
ABSTRACT

Title of dissertation: MOBILE AD HOC NETWORKS-
ITS CONNECTIVITY AND ROUTING OVERHEAD

Eunyoung Seo
Doctor of Philosophy, 2012

Dissertation directed by: Professor Richard J. La
Department of Electrical and Computer Engineering
and the Institute for Systems Research

This dissertation focuses on a study of network connectivity and routing overhead in

mobile ad-hoc networks (MANETs). The first part examines the smallest communication

range needed for bi-directional connectivity of a network, called the critical transmission

range (CTR), under a class of group mobility models. In the second part, we study the

smallest communication range of the nodes necessary for no node isolation when trust

constraints are introduced for one-hop connectivity between nodes. In the third part,

under the assumption that nodes employ the CTR for network connectivity in MANETs,

we study the overhead required for location service under geographic routing.

We begin with an investigation of the communication range of the nodes necessary

for network connectivity, which we call bi-directional connectivity, in one dimensional

case. Unlike in most of existing studies, however, the locations or mobilities of the nodes

are correlated through group mobility: Nodes are broken into groups, with each group

comprising the same number of nodes, and lie on a unit circle. The locations of the nodes

in the same group are not mutually independent, but are instead conditionally independent



given the location of the group.

We examine the distribution of the CTR when both the number of groups and the

number of nodes in a group are large. We first demonstrate that the CTR exhibits a

parametric sensitivity with respect to the space each group occupies on the unit circle.

Then, we offer an explanation for the observed sensitivity by identifying what is known

as a very strong threshold and asymptotic bounds for CTR.

Related to the first part, we explore the communication range of the nodes nec-

essary for no node isolation where the locations of nodes are mutually independent and

uniformly distributed on a torus. However, unlike in our first study where the one-hop

connectivity between two nodes depends only on their distance, one-hop connectivity of

two nodes in this model is determined by both geometric and trust constraints. More

specifically, in order to have a communication link between two nodes, they should be

within a certain common communication range and satisfy trust requirements, i.e., the

trust level of a node exceeds the required trust threshold of the other. Under this one-hop

connectivity model, we find the smallest communication range needed so that no node

will be isolated. While our analytical study focuses on the probability that no node will

be isolated, our simulation results suggest that the probability of no node isolation and

the probability of network connectivity behave very similarly.

In the third part of this dissertation, we study routing overhead due to location infor-

mation collection and retrieval in MANETs employing geographic routing with no hierar-

chy. We first provide a new framework for quantifying overhead due to control messages

generated to exchange location information. Second, we compute the minimum number

of bits required on average to describe the locations of a node, borrowing tools from in-



formation theory. This result is then used to demonstrate that the expected overhead is

Ω(n1.5 log(n)), where n is the number of nodes, under both proactive and reactive ge-

ographic routing, with the assumptions that (i) nodes’ mobility is independent and (ii)

nodes adjust their transmission range to maintain network connectivity. Finally, we prove

that the minimum expected overhead under the same assumptions is Θ(n log(n)).
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1. INTRODUCTION

1.1 Mobile Ad Hoc Networks

A mobile ad-hoc network (MANET) is a collection of mobile nodes that construct and

maintain a network without a centralized authority. Unlike in a more traditional wired

network (e.g., the Internet), there are no dedicated routers or switches responsible for

forwarding packets. MANETs or multi-hop wireless networks (MHWNs) have attracted

much interest from the networking community, due to their potential for numerous appli-

cations. In a traditional wired network, traffic generated by so-called end nodes is routed

through the network by dedicated routers. However, in a MANET wireless nodes form

and maintain the network and share the responsibility of routing packets from sources

to destinations. Moreover, when (some of) nodes are mobile, the one-hop connectivity,

hence topology, of the network varies with time. This requires the network protocols to

cope with potentially frequent changes in network topology.

In this dissertation, we focus on two main issues in MANETs - network connectivity

and routing overhead. In MHWNs, when a source wants to transmit data to a destination,
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there must exist at least one end-to-end route between the source and the destination. In

order for a network to be able to provide such end-to-end routes between information

sources and destinations, it should be connected. In addition, finding and maintaining

end-to-end routes between nodes incurs overhead. In the second part, we examine how

the overhead required for location service scales when geographic routing is employed.

1.2 Network Connectivity in MANETs

When information to be transferred by a MHWN cannot tolerate large delays, timely

delivery of information demands that the network be able to find an end-to-end route

between a source and a destination. In order for such an end-to-end route to exist when

one is needed, the network should be connected (with a high probability). For this reason

the issue of network connectivity enjoyed much attention in recent years.

In some cases, nodes may have access to a replenished energy source and interfer-

ence between simultaneous transmissions may not be a concern (e.g., light traffic sce-

narios). In such cases, network connectivity can be dealt with by employing the largest

transmit power at the nodes. In other cases, however, especially when some of the mobile

nodes operate on batteries, this may not be an acceptable solution; it is likely to result

in unnecessarily quick depletion of battery power. In these scenarios, it is in the interest

of the battery powered nodes to use the minimum necessary transmit power, which will

result in a smaller communication range between nodes, so as to conserve energy.

Another, perhaps, less obvious reason why nodes may want to employ smaller com-

munication ranges through transmit power control stems from the study of network trans-
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port throughput: Gupta and Kumar showed in their seminal paper [9] that, in order for

the nodes to maximize the network throughput, they should adopt the smallest communi-

cation range to maintain network connectivity. The basic intuition is that employing the

smallest communication range allows for the maximum spatial reuse of the spectrum by

minimizing the interference caused to nearby nodes.

A natural question that arises under these arguments is: “What is the smallest com-

munication range needed for network connectivity?” In order to study the connectivity

properties of MHWNs, researchers often represent the one-hop connectivity of the net-

work as a random graph and investigate the connectivity of the graph. Study of connec-

tivity property of random graphs dates back to late 1950’s, starting with the pioneering

work by Erdös and Rényi [5, 6].

More recently, another line of research more related to the connectivity of MHWNs

examined various properties of geometric random graphs, including their connectivity

(e.g., [1, 8, 11, 12, 15, 18, 20, 22]). We refer interested readers to a monograph by

Penrose [17]. In a geometric random graph, one-hop connectivity between a pair of nodes

is determined by the distance between them. In other words, there exists an edge between

two nodes i and j if and only if their distance is smaller than some threshold γ. This

threshold γ can be interpreted as a proxy to a common communication or transmission

range of the nodes, which depends on the employed transmit power, in the context of

MHWNs [49].

The one-hop connectivity model in geometric random graphs has been generalized

in different ways, in order to capture, for instance, environmental factors in one-hop con-

nectivity between a pair of nodes given transmit power (e.g., [44, 50]). In addition, Diaz
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et al. [4] studied the dynamic case where nodes move according to a mobility model

similar to the Random Direction models [2, 16]. They computed the expected duration of

a period during which a network remains connected or disconnected under the one-hop

connectivity model of random geometric graphs.

1.2.1 Network connectivity in MANETs with group mobility model

Most of existing studies on connectivity of geometric random graph models focus on the

scenarios where the locations of the nodes are independent of each other with identical

spatial distribution (e.g., [1, 8, 11, 18, 20, 22]). The dynamic case studied in [4] also as-

sumes independent and homogeneous node mobility. Unfortunately, when either of these

assumptions is relaxed, little is known about the connectivity property of random graphs.

In this dissertation, we take another step towards better understanding connectivity when

nodes’ mobility is correlated.

In chapter 2, we investigate how the smallest communication range needed for net-

work connectivity, which we call a critical transmission range (CTR), behaves in simple

one-dimensional cases, where nodes lie on a unit ring and nodes are clustered into groups

with the same number of members. We examine the distribution of CTR as both the

number of groups and the number of members in each group become large.

1.2.2 Node isolation in MANETs with trust constraints

In most of the studies on network connectivity, employing geometric random graph mod-

els, the one-hop connectivity between two nodes is determined solely by the distance

between the two nodes (e.g., [1, 8, 11, 18, 20, 22]). In chapter 3, we introduce the con-
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cept of trustworthiness in one-hop connectivity.

In MANETs, packets are routed by individual nodes without the help of centralized

infrastructure. Therefore, when a MANET is used to transfer sensitive information, only

trusted nodes should be employed for routing the information. For this reason, researchers

studied the issue of defining the trustworthiness of the nodes (e.g., [27]) and proposed

new routing schemes that take into account the trustworthiness of the nodes for routing

packets.

Similarly to [29], we model the trust relation between two nodes using two pa-

rameters, trust level and trust threshold; for any given node, its trust level reflects its

trustworthiness and its trust threshold indicates the minimum trust level required of any

other node before it trusts the node. In order for two nodes to establish a link between

them, the trust level of each node must be larger than or equal to the trust threshold of the

other node. We investigate how this new trust constraint for one-hop connectivity between

nodes affects the smallest communication range necessary for network connectivity and

no node isolation.

1.3 Expected Routing Overhead in MANETs Under Flat Geographic

Routing

In MANETs, since nodes are assumed mobile, one-hop connectivity between nodes and

the network topology can change over time. Consequently, underlying routing protocols

are asked to cope with potentially frequent changes in network topology. Maintaining up-

to-date information for routing packets requires exchange of control messages, incurring
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overhead.

Recently there has been much research on understanding the network transport

throughput, or simply transport throughput, of multi-hop wireless networks: In their sem-

inal paper [9] Gupta and Kumar investigated the transport throughput of static multi-hop

wireless networks and showed that the transport throughput increases, at best, as
√
n

with an increasing number of nodes n, i.e., O(
√
n). This finding implies that per-node

throughput decreases to zero as n → ∞. Grossglauer and Tse [39] exploited the mo-

bility of nodes and demonstrated that, if unbounded delays can be tolerated, under some

technical conditions per-node throughput of Θ(1) can be achieved. To bridge the gap in

the transport throughput between static networks and mobile networks, Sharma et al. [51]

examined the trade-off between the transport throughput and delays that must be tolerated

in order to achieve certain level of transport throughput. Other related works can be found

in [36, 37, 43, 45].

In most of these studies, however, authors do not explicitly address the issue of

routing overhead. To be more precise, they do not explain how necessary routing informa-

tion is obtained and how much network resource (e.g., transport throughput) is required

to obtain needed routing information in order to achieve claimed transport throughput.

Therefore, in order to better understand the scalability of MANETs with an increasing

number of nodes and to find out how to dimension them properly (e.g., bandwidth), one

should examine how routing overhead scales in MANETs, in particular, in comparison to

network transport throughput. A good understanding of routing overhead may also allow

us to correctly identify critical bottlenecks and to deal with them more effectively.

To the best of our knowledge, the first serious attempt at an analytical study of
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protocol overhead was carried out by Gallager in [38]. There are also several recent

analytical studies on routing overhead in MANETs, some of which we summarize here:

Zhou and Abouzeid [56, 57] applied the tools from information theory to examine the

overhead due to the changes in network topology under two-tier hierarchical routing.

Their key idea is to model the time-varying network topology as a stochastic process and

to evaluate the overhead required to describe the local network topology in subregions

to cluster heads and to distribute the global ownership information to all cluster heads.

Then, they studied the scaling laws of the memory requirement and routing overhead

under three different physical scalings of the network.

In another study [33] Bisnik and Abouzeid formulated the problem of characteriz-

ing the minimum routing overhead as a rate-distortion problem. They considered geo-

graphic routing with location servers that have known locations and store location infor-

mation of other mobile nodes, and investigated the information rate required to satisfy a

prescribed squared-error distortion constraint. Viennot et al. [55] examined control over-

head under both proactive and reactive routing, and suggested that control overhead is

proportional to the square of the number of nodes in the network.

In this dissertation we take another step towards understanding routing overhead in

MANETs: We assume that nodes employ flat geographic or position-based routing with-

out designated location servers that maintain the location information of mobile nodes.

Also, we focus on the scenario of practical interest where the network is connected with a

high probability. To be more precise, we assume that the transmission range of the nodes

is selected so that the network is connected with probability approaching one as the num-

ber of nodes grows. This issue of network connectivity has been studied in the first part
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of the dissertation.

The goal of our study is twofold: First, we aim to provide a new framework for

studying routing overhead, especially for geographic routing, which can capture the dif-

ferences that arise from the specific schemes employed to disseminate and acquire lo-

cation information. To this end we develop a new framework, borrowing tools from

information theory to compute the minimum average number of bits required to describe

approximated locations of mobile nodes. Secondly, based on the proposed framework,

we explore how routing overhead scales with the network size under different routing

schemes. In particular, we focus on the routing overhead only due to dissemination and

acquisition of location information, i.e,. location service.

1.4 Notation

In this section we describe the notation we will use throughout the dissertation.

N1. A function a(n) is O(b(n)) if there exist 0 < c1 < ∞ and n?1 < ∞ such that, for all

n ≥ n?1, we have a(n) ≤ c1 · b(n).

N2. A function a(n) is Ω(b(n)) if there exist c2 > 0 and n?2 <∞ such that, for all n ≥ n?2,

we have c2 · b(n) ≤ a(n).

N3. A function a(n) is ω(b(n)) if for every c > 0, there exists n?(c) such that, for all

n ≥ n?(c), c · b(n) < a(n).

N4. A function a(n) is Θ(b(n)) if there exist 0 < c3 < c4 <∞ and n?3 <∞ such that for

all n ≥ n?3, we have c3 · b(n) ≤ a(n) ≤ c4 · b(n). Note that a(n) = Θ(b(n)) if and only if

a(n) = O(b(n)) and a(n) = Ω(b(n)).
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N5. A function a(n) ∼ b(n) if limn→∞(a(n)/b(n)) = 1.
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2. NETWORK CONNECTIVITY WITH GROUP MOBILITY MODEL

In this chapter, we will investigate the communication range of the nodes necessary for

network connectivity when the locations or mobilities of the nodes may be correlated

through group mobility. The rest of the chapter is organized as follows: Section 2.1 ex-

plains the setup, mobility model and parametric scenario we introduce for carrying out

asymptotic analysis. We provide a numerical example that demonstrates a parametric

sensitivity of critical transmission range (CTR), which is defined as the smallest commu-

nication range of the nodes such that the network is connected, and summarize some of

well known results for independent and identically distributed (i.i.d.) cases in Section 2.2.

Main results are presented in Section 2.3. Simulation results are provided in Section 2.4

to validate our analysis.

10



2.1 Setup

We consider simple scenarios where nodes are placed on a unit ring 1 . Suppose that we

are given a network consisting ofN nodes that are placed on a unit ring, whereN ∈ IN :=

{1, 2, 3, . . .}. Two nodes i and j are said to be immediate neighbors, or simply neighbors,

if and only if D(i, j) ≤ γ, where D(i, j) denotes the length of the shorter arc on the ring

connecting the two nodes. There is a bi-directional (communication) link between two

neighbors i and j, which we denote by i↔ j.

Definition 2.1: A network is said to be connected if and only if it is possible to reach any

node from any other node through a sequence of immediate neighbors. In other words,

for every pair of nodes i and j, we can find K ∈ IN and a sequence of nodes i1, i2, . . . , iK

such that

C1. i1 = i and iK = j, and

C2. ik ↔ ik+1 for all k = 1, 2, . . . , K − 1.

An example of a connected network is shown in Fig. 2.1

When the network is connected, in order for packets from node i to reach node j,

they have to follow a sequence of intermediate nodes either in a clockwise direction or

a counter-clockwise direction. In Fig. 2.1 packets from node i will follow a counter-

clockwise (resp. clockwise) route to node j (resp. node k). In some cases, however, the

packets may be routed only in one direction, but not in the other direction. When this

1 We select a unit ring instead of a unit interval to avoid the boundary effects. However, simulation
results show that the (distribution of the) communication range required for network connectivity is similar
for both cases.

11



Fig. 2.1: An example of connected network.

happens, the one-hop connectivity of nodes does not form a complete ring and there is

exactly one node that does not have a neighbor to its left (when all nodes are facing in

the direction of the center of the disk). For instance, in Fig. 2.1 node k does not have a

neighbor to its left and packets from node i cannot be routed clockwise to node j.

We focus on the case where the one-hop connectivity of the nodes forms a complete

ring. In other words, every node has a neighbor to its left and a packet generated by any

node can be routed to any other node by traversing a sequence of intermediate nodes both

in clockwise and counter-clockwise directions. We call this bi-directional connectivity.

Obviously, bi-directional connectivity is a stronger condition than network con-

nectivity in Definition 2.1; bi-directional connectivity implies 2-vertex connectivity (also

called biconnectivity) and 2-edge connectivity [3]. In other words, the network would still

be connected after removing any one node or a link in the network. It is obvious that the

network in Fig. 2.1 is not bi-directionally connected. Unless stated otherwise, throughout

the rest of the chapter, network connectivity refers to bi-directional connectivity. We will

illustrate in Section 2.4, using numerical examples, that the communication ranges needed

for the “usual” connectivity defined in Definition 2.1 and bi-directional connectivity do

not differ significantly for large networks.
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Given a network with N ∈ IN nodes, the CTR of the network, denoted by rc(N),

is defined to be the smallest communication range of the nodes such that the network is

connected. Obviously, this CTR depends on the number of nodes in the network, N , and

their exact locations, and computing the distribution of the CTR is challenging.

For this reason, researchers often turn to an asymptotic theory for rc(N) as the

number of nodes N becomes large: Oftentimes, as the number of nodes grows (while

keeping other parameters fixed), the distribution of the CTR concentrates over a (short)

interval we can identify or approximate more easily. Following this spirit we are interested

in examining how γc(N) behaves as N increases. To this end, we introduce the following

parametric scenario:

For each n ∈ IN, there are N(n) ≥ 1 nodes in the network. These N(n) nodes

belong to G(n) groups with each group consisting of M(n) = N(n)/G(n) nodes, called

the members. Let G(n) := {1, 2, . . . , G(n)} denote the set of groups and M(n) :=

{1, 2, . . . ,M(n)} the set of members in a group. We assume that as n → ∞, both

the number of groups and the number of members in a group increase unbounded, i.e.,

G(n)→∞ and M(n)→∞.

2.1.1 Parametric Scenario

Given a network with N ∈ IN nodes, the CTR of the network, denoted by rc(N), is

defined to be the smallest communication range 2of the nodes such that the network is

connected. Obviously, this CTR depends on the number of nodes in the network, N , and

their exact locations, and computing the distribution of the CTR is challenging.
2 The communication range of a node is defined to be the maximum distance another node can be at,

while maintaining a communication link with the node.
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For this reason, researchers often turn to an asymptotic theory for rc(N) as the

number of nodes N becomes large: Oftentimes, as the number of nodes grows (while

keeping other parameters fixed), the distribution of the CTR concentrates over a (short)

interval we can identify or approximate more easily. Following this spirit we are interested

in examining how γc(N) behaves as N increases. To this end, we introduce the following

parametric scenario:

For each n ∈ IN, there are N(n) ≥ 1 nodes in the network. These N(n) nodes

belong to G(n) groups with each group consisting of M(n) = N(n)/G(n) nodes, called

the members. Let G(n) := {1, 2, . . . , G(n)} denote the set of groups and M(n) :=

{1, 2, . . . ,M(n)} the set of members in a group. We assume that as n → ∞, both

the number of groups and the number of members in a group increase unbounded, i.e.,

G(n)→∞ and M(n)→∞.

Group Mobility Model

For each group k ∈ G(n), there is a virtual group leader (VGL) V (n)
k . 3 This VGL moves

according to some stochastic mobility process on the unit ring. We denote the mobility

process or trajectory of V (n)
k by X(n)

k := {X(n)
k (t); t ∈ IR+}, where IR+ := [0,∞) and

X
(n)
k (t) is the location of V (n)

k at time t. Here, X(n)
k (t) ∈ [0, 1) denotes the length of the

arc connecting some fixed reference point to V (n)
k , moving clockwise on the unit ring.

The mobility process of the m-th node in the k-th group, denoted by L(n)
k,m :=

3 The VGL V
(n)
k is not a real node in the network. Instead, it is introduced to model the movement of

the group.
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{L(n)
k,m(t); t ∈ IR+}, can be written as a sum of two stochastic processes: 4

L
(n)
k,m = X

(n)
k +Y

(n)
k,m, (2.1)

where Y(n)
k,m, k ∈ G(n) and m ∈ M(n), are identically distributed stochastic processes.

We can interpret (2.1) as follows. While the processX(n)
k describes the movement of (the

VGL for) the group, the processesY(n)
k,m determine the movements of individual members

in the group relative to the location of VGL. Note that this model is similar to the reference

point group mobility model proposed in [13].

We consider the case where the movements of the members are constrained to an

arc near the VGL. More precisely, the process Y(n)
k,m := {Y (n)

k,m(t); t ∈ IR+} is limited to

an interval [0, d(n)] =: Dg with 0 ≤ d(n) ≤ 1, i.e., Y (n)
k,m(t) ∈ Dg for all t ∈ IR+. In this

case the VGL is at the front of the group and the members follow the VGL, staying within

d(n). However, Dg can be any interval of length d(n) without affecting the findings in

this chapter.

We introduce the following assumptions on the mobility processes:

A1. The processes X(n)
k , k ∈ G(n), and Y(n)

k,m, k ∈ G(n) and m ∈ M(n), are stationary

and ergodic [7].

A2. The processesX(n)
k , k ∈ G(n), are mutually independent and identically distributed.

In addition, they yield a spatial distribution Fg with a continuous density fg :

[0, 1)→ IR+, which is uniform over the unit ring, i.e., fg(x) = 1 for all x ∈ [0, 1).

A3. The processes Y(n)
k,m, k ∈ G(n) and m ∈ M(n), are mutually independent and are

4 All additions are modulo one throughout the chapter.
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also independent of X(n)
k , k ∈ G(n). Moreover, they yield a spatial distribution Fm

(with density fm) uniform over the intervalDg with fm(y) = 1/d(n) for all y ∈ Dg.

2.2 Connectivity of static graphs

As mentioned earlier, in order for a network to be able to provide an end-to-end route

between arbitrary sources and destinations (when a connection is requested), the network

should be connected most of the time. From the assumed ergodicity and stationarity of

the mobility processes, this implies that the network sampled at some random time should

be connected with high probability.

Suppose that we sample the network at time ts ∈ IR+. From the stated stationarity

assumption, without loss of generality, we can assume ts = 0. Furthermore, for notational

simplicity we omit the dependence on time, e.g., we writeX(n)
k in place ofX(n)

k (0). Under

assumptions A1 through A3, we can make following observations:

O1. The rvs X(n)
k , k ∈ G(n), are independent and uniformly distributed on the unit ring.

Furthermore, L(n)
k,m, k ∈ G(n) and m ∈ M(n), are uniformly distributed on the unit

ring.

O2. The locations of members in the same group, L(n)
k,m, m ∈ M(n), are not mutually

independent when d(n) < 1. However, given {X(n)
k , k ∈ G(n)}, the rvs L(n)

k,m, k ∈

G(n) andm ∈M(n), are conditionally independent. In particular, for each k ∈ G(n),

given X(n)
k , the locations of the members in the k-th group, L(n)

k,m, m ∈ M(n), are

conditionally independent rvs uniformly distributed on the arc [X
(n)
k , X

(n)
k +d(n)].

We note that when d(n) = 1, the locations of all the nodes are independent and
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uniformly distributed on the unit ring regardless of {Xk(n); k ∈ G(n)} (so-called i.i.d.

case). On the other hand, if d(n) is very small, the locations L(n)
k,m,m ∈M(n), are strongly

correlated in that the members of a group are very close to each other. In this sense, d(n)

is used as a parameter to vary the degree of correlation in the locations of the members in

a group.

2.2.1 An example of parametric sensitivity and motivation

Let us start with an example that illustrates the importance of understanding the role

of correlation in nodes’ locations. In particular, the following example highlights the

sensitivity of the CTR with respect to the length d(n) of Dg over some interval. Fig. 2.2

plots the probability that the network is connected as a function of the communication

range γ of the nodes for a scenario where there are 100 groups (G(n) = 100) and each

group has 200 members (M(n) = 200) for five different values of d(n). The x-axis of

the plot is log10(γ), and the y-axis is the empirical probability (i.e., fraction of times the

network was connected from 1,000 realizations).

What is surprising in this example is that, while three plots of the probability for

d(n) = 0.0001, 0.01 and 0.03 are relatively close, the probability for d = 0.08 is very

different from the first three; (loosely speaking) the required CTR is more than an order

of magnitude larger when d(n) = 0.03 compared to when d(n) = 0.08. In particular,

the median value of the CTR differs by a factor of more than 20! However, when d(n) is

further increased from 0.08 to 0.2, the change in probability is not nearly as significant.

A natural question that arises from this example is whether this is an atypical sce-

nario or there is a more fundamental reason for this parametric sensitivity of the CTR to
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Fig. 2.2: Probability of network connectivity (G = 100,M = 200).

d(n) (between 0.03 and 0.08). Furthermore, if this is not atypical, can we predict when

and where it will occur? In this chapter, we will answer these questions. We will show

that, indeed, this parametric sensitivity over an interval is not an isolated incident and will

show up in many settings, and identify the range over which such parametric sensitivity

will be displayed. We suspect that similar parametric sensitivity is likely to persist in

high-dimensional cases as well. We will revisit this example in subsection 2.3.3.

2.2.2 I.i.d. cases and (very) strong threshold

Let G(G(n),M(n); γ) be the geometric random graph (GRG) representing the one-hop

connectivity of the network with G(n) groups and M(n) members in each group (with a

total of N(n) = G(n)×M(n) nodes), where each node employs a communication range

of γ, according to the setup described in the previous section. We define

P(n) (γ) := P [G(G(n),M(n); γ) is connected] .

It is obvious that P(n) (γ) is increasing in γ.
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Consider the case where the locations of the N(n) nodes are given by independent

rvs uniformly distributed on the unit ring (i.e., d(n) = 1). In this case, the result by Han

and Makowski [12] 5 tells us

lim
n→∞

P(n)

(
log(N(n)) + αn

N(n)

)
(2.2)

=


1 if αn →∞ (as n→∞),

0 if αn → −∞ (as n→∞).

Here, αn can increase (resp. decrease) to∞ (resp. −∞) arbitrarily slow. When (2.2) is

true, Han and Makowski call

γiid(n) :=
log(N(n))

N(n)
, n ∈ IN, (2.3)

a very strong threshold (VST).

The interpretation of a VST γ?(n), n ∈ IN, is that, for all sufficiently large n, if the

communication range is set suitably larger than γ?(n), the probability that a network is

connected will be close to one. Similarly, if the communication range is set somewhat

smaller than γ?(n), the probability will be very small.

This sharp increase in the probability of network connectivity around the VST is

called a phase transition in the literature, which often leads to a zero-one law (e.g., (2.2)).

We point out that a VST may not exist in some cases (see [10] for an example).

5 Although the authors of [12] consider a unit interval and the notion of network connectivity given in
Definition 2.1, the same result is true for bi-directional connectivity we study in this chapter. This finding
also follows directly from Theorem 2.2 in Section 2.3.
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2.3 Main results

In this section we investigate how P(n) (γ) changes as a function of the common commu-

nication range of the nodes, γ, as both G(n) and M(n) grow. Intuitively, we expect that,

under the family of group mobility models described in Section 2.1.1, the CTR depends

on d(n) in relation to both G(n) and M(n). For instance, we know that the case d(n) = 1

is equivalent to the i.i.d. case discussed in subsection 2.2.2. On the other hand, if all

members of a group are on top of each other, i.e., d(n) = 0 and L(n)
k,m = X

(n)
k for all

m ∈ M(n), the CTR would behave just as in the case when G(n) nodes are independent

and uniformly distributed on the unit ring.

In the following subsection we first discuss the cases for which we can identify a

VST. Then, subsection 2.3.2 examines the remaining cases and provides asymptotic upper

bounds (AUBs) and lower bounds (ALBs) to CTR for most of the remaining cases. 6 We

only provide a proof for Theorem 2.1 in this dissertation. The proof of other results is

similar in nature and can be obtained by modifying that of Theorem 2.1.

The following assumption is in place throughout this section:

Assumption 2.1: We assume G(n) = ω
(
log2(N(n))

)
and M(n) = ω (log(N(n))).

Assumption 2.1 is introduced to ensure that G(n) and M(n) do not increase too

slowly in relation to the total number of nodes in the network.

6 We say that γ(n), n ∈ IN, is an AUB (resp. ALB) to CTR if P(n) (γ(n))→ 1 (resp. P(n) (γ(n))→ 0)
as n→∞.
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2.3.1 Very strong thresholds

Let us start with two cases for which we can “guess” the threshold from the results on

i.i.d. cases summarized in subsection 2.2.2: Intuitively, on one hand, when d(n) is very

small and the locations of the nodes in a group are strongly correlated, we expect the CTR

to behave similarly to the case with d(n) = 0. On the other hand, when d(n) is large and

the locations of the nodes in a group are weakly correlated, the distribution of CTR should

be close to that of i.i.d. case with N(n) nodes. Hence, a natural question is how small or

large d(n) needs to be in order for our intuition to provide the right answer. In the first

two theorems, we provide a sufficient condition to these questions.

Theorem 2.1: Suppose d(n) = o
(

1
G(n)

)
. Then, γ1(n) = log(G(n))/G(n), n ∈ IN, is a

VST, i.e.,

lim
n→∞

P(n)

(
log(G(n)) + αn

G(n)

)
=


1 if αn →∞,

0 if αn → −∞.
(2.4)

The intuition behind Theorems 2.1 is as follows. If we compare the VST γ1(n) to

d(n), obviously, d(n) = o (γ1(n)/ log(G(n))). Hence, the members in different groups

become clustered on short arcs they occupy that the presence of many nodes on each arc

makes little difference in the required CTR. Consequently, we obtain the same VST from

the i.i.d. case with G(n) nodes.

Theorem 2.2: Suppose d(n) = ω
(

log2(N(n))
G(n)

)
. Then, γ2(n) = log(N(n))/N(n), n ∈ IN,
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is a VST. In other words,

lim
n→∞

P(n)

(
log(N(n)) + αn

N(n)

)
=


1 if αn →∞,

0 if αn → −∞.
(2.5)

The finding in Theorem 2.2 is not as obvious as that of Theorem 2.1. One would

expect d(n) = ω (log(N(n))/N(n)) to be necessary in order for γ2(n), n ∈ IN, to be a

VST. 7 However, it is not clear beforehand whether or not d(n) can be allowed to decrease

to zero, while retaining the VST of γ2(n), and if so, how quickly d(n) may decrease.

Theorem 2.2 tells us that d(n) = ω
(
log2(N(n))/G(n)

)
, even though d(n) may decrease

to 0 as n→∞ from Assumption 2.1, is sufficient for the CTR to behave (asymptotically)

as in the i.i.d. case with N(n) nodes.

Fig. 2.3: Summary of results.

As shown in Fig. 2.3, Theorems 2.1 and 2.2 cover two extreme cases – namely

d(n) = o(1/G(n)) and d(n) = ω
(
log2(N(n))/G(n)

)
– and leave out the case in the

middle where d(n) is both Ω(1/G(n)) and O(log2(N(n))/G(n)). Unfortunately, we are

not able to find a single VST for this case; in fact, we suspect that no such threshold exists.

8 Hence, we divide it into subcases to be studied separately. In addition, a VST is known

7 In Section 2.4, we will provide a numerical example that hints d(n) = ω (log(N(n))/N(n)) is not
sufficient for γ2(n) to be a VST.

8 We base this comment on an observation that the VST provided in Theorem 2.3 below for a sub-
regime does not appear to be large enough for another subregime as illustrated by a numerical example in
Section 2.4.
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only for one of the subcases, and only AUBs and ALBs to CTR are provided for most of

the other subcases.

Theorem 2.3: Suppose that d(n) = β · log(G(n))/G(n), where 0 < β < 1. Then,

γ3(n) =
log(G(n))

G(n)
− d(n)

= (1− β)
log(G(n))

G(n)
, n ∈ IN, (2.6)

is a VST. In other words,

lim
n→∞

P(n)

(
(1− β) log(G(n)) + αn

G(n)

)

=


1 if αn →∞,

0 if αn → −∞.

The intuition behind Theorem 2.3 is that, when d(n) is smaller than (but not neg-

ligible to) γ1(n) in Theorem 2.1, (roughly speaking) the effects of d(n) to the CTR is a

subtraction of d(n) from the VST γ1(n). This is consistent with our finding in Theorem

2.1; the case d(n) = o(1/G(n)) can be viewed as a limiting case of Theorem 2.3 where

β ↓ 0, while the VST γ3(n) ↑ γ1(n) as a result of d(n) being o(log(G(n))/G(n)).

2.3.2 Asymptotic upper and lower bounds to CTR

As mentioned earlier, identifying a VST for the remaining cases (which are not covered

by Theorems 2.1 through 2.3) is difficult. Here, we provide AUBs to CTR for most of the

remaining cases and ALBs to some cases. We illustrate how good these AUBs are in the

following section, using numerical examples.
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Theorem 2.4: Suppose that d(n) = β log(N(n))
G(n)

, where β > 1. Then,

lim
n→∞

P(n)

(
α

log(N(n))

N(n)

)
= 1

if α > β log
(

β
β−1

)
.

Define a mapping f : (1,∞)→ (1,∞), where

f(β) := β log

(
β

β − 1

)
. (2.7)

One can easily show that f is strictly decreasing and convex. Furthermore,

lim
β↑∞

f(β) = 1 and lim
β↓1

f(β) =∞. (2.8)

This can be seen from Fig. 2.4.

Fig. 2.4: Plot of f(β) = β log(β/(β − 1)).

When β � log(N(n)), we have d(n) � log2(N(n))/G(n). Thus, intuitively one

expects that the distribution of CTR is close to that of the case in Theorem 2.2 (when

d(n) = ω(log2(N(n))/G(n))) and, hence, is concentrated around the threshold γ2(n) =

log(N(n))/N(n) for all sufficiently large n. Indeed, for β � 1, f(β) ≈ 1 from Fig. 2.4

and the AUBs are close to γ2(n).
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In addition, when log(M(n)) = o (log(G(n))), we have log(N(n))/G(n) = (log(G(n))+

log(M(n)))/G(n) ≈ log(G(n))/G(n). Thus, the result in Theorem 2.4 complements the

finding in Theorem 2.3. Combined, these two theorems reveal an important observation

that there is sudden change in the way the CTR scales as d(n) increases from just below

log(G(n))/G(n) to just above it; note that γ3(n) = Θ(log(G(n))/G(n)), whereas the

AUB in Theorem 2.4 is O(log(N(n))/N(n)). For all sufficiently large n, which implies

M(n)� 1, we have log(G(n))/G(n)� log(N(n))/N(n).

Theorem 2.5: Suppose that d(n) = β log(N(n))
G(n)

, where β > 1, and G(n) ≥M(n). Then,

lim
n→∞

P(n)

(
log(N(n))

N(n)

)
= 0.

Note that Theorem 2.5 tells us that, under the conditions stated in the theorem,

γ2(n) = log(N(n))/N(n) is an ALB. Therefore, combined with the finding in Theo-

rem 2.4, when d(n) = β · log(N(n))/G(n) with β > 1 and G(n) ≥ M(n), if there

exists a VST, it must lie between log(N(n))/N(n) and f(β) · log(N(n))/N(n), where

f(β) ≈ 1 for large β (roughly speaking, for β > 2).

Furthermore, the finding in the theorem is not very surprising; intuitively, we be-

lieve that the required CTR tends to decrease with increasing d(n), and γ2(n), n ∈ IN,

gives rise to a VST for the case d(n) = 1, i.e., i.i.d. case. Hence, we suspect that a VST

for the case considered in Theorems 2.4 and 2.5, if one exists, should not be smaller than

γ2(n).

Theorem 2.6: Suppose (i) d(n) = β log(N(n))
G(n)

with 0 < β < 1 and (ii)M(n) = ω(N(n)1−β+ε)

for some ε > 0. Then,

lim
n→∞

P(n) (γ6(n)) = 1,

25



where

γ6(n) =
((1− β) β log(N(n)) + αn) log(N(n))

N(n)
(2.9)

and αn →∞.

Note that the second part of the assumption in Theorem 2.6 is stronger than As-

sumption 2.1. Moreover, as β ↑ 1, γ6(n) ≈ αn · log(N(n))/N(n). This is consistent with

the AUBs in Theorem 2.4, namely α · log(N(n))/N(n) with α > f(β) ↑ ∞ as β ↓ 1

from (2.8).

Consider a special case where β = 1/2 and M(n) = N(n)0.5+ε and G(n) =

N(n)0.5−ε for some ε > 0. Then,

d(n) = β
log(N(n))

G(n)
≈ (1 + 2ε) log(G(n))

G(n)

≈ log(G(n))

G(n)
,

and

γ6(n)≈ (0.5 log(G(n)) + αn) log(N(n))

N(n)

≈ (log(G(n)) + 2αn) log(G(n))

G(n) ·M(n)
. (2.10)

This provides us with a glimpse of how the scaling behavior of the CTR changes around

d(n) ≈ log(G(n))/G(n), i.e., as d(n) crosses over from the regime considered in The-

orem 2.3 (where d(n) = β · log(G(n))/G(n) with β < 1) to the other side with β ≥ 1. As

one would suspect, the scaling behavior is quite different for γ3(n) = Θ (log(G(n))/G(n))

and the AUB γ6(n); since log(G(n)) = o(M(n)) in (2.10), γ6(n) decreases faster than

the VST γ3(n).

Our results in this section are summarized in Table 2.1.
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Theorem d(n) M(n) Tx Range Type

1 o
(

1
G(n)

)
log(G(n))
G(n)

VST

2 ω
(

log2(N(n))
G(n)

)
log(N(n))
N(n)

VST

3 β log(G(n))
G(n)

with 0 < β < 1 log(G(n))
G(n)

− d(n) VST

4 β log(N(n))
G(n)

with 1 < β α log(N(n))
N(n)

with α > β · log
(

β
β−1

)
AUB

5 β log(N(n))
G(n)

with 1 < β M(n) ≤ G(n) log(N(n))
N(n)

ALB

6 β log(N(n))
G(n)

with 0 < β < 1 ω(N(n)1−β−ε), ε > 0 ((1−β) β log(N(n))+αn) log(N(n))
N(n)

AUB

Tab. 2.1: Summary of results (VST = very strong threshold, AUB = asymptotic upper bound, ALB
= asymptotic lower bound)

2.3.3 Discussion on the numerical example in Fig. 2.2

Let us revisit the example provided in Fig. 2.2. For the given values G(n) = 100

and M(n) = 200, we have log(G(n))/G(n) = 0.0461, log(N(n))/G(n) = 0.0990

and log(N(n))/N(n) = 4.95 × 10−4. Hence, when d(n) = 0.03, since d(n) = β ·

log(G(n))/G(n) with β = 0.65, we can apply the finding in Theorem 2.3; it tells us that

the phase transition should occur around γ3(n) = 0.0161 = 10−1.79. This is consistent

with the plot for d = 0.03 in Fig. 2.2, where the median of CTR is approximately 10−1.73.

As d(n) increases from 0.03 to 0.08 and then to 0.2, however, the (distribution of)

CTR goes through a rather dramatic change: Note that d(n) = 0.2 = β · log(N(n))/G(n)

with β = 2.02. Hence, the finding from Theorem 2.4 and the plot of f(β) in Fig. 2.4

indicate that the phase transition in probability should happen near or below the AUB

given by 1.4 · log(N(n))/N(n) = 6.93× 10−4 = 10−3.159. Note that this is very close to

the median of CTR for d(n) = 0.2 in Fig. 2.2.

These illustrate that the parametric sensitivity exhibited by the (distribution of) CTR

to d(n) in Fig. 2.2 over an interval can be easily explained by our findings. Moreover, it

suggests that such parametric sensitivity will exist in many, if not most, settings, possibly

even in higher dimensions as well.
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2.4 Numerical results

In this section we first present numerical examples that demonstrate the validity of VSTs

found in subsection 2.3.1. Then, we show, using numerical examples, that the asymptotic

bounds provided in Theorem 2.4 are relatively tight in many cases.

In these examples, there are 500 groups (G = 500) with 40 members in each group

(M = 40) with a total of 20,000 nodes (N = 20, 000). For each example, we generate

1,000 samples and compute the fraction of times the network is bi-directionally connected

as a function of communication range. We also examine the fraction of times the network

is connected according to the usual notion of connectivity in Definition 2.1.

Example 1: Fig. 2.5 plots the numerical results (solid blue curve) and the VST

(dotted vertical red line) computed using (a) γ1 for d = 0.001 and (b) γ2 for d = 0.25.

Note that d = 0.001 < 1/G = 0.002 in the first case, whereas d = 0.25 > log2(500 ×

40)/500 = 0.196 in the second case. The plots suggest that indeed the phase transition

in the probability takes place around the provided VST for both cases, corroborating our

findings in Theorems 2.1 and 2.2.

(a) (b)

Fig. 2.5: Example 1: VSTs in Theorems 2.1 and 2.2 (G = 500, M = 40). (a) d = 0.001, (b)
d = 0.25
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The figure also plots the probability of “usual” connectivity defined in Definition 2.1

(shown as purple line), which lies above the probability of bi-directional connectivity as

expected. The plots reveal that it goes through a similar phase transition around the same

threshold for both cases, as mentioned in Section 2.1.1.

Example 2: For this example, we vary d from 0.003 to 0.006 with an increment

of 0.001, in order to see the effects of d on the CTR. Note that log(G)/G = 0.0124 >

d. It is clear from Fig. 2.6 that the phase transition in the probability of bi-directional

connectivity occurs around the VST computed using γ3 in (2.6). Moreover, as predicted

by Theorem 2.3, the location of phase transition decreases linearly with d.

Fig. 2.6: Example 2: VSTs from Theorem 2.3 (G = 500,M = 40).

Example 3: Fig. 2.7 plots the probability of bi-directional connectivity (solid blue

line) for three different values of d (d = 0.02, 0.03, and 0.04). Note that, for the given

values of G and M , we have log(N)/G = 0.0198 < d. Hence, we consider the regime in

Theorems 2.4 and 2.5 in this example. We also plot f(β) · log(N(n))/N(n) (dotted ver-

tical red line) from Theorem 2.4, where f(β) is defined in (2.7) and β = d×G/ log(N).

Fig. 2.7(a) suggests that when β = 0.02/0.0198 ≈ 1, f(β) · log(N(n))/N(n) tends
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(a) (b)

(c)

Fig. 2.7: Asymptotic upper bounds in Theorem 2.4 (G = 500,M = 40). (a) d = 0.02, (b)
d = 0.03, (c) d = 0.04.

to overestimate where the phase transition happens. However, Figs. 2.7(b) and (c) show

that when β > 1.5, f(β) · log(N(n))/N(n) lies in the middle of phase transition, hinting

that the AUB in Theorem 2.4 may provide a good estimate of a VST, if one exists.

Fig. 2.7(b) also plots log(N)/N (dotted vertical yellow line). The plot indicates

that, although d = 0.03� log(N)/N = 4.95× 10−4 (in fact, d > log(N)/G = 0.0198),

log(N)/N appears to underestimate the threshold, hinting that d(n) = ω(log(N(n))/N(n))

is not sufficient for γ2(n) to be a VST.

Example 4: In the final example we consider the regime studied in Theorem 2.6.

Note that d = 0.014 < log(N)/G = 0.0198 with β = d × G/ log(N) = 0.707, and
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M = 40 > (500 × 40)(1−0.707) = 18.2. Fig. 2.8 shows the plot of probability of bi-

directional connectivity (solid blue line) and usual connectivity (purple line) as well as

the AUB in (2.9).

There are two things to notice from the figure. First, the AUB provided in Theo-

rem 2.6 does point to where the probability goes through a transition. Second, unlike in

other cases, unfortunately the transition in probability takes place much slower for both

notions of connectivity. In particular, while the probability increases rapidly at the be-

ginning as in other cases, the tail of the distribution is much larger, especially for the

bi-directional connectivity.

Fig. 2.8: Example 2: AUB from Theorem 2.6 (G = 500,M = 40, d = 0.014).
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3. NODE ISOLATION WITH TRUST CONSTRAINT

In this chapter we will study the network connectivity when one-hop connectivity of two

nodes is decided by both geometric and trust constraints. The rest of the chapter is or-

ganized as follows: Section 3.1 explains the setup, mobility model and parametric sce-

nario. Main results are presented in Section 3.2 and numerical results are provided in

Section 3.3.

3.1 Setup

In this section we first explain the assumed mobility model of nodes and the the one-hop

connectivity of the random graph. Then, we describe the parametric scenario we assume

for our asymptotic analysis as the number of nodes in the network increases.

3.1.1 Node mobility and one-hop connectivity

Suppose that for each n ∈ N, there are n ≥ 1, nodes in the network that move on a unit

rectangle, which we denote by Ω, which is folded up into a torus. The mobility process or

trajectory of node k where k ∈ Nn := {1, 2, . . . , n} is denoted by X(n)
k := {X(n)

k (t); t ∈
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R+}, where R+ := [0,∞). For t ∈ R+, the random variable (rv) X(n)
k (t) ∈ Ω indicates

the location of node k at time t. The locations of the n nodes at time t ∈ R+ are given by

n independent rvs uniformly distributed on the torus.

At time t ∈ R+, we say that there exists a bi-directional (communication) link

between two nodes j and k if and only if these two nodes satisfy the following two con-

straints.

First, the geometric constraint is that the two nodes should be within a certain com-

munication range to have a link. In addition to the geometric constraint, we assume that

each node i ∈ Nn communicates only with other nodes that are trustworthy. In order to

model this, we introduce a trust constraint.

1. Geometric constraint- For t ∈ R+, we assume that nodes j and k can communi-

cate if and only if their distance D(X
(n)
j (t), X

(n)
k (t)) satisfies

D(Xn
j (t), X

(n)
k (t)) = ||X(n)

j (t)−X(n)
k (t)||2 ≤ r(ξ) :=

√
ξ log (n)

πn
. (3.1)

2. Trust constraint- Let us introduce two arrays of rvs: Each node j has two variables

(Θ
(n)
j , T

(n)
j ). The variable T (n)

j denotes node j’s trust level, i.e., how much other nodes

can trust node j. The variable Θ
(n)
j represents node j’s trust threshold. In other words,

node j would trust node k if and only if node k’s trust level is higher than node j’s trust

threshold, i.e., T (n)
k ≥ Θ

(n)
j . Hence, nodes j and k would trust each other if and only if

T
(n)
k ≥ Θ

(n)
j and T (n)

j ≥ Θ
(n)
k . (3.2)

Throughout this chapter, we assume that {G(n)
j = (Θ

(n)
j , T

(n)
j ), j ∈ Nn} are given by joint
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rvs with a common distribution G(n) on G ⊂ R2.

Under the two aforementioned constraints, we will specify the one-hop connectivity

of two nodes by the following definition.

Definition 3.1: Given the locations of n nodes and fixed t > 0, we define that node j is a

neighbor of node k, which we denote by j ↔ k, if and only if (i) D(X
(n)
j (t), X

(n)
k (t)) ≤

r(ξ) and (ii) T (n)
j ≥ Θ

(n)
k and T (n)

k ≥ Θ
(n)
j .

We denote the set of node i’s neighbors by Ni, i ∈ Nn. We say that a node is

isolated if it does not have any neighbor, i.e., Ni = φ.

We adopt the same definition of the connected network in Definition 2.1 in Sec-

tion 2.1. The network connectivity simply means that, given any two nodes in the net-

work, we can find a sequence of intermediate nodes that can provide the end-to-end con-

nectivity between the two nodes. It is clear that if there is an isolated node, then, the

network is not connected.

3.1.2 Parametric scenario

We are interested in examining how the smallest communication range necessary for no

node isolation scales as the number of nodes, n, increases. As we explained in the previ-

ous section, for each n ∈ N, there are n ≥ 1 nodes in the network. These n nodes move on

Ω according to mobility processes X(n)
k = {X(n)

k (t); t ∈ R+}, k ∈ Nn := {1, 2, . . . , n}.

In order to make progress we introduce the following assumptions on the mobility pro-

cesses:

A1. The processes are X(n)
k , k ∈ Nn, are mutually independent;
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A2. they are stationary and ergodic; and

A3. X(n)
k , k ∈ Nn, yields a uniform spatial distribution.

Also, each node j has two variables (Θ
(n)
j , T

(n)
j ) which represent trust level and

trust threshold, and {G(n)
j = (Θ

(n)
j , T

(n)
j ), j ∈ Nn} are given by independent rvs with a

common joint distribution G(n) with a continuous density g(n) on G ⊂ R2. We assume

that the joint distribution is sufficiently smooth, which we capture by the following as-

sumption.

A4. There exists κ <∞ such that,

∣∣g(n)(x̄1)− g(n)(x̄2)
∣∣ ≤ κ||x̄1 − x̄2||2

for all x̄1, x̄2 ∈ G.

3.2 Main Results

In order for a network to be able to provide an end-to-end route between arbitrary sources

and destinations, the network should be connected most of the time. Suppose that we

sample the network at time ts ∈ R+. From the stated stationary assumption, without loss

of generality, we can assume ts = 0. Furthermore, for notational simplicity we omit the

dependence on time, e.g., we write X(n)
k in place of X(n)

k (0). Therefore, we examine the

connectivity of the sampled static graph instead.

Let G(n; r) be the random graph representing the one-hop connectivity of the net-

work with n nodes sampled at t = 0, where each node employs a common communication

range of r.
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We are interested in understanding how the probability of having an isolated node

is affected by the trust constraint in (3.2) as n increases. As we explained in Section 3.1,

link connection is decided by both locations and trustworthiness of two nodes.

Let us define P(n)(r(n)(ξ)) to be the probability that none of n nodes is isolated

with a common transmission range r(n)(ξ) where r(n)(ξ) =
√
ξ log (n)/πn, i.e.,

P(n)(r(n)(ξ)) := P
[
Ni 6= φ for all i ∈ Nn with a common transmission range r(n)(ξ)

]
.

Since the locations of the nodes are mutually independent and uniformly distributed

on Ω and {G(n)
j = (Θ

(n)
j , T

(n)
j ), j =∈ Nn} are given by joint rvs with a common distribu-

tion G(n) on G, we will consider specific node 1 and node 2.

Suppose that we define

ψ∗ := inf
ḡ∈G

P (Θ
(n)
2 ≤ t1 and T (n)

2 ≥ θ1|G(n)
1 = ḡ = (Θ

(n)
1 = θ, T

(n)
1 = t)), (3.3)

which is the infimum of the probability that node 1 and node 2 trust each other for given

(Θ
(n)
1 = θ, T

(n)
1 = t).

Next, let us define that

φ := sup
ḡ∈G

P (node 2 is not a neighbor of node 1|G(n)
1 = ḡ)

Then, from the definition of ψ∗, φ can be expressed as

φ = 1− inf
ḡ∈G

P (node 2 is a neighbor of node 1|G(n)
1 = ḡ)

= 1− πr(n)(ξ)2 · ψ∗.

Then, from the following Lemma, we can show that when the common transmission

range is larger than
√

log(n)/(ψ∗πn), the probability of no isolated nodes is very small

for all sufficiently large n.
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Lemma 3.1: Suppose that nodes employ a common transmission range r(n)(ξ). If ξ >

ψ∗−1, the probability that there exists an isolated node decreases to zero as n increases.

In other words,

P(n)(r(n)(ξ))→ 1 as n→∞.

Also, we can show that for sufficiently large n, the probability of network connec-

tivity is close to zero when the common transmission range is smaller than
√

log(n)/(ψ∗πn)

in the following Lemma. Note that the probability of network connectivity is not larger

than the probability that no node is isolated.

Lemma 3.2: Suppose that nodes employ a common transmission range r(n)(ξ). If ξ <

ψ∗−1, the probability that there exists an isolated node goes to one as n increases. In other

words,

P(n)(r(n)(ξ))→ 0 as n→∞.

The proofs of Lemma 3.2 and Lemma 3.2 are provided in Appendix B.

3.3 Numerical Results

In this section, we provide a numerical example. In our example, in the network, there are

N = 200 nodes that are mutually independent and uniformly distributed on the torus. We

assume that each node i, 1 ≤ i ≤ 200, has two variables (Θi, Ti) to represent trust relation

of nodes. The trust level random variable Ti is uniformly distributed in (∆, 1 + ∆) and

the trust threshold random variable Θi is uniformly distributed in (0, 1). Also, Θi and Ti

are independent. We assume that two nodes i and j are connected when they are within
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Fig. 3.1: Probability of network connectivity(N = 200,∆ = 0.8)

the communication range and Ti ≥ Θj and Tj ≥ Θi. Then, under this given distribution

of trust level and trust threshold, we can derive that ψ∗ is ∆2.

We generated 1000 realization and computed the fraction of time the corresponding

random graph is connected as the communication range of the nodes is varied. Fig. 3.1

plots the probability of network connectivity and the probability of no node isolation as

a function of the communication range of the nodes (x-axis) when ∆ = 0.8. We also

plot red vertical line at x = 0.1148 which comes from
√

log (200)/(0.82 · π · 200) to

indicate where we expect the phase transition to occur. As the figure illustrates, indeed

the probability of no node isolation increase sharply around the expected threshold. And,

also, we can see that the probability of no node isolation behaves almost similar to the

probability of network connectivity.
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4. EXPECTED ROUTING OVERHEAD FOR LOCATION SERVICE

IN MANETS UNDER FLAT GEOGRAPHIC ROUTING

In this chapter, we will study routing overhead due to location information collection and

retrieval in mobile ad-hoc networks employing geographic routing. This chapter is or-

ganized as follows: Section 4.1 describes the problem we are interested in studying and

provides a short summary of the results on network connectivity. Section 4.2 explains

the mobility models, assumptions we introduce on mobility and the parametric scenario

used to study the scaling law of expected routing overhead due to location service under

different routing schemes. The minimum expected number of bits required on average to

describe the approximated locations of a node is derived in Section 4.3, followed by a dis-

cussion on how expected routing overhead scales under proactive and reactive geographic

routing schemes in Section 4.4. We study the minimum expected routing overhead and

describe a scheme that achieves the same scaling order as the minimum expected routing

overhead in Section 4.5. A discussion on our findings is provided in Section 4.6.
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4.1 Setup

Throughout the chapter we use a discrete-time model and assume that time is divided

into contiguous timeslots t ∈ Z+ := {0, 1, 2, . . .}, where the duration of a timeslot is

taken to be a unit time. Although the mobility of a node is continuous in real life, we

approximate it using a discrete-time stochastic process and assume that the location of

a node is fixed during a timeslot. This may be a reasonable assumption when a node

is (quasi-)stationary much of the time and spends a relatively small fraction of time in

transition between locations or if the duration of timeslot is small enough so that, with

high probability, the location of a node does not change significantly over the duration

of a single timeslot. However, with small probability, the location of a node may change

significantly from one timeslot to next. A similar assumption is often introduced in the

literature (e.g., [39, 56, 57]).

In a multi-hop wireless network, one-hop connectivity between nodes is likely to

be maintained through exchange of control messages (e.g., HELLO messages) at the data

link layer. For our analysis we model the one-hop network connectivity using a geometric

random graph (GRG) [17]: Each node i is aware of and can communicate with all other

nodes within its communication or transmission range γ (according to the Euclidean dis-

tance), which we call immediate neighbors, or simply neighbors, of node i. We say that

there is a bi-directional link, or simply a link, between two neighbors.

The GRG model has been used extensively in the literature as an approximate model

to one-hop connectivity of wireless networks (e.g., [8, 11, 12, 40, 20]). The transmission

range γ in the GRG model is assumed to be determined by the transmit power employed
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by the nodes, channel propagation and the signal-to-noise ratio corresponding to a bit

error rate constraint [8]. Under a channel loss model often used in the literature, the

received power Prcv is related to the transmit power Ptx and the distance d by

Prcv = Ptx ·Gtx ·Grcv · L · d−α, (4.1)

whereGtx andGrcv are the transmitter and receiver antenna gain, respectively, L accounts

for system loss and other factors that may depend on the wavelength, and α is the path loss

exponent [49]. If one requires that the received power Prcv ≥ Pmin for some threshold

Pmin, we must have

d ≤
(
Ptx ·Gtx ·Grcv · L

Pmin

)1/α

(4.2)

and Ptx ∝ dα. While our analysis is carried out under the GRG model, we will discuss

how our results can be extended to different network connectivity models such as quasi

unit disk model [44] and cost based model [50] in Section 4.6.

Throughout the chapter we assume that every node knows its immediate neighbors.

In addition, when a packet reaches an immediate neighbor of its destination, the neighbor

can deliver it to the destination in one-hop without any other information.

4.1.1 Geographic routing and overhead for location service

We assume that nodes are equipped with Global Positioning System (GPS) devices and

know their positions, which are assumed accurate throughout. Each node is aware of

exact locations of its immediate neighbors. 1 This can be done either by exchanging the
1 In practice, for proper operation of geographic routing the location information of neighbors needs

to be accurate relative to the transmission range of the nodes. However, for simplicity of exposition we
assume that nodes know the exact locations of their neighbors.
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GPS location information between one-hop neighbors (for example, by piggybacking it

in HELLO messages) or by observing the received signal strength and angle in which

signals arrive.

Nodes employ geographic (or position-based) routing; they route packets using

location information of the destinations [53, 54]. It has been suggested [41, 46] that

geographic routing leads to better performance in large multi-hop wireless networks than

other routing schemes that do not exploit location information (e.g., destination-sequenced

distance vector (DSDV) routing [47] or dynamic source routing (DSR) [42]). A main rea-

son for the performance gain is that, while routing schemes such as DSDV require global

topological information that can change frequently, geographic routing allows nodes to

make local decisions based on the locations of their immediate neighbors and the desti-

nation, without having to learn end-to-end route information.

Obviously, for proper operation of geographic routing, the location information of

the destination contained in packets must be accurate enough so that nodes can route

them to their destinations using the destination ID and location information. However,

more accurate location information requires more bits, hence, larger overhead. We are

interested in the case where the provided location information of destinations is accurate

enough so that multi-hop packet routing can be performed using the location information

without having to flood the neighborhoods of destinations with packets, while minimizing

the number of bits required to describe location information.

Our study aims at (i) developing a new framework for quantifying routing over-

head in MANETs employing geographic routing and (ii) examining how the routing

overhead (measured in the unit of bits×meters per unit time proposed in [9]) required
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to disseminate and acquire location information of the nodes, scales with the number of

nodes. We do not, however, concern ourselves with the delays experienced by messages.

More precisely, we assume: (i) nodes can deliver their location information at timeslot

t ∈ {1, 2, . . .} =: IN, to any other nodes within the same timeslot (assuming network

connectivity discussed in the following subsection); and (ii) assuming that nodes know

where to access it, they can retrieve the location information of other nodes during the

same timeslot. This implicitly assumes that the network has sufficient bandwidth to han-

dle all overhead, including routing overhead, and to transport data in a timely manner.

In practice, however, the delays incurred during dissemination and/or acquisition of lo-

cation information can be non-negligible and cause inconsistency or staleness of location

information.

Exchange of control messages to discover neighbors and to maintain links with

them introduces additional overhead at the data link layer. However, we do not consider

this overhead at the data link layer, including the overhead due to exchange of location

information with immediate neighbors, because it does not depend on the adopted routing

scheme. We refer interested readers to a study by Bisnik and Abouzeid in [33].

4.1.2 Network connectivity and critical transmission range

A primary function of a communication network is to enable exchange of information

between nodes. When information is time-sensitive or cannot tolerate large delays, timely

delivery of information demands that the underlying network be connected. In other

words, there must exist an end-to-end path from a source to a destination (with a high

probability) when such a path is desired. This is the scenario of interest we consider in
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this chapter.

Recently there has been much work on connectivity of a multi-hop wireless network

(e.g., [8, 11, 12, 18, 20]). We refer interested readers to a monograph by Penrose [17]. In

particular, Penrose [18] (and later by Santi [20]) proved the following result we will bor-

row: Suppose that n, n ≥ 1, nodes are placed independently of each other, according to

a common spatial density function f with connected and compact supportD and smooth

boundary ∂D. Let γ be a common transmission range of the nodes. The network is said

to be connected if, for every pair of nodes (i, j), we can find a sequence of links providing

an end-to-end route between the two nodes.

Theorem 4.1 ([18, 20]): Define f? := infx∈D f(x) and assume f? > 0. The minimum

common transmission range required for connectivity, denoted by γ?(n), satisfies

lim
n→∞

n π γ?(n)2

log(n)
=

1

f?
with probability 1. (4.3)

4.2 Mobility model and parametric scenario

This section first describes the node mobility processes we consider, and then explains

the parametric scenario we adopt to study how the expected routing overhead for location

service increases with the network size. We define all the random variables (rvs) and

stochastic processes of interest on some common probability space (Ω,F ,P).
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4.2.1 Mobility model

Nodes move on a domain [0, D]2 =: D. 2 As mentioned earlier, we approximate the

mobility of the nodes using discrete-time processes; the mobility process or trajectory

of a node i is given by a discrete-time stochastic process Li = {Li(t); t ∈ Z+}, where

Li(t) = (Li,x(t), Li,y(t)) ∈ D specifies the location or position of the node at time t,

using the Cartesian coordinate system. We assume that, at each timeslot t ∈ IN, the

transition from Li(t− 1) to Li(t) takes place at the beginning of the timeslot.

The steady-state spatial distribution of the nodes is assumed to yield a continuous

density function f : D → IR+ := [0,∞). For each t ∈ Z+, f t denotes the joint density

function of (Li(0), . . . , Li(t)). We assume that there exist constants ξ1 and ξ2, 0 < ξ1 ≤

ξ2 <∞, such that, for all t ∈ Z+ and for all `t ∈ Dt+1,

0 < ξt+1
1 ≤ f t(`t) ≤ ξt+1

2 <∞ , (4.4)

i.e., for every finite t, the joint density function f t is non-vanishing and is also upper

bounded by ξt+1
2 overDt+1. This implies that node’s locations do not concentrate in some

parts of the domainD over time. For example, a two-dimensional Brownian motion with

reflection, starting with an appropriate initial condition and sampled periodically, satisfies

this assumption. Removal of the assumption in (4.4) has a rather serious consequence on

network connectivity (see [10] for an example). Its impact on expected routing overhead

is discussed in more detail in Section 4.6.
2 We assume a square region for convenience. However, similar results hold with any arbitrary compact,

convex domain.
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4.2.2 Parametric scenario

In order to study how the expected overhead scales with the number of nodes in the

network, we consider the following parametric scenario with increasing n: For each fixed

n ∈ IN, there are n nodes moving on the domain D, and we denote the set of nodes by

N (n) = {1, 2, . . . , n}. 3 We assume homogeneous mobility of the nodes. The mobility

process of node i ∈ N (n), given by L(n)
i := {L(n)

i (t); t ∈ Z+}, is assumed stationary and

ergodic. Moreover, the mobility processes L(n)
i , n ∈ N (n), are mutually independent.

1. Connection requests: For each i ∈ N (n) and t ∈ IN, let A(n)
i (t) denote the number

of requests arriving at the other nodes for a connection to node i at timeslot t. Without

loss of generality, we assume {A(n)
i (t); t ∈ IN} =: A

(n)
i , are independent and identically

distributed (i.i.d.) Bernoulli rvs with parameter p(n) > 0. This implies that at most one

other node will generate a connection request to node i, which is called the source of the

connection, in each timeslot. We assume that the source is equally likely to be any of

the remaining n− 1 nodes, independently of the past and the sources of other connection

requests.

Each connection request arriving at its source needs the location information of its

destination for geographic routing. We assume that connection requests arrive at their

sources at the beginning of each timeslot t ∈ IN after nodes move to their new locations

L
(n)
i (t), i ∈ N (n). The connection request arrival processes A(n)

i , i ∈ N (n), are mutually

independent and also independent of mobility processes L(n)
i , i ∈ N (n).

Since we are interested in studying how the routing overhead grows with the num-

ber of nodes, we assume that the average number of connection requests to each node per
3 This is often called a dense network in the literature.
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timeslot is fixed, i.e., E
[
A

(n)
i (t)

]
= p(n) = p > 0 for all i ∈ N (n) and all n ∈ IN. Because

the source of a connection request to a node is equally likely to be any of the remaining

n− 1 nodes, it is clear that, for each fixed n ∈ IN, the number of connection requests that

arrive at a node (as the source) in a timeslot is a binomial(n− 1, p
n−1

) rv.

2. Transmission range: We are interested in the case where the nodes adjust their

common transmission range to maintain network connectivity as discussed in subsec-

tion 4.1.2. Therefore, the transmission range of the nodes should be at least the CTR

γ?(n) = c?
√

log(n)/n with c? = 1/
√
π f? [20]. In their seminal paper on transport

throughput [9], Gupta and Kumar showed that, in order to minimize interference to other

simultaneous transmissions and to maximize transport throughput in a multi-hop wireless

network, nodes should employ the smallest transmission range while maintaining network

connectivity (i.e., the CTR γ?(n)).

In the subsequent sections we follow this finding by Gupta and Kumar [9] and

assume that nodes employ a common transmission range of γ?(n) to maximize transport

throughput and keep the network connected with a high probability. 4

Assumption 4.1: For each fixed n ∈ IN, the transmission range of the nodes is given by

γ?(n).

We will discuss how different choices of transmission ranges affect our findings in

Sections 4.3 through 4.5.

4 To ensure network connectivity with high probability for finite n, the transmission range should be set
to β? · γ?(n), where β? > 1. However, for notational simplicity we omit β? in the analysis. The omission
of this constant β? does not change our results.
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4.3 Description of node locations

First, note that the location L(n)
i (t) ∈ D of node i at time t is a two-dimensional con-

tinuous random vector for all t ∈ Z+. Therefore, they cannot be described exactly with

a finite number of bits in general. Moreover, for the purpose of routing packets using

location information, exact locations are not necessary and sufficiently accurate approx-

imations of locations suffice. Hence, we are interested in finding out how accurate the

location information contained in packets must be so as to allow successful routing of

packets based on the provided location information.

The number of bits needed for approximated location information carried by pack-

ets for geographic routing is governed by the aforementioned required accuracy and the

way location information is encoded. The first determines the quantization level to be

selected for approximation. Bisnik and Abouzeid [33] utilized the rate distortion theory

to compute the necessary information rate subject to a squared-error distortion constraint.

This approach, however, may require that different quantization levels be used in differ-

ent regions, depending on the spatial distribution, and allows for the possibility that the

location information of nodes in an area of low spatial density is not accurate enough for

successful delivery of packets.

We argue that a communication network should be able to deliver packets irrespec-

tive of nodes’ locations. This is especially true when the spatial distribution of the nodes

is not correlated with their communication needs. In this case, non-uniform approxima-

tion of location information demanded by rate distortion theory, which does not consider

the communication needs, may compromise the communication with nodes in low spatial
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density areas and, hence, may be unsuitable.

In this section we investigate the minimum expected number of bits required per

timeslot to specify approximated locations of a node to enable geographic routing. For the

reason explained above, we assume that the selected quantization level for approximating

node locations does not depend on their locations. Furthermore, as stated in subsection

4.2.2, we focus our study only on the case of practical interest where the network is

connected with probability approaching one, by setting the common transmission range

of the nodes to the CTR γ?(n) = c?
√

log(n)/n.

Before stating our result, let us first briefly describe the class of packet routing

schemes we consider. Packets carry both the destination ID and approximated location

information. The encoding and decoding rules for approximated locations are assumed

common knowledge.

1. The source of a packet encodes the location of its destination, which is approximated

with a selected quantization level, using the common encoding rule and places the en-

coded location information in the packet.

2. A relay node that receives a packet first checks if the destination is an immediate

neighbor. If so, it delivers the packet to the destination. If not, it decodes the approximated

location of the destination using the common decoding rule. It then selects an immediate

neighbor that is closest to the decoded approximated location as the next hop. Recall that

the nodes are assumed to know the precise locations of their immediate neighbors.

It has been observed that as the network becomes dense, a greedy approach that

either minimizes the distance or maximizes the forward progress to the destination works

well [46]. However, when a greedy approach fails, other schemes, such as Greedy-Face-
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Greedy (GFG) routing scheme [34], can be used to guarantee the delivery.

The following lemma states that the minimum expected number of bits needed

on average to describe the approximated locations of a node for geographic routing ap-

proaches log(n) asymptotically as n → ∞. This finding will be used to study how the

expected overhead scales under proactive or reactive geographic routing (Section 4.4) and

to derive the scaling law of minimum expected overhead (Section 4.5).

Lemma 4.1: The minimum expected number of bits required per timeslot to describe

approximated locations of a node under Assumption 4.1, denoted by mloc(n), satisfies

mloc(n) ∼ log(n).

Proof: We find lower and upper bounds formloc(n) and show that both bounds are asymp-

totically log(n).

1. Lower bound: In order to find a lower bound for mloc(n), consider the following:

Suppose that a quantization level of 4γ?(n) is selected for approximating locations and

the domain D is divided into cells of length 4γ?(n), where γ?(n) = c?
√

log(n)/n is the

CTR introduced in subsection 4.1.2, as shown in Fig. 4.1.

*γ

γ

4

Destination

cell

Centroid

(n)

4

γ (n)

γ2

(n)

(n)

*

*

*

Fig. 4.1: Partition ofD into cells of length 4γ?(n) on both sides.

Without loss of generality, we assume that the approximated locations of the nodes
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in a cell with the assumed quantization level are given by the centroid of the cell. This

means that a relay node forwarding a packet to the destination shown in the figure will

use the location of the centroid as the approximated location of the destination (after

decoding the location using the common decoding rule). If none of relay nodes is an

immediate neighbor of the destination (which is more likely than not), the packet will

eventually enter the inner circle centered at the centroid with radius γ?(n). Once this

happens, the packet cannot be delivered to any node outside the outer (dotted) circle with

radius 2γ?(n); the nodes inside the inner circle do not know the precise locations of the

nodes outside the outer circle because they are not immediate neighbors. This implies

that, without knowing a more precise location of the destination, the entire cell will need

to be flooded with the packet before it can reach its destination. This tells us that the

quantization level of 4γ?(n) is not accurate enough to prevent flooding of the packet.

Let us compute the expected number of bits required per timeslot to describe the

locations using this insufficient quantization level of 4γ?(n). Under the stated assumptions

on stationarity of the mobility processes and spatial density in (4.4) in subsection 4.2.1,

the differential entropy rate of the mobility process [35, p.416]

h? := lim
T→∞

h(L
(n)
i (0), L

(n)
i (1), . . . , L

(n)
i (T − 1))

T
(4.5)

exists and is bounded below (resp. above) by − log(ξ2) (resp. − log(ξ1) <∞).

For each ∆ > 0, let L(n)
i,∆(t) be an approximation of L(n)

i (t) with a quantization level

∆; L(n)
i,∆(t) = ((k1 + 1

2
)∆, (k2 + 1

2
)∆) if L(n)

i (t) ∈ [k1 ·∆, (k1 +1)∆)×[k2 ·∆, (k2 +1)∆).

Denote the approximated mobility processes by L(n)
i,∆ = {L(n)

i,∆(t); t ∈ Z+}. From the
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inherited stationarity of the approximated mobility processes, the entropy rate of L(n)
i,∆

H
(n)
∆ := lim

T→∞

H(L
(n)
i,∆(0), L

(n)
i,∆(1), . . . , L

(n)
i,∆(T − 1))

T
(4.6)

exists [35, Thms 4.2.1 and 4.2.2, p.75]. In addition, the following equality holds [35, Thm

8.3.1, p.248]: For all T ≥ 1,

lim
∆↓0

(
H(L

(n)
i,∆(0), L

(n)
i,∆(1), . . . , L

(n)
i,∆(T − 1))

T
+ 2 log(∆)

)

=
h(L

(n)
i (0), L

(n)
i (1), . . . , L

(n)
i (T − 1))

T
. (4.7)

Equations (4.5) through (4.7) imply that, for every ν > 0, there exist ∆∗(ν) > 0

and T ∗(ν) <∞ such that, for all ∆ ≤ ∆∗(ν) and T ≥ T ∗(ν), we have

h? − 2 log(∆)− ν ≤
H(L

(n)
i,∆(0), . . . , L

(n)
i,∆(T − 1))

T

≤ h? − 2 log(∆) + ν . (4.8)

Substituting ∆(n) := 4γ?(n) in place of ∆ yields

h? − 2 log(∆(n))± ν

= h? − 2 log(4γ?(n))± ν = h? − 2 log

(
4 c?
√

log(n)

n

)
± ν

= log(n)− log(log(n)) + (h? ± ν − 4− 2 log(c?)) . (4.9)

Since h?± ν − 4− 2 log(c?) are fixed, it is clear from (4.9) that h?− 2 log(∆(n))± ν ∼

log(n). Together with (4.8), this proves that, for all sufficiently large T ,

H(L
(n)
i,∆(n)(0), . . . , L

(n)
i,∆(n)(T − 1))

T
∼ log(n) . (4.10)

The left hand side of (4.10) is equal to the minimum expected number of bits we need per
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timeslot to jointly code the locations, L(n)
i,∆(n)(0), . . . , L

(n)
i,∆(n)(T−1), 5 using an insufficient

quantization level ∆(n). Hence, it serves as a lower bound to the number of bits we need,

and (4.10) tells us that this lower bound increases (asymptotically) as log(n).

2. Upper bound: We can obtain an upper bound for mloc(n) following essentially the

same argument used to find the lower bound: Recall that, in order to route a packet to a

node i, it suffices to deliver the packet to any immediate neighbor within the transmission

range γ?(n) of node i. As in the previous case of lower bound, suppose that the domainD

is divided into cells of length ς(n), where ς(n) :=
√

2γ?(n)/3. The approximated location

of a node in a cell is given by the centroid of the cell. This is shown in Fig. 4.2.

A packet is relayed using the location of the centroid of the cell in which its des-

tination lies. If none of relay nodes the packet traverses before it enters the cell is an

immediate neighbor of its destination, it will eventually be relayed to a node in the same

cell as the destination. 6 It is clear from Fig. 4.2 that, once a packet reaches any node in

the same cell as the destination, the node will be able to deliver the packet directly to the

destination because the distance between any two nodes in the same cell is bounded by

2γ?(n)/3. Therefore, approximating locations with a quantization level of ς(n) is sufficient

to ensure successful delivery of packets using the approximated location information.

We proceed to compute the average number of bits needed per timeslot to approx-

imate the locations using the quantization level ς(n). From [35, Thm 8.3.1, p.248] and

5 Joint coding of the locations of node i requires that, for each t ∈ Z+, the sequence of the locations
{L(n)

i,∆(n)(0), . . . , L
(n)
i,∆(n)(t)} be coded together, using a different coding scheme. As a result, such joint

coding of node’s locations will be difficult to implement in practice.
6 Here we assume that there is a node in the cell with a high probability. We will revisit this issue in

Section 4.5 and show that the probability that there is no node in the cell goes to zero as n→∞.
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Fig. 4.2: Partition ofD into cells with area of ς(n)2. (γ?(n) = 3 ς(n)/
√

2)

assumed stationarity of the mobility processes, we have

lim
∆↓0

H(L
(n)
i,∆(t)) + 2 log(∆) = h(L

(n)
i (t)) for all t ∈ Z+ .

Thus, for every ν > 0, we can find ∆†(ν) > 0 such that, for all ∆ ≤ ∆†(ν),

h(L
(n)
i (t))− 2 log(∆)− ν ≤H(L

(n)
i,∆(t)) (4.11)

≤ h(L
(n)
i (t))− 2 log(∆) + ν .

Following the same steps in (4.9), after a little algebra

h(L
(n)
i (t))− 2 log(ς(n))± ν

= h(L
(n)
i (t))− 2 log

(√
2

3
c?
√

log(n)

n

)
± ν

= log(n)− log(log(n))

+(h(L
(n)
i (t))± ν − 2 log(

√
2/3)− 2 log(c?))

∼ log(n) . (4.12)

Therefore, from (4.11) and (4.12) we find

H(L
(n)
i,ς(n)(0)) ∼ log(n) . (4.13)
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Equation (4.13) suggests that, even when the locations of a node are coded sepa-

rately at each timeslot, from the assumed ergodicity of mobility processes, the minimum

average number of bits needed per timeslot to approximate node i’s locations with a

sufficient quantization level ς(n) is (asymptotically) log(n). Thus, from the lower and

upper bounds in (4.10) and (4.13), respectively, one can conclude that the minimum ex-

pected number of bits needed per timeslot to describe the locations of a node satisfies

mloc(n) ∼ log(n).

The above proof of Lemma 4.1 reveals the following interesting observation: In the

calculation ofmloc(n), node i’s mobility determines the differential entropy ofL(n)
i (t), t ∈

Z+, and the differential entropy rate h? of the mobility process L(n)
i . When the network

size is small, the number of bits required to describe node i’s locations is mostly governed

by these differential entropy and entropy rate that depend on the details of the mobility

processes. However, as the number of nodes n grows, in a dense network 7 mloc(n) is

predominantly shaped by the required quantization level for describing the locations of

nodes, which is in turn dictated by the CTR needed for network connectivity. As a result,

the details of nodes’ mobility become less important in a large, dense network, as long as

the differential entropy of the locations of nodes and the differential entropy rate of the

mobility processes, h?, are bounded, which is satisfied under the assumption in (4.4).

A similar result to Lemma 4.1 can be obtained for the cases where nodes are allowed

to use different transmission ranges under the following assumption.

Assumption 4.2: Suppose that the nodes employ heterogeneous transmission ranges and

7 A similar result can be obtained for extended networks with increasing domains.
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that there exist constants c1, c2 ∈ (0,∞) and 0 < a2 ≤ a1 <∞ such that the transmission

ranges of the nodes can be lower and upper bounded by c1 ·n−a1 and c2 ·n−a2 , respectively,

for all sufficiently large n ∈ IN.

Corollary 1: The minimum expected number of bits required per timeslot to describe ap-

proximated locations of a node under Assumption 4.2, denoted by m?
loc(n), is Θ(log(n)).

The proof of the corollary is essentially the same as that of Lemma 4.1; we can show

that the quantization level of 4 · c2 · n−a2 is not accurate enough, whereas
√

2 · c1 · n−a1/3

is a sufficient quantization level. These quantization levels give us asymptotic lower and

upper bounds of 2 ·a2 · log(n) and 2 ·a1 · log(n), respectively, for m?
loc(n). As we will see,

this important observation allows us to relax Assumption 4.1 without voiding our findings

in the following sections (Theorems 4.2 through 4.4).

4.4 Routing overhead under proactive and reactive geographic routing

In this section we examine how the expected routing overhead scales when proactive or

reactive geographic routing is employed and address the issue of how to measure the total

distance traveled by control messages. Recall that a geographic routing scheme is called

a proactive geographic routing scheme if each node attempts to maintain consistent, up-

to-date location information for every known destination in the network by flooding the

network with location update messages. Similarly, a geographic routing scheme is said

to be a reactive geographic routing scheme if location information is provided only when

it is requested. When no location information of a desired destination is available at a

source, the location information is discovered by flooding the network with a location
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request message until another node, possibly the destination itself, replies to the request

with location information. We point out that these proactive or reactive geographic rout-

ing schemes are different from the traditional proactive or reactive routing algorithms that

use topological information.

4.4.1 Routing overhead under proactive geographic routing

Suppose that location information of a node is forwarded to and stored at all other nodes

within distance ε > 0. If ε ≥
√

2 ·D, the location information of every node is forwarded

to all nodes in the network. This is because the distance between any two points in D

is upper bounded by
√

2 · D, i.e., supx,y∈D ||x− y|| =
√

2 · D, where ||x− y|| is the

Euclidean distance between x and y. First, it is clear that, under our assumptions in

subsection 4.2.2, at least log(n) (and at most log(n) + 1) bits are required to identify the

source of a message.

Fig. 4.3: Total distance traveled by a location message.

The total distance traveled by a location update message from a node, say node i,

to all its neighbors within distance ε can be computed in different ways. In this chapter,

we take the viewpoint that once a neighbor receives the location information of node i, it

can serve as a surrogate source of the location information for other nodes. This is shown
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in Figure 4.3. It is more consistent with the operation of a multi-hop wireless network

where each relay node is responsible for delivering a packet to the next hop, and thus

each transmitter-receiver pair can be viewed as a source-destination pair for the purpose

of exchanging location information.

If we count only the first copy that arrives at each node, the total distance traveled

by a location update message to all the nodes within distance ε is given by the total length

of a spanning tree constructed by the propagation of the message, which connects all

the nodes within ε. Obviously, this distance is lower bounded by the total length of a

minimum spanning tree (MST). In fact, by the definition of an MST, the total length of an

MST is the minimum among all (reasonable) measures of the total distance connecting

all neighbors.

Theorem 4.2: The minimum expected overhead required per timeslot under Assumption

4.1 for disseminating location information in proactive geographic routing is Ω(n1.5 log(n)).

proof: Let us first introduce a lemma that will be used in the proof of the theorem. Sup-

pose {Xn;n ∈ IN} is a sequence of rvs, where Xn is a binomial(n, p) rv with 0 < p < 1.

Lemma 4.2: Define Zα
n :=

(
Xn
n·p

)α
, where 0 < α ≤ 1. Then,

lim
n→∞

E [Zα
n ] = 1 for all 0 < α ≤ 1 .

proof: Let Yn := Z1
n = Xn

n·p . The strong law of large numbers [7, p.326] tells us that Yn

converges to 1 in mean square, i.e., E
[
|Yn − 1|2

]
→ 0 as n → ∞. Since |Zα

n − 1| ≤

|Yn − 1| for all 0 < a ≤ 1, we have

E
[
|Zα

n − 1|2
]
≤ E

[
|Yn − 1|2

]
→ 0 as n→∞,
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which implies Zα
n → 1 in mean square (clearly, E [(Zα

n )2] ≤ 1+E [(Yn)2 · 1 {Yn > 1}] <

∞ for all n ∈ IN).

Recall that convergence in mean square implies convergence in mean [7, p.310].

Hence,

E [|Zα
n − 1|]→ 0 as n→∞.

Theorem 3 [7, p.351] tells us that Zα
n → 1 in mean if and only if E [Zα

n ] → 1 as n → ∞

(and, equivalently, {Zα
n ;n ≥ 1} is uniformly integrable). This completes the proof of the

lemma.

We now proceed with the proof of Theorem 4.2. Steele [52] showed the following

result on the total length of an MST with an increasing number of nodes: Suppose that

nodes are placed independently of each other in accordance with distribution µ with com-

pact support S ⊂ IR2. Let M(n) denote the total length of an MST connecting the first n

nodes. Then, with probability 1,

lim
n→∞

M(n)√
n

= e?
∫
x∈S

√
g(x) dx (4.14)

for some constant e?, where g is the density of the absolutely continuous part of µ. In

other words, the total length of an MST is asymptotically proportional to
√
n.

From the assumed mutual independence and stationarity of the mobility processes

L
(n)
i , i ∈ N (n), the number of nodes in an area D̃ ⊂ D at timeslot t is a binomial rv

with parameter (n, pD̃), where pD̃ =
∫
D̃
f(y) dy. Let dε(x) denote the intersection of the

mobility domainD and the disk centered at x ∈ D with radius ε. Then, for every x ∈ D,

Area(dε(x)) ≥ π ε2/4, hence ξ1 π ε
2/4 ≤

∫
dε(x)

f(y) dy ≤ ξ2 π ε
2.

This observation, combined with the result by Steele in (4.14) and Lemma 4.2 with
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α = 1/2, suggests that the expected total length of an MST that connects all nodes in

dε(x) is asymptotically proportional to
√
n for all x ∈ D. Therefore, from the assumed

ergodicity and mutual independence of the mobility processes, the average total distance

traveled by a location update message of node i to its neighbors within a fixed distance ε

is ε2 · Ω(
√
n).

Since (i) there are n nodes that move according to mutually independent mobil-

ity processes, (ii) each message requires at least log(n) bits to identify the source of the

message, (iii) location information of the source needs asymptotically log(n) bits from

Lemma 4.1, and (iv) the average total distance traveled by a location message is Ω(
√
n),

the expected routing overhead (measured in bits×meters per unit time) for disseminat-

ing location information to local neighborhoods per timeslot under proactive geographic

routing is Ω(n · log(n) ·
√
n) = Ω(n1.5 log(n)).

4.4.2 Routing overhead under reactive geographic routing

As stated earlier we assume that, under reactive geographic routing, if location informa-

tion is not available at a source when a connection request arrives, it generates a location

request message and floods the network. When a node with the requested location in-

formation receives the request message, it generates a location reply message with the

location information. In this subsection, we study the expected overhead due to the loca-

tion request messages and location reply messages under reactive geographic routing.

In practice there may be additional overhead due to location recovery when a desti-

nation moves while the connection is active and the source does not know the new location

of the destination. However, we do not study the overhead due to the recovery of location
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information while connections are still active. We will discuss this issue in section 4.6-C.

In order to make progress, we introduce following simplifying assumptions:

A1. Only the destination for which a location request is generated responds with a reply

message;

A2. Location request messages reach the nodes in the order of increasing distance from

their sources.

Assumption A2 implies that if a node that generates a reply message is at distance d from

the source, the request message reaches all the nodes within distance d from the source.

Under our assumption in subsection 4.2.2 that A(n)
i (t) are i.i.d. Bernoulli rvs, at

most one request is generated for a connection to node i in each timeslot. Thus, no other

node will have cached up-to-date location of node i. However, when more than one node

can generate a connection request to node i in a timeslot, it is possible that some other

nodes that acquired node i’s location information may cache the location information,

and a reply can be generated by another node with cached location information. In this

case, we can replace Assumption A1 with the following alternate assumption, without

modifying our findings below:

A1a. Suppose that the location of a source generating a location request message is ` ∈ D.

Then, the location of the closest node that generates a reply message depends only on `

and has distribution M(·, `).

Assumption A1a means that the distance to the closest node sending a reply does

not depend on the number of nodes in the network. This may be reasonable when the

location information of each node is available only at a limited number of other nodes, in
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particular in a small neighborhood around the node. When only the destination is allowed

to generate a reply message, Assumption A1a holds by virtue of mutual independence

of the mobility processes. Here, we assume that Assumption A1 (instead of Assumption

A1a) is in place.

Theorem 4.3: The minimum expected overhead required per timeslot under Assumption

4.1 for location request and reply messages in reactive geographic routing is Ω(n1.5 log(n)).

proof: We examine the routing overhead that arises from location requests and replies

separately. We first show that the expected overhead due to handling location requests is

Ω(n1.5 · log(n)), and then demonstrate that the expected overhead from location replies is

Θ(n · log(n)).

First, each location request message must have the ID of the destination, which

requires at least log(n) bits. Second, analogously to the proactive geographic routing

case, the total distance traveled by a location request message to all the nodes within the

distance to the destination is lower bounded by the total length of an MST connecting the

nodes. Under these assumptions, by conditioning on the distance to the destination and

following the same argument used in the proof of Theorem 4.2, one can show that the

expected total length of such an MST is Ω(
√
n). Therefore, since location requests arrive

at a rate of p at each node, the expected overhead for handling the request messages is

Ω(n · log(n) ·
√
n) = Ω(n1.5 log(n)).

Unlike location requests, location replies need not be flooded. 8 Also, because (i)

the source of a request for the location information of node i is equally likely to be any of
8 Replies can be routed back either by using the location information of the sources attached to the

request messages or by maintaining a cache at intermediate nodes which temporarily stores all request
messages received over a sliding time window along with the first nodes that forwarded them.
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the other n− 1 nodes, (ii) spatial density f does not vary with n, (iii) connection request

processesA(n)
i , i ∈ N (n), are independent of the mobility processes, and (iv) the mobility

processes L(n)
j , j ∈ N (n), are assumed stationary and ergodic and are also mutually in-

dependent, the average distance between the sources and the destinations (averaged over

all timeslots and all source-destination pairs) is equal to the expected distance between a

pair of randomly selected nodes. This expected distance is given by 9

davg ≡
∫
D

∫
D

||x− y|| f(x) f(y) dy dx > 0 . (4.15)

The inequality follows from the assumption infx∈D f(x) ≥ ξ1 > 0 in (4.4) with t = 0.

Note that davg does not depend on the number of nodes n. Since reply messages must

carry the ID of the source and the location information of the destination (and the source),

the overhead due to reply messages is davg ·Θ(n · log(n)). Therefore, the overall routing

overhead under reactive geographic routing is Ω(n1.5 · log(n)).

It is clear from the proof of Theorems 4.2 and 4.3 that the derived scaling laws

for the expected overhead under proactive and reactive geographic routing do not change

when Assumption 4.1 is replaced by Assumption 4.2. This is because the average number

of bits in control messages remains Θ(log(n)) from Corollary 1.

In the following section, we will show that, compared to the minimum expected

routing overhead, both proactive and reactive geographic routing suffers a penalty of at

least
√
n for flooding the network with either the location information of nodes (proactive

geographic routing) or location request messages (reactive geographic routing). This also

9 When Assumption A1a is in place instead and node i is a node with cached location information of
the requested destination, (4.15) is replaced by davg ≡

∫
D

(
∫
D
||x − y|| m(y,x) dy) f(x) dx > 0, where

m(·,x) is the derivative of M(·,x).
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hints that if we eliminate or reduce flooding of messages, we can alter the way routing

overhead scales with the increasing network size.

4.5 Minimum expected routing overhead

In this section we examine how the minimum expected routing overhead from location

service scales with the number of nodes under the assumptions stated in Section 4.2: For

each fixed n ∈ IN, let us denote the minimum expected overhead required per timeslot for

disseminating and acquiring location information under Assumption 4.1 by Rmin(n). We

prove that Rmin(n) = Θ(n · log(n)) in two steps: First, we show that Rmin(n) increases

at least as α · n · log(n) for some constant α, i.e., Rmin(n) = Ω(n · log(n)). Second, we

demonstrate that, for all sufficiently large n, the minimum expected routing overhead is

upper bounded by β ·n · log(n) for another constant β, proving Rmin(n) = O(n · log(n)).

These two findings yield our claim that Rmin(n) = Θ(n · log(n)).

Lemma 4.3: The minimum expected overhead for location service per timeslot under

Assumption 4.1, Rmin(n), is Ω(n · log(n)).

proof: Let us first focus on a single connection request originating, say, at node k ∈

N (n), with node i, i 6= k, as the destination. First, any location message of node i must

carry its ID and location. As mentioned earlier, a minimum of log(n) bits are needed

to identify node i in the message, and from Lemma 4.1, the minimum expected number

of bits required on average to describe the locations of node i asymptotically approaches

log(n). Second, the expected distance the location message of node i must travel from

node i to node k is given by davg in (4.15) and does not depend on n.
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Summarizing these, (i) for the same reason provided before (4.15) in the proof of

Theorem 4.3, the average distance the location messages have to travel from the destina-

tions to the sources of connection requests equals davg > 0, and (ii) the expected number

of bits in each location message required for both the ID and the location of a destination

is Θ(log(n)). Since the average total number of connection requests in a timeslot equals

n · p, the minimum expected routing overhead required on average (in bits×meters per

unit time) for delivering location information from the destinations to the sources of con-

nection requests is Θ(n · log(n)). Obviously, the minimum expected routing overhead for

location service cannot be smaller than the overhead required for transporting location in-

formation directly from the destinations to the sources. Hence, Rmin(n) = Ω(n · log(n)).

Lemma 4.4: The minimum expected overhead for location service per timeslot under

Assumption 4.1, Rmin(n), is O(n · log(n)).

proof: In order to prove the lemma, it suffices to find a scheme under which the expected

routing overhead per timeslot is upper bounded by β · n · log(n) for all sufficiently large

n, for some finite constant β > 0. The scheme we describe here combines the features

of both proactive and reactive geographic routing schemes in such a way we can avoid

expensive multi-hop flooding of messages, by forming virtual location servers using the

existing nodes. A similar idea of using existing nodes as location servers without knowing

their identities was used by Li et al. [46].

A key idea is that we store the location information of each node i in a small region

(relative to the transmission range) so that once a location request message for node i
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reaches some node in the region, the node, if it does not have the location information

of node i, can find another node with the location information without having to flood a

multi-hop neighborhood. In this sense, the set of nodes in the region, which varies with

time, collectively serve as a virtual location server on behalf of node i. Hence, individual

nodes participate not only in routing packets, but also in providing location service for

other nodes.

To this end, we choose a quantization level of ς(n) =
√

2γ?(n)/3 for approximating

node locations 10 , divide the domain of mobility into cells of area A(n) = ς(n) × ς(n),

and store the location information of each node in a cell with a known coordinate. 11 The

coordinate of the cell where the location information of node i resides, is computed using

a hash function h(n) : N (n) → Sh(n) , where Sh(n) is the set of coordinates of the cells

that hold location information. This allows us to skirt the problem of not having location

servers with known or fixed locations. In addition, the hash functions can be designed to

distribute the load of storing location information among the nodes. The hash functions

h(n) are assumed common knowledge.

First, if we are to store location information in a cell, we must ensure that there is

at least one node in the cell (with probability approaching 1 as n → ∞) so that location

information can be stored in the cell and be accessible to other nodes. It is obvious that

A(n) = 2 c?2 log(n)/(9 n) = ω(1/n). From the assumption on the spatial distribution in

(4.4) and mutual independence of the mobility processes, for the given cell size A(n) the

10 Recall from the proof of Lemma 4.1 that ς(n) is sufficient for enabling geographic routing.
11 By storing location information in a cell, we mean storing it at one or more nodes in the cell.
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probability that there is no node in a cell at timeslot t ∈ Z+ approaches zero as n→∞:

P [No node in a cell at timeslot t]≤ (1− ξ1 · A(n))n

For A(n) = 2 c?2 log(n)/(9 n),

(1− ξ1 · A(n))n = exp (n · log(1− ξ1 · A(n)))

→ 0 as n→∞ .

In the rest of the proof we describe how the location information is disseminated

and retrieved by nodes and compute the overhead due to these operations.

1. Dissemination of location information: As mentioned earlier, under our scheme, we

convey and store the location information of a node i in cell h(n)(i) that serves as a virtual

location server for node i. Intermediate nodes route a location message of node i using

the location of the cell h(n)(i) computed using the common hash function. 12 Unlike

a unicast data packet that is routed to a specified destination node, however, a location

update message of node i does not include a specific destination ID in the message. This

is because node i is unlikely to know in advance which nodes are in cell h(n)(i). Instead,

since there is a node in cell h(n)(i) (with probability approaching 1), when a location

update message reaches some node in cell h(n)(i), the node stores the location information

of node i and terminates the message without relaying it further. Obviously, the distance

traveled by a location message of node i to any node in cell h(n)(i) is upper bounded by

√
2 ·D.

12 The location of the cell is the same as the approximated location of a node in the cell, i.e., the centroid
of the cell, as explained in Section 4.3.
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A location update message of a node carries the node’s ID and location information.

Combining with our finding in (4.13) that the minimum average number of bits needed

to describe the locations of a node with quantization level ς(n) is asymptotically log(n),

we conclude that the routing overhead due to transporting the location information of

the nodes to their respective cells that store their location information is RT (n) = Θ(n ·

log(n)).

2. Retrieval of location information: In order for a node j to access the location

information of another node, say node i, node j first generates a location request with

(i) its own ID and location information (with the same quantization level ς(n)), and (ii)

the ID of node i. The request message is then relayed by intermediate nodes using the

location of the cell h(n)(i) computed from the ID of node i in the request message and the

common hash function, until it reaches some node in cell h(n)(i).

When the request message arrives at a node in cell h(n)(i), one of following two

events occurs: (i) If the node has the location information of node i, it generates a reply

message, or (ii) if it does not, it broadcasts the request message to its neighbors in cell

h(n)(i), all of which lie within its transmission range. In the latter event, since there is at

least one node in the cell h(n)(i) with the location information of node i (with probability

approaching 1), another node in cell h(n)(i) with the location information generates a

reply message. Again, the reply message is heard by all other nodes in the cell because

they are all within the transmission range, hence only a single reply message is generated.

In the case of second event, compared to the first, one additional broadcast transmis-

sion is required. However, there is no need to flood a multi-hop neighborhood in search

of a node with location information (which is the case with reactive geographic routing).
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The total distance traveled by the broadcast request message over the last hop to all the

nodes in cell h(n)(i) can be computed as follows: From the assumed mutual indepen-

dence of the mobility processes, the number of nodes in cell h(n)(i) is a binomial(n, p̃) rv,

where p̃ is the steady-state probability that a node is in cell h(n)(i). Recall that (i) from

the assumption on spatial distribution in (4.4), p̃ is upper bounded by ξ2 × area of a cell

(= ξ2 × 2 c?2 log(n)/(9 · n)) and (ii) the distance from the last relay node to any node in

h(n)(i) that hears the message is bounded by the transmission range γ?(n). Thus, the total

expected distance from the last relay node to all nodes in h(n)(i) is upper bounded by

n · p̃ · γ?(n)≤ 2 ξ2 c
?2 log(n)

9
× c?

√
log(n)

n

=
2 ξ2 c

?3 log1.5(n)

9
√
n

. (4.16)

It is clear that (4.16) decreases to zero as n → ∞. This tells us that the contribution

from the last hop to the total expected distance traveled by a request message vanishes as

n→∞, and that the total expected distance is Θ(1).

A reply message produced in response to a request message contains the IDs and

location information of both nodes j and i. The reply message is then routed back to the

source (i.e., node j), using the location information of node j copied from the request

message. It is obvious that the expected distance traveled by a reply message is Θ(1).

Since a location request message generated by node j contains the IDs of both

nodes j and i and the location information of node j with quantization level ς(n), the

required expected number of bits in a location request is on average breq(n) ∼ 3 log(n)

from (4.13). Similarly, the expected number of bits required in reply messages for the

IDs and location information of both nodes is on average bres(n) ∼ 4 log(n). Hence, the
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expected number of bits needed for handling a single location request under our scheme

is on average b(n) = breq(n) + bres(n) ∼ 7 log(n). Recall from Section 4.2 that each

node generates route request messages at a rate of p requests per timeslot. Together with

earlier findings on the expected total distance traveled by request and reply messages and

their sizes, we conclude that the expected routing overhead incurred per timeslot due to

retrieval of location information under our scheme is RA(n) = Θ(n · log(n)).

The minimum expected routing overhead Rmin(n) is obviously not greater than the

expected routing overhead incurred by our scheme, which is R?(n) ≡ RT (n) + RA(n).

Since R?(n) = Θ(n · log(n)), we have Rmin(n) = O(n · log(n)).

We note that nodes actively disseminate their location information to parts of the

network under both proactive geographic routing (subsection 4.4.1) and our scheme in

the proof of Lemma 4.4. However, there are some key differences between our scheme

and both proactive and reactive geographic routing: First, proactive geographic routing

floods and stores location information in the neighborhood around the nodes, whereas

in our scheme the location information of a node is stored only in a small area (a cell)

with a pre-assigned location that can be computed using its ID, independently of its actual

location. Since nodes are mobile, unless sources are always close to selected destinations,

promulgating location information to a small neighborhood around the nodes will be of

limited use. Secondly, we limit the area to be flooded with a location request message

to the same cell. In other words, only the cell in which the location information of a

requested destination is stored, is flooded with the location request message. These simple
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features eliminate the need for unnecessary and expensive flooding of control messages

in the network, resulting in lower overhead.

It is noteworthy that, in computing the routing overhead under both our scheme

and proactive/reactive geographic routing, flooding of location information or request

messages changes only the distances traveled by them, while the number of bits carried

by them remains the same. Therefore, the disparity in expected routing overhead is caused

only by larger distances traveled by control messages under proactive/reactive geographic

routing (which demands higher resource expenditure by their transmissions). Therefore,

this highlights the importance of modeling and accounting for the traveled distances;

computing only the information rate required to model nodes’ mobility and uncertainty

in their locations (e.g., [33]) would not reveal this discrepancy in (the scaling law of)

expected routing overhead under these schemes.

Theorem 4.4: The minimum expected overhead for location service per timeslot under

Assumption 4.1, Rmin(n), is Θ(n · log(n)).

proof: The theorem follows from Lemmas 4.3 and 4.4.

Corollary 2: The minimum expected overhead for location service per timeslot under

Assumption 4.2 is Θ(n · log(n)).

This corollary follows from the observation that the average number of bits in con-

trol messages is still Θ(log(n)) under Assumption 4.2 (as a consequence of Corollary 1)

and a minor modification of the proof of Lemma 4.4.

71



4.6 Discussion

Throughout this chapter we assumed geographic routing and a non-vanishing spatial den-

sity of the nodes while adopting the GRG model for one-hop network connectivity. In

this section we first compare the expected overhead of geographic routing schemes to that

of topology-based routing schemes. Then, we examine the effects of a vanishing spatial

density and location recovery procedures on routing overhead. Finally, we consider a

family of network connectivity models, which contains the GRG model as a special case,

and show that our results still hold under the new models.

A. Geographic routing vs. topology-based routing: In Section 4.4 we showed that

the expected routing overhead under proactive or reactive geographic routing is Ω(n1.5 ·

log(n)). Here, we briefly discuss the same under a proactive or reactive routing scheme

that uses topological information of the network (i.e., network connectivity) for routing

decisions: Each node maintains and uses the next-hop information, for example, along

a minimum-hop path, for each known destination through exchange of (local) topology

information. We call these routing schemes topological routing schemes.

Proactive topological routing: Suppose that, under a proactive topological rout-

ing scheme, each node advertises the IDs of its neighbors along with its own ID to all

other nodes within distance ε > 0, which we call an advertisement. The information on

immediate neighbors is the minimal amount of information needed to reconstruct the net-

work topology and is the same information reported by regular nodes in [56, 57]. Given

the assumptions in Section 4.2 and the transmission range γ?(n), the expected number
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of neighbors of a node is Θ(log(n)). Thus, the average number of bits required for an

advertisement containing the list of neighbors is Θ(log(n)2) because each ID requires

on the average log(n) bits. From the proof of Theorem 4.2, we know that the expected

total distance traveled by each advertisement is Ω(
√
n). Therefore, the overall expected

overhead due to advertisements per timeslot is Ω(n ·
√
n · log(n)2) = Ω(n1.5 · log(n)2).

Zhou and Abouzeid [57] studied similar routing overhead under two-tier hierarchi-

cal proactive routing where regular nodes report the detailed local topology information

to their cluster heads that maintain global ownership information. When the number of

subregions M (with one cluster head per subregion) is fixed, the overall routing overhead

is Ω(n2 · log(n)) under all three different physical scalings of the network they considered

(Table IV in [57]). In particular, under the second physical scaling in which the communi-

cation range of the nodes is adjusted so that the expected number of neighbors of a node

is Θ(log(n)), the routing overhead is Θ(n2.5). Furthermore, even when the number of

subregions M is allowed to depend on n, one can show that the overall routing overhead

is Ω(n1.5) under all three different physical scalings in [57] (and Θ(n2/
√

log(n)) under

the second physical scaling).

Reactive topological routing: Assume that routing information is discovered by

flooding the network with a route request message under a reactive topological routing

scheme, and Assumptions A1 and A2 in subsection 4.4.2 hold (with ‘location request’

replaced by ‘route request’). Then, the overhead stemming from flooding of route request

messages is Ω(n1.5 · log(n)) by a similar argument in the proof of Theorem 4.3. As men-

tioned in the same proof, replies need not be flooded. Instead, they can be routed back

to the source by maintaining a cache at intermediate nodes and temporarily storing all re-
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quest messages with the IDs of the sources and the first nodes that forwarded them. Then,

following a similar reasoning, one can show that the overhead due to reply messages is

Θ(n · log(n)), giving the overall routing overhead of Ω(n1.5 · log(n)).

We also note that introducing virtual servers with route information to nodes (anal-

ogous to the virtual location server in the proof of Lemma 4.4) will be problematic in

topological routing schemes. This is because, unlike in geographic routing where the

same location information for node i can be provided to any node that wishes to commu-

nicate with node i, the end-to-end route information to node i varies from one node to

another, depending on the position of the node in the network topology relative to that of

node i. Hence, it is not obvious how one can reduce the routing overhead brought about

by costly flooding of control messages.

B. Overhead due to location recovery in reactive geographic routing: As discussed in

subsection 4.4.2, suppose that a destination of a connection moves while it is still active.

In this case, unless the destination informs the source of its new location, the location

information at the source will be outdated and the source will need to acquire the new

location of the destination through a recovery process. If we assume that the recovery is

performed by flooding a control message similar to the original location request message,

then the additional overhead due to recovery will be comparable to the overhead incurred

during the original location discovery process (through location request and reply mes-

sages). Thus, if we assume that connections need, on average, K recovery processes (per

connection) while they are active, the expected routing overhead will scale by a factor

of K, and the scaling law of the expected routing overhead will remain Ω(n1.5 log(n)).
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In practice, however, the frequency of location recovery will depend on the details of an

adopted routing scheme.

C. Different network connectivity models and choices of transmission ranges: While

we modeled the network connectivity using an GRG model so far, our results can be

generalized to other connectivity models: Given n ∈ IN nodes in the network, let γ(n) be a

target transmission range selected by the nodes. There exist constants 0 < σ1 ≤ 1 ≤ σ2 <

∞ so that, given γ(n), (i) nodes i and j have a link if their distance d(i, j) ≤ σ1 ·γ(n), and

(ii) they do not have a link if d(i, j) > σ2 · γ(n). When σ1 · γ(n) < d(i, j) ≤ σ2 · γ(n),

however, we do not specify whether or not there exists a link between nodes i and j.

Different rules, such as a probabilistic rule, can be applied to this case. The GRG model is

a special case with σ1 = σ2. The interpretation of this family of models is that once nodes

select a target transmission range, they should be able to communicate directly with other

nodes that are well within the target range, whereas other nodes that are (much) farther

away than the target range would not be directly reachable. Connectivity between nodes

roughly target range away from each other, however, may depend on other factors, and

we do not provide a specific rule for this case.

From Theorem 4.1 and the above rules, the minimum target transmission range re-

quired for network connectivity satisfies γ?(n)/σ2 ≤ γ(n) ≤ γ?(n)/σ1. If this condition

is met, following the proof of Lemma 4.1, one can show that the necessary quantiza-

tion level for approximating location information is Θ(γ?(n)) and Lemma 4.1 still holds:

When the target range γ(n) = Θ(γ?(n)), the necessary quantization level changes at most

by a constant factor from the GRG case. Thus, as mentioned in Sections 4.3 and 4.5, this
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does not affect the findings in Lemma 4.1 and, hence, Theorems 4.2 through 4.4.

Under a quasi unit disk graph (QUDG) model [44], presumably with fixed transmit

power, there are two thresholds – 0 ≤ γ1 ≤ γ2 <∞, where γ1 = τ ·γ2 for some τ ∈ [0, 1].

(i) If the distance d(i, j) between nodes i and j is at most γ1, there is a link between i and

j; (ii) if d(i, j) > γ2, no link exists between them; and (iii) if γ1 < d(i, j) ≤ γ2, there

may or may not exist a link between them. It is obvious that, under suitable scaling of

γ1 and γ2 (through transmit power control) as a function of n while maintaining network

connectivity, the QUDG model is similar to the above model. Hence, our results are true

under the QUDG model when τ > 0.

Under a cost-based model (e.g. [50]), there is a cost function c : IR+ → IR+ such

that, (i) the cost at distance d is given by c(d) ∈ [ϕ1 · d, ϕ2 · d], where 0 < ϕ1 ≤ ϕ2 <∞,

and (ii) nodes i and j have a link if and only if c(d(i, j)) ≤ cth for some threshold cth. The

cost function c is not assumed monotonic in distance. It is clear that, given a threshold cth,

we can find an upper and lower bound on the maximum distance between two nodes that

would permit a link between the nodes. Therefore, by selecting appropriate thresholds

cth(n) as a function of the number of nodes n that would ensure network connectivity

and following a similar reasoning as above, we can show that our results hold under this

model as well.
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5. CONCLUSION

5.1 Summary and Open Problems

In MANETs, in order to find a route promptly between arbitrary source and destination,

the network should be connected and the study of network connectivity has attracted

a lot of interest from researchers. In this dissertation, we opened the new chapter for

the study of network connectivity by introducing correlation of nodes with the group

mobility model and trustworthiness in one-hop connectivity. Also, when the network is

connected, from the mobility of the nodes in MANETs, the pathes between a source and a

destination vary over time. We studied the overhead incurred from maintaining up-to-date

information for routing packets under geographic routing.

In this dissertation, we first investigated how the smallest communication range

needed for network connectivity, which we call the critical transmission range, behaves in

simple one-dimensional cases, where nodes lie on a unit ring. Unlike in most of previous

studies, we relaxed the assumption that nodes’ locations are independent; the nodes are

clustered into groups with the same number of members. We demonstrated that the critical
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transmission range displays a form of parametric sensitivity with respect to the size of

group which represents correlation between members in each group. In this study, while

we focused on a simple one-dimensional case as a first step towards understanding the

role of correlation in nodes’ locations on network connectivity, it will inspire researchers

to extend the study of network connectivity with correlated nodes to higher-dimensional

cases.

In the second part of the dissertation, we the studied the presence of isolated nodes

in the network when nodes’ locations are given by mutually independent random vari-

ables uniformly distributed on a two dimensional torus and one-hop connectivity between

two nodes is governed by not only a geometric constraint but also trust constraint. As ex-

pected, the trust constraint imposed on one-hop connectivity requires that nodes employ

a large communication range in order to prevent isolated nodes. Even though we studied

the common transmission range for no node isolation instead of network connectivity,

we hope that we can show that the probability that there is no isolated node asymptoti-

cally converges to the probability that the network is connected with the additional trust

constraint in one-hop connectivity.

In the third part, we studied the expected overhead due to exchange of location in-

formation under geographic routing when nodes employ a common transmission range

to ensure network connectivity with a high probability. We focused on a scenario where

packets can be routed to their intended destinations using only the ID and location in-

formation of the destinations without flooding the network with copies of packets. We

showed that when nodes move independently, a minimum of log (n) bits are needed on

average to describe the approximated location of each node, where n is the number of

78



the nodes. Making use of this finding, we proved that the expected routing overhead is

Ω(n1.5 log (n)) under both proactive and reactive geographic routing and the minimum

expected routing overhead scales as Θ(n log (n)). As future works, we can consider the

case when nodes’ mobility is correlated, that may slow the growth of the expected rout-

ing overhead; the exact manner in which it will grow is likely to depend on many factors,

including the details of correlation structure imposed on nodes’ mobility as well as the

selection of source-destination pairs.
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APPENDIX



A. APPENDIX A

A.1 Proof of Theorem 2.1

We first introduce some notation and preliminary results that will be used to prove the

theorem. If node j lies within the communication range to the left of node i (when facing

in the direction of the center of the unit ring), we call node j a left neighbor (LN) of node

i. With a little abuse of notation, for each n ∈ IN (and fixed G(n), M(n) and d(n)),

• I(n)
k,m(γ), k ∈ G(n) and m ∈M(n), is the indicator function of the event that node m

in the k-th group does not have any LNs on the unit ring; and

• C(n)(γ) =
∑

k∈G(n) C
(n)
k (γ) denotes the total number of nodes without any LN,

where C(n)
k (γ) =

∑
m∈M(n) I

(n)
k,m(γ).

Note that, according to these definitions, the event that the random graphG(G(n),M(n); γ)

is bi-directionally connected is the same as the event {C(n)(γ) = 0}, and P(n) (γ) =

P
[
C(n)(γ) = 0

]
. Throughout the proof we will make use of this equality and investigate

P
[
C(n)(γ) = 0

]
in place of P(n)(γ).

We borrow following results from [10] to simplify the proof of the theorem: Define

Z+ := {0, 1, 2, . . .} to be the set of non-negative integers. Suppose {Zn;n = 1, 2, · · · }

is a sequence of Z+-valued rvs with finite second moment, i.e., E [Z2
n] < ∞, for every



n = 1, 2, . . .. Then,

lim
n→∞

P [Zn = 0] = 1 if lim
n→∞

E [Zn] = 0, (A.1)

and

lim
n→∞

P [Zn = 0] = 0 if lim
n→∞

(E [Zn])2

E [Z2
n]

= 1. (A.2)

Eq. (A.1) follows directly from Markov’s inequality [7, p.311]. Eq. (A.2) can be easily

shown using Cauchy-Schwarz inequality [7, p.65].

We now return to the proof of Theorem 2.1 and define

γ̃(n) :=
log(G(n)) + αn

G(n)
.

Here, when αn increases (resp. decreases), it increases (resp. decreases) to∞ (resp. −∞)

arbitrarily slow. In order to prove Theorem 2.1, we will first show

S1. E
[
C(n)(γ̃(n))

]
→ 0 if αn →∞, and

S2. (E[C(n)(γ̃(n))])
2

E
[
(C(n)(γ̃(n)))

2
] → 1 if αn → −∞,

and then make use of (A.1) and (A.2), respectively.

Proof of S1: From the definition of C(n)(γ),

E
[
C(n)(γ̃(n))

]
= N(n) · E

[
I

(n)
1,1 (γ̃(n))

]
, (A.3)

and we focus on computing E
[
I

(n)
1,1 (γ̃(n))

]
. Without loss of generality (WLOG), suppose

that the location of VGL V
(n)

1 is X(n)
1 = 0 and, hence, L(n)

1,1 = Y
(n)

1,1 .

We denote the m-th node in the k-th group by the pair (k, m). Define event A(n)

(resp. B(n)) to be the event that node (1, 1) has no LNs from group 1 (resp. from the other
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groups 2 through G(n)). Then,

E
[
I

(n)
1,1 (γ̃(n))

]
= E

[
E
[
I

(n)
1,1 (γ̃(n))

∣∣∣ Y (n)
1,1

]]
=

1

d(n)

∫ d(n)

0

(
P

[
A(n)

∣∣∣ y] ·P [B(n)
∣∣∣ y]) dy

=
P
[
B(n)

]
d(n)

∫ d(n)

0

P

[
A(n)

∣∣∣ y] dy, (A.4)

where P
[
A(n) | y

]
and P

[
B(n) | y

]
are the conditional probability of A(n) and B(n), re-

spectively, given {Y (n)
1,1 = y},1 and the second and third equalities follow from Assump-

tions A1 and A2 in subsection 2.1.1.

First, since d(n) < r̃(n), it is easy to see that, given Y (n)
1,1 = y, in order for the event

A(n) to be true, the other members in group 1 must lie in [0, y). Hence, P
[
A(n)|y

]
=

(y/d(n))M(n)−1 for all y ∈ [0, d(n)], and

1

d(n)

∫ d(n)

0

P

[
A(n)

∣∣∣ y] dy =
1

M(n)
. (A.5)

Second, let B(n)
2 be the event that node (1,1) does not have any LNs from group 2.

Then, from Assumptions A1 through A3, P
[
B(n)

]
=
(
P

[
B

(n)
2

])G(n)−1

. We compute

P

[
B

(n)
2

]
by conditioning on X(n)

2 = x2 and considering four cases as follows. WLOG,

we assume L(n)
1,1 = 0:

Case 1. 0 ≤ x2 ≤ γ̃(n) − d(n) : The members of group 2 will lie in the interval

[x2, x2 + d(n)], where x2 + d(n) ≤ γ̃(n). Thus, because [x2, x2 + d(n)] ⊂ [0, γ̃(n)], they

will be all LNs of node (1,1), and P
[
B

(n)
2 |X

(n)
2 = x2

]
= 0.

Case 2. γ̃(n)−d(n) < x2 ≤ γ̃(n) : The conditional probabilityP
[
B

(n)
2 |X

(n)
2 = x2

]
is given by the probability that all members of group 2 are in the interval (γ̃(n), x2+d(n)).

1 One should view these conditional probabilities as the limit of P
[
A(n) | y < Y

(n)
1,1 ≤ y + δ

]
and

P

[
B(n) | y < Y

(n)
1,1 ≤ y + δ

]
when δ → 0.

83



From Assumption A3, this probability is given by ((x2 + d(n)− γ̃(n))/d(n))M(n).

Case 3. γ̃(n) < x2 < 1 − d(n) : Since all members of group 2 lie in the interval

(γ̃(n), 1), P
[
B

(n)
2 |X

(n)
2 = x2

]
= 1.

Case 4. 1 − d(n) ≤ x2 < 1 : The conditional probability P
[
B

(n)
2 |X

(n)
2 = x2

]
is

equal to the probability that all members in group 2 reside in (x2, 1). This probability is

given by ((1− x2)/d(n))M(n).

Integrating the above conditional probabilities over the corresponding intervals, we

get

P

[
B

(n)
2

]
=

∫ γ̃(n)

γ̃(n)−d(n)

(
x2 + d(n)− γ̃(n)

d(n)

)M(n)

dx2

+

∫ 1−d(n)

γ̃(n)

1 dx2 +

∫ 1

1−d(n)

(
1− x2

d(n)

)M(n)

dx2

= 1− γ̃(n)− M(n)− 1

M(n) + 1
d(n). (A.6)

Recall that X(n)
2 is uniformly distributed over [0, 1) from observation O1 (in Section 2.2).

From the equality P
[
B(n)

]
=
(
P

[
B

(n)
2

])G(n)−1

and (A.6),

P
[
B(n)

]
=

(
1− γ̃(n)− M(n)− 1

M(n) + 1
d(n)

)G(n)−1

(A.7)

= exp

(
(G(n)− 1) · log

(
1− γ̃(n)− M(n)− 1

M(n) + 1
d(n)

))
.

Define Γ(n) := γ̃(n) + M(n)−1
M(n)+1

d(n). Then, because Γ(n)→ 0, we have log(1− Γ(n)) =

−Γ(n) +O (Γ(n)2) and

P
[
B(n)

]
= exp

(
(G(n)− 1) ·

(
−Γ(n) +O

(
Γ(n)2

)))
.

First, note that G(n) · d(n) = o(1) and G(n) · γ̃(n)2 = o(1) because G(n) =

ω(log2(N(n))) from Assumption 2.1. Hence, G(n) · Γ(n)2 = o(1) because d(n) =

84



o(γ̃(n)). Therefore,

P
[
B(n)

]
∼ exp(−G(n) · γ̃(n))

= exp (− (log(G(n)) + αn))

=
1

G(n)
exp(−αn). (A.8)

From (A.4), (A.5), and (A.8),

E
[
I

(n)
1,1 (γ̃(n))

]
∼ 1

M(n)
× 1

G(n)
exp(−αn)

=
1

N(n)
exp(−αn). (A.9)

Substituting (A.9) in (A.3), we obtain

E
[
C(n)(γ̃(n))

]
= N(n) · E

[
I

(n)
1,1 (γ̃(n))

]
∼N(n) · 1

N(n)
exp(−αn)

= exp(−αn). (A.10)

Therefore, if αn →∞, E
[
C(n)(γ̃(n))

]
→ 0. This completes the proof of S1.

Proof of S2: First, from the definition of C(n)(γ̃(n)),

E
[(
C(n)(γ̃(n))

)2
]

= E

G(n)∑
k=1

C
(n)
k (γ̃(n))

2
= G(n) E

[(
C

(n)
1 (γ̃(n))

)2
]

+G(n)(G(n)− 1) E
[
C

(n)
1 (γ̃(n)) · C(n)

2 (γ̃(n))
]

= N(n) E
[
I

(n)
1,1 (γ̃(n))

]
(A.11)

+N(n)(M(n)− 1) E
[
I

(n)
1,1 (γ̃(n)) · I(n)

1,2 (γ̃(n))
]

+N(n)M(n)(G(n)− 1) E
[
I

(n)
1,1 (γ̃(n)) · I(n)

2,1 (γ̃(n))
]
.
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Recall that we already computed E
[
I

(n)
1,1,(γ̃(n))

]
and E

[
C(n)(γ̃(n))

]
in the proof of S1.

Hence, in order to prove S2 using (A.11), we need to calculate E
[
I

(n)
1,1 (γ̃(n)) · I(n)

1,2 (γ̃(n))
]

and E
[
I

(n)
1,1 (γ̃(n)) · I(n)

2,1 (γ̃(n))
]
. However, γ̃(n) > d(n) immediately tells us that

E
[
I

(n)
1,1 (γ̃(n)) · I(n)

1,2 (γ̃(n))
]

= 0 because the two nodes are always within γ̃(n) of each

other (and, hence, one of them is a LN of the other). Thus, we only need to compute

E
[
I

(n)
1,1 (γ̃(n)) · I(n)

2,1 (γ̃(n))
]
.

Computation of E
[
I

(n)
1,1 (γ̃(n)) · I(n)

2,1 (γ̃(n))
]
: Define Q(n) (resp. R(n)) to be the

event that no node from groups 1 and 2 (resp. from groups 3 through G(n)) is a LN of

node (1,1) or (2,1). WLOG we assume that node (1,1) is at L(n)
1,1 = 0. Then, by condition-

ing on the location of node (2,1), L(n)
2,1 = `2, and using observation O1 (in Section 2.2)

that L(n)
2,1 is uniformly distributed over [0, 1), we can write

E
[
I

(n)
1,1 (γ̃(n)) · I(n)

2,1 (γ̃(n))
]

=

∫ 1

0

(
P
[
R(n)|`2

]
·P
[
Q(n)|`2

])
d`2, (A.12)

where P
[
R(n) | `2

]
and P

[
Q(n) | `2

]
are the conditional probabilities of R(n) and Q(n),

respectively, given {L(n)
2,1 = `2}. We will now identify an upper bound for E

[
I

(n)
1,1 (γ̃(n)) · I(n)

2,1 (γ̃(n))
]

by finding an upper bound to P
[
Q(n) | `2

]
and P

[
R(n) | `2

]
.

(i) Upper bound for P
[
Q(n) | `2

]
– First, note that if `2 ∈ [1− γ̃(n), γ̃(n)], nodes

(1,1) and (2,1) will be immediate neighbors, hence, P
[
Q(n)|`2

]
= 0. For the other case,

we look for an upper bound to P
[
Q(n)|`2

]
using the following equality obtained by fur-

ther conditioning on X
(n)
1 and X

(n)
2 , i.e., the locations of VGLs V (n)

1 and V
(n)

2 . Note

that, given {L(n)
1,1 = 0} and {L(n)

2,1 = `2}, X(n)
1 and X(n)

2 are uniformly distributed over

[1− d(n), 1] and [`2 − d(n), `2], respectively. Therefore,
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P
[
Q(n)|`2

]
=

1

d(n)2

∫ `2

`2−d(n)

(∫ 1

1−d(n)

P
[
Q(n)|`2, x1, x2

]
dx1

)
dx2 (A.13)

Case 1. d(n) + γ̃(n) < `2 < 1 − d(n) − γ̃(n) : In this case because X(n)
2 ∈

(γ̃(n), 1−d(n)− γ̃(n)) and X(n)
1 ∈ [1−d(n), 1], it is clear that nodes from group 1 (resp.

group 2) cannot be a LN of node (2,1) (resp. node (1, 1)). Therefore, in order for Q(n)

to be true, nodes in group 1 (resp. group 2) should lie in (x1, 1) (resp. (x2, l2)). Using

(A.13), we get

P
[
Q(n)|`2

]
=

1

d(n)

(∫ 1

1−d(n)

(
1− x1

d(n)

)M(n)−1

dx1

)

× 1

d(n)

(∫ `2

`2−d(n)

(
`2 − x2

d(n)

)M(n)−1

dx2

)
=

1

M(n)2
. (A.14)

Case 2. 1−d(n)− γ̃(n) ≤ `2 < 1− γ̃(n) : In this case, while the nodes from group

2 cannot be a LN of node (1,1), some nodes from group 1 can be a LN of node (2,1) when

X
(n)
1 < `2 + γ̃(n). Hence, we consider two subcases - X(n)

1 ∈ [1− d(n), `2 + γ̃(n)) and

X
(n)
1 ∈ [`2 + γ̃(n), 1]. Further, when X(n)

1 ∈ [1 − d(n), `2 + γ̃(n)), for event Q(n) to be

true, we need the nodes in group 1 to be in (`2 + γ̃(n), 1), in order to avoid being a LN of
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node (1,1) or (2,1).

P
[
Q(n)|`2

]
=

1

d(n)

(∫ `2+γ̃(n)

1−d(n)

(
1− `2 − γ̃(n)

d(n)

)M(n)−1

dx1

+

∫ 1

`2+γ̃(n)

(
1− x1

d(n)

)M(n)−1

dx1

)

× 1

d(n)

(∫ `2

`2−d(n)

(
`2 − x2

d(n)

)M(n)−1

dx2

)

=
1

M(n)2

(
1− `2 − γ̃(n)

d(n)

)M(n)

(A.15)

+
`2 + γ̃(n)− 1 + d(n)

d(n) M(n)

(
1− `2 − γ̃(n)

d(n)

)M(n)−1

One can show that (A.15) is decreasing in `2 between 1 − d(n) − γ̃(n) and 1 − γ̃(n).

Hence, by substituting `2 = 1− d(n)− γ̃(n), we obtain an upper bound

P
[
Q(n)|`2

]
≤ 1

M(n)2
. (A.16)

Case 3. γ̃(n) < `2 ≤ d(n) + γ̃(n) : This case is symmetric to case 2 above, and we

obtain the same upper bound in (A.16).

(ii) Upper bound for P
[
R(n) | `2

]
– Let us first define R(n)

3 to be the event that

none of the nodes in group 3 is a LN of node (1,1) or (2,1). Then, from Assumptions A2

and A3,

P
[
R(n) | `2

]
=
(
P

[
R

(n)
3 | `2

])G(n)−2

, (A.17)

where P
[
R

(n)
3 | `2

]
is the conditional probability of R(n)

3 given {L(n)
2,1 = `2}. We will

now find an upper bound to P
[
R

(n)
3 | `2

]
by considering the same three cases above (in

the calculation of an upper bound for P
[
Q(n) | `2

]
). Keep in mind that P

[
R

(n)
3 | `2

]
is

the probability that the nodes in group 3 lie outside [0, d(n)] and [`2, `2 + d(n)].
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Case 1. d(n) + γ̃(n) < `2 < 1 − d(n) − γ̃(n) : Conditioning on the location of

VGL V
(n)

3 , i.e., X(n)
3 = x3, we consider following six subcases.

1-i. x3 ∈ [0, γ̃(n)−d(n)] or x3 ∈ [`2, `2+γ̃(n)−d(n)] – Since [x3, x3+d(n)] ⊂ [0, γ̃(n)]

or [x3, x3 + d(n)] ⊂ [`2, `2 + γ̃(n)] in this subcase, all members of group 3 will be

LNs of either node (1,1) or (2,1). Hence, P
[
R

(n)
3 | `2, x3

]
= 0.

1-ii. x3 ∈ (γ̃(n)−d(n), γ̃(n)] – In this subcase x3 +d(n) ≤ γ̃(n)+d(n) < `2. Hence, in

order for event R(n)
3 to be true, all members of group 3 must lie in (γ̃(n), x3 +d(n)]

and

P

[
R

(n)
3 | `2, x3

]
=

(
x3 + d(n)− γ̃(n)

d(n)

)M(n)

.

1-iii. x3 ∈ (γ̃(n), `2 − d(n)) or x3 ∈ (`2 + γ̃(n), 1 − d(n)) – In this subcase, it is

not possible for any member of group 3 to be a LN of node (1,1) or (2,1). Thus,

P

[
R

(n)
3 | `2, x3

]
= 1.

1-iv. x3 ∈ [`2− d(n), `2] – In this subcase, we have γ̃(n) < x3 < x3 + d(n) < 1− γ̃(n),

and the nodes in group 3 cannot be a LN of node (1,1). Thus, the event R(n)
3 only

requires that the members of group 3 lie in [x3, `2) to avoid being a LN of node

(2,1). Therefore,

P

[
R

(n)
3 | `2, x3

]
=

(
`2 − x3

d(n)

)M(n)

.

1-v. x3 ∈ (`2 + γ̃(n) − d(n), `2 + γ̃(n)] – Note that γ̃(n) < x3 < x3 + d(n) < 1 for

this subcase. Consequently, the event R(n)
3 that all members of group 3 are in the

interval (`2 + γ̃(n), x3 + d(n)] has probability

P

[
R

(n)
3 | `2, x3

]
=

(
x3 + d(n)− (`2 + γ̃(n))

d(n)

)M(n)

.
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1-vi. x3 ∈ [1−d(n), 1] – First, note that `2 + γ̃(n) < x3 < x3 +d(n) < 1+`2. Hence, the

members of group 3 cannot be a LN of node (2,1). The probability that all members

of group 3 lie in [x3, 1) is equal to

P

[
R

(n)
3 | `2, x3

]
=

(
1− x3

d(n)

)M(n)

.

Recall that X(n)
3 is uniformly distributed over [0, 1) from observation O1. Taking

these conditional probabilities for the six subcases and integrating them over the given

intervals, we obtain

P

[
R

(n)
3 | `2

]
= 1− 2γ̃(n)− 2d(n) +

4d(n)

M(n) + 1
. (A.18)

Case 2. 1− d(n)− γ̃(n) ≤ `2 ≤ 1− γ̃(n) : We follow the same steps in case 1 and

consider seven subcases by conditioning on X(n)
3 = x3.

2-i. x3 ∈ [0, γ̃(n) − d(n)] or x3 ∈ [`2, `2 + γ̃(n) − d(n)] – By the same argument in

subcase 1-i, P
[
R

(n)
3 | `2, x3

]
= 0.

2-ii. x3 ∈ (γ̃(n)− d(n), γ̃(n)] – Following the same argument in subcase 1-ii,

P

[
R

(n)
3 | `2, x3

]
=

(
x3 + d(n)− γ̃(n)

d(n)

)M(n)

.

2-iii. x3 ∈ (γ̃(n), `2 − d(n)) – Since no member of group 3 can be a LN of node (1,1) or

(2,1) in this subcase, P
[
R

(n)
3 | `2, x3

]
= 1.

2-iv. x3 ∈ [`2− d(n), `2] – In this case, event R(n)
3 demands that the members of group 3

be in [x3, `2). Hence,

P

[
R

(n)
3 | `2, x3

]
=

(
`2 − x3)

d(n)

)M(n)

.
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2-v. x3 ∈ [`2 + γ̃(n) − d(n), 1 − d(n)] – Since all members of group 3 must lie in the

interval (`2 + γ̃(n), x3 + d(n)] for event R(n)
3 to occur,

P

[
R

(n)
3 | `2, x3

]
=

(
x3 + d(n)− (`2 + γ̃(n))

d(n)

)M(n)

.

2-vi. x3 ∈ [1− d(n), `2 + γ̃(n)] – The probability that all members of group 3 lie in the

interval (`2 + γ̃(n), 1] to avoid being a LN of node (1,1) or (2,1) is equal to

P

[
R

(n)
3 | `2, x3

]
=

(
1− (`2 + γ̃(n))

d(n)

)M(n)

.

2-vii. x3 ∈ (`2 + γ̃(n), 1) – In order for R(n)
3 to be true, all members in group 3 must be

in [x3, 1). Thus,

P

[
R

(n)
3 | `2, x3

]
=

(
1− x3

d(n)

)M(n)

.

Integrating the above conditional probabilities over the specified intervals, we have

P

[
R

(n)
3 | `2

]
= `2 − γ̃(n)− d(n) (A.19)

+(`2 + γ̃(n) + d(n)− 1)

(
1− `2 − γ̃(n)

d(n)

)M(n)

+
2d(n)

M(n) + 1

(
1 +

(
1− `2 − γ̃(n)

d(n)

)M(n)+1
)
.

We can show that (A.19) is increasing in `2 between 1−d(n)− γ̃(n) and 1− γ̃(n). Hence,

by substituting `2 = 1− γ̃(n), we get an upper bound

P

[
R

(n)
3 | `2

]
≤ 1− 2γ̃(n)− d(n) +

2d(n)

M(n) + 1
. (A.20)

Case 3. γ̃(n) < `2 ≤ d(n) + γ̃(n) : This case is symmetric to case 2. Therefore,

we have the same upper bound in (A.20).
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Making use of (A.14), (A.16) - (A.18) and (A.20) in (A.12), we get

E
[
I

(n)
1,1 (γ̃(n)) · I(n)

2,1 (γ̃(n))
]

=

∫ 1−γ̃(n)

γ̃(n)

(
P
[
R(n) | `2

]
·P
[
Q(n) | `2

])
d`2

≤
∫ 1−d(n)−γ̃(n)

d(n)+γ̃(n)

Λ1(n) d`2 + 2

∫ d(n)+γ̃(n)

γ̃(n)

Λ2(n) d`2

= (1− 2d(n)− 2γ̃(n)) · Λ1(n) + 2d(n) · Λ2(n), (A.21)

where

Λ1(n) =
1

M(n)2

(
1− 2γ̃(n)− 2d(n) +

4 d(n)

M(n) + 1

)G(n)−2

(A.22)

and

Λ2(n) =
1

M(n)2

(
1− 2γ̃(n)− d(n) +

2 d(n)

M(n) + 1

)G(n)−2

.

First, note that (1− 2d(n)− 2γ̃(n))→ 1. We will now show that

(A.21) ∼ 1

N(n)2
exp(−2αn) (A.23)

by proving

Λ1(n) ∼ 1

N(n)2
exp(−2αn) (A.24)

and d(n) · Λ2(n) = o (Λ1(n)).

Clearly, ∆(n) := 2γ̃(n) + 2d(n) − 4d(n)/(M(n) + 1) → 0. In addition, recall

that G(n) · γ̃(n)2 = o(1) because log2(G(n))/G(n) = o(1) from Assumption 2.1. This

implies that G(n) ·∆(n)2 = o(1) because d(n) = o(γ̃(n)). Hence, substituting ∆(n) in
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(A.22) and multiplying both sides by M(n)2,

M(n)2 · Λ1(n) = (1−∆(n))G(n)−2 (A.25)

= exp ((G(n)− 2) · log(1−∆(n)))

= exp
(
(G(n)− 2) ·

(
−∆(n) +O

(
∆(n)2

)))
∼ exp(−G(n) ·∆(n))

= exp(−2 log(G(n))− 2αn + o(1)) (A.26)

∼ 1

G(n)2
exp(−2αn), (A.27)

where o(1) term in (A.26) represents G(n) · d(n)(4/(M(n) + 1) − 2). Dividing (A.25)

and (A.27) by M(n)2, we get

Λ1(n)∼ 1

M(n)2 ·G(n)2
exp(−2αn)

=
1

N(n)2
exp(−2αn).

Following the same steps, we obtain

Λ2(n)∼ 1

N(n)2
exp(−2αn).

Since d(n) = o(1/G(n)), it follows that d(n) · Λ2(n) = o (Λ1(n)), and we get (A.23).

We plug in E
[
I

(n)
1,1 (γ̃(n)) · I(n)

1,2 (γ̃(n))
]

= 0 and use (A.9), (A.10), and (A.23) in

place of E
[
I

(n)
1,1 (γ̃(n))

]
, E
[
C(n)(γ̃(n))

]
, and E

[
I

(n)
1,1 (γ̃(n)) · I(n)

2,1 (γ̃(n))
]
, respectively,

in (A.11) to obtain

lim
n→∞

(
E
[
C(n)(γ̃(n))

])2

E [(C(n)(γ̃(n)))2]
(A.28)

≥ lim
n→∞

exp(−2αn)

exp(−αn) +M(n)(G(n)− 1) 1
N(n)

exp(−2αn)
.
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We multiply both the numerator and denominator by exp(2αn).

(A.28)≥ lim
n→∞

1

exp(αn) + M(n)(G(n)−1)
N(n)

Note that M(n)(G(n) − 1)/N(n) = 1 − 1/G(n) → 1 as n → ∞. Thus, if αn →

−∞, exp(αn) → 0 and the limit in the right-hand side is equal to one. Since we know

that E
[(
C(n)(γ̃(n))

)2
]
≥
(
E
[
C(n)(γ̃(n))

])2, this implies that (A.28) is equal to one,

completing the proof of S2.

A.2 Proof of Theorem 2.4

Basically, this theorem can be proved by showing that the given d(n) and r̃(n) satisfy the

condition, (A.1), which follows directly from Markov’s inequality [7, p.311]. The main

stream of the proof is almost similar with the proof of Theorem 2.1. Hence, we will jump

to (A.4) in the proof of Theorem 2.1 and derive new P
[
A(n)

]
and P

[
B(n)

]
First, because d(n) > r̃(n), we compute

∫ d(n)

0
P
[
A(n)|y

]
dy by considering two

cases:

Case 1. 0 ≤ y ≤ d(n)− γ̃(n) : The other members of group 1 will lie in the interval

[0, y] ∪ [y + γ̃(n), d(n)]. Thus,

P
[
A(n)|y

]
=

(
1− γ̃(n)

d(n)

)M(n)−1

.

Case 2. d(n) − γ̃(n) ≤ y ≤ d(n) : The other members of group 1 will lie in the

interval [0, y]. Thus,

P
[
A(n)|y

]
=

(
y

d(n)

)M(n)−1

.
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From the above, we get∫ d(n)

0

P
[
A(n)|y

]
dy =

∫ d(n)−γ̃(n)

0

(
1− γ̃(n)

d(n)

)M(n)−1

dy +

∫ d(n)

d(n)−γ̃(n)

(
y

d(n)

)M(n)−1

dy

= d(n)

(
1

M(n)
+

(
1− 1

M(n)

)(
1− γ̃(n)

d(n)

)M(n)
)
. (A.29)

Here, from given d(n) and γ̃(n), we know that(
1− γ̃(n)

d(n)

)M(n)

=

(
1− α

β
· 1

M(n)

)M(n)

and

lim
n→∞

(
1− α

β
· 1

M(n)

)M(n)

= exp

(
−α
β

)
. (A.30)

From (A.30) and (A.29), we know that

1

d(n)

∫ d(n)

0

P
[
A(n)|y

]
dy = exp

(
−α
β

)
+ o(1). (A.31)

Second, let B(n)
2 be the event that node (1,1) does not have any LNs from group 2.

Then, from Assumptions A1 through A3, P
[
B(n)

]
=
(
P

[
B

(n)
2

])G(n)−1

. We compute

P

[
B

(n)
2

]
by conditioning on X(n)

2 = x2 and considering four cases as follows. WLOG,

we assume L(n)
1,1 = 0:

Case 1. 0 ≤ x2 ≤ γ̃(n) : The conditional probability P
[
B

(n)
2 |X

(n)
2 = x2

]
is given

by the probability that all members of group 2 are in the interval (x2 + d(n), γ̃(n)). From

Assumption A3, this probability is given by ((x2 + d(n)− γ̃(n))/d(n))M(n).

Case 2. γ̃(n) < x2 ≤ 1 − d(n) : Since all members of group 2 lie in the interval

(x2, x2 + d(n)), P
[
B

(n)
2 |X

(n)
2 = x2

]
= 1.

Case 3. 1− d(n) < x2 < 1− d(n) + γ̃(n) : Since all members of group 2 lie in the

interval (x2, 1), P
[
B

(n)
2 |X

(n)
2 = x2

]
= ((1− x2)/d(n))M(n).

95



Case 4. 1−d(n)+γ̃(n) ≤ x2 < 1 : The conditional probabilityP
[
B

(n)
2 |X

(n)
2 = x2

]
is equal to the probability that all members in group 2 reside in (x2, 1)∩(γ̃(n), x2+d(n)−

1). This probability is given by ((d(n)− γ̃(n))/d(n))M(n).

Integrating the above conditional probabilities over the corresponding intervals, we

get

P

[
B

(n)
2

]
=

∫ γ̃(n)

0

(
1− γ̃(n)− x

d(n)

)M(n)

dx

+

∫ 1−d(n)

γ̃(n)

1 dx+

∫ 1−d(n)+γ̃(n)

1−d(n)

(
1− x
d(n)

)M(n)

dx

+

∫ 1

1−d(n)+γ̃(n)

(
1− γ̃(n)

d(n)

)M(n)

dx

= 1− γ̃(n)− d(n)

(
1−

(
1− γ̃(n)

d(n)

)M(n)+1
)

+
2d(n)

M(n) + 1

(
1−

(
1− γ̃(n)

d(n)

)M(n)+1
)

= 1− γ̃(n)− M(n)− 1

M(n) + 1
· d(n) ·

(
1−

(
1− γ̃(n)

d(n)

)M(n)+1
)
. (A.32)

Recall that X(n)
2 is uniformly distributed over [0, 1) from observation O1 (in Sec-

tion ??). From the equality P
[
B(n)

]
=
(
P

[
B

(n)
2

])G(n)−1

and (A.32),

P
[
B(n)

]
=

(
1− γ̃(n)− M(n)− 1

M(n) + 1
· d(n) ·

(
1−

(
1− γ̃(n)

d(n)

)M(n)+1
))G(n)−1

(A.33)

Define Γ(n) := γ̃(n) + M(n)−1
M(n)+1

· d(n) ·
(

1−
(

1− γ̃(n)
d(n)

)M(n)+1
)

. Then, (A.33) can
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be rewritten as

P
[
B(n)

]
= exp ((G(n)− 1) · log (1− Γ(n))). (A.34)

From (A.30), we know that

Γ(n) ∼ γ̃(n) + d(n) ·
(

1− exp

(
−α
β

))
. (A.35)

Also, because Γ(n) → 0, we have log (1− Γ(n)) = −Γ(n) + O(Γ(n)2), which gives us

that

P
[
B(n)

]
= exp

(
(G(n)− 1) ·

(
−Γ(n) +O(Γ(n)2)

))
.

From (A.35) and Assumption 1, we can check thatG(n) ·d(n) = o(1) andG(n) ·d(n)2 =

o(1). Hence, G(n) · Γ(n)2 = o(1) because γ̃(n) = o(d(n)). Therefore,

P
[
B(n)

]
∼ exp

(
−G(n) · d(n) ·

(
1− exp

(
−α
β

)))
= N(n)−β(1−exp (−αβ )). (A.36)

From (A.4), (A.31), and (A.36),

E
[
I

(n)
1,1 (γ̃(n))

]
∼ N(n)−β(1−exp (−αβ )). (A.37)

Substituting (A.37) in (A.3), we obtain

E
[
C(n)(γ̃(n))

]
= N(n) · E

[
I

(n)
1,1 (γ̃(n))

]
∼ N(n)1−β(1−exp (−αβ )).

Therefore, if 1−β
(

1− exp
(
−α
β

))
< 0, i.e., α > β·log

(
β
β−1

)
, then, E

[
C(n)(γ̃(n))

]
→

0. This completes the proof of Theorem 2.4.
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B. APPENDIX B

B.1 Proof of Lemma 3.1

We use the first moment method to prove the lemma. For each n ∈ IN, we define following

rvs: For every i ∈ Nn,

I
(n)
i = 1{node i is isolated},

and

Z(n) =
∑
i∈Nn

I
(n)
i .

By its definition, Z(n) denotes the number of isolated nodes out of the n nodes. It is a

simple exercise to show that

lim
n→∞

E
[
Z(n)

]
= 0 implies lim

n→∞
IP[Z(n) = 0] = 1.

Hence, we prove E
[
Z(n)

]
→ 0 as n→∞ and make use of this observation to prove the

lemma.

First, since I(n)
i , i ∈ Nn, are identically distributed,

E
[
Z(n)

]
= n · E[I

(n)
1 ] = n · IP[node 1 is isolated].



We compute IP[node 1 is isolated] by conditioning on T (n)
1 and Θ

(n)
1 .

IP[node 1 is isolated] =

∫ ∫
IP[node 1 is isolated|G(n)

1 = g]dG(z)

≤ φn−1

=
(
1− πr(n)(ξ)2 · ψ∗

)n−1
. (B.1)

We substitute πr(n)(ξ)2 = ξ log (n)/n in (B.1).

IP[node 1 is isolated] ≤
(

1− ξψ∗ · log (n)

n

)n−1

. (B.2)

Using the equality (1− x)k = exp(k log(1− x)),

(B.2) = exp

(
(n− 1) log

(
1− ξψ∗ · log (n)

n

))
. (B.3)

Recall that, for any a > 0,

log

(
1− a log (n)

n

)
= −

∑
k∈N

1

k

(
a log (n)

n

)k
,

and

exp

(
n log

(
1− a log (n)

n

))
∼ exp(−a log (n)) = n−a. (B.4)

The relation (B.4) gives us

(B.3) ∼ exp (−ξψ∗ log (n)) = n−ξψ
∗
.

Therefore, if ξψ∗ > 1 or ξ > 1
ψ∗

, then, n · E
[
I

(n)
1

]
→ 0 as n→∞.

B.2 Proof of Lemma 3.2

For fixed τ , let σ(τ) denote the maximum number of disjoint disks with radius τ whose

union is contained in a unit rectangle and B(x, r) is the disk centered at x with radius r.
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Moreover, for each n ∈ IN and every A ⊂ Ω, #N (n)(A) denotes the number of nodes in

A (out of n nodes).

Fix α > 1 and choose ε < γ < β that satisfy

i. ε < ξ/4;

ii.
√
ε+
√
ξ <
√
γ.

For each n ∈ IN, σn = σ(rn(β)) and {Y(n)
j ; j = 1, 2, · · · , σn} such thatB(Y

(n)
j , r(n)(β))

are disjoint and ∪σnj=1B(Y
(n)
j , r(n)(β)) ⊂ Ω.

Define the following events.

E
(n)
j ={#N (n)(B(Y

(n)
j , r(n)(ε))) = 1 and

no other node in B(Y
(n)
j , r(n)(β)) is a neighbor of the node in B(Y

(n)
j , r(n)(ε))}.

When E(n)
j is true, from the above assumption

√
ε +
√
ξ <
√
γ <

√
β, the node in the

smaller disk B(Y
(n)
j , r(n)(ε)) is isolated. Therefore,

P(n)
(
r(n)(ξ)

)
≤ IP[(∪σnj=1E

(n)
j )c] = IP[∩σnj=1E

(n)
j

c
].

We prove that when ξ < 1
ψ∗

,
∑

n∈IN IP[∩σnj=1E
(n)
j

c
] <∞. Then, the Borel-Cantelli lemma

tells us that the event of no isolated nodes occurs only for finitely many n ∈ IN with

probability one. Let N (n)
j := #N (n)(B(Y

(n)
j , r(n)(β))) and E := ∩σnj=1E

(n)
j

c
, and define

the following three events.

• A(n) = ∪σnj=1{N
(n)
j ≤ 1};

• B(n) = ∪σnj=1{N
(n)
j ≥ αβ log (n)};;

• D(n) = ∩σnj=1{2 ≤ N
(n)
j < αβ log (n)}.

We now show that IP[E (n) ∩ A(n)], IP[E (n) ∩B(n)], and IP[E (n) ∩D(n)] are summable.
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B.2.1 IP[E (n) ∩ A(n)]

In order to prove IP[E (n) ∩ A(n)] is summable, we show that the upper bound IP[A(n)] is

summable. Using a union bound,

IP[A(n)] ≤
σn∑
j=1

IP[N
(n)
j ≤ 1]. (B.5)

First, for every j = 1, 2, · · · , σn,

IP[X
(n)
i ∈ B(Y

(n)
j , r(n)(β))] = πr(n)(β)2 =

β log (n)

n
=: pn.

For any δ > 0, for all sufficiently large n, (1− pn)−1 ≤ 1 + δ. Therefore, we have that

IP[N
(n)
j ≤ 1] = IP[N

(n)
j = 0] + IP[N

(n)
j = 1]

= (1− pn)n + npn(1− pn)n−1

≤ exp (−npn) + (1 + δ)npn exp (−npn)

= exp (−β log (n))(1 + (1 + δ)β log (n)). (B.6)

Substitute (B.6) in (B.5), we have

IP[A(n)] ≤ σn exp (−β log (n))(1 + (1 + δ)β log (n))

= σnn
−β(1 + (1 + δ)β log (n)).

We know that σn = Θ(n/ log (n)). Hence, if β > 2, IP[A(n)] is summable, i.e.,
∑

n∈N IP[A(n)] <

∞.

B.2.2 IP[E (n) ∩B(n)]

Again, we prove that its upper bound IP[B(n)] is summable. Using a union bound,

IP[B(n)] ≤
σn∑
j=1

IP[N
(n)
j ≥ αβ log (n)]. (B.7)
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First, we rewrite N (n)
j as a sum of independent Bernoulli rvs as follows:

N
(n)
j =

n∑
i=1

I{X(n)
i ∈ B(Y

(n)
j , r(n)(β))}.

By Theorem 5.1 in [26],

IP[N
(n)
j ≥ αβ log (n)] ≤ IP[Poisson(nλn) ≥ αβ log (n)]

where Poisson(nλn) is a Poisson rv with parameter n · λn, and

λn = − log

(
1− β log (n)

n

)
=
β log (n)

n
+
∑
k≥2

1

k

(
β log (n)

n

)k
.

Thus,

n · λn = β log (n) + n
∑
k≥2

1

k

(
β log (n)

n

)k
. (B.8)

Using Proposition 1 in [25],

IP[Poisson(nλn) ≥ αβ log (n)]

≤
(

1−
(

nλn
αβ log (n) + 1

))−1
(nλn)αβ log (n)

(αβ log (n))!
exp (−nλn)

=≤
(

1−
(

nλn
αβ log (n) + 1

))−1
nαβ log (nλn)

(αβ log (n))!
exp (−nλn). (B.9)

Making use of (B.8),

(B.9)

(
1− 1

α

)−1
nαβ log (β log (n))

(αβ log (n))!
exp (−β log (n)). (B.10)

By Stirling’s formula,

(αβ log (n))! nαβ log (αβ log (n)) · n−αβ ·
√

2παβ log (n). (B.11)
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From (B.10) and (B.11), we have

(B.9)

(
1− 1

α

)−1

n−αβ log (α)+β(α−1)
√

2παβ log (n). (B.12)

From (B.7) and (B.12), a sufficient condition for summability of IP[B(n)] is−αβ log (α)+

β(α− 1) < −2 or, equivalently,

β(α(log (α)− 1) + 1) > 2. (B.13)

One can show that the minimum of α(log (α) − 1) + 1 is achieved by α = 1 and, for all

α > 1, α(log (α)− 1) + 1 > 0. Thus, for any fixed α > 1, we can find sufficiently large

β to satisfy (B.13).

B.2.3 IP[E (n) ∩D(n)]

We first rewrite the probability IP[E (n) ∩D(n)] by conditioning on the possible values of

(N
(n)
1 , N

(n)
2 , · · · , N (n)

σn ) : N(n) ∈ Πσn
j=1{2, 3, · · · , αβ log (n)} =: IN(n)

∗ .

IP[E (n) ∩D(n)] =
∑

n∈IN
(n)
∗

IP[E (n) ∩D(n)|N(n) = n].

WhenE(n)
j , j = 1, 2, · · · , σn, holds, we denote the node inB(Y

(n)
j , r(n)(ε)) by i(j).

We can compute the probability of the event that node i(j) does not have any neighbor

in B(Y
(n)
j , r(n)(β))\B(Y

(n)
j , r(n)(ε)) by conditioning on Θ

(n)
i(j) and T (n)

i(j): Given Θ
(n)
i(j) = θ

and T
(n)
i(j) = t, the probability that another node in B(Y

(n)
j , r(n)(β))\B(Y

(n)
j , r(n)(ε)),

say node i∗, is not a neighbor of node i(j), which we denote by qn(θ, t), is equal to

the sum of (i) the probability that d(X
(n)
i(j),X

(n)
i∗ ) > r(n)(ξ) and (ii) the probability that

d(X
(n)
i(j),X

(n)
i∗ ) ≤ r(n)(ξ) but either Θ

(n)
i∗ or T (n)

i∗ < θ. Therefore, qn(θ, t) can be expressed
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as

qn(θ, t) = P (d(X
(n)
i(j),X

(n)
i∗ ) > r(n)(ξ)) + P (d(X

(n)
i(j),X

(n)
i∗ ) ≤ r(n)(ξ)) · P (θ

(n)
i∗ > t or T (n)

i∗ < θ)

= 1− ξ

β
+
ξ

β
· P (θ

(n)
i∗ > t or T (n)

i∗ < θ). (B.14)

Using (B.14), we know that

IP[E (n) ∩D(n)|N(n) = n, (Θ
(n)
i(j) = θj, T

(n)
i(j) = tj), j = 1, 2, · · · , σn]

=
σn∏
j=1

IP[E (n) ∩D(n)|N (n)
j = nj,Θ

(n)
i(j) = θj, T

(n)
i(j) = tj] (B.15)

=
σn∏
j=1

(
1− nj ·

ε

β
· qn(θj, tj)

nj−1

)
. (B.16)

Equality in (B.15) follows from the observation that, once N(n) is fixed, due to the as-

sumed mutual independence of node locations, {E(n)
j

c
∩ D(n)}, j = 1, 2, · · · , σn, are

conditionally independent.

We can now obtain an upper bound on IP[E (n) ∩ D(n)|N(n) = n] by integrating

(B.16) over (Θ
(n)
i(j), T

(n)
i(j)), j = 1, 2, · · · , σn: For j = 1, 2, · · · , σn,

∫
qn(θj, tj)

nj−1dG =

∫ (
1− ξ

β
+
ξ

β
· P (θ

(n)
i∗ > tj or T (n)

i∗ < θj)

)nj−1

dG. (B.17)

Now, let us define (θ∗, t∗) as

(θ∗, t∗) = arg(θj ,tj)
maxP (Θ

(n)
i > tj or T (n)

i < θj).

And, also we will define S := B((θ∗, t∗), s) which is the ball centered by (θ∗, t∗) with

radius s. Then, from (??), the definition of ψ, within S we know that the maximum value

of P (Θ
(n)
i > tj or T (n)

i < θj) is ψ which is achieved at the point, (θ∗, t∗). Now, within

S we can think about the minimum value of P (Θ
(n)
i > tj or T (n)

i < θj) which can be
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expressed as ψ − ε′. We know that as s goes to 0, ε′ also goes to 0. From this definition

of S and ψ − ε′, an lower bound on (B.17) can be derived as

∫
qn(θj, tj)

nj−1dG =

∫
S

(
1− ξ

β
+
ξ

β
· P (θ

(n)
i∗ > tj or T (n)

i∗ < θj)

)nj−1

dG

+

∫
Sc

(
1− ξ

β
+
ξ

β
· P (θ

(n)
i∗ > tj or T (n)

i∗ < θj)

)nj−1

dG

≥
∫
S

(
1− ξ

β
+
ξ

β
· P (θ

(n)
i∗ > tj or T (n)

i∗ < θj)

)nj−1

dG

> πs2 ·
(

1− ξ

β
+
ξ

β
· (ψ − ε′)

)nj−1

. (B.18)

From (3.3), (B.18) can be rewritten as

∫
qn(θj, tj)

nj−1dG > πs2 ·
(

1− ξ

β
+
ξ

β
· (1− ψ∗ − ε′)

)nj−1

= πs2 ·
(

1− ξ

β
· (ψ∗ + ε′)

)nj−1

=: qn. (B.19)

Using the inequality (B.19), we obtain

IP[E (n) ∩D(n)|N(n) = n] ≤
σn∏
j=1

(
1− nj ·

ε

β
· qn
)

≤ exp

(
− ε
β

σn∑
j=1

njqn

)
. (B.20)

Let us consider the exponent in (B.20) without minus sign. Because nj ∈ {2, 3, · · · , αβ log (n)},
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we can get an lower bound on (B.20) as

ε

β

σn∑
=1

njqn ≥
2ε

β

σn∑
j=1

qn

=
2ε

β
· πs2

σn∑
j=1

(
1− ξ

β
· (ψ∗ + ε′)

)nj−1

>
2ε

β
· πs2

σn∑
j=1

(
1− ξ

β
· (ψ∗ + ε′)

)αβ log (n)

=
2ε

β
· πs2 · σn

(
1− ξ

β
· (ψ∗ + ε′)

)αβ log (n)

=
2ε

β
· πs2 · σn · exp

(
log (1− ξ

β
(ψ∗ + ε′)) · αβ log (n)

)
=

2ε

β
· πs2 · σn · nαβ log (1− ξψ

∗
β
− ξε
′
β

)

=
2ε

β
· πs2 · σn · nαβ log (1− ξψ

∗
β
− ε
′′
β

). (B.21)

Then, from (B.20) and (B.21), an upper bound on IP[E (n) ∩ D(n)|N(n) = n] can be ex-

pressed as

IP[E (n) ∩D(n)|N(n) = n] ≤ exp

(
−2ε

β
· πs2 · σn · n

αβ log
(

1− ξψ
∗
β
− ε
′′
β

))
≤ exp

(
−2ε

β
· πs2 · σn · n

αβ log
(

1− γψ
∗
β
− ε
′′
β

))
.

Since σn = Θ(n/ log (n)) and the above inequality does not depend on the value of N(n),

a sufficient condition for summability of IP[E (n) ∩D(n)] is

1 + αβ log

(
1− γψ∗

β
− ε′′

β

)
> 0,

or equivalently,

γ <
β

ψ∗

(
1− exp

(
− 1

αβ

)
− ε′′

β

)
. (B.22)
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Note that, as β →∞,

β

ψ∗

(
1− exp

(
− 1

αβ

)
− ε′′

β

)
→ 1

αψ∗
− ε′′

ψ∗
.

Therefore, for sufficiently large β, we have

1− ε′′

αψ∗
− ε′′

ψ∗
<

β

ψ∗

(
1− exp

(
− 1

αβ

)
− ε′′

β

)
.

Choose γ = 1−2ε′′

αψ∗
− ε′′

ψ∗
. Then,

γ <
1− ε′′

αψ∗
− ε′′

ψ∗
<

β

ψ∗

(
1− exp

(
− 1

αβ

)
− ε′′

β

)
.

Since ε′′ can be arbitrarily small and β can be arbitrarily large, we can choose ε′′, γ, and

β that satisfy the above inequalities, and the summability of IP[E (n) ∩D(n)] follows.
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