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Experimental techniques have now reached the sub-microsecond timescale necessary 

to study fast events in protein folding. However, analysis of fast folding experiments 

still commonly rely on conventional procedures that provide an oversimplified picture 

i.e. an all-or-none transition between the unfolded and native states, which is not valid 

for all cases.  Moreover, due to the presence of discrepancies between theoretical 

predictions and experimental observations, discerning the correct mechanisms of 

protein folding becomes difficult. This is true even for the most elementary processes 

such as α-helix formation. Recent laser-induced temperature jump experiments on α-

helical peptides have revealed unprecedented complexity in relaxation kinetics. These 

observations are suggested to be incompatible with the nucleation-elongation theory 

for α-helix formation. However, the detailed kinetic model based on nucleation-

elongation theory developed in this work quantitatively reproduces all the observed 

complex kinetics. The results are rationalized using a simple one-dimensional 

projection of free energy surface. It is concluded that the observed probe-dependent 

and thermal perturbation size-dependent multiphasic relaxation kinetics are 



  

consequences of helix fraying and heterogeneity of peptide sequence. Remarkably, all 

the kinetic behaviors predicted by the detailed model are successfully reproduced by 

diffusion on one-dimensional free energy surface. The one-dimensional free energy 

approach thus validated empirically is then extended for the analysis of protein 

folding experiments. For this purpose a simple mean field model is formulated that is 

consistent with the size-scaling properties of thermodynamic parameters as well as 

with the observation of entropy convergence at high temperatures. The model 

describes the effects of chemical and thermal denaturation, making it amenable for 

direct comparison with experimental observables i.e. folding rates and heat capacity 

changes on a quantitative level. The main advantage of the model is the treatment in 

which free energy barrier on one-dimensional profile is allowed to modulate by just 

one parameter, that can be directly related to protein size, structure- and sequence- 

dependent energetics. Recently the one-dimensional free energy surface model has 

been applied for analyzing the dependence of rates on temperature and chemical 

denaturant in fast folding proteins. This analysis has allowed simultaneous 

investigation of energetic and dynamic factors governing folding kinetics. Unlike 

traditional methods the model serves as an analytical tool without making any a 

priori assumptions about the presence of a barrier. With its simplicity and versatility 

the model provides the foundation for exploring general trends in protein folding as 

well as prediction of folding properties at the level of individual proteins.  
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Chapter 1: Introduction and Specific Aims 
 

The prerequisite to connecting the genetic blueprint of a protein to its 

biological function is the folding of its amino acid chain to a specific three-

dimensional structure. Most simple proteins, upon in vitro denaturation, have the 

ability to self-assemble in a reversible and reliable manner without the aid of any 

cellular machinery1. Protein folding is essentially a concerted process of 

isomerization reactions around several single bonds not involving any breaking of 

covalent linkages. Due to the astronomical number of degrees of freedom that a 

protein possesses, this macromolecule has the possibility of adopting a large number 

of conformations. Remarkably, however, proteins find the set of relatively unique 

conformations corresponding to a free energy minimum in biologically relevant 

timescales. The questions of how and why a protein achieves its native conformation 

have been central in biochemistry for more than five decades and referred to as the 

‘protein folding’ problem. The problem is addressed by two rather distinct but 

overlapping approaches – one involves the determination of the physico-chemical 

principles that underlie the folding process whereas the other deals with the prediction 

of native structures from amino acid sequence alone. The objectives of the present 

work are associated with the former. Besides being a fundamental problem, protein 

folding is of great practical and clinical importance. The study of the basic physics 

guiding protein folding can provide vital clues to the cure of the many unrelated 

diseases such as cystic fibrosis, Alzherimer’s disease, Parkinson’s disease, 

Huntington’s disease, Type II diabetes, spongiform encephalopathies and certain 
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types of cancers, the molecular cause for all of which is defective protein folding. An 

interdisciplinary approach towards solving the folding problem has allowed 

remarkable progress both on theoretical and experimental fronts.  

1.1 Microscopic picture: statistical description of protein folding 

As per Levinthal, proteins carry out a directed search following a well-defined 

sequence of events (‘the pathway’) to avoid taking cosmological time to traverse 

through conformational hyperspace2. According to this old view folding was 

described as a chemical reaction with many distinct and obligatory intermediates 

between the unfolded and the fully folded state. However, not all protein molecules 

may follow one unique pathway, i.e. they may take alternate folding routes from a set 

of possible ones. The new view describes protein folding in terms of statistical 

ensembles and a biased conformational search along a multi-dimensional potential 

energy surface sloped towards the native state3. The so-called ‘funnel’ landscape 

represents the idea of decreasing energy along with concomitant decrease in 

conformational entropy as folding progresses. The unfolded state at the broad end of 

the funnel consists of a rather degenerate ensemble of structures with large root-

mean-square fluctuations. On the other hand the native state ensemble comprises of 

far fewer structures with low energy and small fluctuations in the relative positions of 

all the residues. The landscape picture cannot be said to be completely incompatible 

with the old view because its inherent multi-dimensionality arises due to the complex 

network of conformational ensembles that are kinetically coupled to each other in a 

sequential manner4.  
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Figure 1.1 Funnel-shaped energy landscape picture 
 
The energy landscape is shown as a chemical reaction network. The width of the 

funnel represents conformational entropy. As folding progresses the number of 

possible conformations decrease, reducing the width of the funnel. The height 

signifies energy that decreases as more and more native interactions are made. The 

inter-conversions between different conformations are shown.  

(Reproduced from ref. 5) 

 

1.2 Low-dimensional projection of free energy landscape  

By intuition a complete description of a folding landscape would require the 

specification of all atomic coordinates of a protein (3N Cartesian coordinates for a 

protein with N atoms) and its surrounding solvent molecules. Due to steric constraints 

and concerted motions of different parts of the protein the effective number of 
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degrees of freedom is greatly reduced. Despite this fact the resulting energy landscape 

is still hyper-dimensional and impossible to comprehend. The detailed picture masks 

the relevant physical features of the folding process. A practical solution to this 

problem is to project the high dimensional landscape onto few collective degrees of 

freedom or coordinates. However, it is not known a priori which degrees of freedom 

are germane in describing the folding properties of proteins. The chosen collective 

coordinate should be able to distinguish between the folded ensemble and the 

manifold of unfolded conformations (i.e. be easily interpreted in terms of protein 

structure); be directly related to experimental probe; and act as a progress 

variable/kinetic ruler (i.e. change slowly relative to the total change in the reaction 

coordinate) to reflect the distance from the native structure and capture the kinetic 

features6.  

By accounting for the average energy and entropy of ensembles at each value 

of the collective coordinates a low-dimensional free energy surfaces can be built. 

Such free energy surfaces determine the thermodynamic properties (i.e. relevant 

conformational ensembles and free energy barriers) and predict the folding 

mechanisms. When a mismatch in the rate at which interaction energy (for protein-

protein, protein-solvent and solvent-solvent interactions) and conformational entropy 

decay occurs it gives rise to a barrier separating the unfolded and native ensembles. 

This is the Type I scenario described by the energy landscape theory3. However, if the 

decrease in conformational entropy perfectly balances the decrease in the interaction 

energy the barrier may significantly decrease and even completely disappear resulting 

in a free energy profile with only one minimum i.e. Type 0 scenario. 
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Figure 1.2 Projection of free energy landscape onto few dimensions 

(This is a sketch to illustrate low-dimensional free energy surface generally produced 

by theoretical models and molecular dynamic (MD) simulations)  

(Left Panel) Free energy surface as a function of two order parameters. (Right Panel) 

One-dimensional (1-D) free energy profile. Order parameters are generally number or 

fraction of native contacts, radius of gyration, Rg, end-to-end or intra-protein distance. 

If free energy contours are assumed to be marked every 3RT the free energy barrier 

separating the Unfolded (U) and Folded (N) ensembles is ~12RT. Also shown is the 

Transition state region (TS). 

 

If the free energy barriers are large enough (>>3 RT) such that there is no 

accumulation of any partially folded intermediates essentially giving rise to bimodal 

distribution of conformations, i.e. only two distinguishable ensembles- unfolded and 

fully folded, at any point on the reaction coordinate. In type 0 scenario folding occurs 

in a downhill manner under native bias such that there is a continuous transition 

between ensembles having varying degrees of native structure. Thus, partially folded 

intermediates become accessible and populated states can be found even at any 

intermediate values of the reaction coordinate. However, in a global downhill 
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scenario predicted by a simple statistical mechanical model, a unimodal distribution 

of conformations results for any value of native bias (i.e. ranging from native-like to 

strongly destabilizing conditions)7.  Type 0 and Type I represent the two extreme 

scenarios with cases in which barriers are marginally low (<3-4 RT) in between.  

 

 

 

 
Figure 1.3 1-D free energy profiles with different folding scenarios  

(Illustration of prediction by theoretical models) 

(Left Panel) At high native bias (blue curve) there is complete absence of barrier 

(Type 0 scenario). As native bias decreases (green curve) a barrier appears (Type I). 

Free energy profile at highly destabilizing condition (red curve). (Right Panel) global 

downhill behavior: There is no barrier at any value of native bias, the single minimum 

just moves along the reaction coordinate (similarity to native state increases from left 

to right). 

 

 

 



 

 7 
 

Energy landscape theory suggests that Kramer’s-like diffusion on such low-

dimensional free energy surfaces can be useful in describing folding kinetics8. The 

crucial question is whether 1-D free energy surfacea is able to capture the kinetic and 

dynamic aspects of a folding reaction, or in other words, whether the selected single 

order parameter onto which the free energy surface is projected is sufficient to behave 

as the reaction coordinate. It is only through comparison with experiments that the 

diffusive approach for obtaining folding kinetics can be verified.  

This approach has been proven successful in calculating kinetics in Monte 

Carlo cubic lattice simulations9. The rate of contact formation in unfolded peptides 

has also been estimated from diffusion on 1-D potential of mean force derived from 

end-to-end distance distribution10. However, prediction of protein folding rates from 

diffusion on 1-D free energy surfaces computed from coarse-grained features of 

three-dimensional structures has received only moderate success11.  

1.3 Macroscopic picture: experimental observation and theoretical analysis of 

various protein folding scenarios 

Traditionally protein folding is investigated by bulk experiments in which the 

ensemble-averaged signal (spectroscopic or fluorescence) monitoring the changes in 

protein conformation due to perturbation by heat, acid or chemical denaturants is 

measured. The experimental results are usually analyzed with chemical mass action 

models and conclusions regarding the folding mechanisms are made based on some 

general criteria.  For example when more than one distinct transition is observed in 

                                                 
aAlthough the definition of a ‘SURFACE’ requires at least two dimensions, here the term ‘One-
Dimensional free energy SURFACE’ is commonly used that actually refers to one-dimensional free 
energy profile.  
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calorimetric or spectroscopic profiles it is the indication for either the presence of 

intermediates and more than two thermo-stable states in case of single domain 

proteins or sequential unfolding of individual units in case of multi-domain 

proteins12,13. A thermodynamically characterized multi-state folding process ensures 

multiphase/non-exponential kinetics, however the inverse is not always true.  In some 

larger proteins (>100-120 residues) with single globular domains partially folded 

‘burst-phase’ intermediates are observed to populate within the dead time (<5 ms) of 

the mixing instrument.  Due to their poor characterization it is not clear whether these 

intermediates are distinct thermodynamic states or formed just transiently as a 

consequence of sudden exposure of the denatured ensemble to native conditions14.  

Several small monomeric proteins (<~100-120 residues) are observed to exhibit type 

I scenario in in vitro studies15. The folding process in these cases, implied to involve 

large barriers (several RT), are described as a first-order-like all-or-none transition 

and usually analyzed with a chemical two-state model. In the absence of partly folded 

intermediates in these cases the complexity involved in identifying the rate-limiting 

step is alleviated and the system can be sufficiently described with only two 

variables– the equilibrium constant and the relaxation rate constant that can be 

partitioned into folding and unfolding rate constants. To determine the folding 

mechanism it becomes necessary to characterize the activated ensemble at the top of 

the free energy barrier. In this respect protein engineering studies have been widely 

used16 and the results are most generally interpreted in terms of structure of transition 

state ensemble, in spite of the robustness of the protein 3-D structure. In other words, 



 

 9 
 

single or double mutations do not change the overall fold of the protein, but 

significantly affect its energetics and kinetics. 

The general experimental criteria for classifying the folding mechanism as 

two-state are: (i) Sigmoidal changes in spectroscopic signals on denaturation and 

single peak in differential scanning calorimetric profile; (ii) Consistent local (far UV-

CDb, Fluorescence) and global (near UV-CD, FRETb) structural information provided 

by multiple probes; (iii) Isosbestic pointsb in CD spectra obtained under different 

denaturing conditions showing same signal intensity for denatured and fully folded 

conformations; (iv) Equivalence between the directly measured calorimetric enthalpy 

of transition with van’t Hoff enthalpy obtained from fitting calorimetry profiles with a 

two-state assumption; (v) Single exponential relaxation kinetics; (vi) Linear 

dependence of the logarithm of relaxation rates on chemical denaturant concentration 

in concentration jump studies (V-shaped Chevron plots); (vii) Agreement between the 

sum of the slopes of the linear unfolding and refolding arms (mf and mu) and the slope 

of the transition region of the equilibrium chemical denaturation profile (meq); (viii) 

Equality of the ratio of the folding and  unfolding rate constants to the equilibrium 

ratio of the population of unfolded and folded  conformations. Significant deviations 

from these criteria are often interpreted as presence of intermediate states and failure 

to fit experimental data to a two-state model is overcome by employing a three state 

chemical model.  These intermediates whose stability depends on experimental 

conditions do not seem to be obligatory in all the cases. Hence in order to probe them 

it is necessary to use a combination of techniques and inspect a wide range of 

                                                 
bUV-CD: Ultraviolet Circular Dichroism; FRET: Fluorescence resonance Energy transfer; Isosbestic 
point: A point corresponding to the wavelength at which two or more chemical species have the same 
molar ellipticity.  
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experimental conditions17-19. One very common signature for non-two-state behaviors 

is the non-linearity in the plots of logarithms of refolding (more commonly observed) 

and unfolding rate constants versus denaturant concentration (Chevron rollovers). 

Once again the general implication of a downward deviation (roll-down) of the 

refolding arm or curvatures in one or both arms of chevron has been the presence of 

intermediates20.  It is now known that these features even in an apparent two-state 

kinetics can also result from any of the following effects: aggregation that is 

dependent on protein concentration, amino acid composition and solvent 

conditions18,21; dead time artifacts22; solvent effects on denatured ensemble14; 

sensitivity of native state stability to ionic strengths23,24; Hammond behavior, i.e. 

shifts in transition state ensemble due to changes in stabilities of native and denatured 

ensembles caused by mutations25; an additional slow phase arising from cis-trans 

proline isomerization14. In addition, coarse-grained versions of Go-like lattice and 

continuum (or off-lattice) models c have suggested that Chevron rollovers are 

universal features rather than exception26. Folding trajectories predicted by these 

models revealed that as folding conditions become more and more native-like the 

lifetimes of transiently populated intermediates increase. These intermediates are 

kinetic traps and escaping from them require barrier crossing, which impedes the 

conformational search in the final stages of folding. Although for two-state proteins 

the amino acid sequences are minimally frustrated (i.e. relatively very few 

destabilizing interactions as compared to stabilizing ones), few kinetic traps do exist 

                                                 
c Go-like models take into consideration only native interactions and neglect non-native ones. Lattice 
models are simplified representation of a protein chain in which each residue occupies a single point 
on a 3X3 or 5X5X5 lattice. Residue-based off-lattice models are relatively more realistic 
representation of polypeptide chains.    
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but escaping from them is much easier at experimental temperatures, resulting in 

linear Chevron plots. At lower temperatures, Chevron rollovers may appear even for 

apparent two-state proteins. Hence, failure to satisfy some empirical two-state criteria 

does not imply non-two-state behavior.  

By the same token those proteins that do satisfy a few of the above-listed 

criteria specifically (i), (iii), (iv) and (v) should not necessarily be classified as two-

state. Although the above criteria may be useful in distinguishing two-state from 

three-state proteins they need to be redefined to identify proteins with low or 

negligible barriers. In one case of downhill behaviors the free energy barrier 

disappears only under sufficiently high native bias. Once the native bias is decreased 

by increasing temperature type 0 scenario is replaced by type I scenario27. Such 

behaviors are experimentally observed in fast folding proteins (having low barriers) 

and their mutants.  The other case is globally downhill, i.e. at any value of native bias 

there is absence of barrier7. A small protein domain referred to as BBL is confirmed 

to exhibit global downhill folding28. When two-state chemical model is employed to 

analyze data on BBL, good fits are obtained for differential scanning calorimetric 

profiles (DSC) as well as for sigmoidal curves from double perturbation 

thermodynamic experiments (using chemical and thermal denaturation)29,30. 

However, these fits do not hold any meaning (i.e. should not be taken to imply two-

state folding for BBL) due to the unphysical crossing of the baselines for the native 

and unfolded states within the transition region. The base lines correspond to the 

enthalpy fluctuations in the native and unfolded ensembles. It has been shown 

empirically that the slope of the native baseline i.e. temperature dependence of the 
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native state heat capacity is proportional to protein size31. Higher values of the slope 

than that expected from the linear dependence on size show that the native ensemble 

has too high enthalpy fluctuations to let native ensemble be a relatively unique one. 

Furthermore, global fits to two-state model of CD data obtained from double 

perturbation studies (denaturation with urea and temperature) yield native baselines 

with such steep slopes that they cross the unfolded baseline at temperature within the 

transition region30. Also there is observation of cold denaturation with the shift in the 

maximum of CD signal as urea concentration is increased. One very important 

signature for downhill proteins is the inconsistency in the unfolding transitions when 

different structural features are observed. Probe-dependent kinetics has been observed 

in downhill folding mutant of lambda repressor by Gruebele32.  In a recent high 

resolution proton NMR study Sadqi et al. has followed the unfolding of BBL by 

observing the behavior of individual atoms (amide protons, side chain protons and C-

α protons) following heat denaturation33. The distribution of individual Tm’s for each 

atomic unfolding transition (i.e. chemical shift as a function of temperature) has a 

standard deviation of 17 K around the average Tm of ~ 304 K unlike similar Tm’s 

expected for a strictly all-or-none two-state behavior. Single exponential kinetics is 

usually assumed to imply presence of significant free energy barrier that separates 

two distinct populations. However, it has been shown that the decay of fluorescence 

energy transfer signal measuring chain dimension calculated even from a simple 

diffusive barrier-less model of hydrophobic collapse deviates only slightly from 

experimentally observed single exponential relaxation34. Given the combined effect 

of experimental noise, normalization procedures and artifacts of the instrument these 
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deviations are more than accounted for. Analytical theory has suggested multi-

exponential or stretched exponential kinetics to be associated with barrier-less 

transitions35-37. In support of this, recently identified downhill folding proteins 

(engineered mutants of lambda repressor) are observed to follow stretched 

exponential relaxation38. Also, native-centric Monte Carlo dynamics model used by 

Kaya and Chan have predicted non-exponential kinetics under strongly native-like 

conditions26. In addition Kaya and Chan have found that their simplified atomic 

models predict single exponential behavior under weak native bias up to transition 

conditions and non-exponential relaxation at strongly native biases for both two state 

as well as for downhill folding proteins39,40. This suggests that the kinetic relaxation 

behavior cannot alone be used to discriminate between different folding mechanisms. 

Native-centric models have revealed that calorimetric criterion of ΔHvH/ΔHcal ~1 for 

two-state-ness is not fulfilled for downhill proteins and attempts to satisfy this 

criterion results in unreasonable baselines40.  

Undoubtedly the traditional way of analyzing thermodynamic and kinetic data 

is not appropriate for downhill folding proteins. New improved analytical tools are 

thus required that can explain a wide range of folding behaviors without prior 

assumption about the number of ‘chemical’ macrostates or any empirical criterion.  

1.4 Scaling laws in protein folding  

The mechanistic, equilibrium and kinetic properties of folding are expected to depend 

on protein size, sequence and topology as much as on external conditions such as pH, 

temperature, ionic strength, and presence of denaturing and viscogenic agents. 

However, determining the precise dependence of folding characteristics on these 
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factors require a large body of experimental data on proteins with wide range of 

lengths and architectures and studied under broad range of conditions with proper 

controls. Although this seems to be a far-fetched goal at present, some trends have 

already emerged from proteins investigated so far. Thermodynamic parameters 

namely enthalpy, entropy and heat capacity changes associated with unfolding 

transition obtained from calorimetric and spectroscopic studies have been compiled 

for around 50 proteins with size ranging from 50-350 residues41. Regression analyses 

of these energetic parameters with protein size (number of residues) have clearly 

demonstrated linear relationships. Lattice simulations and theoretical studies adopting 

polymer physics principles and scaling theory of spin glasses have predicted folding 

rates to show a power law dependence on protein length N of the form: kf ~exp(-c.Nβ) 

where c is a constant and exponent β may range from 1/2 to 18,42-44. This length 

scaling has been confirmed by analyses performed by independent groups using a 

dataset of experimentally measured folding rates of ~54-57 proteins and peptides with 

N ~20-400 45,46. It has been shown that the correlation of natural logarithm of folding 

rates with protein length is indistinguishable for any value of 1/2, 2/3 or 1 for β. 

However, based on the values of prefactors obtained from linear fits to ln(kf) vs. Nβ it  

has been suggested that β values of 1/2 and 2/3 are more reasonable for proteins. With 

an extended dataset containing 69 proteins Naganathan and Muñoz have found that 

the relation of logarithm of folding times with N shows a correlation coefficient of 

0.74 when β =1/2 and reaches a maximum value of 0.78 as β tends to zero47.  They 

have further pointed out that determining the value of β that gives a higher correlation 

coefficient is not appropriate given the limited size of the database and protein length 
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not being the only determinant of folding rates. The interesting observation, however, 

is the prediction of folding rates within ~1.1 orders of magnitude of experimentally 

determined ones knowing only the number of residues N for each protein.  

Several structural descriptors that condense the main characteristics of native 

structure into a single quantity have been compared to experimentally measured 

folding rates.  Using a dataset of ~30 two-state proteins Plaxco et al. have observed a 

strong anti-correlation (R ~-0.8) between the natural logarithm of folding rates and a 

descriptor of native structure (relative contact order, RCO)48. RCO is a measure of the 

average sequence separation between residues normalized by protein length N. 

( 1
.

N

ijRCO L
N L

= Δ∑  where L is the total number of non-hydrogen atomic contacts 

an ΔLij is the number of residues separating a pair of contacting residues).  This 

means that α-helical proteins in which residues are in close sequential proximity will 

have a lower value of RCO and fold faster compared to β proteins where more long-

range contacts are made. In contrast to two-state proteins, no topology dependence 

has been observed for folding rates of three-state proteins46. Following the work of 

Plaxco et al. other structural parameters such as long range order (LRO)49 obtained 

from the information on long range contacts and total contact distance, a combination 

of LRO and RCO50 have been proposed as predictors of folding rates. Ivankov and 

Finkelstein have also found folding rates to be correlated with the effective chain 

length calculated using secondary structure information (number of helices and β-

sheets and number of residues forming helices and β-sheets)51.  
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1.5 Simple native-centric models 

The above findings have suggested that native topology is sufficient to describe 

folding kinetics and have motivated the development of several physical models 

employing simple free energy functions with only Go-like interactions and 

disregarding non-native ones. These statistical mechanical models have basic features 

common to the earlier theoretical treatment by Zwanzig52. In Zwanzig’s Ising-like 

model a protein’s conformation is represented by a set of binary numbers: 0 or 1 

signifying random coil (‘incorrect’) or native (‘correct’) states respectively for each 

residue. The 1-D free energy profile is essentially built with entropy derived from the 

degeneracy of the state and energy calculated as a linear function of the number of the 

incorrect residues with an additional energy gap for completely native conformation. 

This simplified approach has allowed for an analytical solution of the master equation 

and has been successful in describing the general thermodynamic and kinetic features 

of protein folding. However, as the sequence-dependent interactions are not 

accounted for explicitly, the model cannot be used directly to explain experimental 

data on real proteins. In the same spirit Muñoz and Eaton11 developed a simple 

phenomenological model in which the interaction energy obtained from contact maps 

of individual proteins was compensated by the loss in configurational entropy of 

ordered residues. Using low–resolution features of native structures (number of native 

contacts) as the reaction coordinate Muñoz and Eaton obtained folding rates of 18 

proteins by solving diffusion equation on a 1-D free energy surface. The iso-energetic 

pairwise interaction cost for each protein was adjusted to yield stabilities that matched 

experimental free energy of folding. An additional simplifying assumption was made 
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in which segments of native residues were limited to two to three as formation of 

native structure progressed. The barrier heights and folding rates calculated with the 

model agreed well with experimentally determined folding rates in the absence of 

denaturants with a correlation coefficient of 0.87. Concurrently similar models were 

developed by groups of Baker and Finkelstein53-55. Alm and Baker calculated the 

accessible surface areas for each residue that was assumed to be proportional to the 

interactions made by that residue55. Galzitskaya and Finkelstein described a network 

of kinetic pathways connecting conformations with chain links having varying 

number of unfolded residues and scaled the strength of each atomic contact to obtain 

equilibrium free energies at mid-transition (ΔGeq=0)53. While Alm and Baker derived 

the entropy cost for loop closure from off-lattice simulations Galzitskaya and 

Finkelstein obtained it from polymer physics principles. These groups employed 

recursive algorithms to determine transition state ensembles and identify the pathway 

having the lowest free-energy maximum. Comparison of theoretically calculated 

transition state free energies to experimentally obtained mid-transition rates Alm and 

Baker obtained a correlation coefficient of 0.67 for a dataset of 37 two-state 

proteins56. Finkelstein’s group predicted mid-point rates with 59% correlation for 19 

two-state proteins using a pre-factor of 108 s-1 and mid-transition barrier heights57. 

Moreover, distribution of phi values (measure of effect of mutations at residue-level 

on the free energy of transition state ensemble) obtained theoretically by the above-

mentioned simple models were only in moderate agreement with experimentally 

measured ones11,53,55.  
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In spite of the success in predicting folding rates of two-state proteins there 

are certain limitations associated with these models. Their rigid 1-D nature imposes 

the formation of native structure in a sequential manner. There are approximations 

regarding the choice of the reaction coordinate, level of detail in representing protein 

structures to obtain residue-residue contacts, and the number of allowed unfolded 

links or contiguous native segments to calculate the partition function. Moreover the 

free energy functions employed by these models are of limited accuracy requiring 

parameterization from experiments. Recently Henry and Eaton performed a 

combinatorial assessment in which the performance of each assumption used in such 

models was evaluated systematically58. They found that prediction of folding rates in 

the absence or presence of denaturant was insensitive to the choice of reaction 

coordinates (i.e. number of native residues or native contacts) consistent with the idea 

from analytical theory that such collective coordinates may be sufficient to describe 

protein folding kinetics. Surprisingly C-α representation of protein structure was 

found to perform better in predicting folding rates in water than all non-hydrogen 

heavy-atom description. Moreover, two entropic parameters – one for conformational 

entropy of residues in secondary structures and the other for residues in disordered 

loops were required to improve prediction over that using just one value of the 

parameter for all residues.  

Indeed these simple models that only consider the trade-off between 

stabilizing interaction energy and destabilizing conformational entropy are sufficient 

to capture the general folding characteristics of two-state proteins. The question of 

interest is whether they can also reproduce global downhill folding scenarios with 
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their inherent two-state assumption (apparent from the method of evaluating 

equilibrium constants by considering populations on either side of a free energy 

barrier) and without adjusting parameters of energetic or entropic cost. Since proteins 

are marginally stable as a result of small differences between large numbers of 

interactions, neglecting any of them will affect the delicate interplay between the two 

opposing components of the free energy. Especially to reproduce experimentally 

observed effects of mutations that are very sensitive to energetics, it is necessary to 

develop more robust free energy function that includes contributions from hydrogen 

bonding, sequence-dependent potentials and precise entropic penalties for fixing 

backbone as well as side chains. In addition, the statistical mechanical approach of 

the above models makes them cumbersome to apply for direct analysis of 

experiments even with approximations about the number of contiguous native 

segments. Finally, for a more realistic description of protein folding it is also 

important to incorporate energetic frustration by including non-native interactions in 

the free energy functional.  A recent NMR study probing the unfolding of individual 

protons has suggested that atomic contacts between a pair of residues defined by 

spatial distance obtained from three-dimensional structure need not contribute 

towards the interaction energy of the protein33.  Hence, this provides a cautionary 

example against the use of native-centric models that typically consider pair-wise 

interactions of native structures to obtain protein folding energetics.       
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1.6 Folding dynamics and nature of free energy barriers 

According to the transition state theory the rate coefficient is expressed as 

k = ko.exp(-ΔG#/RT) where ΔG# is the folding barrier height and the pre-exponential 

factor ko ~kBT/h has the value of 6×1012 at 300 K or ~0.2 ps-1. This value is 

appropriate for gas-phase chemical reactions involving small molecules. Such 

reactions are described by a single pathway with few intermediates along a potential 

energy surface on which all molecules pass through a unique transition state. As there 

is very little effect in the rest of the structure apart from where the covalent bond is 

formed or broken a single reaction coordinate is often sufficient for these reactions. In 

contrast, protein folding involves formation of only non-covalent interactions and 

global organization of structure accompanied by large loss in conformational entropy. 

In spite of these differences protein folding kinetics have been interpreted with 

transition state theory and assigned the same prefactor of 0.2 1/ps59. For a 

macromolecule like protein where several atomic coordinates need to be fixed this 

value of prefactor is highly unlikely. Lack of precise estimates of prefactor in protein 

folding has disallowed the estimation of absolute barrier heights and reliable 

temperature dependence of the activation parameters (ΔG#, ΔH# and ΔS#) from the 

measured folding rate constants. For protein folding reactions occurring in aqueous 

solutions Kramer’s theory, that describes a chemical reaction as diffusional motion 

over a low-dimensional free energy surface is more suitable60,61. Kramer’s rate 

expression is given by k = D.exp(-ΔG#/RT) where D, the effective diffusion 

coefficient on one dimension reflects dynamic motions and depends on protein 

sequence, reaction coordinate, solvent viscosity, temperature and roughness of the 
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multi-dimensional energy landscape . When the barriers are several kBT’s high D 

represents activated dynamics associated with barrier crossing. In case of negligible 

barriers D reflects purely diffusive dynamics and may provide an estimate of the 

folding speed limit. Studies on fast folding proteins and elementary events such as 

loop formation or secondary structure formation have provided estimates of diffusion 

coefficient (section 1.7). Another approach in obtaining diffusion coefficient from 

observed relaxation rates is to independently determine the barrier heights. Using the 

data on temperature dependence of rates and upper and lower bounds of empirical 

estimates of diffusion coefficient Akmal and Muñoz have analyzed the 

thermodynamic properties of six two-state proteins62. Their analysis has revealed that 

the folding barrier heights of these two-state proteins range from 6-12 RT at 298 K. 

Remarkably the ratio of activation thermodynamic parameters, ΔH# and ΔS# to the 

total change in folding enthalpy and entropy respectively were similar for all six 

proteins belonging to different structural classes (all α, all β and α−β). The decay of 

entropy was consistently faster than the gain of stabilization energy for all proteins 

indicating an entropic factor at play for generating the barriers. Since both energy and 

entropy are large numbers even relatively small difference between them can give rise 

to large barriers of several RT’s. Naganathan and Muñoz have recently obtained 

absolute barrier heights using the length scaling of thermodynamic parameters heat 

capacity change ΔCp and ΔH at 333 K with the expression: nσ = 

ΔH(333K)/(ΔCp.RT2)1/2 47. Barrier heights were calculated from the depth of a 

harmonic potential at nσ standard deviations from the potential minimum. These 

barrier heights were consistent to those extracted from the differential scanning 
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calorimetry thermograms of proteins in an alternative approach63,64. Most importantly 

using these simple procedures Naganathan and Muñoz have shown that barrier 

heights obtained from thermodynamic information exhibited strong correlation with 

experimental folding rates. Moreover they identified many previously classified two-

state proteins (implying barriers of several RT’s) to have only marginal barriers. The 

important implication of their work is that barrier heights of proteins can be used as a 

criterion to decide folding behaviors and that, on contrary to general belief, two-state 

approximation does not hold for all natural proteins.   

1.7 Elementary events in protein folding  

In protein folding studies it is difficult to segregate the formation of secondary and 

tertiary structures and hence determining the timescales and mechanisms of these 

events necessitates studying them in isolation, outside the context of protein. 

Understanding the factors that contribute to the stability and formation of secondary 

structural elements has provided important clues to the dynamic aspect of protein 

folding. α-helical peptides containing ~20-25 residues are found to fold in 200 ns - 

1 μs timescale while peptides forming β hairpins take much longer up to  

50 μs65-69. Analysis of kinetic experiments on α-helical and β-sheet peptides have 

suggested a rate of ~2-10 ns for peptide bond rotation70,71. Collapse triggered by laser 

T-jump and followed by FRET in an acid denatured protein domain (BBL) with 40 

residues has been found to occur in 60 ns72.  The reconfiguration dynamics associated 

with such non-specific collapse, where chain dimensions reduce without formation of 

native-like interactions, may likely reflect the motions occurring in the earliest stages 

of folding. In cytochrome c, however, collapse probed by Trp fluorescence has been 
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shown to take ~100 μs which was at least 3 orders of magnitude slower than estimates 

given by theoretical studies on homopolymer collapse73. This discrepancy is 

attributed to the formation of rather few but specific tertiary interactions in 

heteropolymers like proteins, more so in cytochrome c containing the heme group, 

that require breakage of already formed non-native interactions thereby slowing down 

dynamics. The rate of collapse may also be restricted by intrachain diffusive 

dynamics74. In unfolded cytochrome c formation of a loop of 50-60 residues long has 

been observed to take 35-40 μs75. A simple theory of diffusion controlled contact 

formation and predictions from the random walk chain model of Szabo, Schulten and 

Schulten suggested that the rate of loop formation scales with loop size n as n-3/2. In 

proteins where typically n ranges between 6-10 the rate of end-to-end contact 

formation is expected to be in 1-3 μs timescale75. Since proteins cannot fold faster 

than the slowest elementary processes, this study provided the first estimate of the 

upper limit of protein folding rate. Recent studies of fast folding proteins and their 

engineered mutants have also given similar estimates of folding speed limit and hence 

of the effective diffusion coefficient 38,76,77.   

1.7.1 Characteristics of helix-coil transition 
 
Helix formation represents the simplest prototype of protein folding. Extensive 

studies in the last 60 years have resulted in a well-established theoretical description 

and a detailed thermodynamic characterization of helix-coil transition. α-helix 

formation is essentially described as a nucleation-elongation process in which at least 

four consecutive residues need to be fixed in helical conformations simultaneously to 

form the first helical turn followed by bi-directional propagation (see Figure 2.1)78,79. 
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The nucleation step is difficult due to larger loss in conformation entropy compared 

to the increase in stabilization energy on formation of backbone interactions giving 

rise to a free energy barrier. Growing the existing helix by fixing additional residues 

is comparatively easier as a result of net gain in enthalpy. Various factors responsible 

for helix stability such as interactions of the charged groups with the helix macro-

dipole, i, i+4 hydrogen bonds, van der Waals interactions, dipole-dipole backbone 

interactions; and i, i+3 and i, i+4 side chain interactions; and the stabilizing effects 

arising from the N and C caps have now been identified80-82. Intrinsic preferences for 

helical conformation (i.e. nucleation (σ) and elongation (s) parameters of helix-coil 

theory) have been determined in free energy scales for each type of amino acid using 

host-guest studies83.  Over the years the basic helix-coil theory proposed by Zimm 

and Bragg has been modified to include these sequence-dependent effects84. This has 

allowed the formulation of the AGADIR force-field capable of accurately predicting 

the helical content of peptides at any given temperature, pH and ionic strength85-87.  

The seminal theoretical treatment of helix-coil kinetics given by Schwarz88 

around forty years back proposed the relation between σ, s, the rate constant for helix 

propagation kf and the mean relaxation time τ*: τ* = 1/(4σ + (s-1)2 kf) where s 

represents the degree of transition. At the mid-point of transition s~1, τ* is maximum 

and equal to (4σkf)-1. From the earlier experimental findings89,90 τ* was reported to 

be ~1 μs and kf was estimated to be on the order of ~108 sec-1. After the initial wave, 

studies on the kinetics of α-helix formation were halted for a long time. As a result, 

compared to its thermodynamics its kinetic aspects remained less well characterized. 

It is only in the last one decade that it received renewed interest mainly due to the 
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developments in the ultra-fast techniques and availability of short alanine-based 

peptides exhibiting considerable helical content in solution. This new generation of 

kinetic studies on helix formation have mainly employed laser-induced temperature 

perturbation techniques91. Using either simple polyalanine peptides (20-25 residues) 

or alanine-rich peptides with only single side-chain-side-chain interaction single 

exponential relaxation with time constants of ~106-107s-1 have been observed66-68,92,93. 

This timescale is 6 orders of magnitude faster than 100-millisecond estimate 

suggested for helix nucleation by denaturant-jump stopped flow CD experiments94. In 

order to explain this discrepancy it was argued that T-jump experiments probe only 

the local perturbations i.e. local formation and unwinding of helices that are much 

faster than helix nucleation involving the global folding/unfolding event.  However, 

this argument is disputable because in T-jump experiments the equilibrium 

amplitudes are reached at the most within a few microseconds supporting the fact that 

there are no events occurring slower than microsecond timescale. Since the 100-

millisecond relaxation was never reproduced by other research groups (in tryptophan 

fluorescence stopped flow studies91) and never observed in previous studies of helix-

coil kinetics, it can possibly be the result of an artifact.  

Improvements in T-jump instrumentation including reduction in dead time 

and the use of more protein-like sequences have permitted the resolution of an 

additional fast phase with lifetime of tens of nanoseconds67,93. Statistical mechanical 

models based on helix-coil theory predicting biphasic relaxation have been successful 

in explaining these results95. However, molecular dynamic simulations on alanine 

penta-peptides have suggested that helix formation takes place via barrier-less 
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conformation diffusion search96,97. This description is not in consensus with helix-coil 

theory that predicts a nucleation barrier. In support of the diffusive search model, 

laser T-jump studies on peptides with isotopic labels on carbonyl carbon atoms in 

different regions have revealed complex kinetic behavior66,93,98. Apparent relaxation 

times of helix formation have been found to depend on the magnitude of perturbation 

i.e. size of the T-jump and also on the specific region of the peptide probed. Moreover 

stretched exponential time courses have been reported for each peptide irrespective of 

the position of the labels or temperatures before or after the jump. This controversy 

regarding the mechanism of helix formation has been addressed in the current work 

(see Chapter 2).   

1.8 Scope of the present work 
 
The above sections provide a brief review of the progress made in understanding 

equilibrium, kinetic and dynamic properties of protein folding, the limitations of 

current analytical procedures and the gap between theory and experiments while 

interpreting folding mechanisms. The present work focuses on formulation of simple 

models of protein folding that are compatible with established theory as well as 

empirically observed scaling laws; and application of these models in analyzing 

available experimental data on alternative folding behaviors. This manucript is 

broadly organized into two main segments. The first segment that comprises Chapters 

2 and 3 concentrates on providing a physical basis for the complex relaxation 

behaviors observed in kinetic studies of α-helical peptides. Specifically the following 

questions are addressed: 
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i. Can a kinetic nucleation-elongation theory explain the T-jump size- and 

probe-dependent relaxation kinetics observed in helix-coil transition?  

ii. Can the kinetics obtained from a detailed model be reproduced from 

Kramer’s- like diffusion on a 1-D free energy surface of α-helix formation? 

Chapters 4, 5 and 6 deal with the objectives of the second segment that are listed 

as follows: 

i. Formulation of a 1-D free energy surface model of protein folding  

ii. Prediction of protein folding rates using the 1-D free energy surface model 

iii. Estimation of conformational entropy from statistical analysis of protein 

structure database for sequence-dependent parameterization of the model  

iv. Analysis of protein folding experiments with 1-D free energy surface model  

 

For clarity, model description and results pertaining to each segment are separately 

discussed in individual chapters.   
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Chapter 2: Analysis of T-jump experiments on 13C-labeled 

peptides with a detailed kinetic model of α-helix formation 

2.1 Introduction 

Gai and co-workers investigated helix formation in analogous peptides having the 

same sequence Ac-YGSPEAAAKAAAAKAAAA-r-NH2 but 13C labeled at carbonyls 

of alanine residues either in the N-terminal, middle or C-terminal regions93. Using 

laser-induced T-jump the peptides were subjected to a sudden increase in temperature 

and the relaxation to the new equilibrium at higher temperature was followed by 

Fourier transformed infrared spectroscopy (FTIR). Gai and co-workers observed that 

relaxation kinetics of peptides labeled in different regions after a T-jump of 10 K to a 

final temperature of 288 K were dissimilar. The relaxation of peptides labeled in the 

C-terminus region was faster than those of peptides labeled at the N-terminus or 

middle regions. This observation is consistent with one of the predictions of helix-coil 

theory that helices with intermediate lengths show helicity concentrated in the central 

region with ends frayed. In other words, the probability of forming helices in the 

middle of the peptide is greater than at the termini. Surprisingly the apparent 

relaxation times of the N-terminally labeled peptides were very close to those of the 

peptides labeled in the middle region when the differences in the signal were 

normalized. Also different relaxation kinetics resulted for peptides labeled in the 

middle region when probed at different frequencies98. Furthermore, subjecting the 

middle labeled peptides at different initial temperatures to the same final temperature, 

Gai and coworkers found that the relaxation rates were linearly dependent on the 
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magnitude of the T-jump. A T-jump of ~14 K resulted in a relaxation that was ~1.5 

times faster than a 4 K jump to the same final temperature. The time courses of each 

labeled peptide were non-exponential and fitted to stretched exponentials with β 

(measure of deviation from single exponential, β=1) between 0.7 and 0.85. Unlike 

previous T-jump experiments that used simple alanine-based sequences with residues 

having very similar intrinsic helical propensities, Gai and co-workers investigated 

more heterogeneous peptides and revealed for the first time that even simple short α-

helical peptides could exhibit such complex behaviors.   

These results were interpreted in terms of a conformational diffusive search 

model describing helix formation as a downhill diffusion process in the coil region of 

the phase space. And hence they were not considered compatible with nucleation-

elongation theory that predicts a free energy barrier separating helical and coil 

ensembles. The conformational diffusive search description suggested originally from 

MD simulations of alanine penta-peptides96,97 provides only an anecdotal picture and 

fails to explain the observed probe-dependent kinetics. In a recent comprehensive all-

atom MD study using global distributed computing Sorin and Pande performed a 

quantitative assessment of the AMBER force fields generally used in simulating 

helical peptides99. The AMBER-94 variant, the force field used earlier by Hummer 

and co-workers in the MD simulation of alanine penta-peptides was found to 

overstabilize the helical conformations and hence predict smaller to negligible 

barriers.  

In order to analyze the kinetic experiments performed by Gai and coworkers 

an improved version of the nucleation-elongation model is formulated.  This model 
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explicitly takes into account amino acid sequence dependence and allows for helix 

breaking and merging. The aforementioned results of T-jump kinetics are explained 

using simple 1-D free energy projections. To directly compare kinetics simulated by 

the model with that seen in experiments, FTIR signals are calculated from time 

dependent probabilities generated by the model and amide I spectra represented as 

Gaussian curves.      

2.2 Model and Methods 

2.2.1 Description of the equilibrium model 

The fundamental features of the model are similar to the earlier statistical mechanical 

models of α-helix and β-sheet formation. The basic conformational unit in the model 

is the peptide bond. Each ith peptide bond can assume one of the two states: helical if 

the flanking dihedral angles φi+1, ψi have α-helical values; or coil for any other values 

of the dihedral angles. The coil state is the reference having statistical weight of 1. 

For simplicity both φi+1, ψi are assumed to rotate simultaneously. Fixing a pair of 

dihedral angles in α-helical conformation accompanies loss in conformational 

entropy. More loss in conformational entropy occurs when dihedral angles of several 

successive residues (typically 4-5) are fixed. This unfavorable and rate-limiting 

process is helix nucleation and gives rise to a free energy barrier. As the helical 

segment increases to a particular length compensating backbone interactions such as 

van der Waals, dipole-dipole and hydrogen bonds between the carbonyl oxygen of ith 

residue and amide hydrogen of i+4th residue are formed. From this point on, each 

subsequent hydrogen bond is realized by fixing just one more pair of dihedral angles
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Figure 2.1 The nucleation-elongation model of α-helix formation 

A peptide segment undergoing helix initiation and bi-directional propagation along 

with conformational assignments to residues (as in AGADIR) and peptide bonds (as 

in this model) is shown here. Each residue represented by its C-α atoms (circles) in 

either coiled (letter ‘c’) or helical (letter ‘h’) conformation or forming N- and C-caps 

(gray circles) are shown. The letters in green indicate the conformation of each 

peptide bond. Peptide bonds with only carbonyl hydrogen bonds (red), only amide 

hydrogen bonds (blue), both carbonyl and amide hydrogen bonds (purple) and no 

hydrogen bonds (dashed lines) are shown. An illustration of formation of helix 

nucleus with 5 consecutive peptide bonds in helical conformation (not necessarily 

flipped in a simultaneous fashion) and hydrogen bonds between the carbonyl group of 

residue i and amide group of residue i+4 (bent black arrows) is also given.  
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resulting in the net gain of stabilizing backbone interactions. This process leads to 

elongation that may occur in either directions of the nucleated helix (Figure 2.1). The 

other favorable interactions responsible for holding the helix 

together include side chain interactions between i, i+3 and i, i+4 residues; helix 

capping effects and electrostatic interactions of charged residues with the helix 

macro-dipole. Amino acid sequence-dependent free energy contributions from all 

these interactions are directly obtained from the empirically derived parameters of the 

AGADIR algorithm based on helix-coil theory81,85,86. However, in AGADIR the 

conformational unit is residue rather than peptide bond in this model. Due to this 

difference the minimal helical unit of AGADIR comprising of 6 residues: 4 helical 

residues plus the N- and C- caps is equivalent to a helical nucleus of five consecutive 

peptide bonds in this model. This mapping allows the assignment of the same mean 

enthalpic contribution of AGADIR,  exp(- / )bb bbw G RT= Δ  where ΔGbb is the sum 

of backbone interactions, to helix nucleation in this model. The statistical weight for 

fixing any peptide bond has only entropic contributions and its value depends on the 

intrinsic propensities of amino acid residues (from AGADIR) flanking the peptide 

bond, , , 1exp( ( + ) /(2 ))in in i in iw G G RT+= − Δ Δ . Hence the statistical weight for every 

helical peptide bond added to the nucleus is the product of wbb and win. The N- and C-

cap weights (wn and wc) arise from residues immediately preceding the first helical 

peptide bond and just after the last helical peptide bonds respectively. In AGADIR 

any helical segments having lengths less than helix nucleus (6 residues) are not 

considered explicitly because of their low probabilities. In order to provide a detailed 

kinetic description of helix formation the current model includes all the short 
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segments with one to four helical peptide bonds and allows for their kinetic 

connections with other helical species. The statistical weights of these short helical 

segments include contributions only from N- and C- caps and intrinsic helical 

preferences. For example, statistical weight of a helical segment is given by 

wn.(win)h.(wbb)h-4.wc if h>=5 and by wn.(win)h.wc for h<5. With binary states for each 

peptide bond there can be 2N possible combinations or species for peptide of length 

N+1. The peptide analyzed experimentally by Gai and co-workers is 19 residues long 

with the non-natural D-Arg as the C-cap and ends protected (sequence: Ac-

YGSPEAAAKAAAAKAAAA-r-NH2). In the model D-Arg is replaced by Gly, the 

best-known natural C-cap100, in addition to placing one Gly residue at each end to 

account for acetylation and amidation at N- and C-terminals respectively.  These 

substitutions result in a 21-residue peptide (20 peptide bonds). One major 

improvement in this model as compared to helix-coil models used to analyze previous 

equilibrium and kinetic experiments is the introduction of double sequence 

approximation (DSA). Unlike earlier models that employed single sequence 

approximation, i.e. allowing helix breaking and forming only from the ends of a 

helical segment, this model permits helix breaking in the middle of a helical segment 

and merging of two helical segments. Since helix nucleation is energetically 

unfavorable not allowing more than two helix initiation sites is a good enough 

approximation for a peptide length of 21 residues (n=20).  This is also confirmed by 

stochastic kinetic simulations involving 220 conformations in which species having 

more than two helical segments are only transiently populated with half life of  

<400 ps. Using DSA the number of possible species drastically reduces from 220 to 
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6196 including coil conformation. The partition function in DSA is given 

by
11

1 1 1 1
1 1

n i j n pn n i

ij pq
i j p q i j

Q w w
− − − +− +

= = = = + +

⎛ ⎞⎛ ⎞
= + +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ ∑ ∑ ∑  where wij and wpq are statistical weights 

of two helical segments having i and p helical peptide bonds starting at position j and 

q respectively.  

2.2.2 Modeling FTIR amide I band spectra 

Amide I band spectra corresponds to normal modes of vibration mainly arising from 

the stretching of the C=O bond. However, vibrations due to stretching of N-H bond 

also contributes significantly up to ~25% 101,102. To take this into account basis 

spectra of peptide bonds with variable number of hydrogen bonds involving either 

C=O or N-H or both are generated by modeling them as Gaussian or Lorentzian 

curves. Figure 2.1 shows the classification of peptide bonds based on the hydrogen 

bonding pattern and absence or presence of 13C labels on C=O. Each peptide bond 

chromophore is assigned parameters that describe the characteristics of its 

Gaussian/Lorentzian curve. To reproduce temperature-dependent amide I spectra 

measured by Gai and co-workers amide I spectra are calculated at the same 

experimental temperatures as weighted average of basis spectra of all kinds of peptide 

bonds.   

2.2.3 Description of the kinetic model 

In the model rotation of a peptide bond from coil to helical (on rate) or from helical to 

coil  (off rate) conformations constitute elementary kinetic steps. For each conversion 

an elementary transition state is assumed in which entropy is lost due to the fixing of 



 

 35 
 

the peptide bond in helical angles but no interactions are realized yet.  The species 

can be kinetically connected to only those other species that have one more or one 

less helical peptide bond. For example species such as ---cccchhhhccc--- can be 

converted to ---cccchhhhhcc--- or ---cchchhhhccc--- by a single flip but not to            

---cccchhhhhhc--- or ---chhchhhhccc---. Similarly species with two helical segments 

such as ---cccchhhhhcccchhhccc--- can be connected to species like                             

---ccchhhhhhcccchhhccc--- or ---cccchhhhhcccchhhhcc--- but neither to                      

---cccchhchhcccchhhccc--- nor ---ccchhhhhhcccchhhhcc---.  

The on rate is expressed as kon = ko.win where ko is the pre-exponential factor 

that defines the rate of the peptide bond rotation in the model and varies with 1/T in 

the same manner as the temperature dependence of viscosity of water. ko is an 

adjustable parameter. The off rates are obtained by detailed balance, koff = 

kon.(wh+1/wh) where wh and wh+1 are statistical weights of species differing by one 

helical peptide bond. As given below the set of master equations (Equations 2.1-2.3) 

is built by using on and off rates for each transition:  

( )0,0,0,0
1, ,0,0 0,0,0,0

1
.............................................................................(2.1)

n
j j

off j on
j

dP
k P k P

dt =

= −∑

for i = 1

 

Equation 2.1 represents the inter-conversion of species with a single helical segment 

comprising of a single helical peptide bond with the fully coil species. The superscript 

on koff and kon rates is the peptide bond number that is undergoing conversion. The 

subscripts on the probabilities of the species, i.e. P, are the indices for the lengths 

(indices 1 and 3) and positions (indices 2 and 4) of the two helical segments.   



 

 36 
 

 

( ) ( )

( )

2
, ,0,0

, ,1, , ,0,0 1, , , 0,0, ,
1 1

I II

1
1, ,0,0 , ,0,0

III

jn
i j q q q q

off i j q on i j off q i j on i j
q i j q

i j i j j
off i j on i j off

dP
k P k P k P k P

dt

k P k P k

−

= + + =

+ + −
+

⎛ ⎞ ⎛ ⎞
= − + − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

− +

∑ ∑
������	�����
 �����	����


�����	����


for 1 < i < n ; j > 1;  i + j - 1 < n

( )

( ) ( )

( )

1
1, 1,0,0 , ,0,0

IV

1 1
1, 1,0,0 , ,0,0 1, ,0,0 , ,0,0

V

2; 1; 2

, , , 1 , ,0,0
1; 2; 1

VI

j
i j on i j

j j i j i j
on i j off i j on i j off i j

m i p b i j
b b
on m j p j p off i j

m p i b j

P k P

k P k P k P k P

k P k P

−
+ −

+ − + −
− + −

= − = = + −

+ −
= = − = +

− +

− + − +

−∑

�����	����


�����������	����������


� 	
...........................................................(2.2)

������� �������


 

, . . -1 ; 1
.

3, .

for boundary conditions i e for i j n omit terms I and III and for j
omit terms II and IV
for i omit termVI

+ = =

<

           
    

     
 

 

Equation 2.2 represents the inter-conversion of species with single helical segment 

with species having two helical segments- the second segment with one helical 

peptide bond on the right of the first helical segment (Term I), on the left (Term II); 

with species having a single helical segment with one more helical peptide bond to 

the right (Term III), to the left (Term IV); with species having a single helical 

segment with one less helical peptide bond (Term V); and with species forming two 

helical segments as a result of breaking a single segment   
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Equation 2.3 represents the inter-conversion of species with two helical segments 

with those species having one more helical peptide bond on the right (Term I) and the 

left (Term II) of the first helical segment, on the right (Term III) and left (Term IV) of 

the second helical segment; with species having one less helical peptide bond on 

either side of the first helical (Term V) and second helical (Term VI) segments.     

 

The resulting sparse rate matrix is solved numerically using standard differential 

equation solver routines for stiff problems. These calculations are performed with the 

CVODE package provided by Eric Henry at NIH103. This package implements an 

iterative algorithm for solving stiff differential equations and sparse linear systems. 

Relaxation kinetics following laser T-jumps is simulated by integrating master 
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equation at the final temperature using equilibrium probabilities calculated at initial 

temperatures of the jump. To compare the relaxation kinetics calculated by the model 

to the one observed experimentally time-dependent FTIR signals are calculated. Most 

of the calculations are performed with Matlab 6.5 and Microsoft Visual C++. 

2.3 Results and Discussion 

2.3.1 Comparison between the equilibrium behavior of α-helical peptides 

observed in experiments and that predicted by the model  

Experimentally, the equilibrium unfolding of non-labeled peptides and peptides 

labeled at N-terminus (positions 6 to 8), in the middle region (positions 10 to 13) and 

at C-terminus (positions 15-18) was probed by FTIR. The amide I spectra of these 

peptides measured by Gai and co-workers at various temperatures93 are shown in the 

upper panel of Figures 2.2. In case of non-labeled (12C) peptides the amide I band 

shows a shift in frequency from ~1635 cm-1 ~1650 cm-1 and a decrease in intensity as 

a result of thermal melting. The amide I band spectra of 13C- labeled peptides (panels 

B-D of Figure 2.2) exhibit an additional peak at ~1600 cm-1. The difference spectra 

calculated by subtracting the spectrum at the lowest temperature are shown in the 

upper panel of Figure 2.3. The loss in intensity in the amide I band is accompanied by 

the increase in the intensity of a positive spectral feature at higher wavenumbers. 

Interestingly, the effects of temperature on amide I spectra of peptides labeled in 

different regions are quite dissimilar. For peptides labeled in the middle region a 

sharper 13C peak of very high intensity is observed while labeling at the N-terminus 

region results in a less intense 13C peak. On the other hand, alanines labeled at the C-
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terminus region produce a broad 13C shoulder of very low intensity. These differences 

in spectral features allows the independent monitoring of helix melting in non-labeled 

and labeled peptides as well as provides information about the helical content in the 

selected regions of the peptide as a function of temperature.  

 

 

Figure 2.2 Equilibrium amide I band spectra of non-labeled and labeled peptides 

as a function of temperature 

Panels A (non-labeled), B (N-terminus labeled), C (Middle labeled), D (C-terminus 

labeled) show the experimental amide I spectra obtained by Gai and coworkers at 

temperatures of ~276, 303, 330 and 348 K. Panels A’-D’ show the corresponding 

amide I spectra calculated by the equilibrium model at the same temperatures. In each 

panel the peak with the highest intensity refers to the lowest temperature.  
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To compare these experimental results with the model calculations amide I basis 

spectra are simulated as Gaussian curves for peptide bonds with different types and 

number of hydrogen bonds. The basis spectra of coil peptide bonds as well as of 

helical peptide bonds (in helical segments having length <5) with no hydrogen bonds 

are modeled as Gaussian curves with a maximum at 1650 cm-1. While basis spectra of 

helical peptide bonds with only hydrogen bonded carbonyls are represented as 

Gaussian curves with the maximum shifted to 1636 cm-1. For peptide bonds with 

singly hydrogen bonded carbonyl and amino groups the basis spectra are modeled as 

Gaussian curves with maximum at 1639 cm-1 and 1646 cm-1 respectively. The basis 

spectra of 13C labeled peptide bonds are similarly modeled as those of their non-

labeled counterparts except with the width being narrower and the maxima shifted by 

~38 wavenumbers. The strength of the transition dipole that reflects the IR-absorbing 

intensity is also increased in the same proportion for all isotopically labeled peptide 

bonds with different hydrogen bonding status. The spectral parameters for each kind 

of peptide bond are listed in Table 2.1. An increased entropic stabilization of the coil 

ensemble results due to the inclusion of conformations having shorter non-hydrogen-

bonded helical segments. This effect is balanced by using a higher mean enthalpic 

contribution per peptide bond in each elongation step than that used in AGADIR87. 

The amide I spectra are then obtained from the basis spectra of different spectral 

groups and temperature-dependent probabilities of 6196 species calculated using -

1.04 kcal/mol for the mean enthalpic contribution. The theoretical amide I spectra and 

the difference spectra with reference to the lowest temperature are shown in the lower 

panels of Figures 2.2 and 2.3. In any species when proline occurs at the first position 
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of a helical segment, it is assigned the same intrinsic propensity value as that for 

glycine. Since the amino groups of first three residues of a helix never participate in 

backbone hydrogen bond formation, presence of a proline at the beginning of the 

helix does not affect helix formation and the overall helical content as previously 

found by experiments104. The Gaussian representations of the amide I band spectra in 

Figure 2.2 (A’-D’) show similar changes in relative intensity with temperature as 

those observed in experimental spectra.  

 
Table 2.1 Spectral parameters used in modeling amide I band spectra 
  

 
Peptide 
bonds 

 

Mean μ 
(cm-1) 

 

Standard 
Deviation, 

σ (cm-1) 
 

Relative 
Intensity 

 

Non-labeled 
(12C) 

 
HB C=O 1639 15 1.2 

 HB NH 1646 15 1.2 
 HB C=O and NH 1636 15 1.0 
 helical NHB 1650 15 1.3 
 coil 1650 15 1.3 

Labeled  
(13C) 

 
HB C=O 1601 13 1.8 x 1.2 

 HB NH 1608 13 1.8 x 1.2 
 HB C=O and NH 1598 13 1.8 
 helical NHB 1612 13 1.8 x 1.3 
 coil 1612 13 1.8 x 1.3 
 
HB C=O: helical peptide bonds with only C=O hydrogen bonded (red bonds in Figure 

2.1); HB NH: helical peptide bonds with only NH hydrogen bonded (blue bonds in 

Figure 2.1); HB C=O and NH: helical peptide bonds with both C=O and NH 

hydrogen bonded (purple bonds in Figure 2.1); helical NHB:  helical peptide bonds 

with no hydrogen bonds; coil: peptide bonds in coil conformation. 

 



 

 42 
 

 

Figure 2.3 Difference amide I band spectra of non-labeled and labeled peptides 

as a function of temperature 

Panels A (non-labeled), B (N-terminus labeled), C (Middle labeled), D (C-terminus 

labeled) show the difference spectra obtained by Gai and coworkers with reference to 

the lowest temperatures (276 K). Panels A’-D’ show the corresponding theoretical 

difference spectra. In each panel the peak with the highest intensity refers to the 

lowest temperature.  

 

It can be clearly seen from Figure 2.3 that the ratio of the maximum and the minima 

and the relative intensity of the 12C and 13C peaks observed in difference spectra 

obtained from experiments are reproduced in the theoretical difference spectra. 

Similar results are obtained when amide I band spectra are modeled as Lorentzian 

curves or a different set of spectral parameters are used. Although Lorentzian curves 

better represent the shape of the amide I spectra, the difference spectra calculated 
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with Lorentzian functions appear more dissimilar to the experimental difference 

spectra. The calculated equilibrium melting transition (Figure 2.4) show a Tm of ~293 

K for the peptides considered here. Although no results of any experiments have been 

reported for these peptides to directly compare the Tm, the theoretical estimate is close 

to the Tm of 289 K suggested from two-state fits of far UV-CD data.  The distribution 

of helical probability along the peptide sequence obtained from the calculations is 

shown in the inset to Figure 2.4. The helix content is maximal in the central region of 

the peptide and decreases towards the ends. The dip in the helix probability at the 

third peptide bond is due to the presence of serine in the fourth position followed by 

proline that act as a helix stop signal. There is an increase in the helical probability at 

positions at the N-terminal before serine because short helical segments comprising 

of one or two non-hydrogen bonded peptide bonds can be formed. The extent of 

fraying in the C-terminal region is larger than that seen at the N-terminus, which is 

also evident from the intensity of the 13C peaks of peptides labeled in the C-terminal  

 

  

Figure 2.4 Theoretical equilibrium 

thermal transition 

The probability of hydrogen bonded

carbonyls are plotted against

temperature. The inset shows the

probability of finding each peptide

bond in helical dihedral angles at the

Tm (293K). 



 

 44 
 

 

region. This is because out of the four labeled carbonyls at the C-terminus, the 

hydrogen bonds of only two carbonyls are satisfied. Unlike the N-terminus amino 

groups the side-chain-backbone hydrogen bonds are not favored at the C-terminus. 

The fraying effect at the C-terminus is, however, diminished to a small extent due to 

the presence of a strong C-cap.  

The general spectral features of the equilibrium FTIR spectra namely the 

shifts in the frequency of the 13C labeled peptides and the decrease in the amide I 

band intensities with increase in temperature are successfully reproduced by the 

equilibrium model. The model also predicts the characteristic end fraying effect of 

helix-coil transition.  

2.3.2 Comparison between T-jump relaxation kinetics of α-helical peptides 

observed in experiments and those predicted by the model   

Gai and co-workers monitored the relaxation kinetics of the isotopically labeled 

peptides at 1600 cm-1 after perturbations induced by a temperature jump of 10 K.  

They found that the peptides labeled at the N-terminus and the middle region showed 

identical relaxation kinetics when the signals are normalized to the same scale. 

However, relaxation kinetics of the C-terminus labeled peptides was found to be 

relatively faster (inset to Figure 2.5A). These relaxation traces were fitted to a 

stretched exponential function along with a so -called ‘instantaneous’ component that 

is not resolved due to the limitation of the response time of the instrument. The 

instantaneous component is generally assumed to arise from the temperature induced 

shifts in the equilibrium IR spectra along with some contributions from the actual 
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helix-coil transition (i.e. local relaxations occurring on sub-nanosecond timescale).  

Figure 2.5A shows the time courses predicted by the model after a simulation of a T-

jump from 278 K to 288 K. The theoretical time courses also exhibit a faster 

relaxation of peptides labeled in the C-terminus and very similar decays for the N-

terminus and middle labeled peptides. When plotted on a logarithmic scale (Figure 

2.5B) the time courses show biphasic behavior. The reason of the C-terminus-labeled 

peptides having a faster relaxation also becomes apparent. Both the N-terminus and 

middle labeled peptides have similar ratios of amplitudes for the fast and slow phases 

while the C-terminus labeled peptides show a relatively faster fast phase with larger 

amplitude. This indicates that in case of peptides labeled at the C-terminus there is 

large amount of helix fraying resulting in the fast phase having a relatively larger 

contribution to the overall relaxation as compared to that of peptides labeled in other 

regions. Larger amplitudes and shorter times of fast phase arise from the greater 

amount of local perturbations at the C-terminal. A similar fraying effect should also 

be expected for the peptides labeled at the N-terminus. However, the presence of 

residues having low helical propensities results in slower rates of elongation at the N-

terminus of the peptide making the fast phase considerably slower than that of C-

terminus labeled peptides. But the presence of a strong capping motif (SPE) at the N-

terminus stabilizes the helix and does not allow any modification to the slow phase 

i.e. the global melting of the helix. In earlier kinetic studies peptides containing only 

alanine, lysine and arginine were investigated, all of which have high intrinsic helical 

propensities. The high helical propensities give rise to faster propagation/de-

propagation rates that ultimately result in a fast phase with very low relaxation times 
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(i.e. 10 ns). Hence the fast phase was often not resolved due to the detection limit of 

the T-jump instrumentation employed in those studies. As mentioned above the 

peptide used by Gai and coworkers and considered here has a heterogeneous 

sequence with residues in the N-terminal region having low intrinsic propensities and 

strong capping motifs. Due to this the propagation rates at the N-terminus are slower  

 

Figure 2.5 Relaxation kinetics observed at selected regions of the peptide 

(A) Theoretical relaxation kinetics for N-terminus labeled (blue dashed line), Middle 

labeled (red) and C-terminus labeled peptides (green) following a T-jump from 278-

288 K at the observation frequency of 1600 cm-1. Following Gai and coworkers the 

time courses are normalized to 0 at time t=0. The scaling factors are 0.72 for middle 

labeled and 1.6 for C-terminus labeled peptides. The inset shows the original 

experimental data obtained by Gai and coworkers. (B) The relaxation kinetics shown 

in panel A are plotted on a logarithmic timescale. In both the panels the change in 

signal is scaled by 103. 
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than other regions of the peptide. This results in a fast phase that becomes sufficiently 

slow to get resolved in the kinetic experiments. Thus, it is the intricate balance 

between the sequence effects and the phenomenon of end fraying that gives rise to 

changes in the relative amplitudes of the fast and slow phases. 

Similarly relaxation kinetics of middle labeled peptides obtained by Gai and 

coworkers in another study were also reported to be non-exponential and show 

marked differences depending on the probing frequency98. The results of T-jump 

simulations performed with the model for middle labeled and non-labeled peptides at 

different frequencies are shown in Figure 2.6. It can be seen from Figure 2.6B where 

the data is displayed on a logarithmic scale that the times courses are bi-exponential 

and the differences between them is the result of the changes in the relative 

amplitudes of the fast and slow phases. The amplitude of the fast phase increases 

from ~13% of the total amplitude at 1600 cm-1 to almost ~26% at 1635 cm-1. 

Furthermore, Gai and coworkers reported that the relaxation times of the middle 

labeled peptides seem to depend on the magnitude of the T-jump. The non-

exponential relaxation kinetics were fitted to stretched exponential functions with an 

instantaneous component. For T-jump sizes ranging from ~4 K to ~15 K to the same 

final temperature of 288 K the β values were found to vary between 0.75 to 0.85 

whereas the instantaneous component contributed from ~15% to 30% to the full 

amplitude. The relaxation times exhibited a linear relation with the T-jump size with a 

slope of ~-10 ns K-1 and an intercept of ~390ns (Inset to Figure 2.7A).  



 

 48 
 

 

Figure 2.6 Relaxation kinetics observed at different probing frequencies 

(A) Theoretical relaxation kinetics of peptides labeled in the middle region shown at 

1600 cm-1 (blue) and 1635 cm-1 (red). Relaxation kinetics calculated at 1600 cm-1 for 

non-labeled peptides is shown in black. The theoretical time courses are calculated 

for a T-jump of ~10K to a final temperature of 293 K. The signals are normalized to 0 

at time t=0. (B) The same relaxation kinetics shown in panel A are plotted on a 

logarithmic scale with scaling factors of 1.45 for peptides probed at 1635 cm-1 and 8.2 

for non-labeled peptides probed at 1600 cm-1. The signals are normalized to 0 at time 

t=0 and to the signal at 10 ms of middle-labeled trace at 1600 cm-1. The change in 

signal is scaled by 103 in all cases.     

     

To determine whether the kinetic model described here can reproduce this 

perturbation size-dependent kinetics, the same T-jumps as in experiments are 

simulated using equilibrium population calculated at the initial temperatures. The 

relaxation traces obtained at 288 K after starting from different initial temperatures 
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are shown in Figure 2.7A. In accordance with the experimental observation the 

apparent relaxation kinetics are found to become faster as the T-jump size increases. 

Again, the time courses plotted on the logarithmic timescale reveal biphasic 

relaxation and differences in the ratio of fast and slow phase amplitudes as well as in 

the ratio of relaxation times. To compare with experimental results, the apparent 

relaxation times are calculated by fitting the calculated kinetic traces to stretched 

exponential with β values of ~0.7. However, these apparent relaxation times yields a 

much lower slope of ~-2 ns K-1 when plotted against the difference between initial 

and final temperatures. When apparent relaxation times are calculated for a 40 K 

jump (blue trace in Figure 2.7A), they continue to decrease linearly with T-jump size.  

There are two possibilities for the discrepancy in the temperature dependence of the 

experimental and theoretical apparent relaxation rates:  if the magnitude of the T-

jumps in experiments is larger than that reported or the AGADIR parameters used in 

the model underestimate the effects of temperature on helix-coil transition. To 

investigate the latter possibility the calculations were repeated under conditions of 

higher helix stability by using a mean enthalpic contribution of –1.18 kcal/mol. The 

slope of the apparent relaxation times now increases and becomes very similar to that 

obtained from experiments. However, increasing the strength of the mean enthalpic 

contribution raises the Tm of the peptides from ~293 to 305 K due to which the final 

temperature of the T-jumps i.e. 288 K no longer falls in the transition region. Also 

increased helix stability does not reproduce the equilibrium behavior and other kinetic 

results correctly. These calculations reveal that in order to match the experimentally 
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Figure 2.7 Relaxation kinetics of middle labeled peptides after T-jumps of 

different sizes  

(A) Theoretical relaxation kinetics after a T-jump to a final temperature of 288 K 

from 285 K (red), 273 K (green), 248 K (blue). All the time courses are normalized to 

0 at time t=0 and to the signal at 10 μs of the green trace (i.e. after a jump of 273 to 

288 K). The scaling factors are 0.62 for red trace and 3.96 for the blue trace. The inset 

shows the dependence of relaxation times on the size of the T-jump. The 

experimental relaxation times are shown as red circles with a linear fit through the 

data (red line). The green line shows the dependence of apparent relaxation times on 

the magnitude of T-jump obtained from theoretical calculations using a mean 

enthalpic contribution of –1.04 kcal/mol. The blue line shows the dependence of 

apparent relaxation times on T-jump size obtained from the calculations when an 

increased mean enthalpic contribution of –1.18 kcal/mol is used. (B) The relaxation 

kinetics shown in (A) are plotted on a logarithmic timescale. In both (A) and (B) the 

change in signals is scaled by 103. The inset shows the calculated relaxation kinetics 
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(blue circles) with stretched exponential fit (red) with β=0.64 and double exponential 

fit (green).  

 

observed slope of relaxation times the relative amplitude of the slow phase should be 

less than  ~40%. Since kinetic traces are fitted to stretched exponential the apparent 

relaxation times are dependent on whether the fast or the slow phase dominates at the 

time at which the signal decays to Afinal –(Afinal-Ainitial)/e. In the experiments the 

instantaneous component that arises from the temperature dependence of the amide I 

spectrum will increase with the magnitude of the T-jump. Hence the amplitudes of the 

instantaneous component and the partially resolved fast phase tend to decrease the 

relative amplitude of the slow phase as the T-jump size increases. This will eventually 

result in an overestimation of the temperature dependence (i.e. increased slope) of the 

experimental relaxation rates on the magnitude of the T-jump.       

The above results clearly demonstrate that the detailed kinetic model based on 

nucleation elongation theory is able to reproduce the experimentally observed 

dependence of relaxation rates on the specific sites probed, on the observation 

frequency as well as on the magnitude of the perturbation. 

2.3.3 Analysis of the observed complex kinetics in helical peptides using 1-D free 

energy surface 

As seen in the above section the complexities in helix-coil kinetics are consequences 

of the phenomenon of helix fraying and the heterogeneity of the sequence under 

consideration. Using a detailed microscopic model that involves solving more than 

6000 differential equations allows understanding helix-coil kinetics on a quantitative 
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level. By projecting the free energy surface on a simple reaction coordinate, i.e. 

number of helical peptide bonds, the physical origin of observed complexity in helix-

coil kinetics can be clearly understood.  The 1-D free energy profile (Figure 2.8 A) 

consists of a barrier (~3.5 RT) separating two broad basins corresponding to two 

ensembles – one with coil conformations and very shorts helices (< 5 peptide bonds) 

and another with long stretches of one or more helices (with lengths > 5). Inset to 

Figure 2.8A shows that these basic features are preserved even in a free energy 

profile generated by a model in which the double sequence approximation is relaxed 

(i.e. allowing for than two helical segments to exist simultaneously on a peptide 

molecule). The features of 1-D free energy profile are very similar to the two-

dimensional (2-D) energy landscape produced by atomistic simulations and projected 

onto two order parameters (helical content and radius of gyration) for a 21-residue 

peptide. The 2-D free energy landscape also shows a small free energy barrier 

separating the helical and the coil basins, each of which contain a diverse population 

of microstates with different helical content and radii of gyration. 

Perturbations induced by temperature have two effects on the free energy 

surface. At first the helical basin is shifted upwards due to the decrease in stability, 

which is accompanied with the increase in the population of the coil ensemble (Figure 

2.8B). Secondly at higher temperatures the helical well is shifted towards lower 

values of reaction coordinate as a result of the change in the distribution of helical 

lengths and number (Figure 2.8B). One of the predictions of helix-coil theory is that 

larger helices are formed at the expense of shorter ones during the course of the 

transition. In other words elongation of already existing helices is more preferable 
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than helix initiation at new sites. Formation of shorter helices from longer ones is a 

much faster process than formation of helices from coil conformations that requires 

crossing the nucleation barrier. Hence according to the nucleation-elongation 

mechanism one should expect to see two processes well separated in time in a T-jump 

relaxation experiment – the barrier crossing event i.e. equilibration between coil and 

helical ensembles and re-equilibration within the helical well between helices of 

varying lengths. Indeed these two events manifest in a biphasic relaxation as 

discussed in previous section and seen in inset to Figure 2.7B. The relaxations within 

the helical well are purely diffusive and hence the relaxation time of the fast phase 

will be proportional to the decrease in the average helical length. Since the free 

energy barrier is small the slow phase, which corresponds to relaxation between the 

helical and coil ensembles, also has a diffusive component. Due to this any changes in 

the average helical length affects the slow phase to a small extent.  This picture of 

helix-coil transition is somewhat similar to the conformation diffusion process 

suggested by Gai and coworkers. However, they describe diffusion to occur in the 

coil basin with barrier-less transition into the helical region while in the above picture 

diffusion is occurring in the helical basin that is separated from the coil region by a 

small barrier.  

For peptides labeled isotopically in different regions, the changes in their free 

energy surfaces due to increase in temperature are the same (Figure 2.8C). However, 

the decay of the signal at 1600 cm-1 strongly depends on the position of the labels. 

Since the extent of helix fraying is less in the N-terminal and middle regions, the rate 

of signal decay with respect to the average helical length is less for the labels placed 
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in these regions as compared to the more drastic decay of the C-terminal labels. Helix 

fraying is maximal in the C-terminal region and hence the C-terminal labels are more 

sensitive to the melting of long helices. When the changes in the probabilities at 278 

K and 288 K (the T-jump temperatures) are weighted by the signal (Figure 2.8D) the 

largest differences are seen for peptides labeled in the C-terminal region, especially in 

the helical region indicating local relaxations. In accordance with this, the relaxation 

of the peptides labeled in the C-terminal region is accompanied by a large change in 

signal and thus exhibit a fast phase with larger relative amplitude (seen in Figure 

2.5B). The relative magnitude of the fast phase amplitude is related to the relative 

height of the positive shoulder at higher values of the reaction coordinate while its 

relaxation time is proportional to the weighted distance between the negative peak 

and the maximum in the positive shoulder. In Figure 2.8D the height of the positive 

peak is related to the relative amplitude of the slow phase. 

 Figure 2.8E shows the differences in the probabilities at the initial and final 

temperatures of the T-jump for peptides probed in the middle region. The observation 

of faster apparent relaxation kinetics with the increase in the magnitude of the T-jump 

size, at first glance, appears counterintuitive as one would expect longer relaxation 

times as the difference between the initial and final temperatures becomes greater 

because the displacement between the distributions is largest when the initial 

temperature is lowest.  The changes in the probability distribution after the T-jumps 

show greater intensities for both the negative helical peak and the positive peak in the 

coil region as the size of the T-jump increases. When the difference between the 

initial and final temperature (ΔT) is small the flux of molecules from the helical to the 
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coil basin is reflected in the negative peak and a nearly equal increase in the 

magnitude of the positive feature in the coil region. However, as ΔT increases, an 

increase in the positive coil peak intensity is not compensated by an equal increase in 

the helical negative peak. Instead a positive shoulder appears in the helical region 

with increasing intensity. The magnitude of the positive shoulder reflects the amount 

of redistribution in helical lengths that takes place after the T-jump. Since 

redistribution of helical lengths occurs by the fast process of helix propagation/de-

propagation that does not require crossing the barrier, greater the magnitude of the 

positive shoulder greater is the amplitude of the fast phase. Hence, for greater ΔT 

there is a relative increase in the fast phase amplitude arising from increased local 

motions. The redistribution of probabilities after T-jumps when weighted by the 

change in signal at the probing frequency for the middle labeled peptides shows that 

the negative helical feature is narrower for lower initial temperatures (Figure 2.8F). 

For local relaxation around the minima (average helical length) lesser displacement is 

required for lower ΔT and hence shorter relaxation times. Thus, the different 

redistribution of helical lengths at various ΔT results in subtle changes in the relative 

amplitudes and relaxation times of the fast and the slow phases and indirectly in 

shorter apparent relaxation times with increasing ΔT. 

Hence, analysis of kinetic experiments on α-helical peptides using simple 1-D 

free energy projection demonstrate that nucleation-elongation theory is a valid 

mechanistic description for α-helix formation and the observed complex kinetics are 

inherent to helix-coil transition.   
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Figure 2.8 Characteristics of α-helix formation explained with 1-D projections of 

free energy surface 

(A) Free energy projection as a function of number of helical peptide bonds at 273 K 

(blue), 278 K (cyan), 282 K (green), 285 K (orange), 288 K (red). The inset shows the 

free energy profile generated by the model with multiple sequence approximation.  

(B) Distribution of probabilities at the same temperatures with the same color code as 

in (A). (C). Redistribution of probabilities after a T-jump of 278 K-288 K i.e. P288-

P278 (left scale, dark red) and change in signal at 1600 cm–1 for N-terminal (blue 

dashed line), middle (red) and C-terminal (green) labels i.e. difference between the 
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signal as a function of helical peptide bonds and the signal of full length helix with 20 

peptide bonds (right scale). (D) Redistribution of probabilities as shown in (C) but 

weighted by the change in signal for each labeled peptide. The same color code is 

maintained as in (C). The signal weighted probabilities are scaled by a factor of 3 

beyond 8 helical peptide bonds to visualize the differences at higher magnification  

(E) Redistribution of probabilities after T-jumps of various sizes i.e. P288-P273 (blue), 

P288-P278 (cyan), P282-P278 (green), P285-P278 (orange) (left scale) and change in signal 

at 1600 cm-1 for the middle labeled peptides as shown in (C) (right scale, dark red). 

(F) Redistribution of probabilities after T-jumps of various sizes as shown in (E) but 

weighted by the change in signal at 1600 cm–1 for the middle labeled peptides. The 

signal weighted probabilities are scaled by a factor of 5 beyond 8 helical peptide 

bonds to visualize the differences at higher magnification.
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2.3.4 Investigation of helix nucleation with the detailed kinetic model  

As mentioned in the earlier sections, the complexity of helix-coil kinetics 

arises mainly from the balance between the favorability of nucleation and propagation 

in different regions of the peptide. The timescales of helix nucleation obtained from 

T-jump experiments67,70,93,105 are at least 6 orders of magnitude higher than that 

suggested by pH-jump stopped flow experiments94.To investigate whether the model 

can explain this discrepancy the nucleation process in the model is modified in 

different ways to simulate the same set of T-jump experiments mentioned above. One 

way of modifying helix nucleation is to alter the cooperativity of the helix-coil 

transition. This is achieved by changing the entropic cost of fixing peptide bonds in 

helical angles, which is compensated by the changes in the mean enthalpic 

contribution to keep the Tm of the peptides constant.  When several combinations of 

the entropic cost and the mean enthalpic contributions are used results viz. site-

dependent, probe-dependent and perturbation size-dependent kinetics, similar to those 

in previous sections are obtained. This required readjusting the intrinsic rate of 

peptide bond rotation for each calculation to reproduce the experimental scale. In an 

alternative approach, the size of the nucleus is altered from five peptide bonds used in 

the model discussed above. The size of the nucleus controls the relative timescales of 

the fast and slow phases. When a nucleus of seven peptide bonds is allowed to form 

the slow phase becomes slower by ~100 fold than the fast phase (as compared to ~10 

fold in the model described in the previous sections and seen in experiments). On the 

other hand, a nucleus of three peptide bonds produces the two phases that tend to 

cluster together. This result is similar to the one obtained when helix is pre-nucleated 
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and only allowed to propagate (i.e. no cost in entropy considered for residues 

involved in the nucleus, the statistical weight for a pre-nucleated species is then given 

by - - 1.( ) .( ) .n nh s h s
n in bb cw w w w+ , where sn is the size of the nucleus). It is found that the 

nucleus of five peptide bonds that corresponds to the nucleus involving four residues 

and N- and C-caps used in AGADIR and for all calculations of previous sections is 

optimal. These results demonstrate that the timescale of helix nucleation depends on 

how the different energetic contributions are compensated with each other. Even with 

the 100-fold slower slow phase for a peptide with a longer nucleus the timescale of 

helix nucleation is ~tens of μs, i.e. far smaller than the 100-millisecond relaxation 

observed in stopped flow CD studies. These results thus support T-jump experiments 

suggesting the global helix folding/unfolding event to take place in the microsecond 

timescale and the possibility of artifactual effects in denaturant-jump stopped flow 

studies.    
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Chapter 3: Calculation of helix-coil kinetics as diffusion on 1-D 

free energy surface 

3.1 Introduction 

As discussed in Chapter 2, the kinetic nucleation-elongation model for α-helix 

formation has been thoroughly tested for quantitative analysis of experiments. In this 

chapter time courses are generated from diffusive kinetics on a 1-D mean force 

potential calculated as a function of number of helical peptide bonds. The issue of 

whether this approach can reproduce the probe- and T-jump size-dependent kinetics 

observed in experiments and predicted by the detailed model is investigated here. 

Furthermore, the physical basis of length dependence of relaxation kinetics is also 

explained.    

3.2 Model and Methods 

3.2.1 Calculation of 1-D free energy functional 

A potential of mean force as a function of the number of helical peptide bonds (h) is 

calculated using double sequence approximation as follows:   

11

1 1 1
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where n is the total number of helical peptide bonds, wij and wpq are the statistical 

weights of helical segments having lengths i and p (p=h-i) and starting at positions j 

and q respectively.  The statistical weights are obtained from the equilibrium 
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AGADIR model based on helix-coil theory. For a peptide with 21 residues h takes the 

value from 0 to n=20 resulting in a 1-D free energy profile (a discrete vector F with 

n+1 points).  With double sequence approximation there are a total of 6196 

conformations having single and double helical segments.   

All the calculations in this work are performed using Matlab 6.5, Microsoft Visual 

C++ and the CVODE program provided by Eric Henry103. 

3.2.2 The diffusion model 

Lapidus et al. numerically solved the 1-D diffusion equation given by Szabo, 

Schulten and Schulten by approximating it to rate equations that describe time-

dependent probabilities of the to and fro passage of the molecules along the reaction 

coordinate10. Using the same method here the following equation is numerically 

solved. 

       ......................................................................... (3.2)dx Rx
dt

=  

 
x is a vector of n+1 probabilities (nearest neighbor along the reaction coordinate) and 

R is the rate matrix with dimension (n+1)× (n+1).  The elements of R are given by 
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where ( ) exp( ( ) / ) /i i i ip p h F h RT Q= = −  and 2( ) /( )i iD D h h= Δ . The rate matrix is 

diagonalized to obtain eigenvalues and eigenvectors. Relaxation kinetics following a 
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T-jump is simulated as diffusion on 1-D free energy surface computed at the final 

temperature after the jump. The amplitude corresponding to each eigenvector is 

obtained using probability distribution at the initial temperature. The diffusion 

coefficient D is assumed to be independent of the position along the reaction 

coordinate.  

 

3.3 Results and Discussion 

3.3.1 Comparison between predictions of 1-D diffusive model and detailed 

kinetic model: Site-specific relaxation kinetics of α-helical peptides 

Free energy surface for the peptide sequence Ac-YGSPEAAAKAAAAKAAAA-r-

NH2 obtained from Equation 3.1 as a function of number of helical peptide bonds H is 

shown in Figure 3.1A. The set of peptides having the above sequence are 13C labeled 

at the carbonyls of alanines either at the N-terminus, middle or C-terminus region. 

When observed experimentally after subjecting all of the three labeled peptides to the 

T-jump of 10 K to the same final temperature of 288 K, relaxation kinetics of C-

terminally labeled peptide was faster than the N-terminally or middle labeled 

peptides. As mentioned in Chapter 2 and shown in Figure 3.1C (colored lines) this 

kinetic behavior is successfully reproduced with the detailed kinetic model. 

Relaxation kinetics calculated as diffusion on the free energy surface at the final 

temperature and weighted by the signal decay of each respective labeled peptide 

(Figure 3.1B) are as dotted lines in Figure 3.1C. The results of the diffusive model are 

in agreement with the relaxation kinetics calculated from the detailed model for N-

terminally and middle labeled peptides. However, for peptide labeled in the C- 
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Figure 3.1 Comparison between predictions of 1-D diffusive model and detailed 

kinetic model: Site-specific relaxation kinetics of α-helical peptides 

(A) 1-D Free energy surface at 288 K as a function of number of helical peptide 

bonds H. (B) Redistribution of probabilities after a T-jump of 278 K-288 K i.e. P288-

P278 (left scale, black) and signal decay of amide I band calculated with the detailed 

model at 1600 cm-1 for N-terminal (blue dashed line), middle (red) and C-terminal 

(green) labels as a function of H (Same as Figure 2.8C). (C) Relaxation kinetics 

calculated with the detailed kinetic model for a T -jump from 278 to 288 K for 

peptides labeled at the N-terminus (blue dashed line), middle (red), or C-terminus 

(green) region. The relaxation kinetics calculated as diffusion on free energy surface 

in (A) are shown as dotted lines. To facilitate comparison the signals are normalized.   
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terminus, the discrepancy between the two calculations arises mainly due to 

underestimation of the fast phase amplitude by the diffusive model. The reason for 

this deviation is the rough approach used to calculate the signal decay along with the 

heterogeneous nature of the peptide. At each value of H there are conformations with 

the same number of helical peptide bonds. However, the probability distribution of 

these conformations is not uniform due to the helix fraying effect and the range of 

intrinsic helical propensities of the amino acid residues in the hetero-peptide used by 

Gai and coworkers. In addition amino acid residues with low helical propensities are 

clustered in the N-terminal region.  At H=Hmax there is only one species possible with 

probability of 1 but as H decreases the probability distribution becomes more bell-

shaped.  Hence the time dependent probability distribution at each value of H will not 

be constant along the peptide sequence. The time courses resulting from the detailed 

model show the time evolution of the weighted signal. For the diffusive model it is 

required to know the decay of signal for each labeled peptide as a function of H, 

which is not easy to calculate especially for properties not directly related to the 

average number of helical peptide bonds. An approximate solution is obtained by 

representing the group of conformations at each H as a microcanonical ensemble. It is 

the intrinsic error in assuming microcanonical ensembles for a heteropolymer that is 

likely to cause the deviation in the prediction of relaxation kinetics of C-terminally 

labeled peptides by the diffusive model from that of the detailed model. As opposed 

to labeled alanines at the C-terminal extreme the alanines labeled in the N-terminal 

region are preceded by strong capping motifs due to which the fraying effect is more 

pronounced in the C-terminal region (see inset to Figure 2.3). There are more 
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contributions of local motions in the relaxation kinetics of the peptides labeled in the 

C-terminal region thus giving rise to relatively larger amplitude of the fast phase. 

Despite the approximate calculation of the signal decay the relaxation behaviors of N-

terminally and middle labeled peptides predicted by the diffusive model are in 

remarkable agreement with those calculated by the detailed model.     

3.3.2 Comparison between predictions of 1-D diffusive model and detailed 

kinetic model: T-jump size-dependent relaxation kinetics of α-helical peptides    

T-jump of 3 K and 20 K are simulated for the middle labeled peptides of Gai and 

coworkers by the detailed model and the diffusion model. The probability of 

hydrogen bonded carbonyls as a function of temperature is shown in Figure 3.2A. 

The two initial and the final temperatures of the T-jump are also indicates. Figure 

3.2B shows the changes in the probabilities occurring as a result of 3 K and 20 K T-

jumps. The relaxation kinetics predicted by the detailed model (continuous lines in 

Figure 3.2C) exhibit bi-exponential behavior as previously mentioned. Relaxation 

time courses calculated as diffusion on the free energy surface at the final temperature 

(Figure 3.1A) are also biphasic with similar ratio of the relative amplitudes of the fast 

and the slow phases. There are small discrepancies between the detailed and the 

approximate time courses at the beginning of the fast phase (i.e. ~10 ns) and the end 

of the slow phase. These discrepancies produce an error of ~10% in the calculation of 

the apparent relaxation times. However the overall agreement between the exact 

calculation and the diffusion model is very encouraging and provides support for the 

use of 1-D free energy surfaces in interpreting helix-coil kinetics.   
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Figure 3.2 Comparison between predictions of 1-D diffusive model and detailed 

kinetic model: T-jump size-dependent relaxation kinetics of α-helical peptides 

(A) Probability of hydrogen bonded carbonyls as a function of temperature. The black 

square indicates the probability at the final temperature (288 K) after the T-jump 

whereas the blue (268 K) and red triangles (285 K) indicate the probabilities at the 

initial temperatures after the T-jumps. (B) Redistribution of probabilities (i.e. P288-

P268 (blue) and P288-P285 (red)) after T-jumps of 20 K and 3 K.  (C) Relaxation 

kinetics calculated with the detailed model after T-jumps of 20 K (blue) and 3 K 

(red). The relaxation kinetics calculated as diffusion on free energy surface of Figure 

3.2B are shown as dotted lines. For comparison the signals are normalized.    
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3.3.3 Comparison between predictions of 1-D diffusive model and detailed 

kinetic model: Length dependence of relaxation kinetics 

Polymer physics theories have predicted relaxation times to scale with the size of the 

protein. To investigate whether relaxation times helical peptides follow the same 

length dependence peptides with varying numbers of repeating units are used in the 

model calculations (i.e. Ac-YGG(KAAAA)nG-NH2). These peptides have similar 

sequence to the one used in previous calculations in which SPE takes the place of 

GKA and D-Arg in place of G at the C-terminal.  Relaxation kinetics for the above 

peptides with n = 2,3,5,and 7 are calculated by the detailed kinetic and the diffusion 

model. Comparison between the two set of calculations is carried out at two 

conditions: by simulating T-jumps of the same magnitude to the same final 

temperature for all peptides and to the apparent Tm of each peptide. In Figure 3.3A the 

probability of hydrogen-bonded carbonyls as a function of temperature depicts the 

theoretical thermal denaturation of the peptides. The conditions before and after a 20 

K jump to a final temperature of 303 K are also indicated. It can be seen from Figure 

3.3B that the free energy surfaces at 303 K of the peptides with lengths 16 (n=2), 21 

(n=3), 31(n=5), 41(n=7) residues differ significantly in their stability. The peptide 

with n=2 has its helical minimum at ~11 helical peptide bonds and shows marginal 

stability at 303 K while the 7-repeat peptide has its helical minimum at H~38 and 

stabilized by ~10 RT over the coil minimum. The exact and approximate time courses 

calculated by the detailed and diffusive models respectively predict biphasic 

relaxation for all the peptides for T-jumps of 20 K to the final temperatures of 303 K. 



 

 68 
 

 

Figure 3.3 Length dependence of relaxation kinetics after T-jump of same size to 

the same final temperature 

(A) Probability of hydrogen bonded carbonyls as a function of temperature calculated 

for peptides with sequence Ac-YGG(KAAAA)nG-NH2 with n=2 (orange), n=3 

(green), n=5 (red), n=7 (blue). The squares indicate the probability at the final 

temperature and gray triangles indicate the initial temperatures for the four peptides  

(B) Redistribution of probabilities as a function of H for the four peptides after a 20 K 

T-jump to the same final temperature of 303 K. (C) Free energy surfaces of the four 

peptides at 303 K (D) Relaxation kinetics calculated with the detailed model (colored 

lines) for the four peptides after a 20 K T-jump and relaxation kinetics calculated as 
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diffusion on respective free energy surfaces in (C) are shown as dotted lines. The 

color coding in all other panels is the same as (A). 

 

For the T-jumps at 303 K the apparent relaxation becomes faster as the length of the 

peptide increases. However, peptide with n=2 does not follow this rule and shows 

faster apparent relaxation than for peptide with n=3. These results can be explained 

on the basis of stability of the peptide at the final temperature and probability 

distributions at the initial and final temperature. If a hot T-jump is exerted at a final 

temperature that is much below the apparent Tm of the peptide, dynamics is 

dominated by the redistribution of helical lengths. In this case redistribution of 

probabilities shows very little intensity of the positive peak in the coil region as 

compared to the intensities of the helical peaks (for n=5 and 7 in Figure 3.3C). As a 

result, relaxation is dominated by the fast phase and the apparent relaxation is 

increasingly faster. For a hot T-jump much above the Tm in case of peptide with n=2, 

the peptide is marginally stable such that the unfolding barrier is very small and there 

is very little change in the flux. This makes the slow phase relatively faster and gives 

rise to a faster apparent relaxation. For the peptide with n=3, the initial and final 

temperatures fall before and after its apparent Tm respectively such that there is a 

large flux of molecules crossing the barrier resulting in the slowest relaxation. This is 

evident from the increased intensity of the positive peak in the coil region and 

negative peak in the helical region in Figure 3.3C. The agreement between the time 

courses calculated with the detailed model and the diffusion model is clearly 
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noticeable. The diffusion model reproduces the ratio of the relative amplitudes as well 

as of the relaxation times of the fast and the slow phases.      

Figure 3.4 shows the calculations carried out by the detailed and the diffusive 

model for T-jumps simulated to the apparent Tm of each peptide. The apparent Tm’s 

correspond to the isostability conditions at which the flux of molecules crossing the 

barrier is similar for all the peptides (Figure 3.4B and C). Under this condition the 

height of the nucleation barrier increases with the length of the peptide, which gets 

reflected in progressively slower apparent relaxation for longer peptides with higher 

Tm’s (Figure 3.4D). The time courses generated from the diffusion model are in 

remarkable agreement with those obtained from exact calculation. The relaxation 

kinetics of all peptides are predicted to be biphasic with similar ratio of the relative 

amplitudes of the fast and the slow phases.   

All the above calculations using the detailed model are performed with a 

temperature independent pre-exponential (ko) of 2.5 X 108 s-1 at 1 centepoise. The 

diffusive kinetic calculations are carried out with a constant diffusion coefficient of 

0.57 X 109 s-1 for all the peptides with different sequences and lengths.  

As seen from the above sections and Chapter 2 1-D free energy surfaces 

generated from nucleation-elongation models and empirical force fields are 

sufficiently accurate to explain the complexities observed in kinetic experiments. 

Here, it is shown that diffusion on such highly simplified 1-D free energy surfaces 

can reproduce all the kinetic behaviors viz. dependence of relaxation times on T-jump 

size, specific region probed and chain length with adequate accuracy as those 

predicted by the detailed kinetic model. From the diffusive model the diffusion 
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coefficient corresponds to a timescale of ~2 nanoseconds. This is in very good 

agreement to the timescale of ~4 nanoseconds for the elementary peptide bond 

rotation obtained from the detailed kinetic model. For both the models the  

 

Figure 3.4 Length dependence of relaxation kinetics after T-jump of same size to 

different apparent Tm’s  

All the panels are the same as in Figure 3.3 except that a 20 K T-jump is simulated to 

the final temperature corresponding to the apparent Tm of each peptide. The color 

coding is maintained. The free energy surfaces in (C) are shifted on the y-axis for 

clarity.   
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temperature dependence of the pre-exponential factor and the diffusion coefficient is 

derived from the temperature dependence of viscosity of water. It is remarkable that 

the timescales for the dynamic motions obtained from two different approaches - one 

that involves solving several thousand differential equations and the other that models 

kinetics as diffusion on 1-D free energy surface, are of the same order. This 

demonstrates that the number of helical peptide bonds, H, is a robust reaction 

coordinate for α-helix formation. From the above calculations it is shown that a 

common diffusion coefficient is sufficient for peptides differing in amino acid 

sequence or lengths. This implies that the 1-D free energy surface is able to capture 

the roughness arising from the differences in the amino acid sequence.  If α-helix 

formation is supposed to be a sequential process then the dependence of diffusion 

coefficient on the reaction coordinate should be expected. However, the diffusion 

coefficient used in the above calculations is independent of H. This supports the 

description in which α-helix forms in a parallel process where nucleation can occur at 

several sites followed by multi-step propagation.  The above results also demonstrate 

that using 1-D free energy surfaces can tremendously simplify the analysis of 

complex kinetic experiments of α-helix formation. Furthermore, they provide strong 

encouragement to use 1-D free energy surface approach for the analysis of protein 

folding experiments.     
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Chapter 4: Formulation of a mean field 1-D free energy surface 

model of protein folding 

4.1 Introduction 

Analysis of available experimental data on folding of several small single-domain 

proteins has unraveled some general trends in thermodynamic and kinetic 

behaviors15,69. The amino acid sequences of natural single domain proteins seem to be 

selected to have sufficiently low energetic frustration. As a consequence these 

proteins fold fast with rates spanning from microseconds to seconds. Their folding 

rates can be largely determined from length as well as from gross topological 

features45,106,107. The equilibrium unfolding properties characterized by ΔHF-U, ΔSF-U 

and ΔCp exhibit linear scaling with protein length (Figure 4.1). In order to explore the 

physical basis of the connection between the experimental quantities and the inherent 

properties of protein- its length and structure, it is necessary to gain a quantitative 

understanding of the folding process. Towards this end, 1-D free energy surfaces can 

serve as a good starting point to investigate the interplay between dynamic, energetic 

and structural contributions106. Moreover, the presence or absence of barriers on 1-D 

free energy profiles can help in distinguishing a range of folding regimes. The success 

achieved in explaining the underpinnings of helix-coil kinetics provides support and 

encouragement for using 1-D free energy functional for analyzing protein folding 

experiments.  

 However, the simplified projection on 1-D should account for, though 

implicitly, the complexities of the multi-dimensional free energy landscape. Besides, 
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for protein folding, lack of a precise force field and detailed knowledge of entropic 

factors makes the formulation of an adequate 1-D free energy profiles with statistical 

mechanics very challenging. Here, this problem is addressed by employing a mean 

field approach to derive an approximate 1-D free energy functional from the 

combination of simple mathematical functions that model the evolution of 

stabilization energy/enthalpy and entropy as folding progresses.  The model is 

suitable for describing folding behaviors ranging from two-state to completely 

downhill. However, the current model does not address folding regimes involving 

three-states.  

4.2 Model and Methods 

4.2.1 Description of thermodynamics 

Earlier Zwanzig-like models have used discrete parameters such as number/fraction 

of incorrect residues or ordered residues as reaction coordinates11,52,53,55. The use of 

these quantities has facilitated the calculation of conformational entropy just by 

combinatorial counting. Here, free energy is expressed in terms of a quantity called 

‘nativeness’ (n) that is, to some degree, a continuous version of Zwanzig’s parameter 

(N-S)/N (where N is the total number of residues and S is the number of incorrect 

residues). Nativeness is defined as the average probability of finding a residue in 

native conformations.  This definition fits the mean field description of the model and 

permits the calculation of conformational entropy in a straightforward manner.  
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Conformational entropy as a function of n ( ( )confS nΔ ) is simply the entropy of 

mixing obtained from Gibb’s theorem:  

[ ]

0 0 1

1 0

(0)      ...................................................................... (4.1)

( ) ln( ) (1 ) ln(1 ) (1 ) 0   ..... (4.2)   

conf n n n
res res res res

conf n n
res res res

S S S S

S n R n n n n n S n S for n

= = =

= =

Δ = Δ = −

Δ = − + − − + Δ + − Δ >

Δ ( ) ( )   ................................................................................... (4.3)conf conf
resS n N S n= Δ

 

where 0n
resS =Δ is  the cost in conformational entropy of fixing a residue from all non-

native to completely native conformations. Since n=1 is the reference state, 1n
resS =Δ =0. 

The total conformational entropy ( )confS nΔ is obtained by scaling ( )conf
resS nΔ to the 

total number of residues N.  The stabilization energy of folding 0HΔ is assumed to be 

an exponential function of n: 

( ) ( )0 ( ) 1 exp( ) 1 1 exp( )    .................................... (4.4)res H HH n H N k n kΔ ΔΔ = Δ + − −⎡ ⎤⎣ ⎦  

 where 0
resHΔ is the stabilization energy per residue . Free energy can then be 

expressed as 

( ) ( ) ( )0  ........................................................................ (4.5)confG n H n T S nΔ = Δ − Δ  

4.2.2 Modeling temperature effects 

To simulate thermal denaturation experiments temperature effects on solvation 

entropy are modeled by including a heat capacity function that also decays 

exponentially with n: 

( ) ( ), ( ) 1 exp( ) 1 1 exp( )   ............................... (4.6)
p pp p res C CC n C N k n kΔ Δ

⎡ ⎤Δ = Δ + − −⎣ ⎦  
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where ,p resCΔ is the change in the heat capacity of folding per residue. The total 

entropy can then be expressed as: 

( ) ( ) ( ), ( ) ln 385   ....................................................... (4.7)conf
pS T n S n C n TΔ = Δ + Δ  

At 385 K the polar and apolar solvation terms are counterbalanced so that the total 

entropy change of unfolding (ΔSU-F) mainly reflects ΔSconf. 385 K is also the 

convergence temperature suggested by Robertson and Murphy for ΔSU-F obtained 

from DSC data of 53 proteins41. At convergence temperature the ΔSU-F normalized 

with respect to size is expected to approach a single value for all proteins. Although 

for the protein dataset used by Robertson and Murphy no clear convergence behavior 

was observed the correlation coefficients between ΔSU-F at various temperatures and 

number of protein residues N plotted as a function of temperature reaches an 

asymptotic value around 385 K (Figure 4.1D). This supports the assumption that ΔSU-

F at 385 K primarily corresponds to the change in conformational entropy. Figure 4.1 

shows the size scaling behavior of thermodynamic parameters using the dataset of 

Robertson and Murphy.  

The total change in enthalpy as a function of n and temperature is then determined 

with mid-point temperature as the reference as follows:   

( ) ( )0, ( ) ( )   ............................................................ (4.8)p mH T n H n C n T TΔ = Δ + Δ −  

The exponents ( HkΔ ,
pCkΔ ) of the ΔCp and ΔH functions controls their curvatures and 

thereby the values at the top of the barrier, which partitions ΔCp and ΔH into their 

respective activation values of folding and unfolding for two state systems.  
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Figure 4.1: Correlation of thermodynamic parameters with protein size (number 

of residues N). (Reproduced using the data in ref. 41)  

Linear regression is shown by solid red line. For (A) ΔH of unfolding at 102oC vs. N 

slope and intercept of 5.13 kJ.mol-1.res-1 and 35 kJ.mol-1.K-1.res-1 respectively is 

obtained; for (B) ΔS of unfolding at 112oC vs. N, slope and intercept are 16.6  

J.mol-1.K-1.res-1and 75 J.mol-1.K-1 respectively; for (C) heat capacity changes ΔCp vs. 

N slope and intercept are 0.062 kJ.mol-1.K-1.res-1 and –0.5412 kJ.mol-1.K-1. Respective 

correlation coefficients are indicated in the individual plots. (D) Correlation 

coefficient of ΔS of unfolding vs. N as a function of temperature. No significant 

improvement in correlation coefficient is obtained beyond 385 K supporting the 

concept of convergence temperature.  
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Free energy as a function of n and temperature is directly obtained from Equations 

4.7 and 4.8:   

( ) ( ) ( ), , ,  ................................................................... (4.9)G T n H T n T S T nΔ = Δ − Δ  

The above description of temperature dependence of folding is in accordance with 

that used earlier for thermal denaturation experiments. The magnitude of the free 

energy barrier is determined solely by the exponent ( HkΔ ) of the stabilization energy 

function without any adjustment in the total entropy or enthalpy.  

4.2.3 Modeling chemical denaturation effects 

Destabilization caused by chemical denaturation is assumed to be linearly dependent 

on the concentration of chemical denaturant [d]. The free energy functional is 

expressed as 

( ) ( ) ( )0, ( ) ................................................. (4.10)d mG d n H n T S n mE d dΔ = Δ − Δ − −  

where ( )0H nΔ  is the stabilization energy at the experimental folding temperature 

(Equation 4.4) and ( )S nΔ  is obtained from Equation 4.3. Ed sets the scale while m 

describes the dependence of destabilization free energy on nativeness.    

 ( ) ( )( )1 1  ...................................................................... (4.11)j jm C n n C⎡ ⎤= − + +⎣ ⎦  

Here, C and j are adjustable parameters and m takes the values from 1 to 0 as n goes 

from 0 to 1. Using Equation 4.11 allows the division of the destabilization effect 

between the folding and unfolding side of the barrier in a ratio that is consistent with 

the experimental estimate of mf/meq for two-state proteins.  
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4.2.4 Calculation of free energy barrier heights and folding rates  

For calculating folding rates at chemical mid-point (where Tm is not known) or in 

absence of chemical denaturant the following equation is used (combining Equations 

4.4 and 4.6). 

( ) ( ) ( )0, ,  ................................................................... (4.12)G T n H n T S T nΔ = Δ − Δ  

For a two-state scenario folding (and unfolding) barrier heights can be obtained, by 

definition, from the difference in the free energies between the unfolded (and folded) 

minima and the top of the barrier. However, folding and unfolding barrier heights 

calculated in this manner will not be in complete conformity to each other at mid-

transition due to the differences in the curvature of the unfolded and native basins.  

Moreover, the above method cannot be applied to free energy profiles lacking 

barriers. Hence, a general protocol is followed for all proteins in which a dividing line 

is set along the reaction coordinate (nd) at n=0.75. By adjusting only 0
resHΔ  equal 

populations on either side of the dividing line are obtained for mid-transition 

condition. The transition state is defined as the region having a width (w) of 0.12 

around the dividing line.  Barrier heights are then obtained from the ratio of the 

integrated probability of the unfolded  (and folded) state and the transition state 

ensemble, i.e. the folding barrier height 

( / 2)
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( / 2)

( 0)

exp( / )
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. The 

position of the dividing line and the width of the transition state region are calibrated 

according to the typical shapes of the free energy surface and to obtain maximum 
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agreement between folding and unfolding barriers heights as well as between 

populations on either side of the barrier  (i.e.
( )

( 1)( 0)

( 0)

exp( / ) ;
exp( / )

di n n i
U i ni n

ii n

G RTP
G RT

=

==

=

−Δ
=

−Δ
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( 1)

( 1)( )

( 0)

exp( / )

exp( / )d

i n i
F i ni n n

ii n

G RTP
G RT

=

=>

=

−Δ
=

−Δ
∫

∫
). For calculating barrier heights at conditions other 

than mid-point, populations are adjusted on either side of the dividing line such that –

RTln(PU /PF) matches experimental stabilities, i.e. unfolding free energies. Folding 

rates are then calculated using Kramer-like expression ( )#--exp UGk D RT
Δ=  where 

the effective diffusion coefficient D is expressed as  

( ) ,
0

0

1 1exp   ..................................................................... (4.13)a resE N
D T k

R T T
⎛ ⎞− ⎛ ⎞

= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 

Here ko ∝ 1/N and assumed to be temperature independent while the reference 

temperature T0=298 K. The effects of temperature-dependent changes in solvent 

viscosity and roughness of the landscape are implicitly accounted for and lodged in 

the activation energy per residue ( ,a resE ). A value of 1 kJ/mol is used for 

,a resE estimated from the analysis of temperature dependence of relaxation rates of 

microsecond-folding proteins (for more details see Chapter 6). 

4.2.5 Modeling DSC profiles and Chevron Plots 

From Equation 4.9 free energy profile is generated at the desired mid-point 

temperature by allowing 0
resHΔ to float such that –RTln(PU/PF)=0. Using the modified 
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Gibbs-Helmholtz equation free energy profiles at various temperatures are built by 

propagating the temperature effects from the thermal mid-point: 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

, , ,  

, ,

, , ln /        
                                          ...............................................................................(4.14)   

m p m

m p m

G T n H T n T S T n

H T n H T n C T T

S T n S T n C T T

Δ = Δ − Δ

Δ = Δ + Δ −

Δ = Δ + Δ
 

The excess heat capacity as a function of temperature is obtained from temperature- 

dependent probabilities: 

22

2( ) ........................................................................ (4.15)excess
p

H H
C T

RT
Δ − Δ

Δ =  
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=

−Δ∑
  

The DSC profile can be then generated from excess heat capacity and chemical 

baseline as follows: 

( )
( 1)

( 0)

( ) ( ) ( , ) ............................................... (4.16) 
i

i n
excess

p p p i
i n

C T C T C n p T n
=

=

Δ = Δ + Δ∑  

To simulate the dependence of relaxation rates on the concentration of chemical 

denaturant (i.e. Chevron plot), the same approach as described in Chapter 3 is taken. 

Relaxation kinetics following a chemical-jump is modeled as diffusive kinetics on 

free energy surfaces resulting from Equation 4.10 using a constant effective diffusion 

coefficient.   



 

 82 
 

4.2.6 Inclusion of size, structure and sequence effects 

  The exponents HkΔ and 
pCkΔ can be directly related to protein size by the expressions: 

. ; .  ............................................................. (4.17)
p p

X N X N
H H C Ck c B k c BΔ Δ Δ Δ= =   

where X=1; and B, HcΔ  and 
pCcΔ are adjustable parameters. The effects of structure are 

incorporated by putting X=ΔL, the number of residues separating a pair of residues in 

contact. A contact is defined between two residues if any of their atoms are within a 

specified spatial distance or if a backbone hydrogen bond is formed between their 

C=O and N-H groups. Backbone hydrogen bonds are calculated from protein three-

dimensional structures (protons are added using the WHAT IF program in case of 

crystal structures) using the same geometrical considerations and parameters as those 

utilized by Kortemme et al.108 in deriving an orientation-dependent hydrogen bonding 

potential. Residue-residue contacts are considered with different atomic 

representations: only Cα-Cα pairs, only Cβ-Cβ pairs, all non-hydrogen heavy atoms, 

only side chain heavy atoms, center of masses of side chain heavy atoms.  

Furthermore, the effects of amino acid sequence can be incorporated into the model in 

a very straightforward manner. The cost of fixing the backbone and side chain of a 

residue in a particular native dihedral angle space varies for different amino acids. 

The estimation of sequence-dependent conformational entropies from protein 

structure statistics is discussed in the next chapter. In the bare bones version of the 

model a mean value for 0n
resS =Δ  is used. This value can be replaced by individual 

sequence-dependent conformational entropies resulting in a range of conformational 

entropy functionals for each residue. To obtain the total conformational entropy 
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functional for each protein, the individual decays for each residue are averaged and 

then scaled by protein size. As a preliminary approach empirically derived residue-

residue contact potentials from protein structures are used to include sequence-

dependent energetics in the model109,110. This is easily achieved by knowing the 

specific amino acids involved in a contact and scaling the decay of individual 

contacts (with respect to n) with respective interaction energies obtained from the 

matrix of pair-wise contact energies.         

 

4.3 Protein Database Used in the Analysis 

4.3.1 Selection criteria  

Folding data on chemical as well as thermal denaturation of proteins from stopped-

flow, ultra-fast mixing and T-jump relaxation studies is considered here. Proteins 

clearly confirmed as three-state proteins from both equilibrium and kinetic 

experiments under a range of conditions (pH, ionic strength, buffer) such as 

lysozyme, myoglobin, barnase, barstar, ribonucleases, etc. are excluded.  

Additionally, proteins containing heme groups (cytochromes), tandem repeats 

(ankyrin repeat) or disulfide linkages are not included. All single domain two-state 

proteins having lengths less than 130 residues for which folding/unfolding data is 

available with the exception of VlsE (Variable major protein-Like Sequence, 

Expressed, B. burgdorferi) having 341 residues and those proteins for which 

experimental data is not good enough; and naturally fast folding proteins as well as 

those designed to fold fast are selected.  The protein dataset selected for the present 
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analysis (Table 4.1) is the most extensive one used so far even after the 

aforementioned exclusions.   

The best way to compare folding rates of proteins is by using those values measured 

at their respective folding temperatures, around neutral pH and in the absence of any 

chemical denaturant or salt. For proteins studied under a range of temperatures in 

pure water, such rates are directly available. But a majority of proteins reported in the 

literature are investigated by chemical jump experiments for which rate constants (kf 

and ku) in water are estimated by linear extrapolation from conditions of higher 

denaturant concentrations. kf and ku are generally fitting parameters and thus their 

values are highly dependable on the fitting procedures used.  The reported 

uncertainties for these rate constants are usually underestimated and related to only 

fitting errors. Comparison of kf’s predicted from free energy profiles require one more 

empirical parameter – folding stability for each protein, which is very sensitive to 

experimental conditions (temperature, pH, ionic strength, buffer) making their 

estimates quite error-prone. In order to avoid these uncertainties, here, folding rates 

are compared at isostability conditions (i.e. zero stability at mid-point transition 

produced either by chemical or thermal denaturation). Using mid-point rates (km) for 

comparison has dual advantages: first experimental estimates of km have relatively 

less errors than kf and ku and secondly the precision of km’s predicted from the model 

is not affected by the ad hoc model procedures for calculating populations on either 

side of the barrier. Additionally this allows the inclusion of fast folding proteins that 

have been studied only at their mid-point temperatures and proteins such as Colicin-

binding bacterial immunity protein 7 that show deviations from two-state behavior 
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only under highly native conditions but not at mid-point transition.  In case of 

availability of folding rates at both chemical and thermal mid-point points for a single 

protein, two entries per protein are added. 

For proteins that exhibit an additional slow phase due to cis/trans proline 

isomerization, only the fast phase is considered here.   
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Table 4.1 Proteins/Protein domains used in the analysis 
 

 Class Protein Species PDB 
code 

Experimental 
Method LPDB LEXP 

1. BBL α E3-binding domain of dihydro- 
lipoamide succinyl transferase Escherichia coli 2CYU NMR 39 40 

2. BBL 
   (H166W) α BBL pseudo wild type Escherichia coli 2BTH NMR 45 45 

3. E3BD α E3-binding domain of dihydro- 
lipoamide acetyl transferase 

Bacillus 
stearothermophilus 1EBD X-ray 41 41 

4. E3BD 
(F166W) α E3BD pseudo wild type Bacillus 

stearothermophilus 1W4E NMR 45 45 

5. POB α E3-binding domain of dihydro- 
lipoamide succinyl transferase 

Pyrobaculum 
aerophilum 1W4J NMR 51 51 

6. EngHD α Engrailed HomeoDomain Drosophila 
melanogaster 1ENH X-ray 54 54 

7. hTRF1 α DNA-binding domain of human 
 telomeric protein Homo sapiens 1ITY NMR 67 67 

8. hRAP1 α Human RAP1 Myb domain Homo sapiens 1FEX NMR 59 59 
9. c-Myb α c-Myb transforming protein Mus musculus 1GUU X-ray 50 50 
10. FSD   α Full Sequence Design-1 - 1FME NMR 28 28 
11. Trp Cage α Tryptophan cage - 1L2Y NMR 20 20 
12. α-3D α Designed protein α-3D - 2A3D NMR 73 73 

13. BdpA  α B-domain of protein A (Y15W) Staphylococcus 
aureus 1SS1 NMR 60 60 

14.Villin-HP35  
     (N27H) α Headpiece subdomain of F-actin  

binding protein villin Gallus gallus 1VII NMR-average 35 35 

15. λ6-85 α Monomeric N-terminal domain  
of Lambda Repressor  

Bacteriophage 
lambda 1LMB X-ray 80 80 

16. ACBP α Acyl CoA binding protein Bos taurus 2ABD NMR 86 86 
17. Im9 α E Colicin binding Immunity Protein 9 Escherichia coli 1IMQ NMR 86 86 

18. Im7 α E Colicin binding Immunity Protein 7 Escherichia coli 1AYI X-ray 86 86 
(94) 
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Table 4.1 Proteins/Protein domains used in the analysis (continued) 
 

 Class Protein Species PDB 
code 

Experimental 
Method LPDB LEXP 

19. Pin WW β Mitotic Rotamase Pin1 Homo sapiens 1PIN X-ray 34 34 

20. YAP65  β Yes Kinase Associated protein 65 Homo sapiens 
 1K9Q NMR 40 40 

21.    WW    
    Prototype  β Designed WW prototype - 1E0M NMR 37 37 

22. FBP28    
     (W30A) β Formin Binding Protein Mus musculus 1E0L NMR 37 37 

23. α-Spectrin 
SH3 β α-Spectrin SH3 domain Gallus gallus 1SHG X-ray 57 62 

24. Fyn SH3  β Fyn proto-oncogene tyrosine  
kinase SH3 domain Homo sapiens 1SHF X-ray 59 67 

25. Src SH3  β c-Src tyrosine kinase  
SH3 domain Homo sapiens 1FMK X-ray 56 57 

26. PI3K SH3  β Phosphatidyl inositol-3-Kinase 
 SH3 domain Bos taurus 1PNJ NMR-average 86 90 

27. ABP1 SH3  β Actin Binding Protein1  
SH3 domain 

Saccharomyces 
cerevisiae 1JO8 X-ray 58 68 

28. Sso7d  
     (Y34W) αβ DNA binding protein Sso7d Sulfolobus 

solfataricus 1BF4 X-ray 63 63 

29. CspB-Bs β Cold shock protein Bacillus subtilis 1CSP X-ray 67 67 
30. CspB-Bc β Cold shock protein Bacillus caldolyticus 1C9O X-ray 66 66 
31. CspB-Tm β Cold shock protein Thermotoga maritima 1G6P NMR 66 66 
32. CspA β Cold shock protein Escherichia coli 1MJC X-ray 69 69 

33. Fibronectin  β 9th Fibronectin type III  
Domain of Fibronectin Homo sapiens 1FNF X-ray 90 90 

34. Tenascin  β 3rd Fibronectin type III  
Domain of Tenascin Homo sapiens 1TEN X-ray 90 90 

35. TI27  β Repeat 27 of Titin Homo sapiens 1TIT NMR-average 89 
 

89 
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Table 4.1 Proteins/Protein domains used in the analysis (continued) 
 

 Class Protein Species PDB 
code 

Experimental 
Method LPDB LEXP 

36. Twitchin β Twitchin Caenorhabditis 
elegans 1WIT NMR-average 93 93 

37. Tendamistat β Tendamistat Streptomyces tendae 2AIT NMR 74 74 
38. GPW αβ Viral Protein - 1HYW NMR 58 61 
39. mAcP  αβ Muscle Acyl Phosphatase Equus caballus 1APS NMR 98 98 
40. ctAcP  αβ Common type Acyl Phosphatase Bos taurus 2ACY X-ray 98 98 

41. CI2 αβ Chymotrypsin Inhibitor 2 Hordeum vulgare 
 1COA X-ray 64 64 

42. C-PTL9 αβ C-terminal domain of  
Ribosomal Protein L9 

Bacillus 
stearothermophilus 
 

1DIV X-ray 92 92 

43. N-PTL9 αβ N-terminal domain of  
Ribosomal Protein L9 

Bacillus 
stearothermophilus 1DIV X-ray 56 56 

44. Protein G αβ Immunoglobulin binding  
domain B1 of Protein G 

Streptococcus 
Lancefield  
Group G 

1PGB X-ray 56 56 

45. Protein L αβ Immunoglobulin binding 
 domain B1 of Protein L 

Peptostreptococcus 
magnus 1HZ6 X-ray 62 62 

46. Ubiquitin αβ Ubiquitin Homo sapiens 1UBQ X-ray 76 76 

47. ADAh2  αβ Activation domain of  
Procarboxypeptidase A2 Homo sapiens 1AYE X-ray 80 80 

48. U1A αβ Spliceosomal protein U1A Homo sapiens 1URN X-ray 96 102 

49. S6  αβ Ribosomal Protein S6 Thermus 
thermophilus 1RIS X-ray 97 101 

50. FKBP12  αβ FK506 Binding Protein Homo sapiens 1FKB X-ray 107 107 

51. Hpr  αβ Histidine containing  
phosphocarrier protein Escherichia coli 1POH X-ray 85 85 

52. Villin14T αβ Actin severing domain Villin 14T Gallus gallus 2VIK NMR-average 126 126 
53. RafRBD  αβ Ras-Binding Domain of c-Raf1 Homo sapiens 1RFA NMR 78 80 
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Table 4.1 Proteins/Protein domains used in the analysis (continued) 
 

 Class Protein Species PDB 
code 

Experimental 
Method LPDB LEXP 

54.  Prb   
   (K5I/K39V) α GA module of Albumin- 

binding domain  
Peptostreptococcus 
magnus 1PRB NMR-average 47 47 

55. BBA5 α Designed protein BBA5 - 1T8J NMR-average 23 23 
LPDB: Number of residues reported in the PDB files and used for contact order calculations 
LEXP: Length of experimental construct  
PDB structures as suggested by respective investigators and/or that closely match the experimental construct are chosen.  Proteins for which both 
crystallographic and solution structures are available PDB files are chosen with the preferential order:  X-ray > NMR-energy minimized average > NMR-
multimodels (the chosen model number is specified in the following remarks) 
   Remarks are numbered according to the serial number of the protein. References to kinetic data are indicated . 

1. Naphthyl-Alanine at the N-terminus is missing in the NMR structure. Atomic coordinates for residues 2-40 are reported in the pdb file. 1st model taken 
from 20 structures reported. [Personal Communication V. Muñoz] 

2. Model 1 chosen from 20 NMR structures.111 
3. Residues 130-170 of Chain C taken.112 
4. Model 1 chosen from 20 NMR structures.111 
5. Model 1 chosen from 20 NMR structures.111 
6. No remarks.113,114 
7. 2nd Model chosen from 25 NMR structures.114 
8. 1st Model chosen from 25 NMR structures.114 
9. No remarks.114 
10. 34 structures reported, 1st model taken. [Personal Communication V. Muñoz]  
11. 38 structures reported, 1st model taken.115 
12.  1 solution structure reported.116 
13. NMR structure corresponds to the characterized Y15W mutant.117  
14. PDB file is for wild type protein with residues 41-76 whereas folding of N27H mutant studied.118 
15. Segment 3, residues 6-85 taken.119 
16. 29 structures reported, 1st taken.120 
17. No remarks.120,121 
18. Number in the parentheses corresponds to the length of the experimental construct that contains N-terminal His6 tag and a short unstructured C-terminal 

tail. However in this analysis the number of residues reported in the crystal structure is used. 120,121 
19. Residues 6-39 of Chain A.122 
20. 20 structures reported, 1st model taken.123 
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21. 20 structures reported, 1st model taken.123 
22. 10 structures reported, 1st model taken. The structure is for wild type whereas W30A mutant studied experimentally.123 
23. In the X-ray structure residues 1-5 are unstructured. Atomic coordinates are reported for residues 6-62.124 
24.  The characterized construct had an N-terminal tail of residues ‘GS’ and a C-terminal tail of  ‘EFIVTD’ residues that are not present in the pdb file.125 
25. Residues 85-140.126  
26. The extra N-terminal ‘GS’ and C-terminal ‘WNSS’ residues are present in the construct. In the NMR structure the C-terminal tail is not reported.127 
27. The construct has unstructured N- and C-terminal tails.120 
28. Residues 2-64.128 
29. No remarks.129 
30. No remarks.130 
31. Out of 7 conformers submitted, 1st model taken.130 
32. No remarks.131 
33. Residues 1327-1416.132 
34. Residues 802-891.133 
35. No remarks.134 
36. No remarks.134 
37. 9 NMR structures reported, 1st model taken.135 
38. 15 structures reported, 1st model taken. The construct has ‘RRRG’ C-terminal tail that is missing in the structure file. The PDB file has an extra Met at 

the N-terminal with Val at the 2nd position in the construct is replaced by Thr. [Personal Communication V.Muñoz]  
39. 5 structures reported, 1st model taken.136  
40. No remarks.137 
41. PDB code 1coa is for mutant I76V while wild-type is characterized experimentally.138,139 
42. Residues 58-149 taken.140 
43. Residues 1-56 taken.141 
44. No remarks.142 
45. Residues 3-64 of PDB file, (residues 11-72 of the protein sequence). The PDB code 1hz6 is for the mutant Y47W.143 
46. No remarks.120 
47. Chain A, Residues 4A-99A is the pro-segment. Since 34B and 34C belong to the pro-segment, they are renumbered as 35,36,following which residues 

35A-42A are renumbered as 37-44. Due to discontinuity 42A is followed by 47A. Residues 47A-82A are renumbered as 45-80.144 
48. PDB code 1urn has mutationsY31H and Q36R. Residues 2-97 of chain A taken (1st N-terminal Met and last 5 C-terminal residues Lys-Gly-Thr-Phe-Val 

are missing in X-ray structure). Experimental construct is a F56W mutant with 102 residues.145 
49. The last four residues Leu-Ala-Asn-Ala are missing from the C-terminus in the PDB file.25 
50. No remarks.146;   51.   No remarks.147;    52. No remarks.148; 

       53.  Residues 55-132.120;    54.  Residues 7-53 reported for wild-type protein.149;      55.   Contains a D-Pro at position 4.150 
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4.4 Results and Discussion 

4.4.1 Particularities of the 1-D free energy surface model 

As discussed in Section 4.2 the model incorporates the empirical size scaling 

behavior of thermodynamic properties of proteins. Hence, the total magnitude of the 

various contributions to the free energy surface can be determined from only knowing 

the length of the protein and the mean per-residue values of the thermodynamic 

parameters (i.e. 0
resHΔ , 0n

resS =Δ and ,p resCΔ ).  However, the extent to which stabilization 

energy is gained and the total entropy is lost at any intermediate stage in folding is 

controlled by the values of the exponents of the enthalpy and heat capacity 

functionals ( HkΔ and 
pCkΔ ).  

For most model calculations 0n
resS =Δ  is fixed to 16.5 J.mol-1.K-1.res-1. This 

value of 0n
resS =Δ  translates into 17.6 J.mol-1.K-1.res-1 for the entropic cost of folding, 

which is obtained from the maximum difference in the conformational entropy 

functional or calculated from Equation 5.9. This value for entropic cost per residue 

upon folding is similar to the estimate of 17.4 J.mol-1.K-1.res-1 for the same at 385 K 

obtained from thermodynamic data of 53 proteins by Robertson and Murphy41. The 

protein database employed in the present analysis includes several fast folding 

proteins that have much shorter lengths than the smallest protein (with 56 residues) in 

Robertson and Murphy’s dataset. Linear scaling with size using ,p resCΔ =0.058 

kJ.mol-1.K-1.res-1 (as suggested by Robertson and Murphy) significantly overestimates 

pCΔ values for these proteins. When DSC data for a set of proteins including two-
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state as well as fast folding and downhill proteins is subjected to a global fitting using 

the simple model described here a value of 0.05 kJ.mol-1.K-1.res-1 is obtained for 

,p resCΔ . Hence, in all the calculations mentioned in this chapter this value of ,p resCΔ  

is used. 

At a particular temperature both the shape and magnitude of the 

conformational entropy (green curve in Figure 4.2A) function is determined by the 

value of 0n
resS =Δ . A larger value of 0n

resS =Δ  will render a curve with narrower width and 

its maximum shifted towards n=0. In Figure 4.2A the total change in enthalpy and 

heat capacity calculated with HkΔ =1.5 and 
pCkΔ =3 are shown for a 65-residue protein. 

In case of enthalpy functional a lower value of HkΔ  gives rise to a shallower decay of 

stabilization energy. When total entropic contributions are constant increasing HkΔ  

will result in steeper enthalpy functionals such that at any intermediate value of 

nativeness, for e.g. n=0.7, the % gain in stabilization energy becomes increasingly 

smaller ultimately manifesting into increasingly larger barriers. The effect of the 

change in HkΔ  on free energy barriers can be seen in Figure 4.2C where free energy 

surfaces are compared at the same temperature and isostability conditions. This 

clearly shows that modification of a single parameter HkΔ  is sufficient to alter barrier 

heights. The total entropy has two opposing components: the temperature-

independent conformational entropy and temperature-dependent solvation entropy 

(Equation 4.7). It can be seen from Figure 4.2B that the major effect of temperature in 

the total entropy arises from the changes in solvation entropy at different 

temperatures. 
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Figure 4.2 Functionals used in generating 1-D free energy surface and 

temperature dependence of free energy barrier heights  

(A) (Left axis) Enthalpic (red, blue) and entropic (green) contributions to free energy; 

(Right axis) Total change in heat capacity. (B) Dissection of (left axis) total entropy 

(blue) at 298 K (solid lines) and 323 K (dashed dotted lines): conformational entropy 

(green) and (right axis) solvation entropy (red). (C) Free energy profiles showing 

negligible barrier (blue), marginal barrier (~3 RT) (green) and large barrier (~12 RT). 

(D) Dependence of folding (blue) and unfolding (red) activation free energy on 

temperature. 
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There are very little changes in the total conformational entropy between 298 K and 

323 K. At a given temperature the curvature and magnitude of the solvation term 

depends on 
pCkΔ and the value of ,p resCΔ . Figure 4.2D shows the temperature 

dependence of folding and unfolding barrier heights for a protein having a Tm of 323 

K. The downward curvature for folding barrier heights and upward curvature for 

unfolding barrier heights are consequences of heat capacity of the transition state 

being intermediate between unfolded and native state (red curve in Figure 4.2A, 

where the value at n=0.7 corresponds to top of the barrier). This effect has also been 

seen in refolding experiments where the folding rate constants increases with 

temperature, passes through a maximum and then decreases.  

 

4.4.2 Simulation of DSC and chemical denaturation experiments     

As seen from Figure 4.3C the 1-D free energy surface model is able to reproduce the 

entire range of folding regimes from two-state with barriers of ~12 RT to marginal 

barriers of ~3RT to completely barrier-less. Since the model incorporates the effects 

of thermal and chemical denaturation, it can be directly applied for the analysis 

thermodynamic and kinetic experiments. Figure 4.3A shows a simulated DSC 

experiment for a protein having 65 residues, a Tm =323 K and folding free energy 

barrier of ~9 RT.  The sharpness of the transition expected for a two-state system and 

the characteristic sigmoidal baseline reflecting heat capacity changes associated 

unfolding transition is reproduced in this DSC profile. Equilibrium denaturation 

profile calculated for a protein with 65 residues and having a chemical midpoint (dm) 

at ~4.5 M is shown in Figure 4.3B. This profile exhibits sigmoidal decay typically 
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observed in experiments. Relaxation kinetics following perturbation of free energy 

surfaces generated from Equation 4.10 are shown in Figure 4.3C. The hypothetical 

protein considered here has a free energy barrier of ~16 RT at chemical midpoint 

suggesting a two-state system. And consistent with the two-state criterion all the  

 

Figure 4.3 Simulations of thermal and chemical denaturation experiments  

(A) Differential Scanning Calorimetry profile. Chemical base line is shown as dashed 

line;     (B) Equilibrium probability at 298 K as a function of destabilization energy 

(Ed(d-dm) from Equation 4.10); (C) Relaxation traces after various chemical-jumps 

starting from highly destabilizing (blue) and stabilizing (red) conditions; (D) 

Relaxation rate constants obtained from (C) as a function of destabilization energy, 

i.e. Chevron Plot. Solid lines in (B) and (D) are guide to the eye.   
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relaxation traces in Figure 4.3C can be fitted to a single exponential function. In order 

to simulate chemical denaturation experiments, a arbitrary concentration range of 0-

10 M and a scaling factor for destabilization energy Ed=6 kJ.mol-1 are chosen. Rather 

than assigning an ad hoc stability (i.e. ΔGeq) to the protein, destabilization effects are 

propagated from the mid-point d=dm (ΔGeq=0). Although, the value of destabilization 

energy (i.e. Ed (d-dm)) equals zero at d=dm, it does not implicate high native bias, i.e. 

0M (as dm=4.5M). Instead of arbitrarily fixing destabilization energy, expressing it as 

Ed (d-dm) provides convenience in fitting experimental Chevron plots knowing the 

range of dm and meq (which directly relates to Ed) from equilibrium chemical 

denaturation experiments. Relaxation rates obtained from the kinetic traces are 

plotted with respect to dm resulting in the characteristic V-shaped Chevron plot 

(Figure 4.3D).  Using j=2 and C=0.4 in Equation 4.11 generates the function shown 

in Figure 4.4 that partitions the destabilization energy between the folding and 

unfolding side of the barrier in a manner such that the ratio of the slopes of the 

folding and unfolding arm of the chevron is ¾:¼. This ratio is consistent with that 

found from kinetic denaturation experiments of two-state proteins. The destabilization 

energy (i.e. dm) corresponding to the minimum in the Chevron plot closely agrees 

with that from the equilibrium denaturation profile at which the signal decays by 

50%. The conformity in the value of dm obtained from equilibrium and kinetic 

chemical denaturation experiments is also one of the signatures of two-state proteins. 

Moreover, the dependence of destabilization energy on nativeness described by 

Equation 4.11 translates into a linear change in the macroscopic unfolding free energy 

 (i.e. –RTln(PU /PF)) similar to that observed in experiments (inset, Figure 4.4).     
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These results show that the model is able to simulate and reproduce 

experimentally observed features in DSC profiles and Chevron plots and thus can be 

used for direct fitting and analysis of empirical data. Unlike two-state analysis, the 

advantage of using this model is that no a priori assumptions are made for the 

number of macro-states. 

Moreover, the parameters of the model are consistent with empirical estimates 

of thermodynamic quantities. At any given temperature the equilibrium population 

ratio can be modulated by adjusting just 0
resHΔ  while barrier heights can be modified 

by the exponent of the enthalpy functional. Furthermore, the simplicity of the model 

facilitates the incorporation of the effects of protein size, 3-D structures and 

energetics by detailed parameterization of HkΔ and 
pCkΔ . In Equation 4.17 when X is 

1, k∝ 1/N, suggesting that the curvatures of the exponential functionals decrease with 

protein size.   

 

 

 
 

 

Figure 4.4 Dependence of destabilization

energy on nativeness  

The function generated from Equation 4.11.

Inset shows the change in protein stability,

i.e. ΔGeq(U-F) from from 23 to –30 kJmol-1as a

result of destabilization caused by chemical

denaturation. 
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However, this does not necessarily mean that larger barriers result for smaller 

proteins because the barrier height depends upon how the decrease in total entropy 

compensates the decay in total stabilization energy, both of which scale linearly with 

size.  

4.4.3 Prediction of folding rates at mid-transition 

 Folding rates at chemical and/or thermal denaturation midpoints of 53 proteins listed 

in Table A1 are considered for prediction (with the exclusion of Prb and Bba5).   

Comparison between experimental midpoint rates ((i.e. km/2) and those predicted by 

the model using size-scaling of HkΔ and 
pCkΔ are shown in Figure 4.5A. The predicted 

rates span the same range as the experimental rates with which they show a 

correlation coefficient (R) of ~0.9 (p-value <2.4e-20). The prediction resulting from 

using just a single input i.e. protein size is quite remarkable with a mean discrepancy 

between the calculated and experimental rates of less than one order of magnitude 

(i.e. a factor of 8 or ~1/9 of the dynamic range). However, this version of the model 

predicts almost identical rates for proteins having very similar sizes and folding 

temperatures (note the horizontal pattern of data points of some proteins in Figure 

4.5A) suggesting that at the level of individual proteins it is important to add effects 

arising from other factors, i.e. differences in protein topologies and energetic effects 

arising from protein sequences.      

Contact maps (Figure A1 in appendix) generated from 3-D structures (PDB 

filenames are listed in Table 4.1) reflect the sequence separation between contacting 

residues. Replacing X in Equation 4.17 with the sequence separation for all atomic 

contacts between residues allows understanding the role of structures in determining 
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barrier heights and hence folding rates. The mean evolution of stabilization energy 

(and heat capacity changes) with respect to n is obtained by averaging the decays of 

individual contacts. For two proteins of same size and compared at the same folding 

temperature, the one with a larger average sequence separation will have higher mean 

values of HkΔ and 
pCkΔ , and therefore will have a larger barrier.  (Figure 4.2A). This is 

consistent with the idea that more complex topologies fold more slowly. Figure 4.5B 

shows the prediction of rates when contacts between Cα-Cα atoms at distances less 

than 0.6nm are included in HkΔ and 
pCkΔ in combination with the dependence on size. 

The correlation between experimental and predicted rates shows improvement  

(R =0.93, p-value <1.2e-24) with the mean discrepancy decreasing by ~13% (factor 

of 6). Interestingly, maximum improvement is seen in α-proteins for which the mean 

discrepancy between calculated and experimental rates decreases by ~24% of that 

obtained with size-scaling followed by β-proteins with a decrease of ~20% in mean 

discrepancy. The prediction of rates for α-β proteins, on the other hand, becomes 

worse with an increase in the mean discrepancy of ~8% (see table 4.2).  This suggests 

that the mutual effects of protein size and structure appear to work in opposite 

direction for some proteins, which is not surprising when several other factors are not 

accounted for.  
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Figure 4.5 Prediction of mid-point folding rates with 1-D free energy surface 

model 

Calculations performed with the model including (A) Size-scaling; (B) Sequence 

separation between Cα-Cα contacts of ≤ 0.6 nm;  (C) Cα-Cα contacts of ≤ 0.6 nm 

energy weighted according to Miyazawa-Jernigan potential and sequence-dependent 

conformational entropies. The data points of the three main structural classes are 

shown in different colors: all-α (red), all-β  (green) and α−β  (blue). 

   

Next sequence-specific details are added by replacing the mean value of 

0n
resS =Δ  with conformational entropies for each residue (listed in Table 5.5) and 

weighing residue-residue contacts according to the empirical force-field developed by 

Miyazawa and Jernigan110. The comparison of calculated and experimental rates in 

Figure 4.5B show noticeable changes but the correlation (R = 0.93, p-value<1.3e-24) 

is essentially the same as in Figure 4.5B. But the mean discrepancy is seen to increase 

slightly by ~2% of that when non-energy weighted contacts and mean value of 0n
resS =Δ  

are used (Figure 4.5B). In this case, β-proteins lead the race by showing a decrease of 

~8% in mean discrepancy between their theoretical and empirical rates. The rate 
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prediction for α-proteins deteriorates by ~0.7% even though the mean discrepancy 

within the α class is always lower than β-proteins. For α-β proteins the mean 

discrepancy further decreases by ~12%. A likely explanation for the weak 

performance of the Miyazawa-Jernigan potential in predicting rates is that it is 

derived from the statistical survey of large number of 3-D structures. The interaction 

energy between two contacting residues is assumed to be proportional to the 

frequency of their occurrence in a structural database. By this method the sequence-

specific energetic details at the level of individual atomic contacts are lost due to 

averaging. Empirical potentials like the Miyazawa-Jernigan one may not provide 

sufficiently detailed description of protein energetics and hence may not be adequate 

in reproducing the folding rates of individual proteins.  

It is hard to conclude with certainty about the effects of including structure 

and sequence details on the predictive power of the model given the limited dataset 

and the statistically insignificant differences in rate prediction. As it can be seen from 

Table 4.2 the different versions of the model predict rates, on an average, within a 

factor of 10. Improving from a factor of 8 to a factor of 6 should be inconsiderable. 

However, it is the trend that is important to notice here. From these results it is clear 

that protein length is the primary determinant of folding rates with protein structure 

and sequence playing the secondary role. When the details of structure or sequence-

dependent energetics are not properly modeled, their inter-related effects on the 

folding kinetics are hard to reconcile.        

The dataset used in the present analysis involves a large majority of proteins 

whose folding properties are investigated experimentally. Examination of the dataset 
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shows that there are almost an equal number of representatives from each structural 

class (19 all α, 18 all β and 17 αβ proteins). The problem, however, is that 65% of 

the proteins in the dataset belong to just a handful number of sets of homologous 

proteins. These proteins are grouped into different scaffolds based on the 

classification of both CATH151 and SCOP 152databases (shown in Table A2 in 

Appendix). The grouping in each scaffold is performed with the criteria that 

homologous proteins should also belong to the same fold, super-family, family, 

architecture and topology. By doing this the size of the dataset effectively reduces 

from 54 to 11 (19 singleton entries are excluded). Analysis of these 11 structural 

scaffolds helps to better discern the structure and sequence effects from the 

consequences of size-scaling. After performing global fitting of mid-point rates for all 

proteins as discussed above, the average folding rates for each scaffold are compared 

as shown in Figure 4.6. The improvement in rate prediction from using length-

dependent (Figure 4.6A) to structure- and sequence-dependent (Figure 4.6B) 

exponents in the model now becomes more apparent. The mean discrepancy between 

experimental and theoretical average rates decreases by as large as ~43% (i.e. from 

Panel A to Panel B) for 11 scaffolds comprising of 35 proteins.  While the mean 

discrepancy for all 54 proteins shows a reduction of only ~11% when structural and 

energetic details are added to the model. The reason for this drastic decrease is partly 

due to sheer averaging effects. The mean discrepancy between the average 

experimental and predicted rates is as low as 0.442 even if any 4 proteins are 

randomly chosen for each fold in the length calculation and 0.371 when sequence and 

structure are involved.   
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Table 4.2 Summary of results: Prediction of mid-point folding rates with 1-D 

free energy surface model   

 

Model 
versions HcΔ  pCcΔ  R 

 
explog( ) log( )pred
m mk k−

(54 proteins) 

 
explog( ) log( )pred
m mk k−

(11 scaffolds, 35 proteins) 
1.441 3.794 0.899 0.922 0.729 

A.    Size    
α    0.906 
β    0.991 
αβ 0.866 

 

1.784 3.043 0.932 0.805 0.461 
B.    Cα-Cα 
      contacts 
    

α    0.693 
β     0.795 
αβ   0.939 

 

1.876 3.234 0.932 0.820 0.412 C.   Energy   
    weighted   
    contacts +    
    Sequence   
  dependent 
conformational   
    entropies 

   
α    0.698 
β    0.734 
αβ  1.05 

 

 
Fitting the chemical and thermal mid-point rates of 54 proteins is performed by fixing 

mean values of 16.5 J.mol-1.K-1.res-1 and 0.05 kJ.mol-1.K-1.res-1 for 0n
resS =Δ  and ,p resCΔ  

respectively in versions A and B of the model. The only adjustable parameters are the 

coefficients in the expression . ; .  
p p

X N X N
H H C Ck c B k c BΔ Δ Δ Δ= = . The fitted values of 

these parameters are shown in Table 4.2.  For calculations performed with version C 

of the model the mean value of 0n
resS =Δ  is replaced with sequence-dependent 

conformational entropy cost per residue estimated from statistical analysis of protein 

structure database (Table 5.5).   For all the above calculations B=2 and the pre-

exponential ko=107/N. The mean discrepancy is given by the average of the absolute 

difference between predicted (pred) and experimental (exp) mid-point folding rates 

and expressed in log units.         
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Figure 4.6 Comparison of average mid-point folding rates of structural scaffolds 

from prediction and experiments 

Calculations performed with the model including (A) Size-scaling; (B) Cα-Cα 

contacts of ≤ 0.6 nm energy weighted according to Miyazawa-Jernigan potential and 

sequence-dependent conformational entropies.  The data points represent the average 

mid-point folding rates for 11 different scaffolds: E3BD: E3 bonding domain 

(Peripheral Subunit Binding Domain of 2-oxo acid dehydrogenase complex); HD: 

Homeodomain; Im: Immunity proteins; WW: WW domains; Csp: Cold shock 

proteins; SH3: src-homology 3; FNFIII: Fibronectin type III; I set: Immunoglobin-

like; IgBD: Immunoglobulin binding domain; UBQ-like: Ubiquitin-like; AcP: Acyl 

phosphatase. The color-coding for α, β, and α-β classes is the same as in Figure 4.5. 

The horizontal and vertical error bars correspond respectively to the range in 

experimental and theoretical folding rates spanned by members of individual scaffold.  
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As mentioned earlier the present model accounts for the differences in folding rates of 

proteins arising from the variation in the folding temperatures (298 K for chemical to 

~350 K for thermal denaturation experiments). However, the model cannot reproduce 

the differences in folding rates measured in a range of solvent conditions (pH, ionic 

strength or buffer composition); or resulting from the use of urea or guanidinum salts 

as denaturing agents; or from temperature or denaturant dependence of viscosity that 

has a significant effect especially at mid-point conditions. 

From the standpoint of model calculations the errors in predicted rates can 

arise due to the use of X-ray structures determined at different crystallization 

conditions or the choice of any one model from multiple NMR structures over an 

average structure. In addition, the use of wild-type protein 3D-structures for 

theoretical predictions when structures of protein constructs characterized 

experimentally are not available can also lead to discrepancies between calculated 

and experimental rates. The effect of grouping the proteins into scaffolds is that the 

errors in the measurement of folding rates of the member proteins are averaged out. 

And hence the performance of the models incorporating different degrees of details 

can be judged more clearly.     

In Figure 4.6 vertical bars show the range of rates predicted by the model for 

each scaffold whereas horizontal bars correspond to the deviations in experimental 

rates of proteins within each scaffold from the mean. A perfect prediction can be said 

to have resulted for proteins belonging to a scaffold when the vertical bar shows the 

same proportion of deviation around the mean as the horizontal bar and the average 

predicted rate falls on the diagonal (one-to-one correspondence line). Since scaffolds 
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HD and E3BD include proteins with folding rates measured at chemical mid-point 

(~298 K) as well as temperature mid-point (~340 K) they show a larger spread in 

experimental rates. A similar and proportional spread in predicted rates of these 

scaffolds in Figure 4.6A points out to the ability of the model in accounting for 

temperature effects. It is interesting to note that for HD and E3BD proteins along with 

improvements in the prediction of average rate the spread around it also reduces when 

structure and sequence-specific details are added to the model. The effects of protein 

length and temperature are overridden by those of structure and sequence. This result 

is not surprising given the very similar topology (see the similar contact maps in 

Figure A1 in appendix) and high sequence similarities of proteins in these scaffolds. 

On the contrary the effects of structure and sequence are beneficial for the prediction 

of proteins belonging to WW, I set and AcP scaffolds (see the reduction in the length 

of the vertical error bar). Noticeable improvements in the prediction of average rates 

upon using structure and sequence can also be seen in case of SH3 and Im. 

Interestingly, for Csp, FNFIII and UBQ-like protein length seems to be sufficient 

information for reproduction of their rates. Adding structure and sequence details 

only worsens the prediction of their rates. For IgBD, on the other hand, neither length 

nor structure and sequence can successfully reproduce the folding rates. In order to 

quantitatively analyze the contributions coming from length, structure and sequence, 

a large body of experimental data on folding kinetics is required for proteins 

including representatives from a large number of scaffolds each having several 

members (here, the average number of proteins per scaffold is only 4).   
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In addition, for comparative analyses between theoretical predictions and 

experimental data on a quantitative level, irrespective of the size of the database used 

for comparison, precise estimation of experimental errors is necessary. This has not 

been possible due to the absence of a general consensus for using a standard set of 

conditions and reporting data among researchers within the protein folding 

community, until recently. Various research groups have made a combined effort to 

obtain the variability across and within laboratories by studying the kinetics of the 

same protein153. Using their data on the wild type and seven mutants of Fyn SH3 a 

mean error of ~0.26 (log units) (i.e. average standard deviation, corresponds to ~45% 

error) in mid-point folding rates is obtained.  

In order to estimate errors in folding rates due to fitting kinetic data to two-

state analysis, here, the experimental Chevron plots of 34 proteins are reproduced by 

digitization. The Chevron plot of each protein is then fitted to a two-state model and 

random noise with the same magnitude as the standard error of the fit (i.e. standard 

deviation of the difference between the best fit and original data) is added to the fitted 

curve. Next, the newly generated Chevron curve is subjected to two-state fit in the 

same manner as the original one. This procedure is repeated 50 times for each protein 

and from the distribution of each fitted parameter (kf, ku, mf, mu from which km is 

calculated) the associated standard deviation is calculated. This exercise yields a 

mean error of ~0.02 (log units) (i.e. average standard deviation, corresponds to ~5% 

error) in km for 34 proteins.  

For some proteins folding has been investigated at a wide range of pH. The 

variation in km due to changes in pH obtained for spectrin SH3154 and C-terminal 
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domain of protein L9140 ranges from ~0.2-~0.7 (log units) (i.e. corresponding to 60-

80% discrepancy). This may provide a rough estimate of the errors involved while 

comparing folding rates of different proteins not obtained at a common pH.   

Propagation of the errors mentioned above gives a crude estimate of ~0.3-0.75 

(log units) which is perhaps the upper limit. The reliability of this estimate (obtained 

from whatever very limited data available) is highly questionable because teasing out 

the contributions of different sources of error requires a large number of systematic 

and controlled studies (where variables are changed one at a time to observe their 

individual effects) and there are possibilities of certain errors canceling out. 

Nevertheless, it is assuring at present that the variation of experimental mid-point 

rates within one order of magnitude is very similar to the predictive power of the 

simple model used here. Such precision in reproduction of rates is helpful only in 

studying the general properties of folding. Even if the variation between predicted 

and experimental rates were randomly distributed around the average, the mean 

discrepancy would be 0.8.  This suggests that, although the mean discrepancy 

decreases from 0.922 to 0.8 when structural details are included, there is still much 

room for improvement in predicting rates at the level of individual proteins. 

To obtain an estimate of errors in prediction of rates from the use of different 

3-D structures, 16 different X-ray structures of lysozyme (including those for mutants 

and those in which lysozyme forms complex with other moieties) are obtained.  The 

mid-point folding rates of lysozyme predicted by the model (described here) using the 

information of residue-residue contacts (Cα-Cα) obtained from individual structures 

shows a deviation of ~0.05 (log units). Similarly the mean variation in mid-point rates 
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predicted from structural information derived from multiple NMR structures is 

evaluated to be ~ 0.06 (log units) for 18 proteins. This shows that the errors in the rate 

prediction due to the differences in 3D-structures are negligible.  

However, the errors in theoretical calculations may depend on the level of 

structural details incorporated in the model, for example different definitions of 

atomic contacts. Figure 4.7A shows the comparison between the observed and 

calculated mean mid-point rates for alternative representations of protein structure 

used in the model:  Cα-Cα (<0.6 nm), Cβ-Cβ (<0.8nm), contacts between side chain 

heavy atoms (<0.6nm), center of masses for side-chain heavy atoms (Cα 

onwards)(0.6nm), all heavy atoms, combination of all the above definitions of atomic 

contacts and backbone hydrogen bonds. The interesting point from Figure 4.7A and B 

is that the variation in predicted rates seems to increase with the decease in folding 

rates. In the present dataset most proteins folding slower than 1 second belong to 

either β or αβ class for which model predictions are more sensitive to the details of 

structural description. This is obvious as any small changes in the mean values 

HkΔ and 
pCkΔ  with different representations of structure produces relatively larger 

changes in the free energy barriers of proteins with larger barriers, thus manifesting as 

greater variation in predicted rates of slow folding proteins. In case of α-helical 

proteins smaller exponents are required to produce lower barriers. Any further small 

variations in these exponents produce insignificant changes in the curvature of the 

enthalpy functionals of α-helical proteins and hence in their barrier heights. Using 

Cα-Cα contacts results in the least mean discrepancy between theoretical and 

observed rates even when compared with the average across all atomic models 
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(compare Figure 4.5B and Figure 4.7A). Hence for all calculations in this analysis 

pertaining to rate prediction from structural details, Cα-Cα contacts are used. 

Interestingly other statistical models predicting folding rates from native structures 

have also found the coarse-grained Cα description to perform equally well as more 

detailed atomic representations of structure. But Cα description can reproduce only 

 

 

Figure 4.7 Comparison of calculated and observed rates at mid-point conditions 

for various atomic models  

(A) Average mid-point rates predicted from using different representation of atomic 

contacts in the model are compared with experimental mid-point rates. The error bars 

represent the upper and lower limit of predicted rates. (B) Experimental midpoint 

rates are compared with the difference between the upper and lower limits of 

predicted rates (in A) at midpoint. The same color-coding as in previous Figures is 

followed.  
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the general behavior- the deviations in predicted rates are much larger at the level of 

individual proteins than the uncertainties in the observed rates. A possible reason for 

this limitation is the use of pair-wise contacts in prediction of rates. A description 

involving many-body interactions may be more suitable for representing protein 

structures. This becomes even more important with increasing complexity in protein 

topology as can be seen from Figure 4.7A. On the other hand, it is also possible that 

using more details may deteriorate the prediction due to the use of a noisy database. 

This effect is already seen from the increase in mean discrepancy between observed 

and predicted rates when sequence-dependent details are added in the model.    

4.4.4 Prediction of folding rates at native conditions  

Folding rates measured in the absence of denaturant are usually more prone to error 

than rates obtained at mid-transition. To calculate folding rates in the absence of 

denaturant using the simple model described here one more experimental parameter is 

required – protein stability at folding temperature i.e. unfolding free energy, the 

estimates of which are also associated with uncertainties. Hence to calibrate the heat 

capacity and enthalpy functionals the more reliable mid-point rates are used. Using 

stabilities reported in literature and the mean parameters obtained from the fitting of 

mid-point rates (using Cα-Cα contacts), folding rates in the absence of denaturant are 

calculated (Figure 4.8). The only adjustable parameter in this calculation is 0
resHΔ  to 

reproduce equilibrium population that matches experimental stabilities. The 

calculated rate shows an 87% correlation with the observed rates.   
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Figure 4.8 Comparison of calculated and observed rates in absence of 

denaturant  

Rates in water calculated by the model (using Cα-Cα contacts) with the mean 

parameters obtained from the fitting of mid-point rates (Table 4.2) are compared with 

experimental folding rates measured in the absence of denaturant. The color-coding 

for α, β, and α-β classes is maintained from earlier Figures.  

 

 

However for majority of the proteins the calculated rates are under-predicted with the 

mean values of HkΔ and 
pCkΔ used for predicting mid-point rates. This is not surprising 

since folding barriers at mid-point denaturation are higher than folding barriers at 

more native-like conditions. Hence reproduction of folding rates in absence of 

denaturant would require lower values of HkΔ and 
pCkΔ that would give rise to lower 

barriers. Keeping 
pCkΔ fixed to the same mean value obtained from prediction of mid-
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point rates (i.e. assuming solvation effects to be similar in absence and presence of 

denaturant) the coefficient of the exponent of the enthalpy functional ( HcΔ ) is fitted 

for each individual protein to perfectly reproduce the observed experimental folding 

rates in absence of denaturant. The resulting HcΔ  ranges from –0.2 to 2.5 with mean 

1.44, which is, as expected, lower than the mean value of 1.784 used from midpoint 

rate prediction.   
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Chapter 5:  Estimation of conformational entropy from 

statistical analysis of protein structure database 

5.1 Introduction 

In spite of the importance of entropic factors in determining free energy barriers 

efforts towards quantitative understanding of protein folding entropy have been 

limited. Among thermodynamic parameters conformational entropy has remained one 

of the most difficult to evaluate. The change in entropy upon folding (ΔS) in aqueous 

environment is generally partitioned into two components: ΔSconf associated with the 

loss in conformational freedom of the polypeptide chain and ΔSsolv is the de-solvation 

entropy arising from the burial of polar and non-polar groups (ΔSpolar and ΔSapolar)155. 

In earlier thermodynamic studies entropy and enthalpy changes of unfolding 

normalized with respect to number of residues were found to converge for a set of 

proteins at temperatures of 385 K and 373 K respectively156.  Noticeably entropy of 

dissolution of liquid hydrocarbons and solid hydrophobic model compounds were 

also observed to converge around 385 K41. Due to this similarity it was hypothesized 

that at 385 K the only significant component i.e. hydrophobic (ΔSapolar) contributions 

to ΔS were absent and, by difference, ΔS measured at 385 K corresponded only to 

conformational entropy ΔSconf
41. Although there have been controversies regarding 

the contributions from the polar groups, ΔSpolar have been, indeed, shown to be close 

to zero at ~335 K and have negligible contribution at 385 K. Using convergence 

temperatures of solvation entropies (ΔSpolar and ΔSapolar) and parameterization of heat 
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capacity changes in terms of polar and apolar accessible surface areas given by Freire 

and co-workers157 Akmal and Muñoz have calculated temperatures at which ΔSpolar 

and ΔSapolar cancel out62. Hence at these temperatures (evaluated from heat capacity 

of activation obtained from fitting of temperature dependence of folding and 

unfolding rates) that were found to be only slightly higher than 385 K, ΔS was 

assumed to reflect only ΔSconf. Estimate of average ΔSconf per residue (~18 J.mol-1.K-

1.res-1)62 from this analysis of kinetic data have been found to agree closely with those 

obtained by Robertson and Murphy using thermodynamic data (~17 J.mol-1.K-1.res-1, 

see Figure 4.1)41.        

Theoretical estimates of ΔSconf have been obtained from sampling of various 

conformational states for backbone and side chain ( confS lni i
i

R p pΔ = − ∑ ) using 

Monte Carlo simulations and molecular mechanics force fields158. In a different 

approach side chain rotamer libraries and distribution of backbone dihedral angles 

derived from limited number of protein structures have been used159. These estimates 

have been successful in reproducing experimental helical and β-strand propensities of 

different amino acids160. 

Along similar lines, here, conformational entropies are evaluated in absolute 

terms from the statistical analysis of an expanded database of ~4000 protein 

structures. Conformational entropies estimated for each amino acid from this analysis 

directly form the sequence-dependent parameters of the model described in Chapter 

4. In addition this analysis gives an opportunity to address questions such as: Are 

protein sequences and/or protein structures subjected to evolutionary selection to 

minimize or maximize conformational entropies?     
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5.2 Methods 

The database of three-dimensional protein structures used in this analysis is a subset 

of the WHAT IF relational database161. The WHAT IF database has been built using 

an algorithm similar to the one developed by Hobohm and Sander162 in which 

representative X-ray structures from PDB are selected based on their quality: R-

factor, resolution and sequence homology. The database considered here is derived 

using a cutoff of 0.25 for the R-factor and contains 4013 X-ray structures with less 

than 30% sequence identity and less than 2.5Ao resolution.  

Using Cartesian coordinates of relevant sets of four atoms, main chain (φ, 

ψ, ω) and side chain (χ1,χ2,χ3,χ4) dihedral angles are calculated. (See Figures A2 and 

A3 in appendix for the different side-chain angles applicable to each amino acid).  

 

                   

For example, to determine the dihedral angle between two bonds AB and CD about a 

common bond BC, the following vectors are calculated first from the x,y,z 

coordinates of the four atoms A,B,C,D: 
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( , , ) ( , , ) .......................................................................(5.1)

( , , ) ( , , ) .......................................................................(5.2)

AB B x y z A x y z

BC C x y z B x y z

= −

= −

JJJG

JJJG

( , , ) ( , , )   .......................................................................(5.3)CD D x y z C x y z= −
JJJG

   

 
Next, vectors defining the two planes are obtained from the cross product of 
respective bond vectors. 

......................................................................................(5.4)

   ......................................................................

nABC AB BC

nBCD BC CD

= ×

= ×

JJJG JJJG

JJJG JJJG
................(5.5)

 

 
The dihedral angle θ in degrees is then given by   
 

180 arccos( ............................................................(5.6)
| || |

nABC nBCD
nABC nBCD

θ
π

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

i  

 
if nABC CD

JJJG
i <0, θ is negative.  

 
The φ-ψ dihedral angle space of 899,172 amino acids is represented as the 

Ramachandran plot and divided into intervals of 9oC in both directions (i.e. for φ and 

ψ) resulting in a 40×40 matrix.  Each of the 1600 discrete regions can be addressed 

by the indices of the rows and columns of the matrix. Row and column indices run 

from 1 to 40 corresponding to values of –180 to +171 for ψ and φ respectively. For 

example, interval (1,1) corresponds to that region of the φ-ψ space including all 

values from –180 to –171 for both φ and ψ. The logarithm of number of hits for each 

region obtained from the database is shown in Figure 5.1.  

The 40×40 matrix is next partitioned into 20 clusters using the K-means 

algorithm163,164 implemented in MATLAB 6.5. This algorithm randomly assigns 

centroids/centers, one each for the specified number of clusters and calculates the 

Euclidean distance between each data point and every cluster centroid. An iterative 

algorithm aims at minimizing the sum of Euclidean squared distances within each 



 

 118 
 

cluster by re-assigning/moving the data points between clusters at each step. 

Convergence is reached when no further changes can be made. K-means clustering 

forms mutually exclusive and compact partitions, however, the solution is not always 

optimum. Hence the algorithm is run several times and the result that approximately 

matches the natural clusters observed in φ-ψ distribution is chosen.  

 Similarly, one-dimensional matrices are built, one each for side chain dihedral 

angles, and each partitioned into 3 clusters. The overall distribution of each side chain 

dihedral angle and main chain ω for all amino acids is shown in Figure 5.2.       

 

The probability of populating each cluster can be expressed as 

........................................................................................... (5.7)
j

j
i

t

N
p

N
=

∑
  

where Nj is the number of hits in region j of cluster i and Nt is the total number of hits 

over all clusters. The probability distribution obtained from a large database can be 

assumed to follow Boltzmann distribution. Each dihedral angle is assumed to attain 

either one of the two thermodynamic states: the native state corresponding to any one 

cluster and the nonnative state in which the dihedral angle can sample all other 

clusters in the Ramachandran plot except for the native cluster in question. Therefore 

the cost of fixing a dihedral angle in a particular cluster i is given by the difference 

between the entropy to be in all other clusters except for cluster i (nonnative state) 

and the entropy of cluster i (native state) (Equation 5.8). 
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      Figure 5.1 Distribution and clustering of φ-ψ dihedral angles  

(A) The φ-ψ space is represented as a 40 ×  40 matrix with each square corresponding to a region of 9o ×  9o. The color bar 

indicates the value of logarithm of number of hits in each region. The highly populated areas correspond to α-helical and the β-

strand conformations. (B)The φ-ψ space of (A) is shown to be divided into 20 clusters. Cluster indices are marked in red. (C) 

Super-imposition of (B) on (A) shows β-strand region divided into clusters 1 and 2 while α-helical region falls in cluster 10.Left-

handed helical conformations are mainly included in clusters 8 and 12.  
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Figure 5.2 Distribution and clustering of χ and ω dihedral angles.  

The logarithm of number of hits is plotted against dihedral angle values from –180 to 

+180. Dashed-dot lines show the distribution of χ angles (blue: χ1; red: χ2; green: χ3). 

In certain amino acids there is branching at Cβ, Cγ or Cδ atoms and thus each χ angle 

can have two alternative values χx1 (dashed line) or χx2 (solid line) where x=1,2 or 3 

for χ1, χ2 or χ3 respectively. For definition of each side chain dihedral angle see 

Figure A3. (D) shows the distribution of χ4 (dark green) and ω (black) angles. Black 

dashed lines (around -60o and +60o) demarcate the regions corresponding to the three 

clusters.    
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( ) ( )ln ln ln

ln 2 ln ............................................................(5.8)

i nonnative native

i i i i i i i
i

i i i i i
i

S S S

S R p p Rp p Rp p

S R p p p p

Δ = −

⎛ ⎞Δ = − − − − −⎜ ⎟
⎝ ⎠

⎛ ⎞
Δ = − −⎜ ⎟

⎝ ⎠

∑

∑

 

Distributions of φ-ψ angles, ω and side chain χ angles are generated from the protein 

database for each individual amino acid (see Figures A2 and A3 in appendix). The 

entropic costs of fixing the dihedral angles of a particular amino acid in any of the 20 

different clusters (for φ and ψ) or 3 clusters (for χ’s and ω) are evaluated from its 

probability distribution calculated from the total number of hits in each cluster and 

the overall total number of hits for that amino acid in the database. These are listed in 

Table 5.1 and 5.2.      

5.3 Estimation of conformational entropiesd of test Proteins  

From 3-dimensional structures main chain and side chain dihedral angles are 

calculated for each protein. Depending on the values of the dihedral angles they are 

assigned to the clusters defined above. For each amino acid from a protein sequence 

the total conformational entropy is directly obtained from the sum of the backbone 

conformational entropies, conf
bbSΔ and all of its relevant side chain conformational 

entropies, conf
scSΔ  taken from Tables 5.1 and 5.2 for all residues. And therefore the 

total cost in conformational entropy for each protein ( conf
PDBSΔ ) is simply obtained from 

the summation of conformational entropies of all its residues. 

                                                 
d  In the text ‘conformational entropy’ actually refer to cost of conformational entropy (ΔS) unless 
otherwise specified.  
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Table 5.1 Backbone conformational entropies ( conf
bbSΔ ) of different amino acids 

CLUSTER 
NUMBER GLY ALA VAL LEU ILE MET PRO TRP TYR GLU 

1 14.521 5.641 5.159 5.586 5.270 7.558 8.789 8.538 7.141 5.975 
2 14.182 5.308 5.852 5.069 5.840 7.986 3.438 8.830 7.976 5.512 
3 17.381 10.163 11.125 10.416 11.125 12.447 8.773 13.547 12.824 10.252 
4 14.533 10.111 11.128 10.425 11.134 12.463 8.799 13.567 12.824 10.248 
5 17.080 9.563 10.617 10.017 10.688 11.916 8.834 13.133 11.913 9.758 
6 16.677 9.075 10.237 9.138 10.258 11.344 7.376 12.382 11.165 9.190 
7 17.406 10.174 11.138 10.430 11.139 12.483 8.771 13.591 12.849 10.271 
8 15.990 9.539 10.929 10.036 10.991 12.008 8.755 13.271 12.207 9.387 
9 17.233 10.187 11.144 10.437 11.144 12.495 8.815 13.606 12.859 10.274 

10 12.062 5.323 5.159 5.134 5.252 7.202 2.898 8.077 7.024 5.534 
11 17.397 10.159 11.125 10.415 11.120 12.447 8.752 13.547 12.829 10.234 
12 11.526 9.734 11.092 10.044 11.105 12.078 8.716 13.246 12.219 9.726 
13 16.961 10.208 11.172 10.458 11.180 12.574 8.855 13.703 12.909 10.302 
14 17.226 10.059 10.779 10.280 10.847 12.416 8.803 13.468 12.577 10.047 
15 17.072 9.929 11.032 10.213 11.035 12.351 8.381 13.458 12.674 9.938 
16 15.858 10.065 11.106 10.376 11.108 12.463 8.721 13.542 12.793 10.187 
17 17.110 10.178 11.122 10.427 11.137 12.487 8.811 13.596 12.849 10.263 
18 14.404 9.809 10.915 10.227 11.008 12.271 8.360 13.309 12.512 10.031 
19 17.369 10.176 11.139 10.433 11.142 12.487 8.785 13.596 12.854 10.274 
20 13.886 10.089 10.995 10.304 11.017 12.431 8.672 13.533 12.732 10.201 

CLUSTER 
NUMBER ASP GLN ASN CYS SER THR LYS ARG PHE HIS 

1 9.766 6.972 11.184 9.221 7.137 6.431 6.720 6.815 6.900 9.063 
2 8.166 6.963 10.543 9.619 7.149 7.000 6.498 6.942 7.625 9.520 
3 13.454 11.599 15.369 14.479 12.474 12.179 11.435 11.761 12.560 14.201 
4 13.425 11.611 15.353 14.455 12.406 12.156 11.425 11.753 12.560 14.187 
5 12.171 10.984 13.540 13.610 11.610 11.123 10.810 10.886 11.680 12.792 
6 10.676 10.330 12.352 13.265 11.447 11.268 10.215 10.491 10.782 12.236 
7 13.446 11.623 15.382 14.518 12.507 12.191 11.451 11.784 12.580 14.232 
8 11.800 10.550 12.437 13.935 11.787 12.030 10.317 10.797 12.022 12.997 
9 13.485 11.638 15.404 14.537 12.510 12.202 11.458 11.793 12.589 14.243 

10 7.816 6.504 9.517 8.896 6.713 6.311 6.206 6.434 6.763 8.527 
11 13.462 11.606 15.374 14.479 12.479 12.174 11.422 11.764 12.555 14.197 
12 12.375 10.968 13.239 13.999 11.944 12.008 10.633 11.075 12.014 13.273 
13 13.525 11.686 15.446 14.634 12.547 12.237 11.493 11.832 12.629 14.312 
14 13.322 11.469 15.179 14.373 12.193 11.799 11.191 11.584 12.349 13.927 
15 13.245 11.441 15.226 14.418 12.306 12.010 11.106 11.503 12.395 14.069 
16 13.246 11.529 15.201 14.437 12.326 12.146 11.313 11.666 12.514 14.163 
17 13.478 11.633 15.395 14.527 12.519 12.195 11.455 11.790 12.582 14.228 
18 11.976 11.345 14.062 13.833 11.317 10.875 11.173 11.458 12.287 13.836 
19 13.480 11.633 15.401 14.527 12.507 12.198 11.453 11.792 12.585 14.235 
20 13.403 11.577 15.327 14.470 12.375 12.090 11.382 11.693 12.495 14.174 
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Table 5.2 Side chain conformational entropies ( conf
scSΔ ) of different amino acids. 

ANGLE CLUSTER 
NUMBER 

GLY ALA VAL LEU ILE MET PRO TRP TYR GLU 

1    2.340  2.447 -0.01 2.696 2.610 2.593 
2    2.479  2.407 0.015 2.820 3.051 2.450 

χ1 

3    0.870  1.167 0.011 1.937 1.688 1.601 
1   1.092  2.329      
2   4.258  0.799      

χ11 

3   1.859  2.766      
1   2.530  1.127      
2   2.587  3.353      

χ12 

3   3.514  2.382      
1      1.751    1.080 
2      4.328    4.747 

χ2 

3      1.317    1.150 
1    1.174 1.416   2.478 1.885  
2    2.971 2.404   3.229 3.359  

χ21 

3    2.460 2.531   2.774 2.590  
1    2.562    1.662 1.483  
2    1.917    4.455 4.633  

χ22 

3    1.808    0.743 0.440  
1      2.205     
2      3.899     

χ3 

3      1.896     
1          2.250 
2          2.700 

χ31 

3          2.141 
1          2.242 
2          3.725 

χ32 

3          2.360 
1           
2           

χ4 

3           
1 -0.41 -0.22 -0.40 -0.28 -0.45 -0.26 1.211 -0.15 -0.09 -0.22 
2 5.562 5.681 5.625 5.684 5.596 5.693 4.636 5.703 5.671 5.698 

ω 

3 0.523 0.300 0.442 0.322 0.490 0.299 1.274 0.229 0.247 0.275 
 
 
Blank cells correspond to those side chain dihedrals not applicable to a particular type 

of amino acid. For example, both Gly and Ala have values only for peptide bond 

dihedrals but not for any side chain dihedrals. (see Figure A3 for the side chain 

dihedral angles applicable to each amino acid). Negative values for the cost in 

entropy in Tables 5.1 and 5.2, for ω dihedrals, reflect the rigidity of peptide bond, (for 

example cluster 1 corresponding to trans configuration is highly favorable). 
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Table 5.2 Side chain conformational entropies ( conf

scSΔ ) of different amino acids  

(continued) 

 
 
 
 
 
 
 
 
 

ANGLE CLUSTER 
NUMBER ASP GLN ASN CYS SER THR LYS ARG PHE HIS 

1 2.598 2.537 2.545 2.729 2.834  2.519 2.542 2.590 2.681 
2 2.140 2.226 1.960 2.650 3.261  2.483 2.622 2.977 2.523 

χ1 

3 1.772 1.509 1.706 2.083 2.855  1.355 1.401 1.588 1.906 
1      2.760     
2      2.689     

χ11 

3      3.357     
1      2.992     
2      3.020     

χ12 

3      3.097     
1  1.265     0.963 0.862   
2  4.601     4.955 5.060   

χ2 

3  1.302     0.784 0.644   
1 2.310  2.740      2.007 2.311 
2 2.594  2.822      3.248 3.743 

χ21 

3 1.661  2.542      2.654 2.270 
1 1.643  2.141      1.587 2.384 
2 3.473  3.266      4.527 3.542 

χ22 

3 2.487  2.682      0.541 2.575 
1       1.339 2.455   
2       4.593 3.661   

χ3 

3       1.242 2.193   
1  2.779         
2  2.846         

χ31 

3  2.687         
1  2.646         
2  3.413         

χ32 

3  2.700         
1       1.367 0.498   
2       4.515 5.333   

χ4 

3       1.397 0.424   
1 -0.29 -0.32 -0.14 -0.13 -0.08 -0.25 -0.28 -0.29 -0.21 -0.09 
2 5.639 5.657 5.692 5.704 5.694 5.659 5.667 5.655 5.683 5.716 

ω 

3 0.388 0.375 0.240 0.216 0.201 0.345 0.345 0.370 0.291 0.165 
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The mean conformational entropy per residue ( ,
conf
res PDBSΔ = conf

PDBSΔ /N) for each protein 

forms the parameter 0n
resS =Δ  of the simple model described in Chapter 4. , ( )

conf
res PDB U FS −Δ  

i.e. the maximum difference in the entropy functional (Equation 4.3) reflects the total 

change in conformational entropy between the unfolded and native states and can be 

estimated from ,
conf
res PDBSΔ using the following analytical relation:  

  ,
, ( ) ln exp 1 ................................................(5.9)

conf
res PDBconf

res PDB U F

S
S R

R−

⎛ ⎞⎛ ⎞Δ
Δ = +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

   

(derivation shown in appendix) 

( )
conf
PDB U FS −Δ obtained from ( , ( )

conf
res PDB U FS −Δ .N) can then be directly compared with 

U FS −Δ measured experimentally at 385 K. 

 

5.4 Results and Discussion  

5.4.1 Comparison of conformational entropies obtained from experiments and 

theory 

Total conformational entropies ( )
conf
PDB U FS −Δ  have been calculated for the protein 

dataset used by Robertson and Murphy41. Table 5.3 shows the comparison between 

these theoretically calculated conformational entropies with those measured 

experimentally at 385 K ( (385 )U FS K−Δ ). For this set of proteins ( )
conf
PDB U FS −Δ exhibits a 

correlation of 96.3 % with (385 )U FS K−Δ  (p-value < 1.0753e-030). R2 of 0.9273 is 
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obtained, which indicates that 92.73% of the variability in (385 )U FS K−Δ  is explained 

by the variability in theoretical estimates ( )
conf
PDB U FS −Δ .   

 

 Table 5.3 Comparison of conformational entropies from theory and experiment 
 
 

Protein PDB N (385 )U FS K−Δ  
(Jmol-1K-1) 

( )
conf
PDB U FS −Δ  

(Jmol-1K-1) 
1. α-chymotrypsin 5CHA 237 4420 4128 
2. α-chymotrypsinogen 2CGA 245 3860 4352 
3. α-lactalbumin 1HML 123 1910 2221 
4. α-lactalbumin 1ALC 122 2400 2210 
5. Acyl carrier protein 1ACP 77 1050 1294 
6. Arabinose binding protein 1ABE 305 4480 5264 
7. Arc repressor 1ARR 106 2000 1820 
8. B1 domain of protein G 1PGB 56 886 1022 
9. B2 domain of protein G 1PGX 56 932 1223 
10. Barnase 1BNI 108 2450 1954 
11. Barnase 1BNJ 109 2790 1957 
12. Barstar 1BTA 89 1570 1552 
13. Bovine Pancreatic  
      Trypsin  Inhibitor 5PTI 58 882 1003 

14. Carbonic anhydrase B 2CAB 256 4530 4629 
15. Chymotrypsin Inhibitor 2 1COA 64 1070 1121 
16. Cytochrome b5 1CYO 88 1660 1599 
17. Cytochrome c (horse) 1HRC 104 1910 1883 
18. Cytochrome c (yeast iso-
1) 1YCC 108 2000 1910 

19. Cytochrome c (yeast iso-
2) 1YEA 112 1700 1898 

20. GCN4 2ZTA 62 1100 1058 
21. Histidine containing 
protein 2HPR 87 1230 1480 

22. Interleukin 1-β 6I1B 153 2410 2770 
23. Lac repressor headpiece 1LCD 51 518 849 
24. Lysozyme (human) 1LZ1 130 2250 2334 
25. Lysozme (hen) 1LYS 129 2530 2315 
26. Lysozyme (equine) 2EQL 129 2190 2293 
27. Lysozyme (T4) 2LZM 164 3300 2900 
28. Met repressor 1CMB 208 3030 3682 
29. Myoglobin (horse) 1YMB 153 2280 2604 
30. Myoglobin (whale) 4MBN 153 3470 2676 
31. Myoglobin (whale) 1MBO 153 2380 2652 
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Table 5.3 Comparison of total conformational entropies from theory and 
experiment (continued) 
 

Protein PDB N (385 )U FS K−Δ  
(Jmol-1K-1) 

( )
conf
PDB U FS −Δ  

(Jmol-1K-1) 
32. 3rd domain of silver   
      pheasant Ovomucoid 2OVO 56 891 977 

33. Papain 9PAP 212 3570 3765 
34. Parvalbumin 5CPV 108 1706 1866 
35. Pepsin 5PEP 326 5910 5816 
36. Pepsinogen 3PSG 365 6410 6409 
37. Plasminogen K4 domain 1PMK 78 1670 1363 
38. RNase T1 9RNT 104 2080 1885 
39. RNase T1 8RNT 104 2210 1875 
40. RNase A  3RN3 124 2090 2237 
41. ROP 1RPR 126 2840 2184 
42. Sac7d 1SAP 66 837 1116 
43. α-Spectrin 1SHG 57 994 1038 
44. Staphylococcus nuclease 1STN 136 2540 2380 
45. Stefin A 1CYV 98 1720 1753 
46. Stefin B 1STF 95 2080 1664 
47. Subtilisin inhibitor 3SIC 107 2440 1780 
48. Subtilisin BPN 2ST1 275 4120 4729 
49. Tendamistat 3AIT 74 985 1283 
50. Thioredoxin 2TRX 108 1600 1921 
51. Trp repressor 2WRP 105 1590 1809 
52. Trp repressor 3WRP 101 1590 1736 
53. Ubiquitin 1UBQ 76 1040 1371 

 
 

Experimental mean (385 ) /U FS K N−Δ  for 53 proteins is ~17.4 ± 3 ( ±  standard 

deviation) Jmol-1K-1 res-1 and is close to the theoretical mean ( ) /conf
PDB U FS N−Δ of 

17.7 ± 0.73 ( ±  standard deviation) Jmol-1K-1 res-1. However, the spread in 

experimental mean (385 )U FS K−Δ per residue seems to be almost 4 (3/0.73) times 

higher than that observed in theoretical ( )
conf
PDB U FS −Δ per residue. The values of 

conformational entropy per residue obtained by Robertson and Murphy are calculated 

from (385 )U FS K−Δ , which are not directly measured but propagated to 385 K using 

mHΔ and pCΔ . Due to this, the errors in the estimation and/or calculation of mHΔ and 
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pCΔ  are also propagated into (385 )U FS K−Δ . Akmal and Muñoz estimated the 

entropy of activation for folding and unfolding from kinetic data available at different 

temperatures62. The mean conformational entropies per residue estimated by them for 

6 proteins also show a larger spread (18 ± 4 Jmol-1K-1 res-1). Using the simple model 

described in Chapter 4 the values for the entropic parameter 0n
resS =Δ are obtained for 

different proteins that perfectly reproduce their experimentally measured mid-point 

rates.  The mean ( )
conf
PDB U FS −Δ per residue derived from 0n

resS =Δ for the same set of proteins 

as used by other groups (Table 5.4) is ~19.7 ± 3.7 Jmol-1K-1 res-1 (for all 54 proteins 

in Table 4.1 used in rate prediction the mean is ~17.4 ± 2.7 Jmol-1K-1res-1). This 

clearly shows that estimating conformational entropy per residue from empirical 

thermodynamic or kinetic data involves a larger variability and thus leads to an 

overestimation of the real variability in proteins. Estimates from distribution of 

dihedral angles show smaller variation around the mean and compare more closely 

with the (error-free) linear scaling of conformational entropy with protein size 

(showing a mean discrepancy of ~0.5 as compared to ~2.3 between experimental 

values and those obtained from linear scaling).       

Hence, evaluating mean conformational entropy per residue for each protein 

from its structural information can be a reliable approach in sequence-dependent 

parameterization of the 1-D simple model described in Chapter 4. Toward this end, 

conformational entropies per residue are calculated for the protein dataset used in 

prediction of mid-point rates from the PDB files listed in Table 4.1.  
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  Table 5.4 Comparison of estimates of conformational entropy per residue 

obtained from thermodynamic and kinetic data and from protein structure 

statistics   

Protein 

(385 ) /U FS K N−Δ  
 (Jmol-1K-1res-1) 
(Robertson & 

Murphy) 

conf
resSΔ    

(Jmol-1K-1res-1) 
(Akmal & 
Muñoz) 

( ) /conf
PDB U FS N−Δ

  

(Jmol-1K-1res-1) 
(Calculated 

from 
structures) 

conf
resSΔ   

(Jmol-1K-1res-1) 
( fitting protein 

folding rates 
with simple 

model) 
1. CI2 16.719 24.267 17.519 23.852 
2. α-Spectrin 
SH3 17.439 - 18.201 22.571 

3. Tendamistat 13.311 - 17.334 - 
4. CspB-Bs - 15.899 17.672 13.678 
5. N-PTL9 - 19.246 17.425 19.316 
6. Protein L - 15.062 17.592 21.332 
7. FKBP12 - 20.502 17.763 17.399 
8. GCN4 17.742 13.389 16.792 - 
 
 

5.4.2 Comparison of conformational entropies of natural proteins and random 

heteropolymers.  

From the number of occurrences of each amino acid in the database of ~4000 

proteins, composition of natural sequences is obtained. Most frequently occurring 

amino acids are non-polar amino acids with the exception of Ile, Met, Cys and 

aromatic residues. Next in line are amino acids with polar groups followed by 

aromatic residues. Random polymers, on the other hand, do not show specific 

preferences and hence it can be assumed to have equivalent probability for all amino 

acids (i.e. 1/20).   
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Table 5.5 Mean conformational entropy per residue for proteins used in the 

prediction of folding rates   

 
Protein conf

PDBSΔ  Protein conf
PDBSΔ  

1. BBL 15.749   
2. BBL(H166W) 15.495 29. CspB-Bs 16.615 
3. E3BD 14.975 30. CspB-Bc 17.206 
4. E3BD(F166W) 15.923 31. CspB-Tm 16.949 
5. POB 14.848 32. CspA 16.79 
6. EngHD 16.849 33. Fibronectin  16.677 
7. hTRF1 16.163 34. Tenascin  16.779 
8. hRAP1 16.431 35. TI27  16.766 
9. c-Myb 17.91 36. Twitchin 16.073 
10. FSD   17.261 37. Tendamistat 16.191 
11. Trp Cage 14.657 38. GPW 16.035 
12. α-3D 15.419 39. mAcP  16.283 
13. BdpA  16.231 40. ctAcP  17.34 
14.Villin-HP35 (N27H) 15.894 41. CI2 16.442 
15. λ6-85 15.943 42. C-PTL9 16.254 
16. ACBP 14.782 43. N-PTL9 16.334 
17. Im9 16.679 44. Protein G 17.269 
18. Im7 15.890 45. Protein L 16.524 
19. Pin WW 16.682 46. Ubiquitin 17.027 
20. YAP65  16.787 47. ADAh2  16.792 
21. WW Prototype  17.070 48. U1A 16.749 
22. FBP28 (W30A) 16.458 49. S6  16.826 
23. α-Spectrin SH3 17.214 50. FKBP12  16.718 
24. Fyn SH3  16.904 51. Hpr  16.217 
25. Src SH3  17.096 52. Villin14T 16.852 
26. PI3K SH3  16.982 53. RafRBD  16.935 
27. ABP1 SH3  17.369 54. Prb (K5I/K39V) 16.202 
28. Sso7d (Y34W) 16.900 55. BBA5 15.070 
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Table 5.6 Sequence composition of natural proteins and average conformational 

entropy for individual amino acids  

Amino 

Acid 
% occurence 

Average 

conformational 

entropy per residue 

Amino 

Acid 
% occurence 

Average 

conformational 

entropy per residue 

Gly 7.6619 13.333 Asp 5.9159 16.16 
Ala 8.3256 5.7448 Gln 3.676 16.648 
Val 7.2295 10.166 Asn 4.3832 18.766 
Leu 8.9085 12.284 Cys 1.4619 12.661 
Ile 5.6513 12.385 Ser 5.9024 10.468 

Met 1.961 14.332 Thr 5.5243 12.954 
Pro 4.6587 5.0227 Lys 5.8989 13.223 
Trp 1.4325 15.924 Arg 4.9261 13.432 
Tyr 3.56 14.084 Phe 4.0286 13.898 
Glu 6.577 14.693 His 2.3166 17.402 

 

 

The manner in which each amino acid samples the conformational space is different 

in natural proteins resulting in a range of weighted entropic cost averaged over all 

clusters specified in this work (i.e. 20 for φ-ψ and 3 for side-chain and ω dihedrals).  

The general trend is longer side chains or side chains with bulky groups are more 

restricted and hence have a larger conformational entropic cost. Counter-intuitively 

Gly has a large value by virtue of its maximum amount of sampling of 

conformational space. Since several regions are populated, the probability of being in 

any one region is lower and thus the cost of entropy higher. To investigate whether 

protein sequences and protein structures are naturally selected such that the average 

cost in conformational entropy is minimized or maximized the following two 

approaches are considered: 
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(A) Assignment of random sequence to natural structures 

The dihedral angles calculated from PDB structures of proteins listed in Table 5.5 fall 

in different regions of conformational space. For each protein the corresponding 

cluster number for every residue is noted. A random sequence is generated for each 

template having the same number of residues as the protein in question. This is 

accomplished by assuming equal probability for each amino acid. Each residue of the 

random sequence is assigned the same cluster as that of the residues in the original 

sequence.  The cost in entropy for each residue is then calculated using Equation 5.8 

and the probability distribution of each cluster for each amino acid given in Tables 

5.1 and 5.2. This procedure is repeated 1000 times for each template yielding a value 

of 13.5 ± 0.38 Jmol-1K-1res-1 for the average cost in conformational entropy per 

residue. In contrast, for the same set of proteins in Table 5.5 the mean entropic cost 

per residue is 16.5 ± 0.7. Hence it appears that natural sequences are selected to have 

higher per-residue entropy costs. Notwithstanding the energetic effects, this result is 

consistent with the fact of natural proteins having entropic barriers.  

Interestingly when random sequences are generated for natural structural 

templates following the same distribution of amino acids as natural sequences an 

estimate for conformational entropy cost (13.1 ± 0.38 Jmol-1K-1res-1) results that is 

similar to the one obtained using completely random sequences. Although this case 

simulates natural selection and overall sequence composition for 55,000 sequences 

(1000 sequences each for 55 proteins) is the same as the natural % occurrence for 

each amino acid, the individual sequence composition for each protein is of course 

not preserved. Hence it appears that the sequence specificity of natural proteins tends 
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to increase the average entropic cost per residue than that expected from a Boltzmann 

distribution.          

(B) Assignment of random structures to natural sequences  

In order to mimic the sequence composition of natural proteins, 1000 heteropolymer 

sequences are generated with 60 residues each according to the probability 

distribution of individual amino acids (Table 5.6). One out of 20 clusters for main 

chain dihedrals and one out of 3 clusters for side chain and ω dihedrals are picked at 

random for each residue such that each cluster has equal probability to get populated. 

Hence each cluster (of 20) in φ-ψ space has probability (pi=1/20) and the entropic 

cost of fixing a residue in any one cluster as calculated from Equation 5.8 is 22.4 

Jmol-1K-1res-1. Similarly, for each side chain dihedral angle and ω, pi=1/3 and the 

entropic cost is ~3 Jmol-1K-1res-1 resulting in a total of 37.4 Jmol-1K-1res-1 for each 

residue irrespective of the sequence identity. This number is more than twice the 

estimate expected for natural proteins, which is expected, since in case of natural 

proteins all the regions of the conformational space are not sampled with equal 

probability. Some regions are more highly populated than others while some regions 

are not populated at all.  

When clusters are chosen at random but according to their probabilities 

obtained from the overall distribution of dihedral angles from natural proteins and 

conformational entropies are evaluated using sequence- and cluster-dependent values 

from Tables 5.1 and 5.2, a mean entropic cost per residue of 12.7 ± 0.5 Jmol-1K-1res-1 

is obtained for 1000 sequences. This is equivalent to identifying the amino acid 

sequence of polypeptide chain and using sequence-dependent average values from 
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Table 5.6. Applying this procedure to the amino acid sequences of proteins in Table 

5.5 yields a very similar average cost per residue of 12.74 ± 0.45 Jmol-1K-1res-1. Again 

this estimate is significantly lower than the value of 16.5 Jmol-1K-1res-1 for the same 

dataset.  These results show that even when sequence composition and sampling of 

conformational space of 1000 polypeptide chains overall mimics that found in natural 

proteins, random assignment of structure tends towards lower entropic cost per 

residue. This work also warrants against the use of average entropy costs for amino 

acids while calculating total conformational entropy, as has been done in previous 

theoretical studies155. Conformational entropy for each protein can be properly 

evaluated not just by identifying its sequence but also considering its unique 

structural information (i.e. the probabilities of its each amino acid for populating 

different regions of conformational space). It can be argued that per-residue entropic 

cost of 16.5 Jmol-1K-1res-1 is only for a small protein dataset. But similar values are 

obtained even for a different set of 53 proteins used by Robertson and Murphy. Also, 

using 1000 sequences with 30 and 100 residues do not change the mean 12.7 Jmol-1K-

1res-1 significantly, only the standard deviation seem to decrease with increase in 

chain length. Hence, individual protein structure and its sequence appear to have 

evolved to have higher average conformational entropy cost per residue than that 

expected from a Boltzmann distribution obtained from a protein database. 
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Chapter 6:  Analysis of protein folding experiments with 1-D 

free energy surface model 

6.1 Introduction 

The 1-D free energy surface simple model described in Chapter 4 provides the 

foundation for studying the general properties of protein folding. As demonstrated in 

section 4.4.2 the DSC profiles and Chevron plots simulated by the model exhibit the 

essential characteristics observed in thermal and chemical denaturation experiments. 

This suggests that the model can be directly used to analyze experimental data. 

Unlike the traditional chemical models, the 1-D free energy surface model does not 

presume the presence of a free energy barrier or the number of macrostates. More 

importantly the model provides an opportunity to obtain barrier heights from 

experimental data that can be compared to those extracted by other independent 

studies. Here, the original equilibrium thermal denaturation data from DSC 

experiments and kinetic data from chemical denaturation studies are accumulated for 

a group of proteins that include representatives from different structural classes as 

well as folding regimes.  The DSC profiles and Chevron plots are subjected to direct 

fitting by the model. Recently the model is also applied to analyze data obtained from 

laser-induced T-jump studies on temperature dependence of relaxation rates of 

proteins folding in the microsecond timescale. Such analysis helps in the estimation 

of both free energy barrier heights as well as pre-exponential from folding rates. 

Additionally, diffusion on 1-D free energy surfaces to obtain relaxation rates provides 

information regarding the diffusion coefficients of different proteins.    
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6.2 Methods 

The published data on DSC experiments and the dependence of relaxation rates on 

the concentration of chemical denaturant and temperature are digitized using 

DigitizeIt 1.5.8. Fitting of data to the model is performed using the ‘lsqcurvefit’ 

function (non-linear least square minimization) in Matlab 6.5.  

 6.2.2 Fitting DSC profiles  

Determination of unfolded baselines 

To fit experimental profiles the unfolded baseline is calculated according to the 

expression given by Privalov and Makhatadze165: 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

3 2
, , , , ,
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3 2

, , , ,

3 2
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 ................................................. (6.1)
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i
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C T a T T b T T c T T d

a T T b T T c T T d

a T T b T T c T T d

−

= − + − + − + +

− + − + − + +

− + − + − +

∑

∑  

where Tr=273.15 K, N is the total number of amino acids and coefficients with 

subscripts  res, pb and ter refer to the values specific to individual amino acids, 

peptide bond units and amino and carboxy terminals respectively. The assumption 

here is that in the unfolded conformation the heat capacity contributions from the 

individual components of the protein are additive. The heat capacity functional is 

assumed to have a linear temperature dependence of the form 

( )( ) ( ) ( ),, ( , ) exp( ) 1 1 exp( )  

                                                                                                             ............. (6.2) 
p res p pp p res C m C CC n T N C m T T k n kΔ Δ Δ

⎡ ⎤Δ = Δ + − − −⎣ ⎦  
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where the exponential part is similar to Equation 4.6 except that the unfolded state is 

taken to be the reference state here. The experimental DSC profile is then fitted to the 

following equation 

( )
( 1)

,
( 0)

( ) ( ) , ( , ) ( ) ............................ (6.3)
i

i n
excess

p p p i p U
i n

C T C T C n T p T n C T
=

=

Δ = Δ + Δ +∑  

( )excess
pC TΔ is obtained from Equation 4.15.  

The fitting procedure involves 6 parameters: HkΔ ,
pCkΔ , Tm, , p resCΔ ,

,p resCmΔ and one 

parameter that allows the shifting of the unfolded baseline in the up- or down 

direction. 

Determination of folded baselines 

In an alternative procedure the native state is assumed to be the reference state with 

its baseline having a linear temperature dependence of the form: 

( )( ),, , res( , )  ............................................................ (6.4) 
p resp N p C rC n T N C m T T= + −  

The above is used in combination with the temperature dependence of the heat 

capacity functional 

( )( ) ( ) ( ),, ( , ) 1 exp( ) 1 1 exp( )  

                                                                                                              ........... (6.5) 
p res p pp p res C r C CC n T N C m T T k n kΔ Δ Δ

⎡ ⎤Δ = Δ + − + − −⎣ ⎦  

where Tr is the temperature corresponding to the first of the data point. 

The experimental DSC profile is then fitted to the following equation 

( )( )
( 1)

,
( 0)

( ) ( ) , ( , ) ( , ) .................... (6.6)
i

i n
excess

p p p p N i
i n

C T C T C n T C n T p T n
=

=

Δ = Δ + Δ +∑  
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 This fitting procedure involves 7 parameters: HkΔ ,
pCkΔ , Tm, , p resCΔ ,

,p resCmΔ , 

, p resC ,
,p resCm . In another trial only temperature-dependent native baseline is used 

keeping heat capacity functional constant with temperature.    

 

6.2.3 Fitting Chevron plots 

The procedure for generating Chevron plots is the same as outlined in section 4.2.3 

and 4.2.5. Here, the 5 fitting parameters are HkΔ , Ed and dm in Equation 4.10, C and j 

in Equation 4.11.  Ed corresponds to meq from experiments and will serve as a 

common parameter if global fitting of equilibrium and kinetic unfolding data is 

performed. In the present analysis, however, as only the Chevron plots are fitted Ed is 

an independent parameter.  dm denotes the denaturant concentration at mid-transition. 

Relaxation kinetics after a chemical jump is calculated from diffusion on 1-D free 

energy surfaces obtained from Equation 4.10 in the same manner as in Chapter 3. The 

diffusion coefficient along the reaction coordinate is given by 2( ) /( )D n D n= Δ  and is 

assumed to be constant. The relaxation rates as a function of chemical denaturant 

concentration are then evaluated from the time corresponding to the decay of the total 

signal A to A/e. The phenomenological pre-exponential is obtained from the 

calculated rates and barrier heights as follows: ( )#--exp U

o
Gk k RT

Δ= .   
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6.3 Results and Discussion 

6.3.1 Analysis of DSC thermograms and Chevron plots  

The fitting of DSC thermograms is very sensitive to the choice of initial parameters 

and hence it is necessary to impose restrictions on the parameter space and ensure 

global minimization. Among thermodynamic parameters the cost per residue in 

conformational entropy is fixed to a mean value of 16.5 Jmol-1K-1res-1. The variable 

parameter space is reduced by performing global fitting of DSC thermograms of all 

15 proteins that include previously classified two state, fast folding and downhill 

folding proteins. In this procedure a common 
pCkΔ  and , p resCΔ is fitted for all proteins 

while allowing other parameters to float. Out of these parameters HkΔ and Tm 

determine the thermodynamic properties specific to each protein (i.e. Tm determines 

the midpoint condition where the population on either side of the barrier equals 50% 

and 
pCkΔ controls the curvature of the enthalpy functional and thus the height of the 

free energy barrier at Tm) and the rest define the temperature dependence of the 

baselines. This exercise resulted in a mean value of 4.3 for 
pCkΔ and ~50 J.mol-1.K-1 

for , p resCΔ . Now, using these values as the starting parameters and not allowing them 

to change by more than 5-10% as far as possible the DSC thermograms for each 

protein is fitted individually. In contrast to DSC profiles all the parameters used for 

fitting Chevron plots are highly coupled and specific for each protein thereby 

preventing global analysis.  The ideal way to analyze chemical denaturation data is to 

do a global fit of equilibrium and kinetic data. This requires modeling the signal 

decay of the different probes chosen for studying each protein, which is not trivial in 
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Figure 6.1 Fits of DSC thermograms and Chevron plots to 1-D free energy 

surface model  

Upper Panel: Fyn SH3; Lower panel: Protein G. 

(A) DSC data (blue circles) with fit (red line). The chemical baseline is shown in 

black whereas the dotted line is the unfolded baseline; (B) Experimental Chevron plot 

(blue circles) with fit (red line); (C) Relaxation traces obtained from the model after 

simulating various chemical-jumps starting from highly destabilizing (blue) and 

stabilizing (red) conditions. The relaxation rates obtained from the decays are plotted 

in (B).  
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a comparative analysis between several proteins. Besides, it is better to fit relaxation 

time courses (that are generally not reported) than the individual rate constants  

forming the Chevron plot. Here, Chevron plots are fitted individually by adjusting 5 

parameters for each protein. Figures 6.1 and 6.2 show the fitted DSC profiles and 

Chevron plots for Fyn SH3, Protein G, CspB and POB (a homolog of E3BD). It is 

clear from these Figures that the model can reproduce both the sets of data very well.        

The sensitivity of fitting of DSC profiles to the baselines is investigated by several 

trials involving combinations of linear temperature dependence/independence of the 

heat capacity changes with temperature-dependent/independent unfolding baselines 

as well as native baselines. The performance of each combination is judged from the 

overall goodness of fit (sum of least squares) and the (non-) occurrence of baseline 

crossing in the transition region.  The results from using either Equations 6.1-6.3 or 

6.4-6.6 are comparable with the advantage of using one less parameter in the former 

case. Using a temperature independent heat capacity functional with a temperature- 

dependent native baseline does not fit the post-transition region as well as the rest of 

the profile because the higher slope of the pre-transition region results in slight 

overestimation of the slope of the post-transition tail.  

For fitting Chevron plots, estimates of meq and midpoint denaturant 

concentration obtained from experiments are used as starting parameters for Ed and 

dm respectively. Although the parameter space is reduced by grid analysis for C and j 

(where different values of C and j are fixed while allowing others to vary) and good 

fits are obtained, the fitting procedure is very cumbersome. Different combinations of 

the parameters give rise to similar local minima that are close in space and probably 
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Figure 6.2 Fits of DSC thermograms and Chevron plots to 1-D free energy 

surface model  

Upper Panel: CspB; Lower panel: POB (E3-binding domain of dihydro-lipoamide 

succinyl transferase). 

(A) DSC data (blue circles) with fit (red line). The chemical baseline is shown in 

black whereas the dotted line is the unfolded baseline; (B) Experimental Chevron plot 

(blue circles) with fit (red line); (C) Relaxation traces obtained from the model after 

simulating various chemical-jumps starting from highly destabilizing (blue) and 

stabilizing (red) conditions. The relaxation rates obtained from the decays are plotted 

in (B).  
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in the broad global minima region. Hence more sophisticated optimization procedures 

such as genetic algorithms are required that explore the parameter space in a more 

efficient manner.   

Table 6.1 lists the free energy barrier heights at mid-point denaturation for 

proteins for which DSC and Chevron plot fits are shown. The physical or chemical 

details about how urea or guanidinium salts denature the proteins are not known. 

Hence it is not possible to model the denaturing effects of each agent. Despite this 

limitation and using a general procedure to model the effects of chemical denaturation 

it is interesting to note that consistently for all proteins the barriers at their chemical 

midpoints are higher than that obtained at Tm. The 1-D free energy surface analysis 

provides the opportunity to compare barrier heights obtained from two different sets 

of experiments- one from thermal denaturation under equilibrium conditions and the 

other from kinetic chemical denaturation. It appears that chemical destabilization 

more strongly affects the free energy surface at mid-point conditions than thermal 

denaturation. The barrier heights obtained from fitting DSC thermograms are also 

very similar to earlier estimates obtained by Naganathan and Muñoz from analysis of 

DSC data with a variable barrier model63. The barrier height of Fyn SH3, the slowest 

folder in the group, is ~14RT at its chemical mid-point, consistent with its 

classification as a two-state folder. For POB, the barrier of ~3RT is again in 

agreement with lower barriers suggested by analytical theory for fast folders. The 

phenomenological pre-exponential (i.e. the dynamic term in the rate expression) of 

(1/7)-(1/10) μs-1 at temperatures close to 298 K obtained from diffusion on 1-D free 

energy surfaces of the above proteins is also compatible with earlier estimates. In 
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addition the relaxation traces shown in Figures 6.1C and 6.2C exhibit single 

exponential decay as expected for two-state proteins.  

 

Table 6.1 Barrier heights obtained from the analysis of DSC thermogram and 

Chevron plots  

Protein N km 
(s-1) 

Barrier heights 
(kJ.mol-1) from 

fitting DSC 
thermograms 

Barrier heights 
(kJ.mol-1) from 
fitting Chevron 

plots  
Fyn SH3 67 0.08 ~20 ~34 
Protein G 56 1.1 ~16 ~29 

CspB 67 7.1 ~15 ~23 
POB 51 3711 ~2.5 ~8 

 
 
 

6.3.2 Analysis of temperature dependence of relaxation rates of fast folding 

proteins  

For small organic molecules the pre-exponential can be obtained from the Arrhenius 

plots (logarithm of rates vs. inverse of temperature). However, for proteins this 

procedure does not work because both the dynamic and the energetic components 

depend on temperature.  For proteins with low barriers any small change due to 

temperature effects produces relatively larger changes in the relaxation rate. Hence 

analyzing the temperature dependence of relaxation rate with free energy surface 

approach helps in discerning the contributions from barrier heights and the dynamic 

term.  Using the 1-D free energy surface model the kinetic data from laser induced T-

jump studies on proteins folding in the microsecond timescale have been recently 

analyzed by Athi N Naganathan166. The relaxation rates as a function of temperature 

are calculated by solving diffusion equation on free energy surfaces obtained from 
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Equation 4.9. From the analysis of free energy surfaces it is found that the fast folding 

proteins have marginal barriers at Tm and negligible barriers under native conditions. 

Also the effective diffusion coefficient, ( ) ( ) 2
0 ,, exp  /( )a resD n T k E N RT n⎡ ⎤= − Δ⎣ ⎦ , is 

found to be strongly dependent on temperature with an activation energy, Ea,res, of ~1 

kJ.mol-1 per residue for all proteins. The folding speed limits for the proteins 

investigated shows a large variation ranging from ~4 to ~80 μs at room temperature. 

This analysis is thus able to explain the basis for the differences in rates of fast 

folding proteins (i.e. arising from either the differences in the barrier heights or the 

dynamic term). The success in interpreting experimental results on fast folding 

proteins demonstrates the empirical validation of the 1-D free energy surface models.  

Furthermore, folding barrier heights obtained from the simulations of chemical 

denaturation experiments shows a clear relation with experimental m-values, which 

can be used to classify proteins with different folding regimes166.
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Chapter 7: Summary and concluding remarks 

 

Nucleation-elongation theory has proved extremely successful in explaining the 

thermodynamic properties of α-helix formation. However, there are very few 

examples of its applicability in interpreting kinetic experiments. Recently increased 

temporal resolution and use of more protein-like sequences have revealed rich kinetic 

behavior with multiphasic relaxation. The apparent relaxation times have been found 

to depend on the magnitude of thermal perturbation and on the specific regions of the 

peptide. These results have been interpreted with a diffusive search description that is 

incompatible with the nucleation elongation theory. In order to explain these results, 

here, a detailed kinetic model has been developed based on helix-coil theory that 

employs double sequence approximation and takes into account the sequence specific 

details from the AGADIR force field. Theoretical investigation carried out with this 

model clearly demonstrates that the observed complex kinetics are consequences of 

the inherent characteristics of helix-coil transition. This work resolves the controversy 

related to the mechanism of α-helix formation by proving that nucleation-elongation 

is still a valid description for α-helix formation167. The success of the kinetic model 

opens the possibility of testing experimentally the specific predictions made by the 

model, which in turn will help in the refinement of model parameters. The physical 

basis of the complex kinetics observed in experiments is explained with a simple 1-D 

projection of the free energy surface.  
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Furthermore it is demonstrated that diffusion on such 1-D free energy surface 

can reproduce all the kinetic results as predicted by the detailed model. This provides 

empirical validation for 1-D free energy surfaces on a quantitative level and for the 

number of helical peptide bonds as the reaction coordinate168. Length dependence of 

relaxation times upon T-jump has also been investigated with the diffusive model. 

There are a number of recent experiments that have examined the dependence of 

relaxation rates on peptide length, stability and sequence169-171. However, they still 

remain to be analyzed on a quantitative basis. In this respect the diffusive model that 

is computationally much less intensive than the detailed kinetic model (for example 

the order of the rate matrix is drastically reduced from 6196 to 20 for a 21-residue 

peptide) can prove extremely useful.   

Computer simulations on folding of proteins and peptides provide a vast 

amount of structural information at atomistic level. This information when 

consolidated in low-dimensional projections of the free energy landscape provides an 

opportunity to elucidate the underlying principles and determine the thermodynamic 

properties of folding (i.e. relevant conformational ensembles and free energy 

barriers). Here, in a much simpler approach, a mean field model is formulated that 

accounts for the average energy and entropy as functions of an order parameter and 

generates 1-D free energy profiles.  These profiles are able to predict a range of 

folding behaviors – from two-state-like with large barriers to completely downhill. 

The model is consistent with the experimental observations of linear scaling of 

thermodynamic parameters and convergence of entropy at 385 K. This model 

explains the origin of the relationship of protein size and native topology with folding 



 

 148 
 

rates. By directly relating the only model parameter that determines the free energy 

barrier to protein size and 3-D structure, the model is able to predict protein folding 

rates within a factor of 6.  This precision is sufficient to study general folding 

properties and can be improved by replacing the average values of thermodynamic 

parameters by sequence-dependent ones. The simplicity of the model facilitates the 

incorporation of sequence-specific energetic details. This allows determining the 

contributions of size, structure and energetics and opens the avenue for testing 

empirical force fields for prediction of protein kinetics. An algorithm is developed 

that automatically extracts Cartesian coordinates from PDB files according to a 

selected atomic description (i.e. Cα, Cβ or heavy atoms); calculates the contact maps, 

uses the information from these contact maps to generate 1-D free energy profiles and 

calculates folding rates by solving the diffusion equation on these free energy 

profiles. This opens the exciting possibility of scanning protein structure databases to 

identify fast folding proteins.      

The model also describes the effects of thermal and chemical denaturation in a 

quantitative manner making it a suitable tool for direct analysis of folding 

experiments. A recent application of the model in the analysis of temperature 

dependence of rates of fast folding proteins has been successful and revealed the 

separate contributions of energetic (barrier height) and dynamic (diffusion 

coefficient) terms to folding rates166. Using the model to analyze chemical 

denaturation experiments of fast folding proteins and their mutants has demonstrated 

that these proteins show systematic deviations from two-state behaviors (i.e. ratio of 
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kinetic and equilibrium m-values is lower than 1 and a decrease in the m-values with 

the increase in the folding rates.  

These 1-D free energy surface models once combined with improved 

minimization procedures can be implemented in a web-based application and made 

accessible to the protein folding community for the analysis of new equilibrium and 

kinetic experiments. 
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Appendices 
 

 

Table A1. Experimental protein folding rates at thermal or chemical mid-point 

and in absence of denaturant  

Protein km (s-1) Tm (K) dm (M) T (K) kf(s-1) 
BBL 2.00E+06 325   298 6.25E+04 
BBL   
(H166W) 

1.97E+04   3.25 298 1.30E+05 

E3BD 3.50E+04 325.4   298 1.80E+04 
E3BD 
(F166W) 

6.53E+02   4.86 298 2.75E+04 

POB 3.71E+03   4.00 298 2.10E+05 
EngHD 6.92E+03   2.96 298 3.99E+04 
EngHD 9.60E+04 325.14   298 3.75E+04 
hTRF1 1.00E+01   2.96 298 3.70E+02 
hRAP1 9.38E+01   3.78 298 3.60E+03 
c-Myb 4.59E+01   5.10 298 6.20E+03 
FSD   3.30E+05 313   298 4.17E+04 
Trp Cage 1.00E+06 316   295.7 2.40E+05 
α3D 5.00E+05 346.2   328 3.16E+05 
BdpA  2.08E+02   3.52 298 9.68E+04 

Villin-HP35 
(N27H) 

3.50E+05 342   300 2.33E+05 

λ6-85 1.33E+03   2.74 310 4.90E+03 
ACBP 1.50E+00   1.84 298 1.05E+03 
Im9 5.08E-01   4.76 298 1.53E+03 
Im7 2.67E+01   2.63 298 7.35E+02 
Pin WW 1.05E+04 334   314.3 1.25E+04 
YAP65  2.25E+03   2.94 298 4.30E+03 
WW  
Prototype  

4.53E+03   3.14 298 7.00E+03 

FBP28    
(W30A) 

1.79E+04   4.72 298 4.10E+04 

α-Spectrin 
SH3 

2.77E-01   4.38 298 8.41E+00 

Fyn SH3  8.03E-02   4.15 293 9.43E+01 
Src SH3  1.45E+00   2.58 295 5.67E+01 
PI3K SH3  1.60E-02   1.55 293 3.53E-01 
ABP1 SH3  2.40E-01   1.78 298 1.17E+01 
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Table A1. Experimental protein folding rates at thermal or 
chemical mid-point and in absence of denaturant (continued) 
Protein km (s-1) Tm (K) dm (M) T (K) kf(s-1) 

Sso7d  
(Y34W) 

3.46E+00   3.68 293 1.04E+03 

CspB-Bs 7.10E+00   5.96 288 1.09E+03 
CspB-Bc 2.27E+00   2.57 298 1.37E+03 
CspB-Tm 1.48E-01   3.36 298 5.65E+02 
CspA 1.08E+01   5.01 298 1.99E+02 

Fibronectin  
2.21E-01   0.40 298 4.00E-01 

Tenascin  2.75E-02   3.63 293 2.90E+00 
TI27  2.20E-03   3.42 298 3.50E+01 
Twitchin 5.97E-03   4.47 293 1.50E+00 

Tendamistat 
1.29E-02   6.58 298 6.66E+01 

GPW 1.25E+05 337   315 5.56E+04 
mAcP  1.07E-03   3.77 301 2.30E-01 
ctAcP  2.37E-02   2.58 301 2.31E+00 
CI2 5.63E-02   4.18 298 5.63E+01 
C-PTL9 2.41E-02   6.16 298 2.63E+01 
N-PTL9 1.31E+01   6.29 298 6.99E+02 
Protein G 1.11E+00   2.62 295 4.14E+02 
Protein L 2.95E-01   2.35 295 6.06E+01 
Ubiquitin 4.49E-01   3.86 298 1.53E+03 
ADAh2  8.32E+00   4.40 298 7.57E+02 
U1A 2.95E+00   3.44 298 3.16E+02 
S6  4.49E-02   7.94 298 3.32E+02 
FKBP12  9.62E-03   3.63 298 4.30E+00 
Hpr  1.00E-01   2.01 293 1.49E+01 
Villin14T 1.62E+00   3.89 310 8.98E+02 
RafRBD  1.68E+00   6.24 298 4.27E+03 

Prb  
(K5I/K39V) 

      347 1.00E+06 

BBA5       298 1.33E+05 
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Table A2. Summary of structural information of proteins used in the analysis 
 
Protein Fold Superfamily Family Architecture Topology Homology 

1. BBL 
PSBD of 2-oxo acid 
dehydrogenase 
complex 

PSBD of 2-oxo acid 
dehydrogenase 
complex 

E3BD of dihydro-
lipoamide succinyl 
transferase 

Irregular Dihydrolipoamide 
Transferase 

Dihydrolipoamide 
Transferase 

2. BBL 
   (H166W) 

PSBD of 2-oxo acid 
dehydrogenase 
complex 

PSBD of 2-oxo acid 
dehydrogenase 
complex 

E3BD of dihydro-
lipoamide succinyl 
transferase 

Irregular Dihydrolipoamide 
Transferase 

Dihydrolipoamide 
Transferase 

3. E3BD 
PSBD of 2-oxo acid 
dehydrogenase 
complex 

PSBDof 2-oxo acid 
dehydrogenase 
complex 

E3BD of dihydro-
lipoamide acetyl 
transferase 

Irregular Dihydrolipoamide 
Transferase 

Dihydrolipoamide 
Transferase 

4. E3BD 
(F166W) 

PSBD of 2-oxo acid 
dehydrogenase 
complex 

PSBD of 2-oxo acid 
dehydrogenase 
complex 

E3BDof dihydro-
lipoamide acetyl 
transferase 

Irregular Dihydrolipoamide 
Transferase 

Dihydrolipoamide 
Transferase 

5. POB 
PSBD of 2-oxo acid 
dehydrogenase 
complex 

PSBD of 2-oxo acid 
dehydrogenase 
complex 

E3BD of dihydro-
lipoamide succinyl 
transferase 

Irregular Dihydrolipoamide 
Transferase 

Dihydrolipoamide 
Transferase 

6. EngHD DNA-RNA-binding 
3-helical bundle 

Homeodomain-like Homeodomain Orthogonal 
bundle 

Arc Repressor Mutant, 
subunit A 

Homeodomain-like 

7. hTRF1 

DNA-RNA-binding 
3-helical bundle 

Homeodomain-like DNA-binding 
domain of human 
telomeric protein, 
hTRF1 

Orthogonal 
bundle 

Arc Repressor Mutant, 
subunit A 

Homeodomain-like 

8. hRAP1 DNA-RNA-binding 
3-helical bundle 

Homeodomain-like Myb/SANT 
domain 

Orthogonal 
bundle 

Arc Repressor Mutant, 
subunit A 

Homeodomain-like 

9. c-Myb DNA-RNA-binding 
3-helical bundle 

Homeodomain-like Myb/SANT 
domain 

Orthogonal 
bundle 

Arc Repressor Mutant, 
subunit A 

Homeodomain-like 

10. FSD   Zinc finger based 
ββα motif 

Zinc finger based 
ββα motif 

Zinc finger based 
ββα motif 

- - - 

11. Trp Cage Trp-cage mini protein Trp-cage mini protein Trp-cage mini 
protein - - 

- 
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Table A2. Summary of structural information of proteins used in the analysis (continued) 
 
Protein Fold Superfamily Family Architecture Topology Homology 

12. α-3D 

Three helix bundle Three helix bundle Three helix bundle Up-down 
bundle 

Methane 
Monooxygenase 
Hydroxylase; Chain G, 
domain 1 

Three helix bundle 

13. BdpA  

Immunoglobulin/ 
albumin binding 
domain-like 

Bacterial 
Immunoglobulin/ 
albumin binding 
domains 

Immunoglobulin 
binding protein A 
modules 

Up-down 
bundle 

Single α-helices 
involved in coiled-coils 
or other helix-helix 
interfaces 

Complex(Skeletal 
muscle/Muscle 
protein) 

14.Villin- 
      HP35  
     (N27H) 

VHP Villin 
headpiece domain 

VHP Villin 
headpiece domain 

VHP Villin 
headpiece domain 

- - - 

15. λ6-85 
Lambda repressor-
like DNA-binding 
domains 

Lambda repressor-
like DNA-binding 
domains 

Phage repressors Orthogonal 
bundle 

434 Repressor (Amino 
terminal domain) 

Lyase 

16. ACBP ACBP- like ACBP ACBP Up-down 
bundle 

ACBP Structural protein 

17. Im9 

Acyl-carrier protein-
like 

Colicin E immunity 
proteins 

Colicin E 
immunity proteins 

Orthogonal 
bundle 

Non-ribosomal Peptide 
Synthetase Peptidyl 
Carrier Protein; Chain 
A 

Immune System 

18. Im7 

Acyl-carrier protein-
like 

Colicin E immunity 
proteins 

Colicin E 
immunity proteins 

Orthogonal 
bundle 

Non-ribosomal Peptide 
Synthetase Peptidyl 
Carrier Protein; Chain 
A 

Immune System 

19. Pin WW 
WW domain-like WW domain  WW domain Single Sheet Ubiquitin Ligase 

Nedd4; Chain: W; 
Complex 
(Isomerase/ 
Dipeptide) 

20. YAP65  WW domain-like WW domain  WW domain Single Sheet Ubiquitin Ligase 
Nedd4; Chain: W; 

Ligase 

21.    WW    
    Prototype  

WW domain-like WW domain  WW domain Single Sheet - - 
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Table A2. Summary of structural information of proteins used in the analysis (continued) 
 
Protein Fold Superfamily Family Architecture Topology Homology 
22. FBP28    
     (W30A) 

WW domain-like WW domain  WW domain Single Sheet - - 

23. α-Spectrin   
      SH3 

SH3-like barrel SH3-domain SH3-domain Roll SH3-type barrels SH3 domains 

24. Fyn SH3  SH3-like barrel SH3-domain SH3-domain Roll SH3-type barrels SH3 domains 
25. Src SH3  SH3-like barrel SH3-domain SH3-domain Roll SH3-type barrels SH3 domains 

26. PI3K SH3  SH3-like barrel SH3-domain SH3-domain Roll SH3-type barrels SH3 domains 
 

27. ABP1  
      SH3  

SH3-like barrel SH3-domain SH3-domain Roll SH3-type barrels SH3 domains 

28. Sso7d  
     (Y34W) 

SH3-like barrel Chromodomain- like Histone-like 
proteins from 
archaea 

Barrel OB fold 
Dihydrolipoamide 
Acetyltransferase,E2P 

Peptide Binding 
Protein 

29. CspB-Bs 
OB-fold Nucleic acid- binding 

proteins 
Cold shock DNA- 
binding domain-
like 

Barrel OB fold 
Dihydrolipoamide 
Acetyltransferase,E2P 

Nucleic acid- 
binding proteins 

30. CspB-Bc 
OB-fold Nucleic acid- binding 

proteins 
Cold shock DNA- 
binding domain-
like 

Barrel OB fold 
Dihydrolipoamide 
Acetyltransferase,E2P 

Nucleic acid- 
binding proteins 

31. CspB-Tm 
OB-fold Nucleic acid- binding 

proteins 
Cold shock DNA- 
binding domain-
like 

Barrel OB fold 
Dihydrolipoamide 
Acetyltransferase,E2P 

Nucleic acid- 
binding proteins 

32. CspA 
OB-fold Nucleic acid- binding 

proteins 
Cold shock DNA- 
binding domain-
like 

Barrel OB fold 
Dihydrolipoamide 
Acetyltransferase,E2P 

Nucleic acid- 
binding proteins 

33. Fibronectin  Immunoglobulin-like 
β-sandwich 

Fibronectin type III Fibronectin type III Sandwich Immunoglobulin-like Fibronectin type III 

34. Tenascin  Immunoglobulin-like 
β-sandwich 

Fibronectin type III Fibronectin type III Sandwich Immunoglobulin-like Fibronectin type III 

35. TI27  Immunoglobulin-like 
β-sandwich 

Immunoglobulin I set domains Sandwich Immunoglobulin-like Immunoglobulins 
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Table A2. Summary of structural information of proteins used in the analysis (continued) 
 
Protein Fold Superfamily Family Architecture Topology Homology 

36. Twitchin Immunoglobulin-like 
β-sandwich Immunoglobulin I set domains Sandwich Immunoglobulin-like 

Immunoglobulins 
 
 
 

37. Tendamistat α-amylase inhibitor 
tendamistat 

α-amylase inhibitor 
tendamistat 

α-amylase 
inhibitor 
tendamistat 

Sandwich Immunoglobulin-like α-amylase 
inhibitor 

38. GPW 
Head to tail joining 
protein W 

Head to tail joining 
protein W 

Head to tail joining 
protein W 

Head to tail 
joining protein 
W 

- - 

39. mAcP  Ferredoxin-like Acyl phosphatase-
like 

Acyl phosphatase-
like 

2 layer 
sandwich 

α-β plaits Metal transport 

40. ctAcP  Ferredoxin-like Acyl phosphatase-
like 

Acyl phosphatase-
like 

2 layer 
sandwich 

α-β plaits Metal transport 

41. CI2 
CI2 family of serine 
protease inhibitors 

CI2 family of serine 
protease inhibitors 

CI2 family of 
serine protease 
inhibitors 

2 layer 
sandwich 

Trypsin Inhibitor V; 
Chain A 

Trypsin Inhibitor 
V; subunit A 

42. C-PTL9 Ribosomal protein L9 
C-domain 

Ribosomal protein L9 
C-domain 

Ribosomal protein 
L9 C-domain 

3-layer (αβα) 
sandwich 

Ribosomal protein L9 
domain1 

Ribosomal protein 
L9 domain1 

43. N-PTL9 L9 N-domain-like Ribosomal protein L9 
N-domain 

Ribosomal protein 
L9 N-domain 

Roll Ribosomal protein L9 
domain2 

Ribosomal protein 
L9 domain2 

44. Protein G β-Grasp (Ubiquitin-
like) 

Immunoglobulin-
binding domains 

Immunoglobulin-
binding domains 

Roll Ubiquitin-like 
 (UB Roll) 

Immunoglobulin-
binding proteins 

45. Protein L β-Grasp (Ubiquitin-
like) 

Immunoglobulin-
binding domains 

Immunoglobulin-
binding domains 

Roll Ubiquitin-like  
(UB Roll) 

Immunoglobulin-
binding proteins 

46. Ubiquitin β-Grasp (Ubiquitin-
like) 

Ubiquitin-like Ubiquitin-related Roll Ubiquitin-like 
 (UB Roll) 

Chromosomal 
Protein 

47. ADAh2  

Ferredoxin-like Protease-
propeptides/inhibitors 

Pancreatic 
procarboxy 
peptidase 
activation domain 

3-layer (αβα) 
sandwich 

Aminopeptidase Zinc peptidase 
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Table A2. Summary of structural information of proteins used in the analysis (continued) 
 
Protein Fold Superfamily Family Architecture Topology Homology 

48. U1A Ferredoxin-like RNA-binding domain Canonical RNA-
binding domain 

2 layer 
sandwich 

α-β plaits RNA binding 
protein 

49. S6  Ferredoxin-like Ribosomal protein S6 Ribosomal protein 
S6 

2 layer 
sandwich α-β plaits 

Ribosomal protein 
 
 
 

50. FKBP12  FKBP-like FKBP-like 
FKBP 
immunophilin/ 
proline isomerase 

Roll Chitinase A; domain 3 Isomerase 

51. Hpr  Hpr-like Hpr-like Hpr-like 2 layer 
sandwich 

Histidine containing 
protein; Chain A 

Phosphotransferase 

52. Villin14T Gelsolin-like Actin depolymerizing 
proteins 

Gelsolin-like 3-layer (αβα) 
sandwich 

Severin Severin 

53. RafRBD  β-Grasp (Ubiquitin-
like) 

Ubiquitin-like Ras-binding 
domain 

Roll Ubiquitin-like (UB 
Roll) 

Chromosomal 
Protein 

54.  Prb   
   (K5I/K39V) 

Immunoglobulin/ 
albumin binding 
domain-like 

Bacterial 
Immunoglobulin 
/albumin binding 
domains 

GA module, 
albumin binding 
domain 

Orthogonal 
bundle 

Helicase, Ruva protein; 
domain 3 

Albumin binding 
domain 

55. BBA5 Zinc finger based 
ββα motif 

Zinc finger based 
ββα motif 

Zinc finger based 
ββα motif 

- - - 

 
Abbreviations: BD: Binding domain; PSBD: Peripheral subunit-binding domain  
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Figure A1 Three-dimensional structures and contact maps of proteins used in 

the analysis 

All Cα-Cα contacts within 0.6 nm are shown in the left panel. The structures plotted 

with MOLMOL are shown in the right panel. The panels are labeled according to the 

PDB file names listed in Table 4.1. 

(See Next 6 pages) 
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Figure A2 Distribution of φ-ψ dihedral angles for each individual amino acid   

The φ-ψ space is represented as a 40 X 40 matrix with each square corresponding to a 

region of 9o X 9o. The color bar indicates the value of logarithm of number of hits in 

each region (Notice the different scale for each amino acid). 
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Figure A2 Distribution of φ-ψ dihedral angles for each individual amino acid  

(continued) 
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Figure A3 Distribution of side chain and peptide bond dihedral angles for each 

amino acid 

The distribution of χ1 is shown as blue, χ2 as red, χ3 as green and χ4 as dark green 

lines. The dotted lines correspond to χ12, χ22 and χ32 with the same color as their 

respective counterparts. ω dihedrals around the peptide bond are shown in black.                         
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Figure A3 Distribution of side chain and peptide bond dihedral angles for each 

amino acid (continued)  
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Figure A3 Distribution of side chain and peptide bond dihedral angles for each 

amino acid (continued) 
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Figure A3 Distribution of side chain and peptide bond dihedral angles for each 

amino acid (continued) 
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Figure A3 Distribution of side chain and peptide bond dihedral angles for each 

amino acid (continued) 
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Figure A3 Distribution of side chain and peptide bond dihedral angles for each 

amino acid (continued) 
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Figure A3 Distribution of side chain and peptide bond dihedral angles for each 

amino acid (continued) 
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     Derivation of , ( )

conf
res PDB U FS −Δ  from ,

conf
res PDBSΔ  

 
 
 
The blue curve in the above Figure is the entropy functional (Equation 4.3) given by  

[ ] 1 0ln( ) (1 ) ln(1 ) (1 )    n n
res resf R n n n n n S n S= == − + − − + Δ + − Δ  

Since ΔS at n=1 is the reference state, 1n
resS =Δ =0 and the functional becomes 

 
[ ] 0( ) ln( ) (1 ) ln(1 ) (1 )    conf n

res resS n R n n n n n S =Δ = − + − − + − Δ  

Here, 0n
resS =Δ  corresponds to ,

conf
res PDBSΔ  and the maximum in the functional 

, ( )
conf
res PDB U FS −Δ  can be obtained from the first order derivative of the functional as 

follows 
 

( ) ( )

( ) ( ) ( )

[ ]

0

0

0

0

ln (1 ) ln(1 ) (1 )

ln ln (1 ) ln(1 ) (1 ) ln(1 ) (1 )

ln 1 ln(1 ) 1

ln( )
1

n
res

n
res

n
res

n
res

f R n n n n S n
n n n n
f nR n n n n n n n S n
n n n n n n
f R n n S
n
f nR S
n n

=

=

=

=

∂ ∂ ∂ ∂⎡ ⎤= − + − − + Δ −⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦
∂ ⎡∂ ∂ ∂ ∂ ⎤ ∂⎛ ⎞= − + + − − + − − + Δ −⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦
∂

= − + − − − − Δ
∂
∂ ⎡ ⎤= − − Δ⎢ ⎥∂ −⎣ ⎦
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At maximum point,   0=
∂
∂
n
f , i.e. 0ln( ) 0

1
n
res

nR S
n

=⎡ ⎤− − Δ =⎢ ⎥−⎣ ⎦
 

 
0

0

max 0

exp( )
exp( )  and   

1 1 exp( )

n
res

n
res

n
res

S
Sn Rn

Sn R
R

=

=

=

Δ
−Δ

= − =
Δ− + −

 

 
 

Let 
0

exp( )
n
resSs

R

=Δ
= − ; , ( )

conf
res PDB U FS −Δ is then given by 

0
max

0
max

0
0

max

0
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1 1 1( ) ln ln
1 1 1 1 1

1 1 1( ) ln ln
1 1 1 1 1
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1 1 1 1 1 1
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1 1
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n
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nres
res

n
res

s sf n R S
s s s s s
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s s s s s
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=

=
=

=
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+

( )

( )

0

0 0
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0
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,
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1
1 )
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1 1

( ) ln 1  and therefore,
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n n
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n
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res U F res
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res PDBconf

res PDB U F

S
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S R

R

=

= =

=

=
=

−

−

⎡ ⎤
+ Δ⎢ ⎥+ +⎣ ⎦

= Δ + + + Δ
+ +

= + + Δ

⎛ ⎞Δ
Δ = + − + Δ⎜ ⎟

⎝ ⎠

Δ
Δ = + − ,

, ( ) ,
,

, ( ) ,
,

   

1ln 1
exp( )

1ln 1
exp( )

conf
res PDB

conf conf
res PDB U F res PDBconf

res PDB

conf conf
res PDB U F res PDBconf

res PDB

S

S R S
S

R

S R S
S

R

−

−

⎛ ⎞
+ Δ⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞
⎜ ⎟
⎜ ⎟Δ = + + Δ

Δ⎜ ⎟
⎜ ⎟
⎝ ⎠
⎛ ⎞
⎜ ⎟
⎜ ⎟Δ = + + Δ

Δ⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 



 

 175 
 

, ( ) ,
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,

, ( ) ,
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1ln 1
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,
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1 ln exp( )
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conf
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conf conf
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S S
S R S

R R

S
S R

R

−

−

⎛ ⎞⎛ ⎞ ⎛ ⎞Δ
− + Δ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞Δ Δ
Δ = + − + Δ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞Δ
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 (i.e. Equation 5.9)
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