Study of Scalable Declustering Algorithms for Parallel Grid Files*

Bongki Moon Anurag Acharya Joel Saltz

Institute for Advanced Computer Studies and
Department of Computer Science
University of Maryland
College Park, MD 20742
{bkmoon, acha, saltz} @cs.umd.edu

Abstract

Efficient storage and retrieval of large multidimensional datasets is an important concern for large-scale
scientific computations such as long-running time-dependent simulationswhich periodically generate snapshots
of the state. The main challenge for efficiently handling such datasets is to minimize response time for mul-
tidimensional range queries. The grid file is one of the well known access methods for multidimensional and
spatial data. We investigate effective and scalable declustering techniques for grid files with the primary goal
of minimizing response time and the secondary goal of maximizing the fairness of data distribution. The main
contributions of this paper are (1) analytic and experimental evaluation of existing index-based declustering
techniques and their extensions for grid files, and (2) development of a proximity-based declustering algorithm
called minimaxwhich isexperimentally shown to scal eand to consistently achieve better responsetime compared
to available algorithms while maintaining perfect disk distribution.

1. Introduction

The need for efficient storage and retrieval of large multidimensional datasets arises in many situations in
scientific computing. Typica examples are long running simulations of time-dependent phenomena which
periodically generate snapshots of the state. The sequence of snapshotsis later analyzed and/or visualized, often
repeatedly, for trends and transients. Examples include Direct Simulation Monte Carlo (DSMC) [2], magneto-
hydro dynamics (MHD) simulation of planetary magneto-spheres [28], simulation of a flame sweeping through
avolume [23], airplane wake simulations [18] etc. Volume of data generated per time-step varies from a few
megabytesto afew hundred megabytes and the number of time-steps varies from tensto afew thousands[9, 22].

Frequent operations on these datasets include volumevisualization (including animation), detecting transients,
computing trends and averages and composition[9, 22, 29]. For dataretrieval, all of thesetrangateto requestsfor
multidimensional subspace from the dataset, that is, to multidimensiona range queries. Most such datasets are
used by asmall number of users and the metric of importanceisresponsetime. Asaresult, themain challengefor
efficiently handling such datasets is to minimizeresponse timefor multidimensional range queries. An effective
way of minimizing response time for dataretrieval isto maximize disk parallelism, that is, to decluster the data
over a disk farm so as to involve as many disks as possible for processing each retrieval. In addition, it is

*Thiswork was supported in part by the Advanced Research Projects Agency under contract No. DABT63-94-C-0049 and the Office
of Naval Research under contract No. N00014-94-1-0661. The authors assume all responsibility for the contents of the paper.

important to ensure a good utilization of the disk space. In this paper, we investigate effective and scalable data
declustering techniques for multidimensional datasets with the primary goal of minimizing response time and
the secondary goal of maximizing disk space utilization.

Three classes of approaches have been suggested for storage and retrieval of multidimensional datasets:
chunking [25, 26], grid files [21] and tree-based data structures [7, 10]. Chunking is usually tied to a single
application. It divides the data into disjoint subspaces based on the processing requirements of the associated
application and stores the subspaces in an order which directly reflects the structure of this application. It does
not, usualy, maintain an explicit index and is not suitable for sparse data. Grid files and tree-based structures
partition the dataset based on the distribution of the data, the goa being to improve performance for multiple
spatial database applications. They are suitablefor both sparse and densedata. Grid files partition the dataset into
disjoint subspaces and maintain a grid-based index; tree-based data structures partition the dataset into possibly
overlapping subspaces and build an index tree in which edges represent containment. Both the grid-based and
tree-based data structures allow the use of all or subset of the multiple attributes as independent primary keys.
They have been successfully used for storing multidimensional datasets. In thispaper, we havetaken agrid-based
approach.

Severa index-based declustering schemes have been proposed for Cartesian product files which are similar
to grid files; the primary difference between the two structuresis that every subspace in a Cartesian product file
isstored in a separate disk page whereas subspacesin grid files are often merged to conserve space. We extend
the three best-known schemes, disk modulo(DM) [3], fieldwise xor (FX) [15], and Hilbert curve(HCAM) [4] for
grid files. By simulation experiments, we show that the scalability of DM and FX for multidimensiona range
gueriesislimited. That is, as the number of disksisincreased beyond athreshold, the response time no longer
decreases. Thisresult is corroborated by an analytical study. The response time for HCAM scales better than
DM or FX, but the difference from the best possible response time becomes larger as the degree of skew in the
data distribution increases.

We present an aternative declustering algorithm based on a proximity measure and present simulation-based
empirical evidence of its greater scalability on both synthetic and real data sets. We have implemented this
scheme on our 16 processor SP-2. Some preliminary results from the experiments on the SP-2 will be presented.

2. Index-based Declustering Algorithms

Severa index-based declustering schemes have been proposed for Cartesian product files which are similar
to grid files. In this section, we present extensions of three best-known schemes, disk modulo, fieldwise xor,
and Hilbert curve for grid files. Based on simulation results, we show that the scalability of these schemes for
multidimensional range queriesis limited.

Thediskmodul o (DM) scheme assignseach subspace (or bucket [i1, iz, . . ., i;] inaCartesian product file) tothe
disk unitnumber (i14i2+. . .+174) mod M where M isthe number of disks. It hasbeen shownin[3] that thedisk
moduloisstrictly optimal for many casesof partial match queriesincluding all partial match querieswith only one
unspecified attribute. By partial match queries we mean queries of theform (A1 = a1, A2 = ag, ..., Aqg = aq)
wherefor each ¢ < ¢ < d, «a; isether akey belonging to the domain of the :-th attribute or is unspecified, and
where the number of unspecified attributesis greater than or equal to one.

The fieldwise xor (FX) scheme replaces the summation operation in the above equation with a bitwise
exclusive-or operation on the binary values of bucket coordinates. This scheme assigns a bucket [i1, iz, . . ., i4]
to the disk unit number (i1 $ i2 % ... & ¢g) mod M. It has been shown that when the number of disks and the
size of each field are power of 2, the set of partial match queries which are optimal for the fieldwise xor scheme
isasuperset of those for the disk modulo scheme [15].

The Hilbert curve scheme (HCAM) [4] is based on the idea of space filling curves. A space filling curve
visits al pointsin a d-dimensiona space exactly once and never crosses itself [1]. It can be used to linearize
a set of points (or buckets) in d-dimensional space. The buckets are then assigned to disks in around robin

2

o o]
1 1
2 2
3 3
(a) Cartesian product file (b) Gridfile

Figure 1. Structural relationship between Cartesian product files and Grid files

fashion. In other words, the bucket [i1, 72, . . ., i4] iSassigned to the disk unit number H (i1, i2,...,1q) mod M
where H (i1, 12, . . ., 14) isafunction which maps bucket coordinates into Hilbert linear ordering. Faloutsos and
Bhagwat [4] have shown empiricaly that HCAM outperforms DM and FX for small queries and large number
of disks.

2.1. Extension to Grid files

As mentioned previously, the difference between Cartesian product files and grid files is that every subspace
in a Cartesian product file is stored in a separate data bucket whereas subspaces in grid files are often merged
to conserve space. Thisimplies that subspacesin a Cartesian product file can be uniquely represented by their
indices (i1, 12, .. .,1,); thisisnot the case in a grid file because multiple subspaces can be merged into asingle
disk page. (See Figure 1.)

The index-based declustering a gorithms described above assign each subspace to adisk. Since subspaces can
be merged in grid files, conflicting assignments can result. For example, in Figure 1, subspaces (0, 0), (0, 1) and
(0, 2) are merged into a single bucket. For three or more disks, all of the schemes described above will assign
them to different disks. Therefore, to extend these index-based declustering schemesto grid files, atie-breaking
or conflict resolution mechanism of some sortisrequired. In thefollowing, we present four heuristicsfor conflict
resolution and compare their performance in terms of response timefor range queries.

Random selection assigns a merged region by randomly selecting among conflicting aternatives.

Most frequent isavariation of therandom sel ection heuristic for the case where multiple conflicting alternatives
assign a bucket to the same disk. If there are multiple such disks, it chooses the disk that occurs the most
often in the conflicting mappings. If thisfailsto break ties, it uses random selection.

Data balance is based on the assumption that frequency with which the disk is accessed depends on the the
number of buckets residing on the disk. It makes its decisions so as to achieve an even data distribution
over all disks.

Area balance is based on the assumption that the frequency with which adisk is accessed depends on the total
area or volume of the subspace corresponding to the bucketsresiding on it. It makes its decisions so as to
achieve an even distribution of the subspace area or volume over all disks.

As an example, the data balance heuristic can be implemented as follows:

Algorithm 1 (data balance heuristic)

Input Aset {C(b;) | 1 < i < N} produced by an index-based declustering algorithm, where
C(b;) = {diy,...,d;,} isa set of assignment alternatives for a bucket b; and N is the
number of buckets.

Output Adiskassignment {disk(b;),...,disk(by)}.

Stepl. Forall j (1< j< M), B(j)— O0where B(j) isthe number of data buckets assigned to
disk j, and M isthe number of disks.

Step 2. For all b; such that |C(b2)| =1, dlsk(bz) — dil; B(dil) — B(dil) + 1.

Step 3. For all b; such that |C'(b;) > 1, disk(b;) — d;, suchthat B(d;,) isminimum (1 < k <
€ (0]); B(dy,) — B(di,) + 1.

Thearea balance heuristic can beimplemented similarly. All of theseheuristicsareof linear cost in the number
of subspaces. All theindex-based declustering a gorithms described previously are aso linear. Therefore, these
heuristics do not change the compl exity of the index-based algorithms.

2.2. Experiments

Through simulation experiments, we evaluated the scalability of each of the three index-based declustering
algorithms combined with each of the four conflict resolution heuristics described above. Our simulator readsin
the dataset and declustersit to separate files corresponding to every disk being simulated.

For a given query ¢, the response time, which is defined as max, { N:(¢)} where N;(q) is the number of
buckets retrieved from disk 7 to process ¢, was used as the primary performance metric. The degree of data
balance was used as a secondary measure of performance. This measureis defined as B, X M/ By, Where
Biae = maxM {B(i)} and B, = Y-, B(i) and B(i) isthe number of data buckets assigned to disk i. The
simulator assumes raw disk 1/O (that is, no caching by thefile system) and no temporal locality in data retrieval
requests. Lastly, the simulator assumesthat the time to read a bucket from al the disksisthe same.

We used three synthetic datasets in these experiments, one with a uniform distribution of data points and
the other two with different kinds of skew. Each dataset consists of 10,000 data pointsin 2-dimensional space
[0, 2000] x [0, 2000]. The actual grid files generated are shown in Figure 2.

uniform.2d includes uniformly distributed data points. In this grid file, only 4 out of 252 buckets consist of
merged subspaces.

hotspot.2d contains a hot spot in the center of the 2-dimensiona region where the density of data is higher.
This data set is generated by overlaying a normally distributed dataset with 5,000 points on a uniformly
distributed dataset with 5,000 points. In thisgrid file, 169 out of 241 buckets consist of merged subspaces.

correl.2d represents data sets in which attributes are correlated or functionally dependent on each other (tem-
perature and pressure, for instance). The pointsare in anormal distribution aong the diagonal liney = .
Inthisgridfile, 164 out of 242 buckets consist of multiple subspaces.

The number of disks was varied between 4 and 32, and the bucket size was fixed at 4 kilobytes. For each
configuration (declustering algorithm, conflict resol ution, number of disksand dataset), 1000 randomly generated
square range queries were processed and the average of response times was used as the measure of performance.
The centers of the queries are uniformly distributed over the entire data domain. The side lengths of the queries
are governed by aratio r (0 < r < 1) with respect to the size of the data domain. Specificaly, the &-th
dimensional side length of aquery (I;,) isdetermined by I;, = /¢ x L, where d isthe dimensionality of dataset
and L, isthe length of k-th dimension in the data domain. We ran experiments with three different values of r:
0.01,0.05and 0.1. A tota of 1044 experiments were run for each value of r.

4

Figure 2. Sample grid files: uni f orm 2d (left), hot . 2d (center) and correl . 2d (right)

Conflict resolution heuristics with hot.2d data set Conflict resolution heuristics with hot.2d data set
T T T T T T T T T T T
HCAM/R ——
45 HCAM/F -+ T 45
4 HCAM/D -&---
& HCAM/A -

Response time
Response time

.
5 10 15 20 25 30 35 5 10 15 20 25 30 35
Number of disks Number of disks

Figure 3. Conflict resolution algorithms for hot . 2d data set

2.2.1 Results

Due to the limitations of space, we present only a few results, which show typical performance trends for the
different configurations. In al the results presented in this section, the ratio of query size r was 0.05. The
parameter of greatest interest is the number of disks. For comparison, we include the optimal response time,
computed by dividing the average number of buckets accessed by the total number of disks, in al the graphs.

Conflict resolution heuristics Figure 3 comparesthe performance of the different conflict resolution heuristics
for the hot . 2d dataset. For al configurations, data balance had the best response time. The spread between
the performance of different conflict resolution heuristics depended on the declustering algorithm used and the
dataset. Theresponsetimeof Hilbert curvewasrelatively insensitiveto the choice of conflict resolution heuristic.
The left graph in Figure 3 illustrates this. The response time of the other two declustering schemes are more
sensitiveto the choice of the heuristic, FX being more sensitive of thetwo. Theright graphin Figure 3 showsthe
performance of al heuristics for FX. Overal, data balance and area balance performed clearly better than the
others with data balance being alittle better than area balance. Of the two, data balanceis preferable because it
also satisfies the secondary goa of maximizing disk space utilization. In the remainder of this paper, we present
results only for data balance. Notethat for the uniform.2d dataset, there are very few conflicts and the choice of
the conflict resolution heuristic was immaterial .

Declusteringalgorithms Figure4 comparesthe performanceof thedeclustering algorithmsfor theuni f or m -
2d,hot . 2d andcorr el . 2d datasetsrespectively. The data balance heuristic was used for conflict resolution

Performance of declustering algorithms with uniform.2d data set Performance of declustering algorithms with hot.2d data set Performance of declustering algorithms with correl.2d data set

S

xxxxx

Figure 4. Performance of declustering algorithms for uni f orm 2d (left), hot . 2d (center) and
correl . 2d (right) datasets

Table 1. Degree of data balance: hot . 2d

Declustering number of disks
Methods 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
DM/D 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.09 | 1.00 | 1.10 | 1.22 | 1.22 | 1.38
FX/D 100 | 1.00 | 1.00 | 112 | 1.24 | 1.33 | 1.10 | 1.14 | 1.23 | 155 | 155 | 1.70 | 1.89 | 1.67 | 1.50
HCAM/D 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.09 | 1.00 | 1.00 | 1.11 | 1.00 | 1.13

inall cases.

For asmall number of disks, DM isbetter than both FX and HCAM for all threedatasets. For theuni f or m 2d
dataset, it achieves near-optima performance. Asthenumber of disksgrows, however, HCAM outperformsboth
DM and FX, the crossover point and the magnitude of the difference depending on the dataset. An important
point to note is that for the large number of disks and skewed datasets, the difference between optimal response
time and HCAM is significant.

For theuni f or m 2d dataset, asthe number of disksgrows, the responsetime of DM and FX decreases only
up to athreshold. Asthe number of disks grows beyond the threshold, the difference between the performance
of DM and FX and the optimal response time becomes larger. As mentioned earlier, the grid file generated for
thisdataset isalmost identical to its corresponding Cartesian product file because only asmall portion of buckets
contain multiple subspaces. Consequently the performance of the declustering algorithmson thisgrid file should
be almost identical to their performance on the corresponding Cartesian product file. Also notethat even though
the performance saturates for both DM and FX, FX saturates at alower response time than DM.

We would like to point out that our results are similar to the conclusion drawn by [4] in that the performance
of HCAM isthe best for uniformly distributed dataset (uni f or m 2d). However, our result that DM is amost
always better than FX for a small number of disks conflicts with their conclusion that FX is always better than
DM. They provided no explanation for this result and specul ate that it might be a result of an yet-undiscovered
theorem. Given this conflict as well as the results presented in Section 3.3, we speculate that neither of these
techniques strictly outperforms the other.

Table 1 compares the data ba ance achieved by the three declustering algorithms with data balance heuristic
forthehot . 2d dataset. It showsthat the degree of data bal ance depends on the choice of declustering algorithm.
The best data balance was achieved by HCAM, followed by DM and FX in that order. Although we present
results only for even numbers of disks for the hot . 2d dataset, we observed the same trend for odd number of
disksand for thecor r el . 2d dataset aswell.

From these results, we draw the following conclusions:

¢ Data balance is a definite winner among proposed conflict resol ution techniques because it minimizesthe

response time and maximizes disk space utilization.

¢ For asmall number of disks, disk modulo with data balance isthe best among all possible combinations of
declustering algorithms and conflict resol ution techniques.

¢ For alarge number of disks, Hilbert curve with data balance achieves the lowest response time and best
disk space utilization.

To help understand the limited scalability of DM and FX, we analyzed the operation of these agorithms for
Cartesian product files. The next subsection describes our results.

2.2.2 Analytic study of DM and FX for Cartesian product files

We have been able to analytically prove that DM and FX have limited scalability in declustering Cartesian
product files. The analytic results are summarized in the following theorems. The results of these theorems
support the observations made from the simulation experiments. In the following, R ¢(M) denotes the expected
response time of an M -disk declustering method f. Ro,:(M) is the optimal response time, which may not be
feasible.

Theorem 1 For any 2-dimensional / x [sguare range query;,
(i) diskmoduloisstrictly optimal ifandonlyif M <! A (f=0V > M(1-1/3)),where M isthe number
of disksand 3 = { mod M.

i) Rpns (1) — {Zzom(M) + 4~ [52/M] ::ﬁ i ?A B#ON B < M(1-1/8)

Proof. Givenin[19]. O

Theorem 1 gives closed form expressions of response time as well as the necessary and sufficient condition
for the strict optimality of disk modulo algorithm. Theorem 1(i) ismore general than Theorem 3 of Li et al. [16]
which essentialy states only thefirst clause. Based on this, they reach the conclusion that disk modulo is optimal
for range queries on Cartesian product files for amost al cases. While this might have been true in the past
when configurations with large number of disks were not usual, it is no longer true. In our experiments on the
uniform dataset (Figure 4(left)), the performance of disk modulo saturates around six disks, and adding more
disks provides no benefit. The position of the threshold depended on the size of the query; the result quoted
above isfor a query about one-twentieth the area of the data domain (» = 0.05). In addition, for any M > 3,
Theorem 1(ii) gives atighter upper bound on the response time than Ro,«(M) + M — 2 givenin Theorem 4 of
Li et al. [16] when the number of dimensionsis two.

Theorem 2 For any 2-dimensional 27 x 2™ sguare range query, the following properties are satisfied:
(i) Rpx(2%) =27+t"=") forany n < m,

(ii) 2m=(=m) < Rpx(27) < 2™ forany n > m,

(i) Rpx(27tY) > 3Rpy(27) forany n > m.

Proof. Givenin[19]. O

From property (i) of Theorem 2, it can be shown that fieldwise xor is strictly optimal for any 2™ x 2™ square
range query if M = 2" and n < m. However, thisis not a necessary condition due to the left inequality
of the property (ii). Many examples can be found where fieldwise xor is strictly optimal even when n > m.
Property (iii) of Theorem 2 gives an intuition to the scalability of fieldwise xor declustering algorithm. If a
declustering algorithm has ideal scalability, then it must be the case that Ro,+(2"+1) = 1R o,.(2") for any n.

7

Thus, the scalability of fieldwise xor is far from ideal when » > m. Asshown by our experiments, the actual
scal ability of fieldwise xor is even worse than thistheorem suggests.

It iswidely believed that Hilbert curve achieves better clustering among other linearization methods such as
column-wise scan, z-curve and Gray coding [5, 11]. We are currently working on the analysis of the scalability
of HCAM.

3. Proximity-based Declustering Algorithm

Aswe observed in Section 2, there is room for improvement between the response times for HCAM and the
optimal response times, and it tendsto grow asthe skew in the data distributionincreases. Whiletheindex-based
algorithms do try to exploit locality in some way, they do not make an explicit attempt to place buckets that
are spatially close to each other on different disks. This section presents and evaluates an algorithm that uses a
proximity measure to try to place neighboring buckets on different disks.

3.1. Proposed Algorithm

This agorithm maps the grid file declustering problem into a graph partitioning problem. The graph is
generated by creating a vertex for every bucket and creating an edge for every pair of buckets. The edges are
weighted by the probability that their adjacent vertices will be accessed together by a query. Declustering for
M disks corresponds to an M -way partitioning of this graph. Since our goa is to minimize response time by
maximizing parallelism in disk accesses, buckets (vertices in a graph) that are likely to be accessed together
should be on different disks (subgroups of vertices). This problem is a variant of the well-known Max-Cut
problem, which is known to be NP-complete [8].

Severa heuristic agorithms have been proposed for the Max-Cut problem and its analogue, the Min-Cut
problem. They include Recursive Spectral Bisection [27], Kernighan-Lin partitioning algorithm [14] and
similarity-based declustering algorithms|[6, 17].

Recursive Spectral Bisection is not suitable for this problem since it assumes unit weights on all edges, and
there appears to be no obvious way to allow arbitrary edge weights. The Kernighan-Lin agorithm does not
have this limitation, but it is a multi-pass agorithm and requires O(N? x p) disk accesses, where N is the
number of buckets and p is the number of passes. Even though the number of passes p is usualy low, there is
no bound on the number of passes[14]. In particular, there is no evidence that it will terminate in a polynomia
number of passes and, as aresult, may require an unacceptably high number of disk accesses for declustering.
The similarity graph-based approach proposed by Liu and Shekhar [17] requires no less disk accesses since
Kernighan-Lin algorithmis used to find an initia partition.

The similarity-based algorithms, minimal spanning tree (MST) and short spanning path (SSP), introduced
by Fang et al. [6] eliminate the factor p. They attempt to generate partitions that are similar to each other.
Two groups of points, (1 and (G, are defined to be similar if, for every point « in G4, there exists at least one
point » in G such that « is a nearest neighbor of » or » is a nearest neighbor of «. These algorithms have
non-trivial drawbacks: (1) MST does not guarantee that the partitions are balanced in their sizes, which means
some partitions may be impractically large, and (2) SSP avoids this but may produce partitions that are less
similar to each other. Thismeansthat disk accesses are less likely to be evenly distributed across multiple disks.

We present amini max spanning tree a gorithmthat hasthefollowing characteristics: (1) (O(N ?)) disk accesses
arerequired to decluster agrid filewith N databuckets; (2) perfectly balanced partitions are generated, i.e., each
disk isassigned at most [N /M| buckets; (3) if adatabucket 2 ismost likely to be accessed together with a data
bucket y, then the likelihood that they are assigned to the same disk isvery low.

The key idea of this algorithm is to extend Prim’s minimal spanning tree algorithm [24] to generate M
partitions. Prim’s algorithm expands aminimal spanning tree by incrementally sel ecting the minimum cost edge
between the vertices aready in the tree and the vertices not yet in the tree. Thisis efficiently implemented by

8

maintaining, for each vertex not in the tree, aminimal cost to the verticesin the tree, and by choosing the edge
whose value is smallest. This selection criterion does not ensure that the increment in the aggregate cost (that
is the sum of al edge weights) due to a newly selected vertex is minimized. Instead, our minimax spanning
tree algorithm uses a minimum of maximum cost criterion. For every vertex that has not yet been selected, we
compute a maximum of al edge weights between it and the vertices aready selected. The selection procedure
picks the vertex that has the least such value. This, by itself, does not generate partitions. This is done by
growing M minimax spanning trees and selecting vertices for them in round robin order.
An outline of the algorithm:

Algorithm 2 (Minimax spanning tree algorithm)
Input Aweighted completegraph G = (V, E, C') withcostsonitsedgeswhereV = {v1,...,vnx},
E={(v,v;)| 1<, < N}andC = {e(v,v;) |1 <4,5 < N} VandC represent a

set of data bucketsin a grid file and a set of probability val ues associated with every pair
of buckets, respectively. The number of disksis M.

Output Adiskassignment {disk(v1),...,disk(vy)}.

Phase1l. [Random seeding] Let Ay = {v1},..., Ay = {vprfand B =V — {v1,...,va}, Where
{v1,...,vpr} isasubset of V consisting of M randomly selected mutually distinct vertices.

Phase 2. [Expanding] Construct M spanning treesstarting fromthe A seeds by adding verticesfrom
Binto Ay, ..., Ay inround robin way as follows:

1 Forallze Bandi(1<i< M), MAX (i) — c(z,v;); K — 1.

2. Findavertexy € B suchthat M AX,(K) = min{MAX,(K)forall 2 € B}. Then,
Ax <~ Ax U{y}; B— B —{y}.

Forallz € B, MAX,(K)— max{c(y,z), MAX (K)}.

K—K+1IfK > M,thenk — 1.

If B # (), gotostep 2.

6. ForallveV.disk(v)—jifve A; (1<j<M).

o~ w

The agorithm terminates with the partitions A1, A ..., Ay (4; N A; = O for1 <4, j < M), each of which
corresponds a subset of data buckets assigned to adisk. Since the vertices are assigned in a round-robin manner,
the maximum number of buckets assigned to a disk is [V/M]. This agorithm does not guarantee that two
buckets closest to each other are always distributed over different disks. However, results presented in the next
section indicate that this happensrarely (See Table 2 and Table 3). To compl ete the description of the algorithm,
we heed to specify away to generate the edge weights. We have chosen the proximity index proposed by Kamel
and Faloutsos[12]. The dternative we considered, Euclidean distance is suitable for point objects that occupy
zero areain the problem space but does not capture the distinction among pairs of partially overlapped spatia
objects such as grid buckets. The proximity index of the two d-dimensional rectangular regions £ and 5 can be
calculated as:

d
Prozimity(R,S5) = H Prozimity(R;, S;)
=1
{(1+ 2x é;)/3 if R;and S; intersect

Provimity(Ri.S. _ o
roximity() (1-0,)%/3 if R;and S; are digjoint.

!By partially overlapped objects we mean that projected images of two disjoint d-dimensional objectsintersect on at least any one of
d dimensions.

Molecules per cell in DSMC.3d data set
T T T T T

200

T T T
70 b 4 Molecules/Cell + |
180

60 7 160

50

120

ot

40 -
N 100+
30 F

Number of molecules

80

20 + 60

B R+

4

.
000 3000 4000 5000 6000 7000 8000 9000 o ‘ | ‘ l” u] w J“
0 50 100 150 200

Cell number

10

N
o

0 1000

}i M“ |

I
400

Ml

Figure 5. Spatial distribution of records in datasets DSMC. 3d (left) and st ock. 3d (right)

Wil

3

Here, R; and .5; are projected images of R and .5 on the i-th dimension. The numbers 6; and A; are theratio of
the length of intersection of and distance between R; and .5; to the length of the entire grid region along the :-th
dimension. Obviously, both é; and A; are between O and 1.

3.2. Experiments

We used the same simulation procedure as used for the experiments described in the previous section to
compare the performance of the minimax spanning tree algorithm with the extended index-based declustering
algorithms discussed in Section 2. The data balance conflict resolution heuristic was used for al three index-
based algorithms. In addition, one of the similarity-based algorithms, SSP, mentioned previously was aso
included in the experiments. Three query sizes were used: » = 0.01,0.05 and 0.1. For information about the
simul ation procedure and the experimental setup, see Section 2.2.

We used two real three-dimensional snapshot datasets and the hot . 2d synthetic dataset as benchmarks.

DSMC.3d Direct Simulation Monte Carlo (DSMC) isatechniquefor modelling rarefied gas dynamicsviadirect
particle simulation which has been widely used in aerospace applications [2]. This data set is generated
from a 3-dimensional DSMC simulation which runs on parallel machines [20]. The dataset consists of
one snapshot of athree-dimensional volume. There are 52857 particle records and they are non-uniformly
distributed. The X, y and z-coordinates of particles are used as the primary indices. The grid file for this
dataset contains 16 x 12 x 8 = 1536 subspaces which are merged into 444 buckets.

stock.3d contains stock market data (available on an experimental basisfromftp://ftp.ai . mt. edu-
/ pub/ st ocks/ resul ts). Itincludesinformation about 383 different stocksfrom 08/30/93to 09/15/95.
Theidentifier of thestock, itsfinal pricefor the day and the date are used asthe independent primary indices.
There are 127,026 stock quoterecords. The grid filefor thisdataset contains 32 x 22 x 9 = 6336 subspaces
which are merged into 1218 buckets.

Figure 5 illustrates the distribution of datafor each dataset — a histogram of molecule population per each fixed
volume of cell in physical space for DSMC. 3d and a diagram of stock id (x-axis) vs. price slice (y-axis) for
st ock. 3d.
3.3. Results

Figure 6 compares the performance of thefivealgorithmsonthehot . 2d, DSMC. 3d and st ock. 3d datasets
respectively. These graphs correspond to theratio of query sizer = 0.01. AsFigure5 illustrates, the portion of

10

Performance of declustering algorithms with hot.2d data set Performance of declustering algorithms with DSMC.3d data set Performance of declustering algorithms with STOCK.3d data set

24 28 32

24 28 32 4 8 12

4 8 12 16 20 24 28 32 4 8 12 16 20 16 20
Number of disks Number of disks Number of disks

Figure 6. Performance comparison for hot. 2d (left), DSMC. 3d (center) and st ock. 3d (right)
datasets

Table 2. The number of closest pairs assigned to the same disk: DSMC. 3d

Declustering number of disks
Methods 4|16 |8 |10]12|14 |16 | 18| 20| 22|24 | 26| 28| 30| 32
DM/D 36|41 29| 34|41 (38| 22| 22|28|3|34|31L|30|30]30

FX/D 70 | 76 | 53 | 36| 46 |40 | 29| 29| 29| 29| 29 | 29| 29| 29 | 29
HCAM/D 5 |32 |16|15| 4 |11 | 0 | 4 | 7 | 3 116|620
SSP 17112 | 5| 4| 8|2 | 3|5 | 2] 2 310 2]|]0| 2
MiniMax 1,00 i1, 0}0|jJ]0O0|0O0O]O|]O]|J]O]|]O]JO|O0]O

uniformly distributed data of DSMC. 3d is higher than that of hot . 2d. This explains reason that the response
time curves of index-based declustering techniques for the DSMC. 3d are flattened earlier than for the hot . 2d
dataset. Asforthest ock. 3d dataset, whileboththe datevs. stock id sliceand datevs. pricedliceareuniformly
distributed, the stock id vs. price sliceis not uniformly distributed and consists of a series of hot-spots, each
corresponding to an individual stock over atimeperiod. Dueto the nature of stock data, this dataset has agreater
likelihood of being correlated than DSMC. 3d. We believethat it has characteristics similar to both the hot . 2d
andthecorrel . 2d datasets.

The minimax a gorithm consistently achieves asmaller response timethan all the other algorithms (with afew
exceptions when the number of disksissmall). SSP achieves the second best performance but HCAM with data
balance comes quite close, in particular as the number of disksisincreased. DM and FX come distant fourth
and fifth. These results provide additional evidence for the limited scalability of DM and FX. Neither DM nor
FX strictly dominatesthe other.

Tables 2 and 3 tabulate the number of closest pairs of bucketsthat are mapped to the same disk by the different
algorithms. They show that this number is rarely above zero for the minimax agorithm for the 52K records
DSMC. 3d dataset as well as the 120K records st ock. 3d dataset. This provides evidence that the algorithm
achievesadistribution quite closeto optimal. Of the others, DM and FX have aconsistent high number of closest
pairs mapped to the same disk. SSP achieves the second |owest numbers but rarely achieves zero, in particular
for larger datasets.

3.4. Effect of changein query size

All theresultsand analysi spresented asyet has been concerned with scal ability with respect to number of disks.
The query size has been held constant. Figure 7 shows how change in the query size affects the performance
of declustering algorithms in two aspects: response time (left) and speedup (right). Since HCAM with data
balance dominates al other index-based a gorithms, we compare its performance with that of minimax. Three
query sizeswere used: » = 0.01,0.05and 0.1. We selected the st ock. 3d dataset as benchmark. The speedup

11

Table 3. The number of closest pairs assigned to the same disk: st ock. 3d

Declustering number of disks
Methods 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
DM/D 185 | 150 | 154 | 134 | 112 | 125 | 135 | 115 | 128 | 121 | 118 | 118 | 132 | 108 | 96
FX/D 232 | 253 | 194 | 208 | 202 | 210 | 187 | 191 | 196 | 181 | 165 | 177 | 158 | 163 | 156
HCAM/D 199 | 106 | 63 32 30 27 4 20 26 13 20 9 6 11 2
SSP 109 | 61 52 37 27 36 25 16 17 12 15 14 11 8 14
MiniMax 10 2 1 1 3 1 0 0 0 0 0 0 1 0 0
Effects of query sizes for stock.3d data set Effects of query sizes for stock.3d data set
18 g ‘ ‘ ‘ ‘ HC‘AM/w01 ‘% b H‘CAMIWO‘:L e ‘ ‘ ‘ ‘ ‘
4 MinMax/w01 -+--- MinMax/w01l -+-- o
L HCAM/WO05 -&-- | | HCAMMWO5 -&-- o
16 MinMax/wQ5 - 5 MinMax/w05 - * x
L HCAM/WIO -&—- HCAM/MW10 -&-- Ea
14 L ’%\\\ MinMax/w10 -*--- | MinMax/w10 -x-- o * o * A
© 4t A
g 2r o ’ Beg 4
7 o 3r
¢ sf
6 oL
4k
2 C L i 1 L L L L L L L
4 8 12 24 28 32 4 8 12 24 28 32

16 20 16 20
Number of disks Number of disks

Figure 7. Effects of query sizes for st ock. 3d dataset: response time and speedup

is computed by dividing the response time from M disks by the response time from four disks (the smallest
configuration in our experiments). Obviously, minimax is better than Hilbert curve in both metricsin al query
sizes examined. There isatendency that the relative performance benefit of minimax over Hilbert curve grows
asthe size of query decreases.

3.5. Experiments on shared-nothing architectures

We implemented parallel grid files and related access methods on a 16-processor IBM SP-2, which has a
typical shared-nothing architecture in which each processing node owns local memory and local disks, and
communicates each other by message passing. We adopted Single-Program-Multiple-Data (SPMD) [13] as a
model of parallelism; one of the participating processors is chosen as a coordinator and the other processors are
called workers. We assumed each processor owns only one disk to simplify the model of parallelism.

Data buckets of a grid file are distributed over al the participating processors’ local disks; the scale and
directory of the grid file are stored only on thelocal disk of the coordinator. (Note that the coordinator has a dual
role both as a coordinator and as a worker.) Whenever a query arrives, the coordinator processor translates the
guery into aset of block requests which in turn are shipped to proper worker processorswhich own the requested
disk blocks. Then the worker processors access the requested disk blocks and send the set of qualified records
back to the coordinator processor.

Weloaded a4-dimensional gridfilewith 3 million recordsof particlesgenerated by aDSM C particlesimulation.
The dataset consists of 59 snapshots of a 3-dimensiona volume and the four spatio-temporal coordinates were
used as primary indices. The resulting grid file was 163 mega-bytes and contained 7 x 28 x 21 x 39 = 160524
subspaceswhich were merged into 19956 di sk buckets of size8 KB each. (In other words, thetempora dimension
were divided into 7 partitions, the z-dimension were divided into 28 partitions and so on.) We used the minimax
declustering algorithm to partition the grid file on 4, 8 and 16 nodes of the SP2.

Table4 presentsthe experimental resultsfrom animation-typeof queries. Tovisualize (or animate) the particle

12

Table 4. Times to process animation-type of queries on IBM SP2

response time by definition | communicationtime | elapsed time
Processors (blocks fetched) (seconds) (seconds)
4 202176 5.47 94.57
8 105755 5.78 59.09
16 56451 7.49 40.79

simulation for a given time period, for each time step we issue a series of range queries which in the aggregate
coverstheentire 3-dimensional volume. Likethe experimentsdescribed previously, the sidelengths of the spatia
dimensionsof thequeriesaregoverned by aratior. Inother words, thesizeof eachquerywasr L, xr L, xrL, x1,
where L., L, and L. arethelength of 2, y and ~ dimensions of data domain, respectively. In these experiments,
we used r» = 0.1. Thus, the total number of queries processed is approximately 10 x 59 (time steps) = 590. The
response time in the second column of the table was computed by adding up the response times measured in the
number of disk blocks fetched to processindividual queries (as defined in Section 2.2). Note that caching effects
come into play in this experiment because 59 snapshots were divided into only 7 partitions and it is very likely
that the same disk blocks are fetched repeatedly in many queries retrieving consecutive snapshots.

Table 5. Times to process randomly generated range queries on IBM SP2

response time by definition | communicationtime | elapsed time
Processors | query ratio (blocks fetched) (seconds) (seconds)
4 0.01 7145 2.74 34.39
0.05 14766 4.26 52.93
0.10 19688 5.69 64.16
8 0.01 3824 153 19.82
0.05 7694 5.25 29.59
0.10 10191 7.63 33.33
16 0.01 2066 2.24 9.92
0.05 4037 3.06 12.96
0.10 5333 4.22 15.27

We carried out another set of experiments to measure the performance of the paralel grid file in processing
random range queries. Table5 presentstheresultsfrom processing 100 randomly generated 4-dimensional range
gueries. We ran the experimentswith three different values of r, 0.01, 0.05and 0.1. Notethat the communication
overhead increases as the value of » becomes large for afixed number of processors. Thisis because the size of
answer sets tendsto grow asthe size of the range queries becomeslarge.

4. Conclusions and Future Work

The minimax algorithm proposed in this paper scales well and consistently achieves a better response time
than all the other algorithms (with a few exceptions when the number of disksissmall). It also achieves perfect
data balance and maximizes disk space utilization. Furthermore, it rarely maps buckets that are close in the
data space to the same disk indicating that the distributionsit generates are probably quite close to the optimal
distribution. Its complexity, however, is O(N?).

SSP achieves the second best performance but HCAM with data balance comes quite close, in particular as
the number of disksisincreased. Thisistruefor both responsetimeaswell asthefairnessof the datadistribution.

13

However, as the data set size increases, the fairness of the distribution of both these schemes can drop. Their
respective complexitiesare O(N2) and O(N).

DM and FX lag far behind in performance. For both synthetic and real datasets, their performance saturates
after arelatively small number of disks. The number of disksat which the performance saturates depends on the
size of the query. In addition to simulation results presented in this paper, we have anaytically shown that as
the number of disks grows for afixed query size, the performance of both DM and FX saturates. We have also
established other conditions under which the performance of these well-known techniques does not scale. We
have not been ableto establishif either of these techniques dominatesthe other. Based on our simulation results,
we specul ate that neither dominatesin all situations. Their complexitiesare O(V).

We have implemented this scheme on our 16 processor SP-2 with 112 disks(seven disks per processor) and are
inthe process of eval uating its performance on two |l arge data sets consi sting of snapshotsfrom DSMC and MHD
respectively, both of which are time-dependent scientific simulations. Some preliminary results were presented
in this paper. We will continueto work on various access patterns such as particle tracing with larger datasets.

References

[1] T.Bidly. Spacefilling curves: Their generation and their application to bandwidth reduction. |EEE Transactionson
Information Theory, 1 T-15(6):658—664, Nov. 19609.
[2] G. A.Bird. Molecular Gas Dynamics and the Direct Smulation of Gas Flows. Clarendon Press, Oxford, 1994.
[3] H. C. Du and J. S. Sobolewski. Disk allocation for Cartesian product files on multiple-disk systems. ACM Trans.
Database Syst., 7(1):82-101, Mar. 1982.
[4] C. Faloutsos and P. Bhagwat. Declustering using fractals. In the 2nd International Conference on Parallel and
Distributed Information Systems, pages 18-25, San Diego, CA, Jan. 1993.
[5] C. Faoutsos and S. Roseman. Fractals for secondary key retrieval. In the 8th ACM SIGACT-SIGMOD-S GART
Symposiumon Principles of Database Systems, Philadel phia, PA, Mar. 1989.
[6] M. T.Fang, R.C. T. Lee, and C. C. Chang. The idea of de-clustering and its applications. In Proceedings of the 12th
VLDB Conference, pages 181-188, Kyoto, Japan, 1986.
[7] R.A.Finkel and J. L. Bentley. Quad-Trees - adatastructurefor retrieval on composite keys. Acta Informatica, 4:1-9,
1974,
[8] M. R. Garey and D. S. Johnson. Computers and Intractability. W. H. Freeman and Company, New York, 1979.
[9] C. Goodrich. Personal communication, July 1995.
[10] A. Guttman. R-Trees: A dynamic index structure for spatial searching. In Proceedings of the 1984 ACM-S GMOD
Conference, pages 47-57, Boston, MA, June 1984.
[11] H. V. Jagadish. Linear clustering of objects with multiple attributes. In Proceedings of the 1990 ACM-S GMOD
Conference, pages 332—-342, Atlantic City, NJ, May 1990.
[12] 1. Kame and C. Faloutsos. Parallel R-trees. In Proceedings of the 1992 ACM-SIGMOD Conference, pages 195-204,
San Diego, CA, June 1992.
[13] A.Karp. Programming for paralelism. IEEE Computer, 20(5):43-57, May 1987.
[14] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs. Bell System Technical Journal,
49(2):291-307, Feb. 1970.
[15] M.-H. Kim and S. Pramanik. Optimal file distribution for partial match retrieval. In Proceedings of the 1988
ACM-S GMOD Conference, pages 173-182, Chicago, IL, June 1988.
[16] J. Li, J. Srivastava, and D. Rotem. CMD: A multidimensional declustering method for parallel database systems. In
Proceedings of the 18th VLDB Conference, pages 3—14, Vancouver, British Columbia, Canada, 1992.
[17] D.-R. Liu and S. Shekhar. A similarity graph-based approach to declustering problems and its application towards
paraleizing gridfiles. Inthe 11th Inter. Conference on Data Engineering, pages 373-381, Taipei, Taiwan, Mar. 1995.
[18] K.-L. Maand Z. Zheng. 3D visudization of unsteady 2D airplane wake vortices. In Proceedings of Visualization’ 94,
pages 124-31, Oct 1994,
[19] B. Moon. Scalahility analysis of declustering methods for Cartesian product files. Technica Report CS-TR-3590,
University of Maryland, Department of Computer Science and UMIACS, College Park, MD, Jan. 1996.
[20] B. Moon and J. Saltz. Adaptive runtime support for direct simulation Monte Carlo methods on distributed memory
architectures. In Proceedings of the Scal abl e High Performance Computing Conference (SHPCC-94), pages 176183,
Knoxville, TN, May 1994.

14

[21] J. Nievergelt and H. Hinterberger. The Grid Filee An adaptive, symmetric multikey file structure. ACM Trans.
Database Syst., 9(1):38-71, Mar. 1984.

[22] G. Patnaik. Persona communication, September 1995.

[23] G. Patnaik, K. Kailasnath, and E. Oran. Effect of gravity on flame instabilities in premixed gases. AlIAA Journal,
29(12):2141-8, Dec 1991.

[24] R.C.Prim. Shortest connection networksand some generalizations. Bell System Technical Journal, 36(11):1389-1401,
Nov. 1957.

[25] S. Sarawagi and M. Stonebraker. Efficient organizations of large multidimensional arrays. In Proceedings of the Tenth
International Conference on Data Engineering, February 1994.

[26] K. E. Seamons and M. Wingdett. Physical schemas for large multidimensiona arrays in scientific computing ap-
plications. In Proceedings of the Seventh International Working Conference on Scientific and Statistical Database
management, pages 218227, September 1994.

[27] H. D. Simon. Partitioning of unstructured problems for paralel processing. In Proceedings of the Conference on
Parallel Methods on Large Scale Structured Analysis and Physics Applications. Pergammon Press, 1991.

[28] T. Tanaka. Configurations of the solar wind flow and magnetic field around the planets with no magnetic field:

calculation by anew MHD. Jounal of Geophysical Research, 98(A10):17251-62, Oct 1993.
[29] R. Wilmoth. Persona communication, March 1995.

15

