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Integrated assessment models (IAMs) are essential analytical tools in climate change 

science. There is wide recognition of the need of credible IAM scenarios for guidance 

on developing climate change mitigation and adaptation measures. This dissertation 

employs the Global Change Analysis Model (GCAM), a state-of-the-art IAM, in three 

studies that develop meaningful scenario analyses of climate change mitigation and 

impacts to address key gaps in the contemporary IAM research. The first study deals 

with the challenge of reconciling mitigation strategies consistent with the Paris 

Agreement climate goals with constraints on energy-water-land (EWL) resources. The 

study highlights the fact that mitigation strategies can have unintended repercussions 

for the EWL sectors, which can undermine their overall effectiveness. In Latin 

American countries used as case studies, increased water demands for crop and biomass 



  

irrigation and for electricity generation stand out as potential trade-offs resulting from 

climate mitigation policies. The second study demonstrates that scenarios that explore 

the consequences of climate change impacts on renewable energy for the electric power 

sector need to adopt a comprehensive modeling approach that accounts for climate 

change impacts in all renewables. Using such an approach, the findings from this study 

show that climate impacts on renewables can result in additional capital investment 

requirements in Latin America. Conversely, accounting for climate impacts only on 

hydropower – a primary focus of previous studies – can significantly underestimate 

investment estimates, particularly in scenarios with high intermittent renewable 

deployment. The last study demonstrates that GCAM projections of solar photovoltaics 

and wind onshore electricity generation can be largely affected by methodological 

uncertainties in the computation of global renewable energy potentials – used to 

produce resource cost-supply curves that are key input assumptions to IAMs. 

Consequently, the role of these renewables in the modeled long-term scenarios can be 

under- or overestimated with potential implications for decision-making on energy 

planning, climate change mitigation and on the adaptation efforts to climate impacts on 

these renewables. The three studies encompass questions that have received little or no 

attention by the IAM community, and contribute with relevant approaches and insights 

that offer improvements relative to prior analyses. Importantly, these results help to 

enhance the value of GCAM scenarios to decision-making and identify research 

opportunities that might help improve GCAM as well as other IAM projections. 
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Chapter 1: Introduction 

 

1.1 Overview of Integrated Assessment Models 

Integrated assessment models (IAMs) can be defined as analytical tools that 

describe the most relevant interactions between environmental, social and economic 

factors that determine future climate change and the effectiveness of climate policy to 

derive policy-relevant insights (van Vuuren et al. 2011a). Their strengths lie on their 

representation of multiple systems in a single, integrated computational platform, their 

focus on interactions, and on the fact that they allow global-scale simulations that span 

the end of the 21st century at very low computational costs. The latter is achieved with 

simplifications and parameterized modeling approaches that capture the most relevant 

processes, but at the expense of less detailed representations of the modeled systems 

compared to sector- or process-specific models. IAMs are particularly useful to explore 

how the future might evolve under a particular set of conditions, how the system might 

change under the influence of external factors, and to understand uncertainties under a 

wide range of possible futures (Calvin et al. 2019). 

IAMs produce long-term quantitative scenarios based on a number of input 

assumptions such as population and economic growth, resource supplies, technology 

costs, technological change and mitigation policy. Typical IAM outputs include energy 

and land-use transitions and emissions trajectories with decision-making based on 

economics (e.g., prices affecting competition among individual choices). A 
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fundamental characteristic is that IAMs tend to minimize the aggregate economic costs 

of achieving mitigation (Clarke et al. 2014). 

  IAMs have been of utmost importance by producing socioeconomic scenarios 

– e.g., the Shared Socioeconomic Pathways (SSPs) (Riahi et al. 2017)) – and 

greenhouse gas emissions scenarios – e.g., the Representative Concentration Pathways 

(RCPs) (van Vuuren et al. 2011b) – that are the backbone of the current climate change 

research. For example, greenhouse gas emissions scenarios are required as input to the 

state-of-the-art General Circulation Models (GCMs) that provide projections of the 

future climate. In addition, IAM scenarios have played a central role in the assessment 

of mitigation pathways in the Intergovernmental Panel on Climate Change (IPCC) Fifth 

Assessment Report (AR5) (Clarke et al. 2014).  

Over time, IAMs have been required to address questions of larger complexity 

due to concerns about climate change impacts, and to increasing awareness on 

challenges related to simultaneous changes in multiple sectors and to the important 

linkages between mitigation and adaptation (Fisher-Vanden and Weyant 2020). Figure 

1.1, taken from Fisher-Vanden and Weyant 2020, highlights many of the key recent 

needs in IAM development. According to these authors, current IAM frameworks need 

to include greater physical system detail (that can consider, for example, climate 

information from earth system models), feedbacks between component models, and 

finer resolution (spatial, temporal, and sectoral) to be more useful to decision-making 

on mitigation and adaptation policy. This work also highlights the increased demand 

for country-level analyses of mitigation strategies after the 2015 Paris Agreement and 

for information on ‘nonclimate change–related metrics’ (e.g., air quality, water 
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availability and quality, food security) motivated by the United Nations Sustainable 

Development Goals. 

 

Figure 1.1 Key components of an integrated system within a contemporary integrated 

assessment framework. Source: Fisher-Vanden and Weyant 2020. 

 

1.1.1 The Global Change Analysis Model (GCAM) 

A prominent model within the IAM community is the Global Change Analysis 

Model (GCAM), formerly known as Global Change Assessment Model. GCAM has 

contributed significantly to the climate science by producing the RCP4.5 (Thomson et 

al. 2011) and the SSP4 storyline (Calvin et al. 2017).  
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GCAM is a global IAM that simulates the evolution of five key systems 

(socioeconomics, energy, agriculture and land, water and climate) and their interactions 

over time. The core modeling framework couples: (1) a technology-detailed energy 

model with representations of supplies and demands;  (2) a land and agricultural 

submodule that provides projections of commodity supply and prices as well as land 

use and cover changes; (3) a water module that tracks demands in six major sectors, 

and represents supplies based on global estimates of current and future water 

availability from three main sources – renewable water, non-renewable groundwater, 

and desalinated water – for all major river basins of the world; and (4) the reduced-

complexity climate model Hector (Hartin et al. 2015).  

The driver of demands within the model is the human system, i.e., population 

and gross domestic product (GDP) growth assumptions, upon which the future 

evolution of energy, water and land sectors depend. On top of socioeconomics, a range 

of mitigation policies, climate impact inputs, technology choices, among other 

assumptions can be added within the scenarios set-up. Given limits imposed by its 

inputs (costs, technological progress, efficiencies, availability of resources, etc.), 

GCAM iteratively searches for the set of prices that equilibrates supplies and demands 

in all sectors. This process aims at finding a solution that minimizes costs or maximizes 

profits (in the case of the land sector). However, decision-making in GCAM relies on 

a logit formulation, a statistically-based representation of competition among multiple 

options (Clarke and Edmonds 1993), in which preference among competing objects 

depend on their costs or expected profit rates (Calvin et al. 2019). As a result, the largest 

shares of markets are allocated to the least-cost or most profitable options, but the other 
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higher-priced or less profitable options also gain some market share. This avoids that 

the single best choice captures the entire market, which is unrealistic. Further details 

on GCAM will be provided throughout this dissertation. 

1.2 Rationale of the dissertation and research questions 

GCAM has a long tradition of contributions focusing on the analysis of long-

term energy system transformation pathways needed for climate change mitigation 

such as those analyzed in the IPCC AR5. In line with the recent development trends 

highlighted by Fisher-Vanden and Weyant 2020, GCAM has evolved in complexity to 

also investigate questions related to climate change impacts, notably on energy demand 

(Clarke et al. 2018), energy supply – hydropower (Turner et al. 2017), water supply 

(Graham et al. 2020a; Graham et al. 2020b; Khan et al. 2020) and agriculture (Kyle et 

al. 2014); and to the cross-sectoral energy-water-land ‘nexus’ research (Khan et al. 

2020; Santos Da Silva et al. 2019).  

This dissertation contributes to these recent research efforts by examining 

questions relevant within the present scope of IAM research but virtually unexplored 

by prior studies. This study focuses on questions pertaining to climate change 

mitigation and impacts that can (1) enhance the value of GCAM scenarios to decision-

making, and (2) identify opportunities for improvements in GCAM projections. 

Specifically, this dissertation uses GCAM to target angles and approaches that provide 

new perspectives to traditional analyses (Chapters 2 and 3), and highlight unexplored 

sources of uncertainties that open new research directions (Chapter 4). Although the 

three studies are distinctive in their own scope and approach, they are tied into one 

another through the analysis of climate change mitigation and impacts. 
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The first analysis (Chapter 2) addresses one of the recent research questions 

IAMs are being employed to answer, i.e., how further knowledge concerning the 

interdependencies across sectors can contribute to decision-making in climate change 

mitigation. Specifically, this study deals with the challenge of reconciling mitigation 

strategies consistent with the Nationally Determined Contributions (NDCs) (major 

components of the Paris Agreement) with constraints on the energy-water-land (EWL) 

resources in Latin America. The relationship between NDCs and EWL resource 

systems had not been addressed by previous studies examining NDCs implications. 

Results show that the implementation of mitigation strategies might result in critical 

country-level trade-offs within the EWL nexus systems domain. The key research 

question addressed in the study is: What type of implications might be triggered by 

NDC mitigation strategies in line with the climate goals of the Paris Agreement on 

the EWL nexus resource systems in Latin America? 

The second study (Chapter 3) shares the same long-term mitigation goal (2oC) 

as in Chapter 2, but the modeling approach is enhanced to account for climate change 

impacts on all renewables. Climate impacts accounted for in this study include effects 

on solar and wind energy that have been largely absent from the IAM literature. Using 

this improved modeling capability, the analysis is the first to investigate key 

consequences of climate impacts on renewables for the Latin American power-system 

and the implications for capital investment requirements in the electricity sector. The 

analysis is framed on contrasting implications resulting from distinct IAM modeling 

approaches: the representation of climate impacts on all renewables versus impacts 

only on hydropower – a major focus of prior IAM studies. Specific research questions 



 

7 
 

to be addressed are: What are the implications of climate impacts on renewables on 

the electricity sector in Latin America in terms of electricity generation and capital 

investment requirements? How do these implications change under alternative 

energy technology pathways and modeling approaches? 

Chapter 4 builds on recently published methods outlined in Chapter 3 that 

incorporate climate impacts on solar and wind sources in IAMs, i.e., the computation 

of solar and wind technical potentials that are used to produce resource-cost supply 

curves (curves that map the relationship between the availability of the renewable 

resource and energy production costs). The analysis is the first to demonstrate how 

GCAM projections can be largely under or overestimated due to the uncertain 

methodological assumptions on the computation of these renewable potentials. These 

results have large implications for the entire IAM community because the resource 

cost-supply curves produced from solar and wind technical potentials are important 

input assumptions to many IAMs. Research questions addressed in this analysis are: 

What are the implication of key parametric uncertainties in the computation of 

renewable energy potentials for GCAM solar and wind electricity production? Which 

parameters drive the largest changes? What are the potential implications for 

decision-making on climate change mitigation and impacts? 

1.3 Dissertation Structure 

This dissertation is structured as follows. Chapter 1 provides a broad overview 

of integrated assessment models (IAMs) and GCAM, and describes the research 

questions and rationale behind this dissertation. Chapters 2─4 describe each of the three 

studies that answer the posed research questions. Chapters 2 and 3 use the Latin 
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America and Caribbean (LAC) region as a case-study region although similar analyses 

can be extended to other regions. Chapter 4 has a global scope, but could be used as a 

basis for follow-on regional studies. The findings of Chapters 2 and 3 are published in 

peer-reviewed journals, Plos One (Santos Da Silva et al. 2019) and Nature 

Communications (Santos da Silva et al. 2021),  respectively. Chapter 4 is in preparation 

for submissions to a journal. Relevant supplementary materials from published 

Chapters are provided in Appendices. The dissertation is closed by some concluding 

remarks, a summary of the overall findings and suggested directions for future work. 
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Chapter 2: The Paris pledges and the energy-water-land nexus in 

Latin America: exploring implications of greenhouse gas 

emission reductions (Santos Da Silva et al. 2019) 
 

2.1 Abstract 

In the 2015 Paris Agreement, nations worldwide pledged emissions reductions 

(Nationally Determined Contributions - NDCs) to avert the threat of climate change, 

and agreed to periodically review these pledges to strengthen their level of ambition. 

Previous studies have analyzed NDCs largely in terms of their implied contribution to 

limit global warming, their implications on the energy sector or on mitigation costs. 

Nevertheless, a gap in the literature exists regarding the understanding of implications 

of the NDCs on countries’ energy-water-land nexus resource systems. This chapter 

explores this angle within the regional context of Latin America by employing the 

Global Change Assessment Model, a state-of-the-art integrated assessment model 

capable of representing key system-wide interactions among nexus sectors and 

mitigation policies. By focusing on Brazil, Mexico, Argentina and Colombia, potential 

implications on national-level water demands are stressed depending on countries’ 

strategies to enforce energy-related emissions reductions and their interplays with the 

land sector. Despite the differential implications of the Paris pledges on each country, 

increased water demands for crop and biomass irrigation and for electricity generation 

stand out as potential trade-offs that may emerge under the NDC policy. Hence, this 

study underscores the need of considering a nexus resource planning framework in the 

forthcoming NDCs updating cycles as a mean to contribute toward sustainable 

development. 
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2.2 Introduction 

The “Nexus Approach” was defined by Hoff 2011 as a conceptual paradigm to 

tackle the inherent linkages among the energy, water, food and land sectors. This novel 

concept has helped to identify critical barriers to a more efficient governance across 

sectors in light of the escalating human demands and climate change.  

Particularly in Latin America, interest in nexus issues has been motivated by 

some key domestic characteristics: great dependence on the water supply (abundant in 

total, albeit with large spatial and temporal heterogeneities) that can transfer climate 

change impacts to several sectors, importance of agriculture to local economies (whose 

expansion has been historically based on excessive exploitation of natural resources), 

and lower adaptive capacity to climate change compared to developed economies.   

Given the multitude of nexus interconnections occurring in a wide range of 

temporal and spatial scales, a growing body of literature has recognized that 

governance of nexus resources should evolve from the current view centered on only 

one or two of these sectors toward an integrated nexus approach of planning and 

management. Such paradigm aims at ensuring economic and resource efficiency, 

avoiding unintended competition for nexus resources, and capturing vulnerabilities 

across the three systems (Bazilian et al. 2011; Howells et al. 2013; Miralles-Wilhelm 

2016). 

While general awareness of nexus issues has increased throughout this decade, 

a major societal concern has been how to overcome the challenge of significantly 

curbing anthropogenic GHG emissions by the end of the 21st century. In this sense, the 

2015 Paris Climate Agreement brought the United Nations Framework Convention on 
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Climate Change (UNFCCC) member states to put forward actions to keep global 

warming well below 2°C above pre-industrial levels and to pursue further efforts 

toward a 1.5°C increase limit (United Nations 2015a). To this end, the UNFCCC 

members have submitted their “Intended Nationally Determined Contributions” 

(INDCs), in which Parties voluntarily expressed their post-2020 emissions reduction 

targets. A key aspect of the agreement is the inclusion of a framework for the regular 

updating of the Nationally Determined Contributions (NDCs) (official INDCs 

designation after ratification of the agreement) every 5 years to strengthen their level 

of ambition.  

Within this context, Latin America is globally relevant due to: the large share 

of land-sector emissions (the region accounted for about 20% of global net emissions 

from Agriculture, Forestry and Other Land Uses (AFOLU) in 2014; (FAO 2018a)); as 

well as the prospects of growing energy-related emissions in the forthcoming decades 

(van Ruijven et al. 2016). Among the major regional economies, Brazil’s NDC states 

the commitment to reduce all GHG emissions by 37% in 2025 and 43% in 2030 relative 

to 2005 levels. Mexico has committed to a reduction of 22% in all GHGs below a 

business-as-usual (BAU) scenario for the year 2030. Likewise, Argentina has 

committed to a target of 18% reduction in all GHGs below BAU for 2030 whereas 

Colombia announced a 20% reduction in all GHGs below BAU for 2030.  Regarding 

the forestry sector, Brazil and Mexico intend to adopt measures to conserve and reforest 

ecosystems and to reach a rate of zero illegal deforestation by 2030. Along similar lines, 

Colombia’s NDC indicates a commitment to reduce deforestation and to preserve 

important natural ecosystems whereas Argentina is planning actions related to the 
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promotion of sustainable forest management. It is worth mentioning that Brazil, which 

explains the bulk of the regional AFOLU emissions trend, has shown progress by 

cutting deforestation in the Legal Amazon by 75% between 2004 and 2017 (PRODES-

INPE 2018).  

In light of the Latin American NDCs, the understanding of how these pledges 

can affect the interdependencies among nexus systems is essential to inform coherent 

policy-making. This study explores potential implications of the Paris pledges on the 

nexus sectors in Argentina, Brazil, Colombia and Mexico. The analysis is carried out 

within the framework of the Global Change Assessment Model (GCAM) (Wise et al. 

2009), a state-of-the-art integrated assessment model (IAM), which accounts for the 

physical, economic and social domains as well as cross-sectoral interactions.  

Previous studies have assessed NDCs largely from the point of view of their 

collective contribution to limit global warming (Fawcett et al. 2015; Rogelj et al. 2016), 

in terms of their implications on the energy sector (Postic et al. 2017) or on mitigation 

costs (Hof et al. 2017; Iyer et al. 2015b). At the same time, the nexus literature has 

evolved from a conceptual framework (Ringler et al. 2013) to the recent development 

and use of analytical approaches to assess and analyze interactions. A recent literature 

review (Albrecht et al. 2018) identified that quantitative methods to address nexus 

issues are still limited (less than one third of the literature assessed), revealing a critical 

need for the development and application of appropriate quantitative methods and tools 

that can support the integrated decision-making. Recognizing that few tools have 

capabilities to address nexus linkages while allowing the explicit modeling of the Paris 

pledges, this study relies on a robust self-consistent integrated framework to produce 
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insights unexplored in previous works that assessed NDCs. That is, this study explores 

national level implications of NDCs in the major Latin American economies within a 

nexus perspective that seeks to highlight the inseparable links between sectors while 

drawing attention to the emergence of potential macro-scale trade-offs among systems. 

Bearing in mind the close links between the nexus concept and the 2030 Agenda for 

Sustainable Development (United Nations 2015b), in which climate action, energy, 

water and food securities are pivotal elements, it is therefore becoming clear that nexus 

trade-offs can undermine the full attainment of the Sustainable Development Goals 

(SDGs).  

2.3 Scenario analysis      

2.3.1 GCAM model 

Here, a general description of the essential aspects of GCAM v4.3 relevant for 

the purposes of the present study is provided. A more comprehensive description of the 

model is available on the GCAM documentation (https://jgcri.github.io/gcam-

doc/v4.3/toc.html).  

Along the socioeconomics system, population and labor productivity 

assumptions are used to derive GDP in each region, which, in turn, drive the regional 

economic activity, as well as a large chain of interconnected processes and demand 

responses in the other systems. Within a market equilibrium economic framework, 

GCAM represents the global economy by disaggregating the world in 32 geopolitical 

regions. Latin America and the Caribbean region (henceforward LAC), in particular, is 

https://jgcri.github.io/gcam-doc/v4.3/toc.html
https://jgcri.github.io/gcam-doc/v4.3/toc.html
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represented as seven distinct regions: Argentina, Brazil, Central America and 

Caribbean, Colombia, Mexico, South America Northern, and South America Southern. 

As a long-term model, GCAM operates in 5-year time steps until 2100. The 

base year for the model is 2010 based on calibration to the historical period, which 

requires multiple datasets (listed in the GCAM documentation) to cover the different 

sectors. GCAM is a dynamic-recursive model, which means that decisions in any 

period depend only upon information about that period, but the consequences of such 

decisions (resource depletion, capital stock build-up, etc.) influence decisions in the 

following periods. GCAM solves each period sequentially through the establishment 

of market-clearing prices for all existing markets (energy, agriculture, land, GHG 

emissions). This means that, for each model period, an iterative scheme ensures 

convergence to final equilibrium prices such that supplies and demands are equal in all 

markets.  

The energy system structure in GCAM contains representations of the energy 

supply and demand sectors for each region, also considering the trading of primary 

resources (coal, natural gas, oil and biomass) among regions. The model simulates the 

temporal evolution of the energy system from the extraction of primary energy 

resources (oil, natural gas, coal, bioenergy, uranium, hydropower, geothermal, solar, 

and wind energy) until the transformation processes (e.g., liquid fuel refineries and 

power generation) that produce the final energy carriers (refined liquids, gas, coal, 

commercial bioenergy, hydrogen, and electricity) required by the end-use sectors 

(buildings, industry, and transport).  GCAM utilizes a comprehensive technology 

database encompassing different energy supply and conversion technology options, 
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and includes assumptions on technological progress. These technologies compete for a 

share of energy markets based on cost differences among competing options (more 

details on this aspect will be provided in Chapter 3).  

The agriculture and land-use system provides projections of agricultural supply 

(crops, livestock, forest products, and bioenergy), prices, and changes in land use and 

cover, taking into consideration the trading of primary agricultural and forest goods. In 

this component, each of the 32 geopolitical regions can be disaggregated into up to 18 

agro-ecological zones resulting in 283 agriculture and land use regions. Within each of 

these 283 subregions, land is categorized into twelve types based on cover and use (e.g., 

forestlands, shrublands, grasslands, croplands, etc.). Land allocation within any 

geopolitical region depends on the relative profitability of all possible land uses within 

each of the 283 land-use regions (Kyle et al. 2014). Land used for any purpose 

competes economically with croplands, commercial forests, pastures, and all lands not 

involved in commodity production, with the exception of tundra, deserts, and urban 

lands (assumed constant over time). The profitability of any land used for commercial 

production is derived from the price (value) of the commodity produced, the costs of 

production, and the yield (Kyle et al. 2014). GCAM models the production of twelve 

crop categories based on exogenously specified yields that are crop-specific but vary 

depending on the subregion.  

Bioenergy production in GCAM derives from: (1) various types of second-

generation cellulosic crops (e.g., switchgrass, miscanthus, willow, jatropha, and 

eucalyptus), (2) residues from forestry and agriculture, (3) municipal solid waste, and 

(4) traditional bioenergy. Conventional or first-generation biofuel crops such as corn, 



 

16 
 

sugars, oil crops are grown as part of food production. In this case, the biomass liquids 

subsector within the energy module includes a number of transforming technologies 

for biofuels production from these food crops. Note that, throughout this analysis, the 

terms “purpose-grown” and “dedicated” bioenergy feedstocks are used to refer to the 

second-generation cellulosic bioenergy crops. 

The physical atmosphere, oceans and climate are represented in GCAM by the 

Hector Earth System model (Hartin et al. 2015), which is a reduced-form global climate 

carbon-cycle model (or simple climate model – SCM). As a SCM, Hector was 

developed to represent only the most important large-scale earth system processes so 

that to significantly reduce computational costs relative to the most complex Earth-

System Models. Although it can be used as a stand-alone model, Hector is fully 

integrated within the computational GCAM platform. This coupling allows Hector to 

track emissions of 24 GHGs and short-lived species generated by the energy, 

agriculture and land systems and to calculate future GHG concentrations in each 

modeling scenario. From GHG concentrations and short-lived climate forcers, Hector 

can then derive global mean radiative forcing, which is converted to global mean 

temperature and other variables.  

The GCAM water module estimates water demands (water withdrawals and 

consumption) in six sectors: agriculture (irrigation), livestock, primary energy 

extraction and processing, electricity generation, industrial (manufacturing), and 

municipal (domestic). Details concerning each sector are available in the literature 

(Hejazi et al. 2014a; Hejazi et al. 2014b). Agricultural water demands in GCAM 

depend on crop production (noting that this is divided in rainfed and irrigated 
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production), the share of crop production in irrigated lands in each of the 283 

subregions, irrigation efficiency and crop type (12 categories of crops plus biomass). 

The estimates of water demands for biomass include a number of second-generation 

biomass crops, but crops such as corn, sugar and oil palm used for biofuel production 

are not included since their water demands are quantified in the irrigation category. The 

water demand estimates for the livestock sector accounts for drinking water 

requirements for five animal commodities (beef, dairy, sheep & goats, pigs, and 

poultry), and for the water used in the animal production. In the electricity sector, the 

water usage depend on the type of cooling system. Cooling technologies represented in 

the model are: once-through cooling systems (responsible for the largest withdrawal 

volumes in the GCAM energy sector); recirculating cooling systems, and dry cooling 

systems (associated with the lowest water use). Domestic water demands are driven by 

population, per capita GDP, and technological change while the water demanded by 

the manufacturing sector depends on the total industrial output. Lastly, demands for the 

primary energy sector hinge on the fuel production, and accounts for coal, oil 

(conventional and unconventional), natural gas, and uranium.  

2.3.2 Reference and NDC scenarios 

In this model-based scenario approach, focus is placed on contrasting relevant 

sectoral outcomes of three scenarios through 2050: the reference scenario and two 

policy (NDC) scenarios.  

The reference scenario is based upon BAU assumptions about key drivers (e.g., 

population, economic growth and technological evolution), and assumes that no new 

mitigation actions are implemented beyond 2010. The socioeconomics assumptions are 
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consistent with the “Middle of the Road” SSP 2 (Riahi et al. 2017). The reference 

scenario is characterized by population and GDP growth of 26% and 167%, 

respectively, in LAC from 2010 to 2050.  

For the two NDC scenarios, the GHG mitigation targets are consistent with the 

countries’ emissions levels provided in their official NDC submissions (UNFCCC 

2019). This set of scenarios share the same general assumptions. Nevertheless, they 

differ with respect to the technology availability in the energy system that is essential 

to determine how emissions reductions in the energy sector can be fulfilled. The ‘NDC 

FullTech’ scenario includes the full suite of energy technologies represented by 

GCAM. On the other hand, the ‘NDC NOCCS’ scenario is based on the explicit 

assumption that the expansion of CO2 capture and geologic storage (CCS) systems is 

not permitted (all other assumptions are identical to the NDC FullTech scenario). New 

capacities can include nuclear energy in both NDC scenarios. A fundamental 

motivation for the choice of the technology pathways explored here is that they 

represent two radically different energy-sector decarbonization routes, each of them 

with profound consequences for the nexus as a whole. On one side, the NDC FullTech 

scenario allows the opportunity to explore a pathway in which fossil fuel-fired power 

coupled with CCS, and bioenergy coupled with CCS (BioCCS) become important 

sources of electricity generation in the long-term. On the other hand, the NDC NOCCS 

scenario is intended to represent a future in which the various limitations surrounding 

the large-scale deployment of CCS (to be discussed in the following section) could not 

be overcome and mitigation must rely on other low-carbon sources.  
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In both policy scenarios, the implementation of the NDCs in GCAM was carried 

out using economy-wide emissions constraint. This means that the gross GHG 

emissions (excluding CO2 land-use and land-cover change − LUC − emissions) were 

assigned to each GCAM region and the model internally calculated the carbon prices 

needed to achieve the constraint. The global GHG emission trajectory follows the 

‘Paris-Increased Ambition’ scenario developed in Fawcett et al. 2015 with updates on 

the emissions constraints for the seven LAC regions. These updates are based upon the 

supporting sources listed in the Appendix A. Note that NDCs only cover the period up 

to 2030. To allow the exploration of nexus transformations in LAC at a level consistent 

with the 2oC long-term goal set by the Paris Agreement, it is assumed that beyond 2030 

the rest of the world puts forward reduction targets with CO2 emissions intensities 

decreasing at annual rates implied by the NDCs or 5 percent per year, whichever is 

higher (Fawcett et al. 2015 provides details on these assumptions and the Appendix A 

lists the assumptions in LAC). 

It is important to acknowledge that actual climate policy approaches do and will 

significantly differ from the economy-wide carbon prices approach used herein, relying 

on a range of different sectoral measures from building standards to automobile fuel 

efficiency to renewable portfolio standards. The implication for the results in this study 

is that mitigation is focused more heavily on energy supply adjustments than energy 

demand changes. For this reason, these results are meant to be purely explorative. 

However, each NDC scenario encompasses relevant multi-sectoral system-wide 

interactions that provide useful insights to support the points raised in this study.   
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As previously noted, LAC is characterized by a large share of AFOLU 

emissions compared to the world average. The four countries analyzed in the present 

study explicitly included the AFOLU sector in their NDCs, however the potential land-

based emissions reductions are incorporated within their total reduction targets. As 

assessed by previous studies (Damassa et al. 2015; Forsell et al. 2016; Grassi et al. 

2017), the NDCs are associated with large uncertainties regarding the actual mitigation 

role of the land sector. These uncertainties relate to: definition of baselines, historical 

emissions and removal sources in national inventories; lack of information on 

accounting methods; absence of quantifiable details of measures or specific targets, 

among others. Given that the core of the NDC strategies to curb carbon emissions from 

the land sector in LAC is formed by forest protection efforts, for the NDC scenarios, a 

land-use policy introduced by a carbon tax on LUC emissions from all land types is 

imposed.  By penalizing terrestrial carbon emissions, land carbon prices affect the 

economic decisions within the agricultural/land-use model. As a result, this regime 

restricts forest conversion to agricultural land and incentivizes forest expansion (Calvin 

et al. 2014; Wise et al. 2009).  

The emissions pathways (net emissions including CO2 LUC emissions) 

generated by GCAM under all scenarios for the four focus regions are shown in Table 

2.1.  
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Table 2.1 Regional Net GHG emissions (MtCO2e) by scenarioa 

GCAM 
region 

Scenario 2010 2020 2030 2040 2050 
2030 
NDC 

Target 

Argentina 

Reference 736 416 493 550 580 

483 NDC_FullTech 736 415 484 488 438 

NDC_NOCCS 736 415 493 518 460 

Brazil 

Reference 2181 1569 1999 2209 2050 

1200 NDC_FullTech 2181 1465 1206 1023 825 

NDC_NOCCS 2181 1468 1324 1452 1137 

Colombia 

Reference 124 236 316 424 444 

268 NDC_FullTech 124 233 266 304 316 

NDC_NOCCS 124 234 278 392 374 

Mexico 

Reference 708 790 943 1051 1153 

759 NDC_FullTech 708 736 759 531 311 

NDC_NOCCS 708 738 748 543 306 
a Global Warming Potentials (GWPs) following official NDC submissions. Brazil and Mexico 

established GWPs from the IPCC Fifth Assessment Report (AR5). Argentina and Colombia 

defined GWPs from the Second AR. 
 

2.4 Results and discussion 

2.4.1 Energy 

Although energy-related emissions have been low in Latin America (about 4% 

of global energy-related CO2 emissions in 2015; (IEA 2017)), the region is expected to 

face increasing energy demand lined up with its economic development and population 

growth. In the absence of mitigation, the Reference scenario projects a 98% increase in 

primary energy consumption and a threefold increase in electricity generation between 

2010 and 2050, with predominance of fossil fuels and a growing role of natural gas 

(Figures 2.1 and 2.2).  
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Figure 2.1 GCAM outputs for the Reference (no policy) scenario: primary energy 

consumption by source. 

 

 

Figure 2.2 GCAM outputs for the Reference (no policy) scenario: electricity 

generation by source. 
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Thus, gross GHG emissions follow a marked upward trend, in particular, Fossil 

Fuel and Industrial (FFI) CO2 emissions, which take larger proportions of the regional 

emissions up to 2050 (Figure 2.3). The curbing of future energy-related emissions is 

therefore an important mitigation component in LAC’s NDCs. Nevertheless, 

depending on the available resources and future technology transitions for non-carbon 

energy sources, substantially different implications on the energy-water-land (EWL) 

nexus can be expected. Before discussing specific results, it is informative to introduce 

some of these interplays within a regional perspective.  

 

Figure 2.3 GCAM outputs for the Reference (no policy) scenario: greenhouse gas 

emissions (excluding CO2 LUC emissions) by source. 

 

A first pathway for strong intersections among EWL systems in light of the 

NDCs is bioenergy. The modern use of bioenergy is recognized as an important 

strategy to meet part of the future global energy demand while limiting energy-related 

emissions. The mitigation potential largely increases in the case of BioCCS, which 
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allows the possibility of deep carbon removals and net negative emissions (van Vuuren 

et al. 2013). In face of the large-scale bioenergy production necessary for a substantial 

impact on climate change mitigation (on the order of few hundreds of exajoules (EJ) 

per year versus present-day levels around 55 EJ; (Calvin et al. 2014)), LAC grows in 

importance due to its potential for significant increases in production from various 

feedstock categories (Dallemand et al. 2015). Indeed, LAC is already positioned as a 

major bioenergy, notably biofuels, producer. Brazil, in particular, has led development 

for decades focusing on sugarcane products (e.g., bioethanol) that accounted for 17% 

of domestic energy supply in 2015 (EPE 2016), not to mention the growing utilization 

of soybeans for biodiesel production. Biofuels markets also exist in Argentina (e.g., 

biodiesel from soybeans) and Colombia (e.g., sugarcane ethanol, biodiesel from palm 

oil), whereas Mexico, which set the goal of 35% of the electricity generated from 

renewable sources plus nuclear energy by 2024, aims to increase feedstock production, 

mainly from agriculture and forestry (García et al. 2015). Nevertheless, intensively 

cropping large areas for dedicated bioenergy production inevitably raises serious 

concerns surrounding land-use impacts and adverse externalities regarding food and 

water securities.  

Other key nexus interactions unleashed by the NDCs, especially relevant for 

the energy-water subsystem, stem from an increased participation of low-carbon 

technologies in the energy system. A larger reliance on renewables such as wind and 

solar or on CCS technologies involve considerable impacts on the water demands for 

the electricity sector due to the specific water requirements of each technology. The 

aforementioned nexus implications are further discussed in the upcoming sections. 
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As illustrated in Figures 2.4 and 2.5, both NDC scenarios entail important 

transformations of the countries’ energy systems relative to the reference case. These 

include less fossil-fuel based sources resulting from the larger participation of cleaner 

energy substitutes in the total primary mix. Carbon prices propagating through energy 

markets along with the expansion of higher-cost lower-carbon technologies stimulate 

improvements in the efficiency of energy conversion, driving down demand in all 

countries up to 2050. This effect is more pronounced in the NDC_NOCCS scenario 

given the higher energy costs of non-fossil technologies relative to the CCS-coupled 

options in the NDC_FullTech scenario. In the near-term (2030), changes are relatively 

small, however, as countries strengthen their mitigation efforts, larger transformations 

occur over the long-term (2050). 
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Figure 2.4 Distribution of the primary energy consumption (EJ) for the Reference ((A) 

and (D)), NDC_FullTech ((B) and (E)) and NDC_NOCCS ((C) and (F)) scenarios in 

Argentina and Brazil, respectively. 
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Figure 2.5 Distribution of the primary energy consumption (EJ) for the Reference ((A) 

and (D)), NDC_FullTech ((B) and (E)) and NDC_NOCCS ((C) and (F)) scenarios in 

Colombia, and Mexico, respectively. 

 

Except for Argentina, when CCS is unavailable (NDC_NOCCS scenario), 

biomass plays a larger role in the primary mix relative to the Reference scenario.  In 

this scenario, although Brazil accounts for the largest participation of biomass in the 

primary mix (38% and 44% in 2030 and 2050, respectively), Mexico experiences the 

largest expansion of biomass consumption relative to the reference with percent 

increases of 34% and 51% (versus 18% and 3% in Brazil) in 2030 and 2050, 

respectively. Concerning solar, wind and nuclear energy, the differences between both 
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NDC scenarios are small in the near term, and, overall, these low-carbon sources 

represent less than 2% of the total primary mix in all countries. Over the long term, the 

NDC_NOCCS scenario induces the expansion of solar, wind and nuclear energy, 

particularly strong in Mexico where these sources represent about 46% of the primary 

energy mix (versus 4 to 28% in the other countries). This strong development of 

renewable and nuclear capacities in Mexico is due to the drastic transformations needed 

within an energy system heavily based on fossil fuels to achieve an ambitious long-

term goal of 50% emissions reduction in 2050 versus 2000 ─ as stipulated in Mexico’s 

Mid-Century Strategy (SEMARNAT-INECC 2016) ─ listed in the Appendix A. 

Without CCS as a viable option, significant mitigation by 2050 involves deep structural 

changes to develop and expand renewables and nuclear capacities. On the other hand, 

the contribution of these low-carbon options to the primary mix is much lower in the 

NDC_FullTech scenario (shares of about 12% in Mexico, and 3 to 5% in the remaining 

countries in 2050) because CCS allows the larger use of fossil fuels. 

Under the NDC_FullTech scenario, the largest expansion of CCS occurs in 

Mexico followed by Brazil, reflecting the scale of their energy systems and the amount 

of mitigation needed in each country. On the other hand, Argentina shows the lowest 

level of CCS development. BioCCS significantly expands in Brazil whereas the 

remaining countries develop more natural gas with CCS than BioCCS over the long 

term. Although the large-scale deployment of CCS is widely accepted as a key strategy 

to achieve deep CO2 emissions reductions over the long-term, the viability of such 

approach is still highly uncertain. Globally, CCS technologies have not yet been 

broadly deployed commercially. This is due to barriers such as the significant research 
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& development investments required to overcome the technological challenges 

involved in their safe and cost-efficient utilization, or even the lack of political and 

policy support (Haszeldine 2009; Lipponen et al. 2017). In the particular context of 

LAC, some authors argue that CCS capabilities could be a less viable option compared 

to other countries for reasons that include lack of major technological and institutional 

development (Clarke et al. 2016; Lucena et al. 2016). Despite a mature technology, 

similar arguments hold for nuclear energy when referring to its future viability as an 

option for mitigation in LAC. Presently, the level of nuclear electricity generation in 

LAC is low. Nuclear energy in Argentina, Brazil and Mexico accounted for 6.9, 2.9 

and 4.8% of their total electricity in 2009 (World Energy Council 2010), respectively 

(there is currently no nuclear power plant in Colombia).  Over the short-term, there is 

limited growth prospects in nuclear capacity in these countries since only one nuclear 

plant is under construction in Argentina and Brazil. High operational and investment 

costs, need of foreign technical expertise and public resistance have slowed down the 

expansion of nuclear energy in LAC and may prove to be significant obstacles to 

hamper its future expansion in the region relative to renewables. This study does not 

take up the question of how likely CCS and nuclear energy are to become viable options 

for future implementation in LAC, but rather focus on the understanding of their 

potential nexus implications. 

2.4.2 Land 

Favored by its vast swathes of productive land, LAC almost tripled its net food 

production since the early eighties, becoming a major food exporter 

(ECLAC/FAO/IICA 2012). In the present context of globalized food systems, LAC 
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accounts for 38% of oil crops, 30% of fruits and 19% of meat global exports 

(FAO/PAHO 2017). This process, spurred by a monumental global demand growth for 

agricultural commodities, has induced extensive degradation of native forests, 

savannas (e.g., the “Cerrado” in Brazil), shrublands and grasslands (e.g., the “Pampas” 

in Argentina), with South American countries, notably Brazil and Argentina, playing 

major roles (Aide et al. 2013).  

Notwithstanding the fact that most of the projected growth in crop production 

should derive from higher yields and increased cropping intensity, Latin America in 

tandem with the sub-Saharan Africa are expected to account for the bulk of future 

global agricultural land expansion (OECD/FAO 2015). The largest tracts of land with 

rainfed crop production potential are concentrated in Brazil followed, in LAC, by 

Argentina, Colombia, Bolivia, Venezuela and Peru (Bruinsma 2009). Nevertheless, 

such a vast fertile territory is not entirely available for agricultural expansion since it 

encompasses sensitive ecosystems, protected areas and urban zones. For instance, 

legally protected reserves and indigenous territories represented 47% of the Brazilian 

Amazon region in 2012 (Nepstad et al. 2014), with increasing efforts toward forest and 

land protection regulations in other LAC countries as well (le Polain de Waroux et al. 

2019). It is widely agreed that the conversion of such areas into crop or pastoral land 

implies enormous economic and social costs alongside environmental impacts 

inconsistent with the land-sector mitigation efforts necessary for climate change 

stabilization. 

In this context, land-energy nexus considerations are central to the bioenergy 

debate in LAC given the prospects of continued increase in internal and external market 
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demand for biofuels. Several studies have shown that the large-scale cultivation of 

bioenergy crops, unless produced from abandoned agricultural or marginal lands, could 

exacerbate land competition inducing: (1) loss of undisturbed ecosystems (which, in 

turn, increases LUC emissions that offset the intended mitigation benefits) and 

biodiversity stocks; and (2) displacement of farmland that contributes to drive up food 

prices (Calvin et al. 2014; Fargione et al. 2008; Munoz Castillo et al. 2017; Wise et al. 

2009). Although the most controversial debate on the impacts to the land sector are 

around the first-generation bioenergy (food) crops, the second-generation bioenergy 

can potentially unleash additional impacts if supplied by dedicated plantations (Havlík 

et al. 2011). 

The picture emerging from the above discussion is that, even within a context 

of relatively land-abundance, future land use and availability in LAC is subjected to 

various conflicting demands that can be affected by NDCs. In this context, two relevant 

development NDC modes can be distinguished: (i) increased bioenergy production to 

accommodate the internal demand for low-carbon sources and exports to regions with 

limited land and/or feedstock resources, and (ii) stringent actions to conserve and 

restore natural forests and ecosystems. Figure 2.6 explores these modes by showing the 

projected distribution of the land use in the four analyzed countries under the two NDC 

scenarios.  
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Figure 2.6 Land allocation (thous. Km2) under the Reference ((A), (D), (G), and (J)). 

Difference in land allocation between the NDC_FullTech and the reference pathways 

in (B) Argentina, (B) Brazil, (H) Colombia, and (K) Mexico. Difference in land 

allocation between the NDC_NOCCS and the Reference pathways in (C) Argentina, 

(F) Brazil, (I) Colombia, and (L) Mexico. 
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Focusing on the differences between the Reference (left panels of Figure 2.6) 

and the NDC scenarios, it can be noted that relative changes in land cover associated 

with dedicated biomass production tend to be pronounced in Mexico.  This is due to 

the cost-efficiency of this option in Mexico given the amount of mitigation required to 

transform an emissions baseline profile that comprises the largest share of CO2 FFI 

emissions among the four focus countries. 

In Brazil, the proportional growth in land for bioenergy crop production in both 

NDC scenarios is far less important than the changes in other land uses (Figures 2.6 D-

F). This may seem counter-intuitive considering the current prominent role of Brazil in 

the bioenergy sector. Referring back to results from the previous section, it can be noted 

that biomass consumption in the Brazilian primary energy mix under both NDC 

scenarios is not projected to substantially increase compared with the reference (that 

already relies on large bioenergy usage). Furthermore, the NDC scenarios include 

pricing of terrestrial carbon that incurs high economic costs for the large-scale clearing 

of the carbon-rich forested systems. Since the expansion of land to grow dedicated 

bioenergy crops is an uneconomic option under the NDC scenarios, the emissions 

reduction required by the Brazilian NDC needs to be achieved by other low-carbon 

means. Finally, in Argentina and Colombia, dedicated bioenergy crop production is not 

projected as a major source of land-use pressure under the NDC scenarios. 

Figure 2.6 also reveals that forests expand throughout the 2030-2050 horizon 

in all countries under both NDC scenarios. The largest increments are projected for 

Brazil at the expenses of croplands and pasture. As croplands become more profitable, 

GCAM projects an expansion of croplands into pasturelands and lands dedicated to 
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other natural systems (e.g., shrublands, savannahs, grasslands, etc.) in both NDC 

simulations in Argentina and Colombia, particularly in the NDC_NOCCS scenario. In 

Mexico, the long-term expansion of croplands is proportionally less pronounced 

because of the pressure for land to increase bioenergy production.  

2.4.3 Water 

LAC is endowed with impressive 32% of the global renewable water resources 

(FAO 2018b). Despite the overall abundance, water resources are unevenly distributed 

throughout the region. For instance, Mexico and Argentina experience water deficits, 

particularly in the northern Mexico and some parts of Argentina where moderate to 

severe water scarcity conditions last more than six months (Mekonnen; Hoekstra 2016). 

In fact, the northern and central areas of Mexico, that concentrate 77% of the population 

and 87% of GDP, constitute prominent examples of low natural availability aggravated 

by overconsumption of freshwater resources. They also serve to call immediate 

attention for the fact that water supplies are expected to be placed under increasing 

stress from socioeconomic trends whose signal can outweigh the effects of climate 

change in the near future (Vörösmarty et al. 2000).  

Under the Reference scenario, the water demand for different uses, particularly 

irrigation, increases at high rates over the coming decades (Figure 2.7). Mexico is the 

main water user, followed by Brazil (see Figures 2.8(D) and (J)). This is mainly due to 

the role of irrigated agriculture in Mexico, which currently has the largest area of 

irrigated land in LAC (about 6.5 million ha) with an infrastructure based predominantly 

on water-inefficient surface (flood) irrigation techniques. In this regard, Brazil and 

Argentina also maintain sizable areas of land equipped for irrigation with 2.9 and 2.4 
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million ha, respectively (FAO 2018b). Also important within this context is the fact 

that Latin America is characterized by an overall low irrigation efficiency ─ average of 

39% (the highest efficiency is in Brazil with 41%) ─ contrasting to the global average 

of 56% (Bellfield 2015). 

 

Figure 2.7 GCAM outputs for the Reference (no policy) scenario: total water 

withdrawals by source. 

 

Previous discussion highlights potential implications of NDCs in terms of land-

cover change driven by the need to grow dedicated bioenergy crops. Likewise, impacts 

on water use can be expected. Water requirements for bioenergy crops vary 

considerably with crop type, climate and soil conditions, but, in general, bioenergy 

derived from agricultural feedstocks is more water intensive than fossil fuels, 

particularly in the case of first-generation biofuels (D'Odorico et al. 2018; Hoff 2011). 

Certain second-generation bioenergy crops have disadvantageous water footprints as 

well (Gerbens-Leenes et al. 2009; Mathioudakis et al. 2017). 
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Lastly, NDCs may also imply drawbacks related to water use for power 

generation. In this sector, LAC is characterized by heavy use of hydropower generation 

(Figure 2.2), particularly notable in Brazil and Colombia. This option entails 

significantly lower water consumption (basically due to evaporation losses) than other 

power generation sources. Although some growth is expected through mid-century, the 

share of hydropower in the electricity mix should decrease over time. Hence, other 

generation sources will have to increase participation in the electricity mix to account 

for the escalating demand in the region. This means that LAC will potentially need to 

deal with challenges posed by the larger water requirements of conventional thermal 

power plants. These challenges may be exacerbated under an NDC climate policy if 

mitigation of energy-related emissions focuses heavily on CCS. Compared with 

conventional thermal power plants, CCS-based power plants generally have higher 

water requirements due to additional demands for cooling and other processes that 

increase water consumption by 37-95% depending on the power plant type (Grubert; 

Kitasei 2010; Klapperich et al. 2014). On the other hand, climate mitigation through 

solar photovoltaic (PV) and wind is not water intensive. In operational solar facilities, 

some water is needed to clean the mirrors/panels. However, concentrating solar power 

(CSP) systems can be considered as water-intensive as traditional thermoelectric power 

plants because of the additional water usage for cooling processes that is maximized if 

wet-cooling methods are employed (Bukhary et al. 2018). The aforementioned 

differences in water usage between thermal (with or without CCS) and non-thermal 

renewable types of energy supply are detailed in Table 2.2 (Macknick et al. 2011) . 

Data are presented in terms of median values of the ranges of water consumption and 
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withdrawal factors compiled by Macknick et al. 2011. These values are used to specify 

GCAM water use intensities by electric-sector technologies (Davies et al. 2013). Table 

2.2 highlights that a transition toward a less carbon-intensive power sector (through 

nuclear, CCS or CSP facilities) may result in an increase in total water usage depending 

on the combination of generating sources and cooling systems employed. 
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Table 2.2. Water Use Factors for Electricity Generating Technologies (gal/MWh)  

Fuel Type Cooling  Technology 
Median Values 

Consumption Withdrawal 

Nuclear Tower Generic 672 1101 

 Once-through Generic 269 44350 

  Pond Generic 610 7050 

Natural Gas Tower Combined Cycle 198 253 

  Steam 826 1203 

  Combined Cycle with CCS 378 496 

 Once-through Combined Cycle 100 11380 

  Steam 240 35000 

 Pond Combined Cycle 240 5950 

 Dry Combined Cycle 2 2 

  Inlet Steam 340 425 

Coal Tower Generic 687 1005 

  Subcritical 471 531 

  Supercritical 493 609 

  IGCC 372 390 

  Subcritical with CCS 942 1277 

  Supercritical with CCS 846 1123 

  IGCC with CCS 540 586 

 Once-through Generic 250 36350 

  Subcritical 113 27088 

  Supercritical 103 22590 

 Pond Generic 545 12225 

  Subcritical 779 17914 

    Supercritical 42 15046 

BioPower Tower Steam 235-553 878 

 Once-through Steam 300 35000 

  Pond Steam 390 450 

PV N/A Utility Scale PV 26 

i 

Wind N/A Wind Turbine 0 

CSP Tower Trough 865 

  Power Tower 786 

  Fresnel 1000 

 Dry Trough 78 

  Power Tower 26 

 Hybrid Trough 338 

  Power Tower 170 

 N/A Stirling 5 

i Withdrawal factors assumed to be equivalent to consumption factors. 
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To provide a perspective on the potential implications of the Paris pledges on 

national water demands in the focus LAC countries, Figure 2.8 disaggregates 

differences by sector in water withdrawal estimates between each NDC scenario and 

the reference. Note that the water demands estimated by GCAM are not constrained in 

terms of future water supplies, and that climate change impacts are not included. Under 

both NDC scenarios, the overall picture across the countries, except for Brazil, is one 

of larger water footprint in a growing pattern until the midcentury. Figure 2.8 also 

brings out the fact that crop irrigation accounts for great part of the increments in total 

water withdrawals. Brazil is the only country where the near and long-term total water 

demands are projected to decline under both NDC scenarios, as well as the specific 

demand for irrigation (Figures 2.8D-F).  
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Figure 2.8. Total water withdrawals by sector (billion m3) under the Reference ((A), 

(D), (G), and (G)). Water withdrawal differences between the NDC_FullTech and the 

reference pathways in (B) Argentina, (E) Brazil, (H) Colombia, and (K) Mexico. Water 

withdrawal differences between the NDC_NOCCS and the reference pathways in (C) 

Argentina, (F) Brazil, (I) Colombia, and (L) Mexico. 

The results from Figures 2.6 and 2.8 point to relevant water-land interactions 

involving changes in land availability for crop production and changes in agricultural 
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production that affect the irrigation demands. For example, in Argentina, croplands 

expansion in both NDC scenarios (recall Figure 2.6) contributes toward increases in 

crop production (Figure 2.9), putting upward pressure on irrigation demands, whilst, in 

Brazil where irrigated agricultural production declined, less water is demanded. It is 

worth noting that, in the context of GCAM, part of the regional changes in irrigation 

demands can also be associated with changes in crop types since each crop is associated 

with different irrigation requirements. 

 

Figure 2.9. Irrigated crop production by country expressed as the ratio between each 

NDC scenario and the reference scenario. 

 

Regarding irrigation for bioenergy crops, increases in demands relative to the 

Reference scenario are seen in Mexico under both NDC runs in the near and long term 

(Figures 2.8J-L). This is in line with results from previous sections that point out 

Mexico as the country with the largest proportional increase in biomass participation 

in the energy mix and with the most pronounced expansion in land to grow biomass. 

Both NDC scenarios lead to less water demands in the manufacturing sector over time. 
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This occurs because of an overall reduction of all goods and services produced in the 

sector, which is induced by the mitigation policy to reduce the demand for energy. 

Across all countries, changes in electricity water withdrawals occur in both 

NDC scenarios in response to the availability of CCS. In general, both NDC scenarios 

signal modest water withdrawals reductions relative to the reference in the near term, 

which are due to small reductions in electricity generation and the consequent lower 

water usage for power generation. When CCS is available (NDC_FullTech scenario), 

Brazil and Mexico show pronounced increases in water withdrawals over the long term, 

consistent with the timeframe when CCS is substantially deployed in these countries. 

On the other hand, lower water demands are noted in Colombia throughout the 

simulation period. Given the modest level of CCS deployment in the Colombian 

primary mix (shares of 1% and 14% in 2030 and 2050, respectively), reduced electricity 

generation, in particular from thermal sources (compared with the reference case) 

played more relevant roles in reducing water demands.  In Argentina, which shows the 

lowest level of CCS deployment, no significant water demand pressure in the power 

sector is noted.  

In the case of the NDC_NOCCS scenario, electricity water demands are 

consistently lower than the reference in all countries. While in the near-term, this is due 

to a reduction in power generation, the overall long-term reduction in water 

withdrawals results from the expansion of wind and solar power (Figure 2.10), despite 

the increase of the water-intensive nuclear energy in this scenario (recall Figures 2.4 

and 2.5). Note that the long-term expansion of solar energy displayed in Figure 2.10 

also includes the water-intensive solar CSP technology that responds for most of the 
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water withdrawal volumes associated with solar energy in 2050. However, the overall 

net effect of the expansion of renewables in the NDC_NOCCS scenario is to reduce 

power-generation water demands. 

 

Figure 2.10 Water withdrawals (right bars) by power generation source (left bars) 

under the NDC_NOCCS scenario for (A) Argentina, (B) Brazil, (C) Colombia and (D) 

Mexico. 

2.5 Conclusions 

This study presents an integrated assessment of potential implications of 

mitigation strategies consistent with the Paris Agreement architecture on the EWL 

nexus resource systems in Latin America. GCAM was used to develop mitigation 

scenarios in which targets are consistent with the NDCs submitted by Argentina, Brazil, 

Colombia and Mexico, followed by stringent post-2030 emissions reductions 
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assumptions. The two policy scenarios explored herein are characterized by differing 

degrees of low-carbon technology deployments in tandem with a land-sector strategy 

that prevented forest loss and stimulated afforestation. This approach allowed the 

opportunity to explore two radically different energy-sector decarbonization routes and 

their interplays with the land and water sectors in each country. It is found that the 

policy scenario results entail relevant differences relative to a baseline case: (1) 

growing irrigation demands up to the midcentury in all countries, except for Brazil; (2) 

larger irrigation demands to cultivate bioenergy crops in Mexico; and (3) larger 

electricity water withdrawals in countries that largely deploy CCS over the long-term 

(Mexico and Brazil) versus reduced demands when CCS is unavailable. 

  The central insight of this study is that the implementation of NDCs in LAC 

can result in critical country-level synergies and trade-offs within the nexus domain 

associated with the portfolio of mitigation strategies. Relevant consequences of 

mitigation can be unleashed in many ways. One important factor is the range of forest 

protection measures (a crucial mitigation component in Latin America), which affects 

the overall cropland availability. This process, in turn, may interfere with food 

production levels and irrigation demands. For example, in Brazil where the results 

revealed forested areas growth partially achieved at the expenses of croplands, there 

were implications in terms of reduced crop production and lower irrigation demands. 

In addition, the results from Argentina, Colombia and Mexico suggest that non-forested 

ecosystems, most of them already under serious threats, may be put at additional 

pressure within a land-sector mitigation framework centered on forest protection. 

Modeling experiments (Popp et al. 2014) show that, within a forest conservation 
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scheme, these areas become major options for cropland expansion, thus requiring 

efficient land management and technological innovations in agriculture for their 

protection. Within the land and water domains, results from Mexico call for careful 

consideration on the role of the second-generation bioenergy in future mitigation 

strategies in face of the land and water requirements to cultivate bioenergy crops. 

Finally, the role a transition toward less carbon-intensive power sectors may play in 

increasing electric-sector water usage in LAC was made clear in the results. As 

previously discussed, low-carbon sources with high water requirements include CCS, 

which was emphasized in the scenario design of this study, but also solar CSP and 

nuclear energy.  

In face of a potential trade-off between agricultural water demands and climate 

policy, the results highlight the need of demand-side responses that incorporate 

improvements in water and land management. Options applicable to the arid and semi-

arid regions of Latin America include increased irrigation efficiency and changing 

cropping patterns toward less water-intensive and drought-resistant crops (Magrin et 

al. 2014). Given the inefficient irrigation infrastructure in LAC, which is heavily reliant 

on surface (flood) irrigation ─ 95.6% of irrigated lands (de Oliveira et al. 2009), 

important water savings could result from the implementation of modern irrigation 

methods. Mean differences in field application efficiencies between the least efficient 

surface systems and the sprinkler and drip systems are about 27 and 40%, respectively, 

in the South America region (Jägermeyr et al. 2015). These large differences suggest 

that the additional agricultural water demands found in the results could be reduced by 

a shift in irrigation technology.  
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Circumventing climate change through ambitious efforts is the major priority 

within the Paris Agreement framework. In this context, the full implementation of the 

current NDCs has been related to important reductions of the post-2020 GHG 

emissions. Nevertheless, these emission pledges have been considered insufficient to 

limit global warming to less than 2◦C without a substantial enhancement of global 

mitigation efforts after 2030 (Fawcett et al. 2015; Rogelj et al. 2016). Ramping-up the 

stringency of the Paris pledges will be a focus of attention in the coming years as Parties 

are requested to resubmit their NDCs by 2020, and periodically assess their progress 

by means of a process known as global stocktake  (first global stocktake planned for 

2023). To inform the global stocktake process, a number of studies (Iyer et al. 2017; 

Iyer et al. 2018; Peters et al. 2017) have pointed out the necessity of a systematic and 

broader process of assessment of the progress of the goals of the Paris Agreement 

through a multi-objective framework that incorporates, for example, the implications 

of NDCs on the SDGs.  

This study reveals relevant implications for the aforementioned deliberations 

that will support the updating and enhancing of the NDCs. First, the post-2030 results 

highlight the potential exacerbation of cross-sectoral implications in the four major 

LAC economies when mitigation efforts are strengthened. Hence, more ambitious 

NDCs may imply higher risks of unintended consequences (see further comments on 

the potential exacerbation of mitigation trade-offs under stringent climate targets 

below). Second, the clear common objectives within the nexus concept and in the set 

of goals and targets of the SDGs reinforce the value of an assessment and updating 
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NDC framework that incorporates considerations on the nexus sectors and their 

interdependencies as a mean to contribute toward sustainable development. 

While this study provides important insights regarding the climate policy 

(NDCs)-energy-water-land nexus interplays in LAC, any conclusions drawn should be 

mindful of the assumptions underlying the model and scenarios. A limitation in terms 

of technology relates to the fact that GCAM currently does not have explicit 

representations of the various existing irrigation systems, which would be important to 

guide relevant decision-making in LAC. It is also worth mentioning that GCAM water 

delivery-efficiency factors, assigned by crop type and region, are held constant over 

time (Hejazi et al. 2014a). An additional aspect of the modeling approach is that water 

supply is assumed an unlimited resource. This means that this study does not 

incorporate feedbacks exerted by physical water constraints from growing regional 

demands or climate change on energy and agricultural systems. In fact, climate change 

can result in additional pressure on nexus systems in LAC. This type of concern has 

been supported by robust differences in regional climate characteristics between 

present-day and global warming of 1.5°C and between 1.5°C and 2°C warming levels 

(IPCC 2018). Future research should then be directed at incorporating climate impacts 

on the water supply as well as on the renewable energy potential to understand how 

such stressors will propagate across the nexus systems in LAC. Moreover, land policies 

influence the amount of mitigation effort needed in the energy sector, also interfering 

with land availability for food production. Hence, these results are sensitive to the land-

policy (implemented via terrestrial carbon-prices) applied here. Additional steps 

toward a better understanding of the implications of climate policies on the EWL nexus 
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in LAC will require the implementation of comprehensive land-related policies, which 

will reveal important interplays with the other sectors. 

Finally, it is important to note that this analysis focuses on the upper bound of 

the Paris Agreement long-term climate goals in line with previous literature that has 

examined 2ºC-compatible scenarios (e.g., Iyer et al. 2015). Nevertheless, the 

Agreement called for additional efforts to limit end-of-century global warming to 1.5 

°C above pre-industrial levels (United Nations 2015a). Previous global-scale studies 

(Bertram et al. 2018; Rogelj et al. 2015) that have examined differences between 1.5 

°C and 2 °C scenarios emphasized that the 1.5 °C target requires faster decarbonization 

of the energy supply, CO2 neutrality around the mid-century, net negative emissions in 

the 2050–2100 period, greater efficiency and demand-side reductions and profound 

transformations in the land-use. Hence, increasing mitigation ambition from 2.0 oC to 

1.5 oC may result in greater and no-trivial challenges within the nexus in Latin America. 

Moreover, the manner in which emission reduction policies are implemented can lead 

to different pathways in terms of nexus synergies and trade-offs. As shown by Bertram 

et al. (2018), increasing mitigation ambition from 2oC to 1.5oC in scenarios 

characterized by economy-wide policies implemented via global carbon prices 

exacerbated trade-offs such as those associated with land requirements for bioenergy, 

CCS and water extraction. On the other hand, when a range of sustainable policy 

measures were incorporated into the original scenario design, mitigation risks could be 

largely alleviated or even compensated. Further research is then needed to examine the 

implications for the EWL nexus in LAC of the transformations required to meet the 

1.5oC goal to address, for example, the possibility of exacerbation of nexus trade-offs 
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relative to the 2oC warming level and under which policy mechanisms new stresses or 

synergies can emerge. 

The results and insights outlined above offer an opportunity to discuss a change 

in the manner current decision-making has been made about NDCs, that is, without 

sectoral integration and strategic planning to minimize potential nexus trade-offs. 

Embedding the ‘Nexus Approach’ in the policy debate regarding NDCs is critical to 

align a more efficient stewardship of nexus resources with NDCs progressively more 

stringent with time. 
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Chapter 3: Power sector investment implications of climate 

impacts on renewable resources in Latin America and the 

Caribbean (Santos da Silva et al. 2021) 

 

3.1 Abstract 

Climate change mitigation will require substantial investments in renewables. 

In addition, climate change will affect future renewable supply and hence, power sector 

investment requirements. This study addresses the implications of climate impacts on 

renewables for power sector investments under deep decarbonization using a global 

integrated assessment model. Focus is placed on Latin American and Caribbean, an 

under-studied region but of great interest due to its strong role in international climate 

mitigation and vulnerability to climate change. It is found that accounting for climate 

impacts on renewables results in significant additional investments ($12─114 billion 

by 2100 across Latin American countries) for a region with weak financial 

infrastructure. Ii is also demonstrated that accounting for climate impacts only on 

hydropower – a primary focus of previous studies – significantly underestimates 

cumulative investments, particularly in scenarios with high intermittent renewable 

deployment. This study underscores the importance of comprehensive analyses of 

climate impacts on renewables for improved energy planning. 

  



 

51 
 

3.2 Introduction 

 

After the 2015 Paris Agreement, nations worldwide have pursued climate 

change mitigation strategies in the form of nationally determined contributions (NDCs) 

and long-term strategies (LTSs). These strategies typically include substantial 

renewable energy (RE) deployment (Federative Republic of Brazil 2015; India 2015; 

SEMARNAT-INECC 2016). Nevertheless, climate change might influence RE 

generation through long-term alterations in various environmental conditions. For 

example, climate change could affect biomass crop yields and hence biomass potential 

(IPCC 2012). Likewise, climate change could affect streamflow, with implications for 

hydroelectricity generation (Schaeffer et al. 2012). Solar power production may be 

impaired by reduced surface solar radiation (Jerez et al. 2015), or could increase (e.g., 

concentrating solar power) or decrease (e.g., photovoltaics) with rising air temperatures 

(Crook et al. 2011; Wild et al. 2017; Wild et al. 2015). Wind power production could 

be affected by changing wind speed and air density patterns (Eurek et al. 2017; 

Karnauskas et al. 2018).  Hence, planners need to account for climatic impacts on RE 

during capacity development planning to ensure power system reliability, which is 

particularly relevant in the context of decarbonization strategies centered on RE 

expansion. 

Most decarbonization scenarios (e.g., those reviewed by the Intergovernmental 

Panel on Climate Change (IPCC) (IPCC 2014)) suggest that large investments in 

renewables will be required, particularly under assumptions of limited or no 

deployment of carbon capture and storage (CCS) and nuclear technologies (Iyer et al. 

2017). In this context, there is an open question about how climate impacts on 
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renewable resources – such as those described above – could alter the understanding of 

the economic implications and investment needs suggested by alternative 

decarbonization pathways. Research on this question has been very limited and the 

majority of mitigation scenarios in the literature do not account for the impacts of 

climate change. This is the case of the about 900 mitigation scenarios reviewed in the 

IPCC’s Fifth Assessment Report (AR5) (IPCC 2014). Even the few studies exploring 

climate impacts within the context of decarbonization scenarios have focused only on 

hydropower without a comprehensive analysis of impacts on all renewable sources.  

With growing literature highlighting that the energy sector, including RE 

production, may face serious impacts due to climate change (Cronin et al. 2018; Solaun; 

Cerdá 2019; Yalew et al. 2020), there have been efforts to incorporate climate impacts 

on renewables into energy and integrated assessment models (IAMs) to support 

decision-making. Methodologically, many of these studies rely on detailed process-

based models (for example, hydrologic models, crop models, general circulation 

models (GCMs)) capable of simulating climate-impacted environmental responses that 

are used to modify IAM parameters linked to RE production. However, hydropower ─ 

the renewable that currently contributes the most to the global electricity supply (IPCC 

2012) ─ has received considerably larger attention from the IAM literature and climate-

impact studies in general as pointed out by recent literature reviews (Cronin et al. 2018; 

Emodi et al. 2019; Solaun and Cerdá 2019; Yalew et al. 2020). IAM-based studies on 

climate impacts on hydropower (some of them conducted in the context of 

decarbonization scenarios as mentioned earlier) have been useful in exploring climate 

change implications for electricity production and capital investments (Arango-
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Aramburo et al. 2019; Carvajal et al. 2019; Dowling 2013; Lucena et al. 2018; 

Savelsberg et al. 2018; Turner et al. 2017; Zhou et al. 2018). Another group of IAM-

based studies has addressed impacts on the agriculture sector (which affect biomass 

potential) by incorporating biophysical crop yield changes (Kyle et al. 2014; Nelson et 

al. 2014; Ren et al. 2018; Snyder et al. 2019). Regarding the representation of climate 

impacts on solar and wind resources in IAMs, research efforts are still incipient, and to 

the best of our knowledge, limited to only two studies (Dowling 2013; Gernaat et al. 

2021). Consequently, there is a gap in the literature on a comprehensive analysis of 

climate impacts on all renewable resources and their implications for electricity sector 

investments. Studies that focus on climate impacts on individual resources do not 

account for the compounding effects of climate impacts on multiple renewable sources 

and may thus under- or over- estimate investment requirements.  Another gap in the 

literature is the lack of regionally-focused studies (Cronin et al. 2018; Solaun and Cerdá 

2019). While global studies are useful in characterizing the scale of a problem, policy 

decisions are made at national to sub-national scales. Hence, regional analyses with 

focus on national issues and circumstances are important to enhance relevance of the 

analyses to decision-makers.  This study fills both of the above gaps. 

In this study, climate impacts on all renewables, namely, hydropower, biomass, 

solar and wind,  are incorporated within the Global Change Analysis Model (GCAM) 

(Calvin et al. 2019). Using this improved version of the model, changes in electricity 

generation patterns and future investment needs under decarbonization scenarios are 

examined. For the purposes of this study, focus is placed on Latin American and the 

Caribbean (LAC), a greatly under-studied region despite its global relevance. For 



 

54 
 

instance, in 2017, RE represented about 56% of LAC’s electricity generation versus a 

global average of 26% ((EIA 2019) and Figure 3.1). Hydropower and bioenergy have 

dominated the regional RE portfolio, however, solar and wind have experienced rapid 

growth in installed capacity from 0.79 to 27.31 GW between 2008 and  2017 (IRENA 

2018). This growth is expected to continue due to strong policies (IRENA 2016), and 

the strategic role of RE in many LAC countries’ climate goals.  

 

 

Figure 3.1 Share of renewable energy (bioenergy, geothermal, hydropower, solar and 

wind) in total electricity generation: in the LAC region compared to the average of the 

rest of the world (top); and by individual regions (bottom). The share of renewables in 

power generation was computed as total renewable electricity generation divided by 

total generation expressed in relative (%) terms. Source: GCAM-LAC total electricity 

generation by region in 2010 (last calibrated year).  
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Despite the increasingly important role of RE in LAC, notably in the electricity 

sector, current regional consumption of fossil fuels remains a challenge for climate 

mitigation (fossil fuels represented roughly 70% of total primary energy supply (TPES) 

in 2015 (IEA 2019)). TPES in LAC depends primarily on oil, natural gas, bioenergy, 

and hydropower (IEA 2019) with large oil and biofuels use in the transportation sector, 

while hydropower, natural gas and oil comprise most of the electricity supply (as shown 

earlier in Figures 2.1 and 2.2). However, at sub-regional/country levels, important 

departures from the overall LAC profile exist. For example, regarding hydropower, 

which dominates regional electricity mixes (notably in Uruguay, Brazil and Colombia), 

except for Mexico, Central America and the Caribbean and Argentina where main 

generating sources are natural gas and oil (Figure 3.2). Absent efforts to constrain 

emissions, fossil technologies in LAC are projected to expand (van Ruijven et al. 2016) 

(Figure 3.2 provides projections from the GCAM Baseline (No Policy) scenario, which 

assumes no emissions mitigation actions throughout the 21st century).  
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Figure 3.2 Electricity generation by technology in the GCAM Baseline (No Policy) scenario 

for the eight LAC regions represented in GCAM-LAC. (Note that this scenario is identical to 

the RCP60_Baseline: No-climate impacts scenario mentioned below in Table 3.1). 
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In light of this, previous LAC decarbonization scenarios agree that renewables, 

mainly biomass, solar and wind as well as CCS technologies applied to fossil fuels and 

biomass are critical to mitigate energy-sector emissions, with nuclear energy typically 

playing less relevant roles (Binsted et al. 2020; Calderón et al. 2016; Kober et al. 2016; 

Lucena et al. 2016; Santos Da Silva et al. 2019; van der Zwaan et al. 2016). In these 

scenarios, hydropower remains important, but its contribution to regional total 

generation falls over time, as hydropower capacity expansion is not expected to follow 

growing demands (Solaun and Cerdá 2019).  

Under future climate change conditions, RE production in LAC will potentially 

face several challenges. By the end of the 21st century, multi-model projections using 

the representative concentration pathways (RCPs) (IPCC 2014) show mean warming 

levels reaching 0.6oC to 2.0oC in RCP2.6 and 2.2oC to 7.0oC in RCP8.5, and both 

positive and negative rainfall anomalies across the region (Magrin et al. 2014). 

Although there is large uncertainty intrinsic to these climate projections, their effect on 

future estimates of hydropower potential is manifested in terms of a strong regional 

variability of impacts from gains in Uruguay and the southernmost basins of Brazil to 

losses in northern Brazil, Colombia, northern South America, Argentina, and southern 

South America  (Khan et al. 2020; Popescu et al. 2014; Ruffato-Ferreira et al. 2017; 

Turner et al. 2017). The limited literature focusing on LAC suggests increased wind 

and solar resource potentials in Brazil (de Jong et al. 2019; Pereira de Lucena et al. 

2010; Pereira et al. 2013; Ruffato-Ferreira et al. 2017), and, possibly, a positive general 

response of the main LAC bioenergy feedstock, sugarcane, to regional climatic changes 

(Magrin et al. 2014) (more details are provided in the next Section). Despite its large 
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socioeconomic and physical vulnerability to climate change, LAC has been poorly 

covered by energy-sector impact studies, which are either global in scope or largely 

focused on Europe and North America (Cronin et al. 2018; Emodi et al. 2019; Solaun 

and Cerdá 2019).  

3.3 Climate change impacts on the renewable energy supply and potential effects in 

the Latin America and the Caribbean region 

This section briefly reviews major climate change effects on the RE supply. 

Note that impacts on the whole energy sector, including other relevant aspects such as 

climate effects on thermoelectric efficiency and transmission systems, extreme events, 

among others, are not included. These impacts are discussed in Schaeffer et al. 2012, 

Cronin et al. 2018, and Solaun and Cerdá 2019. This section attempts to emphasize 

impacts projected for the LAC region published on peer-reviewed articles after 2010, 

albeit somewhat limited by the weak literature coverage in the region mentioned above.  

3.3.1 Bioenergy 

Assessing climate impacts on the agricultural system, that can affect biomass 

production, is complex due to the potential plants exposure to a range of biological and 

environmental stresses, and to the large uncertainty within the impacts modeling chain 

that involves general circulation model (GCM) outputs driving responses of crop 

models spanning different structures, assumptions and approaches. Overall, changes in 

agricultural yields can be positive or negative depending on the warming levels, rainfall 

changes and CO2 fertilization with responses varying widely by crop type and region. 

CO2 fertilization is acknowledged as a key modulating mechanism that can partially 
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offset additional plants transpiration requirements by promoting increased water use 

efficiency (IPCC 2012). Although there might be some benefits for certain crops at 

mid- and high-latitude zones at moderate-to-medium levels of local warming (1-3oC), 

for a wide range of regions and crops, impacts tend to be predominantly negative, 

particularly in the tropical regions (IPCC 2014; Rosenzweig et al. 2014). Under higher 

warming levels, crops can also be more susceptible to deleterious effects associated 

with plant diseases and pest outbreaks, elevated tropospheric ozone concentration and 

higher risk of occurrence of extreme events (i.e., heat stress, droughts, floods) (Tubiello 

et al. 2007). 

In LAC, the two most important bioenergy feedstocks are sugarcane and 

soybeans employed in bioethanol and biodiesel production, respectively. According to 

the last IPCC report (Magrin et al. 2014), both crops are, in general, likely to respond 

positively to CO2 concentration and temperature changes projected for the region, even 

considering a decrease in water availability. However, a large variability of impacts at 

smaller sub-regional scales is expected. For example, one study (Marin et al. 2013) 

used a sugarcane growth model that includes CO2 fertilization forced by downscaled 

outputs from two GCMs under high and low emissions scenarios of the IPCC Special 

Report on Emissions Scenarios (SRES), and found increases in productivity and better 

water use efficiency for rainfed sugarcane in southern Brazil in all scenarios. Projected 

yield increases in this region (which is currently the main sugarcane plantation area in 

the country) ranges between 15 and 59% in 2050 relative to present-day average yield. 

On the other hand, another modeling study (Carvalho et al. 2015), focusing on a 

subdomain within the northeastern Brazil (a region considered particularly vulnerable 
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to climate change where drought events are recurrent), found sugarcane yield 

reductions by 2040 and 2100 for the moderate A1B SRES emissions scenario. Another 

study (Rolla et al. 2018) employed the DSSAT cropping system model forced by the 

CCSM4 climate model, and found significant yield increases of rainfed soybean crops 

in Central Argentina for the near (2015–2039) and far (2075-2099) horizons relative to 

present-day conditions under RCPs 4.5 and 8.5. The yield increases were found to be 

associated with projected increases in summer rainfalls in the region. 

3.3.2 Hydropower 

Climate change can modify surface runoff owing to shifts in mean annual and 

seasonal precipitation, in evapotranspiration patterns and in the amount and seasonal 

cycle of snowmelt (Schaeffer et al. 2012), which would affect the mean river-flow and 

flow seasonality. In addition, more frequent flooding events may affect the safety of 

dams’ infrastructure. There is also great complexity in assessing climate impacts on 

hydropower that relate to very region-specific climate responses and local interactions 

with socioeconomic agents that compete for water resources (Arent et al. 2014). 

Moreover, the inherent GCMs uncertainty adds up to those arising from distinct global 

hydrological models (GHMs). The latter can result in a larger spread in simulated 

streamflow than the spread originating from GCMs (van Vliet et al. 2016b). 

Due to the strong non-uniform distribution of projected temperature and 

precipitation changes around the globe (IPCC 2014), current understanding is that 

hydropower potentials may increase in certain areas whereas other regions may face a 

decline. For instance, one study (Hamududu; Killingtveit 2012) projects small global 

and regional changes in hydropower generation by 2050, with slight increases in some 
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regions (e.g., Americas by 0.05%), and reductions in other areas (e.g., Europe by –

0.16%). Nevertheless, many of the global and regional studies summarized by recent 

literature reviews (Cronin et al. 2018; Solaun and Cerdá 2019) point out to larger 

climate-induced changes in runoff, streamflow, hydropower potentials or generation 

depending on the study scope. According to one recent review (Cronin et al. 2018), 

positive impacts tend to be located in high latitude areas (e.g., Canada, Russia, northern 

Europe, northeast China) whereas negative impacts tend to be located in regions such 

as southern Europe, southern USA, southeast China and southern South America.  

Within the LAC domain, potential hydropower generation losses in Brazil, 

Chile, Colombia and Costa Rica, and substantial uncertainties surrounding Ecuador’s 

hydrological projections have been reported (Solaun and Cerdá 2019). In the particular 

case of Brazil (one of the largest hydroelectricity producers in the world), a recent study 

(Ruffato-Ferreira et al. 2017) used the Eta regional model to dynamically downscale 

projections from the global model HadGEM2-ES under RCPs 4.5 and 8.5. By 

computing the variation of the water balance index (function of precipitation minus 

evapotranspiration rates) up to 2100 for the eight main watersheds in the country, the 

study highlighted a decreasing trend in water availability for watersheds located in the 

north and center of the country and an increasing trend for southern watersheds in both 

RCPs. The most pronounced trend of increased water scarcity was found for the 

northeastern Brazil. In face of a potential marked sub-regional variation of impacts on 

water availability ─ as suggested by Ruffato-Ferreira et al. 2017 ─ it can be expected 

that the net effect of climate change on the total hydropower potential in Brazil will 

depend on the location of the installed capacity as well as on the planned capacity 
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additions. Currently, the majority of hydroelectric power plants are in the Midwest and 

Southern regions, with the Southwest region accounting for 70% of the hydropower 

storage capacity (De Souza Dias et al. 2018). However, current government plans of 

hydropower expansion in Brazil for the next decade focus on the Northwest (i.e., 

Amazon) region (Almeida Prado et al. 2016). 

As noted above, climate impacts on hydropower have been represented in 

IAMs. For example, one study (Turner et al. 2017) forced a coupled global hydrological 

and dam model with an ensemble of 16 GCMs (RCPs 4.5 and 8.5), incorporating the 

projected changes in hydropower potentials in GCAM. The multi-model mean 

response signaled losses in future hydropower generation in northern South America, 

Argentina, southern South America, Colombia, and Brazil, albeit with a lack of 

agreement in the direction of changes for the latter three regions. This same 

methodology and GCM forcings were employed in regional studies covering Brazil 

(Lucena et al. 2018) and Colombia (Arango-Aramburo et al. 2019), in which the 

median changes in hydropower generation up to the mid-century resulted to be 

negative. However, the spread in simulated 2050 hydropower generation was large, 

spanning from -13% to +4% in RCP 4.5, and -12% to 2% in RCP 8.5 in Brazil, and 

from about -20% to 0% for both RCPs in Colombia. In Uruguay, hydrology simulations 

using the model Xanthos forced by five GCMS and four RCPs provided water supply 

information that was incorporated in GCAM. This modeling framework projected 

increases in runoff and hydropower by 2050 across the 20 simulations performed (Khan 

et al. 2020). 
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3.3.3 Solar 

Solar large-scale electricity generation comprises two main technologies: 

photovoltaics (PV) and concentrating solar power (CSP). In both cases, the primary 

climate impact derives from alterations in the spatial and temporal distribution of the 

incident solar radiation at the surface. Downwelling solar radiation is attenuated 

through absorption by atmospheric gases (in which water vapor plays an important 

role) and aerosol particles. Moreover, the incident radiative flux is attenuated through 

scattering by aerosols, cloud droplets and ice crystals. The aerosol burden of the 

atmosphere can also influence the amount of incident solar radiation indirectly by 

affecting cloud properties such as cloud albedo and lifetime. All these atmospheric 

constituents are subject to changes due to the anthropogenic interference on the climate 

system. Overall, CSP systems are considered to be more vulnerable than the PV 

counterparts since the former relies exclusively on the direct component of solar 

radiation, whereas the latter utilizes both direct and diffuse solar radiation (Arent et al. 

2014). Within a global perspective, multi-model end-of-century projections from the 

Coupled Model Intercomparison Project phase 5 (CMIP5) show consistent reductions 

in annual mean total cloud cover in low to mid-latitudes under increasing warming 

levels, notably the RCP8.5 (Collins et al. 2013). However, other effects also play 

relevant roles with fundamental differences between both technologies.  

PV systems rely on panels or modules connecting several PV cells 

manufactured from a semiconductor material, predominantly silicon. For this 

technology, increasing mean temperatures negatively affect cell efficiency reducing 

power output. In general, PV cell efficiency drops approximately 0.5% per 1oC increase 
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considering PV technologies such as crystalline silicon and thin-film modules (Arent 

et al. 2014).  PV efficiency is also influenced by the wind flow around the module, 

which produces a cooling effect (Mavromatakis et al. 2010). CSP facilities operate with 

an array of typically hundreds of high-magnification mirrors or lenses that focus the 

sun’s direct beam radiation on thermally efficient receivers, thereby heating a working 

fluid that is used to drive steam turbines. CSP outputs increase almost linearly in 

response to ambient temperature, but the dominant effect lies on the response to solar 

radiation changes (Crook et al. 2011). Apart from the potential to reduce the amount of 

incident solar radiation, increased levels of dust and anthropogenic particulate matter 

being deposited on PV panels and CSP collectors diminish electricity generation 

(Bergin et al. 2017). 

The three following global-scale studies have used large GCM CMIP5 

ensembles to investigate climate impacts on PV and CSP outputs, addressing 

specifically the RCP8.5. The first (Wild et al. 2015), found that the temperature effect 

is likely to compensate gains from an increase in incoming surface solar radiation, 

leading to negative trends in PV power output by the midcentury in most parts of the 

world. Overall, the projected power changes between 2006 and 2049 were about 

1%/decade. In contrast, the midcentury CSP output was found to increase over large 

parts of the globe due to the combined effect of increasing mean temperatures and 

positive trends in surface solar radiation projected by the CMIP5 models (Wild et al. 

2017). In the third study (Zou et al. 2019), increasing trends of PV power (modeled as 

function of temperature) were found in East Asia, Europe, Central Africa, the northern 

part of South America, Central America, and central and eastern China in the 2006-
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2100 period. Such a trend was attributed to a decreasing trend in the atmospheric 

aerosols burden. For other regions such as North Africa, Central Asia, Australia, and 

especially the Tibetan Plateau, decreasing trends of PV power were found, associated 

with increasing aerosol burdens and cloudiness in the cases of the North Africa and the 

Tibetan Plateau regions. 

The examination of the literature revealed only one study (de Jong et al. 2019) 

focusing on a LAC domain. This study employed a downscaled regional climate model 

forced by three CMIP5 GCMs under RCP8.5, and projected a slight increase in average 

incoming surface solar radiation across most of Brazil. Particularly in the northeastern 

Brazil (where most of solar and wind power capacities have been concentrated on), the 

projected increase is of about 3.6% by the 2080s relative to the 1970s. 

3.3.4 Wind 

The theoretical extractable power of wind is directly proportional to the near-

surface wind speed to the third power and air density (Eurek et al. 2017). Hence, the 

inherent physical relationship involving the general atmospheric circulation, surface 

pressure and temperature gradients render large to local-scale wind potential sensitive 

to global warming, resulting in alterations in the mean and extreme wind speeds, 

direction as well as in the resource variability across different temporal scales (Pryor; 

Barthelmie 2010, 2013). While changing annual and seasonal mean wind speeds affect 

power-generation capacity, changes in the magnitude and frequency of extreme wind 

speeds can affect farms infrastructure through damages to the turbines. 

A recent global-scale study (Karnauskas et al. 2018) based on an ensemble of 

ten GCMs from CMIP5 under RCPs 4.5 and 8.5 portrayed decreases in wind power 
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across the Northern Hemisphere mid-latitudes and increases across the tropics and 

Southern Hemisphere (in this case with substantial regional variations and larger 

sensitivity to the emissions scenario). These responses were attributed to the polar 

amplification in the northern mid-latitudes, whereas enhanced land–sea thermal 

gradients governed the tropical and southern subtropical increases. By investigating 

some focal regional domains in more detail, the study revealed increasing wind power 

over time for subdomains covering the Mexico-Caribbean and eastern Brazil regions 

and an opposite pattern in southern South America under the RCP8.5. 

Narrowing down to regional impact studies in Latin America, the existing 

literature has focused in Brazil. Two studies (Pereira de Lucena et al. 2010; Pereira et 

al. 2013) employed projections from the HadCM3 GCM (dynamically downscaled into 

regional climate projections) under high and low IPCC SRES emissions scenarios, 

showing growth in resource availability in most regions over the long term, particularly 

in the Northeast region of Brazil. From both studies, the most conservative is Pereira 

et al. (Pereira et al. 2013), in which the average future growth in the wind power density 

inland for most of Northeast falls within the 15─30% range relative to the 1962-1990 

baseline. These earlier findings agree with recent analyses (de Jong et al. 2019; Ruffato-

Ferreira et al. 2017), where wind speeds are projected to increase across most of Brazil.  

3.4 Methods 

3.4.1 GCAM-LAC 

This work was carried out in a research version of GCAM v5.1.3 best suited for 

analyses in LAC (GCAM-LAC) (Khan et al. 2020), in which important model 
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assumptions have been refined in consultation with local stakeholders. These include 

socioeconomic drivers, the disaggregation of Uruguay as a distinct geopolitical region 

and parametric assumptions affecting energy supply, energy demand, and end-use.  

3.4.2 Climate impacts on renewables – model representation 

GCAM was forced with representations of changing agricultural productivity 

and hydropower production as well as with climate-impacted solar and wind resource 

cost-supply curves. These inputs are based on bias-corrected projections from the 

GFDL-ESM2M, HadGEM2-ES and IPSL-CM5A-LR GCMs obtained from the Inter-

Sectoral Impact Model Intercomparison Project (ISIMIP) (Frieler et al. 2017; 

Warszawski et al. 2014) under RCP2.6 and RCP6.0.  

To account for climatic impacts on agricultural productivity that affect the 

modeled biomass production, crop yields simulated by the parallel Decision Support 

System for Agrotechnology Transfer (pDSSAT - the parallelized global gridded 

version of the DSSAT model (Elliott et al. 2014; Jones et al. 2003)) were used to modify 

GCAM baseline (i.e., no-climate impacts) crop yield change assumptions (based on the 

Food and Agriculture Organization projections (Kyle et al. 2014)). The pDSSAT 

dataset comprises gridded annual yield information for both irrigated and rain-fed 

crops, which allowed climate-induced yield changes to be applied separately into 

GCAM rain-fed and irrigated crops.  Applying yield estimates from pDSSAT into 

GCAM requires some data processing to accommodate differences in spatial, temporal, 

and commodity resolutions between pDSSAT and GCAM. One of these key steps is to 

match crops represented by pDSSAT with the commodities modeled in GCAM. In the 

specific case of the second-generation bioenergy crops (such as switchgrass, 
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miscanthus, etc.), which are not represented by pDSSAT, GCAM’s biomass crop 

commodity receives the median of climate impacts to all other commodities. Note that 

GCAM requires yield change assumptions to calculate the expected land profitability 

in each model land unit at each time step. Thus, the effect of the climate-impacted yield 

change assumptions is to modify such profit rates across land units in the model, which 

are used to determine land allocated to each land type (cropland, biomass, grassland, 

shrubland, pasture, forest, etc.).  The combination of yields and endogenous land 

allocation determines agricultural production in each land unit at each time step (Kyle 

et al. 2014). The pDSSAT simulations used in this study are part of the Agricultural 

Model Inter-comparison Project (AGMIP) (Rosenzweig et al. 2014), and were taken 

from the experiments that included CO2 fertilization effects.   

Hydrology simulations from the global hydrological model (GHM) Xanthos 

(Vernon et al. 2019) were used to modify GCAM default hydropower assumptions. 

Specifically, hydropower default assumptions (derived from the economic and 

technical potentials estimated by the International Hydropower Association (Calvin et 

al. 2019)) are exogenous inputs in GCAM containing predetermined quantities of 

hydroelectricity production (in EJ) for all time steps and regions. These prescribed 

quantities (read in at the start of a simulation) then determine the temporal evolution of 

hydropower production by GCAM region. This means that hydropower production 

does not result from the modeled economic competition like all other power-sector 

technologies represented in GCAM. 

To incorporate gains/losses in hydropower production under evolving climatic 

conditions, Xanthos is used to provide information regarding renewable water 
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availability in the 235 large river basins represented in the model, as well as 

hydropower production.  To do so, Xanthos requires gridded monthly precipitation and 

temperature fields from GCMs to solve for monthly runoff and other variables at grid-

cell level globally. Using Xanthos 2.0, future projections of hydropower production 

were computed through a built-in hydropower module that requires gridded streamflow 

projections (converted from the simulated runoff) to drive dam simulations. This 

modeling chain produced modified assumptions of regional hydropower production 

that incorporate climate change effects. These assumptions were then used to replace 

default GCAM assumptions as mentioned above. 

Climate impacts on solar and wind resource productions are modeled using 

supply curves. These curves map the availability of energy production as a function of 

energy price and are important assumptions to the model. The supply curves employed 

in this study were built upon the global estimates of renewable energy potentials 

produced as part of the ‘ISIpedia-energy protocol’ project (Yalew et al. 2020) using 

climate variables (e.g., solar radiation, temperature, wind speed) from the ISIMIP2b 

simulations. These data consist of gridded (0.5o spatial resolution) maps of technical 

and economic potentials for four generating technologies (concentrating solar power, 

photovoltaics ─ utility-scale and rooftop ─ and wind), covering three distinct time-slices 

(1971─2000: historical conditions; 2031─2070 and 2071─2100: future climate states) 

produced through methods documented in Gernaat et al. 2021 (Chapter 4 will discuss 

in details how wind and solar technical potentials are computed in the literature).  
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ISIpedia information on wind and solar technical potentials (given by the 

gridded maps of technical potential) and electricity costs (given by the gridded maps 

of economic potentials), were used to derive three time-varying supply curves per 

renewable source, GCM and GCAM region (Appendix B; Figures B.1 ─ B.12), which 

replaced GCAM default assumptions that do not consider climate change effects on 

solar and wind sources. In the case of wind, the default supply curves derive from a 

reanalysis dataset covering the 1980-2009 period (Zhou et al. 2012). Solar energy is 

modeled as two separate resources: global solar resource and distributed PV 

(accounting for PV installations on residential and commercial buildings) (JGCRI 

2019).  While the distributed PV resource is modeled with supply curves derived from 

an observational solar radiation dataset (Denholm; Margolis 2008), no cost-supply 

curve is implemented for the global solar primary resource (representing utility-scale 

solar technologies), which is assumed to be an unlimited resource with very low costs 

that do not vary with deployment levels (JGCRI 2019). 

Replacing GCAM default assumptions by the ISIpedia supply curves has 

important implications. In GCAM, primary renewable resource production and their 

resource-related costs serve as inputs to the electricity sector, which contains 

representations of distinct generating technologies (fossil fuels, geothermal, 

hydropower, intermittent renewables and nuclear). The cost of generating electricity 

given by the renewables supply curves represents the fuel costs that GCAM uses to 

calculate the levelized cost of the technology T in time period t, 𝑝𝑇,𝑡, given by: 

𝑝𝑇,𝑡 =  
𝐶fuel

𝜂
+  

1000 𝐶capital

8760 CF
 × FCR + 

𝐶O&M,fixed

8760 CF
+  𝐶O&M,variable 

(1) 
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Where 𝐶fuel is the fuel cost ($/MWh); 𝜂 is the power plant efficiency; 𝐶capital is the 

overnight capital cost ($/kW), CF is the capacity factor of the technology, FCR is the 

fixed charge rate; 𝐶O&M,fixed is the annual fixed Operation and Maintenance  (O&M) 

cost ($/MW); CO&M,variable is the variable O&M cost ($/MWh) and 8760 is the number 

of hours in a year. The list of electric power generation technologies represented in the 

model and their input assumptions are available in the literature (Muratori et al. 2017). 

Thus, higher/lower average availability of a renewable resource due to climate change 

would translate into shifting supply curves, which would affect 𝐶fuel in Eq. 1 above. 

This would indeed translate into alterations on generating capacity as 𝑝𝑇,𝑡 is used to 

compute the share of regional electricity markets each generating technology 𝑇 

captures at time 𝑡 (sT,t). As mentioned earlier, this market competition is modeled by a 

logit formulation (Calvin et al. 2019) given by (note that hydropower is set aside from 

economic competition since hydropower production is a fixed input to the model):  

sT,t =  
𝛼𝑇,𝑡𝑝𝑇,𝑡

𝛾

∑ 𝛼𝑇,𝑡𝑝𝑇,𝑡
𝛾N

T=1

 
(2) 

 

Where 𝑝𝑇,𝑡 is the levelized cost of the technology T in time period t (Eq. 1), 𝛾 

is an exogenous input shape parameter and 𝛼𝑇,𝑡 are calibration parameters. This 

formulation has an important property in that it assigns some market share to expensive 

technologies, which allows the model to avoid unrealistic “winner take all” responses 

(Wise et al. 2019). Lastly, it is important to mention that GCAM includes a 

representation of renewable intermittency. Like most IAMs, this is translated into costs 
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that vary with the share of renewables in the grid and add to the cost of building new 

intermittent generation to secure backup capacity. 

The impacts on the power system due to climate change on renewables were 

examined by comparing scenarios with climate impacts on renewables against identical 

scenarios that neglect these effects (i.e., the No-climate impacts scenarios) according 

to the scenarios design presented in Table 3.1 below. Note that climate impacts on other 

relevant aspects of the energy system (e.g., building energy consumption (Clarke et al. 

2018), thermal power generation (Bartos; Chester 2015; van Vliet et al. 2016a), 

transmission infrastructure (Yalew et al. 2020), etc.) were not included in this 

experimental setup. This means that these results should be interpreted in light of this 

assumption. Although the modeling framework employed here provides a previously 

unexplored picture of the effects of climate impacts on all renewables on the power 

system, future investigation is needed to incorporate impacts on other components of 

energy system, such as those cited above, which are also acknowledged as key sources 

of vulnerabilities to the energy system (Yalew et al. 2020). 

3.4.3 Calculation of capital investments in the electric power sector 

The GCAM representation of capital stock turnover (i.e., the process by which 

old ‘equipment’ is replaced by new one) in the electric power sector assumes that 

generating technologies have a prescribed lifetime, and investments in new plants are 

added by vintage (i.e., period in which the investment is made) in a pace that allows 

sufficient generating capacity to satisfy demand. Each power plant operates until the 

end of its lifetime or is retired from production if its operating costs surpass the 

electricity market price. The new technology investments compete for a share of energy 



 

73 
 

markets, which is modeled by the logit-choice formulation discussed above. Power-

sector capital investments calculation is made as follows (Iyer et al. 2017). Based on 

GCAM outputs of electricity generation by technology, vintage and period, the first 

step is to compute new and additional electricity generation for each technology in each 

period, which is converted to capacity (in GW) via capacity factor assumptions (listed 

in Appendix B, Tables B.1 and B.2). This can be expressed as: 

Capacity =  
Generation × (2.78 × 105)

Capacity Factor × 8760
 

(3)                

 

Finally, the capacity addition calculated above is multiplied by the overnight 

capital cost associated with each technology (in $/kilowatt) using assumptions listed in 

Table B.3 (Appendix B). This yields capital investments (in $ ─ representative of 

cumulative investments over a five-year model period) as shown below: 

 

Capital investment = Capacity ×  106  × Overnight Capital Costs (4) 

It is important to mention that capital investments computed by the method 

outlined here represent the upfront costs that occur at the beginning of the lifetime of a 

power station. Variable costs (e.g., fuel costs and operation and maintenance costs) and 

other system costs (e.g., integration) are not included. 

3.4.4 Experimental Design 

To account for compounding climate impacts on renewables, 9 illustrative 

scenarios using GCAM are explored (Table 3.1). The scenarios vary across three 

dimensions, namely, assumptions about the level of climate change mitigation, climate 

impacts on renewables and technology availability.  
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Table 3.1 Scenarios explored in this study 

 

Technology Availability 

FullTech 
NoCCS & 

NoNewNuc 
Baseline 

C
li

m
a

te
 I

m
p

a
ct

s 

None 
RCP26_FullTech: No-

climate impacts 

RCP26_NoCCS & 

NoNewNuc: No-

climate impacts 

RCP60_Baseline: No-

climate impacts 

Hydropower 
RCP26_FullTech: 

Hydropower 

RCP26_NoCCS & 

NoNewNuc: 

Hydropower 

RCP60_Baseline: 

Hydropower 

All 

renewables 

RCP26_FullTech: 

Combined impacts 

RCP26_NoCCS & 

NoNewNuc: 

Combined impacts 

RCP60_Baseline: 

Combined impacts 

Climate 

Mitigation 
RCP2.6 RCP6.0 

 

Along the first dimension, two scenario variants exist. The first refers to 

scenarios with no explicit climate policy, which lead to a radiative forcing of 

6.0 W/m2 at the end of the century. These scenarios are based on the GCAM Baseline 

(No Policy) scenario mentioned earlier (note that the RCP60_Baseline: No-climate 

impacts scenario shown in Table 1 is identical to the GCAM Baseline (No Policy) 

scenario). Moreover, scenarios with greenhouse gas mitigation policies to reduce 

radiative forcing are explored. These scenarios assume that countries across the globe 

(including those in LAC) achieve their NDC commitments through 2030. Beyond 

2030, the scenarios assume globally coordinated mitigation efforts compatible with 

limiting end-of-century temperature rise to 2oC and with the RCP2.6 (Appendix A; 

Supplementary Note 1).  
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Along the climate impacts dimension, three variations are explored. The first 

variation, named No-climate impacts, assumes no climate impacts on renewable 

resources. The Hydropower scenarios assume climate impacts on hydropower only, 

allowing a comparison with the approach of prior studies that have investigated 

electricity-sector implications due to climate impacts on hydropower (Arango-

Aramburo et al. 2019; Carvajal et al. 2019; Dowling 2013; Lucena et al. 2018; 

Savelsberg et al. 2018; Turner et al. 2017; Zhou et al. 2018). The Combined impacts 

scenarios assume climate impacts on all renewable resources (recall that the 

representation of climate impacts on renewables in GCAM is discussed in Subsection 

3.3.2). The results focus primarily on mean values across all GCMs although the 

implications for climate model uncertainty are discussed at the end of the Results 

Section. Note that the RCP2.6 is the lowest projected warming level among the RCPs 

considered within the IPCC AR5 and ISIMIP, and is consistent with a global warming 

likely below 2°C above pre-industrial temperatures (IPCC 2014). The RCP2.6 allows 

climate impacts on renewables being studied in a context of strong climate change 

mitigation with substantial upscaling of renewable energy. On the other hand, the 

RCP6.0 represents a high emissions pathway (IPCC 2014).  

Along the technology availability dimension, three variations are explored. The 

Baseline and FullTech scenarios assume that the full suite of power sector technologies 

represented by GCAM is available globally. However, the FullTech scenario includes 

CCS technologies that are only deployed in the context of decarbonization. The NoCCS 

& NoNewNuc scenario assumes no deployment of CCS technologies globally, and no 

new deployment of nuclear technologies in LAC. The NoCCS & NoNewNuc scenario 
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represents a high renewable scenario – which is important within the context of LAC 

where future mitigation strategies are expected to rely heavily on renewables. These 

scenarios are consistent with many prior mitigation studies (Binsted et al. 2020; Clarke 

et al. 2014; Santos Da Silva et al. 2019).  

3.5 Results 

3.5.1 Implications for electricity generation patterns 

Consistent with prior literature on LAC decarbonization scenarios (Binsted et 

al. 2020; Calderón et al. 2016; Kober et al. 2016; Lucena et al. 2016; Santos Da Silva 

et al. 2019; van der Zwaan et al. 2016), the mitigation RCP26 scenarios entail a 

significantly larger use of low-carbon energy sources and increased electrification of 

end-use sectors compared with a Baseline energy technology pathway (Figure 3.3). The 

RCP26_FullTech family of scenarios represents a diverse array of low-carbon 

technologies with bioenergy and natural gas plants equipped with CCS playing central 

roles in mitigation by supplanting the role of fossil-fuel based power generation, 

particularly, of natural gas, through 2100 (Figures 3.3 and B.13). Under the 

RCP26_NoCCS & NoNewNuc scenarios, emissions reductions in the power sector are 

achieved largely through the addition of solar and wind plants (Figures 3.3 and B.14). 

As noted below, each energy technology pathway offers distinct technological 

alternatives for adaptation to climate impacts on RE. 
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Figure 3.3 Electricity generation by technology in the RCP26_FullTech: No-climate 

impacts scenario (top left), RCP26_NoCCS & NoNewNuc: No-climate impacts 

scenario (top right), and RCP60_Baseline: No-climate impacts scenario (bottom left) 

in LAC. 

Figure 3.4 provides an overview of the mean differences in electricity 

generation for the six climate-impact scenarios relative to the reference No-Climate 

impacts cases. A comparison between the Combined impacts and the Hydropower 

scenarios highlights the possibility of an incomplete understanding of the implications 

of climate change on the power sector without an integrated framework that accounts 

for impacts on all renewables. Such an issue is apparent in most subregions for two 

reasons. First, some LAC subregions (particularly Brazil, S. Am. N. and S. Am. S) 

show nontrivial responses induced by the climate-impacted wind supply-curves (this is 

better illustrated in Figures 3.5 and 3.6 below). Second, some LAC subregions 

(Argentina, C. Am/Car. and Mexico) are characterized by lower present-day and 

projected contributions of hydropower production compared to others (Figure 3.2). 
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Hence, their national RE portfolios become more sensitive to climate impacts on the 

non-hydropower renewables. In fact, hydropower is projected to play a less relevant 

role in total power generation across the entire LAC region (Figures 3.2 and 3.3). Even 

in Brazil where climate impacts on hydropower largely govern power-sector responses, 

important differences concerning wind-based generation exist. Conversely, Colombia 

and Uruguay are noteworthy cases in which climate impacts on hydropower largely 

dominate the effects on the power system. 

 

Figure 3.4 Model mean differences in electricity production by technology in LAC 

assuming climate change impacts on renewables. Differences are calculated by 

technology using cumulative generation (Terawatt-hours – TWh) during the 2020 ─ 

2100 period and are relative to the corresponding No-Climate impacts scenarios. 

GCAM LAC regions covered: Brazil, Central America and the Caribbean (C. 

Am/Car.), Mexico, South America_Northern (S. Am. (N)), South America_Southern 

(S. Am. (S)), Argentina, Colombia and Uruguay. Note the different y axis scales.  
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Focusing on the RCP26 Combined impacts scenarios (columns 5 and 6 in 

Figure 3.4), the magnitudes of changes in wind and solar generation tend to be larger 

in the NoCCS & NoNewNuc relative to the FullTech, since the former is far more 

reliant on renewables than the latter (Figure 3.3). Nevertheless, the directions of 

changes in wind generation in the NoCCS & NoNewNuc are largely consistent with 

the FullTech (except for where this signal is small as noted earlier for Colombia and 

Uruguay), while differences in other non-hydropower sources are mostly indirect 

effects (i.e., driven by the changes in hydropower and wind; see Figures 3.5 and 3.6 

and discussion below). The results imply that wherever favorable nontrivial signals 

from the climate-impacted wind resource exist (e.g., Brazil, S. Am. N. and S. Am. S.), 

wind energy may represent an optimal opportunity to decarbonize the power system, 

with potential to also serve as a key adaptation strategy to climate-attributable losses in 

hydropower (e.g., S. Am. N.). Conversely, Argentina and C. Am/Car. may need to 

increase generation from a mix of alternative sources to compensate for potential 

reductions in wind power as the projected positive climate effects on hydropower 

appear insufficient to satisfy demand. 

The major driving forces acting on LAC’s decarbonizing power sector under 

multiple simultaneous climate impacts (i.e., under the Combined impacts assumption) 

are better understood by examining results from ancillary experiments which assume 

climate impacts on each renewable individually (similar to the approach conducted by 

Turner et al. 2017 for hydropower and by Kyle et al. 2014 for agricultural yields). 

Specifically, simulations where each climate-impact input is incorporated into GCAM 

individually were carried out, and the implications for electricity generation per source 
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considered were assessed (i.e., if climate impacts on wind were incorporated in GCAM, 

changes in wind power generation were examined and so on). By incorporating the 

physical impacts of climate change on the RE supply into GCAM, concurrent direct 

and indirect effects are induced. The former means the direct power-system responses 

to the climate-impacted RE inputs such as a decline in hydroelectricity production due 

to reduced streamflow volumes or an increase in bioenergy production due to improved 

crop yields. The indirect responses derive from feedbacks of the direct effects on the 

power system. More complex interactions emerge under multiple simultaneous climate 

impacts.  This is illustrated in Figures 3.5 and 3.6. When climate impacts on individual 

renewables are assumed (a), magnitudes and signs of the resulting direct changes in 

renewable electricity generation vary considerably across LAC with effects on 

hydropower- and wind-based generation outweighing those on biomass and solar 

generation. When all impacts are jointly accounted for in the Combined impacts 

scenarios, bioenergy and solar generation undergo more pronounced variations 

responding to the compounding indirect effects (price and demand adjusts) driven 

mostly by hydropower and wind sources (b and c). 

  



 

81 
 

 

Figure 3.5 Mean changes in electricity generation in LAC assuming climate change 

impacts on renewables. Changes represent the mean value across GCMs, and are 

calculated by technology scenario (labelled in c) and RE generating source (labelled in 

b) using cumulative generation in the 2020 ─ 2100 period. Percent changes are relative 

to the corresponding No-climate impacts simulations (positive values indicate that 

scenarios with climate impacts on renewables show higher cumulative generation). a. 

Assumption of climate impacts on each individual renewable source separately. b. 

Assumption of climate impacts on all renewables (Combined impacts scenarios in 

Table 3.1). c. Differences between outputs in b and a (hydropower is not plotted since 

the temporal evolution of hydroelectricity production per GCAM region is exogenously 

predetermined, i.e., fixed; thus differences between scenarios a and b are zero).  

 

 

Figure 3.6 As in Figure 3.5 but showing results for the Baseline and FullTech 

scenarios. 

 

Figure 3.4 also emphasizes implications from distinct warming levels. A salient 

response from the Hydropower scenarios (columns 1, 2 and 3 in Figure 3.4) is an 
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overall deterioration of hydroelectricity production under the RCP6.0. All regions, 

except for Colombia, experience enhanced reductions in cumulative generation, shifts 

from generation gains toward losses or less pronounced positive impacts compared to 

the RCP26 Hydropower scenarios. C. Am/Car., Mexico, S. Am. (N) and Argentina 

emerge as particularly prone to negative impacts on hydropower as the severity of 

climate change increases. In these regions, a potential adaptation strategy assessed by 

GCAM might be to increase fossil fuel based generation (particularly natural gas), 

which can exacerbate the initial climate change signal via increments in fossil fuel 

emissions. A comparison between the RCP60_Baseline: Hydropower and 

RCP60_Baseline: Combined impacts scenarios (columns 1 and 4 in Figure 3.4) 

reinforces the importance of detailed considerations of multiple impacts, which is 

particularly prominent in C. Am/Car., Mexico and Argentina. Again, the combination 

of impacts on hydropower and wind are the leading drivers of the compounding effects 

on electricity generation, however the direct effects on electricity generation changes 

induced by the RCP6.0 wind supply curves tend to be less pronounced than those 

induced by the RCP2.6 curves (Figures 3.5─3.6). This is particularly true for Brazil, S. 

Am. (N) and S. Am. (S). As a result, these regions experience less pronounced gains in 

wind-based generation under the RCP60_Baseline: Combined impacts relative to the 

RCP26_FullTech: Combined impacts case. It is important to note that these distinct 

outcomes must not be entirely attributed to the climate change signal due to the role of 

the energy technology pathway by itself. Specifically, under the RCP60_Baseline 

scenario, the effects produced by the wind supply curves (shown in the Appendix B – 

Figures B.1─B.12) on wind power generation originate from the lower ends of the 
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curves as wind power needs are not so prominent in this scenario. Conversely, energy-

technology pathways like the FullTech and, in particular, the NoCCS & NoNewNuc 

rely considerably more on wind power to fulfill climate goals, thus suffering stronger 

influence from upper portions of the supply curves, in which differences among 

climate-impacted curves are more pronounced. 

In all climate-impact scenarios, much of the differences in electricity generation 

tend to be more pronounced throughout the 2061-2100 period (Appendix B - Figures 

B.15─B.22). Given the unique implications each subregion may face due to climate 

impacts on renewables, these results illustrate how distinct accounting of these impacts 

in IAMs may affect decision-making. For example, under the RCP60_Baseline 

scenarios, Argentina is projected to experience a pattern of temporally increasing losses 

in hydroelectricity production (Appendix B – left panels of Figure B.20), which would 

require continuously improving adaptation plans. In this regards, modeling impacts 

only on hydropower implies that increased wind power generation would be among the 

portfolio of cost-effective adaptation options in Argentina. On the other hand, 

accounting for impacts in all renewables means that hydropower losses might be 

progressively exacerbated by losses in wind power generation, requiring a change in 

the course of power-sector adaptation plans in the country. 

3.5.2 Implications for power-sector capital investments 

Power-sector capital investments depend on how much generating capacity is 

installed or retired over time per technology and the marginal costs of building capacity 

from each technology (Methods - Subsection 3.3.3). Hence, the climate-induced 

alterations in electricity production patterns discussed so far would have implications 
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for regional capital investment needs through changes in generating capacity.  Under 

the Combined impacts scenarios, this analysis signals increased needs for capital 

investments in most LAC subregions until 2100, particularly in the NoCCS & 

NoNewNuc scenario (Figure 3.7).  

 
 

Figure 3.7 Model mean changes in total capital investment requirements in LAC by 

scenario under distinct assumptions on climate change impacts on renewables.  

Absolute differences computed under the Combined impacts scenarios (a) and  

Hydropower scenarios (b). Changes are calculated using cumulative capital costs 

(United States dollar – USD) in the 2020 ─ 2100 period and  are relative to the No-

Climate impacts scenarios (i.e., positive values mean that scenarios with climate 

impacts on renewables show increased costs). Full range of estimated costs: USD -48 

to +54 billion.  

 

 

On average, cumulative total capital investment needs in LAC over the 

2020─2100 period increase by approximately USD 12─114 billion compared to the No-

Climate impacts scenarios (Table 3.2). Putting these results into context, the highest 
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figure is comparable to LAC’s investments in RE accumulated between 2007 and 2015 

(of about USD 119 billion), whereas the lowest estimates compare with investments in 

2014 or 2015, on the order of USD 15─16 billion (IRENA 2016). Although these 

additional investments seem small, they could imply significant challenges for the 

developing economies in LAC, where resources for public investments are scarcer, and 

private financing costs (closely linked to perceptions of the quality of institutions and 

associated investment risks (IRENA 2016; Iyer et al. 2015a)) are generally higher 

compared to the developed world. Among individual subregions, S. Am. (S) stands out 

with the highest additional investments (of about USD 7─54 billion) in the RCP26 

cases. In contrast, investments decrease by USD -0.2 to -5.6 billion in Argentina, 

Mexico (in the Baseline and FullTech technology cases), and Uruguay. 
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Table 3.2 Regionally aggregated changes in total capital investments in the LAC 

electric power sector under the Combined impacts scenarios. Changes represent the 

mean value (absolute and percentage) across GCMs (the standard deviation of the 

absolute model mean change is also shown), and calculated using cumulative 

investments in the 2020 ─ 2100 period. Changes are relative to the No-Climate impacts 

scenarios (i.e., positive values mean that scenarios with climate impacts on renewables 

show increased costs). 

Region 

RCP60_Baseline RCP26_FullTech 
RCP26_NoCCS & 

NoNewNuc 

2100 2100 2100 

Mean 
($Bill.) 

Mean 
(%) 

Std. 
($Bill.) 

Mean 
($Bill.) 

Mean 
(%) 

Std. 
($Bill.) 

Mean 
($Bill.) 

Mean 
(%) 

Std. 
($Bill.) 

Brazil 3.72 0.42 15.54 5.32 0.30 17.84 10.76 0.48 58.74 

Central America and 
Caribbean  

(C. Am/Car.) 3.75 0.52 2.50 3.93 0.33 11.83 23.65 1.51 45.97 

Mexico -0.81 -0.11 3.71 -3.52 -0.25 16.94 3.28 0.21 17.71 

South 
America_Northern  

(S. Am. (N)) 8.71 2.59 22.98 7.07 1.22 13.54 14.09 1.99 17.55 

South 
America_Southern  

(S. Am. (S)) 0.37 0.07 4.12 6.94 0.88 2.51 54.37 6.11 9.92 

Argentina -3.65 -1.22 1.78 -3.45 -0.53 1.24 -5.55 -0.54 0.66 

Colombia 0.48 0.19 1.49 1.28 0.25 1.61 15.13 2.05 5.87 

Uruguay -0.20 -0.34 0.47 -0.75 -0.85 0.71 -1.45 -1.35 0.48 

LAC 12.38 0.33 46.91 16.82 0.24 37.49 114.30 1.28 129.76 

 

 

A breakdown of these total differences by generating source highlights the role 

of hydropower and wind in altering the net balance of capital investments across LAC 

(Figure 3.8). The regional differences in investments largely reflect the changes to the 

electricity technology mix shown in Figure 3.4. Under the RCP26 Combined impacts 

scenarios, investments in hydropower and wind-based generating capacity increase in 

LAC until the end-of-century (greatly influenced by the largest magnitudes of changes 

in Brazil and S. Am. (S)), while solar- and CCS-based generating capacity lose 

investments. Nevertheless, important regional variations exist as subregions such as C. 
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Am/Car. and Colombia need to bring solar capacity on line. In the RCP60_Baseline: 

Combined impacts scenario, the net regional investment in hydropower decreases due 

to the projected negative climate effects on hydropower in many subregions. In this 

case, the regional increase in total investments is influenced by a net growth in 

investments in solar energy.   

 

 
Fig. 3.8 Model mean differences in capital investments by technology in LAC 

assuming climate change impacts on renewables. Differences are calculated by 

technology using cumulative investments (USD) in the 2020 ─ 2100 period. 

Differences are relative to the No-Climate impacts scenarios (i.e., positive values mean 

that scenarios with climate impacts show increased costs). The red squares indicate the 

net of the positive and negative changes for a given scenario (and are equal to the total 

investment changes plotted in Figure 3.7). Note the different y axis scales.  

 

 

Figures 3.7 and 3.8 also illustrate marked differences in capital investments 

when only climate impacts on hydropower are accounted for. In many regions, such 

differences translate into underestimated investment needs, which are more 
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pronounced in the RCP26_NoCCS & NoNewNuc case and in Brazil and S. Am. (S.). 

In these regions, cumulative 2020-2100 capital investment differences in the 

RCP26_NoCCS & NoNewNuc: Hydropower scenario are approximately USD 60 

billion lower than in the RCP26_NoCCS & NoNewNuc: Combined impacts case. 

Exceptions are Argentina, where reductions in total capital investments in the RCP26 

Combined impacts scenarios are considerably larger than in the Hydropower scenarios 

due to lower wind capacity requirements, and Colombia and Uruguay, where total 

investment requirements are consistent in both RCP26 climate-impact scenarios 

because climate impacts on non-hydropower renewables do not play important roles 

(recall Figure 3.4). Under the RCP60_Baseline scenarios, there are also examples in 

which the Hydropower case do not show lower investment requirements relative to the 

Combined impacts case ─ Mexico and Argentina. However, investment estimates in 

these subregions under the distinct climate-impact modeling approaches differ 

markedly.   

Although it could be expected that the RCP60_Baseline: Combined impacts 

scenario would yield considerably larger needs of capital investments in face of more 

severe climate impacts, it is found that investment changes under the RCP60_Baseline: 

Combined impacts scenario are predominantly lower than or close to those in the 

RCP26_FullTech: Combined impacts case (Figure 3.8 and Table 3.2). One key aspect 

is the overall low reliance of the Baseline pathways on RE as pointed out earlier. Under 

the RCP60_Baseline scenarios, no cost penalties are imposed for emitting fossil fuels, 

meaning that it is economically attractive to compensate part of renewable-based 

generation losses by fossil fuels without CCS, typically less capital-intensive than low-
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carbon options. This dynamic is more evident in Argentina and Mexico. These results 

then emphasize the role of the energy technology strategy in shaping the overall power-

sector vulnerability to climate impacts on RE. 

It is important to recognize that the investment implications estimated in this 

analysis are inherently uncertain due to a wide range of outcomes from individual 

GCM-derived impacts (Figures 3.9─3.10). This wide range relates to the substantial 

uncertainties in GCM projections of variables such as precipitation, winds and 

shortwave solar radiation used to force the impact models employed herein. For this 

reason, uncertainties are high for all technology cases although the NoCCS & 

NoNewNuc exhibits, for most subregions, the greatest magnitudes of standard 

deviations associated with the more pronounced mean impacts in this scenario (Table 

3.2). Overall, mean impacts estimated for Brazil, C. Am/Car., Mexico and S. Am. (N.) 

are associated with the largest spread of model outcomes (Figures 3.9─3.10).  
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Figure 3.9. Differences in total capital investments in LAC per technology scenario 

and GCM assuming climate change impacts on all renewables. Changes are calculated 

using cumulative capital investments in the 2020 ─ 2050 (top) and 2020 ─ 2100 

(bottom) periods. Changes are relative to the No-climate impacts simulations (i.e., 

positive values mean that scenarios with climate impacts on renewables show 

incremental costs). GCAM LAC regions covered: Brazil (Bra), Central America and 

the Caribbean (Cac), Mexico (Mex), South America_Northern (San), South 

America_Southern (Sas), Argentina (Arg), Colombia (Col) and Uruguay (Uru). 
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Figure 3.10. As in Figure 3.9 but comparing the RCP26_FullTech: Combined impacts 

and the RCP60_Baseline: Combined impacts scenarios. To improve visibility, the y 

axis scales do not match those presented in Figure 3.9. 

 

Although the ensemble of three climate runs is insufficient to cover the full 

range of uncertainties across GCMs, it provides initial estimates of overall bounds of 

economic impacts each region might experience. Importantly, larger confidence is 

found on investment projections for S. Am. (S), Argentina, Colombia and Uruguay, 

particularly under the RCP26 cases, reflected in lower standard deviations (relative to 

their means) than in other subregions (Table 3.2) and agreement on the direction of the 

investment impact (Figures 3.9─3.10). Future research should employ a larger 
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ensemble of models to improve overall confidence on the projected changes. 

Nonetheless, even employing considerably larger ensembles than the one used here, 

prior studies (Carvajal et al. 2017; Turner et al. 2017) have highlighted the significant 

decision-making challenge arising from a large spread of individual model outcomes. 

To improve the resilience of energy systems in light of the large uncertainty in future 

climate projections, there are arguments supporting “uncertainty-management” 

methods (Hallegatte 2009) like adaptation strategies that are valid under alternative 

future outcomes, diversify generation sources and consider a more decentralized small-

scale energy structure (Ebinger; Vergara 2011; Hallegatte 2009; Kundzewicz et al. 

2018; Miara et al. 2019). 

3.6 Discussion and conclusions 

The findings of this study underscore the value of a comprehensive analysis of 

the implications of climate impacts on RE in IAMs so that their aggregate effect on the 

energy sector can be better understood. This is important because reductions in total 

power generation due to climate impacts on one RE source may be alleviated or offset 

by positive impacts on other sources, or simultaneous negative effects in distinct 

renewables can amplify total generation losses. GCAM results highlight regionally 

differentiated impacts across LAC power grids due to a combination of vulnerabilities 

specific to each generation mix and large spatial variability of climate change impacts 

across LAC. The first component is explored through distinct technology pathways, 

showing that the generation portfolio plays an important role in alleviating or 

exacerbating increasing pressure on capital investments due to climate-attributable 

effects on renewables. Since each energy technology pathway affects the availability 
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of technology replacement options (each of them characterized by specific costs of 

installing generating capacity), implications for total capital investments differ 

markedly.   

The key overarching insight from all scenarios explored herein is the risk of 

misrepresentation of climate change effects on the electric power sector if climate 

impacts on all renewables are not accounted for. This is particularly evident for the 

energy pathway with the most pronounced intermittent renewables deployment (i.e., 

the NoCCS & NoNewNuc), characterized by greatly underestimated capital investment 

requirements across most of the LAC region when climate impacts only on hydropower 

are considered. Such an underestimation may result in enhanced power-sector 

vulnerabilities to climate change.    

Given the framework of high deployment of intermittent renewables explored 

through the mitigation scenarios, accounting for climate impacts on wind in certain 

LAC subregions was shown to be as relevant as accounting for impacts on hydropower 

in terms of implications for electricity production. The results also highlighted an 

overlooked angle related to the fact that climate impacts on wind at the 2oC warming 

level can positively affect power production in certain LAC subregions (Brazil, S. Am. 

(N) and S. Am. (S)). This emerges as a strategic opportunity for decarbonization and 

diversification of regional power mixes. However, the high upfront capital 

expenditures of wind technologies (and of renewables in general) represent a critical 

financial barrier to RE deployment, particularly in developing economies, requiring 

specific policies to create favorable financing conditions (IPCC 2012; IRENA 2016).  
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The growing trends in LAC’s power-sector capital investment requirements 

reported under multiple RE impacts and technology configurations suggest challenges 

for the planning of low-carbon capacity additions. On the one hand, a mitigation 

pathway based on a diversified mix of generating technologies with sizable 

contributions from fossil-fueled plants with CCS, as illustrated by the RCP26_FullTech 

scenario, reduces the exposure of the power system to climate impacts on renewables, 

and may alleviate (or avoid) the necessity of raising investments. However, CCS 

technologies are not mature, nor have they been widely deployed commercially yet. On 

the other hand, decarbonizing LAC’s power sector largely through climate-sensitive 

solar and wind technologies may increase risks of higher capital investment 

requirements, as shown in Table 3.2 for most LAC regions under the RCP26_NoCCS 

& NoNewNuc: Combined impacts scenario. These larger increases relate to the lower 

capacity factors of intermittent renewables compared with fossil fuels with CCS 

technologies deployed in RCP26_FullTech: Combined impacts scenario. This means 

that intermittent renewables require more generating capacity per unit of electricity 

produced compared with fossil-fuel technologies with CCS (The Subsection 3.3.3 in 

Methods shows how capacity factors are used to compute capital investments in this 

study). Although the value of diversifying the energy portfolio has been recognized as 

a mean to achieve climate resilient power systems (Ebinger; Vergara 2011), it is crucial 

that energy planners identify strategies that do not jeopardize climate goals.  In this 

regards, a mixture of renewable and non-renewable energy sources, albeit less 

vulnerable to climate impacts on renewables, can dampen mitigation efforts unless 

CCS technologies become technically viable and cost-competitive and/or 
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comprehensive emissions reductions actions are implemented. Regarding the latter, 

one alternative might be to focus more heavily on reducing emissions from land and 

agricultural systems and on enhancing terrestrial sinks for carbon in future decades. 

This is particularly relevant in LAC where land-related GHG emissions make up a 

significant share of total emissions (Calvin et al. 2016).  

This analysis is the first to assess the potential implications of climate change 

impacts on the RE supply for power sector investments in LAC, although the 

methodology can be used to conduct similar analyses for other regions across the globe. 

Future studies could also benefit from considering the implications of multiple 

uncertain factors. One critical aspect noted earlier is the uncertainty originating from 

the GCMs variables. In addition, hydrological and agricultural yields change 

assumptions are derived from one impact model each (Methods), however, the structure 

and parameterization of impacts models are known to be a significant source of 

uncertainty that can rival that of climate models (Rosenzweig et al. 2014; van Vliet et 

al. 2016b). Another point to note is that the results are focused on aggregated country 

and regional levels. However, climate change may have distinct and more pronounced 

effects on smaller sub-national scales. One example is hydropower as climate impacts 

on runoff patterns are expected to be manifested differently depending on the river 

basins and sub-basins considered (Ruffato-Ferreira et al. 2017). Hence, further research 

is needed to develop a finer-resolution multi-impact integrated framework that supports 

decision-making at sub-national scales. For example, Khan et al. 2020 contribute to fill 

such a gap by coupling GCAM and a suite of modeling tools to downscale GCAM 

projections (part of them including climate impacts on hydropower and agricultural 
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crop yields) onto a grid. This framework was used for a multi-sector assessment of 

planned policies in Uruguay at a sub-basin scale. Given the possibility of 

misrepresentation of climate change effects on the power sector highlighted in the 

results, future high-resolution integrated assessments can benefit from a more 

comprehensive representation of climate change impacts like the one introduced in this 

study.  

An important caveat of this analysis is that the version of GCAM used in this 

study represents electricity supply and demand on an annual mean basis assuming, for 

example, fixed exogenously-defined capacity factors for each power generation 

technology. Thus, the variability of electricity demand and load at seasonal and daily 

temporal scales is not considered, which has important implications for decisions on 

generation infrastructure. The challenge of continuously balancing supply and demand 

at such finer temporal scales becomes even more complex as the deployment of 

intermittent solar- and wind-based generation with limited dispatchability increases. 

Consequently, this analysis likely underestimates rates of capacity additions through 

2100 because the annual average supply and demand electricity representation of 

GCAM smooths out short-term events of peak demand that require the highest 

electricity outputs. In light of this, the estimates of generation capacity and capital 

investments should be interpreted as a first-order approximation of the magnitudes of 

future needs that can be refined by follow-on studies. In this regard, there are ongoing 

efforts involving GCAM and other IAM groups to improve sub-annual details in power 

sector representation in IAMs (Pietzcker et al. 2017; Wise et al. 2019). Another 

consequence of its annual average electricity representation alongside simplifications 
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of important processes is that GCAM cannot represent climate impacts at short 

timescales (e.g., seasonal scales). These characteristics also impose challenges for the 

representation of changes in climate variability and short-term extreme events within 

IAM frameworks. Hence, this study focuses on implications due to long-term (multi-

decadal) mean climatological changes. Future investigation is needed to enhance 

GCAM modeling capabilities towards finer temporal scales and more detailed 

representations of power system dynamics. Notwithstanding the limitations above, this 

study constitutes an additional step toward a more holistic integrated assessment of the 

potential effects of climate change on the energy sector. 
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Chapter 4: The role of uncertain renewable resource potentials 

in solar and wind electricity projections: implications for the 

GCAM integrated assessment model (Santos da Silva et al., in 

prep) 

 

4.1 Abstract 

Integrated Assessment Models (IAMs) are key analytical tools used to project the 

potential future evolution of the power sector globally, including wind and solar power. 

To do so, IAMs rely on resource cost-supply curves, which are derived from global 

assessments of renewable energy potentials. However, estimates of global energy 

potentials are characterized by large uncertainties stemming from methodological 

assumptions. Based on a review of parameter values used in prior renewable potentials 

estimations, this study addresses the implications of these uncertain assumptions for 

solar and wind electricity projections from a global IAM for the first time. It is found 

that this parametric uncertainty results in substantial variations in intermittent 

generation projections, with a prominent role of assumptions related to land-use in both 

technologies and average turbine installation density for wind onshore. Consequently, 

the role of these renewables in modeled long-term scenarios can be under- or 

overestimated relative to other technologies. Some potential implications are 

highlighted for decision-making on energy planning, climate change mitigation 

strategies and the adaptation efforts to climate impacts on these renewables. This study 

underscores the need of further coordination among the integrated assessment 

modeling community to narrow these uncertainties. 
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4.2 Introduction 

Integrated assessment models (IAMs), such as the Global Change Analysis 

Model (GCAM) (Calvin et al. 2019), have a long tradition of contributions to the 

analysis of energy-sector climate change mitigation pathways. These models have 

contributed, for example, to delineate the important role of renewable energy (RE) in 

deep decarbonization pathways that can achieve the 2.0oC and 1.5oC climate targets 

(Clarke et al. 2014; IPCC 2012; Rogelj et al. 2015). However, concerns regarding 

future vulnerability of RE production to climate change have encouraged more recent 

IAM development to focus on the modeling of climate impacts on RE to better support 

energy-sector decision-making. 

To represent the physical effects of climate change on RE in IAMs, modelers 

have employed projections from detailed process-based models (e.g., hydrologic 

models, crop models, general circulation models (GCMs)) to modify key IAM 

parameters linked to RE production. Such efforts have focused primarily on impacts 

on hydropower (Arango-Aramburo et al. 2019; Carvajal et al. 2019; Lucena et al. 2018; 

Turner et al. 2017) and on the agriculture sector (which affect the biomass potential) 

(Kyle et al. 2014; Nelson et al. 2014; Ren et al. 2018; Snyder et al. 2019), with virtually 

no attention to climate impacts on solar and wind, except for one study (Dowling 2013). 

This panorama is changing. A recent coordinated effort, the ‘ISIpedia-energy protocol’ 

(Yalew et al. 2020), proposed an assessment of climate impacts on all renewables at 

macro-regional to global scales. In the ISIpedia model inter-comparison, participating 

IAMs implemented a protocol of harmonized scenarios based on climate change input 

data from the Inter-Sectoral Impact Model Inter-Comparison Project (ISIMIP) 
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(Warszawski et al. 2014). To allow the representation of climate impacts on solar and 

wind sources, the ISIpedia project built gridded global estimates of solar and wind 

energy potentials based on methods recently published (Gernaat et al. 2021). Using this 

dataset, participating modeling groups were asked to build and implement into models 

resource supply-cost curves (hereafter referred to as ‘supply curves’ for simplicity) 

with the goal of estimating climate change effects on the energy sector. It is worth 

mentioning that supply curves are essential assumptions within the economic 

framework of IAMs because they map renewable resource availability at a given 

energy production cost. As discussed in Chapter 3, these curves affect decision-making 

on power-sector technologies that are deployed in GCAM. 

While the method adopted by the ISIpedia project constitutes a clear advance 

toward the modeling of climate impacts on solar and wind sources in IAMs, its 

computation of renewable potentials is based on a fixed pool of assumptions. This 

means that the uncertainty created by the various assumptions on key parameters used 

in the computation of renewable potentials remains unaccounted for. Resource 

potential estimates are hindered by various uncertain assumptions that include, for 

example, the role of land use, which substantially affects the computed energy 

potentials. This research calculates global solar and wind technical potentials with the 

main goal of investigating the impact of their associated parametric uncertainties on 

solar and wind electricity projections from GCAM, a state-of-the art global IAM 

linking energy, land, water, climate and economic systems. Although some prior 

studies (de Vries et al. 2007; Hoogwijk 2004; Rinne et al. 2018; Zhou et al. 2012) have 

examined the effect of assumptions on specific parameters when computing solar or 
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wind potentials, no past study has investigated their consequent implications for 

electricity generation projections from an IAM. Given the role of IAM scenarios in 

major climate assessments (e.g., the Intergovernmental Panel on Climate Change 

(IPCC)’s Fifth Assessment Report), it is critically important that the impact of these 

uncertainties be understood for the construction of credible scenarios.  

The analysis is divided into three main sections. First, a literature review is 

conducted to define a set of ‘baseline’ or ‘central’ assumptions and key ‘sensitivity’ 

cases (i.e., deviations from the central assumptions) for the computation of onshore 

wind and solar PV technical potentials. Following the methodology proposed by the 

ISIpedia intercomparison, these assumptions are then used to calculate historical 

(defined here as the 1971-2000 period) and future projections of wind and solar 

technical potentials using input data from the ISIMIP2b GCMs. Finally, supply curves 

representative of the historical and future periods are built from the central and 

sensitivity technical potential cases for implementation in GCAM to evaluate 

implications for wind and solar deployments.  

It is important to stress that a formal sensitivity analysis is not conducted here, 

but rather a first-order assessment that aims at contributing to improvements on the 

representation of solar and wind power in IAMs, and to the emerging efforts on the 

modeling of climate impacts on these sources in these models, in which the role of 

parametric uncertainties in renewable potentials quantification is currently unknown. 

However, for the sake of simplicity, the term ‘sensitivity’ is used throughout the text 

to refer to the various cases in which distinct assumptions on parameter values are 

tested. These cases are detailed in the Methods section. 
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As stated above, the novelty of this study is the consideration of the effects of 

the uncertain estimates of renewable energy potentials embedded in supply curves on 

wind and solar electricity generation projections from GCAM. In this regard, the 

specific research questions that motivate this study are: What are the implication of key 

parametric uncertainties in the computation of renewable energy potentials for GCAM 

solar and wind electricity production? Which parameters drive the largest changes? 

What are the potential implications for decision-making on climate change mitigation 

and impacts?  

4.3 Background on renewable energy potentials 

A number of studies have computed intermittent renewable energy potentials 

using a common approach that assesses the so-called theoretical, geographical, 

technical and economic potentials (Bosch et al. 2017; Dupont et al. 2020; Eurek et al. 

2017; Gernaat et al. 2021; Hoogwijk 2004; Hoogwijk et al. 2004; Köberle et al. 2015; 

Rinne et al. 2018; Zhou et al. 2012). 

While the theoretical potential is the upper bound of the natural resource 

availability in any area, the geographical potential explicitly accounts for land use 

restrictions to identify suitable locations for large-scale renewable electricity 

generation. Such areas typically include low productivity agricultural and/or pasture 

land, arid terrain, grasslands and scrublands, while forest and other sensitive ecosystem 

are deemed unlikely for RE deployment. Other inviable sites include remote high-

elevated terrains, urban development, and areas of poor-quality resources. In many 

studies, the geographical potential at the grid cell level is determined by (1) applying 

exclusion criteria to remove unsuitable grid cells, and (2) assigning suitability factors 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/pasture
https://www.sciencedirect.com/topics/social-sciences/grasslands
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(0 − 1 range; 0 − totally unavailable/unsuitable grid cell; 1 − grid cell area is 100% 

available) to the non-excluded grid cells based on a land-use and cover map. Next, 

technical potential is assessed by accounting for factors such as limitations on the 

conversion from primary to secondary energy and overall losses due to technical and/or 

operational factors. An example of this constraint is solar energy, in which modern 

solar photovoltaic (PV) cells can only convert around 20% of the incoming solar 

radiation into electricity (Gernaat et al. 2021). Finally, the production costs of 

electricity need to be estimated (based on the total cost for building and operating 

power plants as well as financing costs), given that renewables must compete for a 

portion of regional energy markets with other sources. This means that only part of the 

technical potential can be cost-competitive depending on production costs, which 

defines the economic potential. 

4.4 Methods 

4.4.1 Experimental Design 

Figure 4.1 summarizes the overall approach and workflow implemented to 

answer the research questions posed in the Introduction section. Specifically, this work 

has:  

a) built a framework to assess the global wind onshore and solar PV 

technical potentials based on methods used in prior studies; 

b) surveyed the literature to define assumptions for the parameter values 

(central and sensitivity cases) to be used in the computation of the 

renewable potentials; 
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c) used the framework built in (a) to compute renewable potentials for the 

varying assumptions defined in (b); 

d) produced supply curves for all renewable energy potential estimates 

(wind onshore and solar PV) produced in (c); and 

e) implemented the supply curves produced in (d) into GCAM v5.3 to 

conduct simulations for each supply curve assumption individually.   

 

 

Figure 4.1. Experimental design implemented in this study. Note that the red arrows 

represent the theoretical upper bound of renewable energy availability (theoretical 

potential), which is reduced in each step of the calculation of the potentials until the 

technical potential is estimated.  

 

Details on each step of the method will be provided throughout the following 

subsections. Note that when describing the equations to compute the technical 

potentials in subsections 4.4.4 (wind onshore) and 4.4.5 (solar PV), all parameter values 

provided refer to the central assumptions (labeled Central hereafter). The assumptions 

for all sensitivity cases will be provided later on in subsection 4.4.7, except for the land 
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suitability factors, which are listed in subsection 4.4.3. The parameter values for the 

Central case are taken exactly as listed in the references that provide the equations to 

compute the technical potentials. Hence, they are not necessarily the mid-range values 

across the literature, but rather a benchmark for comparisons with all sensitivity cases 

analyzed. Tables 4.1-4.2 show that the resource estimates computed under the Central 

case are within the range of results obtained by prior global studies. But above all, these 

tables highlight the role of methodological aspects in producing uncertainty in resource 

estimates as shown by the wide range of results. Note that the solar PV technology that 

this study focuses on refers to utility-scale systems, i.e., large-scale power plants, which 

are modeled separately from the smaller distributed rooftop PV systems in GCAM. 

Next, the methodology employed in this study is presented in detail. 
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Table 4.1 Comparison of results of this study with other analyses (global wind 

onshore). 

Reference Data Source Spatial 

Resolution 

Period Technical 

Potential 

(PWh/y) 

Bosch et al. 2017 NASA’s Modern-Era 

Retrospective analysis for 

Research and Applications, 

version 2 (MERRA-2) and 

the DTU Global Wind Atlas 

1 km 1979-2013 587 (excluding 

areas with 

capacity factors < 

15%) 

Deng et al. 2015 Climate Research Unit 

(CL2.0) Database 

1 km 2010 7-47a  

Eurek et al. 2017 NCAR’s Climate Four 

Dimensional Data 

Assimilation 

0.4o 1985-2005 557 

Hoogwick et al. 

2004 

Climate Research Unit 

Database  

0.5o 1960-1990 96 

Lu et al. 2009 Goddard Earth Observing 

System Data Assimilation 

System (GEOS-5 DAS) 

2/3° longitude x 

1/2° latitude 

(~66.7 x 50km 

at midlatitudes) 

2006 (a) 1100; (b) 690 

(excluding areas 

with capacity 

factors < 20%) 

Zhou et al. 2012 Climate Forecast System 

Reanalysis/NCEP 

0.3125° 

 

1980-2009 (a) 120 (at costs 

below 9 

cents/kWh); (b) 

~330b (no cost 

cutoff) 

This study ISIMIP2b GCMs 
0.5o 1971-2000 447-455 

Notes: 

a Depends on the land availability scenario (low, medium, and high cases). This study also makes estimates for 

2030 and 2070 (based on the assumption of improvement in technological parameters) not reported here. 

b Inferred from Fig. 2 from Zhou et al. 2012. 
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Table 4.2 Comparison of results of this study with other analyses (global solar PV). 

Category Data Source Spatial 

Resolution 

Period Technical 

Potential 

(PWh/y) 

Deng et al. 2015 NASA Langley Research 

Center Surface 

Meteorological and Solar 

Energy dataset (SSE) 

1 km 2010 25-223a  

Dupont et al. 

2020 

World Bank Group ESMAP. 

Global Solar Atlas 

0.1o Not explicitly 

stated 

1194 

Hoogwick 2004 Climate Research Unit 

Database  

0.5o 1960-1990 366 

Koberle et al. 

2015 

NASA Langley Research 

Center Surface 

Meteorological and Solar 

Energy dataset (SSE – 

Release 6.0) 

0.5o 1983-2005 101 

Korfiati et al. 

2016 

NASA Langley Research 

Center Surface 

Meteorological and Solar 

Energy dataset (SSE – 

Release 6.0) 

1 km Not explicitly 

stated 

613 

This study ISIMIP2b GCMs 0.5o 1971-2000 205-208 

Notes: 

a Depends on the land availability scenario (low, medium, and high cases). This study also makes estimates 

for 2030 and 2070 (based on the assumption of improvement in technological parameters) not reported here. 

 

4.4.2 Datasets 

Tables 4.3-4.4 describe the climate input data (which provides the 

spatiotemporal distribution of the theoretical potential) and datasets utilized for the 

assessment of the geographical potential, respectively. 
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Table 4.3 Overview of the climate model data used in the analysis. 

Climate model data Bias-corrected projections from ISIMIP 2b (Frieler et al. 2017) 

GCMs  GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, and 

MIROC5 

Climate scenarios RCP2.6 and RCP8.5 

Climate data spatial resolution 0.5° × 0.5° 

Climate variables utilized 

(short name | units) 

Near-surface specific humidity (HUSS | kgkg−1) 

Surface pressure (PS | Pa) 

Surface-downwelling shortwave radiation (RSDS | Wm−2) 

Near-surface wind speed (SFCWIND | ms−1) 

Near-surface air temperature (TAS | K) 

Data availability  Publicly available at:  

https://esg-pik-postdam.de/search/isimip 

 

Table 4.4 Datasets used for the assessment of the geographical potentiala 

Category Dataset and reference Dataset resolution 

Elevation EarthEnv (Amatulli et al. 2018) 25 arc-minute (~50 km) 

Land use/land cover GlobCover 2009 (Bontemps et 

al. 2011) 

30 arc-seconds (~1km) 

Permafrost Global Permafrost Zonation 

Index Map (Gruber 2012) 

30 arc-seconds (~1km) 

Protected areas World Database on Protected 

Areas (WDPA) (UNEP-

WCMC 2019) 

Variableb: geodatabase 

comprising two classes of 

spatial data: polygons (distinct 

sizes) delineating boundaries 

and data points (point location 

and an area) 

Slope EarthEnv (Amatulli et al. 2018) 25 arc-minute (~50 km) 

Notes: 
a All geospatial fields were regridded onto a common 0.5o by 0.5o grid in order to match the grid 

spatial resolution of the input climate data. 
b Dataset was converted to a raster (rows and columns of cells) with 0.5o × 0.5o spatial resolution. 

 

4.4.3 Geographical Potential 

Using the datasets listed in Table 4.4 and the exclusion criteria summarized in 

Table 4.5, terrain deemed unsuitable for a given technology is excluded. Next, the 

remaining grid cells receive suitability factors (Tables 4.6-4.7) based on their land 

cover types. This approach is formalized in Eq. (1), in which the geographical potential 

represents the suitable area available for RE production (𝐴) within any grid cell 𝑖 

https://esg-pik-postdam.de/search/isimip
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(Hoogwijk 2004). Figures 4.2-4.3 show the suitability maps by technology resulting 

from the geographical constraints applied. 

 𝐴𝑖 =  𝑓𝑖  ∙  𝑎𝑖  (1) 

 

where 𝑎𝑖 is the grid cell area (Km2) and 𝑓𝑖 is the suitability factor in cell 𝑖. 

 

Table 4.5 Summary of geographic exclusion criteria (based on the references listed). 

Category Criteria: onshore 

wind 

(Eurek et al. 2017) 

Criteria: solar PV 

(Deng et al. 2015; 

Gernaat et al. 2021) 

Criteria: solar CSPa 

(Deng et al. 2015; 

Gernaat et al. 2021) 

Elevation 100% exclusion for 

areas with elevation 

greater than 2500 m. 

No constraint applied. No constraint applied. 

Land use/land 

cover 
100% and partial 

exclusions based on 

suitability factors 

(Table 4.6). 

100% and partial 

exclusions based on 

suitability factors 

(Table 4.7). 

100% and partial 

exclusions based on 

suitability factors 

(Table 4.7). 

Permafrost 100% exclusion for 

areas classified as 

permafrost. 

No constraint applied. No constraint applied. 

Protected areasb 100% exclusion for 

protected areas with 

International Union for 

the Conservation of 

Nature (IUCN) 

rankings codes of: I 

(Strict Nature Reserve 

and Wilderness area); II 

(National Park), and III 

(Natural Monument or 

feature). 

100% exclusion for 

protected areas with 

International Union for 

the Conservation of 

Nature (IUCN) 

rankings codes of: I 

(Strict Nature Reserve 

and Wilderness area); II 

(National Park), and III 

(Natural Monument or 

feature). 

100% exclusion for 

protected areas with 

International Union for 

the Conservation of 

Nature (IUCN) 

rankings codes of: I 

(Strict Nature Reserve 

and Wilderness area); II 

(National Park), and III 

(Natural Monument or 

feature). 

Slope 100% exclusion for 

areas with average 

slope greater than 20%. 

100% exclusion for 

areas with average 

slope greater than 27%. 

100% exclusion for 

areas with average 

slope greater than 4%. 

Notes: 
a Assumptions for the solar CSP technology will be discussed in subsection 4.4.9.  
b All technologies are assumed to follow the same exclusion criteria as in Eurek et al 2017. 
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Table 4.6 Suitability factors by sensitivity case (wind onshore) applied to the land 

cover map categories. 

Land cover category (GlobCover dataset) 
Suitability factors by sensitivity casea 

Centralb S_lowc S_low_IId S_highe 

Post-flooding or irrigated croplands (or aquatic) 0 0 0 0 

Rainfed croplands 70% 60% 3% 100% 

Mosaic cropland (50-70%) / vegetation 
(grassland/shrubland/forest) (20-50%) 

70% 60% 3% 100% 

Mosaic vegetation (grassland/shrubland/forest) (50-70%) / 
cropland (20-50%)  

70% 60% 3% 100% 

Closed to open (>15%) broadleaved evergreen or semi-
deciduous forest (>5m) 

10% 0 0.5% 0 

Closed (>40%) broadleaved deciduous forest (>5m) 10% 0 0.5% 0 

Open (15-40%) broadleaved deciduous forest/woodland (>5m) 10% 0 0.5% 0 

Closed (>40%) needleleaved evergreen forest (>5m) 10% 0 0.5% 0 

Open (15-40%) needleleaved deciduous or evergreen forest 
(>5m) 

10% 0 0.5% 0 

Closed to open (>15%) mixed broadleaved and needleleaved 
forest (>5m) 

10% 0 0.5% 0 

Mosaic forest or shrubland (50-70%) / grassland (20-50%) 50% 10% 3% 100% 

Mosaic grassland (50-70%) / forest or shrubland (20-50%)  65% 10% 3% 100% 

Closed to open (>15%) (broadleaved or needleleaved, evergreen 
or deciduous) shrubland (<5m) 

50% 20% 3% 100% 

Closed to open (>15%) herbaceous vegetation (grassland, 
savannas or lichens/mosses) 

80% 20% 3% 100% 

Sparse (<15%) vegetation (woody vegetation, shrubs, grassland) 90% 20% 3% 100% 

Bare areas 90% 10% 3% 100% 

Urban areas, water bodies, permanent snow and ice 0 0 0 0 
a The complete list of sensitivity cases analyzed in this study is provided in subsection 4.4.7. This table provides 
the specific values for the Central and sensitivity cases concerning only suitability factors. 

Suitability factors based on: b Eurek et al. 2017, c Zhou et al. 2012 (low case), d Deng et al. 2015 (low case) and 
e Lu et al. 2009. 
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Table 4.7 Suitability factors by sensitivity case (solar PV) applied to the land cover 

map categories. 

Land cover category (GlobCover dataset) 
Suitability factors by sensitivity casea 

Centralb S_lowc S_low_IId S_highe 

Post-flooding or irrigated croplands (or aquatic) 0 0 0 0 

Rainfed croplands 1% 0.1% 0.5% 10% 

Mosaic cropland (50-70%) / vegetation 
(grassland/shrubland/forest) (20-50%) 

1% 0.1% 0.5% 5% 

Mosaic vegetation (grassland/shrubland/forest) (50-70%) / 
cropland (20-50%)  

1% 0.1% 0.5% 5% 

Closed to open (>15%) broadleaved evergreen or semi-
deciduous forest (>5m) 

0 0 0 0 

Closed (>40%) broadleaved deciduous forest (>5m) 0 0 0 0 

Open (15-40%) broadleaved deciduous forest/woodland (>5m) 0 0 0 0 

Closed (>40%) needleleaved evergreen forest (>5m) 0 0 0 0 

Open (15-40%) needleleaved deciduous or evergreen forest 
(>5m) 

0 0 0 0 

Closed to open (>15%) mixed broadleaved and needleleaved 
forest (>5m) 

0 0 0 0 

Mosaic forest or shrubland (50-70%) / grassland (20-50%) 1% 0.5% 1% 5% 

Mosaic grassland (50-70%) / forest or shrubland (20-50%)  1% 0.5% 1% 5% 

Closed to open (>15%) (broadleaved or needleleaved, evergreen 
or deciduous) shrubland (<5m) 

1% 0.5% 1% 10% 

Closed to open (>15%) herbaceous vegetation (grassland, 
savannas or lichens/mosses) 

1% 0.5% 1% 10% 

Sparse (<15%) vegetation (woody vegetation, shrubs, grassland) 1% 0.5% 1% 10% 

Bare areas 5% 0.5% 1% 10% 

Urban areas, water bodies, permanent snow and ice 0 0 0 0 
a The complete list of sensitivity cases analyzed in this study is provided in subsection 4.4.7. This table provides 
the specific values for the Central and sensitivity cases concerning only suitability factors. 

Suitability factors based on: b Gernaat et al. 2021, Hoogwick 2004 and Korfiati et al. 2016, c Deng et al. 2015 
(low case), d Deng et al 2015 (medium case) and e Dupont et al. 2020. 

 

Note that this study follows the approach by Gernaat et al. 2021, Hoogwick 

2004 and Deng et al. 2015 in the case of solar PV, and by Eurek et al. 2017 and Zhou 

et al. 2012 in the case of wind onshore and do not exclude any area based on a minimum 

threshold for resource intensity. However, there are variations in the literature as 

resource quality cutoffs have been assumed in prior assessments of solar PV potential 

(Korfiati et al. 2016) and wind potential (Hoogwick et al. 2004).  
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Figure 4.2. Land suitability map (%) for wind turbine deployment using the exclusion 

criteria in Table 4.5 and suitability factors in Table 4.7 at grid cell level under central 

assumptions. Gray areas correspond to grid cells that are entirely excluded. 

 

 
Figure 4.3. Land suitability map (%) for solar PV deployment using the exclusion 

criteria in Table 4.5 and suitability factors in Table 4.6 at grid cell level under central 

assumptions. Gray areas correspond to grid cells that are entirely excluded. 

 

4.4.4 Technical Potential – Wind Onshore 

The geographical potential computed in the previous subsection (Eq. 1) 

expresses the suitable area for renewable energy production in grid cell i (𝐴𝑖). Using 

this information, the wind onshore technical potential, 𝐸𝑖, in grid cell i (kWh/year) is 

computed as (Eurek et al. 2017): 
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 𝐸𝑖 =  𝐴𝑖  ∙ 𝐷 ∙ ℎ ∙ (
𝑃𝑖̅  ∙  𝜂𝑎𝑣𝑎𝑖𝑙  ∙  𝜂𝑎𝑟𝑟𝑎𝑦

𝑃𝑟𝑎𝑡𝑒𝑑
), (2) 

 

where D is the average wind turbine installation density, namely power density 

(assumed 5.3 MW Km−2), which depends on the spacing between turbines; 𝑃𝑖̅ is the 

yearly-averaged wind power (MW) in grid cell i (see details below); 𝜂𝑎𝑣𝑎𝑖𝑙  is the 

average availability of the wind turbine (assumed 0.95) to account for the fraction of 

the year in which a turbine is not operating due to maintenance and/or breakdowns; 

𝜂𝑎𝑟𝑟𝑎𝑦 is the wind farm array efficiency (assumed 0.90) to account for losses in farm 

arrays due to the air flow interference on downward turbines known as wake losses; 

𝑃𝑟𝑎𝑡𝑒𝑑 is the turbine rated power (MW), i.e., the maximum power output generated by 

a turbine model under the optimum range of wind speed values for the model (see 

Figure 4.4); and ℎ is the number of hours in a year. 

The kinetic energy of the wind when intercepted by the blades of a turbine is a 

well-established function of the wind speed at the rotor height, air density and the area 

swept by the rotor blades (Eurek et al. 2017; Lu et al. 2009). This relationship is 

embedded in the power curve of each wind turbine model. In wind potential 

assessments, wind power is typically computed using the power curve of a 

representative wind turbine. This same approach is followed here. Table 4.8 

summarizes the main steps of the wind power computation method employed, which 

is followed by the specific equations utilized in such a computation.  
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Table 4.8 Steps for the computation of wind power. 

Step Justification Method Reference 

Selection of 

representative 

turbine model | 

Construction of 

power curve 

function.  

Power curves 

provide wind power 

as function of wind 

speed at the rotor 

height taking into 

consideration the 

specific design and 

characteristics of 

each turbine model. 

Based on the wind 

power-wind speed 

data pairs provided 

by the power curve, a 

function that returns 

wind power for any 

input wind speed can 

be derived. 

Selection of a 

turbine model and 

use of its power 

curve points to build 

an algorithm that 

computes wind 

power as a function 

of wind speed. For 

the Central case, the 

selected model is the 

Vestas V136-

3.45 MW with a 

125-m hub height 

(power curve 

provided in Figure 

4.4). These choices 

represent both a 

modern technology 

and the current trend 

of installations at 

growing hub 

heights. 

The representative 

wind turbine model 

and choice of hub 

heighta are based on 

Rinne et al. 2018. 

The wind power 

method is widely 

used in the literature. 

Extrapolation of 10-

m wind speed to the 

rotor height. 

Wind speed outputs 

from GCMs are 

provided at the 10-m 

level, however wind 

power must be 

computed at the rotor 

height. 

Power law equation. Karnauskas et al. 

2018 

Correction of wind 

speed for air density. 

Power curves 

provided by 

manufacturers 

assume standard 

atmospheric 

conditions (air 

density of 1.225 

kg/m3, air 

temperature of 15 °C 

and pressure of 1 

atmosphere). 

Wind speed is scaled 

for air density based 

on the ideal gas law, 

which requires 

GCM outputs of 

atmospheric 

pressure at the 

station level, surface 

temperature and 

specific humidity. 

Karnauskas et al. 

2018 

a The hub height refers to the height of the rotor above the ground. This term is also referred to as rotor 

height. 
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a) Wind power computation: extrapolation of 10-m wind speed to the rotor height 

Following prior studies (Karnauskas et al. 2018; Tobin et al. 2015), the power 

law is used to extrapolate 10-m wind speeds to the turbine hub height 𝐻 with 𝑊𝐻 as 

the wind speed (m/s) at the hub height, 𝑊10 as the wind speed (m/s) at 10 m and 𝛼 as 

the power exponent assumed 1/7 (Eq. 3).   

 𝑊𝐻 =  𝑊10  ∙  (
𝐻

10𝑚
)

𝛼

 (3) 

 

The empirical power law equation is widely used by the wind industry to 

extrapolate wind speeds to higher levels. Regarding this method, Tobin et al. 2015 note 

that the typical power exponent value of 1/7 corresponds to neutral stability conditions 

and smooth open terrain, and tested an alternative formulation that accounts for spatio-

temporal variations of the wind speed. The study concluded that the dynamic 

coefficients tested have only slightly affected wind power computation. 

 

b) Wind power computation: correction of wind speed for air density 

While computing wind power, procedures described by Karnauskas et al. 2018 

are followed to adjust wind power for air density. This is necessary given the direct 

dependence of wind power on air density (which varies largely with the altitude of the 

site) and the fact that power curves are provided by manufacturers under the assumption 

of standard atmospheric conditions (air density of 1.225 kg/m3, air temperature of 15 

°C and pressure of 1 atmosphere).  

First, dry air density 𝜌𝑑 (kg/m3) is calculated using the ideal gas law: 

 

 𝜌𝑑 =  
𝑃

𝑅 ∙  𝑇
 (4) 
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where 𝑃 is the surface pressure (Pa), 𝑇 is the surface air temperature (K) and 𝑅 = 

287.058 J kg–1 K–1. Dry air density is used to compute the moist air density 𝜌𝑚, which 

corrects air density for humidity. 

 𝜌𝑚 =  𝜌𝑑  ∙  
1 + 𝑞

1 + 0.609 ∙ 𝑞
 (5) 

 

where 𝑞 is the specific humidity (kg/kg). Next, the hub height wind speed 𝑊𝐻 is 

corrected for air density using  

 𝑊𝐻_𝑐𝑜𝑟 =  𝑊𝐻  ∙  (
𝜌𝑚

1.225
)

1
3⁄

 (6) 

 

Lastly, the turbine power curve is used to derive a function that relates wind 

power and the corrected hub height wind speed, i.e., 

 𝑃 = 𝑓(𝑊𝐻_𝑐𝑜𝑟). (7) 

 

Details on how function 𝑓 was modeled are provided in the Figure 4.4 below. 

For each grid cell, wind power is computed at the native daily temporal resolution of 

ISIMIP2b climate data. Daily wind power series are averaged within each year of 

interest to derive annual means, which are used to estimate the wind technical potential 

via Eq. 2. This is done because the use of GCM outputs averaged across low temporal 

frequencies prior to computing wind power have been shown to underestimate wind 

power values (Karnauskas et al. 2018).  
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Figure 4.4. Power curve for the wind turbine Vestas V136-3.45 selected as 

the representative model under Central assumptions.  Blue dots represent the 

paired wind speed–power data taken from the power curve. The dashed lines 

mark specific wind speeds that characterize wind turbine models: the cut-in 

wind speed (2.5 m s─1), cut-out wind speed (22 m s─1) and rated wind speed 

(11 m s─1). There is no energy output below the cut-in and above the cut-out 

wind speed, while the output is maximum (3450 kW – rated power) between 

the rated wind speed (11 m s─1) and the cut-out wind speed. The red line 

represents the power curve function used in this study to compute wind power 

obtained by (1) performing a linear interpolation between the power curve 

(blue) points, and (2) assigning 0 kW for wind speeds below the cut-in and 

above the cut-out wind speeds. 

 

4.4.5 Technical Potential – Solar PV 

The solar PV technical potential (𝐸𝑃𝑉,𝑖) in grid cell i (kWh y−1) is computed as 

(Gernaat et al. 2021; Hoogwijk 2004): 

 𝐸𝑃𝑉,𝑖 = 103 ∙ 𝐼𝑖̅  ∙  𝐴𝑖  ∙ ℎ ∙  𝜂𝐿𝑃𝑉  ∙   𝜂𝑃𝑉  ∙  𝑃𝑅 (8) 

 

where 𝐼𝑖̅ is the yearly-averaged solar radiation (W m−2) in grid cell i; 𝐴𝑖 is the suitable 

area in cell i (Km2; Eq. 1); ℎ is the number of hours in a year; 𝜂𝐿𝑃𝑉 is the land use factor 

(assumed 0.47), which accounts for the fraction of the suitable area actually covered 

by PV panels since there is spacing between the panels; and 𝑃𝑅 is the performance 

ratio of the PV system (assumed 0.85), which expresses the ratio between the actual 
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output of the system and the performance under standard test conditions (STC) 

(standardized set of conditions under which solar panels are tested) to account for the 

overall efficiency losses within any PV system.  

The term 𝜂𝑃𝑉 is the PV panel efficiency, which is affected by atmospheric 

conditions according to Eq. 9. 

 𝜂𝑃𝑉 = 𝜂𝑃𝑎𝑛𝑒𝑙  ∙ (1 +  𝛾(𝑇𝑐𝑒𝑙𝑙,𝑖 −  𝑇𝑆𝑇𝐶)) (9) 

 

where 𝜂𝑃𝑎𝑛𝑒𝑙 is the standard efficiency of a PV panel (assumed 17% – an average value 

in the market); 𝑇𝑆𝑇𝐶 is the temperature under STC (25oC); and the thermal coefficient 

𝛾 is taken as −0.005 oC-1, denoting the typical response of the monocrystalline silicon 

solar panels widely used in the world market today.  

The dependence of  𝑇𝑐𝑒𝑙𝑙, the PV cell temperature, on the ambient temperature 

(TAS in oC), solar radiation (I in W m−2) and surface wind speed (𝑠𝑓𝑐𝑊𝑖𝑛𝑑 in m s −1) 

is given by  

 𝑇𝑐𝑒𝑙𝑙,𝑖 =  𝑐1 + 𝑐2𝑇𝐴𝑆𝑖 +  𝑐3𝐼𝑖 + 𝑐4𝑠𝑓𝑐𝑊𝑖𝑛𝑑𝑖 (10) 

 

where 𝑐1 = 4.3 oC, 𝑐2 = 0.943, 𝑐3 = 0.028 oC m2 W −1 and 𝑐4= − 1.528 oC s m −1.  

 

4.4.6 Technical Potential Maps 

Following prior studies (Gernaat et al. 2021; Hoogwijk et al. 2004; Zhou et al. 

2012), each technology technical potential case is calculated on a yearly basis and the 

resulting energy outputs are averaged over 30-yr periods (1971–2000, 2011–2040, 

2041–2070 and 2071–2099) for each GCM. Figures 4.5–4.6 show the technical 
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potential maps by technology for the 1971-2000 period resulting from the methodology 

described above using input data from the IPSL-CM5A-LR model as example. Note 

that the parameter values listed in the equations above constitute the central 

assumptions for this study.  

Overall, the technical potential maps shown in Figures 4.5–4.6 are in qualitative 

agreement with similar results found in the literature with respect to areas with high 

and low resource quality (although there are some differences with respect to excluded 

areas given the different assumptions). For example, Figure 4.5 shows high-quality 

wind resource areas in Northern Africa, Eastern Africa, Australia, Southern South 

America, Central USA zones, and some portion of Central and Eastern Asia, which is 

in line with results by Lu et al. 2009 and Karnauskas et al. 2018. In the case of solar 

PV (Figure 4.6), the largest potential areas are found in Northern Africa and Middle 

East, which agrees with similar results by Korfiati et al. 2016.  

 
Figure 4.5. Global wind onshore technical potential computed using the suitability 

map displayed in Figure 4.2 and Equations 2–7 (Central case). Input climate data: 

IPSL-CM5A-LR (1971–2000). Gray areas correspond to grid cells that are entirely 

excluded. 
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Figure 4.6 Global solar PV technical potential computed using the suitability map 

displayed in Figure 4.3 and Equations 8–10 (Central case). Input climate data: IPSL-

CM5A-LR (1971–2000). Gray areas correspond to grid cells that are entirely excluded. 

4.4.7 Sensitivity Cases 

Tables 4.9–4.10 summarize which parametric assumptions are analyzed in this 

study and the references from which they are taken from. These assumptions then 

reflect a range of values used by prior studies.  
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Table 4.9 Parametric assumptions for all cases analyzed for the onshore wind 

technology. 

Parameter Case label Reference Value 

Power output estimatea Central Rinne et al. 2018 Turbine technology 

Vestas V136-3.45; hub 

height = 125m 

Power output estimate E101_3.05 Höltinger et al. 2016 Turbine technology 

Enercon E101-3.05; 

hub height = 135m  

Power output estimate GE_2.5-100 Lu et al. 2009 Turbine technology 

General Electric GE 

2.5-100; hub height = 

100m 

Power output estimate V90_2.0 Bosch et al. 2017 Turbine technology 

Vestas V90-2.0; hub 

height = 100m 

Suitability factors Central Eurek et al. 2017 See Table 4.6 

Suitability factors S_low Zhou et al. 2012 See Table 4.6 

Suitability factors S_low_II Deng et al. 2015 See Table 4.6 

Suitability factors S_high Lu et al. 2009 See Table 4.6 

Power density Centralb Rinne et al. 2018; 

Eurek et al. 2017  

5.3 MW Km−2 

Power density Pdens_1 Adams and Keith 2013 1.0 MW Km−2 

Power density Pdens_9 Lu et al. 2009 9.0 MW Km−2 

Power density Pdens_13 Rinne et al. 2018b 13.0 MW Km−2 

Hub heightc Central Rinne et al. 2018 125 

Hub height Hub_75 Rinne et al. 2018 75 

Hub height Hub_100 Rinne et al. 2018 100 

Hub height Hub_150 Rinne et al. 2018 150 

Notes: 
a Figure 4.7 shows the power curves of all turbine models analyzed in this study. 
b The high power density case is set to 13.0 MW Km−2 given that the upper bound limit for this 

parameter in the literature has been shown by Rinne et al. 2018 to be in the 12-15 MW Km−2 range. 

c As shown by Rinne et al. 2018, many previous assessments have assumed hub heights within the 

70-100 m range. 
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Table 4.10 Parametric assumptions for all cases analyzed for the solar PV technology. 

Parameter Case label Reference Value 

Performance ratio (𝑃𝑅) Central Gernaat et al. 2021 0.85 

Performance ratio (𝑃𝑅) PR_75 Deng et al. 2015 0.75 

Performance ratio (𝑃𝑅) PR_90 Used to understand 

implications from 

higher assumptionsa 

0.90 

Land use factor (𝜂𝐿𝑃𝑉) Central Gernaat et al. 2021; 

Koberle et al. 2015; 

0.47 

Land use factor (𝜂𝐿𝑃𝑉) Nlpv_20 Deng et al. 2015; 0.20 

Land use factor (𝜂𝐿𝑃𝑉) Nlpv_30 Deng et al. 2015 0.30 

Land use factor (𝜂𝐿𝑃𝑉) Nlpv_100 Hoogwick 2004 1.0 

Suitability factors Central Gernaat et al. 2021 See Table 4.7 

Suitability factors S_low Deng et al. 2015 (low 

case) 

See Table 4.7 

Suitability factors S_low_II Deng et al. 2015 

(medium case) 

See Table 4.7 

Suitability factors S_high Dupont et al. 2020 See Table 4.7 

Notes: 
a No reference found for a 𝑃𝑅 value higher than the Central case. 

 

 

 

 
Figure 4.7. Power curves for all wind turbine models analyzed in this study (recall 

that the turbine model for the Central case is the Vestas V136-3.45).  
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4.4.8 Implementation of supply curves in GCAM 

As noted earlier, supply curves (a representation of economic potential) are key 

assumptions in GCAM as well as in other IAMs. They represent costs of generating 

power from renewable resources that increase with additional development as the least-

cost sites (those with higher quality resources) are used first. To produce the supply 

curves used in this study, each global 30-yr average potential map is used to obtain the 

total technical potential in all GCAM regions. The total regional potential is then 

divided into classes spanning low- to high-quality resource categories so that each class 

corresponds to a point in the supply curve. The computation of the costs of electricity 

is carried out using the GCAM data system (Calvin et al. 2019) framework (the open-

source R package that processes and produces all GCAM input files). This package 

computes the cost of energy for each point in the curve based on GCAM economic 

information of capital costs, operation and maintenance costs and fixed charge rate 

(listed in Iyer et al. 2017). This is the same process used to build the default wind 

onshore supply curves that are part of the GCAM core version. Note that the wind 

onshore supply curves produced here replaced the default GCAM supply curves 

produced from the wind onshore potentials computed by Eurek et al. 2017. As 

mentioned in Chapter 3, the utility-scale solar technologies in the GCAM core version 

do not rely on supply curves. Hence, the solar supply curves produced in this study 

replaced the default assumption of unlimited solar resources. To produce the solar 

supply curves, the original GCAM data system R code for wind onshore was modified 

to account for the costs of solar energy. 
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Supply curves for all cases were implemented in GCAM for the long-term 

assessment of implications for the power sector. As mentioned in Chapter 3, these 

curves affect GCAM technology competition. Figure 4.8 shows examples of supply 

curves for the USA for some selected cases.  

 

Figure 4.8. Examples of (a) wind onshore supply curves and (b) solar PV supply 

curves for the USA. Curves represent sensitivity cases (solid lines, period: 1971-

2000) and climate change impacts on the technical potential (dashed lines, period: 

2071-2099). In this example, input data derive from the IPSL-CM5A-LR model 

under RCP2.6. 
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4.4.9 Additional assumptions: solar CSP 

An important note about the implementation of the solar PV supply curves in 

GCAM is that it can only be made in conjunction with the implementation of supply 

curves for the concentrated solar power (CSP) technology. Although this study has not 

examined the implications of the parametric assumptions for the solar CSP technical 

potential, a calculation of the global solar CSP technical potential was made to produce 

regional supply curves for the GCAM solar CSP technology.  To do so, the 

methodology from the ISIpedia project (Gernaat et al. 2021) was followed. The main 

reason for this choice is that it accounts for climate change effects on the solar CSP 

technical potential, allowing a consistent assumption of climate effects on both the solar 

CSP and solar PV technical potentials and on the derived supply curves. Next, the 

approach to compute the global CSP technical potential is detailed. 

- Geographical potential (𝐴𝑖): computed using Eq. 1, exclusion criteria in Table 4.5 and 

suitability factors listed in Table 4.7 (same suitability factors used for solar PV).  Figure 

4.9 shows the land suitability map (%) for solar CSP. 

 

Figure 4.9. Land suitability map (%) for solar CSP deployment using the exclusion 

criteria in Table 4.5 and suitability factors in Table 4.7 at grid cell level. Gray areas 

correspond to grid cells that are entirely excluded. 
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- Technical potential: Likewise the wind and solar PV technical potentials, it is 

necessary to define the representative technology. The method employed by Gernaat et 

al. 2021 assumes that the parabolic trough technology is the reference technology given 

it is the most mature CSP technology in the market (Köberle et al. 2015). Using this 

assumption, the CSP technical potential (𝐸𝐶𝑆𝑃,𝑖) in kWh/year is calculated using Eq. 

11, 

 𝐸𝐶𝑆𝑃,𝑖  = 𝐼𝑖̅  ∙ ℎ ∙  𝐴𝑖  ∙  𝜂𝐿𝐶𝑆𝑃  ∙  (
𝜂𝐶𝑆𝑃

𝐹𝐿𝐻𝑖
) (11) 

 

where 𝐼𝑖̅ is the yearly-averaged solar radiation (kWh m−2 y−1) in grid cell i assuming a 

minimum resource intensity of 1095 kWh m−2 y−1 (grid cells are excluded if not 

satisfying this operational threshold); 𝜂𝐿𝐶𝑆𝑃  is the CSP land use factor (assumed 0.37) 

that accounts for the fraction of the suitable land actually covered by collectors given 

the spacing between them; ℎ is the number of hours in a year; and 𝐹𝐿𝐻𝑖 is the number 

of full load hours (h) of the reference CSP power plant, i.e., the number of hours a year 

that the CSP plant operates at the maximum rating. 𝐹𝐿𝐻𝑖 is computed using the linear 

regression equation derived by Köberle et al. 2015 (in which 𝐹𝐿𝐻𝑖 is a function of 𝐼𝑖̅). 

The term 𝜂𝐶𝑆𝑃 is the CSP efficiency formulated to account for changes in CSP potential 

as a function of atmospheric parameters, given by:  

 𝜂𝐶𝑆𝑃 =  𝜂𝑟  ∙ (𝑘0 − 
𝑘1(𝑇𝑓 − 𝑇𝑖)

𝐼𝑖
). (12) 

 

 

As noted by Gernaat et al. 2021, in a CSP plant, heat is captured by the solar 

collectors and transported to a Rankine cycle turbine to produce electricity. This 

generation process is characterized by an efficiency 𝜂𝑟, which is the efficiency of the 
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Rankine cycle (assumed to remain static as 40%). In Eq. 12, 𝑇𝑓 is the temperature of 

the fluid in the absorber (115 oC), 𝑇𝑖 is the air temperature, 𝐼𝑖 is the solar radiation (in 

W m−2), 𝑘0 = 0.762, and 𝑘1 = 0.2125 W m−2 oC−1. Note there is a caveat in the ISIMIP2b 

dataset which does not provide direct normal radiation. The latter is used in CSP 

technical potential assessments because CSP systems only utilize direct solar radiation. 

The ISIMIP2b RSDS variable (i.e., the total global solar radiation) is used in the study 

by Gernaat et al. 2021 as an estimate for the 𝐼𝑖 term, which is followed here. Table 4.11 

shows a comparison with CSP technical potential estimates from other global studies 

and Figure 4.10 shows the CSP technical potential map derived from the 

implementation of all steps listed above. 

Table 4.11 Comparison of results of this study with other analyses (global solar CSP). 

Reference Data Source Spatial 

Resolution 

Period Technical 

Potential 

(PWh/y) 

Deng et al. 2016 NASA Langley Research 

Center Surface 

Meteorological and Solar 

Energy dataset (SSE) 

1 km 2010 98-808a  

Dupont et al. 

2020 

World Bank Group 

ESMAP. Global Solar 

Atlas 

0.1o Not explicitly 

stated 

294 

Koberle et al. 

2015 

NASA Langley Research 

Center Surface 

Meteorological and Solar 

Energy dataset (SSE – 

Release 6.0) 

0.5o 1983-2005 173 

Trieb et al. 2009 NASA Langley Research 

Center Surface 

Meteorological and Solar 

Energy dataset (SSE – 

Release 6.0) 

1 km 1983-2005 2946 

This study ISIMIP2b GCMs 0.5o 1971-2000 577-579 

Notes: 
a Depends on the land availability scenario (low, medium, and high cases). This study also makes estimates for 

2030 and 2070 (based on the assumption of improvement in technological parameters) not reported here. 
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Figure 4.10 Global solar CSP technical potential computed using the suitability map 

displayed in Figure 4.9 and Equations 11–12. Input climate data: IPSL-CM5A-LR (1971–

2000). Gray areas correspond to grid cells that are entirely excluded. 

 

Having computed the global CSP technical potential using the assumptions 

listed above, solar CSP supply curves were derived (as in subsection 4.4.8) and 

implemented in GCAM in tandem with the solar PV supply curves. It is important to 

mention that the same solar CSP supply curves were used in all GCAM simulations for 

the solar PV sensitivity cases. 

4.4.10 Scenarios 

The effects of the implementation of supply curves based on distinct resource 

estimates are analyzed in the context of scenarios that vary according to the climate 

mitigation and climate impacts dimensions (Table 4.12).  
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Table 4.12 Scenarios explored in this study. 

Scenario Descriptiona,b,c 

Baseline_NoCI Baseline scenario with no price or constraints on greenhouse gas 

emissions. This scenario assumes no climate impacts on solar and wind, 

utilizing supply curves from the historical 1971–2000 period throughout 

the entire simulation. 

RCP2.6_NoCI Climate policy scenario in which the end-of-century radiative forcing 

target is specified to reach 2.6 W m–2 (consistent with a 2°C scenario)d. 

This scenario assumes no climate impacts on solar and wind, utilizing 

supply curves from the historical 1971–2000 period throughout the 

entire simulation. 

Baseline_CI Baseline scenario with no price or constraints on greenhouse gas 

emissions. This scenario assumes climate impacts on solar and wind, 

utilizing supply curves produced from climate input data from the 

RCP8.5. 

RCP2.6_CI Climate policy scenario in which the end-of-century radiative forcing 

target is specified to reach 2.6 W m–2 (consistent with a 2°C scenario). 

This scenario assumes climate impacts on solar and wind, utilizing 

supply curves produced from climate input datae from the RCP2.6. 

Notes: 

a Socioeconomic assumptions in all scenarios are consistent with the Shared Socioeconomic 

Pathway (SSP) 2, which reflects a world in which social, economic and technological future 

trends do not differ markedly from historical patterns (Riahi et al. 2017). 

b The supply curves (varying by climate impact assumptions) are implemented individually 

by renewable technology. This means that when a supply curve is implemented for the wind 

technology, the solar technology keeps the GCAM default assumptions and vice-versa.  

c The scenarios do not account for climate impacts in other renewables such as biomass and 

hydropower or in water availability since this scenario framework aims to help 

understanding the interplays between climate impacts on solar and wind and the uncertain 

supply curve inputs.  

d To achieve the target, the model iteratively solves for the global carbon price pathway 

needed. 

e For the climate impacts (CI) scenarios, supply curve assumptions change over time and are 

implemented for the periods 2011-2040, 2041-2070 and 2071-2099 based on the 30-yr 

average potentials of each period. This is in line with the methodology of the ISIpedia project 

(Gernaat et al. 2021). 
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4.5 Results and Discussion 

4.5.1 Implications for the global technical potentials and electricity production    

Figure 4.11 ((a) and (c)) summarizes the strong effect of the distinct parameter 

assumptions on the quantification of wind and solar PV technical potentials, 

respectively, by comparing the changes associated with each sensitivity case with the 

technical potentials produced under the Central case. Land use parameters (i.e., 

suitability and land-use factors) play critical roles for both technologies. The wind 

potential is also strongly influenced by the choice of the average turbine installation 

density with the high power density case (Pdens_13) showing the largest deviation 

from the central assumption. Another important assumption is how wind power is 

computed. In this regard, these results contrast the effect of the combination of a 

modern turbine technology (Vestas V136-3.45 – a technology from 2015 according to 

the https://www.thewindpower.net) and a taller hub height (125 m), as assumed in the 

Central case, against a past turbine model (V90-2.0 MW – a technology from 2004) 

placed at a lower hub height (75 m). The latter leads to ~30% reduction relative to the 

Central case. The other assumptions (hub height in the case of wind, performance ratio 

in the case of solar PV) show considerably lower relative changes than land-related 

parameters. However, the low hub height assumption (75 m) leads to non-trivial 

reductions in wind potential of ~17%.  

 

 

 

 

 

 

 

https://www.thewindpower.net/
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Figure 4.11. (a) Changes in the global wind onshore technical potential relative to the Central 

case by sensitivity case and RCP. Technical potentials are computed for the 2071-2099 period. 

(b) Changes in the global wind power generation by sensitivity case and scenario in 2100 

(climate impact “CI” assumptions). Changes are relative to a GCAM simulation using supply 
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curves produced from the Central technical potential case. (c) As in (a) but for the global solar 

PV technical potential. (d) As in (b) but for the global solar PV power. (Note: the solar PV case 

assuming land use factor of 20% has not solved for the RCP2.6_CI scenario using the 

HadGEM2-ES input data). 

 

When supply curves produced from all technical potential cases are 

implemented in GCAM, the corresponding changes in the 2100 global wind and solar 

PV electricity generation reproduce the patterns of change in the input potentials 

(Figure 4.11(b) and (d)). That is, positive changes in generation compared with the 

Central case are in line with increased technical potentials, and vice-versa.  

Importantly, technical potential cases with the largest deviations from central 

assumptions result in the largest changes in generation, which can be very pronounced 

depending on the case. For example, the low suitability (S_low_II) case for wind results 

in very large reductions in generation ranging between 58% and 73% depending on the 

GCM input and scenario. It can be noted that negative changes in electricity generation 

are more prominent than the positive ones even for a very large increase in potential 

like in the high suitability case of solar PV. This is because GCAM, like most IAMs, 

imposes limitations to substantial deployment of solar and wind capacities to account 

for the added cost of managing the inherent intermittency of these resources. As 

mentioned earlier in Chapter 3, this is done through costs that vary with the fraction of 

renewables in the grid and add to the cost of building new intermittent generation to 

secure backup capacity. 

Interestingly, the above general sensitivity patterns are largely consistent across 

warming scenarios, GCM input assumptions, GCAM scenarios and periods. 

Concerning the latter, it is worth noting that the global technical potentials computed 

using data from the historical (1971-2000) period, and the 2100 intermittent electricity 
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production simulated using supply curves from the historical period (i.e., the no climate 

impacts “NoCI” assumption in Table 4.12) unveil similar patterns of changes as those 

shown in Figure 4.11 (Appendix C; Figure C.1). All the above results then highlight 

the role of the parametric assumptions in resource estimates as a significant source of 

uncertainty in the modeling of intermittent electricity generation in GCAM. 

4.5.2 Implications for the analyses of climate impacts on global technical potentials  

As mentioned earlier, the implications of uncertainties in resource estimates for 

climate-impact analyses on the energy sector, such as the recent ISIpedia 

intercomparison, are currently unknown. To start investigating this matter, Tables 4.13-

4.14 present the relative (%) changes in the mean end-of-century (2071-2099) technical 

potentials from the historical period. The multi-model impact assessments presented in 

Tables 4.13-4.14 indicate modest climate change impacts on solar and wind technical 

potentials at the global scale, which is in line with prior literature (Gernaat et al. 2021; 

IPCC 2012). These results also show that within this relative context, changes by GCM 

are not markedly affected by the parametric choice and that the small variations are 

further smoothed out by the multi-model means.  However, the relative context masks 

the large absolute differences across the sensitivity cases that are reflected in the 

derived supply curves. These absolute differences and their effects on the supply curves 

(i.e., changes in the cost of energy and resource availability) are the key pieces to the 

understanding of the potential implications of the parametric uncertainties for the 

analysis of regional impacts, which will be discussed later in this dissertation. 

  



 

134 
 

Table 4.13 Relative changes in the global wind technical potential by case, GCM and 

RCP (mean 2071-2099 potentials relative to the historical 1971-2000 potentials). 

% Differences relative to historical: Global Wind Technical Potential 

Case 
HadGEM2-ES GFDL-ESM2M IPSL-CM5A-LR MIROC5 

Multi-model 
Mean 

RCP2.6 RCP8.5 RCP2.6 RCP8.5 RCP2.6 RCP8.5 RCP2.6 RCP8.5 RCP2.6 RCP8.5 

Central -1.0 -1.8 -0.7 -1.3 0.9 7.6 -0.9 -4.9 -0.4 -0.1 

E101_3.05 -1.0 -1.8 -0.8 -1.4 0.7 8.8 -1.1 -5.4 -0.5 0.1 

GE_2.5-100 -1.0 -1.9 -0.7 -1.3 0.8 7.9 -1.0 -5.1 -0.5 -0.1 

V90_2.0 -1.1 -2.0 -0.8 -1.5 0.7 9.5 -1.3 -5.8 -0.6 0.0 

S_high -1.0 -2.0 -0.8 -1.8 1.3 8.6 -0.7 -5.0 -0.3 0.0 

S_low -0.8 -3.9 -0.6 -1.6 2.5 10.1 0.0 -5.8 0.3 -0.3 

S_low_II -0.9 -2.0 -0.7 -1.5 1.3 8.5 -0.4 -4.9 -0.2 0.0 

Pdens_1 -1.0 -1.8 -0.7 -1.3 0.9 7.6 -0.9 -4.9 -0.4 -0.1 

Pdens_9 -1.0 -1.8 -0.7 -1.3 0.9 7.6 -0.9 -4.9 -0.4 -0.1 

Pdens_13 -1.0 -1.8 -0.7 -1.3 0.9 7.6 -0.9 -4.9 -0.4 -0.1 

Hub_75 -1.0 -1.9 -0.7 -1.4 0.8 8.4 -1.1 -5.3 -0.5 0.0 

Hub_100 -1.0 -1.9 -0.7 -1.3 0.8 7.9 -1.0 -5.1 -0.5 -0.1 

Hub_150 -1.0 -1.8 -0.6 -1.3 0.9 7.3 -0.8 -4.8 -0.4 -0.1 

 

Table 4.14 Relative changes in the global solar PV technical potential by case, GCM 

and RCP (mean 2071-2099 potentials relative the historical 1971-2000 period). 

% Differences relative to historical: Global Solar PV Technical Potential 

Case 
HadGEM2-ES GFDL-ESM2M IPSL-CM5A-LR MIROC5 

Multi-model 
Mean 

RCP2.6 RCP8.5 RCP2.6 RCP8.5 RCP2.6 RCP8.5 RCP2.6 RCP8.5 RCP2.6 RCP8.5 

Central -0.4 -3.8 0.3 -2.0 -0.3 -2.4 -0.1 -3.2 -0.1 -2.9 

PR_75 -0.4 -3.8 0.3 -2.0 -0.3 -2.4 -0.1 -3.2 -0.1 -2.9 

PR_90 -0.4 -3.8 0.3 -2.0 -0.3 -2.4 -0.1 -3.2 -0.1 -2.9 

V90_2.0 -0.4 -3.8 0.3 -2.0 -0.3 -2.4 -0.1 -3.2 -0.1 -2.9 

S_high -0.3 -3.2 0.3 -2.0 0.3 -1.5 0.3 -2.8 0.2 -2.4 

S_low -0.6 -3.7 0.1 -2.3 0.1 -1.9 -0.1 -3.3 -0.1 -2.8 

S_low_II -0.5 -3.5 0.2 -2.2 0.2 -1.7 0.1 -3.0 0.0 -2.6 

Nlpv_20 -0.4 -3.8 0.3 -2.0 -0.3 -2.4 -0.1 -3.2 -0.1 -2.9 

Nlpv_30 -0.4 -3.8 0.3 -2.0 -0.3 -2.4 -0.1 -3.2 -0.1 -2.9 

Nlpv_100 -0.4 -3.8 0.3 -2.0 -0.3 -2.4 -0.1 -3.2 -0.1 -2.9 
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4.5.3 Implications for the regional technical potentials and electricity production 

In this subsection, the results from the GFDL-ESM2M model for the historical 

period are used as example since the qualitative insights of this discussion are not 

affected by the choice of GCM or period of the resource estimate. (Appendix C; Figures 

C.2-C.9 provide the technical potential sensitivity case results for the four ISIMIP2b 

GCMs, two emissions scenarios and two periods (1971-2000 and 2071-2099), which 

highlights no major effects on the patterns of sensitivity presented).  

Not surprisingly, the regional patterns of changes in technical potentials are 

consistent with the global results (Figures 4.12(a) and 4.13(a)). While changes in 

certain parameters affect the computation of technical potentials equally in all regions 

(e.g., power density, performance ratio and solar PV land use factor), effects from other 

sensitivity cases vary regionally with some of them displaying strong variation (notably 

the suitability cases). For example, reductions in solar PV technical potential range 

between -1 and -79% in the S_low_2 case (compared with the Central case) depending 

on the land cover distribution in each region. On the positive side, the S_high case of 

solar PV is an example of very strong relative changes and marked regional variability 

(between 111% and 900%).  
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Figure 4.12. (a) Relative changes in wind onshore technical potential from central assumption 

by sensitivity case and GCAM region (input data: GFDL-ESM2M model – 1971-2000). (b) 

Relative changes from the Central case in wind onshore electricity production in 2100 

(RCP2.6_NoCI scenario) (all cases used supply curves from the historical period throughout 

the entire simulation). (c) As in (b) but for the Baseline_NoCI scenario. Note that this study 

excludes two GCAM regions: Taiwan and South Korea. In these regions, the spatial resolution 

of this analysis (0.5 degree) does not allow sufficient number of points to produce a supply 

curve in all sensitivity cases. 
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Figure 4.13. As in Figure 4.12 but for the solar PV technology. 

 

 

With respect to the regional solar and wind electricity generation responses, 

their sensitivity to the distinct parametric assumptions is large like in the global 

situation, with the resulting changes from the Central case varying substantially by 

region (Figures 4.12-4.13 (b) and (c)). For example, wind power reductions under the 

Pdens_1 case can be lower than -1% in Argentina (ARG) up to -72% in Colombia 

(COL) (RCP2.6_NoCI scenario). This marked regional variation is determined by two 

main factors: the ratio between electricity demands and technical potentials embedded 

in the supply curves and the effect of the shifting supply curves on GCAM regional 
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power-sector market competition. The first factor means that in regions where the 

demand for electricity is high compared with the available resource (i.e., the technical 

potential), differences among the distinct supply curves are more pronounced, which 

contributes toward larger differences in electricity generation. Conversely, with low 

ratios between electricity demands and technical potentials, the effects from the shifting 

supply curves originate from the lower ends of the curves in which differences among 

the supply curves are lower. The second and most important factor relates to how the 

modeled electricity market shares are distributed among the various technologies in 

GCAM. As detailed in prior literature (Calvin et al. 2019; Wise et al. 2019) and 

explained in Chapter 3, the decision to invest in additional capacity is based on the 

costs of energy production per technology (least-cost technology options capture the 

largest shares of markets although the other options also gain some market share). As 

shown in Chapter 3, the cost of individual power-sector technologies in GCAM 

depends on amortized capital costs, operations and maintenance (O&M) costs, fuel 

costs, efficiency of the power plant and capacity factor of the technology (other factors 

like the intermittency costs mentioned above and the price of carbon also affect the cost 

of individual technologies). While most of these parameters are fixed assumptions 

within the model (assumptions listed in Iyer et al. 2017), fuel costs are computed 

internally based on the supply curves. Thus, higher/lower availability of the intermittent 

renewable resource represented in the supply curves alter fuel costs, which in turn 

affect the cost of the renewable technology. This has direct implications on the 

economic competitiveness of solar and wind relative to other technologies. In other 
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words, solar and wind technologies can gain or lose importance within regional 

electricity markets depending on the sensitivity case. 

A major insight from Figures 4.12-4.13 is that the role of intermittent renewable 

generation could be considerably under or overestimated relative to other technologies 

in some regions depending on the sensitivity case. This interferes with model’s ability 

to provide decision support. As the model needs to balance electricity supplies and 

demands in all regions and all periods, reduced projections force the model to replace 

generation lost by enhancing the deployment of other technologies, while increased 

solar or wind generation diminishes the importance of other technologies in the power 

system. The first is illustrated in Figures 4.14-4.15 for the six cases with the overall 

largest reductions in wind onshore technical potential. Under the mitigation 

RCP2.6_NoCI scenario, reductions in wind onshore power are split among various low-

carbon technologies in proportions that vary depending on the region (Figure 4.14). For 

example, nuclear energy is the most important replacement technology in China (CHI) 

followed by carbon capture and storage (CCS) technologies whereas the opposite is 

seen in the USA. Along similar lines, nuclear generation largely grows in importance 

in the modeled European (EU-15) power system, but the increase in wind offshore 

predominates in all sensitivity cases. For the Baseline_NoCI scenario, in which 

greenhouse gas (GHG) emissions are unconstrained, the GCAM assessment for the loss 

of wind generation is an overall higher value of carbon-intensive technologies in many 

regions, which include major economies such as USA, China, EU-15 and India (IND) 

(Figure 4.15). The overall implication for decision-making is that each replacement 

technology that grows in importance in GCAM scenarios due to an undermined role of 
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the wind technology would be associated with challenges, such as larger land and/or 

water requirements, public opposition issues, higher investment requirements or 

increased GHG emissions. An overestimated role of wind power in future scenarios 

also has significance because it can lead, for example, to similarly overestimated 

assessments of investments in generating facilities as well as in transmission 

infrastructure.  

The above-mentioned substitution effect is also seen for solar albeit with lower 

generation figures as regional solar production in GCAM is typically lower than wind 

onshore power (except for few regions with very high solar resources) (Figures 4.16-

4.17). Unlike the wind onshore sensitivity cases, wind offshore, in general, does not 

represent a major replacement technology for losses in solar power under the S_low_1, 

S_low_2, Nlpv_20 and Nlpv_30 sensitivity cases. In fact, changes in wind offshore are 

negative in many regions.  Note that the sensitivity cases for solar PV shown in Figure 

4.16 also include the S_high and the Nlpv_100 cases associated with increases in solar 

PV generation. China is used again as an illustrative example. In this region, nuclear 

energy followed by CCS are the most important replacement technologies under the 

RCP2.6_NoCI scenario for those sensitivity cases that reduced solar PV generation. 

Conversely, these sources become less relevant in the S_high and Nlpv_100 cases. For 

the Baseline_NoCI scenario (Figure 4.17), India shows notable changes in fossil fuels 

generation. In India, cumulative changes in electricity from fossil fuels vary largely 

from -525 to 340 TWh throughout all sensitivities. The above examples highlight the 

ambiguity created by the parametric uncertainties concerning the role of each 

technology in the power system. This suggests challenges, for example, for the 
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delineation of decarbonization strategies as the level of mitigation effort needed varies 

as shown by the example of India under the Baseline_NoCI scenario.  

 
Figure 4.14. Changes in cumulative (2020-2100) electricity production by generating 

technologies relative to the wind onshore Central case (RCP2.6_NoCI scenario). 
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Figure 4.15. As in Figure 4.14 but for the Baseline_NoCI scenario. 
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Figure 4.16. Changes in cumulative (2020-2100) electricity production by generating 

technologies relative to the solar PV Central case (RCP2.6_NoCI scenario). 
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Figure 4.17. As in Figure 4.16 but for the Baseline_NoCI scenario. 
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4.5.4 Implications for the regional analyses of climate change impacts on the energy 

sector 

GCM projections are largely uncertain for reasons that include our incomplete 

understanding of certain physical processes or inability to represent them accurately in 

the model as well as uncertainty in model parameters (Knutti et al. 2010). Due to these 

deficiencies, long-term projections made using different GCMs lie within an 

‘uncertainty envelope’ in which the spread of outcomes challenges the planning of 

adaptation measures. This is illustrated in Figures 4.18-4.19 for changes in solar and 

wind resources using the ISIMIP2b GCMs. These changes strongly vary by region and, 

in general, the magnitudes and uncertainties of regional impacts under RCP8.5 tend to 

be larger than for the RCP2.6 scenario. In agreement with a recent global analysis also 

based on ISIMIP2b climate models (Gernaat et al. 2021), mean changes in the wind 

resource are considerably more pronounced than changes in solar PV energy. In this 

regard, another recent study (Karnauskas et al. 2018) using 10 CMIP5 GCMs has 

reported pronounced changes in the projected wind power under RCP8.5 for distinct 

regional domains around the world (for example, 42% in eastern Brazil and 41% in 

northeastern Australia by 2100).  
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Figure 4.18. Evolution of wind power anomalies for the 30 GCAM regions analyzed 

in this study over the twenty-first century. Time series of changes in wind power (% of 

the baseline period 1971-2000) averaged across each region based on data from the 

four ISIMIP2b GCMs under RCP2.6 (blue) and RCP8.5 (red). Shadows show the 

ensemble spread and solid lines depict the ensemble mean values. Regional raw series 

are smoothed using the LOWESS filter with a window span of 25% of the 1971-2099 

period (~30 years), which suppresses interannual variability. Note the different y axis 

scales. 
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Figure 4.19. Evolution of PV power production anomalies for the 30 GCAM regions 

analyzed in this study over the twenty-first century. Time series of the estimated PV 

power production anomalies computed similarly as in Figure 4.18. PV power 

production (𝑃𝑉𝑝𝑟𝑜𝑑) computed as 𝑃𝑉𝑝𝑟𝑜𝑑 = 𝜂𝑃𝑉  ∙  𝐼𝑖̅ (Crook et al. 2011), with 𝜂𝑃𝑉 , PV 

panel efficiency, defined as in Eq. 9 and 𝐼𝑖̅, the yearly-averaged solar radiation as in 

Eq. 8. 

 

The uncertainty in future GCM projections is a known challenge within the 

climate change science. Given the repercussions in GCAM’s projections of solar and 

wind electricity generation stemming from the uncertainties in renewables resource 

estimates discussed earlier, it is also important to understand how the assessment of 

climate impacts on regional intermittent renewable generation made using GCAM 

might be influenced by this type of uncertainty. Using again the GFDL-ESM2M model 

for illustration (because these insights are independent of the choice of GCM), Figures 
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4.20-4.21 show that the aforementioned parametric uncertainty translates into a 

considerable spread of differences in regional technical potentials (Appendix C; 

Figures C.10-C.11 provide the multi-model means). For example, in the USA, where 

the GFDL-ESM2M model projects reductions in both the solar PV and wind technical 

potentials, such a pattern means a range of differences between -159 (-139) and -8462 

(-7666) TWh for the wind potential and between -63 (-21) and -1251 (-428) TWh for 

the solar potential under RCP8.5 (RCP2.6). 
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Figure 4.20. Change in annual mean wind technical potential (TWh) in 2071-2099 

relative to the historical period (1971-2000) by forcing scenario (Input climate data: 

GFDL-ESM2M). 
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Figure 4.21. Change in annual mean solar PV technical potential (TWh) in 2071-2099 

relative to the historical period (1971-2000) by forcing scenario (Input climate data: 

GFDL-ESM2M) 

 

For the supply curves derived from the sensitivity cases under climate change 

assumptions these large variations with respect to the estimates of absolute differences 

in technical potentials translate into differentiated inputs into GCAM (in terms of cost 

and resource availability changes) that affect the economic decisions in the power 

sector differently. Figures 4.22–4.25 show that there are differing responses in 
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cumulative electricity generation changes to similar climate forcings due to the 

different supply curve assumptions. However, these effects vary substantially from 

region to region. For wind power in the RCP2.6 scenarios, relevant effects are found in 

certain regions such as the USA, in which changes range between ~-3.5% and -15% 

considering the GFDL-ESM2M model, or the South America Southern and Middle 

East regions with changes ranging between 5% and 40% and -5% and -25%, 

respectively, for the MIROC5 model. Considering the Baseline scenarios, there are 

examples of more pronounced effects like in Brazil with relative changes in generation 

varying between ~18% and 60% for the GFDL-ESM2M forcing or in Southern Africa 

with changes between 20% and 65% for the IPSL-CM5A-LR model. On the other hand, 

these differences are generally unimportant in regions where the climate change forcing 

is weak like in Indonesia in both set of scenarios. The latter helps to explain the 

situation of solar power. Changes in solar electricity production are predominantly 

lower than those in wind power because of the less pronounced climate impacts in solar 

mentioned above. Hence, the effects from the varying supply curves, although evident 

in Figures 4.24-4.25, tend to be less impactful than in wind. This implies that within a 

context of weaker impacts, the effects from the parametric uncertainty play a less 

relevant role in affecting the overall assessment of climate impacts on renewable 

generation using GCAM. For example, in the USA, the change in solar generation 

considering the GFDL-ESM2M model in the RCP2.6_CI scenario for the Central case 

is of ~-2.5% relative to the RCP2.6_NoCI scenario whereas the range of variation 

across all cases lies between -0.5% and -3.5%. These changes are even less pronounced 

under the Baseline scenarios. There are also few examples in which the overall 
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generation changes are more pronounced, but the parametric uncertainty effect is not 

relevant. These regions include Canada, Europe Eastern and Russia under both set of 

scenarios. On the other hand, important changes due to the parametric effect are found 

in few regions like European Free Trade Association under both the RCP2.6 and 

Baseline scenarios for the MIROC5 model (changes varying between ~-3 and -20%). 
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Figure 4.22. Regional changes (%) in cumulative (2020-2100) wind power generation: 

RCP2.6_CI scenario relative to the RCP2.6_NoCI scenarios. 
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Figure 4.23. Regional changes (%) in cumulative (2020-2100) wind power generation: 

Baseline_CI scenario relative to the Baseline_NoCI scenarios. 
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Figure 4.24. Regional changes (%) in cumulative (2020-2100) solar power generation: 

RCP2.6_CI scenario relative to the RCP2.6_NoCI scenarios. 
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Figure 4.25. Regional changes (%) in cumulative (2020-2100) solar power generation: 

Baseline_CI scenario relative to the Baseline_NoCI scenarios. 

 

 

 

 



 

157 
 

Figures 4.22-4.25 also contrast the effects from uncertainties due to GCM 

projections against those from the supply curve assumptions. There are large disparities 

on the projections of changes in generation due to the choice of GCM. This can be 

illustrated with the case of the EU-15 region under the RCP2.6 scenarios for wind. It 

can be noticed that the choice of GCM markedly shifts the distributions with two GCMs 

pointing out positive effects whereas the other two indicate negative impacts. This lack 

of agreement creates ambiguity with respect to the direction of the climate change 

impact. Likewise effects associated with GCM uncertainty, effects from the parametric 

uncertainty create decision-making challenges. As noted above these effects are large 

for some regions, particularly for wind power. This is the case of India in the RCP2.6 

scenarios. In this region, the wind power change projections from the GFDL-ESM2M 

model reveals a wide range of outcomes associated with the sensitivity cases (~5% to 

45%). This is larger than the differences across all GCMs (using the median of the 

distributions as the reference for comparison). Moreover, effects concerning the 

direction of changes can be noticed in few regions like the Europe_Non_EU region in 

the Baseline scenarios of wind power for the MIROC5 model (changes within -5% to 

+6%).  

For a better understanding of the implications for GCAM electricity projection 

changes due to the adoption of different supply curve assumptions, it is instructive to 

focus on a smaller set of regions and sensitivity cases. For wind power, the distinct 

input assumptions result in notable differences in gains or losses in power production 

in each region (Figure 4.26). In Central Asia, for example, the total loss of wind power 

under the Low Suitability_II (S_low_II in prior figures) case is more than double the 
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losses found in all other cases. Conversely, in Brazil, the lowest wind power gains are 

found in the Low Suitability II and Hub Height 75 m cases, which are about one third 

of the increases found in the Central. Each sensitivity case can impact wind power 

changes very differently. This is seen for the Low Suitability II, which is associated 

with the largest generation losses in Central Asia and Russia, as well as with the 

smallest negative differences in China and Mexico. As mentioned earlier, the final 

effect on generation changes depends on how the power-sector market competition is 

affected by each supply curve. Generally, the Low Suitability_II and the lowest power 

density case (Pdens_1 in prior figures) cases are associated with the most marked 

differences relative to the Central case. 

 
Figure 4.26. Regional differences in electricity production by technology assuming climate change 

impacts on wind only. Differences (RCP2.6_CI - RCP2.6_NoCI scenarios) are calculated by technology 

using cumulative generation during the 2020─2100 period. Note the different y axis scales. 

 

Results for the Baseline scenarios (forced with input climate data from RCP8.5) 

show similar patterns but considerably lower absolute differences compared with the 

RCP2.6 scenarios (except for Brazil) (Figure 4.27). Although counterintuitive given 
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the overall more pronounced climate impacts on technical potentials under the RCP8.5, 

having significantly more renewables in the power mix, as seen in the RCP2.6 scenarios 

with about ~three times more renewables in 2100, contributes considerably more to 

accentuate the magnitudes of impacts in generation. It can be noted that the relative 

differences among sensitivity cases are less pronounced compared with the RCP2.6 

scenarios in regions like Brazil, China, Mexico and Russia. 

 
Figure 4.27. Regional differences in electricity production by technology assuming climate change 

impacts on wind only. Differences (Baseline_CI - Baseline_NoCI scenarios) are calculated by 

technology using cumulative generation during the 2020─2100 period. Note the different y axis scales. 

 

In the case of solar power, the variation of differences across sensitivity cases 

is, in general, less marked than in wind power (Figures 4.28-4.29). In certain regions 

there is no major effect from the different supply curve assumptions, particularly under 

the Baseline scenario.  The most notable exception is the EU-15 region (USA and 

Mexico also show some considerable differences relative to the Central case under the 

RCP2.6 scenarios). 
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Figure 4.28. Regional differences in electricity production by technology assuming climate change 

impacts on solar only. Differences (RCP2.6_CI – RCP2.6_NoCI scenarios) are calculated by technology 

using cumulative generation during the 2020─2100 period. Note the different y axis scales. 

 

 
Figure 4.29. Regional differences in electricity production by technology assuming climate change 

impacts on solar only. Differences (Baseline_CI - Baseline_NoCI scenarios) are calculated by 

technology using cumulative generation during the 2020─2100 period. Note the different y axis scales. 
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From the above discussion, the most relevant insights are that the uncertainties 

embedded in the resource estimates can affect the level of adaptation effort the model 

uses to compensate for deteriorated generation or modify the model assessment of 

positive effects on generation.  As shown in Figure 4.26, the effort and technology 

options to compensate for wind power losses in Central Asia in the Low Suitability II 

case markedly differs from those in the Central case. The first case uses as adaptation 

options generation from natural gas with CCS and nuclear sources that are not 

contemplated by the Central case as well as significantly more solar power. 

Conversely, the uncertainty surrounding possible gains in wind-based generation in 

Brazil or in India in the RCP2.6_CI scenario can have repercussions on derived 

analyses, such as the assessment of capital investment requirements, which may be 

overestimated. This is more likely to happen in scenarios with pronounced deployment 

of intermittent renewables since prior analyses have shown they are associated with 

larger needs of capital investments (Iyer et al. 2017; Santos da Silva et al. 2021) 
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Conclusions 

Renewable energy is expected to play an increasingly important role in meeting 

ambitious global objectives, such as the sustainable development goals and climate 

change mitigation. To understand the future contribution of intermittent renewables 

into these objectives, policy-makers have relied heavily on scenarios from IAMs such 

as GCAM. As one of the main goals of IAM scenarios is to explore distinct energy 

technology pathways, it is essential to understand how sources of structural 

uncertainties in IAMs can affect electricity projections from these models.  

This study is the first to investigate the implications for an IAM of the uncertain 

assumptions on parameter values used to quantify the solar and wind technical 

potentials. Specifically, a framework has been developed to compute the solar PV and 

wind global technical potentials to produce distinct estimates using varying 

assumptions of key parameters used in the computation of these potentials. The various 

technical potentials estimates were used to produce supply curves that were 

implemented in GCAM for the assessment of the consequences for the intermittent 

renewable electricity generation. The results demonstrate that the GCAM solar PV and 

wind power projections are markedly affected by the parametric uncertainties 

embedded in the supply curves. Although GCAM has been used in this analysis, this 

result is relevant to the broad IAM community since many IAMs rely on supply curves 

to model solar and wind resource availability and costs of production.  

The ensemble of technical potential cases investigated in this analysis were 

produced based on a literature review, which identified a list of parametric assumptions 

used to compute solar PV and wind technical potentials in prior studies. This survey by 
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itself constitutes an important contribution to the scientific community since it can help 

to guide future RE potential assessments and sensitivity studies. It is shown that the 

choice of parameters related to land-use together with power density (i.e., the average 

turbine installation density) in the case of wind onshore have a significant impact on 

the technical potential estimate. In the case of the wind technical potential, the choice 

of the turbine technology is also important. These cases of larger impact on the 

technical potential are the most influential in GCAM electricity projections, although 

assumptions that reduce the technical potential are more impactful than the ones that 

increase the potential due to the model’s limitation on substantial RE deployment. 

Depending on the input supply curve assumption, intermittent RE generation can be 

greatly increased or reduced, which affects the role of the renewable relative to other 

technologies in quantitative IAM scenarios. This has repercussions for the overall 

energy system planning and for the assessment of climate change mitigation strategies. 

The results also highlight potential implications for the analyses of climate 

change impacts on solar and wind sources that rely on the implementation of climate-

impacted supply curves as proposed by recent studies (Gernaat et al. 2021; Yalew et 

al. 2020). It is found that GCAM can translate the uncertainty in the input assumptions 

into a range of projected outcomes expressing gains in RE generation or varying 

degrees of adaptation effort (as well as adaptation options). However, the extent to 

which uncertainties in resource estimates affect the analysis of climate impacts on the 

energy sector using GCAM scenarios depends on the modeled mitigation effort and on 

the severity of the climate impact signal. Hence, mitigation scenarios with large 

deployment of intermittent RE and that account for climate impacts on wind are the 
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most affected. Although not verified in this study, the results suggest that the 

implications for climate change analyses could be even more pronounced in mitigation 

scenarios with limited or no deployment of CCS and nuclear technologies, in which 

emissions reductions from the power sector are largely achieved with the addition of 

intermittent renewables. It is also concluded that the parametric uncertainty explored 

in this study can be as challenging for decision-making as the uncertainty associated 

with GCMs projections. 

Depending on the spread of projected outcomes, there may be important 

cascading effects on other derived quantitative estimates, such as capital investment 

requirements, as noted earlier. An exploration of this potential effect merits future 

work. This work stresses that the parametric assumptions tested here were chosen for 

their potential effect on the resource estimates. However, this list is by no means 

exhaustive and could be expanded in future studies. Examples of parameters not tested 

are array availability and array efficiency in the case of wind and panel efficiency in 

the case of solar PV. Future studies should also expand this analysis to other GCAM 

technologies not covered in this study: solar CSP, solar rooftop PV and wind offshore. 

The climate impacts dimension of the scenarios analyzed in this study focuses on wind 

and solar for a specific analysis of the interplays between climate impact assumptions 

on these sources and the uncertainty stemming from the supply curves. Future work 

could expand this framework by including climate impacts on the other renewables, 

i.e., agricultural crop yields that affect biomass and hydropower, and on the water 

supply. This will help to understand if within a context of multiple and simultaneous 
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impacts, the effects from the parametric uncertainty on solar and wind projections 

might be dampened or exacerbated. 

The results underscore the need of careful consideration of the parametric 

choice in RE technical potential estimates. However, narrowing this type of uncertainty 

is a difficult undertaking. Prior studies (Bosch et al. 2017; Deng et al. 2015; Rinne et 

al. 2018) have emphasized the quality of the datasets used pointing out for the need of 

high-resolution datasets and analyses. In this regard, it is acknowledged that this study 

is conducted within a relatively low resolution (0.5o spatial resolution), which is 

sufficient to support the points raised in this research although it misses details at finer 

local scales. However, even with the use of high-resolution/high-quality datasets, 

certain assumptions will continue to be highly uncertain, such as the land suitability 

factors. As seen in the results, the assumptions concerning suitability factors are highly 

influential, but there is no methodology to derive them. These factors have been derived 

based on authors’ judgement. Indeed, even recent analyses (Bosch et al. 2017; Eurek 

et al. 2017; Gernaat et al. 2021) use suitability factor assumptions from studies 

published in the 2000’s highlighting the difficulty to develop more precise approaches. 

For this reason, recent RE technical potential estimates (Deng et al. 2015; Rinne et al. 

2018) have defined distinct land-use scenarios to try to improve upon this uncertainty 

issue. This could be considered the path forward for the other influential parameters. 

In this regard, De Vries et al. 2007 have suggested that ‘scenario-based’ assessments 

could be useful in communicating the wide range of outcomes resulting from the 

uncertain factors such as land use and technology. However, a deeper understanding of 

the implications of this uncertainty issue for IAM projections will require sampling of 
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a broader range of technical potential cases than the ones explored in this study within 

a formal sensitivity analysis. In this context, a more robust analytical framework 

appears particularly relevant for climate change analyses incorporating impacts on 

solar and wind supply curves because of the complexity added by the uncertainties 

from the GCM projections. The results then suggest the need of an ample debate within 

the IAM community that might result, for example, in a subsequent model 

intercomparison exercise using models with varied representations of energy systems. 

This would allow an understanding of the effects of the uncertain supply curves on the 

long-term energy scenarios from these models. As acknowledged in the literature, such 

diagnostic experiments are needed for a more explicit and transparent treatment of the 

deep uncertainties and structural dynamics in IAMs (van Vuuren et al. 2010). 
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Chapter 5: Concluding Remarks and Future Work 
 

 

5.1 Concluding Remarks 

Integrated assessment modeling is a vital piece of climate change science, 

particularly as it relates to important societal sectors such as energy, water and land. 

There is a wide recognition of the need of meaningful and credible IAM scenarios to 

support decision-making and the climate change science in general. To maximize the 

usefulness of IAM scenarios, the IAM community has recently prioritized assessments 

of country-specific mitigation policies over analyses at highly aggregated spatial-scales 

as well as research on the interactions across climate impacts, sectors, and sustainable 

development objectives (Fisher-Vanden; Weyant 2020). This dissertation aims to 

contribute to these recent research efforts, exploring specific research gaps within the 

contemporary IAM research that represent clear opportunities  to enhance the value of 

GCAM scenarios to decision makers and contribute toward future model 

developments. 

Chapters 2-4 together contribute in three important ways to the overarching goal 

of the study. First, the research presented in all chapters are novel in scope, 

encompassing questions that have received little or no attention by the IAM 

community. The second contribution lies on their relevant specific approaches and 

insights that offer improvements relative to prior analyses. Lastly, the code used to 

produce the solar and wind technical potentials in Chapter 4 will be made available to 

the scientific community. This code (written in Python) will become part of the suite 
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of open-source packages of the Joint Global Change Research Institute (which are 

hosted at https://github.com/JGCRI). This package is expected to help researchers build 

renewable technical potential assessments based on the assumptions described in 

Chapter 4. The IAM community can, for example, produce resource estimates based 

on different parametric assumptions and examine the effect of supply curves produced 

from these estimates in IAMs. Besides the open-source approach, the code has the 

advantage of being modular so that users can customize or replace individual 

components.  

The following findings are provided by the completion of this Ph.D. 

dissertation: 

Chapter 2 

Research question: What type of implications might be triggered by NDC mitigation 

strategies in line with the climate goals of the Paris Agreement on the EWL nexus 

resource systems in Latin America?  

By developing mitigation scenarios in which targets are consistent with the NDCs 

submitted by Argentina, Brazil, Colombia and Mexico, followed by stringent post-

2030 emissions reductions assumptions, implications have been found associated with 

the portfolio of mitigation strategies in place.  Those can be summarized as follows: 

(1) growing irrigation demands up to the midcentury in all countries, except for Brazil 

(associated with the land- and water-use impacts of forest protection measures); (2) 

larger irrigation demands to cultivate bioenergy crops in Mexico (land- and water-use 

impacts of energy decisions); and (3) larger electric-sector water withdrawals in 
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countries that largely deploy CCS over the long-term (Mexico and Brazil) versus 

reduced demands when CCS is unavailable (water-use impacts of energy decisions). 

Key Insights: 

(1) The analysis of mitigation scenarios using Latin American countries as case 

studies demonstrates that multi-sector modeling is critical for assessing the 

EWL nexus because of the diverse constraints on EWL resources and the 

interactions with policies affecting different sectors. 

(2) Mitigation pathways need to be assessed within an EWL nexus perspective that 

balances interactions across multiple sectors to better understand the trade-offs 

and synergies associated with meeting future climate goals. 

Implications for policy-/decision-making: 

The Paris Agreement includes a framework in which countries report their emissions 

periodically and monitor the progress of their pledges (‘global stocktake’). This process 

intends that countries can enhance their commitments to make sure that the long-term 

goals of the Paris Agreement can be achieved. Given the possibility of negative 

repercussions of mitigation policies on the EWL nexus resources as highlighted in this 

analysis, the results suggest that considerations concerning EWL nexus issues should 

be accounted for during the review process of NDCs. In other words, the results suggest 

revising the NDCs within an integrated multi-sector analysis that can identify key areas 

of conflicts across EWL nexus sectors. This is in line with arguments in the literature 

(Iyer et al. 2017, Iyer et al. 2018, Peters et al. 2017) that highlight the value of a broader 

process of assessment of the progress of the NDCs through a multi-objective 
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framework that incorporates, for example, the implications of NDCs on sustainable 

development objectives. 

Chapter 3 

Research question: What are the implication of climate impacts on renewables on the 

electricity sector in Latin America in terms of electricity generation and capital 

investment requirements? How do these implications change under alternative energy 

technology pathways and modeling approaches? 

By developing scenarios that vary across the level of climate change mitigation, climate 

impacts on renewables and technology availability, likely implications have been found 

on electricity generation due to climate impacts that vary strongly by region. It is found 

that accounting for climate impacts on renewables can result in additional investments 

($12─114 billion by 2100 across Latin American countries) for a region with weak 

financial infrastructure. It is also demonstrated that accounting for climate impacts only 

on hydropower – a primary focus of previous studies – can significantly underestimate 

cumulative investments, particularly in scenarios with high intermittent renewable 

deployment.  

Key Insights: 

(1) IAM scenarios that explore the consequences of climate change impacts on 

renewable energy for the electric power sector need to adopt a comprehensive 

modeling approach that accounts for climate change impacts in all renewables. 

(2) There are risks of misrepresentation of climate change effects on the electric 

power sector if climate impacts on all renewables are not accounted for in the 
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modeled scenarios, particularly for energy pathways with pronounced 

intermittent renewables deployment. 

Implications for policy-/decision-making: 

The multi-impact modeling framework presented in this study can be used by energy 

planners to understand the overall vulnerability of regional power systems to climate 

impacts on renewables under alternative mitigation and no-policy scenarios and to 

assess the potential monetary consequences for the planning of generation capacity.  

Chapter 4 

Research question: What are the implication of key parametric uncertainties in the 

computation of renewable energy potentials for GCAM solar and wind electricity 

production? Which parameters drive the largest changes? What are the potential 

implications for decision-making on climate change mitigation and impacts? 

Based on a review of parameter values used in prior renewable potentials estimations, 

it is found that this parametric uncertainty results in substantial variations in 

intermittent generation projections with a prominent role of assumptions related to 

land-use in both solar PV and wind onshore technologies and average turbine 

installation density for wind onshore. Consequently, the role of these renewables in 

modeled long-term scenarios can be under- or overestimated relative to other 

technologies.  

Key Insights: 

(1) GCAM projections of solar PV and wind onshore electricity generation can be 

largely affected by methodological uncertainties in the computation of 
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renewable energy potentials that are used to produce the resource cost-supply 

curves needed as input assumptions to IAMs. 

(2) There may be potential implications for decision-making on energy planning, 

climate change mitigation strategies and the adaptation efforts to climate 

impacts on these renewables. However, these implications are highly dependent 

on the mitigation effort and on the severity of the climate change signal. Hence, 

they are expected to be more prominent in mitigation scenarios with high 

intermittent renewable deployment and that account for climate impacts on 

wind. 

Implications for policy-/decision-making: 

The results of Chapter 4 aim to support an ample discussion within the IAM community 

toward a better understanding of the effects of the uncertain renewable potentials on 

IAM’s projections of solar and wind power. This process is expected to guide follow-

on research intended to better inform the construction of renewable supply curves for 

implementation in IAMs. 

The overarching message from this dissertation is that the usefulness of the 

GCAM mitigation and impact scenarios to decision-making is enhanced within a 

more holistic view in which key interactions (cross-sectoral, multiple impacts) are 

accounted for by the modeling framework, and modeling structural uncertainties 

are diagnosed.   

Despite the contributions highlighted above, it is important to acknowledge the 

limitations of this dissertation. The three analyses presented here are built upon 

modeling experiments, and hence, are subject to the limitations inherent of the 
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modeling framework. As mentioned in the introductory Chapter 1, GCAM represents 

five systems (energy, water, land, socioeconomics, and climate) and their key 

interactions. However, important feedbacks are missing in GCAM. For example, 

GCAM is coupled with the SCM Hector, which tracks emissions from all sectors and 

derives the global mean radiative forcing and the global mean temperature change. 

Such a coupling is one way as there is no dynamic feedback between Hector and 

GCAM systems based on the radiative forcing achieved. This has implications for the 

modeled systems. One key example is the land sector. For example, the resulting 

changes in temperature computed by Hector do not feedback into GCAM crop yields. 

Consequently, there is no repercussion from these changes on land allocation and on 

the modeled agricultural supply. This includes any potential effect on biomass crop 

yields and on the resulting biomass production, which is not exchanged with the energy 

system. Indeed, the energy system is another important pathway through which human 

and climate systems directly interact. In this regard, changes in the mean global 

temperature computed by Hector do not feedback into the energy system through 

effects on demand (e.g., heating and cooling) or on the supply (e.g., temperature-related 

effects on thermal power generation). Within this context, it is also important to stress 

that the climate information from the GCMs and physical impact models (employed in 

Chapters 3 and 4) are passed into GCAM in a one-way fashion (with data passed 

through input files to GCAM). This approach has the advantage of transparent 

information exchange and flexibility (van Vuuren et al. 2012), but it has implications 

for the results of this study since GCAM captures the effect of the climate on the 

renewable supply and the resulting effects on GHG emissions but not the influence of 
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these changes in emissions back on the system. The ability to model bidirectional 

climate feedbacks in IAMs is acknowledged as a key research need in integrated 

assessment modeling, and only a limited number of IAM studies has employed a two-

way coupling approach (Calvin and Bond-Lamberty 2018). Despite the growing 

awareness of the need of assessing the sign and magnitude of human-Earth system 

feedbacks, scholars have pointed out the enormous challenges resulting from the 

complexity of the full coupling of human and climate/impact models and the associated 

computational costs, arguing for a balance between these additional costs and the 

analytical gains (Calvin and Bond-Lamberty 2018; van Vuuren et al. 2012). 

It is also important to consider the sources of uncertainties in the results of this 

dissertation. In Chapter 2, socioeconomic assumptions follow the “Middle of the Road” 

SSP 2. Using the other four SSPs, which span a wide uncertainty range in terms of 

long-term demographic and economic projections, would have produced distinct 

effects on the demand for EWL nexus resources, which may have exacerbated or 

dampened the nexus trade-offs found. Chapter 3 utilized climate impacts produced by 

an ensemble of three GCMs. Expanding the number of GCMs will help to improve the 

robustness of the results. Moreover, only one hydrological and one crop model were 

used to derive the climate impacts inputs of hydropower and crop yield changes, 

respectively. Previous studies have highlighted the large uncertainty resulting from 

these impact models, which is comparable to that of climate models (Rosenzweig et al. 

2014; van Vliet et al. 2016b). Hence, expanding the number of impact models will help 

to better characterize this relevant source of uncertainty. Results from Chapter 3 were 

also produced under socioeconomic assumptions consistent with the SSP 2 (except for 
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Argentina, Colombia, and Uruguay). Changing the socioeconomic assumptions is 

unlikely to alter the main qualitative insight of the study, i.e., the value of a multi-

impact modeling approach. However, it would have resulted in a distinct estimate of 

capital investment requirements in Latin America. Hence, future work could explore 

the uncertainty space concerning socioeconomic assumptions in that study. In this 

regard, the exploration of alternative socioeconomic assumptions in Chapters 2 and 3 

could benefit from a more robust process of scenarios generation such as that from a 

recent work (Lamontagne et al. 2018). This study proposed a scenario matrix 

framework to generate a large ensemble of scenarios that systematically sample the 

SSP set of assumptions. Future research could include experimenting with different 

climate change mitigation scenarios since the illustrative scenarios developed for 

Chapters 2 and 3 lie among the various pathways that can achieve the same climate 

goals outlined in those studies. In Chapter 4, additional experimentation with different 

GCMs, socioeconomic assumptions and climate mitigation scenarios could be made 

and would change the quantitative outputs obtained. However, they would not alter the 

main qualitative insights concerning the uncertainty on the computation of the 

renewable potentials and their large effects on the GCAM’s projected solar and wind 

power. For the purposes of the third study, the main uncertainty is the IAM selection. 

As mentioned in Chapter 4, repeating the same modeling experiments conducted with 

GCAM using other IAMs has the potential to lead to valuable insights for the IAM 

community in general. 
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5.2 Future Work 

In addition to the more comprehensive coverage of the underlying uncertainties 

mentioned above, further opportunities to refine this research exist. An analysis of the 

relationship between climate change mitigation and EWL resource constraints at finer-

resolutions than the national-level scale of Chapter 2 would be valuable for the 

countries examined. Equally relevant is to examine the interplays with climate change 

impacts on EWL systems at subnational levels to help guide local decisions. These 

efforts could benefit from recent modeling tools developed to downscale GCAM land 

and water sector projections to higher spatial resolutions as done for the EWL nexus 

case study in Uruguay (Khan et al. 2020). However, there is need of analytical 

approaches to downscale GCAM energy-sector projections to finer resolutions, which 

is a current focus of research interest. Future work could also examine the interplays 

between climate change mitigation and EWL resources under more stringent mitigation 

targets, such as the 1.5°C warming level since the mitigation scenarios in Chapter 2 are 

in line with the 2.0°C climate goal. As discussed in the literature (e.g., Rogelj et al. 

2015), 1.5°C scenarios are characterized by a faster shift away from traditional fossil-

fuel use towards large-scale low-carbon energy supplies and carbon-dioxide removal, 

which may have more pronounced consequences on EWL sectors. 

Additional future work could expand on the assessment of methodological 

uncertainties conducted in Chapter 4. This could be done by examining parameter 

values or changes in the formulation to compute the potentials that are not evaluated in 

the study. Future studies could also expand this analysis to other GCAM power-sector 

technologies not covered in this study: solar CSP, solar rooftop PV and wind offshore. 
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Lastly, a formal sensitivity analyses, systematically decomposing the individual and 

combined influence of each parameter could provide important additional insights. For 

example, Chapter 4 focuses on individual sensitivities that are computed by varying 

just one factor at a time. However, this could be refined in future studies to investigate 

whether interactions across factors can amplify or smoothen individual effects. 

 

 

  



 

178 
 

Appendices  

Appendix A: Supplementary Material - Chapter 2 

Supplementary Notes 

Supplementary Note 1 

As noted in Chapter 2, this study explores two climate change mitigation 

scenarios: NDC_FullTech and NDC_NOCCS. Both scenarios are based on the ‘Paris-

Increased Ambition’ scenario developed in Fawcett et al. 2015, in which the main 

assumptions are: (1) countries achieve their NDCs through 2030; and (2) beyond 2030 

CO2 emissions intensities decrease at annual rates implied by the NDCs or 5% per year, 

whichever is higher. However, for the Latin America and the Caribbean (LAC) region, 

the emissions constraints were revised based upon the supporting sources and 

assumptions listed below. 
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Table A.1 Supporting sources and assumptions by GCAM region in LAC. 

GCAM Region Long-term (post-2030) Goal  Notes 

Argentina 
The conditional NDC target is 

assumed to be achieved by 2050 

Emissions constraints revised according 

to the First Revision of Argentina’s 

NDC [1] 

 

Brazil 

Emissions constraints 

extrapolated from 2025-2030 

rate of emissions reduction until 

2050 

Revised emissions constraints based on 

[2] and Forsell et al. 2016 

 

 

Central America and Caribbean 

5% annual rate of improvement 

in GHG emissions per unit of 

Gross Domestic Product (GDP) 

beyond 2030 

 

Colombia 

2050 long-term target (30% 

reduction in all GHG below 

BAU) based on [3] 

Revised emissions constraints based on 

[3] 

Mexico 

Emissions extrapolated from 

2030 NDC emissions level 

towards the 2050 target 

stipulated in [4] (50% reduction 

of GHGs in 2050 compared to 

Mexico’s 2000 emissions: 

about 311 MtCO2e in 2050) 

Revised emissions constraints based on 

Forsell et al. 2016 and [4] 

 

 

South America_Southern 

5% annual rate of improvement 

in GHG emissions per unit of 

Gross Domestic Product (GDP) 

beyond 2030 

  

South America_Northern 

5% annual rate of improvement 

in GHG emissions per unit of 

Gross Domestic Product (GDP) 

beyond 2030 

 

Sources: 

 

[1] https://www4.unfccc.int/sites/NDCStaging/Pages/All.aspx 

 

[2] MMA. Fundamentos para a elaboração da Pretendida Contribuição Nacionalmente Determinada (NDC) do 

Brasil no contexto do Acordo de Paris sob a UNFCCC [Internet]. Brasilia; 2016. Available from: 

http://www.mma.gov.br/images/arquivos/clima/convencao/indc/Bases_elaboracao_iNDC.pdf 

[3] Cadena A, Bocarejo JP, Rosales R, Arguello R, Delgado R, Flórez E, et al. Upstream analytical work to 

support development of policy options for mid- and long-term mitigation objectives in Colombia (Anexo A – 

Documento Técnico de soporte para la iNDC colombiana, pp. 27). [Internet]. Bogotá; 2015. Available from:  

http://www.minambiente.gov.co/images/cambioclimatico/pdf/documentos_tecnicos_soporte/Contribución_Nac

ionalmente_Determinada_de_Colombia.pdf 

[4] INECC-SEMARNAT. First Biennial Update Report to the United Nations Framework Convention on 

Climate Change. [Internet]. Mexico City; 2015. Available from: http://unfccc.int/files/national_reports/non-

annex_i_parties/ica/technical_support_for_the_ica_process/application/pdf/executive_summary.pdf 

https://www4.unfccc.int/sites/NDCStaging/Pages/All.aspx
https://www.google.com/search?q=Brasilia&stick=H4sIAAAAAAAAAOPgE-LSz9U3qMirzEmLV-IAsQ0zKuO1NDLKrfST83NyUpNLMvPz9POL0hPzMqsSQZxiq_TEoqLMYqBwRiEAkLLn1EIAAAA&sa=X&ved=2ahUKEwi46KbP6I3eAhWPTt8KHQCTDXkQmxMoATASegQIBxAZ
http://www.mma.gov.br/images/arquivos/clima/convencao/indc/Bases_elaboracao_iNDC.pdf
https://en.wikipedia.org/wiki/Bogot%C3%A1
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Appendix B: Supplementary Material - Chapter 3 

Supplementary Figures 

 
Figure B.1 Latin America and Caribbean cost-supply curves for wind energy using 

climate inputs from the GFDL-ESM2M model under RCPs 2.6 and 6.0. Cost-supply 

curves for three different periods were implemented in GCAM: two curves representing 

future climate states and one curve produced from data corresponding to the model 

historical period (labeled “No CI”). 

 

 
Figure B.2 As in Figure B.1 but using climate inputs from the HadGEM2-ES model. 
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Figure B.3 As in Figure B.1 but using climate inputs from the IPSL-CM5A-LR model. 

 

 

Figure B.4 Latin America and Caribbean cost-supply curves for solar (PV) energy 

using climate inputs from the GFDL-ESM2M model under RCPs 2.6 and 6.0. Cost-

supply curves for three different periods were implemented in GCAM: two curves 

representing future climate states  and one curve produced from data corresponding to 

the model historical period (labeled “No CI”). 
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Figure B.5 As in Figure B.4 but using climate inputs from the HadGEM2-ES model. 

 

 

Figure B.6 As in Figure B.4 but using climate inputs from the IPSL-CM5A-LR model. 
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Figure B.7 Latin America and Caribbean cost-supply curves for solar (rooftop PV) 

energy using climate inputs from the GFDL-ESM2M model under RCPs 2.6 and 6.0. 

Cost-supply curves for three different periods were implemented in GCAM: two curves 

representing future climate states  and one curve produced from data corresponding to 

the model historical period (labeled “No CI”). 

 

 

Figure B.8 As in Figure B.7 but using climate inputs from the HadGEM2-ES model. 
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Figure B.9 As in Figure B.7 but using climate inputs from the IPSL-CM5A-LR model. 

 

 

Figure B.10 Latin America and Caribbean cost-supply curves for solar (CSP) energy 

using climate inputs from the GFDL-ESM2M model under RCPs 2.6 and 6.0. Cost-

supply curves for three different periods were implemented in GCAM: two curves 

representing future climate states  and one curve produced from data corresponding to 

the model historical period (labeled “No CI”). 
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Figure B.11 As in Figure B.10 but using climate inputs from the HadGEM2-ES model. 

 

 

Figure B.12 As in Figure B.10 but using climate inputs from the IPSL-CM5A-LR 

model. 
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Figure B.13 Changes in electricity generation under the RCP26_FullTech: Combined 

impacts scenario relative to the GCAM Baseline scenario. 
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Figure B.14 Changes in electricity generation under the RCP26_NoCCS & 

NoNewNuc: Combined impacts scenario relative to the GCAM Baseline scenario. 
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Figure B.15 Model mean differences in electricity production by technology in 

Brazil assuming climate change impacts on renewables for all climate-impact 

scenarios explored in this study. Differences are calculated by technology using 

cumulative generation changes by distinct periods (2021-2040, 2041-2060, 2061-

2080, 2081-2100) and are relative to the corresponding No-climate impacts 

scenarios. 
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Figure B.16 As in Figure B.15 but for Central America and Caribbean. 
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Figure B.17 As in Figure B.15 but for Mexico. 
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Figure B.18 As in Figure B.15 but for South America Northern. 
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Figure B.19 As in Figure B.15 but for South America Southern. 
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Figure B.20 As in Figure B.15 but for Argentina. 
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Figure B.21 As in Figure B.15 but for Colombia. 
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Figure B.22 As in Figure B.15 but for Uruguay. 

 

 

 

 

 

 

 



 

196 
 

 

 
Figure B.23 Global (a) and LAC (b) CO2 emissions from fossil fuel combustion and 

industrial processes in GCAM NDC_to_2C and Baseline scenarios (solid lines). 

Shaded areas in (a) represent scenarios included in the AR5 Scenario Database 

(available at https://secure.iiasa.ac.at/web-apps/ene/AR5DB/; documented in Krey et 

al. 2014), which maintains the long-term scenarios reviewed in the Fifth Assessment 

Report (AR5) by the Working Group III of the IPCC. The blue range comprises the 

subset of policy scenarios that fall within radiative forcing levels consistent with the 

RCP2.6, and limit global warming until 2100 to less than 2oC with at a least a 66% 

chance (IPCC 2014; Krey et al. 2014). The black range is formed by the baseline 

scenarios (i.e., scenarios that do not include any GHG mitigation policy throughout 

the century) associated with the mitigation scenarios in the blue range. 

 

 

 

https://secure.iiasa.ac.at/web-apps/ene/AR5DB/
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Figure B.24 Global (a) and LAC (b) greenhouse (GHG) gas emissions in GCAM 

NDC_to_2C and Baseline scenarios (solid lines). Shaded areas in (a) represent 

scenarios included in the AR5 Scenario Database (available at 

https://secure.iiasa.ac.at/web-apps/ene/AR5DB/; documented in Krey et al.(Krey et 

al. 2014)), which maintains the long-term scenarios reviewed in the Fifth Assessment 

Report (AR5) by the Working Group III of the Intergovernmental Panel on Climate 

Change (IPCC). The blue range comprises the subset of policy scenarios that fall 

within radiative forcing levels consistent with the RCP2.6, and limit global warming 

until 2100 to less than 2oC with at a least a 66% chance(IPCC 2014; Krey et al. 2014). 

The black range is formed by the baseline scenarios (i.e., scenarios that do not include 

any GHG mitigation policy throughout the century) associated with the mitigation 

scenarios in the blue range. [Note: CO2-eq emissions include the basket of Kyoto 

gases (carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O) as well as 

fluorinated gases) aggregated using 100-year Global Warming Potential values from 

the IPCC Second Assessment Report.] 

 

 

https://secure.iiasa.ac.at/web-apps/ene/AR5DB/
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Supplementary Tables 

Table B.1 Technology capacity factor assumptions 

Technology Capacity Factor 

Biomass (conv) 0.85 

Biomass (IGCC) 0.8 

Biomass (conv CCS)  0.85 

Biomass (IGCC CCS)  0.8 

Coal (conv pul) 0.85 

Coal (IGCC) 0.8 

Coal (conv pul CCS) 0.8 

Coal (IGCC CCS) 0.8 

Gas (CC) 0.85 

Gas (steam/CT) 0.8 

Gas (CC CCS) 0.8 

Refined liquids (steam/CT) 0.8 

Refined liquids (CC) 0.85 

Refined liquids (CC CCS) 0.8 

Gen II LWR (Nuclear) 0.9 

Gen III (Nuclear) 0.9 

CSP varies by region 

(Supplementary Table 9) 

CSP with storage varies by region 

(Supplementary Table 9) 

PV varies by region 

(Supplementary Table 9) 

PV with storage varies by region 

(Supplementary Table 9) 

Wind varies by region 

(Supplementary Table 9) 

Wind with storage varies by region 

(Supplementary Table 9) 

Rooftop PV varies by region 

(Supplementary Table 9) 

Geothermal 0.9 

Hydropower 0.54 
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Table B.2 Technology capacity factor assumptions in the LAC region 

 

GCAM-LAC  

Region 

 

Capacity Factor by Technology 

CSP CSP 

with 

storage 

PV PV 

with 

storage 

Wind 

 

Wind 

with 

storage 

Rooftop 

PV 

Argentina 0.25 0.65 0.23 0.23 0.37 0.37 0.23 

Brazil 0.25 0.65 0.25 0.25 0.34 0.34 0.25 

Central America 

and Caribbean 

0.25 0.65 0.25 0.25 0.38 0.38 

 

0.25 

 

Colombia 0.25 0.65 0.22 0.22 0.32 0.32 0.22 

Mexico 0.25 0.65 0.27 0.27 0.38 0.38 0.27 

South 

America_Northern 

0.25 0.65 0.24 0.24 0.35 0.35 0.24 

South 

America_Southern 

0.25 0.65 0.24 0.24 0.36 0.36 0.24 

Uruguay 0.25 0.65 0.20 0.20 0.37 0.37 0.20 
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Table B.3 Electric power sector capital cost assumptions (2010$/kW) 

 2020 2030 2050 2100 

Biomass (conv)* 3951 3861 3703 3425 

Biomass (IGCC)* 5746 5339 4819 4335 

Biomass (conv CCS)*  7318 6766 6169 5665 

Biomass (IGCC CCS)*  8338 7579 6721 6059 

Coal (conv pul)* 2863 2799 2686 2482 

Coal (IGCC)* 3832 3560 3215 2889 

Coal (conv pul CCS)* 5504 5078 4619 4238 

Coal (IGCC CCS)* 6195 5604 4945 4464 

Gas (CC)* 1036 1014 972 901 

Gas (steam/CT)* 742 723 694 642 

Gas (CC CCS)* 1992 1837 1672 1533 

Refined liquids 

(steam/CT)* 

742 723 694 642 

Refined liquids (CC)* 1036 1014 972 901 

Refined liquids (CC 

CCS)* 

2356 2153 1937 1775 

Gen II LWR (Nuclear)* 5501 5501 5501 5501 

Gen III (Nuclear)* 5433 5307 5094 4710 

CSP* 4367 3770 3199 2905 

CSP with storage* 7431 6617 5772 5216 

PV 1788 1662 1501 1349 

PV with storage 4213 3916 3535 3180 

Wind 1914 1778 1608 1446 

Wind with storage 5555 5162 4661 4190 

Rooftop PV 4500 4183 3777 3396 

Geothermal* 4348 4248 4074 3767 

Hydropower 2600 2600 2600 2600 

*For these generation technologies, the final overnight capital costs increase depending on the 

cooling technology deployed. The following cooling system options are available in GCAM: 

once through, seawater, recirculating, cooling pond and dry cooling. These cooling 

technologies can add between 19 (once through) and 200 (dry cooling) 2010$/KW to the final 

overnight capital costs of electricity generation technologies. However, the base costs 

presented in the table represent the major portion of the total overnight capital costs. 
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Table B.4 NDCs quantification in LAC* 

GCAM Region Country 
2010 GHG 
emissions 
(MtCO2e) 

GHG percent 
change 
relative to 
2010 levels 

Emissions 
assumption in 
NDC (MtCO2e) 

Year 

Argentina Argentina 389.4 20% 467.3 2030 

Brazil Brazil 1285.0 -1% 1272.2 2025 

Central America 
and Caribbean 

Costa Rica 5.2 -28% 3.7 2030 

Dominican 
Republic 

31.7 -25% 23.8 2030 

Grenada 1.8 -30% 1.3 2025 

Colombia Colombia 224.0 5% 235.2 2030 

Mexico Mexico 746.0 -5% 708.7 2030 

South America 
Northern 

Venezuela 200 36% 272.0 2030 

South America 
Southern 

Chile 84.9 11% 94.2 2030 

Peru 170.6 22% 208.1 2030 

*Notes:      
1. NDCs quantification based on Vrontisi et al. 2018. 

2. Table only includes countries with quantifiable NDCs in terms of percent changes in 
emissions relative to 2010 levels. For this reason, Ecuador, which is listed in Vrontisi et al. 

2018, is not represented. 
3. When implemented in GCAM, it is assumed that NDCs cover GHGs from all sectors, 
including CO2 emissions from land-use and land-cover change.  
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Table B.5 Summary of general assumptions for the NDC 2020-2030 period* 

GCAM Region Country 
2020 GHG 
emissions 

2025 GHG 
emissions 

2030 GHG 
emissions 

Argentina Argentina 

GHG emissions 
follow 

reference 
scenario 

linear 
interpolation 
between 2020 
and 2030 levels 

Vrontisi et al 
(2018) 

Brazil Brazil 
Vrontisi et al 
(2018) 

Assumed 1200 
MtCO2e as in 
Brazil's NDC1 

Central America 
and Caribbean 

Costa Rica linear 
interpolation 
between 2020 
and 2030 levels 

Vrontisi et al 
(2018) 

Dominican 
Republic 

Grenada 
Vrontisi et al 
(2018) 

GHG emissions 
follow reference 
scenario 

Colombia Colombia 

linear 
interpolation 
between 2020 
and 2030 levels 

Vrontisi et al 
(2018) 

Mexico2 Mexico 

South America 
Northern 

Venezuela 

South America 
Southern 

Chile 

Peru 

Globe ─ 52.71 GtCO2e3 

linear 
interpolation 
between 2020 
and 2030 levels 

53.7 GtCO2e 
(Vrontisi et al 
(2018)) 

*Notes:     
1. Brazil's NDC submission available at: 
https://www4.unfccc.int/sites/submissions/INDC/Submission%20Pages/submissions.aspx 

2. Following Vrontisi et al. 2018, Mexico is assumed not to achieve its Copenhagen pledge.  

3. Average level between the “High” and “Low” global GHG emissions resulting from 2020 
Copenhagen pledges (Riahi et al. 2015).  
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Supplementary Notes 

Supplementary Note 1. Detailed description of the emissions reduction pathway and 

additional assumptions behind scenarios explored in this study 

 

First, the emission reduction scenario, named NDC_to_2C, was devised to 

serve as the basis for all mitigation scenarios ─ with and without climate change impacts 

─ in this study. In the NDC_to_2C scenario, 2020-2030 regional emissions pathways 

represent commitments made by United Nations Framework Convention on Climate 

Change’s parties in the Paris Agreement. The quantification of the NDCs in Latin 

America and the Caribbean (LAC) within the 2020-2030 period follows Vrontisi et al. 

2018  (Tables B.4 and B.5), which represents the conditional (high-ambition) NDCs by 

establishing 2025 or 2030 emissions changes relative to 2010 levels. Outside the LAC 

region, GHG emissions reductions are represented as single emissions constraints that 

are shared among the remainder of the world.  

Beyond 2030 (period not covered by the current round of NDCs), it is assumed 

that all regions worldwide enhance their mitigation efforts resulting in the mean global 

surface temperature increase successfully limited to 2°C. This is achieved with all 

regions complying with annual rates of improvement in GHG emissions (excluding 

CO2 emissions from land-use and land-cover change ─ LUC) per unit of GDP (i.e., 

GHG intensity) of 4.5%. Weaker GHG intensities were unable to meet the end-of-

century 2°C climate goal. Note that CO2 LUC emissions were not included in the GHG 

intensity computation due to the large uncertainty on the actual role of the land sector 

in future mitigation as discussed in the literature (Forsell et al. 2016; Grassi et al. 2017). 

In the GCAM framework, GHG emissions in the NDC_to_2C scenario are limited by 
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imposing economy-wide emissions constraints (computed from the GHG intensity 

values calculated above). This means that total GHG emissions are assigned to each 

GCAM region and the model internally calculates the carbon prices needed to achieve 

the emissions constraint. Following Binsted et al. 2020, medium mitigation efforts in 

the land-use sector globally are assumed by imposing that CO2 emissions from LUC 

face a price that is 10% of the price per ton of carbon on fossil fuel and industrial 

emissions. Reductions in non-CO2 emissions are achieved through equal marginal 

abatement costs across all sectors of the economy. It is important to acknowledge that 

actual climate policy approaches will significantly differ from the economy-wide 

carbon prices approach used herein, relying, for example, on a range of different 

sectoral measures. Hence, the resulting emissions pathway is meant to be illustrative. 

Indeed this scenario is only one of many possible scenarios that might reach the 2°C 

goal. 

By designing a mitigation scenario in line with the 2°C climate goal, the goal is 

to keep consistency with the global warming level associated with the set of climate 

impact inputs developed under the RCP2.6. As noted in the main text, the RCP2.6 

provides climate forcing levels consistent with the long-term goal of the Paris 

Agreement of keeping global warming likely below 2°C above pre-industrial 

temperatures (IPCC 2014). Figures B.23 and B.24 compare the NDC_to_2C scenario 

with a range of policy scenarios consistent with the RCP2.6 forcing levels explored by 

the scientific literature (for comparison, the GCAM baseline, i.e., “no policy” scenario 

is also shown; except for the climate policy, the GCAM baseline and NDC_to_2C 

scenarios share all other assumptions). 
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Global population and GDP assumptions in the NDC_to_2C derive from the 

GCAM implementation of the “Middle of the Road” Shared Socioeconomic Pathway 

(SSP) 2, which reflects a world in which social, economic and technological future 

trends do not differ markedly from historical patterns (Riahi et al. 2017). However, as 

noted in the Chapter 3, socioeconomic assumptions in LAC (specifically in Argentina, 

Colombia and Uruguay) were revised to align with LAC countries’ future projections. 

All mitigation scenarios explored in this study are based on the NDC_to_2C 

scenario. In other words, all RCP26 scenarios presented in Table 3.1 share the same 

assumptions with the NDC_to_2C scenario, except for the climate impacts and 

technology availability components. Note that the NDC_to_2C and the 

RCP26_FullTech: No-Climate impacts scenarios share exactly the same assumptions 

since the NDC_to_2C scenario was constructed assuming that the full suite of power 

sector technologies represented by GCAM was available globally and under the 

assumption of no climate impacts on renewables. 

 

 

 

 

 

 

 

  



 

206 
 

Appendix C: Supplementary Material - Chapter 4 

Supplementary Figures 

 
Figure C.1. (a) Changes in the global wind onshore technical potential relative to the Central 

case by sensitivity case and RCP. Technical potentials are computed for the 1971-2000 period. 
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(b) Changes in the global wind power generation by sensitivity case and scenario in 2100 

(climate impact “NoCI” assumptions). Changes are relative to a GCAM simulation using 

supply curves produced from the Central technical potential case. (c) As in (a) but for the global 

solar PV technical potential. (d) As in (b) but for the global solar PV power. (Note: the case 

assuming land use factor of 20% has not solved for the RCP2.6_NoCI scenario using the 

HadGEM2-ES input data). 

 

 

 

Figure C.2. (a) Relative changes in wind onshore technical potential from central 

assumption by sensitivity case and GCAM region (input data: GFDL-ESM2M model - 

1971-2000). (b) As in (a) but using input data from the 2071-2100 under RCP2.6. (c) 

As in (b) but using input data from the 2071-2100 under RCP8.5. 
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Figure C.3. (a) Relative changes in wind onshore technical potential from central 

assumption by sensitivity case and GCAM region (input data: HadGEM2-ES model - 

1971-2000). (b) As in (a) but using input data from the 2071-2100 under RCP2.6. (c) 

As in (b) but using input data from the 2071-2100 under RCP8.5. 
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Figure C.4. (a) Relative changes in wind onshore technical potential from central 

assumption by sensitivity case and GCAM region (input data: IPSL-CM5A-LR model 

- 1971-2000). (b) As in (a) but using input data from the 2071-2100 under RCP2.6. (c) 

As in (b) but using input data from the 2071-2100 under RCP8.5. 
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Figure C.5. (a) Relative changes in wind onshore technical potential from central 

assumption by sensitivity case and GCAM region (input data: MIROC5 model - 1971-

2000). (b) As in (a) but using input data from the 2071-2100 under RCP2.6. (c) As in 

(b) but using input data from the 2071-2100 under RCP8.5. 
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Figure C.6. (a) Relative changes in solar PV technical potential from central 

assumption by sensitivity case and GCAM region (input data: GFDL-ESM2M model - 

1971-2000). (b) As in (a) but using input data from the 2071-2100 under RCP2.6. (c) 

As in (b) but using input data from the 2071-2100 under RCP8.5. 
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Figure C.7. (a) Relative changes in solar PV technical potential from central 

assumption by sensitivity case and GCAM region (input data: HadGEM2-ES model - 

1971-2000). (b) As in (a) but using input data from the 2071-2100 under RCP2.6. (c) 

As in (b) but using input data from the 2071-2100 under RCP8.5. 
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Figure C.8. (a) Relative changes in solar PV technical potential from central 

assumption by sensitivity case and GCAM region (input data: IPSL-CM5A-LR model 

- 1971-2000). (b) As in (a) but using input data from the 2071-2100 under RCP2.6. (c) 

As in (b) but using input data from the 2071-2100 under RCP8.5. 
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Figure C.9. (a) Relative changes in solar PV technical potential from central 

assumption by sensitivity case and GCAM region (input data: MIROC5 model - 1971-

2000). (b) As in (a) but using input data from the 2071-2100 under RCP2.6. (c) As in 

(b) but using input data from the 2071-2100 under RCP8.5. 
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Figure C.10. Multi-model mean change in annual mean wind technical potential 

(TWh) in 2071-2099 relative to the historical period (1971-2000) from the four 

ISIMIP2b GCMs used in this study by forcing scenario. 
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Figure C.11. Multi-model mean change in annual mean solar PV technical potential 

(TWh) in 2071-2099 relative to the historical period (1971-2000) from the four 

ISIMIP2b GCMs used in this study by forcing scenario. 
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