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As the demand for high-power radio-frequency (RF) applications continues to 

rise, modern-day technology is becoming increasingly prone to multipactor 

breakdown. Multipactor is a pernicious electron discharge driven by secondary electron 

emission (SEE) that plagues microwave components, particle accelerators, space-borne 

systems, and other related electronics. It occurs when electrons in a vacuum are 

accelerated by electromagnetic fields and impact device walls, resulting in the emission 

of secondary electrons from the surfaces. Under certain conditions, this process repeats 

and the number of electrons grows exponentially, potentially disrupting device 

operation or even causing component failure. Despite several decades of study, 

multipactor continues to be a longstanding engineering problem with no 

comprehensive theoretical solution.  



  

This dissertation presents a novel theoretical approach for the understanding, 

prediction, and assessment of multipactor discharge. Drawing upon techniques from 

chaos theory, this new theory models multipactor as a complex dynamical system, 

where iterative maps track the RF phases at the surface impacts with no a priori 

assumptions on the electron trajectories. By systematically applying these maps and 

scanning system parameters, bifurcation diagrams are constructed that recover a 

plethora of multipacting modes. This information is combined with the SEE properties 

of the surface material to compute the multipactor exponential growth rate throughout 

parameter space.  

The theory is first illustrated for a parallel-plate geometry driven by RF and DC 

fields. Here, the system attractor form is found to manifest in the exponential growth 

rate, where high-periodicity and chaotic modes suppress multipactor growth.  

Conventional multipactor regions are recovered but new parameter spaces susceptible 

to the discharge are also identified. These theoretical predictions are verified with 

particle-in-cell simulations and industrial design standards. Next, the theory is 

expanded to a coaxial system and validated against published simulation and 

experimental results. Finally, the theory is generalized to multicarrier operation, where 

several RF carriers (each with a separate amplitude and frequency) coexist, as 

employed in modern space communication systems. This is demonstrated for the 

lowest-order system in a parallel-plate geometry, namely two-carrier operation. These 

results are verified with particle-in-cell simulations. This model serves as the first 

comprehensive theoretical solution for multipactor in multicarrier systems.  
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Chapter 1: Introduction 

 

1.1 Chapter Overview  

This chapter first introduces multipactor discharge and provides a motivation 

for this dissertation research (Sect 1.2). The conventional understanding of multipactor 

and modern-day prediction methods are then presented (Sect.’s 1.3 and 1.4). The 

shortcomings of such methods are discussed, motivating the need for a new theoretical 

approach (Sect. 1.5). A brief historical review of multipactor is provided (Sect. 1.6)  

and a new map-based theoretical approach is then introduced (Sect. 1.7). The core 

assumptions made throughout the thesis are then listed and justified (Sect. 1.8). This 

chapter concludes with an overview of the organization of the thesis (Sect. 1.9). 

 

1.2 Motivation  
 

Multipactor is an electron discharge driven by secondary electron emission 

(SEE) [1]. It occurs when electrons in near-vacuum conditions are accelerated by 

electromagnetic fields and impact device walls, resulting in the emission of secondary 

electrons from the surfaces. Under certain conditions, this process repeats and the 

number of electrons grows exponentially. Multipactor occurs over a wide range of 

voltages and frequencies and in numerous geometries. 

Today, multipactor is ubiquitous, occurring in microwave/radio-frequency (RF) 

components [2-4], particle-accelerators [5-9], space-borne systems [10-12], and other 

related electronics. It is often undesirable as the electron avalanche can lead to signal 
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noise, reflected power, overheating, power dissipation, surface outgassing, component 

damage, or even total device failure. Multipactor poses an especially challenging 

problem to the space industry, where any incidence of the discharge in space can 

compromise an entire mission. As a result, modern-day research is heavily geared 

towards eliminating the discharge and suppression techniques continue to be in high-

demand. However, it is worthwhile to note that some applications are interested in 

using multipactor for beneficial purposes, such as for plasma displays, electron guns, 

or for the protection of highly sensitive receivers [13-14].  

Despite decades of study, multipactor continues to be a longstanding 

engineering problem with no comprehensive theoretical solution. The underlying 

reason for this is that this phenomenon is still not very well understood. The large 

parameter space presented by the electromagnetic fields, geometry, and surface 

material makes it a difficult problem to analyze.  

Conventional theories make simplified assumptions on the electron trajectories 

to predict breakdown boundaries as a function of device parameters [1, 15-16] (see 

Sect. 1.4.1). Although these susceptibility diagrams are obsolete and unreliable, they 

continue to serve as modern-day design standards [17-20]. Other approaches rely on 

stochastic methods (i.e., Monte Carlo models, particle-tracking codes, or statistical 

theory) to predict multipactor breakdown (see Sect. 1.4.2) [21-33]. While these 

approaches successfully model some devices, the results are often difficult to 

generalize and the underlying multipactor dynamics are not always clear. Additionally, 

these approaches can have high computational cost, especially in cases where the 

number of multipactor electrons is large.  
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As no theory to date explains universal multipactor behavior, the motivation of 

this research is to establish a thorough understanding of multipactor. In light of this, 

this thesis presents a novel theoretical study for the understanding, prediction, and 

assessment of multipactor based on principles from nonlinear dynamics and chaos 

theory. This theory is derived from first principles and demonstrated for a variety of 

systems, including parallel-plate, coaxial, and multicarrier. Throughout this thesis, the 

theoretical predictions are verified against existing theoretical models, particle-in-cell 

simulations, industrial design standards, and experimental data. As shown in the core 

chapters of this thesis (Ch.’s 2-4), this theory revolutionizes our understanding of 

multipactor dynamics and provides a comprehensive and predictive model.  

 

1.3 Conventional Understanding  

1.3.1   Resonance Theory  
 

Early researchers recognized that a possible mechanism for multipactor growth 

is synchronism between the electron transit-times (from emission to impact) and the 

RF electric-field [1, 15, 16, 34]. This behavior became to be known as resonance. 

Figure 1.1 illustrates the concept of multipactor resonance assuming a parallel-plate 

geometry (i.e., two conducting plates separated by a gap) with a RF electric-field 

perpendicular to the surfaces.  

Consider an electron emitted from the bottom plate during the decelerating 

portion of the RF cycle. As the electron charge is negative, this decelerating electric-

field provides a positive force, accelerating the electron towards the top plate. If the  
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Figure 1.1: Multipactor Resonance Dynamics. Figure taken from Ref. [20].  

 

electron impacts the top plate by the time the RF electric-field reverses polarity (i.e., to 

an accelerating field), then electrons released from this plate (as a result from the 

impact) are accelerated towards the bottom plate. The impacting electron(s) (which are 

usually absorbed by the surface upon impact) are referred to as primary electron(s) 

while the emitted electrons released from the plate are referred to as secondary 

electron(s). For the purpose of this discussion, secondaries are assumed to be emitted 

on each impact (with a singular energy). If the secondaries impact the bottom plate by 

the time the RF field again reverses polarity (i.e., back to a decelerating field), the next 

generation of secondaries can then be accelerated towards the top plate as before. As 

this resonance pattern continues to repeat, the electron population grows exponentially, 

possibly leading to multipactor breakdown. 



 

 

5 

 

The requirement for this synchronous (resonance) motion is that the one-way 

transit-time for an electron to impact the opposite surface is equal to an odd number of 

RF half-periods, i.e., tI = N/. Here, N is an odd integer corresponding to the number 

of RF half-periods between each surface impact while  is the RF frequency of the 

electric-field. In the literature, N is also referred to as the resonance order [1]. Thus, a 

first-order (N = 1) resonance describes the case where the electron transit-time between 

impacts is a RF half-period. This resonance condition guarantees that the next 

generation of secondaries experiences the same exact field conditions as the preceding 

primaries, allowing for the multipacting process to continually repeat. The RF phase at 

which the resonant impacts occur periodically is referred to as the fixed-phase [1].  

The requirement that electron impacts in resonant multipactor always occur at 

the fixed-phase is rarely, if never, met in practice. Instead, as a result of phase stability 

(or phase focusing), there exists a range of impact phases (i.e., a basin of attraction) 

that converges to resonance behavior. Impact phases that deviate from the fixed-phase 

but remain within the basin of attraction eventually converge back to resonance 

behavior at the fixed-phase. On the other hand, impact phases that occur outside the 

basin of attraction diverge away from the fixed-phase (and multipactor resonance). For 

a given resonance order N, RF frequency, gap separation, and secondary emission 

energy, the lower (upper) boundary of the stable phases corresponds to the upper 

(lower) RF voltage required to sustain the resonance discharge. The reader is referred 

to Ref. [1] for a mathematical derivation of the range of stable impact phases.  

Note that the resonance cycle cannot continue forever, as saturation 

mechanisms eventually cease the discharge. One such mechanism is space-charge, 
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where the coulomb (electrostatic) repulsion due to the increasing electron density 

disrupts resonance behavior (and broadens the electron bunch) [35-36]. Other 

saturation mechanisms include beam loading and frequency detuning, which 

commonly occur in RF cavities [37-40]. In this thesis, saturation mechanisms are 

neglected, as this research is mainly concerned with the initiation of multipactor.  

Figure 1.1 is a simplified picture and does not correctly model all the main 

physics of the multipacting process. In fact, as shown throughout this thesis, resonance 

itself is a major assumption as multipactor is capable of manifesting in a variety of 

forms. The drawbacks of this simplified view are discussed further in Sect. 1.5. 

 

1.3.2   Secondary Electron Emission Yield 

 
The second main requirement for multipactor arises from the secondary 

emission properties of the surface material. Multipactor is typically characterized by 

the secondary electron emission (SEE) yield , defined as the average number of 

emitted secondaries per incident primary [41-42].  is a function of the primary impact 

energy WI, the impact angle I (defined with respect to the surface normal), and the 

surface material properties. A typical curve illustrating the SEE yield dependence on 

the electron impact energy (for normal incidence, i.e., I = 0) is shown in Fig. 1.2.  

 As shown by Fig. 1.2, the SEE yield is above unity (corresponding to 

multipactor growth) only for a range of impact energies that lie between the first and 

second crossover energies (denoted as W1 and W2, respectively). This can be 

understood as follows. For impact energies below W1, the impacting electron does not 

impart sufficient energy to release secondaries from the surface. For impact energies 
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Figure 1.2: Secondary electron emission (SEE) yield  as a function of electron impact 

energy for normal incidence (I = 0). W1, W2, max0, and Wmax0 are all material 

dependent parameters (see Table 1.1). 

 

greater than W2, the primary electron penetrates the surface too deeply and secondaries 

therefore cannot escape the surface. As a result, the impact energy has to lie in a certain 

range for multipactor to occur. max0 is defined as the peak SEE yield resulting from an 

impact occurring with an energy Wmax0. The parameters W1, W2, max0, and Wmax0 are 

all material dependent. Table 1.1 shows these parameters for standard engineering 

materials, as specified by the European Space Agency (ESA) [18]. As the crossover 

energies are far below the electron rest energy (~ 511 keV), multipactor is a 

nonrelativistic effect.  
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Table 1.1: Secondary electron emission (SEE) parameters for different materials, as 

specified by the European Space Agency (ESA) [18]. 

Material W1 [eV] W2 [eV] max0 Wmax0 [eV] 

Copper  25 5000 2.25 175  

Aluminum 30 5000 2.98 805 

Silver  30 5000 2.22 165 

Gold  150 4000 1.79 1000 

 

 

A common model for SEE is Vaughan’s empirical formula, which specifies the 

SEE yield dependence on the material properties, the impact energy, and the impact 

angle [41]. This formula is given by: 

(WI, I) =  max(ve1-v)k                 (1.1a) 

max = max0(1 +  ks
θI

2

2π
)              (1.1b) 

v = (WI - Wc)/(Wmax – Wc)              (1.1c) 

Wmax = Wmax0(1 + ks
θI

2

2π
).              (1.1d) 

In Eq. 1.1a, (WI, I) is the SEE yield resulting from an impact with energy WI and 

angle I. Here, k is defined to be 0.62 for v < 1 and 0.25 for v > 1 while ks is a surface 

smoothness parameter, ranging from 0 (for a rough surface) to 2 (for a polished 

surface). In this thesis, ks = 1, corresponding to a typical dull surface. The parameter 

Wc is conventionally taken to be 12.5 eV.  
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While Vaughan’s formula is a well-established model for true secondaries, it 

does not incorporate the effects due to low energetic backscattered and reflected 

primaries, which have been shown to play a considerable role in multipactor dynamics 

[43-45]. To incorporate the effects of low energetic backscattered primaries, a modified 

version of Vaughan’s formula is often used [46]. The modification is namely that the 

SEE yield for impact energies below Wc is set to a fixed value 0, corresponding to the 

probability of elastic and inelastic backscatter (typically between 0.5 and 1.0). For 

instance, 0 = 0.70 for copper material. In this thesis, this modified Vaughan’s formula 

is employed. 

In practice, the RF electric-field also penetrates the surface material (at a depth 

roughly equal to the skin depth of the metal). For typical parameters (WI ≈ 5 keV,  

ERF ≈ 1 MV/m), the electron penetration depth is d ≈ 0.125 um while the penetration 

depth of the RF electric-field (for copper and an RF frequency of f = 1 GHz) is roughly 

2 um and exceeds the penetration depth of the primary electron by an order of 

magnitude. Thus, it would seem that a complete SEE model should include the effects 

of the penetrating RF electric-field on the embedded primary. However, the magnitude 

of the effective electric-field (Eeff ≈ WI/(ed)), which stops the primary electron a depth 

d within the material, is far greater than the magnitude of the RF electric-field in the 

gap. Thus, the effects of the RF electric-field are negligible and the SEE model given 

by Eq. 1.1 is sufficient. 
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1.4 Modern-Day Prediction Methods  

1.4.1  Universal Susceptibility Diagrams 
 

As shown in Sect. 1.3, multipactor is conventionally understood to occur when 

electrons are in resonance with the RF electric-field and the electron impact energies 

lie between the crossover energies (for a given material). These two criteria are often 

combined together to form susceptibility diagrams (assuming monoenergetic 

secondary emission), which portray multipactor boundaries as a function of device 

parameters. These diagrams were first constructed by Hatch and Williams [15-16] in 

the 1950’s. Today, these diagrams continue to serve as design standards for the space 

industry, as found in multipactor prevention handbooks prepared by the European 

Space Agency (ESA) (2003, 2013) [18], The Aerospace Corporation (2014) [19], and 

The American Institute of Aeronautics and Astronautics (AIAA) (2016) [20].  

Figure 1.3 shows an example of a susceptibility diagram adopted by the ESA 

[18]. In this diagram, the vertical axis is the peak RF voltage (in volts) while the 

horizontal axis is the frequency-gap product (in GHz-mm). Each resonance order (N) 

defines a separate pair of lines. These boundaries enclose the regions that support the 

corresponding order of multipactor. Thus, parameter regions inside the boundaries 

support multipactor growth while parameter regions outside these boundaries (ideally) 

support multipactor decay. This diagram further indicates that multipactor can 

significantly limit the achievable RF power.  

Such a diagram is a useful tool for device design, as it can identify parameter 

spaces that result in multipactor-free operation. Note that these diagrams feature 

experimental discrepancies (circles in Fig. 1.3 that lie outside side the predicted zones),  
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Figure 1.3: Multipactor susceptibility diagram adopted from the European Space 

Agency (ESA) for aluminum material [18]. Each resonance order (N) defines a separate 

pair of boundaries in the fD-voltage space. Discrepancies with experiments (circles 

outside the predicted zones) are accounted for by an arbitrary margin (solid black line).  

 

which are accounted for by arbitrary margins that have no theoretical basis (solid line 

in Fig. 1.3). These obsolete and unreliable susceptibility diagrams partly motivate the 

new theoretical approach presented in this thesis. In fact, in Sect. 2.5, susceptibility 

diagrams are constructed from this new theory and compared to industrial standards. 
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1.4.2   Stochastic Models  
 

One major class of multipactor prediction tools is stochastic models, which 

generally have three forms: Monte Carlo simulations, particle-tracking codes, and 

statistical theories. These approaches are rooted in the well-understood fact that 

secondary emission energies (and angles) are inherently random and therefore 

described by probability distributions as opposed to singular values. In light of this, 

these approaches aim to study multipactor as a random process.  

Monte Carlo models have been extensively applied to study the longstanding 

problem of single-surface multipactor on a dielectric surface [21-26]. In a Monte Carlo 

simulation, a macroparticle is systematically tracked under the influence of the 

electromagnetic fields for a long period of time. On each impact with a surface, the 

macroparticle is emitted from the surface with a random energy and angle according to 

specified probability distributions. The charge (and mass) of the macroparticle are 

adjusted according to the SEE yield from each impact. Observing the macroparticle 

charge for a sufficiently long time indicates either multipactor growth or decay.  

 In a particle-tracking code, electron trajectories are numerically tracked to 

investigate the evolution of multipactor. Here, space and time are discretized while the 

electromagnetic fields are specified on a 3D grid. On each time-step of the simulation, 

electrons are self-consistently advanced in space according to the Lorentz force-law 

(note that space-charge fields may also be included in addition to the applied fields). 

On each surface impact, secondaries are emitted according to the impact energy/angle 

with a random emission energy and angle. The total number of particles during the 

simulation indicates either multipactor growth or decay. Today, particle-tracking codes 
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are widely used by industry to aid in the design of multipactor-free components. 

Examples include Computer Simulation Technology (CST) codes [47], such as 

FEST3D [48], and Spark3D [49]. The theoretical approach presented in this thesis is 

extensively tested against the Warp particle-in-cell code [50], which uses the POISNST 

library to model SEE [51]. 

Instead of tracking individual electron trajectories, statistical theories calculate 

the time evolution of multipactor probabilities [27-33]. These works construct the joint 

probability density function that describes the probability a secondary electron impacts 

the opposite surface (or the emission surface). From this function, several other 

quantities are obtained as a function of time, such as the impact (or emission) rate on a 

given surface, the total SEE yield, and the total number of electrons. As in Monte Carlo 

simulations and particle-tracking codes, statistical theories model multipactor as a 

random process. 

 

1.4.3  Experimental Work 

 
As multipactor can potentially damage or even destroy modern-day technology, 

such systems typically undergo rigorous experimental testing to ensure multipactor-

free operation. This is especially critical to the space industry, as any incidence of the 

discharge in space can compromise an entire mission. However, experimental testing 

cannot completely guarantee multipactor-free operation. This is because the discharge 

can be triggered by any seed electron and realistic conditions are not always possible 

to simulate. Further, the SEE properties of the surface material are not always 

accurately known and are subject to change. Thus, even after thorough experimental 
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testing and design, multipactor breakdown may still be inevitable. However, certain 

measures can be taken to significantly reduce the chance of a multipactor onset.  

Recall that multipactor is strongly dependent on the SEE properties of the 

surface material (see Sect. 1.3.2). Some research efforts therefore examine 

experimental multipactor suppression techniques. For instance, surface coatings, 

geometrical modifications, or the addition of DC fields are often studied [14, 51-55]. 

Surface coatings are used to reduce the SEE coefficient of the surface material and thus 

potentially inhibit multipactor growth. A geometrical modification may include 

adjusting the gap separation between surfaces so as to eliminate resonant electron 

trajectories. Furthermore, a transverse DC magnetic-field may be added to induce 

cyclotron motion and prevent electrons from reaching and impacting the opposite 

surface. However, care should be taken in doing so, as a magnetic-field can potentially 

induce impacts at oblique angles, resulting in larger SEE yields (see Eq. 1.1).  

 

1.5   Shortcomings of Conventional Theories and Approaches   
 

Figure 1.1 portrayed multipactor as a single-resonance process, where electron 

impacts are synchronized with the RF electric-field. While resonance is one possible 

(and common) manifestation of multipactor, multipactor can also exhibit other forms. 

The underlying reason for this is that multipactor is an inherently nonlinear 

phenomenon. The discontinuity of the velocity vector at impact can lead to electron 

trajectories and modes that are far more complex compared to those in single-resonance 

multipactor. This important fact has been largely overlooked in past analyses.  
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Before advancing this discussion further, it is important to introduce single-

surface multipactor. A single-surface impact occurs when an electron returns to impact 

the emission surface (rather than impacting the opposite surface). The condition for 

single-surface resonant multipactor is that the electron transit-time between impacts is 

a full multiple of the RF period, i.e., tI = M/. Here, M is an even integer 

corresponding to the number of full RF cycles between impacts. As in the two-surface 

counterpart (see Sect. 1.3.1), this condition guarantees that the next generation of 

secondaries experiences the same field conditions as the preceding primaries (assuming 

monoenergetic secondary emission). While one may expect that single-surface impacts 

do not contribute heavily to multipactor growth, recent studies have shown that these 

impacts do indeed play a considerable role in multipactor dynamics [30, 32, 56].  

Recent theories predict that multipactor can exhibit forms other than single-

resonance, such as hybrid-resonance [57], period-n [58-59], ping-pong [60-63], or 

nonresonant [31, 64]. The electron trajectories for these modes are complex and, in 

some cases, not analytically tractable. For instance, a ping-pong mode consists of both 

single-surface and two-surface impacts. In a period-n multipactor, the resonant impact 

phase alternates periodically between multiple values. These studies typically follow 

the standard procedure of assuming a particular mode and then deriving corresponding 

stability conditions and breakdown boundaries. However, this technique becomes 

increasingly difficult (and impractical) for high-periodicity (and nonresonant) 

multipactors. Thus, as introduced in this dissertation (Sect 1.7), a new approach is 

needed to handle these complex multipactor forms. This new model is the first 

comprehensive theory that recovers all such possible manifestations of multipactor.  
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In addition to assuming an a priori mode, conventional theories also often 

assume that secondaries generated from each impact are all emitted with the same 

emission energy. However, the secondary emission energy and angle are actually 

random variables and therefore subject to change (according to distributions). A spread 

in emission energies implies a spread in transit-times, which can potentially disrupt any 

synchronous resonance behavior. Thus, a spread in emission energies can obfuscate the 

multipactor boundaries derived from monoenergetic assumptions. 

Stochastic models replace the monoenergetic assumption by incorporating the 

random nature of secondary emission (see Sect. 1.4.2). For instance, in a Monte Carlo 

simulation or a particle-tracking code, secondaries are emitted with a random energy 

(and angle) according to specified probability distributions. While these models are 

more consistent with actual multipacting processes, they tend to overemphasize the 

stochasticity of SEE, which obscures the fundamental nonlinear nature of multipactor. 

Further, the results can be difficult to generalize, resulting in device-specific solutions. 

Moreover, as the number of electrons in a multipactor simulation may be large, these 

approaches can have high computational cost.  

Note that multipactor also occurs in more complex geometries (compared to the 

standard parallel-plate system). For these cases, resonance theory (Sect. 1.3.1) does not 

always apply. For instance, in a coaxial system, the geometry is asymmetrical and the 

driving RF electric-field is nonlinear and inversely proportional to the radial distance. 

The addition of DC fields further complicates the analysis. As a result, multipactor in 

coaxial systems has received far less analytical treatment compared to the standard 

parallel-plate geometry [32, 65-67]. Aside from stochastic models [68-72], no theory 
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to date comprehensively models multipactor in coaxial geometries. In Ch. 3, the new 

theoretical approach presented in this dissertation is expanded to a coaxial system. 

 

1.6   Brief Historical Overview  

In this section, a brief history of multipactor discharge is provided, covering the 

time period from its discovery to modern day (2019). This discussion is not intended 

to be an exhaustive overview but rather just highlights of some major developments. 

The reader is referred to Ref. [73] (and references therein) for a thorough background 

on the early history of multipactor.  

Multipactor was observed as early as 1924 but was not identified until 1934 by 

Philo Farnsworth [74], the inventor of the first electronic television. Farnsworth 

observed multipactor in his electron cathode tubes and was interested in using SEE for 

his electron amplifiers, which eventually earned him several patents. Over time, 

however, multipactor became prevalent and posed a serious threat to upcoming 

microwave and space communication systems.  

As the demand for multipactor suppression grew, theories on the existence of 

the discharge were formulated. Many scientists recognized the mechanism of 

resonance to be a driving force for multipactor growth. Thus, resonance theory 

prevailed, although somewhat different versions of the theory were put forth. In the 

1950’s, A.J. Hatch and H.B. Williams used one particular version of resonance theory 

(the constant k theory [75-76]), along with experimental-fitting, to construct universal 

susceptibility diagrams that portray multipactor breakdown boundaries as a function of 

device parameters [15-16]. In the constant k theory, the electron impact and emission 
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energies are assumed to be proportional (with a proportionality constant k). Although 

this assumption has no physical basis and was heavily criticized, it gave reasonable 

agreement with experimental measurements and therefore these diagrams became an 

industry standard. 

In 1988, Vaughan derived resonant multipactor theory assuming monoenergetic 

secondary emission (as opposed to the constant k assumption) [1]. Although the 

monoenergetic assumption is also not entirely accurate, it was considered to be more 

accurate than the constant k assumption and was therefore adopted by the scientific 

community. Using the monoenergetic assumption, Vaughan mathematically derived 

the concept of phase stability and constructed his own multipactor susceptibility 

diagrams. Today, Vaughan’s paper is a classic reference and continues to be widely 

cited in the literature.  

 In 1989, Vaughan continued to contribute to multipactor research and 

published his empirical formula for secondary electron emission [41]. This formula 

specifies the SEE yield dependence on the electron impact energy/angle and the surface 

material properties (see Sect. 1.3.2). Today, this formula is a standard SEE model.   

In the 1990’s, Kishek and Lau advanced a novel model for multipactor using a 

resonant RF circuit [37-40]. This model aimed to address the interaction of multipactor 

with the surrounding RF structure and the role of saturation mechanisms (i.e., space-

charge, beam loading, and frequency detuning). Additionally, these researchers also 

perhaps developed the first Monte Carlo model for multipactor [21], which, in the years 

to come, would become a standard prediction tool (see Sect. 1.4.2). Riyopolous studied 

the effects of space-charge debunching [35], DC magnetic-fields [77], time-delays [78],  
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and retarding RF fields [79] on multipactor.  

In the early 2000’s, the demand for high-power RF applications grew rapidly 

and multipactor therefore became an even more serious problem. As a result, 

multipactor suppression research intensified. Industry invested heavily in the 

development of particle-tracking codes (and Monte Carlo algorithms) for the prediction 

of multipactor breakdown in a variety of systems [47-50]. These codes, combined with 

experimental testing, resulted in the creation of multipactor prevention handbooks by 

the space industry [17-20]. These handbooks intended to provide the space community 

(and the general multipactor community) with a comprehensive reference on the state-

of-the-art multipactor mitigation processes.  

Further, statistical theories were developed with the hopes of establishing a 

reliable and predictive theory for multipactor [27-33] (see Sect. 1.4.2). Meanwhile, 

many researchers formulated new theoretical models for multipactor [57-64], 

suggesting the discharge can manifest in forms other than single-resonance (see Sect. 

1.5). Shemelin [34, 80] introduced the concepts of phase maps to analyze high-

periodicity multipactor and demonstrate generalized phase stability while Dexter and 

Seviour [81] used similar maps to construct multipactor phase charts. Moreover, 

experimental multipactor suppression schemes continued to be an active area of 

research (see Sect. 1.4.3).  

Multipactor became especially pressing in the 2000’s due to the prevalence of 

space communication systems that operated with multiple channels. These multicarrier 

systems, where several RF carriers (each with a separate amplitude and frequency) 

coexist, are difficult to analyze due to the expanded parameter space and the time-
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varying signal envelope. As a result, multipactor in multicarrier systems has received 

little theoretical study to date despite its relevance to modern-day space-borne systems 

[26, 82-87]. Industrial design-standards are based on empirical rules that have no 

theoretical basis, such as the “20 gap-crossing-rule”, which states that multipactor takes 

place if the carrier envelope exceeds the breakdown voltage for a time equal or higher 

than the time it takes an electron to cross the gap 20 times [88]. In Ch. 4, the new 

theoretical approach presented in this dissertation is generalized to multicarrier 

operation and verified for a two-carrier system. This model serves as the first 

comprehensive theoretical solution for multipactor in multicarrier systems. 

 

1.7   Introduction to Map-Based Multipactor Theory  

Traditionally, theoretical studies for multipactor rely on two approaches: a.) 

analytical treatment of simple resonance modes or b.) stochastic models. The former 

makes simplified assumptions on the electron trajectories (i.e., resonance, 

monoenergetic secondary emission) to establish multipactor boundaries while the latter 

is not comprehensive and can be computationally expensive. As discussed in Sect. 1.5, 

multipactor can manifest in a variety of forms, placing further limitations on these 

approaches. Thus, a more general and comprehensive theory is needed. 

In this dissertation, a new theoretical approach for multipactor based on 

principles from nonlinear dynamics and chaos theory is introduced and demonstrated 

for a variety of systems. The central insight behind this approach is that the cumulative 

SEE yield over a sequence of impacts can be determined solely from the RF phases at 

each impact (along with the impact angles and surface material properties). Thus, the 
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electron trajectories are irrelevant and a function (i.e., a map) that relates the emission 

RF phase to the RF phase at the next surface impact is all the information needed to 

determine multipactor growth or decay. Two-surface multipactor maps have been 

previously studied by Riyopolous but only with stable resonant fixed-points [59, 77]. 

Shemelin used the basis of maps to analyze high-periodicity multipactor and 

demonstrate generalized phase stability [34, 80]. Dexter and Seviour used similar phase 

maps to construct multipactor charts [81]. 

 The map-based theory introduced in this dissertation makes no a priori 

resonance assumptions on the electron trajectories. Instead, it models multipactor as a 

complex dynamical system, where iterative maps track the RF phases at the surface 

impacts. By systematically applying these maps and scanning system parameters, a 

plethora of multipacting modes are recovered. This information is combined with the 

SEE properties of the surface material to compute the multipactor exponential growth 

rate throughout parameter space. This approach is universal in that different systems 

can be studied by simply changing the underlying equations. 

In the following chapters, this new theoretical approach is illustrated for a wide 

range of systems, including parallel-plate (Ch. 2), coaxial (Ch. 3), and multicarrier  

(Ch. 4). Here, the theoretical predictions are verified with resonance theory, particle-

in-cell simulations, industrial design standards, and experimental data. This model 

serves as the first comprehensive theory for multipactor in coaxial and multicarrier 

systems. If necessary, the reader is referred to Appendix A for a brief overview of the 

relevant concepts and terminology from chaos theory that pertain to this dissertation. 
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1.8   Assumptions  

The core assumptions made throughout this thesis are as follows: 

1. A near-perfect vacuum (i.e., P << 10-4 Torr) is assumed. Thus, the electron 

mean-free path length exceeds the gap separation and electron collisions can be 

safely neglected. Under this assumption, corona (or gas discharges) and 

electron ionization can also be safely ignored [89].  

2. Space-charge effects (and any other saturation mechanisms) are neglected. This 

is justified as the main interest of this research is on the initiation of multipactor. 

3. As impact energies that give rise to multipactor are far below the electron rest 

energy (see Table 1.1), nonrelativistic dynamics are used in the analysis.  

4. As multipactor electron velocities are low (v << c), the effects of the RF 

magnetic-field are not included.  

5. Initially, monoenergetic secondary emission and a fixed emission angle are 

assumed. Subsequently, more realistic distributions of secondary emission 

energies and angles are incorporated into the analysis (see Sect. 2.2.3).  

6. No time-delay between the impact of a primary and the emission of the resulting 

secondaries is assumed, i.e., the impact phase of a primary is the emission phase 

of the resulting secondaries. Note that including a time-delay is dynamically 

equivalent to including a spread in emission energies. 

7. For simplicity, the transverse geometry dimensions are assumed to be much 

larger than the gap separation between the surfaces. Thus, a 1D infinite parallel-

plate model is assumed (Ch.’s 2 and 4) while electron motion along the axial 

length of a coaxial geometry is not considered (Ch. 3).  
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8. Vaughan’s SEE model (Eq. 1.1) is assumed for the calculation of SEE yields. 

A modification in the SEE model is included to account for inelastic/elastic 

backscatter of low energetic primaries (see Sect. 1.3.2). 

9. While this analysis can be applied to any surface material with known SEE 

properties, copper (a standard engineering material) is used in this thesis as an 

illustration. The theory also includes a normal DC electric-field, which can 

account for surface charging of dielectric materials (see Sect. 2.3).  

 

1.9   Organization of Thesis   
 

The remaining chapters of this thesis are organized as follows. Chapter 2 

illustrates the new map-based theoretical approach for multipactor in a parallel-plate 

geometry with and without applied DC fields. These results are compared with 

conventional resonance theory, particle-in-cell simulations, and industrial design 

standards. In Ch. 3, the map-based theory is expanded to a coaxial system and validated 

against published simulation and experimental data. In Ch. 4, the map-based theory is 

generalized to multicarrier operation in a parallel-plate geometry, where several RF 

carries (each with a separate amplitude and frequency) are present (as commonly 

employed in modern-day space communication systems). Here, the simplest such case 

is considered, namely a two-carrier system. These theoretical predictions are compared 

against particle-in-cell simulations and a two-carrier susceptibility diagram is 

presented. In Ch. 5, the main conclusions drawn from this research are summarized and 

the major advantages of the map-based theory are highlighted. Future research 

directions are also discussed. The content of this thesis is published in Ref.’s [90-94].  
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Chapter 2: Map-Based Multipactor Theory for a Parallel-Plate 

Geometry  
 

 

2.1   Chapter Overview   

  
This chapter demonstrates the new map-based multipactor theory for a parallel-

plate geometry under different scenarios: a.) a normal RF electric-field (Sect. 2.2),  

b.) normal RF and DC electric-fields (Sect. 2.3), c.) a normal RF electric-field and a 

transverse DC magnetic-field (Sect. 2.4). In these sections, the theoretical predictions 

are compared against resonance theory and particle-in-cell simulations. Finally, 

multipactor susceptibility diagrams are constructed using the new theoretical approach 

and compared against industrial design standards (Sect. 2.5). The content from this 

chapter is published in Ref.’s [90-92]. 

 

2.2   Map-Based Theory Under an RF Electric-Field  
 

2.2.1   Basic Equations and Multipactor Maps 
 

To illustrate the map-based theory, a 1D parallel-plate geometry of gap 

separation D with an RF electric-field of the form -E0sin(t + 0) and a DC electric-

field EDC
 that are both normal to the surfaces is used (Fig. 2.1a). For notation purposes, 

the sign of the RF field is negative in order to have positive acceleration for accelerating 

phases in [0, ). In this chapter, the following normalized variables are used: τ = ωt for 

time, x̅ = x/D for position, v̅ = v/(ωD) for velocity, and Ē0 = eE0/(mDω2) for the RF  
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Figure 2.1: Parallel-plate geometry with gap separation D and normal RF and DC 

electric-fields. Direction of coordinate system for an electron emitted from a.) surface-

0 and b.) surface-1. 

 

electric-field amplitude, where ω = 2πf is the RF frequency, -e is the electron charge, 

and m is the mass. For the time-being, monoenergetic secondary emission is assumed. 

Subsequently, in Sect. 2.2.3, a more realistic distribution of secondary emission 

energies is incorporated.  

Using the normalized notation, the Lorentz force law (Eq. 2.1) is integrated for 

an electron that is launched at t = 0 from the plate at x = 0 with a fixed perpendicular 

velocity component v0x to obtain the velocity (Eq. 2.2) and position (Eq. 2.3): 

ẍ = (e/m)(E0sin(ωt + θ0) – EDC),                       (2.1) 

v̅(τ, θ0) = -Ē0(cos(τ + θ0) – cos(θ0) + ητ) +  v̅0x,            (2.2) 



 

 

26 

 

x̅(τ, θ0) = -Ē0(sin(τ + θ0) – sin(θ0) – τcos(θ0) + 
1

2
ητ2) + τv̅0x.           (2.3) 

Here, η = EDC/E0 is the ratio of the electric-field amplitudes. The normalized two-

surface transit-time τ01 for an electron emitted from surface-0 to reach surface-1 is 

determined by setting x̅ = 1 in Eq. 2.3: 

    0 = -sin(τ01 + θ0) + sin(θ0) + τ01(cos(θ0) + v̅0x/Ē0) –  
1

2
ητ01

2  – 1/Ē0.           (2.4) 

The last term on the right-hand side of Eq. 2.4 contains the gap height dependence for 

the two-surface transit-time. To account for the possibility of single-surface impacts 

within the two-surface geometry, the normalized single-surface transit-time τ00 for an 

electron to return to impact surface-0 is also calculated by setting x̅ = 0 in Eq. 2.3: 

           0 = -sin(τ00 + θ0) + sin(θ0) + τ00(cos(θ0) + v̅0x/Ē0) –  
1

2
ητ00

2 .                                 (2.5)        

In Eq.’s 2.4 and 2.5, the subscripts of τ designate the surface of emission and 

surface of impact, respectively. As electrons can impact either surface, both transit-

times are calculated. In this section, the DC electric-field is turned off (i.e., η = 0) and 

the dynamics solely under the RF field are considered. A nonzero DC electric-field is 

included in Sect. 2.3.  

At this point in the analysis, conventional theories often assume resonance:  

τ01 = N and τ00 = M, where N(M) is an odd (even) integer representing the number 

of half (full) RF cycles between impacts [1]. Here, no such restrictions are applied, 

allowing for the recovery of both resonant and non-resonant modes. To construct the 

map for this system, the minimum transit-time is first selected: 

    τmin(θ0|Ē0, v̅0x) = min(τ01(θ0|Ē0, v̅0x), τ00(θ0|Ē0, v̅0x)).                         (2.6)           
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In Eq. 2.6, τ01(θ0|Ē0, v̅0x) and τ00(θ0|Ē0, v̅0x) are the normalized two-surface and 

single-surface transit-times for an emission phase θ0 (under given system parameters 

Ē0 and v̅0x) as determined by the earliest nonnegative roots of Eq’s 2.4 and 2.5, 

respectively. The minimum transit-time is taken to consistently account for the 

possibility of impacts on either surface. As shown later, this procedure recovers the 

ping-pong modes. For given system parameters Ē0 and v̅0x, the map relating an emission 

phase θ0 to the RF phase at the next impact is given by:  

M0(θ0|Ē0,v̅0x) = 

{
mod(θ0 + τ00(θ0|E0, v

0x
),            2π),    τmin(θ0|E0, v

0x
) =  τ00(θ0|E0, v

0x
)

mod(θ0 + τ01(θ0|E0, v
0x

) +  π, 2π),    τmin(θ0|E0, v
0x

) =  τ01(θ0|E0, v
0x

)
.   (2.7) 

Equation 2.7 can be understood as a vector operator, which for an input list of 

emission phases, outputs a corresponding list of subsequent impact phases. Note that 

impact phases resulting from two-surface transits are shifted by . This is due to the 

change in location of the origin of the coordinate system, which is placed at the 

emission surface on each iteration. As the emission surface switches on each two-

surface transit, so does the direction of the positive surface normal. Thus, the addition 

of π to the impact phase accounts for the change in sign of the RF field under the flipped 

coordinate system for the subsequent iteration (see Fig. 2.1b). 

To construct the map given by Eq. 2.7, the transit-times τ01 and τ00 can be 

numerically solved according to Eq’s 2.4 and 2.5, respectively, from any root-finding 

solver. In this chapter, two root-finding solvers are used: a Newton-Raphson algorithm 

and a sign-detection algorithm. Before further explaining the theoretical approach, 

these two root-finders are first briefly described here. 
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The Newton-Raphson root-solver uses Newtons Method to iteratively compute 

the roots of a given equation. In using this root-solver, care is taken to ensure that a 

solution exists, that the iterations converge, and that the earliest nonnegative (and 

nonzero) root is selected. In practice, these conditions are satisfied by using multiple 

initial guesses. Roots that occur for values larger than a cutoff value τmax are neglected. 

The reason for doing so is that these solutions represent high-order multipactors with 

large transit-times that are unlikely to contribute to electron growth. In this analysis, 

this cutoff value is chosen as τmax = 50 radians, corresponding to roughly 8 RF periods. 

If no root is found for a particular phase, it is not used to construct the map. 

The sign-detection root-solver discretizes the equation of interest (as a function 

of the normalized transit-time) and systematically evaluates its value until a change of 

sign occurs, indicating the earliest root. A more accurate value of the root is then 

obtained by applying linear interpolation. As in the Newton-Raphson root-finder, roots 

larger than τmax are neglected.  

While the sign-detection algorithm is guaranteed to result in the correct root, 

the Newton-Raphson root-solver is more computationally efficient and also gives high- 

accuracy results. Thus, for large-scale scans that require numerous map constructions, 

the Newton-Raphson root-finder is employed. However, for constructing single maps 

or bifurcation diagrams (to be shown later), the sign-detection root-solver is used. Both 

root-solvers are thoroughly tested.  

As an example, Fig. 2.2 shows the map (Eq. 2.7) for fixed system parameters 

Ē0 = 0.50 and v̅0x = 0.10. Recall that the map selects the minimum transit-time (Eq. 

2.6). For a visual aid on the dynamics, the map is color-coded according to impact 
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Figure 2.2: Multipactor map (Eq. 2.7) relating an emission phase θ0 to the phase at the 

next impact for fixed system parameters Ē0 = 0.50, v̅0x = 0.10, and η = 0. The map is 

color-coded according to impact phases resulting from two-surface transits (red) and 

single-surface transits (blue).  

 

phases resulting from two-surface transits (red) and single-surface transits (blue).  

Given an initial emission phase θ0, the RF phase at all subsequent impacts can 

be tracked by repeatedly iterating Eq. 2.7. Recall that no time-delay between the impact 

of a primary and the emission of the resulting secondaries is assumed (see Sect. 1.8). 

After a sufficient number of map iterations, the dynamics cease to change as orbits 

converge and get trapped in the attractor, which is defined as the set of values that 
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random orbits converge towards [95]. Unlike conventional theories, no a priori 

assumptions on the form of the attractor are made. 

 

2.2.2   Bifurcation Diagrams and Comparison to Resonance 

Theory 

 
As the map (Eq. 2.7) depends on the parameters Ē0 and v̅0x, the attractor changes 

as these parameters are varied. In nonlinear dynamics, the attractor dependence on a 

system parameter is represented on a bifurcation diagram [95]. Figure 2.3 shows a 

bifurcation diagram constructed by scanning Ē0 in the range 0.10-1.20 for 400 steps 

with a fixed v̅0x = 0.03. The vertical axis is the RF attractor phase at impact and is 

displayed symmetrically in [-π, π]. The bifurcation diagram is constructed as follows. 

For each value of Ē0 on the diagram, the map is constructed with a resolution of one 

million RF phases from the procedure described earlier. Sixty-four random emission 

phases (particles) are selected to advance through the map, a sufficient sample to reach 

all stable attractors of the system. Each particle is then iterated five thousand times 

through the map to allow each orbit to converge to its attractor. The first four thousand 

iterations are discarded because only the attractor is of interest and not the transient 

dynamics leading to it. Each unique phase in the last thousand iterations constitutes the 

system attractor. Ē0 is then incremented and this process is repeated. 

Although the attractor can be better approximated with more initial particles 

and map advances, the chosen numerical parameters give sufficiently accurate results 

to justify the qualitative conclusions made later in this thesis and are thoroughly tested. 

Recall that the map (Eq. 2.7) tracks two-surface and single-surface transits on each  
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Figure 2.3: Bifurcation diagram constructed by scanning Ē0 in [0.10, 1.20] for a fixed 

v̅0x = 0.03 and η = 0. Attractor phases resulting from two-surface transits and single-

surface transits are shown in red and blue, respectively. 

 

iteration by selecting the appropriate (minimum) transit time (Eq. 2.6). For a visual aid 

on the dynamics, the bifurcation diagram is color coded according to impact phases 

resulting from two-surface transits (red) and single-surface transits (blue). 

Note that the structure of the attractor changes considerably as a function of Ē0. 

For a specified RF field frequency and gap separation, varying Ē0 is equivalent to 

varying the RF field amplitude, or vice-versa, varying the gap separation for a fixed RF 

field amplitude and frequency. For Ē0 between 0.10-0.24 (see Fig. 2.4 for a zoomed-in 

view), the attractor is chaotic, as impacts occur over a large RF phase range with no  
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           Figure 2.4: Zoomed-in view of Fig. 2.3 for Ē0 between 0.10-0.24.  

  

periodicity. Despite the low RF field strength and large gap separation in this parameter 

region (small Ē0), electrons nonetheless traverse the gap for two-surface impacts 

(indicated by red points). 

As Ē0 further increases, all orbits converge to a single RF impact phase, 

representing a two-surface fixed-point attractor. As τ01 = π for this fixed-point attractor, 

the mode is identified as a first-order (N = 1) two-surface resonance. From conventional 

resonance theory [1], the range of RF field amplitudes in a parallel-plate system that 

give rise to two-surface resonant multipactor is obtained by setting τ01 = Nπ in Eq. 2.4, 

resulting in: 

Ē0 = 
1−Nπv0x

2 sin(θ0)+Nπcos (θ0) 
.              (2.8) 



 

 

33 

 

In Eq. 2.8, θ0 is a phase from the basin of attractor phases that converges to 

stable resonant behavior of order N. For zero emission velocity (v̅0x = 0), stability 

requirements restrict θ0 to the range [0, arctan(2/Nπ)]. For a first-order resonance  

(N = 1), the upper phase bound is θ0u ≈ 0.567 radians, corresponding to a lower 

normalized RF electric-field bound of Ē0l ≈ 0.243.  

For nonzero emission velocity, θ0u and Ē0l remain a good estimate but the lower 

phase boundary θ0l can become negative [1, 79], as electrons are able to escape an initial 

retarding field and reach the opposite surface. Specifically, θ0l is the maximum negative 

phase (i.e., cutoff phase) such that the secondary electron initially reverses back to the 

plate of origin and then, after the RF field switches sign, reverses again just before a 

single-surface impact. For a given v̅0x and order N, this cutoff phase and corresponding 

upper field boundary can be obtained by implicitly solving Eq. 2.8. For v̅0x = 0.03 and 

N = 1, this gives θ0l ≈ -0.427 radians and Ē0u ≈ 0.446. These stability boundaries are in 

excellent agreement with the bifurcation diagram (see Fig. 2.5), which depicts the two-

surface fixed-point resonant attractor well within the calculated basin of attraction for 

the corresponding parameter region. Thus, this new model recovers the findings from 

resonance theory for first-order (N = 1) multipactor.  
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Figure 2.5: First-order (N = 1) two-surface resonance stability boundaries recovered by 

the bifurcation diagram in Fig. 2.3 for v̅0x = 0.03. 

 

As Ē0 nears Ē0u, the fixed-point resonant attractor becomes unstable and new 

two-surface modes appear that spread even further into the decelerating RF phase 

regime. As Ē0 further increases, these attractors undergo period doubling, bifurcating 

into separate stable attractors. Note that some of the period doublings are not true 

bifurcations, as the period-2n cycle is disconnected from the preceding period-n 

attractor. This can be understood by noting that Eq. 2.7 is not a pure map but rather a 

composition of two separate maps (two-surface and single-surface). Even more, single-

surface impacts (blue points) begin to appear together with the two-surface impacts and 

follow a similar pattern. This combination of single-surface and two-surface impacts is 

the signature of the ping pong modes [60-63]. Here, these ping-pong multipactor modes 
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cycle periodically through multiple single-surface and two-surface impacts. 

Note that orbits guided by the map converge to stable attractor point(s) and are 

repelled from unstable points. Thus, with a sufficient sample of emission phases, the 

bifurcation diagram recovers all stable modes of the discharge over the entire parameter 

range. This methodology is far more comprehensive than the standard approach of 

applying stability conditions for different known modes (such as resonance) to establish 

multipacting boundaries [1, 15-16].       

 A bifurcation diagram can also be constructed by instead fixing Ē0 and scanning 

the other free parameter v̅0x. This is shown in Fig. 2.6 for a fixed Ē0 = 0.70 and a v̅0x 

scan between 0.020-0.80. For a fixed frequency-gap product, scanning v̅0x is equivalent 

to varying the average secondary electron emission energy, a property of the surface 

material. As in the Ē0 scan, multipactor takes on different forms. For low emission 

velocities, the attractor is largely single-surface chaotic as the low energy electrons 

return to the emission surface. As v̅0x is increased, periodic ping-pong modes begin to 

form as electrons now have sufficient energy to engage in two-surface impacts. In 

particular, a period-2 ping-pong multipactor is observed between 0.18-0.52, where 

electrons alternate between a single-surface and a two-surface impact. Finally, the 

period-2 ping-pong attractor transitions to chaos for higher emission velocities, where 

electrons can now engage in more complex orbits. Note that the chaotic regions contain 

period windows where the attractor temporarily shifts to a low-periodicity limit cycle 

[95]. Here, a slight change in parameter space can result in a completely different orbit. 
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             v̅0x 

Figure 2.6: Bifurcation diagram constructed by scanning v̅0x in [0.02, 0.80] for a fixed  

Ē0 = 0.70 and η = 0. Attractor phases resulting from two-surface transits and single-

surface transits are shown in red and blue, respectively. 
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2.2.3   Multipactor Exponential Growth Rate and Incorporation 

of Spreads in Secondary Emission Energies and Angles  

The multipactor maps and bifurcation diagrams are a function of the fields and 

geometry. To obtain a quantitative analysis, the secondary emission properties of the 

surface material need to also be considered. To calculate the secondary electron 

emission (SEE) yield, defined as the average number of emitted secondaries per 

incident primary, Vaughan’s formula (Eq. 1.1) is used with a modification accounting 

for backscattered and reflected primaries, as described in Sect. 1.3.2. 

The SEE parameters in Vaughan’s formula are material dependent. In this 

thesis, copper material is chosen. The incident angle for an electron impact at an RF 

attractor phase θa is θI = arctan(v̅y/v̅(τa, θa)), where v̅(τa, θa) is the normal component of 

the impact velocity (normalized) given by Eq. 2.2 and τa is the corresponding 

normalized transit-time. Note that τa can correspond to a single-surface or two-surface 

transit-time depending on whether the impact at phase θa results from a single-surface 

or two-surface transit. v̅y is the normalized transverse component (parallel to the 

surfaces) of the impact velocity, which remains constant as the electric-fields are 

normal to the surfaces. For the time-being, v̅y = v̅0x so as to assume a fixed emission 

angle. A random emission energy and angle are incorporated later in this section. The 

impact energy (expressed in eV) at an attractor phase θa is given by  

W = 
m

2e
(v

2
(τa,θa) + vy

2
)(ωD)2. 

The exponential growth rate for a bifurcation scan is given by: 

        (η, Ē0, v̅0x) =  
ln(∏ δθii ∏ δθjj )

∑ τθii + ∑ τθjj
.                  (2.9)    
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In Eq. 2.9, δθi
 is the SEE yield (Eq. 1.1a) resulting from an impact at RF attractor phase 

θi with corresponding transit-time τθi. The indices i and j span over points in the 

surface-0 and surface-1 system attractor, respectively. Here, the system refers to the 

specified map parameters (η, Ē0, v̅0x) and the corresponding map(s) given by Eq. 2.7. 

In the absence of a DC electric-field (i.e., η = 0), ∏ δθii =  ∏ δθjj  and ∑ τθii =  ∑ τθjj  

as the attractor impact phases for each surface are identical. As to be shown in Sect. 

2.3, this is generally not true for the case where η ≠ 0.   

Eq. 2.9 is a general formula that applies to all types of multipactor, including 

two-surface resonance where ∑ τθii + ∑ τθjj = 2Nπ (the factor of 2 is included because 

the left-hand side is the two-way transit-time) [96]. It is convenient to express the 

exponential growth rate in terms of the average SEE yield over an RF period T = 2π/ω: 

avg = eT. Using Eq. 2.9, avg can be equivalently expressed as:  

avg(η, Ē0, v̅0x)  (∏ δθii ∏ δθjj )

1
∑ τθii +∑ τθjj

2π .          (2.10) 

Figure 2.7 shows the average SEE yield (black curve) given by Eq. 2.10 over 

the bifurcation diagram from Fig. 2.3, assuming an RF frequency of f = /2 = 500 

MHz and a gap separation of D = 7 mm. Note that the average SEE yield is large in the 

parameter region that supports the two-surface resonant attractor and small in regions 

that support chaotic and high-periodicity modes. The fluctuations in the curve arise 

from the period-windows within the chaotic regions, where the attractor temporarily 

takes on a low-periodicity form.   

 



 

 

39 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7: Average SEE yield over an RF period (black curve) for the Ē0 scan in Fig. 

2.3 (scale shown on right). The RF frequency and gap separation are f = 500 MHz and 

D = 7 mm, respectively. For each scan, a monoenergetic emission v̅0x = 0.03 is assumed 

and the DC electric-field is turned off (η = 0). 
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Note that Eq’s 2.9 and 2.10 describe the case of monoenergetic secondary 

emission (i.e., a fixed v̅0x). As discussed in Ch. 1, the secondary emission energy (and 

angle) are actually random variables and therefore described by distributions. To 

incorporate a spread in secondary emission energies, the parameter v̅0x is scanned (for 

given values of Ē0 and η). The scan range of v̅0x is consistently chosen to include 

emission energies on the order of an eV to a few tens of eVs. For each  

(Ē0, η, v̅0x) combination, the corresponding map(s) (Eq. 2.7), attractor, and average SEE 

yield avg(Ē0, η, v̅0x) (Eq. 2.10) are systematically calculated (it will be shown in Sect. 

2.3 that two separate maps are required for the case where η ≠ 0). To obtain the effective 

SEE yield over an RF period (Eq. 2.12), the average SEE yields obtained from the 

monoenergetic v̅0x scans are integrated over an exponential distribution with expected 

value v̅0xavg (Eq. 2.11):   

f(v̅0x) =   
1

v0xavg
e−v0x v0xavg⁄ ,                    (2.11)

 eff(Ē0, η) = ∫ δavg( E0, η, v0x) f(v0x)dv0x.                             (2.12) 

This procedure is similar to the reconstruction of kinetic plasma modes from a 

monoenergetic fluid model [97]. For systems with transverse fields (see Sect. 2.4 and 

Ch. 3), the transit-times and SEE yields are also sensitive to the emission angle. Thus, 

including an emission angle scan is also important for these cases. For these systems, 

the transverse emission velocity (v̅0y) is an additional map parameter. To incorporate 

an emission energy and angle scan, several maps are constructed, each with a different 

combination of (v̅0x, v̅0y) corresponding to an emission velocity magnitude of  

v̅0 =√v0x
 2

+  v0y
 2

  and an emission angle  = arctan(v̅0x/ v̅0y) (defined with respect to the 



 

 

41 

 

surface tangential). As before, the scan range of emission energies includes values from 

an order of an eV to a few tens of eVs. For each value of v̅0, the emission angle  is 

varied between [0, π] radians. For a given combination of (v̅0, ), the normalized 

emission velocities are v̅0x = v̅0sin() and v̅0y = v̅0cos(). For each map constructed in 

the emission energy and angle scan, the corresponding map attractor and average SEE 

yield (Eq. 2.10) are computed. As before, to obtain an effective value, the average SEE 

yields are integrated over corresponding secondary emission distributions:  

eff(Ē0, η) =  ∬ δavg(E0, η, v0, ϕ)f1(v0)f2(ϕ)dv0dϕ.                            (2.13) 

In this chapter, the secondary emission velocity magnitude v̅0 is taken to follow 

an exponential distribution (Eq. 2.11) while the  secondary emission angle distribution 

is taken to be f2() = (1/2)sin() for 0 <  < , which is also commonly employed in 

Monte Carlo models [21-26]. Note that these emission distributions correspond to true 

secondaries. Although backscattered electrons may follow different distributions, this 

does not affect the multipactor dynamics and the qualitative results from the scans.  

 

2.2.4   Comparison to Simulation  

To test the predictions from this theory, a 3D simulation model using the Warp 

particle-in-cell code is setup. Warp is a well-established simulation tool that has 

demonstrated considerable success in modeling particle-accelerators and electron 

clouds [7]. The reader is referred to Ref. [50] for a detailed overview of the Warp code. 

Warp uses the POISNST library to incorporate SEE [51]. This library has an extensive 

description of relevant parameters for a given surface material, such as dependence of  

yield on impact energy/angle and a realistic velocity spread based on experimental fits. 
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Here, a stripline geometry (0.583 mm thick, 46 x 46 mm wide) with copper 

surfaces is selected. For the first set of Warp simulations, an RF frequency of f = 500 

MHz and a gap separation of D = 7 mm are selected (corresponding to an fD product 

of 3.5 GHz-mm) in the absence of a DC electric-field (i.e., η = 0). For the fixed fD 

product, a series of simulations are run, each with a different RF electric-field 

amplitude E0. The range of amplitudes is chosen so that the normalized parameter Ē0 

ranges between 0.10-1.20 for the purpose of comparison to Fig. 2.3. The corresponding 

RF electric-field amplitude for each simulation is uniquely given by E0 = Ē0(m/e)Dω2, 

resulting in a range from 39.28 kV/m to 471.37 kV/m. 

Each simulation is run for 5 RF periods with a resolution of 320 time steps per 

period. 100 seed electrons are injected over the first RF period on every fourth time 

step. For simulations with low growth rates, the number of injected seed electrons is 

increased to 10000 to account for the rapid loss of particles so as to maintain consistent 

simulation statistics. As the initiation of multipactor is mostly of interest as opposed to 

saturation, space-charge effects are turned off. On each time step, the electrons are 

advanced in space according to the influence of the RF electric-field (and any DC fields 

that may be included). The fields are simulated as electrostatic fields on a 3D grid and 

are “manually” updated on each time step. Since electron velocities are low (v << c), 

the effects of the RF magnetic-field are not included. As electrons impact the surfaces, 

secondaries are emitted depending on the impact energies and angles. The total number 

of particles in the system is recorded on each time step and expressed in semi-log form. 

The slope of a least-squares linear fit gives the exponential growth (or decay) rate, from 

which the average SEE yield over an RF period is then obtained. 



 

 

43 

 

To compare the Warp simulations to the map-based theory, an emission energy 

scan is conducted and the effective SEE yield over an RF period eff(Ē0, η) (Eq. 2.12) 

is computed over the corresponding range of Ē0 (with the fixed η = 0). Recall that this 

requires constructing several monoenergetic maps (Eq. 2.7), computing the 

corresponding map attractors and average SEE yields (Eq. 2.10), and then integrating 

over the specified secondary emission velocity distribution (Eq. 2.11). To match the 

Warp code parameters for copper, the SEE parameters in the theory are set to  

δmax0 = 2.1, Wmax0 = 271 eV, and Wc = 6 eV (Eq. 1.1). Additionally, v̅0xavg is chosen to 

correspond to a normal emission energy of W0xavg = 3 eV (i.e., a total average emission 

energy of 6 eV as v̅y = v̅0x → W0avgtotal = 2W0xavg). 

Figure 2.8 plots the effective SEE yield predicted by Warp and the map-based 

theory with an emission energy scan. Both curves from theory and simulation track 

closely throughout the scan. The crossover point, i.e., where the effective SEE yield 

intercepts unity (or equivalently where the exponential growth rate is zero), predicted 

by Warp and the theory is in excellent agreement. Although the bifurcation diagram in 

Fig. 2.3 is constructed for a monoenergetic case, it nonetheless provides a qualitative 

understanding on the structure of the growth rate. Initially, the growth rate steadily 

increases as multipactor is driven at a strong two-surface resonance. The growth rate is 

then reduced as the attractor transitions to high-order ping-pong modes, where the 

spread in impact phases dilutes multipactor growth. The different forms of multipactor 

recovered by this bifurcation diagram are well reflected in the growth rates predicted 

by the theory and simulation. 
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Figure 2.8: Effective SEE yield over an RF period from theory with an emission energy 

scan (red) and Warp simulations (black) as a function of Ē0. The RF frequency and gap 

separation are f = 500 MHz and D = 7 mm, respectively, and the DC electric-field is 

turned off (η = 0). The corresponding RF electric-field amplitude scan range is from 

39.28 kV/m to 471.37 kV/m. 
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2.3   Map-Based Theory Under RF and DC Electric-Fields  
 

2.3.1   Multipactor Maps and Bifurcation Diagrams  
 

In this section, the multipactor dynamics in the presence of both RF and DC 

electric-fields are explored (i.e., η ≠ 0). As before, the two-surface and one-surface map 

equations for an emission from surface-0 are given by Eq’s 2.4 and 2.5, respectively 

(but now with η ≠ 0). Recall that the direction of the positive surface normal switches 

on each two-surface impact due to the change in location of the coordinate system 

origin (see Fig. 2.1b). As a result, the fields change sign on the subsequent iteration. 

Thus, for each two-surface impact, the sign of the RF field for the subsequent iteration 

is accounted for by shifting the RF impact phase by π (Eq. 2.7). In addition, the sign of 

η is reversed to account for the change of sign of the DC electric-field, resulting in a 

separate pair of map equations: 

       0 = -sin(τ10 + θ0) + sin(θ0) + τ10(cos(θ0) + v̅0x/Ē0) +  
1

2
ητ10

2  – 1/Ē0.                         (2.14) 

          0 = -sin(τ11 + θ0) + sin(θ0) + τ11(cos(θ0) + v̅0x/Ē0) +  
1

2
ητ11

2 .          (2.15) 

As before, the subscripts of τ designate the surface of emission and surface of 

impact, respectively. Since the underlying equations for an emission from each surface 

are different, each surface has its own map (M0 and M1) defined by Eq’s 2.6 and 2.7 

but with the appropriate pair of transit-times ((τ01, τ00) and (τ10, τ11)). Note that in the 

absence of a DC electric-field (i.e., η = 0), τ01(θ0|η = 0, Ē0, v̅0x) = τ10(θ0|η = 0, Ē0, v̅0x) 

and τ00(θ0|η = 0, Ē0, v̅0x) = τ11(θ0|η = 0, Ē0, v̅0x). Thus, M0 and M1 are equivalent and 

only one map is needed to describe the system (as seen in Sect. 2.2.1). 



 

 

46 

 

The general procedure of advancing an emission phase in this two-map system 

remains the same as before but with the additional step of tracking the impact surface 

for each iteration. In particular, for each two-surface transit, the map used to advance 

the system for the subsequent iteration is switched. To illustrate this, consider electrons 

emitted from surface-0 at phase θ0. If the transit-time to the same surface is shorter, i.e., 

τ00(θ0) < τ01(θ0), the same map (M0) is used to further advance the system. However, if 

the transit-time to the opposite surface is shorter, i.e., τ01(θ0) < τ00(θ0), electrons traverse 

the gap to impact surface-1 at an RF phase θ1 = M0(θ0). The system is now guided by 

the surface-1 map (M1) on the subsequent iteration (θ2 = M1(θ1)). 

Figure 2.9 shows the bifurcation diagrams for each surface resulting from 

scanning η in the range [-1.0, 1.0] with fixed system parameters Ē0 = 0.30 and  

v̅0x = 0.03. Here, all electrons are assumed to be initially emitted from surface-0. As 

before, a random sample of emission phases is selected to repeatedly advance through 

the maps in order to reach the attractor. For each iteration, the impact surface is 

recorded to ensure the proper map is used for the subsequent map advance. The 

attractor phases are then separated according to their corresponding impact surface, 

resulting in a bifurcation diagram for each surface. This added complexity affects the 

computational time only minimally, as all operations are vectorized. As before, the 

bifurcation diagrams are color coded according to impact phases resulting from two-

surface transits (red) and single-surface transits (blue). 
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Figure 2.9: Bifurcation diagrams for a.) surface-0 and b.) surface-1 constructed by 

scanning η in [-1.0, 1.0] for a fixed v̅0x = 0.03 and Ē0 = 0.30. Attractor phases resulting 

from two-surface transits and single-surface transits are shown in red and blue, 

respectively. 
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For a fixed RF electric-field amplitude, varying η corresponds to varying the 

DC electric-field strength. Note that the plots are mirror images of one another as the 

dynamics are identical for each surface but occur in reverse directions. This can be 

understood as follows. For weak DC field strengths (-0.30 < η < 0.30), a two-surface 

resonant attractor appears on both diagrams as the RF electric-field dominates and 

accelerates electrons across the gap. For |η| > 0.30, a two-surface multipactor no longer 

persists and only single-surface impacts take place, eventually leading to chaos for 

sufficient DC field strengths. Thus, a strong DC field prevents electrons from reaching 

the opposite surface (resulting in no attractor for the opposite surface bifurcation 

diagram) and restores them to the originating surface for repeated single-surface 

impacts. The orientation of the DC field, or equivalently the sign of η, determines the 

attracting and repelling surfaces. 

 

2.3.2   Comparison to Simulation 

To test the map-based theory with a DC electric-field, a Warp simulation scan 

is conducted. As in Sect. 2.2.4, the RF frequency and gap separation are chosen as  

f = 500 MHz and D = 7 mm, respectively. In this section, the RF electric-field amplitude 

is additionally fixed and set to E0 = 91.75 kV/m (corresponding to Ē0 ≈ 0.23358) while 

the Warp model is expanded to also include a normal DC electric-field EDC. For the 

fixed parameters, a series of simulations are run scanning the DC electric-field strength  

EDC = ηE0, where the parameter η is adjusted between 0.0-1.0. The simulation 

parameters are identical to those in Sect. 2.2.4 and the multipactor exponential growth 

rate is computed from the same procedure (assuming copper material).  
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To compare the simulation results to the theoretical model, a bifurcation scan 

is constructed for the parameter η (and the fixed Ē0 = 0.23358). As before, a spread in 

emission energies is incorporated by calculating the average SEE yield (Eq. 2.10) for 

multiple monoenergetic cases and then integrating over an exponential distribution  

(Eq. 2.11), giving an effective SEE yield for each value of η (Eq. 2.12). Recall that for 

a nonzero DC electric-field (η ≠ 0), a map for each surface is needed to fully describe 

the dynamics, resulting in two distinct sets of attractor phases (see Sect. 2.3.1). Thus, 

both sets of attractor phases are used to compute the average SEE yield avg(η, Ē0, v̅0x), 

as indicated by Eq. 2.10. 

The effective SEE yields from the Warp simulations and the bifurcation scans 

from theory are shown together in Fig. 2.10 as a function of η. The curves closely track 

each other and the crossover points are in excellent agreement. As before, a bifurcation 

diagram constructed for a monoenergetic case (Fig. 2.11) provides an explanation on 

the structure. For η ≈ 0, the growth rate is large as multipactor is driven at a strong two-

surface resonance. As η increases, the growth rate decreases as the attractor becomes 

chaotic and then increases as multipactor again shifts to resonance. Finally, as η 

approaches unity, the growth rate dilutes as the attractor transitions to chaos, where the 

repeated low single-surface impact energies reduce the growth rate. As also seen in 

Sect 2.2.4, the different forms of multipactor recovered in the bifurcation diagram 

manifest in the growth rates predicted by theory and simulation. This finding raises an 

interesting research question: can multipactor be suppressed by intelligently 

introducing chaos?  
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Figure 2.10:  Effective SEE yield over an RF period from theory with an emission 

energy scan (red) and Warp simulation (black) as a function of η. The RF frequency, 

gap separation, and RF field amplitude are f = 500 MHz, D = 7 mm, and E0 = 91.75 

kV/m, respectively, corresponding to Ē0 ≈ 0.23358. The corresponding DC electric-

field scan range is from 0 kV/m to E0. 

. 
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Figure 2.11: Bifurcation diagram for surface-0 constructed by scanning η for a 

monoenergetic v̅0x = 0.05 and a fixed Ē0 = 0.23358. Attractor phases resulting from 

two-surface transits and single-surface transits are shown in red and blue, respectively. 
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2.4   Map-Based Theory with a Transverse DC Magnetic-Field  

2.4.1 Basic Equations, Bifurcation Diagrams, and Comparison to 

Resonance Theory 

In this section, the map-based multipactor theory is expanded to include to a 

transverse DC magnetic-field (Fig. 2.12). This configuration is commonly found in 

cross-field devices [54-55, 77-79]. Here, the same procedure developed in the previous 

sections of this chapter is used but with modified equations for the transit-times. The 

Lorentz force-law for the system is given by: 

ẍ +  ωcẏ =
e

m
E0sin (ωt + θ0),                                               (2.16) 

ÿ − ωcẋ = 0.                         (2.17) 

In Eq’s 2.16 and 2.17, ωc = eBDC/m is the cyclotron frequency. The solutions to these 

equations (in normalized form) for an electron emitted at t = 0 from surface-0 with 

normal and transverse emission velocities v0x and v0y, respectively, are: 

x(τ, θ0) =  
E0

Ω2−1
 (sin(τ + θ0) − sin(θ0) cos(Ωτ) −   

cos(θ0) sin(Ωτ)

Ω
) +                

                   
v0x

Ω
sin(Ωτ) −

v0y

Ω
(1 − cos(Ωτ)),           (2.18) 

y(τ, θ0) =  
E0

Ω2−1
 (−Ω cos(τ +  θ0) − sin(θ0) sin(Ωτ) −  

cos(θ0)(1−Ω2−cos(Ωτ))

Ω
) +   

          

                   
v0x

Ω
(1 − cos(Ωτ)) +

v0y

Ω
sin(Ωτ). 

                         (2.19) 

In Eq’s 2.18 and 2.19, Ω = ωc/ω is the ratio of the cyclotron frequency to the 

RF frequency. Note that these equations are undefined for the magnetic-field free case 

(i.e., Ω = 0) and for ωc = ω (i.e., Ω = 1). The solution for the former case, where only  
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Figure 2.12:  Parallel-plate geometry with normal RF electric-field and a transverse DC 

magnetic-field. Here,  is the emission angle with respect to the surface tangential.  

 

the RF electric-field is present, is given by Eq. 2.3 (with η = 0). The solution for the 

latter case can be obtained by taking the limits of Eq’s 2.18 and 2.19 as Ω → 1. 

In this study, the transverse geometry dimensions are taken to be much larger 

than the gap separation D. Thus, the y-component of the electron trajectory (Eq. 2.19) 

is neglected in the calculation of the transit-times. However, the transverse velocity 

(dy(τ, θ0) dτ⁄ ) affects the impact energy/angle and hence is relevant for the SEE yield.  

The normalized two-surface (single-surface) transit-time τ01 (τ00) for an electron 

to impact surface-1 (surface-0) is given by setting x̅ = 1 (x̅ = 0) in Eq. 2.18: 

1

E0
=  

1

Ω2−1
 (sin(τ01 + θ0) − sin(θ0) cos(Ωτ01) −  

cos(θ0) sin(Ωτ01)

Ω
) +   

         
v0x

E0Ω
sin(Ωτ01) −

v0y

E0Ω
(1 − cos(Ωτ01)).            (2.20) 

0 =  
1

Ω2−1
 (sin(τ00 + θ0) − sin(θ0) cos(Ωτ00) −  

cos(θ0) sin(Ωτ00)

Ω
) + 

          
v0x

E0Ω
sin(Ωτ00) −

v0y

E0Ω
(1 − cos(Ωτ00)).                    (2.21)    
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As before, the subscripts of τ designate the surface of emission and surface of 

impact, respectively, and no resonance assumptions are made, allowing for the 

recovery of all possible modes. For given parameters Ē0, Ω, v̅0x, and v̅0y, the map relating 

an emission phase θ0 to the phase at the next impact is given by Eq’s 2.6 and 2.7 but 

with τ01 and τ00 now determined by the earliest (nonnegative and nonzero) roots of Eq’s 

2.20 and 2.21, respectively. Here, the transit-time dependence on the emission phase 

and the system parameters is implied. Note that the transit-times are symmetric with 

respect to the DC magnetic-field, i.e., τ01 = τ10 and τ00 = τ11. This is in contrast to the 

case where a normal DC electric-field is present in the gap, where a separate map for 

each surface is required (see Sect. 2.3.1). 

Figure 2.13 shows a bifurcation diagram constructed by scanning Ē0 in the 

range 0.10-1.20 with fixed parameters Ω = 0.50 and v̅0x = v̅0y = 0.03. The diagram is 

constructed from the same procedure described in Sect. 2.2.2. For Ē0 between 0.10-

0.37, all orbits converge to a single impact phase, representing a single-surface 

(indicated by blue) fixed-point attractor. As τ00 = 2π for these phases, this mode is 

identified as a first-order (M = 1) single-surface resonance. Here, the low RF electric-

field strength and the large gap separation (small Ē0) combined with the DC magnetic-

field prevents two-surface transits across the gap. As Ē0 further increases, all orbits 

again converge to a single RF impact phase but now with two-surface impacts 

(indicated by red). As τ01 = π for these fixed-point attractor phases, this mode is 

identified as first-order (N = 1) two-surface resonance. To compare these findings with 

resonance theory, the fixed-phase equation is obtained by setting τ01 = Nπ in Eq. 2.20, 

resulting in: 
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Figure 2.13:  Bifurcation diagram constructed by scanning Ē0 in [0.10, 1.20] for a fixed 

v̅0x = v̅0y = 0.03 and Ω = 0.50. Attractor phases resulting from two-surface transits and 

single-surface transits are shown in red and blue, respectively. 
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             Ē0 =
(1−  

v0x
Ω

sin(ΩNπ)+ 
v0y

Ω
(1−cos(ΩNπ)))(Ω2−1)

− sin(θ0)−sin(θ0) cos(ΩNπ)− 
cos(θ0) sin(ΩNπ) 

Ω

 .                     (2.22) 

 

Note that in the absence of a DC magnetic-field (i.e., Ω = 0), Eq. 2.22 reduces 

to Eq. 2.8. The upper phase stability bound is the phase that minimizes Eq. 2.22 (or 

equivalently maximizes the denominator of Eq. 2.22) for given values of Ω and N, 

resulting in θ0u = tan−1(Ω(1 + cos(ΩNπ)) sin(ΩNπ)⁄ ). In the absence of a DC 

magnetic-field (i.e., Ω = 0), this expression reduces to  tan−1(2 (Nπ)⁄ ), which is the 

well-known result derived by Vaughan [1]. For a first-order (N = 1) resonance and  

Ω = 0.50, θ0u ≈ 0.464 radians, corresponding to a lower normalized RF electric-field 

bound of Ē0l ≈ 0.335.  

As explained in Sect. 2.2.2, the lower phase bound θ0l boundary is obtained by 

implicitly solving Eq. 2.22 for the maximum negative emission phase such that the 

electron escapes a single-surface impact (for a given emission energy) and impacts the 

opposite surface with a resonance transit-time [1, 79]. For Ω = 0.50, v̅0x = v̅0y = 0.03, 

and N = 1, this gives θ0l ≈ -0.371 radians and Ē0u ≈ 0.50. These stability boundaries are 

in excellent agreement with the bifurcation diagram (see Fig. 2.14). Thus, as also found 

in Sect. 2.2.2, the map-based theory recovers first-order (N = 1) resonant multipactor. 

As Ē0 nears Ē0u, the two-surface resonant attractor becomes unstable and high-

periodicity ping-pong modes begin to appear, where multiple single-surface and two-

surface impacts occur periodically. 

A bifurcation diagram can also be constructed by instead scanning Ω and fixing 

Ē0, v̅0x, and v̅0y. This is shown in Fig. 2.15 for a Ω scan between 0.0-1.50 and a fixed  

Ē0 = 0.23358 and v̅0x = v̅0y = 0.05. For a fixed RF frequency, scanning Ω is equivalent  
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Figure 2.14: First-order (N = 1) two-surface resonance stability boundaries recovered 

by the bifurcation diagram in Fig. 2.13 for Ω = 0.50 and v̅0x = v̅0y = 0.03.  

 

 to varying the DC magnetic-field strength. For Ω ≈ 0, two-surface resonance 

dominates, as the magnetic-field is not strong enough to drive electrons away from 

resonance. As Ω increases, the attractor transitions to chaos, where both two-surface 

and single-surface impacts occur over a large phase range with no periodicity. For  

Ω > 0.37, the attractor manifests as a single-surface period-n (limit) cycle, where the 

phase at each single-surface impact alternates between multiple values. 
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Figure 2.15: Bifurcation diagram constructed by scanning Ω in [0.0, 1.50] for a fixed 

Ē0 = 0.23358 and v̅0x = v̅0y = 0.05. Attractor phases resulting from two-surface transits 

and single-surface transits are shown in red and blue, respectively. 
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2.4.2    Comparison to Simulation 

To test the map-based theory with a transverse DC magnetic-field, a Warp 

simulation scan is conducted. As previously, the RF frequency, gap separation, and RF 

amplitude are set to f = 500 MHz, D = 7 mm, and E0  = 91.75 kV/m (corresponding to 

Ē0 ≈ 0.23358), respectively. Here, a transverse DC magnetic-field BDC is also included 

in the Warp model. A series of simulations are run scanning the DC magnetic-field 

strength BDC = (m/e)ωΩ, where Ω is adjusted between 0.0-1.50 (for the purpose of 

comparison to Fig. 2.15). The corresponding DC magnetic-field scan range is from  

0 mT to 27 mT.  The simulation parameters are the same as before and the multipactor 

exponential growth rate is calculated in a similar way (assuming copper material).  

To compare the simulation results to the theoretical model, a bifurcation scan 

is constructed for the parameter Ω (with a fixed Ē0 = 0.23358) in the same range. A 

spread in emission energies and angles is incorporated by calculating the average SEE 

yield avg(Ē0, Ω, v̅0x, v̅0y) (Eq. 2.10) for multiple monoenergetic and fixed emission 

angle cases and then integrating over the specified secondary emission distributions, 

resulting in an effective value for each Ω (Eq. 2.13 but with η replaced by Ω). 

The effective SEE yields from Warp and theory are shown together in Fig. 2.16 

as a function of Ω. The curves again are in good agreement. As before, a bifurcation 

diagram constructed for a monoenergetic case with a fixed emission angle (Fig. 2.15) 

provides a qualitative explanation on the structure. For Ω ≈ 0, the growth rate is large 

as multipactor is driven at a strong two-surface resonance. As Ω increases, the effective 

SEE yield decreases as the attractor transitions to chaotic and high-periodicity forms, 

where the spread in impact phases dilutes multipactor growth.  
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Figure 2.16: Effective SEE yield over an RF period from theory with an emission 

energy scan (red) and Warp simulation (black) as a function of Ω. The RF frequency, 

gap separation, and RF field amplitude are f = 500 MHz, D = 7 mm, and  

E0 = 91.75 kV/m, respectively, corresponding to Ē0 ≈ 0.23358. The corresponding DC 

magnetic-field scan range is from 0 mT to 27 mT. 
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2.5. Construction of Universal Multipactor Susceptibility 

Diagrams from Map-Based Theory and Comparison to Industrial 

Design Standards 

The theoretical predictions so far have been expressed in terms of normalized 

variables (i.e., Ē0, η, Ω). Engineers and industry are however interested in multipactor 

thresholds in terms of physical parameters, such as field amplitudes, frequencies, and 

geometry dimensions. Section 1.4.1 showed that combining conventional resonance 

theory with material considerations results in universal susceptibility diagrams that 

portray multipactor breakdown boundaries in the fD-voltage plane (see Fig. 1.3). In 

this section, the map-based theory is used to construct similar multipactor susceptibility 

diagrams for a parallel-plate geometry. These results are then compared to industrial 

design standards and particle-in-cell simulations. 

Figure 2.17 shows a susceptibility diagram constructed form the map-based 

theory for copper material (δmax0 = 2.25, Wmax0 = 175 eV). This diagram is constructed 

as follows. First, all DC fields are turned off (i.e., η = Ω = 0) and only the RF electric-

field is considered. Without any loss of generality, the RF frequency is taken to be  

f = /2 = 1 GHz. Additionally, V0 = E0D is defined as the RF voltage amplitude. For 

each (fD, V0) coordinate on the diagram, δeff(Ē0) (Eq. 2.13) is calculated, where  

the parameter Ē0 = eV0/(mD22) is completely determined by the fD product and V0. 

To display the multipactor boundaries, contours corresponding to different 

values of δeff are shown (blue for δeff = 0.50, black for δeff = 1.0, green for δeff = 2.0, 

orange for δeff = 3.0, and red for δeff = 4.0). The black contours corresponding to δeff =1  
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Figure 2.17: Multipactor susceptibility diagram (log-log plot) for copper material in the 

absence of DC fields (i.e., η = Ω = 0) constructed from the map-based theory. Here, the 

RF frequency is f = 1 GHz. Contours corresponding to different magnitudes of δeff are 

shown. The black contours are the multipacting boundaries.  
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represent the multipactor boundary (i.e., where the multipactor exponential growth rate 

is zero). Thus, parameter regions within these black contours support multipactor 

growth (i.e., δeff > 1.0) while parameter regions outside these contours support 

multipactor decay (i.e., δeff < 1.0). Note that the diagram is plotted on a log-log scale.  

To test these theoretical predictions, consider the European Space Agency 

(ESA) design standard for copper material [18]. This design standard is shown (dashed 

lines) on top of the original susceptibility diagram (Fig. 2.17) in Fig. 2.18, where each 

separate margin is labeled either as ‘1’, ‘2’, or ‘3’. Note that this design standard is first 

constructed from the susceptibility diagrams derived by Hatch and Williams [15-16] 

from resonance theory and then adjusted according to experimental tests.   

As seen in Fig. 2.18, the susceptibility diagram from theory and the ESA design 

standard have considerable overlap and predict similar multipacting regimes. However, 

margins 1 and 3 overestimate the theoretical bounds while margin 2 underestimates. 

To test the theoretical predictions relative to the design standard, Warp simulations are 

run at several parameter points on the susceptibility diagram. These results are shown 

in Fig. 2.19 (indicated by the crosses). Here, red crosses are placed in areas of 

multipactor growth (i.e.,  > 1) while black crosses are placed in areas of multipactor 

decay (i.e.,  < 1). Note that the simulations predict multipactor decay right inside 

margins 1 and 3 (indicated by the black crosses close to these margins), which is 

also supported by the theory as these points are outside the black contours. The 

simulations also show that multipactor persists beyond margin 2 (indicated by the  

red crosses below margin 2), which is also supported by the theory, as these points 

are within the black contours.  
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Figure 2.18: European Space Agency (ESA) design standard [18] (dashed lines) for        

copper material shown on top of the susceptibility diagram from theory (Fig. 2.17). 

Here, each separate design margin is labeled either as ‘1’, ‘2’, or ‘3’. 
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Figure 2.19: Results from particle-in-cell simulations (crosses) at various points on the 

susceptibility diagram from theory. Here, red crosses are placed on parameter regions 

that support multipactor growth (i.e.,  > 1) while black crosses are placed on parameter 

regions that support multipactor decay (i.e.,  < 1).  
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This expanded susceptibility space occurs for low fD products (~ 1 GHz-

mm), which have been previously shown to support ping-pong modes that involve 

combined single-surface and two-surface impacts [60-63]. In fact, a detailed look 

at the maps in this parameter space (and the corresponding attractors) reveals that 

these regions do indeed support ping-pong multipactor. Note that these high-

periodicity modes are not recovered by single-resonance theory and thus parameter 

regions that support such modes (and give an effective SEE yield greater than 

unity) are likely to go unidentified by conventional susceptibility diagrams. 

However, the map-based theory scans all of parameter space with no a priori 

assumptions, allowing for the recovery of all multipactor modes.  

Note that a few multipactor points predicted by the simulations are not 

predicted by the theory (i.e., red crosses that lie outside the black contours). This 

can be attributed to differences in the SEE emission model used by the theory and 

the simulation code (recall that the theory uses a SEE model based on the modified 

Vaughan’s formula (Eq. 1.1) while the simulation code uses a more complex 

emission model as specified by the POISNST library). Nonetheless, multipactor 

parameter regions predicted by simulation do remain within the blue contour from 

theory, which gives a reliable estimate of the overall susceptibly boundary.  

Figure 2.20 shows a susceptibility diagram constructed from the map-based 

theory using a transverse DC magnetic-field strength of BDC = 10 mT 

(corresponding to Ω  0.28). The diagram is constructed from the same procedure as 

before but now with the corresponding nonzero Ω. Compared to the zero magnetic-

field case (Fig. 2.17), this particular magnetic-field strength broadens the multipactor  
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Figure 2.20: Multipactor susceptibility diagram (log-log plot) for copper material with 

BDC = 10 mT (corresponding to Ω  0.28) constructed from the map-based theory. 

Here, the RF frequency is taken to be f = 1 GHz. Contours corresponding to different 

magnitudes of δeff are shown (according to the same color-code in Fig. 2.17). 
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susceptibility boundary. Simulations also predict multipactor growth in this expanded 

parameter space (indicated by the red crosses in Fig. 2.20). Although a DC magnetic- 

field is often examined for multipactor suppression, it can also result in higher SEE   

yields as the magnetic-field alters trajectories and causes impacts at oblique angles.  

The susceptibility diagrams constructed from the map-based theory have 

several key advantages compared to current state-of-the-art industrial design standards. 

First, as the map-based theory makes no a priori resonance assumptions, these 

susceptibility diagrams incorporate the effects of all possible manifestations of 

multipactor. Second, single-surface impacts, which can play a considerable role in two-

surface systems, are consistently included (recall that the map given by Eq. 2.7 selects 

the minimum of the two transit-times). Third, realistic spreads in secondary emission 

energies and angles are incorporated (see Eq. 2.13). Lastly, the map-based theory is 

universal in that the fields (or geometry) can be changed by simply modifying the 

underlying equations (as demonstrated in Sect’s 2.2-2.4). All of these features allow 

for accurate and reliable multipactor threshold predictions. 
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Chapter 3: Map-Based Multipactor Theory for Coaxial Systems  
 

 

3.1   Chapter Overview 
 

This chapter expands the map-based multipactor theory introduced in Ch. 2 to 

a coaxial geometry driven by the transverse electromagnetic (TEM) mode and an axial 

DC magnetic-field (Sect. 3.2). Here, the theoretical predictions are tested against 

published simulation and experimental results. The content from this chapter is 

published in Ref. [93].  

 

3.2   Map-Based Multipactor Theory for a Coaxial System  

3.2.1 Basic Equations and Multipactor Maps  

In this analysis, a coaxial geometry (inner-radius a, outer-radius b) and a 

cylindrical coordinate system (r, , z) are used (Fig. 3.1). Here, the length of the 

conductors L is assumed to be much greater than the conductor radii (i.e., L >> a,b). 

The fundamental transverse electromagnetic (TEM) mode with an RF voltage 

amplitude V0 and an RF frequency ω = 2πf is assumed, corresponding to a radial radio-

frequency (RF) electric-field given by ERF(r, t) = 
−V0

r(t)ln(b a⁄ )
sin(ωt + θ0). As in Ch. 2, the 

sign of the RF electric field is negative in order to have positive acceleration for 

accelerating phases in [0, π). Further, an axial DC magnetic-field is applied in the z-

direction. This system is commonly examined for multipactor suppression schemes in 
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Figure 3.1: Cross-sectional view of a coaxial geometry with inner-radius a and outer-

radius b. The cylindrical coordinate system (r, , z) is shown, where the z-axis extends 

along the length of the conductors (i.e., into or out of the page). The radial RF electric-

field and the axial DC magnetic-field are also shown. 

 

space-borne applications [70-71]. The Lorentz force-law for this system is given by: 

r̈ − r(ϕ̇)
2

=  
e

m
(

V0

r(t) ln(b a⁄ )
sin(ωt + θ0) − BDCrϕ̇),            (3.1) 

rϕ̈ + 2ṙϕ̇ =  
e

m
BDCṙ.                          (3.2) 

As this system conserves angular momentum, ϕ̇(t) can be eliminated and Eq.’s 

3.1 and 3.2 can be reduced to a single second-order differential equation for r(t). To 

demonstrate this, first note that the left-hand side of Eq. 3.2 can be rewritten as 

1

r

d

dt
(r2ϕ̇). Substituting this expression into the left-hand side of Eq. 3.2, multiplying 
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both sides by r, and then integrating (with respect to time) yields the following 

expression for ϕ̇: 

                            ϕ̇ =  
eBDC

2m
(r2− r0

2)+  ϕ̇0r0
2

r2 .              (3.3) 

In Eq. 3.3, r0 = r(t = 0) corresponds to an emission either from the inner-

conductor (i.e., r0 = a) or an emission from the outer-conductor (i.e., r0 = b) while  

ϕ̇0 = ϕ̇(t = 0). Substituting Eq. 3.3 into Eq. 3.1 yields the following second-order 

differential equation: 

   r̈ −  
(

eBDC
2m

(r2− r0
2)+  ϕ̇0r0

2)
2

r3 =  
e

m
(

V0

r(t) ln(b a⁄ )
sin(ωt +  θ0) − 

BDC(
eBDC

2m
(r2− r0

2)+  ϕ̇0r0
2)

r
).

                    (3.4) 

As shown, the original system of two second-order differential equations (Eq.’s 

3.1 and 3.2) is reduced to a single second-order differential equation for r(t) (Eq. 3.4). 

In this chapter, the following normalized variables are used: τ = ωt for time,  

r = (r-a)/(b-a) for the radial position (note that  r = a → r = 0 and r = b → r = 1),  

v̅ = v/(ωb) for velocity, Ē0 = eV0/(mb2ω2) for the RF electric-field amplitude,  = ωc/ω 

for the DC magnetic-field (ωc = eBDC/m is the cyclotron frequency), and R = a/b 

(representing a geometry parameter).  

Equation 3.4 can be equivalently expressed with these normalized variables by 

making the appropriate substitutions and converting the time derivatives to derivatives 

with respect to τ, i.e., ṙ = (1 − R)ωbr′ and ϕ̇ =  ωϕ′, where ′ =
d

dτ
. For simplicity, the 

normalized form of Eq. 3.4 is not presented here (but can be obtained from the 
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procedure discussed above). Moreover, the radial and azimuthal velocities are vr = ṙ 

and vϕ= rϕ̇, respectively (recall ϕ̇ is given by Eq. 3.3). In normalized notation, these 

velocities are expressed as v̅r = (1-R)r′ and v̅ = (r(1-R) + R)ϕ′. The initial normalized 

radial and azimuthal emission velocities are denoted as v̅r0 and v̅0, respectively.  

To construct the multipactor maps for given parameters (Ē0, , R, v̅r0, v̅0), the 

normalized transit-times over all emissions phases θ0 in [0, 2π) are computed:  

τaa(θ0|Ē0, , R, v̅r0, v̅0), τab(θ0|Ē0, , R, v̅r0, v̅0), τbb(θ0|Ē0, , R, v̅r0, v̅0) and  

τba(θ0|Ē0, , R, v̅r0, v̅0). Here, the subscripts of τ designate the emission conductor and 

the impact conductor, respectively, where ‘a’ refers to the inner-conductor and ‘b’ 

refers to the outer-conductor. As seen in Ch. 2, electrons may impact either conductor 

and thus all four transit-times are calculated to account for the possibility of both single-

surface impacts (a→a or b→b) and two-surface impacts (a→b or b→a).  

To calculate τaa(θ0) and τab(θ0), Eq. 3.4 (in normalized form) is first numerically 

solved via an ordinary differential equation (ODE) solver with the initial conditions 

ra(τ = 0, θ0) = 0 and ra
 ′
(τ = 0, θ0) = v̅r0/(1-R). Here, the subscript of r indicates the 

emission conductor (i.e., ‘a’ for inner-conductor and ‘b’ for outer-conductor). An 

integrator based on linear multistep methods is selected, which gives similar results as 

a standard Runge-Kutta integrator but is more computationally efficient (for this study) 

[98]. The single-surface transit-time τaa(θ0) and two-surface transit-time τab(θ0) are then 

obtained by solving ra(τaa, θ0) = 0 and ra(τab, θ0) = 1, respectively. As the trajectory 

may intersect zero (or unity) more than once, the earliest such solutions are used.  

Similarly, to calculate τbb(θ0)  and τba(θ0), Eq. 3.4 (in normalized form) is first 

numerically solved but now with the initial conditions rb(τ = 0, θ0) = 1 and   
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rb
 ′

(τ = 0, θ0) = -v̅r0/(1-R). Note that the radial emission velocity is negative for an 

emission from the outer-conductor because the emission direction is in the negative 

radial direction (i.e., from the outer-conductor to the inner-conductor). The single-

surface transit-time τbb(θ0) and two-surface transit time τba(θ0) are then found by solving 

rb(τbb, θ0) = 1 and rb(τba, θ0) = 0, respectively. All numerical parameters relating to 

the integration of Eq. 3.4 are thoroughly tested.  

The multipactor maps that relate an emission phase from each conductor to the 

phase at the next impact are given by:  

        Ma(θ0|Ē0, , R, v̅r0, v̅0) = (θ0 + τmin
a (θ0)) mod 2π,                                    (3.5) 

           Mb(θ0|Ē0, , R, v̅r0, v̅0) = (θ0 + τmin
b (θ0)) mod 2π.                                   (3.6) 

In Eq.’s 3.5 and 3.6, τmin
a (θ0) = min(τaa(θ0), τab(θ0)) and τmin

b (θ0) = min(τbb(θ0), τba(θ0)) 

while the subscript of M (and the superscript of τmin) corresponds to the emission 

conductor (i.e., Ma is the map for an emission from the inner-conductor and Mb is the 

map for an emission from the outer-conductor). Here, the transit-time dependence on 

the system parameters is implied (i.e., τ(θ0) is used rather than τ(θ0|Ē0, , R, v̅r0, v̅0) for 

convenience). As in Ch. 2, the minimum transit-time is selected to consistently account 

for both single-surface impacts (a→a or b→b) and two-surface impacts (a→b or b→a).  

Note that, unlike the maps for a parallel-plate system (Eq. 2.7), impact phases 

resulting from two-surface transits are not shifted by π. This is because the coordinate 

system does not reverse direction after each two-surface impact and therefore the sign  

of the RF field need not be reversed for the subsequent iteration.  

Given an emission phase θ0 (and the emission conductor), the RF phase at all 

subsequent impacts can be tracked by repeatedly iterating Eq’s 3.5 and 3.6. To illustrate 
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the procedure of advancing an electron in this system, consider an emission phase θ0 

from the inner-conductor. If the transit-time to impact the inner-conductor is shorter, 

i.e., τaa(θ0) < τab(θ0), then the same map (Ma) is used to further advance the system. 

However, if the transit-time to the outer-conductor is shorter, i.e., τab(θ0) < τaa(θ0), then 

the subsequent emission phase (θ1 = Ma(θ0)) is advanced by Mb on the next iteration  

(θ2 = Mb(θ1)). Thus, on each two-surface impact, the map used to advance the system 

for the following iteration is switched. On each iteration, the impact conductor is 

recorded to ensure the proper map is used for the subsequent map advance. Recall that 

this map-advancement procedure is similar to that in a parallel-plate system with a 

normal DC electric-field, where a separate map for each surface is also required (see 

Sect. 2.3.1). 

After a sufficient number of map iterations, orbits reach the attractor. As 

demonstrated in Ch. 2, the attractor form varies as a function of the system parameters, 

which is often displayed on a bifurcation diagram. In this analysis, rather than analyzing 

individual bifurcation diagrams (as done in Ch. 2), the attractor impact phases are 

directly used to predict multipactor growth or decay. This is justified as the main 

interest of this analysis is to compare against published results rather than to analyze 

specific multipactor dynamics. Bifurcation diagrams for this coaxial system can be 

constructed from an analogous procedure described in Ch. 2.  
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3.2.2 Comparison to Published Simulation and Experimental 

Results 

In this section, the map-based theory for a coaxial system developed in Sect. 

3.2.1 is tested against published simulations and experiments conducted at the 

European Space Agency Val Space Consortium Laboratory [70]. In this study, 

multipactor in a coaxial waveguide under TEM mode operation is investigated over a 

wide range of axial DC magnetic-field strengths. The experimental parameters include: 

a = 1.515 mm, b = 3.490 mm, f = ω/2π = 1.145 GHz, a DC magnetic-field test-range 

between 0 mT and 35 mT, and copper conductors (δmax0 = 2.25, Wmax0 = 175 eV). For 

each DC magnetic-field strength, the multipactor threshold power (i.e., the minimum 

RF power that initiates multipactor) is determined. For further details on the 

experimental setup and methodology, the reader is referred to Ref. [70]. In addition to 

the experimental data, this study also provides simulation predictions from the FEST3D 

code [48]. This simulation code also uses a SEE model based on the modified 

Vaughan’s formula (see Sect. 1.3.2). The multipactor threshold power as a function of 

the DC magnetic-field strength obtained from experiment and simulation are shown 

together in Fig. 2 of Ref. [70], which demonstrates that multipactor behaves nonlinearly 

with respect to the magnetic-field.  

To test the map-based theory against these results, the effective SEE yield 

eff(Ē0, , R) (Eq. 2.13) is calculated as a function of Ē0 for each DC magnetic-field 

strength. Recall that this requires constructing several maps (Eq’s 3.5 and 3.6) for 

several monoenergetic emissions and fixed emission angles (i.e., different 

combinations of (v̅r0, v̅0)), computing the corresponding attractors and average SEE 
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yields (Eq. 2.10), and then integrating over specified secondary emission distributions. 

On each scan, the normalized variables in the theory ( = ωc/ω and R = a/b) are set 

according to the experimental parameters. While  changes with the DC magnetic-

field strength, R ≈ 0.434 remains constant as the conductor radii are fixed. Further, the 

material parameters of the SEE model in the theory are set to correspond to copper (as 

in the experiment and simulation) while f1(v̅0) and f2() in Eq. 2.13 are set to a 

Maxwellian distribution (with an average value corresponding to an emission energy 

of 4 eV) and a cosine-law, respectively, to match the FEST3D simulation code.  

Varying Ē0 is equivalent to varying the RF power. The normalized threshold 

point Ē0TH is defined as the value where the effective SEE yield first intercepts unity 

(or equivalently where the exponential growth is zero), i.e., eff(Ē0, , R) ≈ 1.0 (see 

Fig. 3.2 for an example). The threshold power is defined as PTH = 
V0TH

2

2Z0
, where the 

threshold RF voltage amplitude V0TH is recovered from the normalization (i.e.,  

V0TH = (m/e)(bω)2Ē0TH) and Z0 = 50  is the characteristic impedance of the 

transmission line used in the experiments. Note that the factor of (1/2) is present in the 

expression for PTH because the peak voltage is used as opposed to the RMS voltage. 

Finally, expressing V0TH in terms of Ē0TH results in the following expression for the RF 

threshold power: 

  PTH = 
(

m

e
)

2
(bω)4E0TH

2

2Z0
.                                  (3.7) 
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Figure 3.2: Effective SEE yield as a function of Ē0 for fixed parameters  = 0.856 

(corresponding to BDC = 35 mT and f = 1.145 GHz) and R = 0.434 (corresponding to  

a = 1.515 mm and b = 3.490 mm). The normalized threshold point Ē0TH is defined as 

the value where eff ≈ 1.0 (indicating the onset of multipactor). 

 

Figure 3.3 plots the threshold power predicted by the map-based theory against 

the simulation and experimental results provided in Ref. [70]. The theoretical 

predictions are in excellent agreement with the simulations over the entire magnetic-

field range and depict a similar nonlinear multipactor behavior. Note that the simulation 

code, which numerically tracks electron trajectories, is fundamentally different from 

the theory, which instead tracks phase advancement via the maps (Eq.’s 3.5 and 3.6). 

Discrepancies between theory with experiment (and simulation with experiment) are 

attributed to the assumed secondary emission energy and angle distributions, possible 
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Figure 3.3: Multipactor threshold power predicted by the map-based theory (red 

circles) against simulation (green triangles) and experimental (blue squares) results 

from Ref. [70]. The value of the normalized parameter  is shown for different DC 

magnetic-field strengths.  
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experimental errors, and inaccuracies in the SEE model.  

Chapter 2 showed that the multipactor form changes throughout parameter 

space between single-resonance, period-n, ping-pong, and chaos. Even more, it was 

found that these forms manifest in the exponential growth rate, where low-periodicity 

forms result in large growth rates compared to high-periodicity and chaotic modes. 

Although specific multipactor dynamics (i.e., bifurcation diagrams) are not presented 

in this analysis (for reasons discussed earlier), a similar explanation is expected to hold 

for the nonlinear structure of the threshold power in this coaxial system. 

In fact, Fig. 3 of Ref. [70] shows representative electron trajectories for different 

DC magnetic-field strengths in this coaxial system. For weak DC magnetic-fields  

(BDC ≈ 0 mT), electrons participate in two-surface resonance modes that involve transits  

from a → b and b → a. As the DC field becomes intermediate (BDC ≈ 10 mT), ping-

pong multipactor takes place, where combined single-surface and two-surface impacts 

occur. For even larger DC magnetic-fields, multipactor manifests as a single-surface 

resonance on the inner-conductor. This change in the multipactor mode throughout 

parameter space is well-in-line with the central message of the map-based theory and 

is further reflected in the threshold powers seen in theory, simulation, and experiment. 
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Chapter 4: Map-Based Multipactor Theory for Multicarrier 

Operation 

 

4.1 Chapter Overview 

In this chapter, the map-based multipactor theory is generalized to multicarrier 

operation, where several RF carriers (each with a separate amplitude and frequency) 

are present. Here, the lowest-order multicarrier system in a parallel-plate geometry is 

considered, namely two-carrier operation (Sect 4.2). The theoretical predictions are 

verified against particle-in-cell simulations and an example of a two-carrier 

susceptibility diagram that summarizes the influence of the second-carrier on 

multipactor is presented. The content from this chapter is published in Ref. [94].  

 

4.2   Map-Based Multipactor Theory for Two-Carrier Operation 

in a Parallel-Plate Geometry  

4.2.1 Basic Equations and Multipactor Maps  

To illustrate the map-based theory for a two-carrier system, consider parallel-

plate geometry of gap separation D with RF electric-fields –E01sin(ω1t + θ01) and  

-E02sin(ω2t + θ02) (Fig. 4.1a). Here, E01(E02), ω1 = 2πf1(ω2 = 2πf2), and θ01(θ02) are the 

amplitude, frequency, and initial phase, respectively, of the fundamental (second) RF 

carrier. The same normalized variables from Ch. 2 are also used in this chapter: τ = ω1t 
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Figure 4.1: Parallel-plate geometry with gap separation D and fundamental-carrier 

(ERF1) and second-carrier (ERF2) RF electric-fields. Direction of coordinate system for 

an electron emitted from a.) surface-0 and b.) surface-1. 

 

for time, x̅ = x/D for position, v̅ = v/(ω1D) for velocity, and Ē01 = eE01/(mDω1
2) for the  

fundamental carrier amplitude. Here, the parameters  = E02/E01 (representing the ratio 

of the field amplitudes) and n = ω2/ω1 (representing the ratio of the field frequencies) 

are also defined. 

As in Ch. 2, the Lorentz force-law (Eq. 4.1) is integrated to obtain the velocity 

(Eq. 4.2) and position (Eq. 4.3) at a time τ = ω1t for an electron emitted at t = 0 from 

surface-0 with a normal emission velocity v0x:  

         ẍ = (e/m)(E01sin(ω1t + θ01) + E02sin(ω2t + θ02)) ,            (4.1) 

v̅(τ, θ01, θ02) = -Ē01(cos(τ + θ01) – cos(θ01) + (/n)cos(nτ + θ02) - (/n)cos(θ02)) + v̅0x,                         

                                      (4.2) 
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      x̅(τ, θ01, θ02) = -Ē01(sin(τ + θ01) – sin(θ01) – τcos(θ01) + (/n2)sin(nτ + θ02) –  

     (/n2)sin(θ02) - τ(/n)cos(θ02)) + τv̅0x.              (4.3) 

Note that in the absence of the second-carrier (i.e.,  = 0), Eq’s 4.1-4.3 simplify to 

standard single-carrier operation, as given by Eq’s 2.1-2.3. The normalized two-surface 

transit-time τ01 and single-surface transit-time τ00 for an emission from surface-0 are 

found by setting x̅(τ01, θ01, θ02) = 1 and x̅(τ00, θ01, θ02) = 0, respectively: 

0 = -sin(τ01 + θ01) + sin(θ01) + τ01(cos(θ01) + v̅0x/Ē01) - (/n2)sin(nτ01 + θ02) +  

      (/n2)sin(θ02) +  (/n)τ01cos(θ02)  – 1/Ē01,              (4.4) 

0 = -sin(τ00 + θ01) + sin(θ01) + τ00(cos(θ01) + v̅0x/Ē01) - (/n2)sin(nτ00 + θ02) +  

      (/n2)sin(θ02) + (/n)τ00cos(θ02).                 (4.5) 

Recall that the subscripts of τ designate the surface of emission and surface of 

impact, respectively. As before, both transit-times are calculated to account for impacts 

on either surface. As indicated by the normalization of time (i.e., τ = ω1t), τ01 and τ00 

are defined with respect to the fundamental-carrier field. These quantities with respect 

to the second-carrier field are nτ01 and nτ00. As before, no resonance assumptions on 

the transit-times are made to allow for the recovery of all possible modes. 

 For given system parameters (Ē01, , n, v̅0x), the maps relating an emission at 

{θ01, θ02} to the phases at the next impact are given by: 

M1(θ01, θ02|Ē01, , n, v̅0x) = 

{
mod(θ01 + τ00(θ01, θ02|E01, β, n, v

0x
),            2π),    τmin =  τ00(θ01, θ02|E01, β, n, v

0x
)

mod(θ01 + τ01(θ01, θ02|E01, β, n, v
0x

) +  π, 2π),    τmin =  τ01(θ01, θ02|E01, β, n, v
0x

)
 ,  

                             (4.6) 
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M2(θ01, θ02|Ē01, , n, v̅0x) = 

{
mod(θ02 + nτ00(θ01, θ02|E01, β, n, v

0x
),            2π),    τmin =  τ00(θ01, θ02|E01, β, n, v

0x
)

mod(θ02 + nτ01(θ01, θ02|E01, β, n, v
0x

) +  π, 2π),    τmin =  τ01(θ01, θ02|E01, β, n, v
0x

)
 .                  

                    (4.7) 

In Eq’s 4.6 and 4.7, τ01(θ01, θ02|Ē01, , n, v̅0x) and τ00(θ01, θ02|Ē01, , n, v̅0x) are the 

normalized two-surface and single-surface transit-times for an emission at {θ01, θ02} as 

determined by the earliest nonnegative roots of Eq’s 4.4 and 4.5, respectively, while 

τmin is the minimum of the two transit-times (Eq. 2.6). Each RF carrier has a separate 

map, where M1 (Eq. 4.6) corresponds to the map for the fundamental-carrier and M2 

(Eq. 4.7) corresponds to the map for the second-carrier. As two RF phases are tracked, 

the maps are two-dimensional. In general, a k-carrier system is described by k separate 

maps that are each k-dimensional.  

As in maps for single-carrier operation (Eq. 2.7), impact phases resulting from 

two-surface transits are shifted by π to account for the change in sign of the RF fields 

under the flipped coordinate system for the subsequent iteration (see Fig. 4.1b). As the 

transit-times are symmetric, i.e., τ01 = τ10 and τ00 = τ11, Eq.’s 4.6 and 4.7 can guide 

emissions from either surface. This symmetry is broken if a normal DC electric-field 

is present in the gap or if the geometry is coaxial, as shown in Sect. 2.3 and Ch. 3, 

respectively.  

The RF phases at the next impact for an emission at {θ01
0 , θ02

0 } can be 

determined by iterating Eq’s 4.6 and 4.7, i.e., θ01
1  = M1(θ01

0 , θ02
0 ) and  

θ02
1  = M2(θ01

0 , θ02
0 ). In this notation, the superscript of θ refers to the iteration number 

while, as before, the subscript refers to the RF carrier. A second iteration results again 
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in the next pair of impact phases, i.e., θ01
2  = M1(θ01

1 , θ02
1 ) and θ02

2  = M2(θ01
1 , θ02

1 ). As 

described in Ch. 2, the attractor is reached by systematically repeating this process for 

a random sample of emissions. Note that, as two RF phases are tracked, the attractor is 

two-dimensional.  

As demonstrated in Ch. 2, the attractor varies as a function of the system 

parameters (Ē01, , n, v̅0x) and is often displayed on a bifurcation diagram. As the 

attractor is two-dimensional for two-carrier systems, the corresponding bifurcation 

diagrams are 3D (i.e., each RF carrier phase and the varying system parameter). As 3D 

plots are difficult to visualize, bifurcation diagrams are not as conceptually useful for 

two-carrier systems (or multicarrier systems) as for single-carrier systems. Thus, the 

attractor impact phases are not presented on bifurcation diagrams in this study but are 

rather directly used to compute multipactor growth (or decay). This is further justified 

as the primary interest of this analysis is to test the predictivity of the map-based theory 

rather than to analyze specific multipactor dynamics. The procedure of calculating the 

attractor for a two-carrier system is analogous to that in a single-carrier system.  

 

4.2.2 Comparison to Simulation and Two-Carrier Susceptibility 

Diagrams  

To test the map-based theory for two-carrier operation, a simulation scan is 

conducted using the Warp code. As in Ch. 2, a fundamental-carrier amplitude  

E01 = 91.75 kV/m and frequency f1 = ω1/2π = 500 MHz along with a gap separation of 

D = 7 mm are selected (assuming copper material). Here, a second-carrier RF electric-

field is also included in the Warp model. The second-carrier frequency is set to a fixed 
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value of f2 = ω2/2π = 250 MHz (corresponding to n = 0.50). For these fixed values, a 

series of simulations are run, each with a different second-carrier RF amplitude E02. 

The second-carrier amplitudes are chosen so that the parameter  = E02/E01 ranges from 

0.0-2.0, resulting in a range between 0 kV/m and 183.5 kV/m. The simulation 

procedure is identical to that in Ch. 2 and the multipactor exponential growth rate (over 

a fundamental RF period) is computed in a similar way.  

To compare the Warp simulations to the theoretical model, the effective SEE 

yield eff(Ē01, , n) (Eq. 2.12) is calculated as a function of . Recall that this requires 

constructing several maps (each with a different monoenergetic v̅0x), computing the 

corresponding attractors, average SEE yields (Eq. 2.10), and then integrating over an 

emission velocity distribution (Eq. 2.11). For each scan, the other system parameters 

are set to correspond to the simulation parameters, resulting in a constant Ē01 ≈ 0.23358 

and n = 0.50. The maps (Eq’s 4.6 and 4.7) on each emission energy scan are constructed 

from the Newton-Raphson root-finding algorithm described in Sect. 2.2.1.  

Figure 4.2 plots the effective SEE yield predicted by Warp and the map-based 

theory with an emission energy scan using a v̅0xavg corresponding to a normal emission 

energy of W0xavg = 3 eV (i.e., a total average emission energy of 6 eV as v̅y = v̅0x→ 

W0avgtotal = 2W0xavg). Both curves from theory and simulation track closely throughout 

the entire scan. The crossover point, i.e., where the effective SEE yield intercepts unity 

(or equivalently where the exponential growth rate is zero), predicted by Warp and the 

theory is in close agreement. As seen from the scans, the effective SEE yield decreases 

as the strength of the second-carrier field increases. Chapter 2 demonstrated that the 

system attractor form manifests in the exponential growth rate, where low-periodicity 
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Figure 4.2: Effective SEE yield over a fundamental RF period from theory with an 

emission energy scan (red) and Warp simulations (black) as a function of . The 

fundamental RF field amplitude and frequency are E01 = 91.75 kV/m and f1 = 500 MHz, 

respectively, while the gap separation is D = 7 mm (corresponding to Ē01 ≈ 0.23358). 

The RF frequency of the second-carrier is f2 = 250 MHz (corresponding to n = 0.50). 

The corresponding second-carrier field amplitude scan range is from 0 kV/m to  

183.5 kV/m.   
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forms result in large growth rates compared to high-periodicity and chaotic modes.  

Although bifurcation diagrams are not presented in this analysis (for reasons discussed 

earlier), a similar explanation is expected to also apply for two-carrier systems. 

The scan in Fig. 4.2 is done for a fixed second-carrier frequency (i.e., a fixed 

n). Figure 4.3 shows a two-carrier susceptibility diagram, where  and n are both 

simultaneously varied for the same fixed values of E01, ω1, and D selected before  

(corresponding to Ē01 ≈ 0.23358). This diagram is constructed as follows. For each  

(, n) coordinate on the diagram (and the fixed Ē01), the effective SEE yield (Eq. 2.12) 

is computed. The diagram is then color-coded according to the magnitude of the 

effective SEE yield (color-code shown on right of Fig. 4.3).  

Figure 4.3 can be understood as follows. For  ≈ 0, the second-carrier strength 

is too weak to significantly affect the large multipactor growth rate. As  increases, the 

growth rate begins to change as the second-carrier field becomes sufficiently strong to 

influence the multipactor electrons. Additionally, for a sufficiently large , the growth 

rate also varies as a function of the second-carrier frequency (i.e., n). From the diagram, 

it is clear (for this particular choice of E01, ω1, and D) that multipactor growth is 

minimum in the presence of a large second-carrier amplitude () and a low second-

carrier frequency (n). Overall, the second-carrier field alters the electron trajectories, 

transit-times, impact energies, and angles (and hence the multipactor modes and SEE 

yields), in return modifying the growth rate. Such a diagram is a useful tool for device 

design as it identifies second-carrier parameters that mitigate multipactor growth or 

even result in multipactor-free operation. Note that a two-carrier susceptibility diagram 

can be constructed for any combination of E01, ω1, and D.  
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Figure 4.3: Two-carrier susceptibility diagram for E01 = 91.75 kV/m, f1 = 500 MHz, 

and D = 7 mm (corresponding to Ē01 ≈ 0.23358). The diagram is color-coded according 

to the magnitude of the effective SEE yield (color-code shown on right).  
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Chapter 5: Summary and Future Research Directions 

 

 

5.1   Chapter Overview 

This chapter summarizes the major conclusions drawn from this dissertation 

research and the major features (and advantages) of the new theoretical approach  

(Sect. 5.2). Future research directions are then discussed (Sect. 5.3).  

5.2   Summary 

This dissertation presented a new theoretical approach based on nonlinear 

dynamics and chaos theory for the understanding, prediction, and assessment of 

multipactor discharge. The major findings from this research are as follows: 

1.   Multipactor is pervasive: it exists throughout dynamical space but changes 

form between single-resonance, period-n, ping-pong, and chaos (see Fig. 

2.3 for example). Even more, the multipactor form manifests in the 

exponential growth rate, where low-periodicity forms result in larger 

growth rates compared to high-periodicity and chaotic modes (see Fig. 2.10 

for example). The transition to different forms of multipactor is immaterial.  

2. The map-based theory recovers multipactor resonance under appropriate 

limits but also provides information on alternate parameter regions, where 

multipactor manifests in more complex forms (see Fig. 2.5 for example).  
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3. This new theory demonstrates that multipactor persists outside conventional 

resonance boundaries. In Sect. 2.5, the normalized theory was expressed in 

terms of susceptibility diagrams that portray multipactor breakdown 

boundaries as a function of device parameters. Compared to industrial 

design standards, these diagrams identify new parameter spaces susceptible 

to the discharge (see Fig. 2.18). These findings are supported by particle-

in-cell simulations (see Fig. 2.19). In these new regions, multipactor 

manifests in more complex forms, such as ping-pong multipactor. The 

plethora of possible manifestations of multipactor, along with realistic 

spreads in secondary emission energies and angles, may shed light on 

experimental discrepancies with modern-day design standards. 

4. The map-based scans suggest that the multipactor growth rate can be 

reduced by appropriately adjusting the device operation point to a region 

that supports chaos. This is a practical result and can be potentially used to 

design multipactor suppression schemes.   

5. The map-based theory has been illustrated and verified for systems far more 

complex than standard single-carrier operation in a parallel-plate geometry 

(such as coaxial (Ch. 3) and multicarrier (Ch. 4)), demonstrating the 

accuracy of the theoretical model and its versatility as a predictive tool. This 

approach is well-suited to analyze these complex systems as it makes no a 

priori assumptions on the multipactor mode and rapidly scans vast regions 

of parameter space (along with a realistic spread in secondary emission 

energies and angles). This model serves as the first comprehensive theory 
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for multipactor discharge in coaxial and multicarrier systems.  

6. Overall, the map-based theory revolutionizes the universal understanding 

of multipactor dynamics. It identifies stability boundaries and parameter 

regions susceptible to multipactor breakdown more reliably and 

comprehensively than existing models. This model serves as the first 

comprehensive theoretical solution for multipactor discharge.  

 

Furthermore, the main features and advantages of the map-based multipactor 

theory are summarized as follows: 

1. The theory is general in that it makes no a priori resonance assumptions on 

the multipactor mode. Instead, it models multipactor as a complex 

dynamical system, where iterative maps recover global multipactor 

behavior.  

2. The theory is comprehensive as it rapidly scans vast regions of parameter 

space to recover a plethora of multipactor modes. This methodology readily 

incorporates a spread in secondary emission energies and angles, resulting 

in high-accuracy predictions.  

3. The theory is predictive as the findings are in excellent agreement with 

resonance theory, particle-in-cell simulations, industrial design standards, 

and experimental data for a wide range of systems, including parallel-plate, 

coaxial, and multicarrier.   
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4. Compared to particle-tracking codes, this theoretical approach is far more 

computationally efficient, as it does not numerically track individual 

electron trajectories. 

5. The theory is universal in that the same core procedure can be used to study 

different systems by simply changing the underlying equations (as 

demonstrated in Ch.’s 2-4).  

5.3   Future Research Directions 

As with any mathematical model, there is always room for improvement. In this 

work, the theoretical predictions are only as accurate as the SEE emission model. Thus, 

future work includes incorporating more accurate SEE models and secondary emission 

distributions into the theory (as they are uncovered). Additionally, as Ch. 4 expanded 

the theoretical model to a two-carrier system, future work may also include 

incorporating multiple RF carriers into the theory. However, the main challenge in 

doing so is the computational cost required to construct the high-dimensional maps.  

Moreover, the computer programming for the theoretical approach is 

implemented in Python. To enhance the computational efficiency, future work may 

also include implementing the programming in a lower level language, such as C. 

Finally, the ultimate test of this theory is experiment. Thus, future work includes 

designing and conducting experiments to further test the theoretical predictions. In 

particular, the major finding of multipactor suppression with chaos along with the 

susceptibility diagrams constructed in Sect. 2.5 provide a strong theoretical baseline 

for designing future experiments.   
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Appendix A:  Brief Review of Chaos Theory  
 

 

 

 

As the theoretical approach presented in this dissertation is based upon chaos 

theory, this appendix provides a brief overview of this subject. This discussion is not 

intended to be an exhaustive overview but rather a brief discussion of the relevant 

concepts and terminology that pertain to this thesis. The reader is referred to Ref. [95] 

for a thorough introduction to chaos theory.  

 Chaos was perhaps first observed in the year 1880 by Henri Poincare´ during 

his study of the three-body problem. In a general sense, chaos can be understood as 

unpredictable behavior. Chaos in dynamical systems is often associated with a 

sensitivity to initial conditions, where a small perturbation to an initial state results in 

an orbit that diverges exponentially from the initial orbit. Here, a dynamical system is 

defined as a system which evolves with respect to one or several variables (often time). 

A plethora of dynamical systems from a wide range of fields, such as physics, 

engineering, biology, economics, and meteorology, exhibit chaotic behavior. Today, 

chaos theory continues to be an active area of research.  

A dynamical system is often characterized by a map M(x), which is a 

mathematical function that describes the evolution of all possible states of the system 

(denoted by the variable x). As this thesis deals mostly with one-dimensional discrete-

time maps, this discussion is restricted to this particular type of system. Given an initial 

state x0, the states at all subsequent times can be obtained by repeatedly iterating the 
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map, i.e., x1. = M(x0), x2 = M(x1) … xN = M(xN-1). Here, each map application is called 

an iteration while the sequence of iterates {x0, x1, x2 … xN} is called the orbit.  

After a sufficient number of map iterations, the dynamics cease to change and 

orbits converge to the attractor, which is defined as the set states that random orbits 

converge towards. Each attractor has an associated basin of attraction, which is defined 

as the set of states that converge to that attractor. Generally, there are three types of 

attractors for one-dimensional systems: fixed-point, limit cycle, and chaos.  

A fixed-point of a map M is defined as a state that iterates back to itself, i.e., if  

x0 = M(x0), then x0 is a fixed-point. Graphically, fixed-points are identified by 

intersections of the map with the 45° line of unity slope. A fixed-point is stable if 

random orbits converge towards it and unstable if random orbits diverge from it. 

Mathematically, a stable fixed-point xs satisfies |dM(xs)/dx| < 1 while an unstable fixed-

point xus satisfies |dM(xus)/dx| > 1.  

A limit-cycle (period-n) attractor contains n distinct states with the property that 

each state repeats periodically after n map iterations. Note that the special case of  

n = 1 corresponds to a fixed-point attractor. The notion of stability for a limit-cycle 

attractor is similar to that of a fixed-point attractor in that the orbit is stable if random 

states are attracted towards it.  

A chaotic attractor features no observable periodicity or pattern but rather consists 

of a random collection of states. Here, orbits do not get entrapped by a limit-cycle but 

instead visit random states on each map iteration, resulting in an attractor that spans a 

large number of states with no periodicity. This aperiodic behavior is typically referred 

to as chaos.  
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It is often the case that the map of a dynamical system is not only a function of the 

state space but also of system parameters. Thus, as a system parameter changes, so does 

the attractor. In chaos theory, the attractor dynamics as a function of a system parameter 

is often displayed on a bifurcation diagram. A bifurcation diagram is constructed by 

first fixing the parameter of interest to a particular value, then repeatedly advancing a 

random sample of states through the corresponding map, discarding the early iterations 

so as to eliminate the transient dynamics, and then selecting each unique remaining 

state, which constitutes the system attractor. The parameter is then incremented and 

this process is repeated. Thus, a bifurcation diagram is a visual representation of the 

system dynamics as a function of a system parameter. On a typical bifurcation diagram, 

the attractor changes form between fixed-point, limit-cycles, and chaos. The transition 

from a period-n attractor to a period-2n attractor is referred to as a period doubling 

bifurcation. At the transition points between different attractor forms, the preceding 

attractor form becomes unstable while the new attractor form gains stability.  

Finally, as this thesis deals with multipactor dynamics, it is useful to discuss 

these concepts in the context of the multipactor phase maps (Eq. 2.7). A (stable) two-

surface fixed-point attractor with a two-surface transit-time τ01 = N implies an order 

N resonance, as each impact occurs at half-integer multiples of the RF cycle (recall N 

is an odd integer representing the number of RF half-periods between impacts). 

Similarly, a (stable) single-surface fixed-point attractor with a single-surface transit-

time τ00 = M implies an order M resonance, as each impact occurs at full-integer 

multiples of the RF cycle (recall M is an even integer representing the number of full 

RF periods between impacts). A period-n attractor corresponds to a period-n mode, as 
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the impact phase changes periodically between several values. A period-n cycle can be 

either a resonant or non-resonant mode, where the general condition for two-surface 

resonance is given by ∑ τi
n
i=1  = Nπ (or Mπ for single-surface resonance) [59]. In 

particular, a period-n attractor that contains impact phases resulting from both two-

surface and single-surface transits is a ping-pong mode (which can also be resonant 

according to a modified condition stated in Ref.’s [60-61]). Finally, a chaotic attractor 

corresponds to nonresonant multipactor, as impacts occur over a large spread of RF 

phases with no periodicity.  

As shown in this thesis, the bifurcation diagrams depict the many possible 

manifestations of multipactor throughout parameter space. Recall that orbits guided by 

the phase map converge to stable attractor point(s) and are repelled from unstable 

points. Thus, with a sufficient sample of emission phases, the bifurcation diagrams 

recover all stable modes of the multipactor discharge over the entire parameter range. 

This methodology is far more comprehensive than the standard approach of applying 

stability conditions and deriving multipactor boundaries for different known modes 

(such as resonance) [1, 15-16].   
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