
  

 
 
 
 
 

ABSTRACT 
 
 
 

 
Title of Dissertation: ASSOCIATIONS BETWEEN AMBIENT 

PARTICULATE MATTER EXPOSURES, 
STROKE, AND MARKERS OF 
CARDIOVASCULAR INFLAMMATION 

  
 Jared Allen Fisher, Doctor of Philosophy, 2017  
  
Dissertation directed by: Professor Robin Puett, Maryland Institute of 

Applied Environmental Health  
 
 
Stroke is a leading cause of morbidity and mortality in the United States with 795,000 

people experiencing a new or recurrent stroke every year. Identifying modifiable risk 

factors for stroke should therefore be considered a research priority. While 

associations between ambient exposure to air pollution and other cardiovascular 

diseases are well established in the literature, the evidence linking particulate matter 

(PM) air pollution exposures to the risk of ischemic or hemorrhagic stroke remains 

equivocal. Furthermore, the exact pathophysiologic mechanisms by which exposure 

to PM may lead to cerebrovascular events are not yet fully understood. Hypothesized 

pathways include the mediation of effects through a combination of inflammatory 

responses, autonomic dysregulation, and/or vascular endothelial disturbances. This 

dissertation addresses existing gaps in the literature in three separate studies. Two 

time-stratified case-crossover studies examined the association between short-term 

PM exposures and stroke risk, one in the Health Professionals Follow-up Study 



  

(HPFS) and the other among a large database of Maryland stroke hospitalizations. 

Conditional logistic regression models were used to examine associations by stroke 

subtype, population subgroups, and clinically-relevant variables. Our third study took 

place within the Nurses’ Health Study cohort. Multivariable linear regression models 

were used to examine the associations between PM and residential distance to road 

exposures and four inflammatory biomarkers (CRP, IL-6, fibrinogen, and ICAM-1). 

We found positive significant associations between PM10 and ischemic stroke events 

in the HPFS cohort, and associations were elevated for nonsmokers, aspirin nonusers, 

and those without a history of high cholesterol. Concentrations were elevated for both 

CRP and IL-6 among participants who lived close to a major roadway, but no 

significant results were found by estimated PM exposure. This work provides 

additional evidence that PM exposure is associated with ischemic stroke and adds to 

the current literature that those not currently taking aspirin and those without a history 

of high cholesterol may be at elevated risk. Although the direct role of inflammatory 

processes requires more investigation, this work does provide additional evidence that 

proximity to traffic may influence cardiovascular-related inflammation.  
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Chapter 1: Introduction 

Dissertation Overview 

Associations between ambient exposure to air pollution and cardiovascular mortality 

and morbidity are well established in the literature. In fact, a recent scientific 

statement from the American Heart Association based on a comprehensive review of 

current evidence concluded exposure to fine particles (diameter <2.5 μm, PM2.5) 

represents a causal and modifiable risk factor for cardiovascular disease (Brook et al. 

2010).  

While studies focused on general cardiovascular outcomes date back decades, only 

recently have studies demonstrated associations between ambient pollution and 

increased stroke risk. A major focus of this research has been whether high transient 

levels of air pollution lead to sudden stroke onset. To date, the evidence linking short-

term changes in PM to the risk of cerebrovascular events remains equivocal, with 

some (Dominici et al. 2006; Wellenius GA et al. 2012; Zanobetti and Schwartz 2009) 

but not all (Anderson et al. 2001; O’Donnell et al. 2011) studies finding evidence of 

increased risk. As many of the existing studies of PM and stroke have used 

administrative databases that may be subject to misclassification of outcome data, a 

recent review (Ljungman and Mittleman 2014) has called for additional studies with 

validated diagnostic criteria and studies which examine risk by stroke subtype 

(ischemic, hemorrhagic). Additionally, few studies have been able to examine 

potential effect modification by clinically-relevant individual-level variables or have 
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been conducted among study populations of sufficient size to examine differences in 

risk by population subgroups.  

The exact pathophysiologic mechanisms by which exposure to air pollution leads to 

stroke are not yet fully understood. Hypothesized pathways for air pollution-related 

stroke include increased systemic inflammation and oxidative stress leading to 

thrombosis and vascular endothelial dysfunction (Mills et al. 2007). Though existing 

literature is sparse, there is some evidence that air pollutants could induce an acute 

systemic inflammatory response with an increased number of circulating fibrinogen, 

C-reactive protein and proinflammatory cytokines (Pope 2001; van Eeden et al. 

2001), which could result in increased blood coagulation and plaque destabilization 

and rupture (Mills et al. 2007). Additional epidemiologic studies linking ambient 

particulate matter exposure and subsequent markers of systemic and cardiovascular 

inflammation are needed.  

To address these research gaps the following aims are proposed:  

Aim #1) Examine the association between ambient particulate matter exposures and 

short-term stroke risk in the Health Professionals Follow-up Study 

a) Examine risk of stroke from exposure to both PM10 and PM2.5 

b) Examine associations for each stroke subtype (ischemic, hemorrhagic)  

c) Examine effect modification by BMI, smoking status, age categories, 

hyperlipidemia, current aspirin use, and hypertension status 

Aim #2) Examine the association between acute changes in particulate matter 

concentrations and stroke hospital admissions in Maryland 

a) Examine associations for each stroke subtype (ischemic, hemorrhagic)  
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b) Examine effects by season and among population subgroups (age, gender, 

race/ethnicity) 

Aim #3) Determine the association between ambient particulate matter exposures and 

systemic and cardiovascular inflammatory markers, including C-reactive protein 

(CRP), fibrinogen, soluble intercellular adhesion molecule type-1 (sICAM-1), and 

interleukin-6 (IL-6) among individuals in the Nurses’ Health Study 

a) Examine the association by particulate matter fraction (PM2.5, PM10, 

PM2.5-10) 

b) Examine association with various cumulative exposure averaging times (1, 

3, 12 months) 

c) Examine potential effect modification by smoking status 

Background and Rationale 

Significance 

Stroke is a leading cause of morbidity and mortality in the United States with 795,000 

people experiencing a new or recurrent stroke every year (Mozaffarian et al. 2015). 

Of these strokes, approximately 130,000 result in mortality, making stroke the fifth 

leading cause of death in the US (CDC 2016b; Mozaffarian et al. 2015). Case fatality 

rates vary by stroke subtype. Ischemic strokes, which occur as a result of an 

obstruction within a blood vessel, are the most frequently occurring stroke subtype 

and comprise 87% of all stroke cases with 8 to 12% resulting in death within 30 days. 

Though they only comprise 10% of all stroke cases, hemorrhagic strokes, which 

occur when a weakened blood vessel in the brain ruptures, are significantly more 
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deadly (37% result in death within 30 days) (Mozaffarian et al. 2015; Rosamond et al. 

1999). Age is the most significant risk factor for stroke, with risk approximately 

doubling for each decade of life after age 55 (AHA 2015b). More women have 

strokes than men and higher rates of stroke are also seen among African-Americans. 

Modifiable risk factors for stroke include high blood pressure, smoking, diabetes, 

atrial fibrillation, high blood cholesterol, poor diet, and obesity. Depending on the 

severity and region of the brain affected, stroke can cause significant disability, 

including paralysis, speech impairment, coma, or loss of memory and reasoning 

ability (AHA 2015a). In 2011, the direct and indirect cost of stroke was $33.6 billion, 

and between 2012 and 2030 the total direct medical stroke-related costs are expected 

to triple (Mozaffarian et al. 2015; Ovbiagele et al. 2013).  

Particulate matter (PM), or particle pollution, is the term used for a mixture of 

solid particles and liquid droplets suspended in the air. Particles vary in their chemical 

and physical compositions and originate from a variety of sources such as motor 

vehicle combustion, brake & tire wear, power plants, wood or agricultural burning, 

forest fires, or can be formed in the atmosphere from chemical reactions to gaseous 

emissions. Particles are generally classified by size, or more specifically, their 

aerodynamic diameter which correlates to the size of a sphere with the same 

aerodynamic characteristics. It is useful to classify particles by their aerodynamic size 

because aerodynamic size can dictate: (a) the transport of particles in the air; (b) their 

deposition within the respiratory system and (c) the association with the particle’s 

source and chemical composition (WHO 2003). Though airborne particles can range 

in size from a few nanometers to tens of micrometers, the most commonly referred to 
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particulate size fractions in human health research are coarse particles (PM2.5-10; 

between 2.5um and 10um in aerodynamic diameter) and fine particles (PM2.5; less 

than 2.5um in aerodynamic diameter) [Note - the designation PM10 refers to both 

coarse and fine particulates; all particles <10um]. Coarse particles are primarily 

formed by abrasive mechanical processes that break-up larger particles. These 

particles can include wind-blown dust from agricultural processes or uncovered soil 

or abrasively-derived traffic-related particles (brake and tire wear). Coarse particles 

from environmental sources include those from the evaporation of sea spray as well 

as pollen grains and mold spores. Coarse particles are generally only suspended in the 

air from minutes to hours and generally travel short distances (<10km) (US EPA 

2003). Fine particulates differ from coarse particles both in their origin and chemistry. 

These particles are formed by combustion, high-temperature processes, and 

atmospheric reactions. They are composed of a variety of carbon and organic 

compounds, sulfates, nitrates, and metals (Pb, Cd, V, Ni, Cu, Zn, Mn, and Fe). 

Chemical and physical compositions vary by location, time of year, and weather. In 

contrast to coarse particles, the lifetime for fine particles in the atmosphere can be 

days to weeks and they can travel thousands of kilometers (US EPA 2003). 

In the early to mid-twentieth century, the risks of air pollution on health 

became readily apparent after several widely publicized acute episodes of increased 

morbidity and mortality followed exceptionally high spikes in pollution levels as a 

result of temperature inversions (Jun 2009). The most dramatic and infamous of these 

episodes were in the Meuse Valley in Belgium in 1930, Donora, Pennsylvania in 

1948, and London in 1952 (Firket 1936; Health 1954; Wexler and Schrenk 1949). 
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Each of these episodes demonstrated that severe air pollution can have dramatic and 

immediate impact on population health. During the London Fog episode, for example, 

approximately 4,000 to 12,000 excess deaths occurred, the greatest number of which 

were related to cardiovascular disease (Bell et al. 2004a; Health 1954). Additionally, 

a 10-year follow up of the exposed Donora population showed increased 

cardiorespiratory morbidity and mortality years afterward among those who 

complained of severe acute illness in 1948 (Ciocco and Thompson 1961). The 

significant health outcomes from these episodes likely played a large role in 

prompting many governments to initiate research on air pollution and health and 

enact legislation aimed at reducing air pollution levels (Bell et al. 2004b). 

 The Clean Air Act (established 1970, last revised 1990) requires the 

Environmental Protection Agency (EPA) to set National Ambient Air Quality 

Standards (NAAQS) for pollutants considered harmful to public health and the 

environment. Starting in 1971, the US EPA established the first PM standard as Total 

Suspended Particulates (TSPs). However, in 1987, this standard was replaced with 

PM10 as a decision to regulate only particles that penetrated to the thoracic region of 

the respiratory tract (Greenbaum et al. 2001). In 1997, after reviewing scientific 

studies showing differential health effects of particulates based on aerodynamic 

diameter, the EPA established new standards for PM2.5 (Greenbaum et al. 2001). 

Annual standards for PM2.5 concentrations were set at 15 µg/m3, and 24-h PM2.5 

standards were set at 65µg/m3. The NAAQS were last revised in 2012 with a major 

change being that annual PM2.5 standards were divided into a primary (12 µg/m3) and 

secondary (15µg/m3) standard (US EPA 2017c). Primary standards are meant to 
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provide public health protection to sensitive populations (asthmatics, children, 

elderly), while secondary standards provide public welfare protection (decreased 

visibility, damage to animals crops). Nonattainment areas are regions that do not meet 

the NAAQS standards. As of February 13th, 2017 there were 20 counties within nine 

states that were designated nonattainment areas by the EPA for PM2.5, and an 

estimated 23 million people live within these areas (US EPA 2017a). A total of 31 

counties in 10 states encompassing over 9 million people are designated as non-

attainment areas based on the 1987 PM10 standard (US EPA 2017b).  

 

Particulate Matter Exposures and Stroke 

Recently, studies examining associations between ambient pollution and increased 

stroke risk have gained more attention. A major focus of this research has been 

whether high transient levels of air pollution may lead to sudden stroke onset. To 

date, the evidence linking short-term changes in PM2.5 and PM10 to the risk of 

cerebrovascular events remains equivocal. A review of previous studies which have 

examined the association between short-term exposure to PM and total 

cerebrovascular events, ischemic stroke, and hemorrhagic stroke follows.  

 

Total Cerebrovascular Events and PM 

Several studies have examined short-term effects of total cerebrovascular events 

without distinguishing between the subset of ischemic, hemorrhagic, or other or 

unclassified stroke subtypes (Alessandrini et al. 2013; Anderson et al. 2001; Bell et 

al. 2008; Delfino et al. 2009a; Dominici et al. 2006; Halonen et al. 2009; Jalaludin et 
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al. 2006; Larrieu et al. 2007; Le Tertre et al. 2002; Lippmann et al. 2000; Nascimento 

et al. 2012; Wong et al. 1999; Wordley et al. 1997; Zheng et al. 2013). Small but 

significant positive associations have been noted in several studies. In the largest 

study, Dominici et al. (2006) evaluated the association with hospital admission for 

total cerebrovascular disease and PM2.5 among 11.5 million Medicare beneficiaries 

residing in 204 US urban counties and found a statistically significant 0.8% (95% CI 

0.3% to 1.3%) higher risk per 10µg/m3 increase in PM2.5 (Dominici et al. 2006). In 

their study of wildfire-related PM2.5 exposures in California, Delfino (2009) also 

found significant increase in total daily hospital admissions for cerebrovascular 

disease (RR=1.019; 95% CI:1.004-1.035) (Delfino et al. 2009a). Additionally, two 

studies have found associations with cerebrovascular admissions and PM10. 

Nascimento et al (2012) used stroke hospital admissions from Sao Paulo State, Brazil 

and found a positive significant association of stroke admission with PM10 (RR-

1.137; 95% CI: 1.014-1.276). Similarly, Wordley et al. (1997) found a  2.1% increase 

in risk of cerebrovascular admissions (95% CI: 0.1-4.1) per 10µg/m3 increase in PM10 

in Birmingham, UK (Wordley et al. 1997). Other studies of cerebrovascular 

admissions and PM2.5 and PM10 have found mixed or no effects. A time-series study 

of cerebrovascular hospitalizations in Rome found no association with PM2.5 

(RR=0.978; 95% CI: 0.956-1.000) or PM10 (RR=1.005; 95% CI: 0.988-1.021) 

(Alessandrini et al. 2013). In Taiwan, another study of cerebrovascular hospital 

admissions found no association with PM2.5. They found a significant association 

with PM10, but only for lag day 3 (% risk increase=2.64; 95% CI: 0.21-5.12) (Bell et 

al. 2008). Anderson et al. (2001) used administrative data from the United Kingdom 
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and found non-significant associations with both PM10 (% change RR= -3.3; 95% CI: 

-7.9 to 1.4) and PM2.5 (% change = -1.6; 95% CI: -6.6 to 3.6) (Anderson et al. 2001)  

Halonen et al. (2009) also found no suggestion of effect for PM2.5 (RR=0.997; 95% 

CI: 0.969-1.026) in a study of hospital admissions in Finland (Halonen et al. 2009). 

Two studies limited to admissions among the elderly (+65 years) found no 

associations between stroke admissions and either PM2.5 or PM10 in Detroit Michigan 

(Lippmann et al. 2000) or Sydney, Australia (Jalaludin et al. 2006). Additional studies 

examining only PM10 exposures and cerebrovascular admissions have found no 

significant associations (Larrieu et al. 2007; Le Tertre et al. 2002; Wong et al. 1999; 

Zheng et al. 2013).  

 

Ischemic Strokes and PM 

A number of studies have specifically evaluated the association between PM10 and 

PM2.5 and the risk of ischemic stroke (Andersen et al. 2010; Chan et al. 2006; 

Henrotin et al. 2007; Linn et al. 2000; Lisabeth et al. 2008; Low et al. 2006; 

Mechtouff et al. 2012; O’Donnell et al. 2011; Szyszkowicz 2008; Tsai et al. 2003; 

Vidale et al. 2010; Villeneuve et al. 2006; Wellenius GA et al. 2012; Wellenius et al. 

2005). Some of these studies have found small positive significant associations 

between PM and ischemic stroke. In their study of elderly Medicare beneficiaries in 

nine US cities, Wellenius et al. (2005) reported a 1.03% (95% CI, 0.04% to 2.04%) 

increase in admissions on the same day per interquartile range increase in PM10 

(Wellenius et al. 2005). In New York City, Low et al. (2006) reported a statistically 

significant increase in ischemic stroke hospitalizations per 10 µg/m3 increase in PM10 
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(Low et al. 2006). In Taiwan, Tsai et al. (2003) found a 5.9% (95% CI: 4.3-7.4, lag 0-

2 days) excess risk of hospitalization for ischemic stroke per 10 µg/m3 increase in 

PM10 after excluding days with mean daily temperature <20°C (Tsai et al. 2003). A 

suggestion of effect was seen in a study by Chan et al. (2006) in another study in 

Taiwan. The authors found a 3.0% (95% CI: -0.8 to 6.6, lag 3) and 1.6% (95% CI: -

0.8 to 3.9, lag 3) excess risk per 10 μg/m3  increase in PM2.5 and PM10, respectively 

(Chan et al. 2006). Several studies deserve increased attention due to the specificity 

of stroke outcome definition. Wellenius et al. (2012) performed medical review of 

1705 Boston area patients to confirm ischemic stroke events. They estimated the odds 

ratio of ischemic stroke to be 1.11 (95% CI: 1.03-1.20) (P=.006) per interquartile 

range increase in PM2.5 levels (6.4 μg/m3) (Wellenius GA et al. 2012). They did not 

find differences in risk by history of diabetes, atrial fibrillation or hypertension, but 

found slightly higher associations among stroke cases greater than 75 years old 

(Wellenius GA et al. 2012). Using data from the French Dijon Stroke Registry, 

Henrotin et al. (2007) analyzed 1432 confirmed cases of ischemic stroke and found a 

positive but non-significant increase 0.9% (95% CI: -7.0 to 9.4) per 10 μg/m3 increase 

in PM10 on the same day and a 1.1% (95% CI: -0.2 to 9.4) on the previous day (lag 1 

day) (Henrotin et al. 2007). Lisabeth et al. (2008) used data on 2,350 confirmed cases 

of ischemic stroke and 1,158 cases of transient ischemic attack from the Brain Attack 

Surveillance in Corpus Christi Project (BASIC), a population-based stroke 

surveillance project designed to capture all strokes in Nueces County, Texas. The 

authors found borderline significant results on the same day (RR=1.03; 95% CI : 

0.99–1.07) and previous day (RR=1.03; 95% CI : 1.00-1.07) for an interquartile range 



 

 11 
 

increase in PM2.5 (Lisabeth et al. 2008). O’Donnell et al used data from a stroke 

registry in Canada and found no association with PM among 9,202 ischemic stroke 

cases (O’Donnell et al. 2011). However, there was some evidence to suggest that 

associations differ among ischemic stroke etiologies. PM2.5 was positively associated 

with strokes that were a result of small-vessel occlusions or large-artery 

atherosclerosis, but negatively associated with strokes due to cardioembolism. 

O’Donnell et al. also examined several effect modifiers of the PM stroke relationship. 

Risk was elevated among those with a history of diabetes compared to those without 

history of diabetes. They found no evidence that the associations differed by smoking 

status or history of hypertension. Mechtouff performed a medical review on 376 

ischemic stroke cases and also found no association per SD increase in PM10 

(OR=0.94; 95% CI: 0.80–1.10) or PM2.5 (OR=0.97; 95% CI: 0.83–1.12) (Mechtouff 

et al. 2012). Additionally, two studies examining emergency department visits for 

acute ischemic stroke in Edmonton, Canada hospitals found no associations between 

ischemic stroke and PM2.5 or PM10 (Szyszkowicz 2008; Villeneuve et al. 2006).  

 

Hemorrhagic Strokes and PM 

A subset of the studies examining effects of PM on ischemic stroke also looked at 

associations with hemorrhagic stroke. Only one study, Tsai et al. (2003), found a 

significant positive association between PM and hemorrhagic stroke. Among 4,359 

hospital admissions, the authors of this study noted an OR of 1.54 (95% CI: 1.31-

1.81) per IQR (66.3 μg/m3)  increase in PM10, but only in days where the temperature 

was >20°C (Tsai et al. 2003). In contrast, Wellenius et al. (2005) found no evidence 
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of association between ambient PM10 levels and risk of hemorrhagic stroke among 

Medicare beneficiaries in nine U.S. cities (RR=0.997; 95% CI: 0.976-1.020) 

(Wellenius et al. 2005). Similarly, in their study of 2,329 emergency department visits 

for hemorrhagic stroke in Edmonton, Canada, Villeneuve et al. (2006) found no 

evidence of an association with  either PM2.5 (RR=0.984; 95% CI: 0.857-1.130) or 

PM10 (RR=1.006; 95% CI: 0.943-1.073) (Villeneuve et al. 2006). Henrotin et al. 

(2007) also found no evidence of an association between risk of hospitalization for 

hemorrhagic stroke and PM10 (RR=0.901; 95% CI: 0.731-1.111) among 220 strokes 

in a French stroke registry (Henrotin et al. 2007). Though Chan et al. found 

suggestions of increased risk for ischemic stroke in their study in Taipei, Taiwan, the 

same study found no evidence of association with hemorrhagic stroke hospitalizations 

with either PM2.5 (RR=0.990; 95% CI: 0.954-1.028) or PM10 (RR=0.994; 95% CI: 

0.974-1.014) (Chan et al. 2006).  

 

A recent meta-analysis summarized the literature to date and found summary 

estimates of 1.4% (95% CI: 0.9-1.9) and 0.5% (95% CI: 0.3-0.7) higher risk for 

cerebrovascular mortality per 10ug/m3 of PM2.5 and PM10, respectively (Wang et al. 

2014). Findings for ischemic stroke were suggestive, but the authors concluded that 

the weight of the published evidence does not yet show a statistically significant 

association (Wang et al. 2014). The authors also noted large heterogeneity between 

studies and suggested a number of reasons for this including; exposure and outcome 

misclassification, differing lag structures, varying methodologies in controlling for 
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meteorological variables, geographic variability in PM constituency, and variation in 

the demographic characteristics of study populations (Wang et al. 2014).  

 

PM and Biomarkers of Cardiovascular Inflammation 

Though current research suggests a link between cardiovascular outcomes and 

exposure to air pollutants, biological mechanisms for this association have not yet 

been fully explained. A clear understanding of these mechanisms is central to the 

development of better clinical treatment and prevention strategies. Many mechanisms 

and pathways have been proposed including: oxidative stress, changes in autonomic 

function, and pulmonary inflammation leading to thrombosis and atherosclerosis 

(Utell et al. 2002). Though exact mechanisms remain unclear, many hypothesize an 

important role of inflammatory processes. Toxic substances present in fine PM (e.g., 

black carbon, primary and secondary aerosols, metals) can cross epithelium of the 

airway following inhalation and induce the production of proinflammatory cytokines 

and reactive oxygen species (O’Toole et al. 2009; Uzoigwe et al. 2013). The effects 

produced by these air pollutants may then lead to hypertensive responses and changes 

in autonomic cardiac control (Du et al. 2016). Establishing epidemiologic 

associations between air pollutants and blood-borne markers of inflammation can 

provide needed evidence to these potential mechanistic pathways and should be 

considered a research priority.  

 
 
The body of research exploring links between inflammatory markers and particulate 

exposure had been relatively limited before 2005. However, in the last decade there 

has been a growing interest in the field. While many of the studies have been limited 
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to fewer than 100 participants (usually panel studies and experimental studies), 

associations between inflammatory markers and air pollution exposures have also 

been examined among a few well-characterized large cohorts. Markers examined in 

these studies have included C-reactive protein, fibrinogen, homocysteine, IL-6, TNF-

α, vascular cell adhesion molecule-1, intercellular adhesion molecule-1 (ICAM-1), 

soluble CD40 ligand, WBCs, and soluble adhesion molecules, but this review will 

focus on associations with CRP, fibrinogen, IL-6, and ICAM-1.  

 

 

Biomarkers  

C-reactive protein is a protein produced by the liver and is considered one of the best 

measures of the acute phase response to an infectious disease, tissue damage, or 

inflammation (Gabay and Kushner 1999; Pope 2001). CRP has been shown in 

multiple epidemiologic studies to predict incident myocardial infarction, stroke, and 

sudden cardiac death (Ridker 2003) and it may also have a direct role in the 

development of atherosclerosis (Libby 2002).  

 

Fibrinogen is an essential blood-clotting glycoprotein. During the normal blood 

coagulation cascade, the protease thrombin converts soluble fibrinogen into insoluble 

fibrin strands which are cross-lined to form a blood clot. However, it has also been 

shown that there are distinct connections between inflammatory markers and the 

coagulation cascade, especially in regard to cardiovascular diseases (Demetz et al. 

2012). A proinflammatory role for fibrinogen has been reported in stroke and 
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epidemiological associations have been found between fibrinogen and both coronary 

heart disease and myocardial infarction (Danesh et al. 1998; Davalos and Akassoglou 

2012; Lind et al. 2001).  

 

Interleukin 6 (IL-6) is a pro-inflammatory cytokine secreted by T cells and 

macrophages at the site of injury and is integral to the inflammatory response. 

Experimental studies have shown that human macrophages exposed to PM10 release 

numerous inflammatory cytokines, including IL-6 (Becker et al. 2005). Persistent 

inflammation in the lung may invoke a general systemic inflammatory response as 

pro-inflammatory cytokines diffuse into systemic circulation (Tamagawa et al. 2008).  

 

Intracellular adhesion molecule-1 (ICAM-1) is a glycoprotein present on endothelial 

cells that possesses binding sites for immune-associated molecules including 

leukocytes and fibrinogen facilitating their migration to sites of inflammation 

(Witkowska and Borawska 2004). Elevated ICAM-1 levels have been shown to be 

associated with both cardiovascular risk factors such like hypertension and  smoking 

(Blann et al. 1997; Chae et al. 2001; Rohde et al. 1999) as well as myocardial 

infarction and total acute coronary events (Haim et al. 2002; Ridker et al. 1998) .  

Epidemiological Studies 

Epidemiological studies linking associations between particulate matter exposures 

and CRP, fibrinogen, IL-6 and/or sICAM-1 follow: 
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Hajat et al (2015) examined 6,814 participants between 45 and 84 in the Multi-Ethnic 

Study of Atherosclerosis (MESA) between 2002 and 2012 (Hajat et al. 2015). The 

authors examined several day-long exposures and a cumulative 1 year exposure prior 

to blood draw. After controlling for confounders, a 5µg/m3 increase in yearly PM2.5 

exposures was associated with 6% higher IL-6 (95% CI: 2 – 9%), but no associations 

for year-long exposure to soluble ICAM-1, fibrinogen or CRP. However, short-term 

PM2.5 exposures on the day of blood draw were associated with CRP and fibrinogen. 

They also noted suggestion of effect modification with larger increases in IL-6 for 

older individuals, smokers, and participants with hypertension (Hajat et al. 2015). In 

another study of MESA participants, Diez-Roux et al examined whether CRP 

increased in response to changes in prior day, prior week, prior 30 days, or prior 60 

day concentrations of PM2.5 (Roux et al. 2006). In their study, the 30-day and 60-day 

mean exposures showed positive, but not statistically significant increases in CRP per 

10µg/m3 increase in PM2.5 (30day OR= 1.05, 95% CI: 0.98-1.29; 60 day OR=1.12, 

95% CI: 0.96-1.32) (Roux et al. 2006).  

 

In one of the largest studies to date, Hampel et al (2015) used 21,558 high-sensitivity 

CRP (hs-CRP) measurements and 17,428 fibrinogen measurements from a total of 

nine European cohorts as part of the ESCAPE multi-center project (Hampel et al. 

2015). For hs-CRP they found a non-significant association with both PM10 (1.2 % 

change; 95% CI: -3.8 to 6.4) and PM2.5 (2.4% change; 95% CI:-7.5 to 13.4). They 

also found null results with the total pooled estimates for fibrinogen (PM10=0.1% 

change; 95% CI:-1.4 to 1.7; PM2.5=0.5 % change; 95% CI:-1.1 to 2.0). However, the 
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authors of this study were able to also look at associations by individual PM 

constituents. They found significant positive results between PM2.5copper and hs-CRP 

and between PM2.5zinc and fibrinogen (Hampel et al. 2015). Results from this study 

are important as they highlight that certain PM constituents may be the primary 

drivers of PM-related inflammatory changes.  

 

Using data from 4,814 participants 45-75 years of age from three large German cities, 

Hoffman et al. examined changes in hs-CRP and fibrinogen in response to annual 

PM2.5 exposures (Hoffmann et al. 2009). Per IQR increase in PM2.5 (3.91 µg/m3), 

significant increases were seen for men but not women with both hs-CRP (men: 

23.9% increase; 95% CI: 4.1 to 47.4; women: 1.0% decrease; 95% CI: -16.5 to 17.3) 

and fibrinogen (men: 3.9% increase; 95% CI: 0.3 to 7.7; women: 1.5% increase; 95% 

CI: -1.9 to 5.1). The authors ran additional models and found that the inclusion of 

short-term exposures to PM2.5, ozone, and temperature did not influence the results 

markedly. Another study in the same cohort did not find associations with hs-CRP 

and fibrinogen with year-long moving averages of PM10 (Viehmann et al. 2015).  

 

In Boston, Zeka et al. (2006) studied 710 elderly members of the VA Normative 

Aging Study to examine changes in CRP and fibrinogen with acute changes in PM 

concentrations in the previous 48 h, 1-wk, and 4-wk (Zeka et al. 2006a). Though 

results were not statistically significant, they noted that associations were stronger for 

longer averaging periods of four weeks. Per 1 standard deviation (SD) increase in 

PM2.5 for the 4-week period, they noted a 1.14 percent change in fibrinogen (95% CI: 
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-0.60 to 2.88) and a 4.36% change in CRP (95% CI: -3.25 to 11.96). They also 

observed associations were elevated among subjects older than 78 years and among 

the obese (Zeka et al. 2006a).  

 

In another study examining association between CRP and PM2.5, Ostro et al. included 

a total of 2,849 women ages 42-52 from 6 metropolitan centers across the U.S. (Ostro 

et al. 2014). The authors found overall that a 10µg/m3 increase in 12-month average 

PM2.5 levels (estimated by closest monitor within 20km) was associated with a 25.5% 

increase in CRP (95% CI: 10.2-42.9). They also noted that certain population groups 

were more susceptible to increases in CRP. Increases were higher among older 

individuals, diabetics, those with high BMI, and postmenopausal women. Results did 

not differ by smoking categories.  

 

Several other large cross-sectional studies have been performed. In a cross-sectional 

study of 6,183 adults in Switzerland, Tsai (2012) found significant increases in IL-6 

per 10µg/m3 increase in PM10 (increase= 0.036 pg/mL; 95% CI: 0.015-0.057), but 

found no association with CRP levels (Tsai et al. 2012). Using NHANES III (1988-

1994 only) data, Schwartz found that an IQR change in PM10 resulted in an odds ratio 

of 1.77 (95% CI: 1.26-2.49) for having a 90th percentile fibrinogen level (Schwartz 

2001). In another large cross-sectional study of 3,659 individuals in Tel Aviv, 

Steinvil et al. found no associations between CRP and PM10 (measured at local 

monitors) either on the day of examination or 7 days prior (Steinvil et al. 2008).  
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Biological Plausibility 

The exact pathophysiologic mechanisms by which exposure to air pollution leads to 

stroke and other cardiovascular outcomes are not yet fully understood. Hypothesized 

pathways for air pollution-related stroke include increased systemic inflammation and 

oxidative stress leading to procoagulant effects, autonomic irregularities, vascular 

endothelial dysfunction, and thrombosis which could enhance the likelihood of an 

ischemic event (Franchini and Mannucci 2007; Mills et al. 2007). Proposed 

mechanisms on the inflammatory pathway involve the secretion of adhesion 

molecules by damaged and inflamed pulmonary endothelial cells, which may result in 

increased binding and activation of leukocytes and platelets and the subsequent 

release of proinflammatory cytokines. Cytokines formed during tissue damage and 

inflammation lead to tissue factor (TF) induction which in turn stimulates coagulation  

following vascular injury (Choi et al. 2006). Complexes of TF on endothelial cell 

surfaces initiate the extrinsic blood coagulation pathway and play a key role in 

thrombin generation (Gilmour et al. 2005). Increased clotting may occur, as thrombin 

catalyzes many coagulation-related reactions, such as converting soluble fibrinogen 

into insoluble fibrin. Such mechanisms are supported by studies of animal models 

showing links between lung inflammation and extent of thrombosis following 

vascular injury (Nemmar et al. 2003) and the mediation of such effects through 

platelet-leukocyte activation (Nemmar et al. 2007). Another proposed mechanism is 

that particulate matter exposure can alter cardiac autonomic control of the heart 

leading to acute elevations in blood pressure and changes in atherosclerotic plaque 

stability (Franchini and Mannucci 2007; Wang et al. 2014). In one experimental study 
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of normotensive, non-smoking healthy adults, exposure to high levels of PM2.5 rapidly 

increased diastolic blood pressure (Urch et al. 2005).  

 

Objectives and Research Questions 

Study 1 examined short-term ambient exposure to particulate matter and risk of stroke 

among participants of the Health Professionals Follow-up Study. Of major interest 

was the determination of risk for each stroke subtype (ischemic, hemorrhagic) and 

whether variables of clinical relevance modify the association between PM and 

stroke. Study 2 examined the association between short-term area-level fine 

particulate matter exposure and stroke hospitalization in Maryland. This study is of 

sufficient size that effect modifiers (season, age, gender, race/ethnicity) could be 

examined within both ischemic and hemorrhagic stroke hospitalizations. In both 

studies 1 and 2, we were also interested in whether associations varied depending on 

the timing of exposure prior to the stroke event, thus, multiple lag periods were 

examined in separate models. The objective of study 3 was to examine the 

relationship between particulate matter exposures and systemic and cardiovascular 

inflammatory markers, including C-reactive protein (CRP), fibrinogen, intercellular 

adhesion molecule type-1 (ICAM-1), and interleukin-6 (IL-6) using healthy controls 

from four nested case-control studies in the Nurses’ Health Study cohort. Findings 

from this third study have the potential to provide evidence for the role of PM-related 

inflammation in cerebrovascular and other cardiovascular diseases. As part of study 

3, we also examined whether there were differences in the associations by PM size 

fraction, exposure averaging time, or by smoking status.  
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Innovation 

 
This series of studies addresses several research gaps identified in the current 

literature. A major strength of our HPFS study is the use of high quality outcome and 

covariate data. Many prior studies of short-term PM exposure and stroke risk are 

based on administrative data, where frequent misclassification of stroke events can 

bias effect estimates towards the null (Johnsen et al. 2002; Reker et al. 2002). 

Additionally, studies relying on administrative data rarely have access to information 

on variables outside of age or gender that may modify the effect. Our study is one of 

few to examine potential effect modification by clinically relevant variables. Another 

major strength of this study is the use of a nationwide kriging model to estimate 

exposure to ambient PM which may reduce exposure misclassification. Our second 

study of Maryland hospitalizations has complementary strengths. While this study 

was within a dataset of hospitalizations, the large number of cases in this study 

allowed for sufficient examination of risk within population subgroups, even for 

hemorrhagic stroke events, where previous analyses have often been under-powered. 

Both studies examining the association between PM exposures and stroke control of 

all time-invariant confounders through the case-crossover study design. While 

individual characteristics like gender and age are perfectly matched and controlled 

for, other factors such as obesity and hypertension are also controlled due to the 

relatively short windows between case and control periods. Additionally, we have 

selected a time-stratified design that controls for potential confounding by day of the 
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week and seasonality. Our third study examines the association between PM 

exposures and biomarkers of inflammation, which may shed light onto the 

pathophysiologic mechanisms that lead from PM exposures to cerebrovascular or 

other cardiovascular outcomes. Few previous studies have looked at associations 

between PM exposures and biomarkers of inflammation in large cohorts with well-

characterized information on potential confounders. Reliable information on potential 

confounding variables is critical in such studies as certain inflammatory biomarkers 

of interest can be associated with cardiovascular risk factors outside of clinical 

disease. Our use of robust and validated spatiotemporal statistical models may capture 

more spatial variability in exposure estimates than the use of estimates from nearest 

or central monitoring locations. Additionally, the use of a nationwide cohort and 

exposure models extends the geographic scope of included subjects beyond studies 

limited to small regions or individual cities.  
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Chapter 2: Methods 

This chapter serves as a supplement to the methods for Chapters 3-5 

 

Study Design 

Case-crossover Design 

 The study design for papers 1 and 2 was a time-stratified case-crossover 

design. The case-crossover design was proposed in 1991 by Maclure to study short-

term transient effects on the risk of acute events (Maclure 1991). In this design, the 

cases are the only participants and the exposure-disease effect estimate is determined 

by comparing exposure just prior to the event during a ‘hazard’ or ‘case’ period to 

exposure in a ‘control’ or ‘referent’ period. One major advantage to this study design 

is the control-by-design of time invariant or time insensitive risk factors such as age, 

gender, and socioeconomic status, since each case act as their own control. The 

design was originally proposed with a unidirectional reference period – meaning that 

the control or reference period always occurred before the hazard period. However, a 

variety of exposures have subsequently been considered for use in case-crossover 

studies, and other strategies have been developed to control for bias that might arise 

due to the chosen reference strategy. Navidi noted that unidirectional control periods 

can lead to bias under certain situations and proposed using bidirectional designs to 

account for exposures with time trends (Navidi 1998). This design is possible when 

the outcome does not affect subsequent exposure and theoretically sound when a 

single event does not necessarily preclude the study subjects from an additional event 
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(Bateson and Schwartz 1999). Sampling symmetrically from times before and after 

the outcome also has the effect of expanding the temporal sampling frame while 

keeping the distance between the control and hazard period the same (Fung et al. 

2003). Typically, multiple referents are chosen per case which also increases study 

power over a single unidirectional referent group. Simulation analyses have 

demonstrated that symmetric bidirectional designs are more resistant to confounding 

by time trends (Navidi 1998). Another reference strategy design that is used often is 

the time-stratified bidirectional design. With this strategy, referent periods are chosen 

from within predefined time-strata, but there are no set patterns in the placement of 

referents around the case period. A month-long stratum length is often used, as this 

allows multiple reference periods even after matching by day of the week. This 

reference strategy has been used heavily in the air pollution literature (Carracedo-

Martínez et al. 2010).  

We used the time-stratified case-crossover design to assess the association 

between the risk of stroke onset and PM levels for studies 1 and 2. Control periods 

were chosen using the time-stratified approach. Exposures during the case period 

were compared to exposures on the same day of the week and in the same calendar 

month as the case period (Levy et al. 2001; Lumley and Levy 2000). Since individual 

events do not affect the distribution of future exposure in the overall population, the 

use of control periods from both before and after the case occurrence is appropriate. 

(Maclure and Mittleman 2008). This design has been shown to be effective in 

controlling for seasonality, overall time-trends, as well as persistent and slow-varying 

confounders (Bateson and Schwartz 1999).  
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Nested Cohort 

Our third study is a hybrid, non-classic design that uses controls from four nested 

case-control studies within the Nurses’ Health Study cohort. Monthly PM exposure 

estimates with cumulative exposures up to a year prior to the month of blood draw 

were used in this retrospective analysis. As our exposure estimates occur before our 

measured outcome variables (biomarkers) and we are using only a limited sample of 

the full NHS cohort, the main study could best be considered a retrospective nested 

cohort. Our distance to road analysis is most appropriately categorized as a cross-

sectional analysis.  

Potential Biases 

Selection Bias 

We do not see selection bias as a major source of bias in our studies, but there are a 

few key issues worth discussion. Both study 1 and study 3 take place within well-

defined cohorts of health professionals (HPFS, NHS, respectively). These 

occupational cohorts had eligibility criteria based on age, and occupational 

registration. One of the most limiting factors in the use of occupational cohorts is the 

external validity or generalizability when comparing to general national population. 

We discuss this further in the limitations section of this chapter. As we have used 

nonstandard designs within these cohorts and rely upon modeled exposure levels 

based on address (with high match rate), general problems of selection bias in cohort 

studies (differential non-response or study attrition by exposure status) are not as 

problematic as they might be otherwise. Our case-crossover study of MD 
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hospitalizations may also have issues with external generalizability from case 

selection as it does not capture fatal stroke cases. It such a scenario it is important that 

we refer to hospitalization risk for stroke instead of total stroke risk. It is also not 

perfectly reflective of stroke hospitalization for MD residents, as a small proportion 

of residents may have been transferred to a hospital out of state. Another potential 

issue related to selection bias for this study is the potential differentiation in stroke 

hospitalizations by urbanicity (rural vs. urban). Persons afflicted with stroke in rural 

areas may be less likely to be hospitalized after the stroke event due to increased risk 

of death as a result of higher travel times (Moy 2017). We also expect a 

differentiation in exposure levels and composition between rural and urban areas as 

traffic-density and frequency of industrial point sources vary between urban and rural 

areas (Kundu and Stone 2014). However, as this is a case-crossover design and 

exposure during the case period of an individual from a rural area would be compared 

to exposure during control periods of an individual from the same rural area, we 

would not necessarily expect changes in the effect estimates. Instead, selection bias in 

this manner further limits the geographic generalizability of the study.  

Information Bias 

Each of the three studies use modeled air pollution estimates as exposure variables. 

This deserves some broader discussion as it relates to exposure error and information 

bias. In each study, the models we have used estimate ambient pollution levels either 

at the individual’s reported address or at the county-level where they reside. 

However, an individual’s total exposure to PM includes their exposure to both 

outdoor and indoor particles. If it were possible to easily capture, obtaining each 
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individual’s total personal exposure levels would yield more accurate effect 

estimates. However, assessing total personal exposure through the use of personal 

monitors is impractical for most large study designs or for examining longer 

exposures. Instead, most large epidemiological studies have relied on the use of 

ambient pollution estimates, which have been shown to correlate relatively well with 

personal exposures (Avery et al. 2010). Additionally, using ambient exposure levels 

to study health effects can be informative as it relates to possible interventions, as 

regulatory agencies, like the Environmental Protection Agency, set outdoor air quality 

standards.  

 

In addition to the measurement error corresponding to the difference between total 

personal exposure and ambient exposure, it is also important to consider measurement 

error between the measured and true ambient pollution concentrations. In general, 

two types of error are usually discussed when discussing ambient pollution exposure 

estimate errors (Armstrong 1998; Sheppard et al. 2004; Zeger et al. 2000). The first is 

classical error, in which measurements vary about the true concentrations. 

Measurement errors in ambient pollution monitors could be considered classical 

error; as repeated individual measurements may vary slightly about the true 

concentration. The second type of error is Berkson error, in which the same 

approximate exposure is used for many subjects, and the true exposures vary about 

this approximation but have a mean equal to it (Armstrong 1998). The distinction is 

important. It has been shown that while classical error, if non-differential, has a 

typical effect of biasing estimates towards the null, a purely Berkson error yields 
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unbiased effect estimates (Armstrong 1998). In reality, however, most estimates of 

ambient pollution exposures have elements of both types of error, and they are often 

quite difficult to disentangle (Zeger et al. 2000). For example, in our second study of 

the association between stroke hospitalizations and PM2.5, a modeled county-level 

PM estimate was used as a proxy for individual ambient exposure. Assuming this 

county-level estimate represented a perfect average of all residents in the county, we 

might expect this exposure estimate to have a mostly Berkson-type error leading to 

unbiased effect estimates. However, this assumption is unlikely to be true. Firstly, 

some error in the modeled estimate is likely. Secondly, even if the county-level were 

modeled to spatially represent a true average for the county, due to clustering in 

residential communities, it is unlikely to represent an average for participants of the 

county. Thus, the misclassification error in this study could be problematic and 

exceed the error from the studies in which we used modeled estimates at a 

participant’s reported address.  

There are also concerns about information bias using ICD-9 coding framework for 

stroke hospitalizations. Several studies have identified that coding of stroke cases and 

subtypes by ICD-9 codes is not always reliable, as they depend both on the expertise 

of the clerical staff and the accuracy of the medical records (Kokotailo and Hill 2005; 

Reker et al. 2002). As we expect these errors to be non-differential with respect to 

exposure, a bias towards the null would be expected. Another limitation is that we 

were not able to separate first stroke hospitalizations from recurrent hospitalizations 

in study 2. This is problematic if a patient had multiple stroke events in a short time 

period, as reference or control periods at times before and after the event would no 
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longer be appropriate. Another limitation of hospitalization data is the potential 

misclassification in exposure that occurs due to the time differential between stroke 

onset and hospitalization. This form of misclassification has also been shown to bias 

effect estimates towards the null (Lokken et al. 2009).  

Confounding  

Our two case-crossover studies control for time-invariant confounders by design. All 

personal characteristics that might be related to exposure and stroke are controlled by 

matching case and control periods by the individual within a single-month timeframe 

(the strata). However, variables that could vary over the course of the month and are 

associated with both PM and stroke should be considered potential confounders. 

Weather-related covariates are most likely to fit this description. Most studies have 

considered ambient temperature as a potential confounding variable in the association 

between transient levels PM and stroke. Treatment as a confounder is justified as 

prior studies have shown relationships between ambient temperature and PM and 

between temperature and stroke (Lian et al. 2015; Tai et al. 2010). Several studies 

have looked in detail at associations between ambient temperature and short-term 

stroke risks. A recent meta-analysis and review concluded that there was enough 

evidence to conclude that short-term changes in both low and high temperatures had 

significant results on cerebrovascular events (Lian et al. 2015). The overall pooled 

results from 20 studies showed for hot temperatures (defined as 75th-99th range of 

temperatures), a 1 degree increase resulted in a 1.13 percent increase in risk of stroke 

(95% CI: 0.58-1.68). In the range of cold temperatures (1st-25th distribution), a 1 

degree Celsius decrease resulted in a 1.20% increase (95% CI: 0.84-1.57) in stroke 
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(Lian et al. 2015). We controlled for temperature with non-linear spline regression to 

account for these non-linear associations.  

 

In our third study, potential confounding variables included variables matched by the 

individual nested case-control studies as well as other variables chosen a priori. 

Potential confounders included: meteorological season, age (months), BMI (kg/m2) , 

smoking status (never, past, current), pack-years smoked, physical activity (missing, 

<3, 3 to <18, ≥18 metabolic equivalent hours/week), hypertensive status (yes or no 

self-response to physician diagnosis), use of postmenopausal hormones (nonuser, 

current user, premenopausal, unknown), census tract median household income, 

alcohol consumption (missing, 0g/day, ≥0.1 g/day), family history of myocardial 

infarction (yes or no), and diet (measured by Alternate Healthy Eating Index (Chiuve 

et al. 2012)). Although we have controlled for an extensive set of variables that may 

act as confounders in this study, minor errors in the self-reporting of these variables 

could contribute to residual confounding. Though we cannot definitely rule out error 

of this type, we expect any residual confounding to be minimal as self-reporting of 

health-related conditions in this cohort have been shown to be quite accurate (Colditz 

et al. 1986). For example, 99% and 85.7% of a sample of self-reports of hypertension, 

and high cholesterol in this cohort were validated in a previous study (Colditz et al. 

1986).   
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Statistical Approach 

Case-crossover analysis 

This section briefly outlines the statistical approach for testing the proposed 

hypotheses in order to inform this supplemental methods chapter. A more detailed 

methodology is described in the chapter for each study. Though the variables differ, 

the statistical approach for both case-crossover studies was similar. Conditional 

logistic regression models were used to obtain estimates of odds ratios (ORs) and 

95% confidence intervals (CIs) associated with an interquartile range (IQR) increase 

in PM2.5 or PM10. PM exposures on the day of the stroke event (lag 0), as well as 

exposures from 1 to 3 days previous to the stroke event (lag 1 to lag 3) were 

considered in separate models. Stratified models by each of the potential effect 

modifiers were also conducted.  

Linear regression analysis 

Multivariable linear regression models were used to test the hypothesis that PM 

exposures are associated with inflammatory biomarkers. Potential confounding 

variables were incorporated into the models in two stages. First crude models (basic) 

adjusted for variables which were matched in the individual nested case-control 

studies. Next, other established confounders and potential confounders were added to 

fully adjusted models. Results from linear regression analyses of the PM fraction 

models were presented per IQR in PM and as percent difference for each biomarker 

along with the corresponding 95% confidence interval. The presentation of linear 

regression effect estimates as percent difference was done to ease interpretation and 
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provide consistency across multiple biomarkers. Since the biomarker values have 

been log-transformed, percent difference was calculated by exponentiating both sides 

of the linear regression equation, so that the exponentiated regression coefficient 

represents the ratio change of the biomarker on the unlogged scale per IQR increase 

in PM. Basic and fully adjusted distance to road models included two exposure terms 

corresponding to nearest distance to a major roadway (0-49m, and 50-199m). Thus, 

results from distance to road models are presented as percent difference in the 

biomarker concentration in comparison to concentrations among those living greater 

than 200m from a major road. In order to test for effect modification by smoking, 

interaction terms for each smoking category (never, former, current, missing) were 

included in separate regression models. 

 

Assessment of Effect Modification 

Effect Modification in the Case-crossover studies 

Personal characteristics are controlled for in a case-crossover study by design. With 

our month-long strata, any variable that does not change within a short time period (a 

single month) is matched by the selection of case and control exposure periods. 

However, effect modification by these variables can be examined. Though interaction 

terms can be used, most previous case-crossover studies have assessed effect 

modification of time-invariant variables with stratified models. As noted by Zanobetti 

et al., one reason to use stratification over interaction terms is the possibility that the 

effect modifier could modify associations with other covariates in addition to the 

exposure variable (Zanobetti and Schwartz 2005). A stratified analysis controls for 
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this. To test for the significance of effect modification with stratified models, we used 

chi-square tests of heterogeneity for testing significance between the model estimates 

as done by several previous studies (Montresor-López et al. 2015; Zanobetti and 

Schwartz 2005). To do this, we used the formula:  

 

Where: log (RRi) is the natural log of the stratum-specific OR for stratum i, and log 

(RR) is the natural log of the overall adjusted OR when the data are pooled. Var 

(log(RRi)) is the variance of the stratum-specifc log(OR) for stratum i. The test 

statistic is distributed as a Chi-square on i-1 degrees of freedom. 

 

Effect Modification in the Nested Cohort 

We tested for effect modification by smoking status in our third study by the use of 

interaction terms in our multivariable linear regression models. The smoking 

categories used were never smoker, former smoker, current smoker, and missing 

status. Thus, testing for effect modification by smoking status required the inclusion 

of 3 interaction terms. Significance testing was then determined by likelihood ratio 

tests between interaction and non-interaction models. For this study, we found no 

evidence of effect modification by smoking status. Because of this, the results from 

stratified models were not presented.  
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Model Specification 

Study 1 

Conditional logistic regression models were used to test the association between 

short-term PM exposures and stroke for study 1. All models controlled for mean daily 

temperature and were repeated for lag 0, 1, 2, 3 lag days as well as an average of 

exposure from lag day 0 to lag day 3. The model sets proceeded as follows: 1) overall 

stroke 2) stratified by ischemic or hemorrhagic stroke 3) stratified by non-fatal and 

fatal stroke outcome 4) limited to ischemic strokes and stratified by either age 

category, BMI category, smoking category, hypertension status, high cholesterol 

status, or current regular aspirin use 5) a sensitivity analysis limited to ischemic 

strokes and stratified by meteorological season (winter, spring, summer, fall). 

Study 2 

A series of stratified conditional logistic regression models were conducted for study 

2 to test the association between short-term PM2.5 exposure and stroke 

hospitalizations. All models controlled for maximum daily temperature and were 

repeated for lag 0, 1, 2, and 3 lag days. The model sets proceeded as follows: 1) 

overall cerebrovascular hospitalizations 2) stratified by ischemic, hemorrhagic, or 

‘other’ stroke subtype 3) stratified by stroke subtype and cold (Oct-Apr) or warm 

(May-Sep) season 4) stratified by stroke subtype and either age category, gender, 

race/ethnicity 5) a sensitivity analysis stratified by stroke subtype and meteorological 

season (winter, spring, summer, fall).  
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Study 3 

Multivariable linear regression models were used for study 3 to test the associations 

between PM exposures and inflammatory biomarkers. Separate models were 

conducted for each of the 4 biomarkers and each of the three PM exposure averaging 

times and three PM size fractions. Potential confounding variables were incorporated 

into the models in two stages. First crude models (basic) adjusted for variables which 

were matched in the individual nested case-control studies and included: 

meteorological season, age (months), BMI (kg/m2) , smoking status (never, past, 

current), pack-years smoked, physical activity (missing, <3, 3 to <18, ≥18 metabolic 

equivalent hours/week), hypertensive status (yes or no self-response to physician 

diagnosis), use of postmenopausal hormones (nonuser, current user, premenopausal, 

unknown), census tract median household income, alcohol consumption (missing, 

0g/day, ≥0.1 g/day), family history of myocardial infarction (MI) (yes or no), and diet 

(measured by Alternate Healthy Eating Index (Chiuve et al. 2012)). Continuous terms 

were used for PM (exposure), age, BMI, median household income, and pack-years 

smoked. Binary (2 categories) or dummy variables (more than 2 categories) were 

used for the other confounders and distance to road variables. Interaction terms were 

included in initial PM models and distance to road models, but removed in final 

models, as tests of effect modification were non-significant.  

Model Assumptions 

Logistic Regression and Splines  

Our first two papers use conditional logistic regression models to test the hypotheses. 

One of the main assumptions of logistic regression models is the linearity of 
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independent variables and log odds. If the independent variables are not linearly 

related to the log odds, the test may underestimate the strength of the relationship and 

the relationship could be falsely rejected as non-significant. As a preliminary step to 

these models, we verified the assumption of linearity in the PM and temperature 

variables (the two continuous independent variables) by using likelihood ratio tests 

between models with linear continuous variables as well as models using nonlinear 

restricted cubic splines. No significant nonlinear relationships were found (p>0.05, 

data not shown).  

  

Multivariable Linear Regression 

Multivariable linear regression has several assumptions that need consideration 

during the modeling process. Variables must be normally distributed. The biomarker 

measurements used in this study, and generally in most similar studies, were right-

skewed. To correct for non-normality, we log-transformed the biomarker 

distributions. Improvements in normality of the distributions of biomarkers were 

apparent (See Figure 1 for Example of CRP).  
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Figure 1. Histograms, box-plots, and normal quantile plots of unlogged CRP (left) and log-transformed 
CRP (right) distributions. The log-transformed distribution showed a higher degree of normality.  
 
We next examined regression models for points of undue influence (outliers). We 

chose to address this through the use of quantile regression. This technique plots the 

regression coefficients by the chosen quantiles of the dependent variable (biomarker 

measurements). If the parameter estimate were not unduly influenced by certain 

biomarker values compared to others, we would expect the parameter estimates to be 

equivalent for each quantile. In this examination, we found deviations in the 

parameter estimates among high levels of biomarker values. Among the highest 

quantiles of biomarker distributions (~95%), parameter estimates for PM were 

depressed and had wide confidence intervals. This finding was used as justification to 

trim the upper tail of the biomarker distributions. As an example, a comparison of 

quantile regression plots before and after the outlier removal is presented as Figure 2.  
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Figure 2. Quantile regression plot of parameter estimates for 12-month PM10 by logged IL-6 quantile 
both before (left) and after (right) upper-tail outlier removal (less movement in the parameter estimate 
indicates more appropriate model – note differences in scale) 
 
Another assumption of multivariable linear regression is that independent variables 

are not highly correlated with each other. We tested for multicollinearity using the 

Variance Inflation Factor (VIF) statistic in SAS. Though we found high VIF values 

among the smoking category variables and the pack-yrs smoked variable, no other 

variable pairs showed VIFs of concern. None of the control variables showed high 

VIFs with the exposure variable.  
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Chapter 3: Case-crossover Analysis of Short-term Particulate 
Matter Exposures and Stroke in the Health Professionals 
Follow-up Study 
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Abstract 
Background: Stroke is a leading cause of morbidity and mortality in the United 

States.  Associations between short-term particulate matter (PM) air pollution 

exposure and stroke are inconsistent. Many prior studies have used administrative and 

hospitalization databases where outcome misclassification is frequent and 

problematic. 

Methods: In this case-crossover study, we used a nationwide kriging model to 

examine short-term ambient exposure to PM10 and PM2.5 and risk of ischemic and 

hemorrhagic stroke among participants of the Health Professionals Follow-up Study. 

Conditional logistic regression models were used to obtain estimates of odds ratios 

and 95% confidence intervals associated with an interquartile range increase in PM2.5 

or PM10. PM exposures from 0 to 3 lag days as well as a 4-day average of PM 

exposure were examined.  

Results: We found positive significant associations between PM10 and ischemic 

stroke events in the HPFS cohort (ORlag0-3=1.27; 95% CI: 1.03-1.56 per 14.58µg/m3 

increase), and associations were elevated for nonsmokers, aspirin nonusers, and those 

having never had a diagnosis of high cholesterol. In contrast, we found no evidence of 

a positive association between short-term exposure to PM and hemorrhagic stroke or 

between PM2.5 and ischemic stroke in this cohort. Findings were relatively consistent 

across lag periods. 

Conclusions: Our study provides evidence that ischemic and hemorrhagic strokes are 

heterogeneous outcomes and should be treated as such in analyses related to air 

pollution. Our study also adds to previous results that show PM exposure may 

increase the risk of ischemic stroke and adds the finding that those of previously 
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unidentified cardiovascular risk may be at elevated risk for acute PM-related ischemic 

stroke events.  

 

Target Journals: 1) Environmental Health Perspectives 2) Environmental Health 3) 

Science of the Total Environment 

 

Keywords: Particulate matter, stroke, air pollution, case-crossover   
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Introduction 

Stroke is a leading cause of morbidity and mortality in the United States with 795,000 

people experiencing a new or recurrent stroke every year (Benjamin et al. 2017). Of 

these, approximately 130,000 result in death, making stroke the fifth leading cause of 

death in the United States (Benjamin et al. 2017; CDC 2016b).  

 

While a large and growing body of research has established the role of ambient 

exposure to air pollution and cardiovascular mortality and morbidity (Brook et al. 

2010), the evidence linking particulate matter (PM) air pollution exposures to the risk 

of stroke remains equivocal (Ljungman and Mittleman 2014). In the epidemiologic 

literature, there have been two approaches to examine this relationship: studies of 

long-term PM exposure as a contributor to higher incidence of stroke and studies of 

short-term PM exposure as an acute trigger of stroke (Ljungman and Mittleman 2014; 

Maheswaran 2016). Prior studies of short-term PM exposure and stroke have 

provided inconsistent results, with some (Dominici et al. 2006; Wellenius GA et al. 

2012; Zanobetti and Schwartz 2009) but not all (Anderson et al. 2001; O’Donnell et 

al. 2011) studies finding evidence of increased risk.  

 

A major limitation of much of the prior research in this domain has been the reliance 

on administrative and hospitalization databases where outcome misclassification is 

frequent and problematic (Reker et al. 2002) and where ischemic and hemorrhagic 

strokes are often combined as a single outcome, despite differing pathophysiological 

pathways (Ljungman and Mittleman 2014). Additionally, exposure misclassification 
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in analyses relying on administrative databases can bias the results towards the null 

by up to 60%, as the timing of the event and the hospitalization are not always 

congruent (Lokken et al. 2009). For these reasons, a recent review has urged for 

additional studies using cohort or registry data with well-classified and medically-

reviewed outcome data (Wang et al. 2014).  

 

In this case-crossover study, we used a nationwide kriging model to examine short-

term ambient exposure to PM10 and PM2.5 and risk of ischemic and hemorrhagic 

stroke among participants of the Health Professionals Follow-up Study (HPFS) 

cohort. Reported strokes were medically-reviewed to ensure accuracy and to obtain 

the exact date of the stroke event. Effect modification by several clinically-relevant 

variables was also examined.  

 

Methods 

Study population  

The HPFS is an ongoing, prospective cohort study of 51,529 men who were 40–75 

years of age at baseline in 1986 (HPFS 2011). Participants were dentists, pharmacists, 

optometrists, osteopath physicians, podiatrists, or veterinarians at the time of 

enrollment. Study participants receive mailed questionnaires with questions about 

disease, medical history, and health-related risks and behaviors every two years. 

Mailing addresses were primarily residential, but some occupational addresses were 

included as mailing addresses for the cohort. Response rates to questionnaires are 

generally greater than 90%. Our case-crossover study population included all 
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participants who experienced a stroke between 1999 and 2010, the dates which PM 

and temperature data were available. Cases were included if both an exact date of the 

stroke event was known and the participant’s addresses on the questionnaire 

immediately before the stroke event was in the conterminous US. The HPFS is 

sponsored by the Harvard School of Public Health and is funded by the National 

Cancer Institute and was approved by the Harvard School of Public Health IRB.  

Outcome Assessment 

Self-reported strokes were adjudicated by trained study physicians reviewing medical 

records using a standardized approach. Strokes were confirmed when medical records 

documented a neurologic deficit with sudden or rapid onset persisting for >24 hours 

without evidence for other causes, unless death supervenes or there is a demonstrable 

lesion compatible with acute stroke on brain imaging studies. Strokes were classified 

as ischemic, hemorrhagic, or of undetermined type and the exact date of the stroke 

event was noted. Death events were ascertained via communication with proxy 

respondents and/or National Death Index searches.  

Exposure Assessment 

Previously, validated national-scale, log-normal ordinary kriging models for PM2.5 

and PM10 have been attached to the addresses of all HPFS participants. These models 

are explained in detail elsewhere (Liao et al. 2006). Briefly, all ambient PM data 

recorded at monitors operating in the contiguous United States during the study 

period, 1999-2010 were obtained from the U.S. Environmental Protection Agency Air 

Quality System (AQS) for PM10 and PM2.5. The authors used a semiautomated 

program built on ArcView GIS (version 8.3) software and its Geostatistical Analyst 
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extension (ESRI, Inc. Redlands, CA) to produce kriging-estimated daily mean 

concentrations at each geocoded participant address. The program relied on a 

spherical model to perform log-normal ordinary kriging at national-scale and the 

weighted least-squares method to estimate semivariograms. From these models, PM2.5 

and PM10 estimates were available for each day from January 1, 1999 to December 

31, 2010.  

Covariates 

Temperature was considered as a potential confounder in this analysis, and daily 

mean temperature values were attached to each HPFS participant’s geocoded address 

from 1999 to 2010. Data on air temperature were obtained from the Modern Era 

Retrospective-analysis for Research and Applications (MERRA) project (NASA 

2017). MERRA data are available hourly on a grid across the continental US with an 

approximately 55 km cell size. Hourly gridded data were assigned local time and date 

based on the time zone of each grid point’s location and then averaged by day. The 

daily averages were included in spatially-smoothed generalized additive models 

(GAMs) which were then used for space-time prediction of daily temperature values 

at any location in the conterminous United States.  

 

Several variables which may modify the relationship between PM exposures and 

stroke were assessed as potential effect modifiers. These variables included: age (<70, 

≥70 years old), body mass index (BMI) (< 25.0, < 30.0, or ≥ 30.0 kg/m2), smoking 

status (current, former, never), hypertensive status (‘yes’ or ‘no’ as to ever having 

been diagnosed by health professional), hypercholesterolemia (‘yes’ or ‘no’ as to ever 
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having been diagnosed by health professional), and current aspirin use (‘yes’ as 2+ 

tablets per week; ‘no’ otherwise). Responses were obtained from the most recent 

HPFS questionnaire prior to the stroke event.  

 

Statistical Analysis 

A time-stratified case-crossover study design was used in this study to analyze the 

association between exposure to ambient particulate matter and stroke events. 

Proposed by Maclure, the case-crossover design has increasingly been used to 

examine transient effects on the risk of acute events (Maclure 1991). With this 

design, each case’s exposure just prior to the event is compared to exposure at other 

referent periods. In this way, each case serves as his/her own control, and 

confounding by invariant and slowly changing risk factors is controlled.  

In order to prevent time-trend bias and to ensure unbiased conditional logistic 

regression estimates, we used a time-stratified approach for referent period selection 

(Janes et al. 2005). Month-long strata were used, and exposures during the case 

period (day of or days previous to stroke event) were compared to exposures on the 

same day of the week and in the same calendar month as the case period.  

 

Using SAS 9.4 (SAS Institute Inc., Cary, NC), conditional logistic regression models 

were used to obtain estimates of odds ratios (ORs) and 95% confidence intervals 

(CIs) associated with an interquartile range increase in PM2.5 or PM10. PM exposures 

on the day of the stroke event (lag 0), as well as exposures from 1 to 3 days previous 

to the stroke event (lag 1 to lag 3) were considered in separate models. Additionally, a 
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4-day average of PM exposures (lag 0 to lag 3) was included to represent the total 

exposure to PM in the 4-day period. Days with missing estimates for PM 

concentrations were excluded from analysis.  

Linear terms for mean daily temperature (°C) were included in each model as a 

control variable. Effect modification of the relationship between PM and ischemic 

stroke was examined by age, BMI, smoking status, hypercholesterolemia, 

hypertensive status, and regular aspirin use through stratified conditional logistic 

models. Significance testing between the stratified estimates was assessed using chi-

square tests of model heterogeneity. Sensitivity analyses included the examination of 

effect by season, adjustment by temperature using restricted cubic splines, and the 

extension of lag days to 6 days before the stroke event.  

Results 

A total of 724 stroke cases were medically-reviewed and had a complete record of the 

date of event; 716 of these also had addresses in the conterminous US and were 

geocoded. Of the 716 cases used in this study, 537 (75.0%) were ischemic strokes, 

127 (17.7%) were hemorrhagic stokes, and 58 (8.1%) were of undetermined type. 

Additionally, of the 716 stroke events, 162 were determined to be fatal and 553 were 

non-fatal.  

 

PM exposures on the day of the event as well as descriptive characteristics are 

presented by total, ischemic, and hemorrhagic stroke cases in Table 1. Exposures to 

PM and outdoor ambient temperature were lower on the day of the event for 

hemorrhagic stroke than for ischemic stroke using two-sample independent t-tests 
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(p<0.01). A higher proportion of cases with ischemic stroke were slightly younger, 

had higher BMIs, and were more likely to be current or former smokers, though none 

of these differences between ischemic and hemorrhagic stroke cases were statistically 

significant. Stroke events were more often fatal among hemorrhagic strokes (48.8%) 

than among ischemic strokes (10.4%). Over half of the total stroke cases reported 

having ever had hypertension (63.4%), having ever had high cholesterol (59.6%), or 

were regularly taking aspirin at the last survey before the stroke (59.2%). Proportions 

were similar between stroke subtypes for having ever reported having hypertension or 

being a current regular aspirin user. However, a higher proportion of ischemic stroke 

cases reported having ever had high cholesterol (61.6%) compared to reports from 

hemorrhagic stroke cases (49.6%).  

 

ORs and 95% CIs between short-term PM exposures and total stroke, stroke subtype, 

and stroke outcome are presented in Table 2. On the day of the stroke event, the 

association between PM2.5 and total stroke was OR=1.01 (95% CI: 0.90, 1.13), and 

between PM10 and total stroke, the association was OR=1.08 (95% CI: 0.95, 1.23). 

When all stroke events were considered, no significant associations were found 

between the PM exposures and total stroke for each of the 4 lag days or the 4-day 

cumulative lag period. 

 

We found a significant positive association between PM10 and ischemic stroke using 

the 4-day cumulative lag exposure (ORLag0_3=1.27; 95% CI: 1.03-1.56), as well as 

suggestive positive associations on the day of (ORLag0=1.14; 95% CI: 0.99-1.31) and 
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day prior (ORLag1=1.14; 95% CI: 0.99-1.31) to the stroke event. Significant 

associations were also found between PM10 and the subset of nonfatal strokes on the 

day of stroke event (ORLag0=1.16; 95% CI: 1.01-1.34) and the 4-day cumulative lag 

period (ORLag0_3=1.27; 95% CI: 1.03-1.56). We found significantly negative results 

for PM2.5 (OR=0.71; 95% CI: 0.51 – 0.99) and PM10 (OR=0.55; 95% CI: 0.37 – 0.82) 

in the subset of hemorrhagic stroke cases for lag day 1. Likewise, associations for 

fatal stroke in the same lag period were also negative, as over 50% of fatal outcomes 

were from hemorrhagic stroke events. No significant positive associations with PM2.5 

exposures were found by stroke subtype or stroke outcome. ORs for both PM2.5 and 

PM10 were higher for ischemic strokes compared to hemorrhagic strokes and higher 

among nonfatal strokes compared to fatal strokes. However, in tests of heterogeneity, 

only associations for PM10 exposures by stroke subtype reached statistical 

significance in lag 1 models (ORisc=1.14; 95% CI: 0.99-1.31 vs ORhem=0.55; 95% CI: 

0.37 -0.82; p<0.01) and lag0_3 models (ORisc=1.27; 95% CI: 1.03-1.56 vs 

ORhem=0.68; 95% CI: 0.42 -1.10; p=0.02).  

 

ORs and 95% CIs between short-term PM exposures and ischemic stroke by age, 

BMI, and smoking status are presented in Table 3. No significant differences were 

found by age strata or by BMI categorizations for either PM10 or PM2.5 exposures. 

Associations between PM and ischemic stroke were higher among nonsmokers than 

among former or never smokers. On lag day 0, the ORs for nonsmokers for both 

PM10 (OR=1.23; 95% CI: 0.98-1.55) and PM2.5  (OR=1.20; 95% CI: 0.96-1.51) were 

elevated when compared to the ORs for former smokers (ORPM10=1.08; 95% CI: 
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0.88-1.32; ORPM2.5=0.98; 95% CI: 0.81-1.18) or never smokers (ORPM10=0.92; 95% 

CI: 0.52-1.65; ORPM2.5=0.69; 95% CI: 0.37-1.28). Though tests of heterogeneity did 

not reach statistical significance, this finding was consistent for both PM fractions 

and across all lag days, with the exception of PM10 lag day 1.  

 

ORs and 95% CIs between short-term PM exposures and stroke by self-reported 

current or past hypertensive or hypercholesterolemia status and regular aspirin use are 

presented in Table 4. No significant differences were found by hypertension strata for 

either PM10 or PM2.5 exposures. Elevated ORs were found among those that reported 

having never received a diagnosis of high cholesterol compared to those that had 

received a diagnosis. Differences were significant in the lag0-3 models for both PM10 

(ORYES=1.10; 95% CI: 0.84-1.43 vs. ORNO=1.60; 95% CI: 1.15-2.23; p=0.03) and 

PM2.5 (ORYES=0.89; 95% CI: 0.72-1.11 vs. ORNO=1.22; 95% CI: 0.91-1.63; p =0.04) 

models. Among those having reported no current regular aspirin usage, there was a 

significantly positive association between PM10 exposure and risk of stroke 3 days 

previous to the stroke event (OR=1.37; 95% CI: 1.06-1.76) and using the 4-day 

cumulative exposure (OR=1.56; 95% CI: 1.12-2.17). No significant associations 

between PM2.5 and stroke were found among aspirin users or nonusers. However, the 

ORs for both PM10 and PM2.5 were higher for nonusers compared to users across all 

lag periods, and these results reached statistical significance (p<0.05) in tests of 

heterogeneity for both PM fractions in the lag 3 and lag0-3 models. In sensitivity 

analyses, associations between PM10 or PM2.5 and total stroke did not significantly 



 

 52 
 

differ by season (Supplemental Table 1) or by the use of restricted cubic splines to 

control for temperature (Supplemental Table 2).  

Discussion 

We found positive significant associations between PM10 and ischemic and nonfatal 

stroke events. In contrast, we found no evidence of a positive association between 

short-term exposure to PM and hemorrhagic stroke or between PM2.5 and ischemic 

stroke in this cohort. Associations between PM and ischemic stroke were elevated for 

nonsmokers, aspirin nonusers, and those having never had a diagnosis of high 

cholesterol. Findings were relatively consistent across lag periods.  

 

While many studies have examined total cerebrovascular hospital admissions or 

mortality with PM, relatively few studies have examined the relationship between 

short-term PM exposure and ischemic and hemorrhagic strokes, specifically 

(Ljungman and Mittleman 2014; Wang et al. 2014). Our finding of a positive 

association between short-term PM10 exposure and ischemic stroke is consistent with 

several studies (Tsai et al. 2003; Wellenius et al. 2005; Wordley et al. 1997). 

Wellenius et al. examined a database of Medicare recipients in 9 U.S. cities. They 

found a small, but significant, increase in ischemic stroke admissions with increased 

city-wide PM10 concentrations on the day of admission (1.03% increase per 

interquartile range increase [23.0µg/m3]; 95% CI: 0.04-2.04) (Wellenius et al. 2005). 

As in our study, they did not find positive associations between PM10 exposure and 

hemorrhagic stroke (Wellenius et al. 2005). Another study by Tsai et al of stroke 

admissions in Taiwan, found that on days of ≥20°C, an interquartile range increase 
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(66.3µg/m3) in PM10 was associated with both ischemic (OR=1.46; 95% CI: 1.32-

1.61) and hemorrhagic (OR=1.54; 95% CI: 1.31-1.81) stroke admissions (Tsai et al. 

2003). The evidence between short-term exposure to PM10 and ischemic stroke is not 

consistent, however. Other studies have found no evidence of a relationship 

(Andersen et al. 2010; Chan et al. 2006; Henrotin et al. 2007; Mechtouff et al. 2012; 

Villeneuve et al. 2006). 

 

Similarly, the existing literature for an association between PM2.5  and stroke has been 

mixed, with some studies (Delfino et al. 2009a; Dominici et al. 2006; Lisabeth et al. 

2008; Wellenius GA et al. 2012) but not others (Lippmann et al. 2000; Mechtouff et 

al. 2012; O’Donnell et al. 2011; Villeneuve et al. 2006) finding positive associations. 

Of these studies, only a few used medically reviewed stroke cases. Wellenius et al. 

(2012) performed medical review of 1,705 Boston area patient records to confirm 

ischemic stroke events. They estimated the OR of ischemic stroke to be 1.11 (95% 

CI: 1.03-1.20) (P=0.006) per interquartile range increase in PM2.5 levels (6.4 μg/m3) 

(Wellenius GA et al. 2012). In a multicenter cohort study in Lyon, France, Mechtouff 

et al. used a case-crossover design on 376 medically-reviewed stroke patients. The 

found no association between ischemic stroke and PM2.5 (OR=0.97; 95% CI: 0.83-

1.12 per SD [10.4µg/m3] increase) (Mechtouff et al. 2012). Likewise, O’Donnell et al 

used data from a stroke registry in Canada and found no association with PM2.5 

among 9,202 ischemic stroke cases (O’Donnell et al. 2011).  
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Our findings of significantly negative results between PM and hemorrhagic stroke on 

the day prior to the stroke event were unexpected. Though a  few prior studies have 

also reported significant negative associations between PM and stroke (Jalaludin et al. 

2006; Talbott et al. 2014), such findings have been limited to certain lag periods, 

locations, seasons, or other subcategory of total stroke events. Our findings for 

hemorrhagic stroke were not consistent across lag periods and the sample of cases 

(n=121) was too small to effectively examine the relationship by other variables. 

These results require more investigation.  

 

As most existing studies examining the short-term associations between stroke and 

particulate matter air pollution have been studies of administrative datasets, few have 

been able to examine individual clinical variables as potential effect modifiers of the 

relationship. Such findings are important as they may identify individuals who are 

more vulnerable to the effects of air pollution mediated stroke. Of the covariates we 

examined in this study, only age, which is available in many administrative datasets, 

has been tested widely as a potential effect modifier. Similar to our study, most of 

these studies found no substantial difference in the PM/stroke association by age 

group (Anderson et al. 2001; Barnett et al. 2006; Delfino et al. 2009a; Larrieu et al. 

2007; Linn et al. 2000). Though our results did not reach statistical significance in 

tests of heterogeneity, we found consistently elevated ORs for both PM10 and PM2.5 

among nonsmokers. Only a few studies have examined smoking status as a potential 

effect modifier of the relationship between short-term PM exposure and stroke; each 
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finding no differences by smoking status strata (O’Donnell et al. 2011; Oudin et al. 

2010). 

 

To our knowledge, our study is also the first to demonstrate effect modification by 

current aspirin usage on the PM ischemic stroke relationship. Aspirin is an 

antiplatelet medication often given to those at elevated cardiovascular risk and is 

known to reduce the risk of ischemic stroke (Lei et al. 2016). In this study, we found 

elevated ORs for aspirin nonusers compared to users across all lag periods and both 

PM fractions, with several of those differences reaching statistical significance in 

heterogeneity tests. While we are unaware of other studies of aspirin as an effect 

modifier for PM and stroke, Villenauvue et al examined both current antiplatelet and 

anticoagulant medication use (medications unnamed) in an analysis of short-term 

NO2 exposure and stroke (Villeneuve et al. 2012). They found no differences by 

antiplatelet use or nonuse, but found a significant association between NO2 exposure 

and ischemic stroke when limited to anti-coagulant nonusers (Villeneuve et al. 2012). 

As aspirin is more likely to be taken regularly among those with higher levels of 

cardiovascular risk, our findings of potential effect modification by past diagnosis of 

high cholesterol is consistent with these results. Among ischemic stroke cases in our 

study, 69% and 72% of aspirin users reported having been diagnosed with high 

cholesterol and hypertension, respectively. Whether these results are evidence of a 

higher risk from PM-related stroke among those with little previously known 

cardiovascular risk, or whether potential medication use may lower or eliminate PM-

related ischemic stroke risk is difficult to disentangle.  
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Our findings of elevated associations between PM and ischemic stroke among several 

subgroups not only helps to identify those potentially most vulnerable to PM-related 

stroke, but the findings may also shed light on pathophysiologic mechanisms by 

which exposure to PM may lead to stroke. Though the exact mechanisms are not yet 

fully understood, commonly hypothesized pathways include increased systemic 

inflammation and oxidative stress leading to procoagulant effects, autonomic 

irregularities, vascular endothelial dysfunction, and thrombosis which could enhance 

the likelihood of an ischemic event (Franchini and Mannucci 2007; Mills et al. 2007). 

Our finding of reduced associations among smokers might be understood in this 

context, as cigarette smoke influences and may saturate these same pathways 

(Barnoya and Glantz 2005). The specific role of platelet activation as a key 

mechanism of action has achieved recent attention with several studies showing an 

association between increased PM exposure and markers of platelet activation (Rich 

DQ et al. 2012; Wu et al. 2012). Of major interest to our study is a recent finding by 

Bacarerra et al (2016) that some of the effects of increased ambient PM on platelet 

function were mitigated when subjects were taking aspirin (Becerra et al. 2016).  

 

A major strength of this study is the use of high quality outcome and covariate data 

from HPFS. Many prior studies of short-term PM exposure and stroke risk are based 

on administrative data, where frequent misclassification of stroke events can bias 

effect estimates towards the null (Johnsen et al. 2002; Reker et al. 2002). 

Additionally, studies relying on administrative data rarely have access to information 
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on variables outside of age or gender that may modify the effect. Our study is one of 

few to examine potential effect modification by clinically relevant variables. Another 

major strength of this study is the use of a nationwide kriging model to estimate 

exposure to ambient PM which may reduce exposure misclassification.  

 

This study also has several limitations. First, although studies have shown ambient 

concentrations of PM correlate relatively well with personal exposures (Avery et al. 

2010), it should also be noted that an individual’s total exposure to PM represents the 

sum of their exposure to particles both of outdoor origin as well as particles of indoor 

origin. Thus, some exposure misclassification is unavoidable. Second, the timing of 

the stroke event compared to the timing of hospitalization or death is not always 

congruent. Though we examined potential effects over multiple lag periods, this 

source of misclassification has been shown to bias effect estimates towards the null 

(Lokken et al. 2009). Third, although these data came from a large cohort, low sample 

sizes in this case-only study for hemorrhagic stroke, and for several categories of 

effect modifiers were limiting. Finally, results of this study in the HPFS cohort may 

not be generalizable to younger men, women, those of non-Caucasian descent, or to a 

wide range of socioeconomic levels.  

 

Conclusion   

Our study provides more evidence that ischemic and hemorrhagic strokes are 

heterogeneous outcomes and should be treated as such in analyses related to air 

pollution. Our study also adds to previous results that show PM exposure may 
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increase the risk of ischemic stroke and adds the finding that those of previously 

unidentified cardiovascular risk may be at elevated risk for acute PM-related ischemic 

stroke events. Whether this is by means of managed risk by medication use or another 

mechanism requires more investigation. Findings from this study are in agreement 

with the last comprehensive review and assessment by the Environmental Procetion 

Agency that exposure to particulate matter is associated with stroke and other 

cardiovascular outcomes (US EPA 2009). As US EPA re-evaluates regulations on the 

criteria pollutants every five years under The Clean Air Act, results from these studies 

may directly contribute to future policy actions.  
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Tables 

Table 1. Characteristics and event day exposures of participants with total, ischemic, and hemorrhagic 

stroke from 1999 to 2010 in the Health Professionals Follow-up Study 

 Total Stroke 
(n=716) 

Ischemic Stroke 
(n=537) 

Hemorrhagic 
Stroke 

(n=121) 
 mean ± SD or N 

(%) 
mean ± SD or N 

(%) 
mean ± SD or N 

(%) 
Stroke Outcome    
  Fatal 126 (17.6%) 56 (10.4%) 59 (48.8%)* 
  Non-fatal 590 (82.4%) 481 (89.6%) 62 (51.2%) 
Age (years) 76.1 ± 8.4 75.1 ± 8.3 77.3 ± 8.0* 
BMI (kg/m2)    
  ≤ 25 275 (38.4 %) 189 (35.2 %) 54 (44.6 %) 

  >25 to  ≤ 30 340 (47.5 %) 268 (49.9 %) 52 (43.0 %) 
  >30  98 (13.7 %) 77 (14.3%) 15 (12.4 %) 
Smoking status    
 Never 255(35.6%) 188 (35.0%) 51 (42.1%)* 
 Former 343(47.9%) 272 (50.7%) 45 (37.2%) 
 Current 40 (5.6%) 32 (6.0%) 4 (3.3%) 
    Missing 78 (10.9%) 45 (8.4%) 21 (17.4%) 
Ever Hypertension “Yes” a 454 (63.4%) 345 (64.3%) 75 (62.0%) 
Ever High Cholesterol  “Yes” a 427 (59.6%) 331 (61.6%) 60 (49.6%)* 
Current Regular Aspirin Use 
“Yes” a 424 (59.2%) 321 (59.8%) 71 (58.7%) 

PM2.5 (µg/m3)b 12.9  ± 7.5 13.1 ± 7.6 11.9 ± 6.7 
PM10 (µg/m3)b 26.3 ± 12.3 26.8 ± 12.7 23.6 ± 10.2* 
Temperature (C)b 12.4 ± 10.4 12.9 ± 10.3 10.1 ± 11.2* 
a Self-report from biennial questionnaire : Have you had a physician tell you that you have high blood 
pressure?”; “Have you had a physician tell you that you have high cholesterol?”; ”Do you  regularly 
take aspirin?”, (“Yes” defined as 2+ tablets /week) 
b Daily estimate on the day of the stroke event 
* Denotes significance (p<0.05) between ischemic and hemorrhagic strokes in two-sample t-tests or 
Chi-square tests 
 

  



 

 

Table 2. Odds Ratios and 95% Confidence Intervals of the Association of Short-term Particulate Matter Exposure with Total Stroke, Stroke Subtype, and Stroke 
Outcome in the Health Professionals Follow-up Study 
 N Lag 0 Lag 1 Lag 2 Lag 3 Lag 0-3 (Avg) 
  OR (95% CI)a OR (95% CI)a OR (95% CI)a OR (95% CI)a OR (95% CI)a 

Total Stroke 716      

PM2.5  1.01 (0.90, 1.13) 0.93 (0.83, 1.05) 0.93 (0.83, 1.05) 1.01 (0.90, 1.13) 0.95 (0.81, 1.11) 
PM10  1.08 (0.95, 1.23) 1.05 (0.93, 1.19) 1.06 (0.93, 1.20) 1.10 (0.96, 1.25) 1.15 (0.96, 1.38) 

Ischemic Stroke 537 
     

PM2.5  1.02 (0.89, 1.16) 0.98 (0.87, 1.12) 0.95 (0.83, 1.09) 1.02 (0.90, 1.16) 1.00 (0.84, 1.19) 
PM10  1.14 (0.99, 1.31) 1.14 (0.99, 1.31) 1.11 (0.96, 1.28) 1.11 (0.95, 1.29) 1.27 (1.03, 1.56) 
Hemorrhagic Stroke 121      
PM2.5  0.88 (0.65, 1.20) 0.71 (0.51, 0.99) 1.01 (0.77, 1.32) 1.06 (0.81, 1.39) 0.84 (0.55, 1.26) 
PM10  0.84 (0.60, 1.18) 0.55 (0.37, 0.82) 0.85 (0.61, 1.19) 1.09 (0.80, 1.48) 0.68 (0.42, 1.10) 

Nonfatal Stroke 563      

PM2.5  1.06 (0.93, 1.20) 0.98 (0.86, 1.11) 0.98 (0.86, 1.12) 1.04 (0.92, 1.19) 1.04 (0.87, 1.24) 
PM10  1.16 (1.01, 1.34) 1.12 (0.98, 1.29) 1.11 (0.96, 1.28) 1.10 (0.95, 1.28) 1.27 (1.04, 1.56) 
Fatal Stroke 153      
PM2.5  0.86 (0.66, 1.11) 0.74 (0.56, 0.99) 0.77 (0.59, 1.00) 0.89 (0.69, 1.15) 0.70 (0.49, 1.01) 
PM10  0.80 (0.60, 1.07) 0.80 (0.59, 1.07) 0.89 (0.67, 1.19) 1.07 (0.81, 1.43) 0.79 (0.53, 1.19) 
aORs calculated from conditional logistic regression models and presented by change in PM IQR (PM2.5IQR =8.73; PM10IQR = 14.58). All ORs control for mean 
daily temperature.  
  



 

 

 
Table 3. Odds Ratios and 95% Confidence Intervals of the Association between Short-term Particulate Matter Exposure and Ischemic Stroke by Age, BMI, and 
Smoking Status Categories in the Health Professionals Follow-up Study 
  Lag 0 Lag 1 Lag 2 Lag 3 Lag0-3 (Avg) 
 N OR (95% CI)a OR (95% CI)a OR (95% CI)a OR (95% CI)a OR (95% CI)a 
PM2.5       
Age <70 250 0.98 (0.81, 1.20) 0.96 (0.79, 1.16) 1.00 (0.81, 1.22) 1.07 (0.89, 1.29) 1.02 (0.78, 1.33) 
Age ≥70 287 1.05 (0.87, 1.25) 1.00 (0.85, 1.19) 0.92 (0.77, 1.10) 0.98 (0.82, 1.18) 0.98 (0.78, 1.24) 
p-valueb  0.65 0.51 0.46 0.20 0.55 
PM10       
Age <70 250 1.18 (0.96, 1.47) 1.15 (0.93, 1.41) 1.20 (0.97, 1.48) 1.13 (0.92, 1.40) 1.38 (1.01, 1.88) 
Age ≥70 287 1.10 (0.91, 1.33) 1.13 (0.94, 1.38) 1.04 (0.85, 1.27) 1.08 (0.87, 1.34) 1.18 (0.90, 1.56) 
p-valueb  0.62 0.92 0.30 0.75 0.14 
PM2.5       
BMI < 25 189 1.01 (0.82, 1.26) 0.95 (0.78, 1.15) 0.89 (0.72, 1.10) 0.96 (0.77, 1.19) 0.93 (0.70, 1.22) 
BMI ≥ 25 to <30 268 1.04 (0.85, 1.26) 1.05 (0.86, 1.29) 1.01 (0.82, 1.24) 1.02 (0.84, 1.23) 1.05 (0.80, 1.38) 
BMI ≥ 30 77 0.92 (0.65, 1.31) 0.91 (0.67, 1.24) 0.95 (0.69, 1.32) 1.17 (0.84, 1.64) 0.98 (0.64, 1.50) 
p-valueb  0.85 0.67 0.70 0.60 0.81 
PM10       
BMI < 25 189 1.07 (0.85, 1.36) 1.02 (0.79, 1.31) 1.07 (0.83, 1.38) 1.05 (0.81, 1.36) 1.14 (0.79, 1.64) 
BMI ≥ 25 to < 30 268 1.21 (0.99, 1.47) 1.26 (1.03, 1.54) 1.18 (0.97, 1.43) 1.08 (0.87, 1.35) 1.38 (1.03, 1.84) 
BMI ≥ 30 77 0.96 (0.65, 1.43) 1.04 (0.75, 1.44) 0.96 (0.66, 1.40) 1.35 (0.94, 1.95) 1.15 (0.69, 1.92) 
p-valueb  0.53 0.35 0.62 0.51 0.68 
PM2.5       
Never Smokers 188 1.20 (0.96, 1.51) 1.11 (0.92, 1.34) 1.08 (0.87, 1.35) 1.14 (0.94, 1.40) 1.23 (0.94, 1.62) 
Former Smokers 272 0.98 (0.81, 1.18) 0.86 (0.71, 1.04) 0.90 (0.74, 1.10) 0.92 (0.76, 1.12) 0.86 (0.66, 1.12) 
Current Smokers 32 0.69 (0.37, 1.28) 0.87 (0.48, 1.61) 0.80 (0.45, 1.43) 0.90 (0.53, 1.53) 0.72 (0.34, 1.52) 
p-valueb  0.15 0.15 0.39 0.29 0.12 
PM10       
Never Smokers 188 1.23 (0.98, 1.55) 1.18 (0.92, 1.50) 1.28 (0.98, 1.69) 1.62 (1.13, 2.33) 1.23 (0.98, 1.55) 
Former Smokers 272 1.08 (0.88, 1.32) 0.95 (0.77, 1.17) 1.06 (0.86, 1.31) 1.12 (0.83, 1.50) 1.08 (0.88, 1.32) 
Current Smokers 32 0.92 (0.52, 1.65) 1.82 (1.04, 3.17) 0.91 (0.49, 1.68) 1.17 (0.52, 2.64) 0.92 (0.52, 1.65) 
p-valueb  0.14 0.55 0.07 0.43 0.28 
aORs calculated from conditional logistic regression models and presented by change in PM IQR (PM2.5IQR =8.73; PM10IQR = 14.58). All ORs control for mean 
daily temperature. bp-value from Chi-sq tests of model heterogeneity  



 

 

Table 4. Odds Ratios and 95% Confidence Intervals of the Association between Short-term Particulate Matter Exposure and Ischemic Stroke by Current or Past 
Hypertensive and Hypercholesterolemia Status and Current Regular Aspirin Use Categories in the Health Professionals Follow-up Study 

  Lag 0 Lag 1 Lag 2 Lag 3 Lag0-3 (Avg) 
 N OR (95% CI)a OR (95% CI)a OR (95% CI)a OR (95% CI)a OR (95% CI)a 
Ever Hypertensionb       
PM2.5        
Yes 345 0.96 (0.82, 1.13) 0.95 (0.82, 1.11) 0.92 (0.79, 1.09) 0.98 (0.83, 1.14) 0.93 (0.76, 1.15) 
No 192 1.14 (0.90, 1.44) 1.07 (0.84, 1.36) 1.02 (0.80, 1.29) 1.14 (0.90, 1.45) 1.17 (0.84, 1.63) 
p-valuec  0.25 0.57 0.42 0.13 0.13 
PM10        
Yes 345 1.08 (0.91, 1.29) 1.05 (0.88, 1.25) 1.10 (0.92, 1.32) 1.09 (0.90, 1.32) 1.18 (0.92, 1.52) 
No 192 1.25 (0.98, 1.60) 1.34 (1.05, 1.70) 1.11 (0.87, 1.41) 1.13 (0.88, 1.45) 1.46 (1.02, 2.09) 
p-valuec  0.35 0.10 0.69 0.85 0.11 
Ever High Cholesterolb       
PM2.5        
Yes 331 0.94 (0.79, 1.10) 0.90 (0.77, 1.06) 0.89 (0.75, 1.05) 1.03 (0.87, 1.22) 0.89 (0.72, 1.11) 
No 206 1.21 (0.96, 1.53) 1.18 (0.95, 1.46) 1.09 (0.87, 1.36) 1.00 (0.81, 1.23) 1.22 (0.91, 1.63) 
p-valuec  0.07 0.09 0.14 0.28 0.04 
PM10        
Yes 331 1.05 (0.88, 1.26) 1.07 (0.88, 1.28) 1.03 (0.86, 1.24) 1.04 (0.86, 1.27) 1.10 (0.84, 1.43) 
No 206 1.27 (1.01, 1.59) 1.25 (1.01, 1.55) 1.26 (0.98, 1.61) 1.21 (0.95, 1.53) 1.60 (1.15, 2.23) 
p-valuec  0.20 0.27 0.19 0.36 0.03 
Current Regular Aspirin Useb       
PM2.5        
Yes 321 0.92 (0.78, 1.10) 0.93 (0.79, 1.10) 0.88 (0.74, 1.06) 0.92 (0.77, 1.10) 0.86 (0.67, 1.09) 
No 216 1.15 (0.94, 1.42) 1.06 (0.87, 1.29) 1.06 (0.87, 1.31) 1.15 (0.96, 1.38) 1.20 (0.92, 1.56) 
p-valuec  0.11 0.43 0.16 0.04 0.02 
PM10        
Yes 321 1.07 (0.89, 1.28) 1.11 (0.92, 1.33) 1.05 (0.87, 1.28) 0.98 (0.81, 1.19) 1.11 (0.85, 1.45) 
No 216 1.24 (0.99, 1.56) 1.19 (0.96, 1.48) 1.19 (0.95, 1.48) 1.37 (1.06, 1.76) 1.56 (1.12, 2.17) 
p-valuec  0.32 0.60 0.39 0.04 0.04 

aORs calculated from conditional logistic regression models and presented by change in PM IQR (PM2.5IQR =8.73; PM10IQR = 14.58). All ORs control for mean 
daily temperature b Self-report from biennial questionnaire :(“Have you had a physician tell you that you have high blood pressure?”, “Have you had a physician 
tell you that you have high cholesterol?”, ”Do you  regularly take aspirin?” (“Yes” defined as 2+ tablets /week) c p-value from chi-sq tests of model heterogeneity 
  



 

 

Supplemental Table 1. Odds Ratios and 95% Confidence Intervals of the Association between Short-term Particulate Matter Exposure and Ischemic Stroke by 
Seasona in the Health Professionals Follow-up Study 
  Lag 0 Lag 1 Lag 2 Lag 3 Lag0-3 (Avg) 
 N OR (95% CI)b OR (95% CI)b OR (95% CI)b OR (95% CI)b OR (95% CI)b 
PM2.5       
Winter 213 1.02 (0.81, 1.28) 1.00 (0.81, 1.24) 0.94 (0.73, 1.20) 0.96 (0.77, 1.18) 0.96 (0.71, 1.29) 
Spring 184 0.91 (0.64, 1.31) 0.72 (0.50, 1.05) 0.90 (0.64, 1.26) 0.89 (0.62, 1.27) 0.75 (0.46, 1.22) 
Summer 144 1.07 (0.80, 1.43) 1.08 (0.82, 1.43) 0.85 (0.62, 1.16) 1.15 (0.82, 1.61) 1.06 (0.70, 1.58) 
Fall 175 0.98 (0.76, 1.26) 1.04 (0.81, 1.34) 1.07 (0.84, 1.36) 1.11 (0.87, 1.41) 1.10 (0.79, 1.52) 
p-valuec  0.91 0.35 0.69 0.60 0.62 
PM10       
Winter 213 1.13 (0.88, 1.46) 1.11 (0.87, 1.41) 1.06 (0.82, 1.36) 1.04 (0.79, 1.36) 1.16 (0.80, 1.69) 
Spring 184 1.05 (0.81, 1.36) 0.89 (0.68, 1.15) 1.05 (0.81, 1.35) 1.26 (0.97, 1.64) 1.11 (0.77, 1.61) 
Summer 144 0.97 (0.74, 1.28) 1.01 (0.75, 1.37) 0.88 (0.64, 1.20) 1.00 (0.73, 1.38) 0.93 (0.60, 1.44) 
Fall 175 1.13 (0.88, 1.46) 1.22 (0.96, 1.55) 1.19 (0.93, 1.52) 1.10 (0.87, 1.40) 1.33 (0.95, 1.86) 
p-valuec  0.841 0.350 0.519 0.681 0.646 
aSeason defined by month of the year: Winter (Dec-Feb), Spring (Mar-May), Summer (Jun-Aug), Fall (Sep-Nov) 
bORs calculated from conditional logistic regression models stratified by season and presented by change in PM IQR (PM2.5IQR =8.73; PM10IQR = 14.58). All ORs 
control for mean daily temperature 
c p-value from chi-sq tests of model heterogeneity 
  



 

 

Supplemental Table 2a. Odds Ratios and 95% Confidence Intervals of the Association between Short-term Exposure to PM2.5 and PM10 (Lag 0 to Lag 3) and 
Stroke by Method of Adjustment for Temperaturea in the Health Professionals Follow-up Study 
  Lag 0 Lag 1 Lag 2 Lag 3 Lag0_3 (Avg) 
 N OR (95% CI)b OR (95% CI)b OR (95% CI)b OR (95% CI)b OR (95% CI)b 
PM2.5 716      
Unadjusted  1.04 (0.93, 1.16) 0.97 (0.87, 1.08) 0.95 (0.85, 1.06) 1.00 (0.90, 1.12) 0.98 (0.84, 1.14) 
Adj by Linear Term  1.01 (0.90, 1.13) 0.93 (0.83, 1.05) 0.93 (0.83, 1.05) 1.01 (0.90, 1.13) 0.95 (0.81, 1.11) 
Adj by Spline  1.00 (0.88, 1.12) 0.92 (0.82, 1.04) 0.93 (0.82, 1.04) 1.01 (0.90, 1.13) 0.93 (0.79, 1.10) 
PM10 716      
Unadjusted  1.11 (0.99, 1.24) 1.09 (0.97, 1.22) 1.07 (0.95, 1.21) 1.08 (0.95, 1.22) 1.17 (0.99, 1.38) 
Adj by Linear Term  1.08 (0.95, 1.23) 1.05 (0.93, 1.19) 1.06 (0.93, 1.20) 1.10 (0.96, 1.25) 1.15 (0.96, 1.38) 
Adj by Spline  1.07 (0.94, 1.22) 1.05 (0.92, 1.19) 1.06 (0.93, 1.21) 1.10 (0.96, 1.26) 1.15 (0.95, 1.39) 
aDiffering methods for adjustment by mean daily temperature included: unadjusted, adjustment using a linear term, and adjustment using restricted cubic splines 
bORs calculated from conditional logistic regression models stratified by season and presented by change in PM IQR (PM2.5IQR =8.73; PM10IQR = 14.58) 
 
Supplemental Table 2b. Odds Ratios and 95% Confidence Intervals of the Association between Short-term Exposure to PM2.5 and PM10 (Lag 4 to Lag 6) and 
Stroke by Method of Adjustment for Temperaturea in the Health Professionals Follow-up Study 
  Lag 4 Lag 5 Lag 6 
 N OR (95% CI)b OR (95% CI)b OR (95% CI)b 
PM2.5 716    
Unadjusted  0.97 (0.87, 1.09) 0.98 (0.88, 1.10) 0.98 (0.88, 1.10) 
Adj by Linear Term  0.98 (0.88, 1.10) 1.00 (0.89, 1.12) 0.99 (0.88, 1.12) 
Adj by Spline  0.99 (0.88, 1.11) 1.02 (0.91, 1.15) 1.00 (0.88, 1.13) 
PM10 716    
Unadjusted  1.01 (0.90, 1.15) 0.99 (0.87, 1.12) 0.96 (0.85, 1.09) 
Adj by Linear Term  1.04 (0.91, 1.18) 1.02 (0.89, 1.16) 0.97 (0.85, 1.11) 
Adj by Spline  1.04 (0.91, 1.19) 1.05 (0.91, 1.21) 0.98 (0.85, 1.12) 
aDiffering methods for adjustment by mean daily temperature included: unadjusted, adjustment using a linear term, and adjustment using restricted cubic splines  
bORs calculated from conditional logistic regression models stratified by season and presented by change in PM IQR (PM2.5IQR =8.73; PM10IQR = 14.58) 
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Abstract: 

Background: Stroke is the fifth leading cause of death and a major contributor to 

long-term disability in the United States. Many prior studies between exposure to 

short-term PM and stroke have examined risk by composite stroke outcomes. 

Additional studies are needed that examine both ischemic and hemorrhagic stroke 

separately, as the two stroke types potentially differ in the pathophysiology relevant 

to air pollution exposure.  

 

Methods: In this study, we performed a time-stratified case-crossover analysis to 

examine the association between daily ambient PM2.5 and total cerebrovascular, 

ischemic, and hemorrhagic stroke hospitalizations among adults in Maryland from 

2003 to 2011. Conditional logistic regression models were used to obtain estimates of 

odds ratios and 95% confidence intervals associated with an interquartile range 

increase in PM2.5 from 0 to 3 lag days. 

 

Results:  Overall, the OR between PM2.5 and cerebrovascular hospitalization was 

1.003 (95% CI: 0.996 – 1.011) per IQR increase of PM2.5 on the day of 

hospitalization. In models stratified by stroke subtype, no association was found 

between PM2.5 and either ischemic stroke hospitalizations (OR=1.007; 95% CI: 0.997 

– 1.017) or hemorrhagic stroke hospitalizations (OR=1.004; 95% CI: 0.977 – 1.031). 

 

Discussion: We found no evidence of an association between PM2.5 exposure and 

cerebrovascular hospitalizations or the subset of ischemic or hemorrhagic stroke 
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hospitalizations in Maryland during the time period. Future studies should continue to 

examine risk by stroke subtype and examine potential modifiers of effect.   

 

Target Journals: 1) Environmental Health 2) Science of the Total Environment 3) 

Environmental Research 

 

Keywords: Particulate matter, stroke, air pollution, case-crossover   
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Introduction 

Stroke is the fifth leading cause of death and a major contributor to long-term 

disability in the United States, with 795,000 people experiencing a new or recurrent 

stroke every year (Benjamin et al. 2017; CDC 2016b). While associations between 

short-term exposure to ambient air pollution and cardiovascular mortality and 

morbidity have been established among a large and growing body of research (Brook 

et al. 2010), the evidence linking particulate matter (PM) air pollution exposures to 

the risk of stroke remains equivocal. Prior studies of short-term PM exposure and 

stroke have provided inconsistent results, with some studies (Chan et al. 2006; 

Delfino et al. 2009a; Dominici et al. 2006) but not others (Alessandrini et al. 2013; 

Jalaludin et al. 2006; Lippmann et al. 2000; Lisabeth et al. 2008; Mechtouff et al. 

2012; O’Donnell et al. 2011; Villeneuve et al. 2006) finding evidence of increased 

risk. Additional studies are needed to clarify if ambient particulate matter exposure is 

a modifiable risk factor for stroke.  

Many prior studies of short-term pollutant-related stroke risk have examined risk by 

composite stroke outcomes, such as the combination of all cerebrovascular 

hospitalizations or deaths. However, both ischemic and hemorrhagic stroke are 

known to differ in their etiologies, outcomes, and potentially in the pathophysiology 

relevant to air pollution exposure (Ljungman and Mittleman 2014). For this reason, a 

recent review has called for additional studies classifying cerebrovascular events by 

stroke subtype (Wang et al. 2014). In addition, relatively few prior studies have been 

able to examine if risk for PM-related stroke differs by population subgroups. 
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Demographic characteristics such as age, gender, and race/ethnicity are well-

established risk factors for stroke and may modify the association between PM and 

stroke via physiology, exposure patterns, activity patterns, or other mechanisms (Bell 

et al. 2013; Benjamin et al. 2017). While a few studies have examined these 

relationships (Franklin et al. 2006; Oudin et al. 2010; Villeneuve et al. 2006), others 

are needed. Such findings are of particular interest as they may identify populations 

most vulnerable to the effects of PM-related stroke, which may better inform 

effective public health prevention strategies.  

In this study, we performed a time-stratified case-crossover analysis to examine the 

association between daily ambient fine particle concentrations (particles with 

diameter ≤2.5 μm, PM2.5) and total cerebrovascular, ischemic, and hemorrhagic 

stroke hospitalizations among adults in Maryland from 2003 to 2011. We also 

investigated whether season and demographic characteristics (age, gender, and 

race/ethnicity) modified the relationship between PM exposure and ischemic or 

hemorrhagic stroke.  

Methods 

Hospital discharge data were obtained from the Maryland Department of Health and 

Mental Hygiene (DHMH). Hospital discharge data were obtained from all 48 acute 

care hospitals in Maryland. All acute care hospitalization records with a principal 

discharge diagnosis of cerebrovascular disease (International Classification of 

Diseases, Ninth Revision [ICD-9] code 430-438) with an admission date from 

January 1, 2003 to December 31, 2011 were included. Stroke subtypes were assigned 
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to patients based on ICD-9 code classifications (Kokotailo & Hill, 2005). ICD-9 

codes 430 (subarachnoid hemorrhage), 431 (intracerebral hemorrhage), and 432 

(other and unspecified intracranial hemorrhage) were classified as hemorrhagic 

stroke. ICD-9 codes 433 (occlusion and stenosis of precerebral arteries), 434 

(occlusion of cerebral arteries), and 436 (acute but ill-defined cerebrovascular 

disease) were designated as ischemic stroke. ICD-9 codes 435 (TIA), 437 (other and 

ill-defined cerebrovascular disease), and 438 (late effects of cerebrovascular disease) 

were designated as other stroke types. Data elements for each record included county 

of residence, age, gender, race/ethnicity, and admission date. Approval for the usage 

of this information was obtained by institutional review boards at the University of 

Maryland and the Maryland DHMH. 

Data for fine particulate matter (PM2.5) was sourced from the CDC Wide-ranging 

Online Data for Epidemiologic Research (WONDER) online database (CDC 2016a). 

The pollution data were created from a modified regional surfacing algorithm based 

on prior work by Al-Hamdan et al. 2009 (Al-Hamdan et al. 2009). The algorithm uses 

collected monitor data from the U.S. Environmental Protection Agency (EPA) Air 

Quality System and remotely sensed aerosol optical depth from the National 

Aeronautics and Space Administration (NASA) Moderate Resolution Imaging 

Spectroradiometer (MODIS) to generate continuous spatial grids of daily PM2.5 for 

the whole conterminous United States. County-level data were obtained by averaging 

values from all 10-km grids that had a centroid located within the subject county.  
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Daily maximum temperature values were obtained from the National Climatic Data 

Center (NCDC 2017). County-specific maximum temperature values were calculated 

for each calendar day from 2003 to 2011 by averaging all values from weather 

stations within the county. If no station data were available for a particular day, 

values from stations that were located within a 30 km radius of the county boundary 

were used.  

We used a time-stratified case-crossover design to assess the association between 

PM2.5 and stroke hospitalizations. Proposed by Maclure, the case-crossover design has 

increasingly been used to examine the effects of transient exposures on the risk of 

acute events (Maclure 1991). With this design, each case’s exposure just prior to the 

event is compared to exposure at other referent periods. In this way, each case serves 

as his/her own control, and confounding by invariant and slowly changing risk factors 

is controlled. In order to prevent time-trend bias and to ensure unbiased conditional 

logistic regression estimates, we used a time-stratified approach for referent period 

selection (Janes et al. 2005). Month-long strata were used, and exposures during the 

case period (day of or days previous to stroke event) were compared to exposures on 

the same day of the week and in the same calendar month as the case period.  

Using SAS 9.4 (SAS Institute Inc., Cary, NC), conditional logistic regression models 

were used to obtain estimates of odds ratios (ORs) and 95% confidence intervals 

(CIs) associated with an interquartile range (IQR) increase in PM2.5. PM exposures on 

the day of the stroke event (lag 0), as well as exposures from 1 to 3 days previous to 

the stroke event (lag 1 to lag 3) were considered in separate models. Restricted cubic 
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splines were used to control for temperature, a potential confounder in this analysis. 

Effect modification of the relationship between PM and ischemic and hemorrhagic 

stroke was examined by season (warm: stroke occurring May-September, cold: stroke 

in October-April), age categories (18-69, 70 and older), gender and race/ethnicity 

(non-Hispanic black, non-Hispanic white) through stratified conditional logistic 

models. A sensitivity analysis also considered possible effect modification by four 

meteorological seasons defined as winter (December to February), spring (March to 

May), summer (June to August), and fall (September to November). Significance 

testing for effect modification was assessed using chi-square tests of model 

heterogeneity between the stratified effect estimates.  

Results 

In total, there were records of 163,057 cerebrovascular hospitalizations in Maryland 

from 2003 to 2011. Means and distributions of daily county-level PM2.5 

concentrations and maximum daily temperatures on the day of hospitalization are 

presented in Table 1. The mean on the day of hospitalization was 13.6µg/m3, and 

90% of the total values of PM2.5 were between 5.2 and 26.6 µg/m3.  

The numbers of total, ischemic, and hemorrhagic stroke hospitalizations are presented 

by warm/cold season, age category, race/ethnicity, and gender in Table 2. Of the total 

163,057 cerebrovascular hospitalizations, 95,865 (60.3%) were classified by primary 

ICD-9 diagnosis as ischemic strokes, 17,038 (8.2%) were classified as hemorrhagic 

strokes, and 50,154 (31.5%) were of other stroke subtypes. More hospitalizations 

took place in the seven months classified as having colder weather (58.1%) than in 
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the five months of warmer weather (41.9%). Relative percentages of the number of 

hospitalizations by warm or cold season did not differ by ischemic or hemorrhagic 

stroke subtype.  

However, the number of hospitalizations and percentages among each age category 

did differ by stroke subtype. More ischemic stroke hospitalizations occurred among 

those 70 years or older (56.6%) compared to those ages 18 to 69 (43.5%). The 

opposite was true for hemorrhagic stroke hospitalizations; more occurred among 

those ages 18 to 69 (50.4%) than among those 70 years or older (49.7%). Reflective 

of total population distribution of Maryland, the majority of hospitalizations were 

among Non-Hispanic Whites (61.6%) compared to Non-Hispanic Blacks (30.7%), 

Hispanics (1.2%), or other or unknown race ethnicities (6.5%). Additionally, more 

females than males were hospitalized with both ischemic stroke (53.1% female to 

46.9% male) and hemorrhagic stroke (53.9% female to 46.1% male).  

ORs and 95% CIs for exposures to PM2.5 and total stroke and by stroke subtype in 

Maryland are presented in Table 3. Overall, the OR between PM2.5 and 

cerebrovascular hospitalization was 1.003 (95% CI: 0.996 – 1.011) per IQR increase 

of PM2.5 on the day of hospitalization. In models stratified by stroke subtype, no 

association was found between PM2.5 and either ischemic stroke hospitalizations 

(OR=1.007; 95% CI: 0.997 – 1.017) or hemorrhagic stroke hospitalizations 

(OR=1.004; 95% CI: 0.977 – 1.031). Similarly, no association was found among the 

other stroke subtypes and PM2.5 exposure (OR=0.997; 95% CI: 0.984 – 1.011). Null 
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findings were consistent across all lag days for associations between PM2.5 exposure 

and hospitalizations by stroke subtype. 

Associations between PM2.5 exposures and ischemic and hemorrhagic stroke 

hospitalizations stratified by warm and cold season are presented in Table 4. For 

ischemic stroke hospitalizations, the ORs for an IQR increase in PM2.5 were 1.006 

(95% CI: 0.992 – 1.020) during the cold season and 1.008 (95% CI: 0.994 – 1.023) 

during the warm season. For hemorrhagic stroke hospitalizations, the lag 0 ORs were 

1.002 (95% CI: 0.966 – 1.040) during the cold season and 1.015 (95% CI: 0.975 – 

1.058) during the warm season. No significant associations were found for other lag 

periods. Additionally, in tests of effect modification between stratified estimates, no 

significant associations were found between cold and warm season ORs for ischemic 

or hemorrhagic stroke (p>0.05).  

Associations between PM2.5 exposures and ischemic and hemorrhagic stroke 

hospitalizations stratified by age category, gender and race/ethnicity are presented in 

Table 5. No significant associations were found by any category for either ischemic 

or hemorrhagic stroke. For hemorrhagic stroke, lag day 0 ORs were slightly elevated 

for females (OR=1.021; 95% CI: 0.985 – 1.059) and those 70 years or older 

(OR=1.026; 95% CI: 0.987 – 1.067) compared to ORs for males (OR=0.984; 95% CI: 

0.946 – 1.023) and those 18 to 69 (OR=0.984; 95% CI: 0.949 – 1.021). However, 

these differences were not significant in tests of heterogeneity. In the sensitivity 

analysis of associations between PM2.5 and ischemic and hemorrhagic stroke by 
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meteorological season, no differences were found between stratified estimates in tests 

of heterogeneity (Supplemental Table 1).  

 

Discussion 

We found no evidence of an association between PM2.5 exposure and cerebrovascular 

hospitalizations or the subset of ischemic or hemorrhagic stroke hospitalizations in 

Maryland from 2003 to 2011. Results remained null in stratified analyses by stroke 

subtype, season, age category, race/ethnicity, and gender. Results were consistent 

across lag periods, and no significant differences were found between stratified 

estimates in tests of heterogeneity.  

Our findings of no relationship between short-term exposure to PM2.5  and stroke 

hospitalizations are consistent with several previous studies (Alessandrini et al. 2013; 

Jalaludin et al. 2006; Lippmann et al. 2000; Lisabeth et al. 2008; Mechtouff et al. 

2012; O’Donnell et al. 2011; Villeneuve et al. 2006). Similar to our study, the 

majority of these have used administrative databases to classify stroke or 

cerebrovascular hospitalizations and have used either a case-crossover or time-series 

design for analysis. However, a few studies have found positive significant results 

between total cerebrovascular hospitalizations and PM2.5. The largest of these studies 

was Dominici et al., which evaluated the relationship among 11.5 million Medicare 

beneficiaries 65 years or older in 204 U.S. urban counties. They found a 0.8% 

increase (95% CI 0.3 – 1.3) in risk for cerebrovascular hospitalizations per 10ug/m3 

increase in PM2.5 (Dominici et al. 2006). Similarly, in a study of 10,330 
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cerebrovascular hospitalizations in California, Delfino et al. found a risk ratio of 

1.019 (95% CI: 1.004 – 1.035) per 10µg/m3 in 2-day moving average of PM2.5 

(Delfino et al. 2009a).  

Several studies have used registries, validated medical records, or specific ICD-9 

codes to examine the risk for ischemic and hemorrhagic stroke hospitalizations (Chan 

et al. 2006; Lisabeth et al. 2008; O’Donnell et al. 2011; Villeneuve et al. 2006; 

Wellenius GA et al. 2012). Studies examining ischemic and hemorrhagic stroke 

separately are needed as air pollution may affect underlying pathophysiological 

pathways differently (Ljungman and Mittleman 2014). Additionally, studies using 

validated stroke data may better avoid several biases related to the misclassification 

of the timing and coding of the stroke event (Lokken et al. 2009; Wang et al. 2014). 

In one study of 1,705 validated ischemic stroke patients in Boston, Wellenius et al. 

found a positive and significant relationship with short-term exposure to PM2.5 

(OR=1.11; 95% CI: 1.03 – 1.20 per IQR increase [6.4µg/m3]) (Wellenius GA et al. 

2012). However, two other studies using medically-reviewed cases found no 

significant relationship (Lisabeth et al. 2008; O’Donnell et al. 2011). Similar to our 

study, both Chan et al. and Villeneuve et al. separated ischemic strokes by ICD codes. 

Each study found no significant relationship between ischemic stroke and PM2.5  

(Chan et al. 2006; Villeneuve et al. 2006).  

There are only a few previous studies which have examined short-term associations 

between PM2.5 and hemorrhagic stroke, and all classified hemorrhagic stroke 

hospitalizations based on ICD codes (Chan et al. 2006; Villeneuve et al. 2006; 
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Yorifuji et al. 2011). Similar to our study, two studies reported null findings (Chan et 

al. 2006; Villeneuve et al. 2006). In the first, a study of 690 hemorrhagic stroke 

hospitalizations in Taiwan, Chan et al. found no relationship between PM2.5 and 

hemorrhagic stroke hospitalizations (ORlag0=0.870; 95% CI: 0.740 – 1.01 per IQR 

increase [19.73µg/m3]) (Chan et al. 2006). Findings were consistently null across all 

lag periods. In the second, Villeneuve found null results for hemorrhagic stroke 

(ORlag0=0.99; 95% CI: 0.90 – 1.08 per PM2.5 IQR [6.3µg/m3]) in their study of 2,329 

stroke hospitalizations in Edmonton Canada (Villeneuve et al. 2006). However, a 

third study of 4,983 subarachnoid hemorrhage and 11,829 intracerebral hemorrhage 

fatal stroke events found significantly positive effects between subarachnoid 

hemorrhage and short-term exposure to PM2.5  (Yorifuji et al. 2011). On the day before 

hospitalization, a 10µg/m3 increase in PM2.5  increased the risk of subarachnoid 

hemorrhage by  4.1% (95% CI: 1.1 – 7.2%) (Yorifuji et al. 2011).  

Though we did not find differences in effects by season, the relationship between 

short-term PM exposure and stroke may differ by time of the year, depending on 

location (Jalaludin et al. 2006; Talbott et al. 2014; Tsai et al. 2003). In a study of over 

one million cerebrovascular hospitalizations in seven U.S. states, Talbott et al. found 

no consistent evidence of association between PM2.5 and stroke hospitalizations when 

examined across the entire year (Talbott et al. 2014). However, there was evidence of 

seasonal differences, and those differences varied by location. For example, 

associations were significantly positive in Massachusetts during the cooler months 

(ORlag0=1.045; 95% CI: 1.025 – 1.066) compared to warmer months (ORlag0=0.885; 

95% CI: 0.863 – 0.906). However, in Florida, ORs were higher and significantly 
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positive in the warmer months (ORlag0=1.036; 95% CI: 1.021 – 1.052) and negative in 

the cooler months (ORlag0=0.935; 95% CI: 0.920 – 0.950) (Talbott et al. 2014). 

Additional studies suggest that region may influence whether season modifies the 

effect between PM2.5 and stroke. While a study in Sydney, Australia found reduced 

associations in warmer periods (Jalaludin et al. 2006), a study in Taiwan found 

elevated associations for ischemic stroke hospitalizations in days above 20 °C (Tsai et 

al. 2003). Not all studies have shown seasonal differences in the effect of PM2.5. 

Similar to our study, Villeneuve et al. found no differences by season for associations 

with PM2.5  by ischemic or hemorrhagic stroke (Villeneuve et al. 2006). Whether 

differences by season in certain locations are due to the relationship with temperature, 

seasonal differences in PM composition, activity patterns that affect exposure, or 

another mechanism is not clear (Jalaludin et al. 2006; Talbott et al. 2014).  

We found no differences in effect estimates for ischemic or hemorrhagic stroke by 

age category, gender, or race/ethnicity in this population. Studies examining effect 

modification are rather limited, but there are a few to which we can compare our 

results. Neither Delfino et al. nor Wellenius et al. found differences by age category 

in the association between stroke and PM2.5 exposure (Delfino et al. 2009a; Wellenius 

GA et al. 2012). However, Franklin (2006) found a significantly higher risk of stroke 

mortality among those 75 or older compared to those younger than 75 years old 

(p<0.05) (Franklin et al. 2006). Our findings of no differences by gender are similar 

to those of Villeneuve and Oudin, but few others have examined this relationship 

(Oudin et al. 2010; Villeneuve et al. 2006). Likewise, we know of no other studies 

that have directly tested for effect modification by race/ethnicity in the relationship 
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between short-term exposure to PM2.5 and ischemic and hemorrhagic stroke 

hospitalizations, specifically. However, in a study of PM10 and cerebrovascular 

mortality in 20 U.S. cities, Zeka et al. examined effect modification by race. They 

found no significant differences in effect estimates between blacks and whites (Zeka 

et al. 2006b). While there is limited evidence that the risk of stroke may be modified 

by these demographic characteristics, studies examining vulnerable population 

subgroups are important to better inform public health policy and develop effective 

prevention strategies.  

This study has several notable strengths. The large number of cases in this study 

allowed for sufficient examination of risk within population subgroups, even for 

hemorrhagic stroke events, where previous analyses have often been under-powered. 

Another advantage of this study is the control of all time-invariant confounders 

through the case-crossover study design. Not only are descriptive characteristics like 

gender and age matched and controlled for, other factors such as obesity and 

hypertension are also controlled due to the relatively short windows between case and 

control periods. Additionally, we have selected a time-stratified design that controls 

for potential confounding by day of the week and seasonality. 

There are several limitations to this study. Similar to most other studies of ambient air 

pollution and stroke, we were not able to assess individual-level exposures to PM. An 

individual’s total exposure to PM represents the sum of their exposure to particles 

both of outdoor and indoor origin. Though studies have shown ambient 

concentrations of PM correlate relatively well with personal exposures (Avery et al. 
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2010), some exposure misclassification is unavoidable. Additionally, the use of 

county-level pollution estimates may bias estimates to the null in comparison to 

estimates at individual locations (Zeger et al. 2000). However, the use of modeled 

data from EPA for daily exposure estimates may represent an improvement over other 

studies reliant on a nearest monitor approach. As monitor locations are most often 

clustered around major cities, the use of modeled data allows for the inclusion of 

additional participants in rural areas. 

There are also several limitations regarding the use of hospitalizations for this study. 

Several studies have identified that coding of stroke cases and subtypes by ICD-9 

codes is not always reliable, as they depend both on the expertise of the clerical staff 

and the accuracy of the medical records (Kokotailo and Hill 2005; Reker et al. 2002). 

We were not able to separate first stroke hospitalizations from recurrent 

hospitalizations in this study. This would be problematic if a patient had multiple 

stroke events in a short time period, as reference or control periods at times before 

and after the event would no longer be appropriate. Another limitation of 

hospitalization data is the potential misclassification in exposure that occurs due to 

the time differential between stroke onset and hospitalization. This form of 

misclassification has been shown to bias effect estimates towards the null (Lokken et 

al. 2009).  

Conclusion 

We found no evidence of an association between PM2.5 exposure and cerebrovascular 

hospitalizations or the subset of ischemic or hemorrhagic stroke hospitalizations in 
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Maryland during the time period (2003 to 2011). Future studies should continue to 

examine risk by stroke subtype and examine potential modifiers of effect. Examining 

potential effect modifiers was of major interest, as identifying those most vulnerable 

to the effects of ambient particulate exposures may inform future public health 

prevention policies. As the US EPA re-evaluates regulations on particulate matter 

every five years, findings from this and similar studies may influence and contribute 

to future risk and policy assessment documents. 
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Tables 

Table 1. Means and distributions of PM2.5 and maximum daily temperature values on the day of cerebrovascular hospitalization in Maryland 2003-2011.  

 

  

 
Mean 

Quantile 
1 5 10 25 50 75 90 95 99 

PM2.5  (µg/m3) 13.6 3.5 5.2 6.2 8.8 12.3 16.9 22.7 26.6 34.9 
Max Daily Temp (°C) 18.4 -3.3 1.1 3.9 10.0 19.4 27.2 30.9 32.4 35.0 
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Table 2. Distributions of cerebrovascular hospitalizations by season, demographic subgroups, and stroke subtype  

 Total Cerebrovascular 
Hospitalizations 

(n=163,057) 

Ischemic Stroke 
(n=95,865) 

Hemorrhagic Stroke 
(n=17,038) 

 N (%) N (%) N (%) 

Season    
  Cold (Oct-Apr) 94726 (58.1%) 55676 (58.1%) 10263 (60.2%) 
  Warm (May-Sep) 68331 (41.9%) 40189 (41.9%) 6775 (39.8%) 

Age Category    
    18-69 75296 (46.2 %) 41658 (43.5 %) 8578 (50.4 %) 

    70+ 87761 (53.8 %) 54207 (56.6 %) 8460 (49.7 %) 
Race/Ethnicity    
 NH Black 50054 (30.7%) 28087 (29.3%) 5608 (32.9%) 
 NH White 100478 (61.6%) 60366 (63.0%) 9612 (56.4%) 
 Hispanic 1979   (1.2%) 1061   (1.1%) 308   (1.8%) 
    Other or Unknown 10546  (6.5%) 6351   (6.6%) 1510   (8.9%) 
Gender    

Male 73019 (44.8%) 44976 (46.9%) 8306 (48.8%) 
Female 90038 (55.2%) 50889 (53.1%) 8732 (51.3%) 

Hospitalizations classified by stroke subtype according to ICD-9 code: total cerebrovascular (430-438), ischemic stroke (433, 434, 436), hemorrhagic stroke 
(430-432). 
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Table 3:  Odds ratios and 95% confidence intervals (CIs) for exposures to PM2.5 and total stroke and by stroke subtype in Maryland, 2003-2011. 

 

Hospitalization Type Lag 0 Lag 1 Lag 2 Lag 3 

 
All Cerebrovascular 1.003 (0.996, 1.011) 0.998 (0.991, 1.006) 0.995 (0.987, 1.003) 0.996 (0.989, 1.004) 

 
     

 Ischemic Stroke 1.007 (0.997, 1.017) 1.002 (0.992, 1.012) 0.992 (0.982, 1.002) 0.992 (0.983, 1.002) 

  Hemorrhagic Stroke 1.004 (0.977, 1.031) 0.981 (0.955, 1.008) 0.985 (0.959, 1.012) 0.978 (0.952, 1.005) 

 
‘Other’ Stroke Subtype 0.997 (0.984, 1.011) 0.996 (0.983, 1.010) 1.005 (0.991, 1.019) 1.014 (1.000, 1.028) 

      
ORs calculated from conditional logistic regression models and presented by change in PM2.5 IQR (8.14µg/m3). All models control for maximum daily 
temperature. 
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Table 4:  Odds ratios and 95% confidence intervals (CIs) for exposures to PM2.5 and ischemic or hemorrhagic stroke stratified by season in Maryland, 2003-2011. 

Characteristic Lag 0 Lag 1 Lag 2 Lag 3 

Ischemic Stroke   
  

 
Cold (Oct-Apr) 1.006 (0.992, 1.020) 1.005 (0.991, 1.020) 0.990 (0.976, 1.004) 0.991 (0.977, 1.005) 

 
Warm (May-Sep) 1.008 (0.994, 1.023) 1.001 (0.986, 1.015) 0.997 (0.983, 1.012) 0.998 (0.984, 1.013) 

Hemorrhagic Stroke     

 Cold (Oct-Apr) 1.002 (0.966, 1.040) 1.000 (0.963, 1.038) 0.994 (0.957, 1.031) 0.987 (0.951, 1.025) 

 Warm (May-Sep) 1.015 (0.975, 1.058) 0.963 (0.924, 1.004) 0.985 (0.945, 1.026) 0.966 (0.927, 1.007) 
ORs calculated from conditional logistic regression models and presented by change in PM2.5 IQR (8.14µg/m3). All models control for maximum daily 
temperature. 
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Table 5:  Odds ratios and 95% confidence intervals (CIs) for exposures to PM2.5 and ischemic or hemorrhagic stroke stratified by demographic subgroup in 
Maryland, 2003-2011. 

Characteristic  Lag 0 Lag 1 Lag 2 Lag 3 

Ischemic Stroke  
  

  

 
Age 18-69  1.009 (0.994, 1.024) 0.999 (0.984, 1.014) 0.984 (0.970, 0.999) 0.996 (0.981, 1.011) 

 
Age 70+  1.005 (0.992, 1.018) 1.005 (0.992, 1.018) 0.998 (0.985, 1.011) 0.990 (0.977, 1.003) 

 Male  1.013 (0.999, 1.028) 1.001 (0.987, 1.016) 0.994 (0.979, 1.008) 0.992 (0.978, 1.006) 

  Female  1.001 (0.988, 1.014) 1.003 (0.990, 1.017) 0.991 (0.978, 1.005) 0.993 (0.980, 1.006) 

 
NH-Black  1.012 (0.994, 1.030) 1.011 (0.993, 1.029) 0.991 (0.973, 1.010) 0.992 (0.974, 1.010) 

 
NH-White  1.005 (0.993, 1.018) 0.996 (0.983, 1.008) 0.992 (0.979, 1.004) 0.992 (0.980, 1.004) 

Hemorrhagic Stroke      

 Age 18-69  0.984 (0.949, 1.021) 0.964 (0.929, 1.001) 0.991 (0.955, 1.028) 0.979 (0.944, 1.016) 

 Age 70+  1.026 (0.987, 1.067) 1.001 (0.962, 1.042) 0.979 (0.941, 1.019) 0.977 (0.939, 1.016) 

 Male  0.984 (0.946, 1.023) 0.962 (0.924, 1.002) 0.979 (0.941, 1.019) 0.997 (0.958, 1.037) 

  Female  1.021 (0.985, 1.059) 0.997 (0.961, 1.035) 0.991 (0.955, 1.028) 0.962 (0.927, 0.998) 

 NH-Black  1.007 (0.962, 1.054) 0.999 (0.954, 1.046) 1.002 (0.957, 1.049) 1.005 (0.961, 1.052) 

 NH-White  0.999 (0.964, 1.035) 0.980 (0.946, 1.017) 0.990 (0.955, 1.027) 0.973 (0.938, 1.009) 
ORs calculated from conditional logistic regression models and presented by change in PM2.5 IQR (8.14µg/m3). All models control for maximum daily 
temperature. 
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Supplemental Table 1:  Odds ratios and 95% confidence intervals (CIs) for exposures to PM2.5 and ischemic or hemorrhagic stroke stratified by meteorological 
season in Maryland, 2003-2011. 

 
Characteristic  Lag 0 Lag 1 Lag 2 Lag 3 

Ischemic Stroke  
  

  

 
Winter  1.004 (0.984, 1.025) 1.014 (0.994, 1.035) 1.000 (0.980, 1.021) 1.008 (0.987, 1.029) 

 
Spring  1.009 (0.986, 1.032) 1.005 (0.982, 1.029) 0.985 (0.962, 1.008) 0.998 (0.975, 1.022) 

 Summer  1.002 (0.985, 1.019) 0.993 (0.976, 1.010) 0.994 (0.977, 1.012) 0.993 (0.976, 1.011) 

  Fall  1.017 (0.996, 1.039) 1.002 (0.980, 1.024) 0.985 (0.964, 1.007) 0.975 (0.955, 0.996) 

Hemorrhagic Stroke      

 Winter  0.977 (0.925, 1.031) 0.960 (0.909, 1.015) 0.971 (0.919, 1.026) 0.985 (0.932, 1.041) 

 Spring  1.041 (0.978, 1.107) 0.996 (0.936, 1.060) 1.013 (0.952, 1.078) 1.032 (0.970, 1.097) 

 Summer  0.991 (0.944, 1.040) 0.954 (0.907, 1.003) 0.975 (0.928, 1.025) 0.941 (0.896, 0.989) 

 Fall  1.021 (0.963, 1.082) 1.026 (0.967, 1.088) 1.022 (0.963, 1.084) 0.980 (0.924, 1.039) 
ORs calculated from conditional logistic regression models and presented by change in PM2.5 IQR (8.14µg/m3). All models control for maximum daily 
temperature. 
Seasons defined by month of the year: Winter (Dec-Feb), Spring (Mar-May), Summer (Jun-Aug), Fall (Sep-Nov) 
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Chapter 5:  Associations of Particulate Matter Exposures and 
Inflammatory Biomarkers in the Nurses’ Health Study 
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Abstract 

Background:  Though a wide body of evidence suggests a link between 

cardiovascular outcomes and exposure to particulate matter (PM) air pollution, 

biological mechanisms for this association have not yet been fully explained. A clear 

understanding of these mechanisms is central to the development of better clinical 

treatment and prevention strategies. 

 

Methods:  Using controls from a series of nested case-control studies in the Nurses’ 

Health Study (NHS) cohort, we examined associations between chronic exposure to 

PM2.5 , PM10, and PM2.5-10 assessed through spatiotemporal exposure models and four 

systemic and cardiovascular inflammatory markers: C-reactive protein (CRP), 

fibrinogen, intercellular adhesion molecule type-1 (ICAM-1), and interleukin-6 (IL-

6).  We also examined whether residential proximity to major roads was associated 

with inflammatory marker concentrations, and whether smoking acted as an effect 

modifier in these relationships.  

Results: After adjusting for potential confounding variables, concentrations were 

elevated for both CRP (13.1%; 95% CI: 2.6 - 24.6) and IL-6 (8.4%; 95% CI: 1.7 – 

15.6) among participants who lived close to a major roadway, but no significant 

results were found among models of 1- , 3-, or 12-month PM exposures. Smoking 

status did not act as an effect modifier in these associations.  

 

Discussion: Though the fractions of particulate air pollution exposures we examined 

were not associated with the markers of inflammation chosen for this analysis, this 
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study provides additional evidence that proximity to traffic may influence 

cardiovascular-related inflammation. Future studies should continue to examine 

associations between systemic inflammation and exposures to particulate matter and 

other traffic-related air pollutants. 

 

Target Journals: 1) Environmental Health Perspectives 2) Environmental Research  

Keywords: Particulate matter, inflammatory biomarkers, CRP, IL-6, ICAM-1, 

fibrinogen, air pollution 
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Introduction 

Though a wide body of evidence suggests a link between cardiovascular outcomes 

and exposure to particulate matter (PM) air pollution (Brook et al. 2010), biological 

mechanisms for this association have not yet been fully explained. A clear 

understanding of these mechanisms is central to the development of better clinical 

treatment and prevention strategies. Many mechanisms and pathways have been 

proposed including: oxidative stress, changes in autonomic function, and pulmonary 

inflammation leading to thrombosis and atherosclerosis (Utell et al. 2002). Though 

exact mechanisms remain unclear, many hypothesize an important role of 

inflammatory processes. Following inhalation, toxic substances present in PM (e.g., 

black carbon, metals) can cross epithelium of the airway and induce the production of 

proinflammatory cytokines and reactive oxygen species or alter the blood coagulation 

cascade (O’Toole et al. 2009; Uzoigwe et al. 2013). Such changes may lead to 

hypertensive responses, changes in autonomic cardiac control, atherosclerosis, as well 

as clot formation and movement; all of which may influence future ischemic and 

cardiovascular risk (Libby 2012; Loperena and Harrison 2017; Virdis et al. 2014). 

Establishing epidemiologic associations between air pollutants and blood-borne 

markers of inflammation can provide needed evidence to these potential mechanistic 

pathways and should be considered a research priority. Though there have been 

experimental and panel studies suggesting that short-term particulate matter 

exposures can induce inflammatory effects, fewer studies have been conducted on the 

role of sustained long-term exposures (Chen et al. 2015; Delfino et al. 2009b; Devlin 

et al. 2014; Dubowsky et al. 2006; Rückerl et al. 2006). Though a few recent studies 
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have been able to examine such associations (Hajat et al. 2015; Hampel et al. 2015; 

Hoffmann et al. 2009; Lanki et al. 2015), more studies with well-characterized 

information on potential confounding variables are needed.  

 

The objective of this study was to determine the association between chronic 

exposure to particulate matter and systemic and cardiovascular inflammatory 

markers, including C-reactive protein (CRP), fibrinogen, intercellular adhesion 

molecule type-1 (ICAM-1), and interleukin-6 (IL-6) among controls from a series of 

nested case-control studies in the Nurses’ Health Study (NHS) cohort. We used 

previously validated spatiotemporal exposure models of residential ambient PM to 

examine the effects of various exposure averaging times of PM2.5 (PM with diameter 

≤2.5 µm), PM10 (PM ≤10µm in diameter) and PM2.5-10 (PM between 2.5 and 10 μm in 

diameter). We also examined whether residential proximity to major roads was 

associated with inflammatory marker concentrations, and whether smoking acted as 

an effect modifier in these relationships.  

 

Methods 

Study Population 

The Nurses’ Health Study cohort was initiated in 1976 and included female registered 

nurses 30 to 55 years old, who were residing in eleven states at the time of 

recruitment (NHS 2016). The ongoing prospective cohort consists of 121,700 

participants that have been followed with biennial questionnaires for updates on 
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diseases, health status, and health-related conditions. The response rates are > 90% 

for each follow-up cycle.  

 

Between 1989 and 1990, 32,826 participants (ages 43 to 70) who were free of 

diagnosed diabetes, coronary heart disease, stroke, or cancer provided blood samples 

using a mailed phlebotomy kit. Though blood samples were collected from many 

participants, serum assays were only conducted as part of individual nested case-

control studies. Serum assays from healthy controls of four nested case-control 

studies (diabetes [N=760], myocardial infarction [N=486], breast cancer [N=1238], 

and macular degeneration [N=462]) were used for this study. Each of these studies 

tested for one or more of the four biomarkers of interest. Duplicate records (n=33) for 

controls that were in more than one nested case-control study were removed. 

Preference was given to the case-control study in which more assays were available. 

The study was approved by the Internal Review Board of Brigham and Women’s 

Hospital. 

Blood collection and biomarker measurement 

 

Blood samples were transported from participants on ice overnight to the laboratory 

along with a completed questionnaire (included time of blood draw). The samples 

were then centrifuged, divided into aliquots and stored in the liquid nitrogen freezers. 

Ninety-seven percent of samples arrived within 26 h of phlebotomy (Hu et al. 2004). 

The concentrations of CRP and fibrinogen were measured with an 

immunoturbidimetric assay using reagents and calibrators from Denka Seiken 
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(Niigata, Japan). IL-6 and ICAM-1 were measured by ELISA assay (R & D Systems, 

Minneapolis, MN) that employs the quantitative sandwich enzyme immune assay 

technique. Studies on the sample collection in this population show overall within 

subject reliability of measures over time and limited effects of transport conditions 

(Hankinson et al. 1989; Pai et al. 2002). 

Exposure Assessment 

As part of the questionnaire mailing process, residential address information for NHS 

participants is updated every 2 years. Addresses were geocoded to obtain the 

corresponding latitude and longitude. Participants with missing an address or residing 

outside of the conterminous US were excluded from analysis (n=8). For women with 

a street segment–level geocode, distance to the nearest road (meters) was determined 

using geographic information system (GIS) software (ArcGIS, version 9.3; ESRI, 

Redlands, CA) and the ESRI Streetmap Pro2007 data set. Nearest distance was 

calculated as the shortest distance between the residential geocode and the following 

road classes as defined by the U.S. Census Bureau:  A1 (primary roads, typically 

interstate highways, with limited access, division between the opposing directions of 

traffic, and defined exits), A2 (primary major, non-interstate highways and major 

roads without access restrictions), A3 (smaller, secondary roads, usually with more 

than two lanes) (U.S. Census Bureau 2001). Nearest distance was divided into three 

categories (0–49m, 50–199m, and ≥ 200 m) for analysis. 

 

 Ambient GIS-based spatiotemporal exposure model predictions of PM2.5, 

PM10, and PM2.5-10 were assigned to each geocoded location for all months starting in 
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January 1988 for NHS participants living in the continental United States. Details of 

the models are covered in Yanosky et al, 2014 (Yanosky et al. 2014). Briefly, 

monthly mean PM2.5 and PM10 values were calculated from several monitoring 

networks – primarily the U.S. EPA’s Air Quality System (AQS) network, but also the  

Interagency Monitoring of Protected Visual Environments (IMPROVE), Southern 

Aerosol Research and Characterization Study (SEARCH), and others. Separate PM 

prediction surfaces for each month and each PM size fraction were created by using 

generalized additive mixed models with terms for time and monthly penalized spline 

smooth terms for a number of geospatial and meteorological covariates. Considered 

covariates included: distance to nearest road for U.S. Census road classes A1-A4, 

smoothed county-level population density, urban land use within 1 km, elevation, 

point-source emissions density within 7.5 km, smoothed monthly average wind 

speed, temperature, total precipitation, air stagnation and tract-level population 

density (for PM10). By subtraction of the monthly PM10 and PM2.5 estimates, 

information was also obtained on PM2.5–10. Cross-validation results demonstrated that 

the models had high predictive accuracy (cross-validation R2 values of 0.59 and 0.76 

for PM10 and pre-1999 PM2.5, respectively).  

 

Covariates 

Biannual follow-up questionnaires for the NHS cohort provide information on many 

risk factors and health-related behaviors. Potential confounding variables chosen for 

this analysis included variables matched by the individual nested case-control studies 

as well as other variables chosen a priori based on previous literature (Hajat et al. 
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2015; Ostro et al. 2014). Potential confounders matched by the nested case-control 

studies included:  season (blood draw in Dec-Feb as winter, Mar-May as spring, Jun-

Aug as summer, Sep-Nov as Fall) age (months), smoking status (never, past, current, 

missing), and use of postmenopausal hormones (nonuser, current user, 

premenopausal, unknown). Additional potential confounders included: BMI (kg/m2) , 

pack-years smoked, physical activity (missing, <3, 3 to <18, ≥18 metabolic 

equivalent hours/week), hypertensive status (yes or no self-response to physician 

diagnosis), residential census tract median household income (based on 1990 census; 

(U.S. Census Bureau 1990)), alcohol consumption (missing, 0g/day, ≥0.1 g/day), MI 

family history (yes or no), and diet (measured by Alternate Healthy Eating Index 

(Chiuve et al. 2012)).  

 

Statistical Analysis 

To reduce excessive skewness of the distributions and to meet assumptions of the 

regression analyses, biomarker data were log-transformed and excessive outliers were 

excluded (CRP>10mg/l, fibrinogen>516 mg/dl, IL-6>7pg/ml, ICAM-1>424ng/ml). 

Geometric means were used to present the distributions of biomarkers by PM 

quartile. Multivariable linear regression models were used to test the hypothesis that 

PM exposures are associated with inflammatory biomarkers. Potential confounding 

variables were incorporated into the models in two stages. First crude models (basic) 

adjusted for variables which were matched in the individual nested case-control 

studies and included: age, season, menopausal status and use of post-menopausal 

hormones, smoking status, and fixed variables for the nested case-control study from 
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which the biomarker assay was obtained. Next, other established confounders and 

potential confounders were added to fully adjusted models; these include: BMI, 

median household income, pack-yrs smoked, alcohol use, physical activity, 

hypertensive status, MI family history, and diet. To examine the sensitivity of varying 

exposure averaging times, model sets were repeated for 1-, 3-, and 12-month 

exposures. Results from linear regression analysis of the PM fraction models are 

presented per interquartile range (IQR) in PM and as percent difference for each 

biomarker along with the corresponding 95% confidence interval. The presentation of 

linear regression effect estimates as percent difference was done to ease interpretation 

and provide consistency across multiple biomarkers. Since the biomarker values have 

been log-transformed, percent difference was calculated by exponentiating both sides 

of the linear regression equation, so that the exponentiated regression coefficient 

represents the relative change of the biomarker on the unlogged scale per IQR 

increase in PM. Basic and fully adjusted distance to road models included two 

exposure terms corresponding to nearest distance to an A1-A3 roadway (1-49m, and 

50-199m). Thus, results from distance to road models are presented as percent 

difference in the biomarker concentration in comparison to concentrations among 

those living greater than 200m from an A1-A3 road. In order to test for effect 

modification by smoking, interaction terms were included in separate regression 

models.  
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Results 

There were a total of 2946 participants with one or more assayed biomarker and 

complete exposure information used for this study. Descriptive characteristics of the 

total study population are presented in Table 1. During the period of blood collection, 

the average age of participants was 59 years, and ranged from 43 to 70 years of age. 

Most women were never (45.5%) or former smokers (40.0%). Also, most participants 

reported at least occasional alcohol use (78.6%, 0.1+ g/d) and modest levels of 

physical activity (78.6%, >3 MET hr/week). Roughly a third of study participants 

reported having a family history of MI (37.0%) or having had received a physician 

diagnosis of high blood pressure (30.2%).  

 

Arithmetic means and standard deviations of the exposure variables and biomarker 

measurements are presented in Table 2. The 12-month means from the spatiotemporal 

models for PM exposures were 16.4, 27.9, and 11.5µg/m3 for PM2.5, PM10, and PM2.5-

10, respectively. Means were relatively consistent across exposure averaging times, 

but standard deviations and interquartile ranges were larger for the 1- and 3-month 

averaging times. Approximately 45% of participants resided within 200m away from 

an A1 to A3 roadway, with 17.2% residing within 50 meters. The number of assays 

for each of the four biomarkers of interest varied as each nested case-control study 

assayed different biomarkers. In total, there were 2923 measurements for CRP, 1695 

for ICAM-1, 1643 for IL-6, and 944 for fibrinogen. 
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Geometric means of each blood biomarker are presented by 12-month PM quartile 

and by distance to road category in Table 3. Means for fibrinogen and IL-6 did not 

vary consistently across PM quartiles. Mean concentrations of ICAM-1 decreased 

monotonically across PM2.5 quartiles, though a finding of trend was not significant 

(p=0.058). Means for CRP were higher among the highest quartile of both PM10 and 

PM2.5 -10, but in tests of trend only the elevated findings within higher PM2.5 -10 

quartiles reached statistical significance (p-trend=0.021). CRP concentrations were 

also elevated among those living closer to an A1-A3 road (1.79mg/L within 50 meters 

compared to 1.56mg/L further than 200m; p-trend=0.022). Mean concentrations of 

fibrinogen and IL-6 were also lowest among those living more than 200m from a 

roadway, though trend tests were not statistically significant.  

 

Multivariable linear regression results showing percent differences in biomarker 

concentration by interquartile increase in PM exposure are presented in Table 4. After 

adjusting for confounders, no statistically significant results were found by any of the 

three PM fractions or any of the three exposure averaging times. Percent differences 

per IQR in PM were generally lower for PM2.5 and higher for PM2.5-10 for each of the 

assayed biomarkers. For the fully adjusted12-month models, results for CRP ranged 

from a -2.3% change (95% CI: -7.0 to 2.6%) per 7.85ug/m3 increase in PM2.5 to a 

2.1% change (95% CI: -1.6 to 5.8%) per 5.51µg/m3 increase in PM2.5-10. Also in fully 

adjusted models, results for IL-6 and ICAM-1 were consistently negative for all PM 

fractions and again were lower for PM2.5 models in comparison to PM2.5 -10 models. 

For example, IL-6 models ranged from a -2.7% change (95% CI: -5.7 to 0.4%) per 
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7.26ug/m3 increase in 1-month PM2.5 to a -0.2% change (95% CI: -3.0 to 2.7%) per 

5.51ug/m3 increase in 12-month PM2.5 -10. Likewise, for ICAM-1 estimates ranged 

from a -0.6% change (95% CI: -1.8 to 0.6%) per 7.26ug/m3 increase in 1-month 

PM2.5 to a 0.0% change (95% CI: -1.1 to 1.1%) per 5.89ug/m3 increase in 3-month 

PM2.5-10. Estimates were positive, though not significant, for fibrinogen and increasing 

PM levels [range: 0.2% change (95% CI: -1.6 to 2.1%) per 7.85 12-month PM2.5 to 

0.9% change (95% CI: -0.6 to 2.3%) per 5.51 12-month PM2.5 -10].  

 

In contrast to the PM models, we found significant associations for CRP and IL-6 in 

distance to road models (Table 5). Those living within 50m of a major roadway had 

13.1% (95% CI: 2.6 to 24.6%) higher CRP concentrations compared to those living 

further than 200 meters from a roadway in fully adjusted models. In IL-6 distance to 

road models, higher concentrations were found among those living 50-199 meters 

from a major roadway compared to those living further than 200m (8.4% higher; 95% 

CI: 1.7 to 15.6%). Forest plots of both PM and distance to road models are presented 

by biomarker in Figures 1-4. In models including interaction terms by smoking status, 

no significant effect modification was found (p>0.05, data not shown).  

 

 

Discussion 

In this study, we found significant increases in CRP and IL-6 concentrations among 

participants who lived close to a major roadway, but not among models using 

estimates of ambient PM exposures from spatiotemporal statistical models. Findings 
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for fibrinogen and ICAM-1 were null for all exposure estimates. Though confidence 

intervals overlapped, estimates were higher among PM2.5-10 models compared to 

PM2.5 models. We noticed no differences by the tested exposure averaging times (1, 3, 

or 12 months) and found no evidence of effect modification by smoking status.  

 

This study is one of few to examine the relationship between medium- and long-term 

exposures to PM and inflammatory markers in a cohort with well-characterized 

information on potential confounders. Hajat et al. (2015) examined 6,814 participants 

aged 45 to 84 in the Multi-Ethnic Study of Atherosclerosis (MESA) between 2002 

and 2012 (Hajat et al. 2015). The authors examined several day-long exposures and a 

cumulative one year exposure to PM2.5, nitrogen oxides (NOx), nitrogen dioxide (NO2) 

and black carbon. In year-long PM2.5 models, the authors found no differences by 

ICAM-1, fibrinogen or CRP, similar to our study, but found a significant increase in 

models of IL-6. After controlling for confounders, a 5µg/m3 increase in yearly PM2.5 

exposures was associated with 6% higher IL-6 concentrations (95% CI = 2%, 9%). 

They also noticed this change was higher among smokers compared to nonsmokers, a 

difference not evident in our study. In addition to models using PM2.5 estimates, the 

authors also examined biomarker differences by levels of NOx, NO2, and black 

carbon, all markers of traffic-related pollution (TRAP). Unlike our proximity to road 

findings for CRP and IL-6, they found no differences by the TRAP pollutants for 

CRP, IL-6, fibrinogen or ICAM-1(Hajat et al. 2015).  
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In another study of 4814 participants 45-75 years of age, from three large German 

cities, Hoffman et al examined changes in CRP and fibrinogen in response to annual 

PM2.5 exposures and by distance to road categories (Hoffmann et al. 2009). Per IQR 

increase in PM2.5 (3.91 µg/m3), significant increases were seen for men but not 

women with both high-sensitivity CRP (hs-CRP) (men: 23.9% increase; 95% CI: 4.1 

to 47.4; women: 1.0% decrease; 95% CI: -16.5 to 17.3) and fibrinogen (men: 3.9% 

increase; 95% CI: 0.3 to 7.7; Women: 1.5% increase; 95% CI: -1.9 to 5.1). Our results 

in the NHS cohort, a cohort of women with a similar age distribution, were similarly 

null for PM models. In contrast to our study, Hoffman et al. did not find differences in 

hs-CRP concentrations among men or women participants living within 50 or within 

200m of a roadway.  

 

In another European study and one of the largest studies to date, Lanki et al. used 

land-use regression models and proximity/intensity of traffic exposures to examine 

associations with 21,558 hs-CRP measurements and 17,428 fibrinogen measurements 

as part of the multi-cohort European Study of Cohorts for Air Pollution Effects 

(ESCAPE) project. As in our study, the authors examined associations by both fine 

and coarse PM fractions. In adjusted models, they found no significant associations 

with CRP or fibrinogen with PM2.5, PM10 or PM2.5-10. However, cohort participants 

living on a busy (> 10,000 vehicles/day) road had elevated CRP values (10.2%; 95% 

CI: 2.4, 18.8%, compared with persons living on a residential street with < 1,000 

vehicles/day). Though that study used a measure of traffic intensity at the nearest 

roadway, the magnitude of their finding is similar to ours (13.1% increase in CRP) 
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among those living near a major roadway. Another study of the ESCAPE multi-

cohort examined associations among the same participants between CRP 

concentrations and land-use regression models by PM constituents. They found an 

increased and significant association between the PM2.5 copper fraction and CRP 

(6.3%; 95% CI: 0.7 to 12.3%). Results from this study are important as they highlight 

that certain PM constituents, in this case, a primarily traffic-derived constituent, may 

be the primary drivers of PM-related inflammatory changes. 

 

C-reactive protein is a protein produced by the liver and is considered one of the best 

measures of the acute phase response to an infectious disease, tissue damage, or 

inflammation (Gabay and Kushner 1999; Pope 2001). CRP has been shown in 

multiple epidemiologic studies to predict incident myocardial infarction, stroke, and 

sudden cardiac death (Ridker 2003), and it may also have a direct role in the 

development of atherosclerosis (Libby 2002). Though CRP has been shown to 

increase after short-term exposures in both epidemiological and experimental studies 

(Chen et al. 2015; Chuang et al. 2007; Delfino et al. 2009b; Devlin et al. 2014; 

Dubowsky et al. 2006; Strak et al. 2013). the few studies examining  medium and 

long-term ambient PM exposures have been inconsistent (Hajat et al. 2015; Hoffmann 

et al. 2009; Ostro et al. 2014; Zeka et al. 2006a). Similarly, previous studies of 

associations between proximity to traffic and CRP have also been mixed. Our results 

of increased concentrations among those living close to a major roadway match 

closely with Lanke (2015) and Rioux (2010) but not with Hoffman et al. (Hoffmann 

et al. 2009; Lanki et al. 2015; Rioux et al. 2010).  



 

114 
 

 

In addition to the study by Hajat et al, two other studies have shown associations 

between IL-6 and NO2, (a TRAP pollutant)(Chuang et al. 2011; Panasevich et al. 

2009). Similar to our study,  Jiang et al. also found elevated concentrations among 

participants living within 50 meters of a major road (Jiang et al. 2016). IL-6, a pro-

inflammatory cytokine secreted by T cells and macrophages at the site of injury, has 

been shown in toxicological studies to be released in macrophages exposed to PM10 

(Becker et al. 2005). Persistent inflammation in the lung may then invoke a general 

systemic inflammatory response as pro-inflammatory cytokines diffuse into systemic 

circulation (Tamagawa et al. 2008).  

 

Both fibrinogen and ICAM-1 are glycoproteins important in their roles on the blood 

coagulation cascade and binding and migration of immune-associated molecules, 

respectively. Previous literature on a whole has also been consistent in their 

associations with cardiovascular risk factors (Blann et al. 1997; Chae et al. 2001; 

Rohde et al. 1999) and associations with cardiovascular diseases (Danesh et al. 1998; 

Davalos and Akassoglou 2012; Haim et al. 2002; Lind et al. 2001; Ridker et al. 

1998). Though we found no evidence of   in this study, others have found associations 

with elevated PM levels and fibrinogen (Chen et al. 2015; Chuang et al. 2007; 

Hildebrandt et al. 2009; Schwartz 2001) or ICAM-1(O’Neill et al. 2007).  

 

Our findings of higher effect estimates among coarse PM models compared to fine 

PM models deserves further investigation. Though confidence intervals overlapped, 
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this finding was consistent in all but one fully adjusted model (1-month fibrinogen). 

In contrast to fine PM, the coarse size fraction is usually dominated by non-exhaust 

sources, such as road surface abrasions and brake and tire wear (Ketzel et al. 2007). 

In addition, dispersion distances vary between coarse and fine particles, as coarse 

particles remain suspended for shorter time periods and travel shorter distances from 

roadways. Thus, the relatively higher associations among the coarse fraction models 

may help to further interpret our findings of increased and significant relationships 

with roadway proximity for CRP and IL-6. Further investigation is needed to 

determine if the positive association with proximity to major roadway seen in our 

study is influenced by PM exposures of certain size fractions, specific constituents, or 

other gaseous pollutants associated with traffic. It is also possible that other factors 

may be responsible for increased cardiovascular effects or inflammation associated 

with proximity to roadways or traffic. Road noise, for example, has also been linked 

to adverse health outcomes, and the separation of effects from air pollution is difficult 

to separate (Fecht et al. 2016).  

 

There are several notable strengths of this study. Few previous studies have looked at 

associations between PM exposures and biomarkers of inflammation in large cohorts 

with well-characterized information on potential confounders. Reliable information 

on potential confounding variables is critical in such studies as certain inflammatory 

biomarkers of interest can be associated with cardiovascular risk factors outside of 

clinical disease. Our use of robust and validated spatiotemporal statistical models may 

capture more spatial variability in exposure estimates than the use of estimates from 
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nearest or central monitoring locations. Additionally, the use of a nationwide cohort 

and exposure models extends the geographic scope of included subjects beyond 

studies limited to small regions or individual cities.  

 

This study also has several limitations. Short-term PM (in terms of days) can also be 

an important predictor of inflammatory changes in addition to the medium- or long-

term exposures examined in our study. With that said, two recent studies examined 

both short and long-term exposures simultaneously and found that long-term 

associations were not greatly impacted by the inclusion of short-terms exposures in 

the same models (Hajat et al. 2015; Hoffmann et al. 2009). Another study by Zeka et 

al. found that 1-month PM exposures were more strongly associated with CRP and 

fibrinogen than 2-day or 1-week exposures (Zeka et al. 2006a). Further investigation 

is needed to determine the extent to which short and long-term exposures conflate to 

influence cardiovascular risk and whether they act on different pathophysiologic 

mechanisms involving inflammation. Another limitation for this study was our 

inability to account for non-residential exposures or time-activity patterns that might 

influence total PM exposure. Though this is an important source of exposure 

misclassification, studies have shown overall that ambient concentrations of PM 

correlate relatively well with personal exposures (Avery et al. 2010). Generalizability 

of this cohort is also limited by the selection of healthy controls selected by the 

individual nested case-control studies as well as the limited ranges of age, 

race/ethnicity, and socioeconomic status of participants in the NHS.  
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Conclusion 

The fractions of particulate air pollution exposures we examined were not associated 

with the markers of inflammation chosen for this analysis. However, after adjusting 

for potential confounding variables, concentrations of both CRP and IL-6 were 

elevated among participants living close to a major roadway compared to those living 

further away, providing some evidence that proximity to traffic may influence 

inflammatory markers of cardiovascular risk. Future studies should continue to 

examine associations between systemic inflammation and exposures to particulate 

matter and other traffic-related air pollutants. Studies examining mechanistic 

pathways are a crucial piece to establishing causal pathways between exposure and 

subsequent health outcomes. Such work provides a crucial ‘how’ to the studies of 

association between exposure and disease. The EPA incorporates such work in their 

integrated science assessment (ISA) documents that provide a comprehensive review, 

synthesis and evaluation of the most policy-relevant science. These documents 

directly inform future policy and air quality regulations. 
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Tables 

Table 1. Descriptive characteristics of 2946 NHS participants with one or more assayed biomarker 

measurement  

Characteristics mean (SD) or %  
Age [years] 59.0 (7.7) 
Census tract median household income ($) 65,448 (26,388) 
BMI [kg/m2] 25.6 (5.2) 
Pack-years of smokinga  24.3 (20.4) 
Smoking status (%)  

Current 14.1 
Past 40.0 
Never 45.5 
Missing  0.4 

Alcohol category (%)  
   Non-drinker (0 g/day)  18.8 
   0.1+ g/d 78.6 
   Missing  2.6 
Physical activity (%)  
   <3 MET hr/week  20.6 
   3 to < 18 MET hr/week  46.7 
   18+ MET hr/week  31.9 
   Missing  0.8 
Postmenopausal hormone use (%)  
   Never or Past Use 48.4 
   Current use 35.3 
   Premenopausal 15.5 
   Unknown 0.8 
MI Family History (%) 37.0 
High Blood Pressure (%) 30.2 

aAmong current and former smokers only   



 

124 
 

Table 2. Arithmetic means and standard deviations or categorical distributions of exposure variables 
and biomarker concentrations 

Exposure or Biomarker N Mean (SD)a or % 
PM2.5 (µg/m3)   
1-Month 2946 16.6 (5.9) 
3-Month 2946 16.5 (5.1) 
12-Month 2946 16.4 (3.8) 
PM10  (µg/m3)   
1-Month 2946 27.3 (9.9) 
3-Month 2946 27.5 (9.3) 
12-Month 2946 27.9 (7.5) 
PM2.5 -10 (µg/m3)   
1-Month 2946 10.7 (6.2) 
3-Month 2946 11.0 (6.1) 
12-Month 2946 11.5 (5.7) 
Distance to Road (meters)b   
≥200m 1622 55.0% 
50-199m 818 27.7% 
0-49m 506 17.2% 
CRP (mg/L) 2923 3.1 (4.6) 
IL-6 (mg/dl) 1643 2.3 (2.8) 
Fibrinogen (pg/ml) 944 364.8 (88.3) 
ICAM-1  (ng/ml) 1695 278.8 (90.4) 

aArithmetic means and standard deviations 
b Included A1-A3 Categories as defined by U.S. Census Bureau, 2001. A1 (primary roads, typically 
interstate highways, with limited access, division between the opposing directions of traffic, and 
defined exits); A2 (primary major, non-interstate highways and major roads without access 
restrictions); A3 (smaller, secondary roads, usually with more than two lanes) 
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Table 3. Geometric means of inflammatory biomarkers and tests of trend by 12-month PM quartile or 
distance to road category  

PM Quartile 
Or Distance Category 

CRP 
(mg/L)  

Fibrinogen 
(mg/dl)  

IL-6  
(pg/ml)  

ICAM-1 
 (ng/ml)  

PM2.5  (µg/m3)a     
4.78 – 13.86 1.74 349.69 1.60 273.56 

13.86 – 16.42 1.42 362.35 1.58 268.20 
16.42 – 19.11 1.58 357.90 1.68 267.88 
19.11 – 30.76 1.71 346.82 1.61 263.47 

p-trendb 0.803 0.605 0.647 0.058 
PM10 (µg/m3)a     

10.64 – 23.06 1.53 356.67 1.71 266.90 
23.06 – 26.54 1.56 352.67 1.53 275.73 
26.54 – 30.91 1.55 354.43 1.61 266.08 
30.91 – 78.70 1.76 351.97 1.61 264.08 

p-trendb 0.154 0.630 0.451 0.263 
PM2.5-10 (µg/m3)a     

2.72 – 7.84 1.56 350.87 1.63 266.28 
7.84 – 9.97 1.51 365.18 1.65 271.11 

9.97 – 13.35 1.61 355.69 1.63 266.50 
13.35 – 47.94 1.78 344.52 1.55 268.87 

p-trendb 0.021 0.266 0.313 0.844 
     
Distance to Roadc     

>200 m 1.56 350.44 1.55 268.09 
50-199 m 1.61 355.72 1.73 267.91 

0-49 m 1.79 361.51 1.69 266.80 
p-trendb 0.022 0.158 0.096 0.795 

a PM exposures are 12-month annual average before blood draw 
b p-value for test of trend 
c Included A1-A3 Categories as defined by U.S. Census Bureau, 2001. A1 (primary roads, typically 
interstate highways, with limited access, division between the opposing directions of traffic, and 
defined exits); A2 (primary major, non-interstate highways and major roads without access 
restrictions); A3 (smaller, secondary roads, usually with more than two lanes) 
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Table 4. Percent differences and 95% confidence intervals of markers of inflammation per interquartile increase in PM exposure 

 CRP  IL-6  Fibrinogen  ICAM-1  
 Basic-Adja Full-Adjb Basic-Adja      Full-Adjb   Basic-Adja    Full-Adjb Basic-Adja       Full-Adjb 
PM2.5         

1 mo 0.5 (-3.9 to 5.0) -0.2 (-4.2 to 3.9) -2.4 (-5.5 to 0.8) -2.7 (-5.7 to 0.4) 0.8 (-0.9 to 2.4) 0.8 (-0.9 to 2.4) -0.6 (-1.7 to 0.6) -0.6 (-1.8 to 0.6) 
3 mo -0.5 (-5.4 to 4.6) -1.1 (-5.5 to 3.5) -2.1 (-5.4 to 1.5) -2.2 (-5.4 to 1.2) 0.5 (-1.2 to 2.2) 0.5 (-1.2 to 2.2) -0.6 (-1.9 to 0.7) -0.6 (-1.9 to 0.7) 

12 mo -1.2 (-6.4 to 4.3) -2.3 (-7.0 to 2.6) -1.7 (-5.5 to 2.2) -2.4 (-6.0 to 1.3) 0.2 (-1.6 to 2.1) 0.2 (-1.6 to 2.1) 0.0 (-1.5 to 1.4) -0.1 (-1.6 to 1.3) 
         

PM10         
1 mo -0.5 (-3.1 to 2.3) 0.4 (-2.1 to 2.9) -1.5 (-3.4 to 0.5) -1.3 (-3.2 to 0.6) 0.5 (-0.5 to 1.6) 0.5 (-0.5 to 1.6) -0.3 (-1.0 to 0.4) -0.3 (-1.0 to 0.5) 
3 mo -0.9 (-3.6 to 1.9) 0.1 (-2.4 to 2.7) -1.2 (-3.2 to 0.8) -0.9 (-2.8 to 1.1) 0.5 (-0.5 to 1.5) 0.5 (-0.5 to 1.5) -0.2 (-1.0 to 0.5) -0.2 (-1.0 to 0.5) 

12 mo -0.7 (-3.5 to 2.1) 0.5 (-2.1 to 3.1) -1.1 (-3.1 to 1.0) -0.8 (-2.8 to 1.2) 0.5 (-0.5 to 1.5) 0.5 (-0.5 to 1.5) -0.1 (-0.8 to 0.7) -0.1 (-0.8 to 0.7) 
         

PM2.5-10         
1 mo -1.5 (-5.4 to 2.5) 1.1 (-2.6 to 4.8) -1.3 (-4.3 to 1.7) -0.6 (-3.5 to 2.4) 0.6 (-0.9 to 2.2) 0.6 (-0.9 to 2.2) -0.2 (-1.3 to 0.9) -0.1 (-1.2 to 1.0) 
3 mo -1.5 (-5.3 to 2.4) 1.0 (-2.6 to 4.7) -1.2 (-4.1 to 1.8) -0.3 (-3.1 to 2.6) 0.8 (-0.7 to 2.3) 0.8 (-0.7 to 2.3) -0.1 (-1.2 to 1.0) 0.0 (-1.1 to 1.1) 

12 mo -0.7 (-4.6 to 3.3) 2.1 (-1.6 to 5.8) -1.1 (-3.9 to 1.9) -0.2 (-3.0 to 2.7) 0.9 (-0.6 to 2.3) 0.9 (-0.6 to 2.3) -0.2 (-1.2 to 0.9) -0.1 (-1.1 to 1.0) 
*Results represent percent difference in biomarker values per interquartile range change in PM estimates. The 1, 3 and 12 month IQRs were 7.26, 6.23, 5.26 
µg/m3 for PM2.5, 11.25, 9.27, 7.85 µg/m3 for PM10, and 6.10, 5.89, 5.51 µg/m3 for PM2.5-10, respectively.  
aBasic models adjusted for age, season, smoking status, menopausal status and postmenopausal hormone use  
bFull models additionally adjusted by BMI, physical activity, alcohol consumption, MI family history, high blood pressure, Alternate Healthy Eating Index, pack 
yrs smoked, and census-tract median household income 
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Table 5. Percent differences and 95% confidence intervals of markers of inflammation by distance to road category 

  CRP  IL-6  Fibrinogen  ICAM-1  
Basica     

≥200m --- --- --- --- 
50-199m -0.5 (-9.1 to 9.0) 7.7 (0.7 to 15.1) 1.8 (-1.6 to 5.4) -0.4 (-2.8 to 2.0) 

0-49m 14.1 (2.5 to 27.0) 8.4 (0.1 to 17.4) 1.4 (-2.5 to 5.5) -1.9 (-4.7 to 1.0) 
     

Fullb     
≥200m --- --- --- --- 

50-199m 0.7 (-7.4 to 9.3) 8.4 (1.7 to 15.6) 1.5 (-1.9 to 4.9) -0.4 (-2.8 to 2.1) 
0-49m 13.1 (2.6 to 24.6) 6.7 (-1.1 to 15.2) 0.8 (-3.0 to 4.8) -1.9 (-4.7 to 1.0) 

     
*Results from distance to road models represent the percent difference in biomarker values in comparison to study participants ≥200m from a roadway. Nearest 
road was defined as the distance from the residence to the closest A1-A3 category road as defined by U.S. Census Bureau, 2014. A1 (primary roads, typically 
interstate highways, with limited access, division between the opposing directions of traffic, and defined exits); A2 (primary major, non-interstate highways and 
major roads without access restrictions); A3 (smaller, secondary roads, usually with more than two lanes) 
aBasic models adjusted for age, season, smoking status, menopausal status and postmenopausal hormone use  
bFull models additionally adjusted by BMI, physical activity, alcohol consumption, MI family history, high blood pressure, Alternate Healthy Eating Index, pack 
yrs smoked, and census-tract median household income
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Supplemental Tables 

Table S1. Descriptive characteristics of 2946 NHS participants with one or more 

assayed biomarker measurement by individual nested case-control study 
Characteristics MI Study 

(N=486) 
MD Study 
(N=462) 

BC Study 
(N=1238) 

DB Study 
(N=760) 

BMI [kg/m2 (mean ± SD )] 25.3 (4.8) 25.1 (4.7) 25.64 (4.8) 26.6 (6.3) 
Age [Yrs] 60.7 (6.5) 63.1 (4.7) 58.6 (8.3) 56.3 (7.8) 
median household 
income (mean ± SD ) 

65,441 
(26,692) 

65,003 
(25,783) 

65,415 
(25,721) 

65,776 
(27,643) 

Pack-years of smoking 
(mean ± SD )a 

29.4 (22.6) 23.3 (20.9) 23.2 (19.5) 22.4 (18.9) 

Smoking status (%)     
Current 31.2 6.0 11.8 11.9 
Past 33.9 43.0 40.6 41.0 
Never 34.9 50.4 47.3 46.3 
Missing  0.0 0.6 0.3 0.8 

Region (%)     
   Northeast 48.6 43.6 48.4 45.8 
   Midwest 20.5 18.4 20.3 22.1 
   West 15.0 17.5 15.8 14.5 
   South 15.9 20.5 15.4 17.7 
Alcohol category (%)     
   Non-drinker (0 g/day)  17.9 20.7 19.7 16.9 
   0.1+ g/d 78.1 76.7 78.2 80.1 
   Missing  4.1 2.6 2.1 3.0 
Physical activity (%)     
   <3 MET hr/week  21.5 19.4 20.2 21.4 
   3 to < 18 MET hr/week  49.1 41.9 46.2 48.4 
   18+ MET hr/week  28.6 38.5 32.9 28.5 
   Missing  0.8 0.2 0.6 1.7 
Postmenopausal 
hormone use % 

    

   Never or Past Use 50.3 55.3 49.0 42.1 
   Current use 36.7 38.0 33.7 35.2 
   Premenopausal 11.8 4.5 16.8 22.4 
   Unknown 1.2 2.1 0.5 0.4 
MI Family History % 36.1 40.8 37.7 34.1 
High Blood Pressure % 29.2 36.3 28.8 29.3 
Season of Blood Drawb     

Winter 20.7 20.6 23.6 23.8 
Spring 16.8 24.1 20.8 24.4 
Summer 37.4 30.4 28.8 27.5 
Fall 25.1 25.0 26.8 24.3 

a Among former and current smokers only 
b blood draw in Dec-Feb defined as winter, Mar-May as spring, Jun-Aug as summer, Sep-Nov as Fall) 
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Figures 

Figure 1. Percent differences and 95% confidence intervals in C-reactive protein (CRP) per 
interquartile increase in PM exposure or by distance to road category 

 
*PM model results represent percent difference in biomarker values per interquartile range change in 
PM estimates. The 1, 3 and 12 month IQRs were 7.26, 6.23, 5.26 µg/m3 for PM2.5, 11.25, 9.27, 7.85 
µg/m3 for PM10, and 6.10, 5.89, 5.51 µg/m3 for PM2.5-10, respectively.  
* Results from distance to road models represent the percent difference in biomarker values in 
comparison to study participants ≥200m from a roadway. Nearest road was defined as the distance 
from the residence to the closest A1-A3 category road as defined by U.S. Census Bureau, 2014. A1 
(primary roads, typically interstate highways, with limited access, division between the opposing 
directions of traffic, and defined exits); A2 (primary major, non-interstate highways and major roads 
without access restrictions); A3 (smaller, secondary roads, usually with more than two lanes) 
*Basic models adjusted for age, season, smoking status, menopausal status and postmenopausal 
hormone use  
*Full models additionally adjusted by BMI, physical activity, alcohol consumption, MI family history, 
high blood pressure, Alternate Healthy Eating Index, pack yrs smoked, and census-tract median 
household income 
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Figure 2. Percent differences and 95% confidence intervals in interleukin-6 (IL-6) per interquartile 
increase in PM exposure or by distance to road category 

 
*PM model results represent percent difference in biomarker values per interquartile range change in 
PM estimates. The 1, 3 and 12 month IQRs were 7.26, 6.23, 5.26 µg/m3 for PM2.5, 11.25, 9.27, 7.85 
µg/m3 for PM10, and 6.10, 5.89, 5.51 µg/m3 for PM2.5-10, respectively.  
* Results from distance to road models represent the percent difference in biomarker values in 
comparison to study participants ≥200m from a roadway. Nearest road was defined as the distance 
from the residence to the closest A1-A3 category road as defined by U.S. Census Bureau, 2014. A1 
(primary roads, typically interstate highways, with limited access, division between the opposing 
directions of traffic, and defined exits); A2 (primary major, non-interstate highways and major roads 
without access restrictions); A3 (smaller, secondary roads, usually with more than two lanes) 
*Basic models adjusted for age, season, smoking status, menopausal status and postmenopausal 
hormone use  
*Full models additionally adjusted by BMI, physical activity, alcohol consumption, MI family history, 
high blood pressure, Alternate Healthy Eating Index, pack yrs smoked, and census-tract median 
household income 
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Figure 3. Percent differences and 95% confidence intervals in fibrinogen per interquartile increase in 
PM exposure or by distance to road category 

 
*PM model results represent percent difference in biomarker values per interquartile range change in 
PM estimates. The 1, 3 and 12 month IQRs were 7.26, 6.23, 5.26 µg/m3 for PM2.5, 11.25, 9.27, 7.85 
µg/m3 for PM10, and 6.10, 5.89, 5.51 µg/m3 for PM2.5-10, respectively.  
* Results from distance to road models represent the percent difference in biomarker values in 
comparison to study participants ≥200m from a roadway. Nearest road was defined as the distance 
from the residence to the closest A1-A3 category road as defined by U.S. Census Bureau, 2014. A1 
(primary roads, typically interstate highways, with limited access, division between the opposing 
directions of traffic, and defined exits); A2 (primary major, non-interstate highways and major roads 
without access restrictions); A3 (smaller, secondary roads, usually with more than two lanes) 
*Basic models adjusted for age, season, smoking status, menopausal status and postmenopausal 
hormone use  
*Full models additionally adjusted by BMI, physical activity, alcohol consumption, MI family history, 
high blood pressure, Alternate Healthy Eating Index, pack yrs smoked, and census-tract median 
household income 
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Figure 4. Percent differences and 95% confidence intervals in intra-cellular adhesion molecule (ICAM-
1) per interquartile increase in PM exposure or by distance to road category 

 
*Results from PM models represent percent difference in biomarker values per interquartile range 
change in PM estimates. The 1, 3 and 12 month IQRs were 7.26, 6.23, 5.26 µg/m3 for PM2.5, 11.25, 
9.27, 7.85 µg/m3 for PM10, and 6.10, 5.89, 5.51 µg/m3 for PM2.5-10, respectively.  
*Results from distance to road models represent the percent difference in biomarker values in 
comparison to study participants ≥200m from a roadway. Nearest road was defined as the distance 
from the residence to the closest A1-A3 category road as defined by U.S. Census Bureau, 2014. A1 
(primary roads, typically interstate highways, with limited access, division between the opposing 
directions of traffic, and defined exits); A2 (primary major, non-interstate highways and major roads 
without access restrictions); A3 (smaller, secondary roads, usually with more than two lanes) 
*Basic models adjusted for age, season, smoking status, menopausal status and postmenopausal 
hormone use  
*Full models additionally adjusted by BMI, physical activity, alcohol consumption, MI family history, 
high blood pressure, Alternate Healthy Eating Index, pack yrs smoked, and census-tract median 
household income  
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Chapter 6:  Conclusions 
 
 
The results from our two studies of short-term PM exposures and stroke advance the 

current literature in several ways. Our findings in the HPFS are consistent with a 

recent review and meta-analysis that show PM exposures are associated with 

ischemic stroke but not hemorrhagic stroke (Wang et al. 2014) Contrasting the 

findings between the ischemic and hemorrhagic stroke results also provide more 

evidence that these two major stroke subtypes should be treated as heterogeneous 

outcomes in analyses related to air pollution, a point stressed by Ljungman and 

Mittleman, 2014 (Ljungman and Mittleman 2014). Our HPFS study also may be the 

first to suggest that those without a history of high cholesterol or those not currently 

taking aspirin are at elevated risk for acute PM-related ischemic stroke events. 

Though we found no evidence of an association between PM2.5 exposure and total 

cerebrovascular, ischemic, or hemorrhagic stroke hospitalizations in Maryland, this 

study is one of the first to examine potential effect modifiers of hemorrhagic stroke.  

 

In both case-crossover studies, the examination of risk by potential effect modifiers 

was of major interest, as identifying those most vulnerable to the effects of ambient 

particulate exposures may inform future public health prevention policies. However, 

our findings of elevated associations among non-aspirin users are novel and should 

first be repeated among other study populations. As regular aspirin use was elevated 

among those with a previous history of high blood pressure and hypertension, 

additional studies may help shed light on whether our results are indicative of higher 
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risk from PM-related stroke among those without history of hypertension or 

hypercholesterolemia, or whether medication use may potentially lower or eliminate 

PM-related ischemic stroke risk. It should also be noted that care is advised in the 

prophylactic use of aspirin in regards to stroke (Lei et al. 2016). Though aspirin may 

lower risk of ischemic stroke, some evidence suggests it may increase the risk of 

hemorrhagic stroke (Lei et al. 2016).  

 

As the US EPA re-evaluates regulations on the criteria pollutants every five years 

under The Clean Air Act, results from these studies may directly contribute to future 

policy actions. The NAAQS were last revised in 2012 with a major change being that 

annual PM2.5 standards were divided into a primary (12 µg/m3) and secondary 

(15µg/m3) standard (US EPA 2017c). Primary standards are meant to provide public 

health protection to sensitive populations (asthmatics, children, elderly), while 

secondary standards provide public welfare protection (decreased visibility, damage 

to animals crops). Currently there is no division between primary and secondary 

standards for 24-hour standards for PM2.5 (35 µg/m3) or PM10 (150 µg/m3). The short-

term mean exposures for PM2.5 and PM10 in both of our PM-stroke studies did not 

exceed the NAAQS standards. Our significant findings between PM10 exposures and 

ischemic stroke occur at PM levels within the current standards set by EPA. Thus, our 

findings may influence future risk and policy assessment documents. We expect this 

work to be incorporated into the next PM Integrative Science Assessment (ISA) 

document that provides a comprehensive review, synthesis, and evaluation of the 

most policy-relevant science on the health effects of PM exposure. Following the 
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EPA NAAQS review process, the ISA is then used as the scientific backbone for 

developing the Risk/Exposure Assessment (REA) which quantifies the associated risk 

to human health (US EPA 2017d). The ISA, REA, and a Policy Assessment are then 

used in final rulemaking.  

 

Our third study in the NHS was intended to inform hypothesized pathophysiological 

pathways of how PM exposure may alter future cerebrovascular and cardiovascular 

risk. The fractions of particulate air pollution exposures we examined were not 

associated with the markers of inflammation. However, after adjusting for potential 

confounding variables, concentrations of both CRP and IL-6 were elevated among 

participants living close to a major roadway compared to those living further away. 

This finding provides some evidence that proximity to traffic may influence 

inflammatory markers of cardiovascular risk. We also found higher effect estimates 

among coarse PM models compared to fine PM models. These findings deserve 

further investigation. Additional studies are needed to determine if the positive 

association with proximity to major roadway seen in our study is influenced by PM 

exposures of certain size fractions, specific constituents, or other gaseous pollutants 

associated with traffic. Such studies would also benefit from the inclusion of daily 

exposures. Including both short and long-term exposures in the same models may 

provide evidence on how exposures of varying durations influence inflammatory 

pathways. Studies examining mechanistic pathways are a crucial piece to establishing 

causal pathways between exposure and subsequent health outcomes. Work, such as 

this, provide a crucial ‘how’ to the studies of association between exposure and 
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disease. The EPA incorporates such work in their integrated science assessment (ISA) 

documents that provide a comprehensive review, synthesis and evaluation of the most 

policy-relevant science. These documents directly inform future policy and air quality 

regulations. 
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