
SOFTWARE PACKAGING

John R. Callahan

Computer Science Department

University of Maryland

College Park, Maryland 20742

Many computer programs cannot be easily integrated because their components are distributed

and heterogeneous, i.e., they are implemented in diverse programming languages, use di�erent data

representation formats, or their runtime environments are incompatible. In many cases, programs

are integrated by modifying their components or interposing mechanisms that handle communica-

tion and conversion tasks. For example, remote procedure call (RPC) helps integrate heterogeneous,

distributed programs. When con�guring such programs, however, mechanisms like RPC must be

used explicitly by software developers in order to integrate collections of diverse components. Each

collection may require a unique integration solution. This thesis describes a process called software

packaging that automatically determines how to integrate a diverse collection of computer programs

based on the types of components involved and the capabilities of available translators and adapters

in an environment. Whereas previous e�orts focused solely on integration mechanisms, software

packaging provides a context that relates such mechanisms to software integration processes. We

demonstrate the value of this approach by reducing the cost of con�guring applications whose

components are distributed and implemented in di�erent programming languages. Our software

packaging tool subsumes traditional integration tools like UNIX make by providing a rule-based

approach to software integration that is independent of execution environments.

1

Chapter 1

Introduction

Most high-level programming languages provide function and procedure call abstractions in order

that software developers can de�ne their own operations and reuse libraries of functions written by

other programmers. A function or procedure is seamless to use because a \call" is an abstraction

that is independent of any runtime environment, i.e., the use and de�nition of a function does

not change between environments. Such abstractions make programs more reusable and portable

to many types of environments regardless of their operating system and hardware characteristics.

Even though functions may be de�ned in separate components such as �les or libraries, tools like

compilers and link editors handle the tasks of translating and combining these components into

programs designed to execute in a speci�c environment. The developer must invoke the proper

tools in their proper sequence to build the application, but the components are the same regardless

of the environment.

Integration is the step-by-step process of translating and combining software components into

new components. For example, a piece of source code can be translated into object code by a

compiler and then combined with libraries by a link editor to produce an executable program. The

resulting executable program de�nes a runtime implementation of the application for a speci�c

machine and operating system. The cost of constructing the compiler and link editor is o�set by

the ability to recompile that source code across many environments. Furthermore, the cost of the

tools is amortized over all the programs written in the programming language.

The integration process is more di�cult, however, if functions are implemented in di�erent

programming languages or as remote services in a distributed system. While function and procedure

call abstractions can be implemented by several mechanisms in such situations (e.g., pragmas, pipes,

remote procedure call (RPC)), developers must often construct additional software that provides

a \bridge" between components. This additional software, such as remote procedure call stubs,

is expensive to develop and unlikely to be reused in other applications. Code generators, such as

stub compilers, can be used to produce the additional software automatically, but developers must

provide interface speci�cations in such cases. As in homogeneous environments, developers must

invoke the proper tools in order to integrate an application into an executable program, but this

process is much more complex in heterogeneous applications.

The problem of integrating heterogeneous programs becomes critical as the need for software

reuse grows. By reusing existing programs in new designs, we can signi�cantly reduce development

costs, but many data representations and runtime environments are incompatible without the use

of \bridge" code. For instance, the United States Department of Defense estimates that most of its

1.4 billion lines of code is used to pass data back and forth between incompatible and inconsistent

2

applications[Stra92]. Much of this \bridge" code is redundant and highly-dependent on each system

or execution environment.

This thesis presents a method for seamlessly integrating computer programs in heterogeneous,

distributed execution environments. We have developed a tool called a software packager that

determines which tools can use to integrate collections of programs. The software packager allows

computer programmers to connect programs together abstractly without explicit concern for rec-

onciling implementation di�erences. The software packager determines whether or not programs

can be integrated based on the types of components involved and the available integration tools

(e.g., compilers, linkers, stub generators). If it is possible to integrate the components, then the

packager determines which tools are needed, how to apply them, and the proper sequence of their

application.

Component types are based on characteristics like programming language, entry points, and

control properties. Current integration methods require that developers know what types of com-

ponents are compatible, their interconnections, how to implement the interconnections, and how to

integrate the components in each execution environment. Software packaging requires only that the

developer know about component types and their interconnections. The software packager relies

on a set of production rules in each environment to determine how to implement the interconnec-

tions and integrate the components. Like a compiler, the cost of constructing the production rules

is balanced by the ability to port the application to other environments and amortized over all

applications packaged in the execution environment.

Software packaging reduces the cost of integrating software systems when compared to existing

con�guration methods such as UNIX make, remote procedure call and similar tools. Using these

traditional tools, developers must explicitly specify the process of integrating computer programs.

If a program is recon�gured, then the integration process may be altered depending on the avail-

able integration tools meaning that the developer must respecify the integration for each change.

Recon�guring a system includes such tasks as moving a system to another computing environ-

ment, distributing components on processing elements, and implementing components in di�erent

programming languages. Such changes strongly impact how a system is integrated. The software

packager reduces the impact of recon�gurations by providing a high-level approach to integration

for a set of programs and processors, much like a compiler does for a single program and machine.

Previous integration approaches focus solely only on integration tools, like distributed agents

and remote procedure call stub generators, instead of the integration processes that require these

tools. With tools alone, the developer must still specify how to integrate an application explicitly.

The developer must alternate between abstraction and implementation: connecting components

together and implementing those connections. Software packaging leverages integration tools im-

plicitly. This results in faster development since programmers can deal with connections in a

seamless fashion and integration processes are determined automatically.

1.1 Integrating a Heterogeneous Application

Suppose our task is to develop a factorial application by integrating existing source components

written in di�erent programming languages. The application is modularized into two components:

a client for dealing with input/output and a server that implements a factorial function. One

solution based on this design is shown in Figure 1.1. It consists of a client component implemented

3

(defun compute-facs ()

(if (<= (si:argc) 1) (format t "usage: factorial num1 num2 ... %")

(do ((i 1 (+ i 1))) ((>= i (si:argc)))

(let ((n (read-from-string (si:argv i))))

(format t "The factorial of D is D. %" n (factorial n))))))

(A) Lisp implementation of client component

factorial(x)

int x;

f

if(x <= 1) return 1;

else return(x * factorial(x-1));

g

(B) C implementation of server component

Figure 1.1: Source implementations of client (A) and server (B) components.

in the Lisp

1

programming language and a server component implemented in the C programming

language. The client component relies on a factorial function that is external to its de�nition.

The server component implements the factorial function required by the client. The client

invocation of factorial sends an integer as an argument and expects an integer in return. The

server provides a complementary interface.

While the two programs are compatible relative to their abstract interfaces, their implemen-

tations are incompatible. The major problem is that the Lisp and C runtime environments are

di�erent in several ways, e.g., they represent strings and numbers di�erently. Such incompati-

bilities can be reconciled by introducing additional software to bridge the gap between the two

implementations and their runtime environments.

There may be several ways to integrate heterogeneous programs in an execution environment.

We integrate the Lisp and C implementations via a wrapper | additional code that is used to

transform, convert, and bridge runtime di�erences and data representations. In our environment

it is possible to mix Lisp and C code in the same runtime environment via wrappers. The �nal

system is integrated into a single executable object. The function call to factorial is implemented

by a procedure call mechanism that operates through the wrapper { additional Lisp code needed

to describe the factorial function and dynamically load the object code into the Lisp runtime

environment.

Figure 1.2 illustrates the steps necessary to integrate the components of our factorial program.

1

Austin-Kyoto Common Lisp (AKCL).

4

client.lsp

server.c

client.o

server.o factorial

lin
kserver.o

wrapper.lsp

co
m

pi
le

co
m

pi
le

(1)

(2)

(3)

Figure 1.2: Integrating Lisp and C code.

The process is shown as a directed acyclic graph to re
ect the dependencies between steps. Assume

the Lisp and C code shown above are stored in the �les client.lsp and server.c respectively.

These are compiled by the Lisp and C compilers respectively to produce the object �les client.o

and server.o (steps 1 and 2). Although the �les have identical extensions (.o), they are organized

di�erently and cannot be integrated by the standard link editor. Additional code is needed to

integrate them. The wrapper code is in the �le wrapper.lsp which contains the single line

(defentry factorial (int) (int factorial))

that describes an entry point to an external C function named factorial. Next, we use the Lisp

interpreter as a link editor (step 3) to produce the factorial executable using the following commands

(load "client.o")

(si:faslink "wrapper" "server.o")

(si:init-hook '((compute-facs) (bye)))

(si:save-system "factorial")

The load command loads the compiled client Lisp code (client.o), si:faslink loads the wrapper

�le (wrapper.lsp) and the server object code (server.o), si:init-hook speci�es the entry point

of the program, and si:save-system produces the executable �le called factorial. The user can

then run the program to produce the desired output:

% factorial 5 6 7

The factorial of 5 is 120.

The factorial of 6 is 720.

The factorial of 7 is 5040.

%

1.2 Software Packaging

The behavior of any solution to the factorial problem should be independent of how we implement

each component. The integration process, however, is highly dependent on what implementations

5

client server
use
factorial

define
factorial

Figure 1.3: Abstract client and server structure.

are available. While each component relies on functional abstraction to isolate itself from such deci-

sions, di�erent implementations of each component will in
uence how the function call abstraction

is implemented. In homogeneous programming environments, call abstractions permit seamless

integration between components because the abstractions are an integral part of the language and

runtime environment. In heterogeneous environments, the software packager provides the same

transparency for multiple-language and distributed applications by determining how to integrate

diverse components based on the types of components and the available integration tools.

The software packager accepts modular descriptions of applications as input and generates a

package that implements the given system in an execution environment. For example, the module

structure of the factorial program is shown in Figure 1.3. This structure includes the compo-

nents and their interconnections. Given a description of the modular structure of an application

and the implementations for each component, the packager generates a package that includes the

code, wrappers, and integration steps necessary to build an implementation of the application.

The software packager adapts components, chooses compatible implementations, and selects the

appropriate tools needed to integrate a system of components.

The software packager determines the steps necessary to integrate an application in an exe-

cution environment. Each environment provides production rules that characterize the abstract

integrations the are possible in that environment. These rules are reused by many applications

in an environment. The developer supplies only the modular description of a program and im-

plementations of the components. The packager uses the production rules in each environment to

determine how to integrate these implementations based on their types and interconnections.

The major advantage of software packaging lies in its ability to automatically determine the

integration steps for software products after recon�gurations. Existing methods require exten-

sive changes to con�guration programs (e.g., makefiles) after application components are added,

reimplemented, or distributed. In Chapter 5, we will compare software packaging with existing

methods, UNIX make and remote procedure call, to show that recon�gurations are more easily

accommodated through the use of package speci�cations.

1.3 Problems

There are many reasons why di�erences exist between software components that make integration

di�cult. In the next sections, we outline the reasons why interconnections between heterogeneous

systems are desirable and complex. Our solution is motivated by the economic need to reuse existing

software in new systems despite their implementation di�erences. A high-level, modular software

design can be reused in di�erent contexts regardless of how its components and their connections

6

are implemented. With software packaging, an application can be integrated using several di�erent

technologies. We are not limited to a single integration system, but use many systems to implement

interconnection abstractions in order that developers can focus on how to structure their application

instead of how to interconnect the components in a variety of environments.

1.3.1 Legacy Code and Systems

Old systems must coexist with new systems because it would cost too much in many cases to upgrade

all components in a collection simultaneously. An existing program cannot be discarded simply

because another program is installed. New programs must be compatible with existing systems or

the new methods must be adopted incrementally by adapting the old system or gradually converting

it. Furthermore, existing databases and �les may not be compatible with new programs. For this

reason, many programs are designed to be backward compatible to avoid isolating existing users.

Even when a new system is introduced, old systems may remain for long periods of time until they

are upgraded. In many cases, service must be provided continuously even while upgrades are in

progress.

1.3.2 Coupling between Software Components

Besides data representation con
icts, computer programs also di�er because they depend on dif-

ferent execution contexts. For example, a program that uses one set of interrupt signals to control

its execution cannot be combined in the same address space with a program that uses the same

signals for other reasons. In this case, the programs must execute in separate address spaces with

their own interrupt vectors. Such programs are coupled to speci�c execution contexts external to

their implementation, i.e., they depend on speci�c runtime environments. By de�nition, coupling

reduces software reuse in other contexts. Coupled programs can be adapted to new contexts (e.g.,

SunView programs can run under X windows with minor massaging and the XView library), but

this is rare and expensive to implement. It is, however, an alternative to reimplementation.

1.3.3 Specialization of Languages and Systems

Computers, languages, and protocols are specialized for problem domains. Numeric problems

may best be solved in FORTRAN rather than LISP. We must recognize that computer systems,

languages, and protocols will continue to be specialized. Specialization is necessary because it

allows developers to construct solutions in terms convenient to a speci�c problem-domain. However,

problems decompose into subproblems in several domains. Designing an airfoil, for example, may

require a computer-aided design (CAD) program as well as a �nite-element processing program.

We must allow developers to use the tools that are most appropriate to their problem domains and

�nd ways to integrate the diverse solutions to their subproblems.

1.3.4 E�ciency of Execution

Certain representations of information may be accessed faster than others. A list of names and

phone numbers may be alphabetized for quick access by humans, but an operator may need a list

ordered by phone numbers. People and operators require di�erent \views" of the same information.

Many programs store information in di�erent formats to access their view of the data, but this limits

7

exchanging the information with other programs that have di�erent views. The information can

exist as copies in separate views, but keeping the separate copies consistent if changes occur is a

di�cult problem. Developers must balance the tradeo�s between e�ciency and consistency control

when designing a system.

1.3.5 Distribution of Components

The trend in modern computer systems is toward decentralization. Users now have powerful pro-

cessing capabilities at their personal disposal at reasonable prices. The lack of central control over

computing resources, however, has resulted in the development of divergent systems with their own

languages and protocols. The existence of legacy systems and the need for e�ciency and special-

ization has created enormous di�erences between systems. Distributed computer systems can be

connected via many technologies and this choice impacts the performance and reliability of the �nal

system. The location and access to information services in such systems are important decisions

for designers who must accommodate these con�guration constraints.

1.4 Outline

Software packaging allows developers to combine software components with di�erent implemen-

tations. Although such di�erences must be reconciled in order to integrate the components, the

software packager determines what bridges are needed based on the types of components. For each

execution environment, a set of production rules describe the types of integrations possible. Thus,

it is possible to integrate components only if the proper tools exist. Given the proper tools, the

details of integrations are hidden from the developer.

Chapter 2 describes the principles of software packaging in terms of the relation between pro-

gram structure and the integration process. Chapter 3 describes the packaging language used to

describe application structure and components. Chapter 4 describes the rule language used to de-

scribe the integration processes available in an environment. Finally, Chapter 5 presents examples

of software packaging applied to signi�cant programming problems. We compare software packag-

ing to existing integration tools in terms of convenience and reduced complexity of speci�cations

of heterogeneous programs.

8

Chapter 2

Concepts

Despite the di�erences between software systems, many programs can be integrated if the proper

tools are available. In Chapter 1, we outlined the steps necessary for integrating software compo-

nents in an example with di�erent implementations. Each step of the integration process involved

the use of tools like compilers, linkers, converters, wrapper and stub generators. Such tools are

used to integrate a given set of software components (e.g. source �les) into a �nal product (e.g.,

an executable �le). The tools in an execution environment de�ne the integrations possible in that

environment. Software packaging allows developers to determine the integration processes auto-

matically based on the types of components in an application.

2.1 Software Packaging

Like the factorial program, many software applications have a logical structure of components that

is independent of how each component is implemented and how the application is integrated. For

example, Figure 2.1 depicts a production graph for the factorial program given the Lisp and C

implementations. The left side of the graph depicts the application as a composition of client and

server components. This side is called the software structure graph. Implementations are shown as

descendants of a component (shown as rectangles). This is true for the application itself as well

as its components. At the leaf nodes of the structure graph are primitive implementations (e.g.,

source code). These represent implementations that cannot be further subdivided.

The right side of the graph depicts the integration of the implementations into an executable

program. This side is called the software manufacture graph. Each node in the manufacture graph

represents a translation or combination of components using available tools in an environment.

The manufacture graph also determines a partial order in which components can be integrated

independently.

Given the software structure graph, the software packager automatically constructs the software

manufacture graph. The software structure graph is speci�ed in a textual speci�cation language

called the Package speci�cation language (described in Chapter 3). The developer only speci�es

a \package" and inputs this to the software packager. The output is a program that builds the

application from selected primitive implementations of program components. For example, the

output is actually a UNIX makefile in our prototype.

The packager determines the software manufacture graph based on production rules that char-

acterize the abstract software manufacture graphs in an environment. The approach is much like

having a grammar for a programming language. The packager uses inferencing algorithm to resolve

9

root

client

server

client.kcl

server.c

client.o

co
m

pi
le

co
m

pi
le

wrapper.kcl

server.o

lin
k factorial

Figure 2.1: Production graph for the factorial application.

which implementations are compatible and how to build the target object based on the production

rules. Although the rules are complex to construct, they are used by many applications in an

environment.

The next sections describe software structure graphs, concrete and abstract software manufac-

ture graphs, and the details of the software packaging process. This chapter ends with a discussion

of related work including an overview of tools like UNIX make that employ software manufacture

graphs. We compare and contrast software packaging to these existing methods.

2.2 Software Structures

Regardless of how the factorial application is integrated, its abstract structure remains the same

as shown in Figure 1.3. Developers often refer to this structure as the \architecture" of an appli-

cation. Programmers who must maintain software products implicitly use this structure to orient

themselves with the layout of a product. This section describes a technique for specifying such

structures which are explicit and independent of particular execution environments.

One can specify a computer program in many forms. Most programs are comprised of �les,

statements, functions, variables, and other components. These components depend on each other

and their execution is sequenced in some fashion so that the overall program has the desired

behavior. Each component relies on resources de�ned by other components. The structure of an

application includes a description of each component and the dependencies between them.

One major problem is how to describe a component in a manner that is independent of any

implementation. We present an approach to describing software structures, called structure graphs,

that can be used to describe many levels of design: from gross structures to statement-level con-

structs. Software structure graphs are based on MILs [DeKr76], but di�er from previous e�orts

10

in that our structures are hierarchical and components may have multiple implementations. This

allows for selection of compatible implementations based on their types and other properties.

We view any software artifact as a module | a black-box characterized only by the speci�ed

behavior of its interface. An interface is a collection of ports or channels on which messages are

received or generated. Ports represent resources implemented by a module: function calls, events,

or input-output streams. Within a module, but hidden from the outside, is an implementation.

A module may have several implementations but only one may be \inside" the module at a time.

For example, a program with the same input-output behavior can be written in two di�erent

programming languages. From the outside, it does not matter which implementation is chosen, but

its behavior should be consistent with its interface speci�cation.

2.2.1 Choice

Portable software products often have multiple implementations of their components to handle

special cases, i.e., di�erent device drivers may be con�gured depending on the target platform.

In the worst case, di�erent implementations of the entire program exist for each target platform.

Choosing the appropriate implementations depends on the target platform. Di�erences between

component implementations can be large or small. A single source �le may represent multiple

implementations because it may be compiled di�erently depending on the target platform. For

example, the #ifdef macro in C is used frequently to compile alternative parts of source code

depending on a con�guration context.

Choice is a fundamental constructor in large software structures. Even a simple data abstraction

may have multiple implementations. For example, the Map data type (i.e., associative arrays) in

the GNU C++ library has the following implementations:

AVLMap implement maps via threaded AVL trees

RAVLMap implement as AVL trees with ranking

SplayMap implement maps via splay trees

VHMap implement maps via hash tables

CHMap implement maps via chained hash tables

These implementations are subclasses of the class Map, but their interfaces are identical. Such

relationships between abstract classes like Map and subclasses that are specialized based only on

implementation di�erences occur in object-oriented systems that do not separate subtyping and

subclassing [HaWe91]. A subtype re�nes an interface whereas a subclass represents an alternative

implementation. Module-oriented programming distinguishes between the two concepts by sepa-

rating interfaces and implementations and providing for implementation choices within software

structures.

The choice of an implementation for any module is based on a variety of factors including

the required performance of operations, storage overhead, and data representation strategy. An

implementation chosen for one part of a system may constrain implementation choices in other

parts of the system. Implementations are compatible relative to such constraints. For example,

choice of an implementation using dynamically allocation may mean that all components must use

the same memory management style.

11

2.2.2 Composition

Another fundamental constructor in software structures is composition. Groups of modules are

connected together because they de�ne and use shared resources. For example, the factorial solution

in Figure 1.3 is a composition of two module instances: a client and server. Composition is an

implicit operation in most programming systems. For example, most programming languages

bind uses and de�nitions of resources together if their names are the same (by-name binding).

Use of a resource implies that the component de�ning the resource must be integrated into the

product at some point. Linker/loaders assimilate components by matching uses to de�nitions.

Our use of explicit module interfaces and bindings is necessary in cases where integration requires

more complex bridges between components. This is particularly true in heterogeneous, distributed

systems where remote procedure call (RPC) stubs or other types of links must be generated to

integrate components at runtime. Strict encapsulation permits our packaging system to wrap

components in new contexts as needed.

2.2.3 Software Structure Graphs

We combine choice and composition within a framework for constructing descriptions of software

products called software structure graphs or simply \structure graphs." A structure graph is a

directed (possibly cyclic) graph whose root represents a software product and its alternative im-

plementations at many levels. There are two types of module implementations within a structure

graph: composite implementations and primitive implementations. Within a graph, alternatives

represent subsystem implementations. At the leaves of the graph are primitive implementations

(e.g., source code, programs, services, etc.). A structure graph is similar to an AND-OR graph.

The children of the root module represent implementation alternatives (OR nodes). Each alter-

native is either a composite implementation (AND node) or a primitive implementation (P node).

Thus, a structure graph is a hierarchical description of an application, its subsystems, and alternate

implementations. A structure graph is not a tree because there may be sharing at levels of the

graph and cycles involving recursive implementations (i.e., a subsystem implementing a factorial

module may itself include an instance of a factorial module).

The leaf nodes of a structure graph are called \primitive" because they correspond to native

implementations of modules in an environment that cannot be broken down further into subsys-

tems. Typically, primitive implementations correspond to source code �les, but may also represent

services, tools, data, or any software artifact or collection of artifacts. Software structure graphs

do not limit the developer to one-to-one mapping to �les, rather multiple �les could be associated

with a single primitive implementation or a single �le could be associated with multiple primitive

implementations.

Figure 2.2 represents a structure graph for the factorial example in which the server has an

additional implementation: a remote service. Rectangles represent module instances, open circles

represent compositions and ellipses represent primitive implementations. In this case, each module

has only one instance in the structure graph. Wherever a module instance occurs in a graph, its

associated subgraph is copied. The structure graph represents all alternatives for components within

the application. In the factorial example, the client module has one primitive implementation| the

Lisp implementation. The server module has two possible implementations: the C implementation

and the remote implementation.

The structure graph provides developers with an explicit model for constructing, viewing, and

12

root

client

server
c_func

rpc_svc

kcl_main

OR node

AND node

P node

a

b

c

client.lsp

server.c

server.x

Figure 2.2: Structure graph for the factorial product.

maintaining alternative versions of software systems and their implementations. All software com-

ponents are \black boxes" that may have one or more implementations. The software packager uses

environment-speci�c rules to choose compatible implementations for components within a structure

graph.

The software packaging speci�cation language is a module interconnection language (MIL) that

allows programmers to describe software structures in terms of choices and compositions of soft-

ware modules. A module speci�cation describes the resources provided and used by a software

component. This is more general that an object-oriented approach that describes software com-

ponents only in terms of resources they provide. For example, the interface of a stack object is

typically described as providing three basic functions: push, pop, top. Figure 2.3 depicts a generic

stack module with the same interface, but we associate two implementations with the stack module.

These implementations are composite implementations consisting of other module instances. The

external ports of the stack module are connected to ports of internal modules. This is known as

aliasing and represents the bridges between higher and lower level abstractions. For example, one

composite implementation includes instances of modules ArrayStack and Array that implements

stacks using arrays while the other implementation includes instances of module ListStack and

List that implements stacks using linked lists. The structure graph for the stack module and its

implementations are shown in Figure 2.4.

2.3 The Software Manufacture

The process of integrating software components is known as a software manufacture [Bori89]. A

software manufacture is the step-by-step process of synthesizing new software artifacts from exist-

ing ones by applying tools available in an execution environment. The available tools include any

language translators and integration mechanisms installed in an environment. A software manu-

facture for an application speci�es how to build a product from given set of components. These

components include source �les, executables, data �les, or even executing services.

13

push

pop

top

push

pop

top

get

put

A
rr

a
yS

ta
ck

A
rr

a
y

push

pop

top

push

pop

top L
is

tS
ta

ck

L
is

t

first

next

append

remove

Figure 2.3: Two alternate composite implementations of a stack module

ArrayStack

Array

List

ListStack

Stack

Figure 2.4: Structure graph showing two alternate composite implementations of a stack module

14

2.3.1 Software Manufacture Graphs

In our �rst solution to the factorial problem, we proposed that the Lisp and C components could

be integrated via Lisp wrappers. Based on the directed acyclic graph in Figure 1.2, a process to

perform the integration could be

(1) compile Lisp code into object code

(2) compile C code into object code

(3) link object code �les

since these steps obey the partial order speci�ed by the graph. Any ordering of integration steps

that obeys the partial order is valid. Many con�guration management tools exploit this partial

order that exists within integration processes.

A graph that depicts the partial order of steps necessary to integrate software components into

a product is called a software manufacture graph. The graph speci�es the steps necessary to build

an application from a given set of components as a partial order. Each node in a graph corresponds

to an action that performs a single step in the integration process. A manufacture graph proceeds

from left to right with the raw components as input on the left and the �nal product(s) as output.

2.3.2 Abstract Software Manufacture Graphs

We introduce the concept of the abstract software manuafcture graph to characterize the integration

processes available in the environment. In any environment, the available tools dictate the types

of software manufacture graphs that are legal, i.e., those that represent valid integration processes.

We characterize the general form of these graphs as abstract software manufacture graphs.

We characterize the abstract form of legal manufacture graphs through the use of production

rules. Figure 2.5 depicts an abstract form of the manufacture graph in Figure 1.2. In Figure 2.5, we

relabel the nodes in Figure 1.2 with production rule numbers and the transitions with object types.

The leaf nodes on the left side of the graph represent primitive object types in the environment.

These may or may not correspond to source �les and can be associated with other artifacts in

the system, e.g., ports, sockets, memory addresses, and services. Object types have associated

attributes that identify such properties. For example, the kcl main is an object type that represents

a Lisp source �le with an entry point. The kcl main object type has a FILE attribute associated

with it that speci�es the source �le in the environment. The kcl main object also speci�es an

ENTRY attribute for the program entry point. Object types and attributes are covered in detail in

Chapter 3.

Nodes within the graph are labeled with production rules that correspond to procedures that

utilize environment tools. For example, the rule

c func obj <= c func

speci�es a method for producing a c func obj object from a single c func object. This corresponds

to a special case of the \.c.o" su�x rule. Production rules in abstract software manufacture graphs

are similar to those found in attribute grammars: the left side of a rule represents the target while

the right side is a list of the components from which the target is constructed. Like symbols within

attribute grammars, objects in production rules also have attributes and actions that manipulate

these attributes to produce an integration.

15

kcl_main

c_func c_func_obj c_func_objs

kcl_wrapper

exec

FILE=client.lsp
ENTRY=compute−facs

FILE=server.c

1

2

5

3 & 4

kcl_main_obj

FILE=wrapper.lsp

Figure 2.5: Abstract software manufacture graph for client-server RPC

Each environment speci�es its own unique software integration processes in terms of a set of

production rules. The production rules used in Figure 2.5 are

(1) exec kcl main obj c func objs kcl wrapper

(2) kcl main obj kcl main

(3) c func objs c func obj c func objs

(4) c func objs

(5) c func obj c func

These rules form a \grammar" for legal software manufacture graphs in an environment. For

example, the graph in Figure 1.2 is a legal software manufacture graph according to the production

rules above. Unlike su�x rules or imake procedures, production rules relate the tools available

in an environment to integration processes (i.e., sets of related rules). Every environment can

characterize its legal manufacture graphs via production rules. New tools are leveraged by adding

new rules.

We can derive a concrete software manufacture graph given a collection of primitive objects

and a set of production rules. This is the basic approach of software packaging: determine a

means of integrating compatible components based on available integration processes. Developers

specify the objects, but they do not specify the production rules. These are written and installed

in an environment by system administrators. They are accessed and shared by all developers in

an environment. They change when tools are added or removed from the system. Developers

must be aware of object types (i.e., leaf node types in the manufacture graph), but this is an

improvement over having to remember platform-speci�c methods as in make or procedures as in

imake. In the next section, we explore the speci�cation of objects within application structures

that are independent of programming environments.

16

top

push

popClient Stack

Root

Figure 2.6: Composite implementation of client and stack application.

2.4 The Software Packaging Process

A client program that uses functions de�ned by a stack module need not be aware of how stack is

implemented but some constraint may dictate which stack implementation is chosen. The problem

of determining the choices of implementations based on constraints between components is part of

the larger problem of software scalability, i.e., composing software components into larger programs

and choosing compatible implementations.

Software packaging is ideally suited to handle software scalability problems. In Figure 2.6, a

client module relies on resources provided by the stack module, i.e., it calls the stack functions

to perform some computation. The entire application can be viewed as the graph in Figure 2.7

that include all implementation choices for the client and stack modules. Depending on constraints

imposed either higher in the structure graph or by the target environment, one implementation

will be chosen over the other. In the absence of any constraints, the choice of implementation can

be made arbitrarily.

If we choose a particular set of implementations for all modules in a structure graph, the selected

leaf nodes comprise an implementation of the entire application called a rendering. Figure 2.8

depicts the two possible renderings of a client and stack application. The internal nodes of a graph

serve to organize the application choices, place constraints, and connect ports of modules together.

The leaf nodes of the structure graph represent actual native code, �les, services, and tools that

comprise an application rendering.

If we collapse the structure graph and map all aliases and connections into connections between

leaf nodes, the connected graph of primitive modules that remains is called an application graph.

An application graph contains only the primitive implementations and their direct interconnections.

Figure 2.7 shows the two possible application graphs for a client and stack application.

2.4.1 Algorithm

Software packaging translates a structure graph description of an application into an integration

process. Speci�cally, it involves constructing a software manufacture graph from selected leaf

nodes of a software structure graph. Figure 2.9 depicts a combined graph for the factorial example.

Selected leaf nodes of the structure graph are also leaf nodes of the manufacture graph. The

combined graph is called a production graph. In this case, selected leaf nodes of the structure

graph are leaf nodes in the manufacture part of the graph. This production graph represents

17

ArrayStack

Array

List

ListStack

Stack

Root

Client

A

B

C

D

E

Figure 2.7: Structure graph showing implementations of client and stack application.

A

B

C

D

E E

top,
push,
pop

top,
push,
pop

get,
put

first,
next,
append,
remove

Figure 2.8: Two application graphs represent selected primitive implementations.

18

root

client

server

kcl_main

c_func

rpc_svc

c_func_obj c_func_objs

kcl_wrapper

1

2

5

3 & 4

kcl_main_obj

Map

Manufacture graphStructure graph

a

b

c

exec

Figure 2.9: A complete production graph.

the solution comprised of the C and Lisp implementations. An alternate implementation of the

server is eliminated because the C implementation for the server was chosen by the packager

instead. We denote the elimination of an alternative and its subgraph by dotted lines. Solid lines

denote successful alternatives within the structure part of a production graph. All lines within the

manufacture part of a production graph are solid since it represents the derived integration process.

The packager uses a depth-�rst, backtracking search algorithm on a set of production rules to

derive the manufacture graph for a given structure graph. Starting with the collection of all leaf

nodes of a structure graph, the packager tries to �nd a compatible set of leaf nodes relative to

a set of production rules. The process is similar to that used by inferencing algorithms in logic

programming languages like Prolog. First, the leaf objects are placed in a collection known as

the pool. The packaging algorithm then searches each rule from the top-most rule down trying to

cover all objects in the pool. At some point in the search, the software packager backtracks if it

cannot �nd an object required by a production rule. During backtracking, objects are returned

to the pool and the packager tries alternative production rules. The packaging process fails if no

production process exists or some components cannot be covered. During the packaging process,

the packager eliminates paths to alternative objects within the pool using the structure graph.

Nodes that represent alternative implementations are known as \cousins." The packaging algorithm

removes \cousins" of each candidate leaf node within the pool. The elimination of the rpc svc

implementation in Figure 2.9, for example, was the result of including the c func implementation

in the manufacture graph. In more complex examples, the packager eliminates alternatives at all

levels in the structure graph.

The packaging algorithm is shown in Figure 2.10. Following this algorithm, we trace the step-

by-step execution of the packager in Table 2.1 as it determines the production graph in Figure 2.9

from the structure graph given in Figure 2.2 and the rules

19

procedure package(in object,inout pool,in remainder,out cover) is

begin

if(object == Map) then succeed

if(object in pool) then

remove object from pool

remove sibling and cousin objects from pool

if objects in pool are members of legal remainder set

then succeed

else fail

else

for all rules such that object -> object1 object2 ... objectN

temppool[0] = pool

tempremainder = pool

loop through objectX (X=1...N) until exhausted or failure

if X in 1..N-1 then

node = package(objectX,temppool[X],temppool[X],cover)

else

node = package(objectX,temppool[X],tempremainder,cover)

if package failed (node == NULL) then

if X == 0 then return NULL;

X = X - 1;

remove cover from temppool[X]

endif

temppool[X+1] = temppool[X];

end loop

if objects in pool are members of remainder set

then return node;

end

return NULL;

end

pool = all leaf nodes of the structure graph

package("exec",pool,fg,cover)

Figure 2.10: The packaging algorithm.

20

Step Action Rule Pool Remainder

1 add all leaf nodes to the pool a,b,c empty

2 call package(exec) a,b,c empty

3 try rule #1 1 a,b,c empty

4 call package(kcl main obj) a,b,c a,b,c

5 try rule #2 2 a,b,c a,b,c

6 call package(kcl main) 2 a,b,c a,b,c

7 remove kcl main from pool 2 b,c a,b,c

8 succeed rule #2 2 b,c a,b,c

9 call package(c func objs) 3 b,c b,c

10 try rule #3 3 b,c b,c

11 call package(c func obj) 3 b,c b,c

12 try rule #5 5 b,c b,c

13 call package(c func) 5 b,c b,c

14 remove c func from pool (and cousin rpc svc) 5 empty b,c

15 succeed rule #5 5 empty b,c

16 call package(c func objs) 3 empty empty

17 try rule #3 (recursively) 3 empty empty

18 try rule #5 5 empty empty

19 call package(c func) 5 empty empty

20 fail (c func not in pool and no rules) 5 empty empty

21 fail rule #5 5 empty empty

22 fail rule #3 3 empty empty

23 try rule #4 4 empty empty

24 succeed rule #4 4 empty empty

25 succeed rule #3 3 empty empty

26 call package(kcl wrapper) 1 empty empty

27 try rule #6 6 empty empty

28 call package(Map) 6 empty empty

29 succeed rule #6 6 empty empty

30 succeed rule #1 1 empty empty

Table 2.1: Trace of the packaging algorithm.

1 exec kcl main obj c func objs kcl wrapper

2 kcl main obj kcl main

3 c func objs c func obj c func objs

4 c func objs

5 c func obj c func

6 kcl wrapper Map

beginning with the exec node as the desired target object type. This trace shows each rule as it

executes in the search and the contents of the pool at each step where a represents the kcl main

components, b represents the c func components, and c represents the rpc svc component. At

step (1), all leaf nodes of the structure graph are placed in the pool as candidates. The packager

�rst searches the pool for an object of type exec. Since no such object is in the pool, the packager

then calls the rule exec kcl main obj c func objs kcl wrapper in step (2). The packager

subsequently calls the package algorithm recursively on the items on the right-hand side of this

rule (steps 4,9,26). For the �rst item, kcl main obj, the packager �rst searches the pool for an

object of this type. This is unsuccessful and the packager proceeds to use the rule kcl main obj

 kcl main in step (5). The packager calls the package algorithm recursively on the object type

kcl main in step (6) and �nds it (object a) in the pool. The packager removes this object from

21

the pool in step (7). It does not have any cousins (i.e., alternate implementations). We can see an

example of cousin removal in step (14) when the c func implementation is removed from the pool

along with the remote implementation rpc svc. The call to the rule kcl main obj kcl main

succeeds in step (15) and in step (16) the algorithm recursively searches for a c func objs object

because of the rule c func objs c func c func objs called in step (10). The packager will look

for another c func object in the pool in step (20) and fail because all primitive implementations

have been included in the package. The packager then tries another c func objs rule, namely the

rule \c func objs " that always succeeds as in step (24). This cause the rule c func objs

c func c func objs to succeed. The packager then searches in step (26) for the last object on the

right-hand side of the top level rule | a kcl wrapper object. This triggers a search for a Map

object in step (28). A Map is a distinguished object that is always available. Thus, the search is

complete because the kcl wrapper rule succeeds which then causes the exec rule to succeed. Maps

are described in a later section.

There is one more step to ensure that a package has been found | all implementations must be

examined by the search. A structure graph is covered if all active leaf nodes within the structure

graph are leaf nodes of the derived manufacture graph. Therefore, no valid path must exist from the

root of the structure graph to a leaf node. The remainder argument serves to check whether or not all

leaf nodes have been covered. Computing the coverage of a derived manufacture graph is necessary

because many production rules can succeed if they denote collections of objects. Determining

coverage is done by maintaining a legal remainder list during the search process. The remainder

set is used by the packaging algorithm to ensure that all elements of the pool have been accounted

for in the search. This set is equivalent to the objects in the pool, except fot the right-most part

of the derivation. The right-most rules in the constructed manufacture graph has a remainder ==

empty which means that at the end of the search there must be no members remaining in the

pool. For instance, if the server module has no implementations, then we could still construct a

manufacture graph for the application as shown in Figure 2.11. This is because the \c func objs

 " rule always succeeds, but a package is not created because coverage is not achieved since the

production graph contains nodes with valid paths in the structure graph that are not included in

the manufacture graph.

The packager will succeed with the �rst viable package that it �nds based on the order of

the production rules. This is similar to the way in which most logic programming languages

(e.g., Prolog) order the application of rules. If a package is not found, an incomplete production

graph is produced and the developer is noti�ed of the module instances that did not have valid

implementations.

2.4.2 Maps

During the integration process, not the packaging process, bridges may need to be built between

diverse components. Such bridges are similar to backpatching actions taken by link editors: they

connect the uses of functions to their de�nitions. In a distributed, heterogeneous application,

various tools may need information about implementations such as entry points, ports, and other

resources used by a component in order to generate wrapper and stub code. Thus, the packager

produces an external cross reference �le so that such tools can readily access such information. For

example, a stub generator can determine the properties of entry points to a component for which

it needs to generate stubs during integration.

22

root

client

server

kcl_main

c_func_objs

kcl_wrapper

exec
1

2
kcl_main_obj

Map

4

Manufacture graphStructure graph

this node is not
covered because it
is unimplemented

Figure 2.11: A incomplete production graph.

Production graphs do not explicitly describe the interconnections between components, but at

the boundary between the structure and manufacture graph we can derive the application graph

(section 2.4) that contains all the relevant direct connections. The bindings between interface ports

of modules within the structure graph creates a mapping between the ports of primitive nodes at

the leaves, i.e. the connections of the application graph. If the packager is able to create a valid

manufacture graph, it also produces a database called a \Map" that contains the interconnections

between all packaged components. A map is a cross-reference list that can be used by integration

tools to construct bridges, like stubs, between components. The map in the factorial example

consists of a single connection from the client's factorial port to the server's factorial port. This

map can be used by a code generator to produce the kcl wrapper object. Since stub and wrapper

generators rely on the map, it may be included as an object in the production rules that is always

available.

A map enables tools like stub generators to access information about and implement the inter-

connections between components much like a link editor backpatches object code in homogeneous

applications. Our approach is extensible because future integration tools can read the maps to

determine how to implement interconnections. In our environment, we have built several bridge

tools that rely on maps to generate stub speci�cations from maps for several protocols including

Sun RPC [Sun85b], Polylith [Purt85], and NIDL [Apol83].

2.4.3 Actions

The integration rules describe the abstract form of the legal manufacture graphs in an environ-

ment, but they do not perform the actual integration. With each rule, we associate actions that

contain commands that invoke the proper integration tools. Once the packager determines a valid

23

manufacture graph, the resulting graph is traversed and the actions associated with each node in

the graph are executed. The traversal process is similar to the second-pass of a compiler traversing

a parse tree built by the �rst pass.

In the rule speci�cation language (described fully in Chapter 4), actions are contained within

braces and may be interleaved with the objects on the right-hand side of a production rule. An

action in the packager is similar to a semantic action in an attribute grammar speci�cation language

like YACC. For instance, the rule for producing a c func obj object from a c func object is

augmented with an action

c func obj : c func

:f

!cc -c $1.FILE

g

;

that invokes the C compiler on the value of the FILE attribute of the c func object. Chapter 4

expands on the types of commands that can be used within actions. Actions that occur between

items on the right-hand side of a production are executed during the packaging search process.

The last action of a production rule, however, is special: it is only executed if the rule succeeds

and is included in the software manufacture graph, i.e. during the traversal of the constructed

manufacture graph. When the whole graph is built, the packager traverses the graph and executes

these �nal actions.

2.5 Related Work

We have presented the basic concepts of software packaging that build on prior concepts including

software manufacturing and module interconnection languages (MIL). The next sections discuss

related work in software manufacturing, heterogeneous and distributed systems, and con�guration

languages in general.

2.5.1 MAKE

The most well-known tool that automates the software integration process based on software man-

ufacture graphs is the UNIX make program [Feld79]. Given a description of the dependencies

between �les in an application, make invokes the tools needed to build an application. It deter-

mines the sequence in which tools are used to build an application. The software developer is

responsible for specifying the dependencies between �les and the steps needed to rebuild a �le if

one of its dependents is changed. These speci�cation are stored in makefiles. The partial order

in a makefile speci�cation is based on course-grain changes to �les, i.e., if a �le is updated, then

dependent targets must be updated as well in order to maintain consistency. Other systems exist

that base updates on more �ne-grain changes, but the basic principle of such tools is to maintain

an invariant condition on the program con�guration.

The UNIX make program allows designers to specify software manufacture graphs in order to

automate the rebuilding of products should one or more of its components change. Dependencies

in a makefile are speci�ed as relationships between targets and dependents. Both targets and

dependents correspond to �les. Targets may be dependents of other targets. This establishes the

partial order between components. For example, a makefile and its partial order are shown in

24

file1: file2 file3

command1

file2: file4

command2

file4

file3file2

file1

command2

command1

Figure 2.12: A makefile and its partial order

Figure 2.12. Each command in a makefile is a list of commands (one per line) for rebuilding the

target from the dependents. If one or more of the dependents change (i.e., its �le date and time

is later than the target), then the commands are executed. If the target is a dependent of another

target, then execution of commands continues according to the partial order speci�ed by the entire

makefile.

The makefile in Figure 2.13 speci�es the integration steps for the Lisp and C components via

wrappers. The makefile dependencies correspond to the manufacture graph in Figure 1.2. In this

makefile, the lines

.c.o:

cc -c $*.c

specify a su�x rule that speci�es that any �le named with the extension \.c" can be translated

into a �le with the same name with the extension \.o" by using the cc tool (the C compiler).

Although we have included this rule in the makefile above, such rules are often implicitly de�ned

by each execution environment. A su�x rule is abstract in the sense that it applies to all �les of

a particular type speci�ed by a �le extension, e.g., .c. Such rules are limited in their ability to

express dependencies and the integration capabilities within an environment.

The makefile in Figure 2.13 assumes that the wrapper (wrapper.lsp) already exists. The

developer must supply this wrapper that describes the interface of the server component. Such

a wrapper could be generated automatically by a wrapper generator program based on interface

speci�cations of the server component, but the programmer must supply this speci�cation as well.

Such interface speci�cations are not a part of the integration process in existing methods.

While this makefile works in one environment, it may not work in other environments. One of

the major problems with make is portability. make was originally designed to maintain computer

programs, but it has been extensively used to port and build programs across execution environ-

ments. Errors are commonplace when porting software manually via makefiles. There are many

25

all: factorial

.c.o:

cc -c $*.c

factorial: client.o wrapper.lsp server.o

echo "(load n"clientn")" > init.lsp

echo "(si:faslink n"wrappern" n"server.on")" >> init.lsp

echo "(si:init-hook '((compute-facs) (bye)))" >> init.lsp

echo "(si:save-system n"factorialn")" >> init.lsp

kcl

rm -f init.lsp

client.o: client.lsp

lc client.lsp

server.o: server.c

cc -c server.c

Figure 2.13: Make�le for the Lisp and C factorial program.

di�erences between programming environments: compilers, IPC mechanisms, �le paths, and in-

stallation options. Developers are forced to modify makefiles directly because of such di�erences

and include implementation alternatives based on platform-speci�c features. Macros alleviate some

portability problems, but they are statically declared and globally scoped on the makefile and

complex to use in large applications. Su�x rules also help because they are de�ned by the local

environment, but such rules are limited to simple dependencies.

2.5.2 IMAKE

A better approach to portability is promoted by the imake tool [McNu91]. The imake utility

is a tool that handles portability problems by leaving it to the execution environment to de�ne

integration procedures. An imakefile is a portable con�guration \program" that invokes these

procedures. imake is implemented using the C preprocessor that expands the procedure calls into

make production rules. For instance, the following is an imakefile that integrates our Lisp and

C components via a Lisp wrapper:

#include <local.imake>

lispcomponent(client)

ccomponent(server)

lispcprogram(factorial)

Each execution environment de�nes its own procedures, i.e., in the local.imake �le shown in

Figure 2.14. This �le contains implementations for the procedures lispcomponent, ccomponent,

and lispcprogram. Given these procedures and an imakefile, the imake tool produces a make-

file customized for the target environment. Although the implementation of imake is crude (i.e.,

via the C preprocessor), it allows integrations to be speci�ed independent of target execution en-

vironments. It has been used successfully in the distribution of the X window system [Wall87]

across many execution environments. While make dependency rules may be speci�ed in any order,

26

#define lispcomponent(x) nn@

LISPNAME= x nn@

LISPWRAP= x ## wrap nn@

nn@

x.o: x.lsp nn@

lc x.lsp nn@

nn@

$(LISPWRAP).o: $(LISPWRAP).lsp nn@

lc $(LISPWRAP).lsp

#define ccomponent(x) nn@

COBJ = server.o nn@

x.o: x.c nn@

cc -c x.c

#define lispcprogram(x) nn@

all: x nn@

nn@

.c.o: nn@

cc -c $*.c nn@

nn@

x: $(LISPNAME).o $(LISPWRAP).o $(COBJ) nn@

echo "(load n"$(LISPNAME)n")" > init.lsp nn@

echo "(si:faslink n"$(LISPWRAP)n" n"$(COBJ)n")" >> init.lsp nn@

echo "(si:init-hook '((compute-facs) (bye)))" >> init.lsp nn@

echo "(si:save-system n"xn")" >> init.lsp nn@

kcl nn@

rm -f init.lsp

Figure 2.14: imake procedure de�nitions in local.imake �le.

imake procedures must be invoked in some sequence because some procedures depend on macros

or rules declared by other procedures. For example, the lispcprogram procedure above depends on

the ccomponent procedure to construct the $(COBJ) macro.

File inclusion mechanisms within makefiles and imakefiles provide a means to specify

platform-independent con�gurations. By assigning targets to prede�ned macros, a developer can

include a common set of rules as de�ned by the system. In the case of make, standard macros

are assigned values that parameterize prede�ned rules. This approach, however, is limited because

multiple rules based on lists of targets are not possible or limited. This is due to the fact that

macro expansion is static and prevents the use of more complicated constructs such a list iterations

and complex conditionals.

Like imake, the software packager also relies on system-dependent integration \rules" but the

major di�erence lies in the ability of the packager to infer integration steps rather than stating the

procedures explicitly. imake was developed for porting homogeneous software products between

hardware platforms and does not easily handle heterogeneous integrations. It cannot infer the

intergration steps based on the types of components, but relies on the developer to invoke the

proper integration procedures.

27

2.5.3 Program Changes

A major problem with using tools like make and imake is handling program evolution. If a

component is changed, then make can rebuild the target product. On the other hand, if the

interface of a component changes or a component is added or removed, then the dependency

relationships between components may change. In many cases, this means that the makefile

must also be altered. make and imake were designed to maintain static dependency structures.

They do not handle updating dependencies themselves that result from changing gross software

structures. High-level con�guration decisions can drastically change the nature of an integration

process. For example, if we decide to reimplement the client component in C, then we can rewrite

the makefile as

factorial: client.o server.o

cc-o $@ client.o server.o

.c.o:

cc -c $*.c

Similarly, new tools e�ect the types of possible integrations in an environment. If we introduce an

Lisp-to-C translator, we can con�gure the application to take advantage of this new capability. A

new interprocess communications facility may also impact integration processes. Such changes to

con�gurations and environments occur frequently in many environments because applications and

their supporting platforms evolve with the introduction of new technologies.

One of the major advantages of software packaging is the ability to accommodate software

recon�gurations without having to respecify the integration process for a product. This is a signif-

icant gain over existing methods where recon�gurations require drastic changes to integrations. In

Chapter 5, we compare integrations using software packaging to integrations using UNIX make to

demonstrate this advantage. We will use software packaging to produce makefile speci�cations

automatically and show how small recon�guration changes produce large changes to makefile

speci�cations.

2.5.4 Other Manufacture Graph-Based Tools

Other tools that employ dependency-based methods for building software applications include

nmake [Fowl85], gnumake [Smit91], and shape [MaLa89]. Some provide more sophisticated

manipulation of macros and all employ �le inclusion mechanisms or platform-dependent rules. All

of these tools, however, require the explicit use of integration procedures that depend on the con-

�guration characteristics of an application. The developer must specify the software manufacture

graph explicitly in order to integrate an application. Mechanisms like su�x rules and imake pro-

cedures automate the building process, but there is no relationship between rules and procedures

in these systems.

We have seen that changes to the structure of an application or di�erences between execution

environments can determine the integration process for an application. This means that the man-

ufacture graph for an application can change from environment to environment. It can also change

during program development. Our approach relies on the use of an inference engine to derive

manufacture graphs automatically. Like imake, the software packager relies on each environment

28

to specify its available integration processes. Our approach, however, di�ers because the rules de-

scribe the abstract integration processes not just the disjoint integration procedures available in an

execution environment.

Su�x rules in make, for example, are a simple forms of this abstraction. For example, the

su�x rule

.c.o:

cc -c $*.c

states that any �le written in the C programming language can be compiled into an object �le. The

extension \.c" is a convention that identi�es the �le to be a certain type of component: a source

�le written in C. We have extended this notion to include complex relationships between types of

components and the integration processes in execution environments.

2.5.5 Module Interconnection vs. Object-Oriented

The Package speci�cation language is a module interconnection language with some unique

features, namely, the ability to depict choices of implementations. Many con�guration manage-

ment tools present similar organizations of software structures using hierarchical �le systems with

enhancements for handling alternatives. For example, nmake [Fowl85] depends on a standard direc-

tory structure for organizing product implementation alternatives. INTERCOL [Tich80] presents a

similar structure with implementation choices within the con�guration language. Our approach is

similar, but the choice of implementation for a component is not speci�ed explicitly in the structure,

rather it is left to the packager.

Many programming systems support the separation of interface and implementation to reduce

coupling within programs. This separation allows designers to concentrate on distinct subparts of

a problem. As long as the interface of a component remains �xed, its associated implementation is

irrelevant to another developer using the interface. This allows programmers to work independently

of one another and isolate changes to implementations. The separation greatly reduces coupling

within programs. Coupling increases the likelihood that small changes will propagate extensively

within a program. This increases the chance for errors and inconsistencies if done manually.

Object-oriented programming promotes the separation of interface and implementation, but

it presents a single-implementation model. An interface speci�cation for an object lists methods

de�ned by the object. An interface is relatively independent of its implementation. Exceptions are

usually for pragmatic reasons like performance (e.g., member function implementations and private

variables de�ned within C++ class de�nitions). Most object-oriented systems are homogeneous;

all components are implemented in the same language and executables are designed to execute

within a single address space. Furthermore, there are no \choices" because each interface has

a single associated implementation. This is su�cient in a homogeneous environment, but lacks

extensibility to heterogeneous con�gurations.

Another major di�erence between object-oriented and module-oriented programming involves

the use of indirection. Traditionally, an interface de�nes a set of resources (e.g., methods) de�ned

by an object. References to other objects are embedded within object implementations. This is

su�cient because all objects have similar implementations (i.e., programming language, runtime

support). A module interface, however, describes the resources de�ned and used by a module.

References to other modules are always indirect [Wegn90]. This strictly encapsulates a software

29

component. No implicit form of coupling is possible because all interactions are explicitly speci�ed

through the module interface. A module describes a software component as a self-contained entity

[Tich80]. Module-oriented programming subsumes object-oriented programming because the cor-

respondence between a module interface and its implementations is one-to-many. Module-oriented

programming allows developers to explicitly address interconnections between providers and users

of resources. This additional level of indirection permits the rebinding of clients to services that

were never intended to be used together thus enhancing software reuse.

2.5.6 Remote Procedure Call

Several projects have attempted to solve the problem of integrating heterogeneous, distributed

applications through the use of remote procedure call (RPC). This technology is important to solve

the mechanics of the integration problem, but it does not solve the larger problem of simplifying

the integration process. Indeed, the software packager relies on stub generator tools to bridge

applications.

The HORUS system [Gibb87] helps generate RPC stubs for many programming languages and

comunication protocols without reimplementing the stub generator in each execution environment.

HORUS consists of a driver program that employs two schema �les to achieve system independence:

a machine-dependent schema and a language schema. The stub speci�cation is given as input and

HORUS produces stubs based on the features of the target machine and programming language.

HORUS is a generic stub generator but the developer is responsible for using it and writing the

stub speci�cations.

The HRPC project [NoBL88, Notk90] takes a similar approach to stub generation as HORUS,

but also employs runtime mechanisms to resolve di�erences between RPC protocols. Applications

in a distributed system may employ di�erent RPC protocols (i.e., Sun, NIDL, Courier). HRPC

applications may connect to any of these services by dynamically determining which protocol to

use at runtime. The stubs are not statically generated, but dynamically con�gured. This has

performance implications, but once connections are established, the HRPC system is �xed until

some change in the service occurs. Once again, the developer must write the stub speci�cations in

the HRPC language, invoke stub generation tools, and link the HRPC library into the application.

Another project related to RPC is the Common Object Request Broker Architecture (CORBA)

[OMG90] under the direction of the Object Management Group (OMG) | a consortium of vendors

trying to standardize software components and the design of bridges between them to enable easier

integration. CORBA provides for more complex interactions between programs than procedure

calls, but like HORUS it de�nes an Interface Description Language (IDL) that is language and

system independent. In general, the runtime design of CORBA is closely related to the notion of

a software bus as discussed in the next section.

In general, RPC tools are necessary to bridge heterogeneous, distributed applications, but they

do not make programming such applications easier. Developers must determine what tools to use.

If the con�guration of an application changes, the intrgation may change drastically. The developer

must reintegrate the application by applying di�erent tools. The software packager eliminates this

step by determining the integration process automatically based on the types of components. It

may employ RPC mechanisms as described in this section. If a con�guration changes, the developer

simply repackages the application.

30

2.5.7 The Software Bus

A improvement on remote procedure call involves adding a level of indirection between components

in a heterogeneous, distributed system. Instead of components being directly connected to one

another as client and server, a third-party process routes messages from one process to another.

If a process produces a message on a port, the router directs the message to receiver(s) according

to some mapping that may be statically or dynamically speci�ed. This module-based approach is

more
exible because participants in the system may come and go. For instance, in the middle of

a session, the server process may be replaced with no a�ect on other processes. The router might

queue impending messages to the server while a new server enrolls in the overall con�guration.

This model of integration, known as the software bus model, views software components as plug-

gable modules into a communications backplane. It provides a great deal of
exibility in distributed,

heterogeneous environments by adding a level of indirection to transactions between runtime com-

ponents. The bus routes messages between participants and queues undelivered messages for future

delivery. This approach can implement remote procedure call as well as asynchronous interactions

styles.

If there exists a runtime environment in which all the primitive components can operate, then

we can build and execute the application. If we view each connection as a message channel, then the

common runtime environment would include a communication mechanism to realize these channels.

The task of the software packager is to choose compatible implementations of modules and derive

a viable runtime environment that supports the execution of all constituent modules and their

interconnections. The software packager determines whether or not an appropriate software bus

exists based on the types of components and the integration tools in the target environment. In the

process of integrating the components, they may need to be adapted and additional components

such as wrappers and stubs may be introduced.

Several projects including the Portable Common Toolkit Environment (PCTE) [Vera89], Polylith

[Purt85], PVM [Begu90], CONIC [MaKS89], CORBA [OMG90], and the Portable Common Run-

time (PCR) environment [Weis90] are based on the software bus approach to software integration

as a means of encapsulating software and promoting reuse.

2.6 Summary

In many environments, it is di�cult to integrate heterogeneous, distributed software not because

we lack the technology to do so but because the integration process is complex. An application

may be a patchwork of connections between di�erent systems. If one component changes (i.e., is

reimplemented or moved to another hardware platform), this has profound impact on the runtime

organization of the entire system.

The software packager is independent of the particular technology used to integrate applications.

It does, however, coordinate the use of these technologies and associated tools. The packager

determines which tools are necessary based on a description of their integration characteristics. In

the next two chapters, we explore the Package speci�cation language and the rule speci�cation

language details for expressing software designs and production rules.

31

Chapter 3

Package Speci�cations

This chapter is designed to be reference manual that describes the syntactic units for the Package

speci�cation language. The Package language is used to describe software structure graphs

for applications. The Package language is a module interconnection language (MIL) in which

software components are described as units (either processes or static code) that provide and use

resources. An application contains instantiations of modules and connections between resources

uses and de�nitions.

3.1 Overview

A Package speci�cation describes the software structure graph for an application. A speci�cation

describes a directed, rooted graph (possibly cyclic) whose root node represents the entire applica-

tion. Each Package speci�cation must describe at least one implementation for the application

either as of a collection of components (a composite implementation) or a single object (a primitive

implementation). The name Root is a distinguished lexical identi�er within a Package speci�-

cation. At least one implementation for the Root must be expressed in a Package speci�cation.

Each direct descendent of the root node represents an alternative implementation of the application

itself. The structure graph is elaborated by describing the subcomponents, their implementations,

and connections within an application.

Figure 3.1 is a Package speci�cation that describes an application consisting of a client pro-

gram and a server program. The corresponding software structure graph is shown in Figure 3.2.

The speci�cation is comprised of six syntactic units declared at a global level: a composite imple-

mentation for the Rootmodule, an interface description for a Client module, an interface description

for a Server module, a single primitive implementation for the Client module and two primitive

implementations for the Server module. Package speci�cations typically consist of a series of

declarations of modules and their implementations.

Modules may have multiple associated implementations that are either composite or primitive.

Unlike INTERCOL [Tich80] and the previous version of the software packager [CaPu91], instances

of modules within composite implementations do not need to specify which implementation should

be used. The choice is determined by the packager tool. The Package speci�cation enumerates

all possible implementations of modules within an application as a subgraph of a module instance.

Tools like nmake rely on the UNIX �le system to specify choices of implementations in a similar

fashion, but a Package speci�cation explicitly describes this structure without attaching choices

to particular �le systems.

32

include stdpkg.pkg

implement root as f

Client: c;

Server: s;

bind c'factorial to s'factorial;

g

module Client f

use factorial(int)(int);

g

module Server f

def factorial(int)(int);

g

implement Client with kcl main f

FILE =client.kcl

g

implement Server with c func f

FILE =server.c

g

implement Server with rpc svc f

PROGNUM =407888

LOCATION =thumper.cs.umd.edu

g

Figure 3.1: Package speci�cation for a client and server application.

root

client

server
c_func

rpc_svc

kcl_main

OR node

AND node

P node

a

b

c

client.lsp

server.c

server.x

Figure 3.2: Software structure graph for a client-server example.

33

3.2 Modules

The Client and Server module interfaces are declared after the Root composite implementation

in Figure 3.1. The packager uses a two-pass approach to build the software structure graph so that

modules can be instantiated before their declaration. The Client module interface consists of a

single use port representing a function call to an external resource named factorial. The Server

module interface consists of a single def port providing a function resource named factorial.

While a module may have multiple implementations, it may only have one interface description.

Modules are uniquely identi�ed by their name and parameter types. A module declaration is of

the form

module identi�er

1

(parameters) : ancestors f

ports

attributes

g

where parameters is a list of variable names and ancestors is a comma-separated list of module

names. Module parameters may be referenced within the body of the module speci�cation. They

expand to string or numeric values in the same manner as attribute references. Module ancestors

refer to modules fromwhich a module inherits attributes and ports in a fashion similar to inheritance

in object-oriented languages except this style of inheritance is involves only the interface not the

implementations of the ancestor modules.

Ports within a module are distinguish by their names and parameter types. Port names may

be overloading as in C++ with di�erent parameter types. Ports and attributes are explained in a

later section. If a module has no ports or attributes, it may be declared as

module identi�er

1

(parameters) ;

The Root is the only module not speci�ed in a package. It has the implicit declaration

module Root;

that is predeclared in the standard package header which is included via the include directive. The

Root module may have default ports and attributes, but these are usually speci�c to an execution

environment.

3.3 Ports

Ports are associated with modules by instantiating them within a module declaration. In our

example, the Client has a single "use" port and the Server has a single "def" port. A use port

represents a function call that expects a single value in return. A def port represents a function

implementation. There may be many types of ports including sources (src), sinks (snk), and errors

(err). A port instance within a module declaration is of the form

(min, max) porttype identi�er

1

(path1) : : : (pathn)

: attributes

;

34

where porttype is a use, def, src, snk, err or user-de�ned port type. min and max are the

minimum and maximum number of connectors that may be attached to this port. The minimum and

maximum values are used to place constraints on connections to and from a port. For example, a use

port can only be connected once since multiple connections would imply a broadcast procedure call.

Ports of type def, however, may have an unlimited number of incoming connections corresponding

to procedure invocations. The path

i

speci�cations of a port declaration describe the types of

messages on the resource. A path is a sequence of message types that include primitive types

(integers, strings,
oats), other module names (references), or static data structures known as

classes. Classes are described in a later section of this Chapter.

Port types are declared at the global level. A port type is a pattern specifying a legal port

type. Default port types are de�ned in the standard package header (stdpkg.pkg). In general a

port type declaration is of the form

port identi�er (argument type) : : : (argument type) f

attributes

g

For example, the use and def port types are declared in the standard package header as

port use(: : :)(?);

port def(: : :)(?);

where the ellipses imply that both port types take any number and types of arguments. The question

mark means that both return only one value of any type as a result. Both ports associated with

the Client and Server modules in our example are legal instances of their port types.

3.4 Composite Implementations

Modules may have multiple associated implementations. There are two types of implementations:

composites and primitives. A composite implementation describes a collection of module instances

and their connections. The implementation of Root in our example is a composite implementa-

tion. A composite implementation is a circuit-board diagram of connected modules: it describes

the subcomponents and the \wiring" between their ports that comprise an implementation for a

module. It represents a subsystem because the instances within a composite also have associated

implementations, but these are not visible at this level of abstraction. Each instance is simply a

black box. In general, a composite implementation is of the form

implement identi�er (formals) as f

instances

connections

g

where an instance is a declaration of a module instance and a connection is a link between a single

port or groups of ports. The connections within a composite implementation describe how to

wire the ports of the module instances together. The designer is not constrained to wire ports

one-by-one. There are constructs for performing connections by pattern and port type.

Instances within composite implementations are speci�ed with or without an instance name

and may have attached attributes. The form of an instance description is

35

modulename : identi�er

2

dimensions, : : :, identi�ern dimensions

attributes

;

where modulename is the name of a module and identi�er

i

is the name of the instance. All module

names must be de�ned, even if a module has a null interface (e.g., Root). Arrays of modules may be

declared with multiple dimensions. Attributes can be associated with individual instances. These

attribute assignments are scoped on the subgraph below the instance, not the entire composite

subgraph.

In our example speci�cation, the Root implementation is the only composite implementation.

It contains two instances: one instance of the Client module and another instance of the Server

module. Within the Root implementation, the instances of the Client and Server modules are

assigned the names c and s respectively. The bind statement

bind c'factorial s'factorial;

speci�es that the factorial port of the Client instance c is connected to the factorial port of

the Server instance s. Composite implementations for modules that have ports (unlike Root in

this case) may use the alias directive to connect ports of internal instances to the external ports.

For example, the speci�cation

implement Stack as f

ArrayStack astack;

Array a;

alias 'top to astack'top;

alias 'push to astack'push;

alias 'pop to astack'pop;

bind astack'get to a'get;

bind astack'put to a'put;

g

describes a stack module composite implementation comprised of an ArrayStack instance and an

array instance. The alias directives connect inner ports to outer ports within a composite. The

speci�cation

implement Stack as f

ArrayStack astack;

Array a;

alias '* to *'$1;

bind *'* to *'$2;

g

is equivalent to the previous speci�cation but employs a shorthand notation for connecting groups

of ports instead of individually. The connecting phrase

bind *'* to *'$2;

is a \cliche" for binding ports by name. This phrase is equivalent to name-binding that is employed

by many link editors. Connections within packaging speci�cations are checked to ensure that the

connection constraints on ports are within their limits.

Composite implementations of modules represent subclass implementations of embedded mod-

ule instance. For example, a stack of integers that can be queried for its height could be described

by the interface

36

module cstack f

def top()(int);

def push(int)();

def pop()();

def height()(int);

g

and implemented as

implement cstack as f

Stack s;

Counter c;

alias '* to *'$1;

alias 'push to c'increment;

alias 'pop to c'decrement;

alias 'height to c'current;

g

where the embedded stack is augmented with a counter to form a new subclass implementation of

a stack called a cstack (counting stack). The module cstack is also a subtype of stack because

the cstack interface ports are a superset of the stack ports. Unlike object-oriented languages

like C++ [Stro86], the subtyping and subclassing in Package speci�cations are separate. While

this has some disadvantages, such as performance, it totally encapsulates software modules and

their implementations to promote their reuse in many contexts. The CONIC system [MaKS89]

takes a similar approach to separate subtyping and subclassing but does not employ multiple

implementations. The RESOLVE programming language [HaWe91] employs the same separation

and multiple implementations, but implementations are all coded in RESOLVE and distinguished

by performance and space characteristics.

3.5 Primitive Implementations

Modules may also have associated primitive implementations. Primitive implementations are di�er-

ent from composite implementations because they refer to native objects that implement a module,

not a subsystem of module instances and bindings. In our example, the Client module is imple-

mented by a kcl main object and the Server is implemented by c func and rpc svc objects. The

speci�cation of a primitive implementation has the form

implement identi�er

1

[(parameters)] with identi�er

2

f

attributes

g

where identi�er

1

is a module name and identi�er

2

is an implementation object type. The attributes

assign string or numeric values to named variables. Object types are declared in the standard header

as

object identi�er : ancestors f

attributes

g

37

where the attributes set default values within primitive implementations of the object type. Object

types may also have ancestors that de�ne additional attributes. Object type attributes describe

component parameters such as source �le names, tools, data �les, etc. Details on object types and

their attributes are described in a later section.

3.6 Arrays

Aggregate instances of modules can be declared within composite implementations. The semantics

for each element a module instance array is equivalent to those for instances that are individually

declared. The name of an instance in an array includes its index. For example, we can create

multiple instances of the Client module within the Root implementation

implement Root as f

Client c[2];

Server s;

bind c[*]'factorial to s'factorial;

g

This creates an array of two Client module instances accessed as c[0] and c[1]. The c[*] in the

bind connector speci�es a wildcard match on all elements of the array of Client instances. This

bind operation is equivalent to

bind c[0]'factorial to s'factorial;

bind c[1]'factorial to s'factorial;

Modules can declare aggregate ports as well. For example, the Server module could be declared

as

module Server f

def factorial[2](integer)(integer);

g

Within the Root composite, connections can be made from two di�erent Client instances to the

two di�erent ports on a single server instance

implement Root as f

Client c[2];

Server s;

bind c[*]'factorial to s'factorial[$1];

g

where $i matches the i

th

wildcard in an operation. Thus, this is equivalent to the explicit speci�-

cation

implement Root as f

Client c[2];

Server s;

bind c[0]'factorial to s'factorial[0];

bind c[1]'factorial to s'factorial[1];

g

Wildcards are used extensively within packaging speci�cations. They are convenient for specifying

bindings by names as well as more complex binding relationships.

38

3.7 Connectors

The bind-to operation is not a primitive in the Package language, rather it is an instance of a

connector type. A connector instantiates an object similar to a module instance. The bind-to

connector is declared in the standard header as

connector bind(use)to(def);

Connectors may be primitive or composite. The bind-to connector is an example of a primitive

connector.

connector identi�er

1

(name1) identi�er

2

(name2) f

instances

connections

g

where the name items are valid port types. A composite connector is similar to a composite

implementation and can contain embedded module instances and connections. The instances and

connectors are expanded inline into the composite implementation calling the connector. This

means that connectors may only have single implementations and do not form subgraphs in the

structure graph.

3.8 Attributes

All syntactic units in Package speci�cations, including modules, ports, implementations, and

connectors, may have associated attributes. An attribute may be assigned a value that is a string or

numeric value, a set or list. For example, the FILE attribute of the Client primitive implementation

in the client-server speci�cation has the string value \client.kcl" that speci�es the �le name of

the component. The FILE attribute illustrates the fact that object types need not be associate

one-to-one with �les, but may have attributes that reference multiple �les.

String attributes are assigned using the = operator while numeric attributes are declared using

the := operator. An attribute may also be a list (i.e., sequence) or set of values. For example, the

object type driver is described as

object driver f

WEIGHTS [

:=4

:=5

]

ARCHS (

=sun

=mips

)

g

includes a list attribute, WEIGHTS, that contains two numeric values and a set attribute, ARCHS,

that contains two string values. List and set attributes can be nested. Nested attributes may be

unnamed or named. For example, a list with named attributes

39

EMPLOYEE [

NAME = Mary Smith

PHONE := 5436

]

emulates a record data type. Attributes within sets must be unnamed or have unique names. String

and numeric attributes must be speci�ed on separate lines with a \n" used to specify a string across

multiple lines.

Attributes are dereferenced using the $(name) construct similar to that used in tools like make.

Unlike make, however, whose attributes are visible at a single lexical level, package attributes are

scoped on the software structure graph not on the lexical structure of the Package speci�cation.

For example, in the speci�cation

implement Root as f

DIR = /src

Client: c;

Server: s;

bind *'* to *'$2;

g

implement Client with c main f

FILE = $(DIR)/client.c

g

the value of the FILE attribute in the context of the Root implementation is /src/client.c. Leaf

nodes of a structure graph may be shared if their module names and attributes are identical. For

example, the speci�cation

implement Root as f

Client: c1;

Client: c2;

: : :

g

implement Client with c main f

FILE = client.c

g

yields the structure graph shown in Figure 3.3. Most object types are subtypes of the object type

basic speci�ed as

object basic f

NUM = $@

g

where $@ is an attribute that assigns a unique number (NUM) to each instance of a primitive

implementation. The $@ attribute reference yields this unique number and makes the corresponding

node in the structure graph distinct from other nodes. Other special attribute references include

$@ for the unique node number, $# for the module instance name, and $* for the index if the

instance is part of an instance array.

Attribute values can be reassigned or changed. By pre�xing the assignment of an attribute

with a \+" or \-" the value of an attribute can be altered or queried according to Table 3.1. The

right-hand side of an attribute assigned with the := operator is an expression that can evaluate to

a numeric result.

40

Root

Client c1

Client c2

simple

FILE=client.c

Figure 3.3: Software structure graph with shared implementation.

+(...) set union

+[...] list append

+:= numeric addition

+= string concatenation

-() set di�erence

-[] list di�erence

-:= numeric subtraction

-= substring elimination

@ member of (lists and sets)

Table 3.1: Attribute assignment operators

3.9 Constraints

Syntactic units within Package speci�cations may also contain constraints. Constraints resemble

attributes: they are scoped on the structure graph. If an attribute assignment violates a constraint

at some higher level in the structure graph, that unit is not expanded. For example, in the Package

speci�cation

implement Root as f

MACHINE == sun

Client: c;

Server: s;

bind *'* to *'$2;

g

implement Client with c main f

MACHINE = sun

FILE = client sun.c

g

implement Client with c main f

MACHINE = mips

FILE = client mips.c

g

the second primitive Client implementation is not expanded as a candidate implementation of the

Client instance in the Root composite because it violates the higher constraint in the structure

graph. The form of a constraint is

41

label :: identi�er relop expression

where the label is optional, identi�er is an attribute name and the expression or yields a string,

numeric, set, or list value. The following relational operators may be used to express constraints

== equal

!= not equal

<= less than or equal/subset of

>= greater than or equal/superset of

> less than/proper superset of

< greater than/proper subset of

<< member of

!< not member of

>> contains

!> does not contain

and expressions are the same as those for attributes. Constraints may be labeled or unlabeled.

Only labeled constraints can be removed. To remove a constraint, the -NAME construct removes the

last constraint labeled NAME.

3.10 Classes

Ports describe the resources used and de�ned by a module. Many ports are the descriptions of

functions that take arguments and return results. These port descriptions are known as paths that

de�ne the types of these arguments. A path may include the names of primitive data types such

as integers, strings and
oats, or the names of modules, or static data structures. The static data

structures may be de�ned by class descriptions. A class description is of two forms

class identi�er

1

= identi�er

2

dimensions ;

class identi�er

1

f

signatures

g

where identi�er

1

is the class name, identi�er

2

is an alias, and a signature is an embedded �eld

declaration. The module Position in the following Package speci�cation passes two integers via

a structure described by a point class on its putpoint port

class point f

int x;

int y;

g

module Position f

use putport(point)();

g

Classes can be embedded by using the class name in a signature. For instance, a points class may

be de�ned as a record of two points

42

class points f

point one;

point &two;

g

In this case, the second point is a reference to a point instead of an actual point record. The

packager will determine how to reconcile references either through the use of pointers within the

same address space or more elaborate means like shared memory during the packaging process.

Likewise, module names can also be used within path descriptions instead of classes. For instance,

if there is a Point module, the Position module could pass a Point module instance

module Point f

def x()(int);

def y()(int);

g

module Position f

use putport(Point)();

g

on its putpoint port. The packager will determine how to transfer the state of the Point instance

within a constructed runtime environment either through memory pointers if the application is

packaged in the same address space or more elaborate means if the connection between a Position

instance and another module instance is between addresses spaces as in a distributed application.

For example, if an implementation of the Point is able to transmit its value over a persistent media

[HeLi82] then this implementation will be chosen in the appropriate context. If no implementation

is capable of persistent representation, then this limits the types of possible integrations.

Names in paths that do not correspond to class or module de�nitions are deferred to the

packager. These types are ultimately handled by integration tools themselves. For instance, the

C++ link editor handles type casting between connected ports of C++ module implementations.

Similarly, in the absence of type de�nitions on items in path expressions in module ports, the

packager passes the job of handling type checking to the integration tools.

3.11 Summary

The Package speci�cation language is used to express the form of software structure graphs of

software applications. Such graphs represent the implementation alternatives and modular struc-

ture of the application. Attributes are visible on the graph and can be used as parameters for

lower-level components in the graph. Likewise, constraints can restrict the selection of components

included as subgraphs of module instances within embedded composite implementations. Other

systems use �le system structures to organize software applications and their implementations, but

our speci�cation language explicitly states and manipulates this structure.

43

Chapter 4

Rule Speci�cations

This chapter is designed to be reference manual that describes the rule speci�cation language. The

rule language is used to describe the abstract integration processes in an execution environment.

The rules represent the abstract form of legal manufacture graphs in an execution environment. The

rule language is based on an approach similar to attribute grammars that employs both synthesized

and inherited attributes. It is also similar to a production system that uses backtracking search

to unify components. The packager starts at the target rule for the desired object type (e.g.,

executable) and proceeds down the production rules searching for object types that match the leaf

nodes of the structure graph. If an object type is found or a rule matches, the packager includes a

node in a concrete manufacture graph corresponding to that rule in the same manner a multi-pass

parser constructs nodes in a parse tree.

Once the manufacture graph is constructed, it is traversed by executing the actions associated

with each node. Actions are sequences of commands that perform the actual integration steps. For

example, in our implementation, our rule actions produce makefile speci�cations.

4.1 Overview

Rule are speci�ed by system administrators and shared by all developers in an environment. In-

dividual programmers need not specify any integration rules, just the package speci�cations. The

rules describe the available integration processes in terms of how tools like compilers, linkers, and

stub generators are used to build applications from software components. The production rules

form a grammar that de�nes the abstract form of software manufacture graphs in an environment.

For example, the rules

executable <= main function functions

functions <= function functions

functions <=

describe a simple set of productions for programs comprised of a main function (i.e., a program

entry point) and zero or more functions that are called from the main function or each other. The

third rule has an empty right-hand side that acts as a closure on the right-recursive second rule.

The main function and function object types are terminal because there are no rules for them. If

we associate �les with each terminal item, the graph in Figure 4.1 is a concrete manufacture that

could be produced from this set of rules.

44

function

main_function

functions

functions

executableFILE=main.c

FILE=server.c

Figure 4.1: A concrete manufacture graph.

executable <= main function functions

:f

ARCH = sparc

$2

!cc -c -target $(ARCH) $1.FILE

!cc -target $(ARCH) -o a.out $1.FILE:r.o $2(OBJECTS)

g

;

functions <= function functions

[(OBJECTS) $1.FILE:r ``.o '' $2(OBJECTS)]

:f

!cc -c -target $(ARCH) $1.FILE

$2

g

|

;

Figure 4.2: Sample rule productions with actions.

Each node in the resulting manufacture graph corresponds to an integration step in a partial

order that integrates the application. Each production rule contains items and actions. Actions

associate integration steps with each production rule. For example, we can attach actions to rules

as in Figure 4.2

1

. The :f : : : g construct is an action that speci�es a sequence of commands.

The di�erent types of commands are described in later sections of this Chapter. Commands de�ne

inherited attributes like ARCH and synthesized attributes like FILE and OBJECTS. Attributes within

manufacture graphs are similar to those in attribute grammars, but some inherited attributes are

implemented using constructs known as translations. Translations are denoted in square brackets

(i.e., \[: : :]") attached to production rules after the items but before the last action. Attributes

like FILE on terminal items are accessed directly from the properties of associated leaf nodes of the

structure graph.

Given the leaf nodes of the structure graph, the packager constructs a manufacture graph and

traverses the resulting graph by executing the actions associated with each node as speci�ed by the

corresponding rule. In this case, the commands

1

Attribute references may be su�xed by a \:" followed by a single character (e.g., \r") that computes a string

function. In this case, the \:r" operator returns the root of the �le name without its extension (e.g., main.c:r !

main)

45

cc -c -target sparc server.c

cc -c -target sparc main.c

cc -target sparc -o a.out main.o server.o

are executed as a result of traversing the graph in Figure 4.1. Actions that are between items on

the right-hand side of a production rules are executed during the packaging process, i.e., during

the search. Actions may test attributes of objects, perform explicit \cuto�s" of searches, and set

attribute values. The last action of any production rule is special. If the packaging process is

successful and a rule is included in the derived manufacture graph, then the last action of each

production is executed while traversing the resulting abstract graph from the root.

Rules are speci�c to each execution environment, but they are shared by all developers within

the environment. Specifying rules is not an easy task, but because because they are shared by

all developers this increases the value of the rules. Previously, individual developers within an

environment had to trade makefile \cliches" that allow them to perform integrations or reinvent

such processes for new applications. The shared production rules eliminate the need to share such

integration programs informally. Developers may leverage integration tools without knowing the

details of how the integration is accomplished. Again, this is similar to the level of transparency

provided by link editing tools within homogeneous systems.

4.2 Rules

The packager production rules are similar to rules within attribute grammars in that they employ

synthesized and inherited attributes and have associated actions. A packager rule is of the form

lhs : rhs

:f

commands

g

;

where lhs is a single object type name and rhs is a sequence of identi�ers and actions. Name of

items that do not appear on the left-hand sides of any production rules are terminal object types.

It is possible that the leaf nodes of structure graph could contain object types that correspond to

rules. The packager �rst searches the pool for an object type and then any rules associated with

that name. For example, a library object type can be composite implementation or primitive object

type.

4.3 Actions

Actions that are embedded within the right-hand side of a production are executed during the

packaging search process. The last action is pre�xed by a \:" and if it exists it is executed only

if the rule is included as a node in the derived manufacture graph. An action speci�es a set of

commands that are executed in sequence. Commands may be used to print out information, redirect

output, execute shell commands, set attributes, set constraints, and execute actions attached to

subtrees of the manufacture graph. The next sections explain each command type: attributes,

outputs, calls, subactions, and cuto�.

46

4.3.1 Attributes

Like structure graphs, rules may assign attributes to nodes of the resulting manufacture graph.

Attributes are scoped on the manufacture graph rather than lexically on the rule speci�cations.

An attribute may be assigned a value that is a string or numeric value, a set or list. For example,

the ARCH attribute of the executive rule above has the string value \sparc" that speci�es the

machine architecture of the target execution component.

String attributes are assigned using the = operator while numeric attributes are declared using

the := operator. An attribute may also be a list (i.e., sequence) or set of values. For example, the

object type driver is described as

object driver f

WEIGHTS [

:=4

:=5

]

ARCHS (

=sun

=mips

)

g

includes a list attribute, WEIGHTS, that contains two numeric values and a set attribute, ARCHS,

that contains two string values. List and set attributes can be nested. Nested attributes may be

unnamed or named. For example, a list with named attributes

EMPLOYEE [

NAME = Mary Smith

PHONE := 5436

]

emulates a record data type. Attributes within sets must be unnamed or have unique names. String

and numeric attributes must be speci�ed on separate lines with a \n" used to specify a string across

multiple lines.

Attributes are dereferenced using the $(name) construct similar to that used in tools like make.

Unlike make, however, whose attributes are scoped at a single lexical level, rule attributes are

scoped on the software manufacture graph not on the lexical structure of the rule speci�cations.

Attribute values can be reassigned or changed. By pre�xing the assignment of an attribute with a

\+" or \-" the value of an attribute can be altered according to Table 4.1. The right-hand side of

an attribute assigned with the := operator is an expression that can evaluate to a numeric result.

4.3.2 Output

A command in an action pre�xed with a # character directs the line to the current output stream.

If a line is pre�xed with \?(name)", then the line is output to the error stream if the attribute name

is de�ned. The command \> filename" redirects ouput to a �le. The command \>> filename"

redirects and appends output to a �le.

4.3.3 Calls

A command line pre�xed with a \!" invokes a system call to the UNIX shell. The command line

may contain references to synthesized and inherited attributes.

47

+(...) set union

+[...] list append

+:= numeric addition

+= string concatenation

-() set di�erence

-[] list di�erence

-:= numeric subtraction

-= substring elimination

@ member of (lists and sets)

Table 4.1: Attribute assignment operators

4.3.4 Subactions

After the manufacture graph is constructed, the traversal and execution begins at the root, but is

directed further down the manufacture graph by the actions. The command

$2

in the action

:f

$2

!cc -c $1.FILE

!cc -o a.out $1.FILE:r.o $2(OBJECTS)

g

;

executes the actions associated with the nodes constructed by the functions productions in the

manufacture graph. After the traversal of the subgraph is complete, the two system calls are

executed.

Actions may also be named. The default action has no name, but named actions are invoked as

$ifnameg. For instance, the $2fsparcg command in the �rst rule will execute the action labeled

(sparc) in the functions function functions rule show here

executive <= main function functions

:f

$2fsparcg

!cc -c $1.FILE

!cc -o a.out $1.FILE:r.o $2(OBJECTS)

g

;

functions <= function functions

:f (sparc)

$2fsparcg

!cc -target sparc -c $1.FILE

g

f (mips)

$2fmipsg

!cc -target mips -c $1.FILE

g

|

;

48

will execute the action labeled (sparc) associated with the functions rule. If the subaction speci�er

is simply $i, then the unnamed action corresponding to the i

th

subgraph of the current node is

executed. This allows multiple actions to be associated with a single rule to permit selective

traversals of the derived manufacture graph.

4.3.5 Cuto�

The command line containing a single * speci�es that the search should stop (i.e., fail) at this point.

The cuto� operator can only be used in embedded actions on the right side of a production rule.

4.4 Translations

Synthesized attributes are implemented using translations. A translation follows the last item on

the right-hand side of a production rule and is placed before the last action. An translation is

contained in square brackets in the form

[(action name) items]

where the items in a translation are attributes and strings. The concatenation of these items

produces a string that is used as the value of an attribute labeled name. Examples of translations

are found in the next section. For example, the OBJS translation in Figure 4.3 is used to collect

names of object �les. The behavior of the translation is similar to that of a synthesized value in an

attribute grammar.

4.5 Constraints

Like package speci�cations, rule actions may contain constraints. Like attributes, constraints are

scoped on the manufacture graph. If setting an attribute within the scope of a constraint violates

that constraint, then the search is cuto�. Furthermore, object types within the software struc-

ture graph that violate constraints are not considered as candidates to be included in building a

manufacture graph as terminal items within the scope of constraints. For example, the rules in

Figure 4.3 are used in the case of integrating a main program written in C (a c main object type)

and zero or more objects written in C that contain functions (c func object types). Given the pack-

age speci�cation in Figure 4.4, the package tool would succeed using the rules in Figure 4.3 and

yield the output shown in Figure 4.5. This output is a makefile for integrating the application.

The packager selected the second primitive implementation of the Server module because the ARCH

attribute of the �rst implementation violates the ARCH == $1.ARCH constraint in the exec object

rule. The item $1.ARCH is a reference to a synthesized attribute of the c main item. The primitive

implementation for the Client module is selected for the c main slot in the manufacture graph.

An embedded action sets the constraint and restricts subsequent selection of components to those

modules that either do not have an ARCH attribute or satisfy the constraint. The implementation

for the Util module, for instance, does not specify an ARCH attribute and therefore satis�es the

constraint.

49

exec <= c main

f

ARCH ==$1.ARCH

g

c funcs

:f

#all: a.out

#

#a.out: $1.FILE:r.o $2(OBJS)

cc -o a.out $1.FILE:r.o $2(OBJS)

#

#$1.FILE:r.o: $1.FILE

cc -c $1.FILE

#

$2

g

;

c funcs <= c func c funcs

[(OBJS) $1.FILE:r ".o"]

:f

#$1.FILE:r.o: $1.FILE

cc -c $1.FILE

#

$2

g

|

;

Figure 4.3: Sample rule productions with actions for C programs.

50

include stdpkg.pkg

implement Root as f

Client;

Util;

Server;

g

implement Client with c main f

FILE =client.c

ARCH =sparc

g

implement Util with c func f

FILE =util.c

g

implement Server with c func f

FILE =server 1.c

ARCH =mips

g

implement Server with c func f

FILE =server 2.c

ARCH =sparc

g

Figure 4.4: Sample package speci�cation of a C program with alternative Server implementations.

all: a.out

a.out: client.o util.o server 2.o

cc -o a.out client.o util.o server 2.o

client.o: client.c

cc -c client.c

util.o: util.o

cc -c util.c

server 2.o: server 2.c

cc -c server 2.c

Figure 4.5: Makefile output as result of successful packaging of C program

51

4.6 Summary

Production rules are highly dependent on the available tools in an execution environment. Further-

more, they are complex and di�cult to express, but reusable across many applications programs.

The packager uses the rules to \compile" a Package speci�cation for a speci�c platform. The same

Package speci�cation can be compiled on other platforms. Being able to port the application in

this manner amortizes the cost of constructing the production rules so long as they are reused

between applications.

52

Chapter 5

Results

To build a computer program, one must integrate many di�erent types of software components:

functions, data �les, resources, libraries, and services. The process of integrating these compo-

nents is as complex as programming the components themselves, especially if the components are

distributed or implemented in di�erent programming languages. The integration process involves

many di�erent tools including compilers, link editors, and stub generators. The programmer must

explicitly invoke these tools in their proper sequence to perform the integration and build the

application.

The integration process for an application will vary between execution environments because

each environment will provide a di�erent set of integration tools. The programmer must use tools

and components that may still be unique to each environment in order to build an application.

Even if an application claims to be \portable" to many environments, this may only mean that the

source code is insensitive to changes between execution environments, but the integration processes

are unique for each target environment.

The integration process for an application will also change if an application is recon�gured

in some fashion, e.g., its components are distributed or implemented in di�erent programming

languages. Even if the logical structure of an application remains unchanged, a small change to its

con�guration can dramatically impact the integration process. Each change requires respecifying

the integration steps and rebuilding the application. If an application's components are added,

removed, or modi�ed, the integration process must be changed as well.

Software packaging simpli�es the task of integrating computer programs because the pack-

ager automatically determines the steps necessary to integrate an application. Each environment

provides a set of integration rules that characterize the types of integrations possible in that en-

vironment. If application components are distributed or implemented in di�erent programming

languages, the packager uses the integration rules to determine whether or not it is possible to inte-

grate an application in that environment. The rules are based on the capabilities of the integration

tools available in the execution environment. While it is incumbant on the environment to provide

the integration rules, the cost of their construction is amortized over all applications packaged in

the environment.

An integration process is determined by the packager based on the types of components in

an application. With tools like make, developers must know about the types of components

in an application, e.g., what language they are written in and whether or not one component

provides a starting entry point. They must also know how to integrate those components to

create new artifacts. Developers \reinvent the wheel" by needlessly rewriting make rules for new

53

applications. The knowledge of how to use the tools is passed between developers in an ad-hoc

fashion often using existing integrations as examples. Software packaging describes the capabilities

of tools and reuses this knowledge across applications and developers. Developers must still be

aware of the characteristics of their components and what components are compatible, but this

knowledge is independent of any execution environment. We demonstrate the savings over existing

integration methods by comparing Package speci�cations with makefile speci�cations. We

show that makefile speci�cations require extensive changes when an application is recon�gured

while Package speci�cations are relatively insensitive to recon�gurations across environments

and components in comparison to existing integration methods.

The software packager relies on each execution environment to provide integration rules but

extends this approach to heterogeneous, distributed environments. Existing integration tools, like

nmake, imake, and make, also rely on environment-speci�c integration rules but they are used

primarily in homogeneous contexts to provide portability between hardware platforms. We show

that software packaging also provides portability within homogeneous applications and extends the

rule-based approach to heterogeneous, distributed applications by including other integration tools,

like stub generators, into the integration rules. nmake and imake su�er the same problems as

make when program components are distributed or implemented in multiple languages because

they do not address interconnections between components. Furthermore, existing RPC tools and

interface descriptions languages (IDLs) are inadequate because they do not address con�guration

issues. Such tools supply the bridges between components, but the developer is responsible for

integrating the application. Our approach relies on existing tools and combines wrapper generation

and con�guration management to promote transparent integration in heterogeneous, distributed

execution environments.

5.1 Approach

Software packaging allows the programmer to deal with modules and bindings in an abstract manner

without concern for (1) the di�erences in languages between modules (2) the location of their

execution and (3) the binding mechanism used between runtime components. If the execution

environment provides the proper integration tools, the software packager determines which tools

are necessary to integrate the application components. While software packaging relies on rules

speci�c to each environment, the cost of constructing these rules is amortized over the total number

of integrated applications.

In the next sections we present three case studies in which we compare the e�ects of recon-

�guration changes on Package speci�cations and makefiles. Application components may be

implemented in di�erent programming languages and distributed across multiple processors. We

examine the e�ects recon�guration changes to application speci�cations. By comparing the extent

of changes on Package and makefile speci�cations, we evaluate the usefulness of our approach.

Our results show that package speci�cations are less expensive to build and alter than make-

file speci�cations for the same application. These results show that makefile speci�cations

require extensive rewriting when components are recon�gured.

It is di�cult to show that a programming language is abstract insofar that convenience to

the programmer is increased. Convenience is de�ned loosely in terms of how \terse" it is for the

programmer to specify a solution. The best we can hope to do is show that a new approach is more

convenient that existing methods. We measure the convenience to the programmer in terms of the

54

lines of code changed in a speci�cation before and after the recon�guration. The comparison does

not include the cost of reimplementing any components. In the case of package speci�cations, we

do not include the cost of writing the integration rules for each environment because this cost is not

imposed on the developer. In the case of make, however, the developer must specify the integration

steps explicitly for each application. We do not, however, include the cost of implementing any

additional software in either case because this can be handled by stub generators.

5.1.1 An Example

In Chapter 1, we speci�ed the module-based structure of a factorial application and speci�ed a

solution in Chapter 3 via the Package language. In Chapter 2, we introduced a second possible

implementation for the server component, a remote service, in order to demonstrate the use of choice

in software designs. In Figure 5.1 and Figure 5.3 we show two separate Package speci�cations

where the only di�erence is in the implementations of the Server module. Although we can specify

both implementations of the server in the same speci�cation, we separate them in order to force

the packager to choose the only available implementation. In a joined speci�cation, the packager

would arbitrarily choose one or the other if there are no relevant constraints. We produce two

separate makefiles by packaging each speci�cation as shown in Figure 5.2 and Figure 5.4. The

corresponding production graphs are shown in Figure 5.5 and Figure 5.6. Recall that the di�erence

between the two solutions is the result of reimplementing the server component but the logical

structure of the application remains unchanged. The Package speci�cations are nearly identical

with the exception of the change to the implementation for the server component. In comparison,

the makefiles are very di�erent from one another.

Currently, writing makefiles by hand is a tedious task. Each developer must know about

the type of component and what tools to use in order to build an executable program. If there

is a change in the con�guration, the developer must respecify the integration by rewriting the

makefile. Software packaging eliminates this step. Although the developer must know about the

types of components and which as compatible, the details of integration are left to the packager

tool. The e�ort to change the Package speci�cation when the server component is reimplemented

is considerably less than the e�ort needed to rewrite the makefile. The cost of writing the

production rules can be amortized over all packaged applications since they are reused. The cost

of reimplementing the component is not counted in either case.

Even though the Package approach relies on the environment to provide the integration rules,

they are used by all developers to con�gure all types of applications. In our examples, we rely on

a �xed set of rules with the exception of the portability example which we present for illustrative

purposes. Even though our use of Package speci�cations for these examples does not justify

amortizing the cost of these rules, our experience so far indicates that the component types are

very general and can be applied in a wide variety of applications.

Package speci�cations allow developers to deal with abstract interconnections between com-

ponents that would otherwise be di�cult to implement. For example, when connecting hetero-

geneous applications, a developer must implement connections between components. This may

involve use of separate interface and integration speci�cations. For example, Sun RPC is useful

for describing interface speci�cations, but the developer must organize the overall application in a

makefile. Package speci�cations centralize component descriptions and interconnections in a

single speci�cation.

55

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19!

20

21

22

include stdpkg.pkg

module Client f

use factorial(int)(int);

g

module Server f

def factorial(int)(int);

g

implement Root as f

Client: c;

Server: s;

bind c'factroial to s'factorial;

g

implement Client with kcl main f

FILE = client.kcl

g

C implementation of the server component

implement Server with c func f

FILE = server.c

g

Figure 5.1: A Package speci�cation for the Factorial solution (Lisp-C)

1 all: factorial

2

3 factorial: client.o client wrap.o server.o

4 echo "(load n"clientn")" > init.lsp

5 echo -n "(si:faslink n"client wrapn" >> init.lsp

6 echo "n"server.o n")" >> init.lsp

7 echo "(si:save-system n"factorialn")" >> init.lsp

8 kcl

9 echo "(compute-facs)" > init.lsp

10 echo "(bye)" >> init.lsp

11

12 client.o: client.lsp

13 lc client.lsp

14

15 server.o: server.c

16 cc -c server.c

17

18 client wrap.o: client wrap.lsp

19 lc client wrap.lsp

20

21 client wrap.lsp: Map

22 kclwrap 1 > client wrap.lsp

Figure 5.2: Make�le speci�cation for the Lisp-C factorial solution

56

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18!

19

20

include stdpkg.pkg

module Client f

use factorial(int)(int);

g

module Server f

def factorial(int)(int);

g

implement Root as f

Client: c;

Server: s;

bind c'factroial to s'factorial;

g

implement Client with c main f

FILE = client.c

g

Remote implementation of the server component

implement Server with rpc svc f

PROGNUM = 407888

LOC = thumper.cs.umd.edu

g

Figure 5.3: A Package speci�cation for the Factorial solution (Lisp-RPC)

5.1.2 Portability

We examine the issue of software portability at the end of this Chapter. When an application is

ported to a new execution environment, the integration process is di�erent and some components of

the application must be reimplemented. Software packaging allows developers to specify alternative

implementations and facilitate integrations across multiple environments.

For example, if we include both implementations of the server component in the factorial

example in a single Package speci�cation, the packager will choose a compatible set of imple-

mentations from the set of possible implementations. Figure 5.7 shows a production graph for such

a speci�cation in which the packager has chosen the C implementation of the server component.

The remote implementation (shown in a diamond with a dotted arrow from the server module

instance) is not selected and therefore not included in the manufacture graph. A di�erent envi-

ronment may have selected the remote service if tools for integrating the C implementation do not

exist in that environment.

The use of alternative implementations allows Package speci�cations to be used to \port"

applications between execution environments by structuring software designs such that large sub-

systems of code are insensitive to environment changes. Developers often call this part of the

application code the \kernel" of a system. Other subsystems are more dependent on speci�c envi-

ronmental factors such as display type, processor type, and operating system. In a poorly designed

solution, most modules will be system dependent. A well-structured design, however, will minimize

the impact of porting the application.

At the end of this Chaper, we examine a highly portable and complex software package, the X11

Window System server, as a case study to demonstrate portability of Package speci�cations. The

X11 server contains both device-dependent and device-independent modules. Multiple implemen-

57

1 all: factorial

2

3 factorial: client.o client wrap.o server clnt.o

4 echo "(load n"clientn")" > init.lsp

5 echo -n "(si:faslink n"client wrapn" >> init.lsp

6 echo "n"client bind.o server clnt.o -lcn")" >> init.lsp

7 echo "(si:save-system n"factorialn")" >> init.lsp

8 kcl

9 echo "(rpcinit)" > init.lsp

10 echo "(compute-facs)" >> init.lsp

11 echo "(bye)" >> init.lsp

12

13 client.o: client.lsp

14 lc client.lsp

15

16 client bind.o: client bind.c server.h

17 cc -c client bind.c

18

19 client bind.c: Map

20 kclstubgen 1 > client bind.c

21

22 server clnt.o: server clnt.c server.h

23 cc -c server clnt.c

24

25 server clnt.o server.h: server.x

26 rpcgen server.x

27

28 #

29 # Programmer must know how to invoke the sunrpcgen tool,

30 # with the Sun RPC program number and the host machine.

31 #

32 server.x: Map

33 sunrpcgen -s 407888 -h thumper.cs.umd.edu > server.x

34

35 client wrap.o: client wrap.lsp

36 lc client wrap.lsp

37

38 client wrap.lsp: Map

39 kclwrap -r 1 > client wrap.lsp

Figure 5.4: Make�le speci�cation for the Lisp-RPC factorial solution

58

root 1

c kcl-main

s c-func

exectexec

kcl-main-obj

c-func-objs

c-func-obj

c-func-objs

kcl-wrapper

F
i
g
u
r
e
5
.
5
:
P
r
o
d
u
c
t
i
o
n
g
r
a
p
h
f
o
r
t
h
e
L
i
s
p
-
C
f
a
c
t
o
r
i
a
l
s
o
l
u
t
i
o
n
.

5
9

root 1

c kcl-main

s rpc-svc

exectexec

kcl-main-obj

rpc-svcs

kcl-wrapper

F
i
g
u
r
e
5
.
6
:
P
r
o
d
u
c
t
i
o
n
g
r
a
p
h
f
o
r
t
h
e
L
i
s
p
-
R
P
C
f
a
c
t
o
r
i
a
l
s
o
l
u
t
i
o
n
.

6
0

tations exist for the device-dependent modules while the device-independent components are source

code portable. The X11 server is typically con�gured using imake which relies on the C preproces-

sor and the UNIX directory structure to organize alternate implementations. We respecify the X11

server as a software package to demonstrate that our approach is robust, backward-compatible and

elucidates the organization of the X11 server implementation better than the existing approach.

5.2 Heterogeneity

When constructing a new application, it is cost-e�ective to reuse existing components where possible

because reuse dramatically reduces the cost of implementation. The UNIX shell is a good example:

programs can be connected together by pipes that transfer character data. Programs can be

integrated easily with other programs so long as the other programs produce or consume character

streams on the appropriate interfaces, i.e. stdin, stdout, stderr.

Many programs, however, cannot be integrated because of incompatibilities between their data

representation formats. For example, both solutions to the factorial problem rely on stubs to bridge

the di�erences between integer representations. The Lisp environment has the ability to do this

through the defentry function. The Package speci�cations in Figure 5.1 and Figure 5.3 state

that the Client and Server components have compatible ports and bind the use and def ports

together. The di�erence between their representations of integers is handled by the packager and

tools that generate the wrappers needed to integrate application components.

Software packaging allows software developers to reuse components and ignore di�erences be-

tween data representations if there exist appropriate integration tools such as wrapper generators.

For example, a solution to Parnas' Keyword-In-Context (KWIC) program [Parn72] can be built

from a variety of existing components: a line reader, a line shifter, and line writer. The purpose of

the KWIC program is to read a set of input lines such as

the quick brown fox

jumped over the lazy dog

and produce a corresponding ouput �le such as

the quick brown fox

quick brown fox the

brown fox the quick

fox the quick brown

jumped over the lazy dog

over the lazy dog jumped

the lazy dog jumped over

lazy dog jumped over the

dog jumped over the lazy

in which all lines are versions of the input lines shifted by one word. This is done to create a list

of lines in which the �rst word can be indexed and thus show all words in their context of use.

A Package speci�cation for a solution to the KWIC problem is shown in Figure 5.9. All

modules have single implementations written in the C++ programming language. For instance,

the source code for the shifter implementation is shown in Figure 5.8. The makefile for this

solution is shown in Figure 5.11 and the corresponding production graph is shown in Figure 5.10.

61

root 1

c kcl-main

s c-func

rpc-svc

exectexec

kcl-main-obj

rpc-svcs

kcl-wrapper

F
i
g
u
r
e
5
.
7
:
J
o
i
n
t
p
r
o
d
u
c
t
i
o
n
g
r
a
p
h
f
o
r
t
h
e
f
a
c
t
o
r
i
a
l
s
o
l
u
t
i
o
n
.

6
2

1 #include <String.h>

2 #include <OrderedCltn.h>

3

4 void skipblanks(String& s,int& x) f

5 while((x < s.length()) && (s[x] == ' ')) x++;

6 g

7

8 void skipword(String& s,int& x) f

9 while((x < s.length()) && (s[x] != ' ')) x++;

10 g

11

12 void shiftlines(OrderedCltn& inlines,OrderedCltn& outlines) f

13 String *s,*t;

14

15 for(int i=0;i < inlines.size();i++) f

16 s = (String*)inlines[i];

17 int length = s->length();

18 for(int j=0;j < length-1;) f

19 skipblanks(*s,j);

20 t = new String(*s);

21 int k = 0;

22 int x = j;

23 while(k < length) f

24 (*t)[k++] = (*s)[x % length];

25 x++;

26 g

27 outlines.add(*t);

28 skipword(*s,j);

29 g

30 g

31 g

Figure 5.8: Source code for the shifter component of the KWIC program.

63

The integration process is straightforward. All component implementations are compiled and linked

using the C++ compiler and linker respectively.

This �rst solution does not sort the output lines or eliminate identical lines. In Figure 5.13, we

introduce a sort module into the Package speci�cation. The sort module has two interface ports:

an instream port and an outstream port. The statement

bind main'sortlines to sorter'inlines return sorter'outlines;

connects the sortlines port (a use port) to the inlines port (an instream port) and outlines

port (an outstream port) of the sorter module. This is possible because there is a connector

de�nition in the stdpkg.pkg �le

connector bind(use(x)(y)) to(instream) return(outstream) f

Bridge b($x,$y);

bind $1 to b'input;

bind b'outcall to $2;

bind $3 to b'incall;

g

that enable ports to be connected in this fashion. The bind-to-return connection between the

use port and the two stream ports is translated into a subsystem including a Bridge module

instance and three connections using the bind-to connector. The existence of the bind-to-return

connector does not imply that the connection is implemented, but a compatible implementation

for the Bridge module must exist as well. The Bridge module is speci�ed as

module Bridge(p,q) f

def input($p)($q);

outstream outcall;

instream incall;

g

where p and q refer to any type names. Many di�erent implementations of the Bridge module

might exist in an environment. For example, the implementation

implement Bridge(p,q) with strmbridge($p,$q);

associates a strmbridge object as an implementation that converts an object of type (p) into a

stream and returns an object of type (q) constructed from a stream. A property of all cc main

and cc func objects is that they pass either primitive data types (integers, strings,
oating point

numbers, and characters) or complex data types implemented by NIH classes [Gorl90]. NIH classes

have the property that they can be rendered onto persistent media such as �les or byte streams.

This capability allows object state to be transported between components executing in separate

address spaces. Without this capability, we would be limited in the types of integrations that are

possible only within the same address space.

A makefile for the second solution to the KWIC problem is shown in Figure 5.14 and the

corresponding production graph is shown in Figure 5.12. Although the di�erences are not dramatic,

this case demonstrates the usefulness of the connection abstractions in Package speci�cations. In

line 24 of the makefile in Figure 5.14, the directive -DPROCNAME=sortlines is a parameter of the

strmbridge component. This con�guration information relies on knowledge of the interconnections

64

1 include stdpkg.pkg

2 module Main f

3 use readlines()(Lines)();

4 use shiftlines(Lines)(Lines)();

5 use writelines(Lines)()();

6 g

7 module Reader f

8 def readlines()(Lines)();

9 g

10 module Shifter f

11 def shiftlines(Lines)(Lines)();

12 g

13 module Writer f

14 def writelines(Lines)()();

15 g

16 implement Root as f

17 APPNAME=shifter

18 Main: main;

19 Reader: reader;

20 Shifter: shifter;

21 Writer: writer;

22 bind main'readlines to reader'readlines;

23 bind main'shiftlines to shifter'shiftlines;

24 bind main'writelines to writer'writelines;

25 g

26 implement Main with cc main f

27 FILE=main1.cc

28 g

29 implement Reader with cc func f

30 FILE=reader.cc

31 g

32 implement Shifter with cc func f

33 FILE=shifter.cc

34 g

35 implement Writer with cc func f

36 FILE=writer.cc

37 g

Figure 5.9: Package speci�cations for the �rst KWIC solution

65

root 1

main cc-main

reader cc-func

shifter cc-func

writer cc-func

exectexec

cc-funcs

cc-funcscc-funcs

cc-funcs

cc-tools

F
i
g
u
r
e
5
.
1
0
:
P
r
o
d
u
c
t
i
o
n
g
r
a
p
h
f
o
r
t
h
e
�
r
s
t
K
W
I
C
s
o
l
u
t
i
o
n
.

6
6

1 all: shifter

2

3 shifter: main1.o reader.o writer.o shifter.o

4 CC -g -o shifter -I/thumper/include main1.o reader.o n

5 writer.o shifter.o -L/thumper/lib/sun4os4 -lnihcl -lniherr

6

7 main1.o: main1.cc

8 CC -g -I/thumper/include -c main1.cc

9

10 reader.o: reader.cc

11 CC -g -I/thumper/include -c reader.cc

12

13 writer.o: writer.cc

14 CC -g -I/thumper/include -c writer.cc

15

16 shifter.o: shifter.cc

17 CC -g -I/thumper/include -c shifter.cc

Figure 5.11: Make�le speci�cation for the �rst KWIC solution

between components independent of the integration process. Package speci�cations eliminate the

need for explicit speci�cation of such information in separate interface speci�cations. The developer

deals only with modules, implementations, and abstract connections.

Package speci�cations are no worse than makefiles in many simple cases. In complex

integration cases, however, Package speci�cations are more abstract because the developer need

not deal with integration details. This has the advantage that developers need not remember the

details of using integration tools. Instead, a developer is only concerned with what object types are

available. Software packaging o�ers no speci�c integration solution or conversion protocol, rather

it leverages existing tools. If such tools do not exist in an environment, then it will not be possible

to integrate an application.

5.3 Distribution

In many applications, program components are distributed to take advantage of parallelism in

order to improve program performance. Ray tracing is one application for which we can write

parallel solutions that substantially outperform sequential solutions. The purpose of ray tracing is

to produce a photo-realistic image of a scene containing objects and a light source. The scene is

computed by a program that accepts a geometric description of objects as input. For example, the

data in Table 5.1 renders the image in Figure 5.16 of a single mirrored sphere at a speci�ed location

in 3-space of radius 50 against a checkered background. The ray tracing program follows the path

of each light ray backwards from the camera position through the pixel plane, to all incidental

objects, and back to the light source as shown in Figure 5.15.

The ray tracing algorithm lends itself easily to parallelism because each pixel in the pixel plane

can be computed independently. We construct a solution with slightly less granularity: it computes

each horizontal scan line independently, but pixels sequentially with each line. We construct two

solutions to the ray tracing problem. The �rst con�guration implements ray tracing sequentially

67

root 1

main

bridge

cc-main

reader cc-func

shifter cc-func

sorter cc-tool

writer cc-func

exectexec

cc-funcs

cc-funcs

cc-funcscc-funcs

cc-tools

cc-tools

strmbridge

F
i
g
u
r
e
5
.
1
2
:
P
r
o
d
u
c
t
i
o
n
g
r
a
p
h
f
o
r
t
h
e
s
e
c
o
n
d
K
W
I
C
s
o
l
u
t
i
o
n
.

6
8

1 include stdpkg.pkg

2

3 module Main f

4 use readlines()(Lines)();

5 use shiftlines(Lines)(Lines)();

6 use sortlines(Lines)(Lines)();

7 use writelines(Lines)()();

8 g

9 module Sorter f

10 instream inlines(Lines);

11 outstream outlines(Lines);

12 g

13 implement Root as f

14 APPNAME=shifter

15 Main: main;

16 Reader: reader;

17 Shifter: shifter;

18 Sorter: sorter;

19 Writer: writer;

20 bind main'readlines to reader'readlines;

21 bind main'shiftlines to shifter'shiftlines;

22 # bind a use port to in and out streams

23 bind main'sortlines to sorter'inlines return sorter'outlines;

24 bind main'writelines to writer'writelines;

25 g

26 implement Main with cc main f

27 FILE=main2.cc

28 g

29 implement Sorter with cc tool f

30 TOOL=sort

31 g

Figure 5.13: Package speci�cations for the second KWIC solution (with sorting)

69

1 all: shifter

2

3 shifter: main2.o reader.o writer.o shifter.o wraptool10.o

4 CC -g -o shifter -I/thumper/include main2.o reader.o n

5 writer.o shifter.o wraptool10.o -L/thumper/lib/sun4os4 -lnihcl -lniherr

6

7 main2.o: main2.cc

8 CC -g -I/thumper/include -c main2.cc

9

10 reader.o: reader.cc

11 CC -g -I/thumper/include -c reader.cc

12

13 writer.o: writer.cc

14 CC -g -I/thumper/include -c writer.cc

15

16 shifter.o: shifter.cc

17 CC -g -I/thumper/include -c shifter.cc

18

19 #

20 # Here a converter is used to implement the bridge between

21 # the use port of the shifter and the in and out

22 # stream ports of the sorter component

23 #

24 wraptool10.o: wraptool.cc Map

25 CC -g -o wraptool10.o -I/thumper/include -c n

26 -DPROCNAME=`../toolscan/toolscan -p def 10` n

27 -DTOOL="n"sortn"" wraptool.cc

Figure 5.14: Make�le speci�cation for the second KWIC solution (with sorting)

A

B

C

D

E

A = viewpoint
B = pixel plane
C = tessilated background
D = sphere
E = light source

Figure 5.15: Conceptual diagram of the ray tracing algorithm.

70

Figure 5.16: The resulting ray traced image.

71

x y z radius reflect refract opaque density ambience

140.0 65.0 140.0 50.0 0.0 0.0 0.0 0.9 0.1

Table 5.1: Description of a sphere for the ray tracing program.

| a single server computes each scan line. In a second con�guration, three servers are utilized to

compute scan lines in parallel. Both client and server are implemented in C. The �rst solution relies

on standard link editing to con�gure the application. The second solution relies on the Polylith

software bus to integrate the application. The servers are distributed to separate processors on a

local area network.

The Package speci�cation for the sequential solution is shown in Figure 5.17. In this case, the

application consists of 3 components: the main program, the tracer, and a collector component that

writes the resulting image to a �le. The data types exchanged between components are included

from an external speci�cation in the �le raytypes.pkg shown in Figure 5.18. The data types

are either primitive (i.e., int, double, string) or structures speci�ed in terms of class de�nitions

shown in Figure 5.18. This approach is similar to other interface description languages such as

Scorpion/IDL [Snod89], OMG/IDL [OMG90], and Sun RPCL [Sun85b]. The integration tools will

use these de�nitions to generate the appropriate stub code.

The makefile for integrating the sequential solution is shown in Figure 5.19 and the corre-

sponding production graph is shown in Figure 5.22. The components are integrating using the

standard C compiler and link editor because all the components are programmed in C and should

execute on the same physical machine.

The distributed solution to the ray tracing problem is shown in Figure 5.20 and Figure 5.21.

In this case, we distribute the tracer component across three machines in a local area network. We

introduce a Splitter module to multiplex the ray trace call to compute the scan lines across

the processors. Three implementations of the Tracer module are instantiated with di�erent LOC

attributes that specify machine addresses. In the �rst solution, all components resided in the same

address space. Their location attributes were unspeci�ed and therefore the identical by default.

In the second solution, di�erent production rules are triggered as a result of the di�erences in LOC

attributes.

The corresponding makefile shown in Figure 5.24 through Figure 5.25 for this solution spec-

i�es the use an interprocess communication mechanism called Polylith [Purt85] to implement the

connections between components at runtime. The production graph in Figure 5.23 gives a bird's-eye

view of the entire integration better than the makefile. The components are wrapped with stubs

that permit communication across processors using Polylith. The Polylith system can wrap and in-

tegrate components of c main and c func types. Polylith stub generators access the packager Map

to determine which ports are connected and the representations of parameter data types. Polylith

relies on TCP/IP sockets to implement interconnection between ports of module implementations.

The resultingmakefiles for the two solutions to the ray tracing problem are drastically di�erent

from each other. Even though the Package speci�cation is slightly di�erent, the integration

processes are drastically di�erent due to the distribution of components. The source code for the

components is unchanged in each case. The wrappers allow the same code to be used in di�erent

contexts.

Software packaging addresses the problem of adapting code to new contexts. This allows com-

ponent implementors to use remote and local procedures in the same fashion. The developer is

72

1 include stdpkg.pkg

2 include raytypes.pkg

3 module Client f

4 use load orb(sphere;double;double;double;double;double)(int);

5 use load bkgnd(str)(int);

6 use set params(params)(int);

7 use openoutfile(str)(int);

8 use ray trace(lines)(int);

9 use collect(lines;int)(int);

10 g

11 module Scan f

12 def load orb(sphere;double;double;double;double;double)(int);

13 def load bkgnd(str)(int);

14 def set params(params)(int);

15 def ray trace(lines)(int);

16 use gather(int;int;raw[640])(int);

17 g

18 module Collect f

19 def openoutfile(str)(int);

20 def gather(int;int;raw[640])(int);

21 def collect(lines;int)(int);

22 g

23 implement Root as f

24 APPNAME=rtrace

25 #

26 # Assign default execution location. Since there

27 # is only a single scanner and all components have

28 # the same LOC attribute value, then the packager

29 # should produce a single executable solution.

30 #

31 LOC=crosshare.cs.umd.edu # default execution location

32 Client: c;

33 Scan: s;

34 Collect: x;

35 bind c'load orb to s'load orb;

36 bind c'load bkgnd to s'load bkgnd;

37 bind c'set params to s'set params;

38 bind c'openoutfile to x'openoutfile;

39 bind c'ray trace to s'ray trace;

40 bind s'gather to x'gather;

41 bind c'collect to x'collect;

42 g

43 implement Client with c main f

44 FILE =rclient.c

45 g

46 implement Scan with c func f

47 FILE =rserver.c

48 g

49 implement Collect with c func f

50 FILE =rcollect.c

51 g

Figure 5.17: Package speci�cation for the sequential ray tracer.

73

1 class vector f

2 double x;

3 double y;

4 double z;

5 double l;

6 double xzl;

7 g

8 class sphere f

9 vector cent;

10 double rad;

11 g

12 class params f

13 sphere &ls;

14 vector &vp;

15 double &bkcon;

16 g

17 class lines f

18 double ymin;

19 double ymax;

20 g

Figure 5.18: Package class speci�cations for the ray tracing solutions (raytypes.pkg �le).

1 all: rtrace

2

3 rtrace: rclient.o rcollect.o rserver.o

4 cc -o rtrace rclient.o rcollect.o rserver.o -L. -lm

5

6 rclient.o: rclient.c

7 cc -c rclient.c

8

9 rcollect.o: rcollect.c

10 cc -c rcollect.c

11

12 rserver.o: rserver.c

13 cc -c rserver.c

Figure 5.19: Make�le speci�cation for the sequential ray tracer.

74

1 include stdpkg.pkg

2 include raytypes.pkg

3 module OrbSplit f

4 def in(sphere;double;double;double;double;double)(int);

5 use out[3](sphere;double;double;double;double;double)(int);

6 g

7 module BkgndSplit f

8 def in(str)(int);

9 use out[3](str)(int);

10 g

11 module ParamSplit f

12 def in(params)(int);

13 use out[3](params)(int);

14 g

15 module RayMux f

16 def in(lines)(int);

17 use out[3](lines)(int);

18 g

19 module DeMux f

20 def in[3](int;int;raw[640])(int);

21 use out(int;int;raw[640])(int);

22 g

23 implement Root as f

24 APPNAME =rtrace

25 LOC=crosshare.cs.umd.edu # default execution location

26 Client: c;

27 OrbSplit: os;

28 BkgndSplit: bs;

29 ParamSplit: ps;

30 RayMux: mux;

31 #

32 # Assign speci�c execution locations to parallel

33 # scanners. The location di�erences will trigger

34 # the use of an RPC-based integration mechanism.

35 #

36 Scan: s0 : LOC=thumper.cs.umd.edu

37 Scan: s1 : LOC=harvey.cs.umd.edu

38 Scan: s2 : LOC=xring.cs.umd.edu

39 DeMux: demux;

40 Collect: x;

41 bind c'load orb to os'in;

42 bind os'out[*] to s$1'load orb;

43 bind c'load bkgnd to bs'in;

44 bind bs'out[*] to s$1'load bkgnd;

45 bind c'set params to ps'in;

46 bind ps'out[*] to s$1'set params;

47 bind c'openoutfile to x'openoutfile;

48 bind c'ray trace to mux'in;

49 bind mux'out[*] to s$1'ray trace;

50 bind s*'gather to demux'in[$1];

51 bind demux'out to x'gather;

52 bind c'collect to x'collect;

53 g

Figure 5.20: Package speci�cation for the distributed ray tracer.

75

1 implement OrbSplit with p raw f

2 FILE =splitorb.c

3 COPTS =-DFANOUT=3

4 g

5 implement BkgndSplit with p raw f

6 FILE =splitbkgnd.c

7 COPTS =-DFANOUT=3

8 g

9 implement ParamSplit with p raw f

10 FILE =splitparams.c

11 COPTS =-DFANOUT=3

12 g

13 implement RayMux with p raw f

14 FILE =raymux.c

15 COPTS =-DFANOUT=3

16 g

17 implement DeMux with p raw f

18 FILE =demux.c

19 COPTS =-DFANOUT=3

20 g

Figure 5.21: Package speci�cation for the distributed ray tracer (con't).

only concerned with implementation types for modules. The packager determines whether or not

any implementations can be integrated. This is a signi�cant improvement over existing tools that

require knowledge of component types and integration methods.

5.4 Portability

The X Windows server is one of the most portable software applications in the commercial and

public domains. It runs in a plethora of execution environments: almost all UNIX platforms,

MacIntosh, and IBM PCs. To accomplish this task, the developers employ a technique similar

to the choice mechanism in software packaging: many components in the X server have multiple,

alternative implementations. The program is highly modular because application components are

classi�ed into two categories: device-dependent and device-independent. Device-dependent com-

ponents have multiple implementations but a standard interface. Device-independent components

are source code portable between systems and implement the core of the server.

This organization is well suited to software packaging. We specify the X11 server as a pack-

age to demonstrate that software packaging can be used to con�gure existing software. Existing

con�guration tools like nmake and imake rely on the structure of the �le system to di�erenti-

ate alternate implementations of device-dependent components. This is similar to the approach

in software packaging but instead of �le and directory names used to distinguish alternatives, the

packager uses attributes and constraints to choose appropriate implementations. This allows the

developer to infer di�erent con�gurations rather than specifying them explicitly.

76

root 1

c c-main

s c-func

x c-func

exectexec

c-main-x

libs

c-funcs

c-funcsc-funcs

F
i
g
u
r
e
5
.
2
2
:
P
r
o
d
u
c
t
i
o
n
g
r
a
p
h
f
o
r
t
h
e
s
e
q
u
e
n
t
i
a
l
r
a
y
t
r
a
c
i
n
g
s
o
l
u
t
i
o
n
.

7
7

root 1

c p-main

os p-raw

bs p-raw

ps p-raw

mux p-raw

s0 p-object

s1 p-object

s2 p-object

demux p-raw

x p-func

exectexecpolybus

polyclient

polybus

polyclient

polybus

polyclient

polybus

polyclient

polybus

pmains

pmains

p-mainx

pmains

p-mainx

pmains

p-mainx

pmainsp-mainx

pmains

p-mainx

pmains

F
i
g
u
r
e
5
.
2
3
:
P
r
o
d
u
c
t
i
o
n
g
r
a
p
h
f
o
r
t
h
e
d
i
s
t
r
i
b
u
t
e
d
r
a
y
t
r
a
c
i
n
g
s
o
l
u
t
i
o
n
.

7
8

1 LOC=`hostname`

2 all: rtrace

3

4 rtrace: rtrace.bus

5 echo "#!/bin/csh -f" > rtrace

6 echo "bus rtrace.bus" >> rtrace

7 chmod u+x rtrace

8

9 rtrace.bus: rcollect.co rserver18.co rserver16.co n

10 rserver14.co rclient4.co splitorb6.co n

11 splitbkgnd8.co splitparams10.co raymux12.co demux20.co rtrace.co

12 csl -m rcollect.co rserver18.co rserver16.co n

13 rserver14.co rclient4.co splitorb6.co splitbkgnd8.co n

14 splitparams10.co raymux12.co demux20.co rtrace.co -o rtrace.bus

15

16 rtrace.co: rtrace.cl

17 csc rtrace.cl

18

19 rtrace.cl: Map

20 ../polyorchgen/polyorchgen rtrace 22 18 16 14 4 6 8 10 12 20 > rtrace.cl

21

22 rcollect.co: rcollect.cl rcollect

23 csc rcollect.cl

24

25 rcollect.cl: Map

26 ../polyservgen/polyservgen -h $(LOC) -m xring.cs.umd.edu rcollect 22 18 16 14 4 6 8 10 12 20 > rcollect.cl

27

28 rcollect: rcollect.o rcollect-stub.o

29 cc -o rcollect rcollect.o rcollect-stub.o -lith -lm

30

31 rcollect-stub.c: Map

32 ../newpolystubgen/polystubgen -s 22 > rcollect-stub.c

33

34 rserver18.co: rserver18.cl rserver18

35 csc rserver18.cl 36

37 rserver18.cl: Map

38 ../polyservgen/polyservgen -h $(LOC) -m xring.cs.umd.edu rserver18 18 22 16 14 4 6 8 10 12 20 > rserver18.cl

39

40 rserver18: rserver18.o rserver18-stub.o

41 cc -o rserver18 rserver18.o rserver18-stub.o -lith -lm

42

43 rserver18.o: rserver.c

44 cc -o rserver18.o -c rserver.c

45

46 rserver18-stub.o: rserver18-stub.c

47 cc -o rserver18-stub.o -c rserver18-stub.c

48

49 rserver18-stub.c: Map

50 ../newpolystubgen/polystubgen -s 18 > rserver18-stub.c

51

52 rserver16.co: rserver16.cl rserver16

53 csc rserver16.cl

54

55 rserver16.cl: Map

56 ../polyservgen/polyservgen -h $(LOC) -m harvey.cs.umd.edu rserver16 16 22 18 14 4 6 8 10 12 20 > rserver16.cl

57

58 rserver16: rserver16.o rserver16-stub.o

59 cc -o rserver16 rserver16.o rserver16-stub.o -lith -lm

60

61 rserver16: rserver16.o rserver16-stub.o

62 cc -o rserver16 rserver16.o rserver16-stub.o -lith -lm

63

64 rserver16.o: rserver.c

65 cc -o rserver16.o -c rserver.c

66

67 rserver16-stub.o: rserver16-stub.c

68 cc -o rserver16-stub.o -c rserver16-stub.c

69

70 rserver16-stub.c: Map

71 ../newpolystubgen/polystubgen -s 16 > rserver16-stub.c 72

73 rserver14.co: rserver14.cl rserver14

74 csc rserver14.cl

75

76 rserver14.cl: Map

77 ../polyservgen/polyservgen -h $(LOC) -m thumper.cs.umd.edu rserver14 14 22 18 16 4 6 8 10 12 20 > rserver14.cl

78

79 rserver14: rserver14.o rserver14-stub.o

80 cc -o rserver14 rserver14.o rserver14-stub.o -lith -lm

81

82 rserver14.o: rserver.c

83 cc -o rserver14.o -c rserver.c

84

85 rserver14-stub.o: rserver14-stub.c

86 cc -o rserver14-stub.o -c rserver14-stub.c

87

88 rserver14-stub.c: Map

89 ../newpolystubgen/polystubgen -s 14 > rserver14-stub.c

Figure 5.24: Make�le speci�cation for the distributed ray tracer (part 1 of 2).

79

90 rclient4.co: rclient4.cl rclient4

91 csc rclient4.cl

92

93 rclient4.cl: Map

94 ../polyservgen/polyservgen -h $(LOC) -m xring.cs.umd.edu rclient4 4 22 18 16 14 6 8 10 12 20 > rclient4.cl

95

96 rclient4: rclient4.o rclient4-stub.o

97 cc -o rclient4 rclient4.o rclient4-stub.o -lith -lm

98

99 rclient4.o: rclient.c

100 cc -c rclient.c -o rclient4.o

101

102 rclient4-stub.c: Map

103 ../newpolystubgen/polystubgen 4 > rclient4-stub.c

104

105 splitorb6.co: splitorb6.cl splitorb6

106 csc splitorb6.cl

107

108 splitorb6.cl: Map

109 ../polyservgen/polyservgen -h $(LOC) -m xring.cs.umd.edu splitorb6 6 22 18 16 14 4 8 10 12 20 > splitorb6.cl

110

111 splitorb6: splitorb6.o

112 cc -o splitorb6 splitorb6.o -lith -lm

113

114 splitorb6.o: splitorb.c

115 cc -DFANOUT=3 -c splitorb.c -o splitorb6.o

116

117 splitbkgnd8.co: splitbkgnd8.cl splitbkgnd8

118 csc splitbkgnd8.cl

119

120 splitbkgnd8.cl: Map

121 ../polyservgen/polyservgen -h $(LOC) -m xring.cs.umd.edu splitbkgnd8 8 22 18 16 14 4 6 10 12 20 > splitbkgnd8.cl

122

123 splitbkgnd8: splitbkgnd8.o

124 cc -o splitbkgnd8 splitbkgnd8.o -lith -lm

125

126 splitbkgnd8.o: splitbkgnd.c

127 cc -DFANOUT=3 -c splitbkgnd.c -o splitbkgnd8.o

128

129 splitparams10.co: splitparams10.cl splitparams10

130 csc splitparams10.cl

131

132 splitparams10.cl: Map

133 ../polyservgen/polyservgen -h $(LOC) -m xring.cs.umd.edu splitparams10 10 22 18 16 14 4 6 8 12 20 > splitparams10.cl

134

135 splitparams10: splitparams10.o

136 cc -o splitparams10 splitparams10.o -lith -lm

137

138 splitparams10.o: splitparams.c

139 cc -DFANOUT=3 -c splitparams.c -o splitparams10.o

140

141 raymux12.co: raymux12.cl raymux12

142 csc raymux12.cl

143

144 raymux12.cl: Map

145 ../polyservgen/polyservgen -h $(LOC) -m xring.cs.umd.edu raymux12 12 22 18 16 14 4 6 8 10 20 > raymux12.cl

146

147 raymux12: raymux12.o

148 cc -o raymux12 raymux12.o -lith -lm

149

150 raymux12.o: raymux.c

151 cc -DFANOUT=3 -c raymux.c -o raymux12.o

152

153 demux20.co: demux20.cl demux20

154 csc demux20.cl

155

156 demux20.cl: Map

157 ../polyservgen/polyservgen -h $(LOC) -m xring.cs.umd.edu demux20 20 22 18 16 14 4 6 8 10 12 > demux20.cl

158

159 demux20: demux20.o

160 cc -o demux20 demux20.o -lith -lm

161

162 demux20.o: demux.c

163 cc -DFANOUT=3 -c demux.c -o demux20.o

Figure 5.25: Make�le speci�cation for the distributed ray tracer (part 2 of 2).

80

For all con�gurations, the server consists of the following components

1

the device-dependent (ddx) init program

the device-dependent (ddx) hardware library

the device-independent (dix) xlib library

the operating system independent library

the authentication library

the utility library

the font library

the device-dependent (ddx) framebuffer library

the device-dependent (ddx) machine independent library

the extensions library

For instance, the server executable for a DEC 5000 workstation consists of the �les

ddx/dec/ws/init.c

ddx/dec/ws/libdec.a

dix/libdix.a

os/libos.a

libXau.a

libXdmcp.a

/lib/font/libfont.a

ddx/mfb/libmfb.a

ddx/mi/libmi.a

/server/libext.a

The X con�guration �les are written in imake and are highly dependent on the directory structure

of the �le system to structure implementation choices. Aside from the initialization program, each

subsystem may be implemented by a single library or a set of libraries. These are stored in several

subdirectories including the ddx (device-dependent) and dix (device-independent) directories. Be-

low the device-dependent directory there are subdirectories of �les for each vendor platform (e.g.,

sparc, dec). The pathname of a �le used in a speci�c con�guration of the software is found using

the UNIX �lepath convention. Thus, the initialization program for the server if con�gured on a

DEC machine is ddx/dec/ws/init.c. In this case, there is a further di�erentiation because the ws

stands for a particular type of DEC machine | a workstation.

This approach is also used by the nmake program to select appropriate implementations for

components in an application based on environmental constraints, but it cannot handle more com-

plex constraints easily. Software packaging allows developers to associated attributes with nodes

(i.e., directories) at any level and establish constraints based on these attributes. The selection of

candidate implementations occurs before packaging or during packaging by eliminating implemen-

tation that violate constraints.

We present an example of the usefulness of constraints within Package speci�cations by

\repackaging" the X server. Figure 5.26 and Figure 5.27 show a top-level Package speci�cation

for the X11 server. The Package speci�cation is organized along the same lines as the directory

structure in the standard X Windows software. The major di�erence is that each component has

a set of associated attributes such as ARCH, DIR, FILE, and MON. These attributes specify the

properties associated with di�erent implementations such as the machine architecture and type of

video monitor.

1

We do not con�gure the PEX extension libraries for the sake of brevity of this example.

81

The production rules specify the system and device constraints that control the selection of

components for each execution environment. The two sets of production rules used in this example

are shown in Figure 5.28 and Figure 5.29. In Figure 5.28, our environment is a SMCC Sparc

workstation with a monochrome video monitor. The constraints related to these attributes are set

on lines 7 & 8 of Figure 5.28 and Figure 5.29. The == operator states that in all subsequent searches,

the ARCH attribute must equal sparc and the MON attribute must equal mono if speci�ed. If an

attribute is not speci�ed by an implementation, it is independent of the constraint. In Figure 5.29,

the rules are almost the same except that the environment is a DEC 5000 with a color monitor.

The initialization program is di�erent for each monitor. The packager controls the selection of the

framebu�er library (either color or monochrome). This demonstrates the use of constraints where

a selected implementation controls the selection of another implementation.

If we package the speci�cation in Figure 5.26 and Figure 5.27 using the rules in Figure 5.28 (the

Sparc), then the resulting production graph is shown in Figure 5.30. Only those components that are

implemented for the Sparc and a monochrome monitor are selected and included in the manufacture

graph. Components that are independent of these constraints are also included. Figure 5.31 shows

the production graph for the same Package speci�cation produced using the rules in Figure 5.29.

Compared with Figure 5.30, the selected implementations in Figure 5.31 are quite di�erent as a

result of the ARCH and MON constraints.

Ports and bindings are not used in this Package speci�cation. This is to demonstrate that

existing applications can be quickly packaged as they exist. This implies that binding problems

cannot be identi�ed by the packager, but by later tools such as the link editor if there are missing

components or name con
icts. One problem is that the packager must organize the object �les and

libraries in their correct linking order (lines 24-26 of Figure 5.28). This is accomplished using USE

and DEF constraints. All attributes are string values but the @= operator (line 52 of Figure 5.28)

converts both strings into sets with items separated by blanks. During the packaging phase, the USE

=DEF constraint must hold for all searches below the point where the constraint is established. This

ensures that the object �les and libraries are ordered properly since the constructed manufacture

graph consists of a sequence of nested nodes corresponding to libraries and object �les that obey

this constraint. A subsequent traversal of the constructed manufacture graph will yield the proper

sequence for link editing.

The twomakefiles that are produced from the two production graphs are shown in Figure 5.32

and Figure 5.33. While these speci�cations are short, they are complex because of the selection

and order of the library implementations. The Package speci�cation, however, remains the same

in this case. Even though the programmer should not have to deal with the production rules, it is

interesting to note that the changes to the rules are less complex that those needed to change the

Sparc makefiles into the DEC makefile.

82

1 include stdpkg.pkg

2

3 implement Root as f

4 APPNAME = xserver;

5 Init init;

6 Ddx; # we don't need an instance name

7 Dix; # if an instance is only one of its

8 Os; # type in a composite implementation

9 Auth;

10 Util;

11 Font;

12 Framebuffer fb;

13 Mi;

14 Ext;

15 g

16 implement Init with c main f

17 ARCH = dec

18 DIR = ddx/$(ARCH)

19 FILE = init.c

20 g

21 implement Init with c main f

22 ARCH = sparc

23 MON = color

24 FILE = sparcInit.c

25 g

26 implement Init as f

27 ARCH = sparc

28 MON = mono

29 Init;

30 InitExt;

31 g

32 implement SubInit with c main f

33 ARCH = sparc

34 DIR = ddx/$(ARCH)

35 FILE = sunInitMono.c

36 g

37 implement InitExt with c func f

38 ARCH = sparc

39 DIR = ddx/$(ARCH)

40 FILE = sparcInitExtMono.c

41 g

42 implement Init with c main f

43 ARCH = sparc

44 MON = color

45 DIR = ddx/$(ARCH)

46 FILE = SparcInit.c

47 g

Figure 5.26: Package speci�cations for the X11 window server.

83

48 implement Ddx with c lib f

49 USE =

50 DEF =ddx

51 ARCH = dec

52 DIR = ddx/$(ARCH)

53 FILE = libddx.a

54 g

55 implement Ddx with c lib f

56 USE =

57 DEF =ddx

58 ARCH = sparc

59 DIR = ddx/$(ARCH)

60 FILE = libddx.a

61 g

62 implement Ddx with c lib f

63 USE =

64 DEF =ddx util

65 ARCH = x386

66 DIR = ddx/$(ARCH)

67 FILE = libddx.a

68 g

69 implement Dix with c lib f

70 USE =ddx util

71 DEF =dix

72 DIR = dix

73 FILE = libdix.a

74 g

75 implement Os with c lib f

76 USE =dix ddx

77 DEF =os

78 DIR = os

79 FILE = libos.a

80 g

81 implement Auth with c lib f

82 USE =

83 DEF =auth

84 DIR = Xauth

85 FILE = libau.a

86 g

87 implement Util with c lib f

88 USE =

89 DEF =util

90 DIR = ddx/mi

91 FILE = libXdmcp.a

92 g

93 implement Font with c lib f

94 USE =util

95 DEF =font

96 DIR = fonts

97 FILE = libfont.a

98 g

99 implement Framebuffer with c lib f

100 USE =font

101 DEF =fb

102 MTYPE = color

103 DIR = ddx/cfb

104 FILE = libcfb.a

105 g

106 implement Framebuffer with c lib f

107 USE =font

108 DEF =fb

109 MTYPE = monochrome

110 DIR = ddx/mfb

111 FILE = libmfb.a

112 g

113 implement Mi with c lib f

114 USE =fb

115 DEF =mi

116 DIR = mi

117 FILE = libmi.a

118 g

119 implement Ext with c lib f

120 USE =mi

121 DEF =ext

122 DIR = extensions

123 FILE = libext.a

124 g

Figure 5.27: Package speci�cations for the X11 window server (con't).

84

1 exec :

2 f

3 %

4 % set constraints on values of ARCH

5 % and MON attributes

6 %

7 ARCH==sparc

8 MON==mono

9 g

10 c main

11 f

12 USE=

13 DEF=

14 g

15 c libs

16 f

17 DEF=$2(DEFS)

18 g

19 c funcs

20 :f

21 CC=cc

22 #all: $1.APPNAME

23 #

24 #$1.APPNAME: $1.DIR/$1.FILE:r.o $3(OBJS)

25 # $(CC) -o $1.APPNAME $1.DIR/$1.FILE:r.o $3(OBJS) $2(LIBS)

26 #

27 #$1.DIR/$1.FILE:r.o: $1.DIR/$1.FILE

28 # $(CC) -c $1.DIR/$1.FILE

29 #

30 $2

31 $3

32 g

33 ;

34

35 c funcs : c func c funcs

36 [(OBJS) $2(OBJS) " " $1.DIR "/" $1.FILE:r ".o"]

37 :f

38 #$1.DIR/$1.FILE:r.o: $1.DIR/$1.FILE

39 # $(CC) -c $1.DIR/$1.FILE

40 #

41 $2

42 g

43 j

44 ;

45

46 c libs :

47 f

48 %

49 % establish constraint that USEs is a subset of DEFs

50 % to ensure that libraries are ordered correctly

51 %

52 USE @= $(DEF)

53 g

54 c lib

55 f

56 DEF = $(DEF) $1.DEF

57 g

58 c libs

59 [(LIBS) $2(LIBS) " " $1.DIR "/" $1.FILE]

60 j

61 ;

Figure 5.28: Rule speci�cations for the X11 window server example

85

1 exec :

2 f

3 %

4 % set constraints on values of ARCH

5 % and MON attributes

6 %

7 ARCH==dec

8 MON==color

9 g

10 c main

11 f

12 USE=

13 DEF=

14 g

15 c libs

16 f

17 DEF=$2(DEFS)

18 g

19 c funcs

20 :f

21 CC=cc

22 #all: $1.APPNAME

23 #

24 #$1.APPNAME: $1.DIR/$1.FILE:r.o $3(OBJS)

25 # $(CC) -o $1.APPNAME $1.DIR/$1.FILE:r.o $3(OBJS) $2(LIBS)

26 #

27 #$1.DIR/$1.FILE:r.o: $1.DIR/$1.FILE

28 # $(CC) -c $1.DIR/$1.FILE

29 #

30 $2

31 $3

32 g

33 ;

34

35 c funcs : c func c funcs

36 [(OBJS) $2(OBJS) " " $1.DIR "/" $1.FILE:r ".o"]

37 :f

38 #$1.DIR/$1.FILE:r.o: $1.DIR/$1.FILE

39 # $(CC) -c $1.DIR/$1.FILE

40 #

41 $2

42 g

43 j

44 ;

45

46 c libs :

47 f

48 %

49 % establish constraint that USEs is a subset of DEFs

50 % to ensure that libraries are ordered correctly

51 %

52 USE @= $(DEF)

53 g

54 c lib

55 f

56 DEF = $(DEF) $1.DEF

57 g

58 c libs

59 [(LIBS) $2(LIBS) " " $1.DIR "/" $1.FILE]

60 j

61 ;

Figure 5.29: Rule speci�cations for the X11 window server example

86

root 1

init

2 init c-main

initext c-func

c-main

c-main

c-main

ddx

c-lib

c-lib

c-lib

dix c-lib

os c-lib

auth c-lib

util

c-lib

font c-lib

fb c-lib

c-lib

mi c-lib

ext c-lib

exec

c-libsc-libs

c-libsc-libs

c-libsc-libs

c-libsc-libsc-libs

c-libs

c-funcs

c-funcs

F
i
g
u
r
e
5
.
3
0
:
P
r
o
d
u
c
t
i
o
n
g
r
a
p
h
f
o
r
t
h
e
X
W
i
n
d
o
w
s
s
e
r
v
e
r
(
f
o
r
S
u
n
w
o
r
k
s
t
a
t
i
o
n
)
.

8
7

root 1

init

2

init c-main

initext c-func

c-main

c-main

c-main

ddx

c-lib

c-lib

c-lib

dix c-lib

os c-lib

auth

c-lib

util c-lib

font

c-lib

fb c-lib

c-lib

mi c-lib

ext c-lib

exec

c-libsc-libs

c-libsc-libsc-libsc-libsc-libs

c-libsc-libs

c-libs

c-funcs

F
i
g
u
r
e
5
.
3
1
:
P
r
o
d
u
c
t
i
o
n
g
r
a
p
h
f
o
r
t
h
e
X
W
i
n
d
o
w
s
s
e
r
v
e
r
(
f
o
r
D
E
C
w
o
r
k
s
t
a
t
i
o
n
)
.

8
8

1 all: xserver

2

3 xserver: ddx/sparc/sparcInitMono.o ddx/sparc/sparcInitExtMono.o

4 cc -o xserver ddx/sparc/sparcInitMono.o ddx/sparc/sparcInitExtMono.o n

5 extensions/libext.a mi/libmi.a ddx/mfb/libmfb.a fonts/libfont.a n

6 ddx/mi/libXdmcp.a Xauth/libau.a os/libos.a dix/libdix.a n

7 ddx/sparc/libddx.a

8

9 ddx/sparc/sparcInitMono.o: ddx/sparc/sparcInitMono.c

10 cc -c ddx/sparc/sparcInitMono.c

11

12 ddx/sparc/sparcInitExtMono.o: ddx/sparc/sparcInitExtMono.c

13 cc -c ddx/sparc/sparcInitExtMono.c

Figure 5.32: Make�le speci�cation for the X Windows server (Sparc version).

1 all: xserver

2

3 xserver: ddx/dec/init.o

4 cc -o xserver ddx/dec/init.o extensions/libext.a n

5 mi/libmi.a ddx/mfb/libmfb.a fonts/libfont.a n

6 ddx/mi/libXdmcp.a Xauth/libau.a os/libos.a n

7 dix/libdix.a ddx/dec/libddx.a

8

9 ddx/dec/init.o: ddx/dec/init.c

10 cc -c ddx/dec/init.c

Figure 5.33: Make�le speci�cation for the X Windows server (DEC version).

89

Chapter 6

Conclusions

Software packaging o�ers seamless integration to developers of software systems whose components

are programmed in di�erent languages, are distributed, or whose application must be ported to

many execution environments. It is independent of any speci�c integration technology and ex-

tensible to include new technologies. Our use of this approach in our research has many current

applications and possible future directions.

6.1 Applications

Our case studies and examples allude to some uses of software packaging to solve problems of

heterogeneity and distribution when porting or con�guring an application. The following is a list

of possible application areas for software packaging. Our approach is extensible to many areas

of integration problems in computing systems. We summarize these uses and some additional

application areas for this technology.

6.1.1 Portability

By including alternate implementations of components and structuring an application so that only

a few components must be reimplemented, developers can minimize the cost of porting applications

between environments. Software packaging allows developers to organize applications in this fashion

independent from the way an application is integrated. Current methods do not separate these tasks

and embed the structure of a program within the integration steps.

6.1.2 Heterogeneity

The packager rules provided by the environment determine what types of \building blocks" are

compatible and how to bridge their di�erences in a runtime environment. Connections between

resource uses and their de�nitions can be manipulated abstractly without concern for their imple-

mentations. The packager determines the appropriate mechanism based on the total context of the

application's runtime environment. In this approach, connections are viewed as �rst-class entities

in order to promote their abstraction from implementation.

90

6.1.3 Distribution

Like the heterogeneous components, distributed components that execute on di�erent physical

processors at runtime in an application need bridges to connect with one another.

6.1.4 Version control

If we associate a VERSION attribute with a primitive implementation, we can view di�erent versions

of code as alternate implementations. Constraints within a package speci�cation and production

rules may restrict the choices of implementations to thise with the same version.

6.1.5 Genericity

So far, the target object type has been an executable object (exec), but we are not limited to

this situation. Libraries, documents, and databases can be packaged as well. For example, we

may package an existing executable with input and output �les to construct a single test in a test

suite. Di�erent \implementations" of the input and output components represent di�erent test

cases. Constraints on the input and output would ensure that the appropriate cases are matched

together.

6.2 Future Directions

Our experience with the software packager has shown that it is a useful tool that elides the integra-

tion problems in heterogeneous, distributed environments. It is extensible so that future integration

tools can be leverage when developed. We have plans to explore many avenues of integration gives

this tool. We brie
y summarize these areas.

6.2.1 Integration tools

Existing integration tools including OMG [OMG90] and Tk/Tcl can be incoporated into packaging

production rules to demonstrate extensibility of the approach.

6.2.2 Incremental integration

When a component is reimplemented, the entire package must be regenerated and the integration

must be build from the primitive implementations. An incremental approach is needed to reduce

the costs of repackaging an application.

6.2.3 Graphical speci�cation

A few developers who have used Package speci�cations have remarked that it is useful to visualize

the structure graph when designing their applications, but the textual language does not provide

the appropriate views. Several graphical tools have been developed to construct structure graphs

through direct manipulation but none of these has been satisfactory to date. The reasons for this

is primarily that the structure graph formalism itself was under evolution. A new graphical tool is

needed to provide the visualization required by programmers.

91

6.2.4 Portability metrics

Since well-structured applications are modularized in such a way that reimplementation of a com-

ponent has a low impact on the system as a whole, we suggest that portability can be quanti�ed

through measurements on software structure graphs. Such metrics would support claims of porta-

bility with values and give programmers guidelines during development regarding their design.

The software packager was built primarily to help integrate heterogenous, distributed programs

in a fashion that hides the details of integration from the programmer. This was done to allow the

programmer greater freedom in exploring alternate implementations quickly for prototyping. Our

approach meets this requirement and opens up new areas of design methods.

6.3 Summary

Programming-in-the-large has long been a vision of many programmers who have wished to reuse

existing software components by combining them together in a modular fashion, but are stopped

by the barriers of heterogeneity. Con�guration programming languages and IPC mechanisms allow

developers to combine existing software into new applications at a modular level, but they rely

on the programmer's knowledge of the component types and the capabilities of integration tools.

The result is that the integration itself is a complex programming task that is just as di�cult as

programming-in-the-small.

Software packaging promotes the view of a software application as a modular collection of

subsystems and alternate implementations. This view is practically applicable and in agreement

with current experiences of software developers. Most software products that are portable and

con�gurable in heterogeneous, distributed environments have mutliple implementations and are

structured in a modular fashion to isolate dependencies with the design.

It is di�cult to show that a programming language is abstract insofar that convenience to the

programmer is increased. Convenience is de�ned loosely in terms of how \terse" it is for the pro-

grammer to specify a solution. The best we can hope to do is show that a new approach is more

convenient than existing methods. Software packaging reduces the amount of work programmers

must do to integrate applications in heterogeneous, distributed environments. By dealing with con-

nections abstractly and using software packaging to infer how to implement the connections and

select compatible implementations, the software developer reduces the amount of work necessary

and reuses the bridges built by other developers. Software packaging also allows disparate applica-

tions to be composed and speeds the sythesis of new applications. Previous methods provided much

of the integration technology, but left the programmer to specify the use of these tools explicitly.

Software packaging relates such tools to the integration processes in an environment.

Software packaging embraces diversity and allows developers focus on composing di�erent pro-

grams while ignoring incompatibilities that exist between them. This is important when changing

the con�guration of an application: porting it to new platforms, adding new implementations of

components or features, and distributing it across a network of computers. This transparency, pre-

viously available only in homogeneous software development environments, is of most value when

prototyping new applications from existing software. Often, prototype applications consist of ex-

isting programs that have been "patched" together. If the prototype is viable, components may be

reimplemented so that they are more tightly bound together in a runtime con�guration.

Finally, software packaging represents an extensible framework for software integration. It does

92

not favor any particular environment, protocol, or programming language. Such mechanisms must

be available, however, in order to integrate any application. This permits specialized tools to coexist

and bridges to be built when more general standards do not exist. As new standards and tools are

developed, the packager rules can be updated and existing applications can be repackaged.

93

Chapter 7

Glossary

The following is a list of terms and their de�nitions that introduced and used in this text.

abstract manufacture graph Integration processes in an execution environment characterized

by production rules.

binding A binding is an instance of a bind connector between two ports (between module in-

stances) in a composite implementation.

bridge Variant of wrapper. Term used loosely to describe implementation of a connection between

two module instance ports. A bridge typically involves distributed components.

class A description of a structure in a Package speci�cation.

component Any software artifact | an executable program, source �le, services, etc.

composite implementation A Package speci�cation unit that implements a module with a

subsystem of module instances and connections between ports of those module instances.

connector A connector is any link that associated two or more module instance ports in a com-

posite implementation.

converter A bridge that provides data conversion.

glue A stub or wrapper that implements a set of connectors.

implementation See primitive and composite implementations.

integrate To transform and combine.

item[integration process] The sequence (i.e., partial order) of tool invocations necessary to

build a new software artifact from existing components.

instance See module instance.

manufacture graph See software manufacture graph.

module A \black box" that is described by a name, parameters, attributes, and ports.

94

module instance A copy of a module that is a member of a subsystem (within a composite

implementation).

object An object is a declaration of an implementation type. File extensions are primitive object

types in many current programming environments.

package A collection of software components, their interconnections, stubs, wrappers, and instruc-

tions needed to build the target system in a particular environment.

port A resource required or de�ned by a module.

port type A type of resource required or de�ned by a module. Some types of ports include use,

def, snk (for asynchronous data \sink"), and src (for asychronous data \source").

primitive implementation A primitive implementation corresponds to a piece of source code,

an existing service, or any base type of object that cannot be described as a composite of

more primitive components in a programming environment.

production graph See software production graph.

seam Additional software needed to integrate software components.

item[software manufacture graph] Characterizes a speci�c integration process (i.e., partial

order).

software production graph Union of a software structure graph and a software manufacture

graph joined at the primitive implementation level.

software structure graph Description of the logical structure of a software artifact in terms of

its (possibly multiple) implementations.

structure graph See software structure graph.

stub Additional code (usually generated from speci�cations) needed by remote procedure call

(RPC) to perform bookkeeping and communications in distributed programming.

wrapper Additional code used to transform existign software component to a particular execution

context.

95

Bibliography

[Apol83] Apollo Computer Inc., The Network Interface De�nition Language, NIDL-1, Cupertino,

CA, September 1983.

[BaBG88] Batory, D., J. Barnett, J. Garza, K. Smith, K. Tsukuda, B. Twichell, and T. Wise,

GENESIS: An Extensible Database Management System, IEEE Transactions on Soft-

ware Engineering, November 1988, Volume 14, Number 11, pp. 1711-1730.

[Begu90] Beguelin, A., The Parallel Virtual Machine (PVM) Environment, Oak Ridge National

Laboratory Technical Report ORNL/TM-11826, July 1991.

[Bers84] Berso�, E., Elements of Software Con�guration Management, IEEE Transactions on

Software Engineering, January 1984, Volume 10, Number 1, pp. 79-87.

[BiFo88] Bisiani, R. and A. Forin, Multilanguage Parallel Programming of Heterogeneous Ma-

chines, IEEE Transactions on Computers, August 1988, Volume 37, Number 8, pp.

930-945.

[BLLN85] Black, A., E. Lazowska, H. Levy, D. Notkin, J. Sanislo, J. Zahorjan, An Approach

to Accommodating Heterogeneity, University of Washington Department of Computer

Science Technical Report TR-85-10-04, October 1985.

[BHJL87] Black, A., N. Hutchinson, E. Jul, H. Levy, and L. Carter, Distribution and Abstract

Types in Emerald, IEEE Transactions on Software Engineering, January 1987, Volume

13, Number 1, pp. 65-76.

[Bloo91] Bloomer, J., RPC, O'Reilly and Associates, Sebastopol, CA, 1991.

[Bori89] Borison, E., ProgramChanges and the Cost of Selective Recompilation, Carnegie Mellon

University, Ph.D. Thesis, July 1989.

[CaPu90] Callahan, J. and J. Purtilo, A Packaging System for Heterogeneous Execution En-

vironments, University of Maryland Computer Science Department Technical Report

CS-TR-2542, October 1990.

[CaPu91] Callahan, J. and J. Purtilo, A Packaging Systems for Heterogeneous Execution Envi-

ronments, IEEE Transactions on Software Engineering, June 1991, Volume 17, Number

6, pp. 626-635.

[Coop79] Cooprider, L., The Representation of Families of Software Systems, Carnegie Mellon

University Computer Science Department, Ph.D. Thesis, January 1979.

96

[CrWW80] Cristofor, E., T. Wendt, and B. Wonsiewicz, Source control + tools = stable systems,

in Proceedings of the 4

th

Computer Science and Applications Conference, Octiber 1980,

pp. 527-532.

[DeKr76] DeRemer, F. and H. Kron, Programming-in-the-large versus Programming-in-the-small,

IEEE Transactions on Software Engineering, June 1976, Volume 2, Number 6, pp. 80-

86.

[ELNS92] Engels, G., C. Leweentz, M. Nagl, W. Schafer, and A. Schurr, Building Integrated

Software Development Environments Part I: Tool Speci�cation, ACM Transactions on

Software Engineering and Methodology, April 1992, Volume 1, Number 2, pp. 135-167.

[ErPe84] Erickson, V. and J. Pellegrin, Build: A Software Construction Tool, AT&T Bell Labo-

ratories Technical Journal, July-August 1984, Volume 63, Number 6, pp. 12-22.

[FeDD88] Feiler, P., S. Dart, and G. Downey, Evaluation of the Rational Environment, Carnegie

Mellon University School of Computer Science Technical Report CMU/SEI-88-TR-15,

July 1988.

[Feld79] Feldman, S., Make: A Program for Maintaining Computer Programs, Software Practice

and Experience, April 1979, Volume 9, Number 4, pp. 255-265.

[Fowl85] Fowler, G., The Fourth Generation Make, in Proceedings of the USENIX Conference

| Summer '85, June 1985, pp. 159-174.

[GaKN92] Garlan, D., G. Kaiser, D. Notkin, Using Tool Abstraction to Compose Systems, IEEE

Computer, June 1992, Volume 25, Number 6, pp. 30-38.

[Gele85] Gelernter, D., Generative Communication in Linda, ACM Transactions on Program-

ming Languages and Systems, January 1985, Volume 7, Number 1, pp. 80-112.

[Gibb87] Gibbons, P., A Stub Generator for Multilanguage RPC in Heterogeneous Environments,

IEEE Transactions on Software Engineering, January 1987, Volume 13, Number 1, pp.

77-87.

[Gorl90] Gorlen, K., S. Orlow, and P. Plexico, Data Abstraction and Object-Oriented

Programming in C++, John Wiley & Sons, New York, NY, 1990.

[HaWe91] Harms, D. and B. Weide, Copying and Swapping: In
uences on the Design of Reusable

Software Components, IEEE Transactions on Software Engineering, May 1991, Volume

17, Number 5, pp. 424-435.

[HeLi82] Herlihy, M. and B. Liskov, A Value Transmission Method for Abstract Data Types,

ACM Transactions on Programming Languages and Systems, October 1982, Volume 4,

Number 4, pp. 527-551.

[Herl80] Herlihy, M., TransmittingAbstract Values in Messages, Massachusetts Institute of Tech-

nology, Ph.D. Thesis, 1980.

[Hoar85] Hoare, C.A.R., Communicating Sequential Processes, Prentice Hall, Englewood

Cli�s, NJ, 1985.

97

[Hume87] Hume, A., Mk: A Successor to Make, in Proceedings of the USENIX Conference Sum-

mer 1987, June 1987, pp. 445-457.

[JoRT85] Jones, J., R. Rashid, M. Thompson, Matchmaker: An interface speci�cation language

for distributed processing, in Proceedings of the ACM Symposium on Principles of

Programming Languages, January 1985, pp. 225-235.

[KaHa83] Kaiser, G. and A. Habermann, An Environment for System Version Control, in Pro-

ceedings of the COMPCON Spring '83, February 1983, pp. 415-420.

[Lern91] Lerner, R., Specifying Objects of Concurrent Systems, Carnegie Mellon University

School of Computer Science, Ph.D. Thesis, May 1991.

[Lewi83] Lewis, B., Experience with a System for Controlling Software Versions in a Distributed

Environment, in Proceedings of the Symposium on Application and Assessment of Au-

tomated Tools for Software Development, November 1983, pp. 210-219.

[MaKS89] Magee, J., J. Kramer, and M. Sloman, Constructing Distributed Systems in Conic,

IEEE Transactions on Software Engineering, June 1989, Volume 15, Number 6, pp.

663-675.

[MaLa89] Mahler, A. and A. Lampen, An Integrated Toolset for Engineering Software Con�gura-

tions, in Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Sympo-

sium on Practical Software Development Environments, November 1988, pp. 191-200.

[McNu91] McNutt, D., Imake: Friend or Foe?, SunExpert, November 1991, Volume 2, Number 11,

pp. 46-50.

[NaSc87] Narayanaswamy, K. and W. Scacchi, Maintaining Con�gurations of Evolving Software

Systems, IEEE Transactions on Software Engineering, March 1987, Volume 13, Number

3, pp. 324-334.

[Nels81] Nelson, B., Remote Procedure Call, Carnegie Mellon University Department of Com-

puter Science, Ph.D. Thesis, May 1981.

[Nels91] Nelson, G., Systems Programming with Modula-3, Prentice Hall, Englewood

Cli�s, NJ, 1991.

[Notk90] Notkin, D., Proxies: A Software Structure for Accommodating Heterogeneity, Software

Practice and Experience, April 1990, Volume 20, Number 4, pp. 357-364.

[NoBL88] Notkin, D., A. Black, E. Lazowska, H. Levy, J. Sanislo, J. Zahorjan, Interconnecting

Heterogeneous Computer Systems, Communications of the ACM, March 1988, Volume

31, Number 3, pp. 258-273.

[OMG90] Object Management Group Inc., Object Management Architecture Guide 1.0, OMG

TC Document 90.9.1, 492 Old Connecticut Path, Framingham, MA 01701.

[Parn72] Parnas, D., On the Criteria To Be Used in Decomposing a System into Modules, Com-

munications of the ACM, December 1972, Volume 15, Number 12, pp. 1053-1058.

98

[Perr89] Perry, D., The Inscape Environment, in Proceedings of the IEEE 11th International

Conference on Software Engineering, May 1989, pp. 2-12.

[PuCa89] Purtilo, J. and J. Callahan, Parse Tree Annotations, Communications of the ACM,

December 1989, Volume 32, Number 12, pp. 1467-1477.

[Purt85] Purtilo, J., Polylith: An Environment to Support Management of Tool Interfaces, in

Proceedings of the ACM SIGPLAN Symposium on Language Issues in Programming

Environments, (Seattle, WA, June 25-28 1985), pp. 12-18.

[Reis90] Reiss, S., Connecting Tools Using Message Passing in the Field Environment, IEEE

Software, July 1990, Volume 7, Number 4, pp. 57-66.

[Smit91] Smith, D., Make, O'Reilly and Associates, Sebastopol, CA, 1991.

[Snod89] Snodgrass, R., The Interface Description Language, Computer Science Press,

Rockville, MD, 1989.

[StGi90] Stamos, J. and D. Gi�ord, Implementing Remote Evaluation, IEEE Transactions on

Software Engineering, July 1990, Volume 16, Number 7, pp. 710-722.

[StKH86] Staudt, B., C. Krueger, A. Habermann, V. Ambriola, The GANDALF System Reference

Manuals, Carnegie Mellon University School of Computer Science Technical Report

CMU-CS-86-130, May 1986.

[Stra92] Strassmann, P., The Future Strategy of DoD's Computer Czar,Washington Technology,

July 30, 1992, pp. 21-28.

[Stro86] Stroustrup, B., The C++ Programming Language, Addison-Wesley, Reading, MA,

1986.

[Sun85a] Sun Microsystems Computer Corp., External Data Representation Reference Manual,

, Mountain View, CA, January 1985.

[Sun85b] Sun Microsystems Computer Corp., Remote Procedure Call Protocol Speci�cation, ,

Mountain View, CA, January 1985.

[Sun89] Sun Microsystems Computer Corp., The Network Software Environment, NSE, Moun-

tain View, CA, 1989.

[Sutt91] Sutton, S., D. Heimbigner, L. Osterweil, Managing Change in Software Development

Through Process Programming, University of Colorado Technical Report CU-CS-531-

91, June 1991.

[SwBa82] Swartout, W. and R. Balzer, On the Inevitable Intertwining of Speci�cation and Im-

plementation, Communications of the ACM, July 1982, Volume 25, Number 7, pp.

438-440.

[Terr87] Terry, D., Caching Hints in Distributed Systems, IEEE Transactions on Software En-

gineering, January 1987, Volume 13, Number 1, pp. 48-54.

99

[Vera89] The Sema Group, The Software Bus | its Objective: the Mutual Integration of Dis-

tributed Software Engineering Tools, PCTE-114, Trafalgar House, Rich�eld Ave., Read-

ing, Berkshire RG18QA, UK, May 1989.

[Tich80] Tichy, W., Software Development Control Based on System Structure Description,

CarnegieMellon University Computer Science Department, Ph.D. Thesis, January 1980.

[WaHK88] Waite, W., V. Heuring, and U. Kastens, Con�guration Control in Compiler Construc-

tion, in Proceedings of the International Workshop on Software Version and Con�gu-

ration Control, January 1988, pp. 159-168.

[Wall87] Wall, L., Con�guring the X11 Window System, in Proceedings of the USENIX Summer

1987, July 1987, pp. 161-190.

[Wegn90] Wegner, P., Object Oriented Programming, OOPS Messenger, November 1990, Volume

1, Number 4, pp. 3-54.

[WeOZ91] Weide, B., W. Ogden, S. Zweben, Advances in Computers: Reuable Software

Components, Academic Press, New York, NY, 1991.

[Weis90] Weiser, M., PCR: The Portable Common Runtime Environment, Software Practice and

Experience, May 1990, Volume 18, Number 5, pp. 112-130.

[Xero81] Xerox Corp., Courier: The Remote Procedure Call Protocol, XSIS 038112, Stamford,

CT 06904, December 1981.

100

