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Abstract

Computational techniques for representing and analyzing full wafer metrology data are developed
for chemical vapor deposition and other thin-film processing applications. Spatially resolved mea-
surement data are used to produce “virtual wafers” that are subsequently used to create response
surface models for predicting the full-wafer thickness, composition, or any other property profile
as a function of processing parameters. Statistical analysis tools are developed to assess model
prediction accuracy and to compare the relative accuracies of different models created from the
same wafer data set. Examples illustrating the use of these techniques for film property unifor-
mity optimization and for creating intentional film-property spatial gradients for combinatorial CVD
applications are presented.

1 Introduction

Response surface models are used extensively in chemometrics [3] and in semiconductor pro-
cessing applications [8]. The primary motivation for creating a response surface model is to be
able to predict a system’s output corresponding to a given set of conditions or to determine the
necessary conditions that would yield a desired response. There are three steps involved in ob-
taining a response surface model. First, a series of experiments must be designed and performed
in such a way that adequate and reliable measurements of the response of interest are gathered.
Then, a mathematical model is fitted to the data through regression analysis (usually the least
squares method). Finally, the empirical model is subjected to error analysis and statistical testing
to verify its validity.

In this paper, we present a numerical procedure for generating response surface models for thin-
film deposition processes where the model prediction corresponds to the full spatial profile over
the substrate. This work is motivated by the increasing availability of full-wafer metrology methods
and the potential of wafer-profile modeling software to make full use of such measurements. We
demonstrate the utility of our full wafer modeling approach for both uniformity optimization and for
chemical vapor deposition single-wafer combinatorial processing.

1.1 Combinatorial CVD

In semiconductor device manufacturing processes such as chemical vapor deposition (CVD), one
typically strives for uniform film properties (thickness, microstructure, composition, etc.) across
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the substrate (wafer). In some cases, however, it is desirable to control deposition rate or a film
property profile to a specific, spatially non-uniform distribution [1]. Such situations arise in single-
wafer combinatorial processing where the objective is to deposit a film with properties that vary as
a function of location on the wafer.

Combinatorial CVD is an emerging technology that enables efficient development of new materials
and the corresponding process recipes for this crucial step in semiconductor manufacturing. The
objectives of combinatorial CVD are to (reproducibly) deposit intentionally non-uniform films across
the substrate and to have the ability to model the deposition system to sufficient degree that
gas phase conditions above any point of the wafer can be determined to correlate processing
conditions to desired film qualities [9].

There are relatively few examples of CVD reactor systems with combinatorial capabilities. Those
that do exist, however, all demonstrate the capability to produce films with graded properties over
a portion of the substrate surface. For example, the CVD reactor design of Gladfelter [11, 16] fea-
tures three feed tubes in a triangular arrangement across the substrate; a different single-source
precursor is fed through each tube, generating compositional spreads of three metal dioxides over
the substrate. In Wang [13, 14, 15], thickness graded films of hydrogenated silicon were deposited
in a hot-wire CVD system featuring a mask and motorized shutter; control of the shutter speed
was used to create strips of graded films over the substrate. Hyett and Parkin [7] describe a cross-
flow reactor configuration where separate precursor inlet nozzles are used to produce films with
composition gradients of tungsten and titanium oxides and to likewise generate films with varying
ratios of TiO2 rutile/anatase phases. In Taylor and Semancik [12], microhotplate devices were
used to control the temperature in an array of micro-scale substrate samples; it was found that
temperature gradients in the microhotplate supports resulted in a microstructurally graded film on
the support legs. Finally, the Programmable Reactor system [5, 6, 9, 10] features a segmented
shower head design where each segment is fed individually with reactant gases and exhaust gas
is pumped back up through each segment. This concept was tested in a three-zone prototype
tungsten deposition system to evaluate the system’s ability to manipulate gas phase composition
across the wafer surface [5, 6] and to demonstrate its true programmable nature using a model-
based approach to controlling spatial deposition patterns across the wafer surface [9, 10].

Given the promise of the emerging field of combinatorial CVD and the continuing importance
of uniformity control in thin film processing, the goal of this work is to develop the numerical
techniques and associated software for interpreting, modeling, and optimizing the film proper-
ties across a variety of substrate geometries to make full use of the capabilities of next generation
CVD reactor design.

2 Virtual wafers

Full wafer metrology data, such as film thickness, composition, dopant concentration, phase com-
position, etc., generally are measured using a uniform grid or as a set of uniformly spaced points
on a line across the wafer surface. A representative sample of tungsten film thickness as deter-
mined using four-point probe measurements [6] is shown in Fig. 1.

Because our goal is to model and analyze full wafer data in a computationally accurate manner,
using the data in its original, uniformly discretized form is inappropriate. Consider, for example,
the problem of accurately determining the rotationally averaged wafer profile – for this problem, ex-
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Figure 1: Film thickness measured using four-point probe measurements (left); quadrature grid
onto which the data are to be interpolated (center); “virtual wafer” map (right) as defined on the
quadrature grid.

pressing the wafer profile in polar coordinates and at Gaussian quadrature points makes it possible
to perform calculations to within the roundoff error of the computer used. Furthermore, because
the quadrature weights wk used for integration operations need only be calculated once, the re-
sulting computational procedure is very efficient. Likewise, subsequent interpolation operations
necessary to extract wafer spatial data (points, lines, and subregions) and the statistical analysis
of wafer spatial features also can be done in a very precise manner.

The wafer data are interpolated to the quadrature grid by first defining the quadrature points (rk , θk )
as roots of a polynomial taken from a sequence of orthogonal polynomials in the radial (r ) direction
and equidistant points in θ (see [2] and Fig. 1). For each (rk , θk ), the nearest experimental mea-
surement points are located and the measured values at those points are used to interpolate the
corresponding value Yk at the quadrature point. It is important to point out that values of our mea-
sured film property Y are now defined in an optimal manner by interpolating polynomials between
points (rk , θk ), and so the virtual wafer map actually defines a function Y (r , θ) (Fig. 1), resulting in
the accurate calculations described previously.

The virtual wafer generation operations are all carried out using the object-oriented features of
MATLAB2. In our computational approach, we define a MATLAB class called scalarfield [2]
in which computational objects containing the Yk values, quadrature weights wk , and quadrature
point locations (rk , θk ) are defined; discrete differential and other operators likewise are set up.
Wafer maps in this form then are combined with additional wafer information, such as the wafer
ID and wafer processing conditions x1, x2, ... , xm inside objects representing the parameterized
data (paramdata), a class that allows for efficient sorting of large sets of wafer data as well as the
development of response surface models. Ultimately, the user needs only to choose the wafer map
object class to implement all of these numerical procedures. In this paper, we discuss two: wafer,
which describes one- and -two-dimensional wafer maps on circular substrates, and rectwafer
which also represents one- and two-dimensional data but on rectangular wafers. Other wafer map
classes, such as those appropriate for planetary reactor systems, are under development and
will be discussed in subsequent publications. All of the methods described are collected in the
graphical user interface waferview.m application shown in Fig. 2.

2www.mathworks.com
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Figure 2: Graphical user interface to the wafer visualization and characterization methods illustrat-
ing a stack of 9 wafers (left) and the mean thickness profile of the set of wafers (right).

3 Building response surface models

Given a vector of wafer map objects Y = [Y1, Y2, ... , Yn] and corresponding operating conditions
x = [x1, x2, ... xp], we turn to the problem of creating a model to predict the full wafer spatial features
given a user-defined set of operating conditions. To facilitate the model derivation description, the
variable and parameter definitions are summarized in Table 1.

x1 to xm process inputs
Y1(r , θ) to Yn(r , θ) experimental data represented by virtual wafers

Yi ,k wafer measurement at point k on virtual wafer i
β1(r , θ) to βp(r , θ) model parameter true values
b1(r , θ) to bp(r , θ) model parameter values estimated by regression

y (r , θ) model prediction
(r1, θ1) to (rq, θq) quadrature point locations on the wafer surface

Table 1: Response surface model notation.

The linear least squares method is used to compute estimates bj (r , θ) of the parameters βj (r , θ) of
a fitted model when these spatially dependent parameters are coefficients of functions of only the
independent variables (process inputs x1, ... , xm). In other words, the observed response Yi (r , θ)
is linear in βj (r , θ) but not necessarily in the independent variables (i.e., operating conditions). A
single observation may be represented as

Yi (r , θ) =
p∑

j=1

βj (r , θ)fj (x1,i , x2,i , ... , xm,i ) + εi (r , θ) i = 1, ... n

where fj ’s are the functions of the independent variables related to each parameter βj (r , θ) and
εi (r , θ) is the random error of the measurement. The totality of observations is expressed in matrix
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form as
Y (r , θ) = Xβ(r , θ) + ε(r , θ).

The result of applying the linear least squares technique to this system is a set of equations that
are expressed in matrix form as

X ′Xb(r , θ) = X ′Y (r , θ)

where b is the vector of the β estimates. The values for the b vector are easily obtained from this
expression as

b(r , θ) = (X ′X )−1X ′Y (r , θ).

While standard in its appearance, we emphasize that the implementation of the least squares
technique is new in that the least squares method is performed in every point (rk , θk ), i = 1, ... , q of
the quadrature grid of the virtual wafers. As a result, the estimated parameters bj are functions of
r and θ instead of scalar values and a full wafer map is obtained from the response-surface model.
A representative response-surface model object is displayed using the wafermodelview.m in-
terface graphical user interface shown in Fig. 3.

Figure 3: Graphical user interface to the wafer response surface model illustrating a sample of the
model predition (center) corresponding to process conditions set by the slider bars (left), and the
target wafer to be used for optimization (right).

4 Error analysis and statistical testing

Model validity is assessed through an analysis of variance that divides the total variability of a set
of data into meaningful components. For instance, the total variation, known as the total sum of
squares (SST) can be partitioned into two contributions: the sum of squares of variability explained
by the fitted model, known as the sum of squares due to regression (SSR), and the sum of squares
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unaccounted for by the fitted model, known as the sum of squares of residuals (SSE):

SST = SSR + SSE .

For the full-wafer model analysis, the total sum of squares is computed as the weighted average
of the sum of the squares of the deviations of the observed responses Yi ,k about their average Yk
for each point (denoted with the subscript k ) of the quadrature grid

SST =
∑q

k=1
∑n

i=1 wk (Yi ,k − Yk )2∑q
k=1 wk

=
∑q

k=1 wksstk∑q
k=1 wk

(1)

where the wk are the quadrature weights associated with the k ′th point of the quadrature grid, q is
the total number of points in the grid, and sstk is the total sum of squares of the k ′th individual point.
By the nature of the discrete-ordinate collocation formulation, the sst are actually true functions of
r and θ over the substrate physical domain. The number of degrees of freedom associated to SST
is n− 1, where n is the total number of observations (i.e., total number of wafers used to generate
the model).

The sum of squares due to regression is calculated by the weighted sum of the squares of the
difference between the model prediction yi ,k and the average of the observed values for each
point of the grid:

SSR =
∑q

k=1
∑n

i=1 wk (yi ,k − Yk )2∑q
k=1 wk

=
∑q

k=1 wkssrk∑q
k=1 wk

There are p − 1 degrees of freedom associated to SSR, where p is the number of parameters in
the fitted model.

Lastly, the sum of squares of residuals is the weighted average of the sum of the squares of the
difference between the observed values and the predicted values.

SSE =
∑q

k=1
∑n

i=1 wk (Yi ,k − yi ,k )2∑q
k=1 wk

=
∑q

k=1 wkssek∑q
k=1 wk

The degrees of freedom associated to SSE are n − p. Again, we see that ssr and sse are true
functions of r and θ.

A measure of the adequacy of a model is the ratio between the sum of squares due to regression
and the sum of squares of residuals divided by their respective degrees of freedom:

f0 =
SSR/(p − 1)
SSE/(n − p)

The value of f0 is compared to a tabulated value Fα,p−1,n−p that represents the upper 100α%,
with α ∈ [0, 1], of the F-distribution. If f0 is greater than Fα,p−1,n−p the variation accounted for
by the model is significantly greater than the unexplained variation, thus the model is considered
adequate. However, the possibility that another model is a better fit to the data is not rejected. A
“better” model may include other variables or the deletion of one or more of the variables consid-
ered in the model.
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4.1 Test of the individual parameters

The least squares method assumes that the estimated parameters bj (r , θ) are normally distributed
with the mean being the true value of the parameter βj (r , θ). The variances of the estimated
parameters σ2

bj
(r , θ) are defined by the diagonal elements of the inverse of the X ′X matrix (used

to calculate the bj ’s) and the model variance σ2(r , θ). The model variance is estimated by the ratio
of the sum of squares of residuals and its respective degrees of freedom

σ2(r , θ) ≈ sse(r , θ)
(n − p)

which is computed from the values of sse at the collocation points.

Having knowledge of the distribution of the parameters makes it possible to test hypotheses about
parameter values. For example, it can be tested whether or not βj equals a set value βoj using a
t-test

to =
bj − βoj

sbj

where sbj is the estimate of the standard deviation σbj for parameter bj and is calculated by taking
the square root of the variance of bj

σbj ≈ sbj =
√

[X ′X ]−1
j ,j σ2.

The null hypothesis (Ho : βj = βoj ) is accepted if to ∈ [−tα/2,n−p, tα/2,n−p] for more than φ ∈ [0, 1]
weighted percentage of the quadrature grid points3. The value tα/2,n−p is obtained from tables (or
calculated using appropriate software) and depends on α that is defined as the level of significance
of the test (an α level of significance corresponds to a 100(1− α)% level of confidence).

A special case is when is when βoj = 0 in which case, if the null hypothesis is accepted, the
parameter βj must be removed from the model and a new model calculated. These numerical
procedures are implemented in our MATLAB function bttest.m and will be described in the
applications that follow this derivation.

4.2 Model comparison

More than one model can be fitted to the same set of data and it is important to compare these
models to determine the one that represents the data most accurately. One way to make this
decision is based on the F-distribution.

Both the SSE of a model (n − p degrees of freedom) and the SSE of the difference of two models
(p1 − p2 degrees of freedom) follow a χ2 distribution. By definition, the ratio of two χ2 distributions
divided by their respective degrees of freedom follows the F-distribution. Therefore, the following
ratio should follow the F distribution with (p1−p2) and (n−p1) degrees of freedom in the numerator
and denominator, respectively

(ssep2 − ssep1)/(p1 − p2)
ssep1/(n − p1)

= F (α, p1 − p2, n − p1)

3The value of φ is selected by the user; typically, values greater that 0.5 are chosen, with a default value of 0.75
(75%).
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where subscript 1 refers to the model with a larger number of parameters (p1−p2 must be positive).
Rearranging to obtain a ratio between ssep2 and ssep1

critical ratio = (p1 − p2)
F (α, p1 − p2, n − p1)

n − p1
+ 1

actual ratio =
ssep2

ssep1

If the critical ratio is larger than the actual ratio it can be concluded that adding the extra p1 − p2
terms to the model with larger number of parameters does not represent a significant improvement
of the fit.

In determining which model is “best” for accurate prediction of the full wafer map, two approaches
may be taken: 1) comparing the spatially weighted average of the actual ratio ssep2/ssep1 to the
critical ratio value, and 2) comparing the critical ratio value to the ratio of the overall sum of squares
SSEp2/SSEp1 . As presented in the second case study that follows, the first approach will be used
for model comparison in this paper.

5 Case studies

To demonstrate the use of the wafer mapping, model building, and statistical analysis tools, we
present three test cases that illustrate elements of each.

5.1 Uniformity optimization

In the first example, we examine the problem of building a response surface model that predicts
the full-wafer film thickness profile as a function of the deposition reactor inputs. For this example,
we consider a chemical vapor deposition process and a goal of manufacturing a spatially uniform
film with a mean thickness of 100mn. To test the wafer modeling and optimization software, we
use wafer thickness map data that is created artificially using the following equation

Y (r , θ) = β0 + β1(r , θ)(x1 − 1) + β2(r , θ)(x2 + 1) + β1,2(r , θ)(x1 − 1)(x2 + 1) + ε(r , θ). (2)

In this system there are two process inputs x1 and x2, which represent operating parameters such
as heater power input and reactant gas flow. We note that because β0 is a constant, the process
at x1 = 1, x2 = −1 produces perfectly uniform films except for the noise term ε(r , θ).

Using the process inputs x1 and x2, we perform a full-factorial design of experiments with x1 ∈
{−2, 0, 2} and x2 ∈ {−2, 0, 2}, thus creating a total of 9 individual wafer profile data sets. These
data are used as input to the wafer.m constructor method, creating the set of 9 wafer map (virtual
wafer) objects plotted in Fig. 4.

We observe in the collection of film thickness profiles, that there is significant spatial variation
among the wafers; in fact, the wafers produced by this design of experiments feature film thick-
nesses ranging from 85nm to 110nm. Computing sst(r , θ) (equation 1), we plot the variation of the
data in Fig. 5 to illustrate the magnitude of the uniformity optimization problem.
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Figure 4: Plots of the 9 data wafers for the uniformity optimization demonstration.

In the first step of the model development and subsequent optimization, we use the nine wafer
maps as input to our response surface model constructor method rsmodel.m, which by default
will attempt to identify a second-order model of the form

y (r , θ) = b0(r , θ) + b1(r , θ)x1 + b2(r , θ)x2 + b1,2(r , θ)x1x2 + b1,1(r , θ)x2
1 + b2,2(r , θ)x2

2

The model constructor method successfully identifies an acceptable model for this case; we then
proceed to apply to null hypothesis to each of the identified parameters using bttest.m, which
correctly identifies that parameters b1,1 and b2,2 should be eliminated from the model (c.f., eqn 2).

We now define an optimization setpoint corresponding to a uniform film thickness yset = 100nm
and perform an optimization with respect to the two input parameters x1 and x2 to determine the
set producing a wafer that satisfies the following minimization problem

min
x1,x2

||yset (r , θ)− y (r , θ)||2 = min
x1,x2

∫ 2π

0

∫ Rw

0
(100nm − y (r , θ))2 rdr dθ

subject to x1 ∈ [−2, 2] and x2 ∈ [−2, 2], and where Rw is the wafer radius.

This constitutes a constrained optimization problem that is efficiently solved using the fmincon.m
function of the MATLAB optimization toolbox. Results are shown in Fig. 5 using the optimized
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Figure 5: A plot of sse(r , θ) for the demonstration data (left) and results produced by the thickness
optimization procedure (right).

values for x1 = 1.0062 and x2 = −1.0017. Note that the only variations in the optimized wafer
correspond to the measurement noise of the original data.

5.2 Model comparison for the spatially programable CVD reactor

In the second example we consider data produced by the Programmable CVD reactor system
[5, 6, 9, 10], a reactor designed to test spatially controlled CVD concepts. The main feature of
this system is its segmented showerhead design that allows independent control of feed gas com-
position to each segment. Furthermore, rather than drawing residual gas over the wafer surface,
exhaust gas is pumped back up through each segment, resulting in periodic gas velocity fields
over the wafer surface. This design enables placement of the showerhead arbitrarily close to the
substrate, and results in diffusion being the dominant across-wafer gas species transport mecha-
nism.

wafer

back diffusion from

common exhaust volume

Figure 6: Illustration of segmented design (right) and three-segment implementation (right).

Experimental data were obtained from a 3-segment prototype in which blanket tungsten (W) de-
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position was performed using the hydrogen reduction process:

WF6(g) + 3H2(g) → W (s) + 6HF (g).

Film thickness maps were obtained using a 4-point probe (see Fig. 1); a sequence of depo-
sition runs was performed in which the segment recipes were varied as well as the shower-
head/substrate gap size. The specific experiments performed and the resulting wafer maps are
shown in Fig. 13.

The motivation for developing a response surface model based on the data collected is to deter-
mine the segment recipes and gap size need to achieve a certain deposition pattern over the wafer
surface. In [10], an empirical model was developed using physically motivated arguments based
on inter- and intra-segment gas phase transport of gas phase reactants. The model then was
used to demonstrate the ability to program the reactor system to produce spatially graded films
over a subregion of the wafer surface for combinatorial CVD applications. The model developed
in the cited study had the form

M1 : y (r , θ) = b1(r , θ)x1 + b2(r , θ)x2 + b3(r , θ)x3 + b1,4(r , θ)x1g + b2,4(r , θ)x2g + b3,4(r , θ)x3g

where the subscripts i = 1, 2, 3 denote the segment number, and the double subscripts (i , 4)
denote the segment feed/gap interaction terms (i.e., 4 represents the fourth model input which is
gap size). In this paper we seek to demonstrate that this model is indeed a better fit to the data
than the simpler linear model

M2 : y (r , θ) = b0 + b1(r , θ)x1 + b2(r , θ)x2 + b3(r , θ)x3

by statistically comparing them.

Figure 7: The ratio of the linear model
sse(r , θ) (M2 or model 2) and that of
M1 (model 1) plotted as a solid sur-
face, as compared to the critical ra-
tio value (plotted as the flat mesh sur-
face).

To make this comparison, we generate both models using the wafer data set listed in Fig. 13 (note
that we do not use the validation data in producing the models). Comparing the sse(r , θ) of the
models by computing the ratio of each (linear model M2 over the full model M1), we see in Fig. 7
that while approximately half of the ratio per unit of substrate area fall to each side of the critical
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ratio, the portion above the critical ratio corresponding to the linear model M2 has much greater
magnitude relative to that of the nonlinear model M1. Integrating over the substrate we find the
weighted average actual ratio to be 1.74 as compared to the critical ratio of 1.37 for this case.
From this analysis we conclude that M1 is more likely to provide a more accurate prediction of the
film thickness over the entire wafer. This conclusion is supported by a comparison of both model
predictions to the validation data set in Fig. 8, where we clearly observe the superior performance
of the nonlinear model (M1).

Figure 8: A plots of validation wafer data (left column) versus predictions of model with segment
recipe setting/gap interaction terms M1 (center) and the simplified linear model M2 (right).

5.3 Gradient control for combinatorial CVD

In the third example, we consider the problem of determining operating conditions best suited for
the combinatorial investigation of thin films deposited in a CVD reactor. For this example, we
deposit a compound semiconductor AxB1−xC in a rectangular, duct-flow reactor system where the
inlet is split in half transverse to the total flow direction in the reactor, where the species A precursor
is injected through one of the half-width ports while the species B precursor is fed through the other
(Fig. 9). This reactor configuration is patterned after the design of [7]. As is typically the case with
these hot-wall MOVPE systems, deposition takes place after the thermal decomposition of the
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precursors and occurs on all surfaces of the reactor as well as the substrate itself.

Figure 9: Plots of total film thickness (top) and the fraction x of species A in the AxB1−xC film (bot-
tom); we note that film composition is not displayed in the inlet region corresponding to extremely
thin or nonexistent films. The test substrate strip area is outlined in white.

Our goal is to examine films of varying composition in terms of the A/B ratio, represented by the
subscript x ∈ [0, 1] over a narrow strip of the substrate with local spatial coordinates (ys, zs); this
strip is positioned with its major axis perpendicular to the direction of gas flow. To achieve this
combinatorial goal, we wish to deposit a graded film of the form

x = (zmax − zs)/zmax with zs ∈ [0, zmax ]

where zs is the substrate strip coordinate transverse to the flow path and zmax is the width of the
strip we consider. Together with the composition set point profile above, a second objective is
to maintain as uniform a thickness profile as possible in the test-strip region. As can be seen in
Fig. 9, under a nominal set of operating conditions, both the film composition and thickness can
vary substantially as a function of 2-dimensional position over the reactor system.

To carry out this study, we consider a full factorial design over the reactor operating conditions,
setting the dimensionless carrier gas flow rate Vo ∈ {0.8, 1, 1.2} and dimensionless substrate
temperature Ts ∈ {875, 900, 925}/900 (dimensional temperature is in K ). Resulting film profiles
over the test strip are shown in Fig. 10 demonstrating the considerable variability in composition
and thickness profiles that are possible, where the latter are all adjusted to have zero mean. Be-
cause of the multi-objective nature of the optimization criterion (a specified gradient in composition
x and thickness uniformity), our approach is to examine the response surface curves as a func-
tion of the two operating parameters generated from the data given in Fig. 10. Using both the
thickness and composition profile data sets, we generate a 2nd-order response surface model for
each; checking the individual bj using bttest.m we find a suitable response surface model for
predicting the test strip thickness profile as

Wt (ys, zs) = b0(ys, zs) + b2(ys, zs)Ts + b1,2(ys, zs)VoTs + b2,2(ys, zs)T 2
s
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Figure 10: Composition (left) and thickness (right) spatial patterns generated from the design of
experiments for the combinatorial CVD example.

and the composition profile as

Wx (ys, zs) = b0(ys, zs) + b1(ys, zs)Vo + b2(ys, zs)Ts + b1,2(ys, zs)VoTs + b2,2(ys, zs)T 2
s .

The two objective functions to be minimized are

Gt = ||Wt ||2 Gx = ||Wx − (zmax − zs)//zmax ||2.
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Figure 11: Response surfaces illustrating optimization criteria Gt (left) and Gx (right) as a function
of Vo and Ts.

Contour plots of the two objective function values as a function of the operating parameter values
are shown in Fig. 11 and are generated using our modelsurf.m method. From these plots, we
observe that optimal composition gradient is found at Vo = 0.8 and Ts ≈ 0.99 and the most uniform
thickness profile (minimum value of Gt ) is found nearly at the same value. Using these parameter
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values in the simulator used to generate the original data, the resulting composition and thickness
profiles of each are shown in Fig. 12. Note that the thickness and composition range scales of
Fig. 12 are comparable to those of Fig. 9, indicating the optimized operating conditions do indeed
result in deposition conditions favorable for combinatorial studies.

Figure 12: Thickness (left) and composition (right)
gradients optimized for combinatorial operations;
conditions correspond to Vo = 0.8 and Ts = 0.99.

6 Conclusions

In this paper, we presented the development and implementation of a library of computational
tools for representing, analyzing, and modeling thin-film properties as a function of spatial position
across the substrate surface. While presented in the context of CVD examples, we note that the
numerical techniques can be readily applied to a wide range of deposition and etching operations.

Whether the ultimate goal of a thin-film process is to deposit or etch films in a spatially uniform or
intentionally non-uniform manner (e.g., for combinatorial operations), we see the need for compu-
tational methods to 1) identify the desired spatial profile, and 2) adjust the processing conditions
to achieve that goal. A framework for coupling process models to numerical optimization methods
is necessary for this paradigm of thin-film processing, and the software developed in this paper
was shown to be effective in addressing this need.
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wafer ID H2s1 (sccm) H2s2 (sccm) H2s3 (sccm) gap (mm)
W1 16 32 48 3
W2 48 16 32 3
W4 32 0 0 3
W5 0 32 0 3
W6 0 0 32 3
W7 0 0 32 1
W8 0 32 0 1
W9 32 0 0 1

W10 48 16 32 1
W11 32 48 16 1
W12 16 32 48 1
W14 32 48 16 5
W15 32 32 32 5
W16 32 0 0 5
W17 0 32 0 5
W18 0 0 32 5
W20 0 32 0 3
W21 32 0 0 3
W22 32 32 32 3
W23 48 16 32 3
W24 32 48 16 3
W25 16 32 48 3
W26 0 0 32 2
W27 0 32 0 2
W28 32 0 0 2

W3 32 32 32 3
W13 16 32 48 5
W19 0 0 32 3

Figure 13: Operational conditions for each wafer generated using the Programmable Reactor
system; upper (larger) set corresponds to training data and lower (W3, W13, and W19) set corre-
sponds to validation data.
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