
Study of Scalable Declustering Algorithms for Parallel Grid Files �
Bongki Moon Anurag Acharya Joel Saltz

Institute for Advanced Computer Studies and
Department of Computer Science

University of Maryland
College Park, MD 20742fbkmoon, acha, saltzg@cs.umd.edu

Abstract

Efficient storage and retrieval of large multidimensional datasets is an important concern for large-scale
scientific computations such as long-running time-dependent simulations which periodically generate snapshots
of the state. The main challenge for efficiently handling such datasets is to minimize response time for mul-
tidimensional range queries. The grid file is one of the well known access methods for multidimensional and
spatial data. We investigate effective and scalable declustering techniques for grid files with the primary goal
of minimizing response time and the secondary goal of maximizing the fairness of data distribution. The main
contributions of this paper are (1) analytic and experimental evaluation of existing index-based declustering
techniques and their extensions for grid files, and (2) development of a proximity-based declustering algorithm
called minimax which is experimentally shown to scale and to consistently achieve better response time compared
to available algorithms while maintaining perfect disk distribution.

1. Introduction

The need for efficient storage and retrieval of large multidimensional datasets arises in many situations in
scientific computing. Typical examples are long running simulations of time-dependent phenomena which
periodically generate snapshots of the state. The sequence of snapshots is later analyzed and/or visualized, often
repeatedly, for trends and transients. Examples include Direct Simulation Monte Carlo (DSMC) [2], magneto-
hydro dynamics (MHD) simulation of planetary magneto-spheres [28], simulation of a flame sweeping through
a volume [23], airplane wake simulations [18] etc. Volume of data generated per time-step varies from a few
megabytes to a few hundred megabytes and the number of time-steps varies from tens to a few thousands [9, 22].

Frequent operations on these datasets include volume visualization (including animation), detecting transients,
computing trends and averages and composition [9, 22, 29]. For data retrieval, all of these translate to requests for
multidimensional subspace from the dataset, that is, to multidimensional range queries. Most such datasets are
used by a small number of users and the metric of importance is response time. As a result, the main challenge for
efficiently handling such datasets is to minimize response time for multidimensional range queries. An effective
way of minimizing response time for data retrieval is to maximize disk parallelism, that is, to decluster the data
over a disk farm so as to involve as many disks as possible for processing each retrieval. In addition, it is�This work was supported in part by the Advanced Research Projects Agency under contract No. DABT63-94-C-0049 and the Office
of Naval Research under contract No. N00014-94-1-0661. The authors assume all responsibility for the contents of the paper.

1

important to ensure a good utilization of the disk space. In this paper, we investigate effective and scalable data
declustering techniques for multidimensional datasets with the primary goal of minimizing response time and
the secondary goal of maximizing disk space utilization.

Three classes of approaches have been suggested for storage and retrieval of multidimensional datasets:
chunking [25, 26], grid files [21] and tree-based data structures [7, 10]. Chunking is usually tied to a single
application. It divides the data into disjoint subspaces based on the processing requirements of the associated
application and stores the subspaces in an order which directly reflects the structure of this application. It does
not, usually, maintain an explicit index and is not suitable for sparse data. Grid files and tree-based structures
partition the dataset based on the distribution of the data, the goal being to improve performance for multiple
spatial database applications. They are suitable for both sparse and dense data. Grid files partition the dataset into
disjoint subspaces and maintain a grid-based index; tree-based data structures partition the dataset into possibly
overlapping subspaces and build an index tree in which edges represent containment. Both the grid-based and
tree-based data structures allow the use of all or subset of the multiple attributes as independent primary keys.
They have been successfully used for storing multidimensional datasets. In this paper, we have taken a grid-based
approach.

Several index-based declustering schemes have been proposed for Cartesian product files which are similar
to grid files; the primary difference between the two structures is that every subspace in a Cartesian product file
is stored in a separate disk page whereas subspaces in grid files are often merged to conserve space. We extend
the three best-known schemes, disk modulo(DM) [3], fieldwise xor(FX) [15], and Hilbert curve(HCAM) [4] for
grid files. By simulation experiments, we show that the scalability of DM and FX for multidimensional range
queries is limited. That is, as the number of disks is increased beyond a threshold, the response time no longer
decreases. This result is corroborated by an analytical study. The response time for HCAM scales better than
DM or FX, but the difference from the best possible response time becomes larger as the degree of skew in the
data distribution increases.

We present an alternative declustering algorithm based on a proximity measure and present simulation-based
empirical evidence of its greater scalability on both synthetic and real data sets. We have implemented this
scheme on our 16 processor SP-2. Some preliminary results from the experiments on the SP-2 will be presented.

2. Index-based Declustering Algorithms

Several index-based declustering schemes have been proposed for Cartesian product files which are similar
to grid files. In this section, we present extensions of three best-known schemes, disk modulo, fieldwise xor,
and Hilbert curve for grid files. Based on simulation results, we show that the scalability of these schemes for
multidimensional range queries is limited.

The disk modulo (DM) scheme assigns each subspace (or bucket [i1; i2; : : : ; id] in a Cartesian product file) to the
disk unit number (i1+i2+ : : :+id) mod M whereM is the number of disks. It has been shown in [3] that the disk
modulo is strictly optimal for many cases of partial match queries including all partial match queries with only one
unspecified attribute. By partial match queries we mean queries of the form (A1 = a1; A2 = a2; : : : ; Ad = ad)
where for each i � i � d, ai is either a key belonging to the domain of the i-th attribute or is unspecified, and
where the number of unspecified attributes is greater than or equal to one.

The fieldwise xor (FX) scheme replaces the summation operation in the above equation with a bitwise
exclusive-or operation on the binary values of bucket coordinates. This scheme assigns a bucket [i1; i2; : : : ; id]
to the disk unit number (i1 � i2 � : : :� id) mod M . It has been shown that when the number of disks and the
size of each field are power of 2, the set of partial match queries which are optimal for the fieldwise xor scheme
is a superset of those for the disk modulo scheme [15].

The Hilbert curve scheme (HCAM) [4] is based on the idea of space filling curves. A space filling curve
visits all points in a d-dimensional space exactly once and never crosses itself [1]. It can be used to linearize
a set of points (or buckets) in d-dimensional space. The buckets are then assigned to disks in a round robin

2

0 1 2 3 4

0

1

2

3

0

1

2

3

0 1 2 3 4

(a) Cartesian product file (b) Grid file

Figure 1. Structural relationship between Cartesian product files and Grid files

fashion. In other words, the bucket [i1; i2; : : : ; id] is assigned to the disk unit number H(i1; i2; : : : ; id) mod M
where H(i1; i2; : : : ; id) is a function which maps bucket coordinates into Hilbert linear ordering. Faloutsos and
Bhagwat [4] have shown empirically that HCAM outperforms DM and FX for small queries and large number
of disks.

2.1. Extension to Grid files

As mentioned previously, the difference between Cartesian product files and grid files is that every subspace
in a Cartesian product file is stored in a separate data bucket whereas subspaces in grid files are often merged
to conserve space. This implies that subspaces in a Cartesian product file can be uniquely represented by their
indices (i1; i2; : : : ; in); this is not the case in a grid file because multiple subspaces can be merged into a single
disk page. (See Figure 1.)

The index-based declustering algorithms described above assign each subspace to a disk. Since subspaces can
be merged in grid files, conflicting assignments can result. For example, in Figure 1, subspaces (0; 0); (0; 1) and(0; 2) are merged into a single bucket. For three or more disks, all of the schemes described above will assign
them to different disks. Therefore, to extend these index-based declustering schemes to grid files, a tie-breaking
or conflict resolution mechanism of some sort is required. In the following, we present four heuristics for conflict
resolution and compare their performance in terms of response time for range queries.

Random selection assigns a merged region by randomly selecting among conflicting alternatives.

Most frequent is a variation of the random selection heuristic for the case where multiple conflicting alternatives
assign a bucket to the same disk. If there are multiple such disks, it chooses the disk that occurs the most
often in the conflicting mappings. If this fails to break ties, it uses random selection.

Data balance is based on the assumption that frequency with which the disk is accessed depends on the the
number of buckets residing on the disk. It makes its decisions so as to achieve an even data distribution
over all disks.

Area balance is based on the assumption that the frequency with which a disk is accessed depends on the total
area or volume of the subspace corresponding to the buckets residing on it. It makes its decisions so as to
achieve an even distribution of the subspace area or volume over all disks.

As an example, the data balance heuristic can be implemented as follows:

Algorithm 1 (data balance heuristic)

3

Input A set fC(bi) j 1 � i � Ng produced by an index-based declustering algorithm, whereC(bi) = fdi1; : : : ; dipg is a set of assignment alternatives for a bucket bi and N is the
number of buckets.

Output A disk assignment fdisk(bi); : : : ; disk(bN)g.
Step 1. For all j (1 � j � M), B(j) 0 where B(j) is the number of data buckets assigned to

disk j, and M is the number of disks.

Step 2. For all bi such that jC(bi)j = 1, disk(bi) di1; B(di1) B(di1) + 1.

Step 3. For all bi such that jC(bi)j > 1, disk(bi) dik such that B(dik) is minimum (1 � k �jC(bi)j); B(dik) B(dik) + 1.

The area balance heuristic can be implemented similarly. All of these heuristics are of linear cost in the number
of subspaces. All the index-based declustering algorithms described previously are also linear. Therefore, these
heuristics do not change the complexity of the index-based algorithms.

2.2. Experiments

Through simulation experiments, we evaluated the scalability of each of the three index-based declustering
algorithms combined with each of the four conflict resolution heuristics described above. Our simulator reads in
the dataset and declusters it to separate files corresponding to every disk being simulated.

For a given query q, the response time, which is defined as maxMi=1fNi(q)g where Ni(q) is the number of
buckets retrieved from disk i to process q, was used as the primary performance metric. The degree of data
balance was used as a secondary measure of performance. This measure is defined as Bmax �M=Bsum whereBmax = maxMi=1fB(i)g and Bsum =PMi=1 B(i) and B(i) is the number of data buckets assigned to disk i. The
simulator assumes raw disk I/O (that is, no caching by the file system) and no temporal locality in data retrieval
requests. Lastly, the simulator assumes that the time to read a bucket from all the disks is the same.

We used three synthetic datasets in these experiments, one with a uniform distribution of data points and
the other two with different kinds of skew. Each dataset consists of 10,000 data points in 2-dimensional space[0; 2000]� [0; 2000]. The actual grid files generated are shown in Figure 2.

uniform.2d includes uniformly distributed data points. In this grid file, only 4 out of 252 buckets consist of
merged subspaces.

hotspot.2d contains a hot spot in the center of the 2-dimensional region where the density of data is higher.
This data set is generated by overlaying a normally distributed dataset with 5,000 points on a uniformly
distributed dataset with 5,000 points. In this grid file, 169 out of 241 buckets consist of merged subspaces.

correl.2d represents data sets in which attributes are correlated or functionally dependent on each other (tem-
perature and pressure, for instance). The points are in a normal distribution along the diagonal line y = x.
In this grid file, 164 out of 242 buckets consist of multiple subspaces.

The number of disks was varied between 4 and 32, and the bucket size was fixed at 4 kilobytes. For each
configuration (declustering algorithm, conflict resolution, number of disks and dataset), 1000 randomly generated
square range queries were processed and the average of response times was used as the measure of performance.
The centers of the queries are uniformly distributed over the entire data domain. The side lengths of the queries
are governed by a ratio r (0 < r < 1) with respect to the size of the data domain. Specifically, the k-th
dimensional side length of a query (lk) is determined by lk = r1=d �Lk where d is the dimensionality of dataset
and Lk is the length of k-th dimension in the data domain. We ran experiments with three different values of r:
0:01, 0:05 and 0:1. A total of 1044 experiments were run for each value of r.

4

Figure 2. Sample grid files: uniform.2d (left), hot.2d (center) and correl.2d (right)

1

1.5

2

2.5

3

3.5

4

4.5

5 10 15 20 25 30 35

R
es

po
ns

e
tim

e

Number of disks

Conflict resolution heuristics with hot.2d data set

HCAM/R
HCAM/F
HCAM/D
HCAM/A

1

1.5

2

2.5

3

3.5

4

4.5

5 10 15 20 25 30 35

R
es

po
ns

e
tim

e

Number of disks

Conflict resolution heuristics with hot.2d data set

FX/R
FX/F
FX/D
FX/A

Figure 3. Conflict resolution algorithms for hot.2d data set

2.2.1 Results

Due to the limitations of space, we present only a few results, which show typical performance trends for the
different configurations. In all the results presented in this section, the ratio of query size r was 0.05. The
parameter of greatest interest is the number of disks. For comparison, we include the optimal response time,
computed by dividing the average number of buckets accessed by the total number of disks, in all the graphs.

Conflict resolution heuristics Figure 3 compares the performance of the different conflict resolution heuristics
for the hot.2d dataset. For all configurations, data balance had the best response time. The spread between
the performance of different conflict resolution heuristics depended on the declustering algorithm used and the
dataset. The response time of Hilbert curve was relatively insensitive to the choice of conflict resolution heuristic.
The left graph in Figure 3 illustrates this. The response time of the other two declustering schemes are more
sensitive to the choice of the heuristic, FX being more sensitive of the two. The right graph in Figure 3 shows the
performance of all heuristics for FX. Overall, data balance and area balance performed clearly better than the
others with data balance being a little better than area balance. Of the two, data balance is preferable because it
also satisfies the secondary goal of maximizing disk space utilization. In the remainder of this paper, we present
results only for data balance. Note that for the uniform.2d dataset, there are very few conflicts and the choice of
the conflict resolution heuristic was immaterial.

Declustering algorithms Figure 4 compares the performance of the declustering algorithms for theuniform.-
2d, hot.2d and correl.2d datasets respectively. The data balance heuristic was used for conflict resolution

5

1

1.5

2

2.5

3

3.5

4

4.5

5 10 15 20 25 30 35

R
es

po
ns

e
tim

e

Number of disks

Performance of declustering algorithms with uniform.2d data set

DM/D
FX/D

HCAM/D
OPT

1

1.5

2

2.5

3

3.5

4

4.5

5 10 15 20 25 30 35

R
es

po
ns

e
tim

e

Number of disks

Performance of declustering algorithms with hot.2d data set

DM/D
FX/D

HCAM/D
OPT

1

1.5

2

2.5

3

3.5

4

5 10 15 20 25 30 35

R
es

po
ns

e
tim

e

Number of disks

Performance of declustering algorithms with correl.2d data set

DM/D
FX/D

HCAM/D
OPT

Figure 4. Performance of declustering algorithms for uniform.2d (left), hot.2d (center) and
correl.2d (right) datasets

Table 1. Degree of data balance: hot.2d

Declustering number of disks
Methods 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
DM/D 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.09 1.00 1.10 1.22 1.22 1.38
FX/D 1.00 1.00 1.00 1.12 1.24 1.33 1.10 1.14 1.23 1.55 1.55 1.70 1.89 1.67 1.50

HCAM/D 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.09 1.00 1.00 1.11 1.00 1.13

in all cases.
For a small number of disks, DM is better than both FX and HCAM for all three datasets. For theuniform.2d

dataset, it achieves near-optimal performance. As the number of disks grows, however, HCAM outperforms both
DM and FX, the crossover point and the magnitude of the difference depending on the dataset. An important
point to note is that for the large number of disks and skewed datasets, the difference between optimal response
time and HCAM is significant.

For the uniform.2d dataset, as the number of disks grows, the response time of DM and FX decreases only
up to a threshold. As the number of disks grows beyond the threshold, the difference between the performance
of DM and FX and the optimal response time becomes larger. As mentioned earlier, the grid file generated for
this dataset is almost identical to its corresponding Cartesian product file because only a small portion of buckets
contain multiple subspaces. Consequently the performance of the declustering algorithms on this grid file should
be almost identical to their performance on the corresponding Cartesian product file. Also note that even though
the performance saturates for both DM and FX, FX saturates at a lower response time than DM.

We would like to point out that our results are similar to the conclusion drawn by [4] in that the performance
of HCAM is the best for uniformly distributed dataset (uniform.2d). However, our result that DM is almost
always better than FX for a small number of disks conflicts with their conclusion that FX is always better than
DM. They provided no explanation for this result and speculate that it might be a result of an yet-undiscovered
theorem. Given this conflict as well as the results presented in Section 3.3, we speculate that neither of these
techniques strictly outperforms the other.

Table 1 compares the data balance achieved by the three declustering algorithms with data balance heuristic
for the hot.2d dataset. It shows that the degree of data balance depends on the choice of declustering algorithm.
The best data balance was achieved by HCAM, followed by DM and FX in that order. Although we present
results only for even numbers of disks for the hot.2d dataset, we observed the same trend for odd number of
disks and for the correl.2d dataset as well.

From these results, we draw the following conclusions:� Data balance is a definite winner among proposed conflict resolution techniques because it minimizes the

6

response time and maximizes disk space utilization.� For a small number of disks, disk modulo with data balance is the best among all possible combinations of
declustering algorithms and conflict resolution techniques.� For a large number of disks, Hilbert curve with data balance achieves the lowest response time and best
disk space utilization.

To help understand the limited scalability of DM and FX, we analyzed the operation of these algorithms for
Cartesian product files. The next subsection describes our results.

2.2.2 Analytic study of DM and FX for Cartesian product files

We have been able to analytically prove that DM and FX have limited scalability in declustering Cartesian
product files. The analytic results are summarized in the following theorems. The results of these theorems
support the observations made from the simulation experiments. In the following,Rf(M) denotes the expected
response time of an M -disk declustering method f . ROpt(M) is the optimal response time, which may not be
feasible.

Theorem 1 For any 2-dimensional l� l square range query,
(i) disk modulo is strictly optimal if and only ifM � l ^ (� = 0 _ � > M(1�1=�)), where M is the number

of disks and � = l mod M .

(ii) RDM(M) = (ROpt(M) + � � ��2=M� if M � l ^ � 6= 0 ^ � �M(1� 1=�)l if M > l:
Proof. Given in [19].

Theorem 1 gives closed form expressions of response time as well as the necessary and sufficient condition
for the strict optimality of disk modulo algorithm. Theorem 1(i) is more general than Theorem 3 of Li et al. [16]
which essentially states only the first clause. Based on this, they reach the conclusion that disk modulo is optimal
for range queries on Cartesian product files for almost all cases. While this might have been true in the past
when configurations with large number of disks were not usual, it is no longer true. In our experiments on the
uniform dataset (Figure 4(left)), the performance of disk modulo saturates around six disks, and adding more
disks provides no benefit. The position of the threshold depended on the size of the query; the result quoted
above is for a query about one-twentieth the area of the data domain (r = 0:05). In addition, for any M � 3,
Theorem 1(ii) gives a tighter upper bound on the response time thanROpt(M) +M � 2 given in Theorem 4 of
Li et al. [16] when the number of dimensions is two.

Theorem 2 For any 2-dimensional 2m � 2m square range query, the following properties are satisfied:
(i) RFX(2n) = 2m+(m�n) for any n � m,

(ii) 2m�(n�m) � RFX(2n) � 2m for any n > m,
(iii) RFX(2n+1) � 3

4RFX(2n) for any n > m.

Proof. Given in [19].

From property (i) of Theorem 2, it can be shown that fieldwise xor is strictly optimal for any 2m � 2m square
range query if M = 2n and n � m. However, this is not a necessary condition due to the left inequality
of the property (ii). Many examples can be found where fieldwise xor is strictly optimal even when n > m.
Property (iii) of Theorem 2 gives an intuition to the scalability of fieldwise xor declustering algorithm. If a
declustering algorithm has ideal scalability, then it must be the case that ROpt(2n+1) = 1

2ROpt(2n) for any n.

7

Thus, the scalability of fieldwise xor is far from ideal when n > m. As shown by our experiments, the actual
scalability of fieldwise xor is even worse than this theorem suggests.

It is widely believed that Hilbert curve achieves better clustering among other linearization methods such as
column-wise scan, z-curve and Gray coding [5, 11]. We are currently working on the analysis of the scalability
of HCAM.

3. Proximity-based Declustering Algorithm

As we observed in Section 2, there is room for improvement between the response times for HCAM and the
optimal response times, and it tends to grow as the skew in the data distribution increases. While the index-based
algorithms do try to exploit locality in some way, they do not make an explicit attempt to place buckets that
are spatially close to each other on different disks. This section presents and evaluates an algorithm that uses a
proximity measure to try to place neighboring buckets on different disks.

3.1. Proposed Algorithm

This algorithm maps the grid file declustering problem into a graph partitioning problem. The graph is
generated by creating a vertex for every bucket and creating an edge for every pair of buckets. The edges are
weighted by the probability that their adjacent vertices will be accessed together by a query. Declustering forM disks corresponds to an M -way partitioning of this graph. Since our goal is to minimize response time by
maximizing parallelism in disk accesses, buckets (vertices in a graph) that are likely to be accessed together
should be on different disks (subgroups of vertices). This problem is a variant of the well-known Max-Cut
problem, which is known to be NP-complete [8].

Several heuristic algorithms have been proposed for the Max-Cut problem and its analogue, the Min-Cut
problem. They include Recursive Spectral Bisection [27], Kernighan-Lin partitioning algorithm [14] and
similarity-based declustering algorithms [6, 17].

Recursive Spectral Bisection is not suitable for this problem since it assumes unit weights on all edges, and
there appears to be no obvious way to allow arbitrary edge weights. The Kernighan-Lin algorithm does not
have this limitation, but it is a multi-pass algorithm and requires O(N2 � p) disk accesses, where N is the
number of buckets and p is the number of passes. Even though the number of passes p is usually low, there is
no bound on the number of passes [14]. In particular, there is no evidence that it will terminate in a polynomial
number of passes and, as a result, may require an unacceptably high number of disk accesses for declustering.
The similarity graph-based approach proposed by Liu and Shekhar [17] requires no less disk accesses since
Kernighan-Lin algorithm is used to find an initial partition.

The similarity-based algorithms, minimal spanning tree (MST) and short spanning path (SSP), introduced
by Fang et al. [6] eliminate the factor p. They attempt to generate partitions that are similar to each other.
Two groups of points, G1 and G2 are defined to be similar if, for every point u in G1, there exists at least one
point v in G2 such that u is a nearest neighbor of v or v is a nearest neighbor of u. These algorithms have
non-trivial drawbacks: (1) MST does not guarantee that the partitions are balanced in their sizes, which means
some partitions may be impractically large, and (2) SSP avoids this but may produce partitions that are less
similar to each other. This means that disk accesses are less likely to be evenly distributed across multiple disks.

We present a minimax spanning tree algorithm that has the following characteristics: (1) (O(N2)) disk accesses
are required to decluster a grid file withN data buckets; (2) perfectly balanced partitions are generated, i.e., each
disk is assigned at most dN=Me buckets; (3) if a data bucket x is most likely to be accessed together with a data
bucket y, then the likelihood that they are assigned to the same disk is very low.

The key idea of this algorithm is to extend Prim’s minimal spanning tree algorithm [24] to generate M
partitions. Prim’s algorithm expands a minimal spanning tree by incrementally selecting the minimum cost edge
between the vertices already in the tree and the vertices not yet in the tree. This is efficiently implemented by

8

maintaining, for each vertex not in the tree, a minimal cost to the vertices in the tree, and by choosing the edge
whose value is smallest. This selection criterion does not ensure that the increment in the aggregate cost (that
is the sum of all edge weights) due to a newly selected vertex is minimized. Instead, our minimax spanning
tree algorithm uses a minimum of maximum cost criterion. For every vertex that has not yet been selected, we
compute a maximum of all edge weights between it and the vertices already selected. The selection procedure
picks the vertex that has the least such value. This, by itself, does not generate partitions. This is done by
growing M minimax spanning trees and selecting vertices for them in round robin order.

An outline of the algorithm:

Algorithm 2 (Minimax spanning tree algorithm)

Input A weighted complete graphG= (V;E; C)with costs on its edges whereV = fv1; : : : ; vNg,E = f(vi; vj) j 1 � i; j � Ng and C = fc(vi; vj) j 1 � i; j � Ng. V and C represent a
set of data buckets in a grid file and a set of probability values associated with every pair
of buckets, respectively. The number of disks is M .

Output A disk assignment fdisk(v1); : : : ; disk(vN)g.
Phase 1. [Random seeding] Let A1 = fv1g; : : : ; AM = fvMg and B = V � fv1; : : : ; vMg, wherefv1; : : : ; vMg is a subset of V consisting of M randomly selected mutually distinct vertices.

Phase 2. [Expanding] ConstructM spanning trees starting from theM seeds by adding vertices fromB into A1; : : : ; AM in round robin way as follows:

1. For all x 2 B and i (1 � i �M), MAXx(i) c(x; vi); K 1.

2. Find a vertex y 2 B such that MAXy(K) = minfMAXx(K) for all x 2 Bg. Then,AK AK [fyg; B B � fyg.
3. For all x 2 B, MAXx(K) maxfc(y; x);MAXx(K)g.
4. K K + 1. If K > M , then K 1.

5. If B 6= ;, go to step 2.

6. For all v 2 V; disk(v) j if v 2 Aj (1 � j �M).
The algorithm terminates with the partitions A1; A2 : : : ; AM (Ai \Aj = ; for 1 � i; j �M), each of which

corresponds a subset of data buckets assigned to a disk. Since the vertices are assigned in a round-robin manner,
the maximum number of buckets assigned to a disk is dN=Me. This algorithm does not guarantee that two
buckets closest to each other are always distributed over different disks. However, results presented in the next
section indicate that this happens rarely (See Table 2 and Table 3). To complete the description of the algorithm,
we need to specify a way to generate the edge weights. We have chosen the proximity index proposed by Kamel
and Faloutsos [12]. The alternative we considered, Euclidean distance is suitable for point objects that occupy
zero area in the problem space but does not capture the distinction among pairs of partially overlapped spatial
objects such as grid buckets1. The proximity index of the two d-dimensional rectangular regions R and S can be
calculated as: Proximity(R; S) = dYi=1

Proximity(Ri; Si)Proximity(Ri; Si) = ((1 + 2� �i)=3 if Ri and Si intersect(1� ∆i)2=3 if Ri and Si are disjoint:
1By partially overlapped objects we mean that projected images of two disjoint d-dimensional objects intersect on at least any one ofd dimensions.

9

10

20

30

40

50

60

70

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

N
um

be
r

of
 m

ol
ec

ul
es

Cell number

Molecules per cell in DSMC.3d data set

Molecules/Cell

0 50 100 150 200 250 300 350 400
0

20

40

60

80

100

120

140

160

180

200

Figure 5. Spatial distribution of records in datasets DSMC.3d (left) and stock.3d (right)

Here, Ri and Si are projected images of R and S on the i-th dimension. The numbers �i and ∆i are the ratio of
the length of intersection of and distance between Ri and Si to the length of the entire grid region along the i-th
dimension. Obviously, both �i and ∆i are between 0 and 1.

3.2. Experiments

We used the same simulation procedure as used for the experiments described in the previous section to
compare the performance of the minimax spanning tree algorithm with the extended index-based declustering
algorithms discussed in Section 2. The data balance conflict resolution heuristic was used for all three index-
based algorithms. In addition, one of the similarity-based algorithms, SSP, mentioned previously was also
included in the experiments. Three query sizes were used: r = 0:01; 0:05 and 0.1. For information about the
simulation procedure and the experimental setup, see Section 2.2.

We used two real three-dimensional snapshot datasets and the hot.2d synthetic dataset as benchmarks.

DSMC.3d Direct Simulation Monte Carlo (DSMC) is a technique for modelling rarefied gas dynamics via direct
particle simulation which has been widely used in aerospace applications [2]. This data set is generated
from a 3-dimensional DSMC simulation which runs on parallel machines [20]. The dataset consists of
one snapshot of a three-dimensional volume. There are 52857 particle records and they are non-uniformly
distributed. The x, y and z-coordinates of particles are used as the primary indices. The grid file for this
dataset contains 16� 12� 8 = 1536 subspaces which are merged into 444 buckets.

stock.3d contains stock market data (available on an experimental basis from ftp://ftp.ai.mit.edu-
/pub/stocks/results). It includes information about 383 different stocks from 08/30/93 to 09/15/95.
The identifier of the stock, its final price for the day and the date are used as the independent primary indices.
There are 127,026 stock quote records. The grid file for this dataset contains 32�22�9 = 6336 subspaces
which are merged into 1218 buckets.

Figure 5 illustrates the distribution of data for each dataset – a histogram of molecule population per each fixed
volume of cell in physical space for DSMC.3d and a diagram of stock id (x-axis) vs. price slice (y-axis) for
stock.3d.

3.3. Results

Figure 6 compares the performance of the five algorithms on the hot.2d, DSMC.3d and stock.3d datasets
respectively. These graphs correspond to the ratio of query size r = 0:01. As Figure 5 illustrates, the portion of

10

1

1.2

1.4

1.6

1.8

2

2.2

4 8 12 16 20 24 28 32

R
es

po
ns

e
tim

e

Number of disks

Performance of declustering algorithms with hot.2d data set

DM/D
FX/D

HCAM/D
SSP

MinMax
OPT

1

1.5

2

2.5

3

3.5

4

4 8 12 16 20 24 28 32

R
es

po
ns

e
tim

e

Number of disks

Performance of declustering algorithms with DSMC.3d data set

DM/D
FX/D

HCAM/D
SSP

MinMax
OPT

1

2

3

4

5

6

4 8 12 16 20 24 28 32

R
es

po
ns

e
tim

e

Number of disks

Performance of declustering algorithms with STOCK.3d data set

DM/D
FX/D

HCAM/D
SSP

MinMax
OPT

Figure 6. Performance comparison for hot.2d (left), DSMC.3d (center) and stock.3d (right)
datasets

Table 2. The number of closest pairs assigned to the same disk: DSMC.3d

Declustering number of disks
Methods 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
DM/D 36 41 29 34 41 38 22 22 28 35 34 31 30 30 30
FX/D 70 76 53 36 46 40 29 29 29 29 29 29 29 29 29

HCAM/D 56 32 16 15 4 11 0 4 7 3 1 6 6 2 0
SSP 17 12 5 4 8 2 3 5 2 2 3 0 2 0 2

MiniMax 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

uniformly distributed data of DSMC.3d is higher than that of hot.2d. This explains reason that the response
time curves of index-based declustering techniques for the DSMC.3d are flattened earlier than for the hot.2d
dataset. As for the stock.3d dataset, while both the date vs. stock id slice and date vs. price slice are uniformly
distributed, the stock id vs. price slice is not uniformly distributed and consists of a series of hot-spots, each
corresponding to an individual stock over a time period. Due to the nature of stock data, this dataset has a greater
likelihood of being correlated than DSMC.3d. We believe that it has characteristics similar to both the hot.2d
and the correl.2d datasets.

The minimax algorithm consistently achieves a smaller response time than all the other algorithms (with a few
exceptions when the number of disks is small). SSP achieves the second best performance but HCAM with data
balance comes quite close, in particular as the number of disks is increased. DM and FX come distant fourth
and fifth. These results provide additional evidence for the limited scalability of DM and FX. Neither DM nor
FX strictly dominates the other.

Tables 2 and 3 tabulate the number of closest pairs of buckets that are mapped to the same disk by the different
algorithms. They show that this number is rarely above zero for the minimax algorithm for the 52K records
DSMC.3d dataset as well as the 120K records stock.3d dataset. This provides evidence that the algorithm
achieves a distribution quite close to optimal. Of the others, DM and FX have a consistent high number of closest
pairs mapped to the same disk. SSP achieves the second lowest numbers but rarely achieves zero, in particular
for larger datasets.

3.4. Effect of change in query size

All the results and analysis presented as yet has been concerned with scalability with respect to number of disks.
The query size has been held constant. Figure 7 shows how change in the query size affects the performance
of declustering algorithms in two aspects: response time (left) and speedup (right). Since HCAM with data
balance dominates all other index-based algorithms, we compare its performance with that of minimax. Three
query sizes were used: r = 0:01; 0:05 and 0.1. We selected the stock.3d dataset as benchmark. The speedup

11

Table 3. The number of closest pairs assigned to the same disk: stock.3d

Declustering number of disks
Methods 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
DM/D 185 150 154 134 112 125 135 115 128 121 118 118 132 108 96
FX/D 232 253 194 208 202 210 187 191 196 181 165 177 158 163 156

HCAM/D 199 106 63 32 30 27 4 20 26 13 20 9 6 11 2
SSP 109 61 52 37 27 36 25 16 17 12 15 14 11 8 14

MiniMax 10 2 1 1 3 1 0 0 0 0 0 0 1 0 0

2

4

6

8

10

12

14

16

18

4 8 12 16 20 24 28 32

R
es

po
ns

e
tim

e

Number of disks

Effects of query sizes for stock.3d data set

HCAM/w01
MinMax/w01
HCAM/w05

MinMax/w05
HCAM/w10

MinMax/w10

1

2

3

4

5

4 8 12 16 20 24 28 32

S
pe

ed
up

Number of disks

Effects of query sizes for stock.3d data set

HCAM/w01
MinMax/w01
HCAM/w05

MinMax/w05
HCAM/w10

MinMax/w10

Figure 7. Effects of query sizes for stock.3d dataset: response time and speedup

is computed by dividing the response time from M disks by the response time from four disks (the smallest
configuration in our experiments). Obviously, minimax is better than Hilbert curve in both metrics in all query
sizes examined. There is a tendency that the relative performance benefit of minimax over Hilbert curve grows
as the size of query decreases.

3.5. Experiments on shared-nothing architectures

We implemented parallel grid files and related access methods on a 16-processor IBM SP-2, which has a
typical shared-nothing architecture in which each processing node owns local memory and local disks, and
communicates each other by message passing. We adopted Single-Program-Multiple-Data (SPMD) [13] as a
model of parallelism; one of the participating processors is chosen as a coordinator and the other processors are
called workers. We assumed each processor owns only one disk to simplify the model of parallelism.

Data buckets of a grid file are distributed over all the participating processors’ local disks; the scale and
directory of the grid file are stored only on the local disk of the coordinator. (Note that the coordinator has a dual
role both as a coordinator and as a worker.) Whenever a query arrives, the coordinator processor translates the
query into a set of block requests which in turn are shipped to proper worker processors which own the requested
disk blocks. Then the worker processors access the requested disk blocks and send the set of qualified records
back to the coordinator processor.

We loaded a 4-dimensional grid file with 3 million records of particles generated by a DSMC particle simulation.
The dataset consists of 59 snapshots of a 3-dimensional volume and the four spatio-temporal coordinates were
used as primary indices. The resulting grid file was 163 mega-bytes and contained 7� 28� 21� 39 = 160524
subspaces which were merged into 19956 disk buckets of size 8 KB each. (In other words, the temporal dimension
were divided into 7 partitions, the x-dimension were divided into 28 partitions and so on.) We used the minimax
declustering algorithm to partition the grid file on 4, 8 and 16 nodes of the SP2.

Table 4 presents the experimental results from animation-type of queries. To visualize (or animate) the particle

12

Table 4. Times to process animation-type of queries on IBM SP2

response time by definition communication time elapsed time
Processors (blocks fetched) (seconds) (seconds)

4 202176 5.47 94.57
8 105755 5.78 59.09

16 56451 7.49 40.79

simulation for a given time period, for each time step we issue a series of range queries which in the aggregate
covers the entire 3-dimensional volume. Like the experiments described previously, the side lengths of the spatial
dimensions of the queries are governed by a ratio r. In other words, the size of each query was rLx�rLy�rLz�1,
where Lx; Ly and Lz are the length of x; y and z dimensions of data domain, respectively. In these experiments,
we used r = 0:1. Thus, the total number of queries processed is approximately 10� 59 (time steps) = 590. The
response time in the second column of the table was computed by adding up the response times measured in the
number of disk blocks fetched to process individual queries (as defined in Section 2.2). Note that caching effects
come into play in this experiment because 59 snapshots were divided into only 7 partitions and it is very likely
that the same disk blocks are fetched repeatedly in many queries retrieving consecutive snapshots.

Table 5. Times to process randomly generated range queries on IBM SP2

response time by definition communication time elapsed time
Processors query ratio (blocks fetched) (seconds) (seconds)

4 0.01 7145 2.74 34.39
0.05 14766 4.26 52.93
0.10 19688 5.69 64.16

8 0.01 3824 1.53 19.82
0.05 7694 5.25 29.59
0.10 10191 7.63 33.33

16 0.01 2066 2.24 9.92
0.05 4037 3.06 12.96
0.10 5333 4.22 15.27

We carried out another set of experiments to measure the performance of the parallel grid file in processing
random range queries. Table 5 presents the results from processing 100 randomly generated 4-dimensional range
queries. We ran the experiments with three different values of r, 0:01, 0:05 and 0:1. Note that the communication
overhead increases as the value of r becomes large for a fixed number of processors. This is because the size of
answer sets tends to grow as the size of the range queries becomes large.

4. Conclusions and Future Work

The minimax algorithm proposed in this paper scales well and consistently achieves a better response time
than all the other algorithms (with a few exceptions when the number of disks is small). It also achieves perfect
data balance and maximizes disk space utilization. Furthermore, it rarely maps buckets that are close in the
data space to the same disk indicating that the distributions it generates are probably quite close to the optimal
distribution. Its complexity, however, is O(N2).

SSP achieves the second best performance but HCAM with data balance comes quite close, in particular as
the number of disks is increased. This is true for both response time as well as the fairness of the data distribution.

13

However, as the data set size increases, the fairness of the distribution of both these schemes can drop. Their
respective complexities are O(N2) and O(N).

DM and FX lag far behind in performance. For both synthetic and real datasets, their performance saturates
after a relatively small number of disks. The number of disks at which the performance saturates depends on the
size of the query. In addition to simulation results presented in this paper, we have analytically shown that as
the number of disks grows for a fixed query size, the performance of both DM and FX saturates. We have also
established other conditions under which the performance of these well-known techniques does not scale. We
have not been able to establish if either of these techniques dominates the other. Based on our simulation results,
we speculate that neither dominates in all situations. Their complexities are O(N).

We have implemented this scheme on our 16 processor SP-2 with 112 disks (seven disks per processor) and are
in the process of evaluating its performance on two large data sets consisting of snapshots from DSMC and MHD
respectively, both of which are time-dependent scientific simulations. Some preliminary results were presented
in this paper. We will continue to work on various access patterns such as particle tracing with larger datasets.

References

[1] T. Bially. Space-filling curves : Their generation and their application to bandwidth reduction. IEEE Transactions on
Information Theory, IT-15(6):658–664, Nov. 1969.

[2] G. A. Bird. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon Press, Oxford, 1994.
[3] H. C. Du and J. S. Sobolewski. Disk allocation for Cartesian product files on multiple-disk systems. ACM Trans.

Database Syst., 7(1):82–101, Mar. 1982.
[4] C. Faloutsos and P. Bhagwat. Declustering using fractals. In the 2nd International Conference on Parallel and

Distributed Information Systems, pages 18–25, San Diego, CA, Jan. 1993.
[5] C. Faloutsos and S. Roseman. Fractals for secondary key retrieval. In the 8th ACM SIGACT-SIGMOD-SIGART

Symposium on Principles of Database Systems, Philadelphia, PA, Mar. 1989.
[6] M. T. Fang, R. C. T. Lee, and C. C. Chang. The idea of de-clustering and its applications. In Proceedings of the 12th

VLDB Conference, pages 181–188, Kyoto, Japan, 1986.
[7] R. A. Finkel and J. L. Bentley. Quad-Trees - a data structure for retrieval on composite keys. Acta Informatica, 4:1–9,

1974.
[8] M. R. Garey and D. S. Johnson. Computers and Intractability. W. H. Freeman and Company, New York, 1979.
[9] C. Goodrich. Personal communication, July 1995.

[10] A. Guttman. R-Trees: A dynamic index structure for spatial searching. In Proceedings of the 1984 ACM-SIGMOD
Conference, pages 47–57, Boston, MA, June 1984.

[11] H. V. Jagadish. Linear clustering of objects with multiple attributes. In Proceedings of the 1990 ACM-SIGMOD
Conference, pages 332–342, Atlantic City, NJ, May 1990.

[12] I. Kamel and C. Faloutsos. Parallel R-trees. In Proceedings of the 1992 ACM-SIGMOD Conference, pages 195–204,
San Diego, CA, June 1992.

[13] A. Karp. Programming for parallelism. IEEE Computer, 20(5):43–57, May 1987.
[14] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs. Bell System Technical Journal,

49(2):291–307, Feb. 1970.
[15] M.-H. Kim and S. Pramanik. Optimal file distribution for partial match retrieval. In Proceedings of the 1988

ACM-SIGMOD Conference, pages 173–182, Chicago, IL, June 1988.
[16] J. Li, J. Srivastava, and D. Rotem. CMD: A multidimensional declustering method for parallel database systems. In

Proceedings of the 18th VLDB Conference, pages 3–14, Vancouver, British Columbia, Canada, 1992.
[17] D.-R. Liu and S. Shekhar. A similarity graph-based approach to declustering problems and its application towards

parallelizing grid files. In the 11th Inter. Conference on Data Engineering, pages 373–381, Taipei, Taiwan, Mar. 1995.
[18] K.-L. Ma and Z. Zheng. 3D visualization of unsteady 2D airplane wake vortices. In Proceedings of Visualization’94,

pages 124–31, Oct 1994.
[19] B. Moon. Scalability analysis of declustering methods for Cartesian product files. Technical Report CS-TR-3590,

University of Maryland, Department of Computer Science and UMIACS, College Park, MD, Jan. 1996.
[20] B. Moon and J. Saltz. Adaptive runtime support for direct simulation Monte Carlo methods on distributed memory

architectures. In Proceedings of the Scalable High Performance Computing Conference (SHPCC-94), pages 176–183,
Knoxville, TN, May 1994.

14

[21] J. Nievergelt and H. Hinterberger. The Grid File: An adaptive, symmetric multikey file structure. ACM Trans.
Database Syst., 9(1):38–71, Mar. 1984.

[22] G. Patnaik. Personal communication, September 1995.
[23] G. Patnaik, K. Kailasnath, and E. Oran. Effect of gravity on flame instabilities in premixed gases. AIAA Journal,

29(12):2141–8, Dec 1991.
[24] R. C. Prim. Shortest connection networks and some generalizations. Bell System Technical Journal, 36(11):1389–1401,

Nov. 1957.
[25] S. Sarawagi and M. Stonebraker. Efficient organizations of large multidimensional arrays. In Proceedings of the Tenth

International Conference on Data Engineering, February 1994.
[26] K. E. Seamons and M. Winslett. Physical schemas for large multidimensional arrays in scientific computing ap-

plications. In Proceedings of the Seventh International Working Conference on Scientific and Statistical Database
management, pages 218–227, September 1994.

[27] H. D. Simon. Partitioning of unstructured problems for parallel processing. In Proceedings of the Conference on
Parallel Methods on Large Scale Structured Analysis and Physics Applications. Pergammon Press, 1991.

[28] T. Tanaka. Configurations of the solar wind flow and magnetic field around the planets with no magnetic field:
calculation by a new MHD. Jounal of Geophysical Research, 98(A10):17251–62, Oct 1993.

[29] R. Wilmoth. Personal communication, March 1995.

15

