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control problem that maximizes the production of active protein through antisense

RNA induction is then studied.
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Chapter 1

Introduction to Genetic Circuits in Escherichia Coli

1.1 About Escherichia Coli

Escherichia coli, usually abbreviated to E. coli, is one of the main species

of bacteria that live in the lower intestines of warm-blooded animals. They are

necessary for the proper digestion of food and are part of the intestinal flora. Its

presence in water or food is an indication of fecal contamination. E. coli is a gram-

negative, non-spore-forming, rod-shaped bacteria that grows best at 37 ◦C. It is

a facultative anaerobe that ferments lactose to acid and gas within 24 hours of

incubation. A great deal is known about the biochemistry and genetics of E. coli,

and it continues to be an important tool for biological research. E. coli is capable

to grow rapidly on high density in simple media without the addition of growth

factors, and it is one of the most widely used microorganism in bioengineering.

1.2 σ32 Stress Circuit

There are two major steps in protein synthesis, transcription and translation

(Fig. 1.1). DNA is the carrier of genetic information for all complex organisms. The

structure of DNA is generally found as a helical duplex made up of two strands. In

transcription, one strand of the DNA double helix, the sense strand, is used as
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a template by the enzyme RNA polymerase (RNAP) to synthesize a messenger

RNA (mRNA). For eukaryotic cells, their DNA is enclosed in the cell’s nucleus,

which is separated from the cytoplasm by a nuclear membrane. The transcription

happens inside the nucleus, then mRNA migrates from nucleus to cytoplasm and the

translation happens in the cytoplasm. For prokaryotic cells, the nucleus is absent

and there is only a single loop of DNA. In translation, a ribosome moves from

codon to codon along the mRNA. Amino acids are added one by one, translated

into polypeptidic sequences dictated by DNA and represented by mRNA. Newly

synthesized proteins often undergo a final conformation adaptation in conjunction

with chaperon proteins.

The RNA polymerase binds to a type of regulatory protein called sigma factor.

The complex is referred to as holoenzyme. Under the direction of sigma factor, RNA

polymerase recognizes the promoter and then transcribes specific DNA segment into

mRNA. There are a variety of sigma factors that RNA polymerase can combine with.

Under normal growth conditions, RNAP binds to a major sigma factor σ70. The

RNAP:σ70 complex transcribe the DNA segments which are necessary for normal

cellular functions.

Organisms are subject to a plethora of environmental and metabolic stress

conditions. Under stress conditions, some cellular structures are damaged and some

proteins are misfolded or unfolded. The accumulation of denatured proteins is detri-

mental to normal cellular functions and may threaten the life of the cell. Regulatory

systems can detect the abnormality and initiate responses that increase the resis-

tance of the cell to stress conditions and repair denatured proteins. The first stress

2



Figure 1.1: Protein synthesis
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response mechanism observed was heat shock response (Neidardt, 1984; Neidardt,

1996).

When E. coli are exposed to high temperature, a set of proteins that fight

against the stress are synthesized. These proteins have been collectively referred to

as heat shock proteins, although a number of other stresses, such as chemical shock

(ethanol, phenol, heavy metals), nutritional deficiency and induction of heterologous

protein also initiate the production of these proteins in E. coli (Neidardt et al.,

1996; Muffler et al., 1997; Gottesman, 1996). Under non-stress conditions, those

heat shock proteins are present in E.coli at very low levels.

σ32 is an unstable sigma factor with a half life on the order of 1 minute (Strauss

et al., 1987). The base level of σ32 is just a few molecules per cell in wild-type E.

coli (Lesley et al., 1987). σ32 is encoded by the ropH gene in E. coli. Under normal

growth conditions, σ32 is outcompeted by the major sigma factor, σ70, thus σ32

mediated regulation does not play an important role. Under stress conditions, the

level of σ32 is rapidly increased. Therefore, the σ32 mediated responses dominate

the σ70 mediated responses.

The RNAP:σ32 complex, referred to as σ32 holoenzyme or Eσ32, recognizes the

genes of heat shock proteins and transcribe them into mRNA. The σ32 mediated

responses produce two types of heat shock proteins: chaperones and proteases.

Chaperones help to refold the misfolded/unfolded proteins into their regular shapes.

The chaperones that present in E. coli include GroEL, DnaK, DnaJ, GrpE, etc.

Proteases target and destroy denatured proteins. The proteases produced in E. coli

under stress conditions include FtsH, Lon, etc (Gottesman, 1996; Tomoyasu et al.,
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1995; Blaszczak et al., 1995; Srivastava et al., 2001; Kurata et al., 2001; Gamer et

al., 1992). Mutations that do not have ropH gene can not survive at temperatures

above 20 ◦C (Zhou et al., 1988). The heat shock chaperones, DnaK, DnaJ and GrpE,

combine with σ32 to form a complex. Because DnaJ-σ32 binding is rate limiting for

complex formation, DnaK, DnaJ and GrpE are lumped as J protein in the following.

The complex σ32:J is presented to protease FtsH for degradation (Gamer et al., 1996;

Strauss et al., 1989; Tomoyasu et al., 1995). While σ32 is destroyed, the J proteins

are recycled after the reaction.

There are two reasons that there is a sharp increase of the σ32 level at the

beginning of stress responses. First, the synthesis rate of σ32 increases immediately

following the cells detect the stress conditions. Second, the sudden increase of

denatured proteins compete for the J proteins that are required for the degradation

of σ32, resulting in an increased half life and stability of σ32. (Strauss et al., 1989;

Arsene et al., 2000; El-Samad et al., 2002). After a couple of minutes, the feedback

mechanism begins to work and leads to the down regulation of the response. In this

phase, the accumulation of J proteins and protease FtsH accelerate the degradation

of σ32, resulting in a decrease of σ32 level. Subsequently, the level of σ32 reaches

a steady state because of the equilibrium between the increased translation of σ32

and the negative feedback by chaperones and proteases (El-Samad et al., 2002). The

above mechanisms are illustrated in Fig. 1.2 and have been observed experimentally

by Srivastava et al. (2001).
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Figure 1.2: σ32 regulatory pathway of heat shock and ethanol stress. Adopted from

Srivastava et al.(2001)

1.3 Recombinant Protein Expression

Genetic recombination refers to the exchange of genes between two DNA

molecules to form new combinations of genes on a chromosome. Recombination

of DNA occurs naturally in many microbes. Scientists developed artificial tech-

niques to make recombinant DNA, which is an DNA sequence resulting from the

combining of two other DNA sequences in a plasmid. A gene from humans can be

inserted into the DNA of a bacterium, or a gene from a virus can inserted into a

yeast. Recombinant proteins are proteins that are produced by genetically modified

organisms following insertion of the foreign DNA into their genome. Some examples

of recombinant DNA products are insulin, growth hormone, and oxytocin.

A plasmid is a circular double-stranded DNA molecules that replicate inde-
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pendently from the chromosome. They usually occur in bacteria, sometimes in

eukaryotic organisms and generally contain a genetic marker. Plasmids used in ge-

netic engineering are called vectors, they can transfer genes from one organism to

another. In a typical recombinant DNA procedure, a vector is isolated and a DNA is

cleaved by restriction enzyme into fragments, then the desired gene is inserted into

the vector in vitro. Next, the vector is taken by a cell such as a bacterium in order

to express the gene and produce the protein coded for by the gene. Large amounts

of the protein can be produced in a factory with vats of the genetically engineered

bacteria. The recombinant DNA techniques can also be used to make thousands of

copies of the same DNA molecule - to amplify DNA, thus generating sufficient DNA

for various kind of experiment and analysis.

Recombinant proteins can be produced in many types of cells through genetic

engineering. The commonly used cell types are bacterial, yeast, insect and mam-

malian cells (Srivastava, 1999). Among the many systems available for recombinant

protein production, Escherichia coli is one of the most attractive because of its

distinct advantages: it grows much faster than other cells because of its short life

cycle; it can grow at high density on inexpensive substrate; its genetic and pheno-

typic properties are well characterized; a large number of cloning vectors and mutant

host strains are available (Baneyx, 1999).

As mentioned earlier, the induction of heterologous protein triggers the σ32

mediated stress response. Compared with ethanol and heat shock responses, the

production of recombinant protein induce the same set of heat shock proteins, sug-

gesting there is some overlap among those regulatory pathways. The regulatory
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Figure 1.3: σ32 regulatory pathway of recombinant organophosphorus hydrolase

production

pathway of organophosphorus hydrolase (OPH) production is illustrated in Fig.

1.3. After the recombinant protein is synthesized, it may compete with σ32 for the J

protein, combine with J to form OPH:J complex. Some of the recombinant protein

undergoes an activation process and becomes the active form. GroEL serves as the

catalyst in the activation.

1.4 Antisense RNA

mRNA is transcribed from the sense strand of DNA and its structure is sin-

gle stranded. Its sequence of nucleotides is called ”sense” because it results in a

gene product (protein). mRNA can form a duplex with a second strand of RNA

whose sequence of bases is complementary to the first strand. The second strand is

called antisense RNA. When mRNA forms a duplex with its complement, transla-
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tion is down-regulated. This may occur because either the ribosome cannot access

the nucleotides in the mRNA due to spatial obstacles or double-stranded RNA is

quickly degraded by ribonucleases in the cell (Murray, 1992). Antisense RNA oc-

curs naturally in some prokaryotic cells, it is also used artificially to downregulate

gene expression. For example, antisense technology has been used to suppress the

expression of certain enzyme in transgenic tomatoes, thus prolonging the ripening

process of the tomato and its shelf life.

In the work of Srivastava et al. (2000), plasmids containing an antisense

sequence of σ32 gene were constructed and introduced into E. coli cells. The effects

of antisense RNA on σ32 mediated stress responses were evaluated.

Under ethanol stress, the antisense RNA was expressed by the introduction

of plasmid pSE420αs upon IPTG addition. Without antisense, there was a ten-fold

increase of σ32 protein level after ethanol stress. However, in antisense producing

cultures, a three-fold increase of σ32 was observed. Since GroEL is not involved in

the metabolism of σ32, it was used as a target protein to evaluate the regulation

effects. Compared with no-antisense control cultures, GroEL levels were reduced

significantly by antisense RNA, indicating downregulation of σ32 mediated stress

response.

During the production of OPH, plasmid pTO, which expresses OPH only, and

plasmid pTOas, which coexpresses OPH and antisense RNA, were introduced into E.

coli. The GroEL levels in antisense producing cultures were lower than no-antisense

cultures, indicating downregulation of σ32. The antisense RNA decreased the total

yield of OPH to about two third of the yield without antisense RNA. However,
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compared to no-antisense control cultures, a three fold higher OPH activity was

observed with antisense.
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Chapter 2

Kinetic Models of Genetic Circuits

2.1 Introduction

Gene expression is a complex process which is regulated at several stages in the

synthesis of proteins. The regulation is achieved through multi-channel interactions

between DNA, RNA, proteins and small molecules (Jong, 2002). To develop a deeper

understanding for genetic regulatory systems, a variety of mathematical formalisms

have been proposed by researchers.

The most simplified models of genetic circuits are Boolean networks. In

Boolean networks, each gene is assumed to be either active (1) or inactive (0). For

a genetic network with n genes, the size of state space is 2n and generally can be

listed exhaustly. The transitions between states are deterministic and synchronous,

which can be expressed by a true table or a wiring diagram. Boolean networks’ sim-

plifying assumptions, (i.e. discrete time and state space, deterministic), limit their

application in modeling genetic networks. In some situations, for example when

transitions do not take place simultaneously or granular expression level informa-

tion is necessary, Boolean networks are not appropriate (Gibson et al., 2001; Jong,

2002).

The kinetic behavior of chemical reactions is traditionally described by a set
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of coupled ordinary differential equations (ODE):

ẋ = f(x) x(0) = x0 (2.1)

where x(t) ∈ RN denotes the concentrations of the chemical components at time t,

f is the phenomenological behavior of the system and is determined by stoichiom-

etry of reactions, x0 is the initial concentrations of the components. The implicit

assumptions are: (i) the concentrations vary continuously, (ii) the reaction kinet-

ics are deterministic. Such descriptions are valid when the amount of the reacting

species is large and the thermal fluctuations do not contribute to the overall system

behavior.

In genetic circuits, the intracellular concentrations of regulatory molecules are

generally low and most individual genes are present in only one or two copies per

cell. As a result, the discrete nature becomes conspicuous and stochastic effects may

invalidate the deterministic equations. The stochastic nature of transcription has

been experimentally observed in a number of cases (Goss and Peccoud, 1998). Mod-

eling the gene expression mechanisms deterministically may be grossly misleading,

especially if a kinetic trajectory lies close to a stable or unstable node of the sys-

tem, in which case small fluctuations can be amplified and produce observable, even

macroscopic effects. A more broadly applicable approach to model such systems is

to use chemical master equations (CME), which describe the reaction network as a

continuous time, discrete state-space and stochastic process. We will further discuss

CME in the next section.

Depending on the specification of time, state-space and nature of determina-

12



tion, different kinetic models can be defined. Time can be discrete (D) or continuous

(C), the state-space can be also discrete (D) or continuous (C), and the nature of

determination can be deterministic (D) or stochastic (S) (Érdi and Tóth, 1988).

Boolean networks can be identified as DDD models. Ordinary differential equations

can be identified as CCD models. Chemical master equations can be identified as

CDS models. DCD models have been widely used in modeling chaotic phenomena.

2.2 Chemical Master Equations

The chemical master equations can be used for stochastic simulation of chem-

ical reaction systems that are well-stirred and in thermal equilibrium. For a system

consisting of N species and M chemical reactions, the state of the system x(t) is

completely defined by the population of each species and is a jump Markov process.

The CME describe the time evolution of a joint probability distribution P (n, t),

which is defined as

P (n, t) = probability that x(t) = n (2.2)

The CME can be derived as (Gillespie, 1992)

∂P (n, t)

∂t
=

M
∑

j=1

[aj(n − νj)P (n − νj , t) − aj(n)P (n, t)] (2.3)

where aj is the propensity function of reaction j, νj is the state change vector of

reaction j.

Let us consider a spatially homogeneous system composed of four chemical

13



species, A, B, C and D, and subject to two coupled chemical reactions:

A + B
s1→ 2C

2B
s2

⇀↽
s3

D (2.4)

where si (i = 1, 2, 3) are stochastic rate constants. They are related with determin-

istic rate constants k through:

s1 =
k1

V NA

(2.5)

s2 =
2k2

V NA

(2.6)

s3 = k3 (2.7)

where V is the volume of the reaction system, NA is the Avogadro’s number. The

propensity functions are

a1(n) = s1nAnB (2.8)

a2(n) = s2
nB(nB − 1)

2
(2.9)

a3(n) = s3nD (2.10)

The state change vectors are

ν1 = (−1,−1, +2, 0) (2.11)

ν2 = (0,−2, 0, +1) (2.12)

ν3 = (0, +2, 0,−1) (2.13)

14



We can write down the chemical master equations as

∂P (nA, nB, nC , nD; t)

∂t
=

s1 [(nA + 1)(nB + 1)P (nA + 1, nB + 1, nC − 2, nD; t) − nAnBP (nA, nB, nC , nD; t)]

+ s2

[

1

2
(nB + 2)(nB + 1)P (nA, nB + 2, nC , nD − 1; t)

−1

2
nB(nB − 1)P (nA, nB, nC , nD; t)

]

+ s3 [(nD + 1)P (nA, nB − 2, nC , nD + 1; t) − nDP (nA, nB, nC , nD; t)] (2.14)

In principle, the solution of CME completely determines P (x, t), and then

x(t). However, if the system involves more than a few molecular species and chemical

reactions, the state space will be very large. For a three step reversible chain reaction

A ⇀↽ B ⇀↽ C ⇀↽ D (2.15)

If there are 100 molecules involved in this reaction, the size of the state space is

C3
101 + 2C2

101 + C1
101 = 176, 851 (2.16)

It means the CME consist of 176,851 differential equations. Thus CME are not

tractable both analytically and numerically for all but the simplest systems.

Gillespie proposed two numerical methods using Monte Carlo techniques for

the exact stochastic simulation of CME (Gillespie, 1976). In the Direct Method, the

time of the next reaction τ is generated from the following exponential distribution

P (τ) = ae−aτ (0 ≤ τ < ∞) (2.17)

where a is the overall propensity, a =
∑

j aj. In determining which reaction will

occur, the likelihood of a reaction being selected is proportional to its propensity

15



function

P (µ) =
aµ

a
(µ = 1, . . . , M) (2.18)

Then advance the system time to t+τ , update the population of all species involved

in reaction µ, and calculate the new propensity functions. This process is repeated

until the “stopping time” of the simulation. Running the simulation multiple times

gives the mean and variance information of state variables. The First Reaction

Method generates a “tentative reaction time” τj for each reaction according to the

following exponential distribution

P (τj) = aje
−ajτj (0 ≤ τj < ∞) (2.19)

The reaction which occurs first is chosen as the “actual” next reaction, i.e.

µ = j for which τj = min(τ1, . . . , τM) (2.20)

Then the system states are updated as with the Direct Method and the process is

repeated until the end of the simulation.

2.3 Stochastic Petri Nets

Stochastic Petri Nets (SPNs) were first introduced in the field of computer

science and have been used to model biological systems (Goss and Peccoud, 1998;

Srivastava et al., 2001). An SPN is composed of a set of places and transitions. Each

place represents a chemical species and is drawn as a circle. Each place contains

tokens, where the number of tokens is the number of molecules of the species. Each

transition represents a chemical reaction and is drawn as a rectangle. The places and
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Figure 2.1: Stochastic Petri Net of the reactions in (2.4)

transitions are linked with arrows. If an arrow points from a place to a transition, the

species represented by the place is a reactant. If an arrow points from a transition

to a place, the species represented by the place is a product. If more than one token

are consumed or produced in the transition, the arrow is labeled with the coefficient.

The SPN of the reactions in (2.4) is shown in Fig. 2.1.

In SPN simulation, the transition j fires with an exponentially distributed

time delay tj

P (tj) = wje
−wjtj (0 ≤ tj < ∞) (2.21)

The weight function wj is determined from the stochastic rate constant and the

number of tokens involved in the transition, and it is equivalent to the propensity

function in CME. If more than one transition can fire, the transition with the small-

est time delay is allowed to fire. Then the number of tokens involved in the transition

17



is appropriately updated, and weight functions are recalculated. The process is re-

peated until the end of the simulation. The implementation of SPN is equivalent to

the First Reaction Method for the stochastic simulation of CME.

2.4 Development of SPN Model for σ32-mediated Ethanol Stress

A Stochastic Petri Net (SPN) model was developed by Srivastava et al. (2001)

for simulating the σ32 stress circuit. The model was validated against experiments

in which ethanol (inducer of heat shock response) and σ32-targeted antisense (down-

ward regulator) were used to perturb the σ32 regulatory pathway. The regulatory

pathway is shown in Fig. 1.2. The structure of the SPN is shown in Fig. 2.2. Ex-

cept σ32 mRNA, the mRNA of other proteins are assumed to be constant numbers

and are not explicitly represented. For those components, the transcription and

translation are lumped into one reaction: synthesis.

In this work, the parameters of the SPN model are revised to eliminate some

discrepancies in the original model and to further reduce the mismatch between

simulation results and experimental data. One major change is the value of E. coli

cell volume used in the calculation of stochastic rate constants for second order

reactions. The average E. coli cell is a rod-shaped body with diameter and length

of approximately 0.5 and 2 micrometers (Neidhardt, 1990). Thus the cell volume

can be derived as 3.93 × 10−19m3. The GroEL synthesis rate, J synthesis rate and

σ32 degradation rate are re-derived based on the new cell volume (Kanemori et al.,

1994; Tomoyasu et al., 1995). The σ32 transcription rate and mRNA decay rate are
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adjusted to maintain σ32 mRNA at a constant level (10 molecules per cell). The

σ32 translation rate is adjusted to 0.0051s−1 to get 9 σ32 molecules under nonstress

conditions. The FtsH synthesis rate is adjusted to match the fold increase of total

σ32 (σ32+Eσ32+σ32:J). To match the fold increase of GroEL protein, the number

of initial GroEL tokens is adjusted to 1200. The deterministic and stochastic rate

constants of the new model are listed in Table 2.1. The components in σ32 ethanol

stress circuit and their initial tokens are listed in Table 2.2. All genes are present

at one copy and keep constant during the stress response. They are listed in Table

2.3.

The SPN is simulated with the Möbius software package developed by the

Performability Engineering Research Group (The Center for Reliable and High-

Performance Computing at the University of Illinois, www.perform.csl.uiuc.edu).

This is the successor software to the UltraSAN package (Sanders, 1995) developed

by the same group and used in SPN simulations by Srivastava et al. (2001) and

Goss and Peccoud (1998).

Experimentally it was found that antisense reached a maximum within 30

minutes postinduction and most of the metabolic activity occurred within this time

frame (Srivastava et al., 2001). Thus the final time used in simulations was selected

as 30 min. Also, the effects of cell division can be neglected in a 30 min timeframe.

To simulate the effects of ethanol, the σ32 translation rate is raised from 0.0051, the

normal growth rate, to 0.065. To simulate the antisense-mediated downregulation

of the stress response, the translation rate is raised from 0.0051 to 0.01, resulting in

a much weaker stress response. Compared to the experimental results (Srivastava et
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Index Transition k s

1 FtsH degradation 7.40 × 10−11
s
−1 7.40 × 10−11

s
−1

2 FtsH synthesis 2.21 × 108(Ms)−1 0.932(Ts)−1

3 GroEL degradation 1.80 × 10−8
s
−1 1.80 × 10−8

s
−1

4 GroEL synthesis 3.31 × 109(Ms)−1 14.0(Ts)−1

5 J-disassociation 6.40 × 10−10
s
−1 6.40 × 10−10

s
−1

6 J-production 2.36 × 109(Ms)−1 10.0(Ts)−1

7 Holoenzyme association 0.700s
−1 0.700s

−1

8 Holoenzyme disassociation 0.130s
−1 0.130s

−1

9 σ
32 mRNA decay 1.40 × 10−6

s
−1 1.40 × 10−6

s
−1

10 σ
32-J-association 3.27 × 105(Ms)−1 1.38 × 10−3(Ts)−1

11 σ
32 degradation 1.28 × 104(Ms)−1 5.41 × 10−5(Ts)−1

12 σ
32-J-disassociation 4.40 × 10−4

s
−1 4.40 × 10−4

s
−1

13 σ
32 transcription 1.40 × 10−5

s
−1 1.40 × 10−5

s
−1

14 σ
32 translation 5.10 × 10−3

s
−1 5.10 × 10−3

s
−1

15 Recombinant protein-J-association 7.11 × 105(Ms)−1 3.01 × 10−3(Ts)−1

16 Recombinant protein-J-disassociation 4.40 × 10−5
s
−1 4.40 × 10−5

s
−1

17 Recombinant protein synthesis 4.00s
−1 4.00s

−1

18 Recombinant protein degradation 3.00 × 10−3
s
−1 3.00 × 10−3

s
−1

19 Recombinant protein activation 3.27 × 105(Ms)−1 1.38 × 10−3(Ts)−1

20 Active recombinant protein degradation 3.00 × 10−3
s
−1 3.00 × 10−3

s
−1

Table 2.1: Rate constants in σ32 stress circuits. ki (i = 1, . . . , 20) are deterministic

rate constants, si (i = 1, . . . , 20) are stochastic rate constant.
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Components Initial tokens

x1 σ32 mRNA 10

x2 σ32 1

x3 Eσ32 1

x4 GroEL 1200

x5 FtsH 93

x6 σ32-J-Comp 7

x7 J-Comp 54

Table 2.2: Components in σ32 ethanol stress circuit and their initial tokens

G1 σ32 gene

G2 GroEL gene

G3 FtsH gene

G4 J-Comp gene

Table 2.3: Genes in σ32 ethanol stress circuit
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Figure 2.3: Fold increase of total σ32 (σ32+Eσ32+σ32:J) in ethanol stress response.

Solid line: response without antisense. Dashed line: response with antisense. Sur-

rounding dotted lines: ± standard deviation. Points with error bars: experimental

data (Srivastava et al., 2000). Error bars represent standard error from duplicate

experiments.

al., 2000), the predictions of fold increases of σ32 and GroEL match the experimental

data well (Fig. 2.3 and Fig. 2.4). The plots show the means and variances from

SPN simulations. Compared with the means, the ODE simulation results are within

1-2% agreement. This agreement in general improves as more “batches” are used in

Möbius simulations. The dynamics of state variables are shown in Fig. 2.5.
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Figure 2.4: Fold increase of GroEL protein in ethanol stress response. Solid line: re-

sponse without antisense. Dashed line: response with antisense. Surrounding dotted

lines: ± standard deviation. Points with error bars: experimental data (Srivastava

et al., 2000). Error bars represent standard error from duplicate experiments.
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Figure 2.5: Dynamics of state variables in ethanol stress response. Solid line: re-

sponse without antisense. Dashed line: response with antisense.
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Components Initial tokens

x1 σ32 mRNA 10

x2 σ32 1

x3 Eσ32 1

x4 GroEL 86

x5 FtsH 93

x6 Rec. Prot. 0

x7 σ32-J-Comp 7

x8 J-Comp 54

x9 Rec. Prot.-J-Comp 0

x10 Active Rec. Prot. 0

Table 2.4: Components in the σ32 genetic regulatory circuit for recombinant protein

expression and their initial tokens

2.5 Development of SPN Model for Recombinant Protein Production

The SPN model for recombinant protein production developed by Srivastava et

al. (2001) is extended here to distinguish between active protein and inactive protein

by adding one new component (active recombinant protein) and two new reactions

(activation and degradation of the active recombinant protein) to the original SPN.

The regulatory pathway is shown in Fig. 1.3. The new SPN is shown in Fig. 2.6.

The components in the circuit and their initial tokens are listed in Table 2.4. The

genes are listed in Table 2.5.
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G1 σ32 gene

G2 GroEL gene

G3 FtsH gene

G4 J-Comp gene

G5 Rec. Prot. gene

Table 2.5: Genes in the σ32 genetic regulatory circuit for recombinant protein ex-

pression

The recombinant protein degradation rate is re-derived based on data from

literature (Kanemori et al., 1994). The recombinant protein activation rate is as-

sumed to be equal to the σ32-J association rate. The active protein degradation

rate is assumed to be equal to the inactive protein degradation rate. The GroEL

synthesis rate has been adjusted downward to reflect the fact that its molecules form

barrel-like groups of 14 molecules that essentially reduce the number of molecules

that can be considered “active.” The number of initial GroEL tokens is reduced

correspondingly. To simulate the effects of inducing production of recombinant pro-

tein with and without antisense, the σ32 translation rate is raised from 0.0051 to

0.14 and 0.01 correspondingly. Compared to the experimental results (Srivastava et

al., 2000), the predictions of normalized level of total OPH (OPH+OPH:J+active

OPH) and the protein activity match the experimental data well (Fig. 2.7 and Fig.

2.8). Note that in Fig. 2.8, the fraction of active OPH is matched to the activity

measure for the experimental data by using a factor of 0.128 that provides the best

fit with the data. The dynamics of state variables are shown in Fig. 2.9. We can
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Figure 2.7: Normalized level of total OPH (OPH+OPH:J+active OPH) following

induction of recombinant protein. Solid line: response without antisense. Dashed

line: response with antisense. Surrounding dotted lines: ± standard deviation.

Points with error bars: experimental data (Srivastava et al., 2000). Error bars

represent standard error from duplicate experiments.

see that the downregulation of σ32-mediated response by antisense results in lower

levels of J protein and total OPH. Since there is less J protein to combine with

OPH, more OPH remains in free from, therefore more OPH is transformed into ac-

tive form. This explains why there are both reduced total OPH level and increased

OPH activity.
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line: response without antisense. Dashed line: response with antisense.
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Chapter 3

Langevin-Type Models

3.1 Introduction

SPN is an efficient method for modeling stochastic chemical reactions, and

it has been successfully applied to several genetic systems. However, using an

SPN model in an optimization framework is another matter. The representation

of stochastic chemical reactions as a SPN is equivalent to their master equations,

which describe the reaction network in continuous time and discrete state space.

SPNs are isomorphic to hidden Markov chains. Including SPN as part of an op-

timization problem results in a Markov decision process (MDP). Solving an MDP

problem is very difficult for all but the smallest problems. Indeed, Saucedo and

Karim (1998) solved an optimal fermentor feed problem as an MDP, where the

product concentration (ethanol) was discretized and the transition probability func-

tions were obtained from an empirical input-output model. But this was a case with

only one component present in the model. For the reaction networks of genetic cir-

cuits in E. coli, the state spaces generated by SPN simulation are extremely large.

Solving the MDPs will be extremely difficult for these system, thus optimization

based on an SPN model is impractical.

The Fokker-Planck equation was first introduced to describe the Brownian

motion of small particles. The Fokker-Planck equation deals with fluctuations which
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change the states of the system in an unpredictable but small way. This equation

is now applied in a number of different fields such as solid-state physics, quantum

optics, chemical physics, and circuit theory (Risken, 1989). The Fokker-Planck

equation and the equivalent Langevin equation have been suggested as potentially

useful for modeling at the gene level (Gibson and Mjolsness, 2001). In this work,

Langevin-type models are proposed to approximate SPNs. Langevin models are

suitable for use in optimization and sensitivity analysis, while at the same time they

maintain the full set of reaction pathways as well as the stochastic nature of the

system. The SPNs are used to generate the variance information which is necessary

in developing Langevin models, as well as for testing theoretical predictions.

By allowing the number of molecules to take non-integer values, we can de-

scribe a reaction network by Langevin equation as

ẋ = f(x) + g(x)n(t) (3.1)

where x is a vector of dimension N with each element corresponding to the number

of molecules for each component present. The initial condition is that at time t = 0

the state variables have sharp values:

x(0) = x0 (3.2)

The function f(x) is assumed to represent the phenomenological behavior of the

system, i.e., the deterministic kinetics of the reaction network. The stochastic nature

of the system is present in the Langevin equation via n(t), which is a vector of noise

variables with zero mean and with a correlation function which is proportional to a
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δ function:

〈ni(t)〉 = 0 i = 1, . . . , N

〈ni(t)nj(t
′)〉 = qijδ(t − t′) i, j = 1, . . . , N (3.3)

The symmetric matrix Q = [qij ] is referred to as the noise covariance matrix. The

Langevin equation can be identified as continuous time, continuous state space, and

stochastic model (CCS).

In this approach, g is assumed to be independent on x, therefore the constant

g may be absorbed in Q and equation (3.1) can be simplified as

ẋ = f(x) + n(t) (3.4)

(3.4) is called a Langevin equation with additive noises. By running SPN simula-

tions, one can get the variance and covariance of x. Then the distribution informa-

tion of x is used to determine the noise covariance matrix Q.

3.2 Proposed Linear Langevin Model Fit

For linear f(x), the Langevin model is exactly equivalent to a continuous

representation (non-integer molecule numbers) of the master equations that yield

probability distribution. Take expectations of (3.4)

〈ẋ〉 = 〈f(x)〉 + 〈n(t)〉 (3.5)

Since expectation is a linear operator and 〈n(t)〉 = 0, we can get a deterministic

differential equation with variable 〈x〉 from (3.5)

˙〈x〉 = f(〈x〉) (3.6)

34



Thus the time evolution of the mean of x is exactly the solution of the phenomeno-

logical equations.

For linear f(x), the Langevin equation (3.4) can be written as

ẋ = Ax + n(t) (3.7)

where A is a constant matrix. A process described by (3.7) is called an Ornstein-

Uhlenbeck process. When the dimension of x is one, (3.7) is the Langevin equation

for Brownian motion.

The general solution of (3.7) is (Risken, 1989)

x(t) = φ(t)x0 +

∫ t

0

φ(τ)n(t − τ)dτ (3.8)

where the N×N matrix φ(t) is the Green’s function, which has to satisfy the matrix

ODE

φ̇ = Aφ (3.9)

with initial condition

φ(0) = I (3.10)

The solution of the matrix ODE is

φ(t) = I + At +
1

2
A2t2 + · · · △

= eAt (3.11)

From (3.3) and (3.8), one can derive the equations of the distribution infor-

mation of x (Risken, 1989):

Mi(t) = 〈xi(t)〉 =

N
∑

j=1

φij(t)x0j i = 1, . . . , N (3.12)
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σij(t) = 〈[xi(t) − 〈xi(t)〉][xj(t) − 〈xj(t)〉]〉

=

N
∑

k=1

N
∑

s=1

∫ t

0

∫ t

0

φik(τ1)φjs(τ2)qksδ(τ1 − τ2)dτ1dτ2

=
N

∑

k=1

N
∑

s=1

∫ t

0

φik(τ)φjs(τ)dτqks i, j = 1, . . . , N (3.13)

where Mi(t) is the mean trajectory of xi, σij(t) is the covariance of xi and xj . When

i = j, the variance σii(t) can be generated from SPN simulation by Möbius. When

i 6= j, there is no direct way to calculate the covariance of two variables by Möbius.

However, covariance can be obtained indirectly. If we define a new performance

variable which equals xi(t)xj(t) and get its mean trajectory from Möbius, then the

covariance of xi and xj can be calculated from the following equation:

σij(t) = 〈xi(t)xj(t)〉 − 〈xi(t)〉〈xj(t)〉 (3.14)

Given the value of σij(t), (3.13) is a set of linear equations with N2 variables and N2

equations for any time point t, e.g. the final time of the simulation. The solution

of (3.13) gives us the covariance information of the noises in the Langevin model

(3.4), which should result in the same distribution for x as the results generated by

an SPN simulation.

For the sake of explicit interpretation of noises in the context of robust control,

we can further simplify the Langevin model by assuming a diagonal Q and just using

the variance information of x to determine Q. Thus in (3.13) only N linear equations

remain:

σii(t) =

N
∑

k=1

∫ t

0

φ2
ik(τ)dτqkk i = 1, . . . , N (3.15)
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The dimensions of variables and equations are still equal for a diagonal Q. This

simplification may result in some negative qkk in the solution of (3.15). Since the

physical meaning of qkk is the variance of noise nk, it must be non-negative. If this

happens, an alternative is to substitute the linear equations with a NLP problem

subject to a bound on q, and the objective is to minimize the sum of squared relative

errors

min
q

N
∑

i=1















σii(t) −
N

∑

k=1

∫ t

0

φ2
ik(τ)dτqkk

σii(t)















2

s.t. qkk ≥ 0 k = 1, . . . , N (3.16)

3.3 Proposed Nonlinear Langevin Model Fit

For nonlinear f(x), (3.6) is not strictly valid since

〈f(x)〉 6= f(〈x〉) (3.17)

Therefore difficulties arise in interpreting ẋ = f(x) as the phenomenological (deter-

ministic) equations of the reaction network. An example is the case of a diode circuit

model where this interpretation leads to a violation of the second law of thermo-

dynamics, i.e. Brillouin’s paradox (Brillouin, 1950). The discrepancy is extremely

small and of no practical interest (McFee, 1971), but the theoretical implications

were Van Kampen’s (1992) motivation for a method based on the expansion of the

master equations. However, a Langevin model proposed here is not necessarily the

means to a very accurate simulation. An SPN model can be used for that purpose
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and to verify optimization results. Since Langevin models are just approximations

to master equations, the interpretation difficulties are expected to not be important.

A comparison of the time evolution of 〈x〉 in an SPN simulation to the path obtained

by solving ẋ = f(x) for the same initial conditions can be used to evaluate if this

effect is important for the reaction networks under consideration. Actually, for both

ethanol stress and recombinant protein production circuits the comparison showed

excellent match. This is further supported by the simulation of ColE1 plasmid

replication (Goss and Peccoud, 1998). This is a system where variance informa-

tion is very important, so an SPN model was used to simulate it. The comparison

showed excellent agreement between results obtained from the deterministic model

(Brendel and Perelson, 1993) and the SPN-calculated mean for plasmid, RNA I and

Rom protein. Of course the deterministic model alone could not provide the im-

portant variance information, but the agreement with the means obtained from the

SPN simulation supports the interpretation of ẋ = f(x) as the phenomenological

equations for the system.

To determine the matrix Q for nonlinear reaction networks, we need to ap-

proximate the nonlinear equations in linear forms. Let us assume xm(t) is the mean

trajectory that x(t) follows, which can be obtained from an SPN simulation or by

solving the phenomenological differential equations. Linearizing f(x) in (3.4) around

xm(t) results in a time-varying differential equation

ẋ = A(t)x + n(t) (3.18)
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where

A(t) =

[

df

dx

]

x=xm(t)

(3.19)

The general solution of (3.18) takes the same form as (3.8)

x(t) = φ(t)x0 +

∫ t

0

φ(τ)n(t − τ)dτ (3.20)

where φ(t) has to satisfy the time varying matrix ODE

φ̇ = A(t)φ (3.21)

with initial condition

φ(0) = I (3.22)

The matrix φ(t) is commonly referred to as the state transition matrix (STM) as-

sociated with A(t). When A(t) is independent of time, φ(t) is also called Green’s

function. Our approach for determining Q for linear Langevin models still applies

for nonlinear f(x) except for the calculation of φ(t). In general, it is not possible

to derive an analytical, closed-form expression of the STM associated with an ar-

bitrary matrix A(t) (Tsakalis and Ioannou, 1993). The Peano-Baker formula is a

power series expansion for the STM (Tsakalis and Ioannou, 1993):

φ(t) = I +

∫ t

0

A(τ1)dτ1 +

∫ t

0

∫ τ1

0

A(τ1)A(τ2)dτ2dτ1 + · · ·

+

∫ t

0

∫ τ1

0

. . .

∫ τn−1

0

A(τ1)A(τ2) . . . A(τn)dτn . . . dτ2dτ1 + · · · (3.23)

However, there is no general rule to determine how many terms are sufficient for

Peano-Baker formula to get a converged solution. Therefore, the matrix ODE (3.21)

should be solved by numerical integral. The number of variables in (3.21) is N2, thus
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the running of a ODE solver might be very slow. If this happens, we can decompose

the matrix ODE into a set of smaller ODEs. Let us assume

φ = [φ1, . . . , φN ] (3.24)

where φi is the ith column of the matrix φ. Take derivatives of (3.24)

φ̇ = [φ̇1, . . . , φ̇N ] (3.25)

From (3.21), (3.24) and (3.25), we obtain

φ̇1 = A(t)φ1

...

φ̇N = A(t)φN (3.26)

Thus the computation burden can be reduced greatly.
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3.4 Langevin Model for σ32-mediated Ethanol Stress

From the SPN of ethanol stress in Fig. 2.2, we can write down the Langevin

model as a set of stochastic differential equations:

ẋ1 = k13G1 − k9x1 + n1(t)

ẋ2 = k14x1 + k12x6 − k10x2x7 + k6G4x3 − k7x2 + k8x3 + k4G2x3 + k2G3x3 + n2(t)

ẋ3 = k7x2 − k6G4x3 − k2G3x3 − k4G2x3 − k8x3 + n3(t)

ẋ4 = k4G2x3 − k3x4 + n4(t)

ẋ5 = k2G3x3 − k1x5 + n5(t)

ẋ6 = k10x2x7 − k12x6 − k11x5x6 + n6(t)

ẋ7 = k6G4x3 + k12x6 − k10x2x7 − k5x7 + k11x5x6 + n7(t)

(3.27)

where

〈ni(t)〉 = 0 i = 1, . . . , 7

〈ni(t)nj(t
′)〉 = qijδ(t − t′) i, j = 1, . . . , 7 (3.28)

There are seven state variables in the Langevin model. They are listed in Table 2.2.

Let us not consider the cross variances and assume a diagonal Q. The variance

for each state at the end of the SPN simulation time tf = 30min is obtained and

related through the Langevin model to the variance of the noise terms in the model.

The result is a linear system of seven equations and seven unknowns:

Hq = σ (3.29)

where q = [q11, . . . , q77]
T , is the vector of unknowns, σ = [σ11, . . . , σ77]

T is a vector
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with the state variances, and the matrix H is obtained from the Langevin model,

Hij =

∫ t

0

φ2
ij(τ)dτ (3.30)

Since the elements of q have to be non-negative, the solution is obtained as the

result of the following optimization, where the scaling matrix V is a diagonal matrix

composed of the elements of σ:

min
q

||V −1(Hq − σ)||

s.t. qii ≥ 0 i = 1, . . . , 7 (3.31)

The result of the optimization is shown in Table 3.1. The match is good for most

elements, except for σ33 and σ77, where there are large errors. The errors are from

the non-linearity of the system.

We should take note of the fact that the variances obtained from the SPN

simulation also have related error in their calculation. The Möbius software package

was set in the simulation to satisfy a 10% error constraint on the calculation with

a desired 95% confidence. At the end of the simulation, we actually have bounds

for the variances that Möbius produces and in principle we should only attempt to

match within those limits. Furthermore, Möbius can be set up to indirectly provide

cross-covariances for the states. Related error bounds can be computed afterwards

and they tend to be larger than those for the state variances.

We have tried different alternative optimization formulations, which include

the cross-covariance for states 6 and 7 (σ67 = σ76) that correspond to components

for which such a correlation may be significant. An additional variable in q is then
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q67 = q76, so we have in this case eight equations in eight variables

Hq = σ (3.32)

Where q = [q11, . . . , q77, q67]
T , σ = [σ11, . . . , σ77, σ67]

T , H is a 8× 8 matrix which has

counted for the influence of q67. Rather than trying to match exactly to the values

in σ, these formulations attempt to satisfy the bounds obtained around these values

from Möbius, and furthermore allow violation of these bounds, by setting them up

in the optimization as soft constraints. Let us define σ to be upper bound of σ, σ

to be the lower bound of σ, ǫ to be a vector of variables corresponding to violations,

ǫ = [ǫ11, . . . , ǫ77, ǫ67]. The objective function is to minimize the sum of square of

violations, which are appropriately scaled by dividing with the values in σ, similarly

to (3.31),

min
q

||V −1ǫ||

s.t. qii ≥ 0 i = 1, . . . , 7 (3.33)

or with the size of the constraint,

min
q

||W−1ǫ||

s.t. qii ≥ 0 i = 1, . . . , 7 (3.34)

or the square root of the product of the two,

min
q

||(
√

V W )−1ǫ||

s.t. qii ≥ 0 i = 1, . . . , 7 (3.35)

where W is a diagonal matrix composed of the elements of σ−σ. These alternative

formulations provided some improvement by reducing the error in matching diagonal
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σ q V −1(Hq − σ)

0.05 2.97 ×10−5 0.0657

0.699 0 0.176

0.0203 0.156 -0.811

2040 0.518 6.57 ×10−5

67.8 0.0363 0.0897

92.8 0.437 0.160

547 0 -0.648

Table 3.1: Results for diagonal Q.

elements. Table 3.2 shows the results when the square root of the product of the

values in σ and the size of the constraint is used for scaling. Actually, if one allows

pushing the error to the cross-covariance element σ67, then the error in the match

of the diagonal elements is small (Table 3.3). However, there is no general rule to

determine how many non-diagonal elements to include and which ones to include.

And the use of non-diagonal elements in Q may complicate the future use of the

Langevin model in optimization.
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σ q V −1(Hq − σ)

0.05 3.34 ×10−5 0.201

0.699 0 0.113

0.0203 0.0203 -0.0709

2040 2.97 0.00308

67.8 0.0491 -0.0830

92.8 1.22 0.141

547 4.77 -0.523

-97.2 -4.92 1.61

Table 3.2: Results when q67 is used.

σ q V −1(Hq − σ)

0.05 3.51 ×10−5 0.259

0.699 0 0.0655

0.0203 0.0197 -0.0993

2040 76.6 -0.00656

67.8 0.427 -0.0393

92.8 7.30 0.0632

547 12.8 -0.223

-97.2 -47.7 30.2

Table 3.3: Results when q67 is used and the error is pushed to σ67.
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Chapter 4

Optimal Control of Genetic Circuits

4.1 Introduction

After a Langevin model is obtained as an approximation of the master equa-

tions by using SPN-generated variance information, it can be used in an optimal

control problem. The optimal control for genetic circuits in this work is to develop

control policies for dynamically optimizing pathway performance by manipulating

environmental factors and in vivo controllers. To deal with the stochastic nature

of Langevin models, a robust control problem is generated by interpreting the noise

n(t) as “uncertainty” in the models. As the first attempt, optimal control policies

are developed for the deterministic part of a Langevin model by assuming n(t) = 0.

Then the effect of uncertainty on the optimality of these policies can be evaluated

by maximizing the deviation of the value of the objective function from the deter-

ministic optimal over all possible n(t).

4.2 Optimization Objectives and Control Inputs

Experimental results have shown that manipulation of cell-to-cell communi-

cation by exposing them to conditioned medium containing elevated AI-2 activity

results in increased recombinant protein yield. However, using conditioned medium
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(or purified AI-2) would not be a preferred method for accomplishing increased

production from a practical point of view. The metabolic pathways indicate that

the level of LuxS protein should have an effect on the AI-2 level and the desired

recombinant protein (OPH) production induced by IPTG. An objective could be

manipulating the level of LuxS protein to maximize AI-2 level and/or OPH pro-

duction directly. Furthermore, the LuxS level may be controlled dynamically using

arabinose to induce LuxS production and manipulating the kinetic rate constant

for LuxS production by adjusting the arabinose addition rate. This is an optimal

control problem with the rate constant playing the role of control input. Other ob-

jectives for optimization, as alternatives or in conjunction with the above objective,

could involve a maximization of the speed of increase and of the final level of σ32

during a stress response, as well as the sensitivity to the initial distribution of σ32.

Another control input would be the σ32 targeted antisense RNA.

4.3 Optimal Control for ODE Models

Let us modify the notation of (3.4) to explicitly show a control input u(t)

ẋ = f(x, u) + n(t) (4.1)

With the assumption n(t) = 0, a deterministic model is given by a set of ordinary

differential equations:

ẋ = f(x, u) x(t0) = x0 (4.2)

where u(t) subjects to lower and upper bounds:

uL < u(t) < uU (4.3)
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The criterion of the performance of the system, i.e. cost function, is defined as a

function of the final state:

J = φ(x(tf )) (4.4)

where tf is the final time of operation. The objective of optimal control is to

minimize the cost function J .

Here u is considered to be a piecewise constant function over the time interval

[t0, tf ]. The input keeps constant until a switching time is reached, at which point

the value changes instantaneously to another constant value, which is held until

the next switching time. The control input is assumed to have discontinuities at

t1, t2, . . . , tM and can be expressed as (Hasdorff, 1976)

u(t) =
M

∑

i=0

hi[1(t − ti) − 1(t − ti+1)] tM+1 = tf (4.5)

where hi is the value of the piecewise constant in the time interval ti < t < ti+1 and

1(t) is the unit step function. Thus the control input is completely defined by the

vector of switching time

τ =

























t1

t2

...

tM

























∈ RM (4.6)
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and the vector of input values

h =

























h0

h1

...

hM

























∈ RM+1 (4.7)

The gradient of the cost function J with respect to τ and h is given by (Has-

dorff, 1976)

g(τ, h) =

























λT (t1)[f(x(t1), h0) − f(x(t1), h1)]

λT (t2)[f(x(t2), h1) − f(x(t2), h2)]

...

λT (tM)[f(x(tM), hM−1) − f(x(tM), hM)]

















































∫ t1

t0
fT

u (x, h0)λ(t)dt

∫ t2

t1
fT

u (x, h1)λ(t)dt

...

∫ tf
tM

fT
u (x, hM)λ(t)dt

























(4.8)

where λ is the adjoint vector and satisfies

λ̇ = −fT
x (x, u)λ(t) λ(tf) = ∇xφ(x(tf )) (4.9)

fx and fu are given by

(fx)ij =
∂fi

∂xj

i, j = 1, . . . , N (4.10)

(fu)i =
∂fi

∂u
i = 1, . . . , N (4.11)

The computation procedure of the cost function and its gradient at a given

input u(t) may be outlined briefly as the following:
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1. Integrate the system equation (2.1), using the given u, forward in time from

t0 to tf to get x(t0 ∼ tf ).

2. Having x(tf ), evaluate φ(x(tf )) and integrate the adjoint system (4.9) back-

wards in time from tf to t0 to get λ(t0 ∼ tf).

3. Use (4.8) to calculate the gradient.

Then the cost function and its gradient are submitted to NLP software to find the

optimal solution u∗ which minimizes J .
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4.4 Optimization for Recombinant Protein Production on A Deter-

ministic Model and Evaluation Based on Stochastic Simulations

From the SPN in Fig. 2.6 , we can write down the deterministic model of σ32

genetic circuit for recombinant protein expression as a set of differential equations:

ẋ1 = k13G1 − k9x1

ẋ2 = k14x1 + k12x7 − k10x2x8 + k6G4x3 − k7x2 + k8x3 + k4G2x3 + k2G3x3

ẋ3 = k7x2 − k6G4x3 − k2G3x3 − k4G2x3 − k8x3

ẋ4 = k4G2x3 − k3x4

ẋ5 = k2G3x3 − k1x5

ẋ6 = k17G5 − k18x6 − k15x6x8 + k16x9 − k19x6x4

ẋ7 = k10x2x8 − k12x7 − k11x5x7

ẋ8 = k6G4x3 + k12x7 − k10x2x8 − k5x8 + k11x5x7 + k16x9 − k15x6x8

ẋ9 = k15x6x8 − k16x9

ẋ10 = k19x6x4 − k20x10

(4.12)

where the components are listed in Table 2.4, the rate constants are listed in Table

2.1, the genes (they are constants in the model) are listed in Table 2.5.

In this project, σ32 translation rate k14 is used as the input of optimal control.

The effects of σ32 antisense on yield of active OPH were studied by Srivastava

et al. (2000). In their work, antisense RNA was used to downregulate the σ32

mediated response. Although total protein production is lower when the antisense

is expressed, the higher specific activity in cultures results in a larger amount of

biologically active recombinant protein. Since it is possible to experimentally initiate
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Figure 4.1: Piecewise control input for OPH production

the σ32 antisense expression after the protein expression by using different plasmids

or different promoters on the same plasmid, the σ32 translation rate could be used

to as input to maximize OPH production.

Since we use the induction of σ32 antisense to adjust the translation rate, the

input is considered to be a piecewise constant function with one switch time, as

shown in Fig. 4.1. The following values are fixed

t0 = 0

tf = 30min

h0 = 0.14s−1

(4.13)

Thus we have two input variables

τ = t1 (4.14)

h = h1 (4.15)

The bounds on input

0 ≤ t1 ≤ tf

0.01s−1 ≤ h1 ≤ h0

(4.16)
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The objective of optimal control is to maximize the active OPH level at a fixed

final time tf . The objective function is defined as

J = φ(x(tf)) = −x10(tf ) (4.17)

Its gradient with respect to x

∇xφ = [0, 0, 0, 0, 0, 0, 0, 0, 0,−1] (4.18)

According to (4.8), the gradient of the objective function with respect to t1 and h1

is given by

g(t1, h1) =









λT (t1)[f(x(t1), h0) − f(x(t1), h1)]

∫ tf
t1

fT
u (x, h1)λ(t)dt









(4.19)

From the system model (4.12), we can get:

f(x(t1), h0) − f(x(t1), h1) = [0, x1(t1)(h0 − h1), 0, 0, 0, 0, 0, 0, 0, 0]T (4.20)

fu = [0, x1, 0, 0, 0, 0, 0, 0, 0, 0]T (4.21)

Substitute (4.20) and (4.21) into (4.19),

g(t1, h1) =









λ2(t1)x1(t1)(h0 − h1)

∫ t1

tf
−x1λ2dt









=









λ2(t1)x1(t1)(h0 − h1)

β(t1)









(4.22)

where we have defined

β(t) =

∫ t

tf

−x1λ2dτ (4.23)

The computation procedure of the value of objective function and its gradient

is summarized as the following:
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1. Integrate the differential equation (4.12), using the given u, forward in time

from t0 to tf to get x(t0 ∼ tf ).

2. Having x(tf ), evaluate φ(x(tf)) and integrate the following differential equa-

tions backwards in time from tf to t1 to get λ(t1) and β(t1).

λ̇ = −fT
x λ λ(tf ) = ∇xφ(x(tf))

β̇ = −x1λ2 β(tf) = 0

(4.24)

3. Use (4.22) to calculate the gradient.

The optimization results are

t1 = 10min

h1 = 0.01s−1

(4.25)

Compared with the yield with constant input (without antisense), the final active

protein level increased by 67% with the optimal input. The dynamics of state

variables with optimal piecewise input are shown in Fig. 4.2. We can see that the

increase of active protein slows down gradually in the first 10 minutes; at the time

of 10 minutes, there is a sharp increase of the active protein level, which slows down

gradually until the final time. The probability distributions of components across a

cell population are shown in Fig. 4.3. The distributions suggest species with lower

molecule numbers have relatively larger variances.

By fixing h1 = 0.01s−1 and selecting a range of values for the other input

variable, t1, between 0 and tf = 30min, we can simulate the model to obtain the

active protein level as a function of t1. Those results are shown in Fig. 4.4. We

see that the maximum on the curve of the mean value (solid line) seems to be at a
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Figure 4.2: Dynamics of state variables in recombinant protein expression with

optimal piecewise input: σ32 translation rate
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Figure 4.3: Probability distributions of components at 30 min in recombinant protein

expression with optimal piecewise input
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value for t1 a little smaller than the one that is optimal for the ODEs. One should

keep in mind that SPN simulations with Möbius yield the mean but just like for the

variance calculation, there is an error margin that in our simulations has been set

to up to 10% for the desired 95% confidence. Usually the error margin turns out to

be smaller, about 1-2%, but here the relative flatness of the active OPH level as a

function of t1 results in a difference in the seemingly optimal t1. However, this is

not important in terms of the result, because the resulting curve is rather flat for

times t1 up to about 15 minutes. SPN simulations also provide the variance that

one can expect. This stochastic uncertainty further suggests that the active protein

production will not deviate much from the expected optimum for such times t1.

This result suggests that there is substantial tolerance in the amount of time we can

have between the recombinant protein induction and the antisense induction.
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Figure 4.4: Solid line: The final active OPH level (from SPN simulations) as a

function of t1, i.e. the time of antisense induction. Surrounding dotted lines: ±

standard deviation.
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Chapter 5

Conclusions and Future Work

When E. coli cells are subject to stress conditions, such as ethanol shock or

expression of recombinant protein, the transcription factor σ32 initiates responses

that increase the production of heat shock proteins and repair denatured proteins.

In the work of Srivastava et al. (2000), antisense RNA was used to downregulate

σ32-mediated stress responses. While the total yield of recombinant protein is lower

when antisense is expressed, the higher specific activity indicates a larger amount

of biologically active protein.

In genetic regulatory circuits, many molecules are present in very low con-

centrations. As a result, the discrete nature becomes important and the stochastic

effects may invalidate the deterministic equations. A more broadly applicable ap-

proach to model such systems is to use chemical master equations, which describe

the reaction network as a continuous time, discrete state-space and stochastic pro-

cess. CME are impossible to solve for all but the simplest systems, but they can be

simulated numerically. Stochastic Petri Nets simulation is equivalent to the First

Reaction Method proposed by Gillespie (1976) for numerical simulation of CME.

Based on previous work (Srivastava et al., 2001), we further developed the SPN

models for ethanol stress response and recombinant protein production. The model

parameters were further tuned and the model was extended to include the produc-
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tion of biologically active recombinant protein. The simulation results showed good

match to experimental data reported in Srivastava et al. (2000).

The optimal control for genetic circuits in this work aims at developing control

policies for dynamically optimizing pathway performance. However, using SPN

directly as part of an optimization problem results in tremendous computational

difficulties. A possible alternative approach is to use Langevin-type models which

are more suitable for use in an optimal control problem. The system is described as

ẋ = f(x) + n(t) (5.1)

where f(x) is the deterministic kinetics of the reaction network, n(t) is a vector of

noise variables. n(t) represents the stochasticity of the system and its covariance

matrix Q can be determined from the distribution information of x obtained from

SPN simulations. A Langevin model was developed for ethanol stress response. At

first a diagonal Q was assumed and its elements are obtained from a constrained

optimization. Then a non-diagonal element of Q was included to reduce the error

in matching diagonal elements.

As the first attempt, optimal control policies were developed for the determin-

istic part of a Langevin model. Since it is possible to experimentally initiate the

σ32 antisense expression after the recombinant protein expression by using differ-

ent plasmids or different promoters on the same plasmid, the timing of antisense

induction can be used to maximize the active protein production. The change in

σ32 translation rate was used to simulate the effects of antisense and was considered

to be a piecewise control input. Optimization results showed an increase of active
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protein level by 67% with optimal input. The robustness of the results with respect

to uncertainties in the model was also discussed.

Future work may include:

1. Further improving the Langevin models to reduce the error in the match of

variance information. Utilize Langevin models for robust control by inter-

preting the noise terms as “uncertainty” in the models (Morari and Zafiriou,

1989).

2. Develop sensitivity analysis formalism for stochastic models (Feng et al., 2004).

Study the robustness of genetic circuits with respect to model parameters and

other environmental factors (El-Samad et al., 2002).

3. Combine the σ32 circuit with “quorum sensing” (cell to cell communication)

circuit as well as study the interplay between these circuits.
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