Newton’s method

in Table 4.7. Similar trends to the two-dimensional case can be seen in Figure 4.4.

For low magnetic Reynolds number, the solution is dominated by one large vortex,

and as Rm increases, the vortex is pushed upward in the domain. The character

of streamlines at the two cross-sections z = 0 and z = 1
4

is very similar for small

Rm, but as Rm increases, three-dimensional effects become more prominent, and the

streamlines at the two cross-sections become less similar. We do not consider Rm

larger than 100 in the three-dimensional setting because this requires more resolution

than we have the computational resources for in this study.
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PP,Q PP,GD

@
@
@
@

@
@

Rm

β
0 1 β∗ 0 1 β∗

0.01 31 31 31 25 25 25

0.1 28 28 28 23 23 23

1 25 22 24 25 24 25

10 61 43 44 54 35 39

100 282 152 99 243 81 61

Table 4.8: Average GMRES iterations required for convergence with PP,Q and PP,GD

on the Picard linearization of the three-dimensional MHD lid driven cavity problem

with various values of β.

4.2.5.1 Picard Iteration

In this section, we consider the performance of the two preconditioners PP,Q

and PP,GD on the linear systems arising in a Picard iteration. We are interested

primarily in the parameter β here. Letting α = α∗ and t = S
Rm

, we investigate

Rm 0.01 0.1 1 10 100

β∗ 0.0001 0.0012 0.0123 0.1111 0.5556

Table 4.9: Values of β∗ at the second step of a Picard iteration.
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Figure 4.5: Weak parallel scaling results for the three-dimensional MHD lid driven

cavity problem with Picard linearization. Average GMRES iterations on the left

and average linear solve time per nonlinear iteration on the right.

the performance of PP,Q and PP,GD for three different values of β in Table 4.8.

Motivated by the analysis of Section 4.1.2.2, we use β = 0, which is the best choice

if ∇ × (~u ×~b) = 0; β = 1, which is the best choice if ∇ · (~u ×~b) = 0; and β = β∗

as defined in (4.56), which we derived to make the preconditioner robust. The

particular values used for β∗ at the second nonlinear step are reported in Table 4.9.

From Table 4.8, it is clear that β = 0 never leads to better convergence than either

β = 1 or β = β∗. The choice β = 1 yields slightly better performance that β = β∗

for Rm = 1 and Rm = 10, but for the strongly coupled case of Rm = 100, β = β∗

yields a dramatic improvement over β = 1, with a 35% reduction in iterations for

PP,Q and a 25% reduction for PP,GD. Because β∗ gives comparable results to β = 1

for moderate Rm and improves performance for difficult problems with large Rm,

we consider β∗ the best of the three values of β considered.

In Figure 4.5, we investigate the weak parallel scalability of the two precon-
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ditioners with β = β∗ for the case of Rm = 100. We compute with 5 × 5 × 5, 10 ×

10× 10, 20× 20× 20, and 40× 40× 40 finite element discretizations on 1, 8, 64, and

512 processors, respectively. This keeps approximately 4, 000 degrees of freedom on

each processor. The results are again compared against a pure domain decompo-

sition preconditioner using a SuperLU ILUTP factorization. In terms of iteration

count, both PP,Q and PP,GD and scale very well, with iteration counts decreasing as

the number of processors increases. In terms of computation time, we see growth for

both preconditioners with PP,GD performing better. Because the iteration counts

scale well, we expect that better scaling can be achieved for the computation time by

fine-tuning the component solves. While the domain decomposition preconditioner

is competitive in terms of computation time, its poor scaling indicates that PP,Q

and PP,GD will be more advantageous for more refined problems.

4.2.5.2 Newton’s Method

In this section, we consider the performance of the preconditioners PN,Q and

PN,GD on the linear systems arising in Newton’s method. Table 4.10 shows iteration

counts for the two preconditioners with the three values β = 0, 1, and β∗. The

results are consistent with the results for the two-dimensional Newton problem in

that PN,Q breaks down for large Rm while PN,GD performs well for all values of Rm

considered. Table 4.10 also reiterates what we found for the choice of β in the three-

dimensional Picard problem; that is, both β = 1 and β = β∗ tend to be good choices,

but β = β∗ leads to improved performance for large Rm. Weak scaling results are
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PN,Q PN,GD

@
@
@
@

@
@

Rm

β
0 1 β∗ 0 1 β∗

0.01 31 31 31 25 25 25

0.1 23 23 23 23 23 23

1 26 23 26 27 25 27

10 × × × 50 34 37

100 × × × 298 83 72

Table 4.10: Average GMRES iterations required for convergence with PN,Q and

PN,GD on the Newton linearization of the three-dimensional MHD lid driven cavity

problem with various values of β.
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Figure 4.6: Weak parallel scaling results for the three-dimensional MHD lid driven

cavity problem with Newton’s method. Average GMRES iterations on the left and

average linear solve time per nonlinear iteration on the right.
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plotted in Figure 4.6 for PN,GD with β = β∗ and Rm = 100. This figure again

shows that iteration counts decrease as the mesh is refined. While the computation

time required by PN,GD is greater than that required by a domain decomposition

preconditioner at this scale, it demonstrates better scaling and can be improved by

the tuning component solvers.

4.3 Conclusion

In this chapter, we have presented a series of block preconditioners for the

linear systems arising from both Picard and Newton linearizations of a Lagrange

multiplier formulation of the stationary MHD equations. We employed two pre-

conditioners for Maxwell’s equations in mixed form to handle the electromagnetics

saddle point matrix associated with the unknowns ~B and r. The first precondi-

tioner augments the singular curl-curl matrix A with a scaled mass matrix kQB.

We used an existing auxiliary-space multigrid method as a solver for the operator

A + kQB. The second Maxwell preconditioner augments A with the augmented

Lagrangian operator kDtQ̄−1
r D and standard AMG can be used for the augmented

operator. We experimentally investigated the choice of the scaling parameter k and

concluded that the choice of k = S
Rm

is convenient and effective for both precondi-

tioners applied to the Picard system. When applied to the Newton system, mass

matrix augmentation requires that k depend on the mesh size h, and PN,Q becomes

an impractical preconditioner. PN,GD, on the other hand, performs well on linear

systems arising from both Picard and Newton linearizations.
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We extended the analysis of Chapter 3 to develop approximations to the Schur

complements on the velocity and pressure spaces, X and Y . In the two-dimensional

setting, we could use exactly the same approximations as we did for the exact

penalty formulation. In the three-dimensional setting, the dimension-dependent

character of the curl operator forced us to make an additional approximation within

the velocity Schur complement. We parameterized this approximation with the

new parameter β and provided a formula for a choice β∗ based on whether the

induction equation is convection- or diffusion-dominated. Our experimental results

demonstrated that β∗ is an effective choice for β, especially for very large magnetic

Reynolds number. Out results showed that both preconditioners are robust with

respect to mesh refinement and the magnetic Reynolds number for the Picard system

in both two and three dimensions. The grad div augmented preconditioner PN,GD

is scalable and robust for two- and three-dimensional Newton systems. The grad

div augmented preconditioners are appealing because they rely only on standard

multigrid solvers (we used ILU and Gauss-Seidel smoothers for this study). The

mass matrix augmented preconditioners required a non-standard coarsening strategy

for the block associated with ~B. The version proposed for the Newton system may

become practical if a solver is developed for operators of the type A+ Ã+ kQB.
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Chapter 5: A Stochastic Approach to Uncertainty in the Equations

of MHD Kinematics

In this chapter, we consider the kinematics equations, which govern the influ-

ence of the fluid flow on the magnetic field. These equations constitute a component

block within fully coupled MHD simulations such as the Lagrange multiplier for-

mulation discussed in Section 2.3 and Chapter 4. Furthermore, solution of these

equations is also required in operator splitting techniques that alternate between

solving the Navier-Stokes equations and the kinematics equations [57]. The kine-

matics equations are also of particular interest in the field of kinematic dynamo

theory, in which the ratio of the Lorentz force to inertia is assumed to be small [45].

In this case, the velocity can be prescribed, and the generation of the magnetic

energy induced by the flow can be studied. Kinematic simulations can be used to

model MHD generators, in which plasmas act as conductors to generate electric

currents, as well as natural dynamos such as the sun and the geodynamo. They are

of primary interest in investigating whether a given flow profile can sustain dynamo

action.

When the velocity field is prescribed, this simplifies the MHD equations, but

it may also introduce some epistemic uncertainty into the model. The flow prop-
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erties of the fluid may not be known on the interior of the domain. Additionally,

there are aspects of the physical model that motivate incorporation of small-scale

uncertainty. For instance, the large-scale mean flow of the earth’s outer core cannot

account for the magnitude of the earth’s magnetic field. In geodynamo theory, it is

proposed that small-scale turbulent behavior can give rise to a large-scale magnetic

field through the α-effect [18]. Furthermore, the distribution of material properties

may be uncertain in physical applications. When multiple fluids are present, such

as when multiple liquid metals are mixing together, the magnetic resistivity will not

be homogeneous throughout the domain and may vary over orders of magnitude.

Because the resistivity can have a strong influence on such physical systems, includ-

ing changing the topology of the magnetic field, we are interested in how uncertain

heterogeneous distributions of the resistivity may affect the induced magnetic en-

ergy.

In this chapter, we explore these issues by mathematically simulating uncer-

tainty in both the velocity field and the resistivity within the MHD kinematics

model. In this model, we treat the uncertain quantities as random fields correlated

in space. We will obtain mean and variance data through Monte-Carlo simulation.

In addition, because each Monte-Carlo trial requires the solution of linear systems

with randomly varying dynamics, we develop and explore efficient and robust solvers

for discrete kinematics systems.

Thus, we consider two issues: the impact of uncertainty of velocity and resis-

tivity on statistical properties of the magnetic fields modeled by the equations of

MHD kinematics, together with efficient computational algorithms for computing
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these quantities. The remainder of the chapter is structured as follows. In Sec-

tion 5.1, we will derive a finite element formulation for the deterministic equations

of MHD kinematics. Section 5.2 is devoted to the incorporation of uncertainty into

the model. In this section, we describe a means of modeling the uncertainty in

both the resistivity and the velocity field and apply the model to representative test

problems. In Section 5.3, we propose, analyze, and test a block preconditioner for

solving the linear systems arising in our model. Finally, we will draw conclusions in

Section 5.4.

5.1 A Finite Element Formulation

The steady-state kinematics of MHD are governed by Maxwell’s equations

∇×
(

1

µ
~B

)
= ~j, (5.1a)

∇ · (ε ~E) = ρc, (5.1b)

∇× ~E = ~0, (5.1c)

∇ · ~B = 0, (5.1d)

and Ohm’s law

~j = σ( ~E + ~u× ~B), (5.2)

on a domain D ⊂ Rd, d = 2 or 3 (plus appropriate boundary conditions). The

unknowns here are the magnetic induction ~B, the electric field ~E, and the current

density ~j; the charge density ρc can be regarded as an auxiliary variable obtained

after computing ~E. We will regard the fluid velocity ~u as given. For many appli-
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cations, the electric permittivity ε and the magnetic permeability µ do not vary

significantly for different fluids [29], so we let ε and µ be fixed scalar constants over

the whole domain. However, because the heterogeneities of the electric conductivity

σ can be large for different liquid metals, we consider σ to be a prescribed, not

necessarily constant function on D.

We consider the boundary conditions

~B × ~n = ~q, (5.3a)

~E · ~n = k, (5.3b)

on ∂D. We choose these conditions over the alternative (prescribing ~B · ~n and

~E×~n) because the requirement on the tangential component of ~B is then the natural

Dirichlet condition for the curl-conforming edge elements employed to discretize ~B.

A standard simplification of equations (5.1) and (5.2) is obtained by elimi-

nating the variables ~j and ~E, yielding the following equations for the kinematics of

MHD in terms of ~B:

∇×
(
η

µ
∇× ~B

)
−∇× (~u× ~B) = ~0, (5.4a)

∇ · ~B = 0, (5.4b)

on D, where η = 1/σ is the magnetic resistivity. A boundary condition such as (5.3a)

is required to complete this system. After ~B is obtained from solving equations (5.4),

~E,~j, and ρc can be recovered.

As stated, the equations (5.4) are over-determined because there are d + 1

equations in d unknowns. In order to make the system well-defined without changing
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the solution ~B, we introduce a Lagrange multiplier r (we refer to this variable as

the magnetic pseudo-pressure), and consider the equations

∇×
(
η

µ
∇× ~B

)
−∇× (~u× ~B) +∇r = ~0, (5.5a)

∇ · ~B = 0, (5.5b)

with the boundary conditions (5.3a) and r = 0 on ∂D. It can be shown that (5.5)

admits the same solution ~B as (5.4) by taking the divergence of equation (5.5a).

This yields ∆r = 0 on D, which, with the zero Dirichlet condition on r, implies that

r = 0 on D.

For developing a weak formulation for this problem, we consider the spaces

V0 = {~C ∈ H(curl,D)|~C × ~n = ~0 on ∂D}, (5.6a)

V~q = {~C ∈ H(curl,D)|~C × ~n = ~q on ∂D}, (5.6b)

Q0 = H1
0 (D). (5.6c)

Multiplying the equations (5.5) by test functions ~C ∈ V0 and s ∈ Q0, and integrating

by parts, we obtain the following weak formulation: Find ( ~B, r) ∈ V~q×Q0 such that

a( ~B, ~C) + c( ~B, ~C) + b(~C, r) = 0, (5.7a)

b( ~B, s) = 0, (5.7b)
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for all (~C, s) ∈ V0 ×Q0, where the bilinear forms are defined as

a( ~B, ~C) =

(
η

µ
∇× ~B,∇× ~C

)
, (5.8a)

c( ~B, ~C) = −
(
~u× ~B,∇× ~C

)
, (5.8b)

b( ~B, s) = ( ~B,∇s). (5.8c)

By integrating by parts the divergence of the magnetic induction ~B, we limit the

required regularity of ~B. This allows the model to include magnetic fields ~B with

strong singularities arising from re-entrant corners, which is not feasible for ~B ∈

H1(Ω)d [16].

We discretize the domain into a shape-regular partition Th of quadrilaterals

or hexahedra {K}. Letting P`(K) be the space of polynomials of degree ` on K

and N`(K) the space of Nédélec vector polynomials of the first kind [50] (with

P`−1(K)d ⊂ N`(K) ⊂ P`(K)d), we consider the finite dimensional spaces

V h
0 = {~Ch ∈ V0|~Ch|K ∈ N`(K), K ∈ Th}, (5.9a)

V h
~q = {~Ch ∈ V~q|~Ch|K ∈ N`(K), K ∈ Th}, (5.9b)

Qh
0 = {sh ∈ Q0|sh|K ∈ P`(K), K ∈ Th}. (5.9c)

Then the discrete formulation is as follows: Find ( ~Bh, rh) ∈ V h
~q ×Qh

0 such that

a( ~Bh, ~Ch) + c( ~Bh, ~Ch) + b(~Ch, rh) = 0, (5.10a)

b( ~Bh, sh) = 0, (5.10b)

for all (~Ch, sh) ∈ V h
0 ×Qh

0 .

Let B be the vector containing the coefficients of ~Bh with respect to a basis

for V h
0 , and let r be the vector containing the coefficients of rh with respect to a
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Figure 5.1: Velocity profiles (a), induced magnetic fields (b), and error || ~Bh − ~B||2

(c) for the Hartmann problem.

basis for Qh
0 . Then, the finite element solution of the weak formulation (5.10) can

be computed by solving a linear system of saddle point structure, A+N Dt

D 0


 B

r

 =

 f

0

 . (5.11)

In this equation, f includes boundary data, A is a discretization of the magnetic

diffusion operator ∇ × ( η
µ
∇ × ·), N is a discretization of the magnetic convection

operator ∇× (~u×·), D is the discrete (negative) divergence operator, and Dt is the

discrete gradient.

We now demonstrate some physical aspects of these equations by applying

them to two deterministic example problems. All simulations throughout the chap-

ter are implemented using the deal.II finite element library [4] with first order

Nédélec elements for B and bilinear elements for r (i.e. ` = 1 in (5.9)).
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5.1.1 Example Problem: Hartmann Flow

The Hartmann problem [18] is a classic two-dimensional test problem modeling

the flow of an electrically conducting fluid through a channel in the presence of an

externally applied transverse magnetic field. We pose this problem on the domain

[−0.5, 0.5]2 in the presence of the external magnetic field ~B = (0, 1). The coupled

MHD equations admit the exact analytic solution

~u =
(

cosh(H/2)−cosh(Hy)
cosh(H/2)−1

, 0
)
, (5.12a)

~B =
(
Hν sinh(Hy)−2 sinh(H/2)y

cosh(H/2)−1
, 1
)
, (5.12b)

for this problem, where H =
√

1
νη

is the Hartmann number and ν is the kinematic

viscosity of the fluid. Representative images of the components of ~u and ~B in the

x-direction are plotted in Figure 5.1 for η = 10−2 and µ = 1 with ν = 10−1 and

10−2. The plots show that smaller viscosity leads to thinner boundary layers in

both ~u and ~B and that the magnitude of the induced magnetic field increases with

the viscosity. This simple example demonstrates that fairly small changes in the

velocity field can lead to large changes in the magnetic field.

We pose a kinematic version of the Hartmann problem by prescribing the

velocity defined by (5.12a) over the domain D and imposing ~B × ~n = (0, 1) × ~n

on the boundary ∂D. The exact solution ~B to this kinematic problem is then

given by (5.12b). Applying the finite element formulation (5.10), we obtain the

approximation ~Bh to ~B. To validate the deterministic finite element formulation,

we plot the convergence of the error || ~Bh − ~B||2 as h is refined in Figure 5.1.
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(a) ~u (b) ~Bh with η = 10−3 (c) ~Bh with η = 10−2 (d) ~Bh with η = 10−1

Figure 5.2: Velocity profile and induced magnetic fields for deterministic MHD eddy

problem.

5.1.2 Example Problem: MHD Eddy

The physical effects of the resistivity η are demonstrated by a two-dimensional

benchmark problem considered in [45], which models the effect of an eddy on a

magnetic field. We prescribe the velocity field

~u(x, y) =

 cos(πx)
π

32y(1− 4y2)3

− sin(πx)(1− 4y2)4

 (5.13)

on the domain Ω = [−1
2
, 1

2
]2 and a vertical magnetic field on the boundary with

the condition ~B × ~n = (0, 1) × ~n on ∂D. Figure 5.2 demonstrates the effect of

the resistivity on the induced magnetic field ~B for three values of η on a 64 × 64

element mesh. In this figure, we have plotted the velocity profile defined by (5.13)

as well as the magnetic field lines for the solution ~Bh with η = 10−3, 10−2, and

10−1. The figure demonstrates that two competing physical processes are at play

in the kinematics model. First, the boundary condition corresponds to an external

magnetic field applied to the domain. With infinite resistivity, the velocity field
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plays no role in the kinematics equations, so the solution is determined solely by

the boundary conditions. In this case, this results in the uniform vertical magnetic

field ~B = (0, 1). For large resistivity, the solution is dominated by this process.

For η = 10−1 for instance, the solution appears to be a perturbation of the field

~B = (0, 1). The second physical process is governed by the effect of the velocity field

on the magnetic field. For small resistivity, the kinematic equations are dominated

by the convective term ∇× (~u× ~B) which tends to pull the magnetic field lines in

the direction of the velocity field. As the resistivity approaches zero, the topology

of the magnetic field then approaches that of the velocity field. For this problem,

this means that the magnetic field lines should look more like concentric ellipses as

η decreases. This is demonstrated for η = 10−3, where the magnetic field is nearly

“frozen” in the fluid in the center of the domain. Hence, these simulations show

that qualitative characteristics of the magnetic topology can indicate the relative

resistivity of the system. The more the field lines appear to be pulled by the velocity

field (i.e. for this problem, the more swirling in the magnetic field), the smaller the

resistivity.

5.2 MHD Kinematics with Uncertain Data

Because the equations of MHD kinematics may involve uncertain quantities,

we propose a formulation that incorporates uncertainty. In particular, we consider

the cases where the resistivity η or the velocity field ~u are uncertain. (Because the

permeability µ does not vary significantly in applications, we will take it as fixed.
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Equivalently, we can regard any uncertainty in µ as being absorbed into η.) In this

section, we present mathematical representations for each quantity that incorporate

uncertainty by treating η = η(ω) and ~u = ~u(ω) as random variables. This yields

bilinear forms depending on random variables, i.e.

a( ~B, ~C, ω) =

(
η(ω)

µ
∇× ~B,∇× ~C

)
, (5.14a)

c( ~B, ~C, ω) = −
(
~u(ω)× ~B,∇× ~C

)
, (5.14b)

defining a stochastic weak formulation. Thus, by the Doob-Dynkin Lemma, the solu-

tion ( ~Bh, rh) is also a random variable defined on the same sample space [53]. Hence,

each realization of η(ω) and ~u(ω) yields the weak formulation: Find ( ~Bh(ω), rh(ω)) ∈

V h
~q ×Qh

0 such that

a( ~Bh(ω), ~Ch, ω) + c( ~Bh(ω), ~Ch, ω) + b(~Ch, rh(ω)) = 0, (5.15a)

b( ~Bh(ω), sh) = 0, (5.15b)

for all (~Ch, sh) ∈ V h
0 × Qh

0 . The solution of any realization of this problem can be

obtained by solving a linear system of the form A(ω) +N(ω) Dt

D 0


 B(ω)

r(ω)

 =

 f

0

 . (5.16)

Given this framework, we can employ a Monte-Carlo simulation to obtain statistical

properties of ~Bh. We repeatedly generate independent random instances of η(ω) and

~u(ω) and solve for ~Bh(ω). We then estimate the mean and standard deviation of ~Bh

by the (pointwise) sample mean, which we denote µ( ~Bh)(~x), and the sample standard

deviation, which we denote σ( ~Bh)(~x). A canonical error estimate for Monte-Carlo
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simulation [10] states that for N trials, the (pointwise) stochastic error for each

component of µ( ~Bh) satisfies

|E(Bi(~x, ω))− (µ( ~Bh)(~x))i| ≈ 2
(σ( ~Bh)(~x))i√

N
(5.17)

with 95% confidence. Thus, we obtain with 95% confidence the error result

||E( ~B(~x, ω))− µ( ~Bh)(~x)||2 ≈ 2
||σ( ~Bh)(~x)||2√

N
. (5.18)

5.2.1 Uncertain Velocity

In this section, we consider the case where fluctuations are allowed in the ve-

locity field. We assume that a mean flow, ~u0, is known and represent the fluctuations

by a random variable, ~u∗(ω), with mean zero. We thus express ~u as the sum of its

deterministic and random parts as

~u(ω) = ~u0 + ~u∗(ω). (5.19)

Rather than letting each component of ~u∗ be an independent scalar random variable,

we derive two expressions for ~u∗ from assumptions about physical properties of the

fluid, either that the fluctuation is irrotational or that the fluid is incompressible.

This results in a natural coupling of the components of ~u∗. We explore the effects

of an uncertain velocity field on the MHD kinematics system in Sections 5.2.1.1

and 5.2.1.2 by applying fluctuations of these types to the Hartmann flow problem

detailed in Section 5.1.1.
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5.2.1.1 Test Problem 1: Irrotational Fluctuations

If the random fluctuations of the fluid are irrotational (∇× ~u∗ = 0), then ~u∗

is a conservative vector field and can be written as the gradient of a scalar potential

φ, i.e.

~u∗ = ∇φ. (5.20)

Under this assumption, only the random scalar field φ needs to be specified in order

to define ~u. We assume the potential field to vary continuously and to be spatially

correlated. These assumptions are satisfied if we assume φ to be a stationary random

field with the covariance function defined by

C(~x, ~y) = σ2e−
||~x−~y||2

` . (5.21)

Here, σ2 is the variance and ` is a correlation length. Clearly, the covariance is

greatest when the Euclidean distance between the points ~x and ~y is small. In effect,

this covariance function generates fluctuations in φ on a scale proportional to `.

If φ has mean zero, then φ can be approximated by a truncated Karhunen-

Loève (KL) expansion [31]

φ(~x, ξ) ≈
M∑
i=1

√
λiφi(~x)ξi, (5.22)

where φi(~x) and λk are the eigenfunctions and eigenvalues of C. We will assume the

random variables {ξi} to be independently and uniformly distributed in [−
√

3,
√

3]M .

We choose M large enough to capture 95% of the total variance [9]; that is,

M∑
i=1

λi > 0.95|D|σ2. (5.23)
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(a) ux(y) at x = 0 (b) uy(y) at x = 0

Figure 5.3: Profiles of ux and uy along the line x = 0 for two random instances with

σ2 = 5.0× 10−3, together with the mean profile.

We note that the correlation length affects this requirement, with small ` leading to

large M .

We let the mean velocity profile ~u0 be given by the deterministic Hartmann

profile (5.12a) and introduce fluctuations by letting ~u be defined by (5.19) and (5.22)

using the covariance function (5.21). We let η ≡ 10−2, ν = 10−2, and ` = 0.1. This

correlation length corresponds to fairly small-scale fluctuations in the velocity field.

We compare the effects of three choices for the variance, σ2 = 5.0×10−3, 6.0×10−3,

and 7.0× 10−3. The increase in σ2 corresponds to an increase in the magnitude of

the fluctuations. We present results for this problem discretized on a 64×64 element

mesh. Sample random instances of ~u with σ2 = 5.0×10−3 are plotted in Figure 5.3.

In this figure, the profiles of the components of ~u, ux and uy, are plotted along the

line x = 0 and compared to the mean values (u0)x and (u0)y. The corresponding
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(a) Bx(y) at x = 0 (b) By(y) at x = 0

Figure 5.4: Profiles of Bx and By along the line x = 0 for two random instances

with σ2 = 5.0× 10−3, together with the deterministic solution obtained from ~u0.

solutions ~Bh are plotted in Figure 5.4. These are compared to the deterministic

solution obtained with ~u ≡ ~u0. Both the random data ~u and the corresponding

solutions demonstrate high frequency oscillations around the deterministic profiles.

Some results for the Monte-Carlo simulation after 10,000 trials are plotted in

Figure 5.5. In this figure, the profiles of the mean solution µ( ~Bh) are plotted along

the line x = 0 for the three values of σ2. This is compared to the deterministic

solution ~Bh with ~u ≡ ~u0. The Euclidean norm of the pointwise variance of the

solution ||σ( ~Bh)(~x)||2 is bounded by 0.28 for σ2 = 5.0×10−3, 0.38 for σ2 = 6.0×10−3,

and 0.51 for σ2 = 7.0× 10−3. By (5.18), this implies that the maximum (pointwise)

stochastic error for this problem is approximately 0.01. From Figure 5.5, it can

be seen that on average, irrotational fluctuations in the velocity field result in a

slight growth in the magnitude of the induced magnetic field as compared to the
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(a) Bx(y) at x = 0 (b) By(y) at x = 0

Figure 5.5: Profiles of Bx and By for Test Problem 1, plotted along the line x = 0

for the mean µ( ~Bh) with σ2 = 5.0× 10−3, 6.0× 10−3, and 7.0× 10−3.

deterministic case. This growth increases as σ2 increases.

5.2.1.2 Test Problem 2: Incompressible Flow

If the fluid is assumed to be incompressible (i.e. ∇ · ~u = 0) and ~u0 is incom-

pressible, then ~u∗ must also be incompressible (see (5.19). Thus, in this case, we

can prescribe ~u∗ to be the curl of a potential φ. In two dimensions, φ is a scalar,

and in three dimensions φ is a vector. We consider only the 2D case in this study.

Then, ~u∗ can be written as

~u∗ =

(
∂φ

∂y
,−∂φ

∂x

)
, (5.24)

and the random variable ~u∗ can be computed from the scalar random variable φ. As

above, we let φ be defined by a KL expansion (5.22) with the covariance function C.

Again, we let η ≡ 10−2, ν = 10−2, and ` = 0.1 and consider σ2 = 5.0 × 10−3, 6.0 ×
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(a) Bx(y) at x = 0 (b) By(y) at x = 0

Figure 5.6: Profiles of Bx and By for Test Problem 2, plotted along the line x = 0

for the mean µ( ~Bh) with σ2 = 5.0× 10−3, 6.0× 10−3, and 7.0× 10−3.

10−3, and 7.0× 10−3.

Mean solution profiles obtained from the Monte-Carlo simulation after 10,000

trials are plotted in Figure 5.6. The normed standard deviation ||σ( ~Bh)(~x)||2 is

bounded by 0.49 for σ2 = 5.0 × 10−3, 1.23 for σ2 = 6.0 × 10−3, and 3.17 for σ2 =

7.0×10−3, corresponding to a maximum stochastic error of about 0.06. Compared to

the case of irrotational fluctuations, both the standard deviation of the solution and

the magnitude of the induced magnetic field are greater when non-zero vorticity is

permitted in the fluctuations. The difference in the magnitude of the magnetic field

is fairly significant between the two test problems, suggesting that fluid vorticity

plays a large role in generating magnetic fields. Thus, when small-scale rotational

behavior is present in a fluid, simulations based on the mean flow of the fluid may

not capture important magnetic effects.
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5.2.2 Uncertain Resistivity

In this section, we consider the case where just the resistivity η is a random field

over the domain. This is motivated by the fact that multiple fluids may be present in

a physical system and there may be some epistemic uncertainty in the distribution

of the fluids throughout the domain. In practical applications, the resistivity can

range over orders of magnitude between two fluids. For example, in aluminum

electrolysis, the resistivity of liquid aluminum is approximately 4.0×10−3Ωm, while

the resistivity of the fluid bath from which the aluminum is reduced is approximately

2.9× 10−7Ωm [29]. We propose defining

η(~x, ω) = 10β(~x,ω), (5.25)

where β is a random scalar field yet to be specified. This expression both emphasizes

the variability in the order of magnitude of η and guarantees that η > 0. We first

use this to investigate the effects of uncertain resistivity on the MHD eddy problem

discussed in Section 5.1.2, for two different choices of β. We then consider a three-

dimensional extension of the MHD eddy problem

5.2.2.1 Test Problem 3: Piecewise constant β

In this section, we assume that the domain is occupied by multiple immiscible

fluids with different resistivities. In this setting, we let β be a piecewise constant

scalar field over the domain. We partition the domain D into n subdomains P =

{Dk}nk=1 and let β be a constant on each of these subdomains. If we assume the
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(a) P1 (b) P2 (c) P3

Figure 5.7: Domain partitionings considered in Test Problem 3.

(a) η = 10−1 on D1

η = 10−3 on D2

(b) η = 10−3 on D1

η = 10−1 on D2

Figure 5.8: Instances of ~Bh obtained with partitioning P2 for Test Problem 3.

resistivity to be uncertain on each of the subdomains, then we can let β(·, ~ξ)|Dk
= ξk

where ~ξ = [ξ1, . . . , ξn]t is a random vector.

We investigate the effect of a piecewise constant resistivity by considering the

MHD eddy problem, defining ~u by (5.13) on the domain [−1
2
, 1

2
]2. We consider three

partitionings of the domain:

P1 = {[−1
2
, 1

2
]2}, (5.26)

P2 = {[−1
4
, 1

4
]2, [−1

2
, 1

2
]2\[−1

4
, 1

4
]2}, (5.27)

P3 = {[−1
2
, 0)× [0, 1

2
], [0, 1

2
]× [0, 1

2
], [−1

2
, 0)× [−1

2
, 0), [0, 1

2
]× [−1

2
)}, (5.28)
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(a) η = 10−3 on D1, D4

η = 10−1 on D2, D3

(b) η = 10−3 on D2, D3

η = 10−1 on D1, D4

(c) η = 10−3 on D1, D3

η = 10−1 on D2, D4

(d) η = 10−3 on D3, D4

η = 10−1 on D1, D2

Figure 5.9: Instances of ~Bh obtained with partitioning P3 for Test Problem 3.

as shown in Figure 5.7. We let each ξi be independently and uniformly distributed

in the interval [−1.0,−3.0]. Defining η by (5.25), we obtain E(η) ≡ η0 ≈ 2.1 ×

10−2 independent of the partitioning. With partitioning P1, the resistivity is a

random constant over the domain. Thus, the solutions plotted in Figure 5.2 are

representative instances of magnetic fields that may be induced for this partitioning.

With partitioning P2, the resistivity in the center of the domain may differ from the

resistivity near the boundaries, and this can result in in different kinds of behavior

than seen for a constant resistivity. Two examples of the kind of behavior we may

obtain are plotted in Figure 5.8. In the first example, the resistivity is much larger in

the center subdomain, and one can see that the behavior of the magnetic field is more

characteristic of a larger resistivity in the center. Near the boundary of D, the field

lines are similar to those obtained with η = 10−3 on the entire domain. Around the

interface of the two subdomains, the character of the field lines shifts. The second

example in Figure 5.8 shows the opposite case, where the resistivity is smaller in

the center subdomain. In this case, one can see behavior characteristic of a large
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(a) ~Bh with η ≡ η0 (b) µ( ~Bh) for P1 (c) µ( ~Bh) for P2 (d) µ( ~Bh) for P3

Figure 5.10: Deterministic and mean magnetic field lines compared for Test Problem

3.

resistivity near the boundary of D and behavior characteristic of a small resistivity

in the center. Figure 5.9 depicts some examples of magnetic fields that can result

from partitioning P3. As with partitioning P2, it can be seen that the character

of the field lines in a particular subdomain are characteristic of the resistivity on

that subdomain, and at subdomain interfaces there is a shift in the character of

the magnetic field. Figures 5.8 and 5.9 demonstrate not only that a discontinuous

resistivity can produce profoundly different solutions than a constant resistivity, but

also that the resistivity in a particular region can be approximated by considering

the character of the field lines in that region.

Some results for the Monte-Carlo simulation after 10,000 trials on a 64 × 64

element mesh are shown in Figures 5.10 and 5.11. The field lines for the deterministic

case where η = E(η(ω)) are compared to those obtained from the mean µ( ~Bh)(~x)

in Figure 5.10, and the norm of the standard deviation ||σ( ~Bh)||2 is plotted in

Figure 5.11. Note that the probability that the resistivity is greater than the mean

resistivity (Pr(η > η0) ≈ 0.33) is less than the probability that the resistivity is less
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(a) P1 (b) P2 (c) P3

Figure 5.11: Euclidean norm of standard deviation ||σ( ~Bh)||2 for Test Problem 3.

than the mean resistivity (Pr(η < η0) ≈ 0.67). Despite this, the mean field lines

in each example resemble ones that would arise with η > η0. Because this effect

occurs for partitioning P1, it appears that it is due primarily to the variability of

η. When the resistivity is allowed to vary for this test problem, the mean magnetic

field is dominated by the qualities of magnetic fields induced by larger resistivities.

Figure 5.10 shows that the large-scale behavior of the mean magnetic field is very

similar for the three partitionings, although some small-scale differences are present.

For partitioning P2, the behavior in the center subdomain is consistent with a slightly

smaller resistivity than in the rest of the domain. With partitioning P3, the field

lines appear to correspond to a larger resistivity around the origin where the four

subdomains meet. The results suggest that variability in the resistivity has a more

significant effect on the mean magnetic field than the presence of multiple fluids with

different resistivities. Although multiple resistivities may result in random instances

of ~B that differ significantly from a constant resistivity, as shown in Figures 5.8 and

5.9, the means do not differ dramatically from solutions for constant resistivities,

with the main differences arising at subdomain interfaces.
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Figure 5.11 shows the norm of the standard deviation of ~Bh over the domain.

Because ||σ( ~Bh)(~x)||2 ≤ 0.09, we know from (5.18) that the stochastic error is

bounded as

||E( ~Bh(~x, ω))− µ( ~Bh)(~x)||2 ≤ 2
0.09√
10, 000

= 1.8× 10−3 (5.29)

with 95% confidence. From the figure, it can be seen that the standard deviation

is affected by the partitioning of the domain. In this case, the standard deviation

increases as the number of subdomains increases. The average standard deviation

over the domain for partitionings P1, P2, and P3 is approximately 2.9× 10−2, 3.0×

10−2, and 4.1× 10−2. Furthermore, the standard deviation tends to be larger along

the subdomain interfaces.

5.2.2.2 Test Problem 4: β as a truncated KL expansion

In this section, we assume that the resistivity of the system varies continuously

over space. This situation may arise when fluids can blend together, such as when

different liquid metals are combined into an alloy. This scenario can be modeled by

supplying β with the spatially correlated covariance function C of (5.21). If β has

mean β0(~x), then the truncated KL expansion for β can be written as

β(~x, ξ) ≈ β0(~x) +
M∑
i=1

√
λiβi(~x)ξi. (5.30)

We assume the random variables {ξi} to be independently and uniformly distributed

in [−
√

3,
√

3]M and choose M large enough to capture 95% of the total variance.

We consider the domain [−1
2
, 1

2
]2 and prescribe the velocity field (5.13) with η

defined by (5.25). We let β have mean β0 = −2.0 and variance σ2 = 0.4. This defines
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(a) ` = 0.1 (b) ` = 1.0 (c) ` = 10.0

Figure 5.12: Random realizations of η for Test Problem 4.

the mean of η to be E(η(ω)) = η0 ≈ 1.5×10−2 (note that η0 6= 10E(β)). We discretize

the problem on a 64 × 64 element mesh. We consider three choices of correlation

length ` = 0.1, 1.0, and 10.0 resulting in truncated KL expansions of length 1834, 39,

and 2. Representative realizations of β are plotted in Figure 5.12 for these choices.

The plots demonstrate that as ` increases the resistivity varies over a smaller range

for a given realization. Realizations with ` = 0.1, thus, represent heterogeneous

systems in which fluids with disparate resistivities have not been mixed well. As `

increases the realizations become more homogeneous in resistivity, corresponding to

later stages in a mixing process. With ` = 10.0, η varies over a very small range

in a particular instance, and in this respect it is similar to the constant resistivity

obtained for Test Problem 3 with partitioning P1. Thus, large correlation lengths

correspond to an uncertain final resistivity at the end of a mixing process.

Figures 5.13 and 5.14 show some results of the Monte-Carlo simulation after

10,000 trials. Figure 5.13 shows the magnetic field lines associated with the mean

of ~Bh with each value of `. These results are compared with the solution to the

deterministic problem for η ≡ η0. It can be seen that with ` = 0.1, the mean field
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(a) ~Bh with η ≡ η0 (b) µ( ~Bh) with ` = 0.1(c) µ( ~Bh) with ` = 1.0(d) µ( ~Bh) with ` = 10.0

Figure 5.13: Deterministic and mean magnetic field lines compared for Test Problem

4.

(a) ` = 0.1 (b) ` = 1.0 (c) ` = 10.0

Figure 5.14: Euclidean norm of standard deviation ||σ( ~Bh)||2 for Test Problem 4.

lines are very similar to the field lines obtained from the deterministic problem. As

` increases, the field lines differ more from the deterministic solution. In fact, the

behavior exhibited for larger ` appears to result from a resistivity greater than the

mean resistivity η0; that is, as ` increases, the magnetic field lines are drawn more

toward the infinite resistivity solution ~B = (0, 1).

Figure 5.14 shows the norm of the standard deviation of ~Bh over the domain.

Because ||σ( ~Bh)(~x)||2 ≤ 0.05, the stochastic error is bounded above by 1.0 × 10−3

with 95% confidence. From this figure, it can be seen that the standard deviation
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increases as ` increases. For small `, the mean solution is not only more similar to

the deterministic solution, but the standard deviation is also smaller. This suggests

that the induced magnetic field is more responsive to variations in the resistivity

of homogeneous systems than to small-scale variations in the resistivity of hetero-

geneous systems. Although the resistivity can vary over a very large range in a

heterogeneous system, the fluctuations within random instances have little effect on

the induced magnetic field. On the other hand, profound differences from the de-

terministic case are seen when the resistivity of a homogeneous system is uncertain.

This is consistent with the results obtained for Test Problem 3, where we found

that variability in the resistivity had stronger effects on the mean solution than the

presence of multiple resistivities.

5.2.2.3 Test Problem 5: Uncertain Resistivity in 3D

In this section, we examine the behavior of solutions obtained for three-

dimensional models with uncertain piecewise constant resistivity. We take as our

domain the cube [−1
2
, 1

2
]3, and consider a generalization of the velocity field (5.13)

in which the component in the z-direction is identically 1,

~u(x, y, z) =


cos(πx)

π
32y(1− 4y2)3

− sin(πx)(1− 4y2)4

1

 , (5.31)

which describes a swirling flow in the z-direction. Again, we prescribe a magnetic

field in the y-direction for the boundary condition, ~B × ~n = (0, 1, 0)× ~n.

We define the resistivity by (5.25) using piecewise constant β on the partition-
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(a) ~Bh at z = − 1
4 (b) ~Bh at z = 0 (c) ~Bh at z = 1

4

(d) µ( ~Bh) at z = − 1
4 for

P1

(e) µ( ~Bh) at z = 0 for P1(f) µ( ~Bh) at z = 1
4 for

P1

(g) µ( ~Bh) at z = − 1
4 for

P2

(h) µ( ~Bh) at z = 0 for

P2

(i) µ( ~Bh) at z = 1
4 for P2

Figure 5.15: Deterministic fields lines (top), mean field lines with partitioning P1

(middle), and mean field lines with partitioning P2 at cross sections z = −1
4

(left),

z = 0 (middle), and z = 1
4

(right) for Test Problem 5.
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(a) P1 at z = − 1
4 (b) P1 at z = 0 (c) P1 at z = 1

4

(d) P2 at z = − 1
4 (e) P2 at z = 0 (f) P2 at z = 1

4

Figure 5.16: ||σ( ~Bh)(~x)||2 at cross sections for partitionings P1 (top) and P2 (bottom)

for Test Problem 5.
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ings

P1 = {[−1
2
, 1

2
]3}, (5.32)

P2 = {[−1
4
, 1

4
]2 × [−1

2
, 1

2
], ([−1

2
, 1

2
]2\[−1

4
, 1

4
]2)× [−1

2
, 1

2
]}. (5.33)

These are extensions of partitionings P1 and P2 from Test Problem 3 in the z-

direction. On each subdomain Dk, we let β(·, ~ξ)|Dk
= ξk where ξk is uniformly

distributed in [−1.0,−3.0]. The mean resistivity in this case is η0 ≈ 2.2 × 10−2.

Field lines of the sample mean computed from 1,000 Monte-Carlo simulations on

a 16 × 16 × 16 element mesh are compared to deterministic field lines for η ≡ η0

in Figure 5.15. Field lines are computed in the x-y cross sections at z = −1
4
, 0,

and 1
4
. From the deterministic field lines, it can be seen that near the bottom of

the domain, the magnetic field is more dominated by the infinite resistivity solution

~B = (0, 1, 0), but as z increases the velocity field has a larger effect on the magnetic

field. Comparing to the two-dimensional case, this is as if the resistivity decreases

as z increases. We see the same effect for the mean solution. Unlike for the 2D

test problems, the mean magnetic field looks like a deterministic solution with η <

η0. Comparing the mean field lines obtained for the two different partitionings,

differences due to the multiple resistivities present in partitioning P2 are very slight.

As in 2D, this shows that the effects of variability in the resistivity are stronger

than the effects of discontinuities in the resistivity. Cross sections of the norm of

the standard deviation are plotted in Figure 5.16. This shows that variability in the

magnetic field is greatest at the center cross section z = 0. Furthermore, the figure

demonstrates that, as in Test Problem 3, a greater number of subdomains leads to
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a larger standard deviation that is distributed throughout more of the domain.

5.3 Linear Solvers for the Discretized Kinematics System

In Monte-Carlo simulation, for each realization of the uncertain quantities, a

linear system of the form Ax = b must be solved, where

A = A(ω) =

 A(ω) +N(ω) Dt

D 0

 . (5.34)

Because many realizations are required to produce accurate statistical results, it is

imperative that the linear solver be efficient and robust over random variations in

the parameters η and ~u. The linear systems are sparse, nonsymmetric and indefinite,

and, depending on the level of spatial refinement, they can be very large. Hence, a

preconditioned iterative method such as preconditioned GMRES is a natural choice

of solver for these systems. Motivated by the results of [49], many successful block

preconditioners have been developed for solving similar saddle point systems. Fol-

lowing this line of research, we develop a generalization of a preconditioner proposed

in [35] for the time-harmonic Maxwell equations to be used for the discretized kine-

matics equations.

The system studied in [35] can be considered a special case of (5.5) in which

η
µ
≡ 1 and ~u ≡ 0. If we let Â be a discretization of the unscaled magnetic diffusion

operator ∇×∇×, then the coefficient matrix of the resulting linear system can be

written

Â =

 Â Dt

D 0

 . (5.35)
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The preconditioner developed in [35] is of the form

P̂ =

 QB + Â 0

0 Lr

 , (5.36)

where QB is the mass matrix for B and Lr is a discrete Laplacian on the magnetic

pseudo-pressure space. A generalization of this preconditioner for use with the

system A is

Pk =

 kQB + A+N 0

0 1
k
Lr

 , (5.37)

where k > 0 is a constant to be specified.

5.3.1 Analysis of Eigenvalues

We give a complete analysis of this preconditioner for the case where N ≡ 0.

The performance of preconditioner Pk for system A is governed by the eigenvalues

λ of the generalized eigenvalue problem A Dt

D 0


 B

r

 = λ

 kQB + A 0

0 1
k
Lr


 B

r

 . (5.38)

Defining n = dim(B) and m = dim(r), this has a total of n+m eigenvalues. From

the bottom row of (5.38), we obtain r = k
λ
L−1
r DB. Substituting this into the top

row of (5.38) gives

λAB + kDtL−1
r DB = λ2(kQB + A)B. (5.39)

Through a discrete Hodge decomposition, B can be written as the sum of its discrete

curl-free part BA and its discrete divergence-free part BD (i.e. B = BA+BD, where
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ABA = AtBA = 0 and DBD = 0). Then (5.39) can be rewritten as

λABD + kDtL−1
r DBA = λ2kQB(BA + BD) + λ2ABD. (5.40)

Let the norm induced by a symmetric positive definite matrix X be denoted || · ||X =

〈X·, ·〉1/2. Taking the inner product of (5.40) with BA and using the relations

〈QBBA,BD〉 = 〈QBBD,BA〉 = 0, (5.41a)

〈DtL−1
r DBA,BA〉 = ||BA||2QB

, (5.41b)

proven in [35], we have

k||BA||2QB
= λ2k||BA||2QB

. (5.42)

Because there are at least m linearly independent vectors satisfying BA 6= 0, this

means that (5.38) has eigenvalues λ = ±1 each with multiplicity at least m.

Insight into the remaining n − m eigenvalues can be obtained by taking the

inner product of B̂D with (5.40), yielding

λk||BD||2QB
= (1− λ)||BD||2A. (5.43)

From this equation, it is clear that 0 ≤ λ ≤ 1. These eigenvalues can be further

bounded using the discrete coercivity condition. In [35], this condition is written in

terms of the unscaled norm || · ||Â as

||BD||2Â ≥ α
(
||BD||2Â + ||BD||2QB

)
, (5.44)

where the constant α ∈ (0, 1) is independent of the mesh. It can be shown that

ηm
µ
||BD||2Â ≤ ||BD||2A ≤

ηM
µ
||BD||2Â, (5.45)
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where ηm = min~x∈D{η(~x)} and ηM = max~x∈D{η(~x)}, from which we can obtain the

coercivity condition in terms of the scaled norm || · ||A:

||BD||2A ≥ α
(
ηm
ηM
||B̂D||2A + ηm

µ
||BD||2QB

)
. (5.46)

Applying this inequality to (5.43), we obtain

1

1 + kµ
αηm

ηM−αηm
ηM

≤ λ ≤ 1. (5.47)

The constant ηM−αηm
ηM

is necessarily smaller than 1; thus, we can write the weaker

bound

1

1 + kµ
αηm

< λ ≤ 1. (5.48)

If we let k = ηm
µ

, this bound depends only on the coercivity constant α. This

dependence on α is similar to that obtained in [35] for Â preconditioned by P̂ .

Because α is independent of the mesh, letting k = ηm
µ

defines a preconditioner

which should be robust with respect to both mesh refinement and variations in the

resistivity.

When N 6= 0, much of the same analysis applies. Because BA is curl-free, N

satisfies 〈NB,BA〉 = 0. Given this relationship, the presence of N does not affect

the two eigenvalues λ = ±1 with multiplicity m. However, the remaining eigenvalues

are approximated by

(
λ
(
ηm
µ

+ k
)
− k
)
|BD|2QB

= (1− λ)
(
|BD|2A + 〈NB,BD〉

)
. (5.49)

Because 〈NB,BD〉 can become negative, it is difficult to say more about these

eigenvalues, but in practice, this preconditioner proves to be effective. This will be

demonstrated in the following section.
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5.3.2 Numerical Results

Because the number of preconditioned GMRES iterations required for conver-

gence depends on the linear system obtained from the random data ~u(ω) and η(ω),

we can regard these iteration counts as a random variable. Consequently, we obtain

an estimate of the mean of the number of iterations required for convergence using

the sample mean from a Monte-Carlo simulation. The GMRES iteration continues

until the stopping criterion

||b−Ax|| ≤ 10−8||b|| (5.50)

is satisfied. We compute the average number of iterations to reach this criterion over

the Monte-Carlo simulation. We use the preconditioner Pk defined by (5.37) with

k = ηm
µ

. Direct methods are used to solve the subsidiary systems corresponding to

the blocks kQB + A + N and 1
k
Lr in Pk. While direct methods are viable for the

small problems investigated in this study, we note that effective multigrid solvers

have been developed for systems similar in form to the block kQB + A + N (see

e.g. [39, 41] and the references therein).

Average iteration counts for each test problem are reported in Table 5.1, each

on three different meshes. These results demonstrate that the preconditioner is

highly effective for both problems with fluctuations in the velocity field (Test Prob-

lems 1 and 2) and those with heterogeneous resistivities (Test Problems 3, 4, and 5).

Furthermore, the preconditioner is robust with respect to the mesh, with average

iteration counts decreasing as the mesh is refined.
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PPPPPPPPPPPPPPPPPP
Test Problem

Mesh
16× 16 32× 32 64× 64

1 (σ2 = 6.0× 10−3) 5.99 5.95 5.83

2 (σ2 = 6.0× 10−3) 5.78 5.77 5.61

3 (P2) 4.58 3.93 3.19

4 (` = 1.0) 4.98 4.32 3.05

4× 4× 4 8× 8× 8 16× 16× 16

5 (P2) 5.16 4.88 4.47

Table 5.1: Preconditioned GMRES iteration counts.
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5.4 Conclusion

We have presented a numerical method for simulating the kinematics of MHD

when either the velocity field or the magnetic resistivity of the fluid is uncertain,

applying the method to several steady-state test problems. We have modeled the

effect of random perturbations in the velocity field on the induced magnetic field.

In particular, we have demonstrated that, on average, fluctuations with non-zero

vorticity have a large global effect on the induced magnetic field. This supports the

theory that small-scale turbulent flow is necessary for dynamo action. These results

also suggest that simulations based on mean flow may underpredict the magnitude

of magnetic fields. We have also demonstrated that uncertainty in the distribution

of the resistivity can result in different magnetic topologies than in the deterministic

case. Our results show that this effect is most pronounced when the resistivity in

large regions of the domain is uncertain. On the other hand, we have found that, on

average, the induced magnetic field is largely insenstive to small-scale fluctuations

in the resistivity, even when these fluctuations vary over several orders of magnitude

throughout the domain.

In this study, we have introduced several stochastic models for uncertain quan-

tities in the context of MHD kinematics. By expressing the resistivity as a piecewise

constant field or a truncated KL expansion, we allow for this quantity to be mod-

eled by a vector of independent random variables. We have also proposed physically

motivated expressions for the velocity field that not only couple its components in

a natural way but also require the construction of only one random field in two
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dimensions. We have employed Monte-Carlo simulation to obtain mean and vari-

ance data, but the stochastic expressions introduced here can be used directly in

more sophisticated uncertainty quantification methods such as stochastic Galerkin,

stochastic collocation, and quasi-Monte-Carlo methods.

In addition, we have developed a preconditioner for the discrete kinematics

equations which is robust over variations in both the resistivity and the velocity field.

This is important because many linear systems need to be solved in order to obtain

accurate probabilistic distributions of the solution ~Bh. Because this preconditioner

is mesh independent, it allows for the possibility of larger-scale MHD kinematics

simulations in both two and three dimensions. Furthermore, this preconditioner

can be useful in fully coupled MHD models in which the resistivity and velocity

field can fluctuate due to the coupling of the kinematics equations to the Navier-

Stokes equations.
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Chapter 6: Summary and Conclusions

With an increasing demand for high resolution MHD simulations, a growing

body of research has centered around the development of fully coupled numerical

models of MHD. While fully coupled methods allow for fast direct-to-steady-state

solutions, they require the solution of large, sparse linear systems. These systems are

particularly difficult to solve when hydrodynamic and electromagnetic phenomena

are strongly coupled. This dissertation has sought to develop robust, scalable block

preconditioners for iterative methods applied to the linear systems arising from

discretizations of the fully coupled MHD equations.

In particular, we considered two finite element formulations for stationary,

viscoresistive, incompressible MHD. In Chapter 3, we considered an exact penalty

formulation, which enforces the divergence free constraint on the magnetic induction

through a penalty term on the induction equation. While this formulation applies

only to convex domains, it results in a simplified system where the unknowns are

~u, p, and ~B. Building on commutator-based strategies introduced for the discretized

Navier-Stokes equations, we developed a family of preconditioners for both Picard

and Newton linearizations of this formulation. We ensured that these precondition-

ers are effective on strongly coupled systems by algebraically embedding the effects
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of coupling into Schur complements and accurately approximating these operators.

By including “relaxation” parameters and tuning them with Fourier analysis, we

proposed an automatic way of improving these approximations. The quality of

these preconditioners was demonstrated for a range of parameters on a series of

two-dimensional test problems.

Chapter 4 focused on a formulation that introduces a Lagrange multiplier into

the induction equation and uses Nedelec elements ~B, thereby allowing nonconvex

domains. Because this formulation has the added complication of including the

saddle point system associated with the mixed form of Maxwell’s equations as a

subsystem, we incorporated preconditioners developed for Maxwell’s equations. Ex-

tending the strategies introduced for the exact penalty formulation in Chapter 3, we

developed effective block preconditioners for this formulation. We showed that these

preconditioners are both robust with respect to the magnetic Reynolds number as

well as scalable on two- and three-dimensional test problems.

We also investigated the effects of uncertain problem parameters on the kine-

matics model of MHD. In Chapter 5, we developed a numerical method for modelling

the effects of uncertain velocity fields and resistivities on an induced magnetic field.

By considering either irrotational or incompressible fluctuations in the velocity, we

reduced the problem of supplying an uncertain velocity field to supplying a ran-

dom scalar potential over the domain. Modelling this potential by a truncated KL

expansion, we demonstrated that small-scale fluctuations in the velocity can cause

large-scale changes in the mean of the induced magnetic field. We modelled an

uncertain resistivity with both piecewise constant random fields and truncated KL
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expansions and demonstrated that the mean magnetic field is more sensitive to un-

certainty in the resistivity of a homogeneous fluid than to spatial variations in the

resistivity of a heterogeneous fluid, even when those variations are very large.
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[35] C. Greif and D. Schötzau. Preconditioners for the discretized time-harmonic
Maxwell equations in mixed form. Numerical Linear Algebra with Applications,
14:281–297, 2007.

154



[36] M. Gunzburger, A. Meir, and J. Peterson. On the existence, uniqueness, and
finite element approximation of solutions of the equations of stationary, incom-
pressible magnetohydrodynamics. Mathematics of Computation, 56:523–563,
1991.

[37] M. Heroux. AztecOO user guide. Technical Report SAND2004-3796, Sandia
National Laboratories, 2004.

[38] M. Heroux, R. Bartlett, V. Howle, R. Hoekstra, J. Hu, T. Kolda, R. Lehoucq,
K. Long, R. Pawlowski, E. Phipps, A. Salinger, H. Thornquist, R. Tuminaro,
J. Willenbring, A. Williams, and K. Stanley. An overview of the Trilinos project.
ACM Transactions on Mathematical Software, 31:397–423, 2005.

[39] R. Hiptmair and J. Xu. Nodal auxiliary space preconditioning in H(Curl) and
H(Div) spaces. SIAM Journal on Numerical Analysis, 45:2483–2509, 2007.
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