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Abstract

The robust stability analysis of Constrained Model Predic-
tive Control (CMPC) for linear time invariant and open-
loop stable processes is the main topic of this paper. Based
on the CMPC algorithm, the feedback controller is a piece-
wise linear operator because of the constraints. This piece-
wise linear operator can be thought of as an array of linear
feedback controllers in parallel, handling different types
of predicted active constraint situations. Each term in the
linear operator corresponding to the predicted active con-
straint situation can be decomposed to have an uncertainty
block. Hence, the linear operator can be written as a linear
closed-form with uncertainty blocks inside. According to
the linear robust stability analysis method, the robust sta-
bility of CMPC can be analyzed and the computer aided
off-line tuning for the stability of CMPC can also be devel-
oped by solving a minimum maximum problem based on
the stability analysis method. Some examples are given to
show the feasibility of the analysis and tuning methods.

1. Introduction

A framework based on the contraction mapping theory
for the robust stability analysis of Constrained Model
Predictive Control (CMPC) was developed by Zafiriou
(1990). This framework allows for stability analysis in
the frequency domain, A framework with an infinite
horizon formulation is discussed by Muske and Rawlings
(1991,1993). Genceli and Nikolaou (1992) use a formu-
lation with and end constraint in the on-line optimization.

Zafiriou (1990) showed that the CMPC algorithm was
shown to be piece-wise linear with each region corre-
sponding to set of active constraints. This “inherent” set
of linear feedback controllers was completely character-
ized and both necessary and sufficient conditions for the
closed-loop operator to be a contraction were developed.
The necessary condition has been shown to be an excel-
lent indicator of stability for CMPC. In addition, some
theoretical results and simulations on the stability of MPC
with hard output constraints for SISO processes have been
given in Zafiriou and Marchal (1991). The case of soft
constraints as well as a mix of soft and hard constraints,
has been discussed by Zafiriou (1991) and Zafiriou and
Chiou (1992,1993). de Oliveira and Biegler (1992) have
- suggested an alternative way of constraint softening.
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To study the robust stability problem of this nonlin-
ear control system, the state space model is used in this
paper. This nonlinear control can be thought as a piece-
wise linear controller. It contains a sequence of linear
operators handling different active constraint situations
over the whole control period. On analyzing its stability,
a closed-form linear control law with uncertainty blocks
corresponding to different types of active constraint situ-
ations is constructed. Then, by applying standard linear
robust stability techniques in the frequency domain [e.g.
Morari and Zafiriou, 1989] we can use the necessary con-
traction mapping condition to study the robust stability of
the CMPC system. Based on the robust stability condition,
an off-line computer aided optimization based technique
for tuning of CMPC is developed. It is required to solve a
min-max problem to obtain a set of CMPC tuning param-
eters that stabilize the CMPC system.

2. Stability Framework

The preliminaries give the basics of a framework ,based
on the contraction mapping, for the stability analysis of
Constrained Model Predictive Control (CMPC). For more
details and discussion the reader is referred to Zafiriou
(1990).

The QDMC-type algorithms [Garcia and Morshedi,
1986; Garcia and Morari, 1985b] use a quadratic objective
function that includes the square of the weighted norm of
the predicted error (setpoint minus predicted output) over
a finite horizon in the future (sample points k + 1,...k + P,
where k is the current sample point) as well as penalty
terms on u or Au:
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The minimization of the objective function is carried out
over the values of Au(k), Au(k + 1),..., Au(k+ M - 1),
where M is a specified parameter. The minimization is
subject to possible hard constraints on the inputs u, their
rate of change Au, the outputs y and other process variables
usually referred to as associated variables. The details
on the formulation of the optimization problem can be
found in Prett and Garcia (1988). We can soften the hard
constraints on the predicted outputs by allowing violation
by an amount €. In the formulation in this paper, the
same violation variable ¢ > 0 is used for all the points in



the constraint window. Hence the output constraints are
softened to be:

y—e<yk+D<yu+e, wp<Il<we (2

where yr, yu are the lower and upper limits respectively;
Wp, W, are the beginning and ending points of output con-
straint window. The term e W¢ is added to the objective
function, where W is the weight that determines the extent
of softening. For W = oo we get hard constraints. W =10
corresponds to completely removing the constraints. This
formulation covers any mix of hard and soft constraints.

After the problem is solved on-line at k, only the opti-
mal value for the first input vector Au(k) is implemented
and the problem is solved again at k + 1. The optimiza-
tion problem of the QDMC aigorithm can be written as a
standard Quadratic Programming problem:
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where v = [ Au(k) --- Au(k + M - 1) 17 and the matrices
G (> 0), A, and vectors g, b are functions of the tun-
ing parameters (weights, horizon P, M, some of the hard
constraints). The vectors g, b are also linear functions of
y(k), u(k—1),- - -,u(k — N). When some of the constraints
have been softened, v is augmented to include all the cor-
responding es. Inequality (4) includes both the soft and
hard constraints. For the optimal solution v* with respect
to a certain active constraint situation, we have [Fletcher,
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where AT, b consist of the rows of AT, b that correspond
to the constraints that are active at the optimum and A*
is the vector of the Lagrange multipliers corresponding to
these constraints. The optimal Au(k) corresponds to the
first m elements of the v* that solves (5), where m is the
dimension of u.

The special form of the LHS matrix in (5) allows the
numerically efficient computation of its inverse in a parti-
tioned form [Fletcher, 19811:
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where rp(k) includes all the values of reference signal
(setpoint) during the prediction horizon fromk+1tok+P
and d(k) is the disturbance effect at the output at k. J;
is an index set that defines the active constraints. The
function f7, is linear in y and u. The corresponding linear
feedback controller, describing the behavior of the system
at this operating region can be computed from expression
involving the derivatives of f7, w.r.t the y and u variables
[Zafiriou, 1990,1991].

This framework can be used with any type of linear
models. In this paper we use state space descriptions.
Consider the discrete state space model with disturbance
directly added to the output for a process given by

xk+1) = ¢xk)+6ulk)
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where x(k), x(k + 1) are the state vectors of the model;
u(k)and y(k) are the input and output vectors of the model
respectively; d(k) is the disturbance; ¢, ¢, c¢ are the
coefficient matrices of the model. Use the state space
model (9) to predict the plant outputs over the prediction
horizon (P) and assume that the predictive plant output is
equal to the summation of model output and disturbance
d(k) and that d(k) is constant over the whole prediction
horizon (Ad(k+i) = d(k+)~d(k+i-1)=0,i=1,---,P).

3. Robust Stability Analysis Method

For each set of active constraints, the corresponding feed-
back control law can be written in a form that contains
a block that depends on the constraints. The necessary
condition for contraction that is used as an indicator of sta-
bility, requires that all such controllers stabilize the plant.
One way to address this problem is by treating the block
that depends on J;, as “uncertainty” whose value varies
with the constraint set. A bound can then be calculated
and robustness for all “uncertainty” be required. This un-
certainty is real-valued and one-sided for which the results
of Lee and Tits (1992) can be used. True plant “uncer-
tainty” can then be added in a straight forward manner.
We consider here the case where a mix of #, Au, and y
constraints are used. The case where no y constraints exist
results in simpler conditions but these special cases are
omitted from this paper for lack of space. For the general
case, let AT = s where 5 is a full rank submatrix of A”,
and w is an extraction matrix to extract the rows of AT
from 3. The matrix § has to be such that the following con-
dition holds: (a) (357)13G57(557)! > w(ATGA) ' w!.
The selection of ¥ is not always simple, but in many
cases, as in the two examples in the paper, it is obvi-
ous. The following decompositions can be obtained [Horn
and Johnson, 1990]: (b) G37)15G57 537)! = E-1UTUET,
where E is a nonsingular matrix and U is an unitary matrix
variably dependent of the active constraint situation. (c)
w(ATG Ay ' wT = EYUTAUET, where A, is a diago-
nal matrix with the value of each diagonal entry element
between 0 an 1. The following lemma allows the simpli-
fication of the control law for stability purposes.
Lemma 1 If the active constraint set includes some in-
puts reaching their active constraints of Au(k), then the
term u(k — 1) arising from the bound (b) does not affect
the equivalent linear control law for stability (contraction
mapping) analysis. .
Proof: see appendix A.
From equations (6) — (9), (b), (c), lemma 1, we can obtain
after matrix operations and taking the z-transform:

u(@) = (I + $32 Y H(P1x(R) + $2d(2)) (10)
where
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where I is an identity matrix with dimension corresponding
to the dimension of the input vector u; d is the penalty of
Au(k).

g =lc - P 1, a=[h - IpTF  (12)

where I; (i = 1 - - - P)) are identity matrices with dimension
corresponding to the dimension of the output vector. 7, &
contain the elements of 77, «, corresponding to the output
constraint window, respectively. The control block dia-
gram with repeated uncertainty blocks is shown in figure
1, and it can be rearranged as the control block diagram in
figure 2, where M,, contains the fixed part (independent of
A,) of the control block diagram of figure 1;
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Figure 1: Control block diagram for CMPC robust stability
analysis ( W* is a weighting matrix determined by the plant
uncertainty type and bounds and p* is a discrete model.)
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Figure 2: Control block diagram for robust stability anal-
ysis
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Then, from robust control theory, we can obtain the fol-
lowing robust stability condition:

fr([% f])u%(w))a, 0<w<I (3
P

~

where A, is the uncertainty from the plant, which may be
a complex matrix. A; = diag(&;, Ac,A¢,A;). p denotes
the structured singular value. This condition guarantees
satisfaction of the necessary contraction condition, that is
used as an indicator of stability, for all possible plants,
described by the A, uncertainty, assuming that the uncon-
strained control law has been designed to be stable for the
nominal plant.

4. A Computer-Aided Off-Line
Tuning Method for Robust Stability

The results of the previous section can be used for tun-
ing the parameters of the CMPC algorithm, including the
softening weights W, for robust stability. Experience and
general known trends can help make this task easier. How-
ever, to a large extent, it would remain a trial-and-error
procedures. To address this issue, we have experimented
with the use of a sophisticated optimization package for
designing the CMPC algorithm by tuning its parameters
through off-line optimization.

The design problem can be defined as a minimum-
maximum (Min Max) optimization problem. The objec-
tive is to choose a set of CMPC tuning parameters stabi-
lizing (or minimizing) the maximum structured singular
value. The objective function can be given as:

P M, B,rzr)l,ul]“, cw, w m s (4
where CW is a vector containing the constraint window
of the predicted outputs. This constraint can in some
cases be also considered as a tuning parameter. For cases
characterized by the following lemma, the corresponding
controller is independent of the tuning parameters and it
may destabilize the control system. By readjusting the
constraint window, the controller would become tunable.
Lemma 2 [fthe number of the inputs is equal to the num-
ber of the outputs, and the first impulse response coeffi-
cient matrix (after the time delay) is invertible, and the
constraints of the first predicted outputs after the time de-
lay are active in the active constraint set, then the control
law is tuning parameter independent.

The approach followed in the proof is similar to that in
lemma 1.

5. Illustrations

Example 1. A 2 x 2 process model from the Shell Stan-
dard Control Problem is [Prett and Garcia, 1988] used:

4.05¢7 177
)= | e S
T50s5+1 605+1

The sampling time is 6 minutes. The plant can be described
as:

—_ 50s+1 60s+1
p(s) = [ (5.3943.20A0e™  (5.7240.57A)™M

(4.0542.11A0e¢ 7 (1.7740.39A)¢ % }
50s+1 60s+1

where -1 < A; < 1 (i = 1,2). Initially, select the tun-
ing parameters as P =7, M =1, ' =1, B=0,D =
0, CW1 = 5, CW2 = 3, where the k + CW1, k+ CW2
are the points in the future (k being the current point)
for which constraints on outputs 1 and 2 respectively, are
placed in the on-line optimization. Here for simplicity we
assume only one point in each constraint window. The
hard constraints are set on the first point ( after delay time)
of both predictive outputs. From the off-line analysis or



the simulation results shown in figures 3 and 5, we know
that the control system is nominally unstable and tuning
parameter independent according to lemma 2. Hence, we
let the constraint window be tunable during the computer
aided tuning procedure. After solving the MinMax prob-
lem (14) by CONSOLE (please see reference [10]) over
P, M, CW and keeping B, D, I constant: during the tuning
procedure, we obtain a new set of tuning parameters and
constraint points: P =7, M =2, CW1 = 6, CW2 = 4.
The closed-loop structured singular value for this new set
of tuning parameters and constraint windows is shown in
figure 4. We see that this new set of tuning parameters and
constraint windows can stabilize the system. Comparing
the on-line simulation results (figures 5, 6), we also can
see that the control system is stabilized under the same
disturbances and constraint bounds. In the simulations,
the lower and upper bounds of the predictive outputs are
—0.3 and 0.3, the plant is chosen as A; = 1, i = 1,2, and
the disturbance is [ 3/s, 0.1/s17.

Example 2. We consider the design for robust stability
for the same model, plant, and sampling time used as the
previous example we use, but this time we allow constraint
softening. We start by selecting a set of tuning parameters
assP=7T,M=1,W=90,B=0,D=0, =1 Weuse
the constraints on Au)(k), u;(k), 91 (k+ 5). The structured
singular value and simulation are shown in figures 7 and
9. During the off-line optimization based tuning, we fix
the M, B, D, T" and constraint point. After several steps
of computations in CONSOLE, a new set of parameters
for satisfying the robust stability condition (12 < 1) can be
found. The new P and W are 73 and 10.0835 respectively.
The structured singular value for this new set of tuning
parameters is shown in figure 8. Also, the simulation is
given in figure 10, The constraints for the on-line simula-
tion are chosen as: -1 < u (k) < 1,-0.3 < Ay (k) < 0.3,
—0.1 < 9 (k+5) < 0.1, thedisturbanceis [2/s, 1/s]" and
the plantischosenas A; = 1, i = 1, 2. By using the new set
of tuning parameters, we can see that the control system is
stable with the softened constraint of the predicted output
at k+5 without having to slide the constraint point forward
as in example 1.

6. Concluding Remarks

Model predictive control with hard constraints is a nonlin-
ear control system even if plant and model are assumed to
be linear and time invariant. To analyze the robust stabil-
ity of this type of control system, the contraction mapping
theory can be used. Based on a necessary contraction map-
ping condition, a stability analysis framework can be set
up. This nonlinear control system can be thought of as a
sequence of linear feedback controllers handling different
active constraint combination situations. A closed-form
control law can be constructed that contains “uncertainty”
blocks corresponding to different active constraint com-
bination sets. The uncertainty description of the plant
can also be added and the structured singular value which
servers as a robust stability indicator can then be used
to compute this necessary contraction condition. An off-
line computer aided tuning method is also discussed in this
paper, and the design method requires solving a minimum-
maximum problem. Two examples are given to illustrate
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Figure 3: The structured singular value for the initial tun-
ing parameters of example 1

10°

10 10" 10
(0]

Figure 4: The structured singular value for the final tuning
parameters of example 1
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Figure 5: Simulation for example 1 with initial tuning
parameters
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Figure 6: Simulation for example 1 with final tuning pa-
rameters

the effectiveness of the method.
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Appendix A

For a system with m inputs system, assume that £ con-
straints of Au are active with £ < m. Without loss of
generality assume these are the first £ elements of u. Then,
the corresponding control law can be written as:
uk) = -Gt -G LAATG A AT G ST Tk —
© T[c[;-l -crlA(}aTG—lA)-)lATG—I]S%TrTra?zéc))Jr
rGTAATG A b + 1[G = GTAATGAY!
ATe M dPuk-1)0 - 017
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Figure 7: The structured singular value for the initial tun-
ing parameters of example 2
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Figure 8: The structured singular value for the final tuning
parameters of example 2

where 7, n, o are defined in (11),(12). To examine the
contribution of b to the state feedback law, we can write b
as:

b=Tuk=1) - ugk=1)0 --- 0 Ax(k) + ad(k) ],
where 7, & are the matrices consisting of the rows from

the n, o corresponding to the active constraint situation.
Hence

I,

rGAATG AV UK -1) = [ s

0
OJUm—U

where Uk—1) = [u1(k—1) - - ug(k—1)0 --- 017. By
matrix operations and z-transform, the control law can be
rewritten as:

Iy - —111 0 0 0
uz) = [(xs+x6) I—xvz“l] {[xl xz] He) +

[ 0 O

% d(2)}
] 0 0
I (OB 20 b R ( £ S A i ) )~

0 0 d
| -7 % (T-x727Y) "% @

where x;, X; correspond to terms which may not be zero in
the matrix operations. From the above equation, since I
and Xs have been eliminated from the final expression, the
statement of lemma follows
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