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ON ADAPTIVE CONTROL OF NON-MINIMUM PHASE

NONLINEAR SYSTEMS

R. Ghanadan' ¥ and G. L. Blankenship!

Abstract

We present a technique of indirect adaptive control for approximate linearization
of nonlinear systems based on approximate input-output linearization scheme recently
proposed in [HSK92]. The controller can achieve adaptive tracking of reasonable trajec-
tories with small error for slightly non-minimum phase systems. It can also be applied
to nonlinear systems where the relative degree is not well defined. Simulation results are

provided for the familiar ball and beam experiment under some parameter uncertainty.

I. Introduction

There has been considerable research on the application of nonlincar adaptive con-
trol theory for improving the feedback linearization in the input-output response of non-
linear systems under parametric uncertainty. Most of the current research. [IKIKM9I.
TKKS591, SI89, TKMKS89] among others, is based on feedback linearization [Isi89, Nvds90]

and assumes some restrictive conditions such as existence of relative degree. bounded input
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bounded state property of the unobservable subsystem regarding the output as the input,
or minimum phase property of the nonlinear system. In this paper, using the results of
[HSK92], we provide adaptive approzimate tracking of a wide class of reference signals for
nonlinear systems that fail to meet some of the above conditions slightly. Our iudirect
adaptive controller scheme is motivated by the fact that, with the knowledge of the system
parameters, approximate input-output linearization of slightly non-minimum phase svs-
tems and systems for which relative degree is not well defined can be produced using state
feedback and coordinate changes. With parameter uncertainty, a parameter identifier is
used that continuously adjusts the parameter estimates on line based on observation error,
Certainty equivalence principle suggests that these parameter estimates that are converg-
ing to their true values may be employed to approximately linearize the nonlinear svstem
asymptotically. In the next section we review the approximate input-output linearization
technique for nonlinear systems [HSK92]. In section 1II, we present the main results on
adaptive approximate linearization. Simulation results for the ball and beam experiment is

presented in section IV.
II. Review of Approximate Linearization

Consider the following SISO nonlinear system:

©(t) = flz)+g(z) u
(h)
y(t) = A=)
with relative degree r outside an open neighborhood Ug¢ of a singular point x,. A state o is

called a singular point for output tracking if a(z) 2 L‘gﬁ}_lh(.rs) = 0 [HD87]. This system

has a robust relative degree of v in Ue(a,) if there exists smooth functions ¢;(x). i = 1.....4.



such that [HSK92]:

h(z) ¢1(z) + Yo(z, u)

Liygudi(z) = dipa(z)+i(e,u) i=1,...,7—1

Litgudy(z) = b(z)+a(z) u+ ¢z, u)
where functions ¥;(z,u),i = 0,...,7 are O(z,u)? and @(z) is O(1).} In Ue we make some

approximations (of order €) which by abuse of notation may be written as:

ﬁgﬁ;—lh(m) = ep-1(2)

L) = abyale)
but L'gﬁ}-lh(w) is not of order ¢ and ﬁgﬁ}_lh(zs) # 0. Consider the following two local

diffeomorphism of z € R™:

(§T777T)rl‘ = (£L = ‘Zf_lh(z)7i = 1727"‘77’7 7717" ‘77]77.—'/')1v
(3)
Ea"7T = (5 &=L7 @) i= v+ Ly Ty
We have for the true system when z € Ue(z,) :
§ = &
Sr—-l = 51‘
& = Lyt eh(e)u
gr—{-]_ = {':r+z + El[’l‘(w) s ()
g’y—l = gfy +€1/)’7—2(1:) U
57 = b(z)+a(z) u
noo= §0)

TRecall that a function ¥(z) is o)™ if l'im|z[_,oj%]—in exists and is not zero. O(z)% is referred to as O(1).
By abuse of notation, as in [HSM89], we will also use the notation e (2, u) to show an O{x, «)". n > 2 that
is uniformly higher order on Ue in the sense of [HSK92].



where a(z) 2 £,£7 ' h(z ,b(2) 2 LTh(z), and a(z,) is O(1). The approximate system is
a~f /

(set € = 0):

57’ - £T+1
(5)
g’y——l = E'y
57 = ba)+a(z) u
T (X))

This represents an approzimate input-output linearized description of the true system (1)
obtained by neglecting some ¢-order terms in some neighborhood Ue of the singular state a
(ie. 2 € Ue(xs) ). When system (1) is operating in Ue , where (5) is a valid approximation,
one may design a feedback control law to achieve approximate output tracking [HSK92]. The
control law will, in fact, be the exact tracking control law using the approximate description
(5). With the above notation in mind, we say (1) is slightly non-minimum phase if the true
system, described by (4), is non-minimum phase but its approximate linearization. described

by (5) is minimum phase [HSM89].

Approximate Tracking is achieved by choosing the control law u:

1 .
= - —b{&,n) + O
U 0(5’77)[ (5 77) U] (06)
with:
o=yt a0 =€)+t aolya - € (7)

where «; are chosen so that s7 + aw_ls"_l + ...+ ap is a Hurwitz polynomial. Thus the

control law u in (6) approximately linearizes the system (1) from input v to the output y



up to the order ¢ (say O(xz,u)?).

III. Adaptive Control

Consider a SISO nonlinear system of the form (1) under parameter uncertainty:

l(t) f($70)+g('130)u

y(t) = h(z,9)

(8)

with relative degree r outside an open neighborhood Ug¢ of a singular point &y and robust

relative degree v in Ue(zs) . Further, assume f(2), g(2) and h(z) have the form:

flz,0) = > 6} filz)
=1

g(2,0) = > 07-gi2) (9)
=1

I

)
=W
E“
T~

2
p—

hiz,d)

with 6',6% and 6° vectors of unknown parameters and the fi(x).g;(a). and h; () known

functions. The estimates of these functions are given by:

fle) = 3 6 - filw)
=1

o) = 0 gila) (10)
=1
!

iL(CL‘) = Z é? h(a)

o
It
_

A . ; .
where 8, are the estimmates of the unknown parameters 6%. Now let’s replace the control law

(6) by:
L 77
Uy = T[—th(f,n)—kvud] (L)
LgLf h
with:
IR () (v-1) ¢ - .
Vad = Yy~ + aye1(yy E)+ oo aolys — &) (12)



where a; are chosen as before and {;_; = szh are replaced by their estimates //Ij/I

E=I7h 2 [
I (13)
LI & L.
g+ 9+

As in [SI89], since these estimates are not linear in the unknown parameters f;. we deline

each of the parameter products to be a new parameter. For example:

Lih=3" Zn: 0205 L1, hi
i=1 j=1
and we let © € R? be the large p-dimensional vector of all multilincar parameter products:
0},0?,02,0}0?,.... The vector containing all the estimates is denoted by © & R? with
o2 -0 representing the parameter error. Due to the indirect nature ol our approach,
this overparametrization does not increase the complexity of the closed loop system since
a parameter identifier is to be used to estimate the unknow parameters (9’/ The parameter
vector O is, however, constructed here in order to show the stability of the resulting adaptive

system. Using the control law (11) in (5) yields:

£,

L}h + [LgL}“lh - LgL}_lh] gy — f/}’\h + Cya

I

(L3h 7] + [LgL}“lh - Lgfflh] A F U
Subtracting v in (7) from both sides gives:

e 4,10 4 age = [LHL}_lh - LgL/\}Y_lh] “Ugd F [L;’le - IT’/)}
N <L}‘1h - L}A‘l/z> ot <Lj-h ~ ©yh)

= 7wz, uuz))

N
where: w! =

Ly L7 hyta(2) - .1ijhk}.



Therefore, in the closed loop, for the approximate system, we have in a compact form:

¢ = Ae+ WT(z,u4q(2))- @
(16)
o= (&)

. . . . A ~
where A is a Hurwitz matrix and note that if ¢ = 8 — 0 — B¢ as t — oc. then & — B¢ as

i — 00.

To estimate the unknown parameters, we consider an observer-based identifier proposed

in [KN73, Kre77, TKKS91]. First, we rewrite (8) as:

91
& = (i folgrv...gmu)-
2 Z27(2,uad(2)) -6
Consider the following identifier system:
o= A-(-2)+ 2T(x, () - 0

(18)

0 = —ZT(z,u)-P-(&—2)
where A is a Hurwitz matrix, & is the observer state, 2 is the plant state in (8), and P > 0

is a solution to the Lyapunov equation:
ATP+ PA=-)-1

with A > 0. We assume all the states 2 in (8) are available and hence # and 6 are given by

(18). We also assume 6 is a vector of constant but unknown parameters. Then:

A-é+ZT($,1L)-g/)

e
(l

(19)
¢ = —Z%(z,u)-P-é

A

is the observer error system where é = & — z is the observer state error and ¢ = 6 — 8 is the

parameter error.

Properties of the observer-based identifier in (19) are [SB89, TKIXS91]:



ii.

iii.

v.

¢ € Loo
with (0) = 0, ¢(t) < $(0) ¥t > 0
é€ LooNLoe

if ZT(:L',uad) is bounded (in particular if z and « are bounded) then ¢ € L., and

e — 0ast— oo.

. € and ¢ converge exponentially to zero if Z(z,u) is sufficiently rich, i.c., 3 6,.85.0 > 0

such that Vi:

t+o
61 < / 272Tdr < 8,1 (20)
t

However, since Z(z,u) is a function of state x, the above condition can not be verified

explicitly ahead of time.

We are now ready to state the main theorem on approximate tracking for slightly non-

minimum phase systems under parameter uncertainty when identifier input is sufficiently

rich.

Theorem 1 Assume that:

i. the reference trajectory and its first v — 1 derivalives (i.f‘..y,g,y{(,' ..... uy Uy are

bounded,

i. the vector fields f,g, and h in (8) are unknown but may be parametrizcd linearly

in unknown parameters in the form (9) where vector fields f;.q,. and h; arc known

Sfunctions of z,



iii. the zero dynamics of the approximate system (5) are locally exponentially stable and

G(€,7) is locally Lipschitz in € and #,
w. the functions (2 )ugq(z) in (4) and w(z,u.q(z)) are locally Lipschitz continuous.

v. ¢ — Be(0) ast — oo (for ezample, for observer-based identifier (19). Z(x, u,y) in

(17) is sufficiently rich),

Then, for € sufficiently small, the states x are bounded and the tracking error is of order ¢;
€.,

ly — ya| < ke

for some k < co.

Proof. Using the adaptive approximate control law u,g(2) in (11). the error equation

with ¢ = é(t) — 6 and e = f— Yy is:

€1 61 Yd
Cy E’Y yt(iw_])
eﬁ” + aw—leg%l) + ... ape1 = wT(-’L‘» Uqd) - P



The true error system is given by:

r .
€1 0 1 0 0 €1 0
ér 1 €y l,/‘,—_J(J,‘)
+€ Uud(l'—‘)
€y-1 0 1 €y-1 Y-z
é»y —ap —O1 —Qpy1 —Qy_1 €y 0
0
0
+ ¥
0
wT(x,u)

Hence, (8), with the adaptive approximate tracking u.q(2) may be expressed in the

following compact form:

From (2):

A-e+eV(z) ugg(z) + Wz, u)-

q(&, 1)

€] < le| + by

P

(23)

for some by. From (ii7), a converse Lyapunov theorem assures the existence of a Lyapuuov

function vy(7) for the system:

ﬁ = Q(Oa f])

10



such that:

k2 < wa() < kalij]?

52400 < —kalil? (21
%% < ka7

for some positive constants kq, ko, k3, and k4.

Since 2 is a local diffeomorphism of (€, #):

2| < La(1€]+ |7])

(25)
< La(lel 4 ba + 17
From assumption (¢v), and (v):
$(] < p
2PWT (2, u0) - ¢ < (Lule] + buw) - ¢ < Lulo(le] + baw + 0]) - |0] (26)

where by, = by + ﬁ - by

From (i77) and (iv), since §(€,7) and (2 )ugq(2) are locally Lipschitz with ¢(0)u(0) =

0:
(s i) — @l i)l < 1o(1€ = €20+ iy = ) o
2PP(2)uaa(2)] < lule]
Also:
FRaEn) = FRa0,7) + LE(G(E 1) ~ 4(0.7) s

IA

—kali|* + kalg|ii(le] + bq)
In order to show that e and 7 are bounded consider the following Lyvapunov candidate
function for system (22):

Ve, 7) = e’ Pe + poy(i)

(29)
ATP+ PA=—1

11



where P > 0, and g > 0 to be determined later.

Taking the derivative of V' along the trajectories of (22), we have:

V = ——1612 + 2€€TP'¢’(‘T)uad($) + 26TPWT¢ + ,u%ﬁlt](é, 77)

IN

=lel* + elellula(lel + ba + |7]) + lellwlo(le] + baw + |7])]g]

+u(—k3|7? + kalglfil(le] + ba))

2 2 .
< = (= dudoba) + (cudaba)? = (= Lbobanl8]) + (Lobibun]o])? .,
(30)
(el 2 2
5 = (lulz| @] + eluly + pkaly)R) + (Lole| @] + el + pkaly) )27
o 2
— ks <|_72L| _ k4lizbd) + U(k4l;;13bd)2 _ (% —elyl, — ly,ulxlébl)ffp _ %/1/;;;|I7|2
< —(F =yl — 1yl 2 ((Buks = (Il Lily + phegl,)?
> 4 Elyly w 11(/)1)16' (4:u 3~ ]¢I+Cu +/L‘ r[ |]]I
Helulsba)? + (Lulpbaw|g])? + pErlelel
Define:
k
= 2 (31)

KO 4l + Faly ¥ L)

For p < po and € < min(p, m) and |¢| < €, we have:

. 2 kol 2 B
Vv S _ﬁ - i_izlﬂ + (elula:bd)2 + (lwlmbdw|¢|)2 -+ pt

(kalyba)?
) o

by
Note that |¢| < pVt, and from assumption (v), we can assume that there exists 7° > 0. such
that || < e for all t > T. Thus, for all t > T,V < 0 whenever || or |e] is large which

implies that |7] and |e| and hence,

7| and |z|, are bounded.

Now using the continuity of ¥(z)uuq(z) and WT(2, uuq)p, and boundedness of . we sce

12



that
e = A-e+4 WT(.'L‘, Uad)P(1) + (2 )ugq(2)

0

6d)ruad(x) (iZ)
= A-e+

€¢W—1uad($)

w (2, qq) P(1)

is an exponentially stable linear system driven by a bounded input that approaches an order
€ input asymptotically. Therefore, we conclude that the tracking error, ¢. converges to a

ball of order e.

The problem of adaptive stabilization clearly follows. One important special case is
when the robust relative degree, v, is equal to n, i.e. the approximate system has no zero
dynamics but the true system is non-minimum phase. In this case. the true closed-loop

system is exponentially stable. The following theorem summarizes this result:

Theorem 2 Suppose that the the approzimate system (5) has no zero dynamics. i.e. (8)
has robust relative degree, v, equal to n, P(z)uaq(e) and w(a, u.y) are locally Lipschilz in
with ¥(0)ugq(0) = 0, unknown parameters 6 appear linearly in f, g, and h, and ¢ — Be(0)
ast — oo. Then, the adaptive control law u,q in (11) exponentially stablizes (8) with ¢ and

#(0) sufficiently small.

Proof. Using control law:

1

Ugd = —— ="
Lijf—1 h(z)

['—E?\h(l) - an—lé’n e T ("Oél

13



in (8) yields in compact form:

£ = A-E+eU(a) uaa(z)+ W 2, ueg) - & (33)
with 4, ¥(z), and WT(z,u) as before. Choose the following Lyapunov candidate function:
V(¢)=¢ P¢ (31)

with P > 0,A > 0, such that ATP+ PA = —X\-I. Then, using the bounds simitar to those

in the proof of theorem (1), we have:

2] < L€
[#()] < p
(35)
|213WT("B7 uad) : (/)l < lw : |7'| N4
2Pp(2)ugq] < el
The derivative of V(f) along the solution trajectories of (33) is:
' 52 ;T of L prrt
Vo= =A€)2 + 2e€ Pp(a)uga(e) + 26 PWo
(36)

S ”(/\ - dllu - lwlavp)léi2
Hence, V is a negative definite for € and ¢(0) sufficiently small, and conscequently. (33) is

exponentially stable.

The above design scheme may easily be generalized to the multi-input wulti-output
(MIMO) case where due to the presence of small terms, the decoupling matrix is almost
singular. In this case, approximate linearization is achieved using dynamic extension algo-
rithm [Isi89, Nvds90], and with some modifications, the stability analysis presented in this

section can be shown to be true.

14




IV. Simulation Results

In this section, to demonstrate the adaptive scheme developed in this paper and compare
its performance with the non-adaptive control, we consider the ball and beam example from
[HSK92] with uncertainty in the mass M of the ball. We first review the controller form
derived from the second approximation presented there. The equations of motion are given
by:

(#% + M) # + MgSind — Mré” =0

(37)
(Mr?+J + Jb)é +2M7ri0 + MgrCost = 7

where M is the mass of the ball, J is the moment of inertia of the beam. .J, is the moment
of inertia of the ball, R is the radius of the ball, ¢ is the acceleration of gravity. 8 is the

beam angle, 7 is the position of the ball, and 7 is the torque applied to the beam.

With exact knowledge of all parameters, a change of coordinates in the input space is

possible by applying a torque in the form of [HSK92]:
T = 9Mrif + Mgrcost + (MT2 +J+ Jp)u (3%)

where u is a new input. The resulting state-space description is:

1 9 0
2 B(zy2% — gsinaj) 0
= + U
23 24 0 (39)
Ty 0 1
y = @

&

A A . S . . .
where B = ZW/(}%% + M)y, y=r o= (xl,wz,w3,:v4)T (r,7,0,0)1. The objective is 1o

track a desired trajectory y,(t).

15



With £; = ﬁ?lh(x),i =1,...,4, we have;

& = 22 = Ez

é2 = —Bgsinzs + Brja? =&,

§3 = —Bgascoszs + Braz? + 2Bzizau = £~4 + P3(2, u) (-40)
54 - B%z12% + Bg(1 — B)az2sinzs + (—Bgcosxs + 2Bxyay)u

= bz)+a(z)u
where the origin is the singular state, i.e. a(0) = 0 with a(z) = 2Bzyx4. In this case the
neglected nonlinearity is 3(2,u) = 2Bzj2z4u which is of order € in a neighborhood U¢ of

the singular state 0. The resulting tracking control law is given by equations (6) and (7):

L : ~
u= g PUO+ )+l =)+t aolv - €) (41)

where a; are chosen so that s* + ass® + ...+ ag is a Hurwitz polynomial. This control law

achieves approximate output tracking of a desired trajectory y,(t) up to order c.

When M is not exactly known, control laws (41) and (38) can not be implemented and
(39) is no longer a valid description. In this case, we construct an adaptive controller. as
developed in the last section, that achieves approximate tracking under parameter uncer-
tainty in mass M of the ball. Although parameter M does not appear linearly in (37).
we can still proceed with our design scheme by reparametrizing the system parameters as
shown bellow. This is possible mainly due to the indirect nature of our adaptive controller.

First, we use the observer-based identifier of (18) to estimate parameter B:

iy = —o(&y — 22) + (212} — gsinas)B

= -oé+7Z7(2)B
: (42)
B = -77(x)é

£(0) = 25(0) =0

16



Then

substitute M = —28__ iy (38) which gives:

R2(1-B)

Tod = 2Mri + Mgrcosﬂ + (Mr2 + J 4+ Jp) gy (-13)

From (37), the new state-space description is:

ZL’.l
Z:2

T3

T
B(z12% — gsinas)
Ty
(+14)
m [(]V[:L% +J+ Jp)tugd + 2(M — M)z zony + (M — M)gaicosrs

f4(£l?, Ma uad)

3]

Let él = 21. Then, choosing éi at each step as in (40) gives:

e

£ = 9= g‘z
52 = —Bgsinazs + Bxyzi = §~3
£ = —Bgaycoses + Baga? + 2Buiagfu(-) = €4 + s wag)

B?zy2% + Bg(1 - B)alsinazs + (—Bgcoszs + 2Bxaxy) f4(-)

BQ:L'lmﬁ + Bg(l — B)wﬁsinwg + —M%(—Bgcosm +2Bay04) (200000 + g coses)
M2+ J+J,

+ (—~Bgcoszs + 2B$2$4)—M;%+—J+—Jb “Ugd

b(2) + a(@)ued

where a(0) # 0. From (11), the resulting adaptive control law is:

Uad(L) = : [—3(w,) + Vqd] (16)

(z)

a0

17



where:

&(w) = 23m2x4 — Bgcosxg
lz’(m) = B25L‘11’3 + Bg(l - B):c?lsinm‘g, (47)
Vad = 3/((14) +a4(y§3) _54)‘*‘ oot ao(yd —él)

For simulation we used yq(t) = 3cos%, z(0) = (2.9,0,0.1698,0)Y, ¢ = 1.5. M =
0.05kg, R = 0.01m,J = 0.02kgm?,J, = 2 x 10~6kgm?, and ¢ = 9.81m/s%. All closed-
loop poles were placed at —5. Figures (1) and (2) show the performance of the adaptive
controller with 80% uncertainty in M and initial error 0.1m. The parameter B converged
to the correct value 0.7143 in less than two seconds. The error |r(t) — y,| was driven to
almost zero with maximum magnitude within € = 4 x 10™*m ball and the neglected non-
linearity |¥s(x, uuq)| was within 0.01 ball. The performance of the non-adaptive controller
for 25% uncertainty in M is shown in figures (3) and (4). The output error was about 30
times more, around 0.015m, than previous simulation even with less parameter uncertaluty.
The neglected nonlinearity |¢3(x, )| was much higher in this case, around 0.6. making the
approximate linearization result hard to apply. The non-adaptive controller became unsta-
ble with 50% uncertainty in M. Clearly, the adaptive controller significantly improved the
tracking by stabilizing the system, driving the error closer to zero, and providing a robust
approximate feedback linearization for the controller design when nonlinearities can not he

canceled due to the lack of exact knowledge of the system parameters.
V. Conclusions

We have presented an adaptive approximate tracking result using approximate input-
output linearization approach for nonlinear systems that do not have a well defined relative

degree at a point of interest (singular state). This scheme is also applicable to slightly

18



non-minimum phase systems. It is shown that the adaptive controller can achieve output
tracking of reasonable trajectories with small error. Our approach was based on certainty
equivalence principle with an assumption of parameter identifier convergence. Simulation
results were presented for an undergraduate control laboratory experiment, the ball awnd
beam example, discussed in [HSK92]. Simulation results show that under parameter uncer-
tainty in the mass of the ball, our adaptive controller provides good tracking with stability

while the non-adaptive controller results in an unstable closed-loop systeni.
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Adaptive Controlier, A=3, Uncertainty=80%
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Figure 1: Adaptive Controller: error trajectory with ¢(0) = 0.1m, parameter estimate B
with initial 80% uncertainty in mass M of the ball, applied torque, and neglected nonlin-
earity ¥s(a,u),
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Adaptive Controller, A=3,gain=1.5,Uncertainty=80%

Figure 2: Adaptive Controller: state trajectories a,(t).
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0.12 Non-adaptive Controller, A=3, Uncertainty=25% S
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Figure 3: Non-adaptive Controller: error trajectory with e(0) = 0.1m, applied torque. and
neglected nonlinearity s(z,u), with 25% uncertainty in mass M of the ball.
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Figure 4: Non-adaptive Controller: state trajectories x;(1).
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