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Cancer constantly evolves to evade the host immune system and resist differ-

ent treatments. As a consequence, we see a wide range of inter and intra-tumor

heterogeneity. In this PhD thesis, we present a collection of computational methods

that characterize this heterogeneity from diverse perspectives. First, we developed

computational frameworks for predicting functional re-wiring events in cancer and

imputing the functional effects of protein-protein interactions given genome-wide

transcriptomics and genetic perturbation data. Second, we developed a compu-

tational framework to characterize intra-tumor genetic heterogeneity in melanoma

from bulk sequencing data and study its effects on the host immune response and

patient survival independently of the overall mutation burden. Third, we analyzed

publicly available genome-wide copy number, expression and methylation data of

distinct cancer types and their normal tissues of origin to systematically uncover

factors driving the acquisition of cancer type-specific chromosomal aneuploidies.

Lastly, we developed a new computational tool: CODEFACS (COnfident Deconvo-

lution For All Cell Subsets) to dissect the cellular heterogeneity of each patient’s



tumor microenvironment (TME) from bulk RNA sequencing data, and LIRICS (LIg-

and Receptor Interactions between Cell Subsets): a supporting statistical framework

to discover clinically relevant cellular immune crosstalk. Taken together, the meth-

ods presented in this thesis offer a way to study tumor heterogeneity in large patient

cohorts using widely available bulk sequencing data and obtain new insights on tu-

mor progression.
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Chapter 1

Introduction

1.1 The problem of heterogeneity in cancer

Cancer is a heterogeneous disease. This heterogeneity is fueled by evolution

and eventually leads to resistance to chemo and targeted therapies [139]. Although

the recent success of immunotherapy has brought us closer to a cure, a large fraction

of patients still fail to receive durable clinical benefit [216]. In order to stay one step

ahead in this evolutionary arms race, it has become clear that one needs to design

rational treatment combinations. Key to designing such combinations is our ability

to characterize the extent of tumor heterogeneity, both among and within patients,

and identify the underlying evolutionary mechanisms driving it.

Projects like The Cancer Genome Atlas [1], vastly improved our knowledge

on the extent of tumor heterogeneity among patients by doing a comprehensive

multi-”omic” profiling of thousands of patient tumors (inter-tumor heterogeneity).

This revealed novel tumor subtypes and their underlying driver mutations. With

recent advances in next generation sequencing technologies, it is now possible to

further sequence tumors at a single cell resolution, thereby allowing one to assess

the heterogeneity of tumors within patients (intra-tumor heterogeneity).

While single cell data ideally represents the state-of-the-art in terms of char-

acterizing tumor heterogeneity, in this thesis we predominantly focus on developing

1



computational methods to characterize tumor heterogeneity from bulk sequencing

data and demonstrate their clinical impact; something which is currently not pos-

sible using single cell technologies alone due to their limited scalability to large

cohorts.

1.2 Fantastic sources of tumor heterogeneity and ways to character-

ize them

There exist multiple sources of tumor heterogeneity. However, they can be

broadly categorized into the following three groups:

1.2.1 Genetic Heterogeneity

Cancer is, in essence, a genetic disease [237]. Errors in the DNA replication or

repair machinery result in accumulation of somatic mutations in cells, and in specific

contexts, these mutations can drive multiple clonal expansions [144]. This gives rise

to heterogeneous tumor cell populations. In addition, a vast majority of tumors have

chromosomal instability, which results in large-scale structural changes (such as the

gain or loss of entire chromosomes), that are often associated with poor clinical

outcomes[22, 226, 56]. In chapter 3, we show how computational methods can be

applied to characterize intra-tumor genetic heterogeneity from bulk sequencing data

and study its effects on the host immune response while controlling for differences

in overall mutation burden. In addition, in chapter 4, we investigate chromosome

arm imbalances across solid tumors from different tissues of origin to uncover factors

2



explaining their observed tissue-specific heterogeneity.

1.2.2 Epigenetic Heterogeneity

Tumor cells can also exhibit phenotypic plasticity by dynamically modulating

gene expression via epigenetic mechanisms or cellular signalling events. This is

often said to lead to acquired resistance to many targeted therapies as opposed

to hardwired resistance that arises from genetic heterogeneity [139]. In chapter 2,

utilizing bulk transcriptomic data of breast cancer patients from the TCGA, we

explore how such dynamic changes in gene expression in cancer can potentially lead

to a ”functional re-wiring” of genes. Such functional re-wiring could explain why

a vast majority genetic interactions are context specific, making the translation of

these interactions into clinically effective targeted therapies a challenge [11]. In

addition we also developed new mixed integer linear programming frameworks to

impute functional effects of protein-protein interactions from genetic perturbation

data, thereby bringing us one step closer to building accurate computational models

of cellular signaling [157].

1.2.3 Microenvironmental Heterogeneity

Tumor cells also constantly interact with other cell types in their micro-

environment in order to facilitate their growth and suppress the host immune re-

sponse. These interactions can further fuel tumor evolution and lead to their ob-

served genetic and epigenetic heterogeneity. It has become increasingly evident that

3



the interactions between cell types in the tumor microenvironemt play a critical

role in facilitating a response or resistance to treatment with the establishment of

immunotherapy as the third major arm of cancer treatment (besides surgery and

chemo therapies) [216]. In chapter 5, we develop a new computational method to

characterize the cellular heterogeneity of each patient’s tumor microenvironment

from bulk transcriptomic data. Using our method one can aim to not only infer

the cellular abundance of each cell type in the tumor micro-environment but also

investigate their transcriptional states and infer clinically relevant cellular crosstalk.

Applying our method to the TCGA, we generate a large resource of deconvolved

transcriptomes of each patient’s tumor tumor sample, thereby enabling the analysis

of the TCGA at a cell type specific resolution. In addition, we uncover a shared

repertoire of cell-cell interactions that specifically occur in the TME of mismatch-

repair-deficient solid tumors and explain their universally high response rates to

immune checkpoint blockade treatment. These results point to specific T-cell co-

stimulating interactions that can enhance immunotherapy responses in tumors in-

dependent of tumor mutation burden levels. Finally, using machine learning, we

demonstrate how one can exploit the large deconvolved data resource we gener-

ated to identify key cell-cell interactions in the TME predicting patient responses

to immune checkpoint blockade therapy in melanoma.
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Chapter 2

Algorithms for context-specific functional annotation of genes and

the imputation of functional effects of protein-protein interactions

?? This work was done in collaboration with Dr. Sridhar Hannenhalli and Dr.

Roded Sharan and appears in PLoS Computational Biology [171] and Bioinformatics

[172]

2.1 Overview

Cellular functions are carried out by networks of interacting proteins [17].

In particular, empirical data suggest that proteins that participate in the same

biological process or a pathway tend to interact with one another, and more broadly,

tend to inhabit the same neighborhood in the protein interaction network (PIN).

This guilt-by-association principle has been successfully applied to predict protein

function, outperforming alternative methods that do not take the PIN into account

[5, 123, 138, 206, 207, 223].

Given that a gene’s function is informed by its PIN neighborhood, it is plausi-

ble that a an organism may dynamically adapt its genes’ functions across different

contexts, such as developmental stages, tissues, diseases and evolution, by altering

the PIN structure. For example, during Drosophila development, a key regulatory

transcription factor fushi tarazu (FTZ) changes function from an ancestral homeotic

5



gene (those that regulate development of specific body parts) to a pair-rule segmen-

tation gene (regulating initial formation of the segments in a developing embryo).

Notably, this functional switch involves changes in FTZ’s interaction partners; while

in the ancestral species FTZ interacted with homeotic proteins, in drosophila it in-

teracts with protein involved in segmentation, and thus it got co-opted into segmen-

tation function [134]. Furthermore, many genetic interactions exhibit context speci-

ficity [96]. Based on these premises, we describe a network diffusion-based algorithm

to predict how a gene’s function might change due to shifts in its protein-protein

interaction neighborhood during malignant transformation. This approach uniquely

reveals several functions that are significantly lost or gained in breast cancer and

modulate patient survival.

Furthermore, another aspect important for the characterization epigenetic tu-

mor heterogeneity is modeling how cells respond to different genetic alterations or

environmental perturbations. Key to building such models is having well annotated

biological pathways representing how biological signals flow affect the activity of

different proteins and transcription of genes. However, such annotations are sparse.

So we additionally developed an optimization framework to impute missing func-

tional annotations describing how biological signals are propagated over the joint

protein-protein interaction and regulatory network of a cell given transcriptional

data before and after genetic perturbations. This imputation problem was previ-

ously shown to be non-deterministic polynomial time (NP)-hard for general networks

[25]. In this work, we overcome the limitation of network coverage of previous meth-

ods by developing new mixed integer linear programming formulations and utilizing
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state-of-the-art SAT solvers. Overall, our imputation method outperforms previous

work by a considerable margin.

2.2 Methods

2.2.1 Inference of gain or loss of function via ”guilt-by-association”

Let G(V,E) be the weighted un-directed network with V representing the set

of nodes and E the set of weighted interactions. Let W be the weighted adjacency

matrix corresponding to G and let D be the diagonal degree matrix (with diagonal

entries corresponding to the weighted degree of each node in the graph). For a bio-

logical function f (which represents any biological process or pathway in a publicly

available database), let Af be the set of genes annotated with that function. For a

RNA-seq sample s, let Gs(Vs, Es) be the sample-specific sub-network of G consist-

ing of all genes with an expression ≥ 1 RPKM in that sample, let Ys be the prior

knowledge vector such that Ys,g = 1,∀g ∈ Af∩Vs. The guilt-by-association principle

implies that the involvement of any gene g in a function f is likely to be influenced

by the involvement of the genes in its neighborhood (Figure 2.1). Additionally, the

involvement should be consistent with our prior knowledge of functional member-

ships. This can be mathematically modelled by the following diffusion equation:

Fs = (1− α)(D−1/2s WsD
−1/2
s )Fs + αYs (2.1)
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Here Fs is a vector of raw involvement scores of every gene in Gs.α ∈ (0, 1) is a

parameter that weighs the importance of prior knowledge in the model. Notice that

the adjacency matrix Ws is symmetrically normalized by the square root of the

product of node degrees. This step controls for biases that may arise from diffusing

information through high degree nodes (hubs) in the network. As shown in previous

work, the raw scores are fairly robust for the choice of α, and we adopt the choice

α = 0.2 following [234]. Since the Eigenvalues of D
−1/2
s WsD

−1/2
s lie in [−1, 1], it can

be shown that I− (1−α)D
−1/2
s WsD

−1/2
s is positive definite and we get the following

solution:

Fs = α(I − (1− α)D−1/2s WsD
−1/2
s )−1Ys (2.2)

There are several ways to compute the above solution, the simplest being the iter-

ative matrix multiplication algorithm first proposed by Zhou [34]. To circumvent

the overhead costs of multiplying large matrices, we proceed by solving the system

using the conjugate gradient (CG) method. The above procedure assigns a raw

involvement score to each gene in Gs for each diffused function. This raw score

however depends on|Af ∩ Vs| as well as the sample-specific PIN topology. To ap-

propriately calibrate it, we can estimate a significance p-value for the score, in a

function-specific manner. This is done by comparing a gene’s raw score against a

null distribution of scores generated by diffusing random prior knowledge vectors

in Gs annotating |Af ∩ Vs| genes. Hence each null distribution is parameterized

by |Af ∩ Vs| which we call the seed size. Note that this technique requires us to
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run a large number of bootstrap instances on separately for each sample-specific

PIN (1157 samples in total analyzed in our study) for each function (1184 functions

evaluated in this study). To tackle such an enormous computational task, we follow

a memoization procedure in which for each sample, we pre-compute a smaller set

of null distributions from pre-determined seed sizes (40 to 500 with an increment of

10) and estimate p-values of diffused raw scores by simply comparing them to a null

distribution closest in seed size to the true null distribution for that sample. The

null distributions are based on 100 bootstrap samples. Finally, we say that a gene

is assigned a function f in a given sample if the p-value associated with its raw score

in that sample < 0.01.

Figure 2.1: The reference gene is depicted by black circle. The initial static global PIN
is projected onto normal and cancer samples based on gene expression, and each function
(red and green) are diffused through each PIN. In this case, the reference gene is assigned
green function in normal and red function in cancer, i.e., the gene gained red and lost the
green function in cancer.

Given a cohort of samples under two conditions (normal and breast cancer in

our application) and a gene-function pair (g, f), we determine the number of sam-
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ples where g was gained function f by diffusion (see above). Having determined

this separately for normal and breast cancer samples, we perform a Fisher’s exact

test to assess whether the gain of f by g is significantly enriched in either one of

the conditions. We say a gene g gains a function f in cancer if the gain of f by

g is significantly enriched among cancer samples when compared to normal. The

enrichment p value is determined by Fisher exact test. Unless stated otherwise, we

use the default p-value significance threshold of 0.05. We also estimated the False

Discovery Rate (FDR) for each pair of g and f . The FDR criterion however yields

substantially fewer genes resulting in decreased power for various downstream anal-

yses. Therefore by default we used the p-value criterion, and provide the results

based on FDR criterion in the supplementary material of the publication. In ad-

dition to the significance criteria, we also consider the effect size of the functional

gain or loss. Let θ be the odds ratio derived from the Fisher contingency table. To

reduce chances of false discovery, we require the effect size to be large. Hence, for

downstream analyses we looked at a range of θ from θ = 2 to 10, and unless oth-

erwise mentioned, the default is highly stringent θ = 10, while the results for other

values of θ are provided in the supplementary material of the publication. Note that

if a gene is not expressed in a sample then it is not present in the sample-specific

PIN and therefore cannot be assigned a function. Thus if g is un-annotated by a

function, biases may arise in the determination of its gain or loss via guilt by as-

sociation if there are significant differences in the expression of g in sample-specific

networks generated within a cohort or between two cohorts. To control for such a

bias, we take two filtering measures. First, we check if g is expressed significantly
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more in samples corresponding to one condition relative to the other by building

a contingency table for expressed versus not expressed among normal and cancer

samples and performing a Fisher exact test. We exclude g if its p-value ≤ 0.05.

Second, in estimating loss and gain for g relative to a function we only consider

samples where g was expressed. This results in downstream analyses of 12599 genes

out of a total of 16562 from the original network. To quantify the degree of gain (or

loss) of a function in cancer relative to normal due to guilt by association, we only

consider the genes that are not annotated to have that function. This ensures that

our estimated change in functional activity is informed primarily by the changes

in PIN topology and not by the differential expression of the genes annotated to

perform a certain function. We Define

Φ(f, g) =



1 if g is un-annotated and gains f with θ ≥ 10

−1 if g is un-annotated and loses f with θ ≤ 0.1

0 otherwise

(2.3)

Let ∆f =
∑

g Φ(f, g) be the difference between the number of un-annotated genes

gaining and losing f . The higher the |∆f | value, the greater the change in activity

of f between normal and cancer. The direction of change is determined by the sign:

“+” represents increase in activity from normal to cancer due to a greater number

of un-annotated genes potentially acquiring that function in cancer; we refer to

such a function as cancer-associated gained function. Likewise, “-” represents an
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overall decrease in functional activity due to a greater number of un-annotated

genes potentially losing that function in cancer; we refer to such a function as

cancer-associated lost function.

2.2.2 A mixed integer linear programming (ILP) framework for im-

putation of functional effects of protein-protein interactions

In this section we describe algorithms for inferring signs and direction of sig-

nal flow over the protein-protein/protein-DNA interaction network. The sign rep-

resents the functional effect on the target gene/protein carrying the signal along

the network. This depends on the type of the physical interaction being consid-

ered. For protein-DNA interactions (PDIs), a +/− sign describes a regulatory

effect; for protein-protein interactions (such as phosphorylation/de-phosphorylation

interactions between kinases and phosphatases), it represents a functional activa-

tion/repression effect. Currently, such direction and sign information is available for

only a few well-studied pathways (see Figure 2.2 for an example), although a large

fraction (40-70%) of the PPIs are expected to admit such an annotation [213]. The

inference of such annotation information is a precondition to any logical model of

a system under study (see, e.g., [157]). We start by formally defining the problem

and sketching the previous approach of [97]. Then, we study three variants of the

original problem (each describing a signaling model) and develop novel integer linear

programming formulations to solve them to optimality on current networks. We as-

sume we are given a (potentially partially signed) physical interaction network along
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with a collection of cause-effect gene pairs, such as commonly obtained from knock-

out experiments. The Maximum sign assignment (MSA) problem is to assign signs

to the unsigned edges of the network in a way that best explains the given pairs.

We say that a cause-effect pair (s, t) with sign δst (+ encoding down-regulation of t

in response to the knockout of s, − encoding up-regulation of t in response to the

knockout of s) is explained or satisfied by a sign assignment, if there exists a path

in the network from s to t whose aggregate sign (the product of the signs along its

edges) is δst. Formally, MSA is defined as follows:

Input. A partially signed network G(V,E) and a set of k cause-effect pairs (s1, t1), . . . , (sk, tk)

with signs δs1t1 , . . . , δsk,tk ∈ {+,−}

Goal. A sign assignment to the unsigned edges of the network such that a maximum

number of input pairs are satisfied by the assignment.

Figure 2.2: Yeast signaling pathways from KEGG in one network depicting the organiza-
tion of different types of physical interactions with their respective experimentally-derived
annotations of signal flow.
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This problem focuses on the A-path signaling model of [253]. [97] showed

that due to the nature of the model, any unsigned edge that lies on a cycle in

the network cannot be uniquely signed. They generalized this notion to any 2-

connected component (or block) by determining if these components are strongly

signed. They then proposed an approach to reduce the input network to an acyclic

one by contracting all edges in these strongly signed components without affecting

the maximum number of pairs that could be satisfied. In the reduced network,

every pair is connected by a unique path, facilitating the formulation of an ILP to

assign signs to the unsigned edges of this path such that the number of satisfied

pairs is maximized. A key drawback of this approach is that reducing the network

to an acyclic one severely restricts the number of edges participating in the ILP

(coverage) and, hence, restricts the number of interactions that can be uniquely

signed. In subsequent paragraphs, we discuss three variants of MSA, each describing

a different plausible signaling model, where edges lying on cycles may have unique

signs and, hence, may no longer be contracted.

The first variant we consider, A-shortest-path (ASP), considers a signaling

model where the length of a satisfying path is always assumed to be the shortest

possible. The shortest path assumption is motivated from the observation that

signaling pathways tend to be of short length [214]. For each edge (u, v) ∈ E, let

xuv = 1 denote whether its sign is − (0 if +). Similarly, we re-write the signs

δst ∈ {+,−} as δst ∈ {0, 1}. Due to the nature of knockout experiments, there

are usually much fewer sources compared to targets. Hence, for each source s, we

construct a subnetwork Gs(Vs, Es) such that each edge in this subnetwork lies along
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a shortest path from s to one of its targets t. This is done by applying a breadth-

first-search starting from each source and target [214]. Furthermore, we denote by

Ns(v) the set of neighbors of v in Gs and by dsv the length of the shortest path from

s to v. Additionally, for each pair (s, v) in Gs, we define auxiliary variables csv, rsv

where csv = 0 implies that under the selected sign assignment there exists a shortest

path from s to v with aggregate sign rsv, i.e., the node pair (s, v) is satisfied under

the selected assignment. (Note, (s, s) is trivially assumed to be satisfied). We also

define E+, E− which represent subsets of edges in the ILP with known prior positive

and negative signs respectively. Then the following ILP formulation can be used to

solve this variant of MSA:

max
∑

st yst

s. t. 1 +
∑

u∈{Ns(v)|dsv=dsu+1}(csu − 1) ≤ csv ∀s, v ∈ Vs \ s

rsv = XOR(rsu, xuv|csv = 0) ∀s, (u, v) ∈ {Es : dsv = dsu + 1}

cst + yst ≤ 1 ∀(s, t)

rss = 0, css = 0, rst = δst ∀(s, t)

xuv = 0 ∀(u, v) ∈ E+

xuv = 1 ∀(u, v) ∈ E−

yst, xuv, rsv, csv ∈ {0, 1} ∀s, t, u, v

The XOR relation between rsv, rsu and xuv is conditioned on the value of csv.
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That is, rsv = rsu ⊕ xuv only if csv = 0.It is linearized as follows:

rsv − csv ≤ 2− xuv − rsu

rsv − csv ≤ xuv + rsu

rsv + csv ≥ xuv − rsu

rsv + csv ≥ rsu − xuv

Let l denote a layer of Gs such that all nodes belonging to this layer have

dsv = l. Given a feasible solution to the ILP, if yst = 1 we can show that there exists

a shortest path from s to t with aggregate sign δst. Indeed, if yst = 1 then cst = 0

by the third constraint. This implies that
∑

u∈Ns(t)|dst=dsu+1(csu − 1) < 0. Thus,

if t is in layer l of Gs, there must exist a neighbor u of t in layer l − 1 such that

csu = 0. Furthermore, if cst = 0, xut is bound by the XOR constraint to have a sign

whose product with rsu is δst. Similarly, if csu = 0, there must be a neighbor w in

layer l − 2 where csw = 0 and rsw ⊕ xwu ⊕ xut = δst. By carefully investigating the

constraints applicable to the subsequent layers of Gs (i.e., l− 3, . . . , 0) we find that

there must exist a shortest path from s to t such that the product of signs along its

edges is δst. The final two constraints incorporate prior knowledge of signs in the

ILP.

The second variant we study, ’A-directed-shortest-path’ (AdirSP), addition-

ally assumes each shortest path explaining a pair to be directed from the cause to

the effect. It is worth noting that one cannot adapt existing ILP solutions to the

orientation and sign assignment problems, as both rely on reducing the input graph

16



into an acyclic one. This reduction does not work when simultaneously optimizing

both. Instead, we simply adapt the ASP formulation above to simultaneously find

sign and direction assignments to the network. Specifically, we consider a pair (s, t)

to be satisfied by a sign and direction assignment over the network if a directed

shortest path from s to t in this assignment has aggregate sign δst. We call this vari-

ant of MSA the ’A-directed-shortest-path’ (AdirSP). Let ouv = 1 denote whether

an edge (u, v) is directed from u to v (0 if from v to u) and let the flow variables

f suv indicate the existence of a flow from u to v. The flow variables allow computing

pair reachability in a directed network. The new ILP is:
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max
∑

st yst

s. t. ouv + ovu = 1 ∀(u, v) ∈ E

f suv ≤
∑

w∈Ns(u)\v f
s
wu ∀s, (u, v) ∈ {Es :

dsv = dsu + 1, dsu ≥ 1}

f suv ≤ ouv ∀s, (u, v) ∈ Es

asuv = (1− f suv) OR csu ∀s, (u, v) ∈ {Es : dsv = dsu + 1}

1 +
∑

u∈Ns(v)|dsv=dsu+1(a
s
uv − 1) ≤ csv ∀s, v ∈ Vs \ s

rsv = XOR(rsu, xuv|csv = 0, f suv = 1) ∀s, (u, v) ∈ {Es : dsv = dsu + 1}

cst + yst ≤ 1 ∀(s, t)

rss = 0, css = 0, rst = δst ∀(s, t)

xuv = 0 ∀(u, v) ∈ E+

xuv = 1 ∀(u, v) ∈ E−

yst, xuv, ouv, a
s
uv, rsv, csv, f

s
uv ∈ {0, 1} ∀s, t, u, v

The first constraint ensures that each edge has a unique orientation. In some feasible

solution, if f suv = 1, then the second and third constraint ensure that a directed path

exists from s to v containing edge (u, v).

Note that the XOR relation that helps determine the sign of an edge now

additionally depends on the existence of a flow in that edge. The constraint is
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linearized as follows:

rsv − csv − 1 + f suv ≤ 2− xuv − rsu

rsv − csv − 1 + f suv ≤ xuv + rsu

rsv + csv + 1− f suv ≥ xuv − rsu

rsv + csv + 1− f suv ≥ rsu − xuv

Another change from the previous formulation is the definition of auxiliary variables

asuv for each edge participating the ILP. Their value depends on the flow in edge (u, v)

originating from s and on csu. The OR relation between these variables is linearized

as follows.

asuv ≤ (1− f suv) + csu

asuv ≥ 1− f suv

asuv ≥ csu

Given a feasible solution in which yst = 1, we show that there exists a shortest path

oriented from s to t such that its aggregate sign is δst. Let t be in layer l of the

shortest path graph Gs. If yst = 1, then by the seventh constraint cst = 0. It follows

that
∑

u∈Ns(t)|dst=dsu+1(a
s
ut−1) < 0 (by constraint 5), which implies that there exists

a neighbor u in layer l − 1 where asut = 0. This implies f sut = 1, csu = 0 (constraint

4) and δst must be the product of the signs given by xut and rsu (constraint 6).

Additionally, csu = 0 implies there exists a neighbor w in layer l − 2 where aswu = 0
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(constraint 5). This implies f swu = 1, csw = 0 and rsw ⊕ xwu ⊕ xut = δst. In this

manner after carefully investigating the constraints through subsequent layers of Gs

(i.e l − 3, l − 4, ..., 0) we can find a directed shortest path from s to t such that the

product of signs along its edges is δst. The last two constraints account for signs

that are already known.

The underlying assumption in both signaling models above is that a single path

is sufficient to force a predefined effect. However, due to the inherent stochasticity

in signaling, this might not always be the case [119]. Hence, we strengthen the pair

satisfaction assumption in the ASP model to require that a pair (s, t) is satisfied if

all shortest paths connecting s to t admit the same aggregate sign δst. We call this

variant ’All-shortest-paths’ (AllSP) and solve for it using the following formulation:

max
∑

st yst

s. t. csu ≤ csv ∀s, (u, v) ∈ {Es : dsv = dsu + 1}

rsv = XOR(rsu, xuv|csv = 0) ∀s, (u, v) ∈ {Es : dsv = dsu + 1}

cst + yst ≤ 1 ∀(s, t)

rss = 0, css = 0, rst = δst ∀(s, t)

xuv = 0 ∀(u, v) ∈ E+

xuv = 1 ∀(u, v) ∈ E−

yst, xuv, rsv, csv ∈ {0, 1} ∀s, t, u, v

As above, let t belong to layer l of Gs. Given a feasible solution to this new formula-

tion, if yst = 1, cst must be 0 (from third constraint). Hence, for every neighbor u of
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t that lies in layer l− 1 of Gs, csu = 0 (from 1st constraint). This in turn constrains

the sign assignment of the respective edges (i.e rsu⊕xut = δst, for all neighbors u in

layer l− 1). By carefully investigating the constraints through subsequent layers of

Gs (i.e l− 2, l− 3, ..., 0), it becomes apparent that for any node v in Gs, all shortest

paths from s to v must admit the same aggregate sign (rsv). Hence, all shortest

paths from s to t must have an aggregate sign δst.

Notably, the models discussed above permit mathematically efficient formula-

tions. Specifically, if p is the number of sources (p << k), then each formulation

contains O(k + p|V |+ |E|) variables and O(k + p(|V |+ |E|)) constraints.

Each of the above models may admit multiple sign assignments with optimal

or near optimal scores. Hence, it is necessary to quantify the robustness of a sign

assignment to an edge. To this end, we solve each ILP repeatedly n times; each

time adding a small Gaussian noise of mean 0 and variance 0.01 to the objective

function as shown below. This stochastic approach, motivated by [92], effectively

results in a random sampling of different likely solutions that exist nearby in the

optimum solution space, thereby allowing us to assess the robustness of the sign on

each edge. The procedure is as follows:

1: procedure GetScores(ILP ,n)
2: scoresuv ← 0, ∀(u, v) ∈ E that are in ILP
3: for i = 1:n
4: set objective:

∑
st(1 + εst)yst, where εst ∼ N (0,0.01)

5: x∗ ← solve(ILP )
6: scoresuv = scoresuv + x∗uv/n, ∀(u, v) ∈ E that are in ILP
7: return scores

An edge score close to 1 implies that the sign is negative with high confidence,
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a score close to 0 implies a positive sign with high confidence and a score close

to 0.5 implies that the sign on that edge cannot be uniquely determined (possibly

implicating the absence of an activation/repression effect). For efficiency, we use

n = 10 throughout. Our conclusions do not change for larger values of n.

2.3 Results

2.3.1 Guilt by association reveals functional heterogeneity in breast

cancer

Our overall strategy is to (1) project PIN onto each transcriptomic sample, (2)

diffuse functions across the sample-specific PIN to estimate sample-specific function

of each gene, and (3) analyze functional changes across conditions. Starting from a

previously curated PIN [205], with 16,562 genes and 262,780 edges, we project the

PIN on each sample-specific transcriptome, by removing the nodes corresponding to

unexpressed or lowly expressed genes (RPKM ¡ 1; see Methods), to obtain a sample-

specific PIN. This general approach to obtain a sample-specific network has been

used previously to obtain tissue-specific networks in human [19]. For each of the

1184 functional terms (1175 GO terms and 9 NetPath cancer-related pathways, see

Methods), in each of the 1157 sample-specific PINs (110 breast cancer samples and

1047 normal breast tissue samples from TCGA [1]), we diffuse the function across

the network starting from known annotated (and expressed) genes to yield a raw

score for each node. Such sample-specific diffusion-based functional inference across

normal and cancer samples allows us to identify specific genes that significantly gain
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or lose a particular function in cancer samples, and to assess whether a function has

significantly gained or lost genes performing the function in cancer.

After diffusing each of the 1184 functional terms f across 110 normal and 1047

breast cancer samples, we assessed for each gene g whether the fraction of samples in

which g is deemed to have the function is significantly different between the normal

and tumor tissues based on a Fisher exact test; a greater fraction in cancer is referred

to as functional gain and the opposite as functional loss. In addition to statistical

significance, we require that the ratio of the fractions of samples where the gene is

deemed to have the function in cancer versus normal ≥ θ (gain), or ≤ 1
θ

(loss). The

default value used in the main results is θ = 10 (our conclusions are robust for θ

from 2 to 10). We denote by ∆f the difference between the number of genes deemed

to have gained function f and the number of genes deemed to have lost it. Positive

values of ∆f indicate net gain and negative values indicate net loss of that function

in cancer relative to normal. In total, 732 functions are predicted to undergo a net

loss in cancer and 417 are predicted to have a net gain. Table 1 lists the top 10

functions gained and lost. Note that for a function if a majority of genes annotated

to have that function are differentially expressed between normal and tumor tissues

then ∆f will simply reflect this differential expression of the annotated genes and

not the effect of altered PIN. To ensure that our inference of functional loss and

gain is independent of differential expression of the genes annotated to have the

function, when calculating ∆f , we exclude the genes annotated with the function.

Consistently, as shown in Table 2.1, the functions inferred to have been lost or gained

based on ∆f exhibit modest log fold changes between normal and cancer in terms
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of average number of annotated genes expressed in each cohort, and therefore may

go undetected by standard differential expression analysis. Interestingly, overall,

we see a weak inverse correlation between ∆f and the log fold change based on

expressed annotated genes (Spearman correlation = -0.09). Thus our approach

uniquely reveals cancer-associated functions. For instance, we find mitotic spindle

organization to be lost in cancer consistent with previous reports associating spindle

misalignment with cancer [137]. Likewise, we find positive regulation of smooth

muscle cell proliferation to be gained in cancer, consistent with prior studies [44].
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Table 2.1: Top 10 gained (green) and lost (red) functions are shown, along with ∆f, ∆f
divided (normalized) by the number of genes annotated by the function, and the log fold
change, which is the log ratio of the average number of expressed genes annotated by f in
cancer and normal samples.

GO ID Description ∆f Normalized
∆f

log fold
change

GO:0048661 positive regulation of smooth
muscle cell proliferation

893 15.13 -0.04

GO:0048010 vascular endothelial growth fac-
tor receptor signaling pathway

744 10.19 -0.01

GO:0051279 regulation of release of se-
questered calcium ion into
cytosol

740 13.21 -0.03

GO:1901983 regulation of protein acetylation 723 12.05 -0.04
GO:0000910 cytokinesis 527 6.84 -0.02
GO:0010676 positive regulation of cellular car-

bohydrate metabolic process
523 8.43 -0.05

GO:0051291 protein hetero oligomerization 508 5.90 -0.03
GO:0042552 myelination 394 6.67 -0.03
GO:2000756 regulation of peptidyl-lysine

acetylation
369 6.47 -0.03

GO:0016575 histone deacetylation 333 5.64 -0.01
GO:0006334 nucleosome assembly -310 -3.13 0.04
GO:0051148 negative regulation of muscle cell

differentiation
-127 -2.49 -0.06

GO:0007032 endosome organization -75 -1.27 -0.007
GO:0018022 peptidyl-lysine methylation -65 -0.91 0.002
GO:0007052 mitotic spindle organization -64 -1.054 0.005
GO:0019886 antigen processing and presenta-

tion of exogenous peptide antigen
via MHC class II

-56 -0.62 0.003

GO:0016236 macroautophagy -53 -0.71 -0.01
GO:2000117 negative regulation of cysteine-

type endopeptidase activity
-52 -0.61 0.005

GO:0051437 pos reg of ubiquitin-protein ligase
activity in regulation of mitotic
cell cycle transition

-51 -0.68 0.006

GO:0031145 anaphase-promoting complex-
dependent catabolic process

-43 -0.57 0.006

Our analysis above identifies functions with net loss in cancer induced by PIN

changes. For such a function f , if a gene g exhibits PIN-induced loss of function
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f , then it is likely that mutation-induced loss in activity of g may also be linked

to cancer. In other words, for lost functions (negative ∆f) we might expect to see

more frequent mutations among the genes contributing to the functional loss. We

assessed for each function (irrespective of net loss or gain) if it exhibits an elevated

mutation frequency among its lost genes (Methods); we explicitly excluded the genes

annotated with the specific function. We find that a much greater fraction of lost

functions exhibit elevated mutation frequency among their lost genes compared to

gained functions used as a control (Fisher p-value = 0.008, odds ratio = 2.36; Table 2;

Methods). We repeated this analysis for all values of θ from 2 to 10 and additionally

for θ = 2 combined with FDR < 0.1 to ascertain loss/gain of a gene relative to a

function. In 9 of the 10 tests, the odds ratio > 1, with an average odds ratio of

1.51. As an alternative, we directly quantified Spearman correlation between ∆f

and mean mutation rate of corresponding lost genes. Again, in 9 out of 10 cases,

consistent with our expectation, we found a weak but significant (all p-values <

0.005) inverse correlation. Likewise, instead of mutations when we use deletion

CNV rates to quantify loss in activity (Methods), we find that compared to gained

functions, a larger fraction of lost functions exhibited an elevated deletion CNV

rate (Table 2.2). While the Fisher test p-value was marginal (0.09), the odds ratio

was 2.15. After repeating the tests as above for other values of θ, in 8 of the 10

tests, the odds ratio > 1, with an average odds ratio of 1.59. As an alternative,

we directly quantified Spearman correlation between ∆f and deletion CNV rate

of corresponding lost genes across all functions. In all 10 test cases, consistent

with our expectation, we found a weak but significant (all p-values < 0.001) inverse
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correlation. These results suggest that a change in network neighborhood of a gene

may provide an alternative mechanism for functional loss, in addition to mutations

and deletion CNVs.

Table 2.2: The Fisher test contingency table showing the distribution of functions with
elevated mutation rates (columns 2 and 3) and deletion CNV rates (columns 4 and 5)
between lost and gained functions. Mut(f) = 1 denotes significantly higher mutation
rates among the genes contributing to functional loss. CNV(f) = 1 has an analogous
interpretation for deletion CNV.

Mut(f) = 1 Mut(f) = 0 CNV(f) = 1 CNV(f) = 0
∆f <0 48 684 26 706
∆f >0 12 405 7 410

We further assessed whether functions that exhibit cancer-associated gain or

loss also exhibit a consistent association with patient survival. For instance, for a

function with net loss in cancer relative to normal tissues, we expect that among

cancer patients the lower the activity of the function, the worst the patient survival

(and the converse for gained functions). To test this association, for each function

we estimate its sample-specific activity as the number of genes inferred to be per-

forming that function based on diffusion scaled across all samples. We then estimate

the association between patient survival risk and our diffusion-based sample-specific

activity of each function using a Cox proportional hazard regression model adjusted

for differences in age, and stratified by sex and race. A significant negative (re-

spectively, positive) regression coefficient β corresponds to negative (respectively,

positive) association with risk. Of the 1149 functions (732 net loss and 417 net

gain), 137 exhibited significant association with survival risk (p-value < 0.05). Of

these, 111 were negatively associated with risk, and interestingly, these were sig-

nificantly biased toward lost functions, consistent with our hypothesis (Table 2.3,
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columns 2 and 3; Fisher test p-value = 1.1E-3; odds ratio = 2.1). Only 26 of the

137 were positively associated with risk, but consistently, these were biased toward

gained functions (Table 2.3, columns 4 and 5; Fisher test p-value = 5.1E-5; odds

ratio = 5.7). As an alternative assessment, we found a significant positive correla-

tion between ∆f and β (Spearman correlation = 0.29; p-value < 2.2 E-16). These

results suggest that diffusion-based inference of cancer-associated functional change

may also be associated with the severity of the tumor among cancer patients. We

repeated the above analyses for all values of θ from 2 to 10 and additionally for θ =

2 combined with FDR < 0.1 to ascertain loss/gain of a gene relative to a function.

29 of the 30 tests are consistent with the results above.

Table 2.3: Fisher test contingency table to test for association between functional
loss/gain with associations with patient survival; β indicates the association of tumor-
specific functional activity with survival risk.

β<0 & p-value
≤ 0.05

p-value >0.05 β>0 & p-value
≤ 0.05

p-value >0.05

∆f <0 87 639 6 639
∆f >0 24 373 20 373

Encouraged by the results above, we directly assessed the power of our diffusion-

based sample-specific activity profile of a function in predicting patient survival. To

this end, we selected the top 1% and bottom 1% (=24) most cancer-associated

functions (ordered by ∆f), and for each function we estimated its diffusion-based

activity in each tumor sample, as defined above. Using the inferred activity levels of

these 24 functions as sample-specific features, we then computed the cross-validation

accuracy of patient survival prediction based on multivariate Cox regression. The

prediction accuracy was quantified using the standard concordance or C-index met-
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ric [173]. We find that cross-validation C-index is 0.567. We further included the

9 cancer-related pathways from the NetPath database [109], namely, EGFR1, FSH,

IL-1, IL-4, IL-5, Leptin, RANKL, TNF-alpha, and TSH. This extended feature set

of 33 functions yielded a cross-validation C-index of 0.62. As a control, we assessed

whether the standard alternative approach to quantify sample-specific functional

activity, based simply on expressed annotated genes could be equally effective. For

candidate features, we assessed the median number of expressed annotated genes in

each sample and identified 24 most differentially active functions based on the abso-

lute log ratio of the medians in cancer and normal samples. Adding the 9 NetPath

pathways to this list results in 33 features, as above. We then quantified sample-

specific activity of these 33 features based on the number expressed annotated genes

scaled across all samples and estimated the concordance in an identical fashion to

our diffusion-based approach above. This yielded a C-index of 0.51, which is sig-

nificantly lower than 0.62 (p-value = 0.01). We repeated the above analyses for all

values of θ from 2 to 10 and θ = 2; FDR < 0.1 to ascertain loss/gain of a gene rela-

tive to a function. In all cases the diffusion-based C-index is higher than the control,

and significantly so in 8 out of 10 cases. We further validated the survival predic-

tion accuracy of our diffusion-based functional activity profile in an independent

METABRIC breast cancer dataset [53]. We used the features derived from TCGA

dataset as above and used those to assess cross-validation prediction accuracy of

the diffusion-based and annotation-based methods in METABRIC. Again, we find

that C-index of the diffusion-based approach was 0.62 whereas the annotation-based

approach achieved an accuracy of 0.57 (difference p-value = 0.0004). These consis-
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tent results across datasets suggest that the diffusion-based approach to quantify

functional activity may provide additional information about the functional state of

a tumor, relevant to patient survival.

We further tested if our novel diffusion-based functional activity profile is

predictive of known clinical characteristics of breast tumors, specifcially, the can-

cer subtype (Basal, Her2, Luminal A, Luminal B, Normal), and its hormone re-

sponse status, Estrogen Receptor positive (ER+) and Progesterone Receptor pos-

itive (PR+). Based on clinical annotation of the METABRIC tumors, we trained

7 different Support Vector Machine (SVM) models, one per clinical indicator, us-

ing randomly selected 50% of the samples to train and the other half to assess the

prediction accuracy, quantified by ROC-AUC. We repeated the training and testing

2000 times to obtain mean and 95% confidence interval. Note that while the training

and testing of the model is done on METABRIC, the cancer-associated functions

used as features were inferred from TCGA data independently. We compared the

performance of our diffusion-based functional activity profile with annotation-based

activity profiles as above. Table 2.4 shows the AUC estimates of each model. We

found in all classification tasks, the diffusion-based model can predict each clinical

indicator more accurately than the alternative annotation-based approach.
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Table 2.4: The following table displays the AUC estimates of the 7 independent classifiers
trained with two different feature sets (diffusion-based functional activity and annotation-
based functional activity) for each clinical indicator

Clinical Indicator AUC - Diffusion AUC – Annotation (Control)
Basal 0.91 (95% CI = 0.887-0.928) 0.88 (95% CI = 0.842-0.893)
Her2 0.77 (95% CI = 0.737-0.808) 0.72 (95% CI = 0.672-0.747)
Luminal A 0.79 (95% CI = 0.763-0.806) 0.76 (95% CI = 0.745-0.788)
Luminal B 0.78 (95% CI = 0.752-0.8) 0.75 (95% CI = 0.735-0.786)
Normal 0.72 (95% CI = 0.685-0.761) 0.69 (95% CI = 0.64 -0.724)
ER+ 0.93 (95% CI = 0.916 – 0.949) 0.87 (95% CI = 0.857-0.899)
PR+ 0.77 (95% CI = 0.742-0.784) 0.75 (95% CI = 0.731-0.774)

Next, using our diffusion-based activity profiles of the 33 functions (24 GO

terms and 9 cancer-related NetPath pathways) used above, we clustered all METABRIC

samples using Nonnegative Matrix Factorization (NMF) [25], in an unsupervised

fashion, into 10 groups (Methods). Figure 2.3 panel A shows that the distribution

of the five known subtypes of breast cancer across the 10 clusters. Even though

the functional profile-based clustering are not associated with known subtypes, in-

terestingly, as seen in Figure 2.3 panel B, the diffusion-based unsupervised clusters

exhibit significant inter-cluster differences in patient survival (Log rank p-value =

3.2E-3). In contrast, when we use annotation-based functional activity profiles to

cluster the tumors following an identical procedure as above, the clusters did not

reveal a difference in survival across clusters (Log-rank p-value = 0.23). We fitted

a Cox proportional hazards model to the METABRIC survival data using cluster

membership as a feature while controlling for age, sex and race, as above. Cluster

memberships generated by diffusion-based functional activity profiles show a signif-

icant association with survival risk (β = 0.04, p-value = 8.5E-3) whereas cluster

memberships generated by annotation-based profiles had no significant effect (β =
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0.01, p-value = 0.32). These results suggest that in addition to expression based

changes, PIN-induced functional changes of genes in breast tumors may also play a

functional role in cancer.
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Figure 2.3: (A) Distribution of five known subtypes across 10 clusters inferred from
diffusion-based activity profiles. (B) Kaplan-Meier survival curves of patients grouped in
the 10 clusters show significant survival differences.

Figure 2.4 shows, for each of 7 subtypes, the log-fold change in average functional

activity of the 33 functions (24 GO processes and 9 Netpath pathways) in sam-

ples corresponding to the subtype versus the rest. The most notable changes are

increase in activity of ovulation cycle process (GO:0022602), Epidermal Growth

Factor Receptor signalling pathway (EGFR1), and Receptor Activator of Nuclear

factor Kappa-B Ligand signalling pathway (RANKL) in ER+ breast tumors. Pre-

vious experimental and clinical studies have shown that increased level of EGFR in

ER+ breast tumors leads to resistance to hormone therapy [153, 70] through hor-

mone independent activation of estrogen receptors [28]. As seen in Figure 2.4, the

EGFR1 signalling pathway has a 0.23 log fold higher average functional activity in

ER+ breast cancer patients ( 70% of which were recorded to have taken hormone
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therapy). This suggests that PIN-induced increase in EGFR signalling activity in

ER+ tumors may lead to increased levels of EGFR thereby increasing the possibil-

ity of hormone therapy resistance. Our results also indicate a 0.24 log fold higher

functional activity in RANKL signaling in ER+ breast cancer. While RANK and

RANKL are normally expressed in mammary gland epithelial cells, they are also

expressed in many epithelial breast tumor cells. RANKL has been experimentally

shown to induce cell migration in epithelial tumor cells expressing RANK, and is

also an important osteoclast differentiation factor found highly expressed in the bone

marrow thereby creating a conducive environment for bone specific metastasis [107].

This is consistent with the observation that many tumors in breast that are known

to recur in bone tissue are ER+ [101]. Moreover, inhibition of RANKL expres-

sion in combination with hormone therapy has been shown to improve treatment

efficacy and prevention of bone metastasis in experimental mouse models of ER+

tumors [37]. These results suggest that the knowledge of PIN guided functional

changes in genes via guilt by association may provide important biological insights

into mechanisms of treatment resistance.

Figure 2.4: The following figure displays the log ratio between the average numbers
of genes assigned to each function by diffusion (represented by columns) across samples
annotated with a particular subtype (represented by rows) versus the rest of the samples.
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2.3.2 Imputing functional effects of protein-protein and protein DNA

interactions in Yeast

We focused our analysis on budding yeast (Saccharomyces cerevisiae). We

obtained 4095 protein-DNA interactions spanning 2079 proteins (conserved across

at least 2 other yeast species) from [136]. We additionally downloaded 2930 high-

quality experimentally verified protein-protein interactions from [254], 1361 kinase-

substrate/phosphatase-substrate interactions (KPIs) among 802 proteins from [31],

and 189 physical interactions from signaling pathways of yeast in KEGG. We merged

these sets into a unified yeast network of 8268 unique physical interactions among

3695 proteins.

We extracted all 110,487 knockout pairs spanning 6228 proteins from [182] and

additionally 699,771 pairs spanning 6110 proteins from [113]. A pair was assigned a

positive sign if the target gene was repressed in response to knockout of the source,

and a negative sign if the target gene was activated/up-regulated. We restricted

ourselves to knockout pairs such that the absolute log fold change in expression

of the target gene is > 2 and FDR < 0.001. This leaves us with 1756 significant

knockout pairs from [182], referred to here as the Reimand set, and 3524 significant

knockout pairs from [113], referred to here as the Kemmeren set. The above choice

of thresholds was made while taking into consideration the inherent computational

complexity of the problem.

For a systematic validation of our sign prediction models we collected sign

information as follows. 147 of 192 physical interactions in yeast had an exper-
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imentally confirmed sign from KEGG (See Figure 1).In addition, following[97],

we extracted GO molecular function annotations related to transcriptional acti-

vators (GO:0045893) and transcriptional repressors (GO:0045892). Protein-DNA

interactions originating from transcriptional activators were given a positive sign

whereas protein-DNA interactions originating from transcriptional repressors were

given a negative sign. Finally, we also extracted information on protein kinases

(GO:0004672) and protein phosphatases (GO:0004721). We reasoned that since

there are roughly 3 times as many confirmed functionally activating phophorylation

sites compared to repressive ones (PhosphoNET database, www.phosphonet.ca),

and that 71% of phosphorylation interactions of yeast in KEGG are annotated as

activating and 81% of de-phosphorylation interactions of yeast are annotated as

repressing, kinase-substrate interactions tend to be activating while phosphatase-

substrate interactions tend to be repressing. Thus, physical interactions linking a

GO annotated kinase and a substrate were given a positive sign whereas interactions

linking a GO annotated phosphatase to a substrate were given a negative sign. Any

interaction in the unified network that had conflicting signs was left unsigned (un-

less it had sign information from KEGG, in which case this latter information was

used). In summary, the validation set consists of three groups of signed interactions

in the network: (i) 2014 (1131 +, 883 −) signed protein-DNA interactions, (ii) 1044

(872 +, 172 −) signed kinase/phosphatase-substrate interactions, and (iii) 147 (96

+, 51 −) signed KEGG interactions.

We evaluated each of the four models presented above in a 5-fold cross-

validation setting on the unified yeast network, focusing on the interactions covered
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by each model, i.e., participating in the corresponding ILP. To this end, we randomly

divided all signed and covered interactions into 5 equal parts.Using each model, we

predicted the activation/repression potential of the interactions in each part while

constraining the signs of interactions in the remaining parts. Then we measured

the performance of the activation/repression scores of a given model across the five

parts for different subsets of signed interactions covered by the model. For each

subset, we denote its set of covered positive and negative interactions by E+ and

E−, respectively.

As a benchmark, we discuss the performance of the previous A-path model.

Recall that in this model we should contract all interactions that lie in a strongly

signed block of size ≥ 3. Since all blocks were strongly signed, this resulted in

an acyclic network with 77% of the interactions contracted. When working with

knockout pairs from the Reimand set, we observe that only 1% of all the network

interactions participate in the ILP constraints due to network reduction, and 25

of them belong to the validation set. Due to low coverage over the validation set,

we instead evaluated this framework using knockout pairs from the Kemmeren set.

Overall, 4% of network interactions are covered in this instance and 73 interac-

tions from the validation set were part of the ILP formulation, yielding an AUC of

0.66. Since there were only 73 interactions to validate our predictions, we could not

evaluate the performance on individual subsets.

Next, we evaluated the ASP, AdirSP and AllSP models over the unified net-

work. Tables 2.5 and 2.6 summarize the performance over the validation PDIs,

KPIs, and the KEGG interactions. We find that our new formulations lead to sign
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assignments on 35% of network interactions when working with the Reimand set

and 59% of network interactions when working with the Kemmeren set; ≈ 15-fold

coverage increase compared to previous work (A-path).

Table 2.5: Performance evaluation of different imputation models on the Reimand set
(coverage of 35%).

interaction |E+|, |E−| AUC AUC AUC
(ASP) (AdirSP) (AllSP)

PDI 435, 458 0.75 0.63 0.84
KPI 205, 20 0.83 0.56 0.72

KEGG 40, 27 0.56 0.52 0.65

Table 2.6: Performance evaluation of different imputation models on the Kemmeren set
(coverage of 59%).

interaction |E+|, |E−| AUC AUC AUC
(ASP) (AdirSP) (AllSP)

PDI 744, 653 0.63 0.59 0.83
KPI 522, 98 0.61 0.51 0.77

KEGG 46, 32 0.58 0.54 0.71

In order to directly compare the performance of the A-path model to our suggested

alternative models, we evaluated them on the restricted validation set of 73 in-

teractions covered by the A-path model.On this set (|E+| = 49, |E−| = 24) the

performance of AdirSP was lower to A-path (AUC of 0.64), while ASP and AllSP

had better performance (AUCs of 0.73 and 0.68, respectively)

Previous work as well as our models above vary in the assumptions they make

on the way a knockout effect is explained, going all they way from requiring a single

path of any length to requiring all paths of shortest length. Note that we adopt these

models partly because they are grounded in our very own observations of cellular
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signaling pathways and because they permit an efficient mathematical formulation.

These descriptions are not perfect. In turn, the solution of each model allows dif-

ferent degrees of freedom on the signs of underlying interactions. To make the best

inference possible for each physical interaction given the complex nature of cellular

signaling, we integrate the predictions of each model in an ensemble. That is, using

the sign scores from solutions to ASP, AdirSP and AllSP as features, we train a hy-

brid model, specifically a random forest classifier, that makes an overall prediction of

the sign of an interaction (A-path was excluded due to low coverage). The ensemble

model is evaluated via nested cross-validation. In detail, the validation set is divided

into the same 5 parts as above. Four of the parts are used for training the individual

models to score the fifth part. Next, we perform a 5-fold cross validation on the fifth

part to train and test the classifier. Finally, using the cross-validated predictions

across all parts, we report the mean classifier performance (AUC) against the signs

of different validation subsets. Tables 2.7 and 2.8 summarize the performance of the

random forest classifier on the different knockout sets and validation subsets.

Table 2.7: Performance evaluation of the random forest classifier using the Reimand set.

interaction |E+|, |E−| AUC
(classifier)

PDI 435, 458 0.86
KPI 205, 20 0.85

KEGG 40, 27 0.77
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Table 2.8: Performance evaluation of the random forest classifier using the Kemmeren
set.

interaction |E+|, |E−| AUC
(classifier)

PDI 744, 653 0.80
KPI 522, 98 0.67

KEGG 46, 32 0.81

Overall, we observe that the classifier outperforms all individual models on the set

of curated interactions from KEGG.It also outperforms the different models with

respect to PDIs and KPIs on the Reimand set. The lower performance of the

classifier on the KPI set (compared with the AllSP model) when working with the

Kemmeren set is likely an artefact resulting from the skewed distribution of class

labels. Such a skew may influence ensemble classifier performance on unseen data.

2.4 Discussion

This work demonstrates that tumors can exhibit transcriptional heterogeneity

to adapt and survive in harsh environments. This transcriptional heterogeneity can

potentially lead to gain or loss of function of genes via ”guilt-by-association” that

provide tumors with a fitness advantage. Using our diffusion based approach one

can uncover such events. However, this approach has a few notable limitations.

First, the guilt-by-association is a trend and there are several exceptions to the gen-

eral principle, as described previously [76], and second, the diffusion algorithm is

effective for relatively large functional groups. We have explicitly addressed these

limitations by restricting our analysis to those functional groups that yield a rea-
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sonable diffusion-based recall, suggesting that these functions are broadly clustered

in the PIN, and by only considering functional groups with at least 50 genes (and

at most 500 genes, as discussed in Methods). It is interesting to note that the num-

ber of genes implicated in a function can far exceed the number of genes currently

annotated by the function, consistent with substantive incompleteness of functional

annotations. However, it is difficult to verify these predicted functional implica-

tions, except indirectly through their predictive value in various tasks, as we have

done or via high throughput genetic interaction screens. Follow up investigations

will provide further insights and strengthen our conclusions. For instance, it will be

instructive to first experimentally test in model organisms such as yeast, the extent

to which context-specificity of genetic interactions can be explained by functional

re-wiring of the PIN.

In addition to the above, we developed novel mixed integer linear program-

ming models to infer the flow of biological signals over protein-protein interaction

networks. We discussed the underlying assumptions guiding the predictions of each

model and its advantages in terms of coverage relative to prior work by [97]. We

then measured the cross-validation accuracy of each in predicting signs across two

knockout datasets in yeast to find that our models lead to improvement in accuracy

and coverage over the previous state-of-the art method by [97]. We eventually train

a hybrid signaling model based classifier that learns to best combine predictions

of each model. This was partly motivated by the fact that the three models pre-

sented in this work, although mathematically efficient to represent, are insufficient

to capture the true complex nature of cell signaling.Furthermore, this warrants the
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exploration of other plausible models that could be potentially integrated into the

classifier to improve its predictions. The github code related to this work is available

at: https://github.com/spatkar94/NetworkAnnotation.git.
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Chapter 3

Intra-tumor genetic heterogeneity (ITH) and its impact on response

to immune checkpoint blockade therapy

?? This work was done in collaboration with Dr. Yardena Samuels and now

appears in Cell [249]

3.1 Overview

It has recently been shown that immunotherapy strategies that enhance anti-

tumor T-cell response, such as checkpoint inhibitors and adoptive T-cell therapy,

exhibit remarkable clinical effects in a wide range of tumor types [186, 248]. How-

ever, many tumors do not respond to checkpoint inhibitors and the determinants of

treatment efficacy remain largely unknown [208]. Neo-antigens that arise as a con-

sequence of somatic mutations within the tumor represent an attractive means to

promote immune recognition in cancer [87]. Indeed, high TMB and neo-antigen load

in tumors have been associated with an enhanced response to immune checkpoint

blockade therapy [73, 95, 204, 217, 233]. Cutaneous melanoma, which is among the

most highly mutated malignancies [4], has the highest objective response rates to

checkpoint blockade ( 60% upon combined CTLA4 and PD-1 blockade) [121]. There

is a growing appreciation of the key role of T-cell mediated responses against neo-

antigens in mediating responses to melanoma therapy [50, 83, 87, 222], as well as
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the characterization of T cell activation and dysfunctional states [45, 118, 127, 201].

While the leading hypothesis in the immunotherapy field is that tumors with

increased TMB present more neo-antigens and, thus, are more immunogenic [73, 85,

95, 192, 222, 233], tumors containing equally high TMB exhibit a variable immune

response [199], and some cancers with low TMB can respond to immunotherapy

[148], thus again questioning the association between TMB and response. Moreover,

predicted neoantigen load does not correlate with T cell infiltration in melanoma

[218], and TMB alone is not a sensitive or specific predictor of outcome to treat-

ment [99], suggesting that additional factors determine the development of T-cell

reactivity.

In parallel, it has recently been reported that ITH, manifested by the distri-

bution of clonal vs. sub-clonal mutations and neoantigens [144, 218], may influence

immune surveillance [142, 143, 184] and pan cancer analyses show better survival for

tumors with low ITH [7, 149, 150, 156]. Despite past attempts to model the effect of

increased TMB [239] or ITH [71], no attempts were made to study effects of TMB

and ITH on immune response in a comparative, causal manner. Here we evaluate

the contributions of different aspects of ITH and TMB in immune-mediated tumor

rejection in mouse models and study its parallels in patient data.

43



3.2 Methods

3.2.1 Inference of ITH in melanomas from TCGA

From the TCGA data access portal (https://portal.gdc.cancer.gov/), we down-

loaded level 2 SNP array and germline + somatic variant call data for 432 skin cu-

taneous melanoma tumor and matched normal samples. Across all 432 patients, we

apply CHAT [126] under default package settings to estimate tumor purity followed

by estimation of cellular abundance of CNVs and somatic mutations from the SNP

array and variant call data respectively. We found that the average sample purity

estimated by CHAT is 74% with only 14 samples having purity less than 25%. How-

ever, we do not pre-filter any of these samples in our downstream survival analyses

as our final conclusions remain the same even after their removal. To estimate mu-

tation burden (TMB) per sample, we count the number of somatic variant calls that

were classified as missense or non-sense per sample. This data was obtained from

the cbioportal website (https://www.cbioportal.org). Since CHAT detects CNVs

using the circular binary segmentation algorithm [167], which essentially partitions

the genome into non-overlapping sections of same copy number, we estimate CNV

load per sample in a manner similar to [7]. To elaborate: for a tumor sample, let

Ls be the length of a segment s of the genome and let CNs be total copy number of

that segment inferred by CHAT while considering the tumor purity. Let Xs ∈ {0, 1}

be an indicator of deviation of CNs from normal diploid copy number of 2. Then,
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CNV load is defined as:

CNV Load =

∑
s:Xs=1 Ls∑

s Ls
(3.1)

Given that tumor evolution is characterized by a series of clonal expansion events,

we often find that mutations and CNVs detected from a bulk tumor sample group

into clusters. The number of these clusters or clones is interpreted as the intra-tumor

heterogeneity. Using CHAT, we can derive two estimates of number of clones by

– clustering cellular abundances of somatic mutations (ITH1) or clustering cellular

abundances of CNVs (ITH2). Both estimates convey important information of the

underlying clonal structure at different resolutions. Hence, we set the overall intra-

tumor heterogeneity of a sample as:

ITH = max(ITH1, ITH2) (3.2)

Given the limitation of a single bulk tumor sample per patient for inference, the

above estimate is a lower bound and correlated with tumor purity (spearman’s rho

= 0.232, p value = 2.09E-5). However, we show that our downstream results still

hold after correcting for tumor purity, age and stage (see below).

To see if mutation burden, CNV load and ITH are associated with overall patient

survival, we stratified the TCGA patients into the following groups:

• Low mutation burden (≤median), high mutation burden (> median)

• Low cnv load (≤median), high cnv load (> median)

• Low ITH (≤median), High ITH (> median)
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Given a cohort of 402 patients with available clinical data, we then fit Kaplan-

Meier survival curves for each group and their combinations and test if there are

any significant survival differences between the groups using a Log-rank test. All

survival analyses were performed using the survival package readily available for

R. Due to potentially confounding effects of purity and other clinical factors, it is

necessary to ascertain whether the observed associations with survival still hold after

accounting for confounding factors. The three major potentially confounding factors

are tumor purity, patient age and clinical stage. We hence performed a multivariate

cox regression analysis in which patient age, tumor purity and clinical stage were

included as additional factors. Our original conclusions do not change after running

this analysis.

3.2.2 Quantifying host immune response from bulk RNA-seq data

Single-end RNA Seq data from the mouse cell-line derived tumors was trimmed

using Trimomatic (0.36) to filter out low quality and adaptor reads. The trimmed

data was then processed using Salmon (0.9.2) to directly quantify gene expression

levels (TPM). Furthermore, gene expression levels (RPKM) of the 432 melanoma

patients with corresponding survival information were downloaded from the TCGA

portal. Cytolytic activity (CYT) of TILs in the mouse cell-line derived tumors, and

likewise in patient tumors, was estimated from the geometric mean of expression

levels of GZMA and PRF1 [199].
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CYT = exp(
log(GZMA + 1) + log(PRF1 + 1)

2
) (3.3)

3.2.3 Phylogenetic analysis of mouse UVB and Sngle Cell Clones

Exome sequencing data for the UVB exposed sample (n = 1) and the individual

single cell clones (n = 20), were used for joint clustering to infer the subclones

present across this combined set of samples. MAF files (generated as described

above) and somatic copy number alteration logR scores by segment (generated using

CNVkit), were utilized as input to the SciClone clustering algorithm [151]. To

ensure high confidence clonal markers were used, the following variant filters were

applied: i) a minimum alternative read depth of > 5 was used, ii) indels and triallelic

sites were excluded, and iii) only variants present in ≥ 2 samples were retained

(i.e., private mutations only in one sample were excluded). This latter criteria of

filtering out private variants was implemented to minimize the impact of technical

artifacts, which are known to be a potential issue in ITH analyses [212], as well as

the fact that variants found only in one sample offered minimal utility in inferring

the overall cross-sample phylogeny. For completeness, the proportion of private

variants found in the experimental mixes used in Figure 6 is included in Table S7,

and further studies with high depth error corrected sequencing will be required

to accurately understand the biological role of private mutations. SciClone was

run with the following parameters: copyNumberMargins = 0.5, maximumClusters

= 30 and minimumDepth = -1 (variants were already pre-filtered for minimum
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depth of > 5 alternative reads during MAF file creation). The clustering solution

from SciClone was manually reviewed, and any obviously poor quality clusters were

removed (e.g., clusters defined by < 10 mutations, clusters present in every sample

but with low VAF values (< 25%), duplicated clusters). Phylogenetic trees, and

representative sample tumor diagrams were constructed using R package CloneEvol

[54]. Individual single cell clones were mapped to terminal clones/branches (from

the overall clustering solution), based on the closest fitting VAF frequency.

3.2.4 Analysis of human immune checkpoint blockade datasets

Four malignant melanoma cohorts were analyzed, from previously published

studies by Snyder et al. (anti-CTLA4 treated), Riaz et al. (anti-PD1 treated), Hugo

et al. (anti-PD1 treated) and Van Allen et al. (anti-CTLA4 treated). Pyclone clus-

tering results for the Riaz et al. cohort were obtained directly from the authors sup-

plemental data files (https://github.com/riazn/bms038 analysis/tree/master/data),

and clones defined by n ≥ 2 mutation were retained for further analysis. Pyclone

clustering results for the Snyder et al. (2014) [217] and Van Allen et al. (2015)

[233] cohorts were obtained from previously published work from McGranahan et

al. (2016) [143], with clones already having undergone quality control filtering. For

Hugo et al. (2016) [99], no previously published clustering results were available,

and instead we managed to successfully process raw WES data of a subset of 22 sam-

ples for which there is available survival information on 21 samples. The processing

pipeline used is as follows: we called variants for each cancer and paired normal sam-
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ples using the GATK (V. 3.6) ‘HaplotypeCaller’ [128, 145](Li et al., 2009, McKenna

et al., 2010) utility applying ‘-ERC GVCF’ mode to produce a comprehensive record

of genotype likelihoods for every position in the genome regardless of whether a vari-

ant was detected at that site or not. The goal of using the GVCF mode was to cap-

ture confidence score for every site represented in a paired normal and cancer cohort

for calling somatic mutation in cancer. Next, we combined the paired GVCFs from

each paired cohorts using GATK’s ‘GenotypeGVCFs’ utility yielding genotype likeli-

hood scores for every variant in cancer and the paired normal sample. Next, we used

GATK’s ‘VariantRecalibrator’ utility using dbSNP VCF (v146: ftp://ftp.ncbi.

nlm.nih.gov/snp/organisms/human_9606_b146_GRCh38p2/VCF) file by selecting

annotation criteria of QD;MQ;MQRankSum;ReadPosRankSum;FS;SOR, followed

by GATK’s ‘ApplyRecalibration’ utility with ‘SNP’ mode. Next, using GATK’s

‘VariantFiltration’ utility we selected the variants with VQSLOD ≥ 4.0. Finally,

somatic mutations were defined as the loci whose genotype (1/1, 0/1, or 0/0) with

‘PL’ (Phred-scaled likelihood of the genotype) score = 0, i.e., highest confidence)

in cancer is distinct from that in paired normal. The final somatic mutations were

mapped on an exonic site of a transcript by ‘bcftools’ tool (V. 1.3)[128] using BED

file of coding region. Clustering analysis was then completed using the CHAT algo-

rithm, as described above.

For each case, the count of mutations within each cluster (clone) as defined by

Pyclone/CHAT were computed, and Shannon diversity index (SDI) was calculated

using the entropy.empirical function in R package ‘Entropy’. Overall survival data

was obtained from the original author’s publications, and n = 3 cases from the Riaz
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et al. cohort with “NE” RECIST coding were excluded, on account of death having

occurred prior to disease assessment. In addition, the group of n = 10 cases from the

Van Allen et al. (2015) cohort with long-term survival but no clinical benefit from

anti-CTLA4 treatment were excluded, as per the original publication. All other cases

with available survival data and clustering results were used for survival analysis

(cases with available clustering results were those with data deposited in https://

github.com/riazn/bms038_analysis/tree/master/data (Riaz et al., 2017)[185]

and https://bitbucket.org/nmcgranahan/clonalneoantigenanaly-\sispipeline/

downloads/ (Van Allen et al., 2015 and Snyder et al., 2014 cohorts) [217, 233], ex-

tracted on date 14/05/2019, please refer to the original publications for further

details). Kaplan-Meier plots were drawn using the ggsurvplot function in R, with

the low/high diversity groups being defined by having a SDI value < or ≥ to the

median value in each cohort respectively. Significance values in Figure 7 were calcu-

lated using the coxph function in R, with SDI included in the model as a continuous

variable, and overall survival hazard ratios are reported per unit increase in SDI

score. To correct for purity, a multi-variable coxph model was used, with SDI and

purity included as variables, and the significance values of each variable in the model

were analyzed. Meta-analysis of significance across the two studies was calculated

using the Fisher method for combinig p values.

Statistical analyses on immune checkpoint blockade treated datasets were performed

using the Prism 8 software (GraphPad, San Diego, CA, USA) and the software

environment R, using RStudio. For all statistical analysis a p value of < 0.05 was

determined to be significant. All data is presented using standard error mean (SEM).
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P values are depicted in all figures, and selected p values with exceptional significance

to the paper are also briefly described in the main text. Samples sizes (n), means and

SEM are depicted in the figures and/or figure legends. Sample size values were either

depiction of number of mice used for experiments, or number of patients. For the

comparison of patient survival curves (Kaplan-Meier curves) the log rank test was

used. For samples with distribution other than normal, or with small sample size (n

¡ 6), the nonparametric Wilcoxon test, Mann-Whitney’s U test, and Kruskal-Wallis

test were used. For samples which approximate normal distribution, Student’s t test

or one-way ANOVA followed by Bonferoni’s post hoc test was used. For correlation

between CYT score and the number of clones depicted in Figure 3.1, the Spearman’s

Rho nonparametric test was used. For tumor growth curve, repeated-measures two-

way ANOVA was used, followed by Bonferoni’s post hoc test. For the analysis of

the Shannon diversity index (SDI), z-test from Cox proportional hazard mode was

used with SDI tested as a continuous variable. Proportions of genomic mutation

types of the different cell lines were analyzed using the Chi-Square test.

3.3 Results

3.3.1 Impact of ITH on patient survival in melanoma

We analyzed a cohort of 402 pre-treatment samples of TCGA [1] melanoma

patients with matched genomic and survival outcome information. Patients were

grouped based on their mutation burden, copy number variation (CNV), and ITH

(estimated as the number of clones), which were computed based on each sample’s
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somatic copy number alterations and somatic mutation data ( See section 3.1).

Neither mutation burden nor CNV load, as a single component, was significantly

associated with patient survival (Figure 3.1, panels A and B). However, patients

with low ITH had significantly better survival (Figure 3.1, panel C), consistent

with previous observations (Brown et al., 2014, Morris et al., 2016). Indeed, when

patients were segregated by number of clones, distinct survival curves could be seen;

patients with low ITH levels (2 clones) had the best survival rate, whereas those

with high ITH levels (6 clones) had the worst survival rate (Figure 3.1, panel D).

When combining all three factors, we found that patients with a high ITH and

a low mutational or CNV load had the worst survival rate (Figure 3.1, panels E

and F). These conclusions hold when controlling for potential confounding factors,

including age, tumor stage, and tumor purity (See Table 3.1). Finally, for each

patient we computed the “cytolytic score (CYT)” [199], which is associated with

the degree of anticancer immunity based on the geometric mean expression of two

key cytolytic effectors, Granzyme A and Perforin1, which are upregulated upon

CD8+ T cell activation and upon effective immunotherapy treatment. CYT scores

were significantly higher in patients with low ITH compared with those with high

ITH (Figure 3.1 panel G; Wilcoxon rank-sum test, p = 4.32 × 106). Notably, the

CYT scores were inversely correlated with the degree of number of clones throughout

the TCGA cohort (Figure 3.1 panel H; Spearman’s rho = −0.27, p = 4.3 × 106).

Together, our results suggest that ITH plays an important role in shaping melanoma

host immune response and patient survival.
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Figure 3.1: (A) Kaplan Meier survival curves (time is measured in days on the x axis)
of patients with high versus low mutation burden. Log rank statistics: 1.96, p = 0.16.
(B) Kaplan-Meier survival curves of patients with high versus low CNV load. Log rank
statistics: 0.31, p = 0.577. (C) Kaplan-Meier survival curves of patient with high versus
low ITH. Log rank statistics: 3.97, p = 0.046. (D) Kaplan-Meier survival curves for
patients segregated by their number of clones. (E) Kaplan Meier survival curves of patients
segregated based on the combination of mutation burden and ITH. Log rank statistics:
9.2, p = 0.0267. (F) Kaplan-Meier survival curves of patients segregated based on the
combination of CNV load and ITH. Log rank statistics: 4.57, p = 0.206. (G) CYT score
(in log scale) of patients with high versus low ITH. ? ? ?p < 0.001, Wilcoxon’s test.(H)
CYT score (in log scale) of patients segregated by their number of clones. Spearman’s
rho: −0.27, p < 0.001.

3.3.2 Tumors with lower ITH are swiftly rejected by immuno-competent

mice independent of tumor mutation burden levels

?? Experimental analyses done by the Yardena Samuels’ lab

Following these retrospective association results in human patients, we sought
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to establish an experimental in vivo mouse system that would enable us to uncou-

ple TMB and ITH and study their influence on tumor immunogenicity in a causal,

systematic manner. First, to assess the effect of increased mutational load and in-

creased concomitant heterogeneity on anti-tumor immunity, we exposed the mouse

melanoma B2905 cell line [170] to UVB irradiation (Figure 3.2, panel A), a key car-

cinogenic source driving melanoma initiation [57]. Because the literature regarding

UVB research in melanoma varies considerably with respect to the amount of radi-

ation exposure needed to induce melanoma genesis, we first titrated the amount of

radiation needed for an optimal UVB response without compromising cell longevity.

We found that a UVB dose of 600 J/m2 was sufficient to induce p53 elevation

[34] and cyclobutane pyrimidine dimer (CPD) formation [40] while maintaining the

longevity of the murine melanoma cell lines B2905 and B16F10.9
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Figure 3.2: (A) Scheme of experimental design for generating UVB-irradiated cells and
generating SCCs derived from UVB-irradiated cells. Cell lines are irradiated by UVB at
dosage of 600 J/m2; from these irradiated cells, SCCs are generated. (B) Distribution of
variant allele frequencies (VAFs) of parental B2905 cells (black), UVB-irradiated B2905
cells (red), SCC 1 (purple), and SCC 2 (green) in log2 space. VAF > 0.25(log2 = 2)
is considered clonal. (C) Tumors excised from mice inoculated with either parental or
UVB-irradiated cell lines on day 15 after inoculation.(D) In vivo tumor growth in mice
inoculated with parental B2905 cells (black) and UVB-irradiated cells (red). n = 3–4;
data are representative of three independent experiments. Data are mean ±SE. ?p <
0.05, ? ? ?p < 0.001, two-way ANOVA followed by Bonferroni’s post hoc test.(E) Tumors
excised from UVB-irradiated B2905 cells versus SCC 2, day 19.(F) In vivo growth of
tumors in mice inoculated with UVB (red) or SCC 1 (purple) and SCC 2 (green). n
= 4–5; data are representative of two independent experiments. Data are mean ±SE.
? ? p < 0.01, ? ? ?p < 0.001, two-way ANOVA followed by Bonferroni’s post hoc test. ?
refers to UVB and SSC 1 comparisons; # refers to UVB and SSC 2 comparisons.

In parallel with the increase in TMB upon UVB irradiation, we also detected an

increase in ITH from the distribution of the variant allele frequency (VAF; the fre-
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quency of a mutation within the population plotted against the probability density

function), which was skewed toward a more subclonal phenotype (VAF < 0.25) [245]

and exhibited a relatively small fraction of clonal single-nucleotide variants (SNVs):

0.063 compared with 0.079 in the parental cell line (Figure 3.2 panel B). UVB-

irradiated B2905 cells grew at a slower rate in vitro compared with non-irradiated

B2905 cells (Figure S2E), the irradiated cell line gave rise to tumors with an in-

creased growth rate when transplanted into immunocompetent syngeneic mice (Fig-

ure 3.2 panel C and D). This effect was not cell line specific because irradiated

B16F10.9 cells showed the same pattern of reduced growth in vitro and increased

tumorigenicity in vivo. We additionally assessed whether tumors derived from these

two lines, parental B2905 and UVB-irradiated B2905, had a differential response

to PD-1 blockade. We found that the response of mice with the UVB-irradiated

cell line to anti-PD-1 treatment was considerably milder than the response of those

with parental B2905 cells (Figure 3.3). Given that the UVB signature cannot predict

checkpoint blockade response in melanoma patients [149] and that excessive TMB

did not reduce tumor growth, we hypothesized that differences in heterogeneity may

play a role in mediating tumor growth in vivo.

3.3.3 Increasing ITH leads to reduced T-cell reactivity to neo-antigens

and T cell infiltration in-vivo

?? Experimental analyses done by the Yardena Samuels’ lab.

We next evaluated whether the growth rates of the tumors harboring dif-
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Figure 3.3: In vivo tumor growth in mice inoculated with parental B2905 (Black) or
UVB irradiated B2905 (red) lines, treated with anti-PD-1 or IgG control antibodies at
days 6, 9, and 12 post cells inoculation (n = 11-12). Data are mean ±SE. Comparisons
between parental B2905 tumors treated with IgG or anti-PD-1 treated are depicted by
asterisks, whereas comprisons between UVB B2905 tumors treated with IgG or anti-PD-1
are depcited by cross. ?p < 0.05, ? ? p < 0.01, ? ? ?p < 0.001, one-way ANOVA followed by
Tukey’s post hoc test

ferent degrees of heterogeneity are mirrored by the degree of T cell reactivity in

vivo. This was assessed by extracting total T cell receptor β+ (TCRβ+) TILs

(tumor-infiltrating lymphocytes) from non-irradiated parental B2905 tumors, UVB-

irradiated B2905-derived tumors, and B2905 SCC 2-derived tumors. To assess T

cell reactivity, we measured the fraction of TILs positive for the cytotoxic mediator

Granzyme B coupled with expression of CD107a, a degranulation marker [6, 198].

Although total Granzyme B+ fractions were similar in TILs derived from all tumors,

the Granzyme B+ CD107a+ fraction of TILs was significantly reduced in UVB-

irradiated B2905-derived tumors, whereas it remained similar in both the parental

and the SCC 2-derived tumors (Figure 3.4, panel A). In addition, SCC 2-resident

TILs contained a much higher interferon-+ fraction (Figure 3.4, panel B), indicating

stronger TIL activation and cytotoxicity. To substantiate these results, we sorted
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CD8+ TILs from UVB-derived and SCC 2-derived tumors 16 days after inoculation,

performed RNA sequencing (RNA-seq), and analyzed the TILs for their CYT score.

CD8+ TILs isolated from SCC 2-derived tumors had a higher CYT score, recapit-

ulating the high CYT scores of the low-ITH TCGA melanoma patients (Figure 3.4

panel G and H). Furthermore, this score significantly correlated with tumor weight

(Figure 3.4 panel C and D). Thus, the SCC 2-derived tumors, which had low ITH

and were ultimately rejected in vivo, were more immunogenic than their parental

heterogeneous UVB-irradiated, aggressive B2905-derived tumors, which had high

ITH.

In addition to the immune composition of the tumor microenvironment, the spatial

distribution of TILs within the malignant mass, in particularly immune infiltration

into the tumor core, correlates with better survival and treatment success [112, 117].

Immunohistochemistry (IHC) and immunofluorescence analyses of tumor sections

revealed that, although tumors derived from all three cell lines accumulated CD8+

TILs in the tumor margin, those derived from SCC 2 featured both higher penetra-

tion of CD8+ cells (Figure 3.4, panel E) and massive infiltration of TILs into the tu-

mor core (Figure 3.4 panel F and G). We recapitulated these data in three additional

SCCs that also formed tumors large enough for IHC analysis. We next quantified

the levels of regulatory T cells (Tregs), which are known to suppress anti-tumor im-

munity and promote tumor growth [66, 225] by CD3+ Foxp3+ immunofluorescence

(IF) staining of these tumors and found a direct correlation between ITH and Treg

levels (Figure 3.4 panel H and I). In conclusion, low-ITH tumors show enhanced

CD8+ T cell infiltration to the tumor core, a lower presence of immunosuppressive
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Figure 3.4: (A) Flow cytometry analysis of the Granzyme B and CD107a population
in total TCRβ+ TILs on day 19. n = 4–5; data are mean ±SE. ? ? p < 0.01 for
Granzyme B+ CD107a+ TILs, two-way ANOVA followed by Bonferroni’s post hoc test.(B)
Flow cytometry analysis of interferon-gamma (IFN−γ) in total TILs on day 19. n = 4–5,
?p < 0.05, Kruskal-Wallis test followed by Dunn’s multiple comparisons test. (C) CYT
score derived from RNA-seq data of sorted CD8+ TILs from UVB-irradiated B2905 and
SCC 2 tumors on day 15. ?p < 0.05, Mann-Whitney U test. (D) Pearson correlation
between CYT score and weights of tumors in Figure 3C. (E) Quantitation of total CD8+
TILs in the indicated tumors. Four sections from each tumor and three tumors derived
from each cell line were examined. A significant difference was observed between parental
cells and SSC 2 but not between parental cells and UVB. Data are mean ±SE. ?p < 0.05,
one-way ANOVA followed by Tukey’s post hoc test. (F) Relative quantitation of the
average percentage of CD8+ TILs in the tumor core versus the margin of the tumors
described in (E). Data are mean ±SE. (G) Representative immunohistochemical stain
for CD8 in slides taken from tumors derived by parental, UVB and SCC 2 on day 10 after
cell inoculation. The scale bars represent 100 µM. (H) Immunofluorescence stains of CD3
and Foxp3 in tumors derived from B2905 parental, UVB, and SCC 2, 16, and 11 on days
1011 after cell inoculation. 3–4 sections from each tumor and two tumors derived from
each cell line were examined. The scale bars represent 200 µM. (I) Relative quantitation of
the percentage of Foxp3+ of CD3+ TILs described in (H). Data are mean ±SE. ?p < 0.05,
one-way ANOVA followed by Tukey’s post hoc test.
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Tregs, and higher degranulation and cytotoxicity compared with high-ITH tumors.

This indicates that, indeed, low-ITH tumors elicit a strong anti-tumor response,

whereas high ITH tumors are relatively non-immunogenic.

3.3.4 Systematic clone mixing experiments show that both the num-

ber of clones and their genetic diversity affect host immune

rejection

?? Experimental analyses done by the Yardena Samuels’ lab

To further study the role of ITH in tumor rejection, we systematically gener-

ated tumors with defined states of heterogeneity using different combinations (mix-

tures) of the above-described 20 SCCs that were derived from the original, highly

heterogeneous UVB-irradiated cell line (3.2). The individual SCCs were mixed in

a controlled manner to dissect the functional ramifications of the two fundamen-

tal components of tumor heterogeneity: (1) the number of clones comprising the

tumor and (2) the genetic diversity between them. To choose relevant clones for

the mixing experiments, we performed a phylogenetic analysis of the heterogeneous

UVB cell line. This yielded a phylogenetic tree with six terminal branches (TBs),

numbered TB-4 to TB-10 (Figure 3.5 panel A). An almost identical clustering was

obtained using an orthogonal analytical methodology. We then placed the 20 SCCs

on the various terminal branches of the tree, based on their sequence similarity. To

study the role of tumor diversity in determining tumor growth, we inoculated four

different mixtures of 3 SCCs and monitored their growth, as shown in Figure 6B. To
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achieve genetically diverse mixes, each mix contained clones from 3 different TBs

of the UVB-irradiated phylogenetic tree (denoted as across branches [3AB]) (Figure

3.5 panel B and E). As seen in Figure 3.5, panel B, although diverse, none of the

3 clone mixes formed a large tumor, even 35 days after the mixes were inoculated.

However, increasing the number of branches included in the mix from 3 to 6 (one

clone from each TB [6AB]; Figure 3.5 panel E) results in significantly larger tumors

(Figure 3.5 panel B and C) (group factor p = 0.0238 when 6AB is compared with

the 3AB mixes by two-way ANOVA versus group factor p = 0.1614 when the 3AB

mixes are compared without 6AB). Doubling the number of clones included from

each of the six TBs (two clones from each TB [12AB]) further increased the sub-

clonal/clonal mutation ratio (Figure 3.5 panel D) and produced even more aggressive

tumors (Figure 3.5 panel C).

We next evaluated the functional effects of the tumor’s genetic diversity while con-

trolling for the overall mutational load. To this end, we compared the growth of

tumors generated from a mixture of clones originating from a single TB (6 SCCs

within TB-4 [6WB]) with that of those generated from the 6AB mix described above

(comprising clones from TB-4, TB-6, TB-7, TB-8, TB-9, and TB-10) (Figure 3.5

panel C and E). These two mixes have the same number of clones (six) and approx-

imately the same mutational loads (Figure 3.5 panel F) but vary in their genetic

diversity, as assessed by their clonal versus subclonal mutation ratios (Figure 3.5

panel D). Despite having similar mutational loads, we identified striking differences

in growth between 6AB and 6WB (Figure 3.5, panel C). Similarly, we next com-

pared the tumor growth curves of a mixture of 12 SCCs derived from one branch
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(12WB, derived from branch 5, which contains TB-4 and TB-7) with the growth of

the 12AB mix (two SCCs from TB-4, TB-6, TB-7, TB-8, TB-9, and TB-10) (Figure

3.5 panel C and E). Again, there were clear differences in tumor growth between

12AB and 12WB. Moreover, even though 12AB had a higher mutational load than

6AB (Figure 3.5 panel D), its growth surpassed that of 6AB. This indicates that an

increased mutational load is not sufficient to drive tumor rejection. The 12AB tu-

mors were still not as aggressive as the UVB irradiation-derived tumors (Figure 3.5

panel D), emphasizing that the latter tumors harbor a higher degree of ITH. Taken

together, these results testify that both the number of tumor subclones and their

genetic diversity play important roles in mediating tumor growth and rejection.
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Figure 3.5: (A) Phylogenetic tree representation of the UVB-irradiated B2905 cell line.
The tree depicts the results from mutation clustering analysis, which was used to define
the distinct subclones present within the UVB cell line. The phylogenetic relationship
between subclones is shown, and then each of the 20 UVB derived SCCs is mapped onto
the subclonal branch with the highest genetic similarity. Each of the 20 SCCs is depicted
as a ball of 100 tumor cells, with the color coding reflecting the percentage frequency of
each branch in each SCC sample. Shown in the top right box is a representation of the
UVB parental sample, again shown as a ball of 100 tumor cells, color-coded to match
the subclonal branches. (B) Top: Venn diagrams for the four 3AB mixes inoculated,
representing the number of protein-coding mutations and their intersections between the
SCC in each mix. Bottom: in vivo tumor growth curves of the four different 3AB mixes. n
= 5. Data are mean ±SE.(C) Left: in vivo tumor growth curves of the 6WB mix (within
TB-4) and 6AB mix (one SCC from each TB). n = 4–5. Right: in vivo tumor growth
curves of the 12WB mix (within TB-5) and 12AB mix (two SCC from each TB) and the
UVB-irradiated B2905 cell line. n = 5–6. Data are mean ±SE. (D) Percent clonal versus
sub-clonal mutations in the mixes described in (C). (E) The SCC included in each mix
described in (B) and (C). (F) The association between the 6AB, 6AB, 12AB, and 12WB
mix mutation number (unique) and the maximal tumor volume size (cubic centimeters)
within 40 days. Each dot represents an individual mouse. The graph shows statistical
significance between the 6 and 12 mixes but not between mutation number and tumor
volume (Wilcoxon rank-sum test)
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3.3.5 Tumor clonal diversity predicts responses to immune check-

point blockade therapy even after controlling for tumor muta-

tion burden

?? Analysis done in collaboration with Kevin Litchfield

To further evaluate the extent to which the number of clones and their genetic

diversity affect the anti-tumor immune response in human data, we analyzed four

previously published melanoma checkpoint inhibitor cohorts from Snyder et al.,

2014 [217], Riaz et al., 2017 [185], Hugo et al., 2016 [99], and Van Allen et al.

(2015) [233]. Given the results of the mixing experiment that show that both the

number of clones and their diversity are important determinants of tumor growth,

we analyzed patient data using the Shannon diversity index (SDI), a formal diversity

metric that quantitatively measures both the number of clones and the diversity of

the mutations across clones in one index. As an example, a tumor with a low SDI

would have nearly all of its mutations concentrated in just one clone (a large truncal

neoantigen burden). In contrast, a high-SDI tumor would have a high number of

clones with mutations spread evenly or diversely across each clone (a large branched

neoantigen burden) (Figure 3.6 panel A). The first cohort analyzed (Snyder et al.,

2014) comprised data from 54 patients treated with anti-CTLA-4 therapy. We

found its SDI index to significantly associate with overall survival (p = 0.0064, SDI

tested as a continuous variable, z-test from the Cox proportional hazard model;

Figures 3.6 panel B and F). Patients with a higher diversity tumor (as measured by
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SDI) had poorer survival, with a hazard ratio (HR) of 8.8 (95% confidence interval,

1.8–41.6) per unit increase in SDI (Figure 3.6 panel F). In the second cohort (Riaz

et al., 2017), containing 57 patients treated with anti-PD1 therapy, we observed

a comparable but non-significant pattern (p = 0.079, HR = 2.2 [0.9–5.5] per unit

increase in SDI (Figure 3.6 panel C and F). In the third cohort (Hugo et al., 2016),

composed of 21 patients treated with anti-PD1 therapy, again a comparable but

non-significant pattern was noted (p = 0.096, HR = 4.2 [0.8–23.8] per unit increase

in SDI; Figures 7D and 7E). In the final cohort, which had data available from 70

patients treated with anti-CTLA4 therapy, no significant association between SDI

and overall survival was detected (Figures 7E and 7F); it should be noted, however,

that this result is consistent with previous ITH analyses in this cohort (McGranahan

et al., 2016) and may be explained by the high level of pre-treatment in this cohort,

making biomarker analyses more challenging. Given that all four datasets are of

fairly limited size, we performed a meta-analysis across all four studies, which yielded

an overall significance value of Pmeta = 0.0105, testifying that clone number and

genetic diversity between clones are drivers of the immunotherapy response in human

cohorts. Importantly, this result remained significant after adjusting for tumor

purity in a multi-variable analysis for each cohort, with updated Pmeta = 0.012

for the SDI variable (across all four studies), and Pmeta = 0.15 for tumor purity,

suggesting that the latter is not a confounding variable in our analysis. Similarly,

we corrected for TMB in the multi-variable analysis for each cohort, which yielded

an updated Pmeta = 0.039 for the SDI variable and Pmeta = 0.33 for TMB.
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Figure 3.6: (A) The cartoon illustrates two examples of the SDI, top low SDI (the
tumor is predominantly composed of one major clone) and bottom high SDI (the tumor is
composed of multiple clones with higher evenness between clones). SDI is measured using
individual tumor subclones (from Pyclone clustering) as types and the somatic mutations
as entities so that a tumor with a low SDI would have nearly all mutations concentrated in
just one clone, and, in contrast, a tumor with a high SDI would have a higher number of
clones, with mutations spread evenly or diversely across each clone. (B) The SDI analysis
applied to the Snyder et al. (2014) anti-CTLA4 dataset [217]. Overall survival Kaplan-
Meier plots are shown for with patients with a high SDI in red (SDI above median value
in cohort) and a low SDI in green. The number of patients at risk by time point is shown
in the table below. (C–E) The same data format as in (B) for the Riaz et al. (2017)
anti-PD-1 dataset [185] (C), Hugo et al. (2016) anti-PD-1 dataset [99](D), and Van Allen
et al. (2015) anti-CTLA4 dataset [233] (D), respectively. (F) Forest plot showing the HR
for the SDI in each dataset, with the HR value corresponding to the survival risk per unit
increase (i.e., each +1 increment) in the SDI. For significance analysis, SDI is tested as a
continuous variable (to show a continuous association across the full range of data) using
a Cox proportional hazard model (other clinical predictors, e.g., stage, are not included).

3.4 Discussion

Here we have established a framework that enables one to tease apart and

study the effect of TMB and ITH on tumor aggressiveness, evaluating their influ-
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ence on anti-tumor immunity in a controlled manner. Our findings in mice sug-

gest that, in melanoma, an essential genetic determinant of anti-tumor immune

response is tumor heterogeneity. These results corroborate previous reports that

clonal neoantigens are associated with a more robust tumor infiltrate and clinical

outcome, with and without checkpoint inhibitor blockade [143]. By systematically

generating tumors composed of different SCC mixes in a designed, controlled man-

ner, we further dissected the two major components of a tumor’s ITH, finding that

both the number of distinct clones composing the tumor and the degree of their

genetic diversity influence tumor aggressiveness.

Our experimental mouse data are mirrored in TCGA melanoma patients,

where the overall survival rate is significantly higher in tumors with a fewer num-

ber of clones, and the combination of number of clones and diversity (their SDI)

is inversely associated with overall survival in immune checkpoint inhibitor-treated

cohorts. These findings, which tightly match our experimental findings in mice,

further support the detrimental influence of tumor heterogeneity on the anti-tumor

immune response in humans, in keeping with previous studies [143].

Alongside the effects on tumor growth and responsiveness, the complex mech-

anisms behind the modulation of anti-tumor immunity by tumor heterogeneity need

to be further addressed in future studies. We suggest that diminishing tumor het-

erogeneity exposes tumor cells by reducing their neoantigen landscape, bringing

reactive neoantigens to the “frontline,” thus better exposing them to immune de-

tection. This, in turn, leads to enhanced infiltration into the tumor core, elevated

effector cytokines, and heightened degranulation. When neoantigen-specific CD8+
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T cells are able to infiltrate and kill tumor cells, more tumor antigens are exposed

to the tumor microenvironment, further promoting neoantigen uptake and presen-

tation by tumor-associated DCs, enhancing the ability of the immune system to

reject the tumor. In contrast, in more heterogeneous tumor cell populations, tu-

mor cells could have a better chance of escaping immune surveillance because the

reactive neoantigens undergo “dilution” within the tumor relative to other neoanti-

gens. The total outcome is weaker anti-tumor immunity, manifested by reduced

immune infiltration into the tumor core and dampening of TIL degranulation, cyto-

toxicity, effector cytokine secretion, and proliferation. In addition to CD8+ T cells,

we found lower numbers of Tregs in tumors derived from SCCs (low ITH) than in

UVB-derived, more heterogeneous tumors, indicating a strong immunosuppressive

tumor microenvironment in high-ITH tumors that is resolved in single-cell-derived

tumors. Overall, our results are consistent with the recent hypothesis by Gejman et

al. (2018) [71] that, because of increased antigenic variability, the relative expression

of each neoantigen is lowered in tumors with increased ITH, diminishing the TILs’

ability to home to their target cells and mount a sufficient cytotoxic response.

In addition to the differential infiltration of CD8+ T cells and differential Treg

accumulation observed in the tumors, other immune mechanisms also likely play a

part in the reduced response to heterogeneous versus homogeneous tumors. These

may involve non-Treg CD4+ cells, which are important for priming of CD8+ T cells

[27] and recognition of MHC class II-borne tumor antigens [256]. Different CD4+ T

cells effector subsets can have direct or indirect anti-tumor immunity. These subsets

include CD4+ cytotoxic T cells that can directly eliminate MHC class II+ tumors
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[90] and CD4+ Th1 and Th17 cells that can mediate elimination of tumor cells

in an antigen-specific manner [158, 180]. Indeed, strong anti-tumor responses of

CD4+ cells against tumor MHC class II neoantigens in cancer patients have been

reported [130, 230, 236]. This suggests an additional level of complexity within the

tumor-immune interface and a significant clinical potential for future therapies.

Additional immune subsets other than T cells that may play a role in this

setting encompass M1 and M2 macrophage polarization [33], NK cells [88], DCs

[58], or neutrophils [49]. To fully elucidate the immune profiles of ITH-high versus

-low tumors, cutting-edge, high-dimensional techniques such as single-cell RNA-

seq [127, 201] and CyTOF [86] and state-of-the-art analysis algorithms such as

CIBERSORT [164] could be utilized in follow-up studies.

Although we show that high ITH impairs the immune system response, tu-

mors with impaired immune responses can likely still acquire high levels of ITH.

Thus, impaired immune response and ITH levels are tightly associated. However,

whether ITH is a cause or a consequence of tumor progression or both is not fully

elucidated. Interestingly, previous studies have shown that functional cooperation

between genetically distinct subclones can be essential for overcoming environmental

constraints and, thus, affect tumor maintenance and growth [48, 140] and metastatic

behavior [102]. Of note, it has been shown recently that the immune system as well

as checkpoint immunotherapy can select for low-ITH tumors [152]. Understanding

the complex interactions between tumor heterogeneity and the immune response

and how they change during tumor evolution still remains a challenge.

Despite the strengths, there are several shortcomings of our study. Specifically,
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the single-cell cloning process inherently involves in vitro selection of clones. This

may miss clones with a low survival capability in vitro, which does not necessarily

reflect their functional importance in vivo. Likewise, we acknowledge the limita-

tions of accurately assessing ITH from a single biopsy sample in the TCGA and

immune checkpoint blockade (ICB) datasets because of the narrow sampling frame

of taking just one sample from one spatial location. The sequencing depth, tumor

purity, choice of processing pipeline, and nature of the single biopsy (primary versus

metastatic) may also affect ITH assessment, making it challenging to derive a single

prognostic measure of ITH. We believe that additional studies that quantify ITH in

large-scale cohorts with multi-region biopsies are likely to shed further light on the

prognostic role of tumor ITH, providing a higher-resolution view of the fundamental

trends outlined in this study.

In summary, our findings show the value of evaluating ITH as an important de-

terminant of melanoma patients’ response to checkpoint therapy. They also support

the notion that clonal neoantigens are more likely to lead to better cancer vaccines

[143, 202]. On the flip side, our results cast doubt on the notion that excessive

mutagenesis, directed to enhance TMB, can enhance the efficacy of immunotherapy.

Indeed, it is conceivable that excessive neoantigen heterogeneity may actively im-

pair a productive anti-tumor immune response. In conclusion, our functional data

support recent findings that the clonality of a tumor can be used as a biomarker

for predicting better outcomes in melanoma and may improve patient matching to

current immunotherapy in a manner complementary to mutational load. We suggest

that ITH is a strong determinant of immune response and immunotherapy success
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in melanoma, highlighting the potential importance of assessing it in the clinic. The

github source code related to the TCGA analysis done in this work is available at:

https://github.com/spatkar94/UVB_Melanoma.git
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Chapter 4

Factors driving acquisition of cancer type-specific chromosomal

aneuploidies

?? This work was done in collaboration with Dr. Noam Auslander and cur-

rently under review at Genome Medicine.

4.1 Overview

In solid tumors of epithelial origin, i.e., carcinomas, and in certain other solid

tumors such as glioblastoma multiforme and malignant melanoma, aneuploidies of

specific chromosomes define the landscape of somatically acquired genetic changes

[116, 115, 161, 93, 187]. In fact, aneuploidy is present in about 90% of solid tumors

[21]. Remarkably, the distribution of ensuing genomic imbalances is cancer-type

specific [93, 188]. For instance, colorectal carcinomas are defined by extra copies

of chromosomes and chromosome arms 7, 8q, 13q and 20q, accompanied by losses

of 8p, 17p and 18q [190]. In contrast, cervical carcinomas invariably carry gains of

chromosome arms 1q and 3q. In other words, a gain of 3q is not observed in colorectal

cancer, and cervical carcinomas do not have copy number gains of, e.g., chromosomes

7 or 13q [93, 187, 188]. Furthermore, cancer-type specific chromosomal aneuploidies

emerge in dysplastic, i.e., not yet malignant, lesions, that are prone to progress to

invasive disease [190, 178, 22, 226, 55]. Numerous cancer-type specific aneuploidies
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originate at early stages of tumorigenesis, yet are retained in late stage tumors and

in metastases, as reflected in the TCGA database [178]. The cancer-type specific

distribution of genomic imbalances was recently confirmed in two comprehensive

pan-cancer analyses of several thousand tumors [22, 226]. Although some intra-

tissue differences can be observed for certain tumor subtypes arising from the same

tissue, different tumor types from the same tissue tend to cluster together (e.g.,

low-grade gliomas cluster with glioblastomas as do clear cell and papillary renal cell

carcinomas) . On one hand, it is possible that loss or gain of particular chromosomes

or their fragments during carcinogenesis target the gain of specific oncogenes or

the loss of tumor suppressors located on these chromosomes [21, 55, 15]. On the

other hand, it is well known that chromosome-wide alterations of gene expression

levels follow genomic copy number changes [232, 189], i.e., the transcripts of genes

that are located on gained chromosomes are more, and those on lost chromosomes

are less abundant. This correlation has been firmly established in primary human

carcinomas, in derived cell lines, and in experimental cancer models [232, 247, 231,

221, 62, 191]. Hence the gain or loss of specific chromosomes can potentially act

as a mechanism to maintain tissue specific gene dosage. Given this background,

we decided to explore how the frequencies of chromosomal arm gains and losses in

specific cancer types correlate with (i) mean chromosome arm gene expression levels

of their normal tissue of origin, and (ii) the chromosomal distribution of previously

identified or newly implicated tissue specific driver genes. Our exploratory analysis

unearths a complex picture of factors shaping the evolution of tumor karyotypes

in which recurrent chromosomal alterations can potentially “hardwire” expected
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chromosome-wide gene expression levels of their normal tissue of origin in addition

to targeting tissue-specific driver genes.

4.2 Methods

4.2.1 Tissue and tumor type inclusion

Initially, all 33 TCGA tumor types were considered for analysis. Chromosome

arm-wide gain and loss data data for 33 tumor types were obtained from Taylor

et al. [226], cancer gene expression data and normal gene expression was obtained

from TCGA (xenabrowser.net) and GTEx (GTEx analysis V6p), respectively, us-

ing Reads Per Kilobase of transcript, per Million mapped reads (RPKM) values with

no additional normalization. The RPKM values are already library size normalized,

through dividing by the total number of reads in a sample, therefore accounting

for whole genome doubling events. Moreover, because the GTEx samples are of

healthy individuals, it is unlikely that any of these samples harbor whole genome

doubling events. Processed methylation datasets of normal tissues were collected

from the Gene Expression Omnibus (GEO) database. For consistency, we restricted

our search to datasets where methylation was quantified using the same platform

(Illumina 450K). This approach resulted in the identification of 18 tissue specific

methylation datasets, which were analyzed together. For analysis comparing tu-

mor and normal tissues, tumor samples from 25 tumor types and 19 corresponding

normal GTEx tissues of origin were considered (See Table 4.1). Likewise, for com-

paring tissue specific methylation and expression levels, only 11 tissues which had
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a matching methylation dataset available were considered.

Table 4.1: Cancer type-normal tissue pairs evaluated

Cancer type (TCGA) normal tissue of
origin with available
gene expression
(GTEx)

normal methylation data available

ACC Adrenal Gland No
BLCA Bladder No
LAML Blood No
LGG Brain Yes
GBM Brain Yes
BRCA Breast No
CESC Cervix Uteri Yes
COAD Colon Yes
READ Colon Yes
ESCA Esophagus Yes
KIRP Kidney Yes
KIRC Kidney Yes
KICH Kidney Yes
LIHC Liver Yes
LUSC Lung Yes
LUAD Lung Yes
OV Ovary Yes
PAAD Pancreas Yes
PRAD Prostate Yes
SKCM Skin Yes
STAD Stomach No
TGCT Testis No
THCA Thyroid No
UCEC Uterus Yes
UCS Uterus Yes
DLBC NA No
THYM NA No
MESO NA No
CHOL NA No
HNSCC NA No
UVM NA No
PCPG NA No
SARC NA No
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4.2.2 Curation and pre-processing normal tissue specific methylation

datasets

We curated a list of 18 Illumina 450K methylation datasets covering 11 organ

tissues from GEO (See Table 4.2). These were datasets spanning different studies

comparing methylation levels of organ tissues between diseased and normal control

individuals. We only selected methylation profiles of normal control individuals for

further analysis. Moreover, multiple datasets containing samples coming from the

same organ tissue were merged to generate one methylation dataset per organ. The

methylation data of each dataset was pre-processed in the following steps:

• Filtering out probes within 15 base pairs of single nucleotide polymorphisms

[60].

• Re-normalizing the beta values between type 1 and type 2 probes using beta

mixture quantile normalization [228]. This minimizes biases that may arise

due to sensitivity differences between the two probe designs.
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Table 4.2: list of curated methylation datasets

Dataset ID Tissue

GSE32146 Colon

GSE40360 Brain, frontal lobe

GSE61107 Brain, frontal cortex

GSE88890 Brain, cortex

GSE89702 Brain, cerebellum
GSE89703 Brain, hippocampus
GSE89705 Brain, Striatum
GSE62640 Pancreas
GSE51954 Skin
GSE90124 Skin
GSE52401 Lung
GSE61258 Liver
GSE61446 Liver

GSE51820 Ovary

GSE46306 Cervix
GSE45187 Uterus

GSE52826 Esophagus

GSE59157 Kidney

4.2.3 Computation of the chromosome arm imbalance score in can-

cerous tissues

We used the TCGA sample-wise chromosomal arm gain and loss data provided

by Taylor et al. [11], where the ploidy was determined via the ABSOLUTE algorithm

[38]. Independent chromosome arm copy number alterations were distinguished from

whole genome duplication events by comparing the absolute integer copy number of

chromosomal arm regions to the baseline tumor ploidy. Each segment was designated
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as gained, deleted, or neutral compared to the ploidy of each sample. The scores of

each arm are -1 if lost, +1 if gained, 0 if non-aneuploid, and “NA” otherwise. For

sake of consistency, all “NA” entries were re-set to 0 (i.e, we consider those samples

non-aneuploid for that arm). The discrete representation was used because it is

most fitting to describe arm-level changes, which may be either gained (1) or lost

(-1) by definition, rather than continuous GISTIC data, which is better suited for

studying targeted focal copy number alterations. For each of the 39 chromosomal

arms we define an arm imbalance score for a set of cancer types sharing the same

tissue of origin (or a singular cancer type), by computing the difference between the

frequency of gains and losses. Formally:

Arm Imbalance Score(Ai, Tj) =

∑
samples s ∈Tj IsG(Ai)−

∑
samples s ∈Tj IsL(Ai)

Number of samples in Tj

(4.1)

Where Ai is chromosomal arm i (of 1 to 39 chromosomal arms), Tj is the tissue of

origin of all tumor types arising from tissue j and the indicators IsG(Ai) and IsL(Ai)

are defined as:

IsG(Ai) =


1 if sample s has a gain of arm Ai

0 otherwise

IsL(Ai) =


1 if sample s has a loss of arm Ai

0 otherwise

Hence, arms that are more frequently gained are assigned positive scores, while
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arms that are more frequently lost are assigned negative scores. Arms that are nei-

ther gained nor lost, and arms where the frequency of gains and losses is comparable

are assigned neutral (≈zero) score. However, the latter is negligible since chromo-

some arms that are frequently gained are rarely lost in a specific tumor type and

vice versa. This score is hence equivalent to the mean value of gains/loss incidences

in set of tumor types considered and chromosomal arm.

4.2.4 Permutation tests to evaluate correlation significance

In this study, we compute correlations across cancer/tissue types, and across

chromosomal arms. To evaluate whether the magnitude of correlations is significant

compared to random, we employ a permutation test, to estimate a background null

distribution of the number of positive correlations. We therefore repeat 1000 itera-

tions of randomly shuffling the cancer/tissue pairing and 1000 iterations of randomly

shuffling the arm-level pairing. We compare the number of positive correlations P ,

achieved with the true pairings to this background (Ni,i = 1, 2, . . . , 1000), to com-

pute a p-value and accept or reject the null hypothesis, denoted as
∑1000

i=1 Ni>P

1000
. In

a similar manner, we test whether mean arm-wide gene expression levels of each of

the 39 chromosome arms in a sample are informative for predicting the sample’s

tissue of origin, compared to the background of any random aggregation of gene

expression into 39 groups. Therefore, we design a permutation test with 1000 itera-

tions. In each iteration, we quantify how accurately we can predict tissue of origin

based on randomly aggregating genes into 39 groups with similar sizes as that of
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chromosomal arm assignment. We evaluate the number of times (out of 1000) in

which the multiclass prediction accuracies of the shuffled predictor (Ni, with ran-

dom aggregation of genes into 39 groups) exceeded the original predictor (P , with

the aggregation of genes to 39 groups by chromosomal arm), to derive an empirical

permutation p-value, denoted as
∑1000

i=1 Ni>P

1000

4.2.5 Quantile normalization of gene expression and methylation val-

ues for cross tissue comparison and visualization

To enable side-by-side comparison and visualization of the arm imbalace scores

with mean chromosomal arm mean gene expression levels in different normal tissues

(and likewise in different cancers), the gene expression and arm-imbalance values

need to be on the same scale. Hence, we additionally quantile-normalized the mean

gene expression levels using the chromosomal arm imbalance distribution as ref-

erence, to enable visualization by generating similar expression distribution across

different tissues. We applied the same approach to quantile normalize chromosome

arm-wide mean methylation levels in normal tissues to visualize normal methylation

against normal gene expression in each tissue.

4.2.6 Curation of chromosome-wide distribution of relevant onco-

genes and tumor suppressors in each cancer type

We obtained a comprehensive list of known (or potential) oncogenes and

tumor-suppressors driving each cancer type from a recent pan-cancer study con-
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ducted by Bailey et al. [13]. This list was obtained from supervised machine learning

predictions based on features derived from mutation, copy number, gene expression

and mythylation changes observed in genes across different cancer types. Given a

cancer type, the oncogenes-tumor suppressor imbalance score for each arm in a given

cancer type (or collection of cancer types) is formally defined as follows: Oncogene-

tumor suppressor imbalance score = fraction of driver genes on the arm that are

oncogenes − the fraction of driver genes on the arm that are tumor-suppressors.

4.2.7 Normal and cancer tissue of origin classification and clustering

We classify normal (and likewise, cancer) samples using the chromosomal-arm

level expression of those samples. For each sample , we calculate the mean gene

expression level of the genes in each chromosomal arm. This results in 39 unique

features per sample (one per arm). We then perform K-Nearest-Neigbors (KNN,

with K=5, the value for which the best performance was observed for cancer type

classification from K=3,5,7) classification with a Leave-One-Out cross validation

(LOOCV), aiming to classify each sample based on the 39 arm level features, and

calculate the resulting accuracy (percentage of correctly classified samples in the

LOOCV). An analogous approach is taken for classification of tissue of origin based

on methylation data. Additionally, to rule out potential confounding batch effects

in gene expression data and the leave one out cross-validation procedure used, we

re-estimate overall KNN performance using 5-fold cross validation. For performing

hierarchical clustering of different tissue-types, each tissue-type is summarized as
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a vector of 39 features; one for each arm. 4 different hierarchical clustering anal-

yses are performed. For each one, a different set of 39 features is used. They are

systematically listed below:

• Chromosomal arm imbalance score computed across all cancer types originat-

ing from the same tissue

• Mean arm-wide normal gene expression across all genes and all normal samples

belonging to the same tissue.

• Mean arm-wide cancer gene expression across all genes and all samples origi-

nating from the same tissue

• Arm level oncogene-tumor suppressor imbalance score across all cancer types

originating from the same tissue

4.3 Results

4.3.1 Chromosome arm imbalance scores of cancer types and mean

chromosome arm-wide gene expression levels of their normal

tissue of origin

Taylor and colleagues [226] comprehensively recorded for each tumor sample

in the TCGA if a specific chromosome arm was gained or lost (while accounting

for the baseline tumor ploidy).We used this data to compute the mean chromosome

arm imbalance score of each arm in a given cancer type (or collection of cancer
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types) emerging from the same tissue of origin. In short, this score measures the

difference between the frequency of gains and losses of a specific chromosome arm.

As a first step, we validated previous observations by showing that the mean gene

expression levels over all genes and all samples from the same chromosome arms

and cancer type included in the TCGA database, respectively, positively correlate

with the corresponding arm imbalance scores (Figure 4.1, panel A). This analysis

confirmed that genomic copy number alterations in cancer genomes directly affect

gene expression levels. After having validated this correlation, we next computed the

mean expression levels over all genes and all samples from the same chromosome arm

and normal tissue, respectively, from the GTEx database. These values were then

correlated with the mean chromosome arm imbalance scores of respective cancer

types emerging from that tissue. Figure 4.1 panel B plots a heatmap with rows

indicating chromosome arms. The chromosome arm wide mean expression levels

in each normal tissue and corresponding arm imbalance scores in associated cancer

types are juxtaposed and quantile normalized to the same scale for visualization and

comparison.

In general, chromosome arms that are most frequently altered are either fre-

quently gained or lost in each cancer type, with some notable exceptions (See for

eg: chromosome 13q in gastrointestinal tumors). Nevertheless, the frequencies of

these gains and losses vary by tissue of origin and result in varying arm imbal-

ance scores across cancer types. Among the frequently altered chromosome arms,

we see that chromosome arms 13q, 18q, 10q and 2p have the strongest correla-

tions between their normal tissue specific mean expression levels and arm imbalance
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scores, and these correlations are positive. When looking at each tissue individually

(columns of Figure 4.1 panel B), we see the strongest correlations between the nor-

mal chromosome-wide mean expression levels and arm imbalance scores for brain,

colon and kidney tissues and these correlations are also positive. Although the sta-

tistical power to assess the significance of these individual correlations is limited, we

see that a majority of correlations (both at tissue and arm level) are positive. We

evaluate the overall probability of getting so many positive correlations (both at the

arm and tissue level), using a permutation test. To this end, we repeat 1000 times

of randomly shuffling the chromosomal arm assignments (rows of Figure 4.1 panel

B) and another 1000 for the tissue assignments (columns of Figure 4.1 panel B). We

find that similar or higher correlations were found for the shuffled data in less that

5% of the cases, yielding a permutation P < 0.05 for both arm-wise and tissue-wise

correlations. We additionally repeated this analysis for early stage tumors from

the TCGA database (defined as tumors with AJCC stage classification of 0 or 1).

Although the number of tumors available for analysis was further reduced, a similar

trend of weak, but predominantly positive correlations was observed.

If certain chromosome arm aneuploidies might “hard-wire” the chromosome

arm wide gene expression levels specific to their normal tissues, this suggests that

one should be able to classify tissue of origin of normal and cancer tissue samples

just based on the mean chromosome arm-wide gene expression levels of each of the

39 arms. To test this hypothesis, we obtained the mean gene expression levels for

each arm in each normal tissue sample in GTEx (and likewise for each cancer sam-

ple in TCGA) resulting in 39 unique features. Then K-Nearest Neighbors (K-NN)
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Figure 4.1: Correlations of chromosome arm-wide gene expression levels and chromo-
some arm-wide aneuploidies (A) Spearmn correlation plot of chromosome arm-wide gene
expression levels in cancers and patterns of chromosome arm-wide gains and losses in can-
cers reported in the TCGA database. Bar plot represent the spearman rank correlations
for each cancer type independently. The height of the bar reflects the correlation coeffi-
cient, and the size of the circle the significance. Size of 2 indicates p-value < 0.01, size
of 1 indicates p-value < 0.1 and size of 0 indicates p-value < 1. (B) Spearmn correlation
of chromosome arm-wide gene expression levels based on the GTEx database (left col-
umn) with chromosome arm wide aneuploidies in associated cancer types based on data
reported in the TCGA database (right column), respectively, for 19 tissue entities. The
arm imbalance score is reflected in colors: Red indicates more frequent gains compared to
losses; blue indicates more frequent losses compared to gains. The hue of the colors indi-
cates the frequency of copy number changes and the quantile normalized levels of mean
chromosome arm-wide gene expression, respectively. Barplots shown beside each heatmap
are the spearman rank correlations (horizontal bars indicate comparisons for each arm
independently, vertical bars indicate comparisons for each tissue independently). A size
of 2 indicates p-value < 0.01, a size of 1 indicates p-value < 0.1 and size of 0 indicates
p-values < 1.
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multi-class classification was applied with leave-one-out cross validation. We find

that mean chromosome arm-wide gene expression can effectively classify the tissue of

origin of both normal and cancer samples from GTEx and TCGA, respectively, and

that the performance is generally better for normal tissues (Figure 4.2 panel A). The

resulting accuracy was better for tissues with higher case numbers, as expected for

KNN analyses. Furthermore, these results could never be obtained when the chro-

mosome assignment of genes was randomly shuffled (by repeating 1000 shuffling of

the chromosomal assignments of genes, empirical P-value < 0.001). A five-fold cross

validation analysis yielded similar results. To visualize these classifications, we used

t-distributed Stochastic Neighbor Embedding (t-SNE) dimensionality reduction of

the 39 dimensional feature space. We found that samples from the same normal

tissues cluster closely in most cases (Figure 4.2 panel B), but to a lesser extent,

for cancer entities (Figure 4.2 panel C). The separate sub-clusters within each tis-

sue correspond to the different anatomical regions of the tissues that were sampled

from GTEx. Overall, these results suggest that certain chromosomal aneuploidies

acquired by tumors might hardwire expected tissue-specific gene expression levels

of their tissue of origin.
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in a leave one out fashion (i.e., the accuracy). Height of bars indicate the fraction of
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dimensionality reduction analysis of chromosome arm-wide mean gene expression levels in
normal tissues (B) and in cancers (C).
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4.3.2 Chromosome arm imbalance scores of cancer types and the dis-

tribution of cancer type-specific driver genes over chromosome

arms

Recent studies have looked at the connection between specific chromosomal

gains and losses and driver genes located on these chromosomes for specific cancer

types [55, 243]. In this study, we revisit this connection. For each tissue analyzed

in this study, the correlation between the frequency of losses in associated cancer

types and the fraction of drivers that are tumor suppressors is consistently strong

and positive (Figure 4.3 panel A, permutation test with 1000 random shuffling of

arms and tissue pairing of the values in Figure 4.3 panel A, p-value < 0.05) The

strongest of these correlations are observed for chromosome arms 17p, 17q and 9p.

The direction of correlation between gains of chromosome arms and the location of

tissue specific oncogenes is however less clear (Figure 4.3 panel B, empirical p-value

after 1000 iterations of random shuffling is > 0.05, Supplementary Table 5). To

explore this further, we performed four hierarchical clustering analyses of tissues

based on i) chromosomal arm imbalance scores in associated cancer-types (Figure

4.4 panel A), (ii) mean chromosome arm-wide gene expression levels in associated

cancer types (Figure 4.4 panel B), (iii) mean chromosome arm-wide gene expression

levels in normal tissue (Figure 4.4 panel C), and (iv) chromosome arm-wide imbal-

ance in the fraction of oncogenes and tumor suppressor genes originating from each

tissue (Figure 4.4 panel D). For ease of visualization, the tissues are partitioned
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and coloured by 4 distinct clusters obtained from each hierarchical clustering sep-

arately. We find that the hierarchical clustering of tissues based on chromosomal

arm imbalance scores (Figure 4.4 panel A) and the hierarchical clustering based

on mean chromosome arm-wide normal gene expression levels (Figure 4.4 panel C)

are highly similar (spearman correlation of cophenetic distances = 0.61, p-value

< 2.2E-16). Likewise, a strong similarity is observed between hierarchical cluster-

ing of tissues based on arm imbalance scores (Figure 4.4 panel A) and hierarchical

clustering based on cancer gene expression levels (Figure 4.4 panel B) (spearman

correlation of cophenetic distances = 0.52, p-value = 1.57E-13). However, such a

similarity is not observed when looking at the arm imbalance scores (Figure 4.4

panel A) and distribution of tissue specific oncogenes and tumor suppressor genes

across arms (Figure 4.4 panel D) is (spearman correlation of cophenetic distances

= -0.09, p-value = 0.2067). While the list of tissue specific cancer driver genes is

still incomplete, these results suggest that copy number changes in resident driver

genes may not be sufficient to explain the observed tissue-specificity of chromosomal

aneuploidies in cancers.

4.3.3 Chromosome arm-wide methylation levels in normal tissues

A possible mechanism regulating chromosome-wide gene expression levels in

normal tissues is DNA methylation. Therefore, in a fashion similar to Figure 1B, we

explored whether mean chromosome arm-wide methylation levels correlate with the

mean chromosome arm-wide gene expression levels. The Gene Expression Omnibus
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Figure 4.3: (Continued on the following page.)
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Figure 4.3: For each set of cancer types with shared tissue of origin, we plot: A) The
fraction of driver genes on each arm that are considered to be tumor suppressors (left
column) and the frequency of losses reported for the arm. The bluer the color, the higher
the tumor suppressor burden (and likewise for the frequency of losses). B) The fraction
of driver genes on each arm that are considered to be oncogenes (left column) and the
frequency of gains reported for the arm (right column). The redder the color, the higher
the oncogenic burden (and likewise for frequency of gains). Barplots shown beside each
heatmap are the spearman rank correlations (horizontal bars indicate coomparisons for
each arm independently, vertical bars indicate comparisons for each tissue independently).
The size of bubbles indicates the p-value. A size of 2 indicates p-value < 0.01, a size of 1
indicates p-value < 0.1 and size of 0 indicates p-values < 1. As seen at the tissue level,
correlation between tumor suppressor burden and frequency of losses is almost always
positive (permutation test p-value after randomly shuffling data < 0.05), whereas that is
not the case for gains.

(GEO) database provides genome-wide methylation levels for 11 different tissue

types, all obtained using the same Illumina 450K platform. Based on these data,

we analyzed chromosome arm-wide mean methylation patterns for 11 tissues from

765 samples (Materials and Methods, Supplementary Table 5). For each tissue, we

observe that differences in mean methylation levels across chromosomal arms within

a tissue are consistently negatively correlated with corresponding mean arm-wide

gene expression levels (permutation test with 1000 random shuffling of arms and

tissue pairing of the values, p-value < 0.05) (Figure 4.5 panel A). However, for a

single arm across tissues, the directionality of correlations are less consistent. This

could potentially be due to the small number of tissues analysed. Furthermore, an

individual sample-level classification analysis using the KNN algorithm reveals that

one can predict (in leave one out cross-validation) the normal tissue of origin of in-

dividual samples just based on chromosome arm-wide mean methylation levels. The

clustering of samples by tissue is visualized using t-SNE dimensionality reduction.

(Figure 4.5 panels B and C). Tissues with very few samples had poor classification

accuracy as expected from KNN. These results suggest that normal chromosome
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Figure 4.4: (A) cancer chromosome arm-wide gains and losses, (B) cancer mean chro-
mosome arm-wide gene expression, (C) mean chromosome arm-wide gene expression of
normal tissues, and (D) chromosome arm-wide imbalance of tumor suppressor genes and
oncogenes. Note that the clusters are similar in A-C, yet different in D.
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arm-wide methylation levels may play some part in regulating the transcriptional

output of each chromosome arm.

4.4 Discussion

Chromosomal aneuploidies are a defining feature of tumors of epithelial ori-

gin. These aneuploidies result in tumor type specific genomic imbalances [116, 93,

187, 21, 22]. As of yet, there is no sufficient explanation for this specificity [21].

In this work, we systematically compared the frequencies of chromosome arm gains

and losses in different cancer types to the mean chromosome arm wide gene ex-

pression leves in normal tissues of origin and distribution of known or implicated

tissue-specific oncogenes/tumor suppressors across chromosome arms. Our analysis

reveals a complex picture of factors driving frequent chromosome arm alterations in

specific cancer types. Specifically, we notice recurrent losses in chromosome arms

in cancer types where tissue-specific tumor suppressors reside, suggesting that these

losses broadly target these driver genes. However, the targets of recurrent tissue-

specific chromosomal gains are less clear. While it is possible that these chromosomal

gains are targeting yet unidentified oncogenes, our analysis of normal chromosome

wide gene expression and methylation data suggests an alternative paradigm in

which these alterations instead aim to hardwire expected gene expression levels of

normal tissue origin. This notion is further supported by recent observations across

multiple cancer types where oncogenes were found to be preferentially activated via

extra-chromosomal DNA [114]. The functional implications of many genes that are
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Figure 4.5: (Continued on next page.
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Figure 4.5: (A) For each tissue with available normal methylation data, we plot the
mean arm-wide methylation levels of each arm (left column) and the mean arm-wide
expression levels of each arm (right column). The mean expression and methylation values
are quantile normalized to the same scale (See Methods) for comparison and visualization.
For left column: The redder the color, the higher the arm-wide methylation level, the
bluer the color the lower, the lower the arm-wide methylation level . For right column:
the redder the color, the higher the arm-wide expression level, the bluer the color the
lower the arm-wide expression levels. Bar plots besides the heatmap are spearman rank
correlations (horizontal bars indicate comparison for each arm independently, vertical bars
indicate comparison for each tissue independently). The size of bubbles indicates the p-
value. A size of 2 indicates p-value < 0.01, a size of 1 indicates p-value < 0.1 and size
of 0 indicates p-values < 1. As seen at the tissue level, correlation between arm-wide
methylation levels and expression levels is consistently negative (permutation test p-value
after random shuffling the data < 0.05). (B) Leave One Out Cross-Validation Accuracy of
predicting each tissue entity based on chromosome wide mean methylation levels of each
sample. The height of the bar indicates the accuracy quantified as fraction of samples
correctly classified. The numbers on top of each bar indicate the number of samples
from a given tissue. (C) tSNE plot depicting the clustering of different tissue samples by
chromosome arm wide mean methylation levels.

affected by these alterations remain incompletely understood. We previously showed

experimentally that the gain of chromosome 13 in colorectal cancer activates both

Notch and Wnt signaling [36], and that the acquisition of extra copies of chromosome

7 in normal colon cells results in upregulation of cancer-associated pathways [29],

which could imply that tissue-type specific chromosome arm-wide gene expression

levels promote cellular fitness. Of note, Sack et al. [200] have demonstrated that

the inclusion of tissue-specific growth promoting genes strengthens the correlation

between chromosome arm loss/gain ratios and the proliferation-driving capability

of each chromosome-arm in breast and pancreatic cancers. Graham and colleagues

reported a general role of copy number alterations and metabolic selection pressure

[81]. Despite the ubiquitous presence of chromosomal aneuploidies in most solid tu-

mors, there are also several publications pointing to a reduction of cellular fitness as

a consequence of general aneuploidy in model systems such as yeast, immortalized

murine embryonic fibroblasts and typically near-diploid cancer cells engineered to
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harbor specific trisomies [82, 244, 209], so the functional implications of these events

remains an open challenging question.

There are some limitations specific to the data analysis conducted in this study.

Firstly, our analyses comparing cancer types to normal tissues were restricted to tis-

sues where data was measured in a homogeneous fashion on the same platform and

publicly available (i.e., GTEx for gene expression and GEO for methylation). Fur-

thermore we restricted ourselves to external data sources for normal tissue expression

and methylation rather than use adjacent normal tissue samples from the TCGA.

This was mainly due to incomplete availability of methylation and expression of

normal adjacent to tumor samples for many cancer types and the presence of stro-

mal and immune cell contamination in these tissues [9, 98]. Secondly, identification

of existing and potentially new cancer type specific oncogenes and tumor suppres-

sors was previously done by combining evidence from multi-omic sources into one

prediction score using supervised machine learning [15]. However, this list is still

incomplete and the mechanism of action of many of these genes in different can-

cer types is not completely understood. Thirdly, since we are exploring correlation

patterns across different tissue and cancer types, it is likely that more significant

associations would be observed in arms with specific, high-intensity trends of either

gain or loss compared to arms that are less frequently altered. In sum, our data

analysis suggests that chromosome aneuploidies could be potentially involved in the

maintenance of gene expression levels characteristic of the normal tissue of origin of

cancers, in addition to targeting cancer type specific driver genes (Figure 4.6).
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Figure 4.6: Genes on the red chromosomes are on average, expressed at slightly higher
levels compared to other chromosomes in normal tissue A, whereas in normal tissue B,
the yellow chromosomes shows increased tissue-specific expression on average and genes
on the green chromosome are expressed at lower levels on average. The acquisition of
chromosomal aneuploidies in the respective cancer-types (gain of the red chromosome in
cancer-type A and the yellow chromosome in cancer-type B, accompanied by the loss of
the green chromosome in cancer-type B amplifies this effect and provides the genetic basis
of “hard-wiring” tissue-specific chromosome arm-wide gene expression levels. The dots
on the green chromosome reflects the presence of a tumor suppressor gene, which can be
targeted by the loss of the green chromosome in tumor evolution.
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Chapter 5

Algorithms for dissecting cellular heterogeneity in the TME (Tumor

Micro Environment)

?? This work was done in collaboration with Dr. Kun Wang. A bioarxiv

pre-print is available [240].

5.1 Overview

The importance of the tumor microenvironment (TME) in cancer has been

recognized since the late 1800s [169]. The recent success of immune checkpoint

blockade has further sparked interest in studying TME interactions that shape clin-

ical outcomes following immunotherapy, aiming to find biomarkers of treatment

response and new treatment opportunities [216]. One key step in studying these

interactions is the characterization of the molecular profiles of different cell types

in a patient’s tumor sample. Fluorescence-activated cell sorting (FACS) and single-

cell RNA sequencing have emerged as effective tools to address this challenge [238].

However, due to the cost of these procedures and scarcity of fresh tumor biopsies,

the application of these approaches has remained limited. Given that bulk tumor

gene expression from preserved biopsies is far more abundant, computational meth-

ods that can effectively extract cell-type-specific expression from such data, termed

deconvolution algorithms, could be very helpful. If successful, such deconvolution
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methods can markedly advance our knowledge of the TME across many tumor types

and different contexts, and beyond that, they may be readily applied to interrogate

other large bulk expression datasets.

Several previous studies have developed a variety of expression deconvolution

algorithms. DeMixT [3] was designed to estimate individual-specific expression for

three cell components provided prior reference samples of two of these cell com-

ponents. ISOpure [181] has aimed to derive sample-specific cancer cell expression

with the assumption that the observed bulk gene expression profile is a mixture of

predefined stromal and immune cell expression profiles that are shared across all the

samples. Building on this work, Fox et al extended ISOpure to predict individual-

specific non-tumor cell expression by subtracting cancer cell profiles from the bulk

mixtures in a two-cell type model [65]. More recently, Newman et al[163] developed

CIBERSORTx, the first approach that aims to predict the sample-specific gene ex-

pression of all cell types composing it by employing a set of novel deconvolution

heuristics. As a proof of concept, Newman et al showed that CIBERSORTx can

accurately reconstruct the cell-type-specific expression of genes in each input sample

under certain modelling assumptions. This groundbreaking work has, however, some

notable limitations: (1) The number of genes whose cell-type-specific expression can

be reconstructed in each sample is relatively small, especially for low-abundance cell

types, and (2) their approach does not provide confidence estimations of the predic-

tions made, while such estimations could be potentially useful in most deconvolution

applications in the absence of ground truth data.

Here, we introduce a new deconvolution algorithm and software, CODEFACS
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(COnfident DEconvolution For All Cell Subsets), which markedly advances the abil-

ity to successfully deconvolve bulk gene expression data. CODEFACS receives as

input bulk gene expression profiles of tumor samples and either pre-computed esti-

mates of abundance of expected tumor, immunological and stromal cell types in each

sample, or their prototypical molecular signatures, which serve as seeds for estimat-

ing the abundance of each cell type in each sample. CODEFACS then predicts the

cell type-specific gene expression profiles of each sample. It is a heuristic approach

aimed at maximizing the number of genes in each cell type whose expression across

the samples can be confidently predicted via a heuristic method to estimate con-

fidence. Using 15 benchmark datasets where the ground-truth is known, we show

that CODEFACS robustly improves over CIBERSORTx, both in terms of gene

coverage and the individual gene expression estimation accuracy. We additionally

developed LIRICS (LIgand Receptor Interactions between Cell Subsets), a pipeline

that integrates the output of CODEFACS with a database of prior immunological

knowledge that we curated to infer the active cell-cell interaction landscape in each

sample. These data can then be analyzed in conjunction with any sample-associated

clinical annotations (e.g., response to treatment) to infer the most important clini-

cally relevant immune interactions between the cell types in a given patient’s cancer

cohort.

Building on its enhanced coverage and accuracy, we next applied CODEFACS

to reconstruct the cell-type-specific transcriptomes of 8000 tumor samples from 21

cancer types in TCGA. Analyzing these fully deconvolved TCGA expression datasets

using LIRICS we find a shared repertoire of intercellular interactions enriched in the
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TME of mismatch repair deficient tumors of different tissues of origin, which is as-

sociated with improved overall patient survival and high response rates to anti-PD1

treatment, independently of their mutation burden levels. Finally, using machine

learning techniques, we identify a subset of intercellular TME interactions that are

predictive of response to immune checkpoint blockade treatment in melanoma pa-

tients.

In summary, CODEFACS and LIRICS present a new way to analyze large bulk

RNA-seq datasets to study cellular crosstalk in the TME of each patient, and to learn

more about the association of different tumor-immune interactions with different

clinical measures. The potential scope of applications of both CODEFACS and

LIRICS goes beyond studying the TME, as these tools can be applied to study any

disease of interest given bulk gene expression data and relevant reference signatures

of cell types involved.

5.2 Methods

5.2.1 Data curation

5.2.1.1 Single cell RNA-seq datasets

To benchmark the performance of CODEFACS, we first set out to obtain

publicly available single cell RNA-seq datasets where both tumor and non-tumor

cells were successfully isolated. This search led us to the identification of nine such

single cell RNA-seq datasets from the literature, each from a different cancer type.
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Collection of additional single cell datasets was frozen after Dec 2019. For each

dataset sequenced on the SmartSeq2 platform, the log normalized transcript counts

for each gene in each sequenced cell were made publicly available by the original

authors. For the application of deconvolution, these counts were transformed back

to the Transcripts Per Million (TPM) scale. For datasets sequenced on the 10x

platform, UMI counts for each gene were made publicly available and were scaled

by the library size of each cell and multiplied by a factor of 1 million to get expression

values in TPM scale. See Table 5.1

Table 5.1: Single cell RNASeq datsets collected and analyzed in this study

Dataset Reference Cancer type Sequencing
Platform

Number
of patients
studied

GSE115978 Melanoma SmartSeq2 32
GSE131928 GBM SmartSeq2 28
GSE103322 HNSCC SmartSeq2 18
CRA001160 PDAC 10x 35
GSE125449 LIHC SmartSeq2 12
GSE81861 CRC SmartSeq2 11
E-MTAB-6149 LUAD 10x 3
E-MTAB-6149 LUSC 10x 2
GSE118389 TNBC SmartSeq2 6

5.2.1.2 Bulk RNA-seq datasets

Gene expression and matching bulk tumor methylation data from fresh frozen

tumor biopsies in TCGA were downloaded from [77]. In addition, publicly avail-

able bulk expression data from formalin fixed paraffin embedded tumor biopsies

of melanoma patients receiving immune checkpoint blockade treatment were down-

loaded from [185, 75, 131]. All bulk RNA-seq datasets were collected such that they
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have a sufficiently large sample size to reliably perform complete deconvolution of

expression profiles (¿ 4 times the number of cell-types involved) [163]. Collection

of datasets was frozen after Dec 2019. To maintain consistency with the pipeline

used for preprocessing TCGA data, bulk gene expression levels in immune check-

point blockade datasets were re-quantified using STAR v2.7.6a and RSEM v1.3.3

[30] with GENCODE v23 human genome annotation [91]. Furthermore, to mitigate

technical biases, between-sample scaling factors were estimated using TMM method

implemented in edgeR [195] and TPM values in each sample were further rescaled

by these scaling factors [196].
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Table 5.2: bulk RNASeq datasets collected and analyzed in this study

Cohort Name Cohort description
The Cancer
Genome Atlas

6972 samples spanning
21 distinct cancer types
in the TCGA with
matched bulk methy-
lation profiles. All
samples were biopsied
pre-treatment.

Riaz et al, Cell,
2017 [185]

109 samples from 73
patients, 51 patients
had pre-treatment sam-
ples (25 anti- PD1
monotherapy, 26 pre-
viously progressed on
anti-CTLA4)

Gide et al, Can-
cer Cell 2019 [75]

91 samples from 75
patients, 73 patients had
pre-treatment samples
(41 anti-PD1 monother-
apy, 32 anti-PD1+anti
CTLA4)

Liu et al, Nature
Medicine 2019
[131]

121 samples from 121
patients, 120 patients
had pre-treatment
samples (75 anti-PD1
monotherapy, 45 pre-
viously progressed on
anti-CTLA4)

5.2.1.3 Generation of simulated bulk RNA-seq datasets

To evaluate the performance of CODEFACS, we generated 14 different pseudo-

bulk RNA-seq datasets from mixing experiments with single cell data. Each sample

in each benchmark dataset has matching cell type specific gene expression profiles

derived from averaging single cell RNA-seq profiles of individual cells from the same

sample and same cell type. These profiles serve as the ground truth for the eval-
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uation of deconvolution performance. To avoid any circularity in our validations,

for each of the single cell datasets involved, single cell data from 4 randomly chosen

patients were separated from the rest. These data were used to derive reference

gene expression signatures for each cell type. The mixing experiments were then

performed on single cell data of the remaining patients that were hidden from the

reference signature derivation process. In addition, we simulated technical replicates

for each pseudo-bulk sample, wherein we injected noise in the pseudo-bulk expres-

sion of a few randomly chosen genes and then renormalized the expression data by

the sample library size. This procedure simulates mRNA composition noise that is

commonly observed in bulk RNA-seq datasets due to technical differences in sample

preparation [203, 64, 227, 194]. In addition, we obtained a FACS sorted lung can-

cer dataset which include purified RNA-seq for four cell types 10 and generated a

pseudo bulk correspondingly [72]. In total, 15 benchmark datasets were generated.
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Table 5.3: List of 14 artificially generated bulk expression datasets with matched cell-
type specific expression measurements for each sample (Used for performance evaluation
of CODEFACS and CIBERSORTx).

Benchmark
Dataset name

Description

SKCM dataset 1 28 pseudo bulk melanoma samples generated by averaging
single cell RNASeq expression profiles (GSE115978) from
the same patient

SKCM dataset 2 28 pseudo bulk melanoma samples generated by aver-
aging imputed single cell RNASeq expression profiles
(GSE115978) from the same patient. Imputation of single
cell RNASeq data was performed using scImpute v0.0.9

SKCM dataset 3 First noisy technical replicate of SKCM dataset 2 generated
by injecting noise in each of the 28 mixes

SKCM dataset 4 Second noisy technical replicate of SKCM dataset 2 gener-
ated by injecting noise in each of the 28 mixes

SKCM dataset 5 100 pseudo bulk melanoma samples generated by sampling
single cell RNASeq expression profiles (GSE115978) from
different patients in varying cell type specific proportions
and averaging them.

SKCM dataset 6 First noisy technical replicate of SKCM dataset 5 generated
by injecting noise in each of the 100 mixes

SKCM dataset 7 Second noisy technical replicate of SKCM dataset 5 gener-
ated by injecting noise in each of the 100 mixes

GBM dataset 1 24 pseudo bulk GBM samples generated by averaging sin-
gle cell RNASeq expression profiles (GSE131928) from the
same patient

GBM dataset 2 24 pseudo bulk GBM samples generated by averaging im-
puted single cell RNASeq expression profiles (GSE131928)
from the same patient. Imputation of single cell RNASeq
data was performed using scImpute v0.0.9

GBM dataset 3 First noisy technical replicate of GBM dataset 2 generated
by injecting noise in each of the 24 mixes

GBM dataset 4 Second noisy technical replicate of GBM dataset 2 gener-
ated by injecting noise in each of the 24 mixes

GBM dataset 5 100 pseudo bulk GBM samples generated by sampling sin-
gle cell RNASeq expression profiles (GSE131928) from dif-
ferent patients in varying cell type specific proportions and
averaging them.

GBM dataset 6 First noisy technical replicate of GBM dataset 5 generated
by injecting noise in each of the 100 mixes

GBM dataset 7 Second noisy technical replicate of GBM dataset 5 gener-
ated by injecting noise in each of the 100 mixes
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5.2.1.4 Curation of reference signatures of cell types

For the application of CODEFACS, molecular profiles of signature genes of

each cell type of interest are needed to estimate the relative cell fractions in the

bulk. We used single cell expression derived signatures as priors to deconvolve the

melanoma ICB datasets. To derive these signatures from single cell data, we first

start out by obtaining the class labels of each cell type of interest. These data

are publicly available for each single cell dataset we collected. Hence, we primarily

use these labels in our study (unless further refinement of labels into specific cell

subtypes of interest is needed for a specific usage). With a collection of single cell

expression profiles and matching cell type labels as input, we used CIBERSORT

online tool to derive a cell-type-specific signature matrix. Thereafter, we applied

CODEFACS to ICB datasets with default parameters settings and batch correction

requirement specified. For TCGA deconvolution, we first estimated cell fractions

based on bulk methylation and then applied CODEFACS to corresponding bulk gene

expression for the 21 cancer types which have both types of data available. We chose

methylation signatures over expression-based signatures for TCGA analysis for two

reasons. First, single cell expression data with consistent cell types across 21 cancer

types are not available. Second, DNA methylation-based signatures are considered

to be more stable marks of cellular identity compared to dynamic RNA expression

derived signatures [24]. The methylation-based cell type signatures were obtained

from MethylCIBERSORT [39]. We applied CODEFACS to TCGA datasets with

default parameters settings and without batch correction requirement specified.
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Table 5.4: list of all cell types with reference methylation signatures available from
MethylCIBERSORT

non-cancer cell types with methylation signatures
Endothelial
Fibrolast
CD14+ (Monocyte/Macrophages/Dendritic cells)
CD19+ (B cells)
CD56+ (NK cells)
CD4+ (T cells)
CD8+ (T cells)
Treg (T cells)
Eos (Eosinophils)
Neu (Neutrophils)
cancer cell types with methylation
signatures

Matched cancer type (TCGA)

endometrium TCGA-UCEC
large intestine TCGA-COAD
stomach TCGA-STAD
mesothelioma TCGA-MESO
breast TCGA-BRCA
oesophagus TCGA-ESCA
kidney TCGA-KIRC
sarcoma TCGA-SARC
head and neck TCGA-HNSC
prostate TCGA-PRAD
liver TCGA-LIHC
lung NSCLC adenocarcinoma TCGA-LUAD
lung NSCLC squamous cell carcinoma TCGA-LUSC
bladder TCGA-BLCA
skin TCGA-SKCM
glioma TCGA-GBM
pancreas TCGA-PAAD
thyroid TCGA-THCA
acute myeloid leukaemia TCGA-AML
B cell lymphoma TCGA-DLBC

5.2.2 Full in-silico deconvolution of bulk mixtures

CODEFACS is designed to do the following:

Input. (i) Bulk gene expression of a collection of samples (required) (ii) Cell fraction
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estimates of expected tumor, immune and stromal cell types in each sample; OR

Cell-type-specific signature profile (required if cell fractions are not provided)

Goal. (i) Predict the expression of each gene in each sample in each cell type in

the mixture (ii) Estimate confidence scores [0-1] for each gene-cell-type pair, which

denote the confidence level in the predicted expression of a gene in a cell type across

samples (≈1 High confidence, ≈0 Low confidence)

In this section, we provide a formal description of the computational prob-

lem being solved by CODEFACS. The full deconvolution problem is formulated as

follows:

min
∑m

i=1

∥∥(Bi,. − diag(Gi,.,. × F T
)∥∥

s. t.
∑c

k=1 fjk = 1 ∀j

gijk ≥ 0 ∀i, j, k

fjk ≥ 0 ∀j, k (1)

where B represents the given bulk RNA-seq expression matrix (m genes × n

samples), in which each entry bij is the observed bulk expression for ith gene and jth

sample; G is a three-dimensional deconvolved gene expression matrix (m genes × n

samples× c cell types), in which gijk denotes the unknown expression for gene i in the

jth sample and kth cell type; F is the cell fraction matrix (n samples × c cell types),

in which fjk denotes the unknown cell fraction of kth cell type in jth sample. F

varies across samples and cell types but is constant across genes. ‖.‖, represents the
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L2-norm (which measures the reconstruction error) and diag() represents a function

that gives a vector by extracting the diagonal entries of a matrix. The objective is

to find an optimal solution for G and F with the constraint that the cell fractions (of

c cell types) in any sample j sum up to 1 and all the gene expression values gijk are

non-negative real values. In this study, we assume the gene expression is quantified

as TMM normalized TPM values. More specially, we employed a strategy introduced

by Monaco et al. [155], which first estimates between-sample scaling factors upon

raw TPM values using TMM method [196] and further scale TPM values in each

sample using these scaling factors.

Problem (1) has no unique optimal solution without additional constraints and

regularizations since there are more parameters to be estimated than observations

[181, 163]. However, problem (1) can be separated into two independent problems:

cell fraction estimation and cell-type-specific gene expression prediction for each

individual sample. The cell fraction estimation problem is formulated as follows:

min
∑l

i=1

∥∥B′i,. − (Si,. × F T
)∥∥

s. t.
∑c

k=1 fjk = 1 ∀j

fjk ≥ 0 ∀j, k (2)

Where S denotes the cell-type-specific signature matrix (l genes x c cell types)

and the l genes are a subset of all the m genes in G or B matrix that are pref-

erentially over-expressed in at least one of the c cell types and their expression is

assumed to be constant across the population to arrive at an approximate solu-
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tion of cell fractions in each sample. F is the same as that in equation (1), while

B′ is a submatrix of the bulk expression matrix B in equation (1) correspond-

ing to the l genes in cell-type-specific signature matrix S. Numerous effective cell

fraction estimation tools have been developed and reported to solve problem (2)

[211, 69, 179, 257, 79, 2, 162, 241, 166, 129, 154, 16, 175, 61, 104, 8, 255]. The ex-

perimental analog to these methods is the cell gating procedure described in FACS.

We solve this problem using a well-known reference-based approach: CIBERSORT

[162]. If needed, CODEFACS also provides a batch correction approach introduced

by CIBERSORTx that could be applied to minimize cross-platform technical batch

effects between bulk mixture profile and cell type signature profile generated from

different technical platforms (e.g. bulk RNA sequencing, SmartSeq2-based single

cell sequencing, 10x-based single cell sequencing and microarray expression profil-

ing) [163]. In addition, we provide the option to input prior known cell fractions

instead of performing cell-fraction estimation de novo. Either known cell fractions

or cell type signature profiles are required as input. Newman et al. [162, 163] found

that cell fractions determined by the CIBERSORT algorithm, which we reimplement

in CODEFACS, mostly exhibit strong concordance with ground truth.

Once F is estimated or provided, the full deconvolution problem formulated

in (1) can be reduced to solving for G, given B and F . One can additionally reduce

problem (1) to a simpler problem where one solves for the expected cell-type-specific

expression for a specific gene across a group of individual samples, given the cell

fractions and bulk expression matrix:
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min
∑m

i=1

∥∥Bi,. −
(
Ēi,. × F T

)∥∥
s. t. ēik = 1 ∀i, k (3)

where B is the same as in equation (1) and represents the input bulk expression

matrix; F is also the same as that in equation (1) and denotes cell fractions; Ē is

the expected cell-type-specific expression matrix (m genes × c cell types) across

the population, in which ēik denotes the expected expression of gene i in cell type

k. For a fixed F , a unique optimal solution for this problem exists and can be

found using non-negative least squares (NNLS) [163, 32, 168]. The key difference

between problem (3) and problem (1) is that the former aims to predict expected

cell-type-specific expression for each gene in the population, while the latter predicts

the expected cell-type-specific expression for each gene in each sample.

One can aim to solve problem (1) approximately by making use of a greedy

divide and conquer strategy that breaks down problem (1) into simpler problems

(2) and (3). Newman et al, in their groundbreaking work CIBERSORTx, were

the first to propose such an algorithm. In CODEFACS, we introduce the concept

of confidence scores and additional algorithmic improvements to extend this ap-

proach. We show that CODEFACS yields a much more accurate solution compared

to CIBERSORTx in 15 benchmark datasets with ground truth data.

The CODEFACS algorithm consists of three modules that are executed se-

quentially and a confidence ranking system that is invoked after the execution of
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each module. In module 1 we refined and extended the high-resolution deconvolu-

tion module introduced by CIBERSORTx. First, we generalized their two-freedom

estimation method into a recursive splitting method, which we call ”p-freedom esti-

mation” (The degrees of freedom represent the distinct latent sources of variability

in gene expression across individuals). We found that p-freedom estimation could

capture tumor heterogeneity better than the 2-freedom estimation. Second, we gen-

eralized their sliding window method by employing an ensemble of window sizes.

Using an ensemble of window sizes seeks to reduce the dependence of downstream

biological analyses on arbitrary choices of the window size parameter. In addition,

we developed modules 2 and 3 (hierarchical deconvolution and imputation-based

deconvolution) to further increase the number of highly predictable genes. The con-

fidence ranking system uses a series of heuristics to decide where the solution can

be improved by subsequent modules. See Figure 5.7 for the schematic diagram with

the inputs and outputs.

5.2.3 The notion of confidence

Before we formally describe the algorithm, we introduce the concept of confi-

dence, which is a central part of the algorithm. Each of the three prediction modules

operates under specific modeling assumptions that are, in theory, uniformly applica-

ble to all genes. However, in practice, certain genes might violate these assumptions.

Therefore, for such genes, one cannot confidently say whether their predicted cell-

type specific expression levels closely reflect the ground truth. To quantify this
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uncertainty, we designed a confidence ranking system, which can decide whether

a specific prediction requires further refinement in subsequent modules by defining

a ranking Φ over genes for each cell type using confidence relevant features (more

details are provided in following subsections). Additionally, the confidence ranking

system also re-evaluates the confidence level of each final prediction (gene-cell type

pair) and provides in the end report a confidence score between 0 and 1.

5.2.4 The CODEFACS Algorithm

5.2.4.1 Cell fraction estimation (optional)

Cell type signatures are derived based on prior reference datasets using the

signature derivation module from CIBERSORTx. Thereafter, we implemented a

support vector machine (SVM)-regression-based method to predict cell fraction

given bulk expression/methylation and prior cell-type-signature profiles following

the CIBERSORT algorithm21. Given the bulk mixture and cell type signature pro-

file, the SVM regression model outputs predicted cell fraction for each cell type

and sample (Figure 5.1). If the user provides prior known cell fractions as input,

CODEFACS will skip this optional step.

5.2.4.2 Batch Correction to refine cell-fractions (optional)

To account for any systematic batch effects between bulk expression and in-

dependently generated cell-type-specific signature expression data, which could bias

cell-fraction estimates, we re-implemented the batch correction method introduced
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Figure 5.1: Given the bulk mixture matrix B (m genes × n samples) and cell type
signature profile S (l genes × c cell types), we use SVM regression to predict the cell
fraction matrix F (c cell types × n samples).

by CIBERSORTx [163]. The rationale for this method is that any batch effect be-

tween the given bulk expression and independently generated cell-type-specific sig-

nature expression must also be reflected in the reconstructed bulk expression S×F .

Thus, one can further refine cell-fraction estimates of each cell type in each sample

after reducing the batch effect between the given bulk matrix and reconstructed

bulk matrix S × F , using the function ComBat() from the SVA package [125] in R

(Figure 5.2). The final output of this step is a refined cell-fraction matrix. Currently

our implementation focuses on correcting biases among bulk RNA sequencing and

SmartSeq2-based single cell sequencing datasets. This step is optional and will be

skipped if the user does not specify that it should be done. For more details on

the batch correction procedure, please refer to section “Cross-platform normaliza-

tion schemes for deconvolution” in the supplementary information of CIBERSORTx

[163].
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Figure 5.2: Given initial estimates of cell fractions F (c cell types × n samples) and cell
type signature profile S (m genes × c cell types), one can reconstruct the bulk expression
matrix via the matrix multiplication S × F . Batch effects are then reduced between the
given bulk subset B′ and reconstructed bulk S × F .

5.2.4.3 Module 1 - High resolution deconvolution

In this module, the observed bulk expression of a gene in a sample is modeled

as the weighted sum of cell-type-specific expression of that gene from that sample

(See problem 1 above).

Determine cell types in which a specific gene is weakly expressed (Step

1.1): To determine if a gene i is weakly expressed in a cell type, we first conduct

the following statistical analysis: individuals are randomly chosen without replace-

ment to generate 100 random subsets of individual samples and then problem (3)

is solved to estimate expected cell-type-specific expression for each random subset.

This bootstrapping procedure generates a distribution of expected cell-type-specific

expression values ēik in the population. We then derive two p-values for each cell

type k: first, an empirical p-value that is estimated by checking the percentage of

solutions where ēik > 0, and second, a p-value derived from a parametric t-test. The
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two p-values are then combined using Fisher’s method28 to obtain a final p-value

for each cell type. If a gene is weakly expressed in a cell type (FDR > 0.2), we force

the cell fractions of that cell type in the corresponding mixture model to be 0 to

improve the deconvolution of gene expression in other cell types.

Recursively splitting samples into finite sub-groups (Step 1.2): With

an appropriate cell-type-mixture model defined for each gene, we now try to find

an approximate solution to problem (1). For a gene i, one can divide problem (1)

into a finite number of simpler problems by assuming that individuals with similar

bulk expression levels of gene i must have similar cell-type-specific expression levels

of gene i. Hence, we first sort all samples in increasing order according to the bulk

expression of gene i. In the two-freedom deconvolution in CIBERSORTx algorithm,

one can then find a position t to partition all the sorted samples into two sorted

subsets: h1 = 1, 2, . . . , t− 1 and h2 = t, t+ 1, . . . , n, such that the expected cell-

type-specific expression in each of the sub-sets (obtained from solving problem 3

using NNLS) best reconstructs the observed bulk expression (For more details, see

section “Cell type expression coefficients that best explain the bulk GEP” in the

supplementary information of CIBERSORTx [163]). Either of these two subsets

can now be recursively partitioned further into smaller subsets in a similar fashion

if the re-construction error keeps dropping and the subsets sample size stays above

1.9 times the number of cell types. This is referred to as p-freedom approach which

extends the two-freedom approach of CIBERSORTx (Figure 5.3). The recursive

splitting pseudo-code is shown below:
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Figure 5.3: Given the estimated cell fractions F (c cell types × n samples) and sorted
bulk expression of gene i, we check whether we have an adequate sample size for NNLS
first: if not, it will exit; if yes, two-freedom splitting will be performed. Subsequently,
we will check whether the two-freedom splitting improves the bulk reconstruction. If yes,
both the low-expressed and high-expressed groups will recursively enter another round of
two-freedom splitting; if no, the two-freedom splitting based predictions will be ignored
and the function exits.
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Algorithm 1 Recursive Splitting
Input:
F= cell fraction matrix
B = bulk expression matrix
size = the number of samples required for NNLS
i = gene index
st = start position in the sorted list of samples
ed = end position in the sorted list of samples
Ēi,. = expected cell-type-specific expression of gene i over all sorted samples in the
range st,. . . ,ed (Obtained from solving problem 3)

Output:
Gp
i,.,. = cell-type-specific expression over samples (1, 2, . . . , n) from recursive

splitting deconvolution

1: procedure recursive splitting
2: if ed− st+ 1 < 2× size then
3: save Ēi,. to Gp

i,.,.

4: exit
5: else
6: t ← 2-freedom index that splits sorted samples in the range st, . . . , ed,

into two subsets: st, . . . , st+ t and st+ t+ 1, . . . , ed (See CIBERSORTx algo-
rithm for more details)

7:

8: L̄i,. ← expected cell-type-specific expression of gene i over all sorted sam-
ples in the range st, . . . , st+ t (Obtained from solving problem 3)

9:

10: H̄i,. ← expected cell-type-specific expression of gene i over all sorted
samples in the range st+ t+ 1, . . . , ed (Obtained from solving problem 3)

11:

12: Err1 =
∥∥Bi,st,...,ed −

(
Ēi,. × F T

st,...,ed,.

)∥∥
13: Err2 =

∥∥Bi,st,...,ed −
[(
L̄i,. × F T

st,...,st+t,.

)
,
(
H̄i,. × F T

st+t+1,...,ed,.

)]∥∥
14: if Err2 < Err1 then
15: save L̄i,. and H̄i,. to Gp

i,.,.

16: call recursive splitting(F,B, size, i, st, st+ t, L̄i,.)
17: call recursive splitting(F,B, size, i, st+ 1 + 1, ed, H̄i,.)
18: exit

Ensemble sliding window deconvolution (Step 1.3): For gene i, a sliding

window is defined over the sorted list of samples with a specific window size s.

For each window of sorted samples, problem (3) is solved using NNLS to estimate
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the expected cell-type-specific expression across samples within that window. Cell-

type-specific expression for each individual is then approximated by redistributing

population-level estimates of cell-type-specific expression within each sliding win-

dow (This is again based on the assumption that subsets of individuals with very

similar bulk expression profiles have a shared cell-type-specific expression profile.

For more details on how this is done, please refer to the CIBERSORTx algorithm

[163]). Thereafter, the initial approximate predictions from the sliding window de-

convolution of window size s are refined using a linear-regression-based smoothing

procedure such that the distribution of expression values is statistically consistent

with population level estimates over each subset of patients from the p-freedom es-

timation step. This is based on the assumption that the estimated distribution of

cell-type-specific expression in each subset is robust to outliers.

Given that this solution is a function of the window size, which is an artificially

defined parameter, we suspect that a consensus solution obtained from averaging an

ensemble of solutions from different window sizes would be more robust and closer

to the ground truth. Hence, in our ensemble sliding window deconvolution, we set

up window sizes ranging from s1 = 1.5×number of cell types
0.8

× number of cell types to

st = max
(
4× number of cell types, sample size

2

)
and then perform the above sliding

window deconvolution for each of these window sizes. Given multiple solutions for

the cell-type-specific expression profile of each sample derived from multiple choices

of sliding-window sizes (s1 to st), their average is computed to obtain a single initial

approximate solution to problem (1) (we refer to this as ensemble of window sizes).

The above steps are repeated for the next gene until all the genes are done. Given
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a re-implementation of the CIBERSORTx sliding window algorithm (as function

sliding window()), the ensemble sliding window pseudo code is provided below:

Algorithm 2 Ensemble Sliding Window
Input:
F= cell fraction matrix
B = bulk expression matrix
n = number of samples
i = gene index
Gp = expected cell-type-specific expression distribution over samples obtained from
recursive splitting step
c = number of cell types
m = number of genes

Output:
Cell-type-specific (3-dimensional) expression matrix for all samples: G

1: procedure ensemble sliding window
2: s1 ← 1.9× c
3: st ← max

(
4× c, n

2

)
4: G← Zeros(m× n× c)
5: for w = s1 to st do
6: G ← G + sliding window(B,F,Gp, w, i); (See CIBERSORTx algorithm

for more details)

7: G← G
st−s1+1

8: return G

5.2.4.4 Confidence ranking of predictions from module 1

We expect that genes that follow the modeling assumptions of module 1 are

more likely to have their cell-type-specific expression levels predicted confidently.

Hence, while executing module 1, we collect a series of features that could be use-

ful in determining confidence level of expression predictions for each gene-cell-type

pair. These are: p-value of t-test determining if a gene is weakly expressed in a

cell type (obtained from completion of step 1.1), ratio of mean predicted expression
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levels and p-value of differential expression between subsets of samples h1 and h2

(obtained from completion of steps 1.2 and 1.3), Spearman correlation between pre-

dicted cell-type-specific expression and bulk gene expression across samples, Spear-

man correlation between bulk expression and the cell fraction across samples, etc.

We then define a ranking Φ using this feature space such that genes achieving a high

rank are on average ranked highly by each feature as follows:

Φ(gene i, cell type k) =

∑
feature∈set rank(feature(gene i, cell type k)

|set|

where Φ(gene i, cell type k) represents the prediction rank of gene i in cell type

k, feature represents each feature we collected in the feature set, |set| represents the

number of features and feature(gene i, cell type k) denotes each feature of gene i

in cell type k. The values taken by each feature are arranged so that for features

representing p-values, lower the value higher the rank, but for features representing

Spearman correlations, higher the value higher the rank.

Additionally, it is well known that (the proteins encoded by) genes may interact

with each other and behave collaboratively as complexes [100]; also, gene regulation

is highly dependent on numerous regulatory elements including transcription factors

[124, 120]. When looking at single cell expression data from three independent

single cell datasets, we indeed find that expression profiles of 1000 randomly selected

genes within the same cell type are much more strongly correlated than expected by

random chance (Figure 5.4). Hence, we reason that genes with correlated expression
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Figure 5.4: (A-C) boxplots depicting the gene-gene expression correlation distributions
among cell types in SKCM dataset 1, GBM dataset 1 and LUAD dataset respectively
for 1000 randomly selected genes. In each of the three plots, corresponding random-
permutation-based background controls are provided. The yellow box represents the cor-
relation derived from the original datasets as the foreground (fg), while the green box
represents that derived from the randomly permuted background control (bg). The y-axis
denotes the Spearman correlation value and the x-axis denotes the cell type.

predictions for a given a cell type will have similar confidence levels. Therefore,

ranking Φ is updated to Φ1 by accounting for these correlations as follows:

Φ1(gene i, cell type k) = rankk(max Φ(gene j, cell type k) : j ∈ Q)

Here, Q represents the set of genes whose predicted expression in cell type k is

strongly correlated with the predicted expression of gene i in cell type k (Spearman

correlation ≥ 0.4).

For each cell type k, we define two disjoint but non-exhaustive subsets: Hk

and Lk, which we call the “high” and “low”-confidence sets of cell type k. Genes

belonging to the set Lk will be passed on to module 2. Let mk be the number of
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genes whose predicted expression distribution in the population is at least bimodal

(i.e., fold change in expression between the subsets h1 and h2 > 1). Genes are then

assigned to the high, low confidence set of each cell type by the confidence ranking

system using the following rule:

Add gene i to set:

• Hk, if Φ1(gene i, cell type k) < round
(
m2

k

2m

)
• Lk, if Φ1(gene i, cell type k) > m− round

(
mk2
2
×
(
1− mk

m

))
The results of the assignment are stored in a confidence matrix C (m genes × c cell

types) encoding the high vs low confidence memberships of each gene in each cell

type.

Figure 5.5: Given the estimated cell fractions F (c cell types × n samples), bulk and
confidence levels estimated from module 1, for each cell type k we merge all the other
cell types as a pseudo component to construct a two-component model. Thereafter for
each low-confidence gene i in cell type k, we run module 1 to predict the expression in the
pseudo component and finally remove the estimated expression of the pseudo component
from the bulk to estimate the expression of the low-confidence gene i in cell type k.
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5.2.4.5 Module 2 - Hierarchical deconvolution for low-confidence genes

emerging from previous step

In this module, we simplify the general cell-type-mixture model described in

module 1 to a 2-component mixture model (Figure 5.5). Specifically, for a gene

i in the low-confidence set of cell type k, its observed bulk expression level in a

sample is modeled as a mixture of 2 components: the first component represents

the cell type k and the second component represents a pseudo-cell-type that is a

composite of all the cell types except kth cell type. We then re-run module 1 to

predict individual specific expression of gene i for the pseudo cell-type. Finally, the

prediction for the pseudo cell-type is subtracted from the bulk to approximately

re-estimate the individual specific expression of gene i in cell type k. This is based

on the assumption that the expression of the pseudo component might be better

predicted than the expression of cell type k using module 1, especially if cell type

k is not abundant or gene i is weakly expressed in cell type k. The above steps are

repeated for all the remaining genes in the low-confidence set of each cell type. The

hierarchical deconvolution pseudo code is provided below:
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Algorithm 3 Hierarchical Deconvolution
Input:
F= cell fraction matrix
B = bulk expression matrix
C = confidence level matrix (records low confidence genes in each cell type that
need to be re-evaluated by module 2)
G = predicted gene expression in each cell type and sample (Output of module 1)
c = number of cell types
m = number of genes

Output:
Updated predictions of gene expression in each cell type and sample in G

1: procedure hierarchical deconvolution
2: for k = 1 to c do
3: F ′′ ← [F [k, ], 1− F [k, ]]]
4: for i = 1 to m do
5: if C[i, k] = 0 then
6: Gpseudo ← High resolution deconvolution(B,F ′′, i)

7: G[i, , k]← B[i,]−F ′′[2,]×Gpseudo[i,,2]
F ′′[1,]

5.2.4.6 Confidence ranking of predictions emerging from module 2

Following module 2, we re-rank all genes in the low confidence set Lk of each

cell type by re-defining the ranking Φ2 as follows:

For gene i ∈ Lk,

Φ2(gene i, cell type k) = rankk

(
1

|Hk|
∑
j∈Hk

ρ(gene i,gene j)

)

Where ρ(gene i,gene j) represents the Spearman correlation between new pre-

dictions of gene i and old predictions of gene j, and |Hk| represents the number

of genes in high confidence set Hk. This is again based on observations of single

cell expression data described above from which we deduce that genes with similar
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confidence levels are expected to have correlated predictions (Figure 5.4). We now

describe how the confidence ranking system takes this new ranking of genes in the

low confidence set of each cell type and decides which genes need to be upgraded to

the high confidence set.

Let |Lk| be the number of genes in the low confidence set of cell type k, m

be the total number of genes and CFMk be the mean cell fraction of cell type

k. The confidence ranking system upgrades the membership of genes from the low

confidence set Lk to the high confidence set Hk using the following rule:

For gene i ∈ Lk

• Hk ← Hk ∪ {i}, if Φ2(gene i, cell type k) < round
(
|Lk|2×CFMk

2m

)
• Lk ← Lk ∪ {i}, if Φ2(gene i, cell type k) > m− round

(
|Lk|2
2m

)
The results of the assignment are stored in the confidence matrix C (m genes × c

cell types) encoding the high vs low confidence memberships of each gene in each

cell type.

5.2.4.7 Module 3 – Imputation-based deconvolution for low-confidence

genes emerging from previous step

Module 3 operates on the assumption that the expression levels of two genes are

supposed to be correlated in some cell types if we observe that their bulk expression

is significantly correlated 16. For a gene i still in the low-confidence set of cell type

k, the Spearman correlations between the bulk expression profile of gene i and bulk

expression profiles of genes in the high confidence set of cell-type k are estimated.
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If the bulk expression profile of gene i is highly correlated (Spearman correlation

0.5) with the bulk expression profiles of more than two genes in the high-confidence

set of cell type k, then a lasso regression-based machine learning model is trained

using bulk expression to impute individual specific expression of gene i in cell type k

based on predicted expression profiles of high-confidence genes in cell type k (Figure

5.6). The above steps are repeated for all the remaining genes in the low-confidence

set of each cell type.

Figure 5.6: Given the predicted cell-type-specific expression G (m genes × n samples
× c cell types ), bulk and confidence levels estimated from module 1, in each cell type k
and for each low-confidence gene i, we compute the correlation between gene i and each
of other genes in bulk. If the number of genes which are highly correlated with gene i is
more than 2, we build up a machine learning model to predict the expression of gene i
in cell type k based on the expression of other high-confidence genes which are correlated
with gene i. After imputation, both the predicted expression matrix G and confidence
matrix C will be updated to record the final low/high confidence memberships of genes in
each cell type.
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Algorithm 4 Imputation Based Deconvolution
Input:
F= cell fraction matrix
B = bulk expression matrix
C = confidence level matrix (records low confidence genes in each cell type that
need to be re-evaluated by module 3)
G = predicted gene expression in each cell type and sample (Output of module 2)
c = number of cell types

Output:
Updated predictions of gene expression in each cell type and sample in G

1: procedure imputation based deconvolution
2: for k = 1 to c do
3: Hk ← gene j : C[j, k] = 1
4: Lk ← gene j : C[j, k] = 0
5: Confhigh ← all genes ∈ Hk

6: Conflow ← all genes ∈ Lk
7: Corrs← Spearman correlation matrix(B[Conflow, ], B[Confhigh, ])
8: F ′′ = [F [k, ], 1− F [k, ]]]
9: for each gene i ∈ Lk do

10: if
(∑

j∈Hk
Corrs[i, j] ≥ 0.5

)
≥ 2 then

11: train imputation model: B[i, ] fimp (B[Confhigh, ])
12: impute G[i, , k]← fimp (G[Confhigh, , k])

5.2.4.8 Confidence ranking for predictions emerging from module 3

Following module 3, we collect the following confidence ranking features for

each gene i in the low confidence set of cell type k: the correlations of predicted

gene expression with bulk expression, the correlation between cell fractions and bulk

expression, number of genes as features in the imputation model, average Spearman

correlation between new predictions of gene i and predictions of genes in the high

confidence set of cell type k. We re-define a ranking Φ3 over all genes in the low

confidence set of each cell type using this feature space such that genes achieving
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a high rank are on average ranked highly by each feature. Genes that are ranked

among top 80% (an artificial cutoff) of all genes in the low confidence set of a cell

type k are now upgraded to the high confidence set of cell type k by the confidence

ranking system.

5.2.4.9 Final output – confidence scores and cell-type-specific gene

expression profiles of each sample

To transform high- vs low-confidence set memberships of genes in each cell

type (which were based on artificially defined rules/cut-offs for easy implementation

of the greedy algorithm), into scores that are continuous in the range [0, 1], the

following final steps were taken: (a) The pair-wise correlations between the predicted

expression profile of a gene i in cell type k and predicted expression profiles of genes

belonging to the high-confidence set of cell type k are averaged to generate a score for

gene i; (b) the cell-type-specific expression predictions across the samples (columns)

are randomly shuffled to generate a background and step (a) is repeated to estimate

a background distribution of scores for each gene; (c) for each gene and each cell

type, one can now determine an empirical p-value pv based on this background

distribution of scores. These p-values quantify the probability of a gene having

high confidence predictions by random chance if its predictions are correlated with

predictions of any other genes belonging to the high-confidence set of a cell type. The

p-values are low for genes that are part of the high confidence set and high for genes

part of low confidence set and intermediate for genes belonging to neither. Hence,
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we record 1− pv as the final confidence score for each gene-cell-type pair. The final

outputs of CODEFACS are the approximate solution for 3-dimensional matrix G

after execution of module 3 (imputation-based deconvolution) and confidence scores

for each gene-cell-type pair.

5.2.5 Inference of clinically relevant cellular crosstalk in the TME

In this section we describe the database of putative ligand receptor interac-

tions between various immune cell types: LIRICS (LIgand Receptor Interactions

between Cell Subsets) and its application to discover clinically relevant cellular im-

mune crosstalk.

5.2.5.1 Curation of established ligand-receptor protein-protein inter-

actions between cell types in the tissue microenvironment

Known protein-protein interactions between tumor, epithelial, immune and

stromal cell types in the tissue microenvironment were manually curated from var-

ious resources. Specifically, interactions corresponding to cytokine/chemokine - cy-

tokine/chemokine receptor interactions, ligand-receptor interactions involved in cell

adhesion/leukocyte trans-endothelial migration, ligand-receptor interactions involv-

ing the TNF receptor superfamily and lastly, ligand receptor interactions involved in

regulation of NK and T cell cytotoxicity were all merged into one Excel spreadsheet

[35, 41, 110, 111, 159, 174, 242]. In total, 369 putative ligand-receptor interactions

were collected. This list primarily covers proteins that have well characterized im-
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munological functions. Certain receptors are complexes encoded by more than one

gene, such as TGF beta family receptors. They are documented as a list of genes

separated by a ”;”. Furthermore, certain proteins serve as both ligands on some cell

types and receptors on other cell types, such as HVEM (TNFRSF14).

5.2.5.2 Expected distribution of ligands and receptors across different

cell types from prior knowledge

The database assigns a binary indicator (1/0), for each ligand/receptor, across

the compendium of cell types indicating with 1 if the ligand/receptor can be pro-

duced by a cell type based on prior evidence of cell-surface protein expression or

secretion (0 otherwise). This knowledge was extracted from Appendix II-IV of

Janeway’s Immunobiology 9th Edition Textbook [159]. The appendix, in addition,

records ligands/receptors whose expected cell type specific distribution is less pre-

cisely defined. For instance, certain cytokines/chemokines are reported to be broadly

produced by lymphocytes. Hence, without additional evidence, it is reasonable to

expect that such ligands/receptors can also be produced in specific contexts by all

cell types that are lymphocytes. We formalize this notion by defining a functional

equivalence class for each cell type. For instance, the functional equivalence class

for B cells is defined as: lymphocytes, lymphoid cells, leukocytes, antigen presenting

cells, nucleated cells, all cells. A schema representing such relationships is stored in

the database. We then describe in a subsequent section how this prior knowledge

can be used to systematically enumerate all ligands/receptors that can potentially
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be produced by a specific cell type of interest.

5.2.5.3 Annotation of functional effects of ligand-receptor interac-

tions on participating cell types

Certain ligand-receptor interactions between immune cell types have an acti-

vating or inhibitory effect on the cell type expressing the receptor (also known as the

target cell type) or in some cases both the ligand and receptor expressing cell types

(regarded in literature as costimulatory). Discovery of such interactions resulted

in the development of immune checkpoint blockade therapy such as anti-PD1 and

anti-CTLA4 which has revolutionized cancer treatment. We systematically curated

literature on all such interactions from [35, 41, 174, 242, 23, 219, 80, 235, 220, 40]

and classified them into two ontologies as follows:

• Activating/costimulatory encapsulates interactions with the following func-

tional characteristics reported in literature: increased cytotoxicity, increased

cytokine production, increased cell proliferation, increased cell survival, ex-

istence of immunoreceptor tyrosine-based activation motifs (ITAMs) in the

cytoplasmic tail of the receptor.

• Inhibitory/checkpoint encapsulates the following functional characteristics

reported in literature: decreased cytotoxicity, exhaustion, reduced cytokine

production, decreased TCR signaling activity (for T cells), reduced cell pro-

liferation, reduced cell survival, existence of Immunoreceptor tyrosine-based

inhibitory motifs (ITIMs) in the cytoplasmic tail of the receptor.
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In the database, interactions with conflicting effects reported on target cell

types or for cases where the effect of the interaction depends on other factors were

left un-annotated. In addition to activating/inhibitory interactions, the database

also annotates other interactions based on prior knowledge from Janeway’s immuno-

biology 9th Edition Textbook [159].

• Pro-inflammatory interactions involving inflammation mediator cytokines

such Interferon Gamma, TNF-alpha, IL1, IL12 and IL18

• Chemotaxis cytokine/chemokine interactions involved in cell chemotaxis in

regular or inflammatory conditions (responsible for lymphocyte infiltration)

• Cell-adhesion interactions involved in cell adhesion/leukocyte trans-endothelial

migration (responsible for extravasation from blood vessels to tissue)

5.2.5.4 LIRICS STEP 1: Querying all plausible ligand receptor inter-

actions between any two cell types based on prior knowledge

In this step, we query all ligand receptor interactions that could potentially

take place between two cell types A and B. The user can plug in the names of any

two cell types whose names match with the names of cell types in the database

and then LIRICS lists all ligand-receptor interactions that could potentially take

place between cell types A and B. This list is determined by first finding which

ligands/receptors can potentially be produced by each cell type (cell type A and B)

based on prior knowledge of the expected distribution of ligands and receptors on
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cell types. It then adds to this list any ligands/receptors that are expected to be

found in the functional equivalent cell types. Given a set of all potential ligands

and receptors on each cell type, LIRICS returns all known physical protein-protein

interactions involving these ligands and receptors.

5.2.5.5 LIRICS STEP 2: Identifying which plausible interactions are

likely to occur (or “active”) in each sample given deconvolved

gene expression data from CODEFACS

Given a queried set of all plausible ligand receptor interactions between cell

types (A,B,C, ...): {(LA1 , RB
1 ), (LA2 , R

C
2 ), . . . , (LC1 , R

B
1 ), . . . , }, one can integrate this

prior knowledge with deconvolved expression data from CODEFACS to infer which

interactions are likely to occur in each sample as follows:

For any two cell types A and B with a plausible ligand-receptor interaction

(LAz , R
B
z ), we define a binary indicator ZLA

z ,R
B
z
∈ {0, 1}, such that ILA

z ,R
B
z

= 1 if a

physical interaction between (LAz , R
B
z ) is likely to take place in a sample, and has

the value 0 otherwise. An interaction is considered likely to take place (synonym:

“active”) in a sample if the ligand LAz is overexpressed in cell type A and receptor

RB
z is over expressed in cell type B, in that sample. To determine if ligand LAz and

receptor RB
z are over-expressed in cell types A and B in a given sample, we use the

median deconvolved expression of the ligand LAz in cell type A over all input samples

and likewise the median deconvolved expression of receptor RB
z in cell type B over

all input samples as controls. Ligands such as cytokines and chemokines, can be
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secreted by cells and hence are not surface bound. However, we expect the levels

of secreted cytokines/chemokines by a cell type to be proportional to their cell-

type-specific gene expression. Furthermore, multiple genes are required to encode

certain ligands/receptors, each gene being part of a specific subunit in the protein

complex. For such ligands/receptors to be expressed, all genes required to build the

ligand or receptor need to be expressed. Hence, we assume the expression of such

receptors or ligands in a cell type is the minimum of the expression of individual

genes constituting the ligand or receptor.

This approach has two key advantages, besides being biologically intuitive.

First, the binary indicator is expected to be robust to noise in gene expression despite

the varying levels of confidence in the predicted cell-type-specific gene expression

from different datasets. This follows from the statistical properties of median-based

filters in signal processing [251]. Second, it enables comparison of individual profiles

independent of the dataset source due to their shared biological representation if the

datasets being compared have expression measurements of the same genes. Thus,

one can seamlessly pool multiple datasets together, augment sample size and increase

statistical power.

5.2.5.6 LIRICS STEP 3: Downstream enrichment analysis and visu-

alization

Given this binarized representation, one can perform a Fisher’s exact test to

assess if any specific cell-cell interaction is more likely to occur in samples with a
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specific phenotype compared to a control group. This is quantified by computing

the enrichment score, expressed as an odds ratio of the interaction in each pheno-

type of interest. A score around 1 indicates a neutral trend, a score >1 indicates

enrichment of the interaction in the phenotype of interest and a score close to 0

indicates enrichment in the control group. Furthermore, the associated p-values of

each test can be inspected post multiple hypothesis testing correction to identify

any significant trends in the data. One can also plot the most significant trends

occurring in a network where each edge represents a ligand-receptor interaction be-

tween two cell types and the thickness of the edge is proportional to the enrichment

score of the interaction in a phenotype of interest. The circlize package in R is used

to make these plots [84].

5.2.6 Feature selection and machine learning

We used a genetic algorithm, which is a randomized heuristic search algorithm

designed to select optimal features for a prediction task given some user-defined

fitness function for training [146]. In this setting, the features are ligand-receptor

interactions between cell-types, the prediction task is predicting response to ICB

treatment and the fitness function is defined as the accuracy of predicting a user

defined phenotype based on the total number of interactions from those selected

occurring in a given sample; accuracy is quantified by the AUC. To reduce the

risk of over-fitting and aid in faster convergence of the genetic algorithm during

training, the size of the search space is reduced by first removing any ligand-receptor
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interactions with multi-gene receptors or ligands. These features are expected to be

noisy because the relationship between expression of genes encoding the protein

complex and the cell surface expression of the protein complexes is less well defined.

Second we assess the fold change of each feature between the two classes specified

in the training dataset (e.g., hypermutated vs non-hypermutated) and only select

those with a fold change >1. These features are then passed to the genetic algorithm

for further optimization.

The algorithm starts out by randomly generating sets of features. This is de-

fined as the seed population. These sets iteratively evolve via the phenomenon of

natural selection enforced by the user defined fitness function. Specifically, for each

subsequent iteration, features from the best performing sets, as determined by the

user defined fitness function, in the current iteration are mixed at random followed

by random new feature additions or dropouts (referred to as mutations) to build a

new generation of feature sets and the process repeats. Eventually, after a number

of epochs, which we set to 100, the fitness function converges to an optimum and

the best set of features for the prediction task is returned to the user. Since the

fitness function landscape is often non-convex and the training process is stochastic,

we repeat the training process 500 times, each with a randomly chosen seed popula-

tion, and eventually choose frequently selected features over all solutions to reach a

solution we suspect is close to the global optimum solution. For our plots, we set the

threshold to frequency > 100 times. The probability of any feature being selected

more than 100 times by random chance based on this approach is estimated to be

< 0.01. Results are qualitatively similar for more stringent thresholds. The genetic
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algorithm was implemented in R using the genalg package [246].

5.3 Results

5.3.1 Overview of CODEFACS and LIRICS

CODEFACS is designed to characterize the tumor microenvironment by recon-

structing the cell-type-specific transcriptomes of each sample from bulk expression.

It takes as input the bulk RNA-seq expression values of a cohort of tumor samples

and either the estimations of the cell fractions of a pre-defined set of cell types in

each sample or their cell-type-specific molecular signature profiles, derived based on

reference datasets or from the literature [163].

CODEFACS then employs a heuristic approach that sequentially executes

three modules: (module 1) high resolution deconvolution, (module 2) hierarchi-

cal deconvolution and (module 3) imputation. Each module is designed to predict

the cell-type-specific expression of genes in each sample; the second and third mod-

ules aim to overcome the shortcomings of the previous modules. A key component

of CODEFACS is its confidence ranking system, which receives cell-type-specific

expression predictions from the different modules and labels them as high or low-

confidence estimations. Genes whose expression is determined with high confidence

in a given module are added to the output set, while low confidence predictions

are continued to be processed in subsequent modules (See Figure 5.7 panel A). The

final output of CODEFACS consists of two items: (a) a three-dimensional gene ex-

pression matrix, where each entry represents the predicted gene expression a gene
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in a given cell-type in a specific sample, and (b) a two-dimensional matrix of con-

fidence scores ranging from [0,1] representing which gene-cell-type pairs have most

confident predictions (1) and which pairs have least confident predictions (≈0; See

Figure 5.7 A, Output). These scores can be further investigated to assess the quality

of predictions for a given dataset.

Given fully deconvolved gene expression data from CODEFACS, one can use

LIRICS (LIgand Receptor Interactions between Cell Subsets) (Figure 5.7, panel

B) to transform this data into a biologically interpretable feature space of active

ligand-receptor interactions between cell types in each sample. Specifically, LIRICS

takes the output of CODEFACS and processes it in three steps: (step 1) the first

step queries a database of all plausible ligand-receptor interactions between any two

cell types A and B, that we have systematically assembled and curated from the

literature. This database is publicly available as part of LIRICS. (step 2) In the

second step, given the deconvolved expression profiles of cell type A and cell type

B in a given bulk tumor sample, LIRICS denotes as ‘active’ or ‘likely to occur’

(‘1’) the interactions where both the ligand and receptor are over-expressed in the

relevant cell-types in that sample, or otherwise ‘inactive’ (‘0’). A ligand or receptor

is considered to be over-expressed in a given cell type if its expression exceeds

the median expression in that cell type (Supplementary Note). (step 3) Finally, a

Fisher’s enrichment analysis is performed to test the association of the activity of

specific ligand-receptor interactions with any relevant phenotypes of interest (e.g.,

treatment response, mutational subtype, etc.) (Figure 5.7, panel B). Furthermore,

if required, one can collectively analyze the binary profiles returned by LIRICS
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from multiple independent datasets to augment sample size and increase statistical

power. Finally, one can apply a false discovery rate (FDR) cut-off post multiple

hypothesis correction and visualize significantly enriched interactions in a volcano

plot as shown at the bottom of Figure 5.7, panel B, or, alternatively, display their

network structure as shown in subsequent biological applications.

5.3.2 Benchmarking CODEFACS performance

To assess the accuracy of CODEFACS, we generated 15 benchmark datasets

(see Methods) by merging publicly available single cell RNA-seq [103, 74] and FACS

sorted purified RNA-seq [72]. Thereafter, we applied CODEFACS to deconvolve

these generated bulk datasets and define the accuracy of its predictions by com-

puting the Kendall correlation between the predicted and ground truth expression

in each cell type across individual samples (the Kendall correlation provides a less

inflated measure of accuracy by accounting for ties in the data). In the main text,

we show the results obtained on three benchmark bulk datasets: one derived form a

FACS-sorted lung cancer data, one from a single cell melanoma RNA-seq data and

from a single cell glioblastoma RNA-seq dataset, respectively. Each bulk sample

from these datasets represents a real biopsy from a patient. We show that CODE-

FACS can predict the cell-type-specific expression of more genes than CIBERSORTx

(with Kendal’s correlation ≥ 0.3) (Figure 5.8 panels A,B,C), and its predictions are

overall more accurate (Figure 5.8, panels D,E,F). The results for all the remaining

12 benchmark datasets, created via artificial mixing of single cell profiles and single
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Figure 5.7: CODEFACS takes bulk gene expression profiles and prior knowledge of the
cellular composition of each sample and executes a heuristic three step procedure to infer
the deconvolved gene expression in each sample. In module 1, we perform a high-resolution
deconvolution, which extends the CIBERSORTx algorithm. In module 2 (hierarchical de-
convolution), bulk expression is modeled as a mixture of two components: a specific cell
type of interest and all the remaining cell types. The expression for the cell type of
interest is predicted by removing the estimated expression in the second component (us-
ing high-resolution deconvolution from module 1) from the bulk mixture. In module 3 –
imputation-based deconvolution, we impute the cell-type-specific expression of a specific
gene based on the predicted cell-type-specific expression of other high-confidence genes
that are co-expressed with that gene in the bulk. Each module is designed to overcome
the shortcomings of its predecessor based on their respective modeling assumptions. The
confidence ranking system is responsible for classifying all the predictions at the end of
each module into high-confidence or low-confidence predictions. Genes classified into the
low-confidence class at the end of one module (e.g. module 1) are passed to the next mod-
ule (e.g. module 2) for refinement. Finally, after all the three modules are executed, the
prediction confidence levels are re-evaluated. The final output of CODEFACS consists of
a 3-dimensional matrix with cell-type-specific gene expression predictions for each sample,
along with estimated confidence scores of predictions for each gene in each cell type. For
more details, see Supplementary note. (B) LIRICS takes the output of CODEFACS and
processes it in three steps. In step 1, for each possible permutation of cell type pairs, LIR-
ICS queries a literature-curated repository for enumerating all plausible ligand-receptor
interactions between specified cell types. In step 2 this prior knowledge is integrated with
the output from CODEFACS to infer which of the plausible cell-cell interactions are likely
to occur or be “active” in each individual sample. The result is a binary matrix with rows
representing each plausible cell-cell interaction and columns representing each patient’s
tumor sample. Finally, in step 3, given any clinically relevant phenotype (e.g. response
to therapy, driver mutation status, etc..), one can perform a Fisher’s enrichment analysis
(shown at the bottom) to discover cell-grounded receptor-ligand interactions in the TME
that are associated with the phenotype of interest.
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cell RNA-Seq imputation, also show the superiority of CODEFACS (supplementary

Figure 5.9 and 5.10). Overall, we observe that the more abundant the cell type

is, the better CODEFACS can predict its cell-type-specific gene expression (Figure

5.11).

Next, we quantified how well the confidence scores it returns align with the

Kendall scores that measure the true prediction accuracy with the ground truth for

each (gene, cell-type) pair to validate the claim that our confidence scores can help

the user filter out potentially noisy predictions in real bulk datasets. We quantified

this using two metrics: Spearman correlation and a classification AUC (Area Un-

der the ROC Curve). Across all the benchmark datasets analyzed, the Spearman

correlation between confidence scores of genes in each cell-type and their correspond-

ing Kendall scores (quantifying the true prediction accuracy) is strong and positive

(Figure 5.8, panel G depicts the results for the FACS sorted lung cancer benchmark

dataset, and Figure 5.12 depicts the results for the remaining benchmark datasets);

To perform a classification-based quantification, we grouped the genes in each cell-

type into two classes based on the correlation between their predicted and actual

expression, informative (prediction accuracy ≥ 0.1 and p-value ≤ 0.05) and unin-

formative (prediction accuracy < 0.1 or p-value > 0.05). We then tested whether

the confidence scores could be used to classify genes into these two classes for each

cell type. We find that the confidence score could effectively filter out uninformative

predictions (Figure 5.8, panel H depicts the results for the FACS sorted lung can-

cer benchmark dataset, and supplementary Figure 5.13, depicts for the remaining

benchmark datasets).
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Finally, to further evaluate CODEFACS on real bulk tumor data (where the

ground truth is unavailable), we applied it to deconvolve bulk expression data from

21 cancer types ( 8000 RNA-seq samples) in TCGA. To infer the cellular abundance

of each cell type in each sample which is required as input for CODEFACS, we made

use of matched bulk methylation data available for these samples and methylation-

based reference signature profiles of distinct cell types. These include 11 cell type sig-

natures (macrophages/dendritic cell:CD14+, B cells: CD19+, CD4+T cells, CD8+

T cells, T reg cells, NK cells: CD56+, endothelial cells, fibroblasts, neutrophils,

basophils, eosinophils and tissue-specific tumor cells) obtained from MethylCIBER-

SORT [39]. Reassuringly, we found strong Spearman correlations between the re-

sulting predicted tumor cell fraction and the tumor purity estimates derived from

matched mutation and copy number data (based on ABSOLUTE) for the same sam-

ples across 10 cancer types (Spearman correlation: min=0.72, max=0.88, avg=0.8).

This testifies that methylation-based cell fraction estimates indeed form a reliable

basis for running CODEFACS to deconvolve TCGA samples.

We then asked if CODEFACS can recover the expected cell-type-specific gene

expression signature of different cell types in a given cancer type. To this end, we

computed the Spearman correlation between (a) the mean deconvolved gene expres-

sion of the top confidently deconvolved genes in a given cell type (confidence score ≥

0.95) and (b) the mean expression of these genes, which we derived from completely

independent single cell expression data of the same cancer type (Methods). We find

that (a) and (b) are substantially correlated (Figure 5.8, panel I depicts results for

the TCGA-LUAD (lung adenocarcinoma) dataset as an example and supplementary
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Figure 5.14 for the remaining cancer types that have publicly available scRNA-seq

data). The concordance level is higher for cell types that are abundant (e.g., tumor

cells and fibroblasts) and decreases for less abundant cell types. Additionally, we

observed that tumor cells have the largest fraction of genes whose expression is pre-

dicted with high confidence, with the highest in thyroid cancer (THCA, 67.4% of all

genes). Furthermore, 7 KEGG pathways are significantly enriched (adjusted p-value

< 0.01) with highly confident genes in tumor cells (confidence score ≥0.95) across

the 21 cancer types. Those pathways mostly involve RNA transport, spliceosome,

DNA replication, and mismatch repair.
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Figure 5.8: (A-C) bar plots depicting the number of genes with a prediction accuracy
(Kendall correlation) ≥ 0.3 with the ground truth for each cell type, estimated from
bulk-generated samples of lung cancer (LUAD dataset; sample size = 26) [72], melanoma
(SKCM dataset 1; sample size = 28) [103] and glioblastoma (GBM dataset 1; sample size
= 24) [74] benchmark datasets, as estimated by CODEFACS (yellow bars) and CIBER-
SORTx (blue bars). (D-F) boxplots depicting prediction accuracy distributions of all
genes across different cell types in the lung cancer (LUAD with sample size 26) [72],
melanoma (SKCM with sample size 28) [103] and glioblastoma (GBM with sample size
24) [74] benchmark datasets, using CODEFACS (yellow) and CIBERSORTx (blue). A
two-sided Wilcoxon signed rank test was performed to compare the prediction accuracies of
CODEFACS and that of CIBERSORTx for each cell type in each dataset. ??? denotes p-
values < 2e-16. (G) Spearman correlations between prediction accuracies and confidence
scores among cell types in the lung cancer benchmark dataset (LUAD dataset; sample
size = 26) [72]. The y-axis indicates the spearman correlation coefficient value, while the
x-axis indicates the cell type. (H) AUCs obtained in classifying informative and uninfor-
mative predictions among cell types in lung cancer benchmark dataset (LUAD dataset;
sample size = 26) [72]. (I) bar plots depicting the Spearman correlations between mean
deconvolved cell-type-specific expression in TCGA-LUAD and mean cell-type-specific ex-
pression derived from publicly available single cell datasets of LUAD. The y-axis indicates
the Spearman correlation coefficient value, while the x-axis indicates the cell type.
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Figure 5.9: (A-L) bar plots depicting the number of highly predictable genes (Kendall
correlation ≥ 0.3) among 12 validation datasets (SKCM dataset 2, SKCM dataset 3,
SKCM dataset 4, SKCM dataset 5, SKCM dataset 6, SKCM dataset 7, GBM dataset 2,
GBM dataset 3, GBM dataset 4, GBM dataset 5, GBM dataset 6, GBM dataset 7).The
yellow bar represents the performance of CODEFACS, while the gray bar represents that
of CIBERSORTx.
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Figure 5.10: (A-L) boxplots depicting the accuracy distributions among the 12 bench-
mark dataset (SKCM dataset 2, SKCM dataset 3, SKCM dataset 4, SKCM dataset 5,
SKCM dataset 6, SKCM dataset 7, GBM dataset 2, GBM dataset 3, GBM dataset 4,
GBM dataset 5, GBM dataset 6, GBM dataset 7). The yellow boxes represents the perfor-
mance of CODEFACS, while the gray boxes represents that of CIBERSORTx. Wilcoxon
signed rank test was performed to compare the prediction accuracies of CODEAFCS and
that of CIBERSORTx for each cell type in each dataset. ? ? ? denotes p-values < 2e-16.
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Figure 5.11: For each cell type of each dataset, the average prediction accuracy was
computed by taking the average of prediction accuracies (Kendall correlation) across all
genes. The y-axis indicates the average prediction accuracy among genes and the x-axis
indicates the cell fraction. The Spearman correlation coefficient is 0.81 (p-value < 2e-16).
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Figure 5.12: (A-N) bar plots depicting the Spearman correlation between prediction
accuracies and confidence scores in each cell type for all 14 benchmark datasets (SKCM
dataset 1, SKCM dataset 2, SKCM dataset 3, SKCM dataset 4, SKCM dataset 5, SKCM
dataset 6, SKCM dataset 7, GBM dataset 1, GBM dataset 2, GBM dataset 3, GBM
dataset 4, GBM dataset 5, GBM dataset 6, GBM dataset 7). The y-axis indicates the
Spearman correlation value, while the x-axis indicates the cell types.
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Figure 5.13: (A-N) bar plots depicting the AUC in each cell type for all 14 benchmark
datasets (SKCM dataset 1, SKCM dataset 2, SKCM dataset 3, SKCM dataset 4, SKCM
dataset 5, SKCM dataset 6, SKCM dataset 7, GBM dataset 1, GBM dataset 2, GBM
dataset 3, GBM dataset 4, GBM dataset 5, GBM dataset 6, GBM dataset 7). Genes in
each cell-type are grouped into two classes based on the correlation between their predicted
and actual expression, informative (prediction accuracy ≥ 0.1 and p-value ≤ 0.05) and
uninformative (prediction accuracy < 0.1 or p-value > 0.05). The y-axis indicates the
AUC, while the x-axis indicates the cell types.
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Figure 5.14: (A-H) bar plots depicting the result for SKCM, HNSCC, GBM, PAAD,
LIHC, LUSC, COAD and TNBC respectively. The y-axis indicates the Spearman corre-
lation coefficient value, and the x-axis indicates the cell type.
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5.3.3 Tumors with DNA mismatch repair deficiency have heightened

T-cell co-stimulation that is independent of their tumor muta-

tion burden levels

In normal cells, DNA is constantly repaired in response to DNA damage or

DNA replication errors [63]. However, defects in specific DNA repair pathways in

cancer cells may result in the accumulation of many somatic mutations resulting

in hypermutated tumors (TMB ≥ 10-20 mutation/Mb) [133, 4, 160]. One of the

sources of hypermutability is a mismatch repair deficiency (MMRD), which leads

to the accumulation of insertions and deletion mutations in microsatellite regions of

the genome due to uncorrected DNA replication polymerase slippage events. This is

known as microsatellite instability (MSI) [67, 52]. Solid tumors with mismatch repair

deficiency were shown to be sensitive to immune checkpoint blockade (ICB) therapy

irrespective of tumor type, leading the FDA to approve MSI as the first cancer

type agnostic biomarker for patients receiving anti-PD1 treatment [28]. The reason

behind this general sensitivity to anti-PD1 treatment is not completely understood.

Prior work has led to the prevailing hypothesis that elevated tumor mutation burden

in mismatch repair deficient tumors leads to more neoantigens, and thus is more

likely to activate a host immune response against tumor cells [67, 68, 132, 122].

However, not all tumor types with elevated tumor mutation burden have similar

response rates to anti-PD1 [252, 89], and recent studies have revealed that T cells

recognize and respond to only a few neoantigens per tumor [193, 20, 197, 108].
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More generally, when looking at non-synonymous tumor mutation burden, MSI and

survival data across the TCGA collection (Figure ??, panels A and B, borrowed from

[226, 26]. See Methods), we see a significant association between hypermutability

and survival benefit of patients in solid tumor types with a frequent underlying

mismatch repair deficiency (Figure 5.15, panel C. log-rank test p-value = 0.00084),

in contrast to other tumor types (Figure 5.15, panel D, log-rank test p-value = 0.4).

These survival differences can be partially explained by the mutual exclusivity of

microsatellite instability and chromosomal instability, which has been previously

linked with a worse prognosis[226, 56, 13]. Taken together, these findings motivated

us to further study cellular immune crosstalk in the tumor microenvironment of

mismatch repair deficient tumors to gain additional cell-type-specific insights into

their sensitivity to anti-PD1.

We hence aimed to identify cell-cell interactions that are differentially active

between microsatellite instable tumors (highlighted as red dots in Figure 5.15, panel

A) and microsatellite stable tumors (highlighted as black dots in Figure 5.15, panel

A). To this end, we applied CODEFACS to deconvolve the bulk gene expression of

all solid tumors from TCGA and integrated their predicted cell-type-specific gene

expression levels with LIRICS. The top 50 interactions from this differential analy-

sis (ordered by FDR adjusted p-value) are shown in a network in Figure 5.16 panel

A. These interactions are frequently active in mismatch repair deficient tumors of

distinct tumor types (Figure 5.17) and importantly, they are more frequently ac-

tive in hypermutated tumors with DNA mismatch repair deficiency compared to

other hypermutated tumors (Figure 5.16, panel B, Figure 5.15, panel A), testifying
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Figure 5.15: (A) This panel plots the distribution of non-synonymous tumor mutation
burden on a logarithmic scale (Y-axis). All points above the horizontal line are typically
regarded as hyper-mutated tumors (> 10 mutations/Mb). All red points represent tumors
with a DNA mismatch repair deficiency detected via microsatellite instability (MSI). (B)
This panel depicts the percentage of all tumor samples per cancer type with microsatellite
instability (Y-axis). Tumor types marked with a ? represent those where MSI is prevalent.
(C-D) Comparison of overall survival of patients with tumors that are hypermutated vs
not hypermutated. Left panel (C) In Gastro-Intestinal+Endometrial tumor types where
MSI is prevalent (marked with a ? in panel B). Right panel (D) In other solid tumor types
where tumors rarely have an underlying mismatch repair deficiency. Statistical significance
of differences in survival was calculated using the log-rank test.
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to their MSI specificity. The top 50 MSI-specific interactions include the PDL1-

PD1 checkpoint interaction between tumor cells and CD8+ T-cells, but notably,

T-cell activating/co-stimulatory interactions such as the 41BBL-41BB interaction

between Tumor cells and CD8+ T cells, ULBP2-NKG2D between tumor cells and

CD4+T cells, and chemotaxis interactions involved in trafficking of lymphocytes in

and around the tumor mass, such as the CXCL9-CXCR3 chemokine interaction be-

tween macrophages and CD4+ T cells and CCL3/4/5 – CCR5 interactions between

various immune and stromal cell-types.

This shared heightened cellular crosstalk unique to the TME of mismatch

repair deficient tumors suggests that tumor infiltrating T cells can be activated by

co-stimulatory signals in the TME independent of overall tumor mutation burden,

only to be kept in balance by other immunoregulatory mechanisms such as the

PD1-PDL1 checkpoint interaction between CD8+ T cells and tumor cells. Our

results indicate that when this interaction is blocked by anti-PD1 treatment, the

presence of other co-stimulatory interactions can lead to the observed enhanced

response of MMRD tumors to immune checkpoint blockade therapy. This in turn

raises the possibility that switching on specific T cell co-stimulation signals in the

TME may lead to better responses to anti-PD1 treatment independent of tumor

mutation burden. Notably, recent pre-clinical studies have shown that combination

therapies aimed at enhancing such T-cell co-stimulating interactions improve anti-

tumor immune responses even in low TMB and highly immuno-suppressive settings

[42, 135, 18, 147, 43, 177]. Currently, several clinical trials to assess the safety and

efficacy of these combinations are in progress [215, 229, 51, 46].
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Figure 5.16: (A) Interaction network consisting of the top 50 interactions. Interactions
highlighted in green represent co-stimulatory interactions/having an activating effect on
the target cell. Interactions highlighted in red represent checkpoint interactions/having
an inhibitory effect on the target cell. Interactions highlighted in black represent pro-
inflammatory/chemotaxis interactions involved in inflammatory response and immune cell
trafficking to tumor sites. Eos: Eosinophils, CAF: Cancer associated fibroblasts. (B) A
volcano plot depicting on the x-axis the log2 fold change in the frequency of occurrence
of each cell-cell interaction in the TME of hypermutated tumors with an underlying DNA
mismatch repair deficiency vs other hypermutated tumors. The y-axis indicates the -log10
FDR adjusted p-value of the observed enrichment. Highlighted in red in the scatter plot
are the top 50 interactions that are most differentially active between all MSI vs non-MSI
tumors (shown in panel A)
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Figure 5.17: (A-F) Tumors are grouped into four different groups by tissue of origin:
STAD (stomach), COAD (colon), UCEC (endometrium) and other (all other solid tumor
types) in order to have sufficient numbers of mismatch repair deficient vs mismatch repair
proficient samples per group. The axes measure the enrichment scores of all plausible
ligand-receptor interactions between cell types in their respective group. A fold change
> 1 implies the interaction occurs more frequently in mismatch repair deficient tumors.
Interactions highlighted in red represent the shared core set of interactions from Figure
5.16 A that are universally enriched in mismatch repair deficient solid tumors.

5.3.4 Machine learning guided discovery of cellular crosstalk predic-

tive of response to immune checkpoint blockade therapy

Given the shortage of large publicly available transcriptomics datasets of pa-

tients receiving immune checkpoint blockade therapy, we asked if we can effectively

utilize this large resource of deconvolved TCGA data we generated to transfer-learn

cell-cell interactions robustly predictive of response to immune checkpoint block-

ade therapy. Specifically, since some mutations during tumor evolution can be im-

munogenic, we hypothesized that one could potentially discover cell-type-specific

ligand-receptor interactions predictive of response to ICB therapy by a joint anal-

ysis of mutation and deconvolved expression data from the TCGA. We focus on

158



melanoma, currently the tumor type best responding to ICB, where there are many

independent publicly available bulk expression datasets of patient’s receiving anti-

PD1 treatment and single-cell derived cell-type-specific signatures, which serve as

priors for the deconvolution of these bulk datasets. Starting from the deconvolved

TCGA-SKCM dataset as our training set (N=469), we employed a genetic algo-

rithm to find cell-type specific ligand-receptor interactions, whose activation state

best separates hypermutated melanoma tumors from non-hypermutated tumors (Fig

5.15, panel A), assuming that the former group captures more samples with some

immunogenic mutations than the latter (Figure 5.18, panel A). We term the inter-

actions identified in this process melanoma mutation specific functional interactions

(MSFI), and the network formed by these interactions is displayed in Figure 5.18

panel B.

Having identified the MSFI interactions, we applied CODEFACS to deconvolve

the bulk expression data of pre-treatment samples from the three largest publicly

available melanoma datasets where patients received anti-PD1 treatment (either

monotherapy or in combination with anti-CTLA4; Methods) 42–44. We then em-

ployed LIRICS to the respective deconvolved expression of each of these checkpoint

datasets, without any additional training, and simply quantified the number of

MSFI interactions that are active in each of these patients’ tumor samples, which

we denote as the tumor’s MSFI score. Remarkably, we find that the MSFI score of

each sample can robustly stratify patients into those that are likely to respond to

ICB vs those that are unlikely to respond (Figure 5.18, panel C, progression free

survival log rank test p-value: 0.00057, Figure 5.18, panel D, overall survival log
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rank test p-value: 0.0031). Figure 5.19 depicts the survival differences for the two

treatment groups separately (anti-PD1 monotherapy and anti-CTLA4 + anti-PD1

combination). Additionally, Figures 5.20 and 5.21 depict the survival differences

for each ICB dataset separately. As evident, our results improve over recent bulk

gene expression based predictors of melanoma ICB therapy response (IMPRES [14],

TIDE [105] and the melanocytic plasticity signature (MPS) scores [176]). We note

that the performance levels of the latter on bulk expression datasets, where their

original RNAseq reads have been uniformly aligned and normalized as described in

the Methods, is lower than that reported in the original publications, pointing to

the potential sensitivity of expression-based predictors to the processing used and

the need to do that in a uniform, generally accepted manner (see Discussion).

To further evaluate the predictive performance of the MSFI score, we tested

its ability to predict partial or complete responders vs stable or progressive disease

patients in these datasets. To this end we plotted the receiver operator area under

the curve (AUC) obtained using it for classifying the patients to partial or complete

responders vs stable or progressive disease, and compared its performance to that

obtained with the three other published predictors for the different treatment groups

(Figure 5.18, panel E). On average, the MSFI score achieves an AUC of 0.63 (for

anti-PD1 monotherapy the AUCs obtained are 0.6, 0.77 and 0.52 for the three

individual ICB datasets, and for the combination ICB treatment its 0.77, 0.49 and

0.63). A similar performance could not be achieved if the placement of the ligand and

receptor between interacting cell-types in the MSFI network was swapped (average

AUC 0.58) or by randomly shuffling the interaction activity profiles (average AUC ≈
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0.5), testifying that the selected cell-cell interactions are best predictive of response

to ICB. Comparing MSFI predictive performance in this response classification task

to that of the recent melanoma bulk expression-based predictors, TIDE achieves an

average AUC of 0.6 (for anti-PD1 monotherapy the AUCS are 0.46, 0.66 and 0.45

for the three ICB datasets and 0.89, 0.55 and 0.61 for the combination), IMPRES

achieves an average AUC of 0.55 (for anti-PD1 monotherapy the AUCS are 0.59,

0.64 and 0.6 respectively for the three ICB datasets and 0.61, 0.44 and 0.42 for the

combination) and MPS achieves an average AUC of 0.51 (for anti-PD1 monotherapy

the AUCS are 0.61, 0.49 and 0.63 respectively for the three ICB datasets and 0.41,

0.59 and 0.38 for the combination).

Examining the MSFI network leads to interesting insights (Figure 5.18, panel

B). First, we find an over-representation of cell-type-specific co-stimulatory/immune

cell activating interactions known from prior immunological literature (hypergeomet-

ric test p-value < 0.05) [23, 219, 159, 41, 35, 174, 242, 80, 220, 40, 235]. Second,

the MSFI network additionally includes cytokine/chemokine interactions involved

in pro-inflammatory response and the trafficking of NK, T and B cells to the tumor

site (responsible for better lymphocyte infiltration into the tumor mass). Impor-

tantly, on fitting a multivariate Cox-proportional hazards model with MSFI scores

and TMB of each patient receiving anti-PD1 (wherever TMB data was available),

we see that a high MSFI score is significantly associated with improved progres-

sion free survival (p-value: 0.013) and overall survival (p-value: 0.0258), whereas

high TMB is not (PFS p-value: 0.224, OS p-value: 0.477). These results further

support the findings from the TCGA analysis that heightened co-stimulatory and
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pro-inflammatory signals in the TME can mobilize tumor infiltrating lymphocytes

to generate an effective host immune response upon immune checkpoint blockade

independent of TMB.
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Figure 5.18: (A) Overview of the machine learning analysis employed to identify cell
type specific interactions that are predictive of response to immune checkpoint blockade
therapy. (B) A chord diagram of the resulting MSFI network. Each individual interaction
is represented by a link from the source cell type (ligand expressing cell type) to the
target cell type (receptor expressing cell type) and the color of the link represents the
color of the source cell type. For interactions that are activating/co-stimulatory, the sector
in the corresponding target cell type is highlighted in green. For inhibitory/checkpoint
interactions, the sector in the target cell type is in highlighted red. Interactions involved in
chemotaxis are highlighted in black and those I mediating a pro-inflammatory response are
highlighted in blue, cell-adhesion interactions are highlighted in grey. (C) Kaplan-Meier
plot depicting the progression free survival of the combined set of melanoma patients
receiving immune checkpoint blockade (N= 244). On the top, the patients are stratified
into low-risk/high-risk groups based on the median value of MSFI score from LIRICS.
Second from top, patients stratified into low/high risk groups based on median IMPRES
score[14]. Third from top, patients stratified into low/high risk groups based on median
TIDE score[105], Bottom, patients stratified into low/high risk groups based on median
MPS score [176]. (D) Kaplan-Meier plots depicting the overall survival of all melanoma
patients receiving immune checkpoint blockade (N= 244). On the top, the patients are
stratified into low-risk/high-risk groups based on the median value of MSFI score from
LIRICS. Second from top, patients stratified into low/high risk groups based on median
IMPRES score[14]. Third from top, patients stratified into low/high risk groups based
on median TIDE score[105], Bottom, patients stratified into low/high risk groups based
on median MPS score [176]. Survival differences among patients that received anti-PD1
monotherapy vs anti-CTLA4 + anti-PD1 combination are shown in supplementary figure
10 (E) Area under the ROC curves in predicting Complete/Partial-response (based on
RECIST v1.1) to immune checkpoint blockade therapy for the different scores. X-axis
marks patients grouped by dataset source and treatment regimen. PD1 mono represents
patients that received anti-PD1 monotherapy. PD1 + CTLA4 represents patients that
additionally received anti-CTLA4 besides anti-PD1.
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Figure 5.19: All patients receiving anti-PD1 treatment are classified into low-risk group
if their LIRICS based cellular crosstalk score (MSFI score) exceeds the population median.
The Likewise, when using the IMPRES score [14]. For TIDE [105] and MPS scores
[176], all patients receiving anti-PD1 treatment are classified into low-risk group if their
values fall below the population median (as these scores were shown to be associated with
immune resistance1,2) (A,B) depict the survival differences for patients receiving anti-PD1
monotherapy only. (C,D) depict the survival differences for patients receiving anti-CTLA4
+ anti-PD1 combination. Significance in the difference of survival trends of the two groups
is calculated using the log-rank test. Time on the x-axis is measured in days.
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Figure 5.20: (A, E, I, M) Patients are classified into low-risk group if their LIRICS
based cellular crosstalk score exceeds the population median. (B, F, J, N) Patients are
classified into low-risk group if their IMPRES score [14] exceeds the population median.
(C, G, K, O) Patients are classified into low-risk group if their TIDE score [105] is less
than the population median. (D, H, L, P) Patients are classified into low-risk group if
their MPS score [176] is less than the population median. Significance in the difference of
survival trends of the two groups is calculated using the log-rank test. Time on the x-axis
is measured in days.
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Figure 5.21: (A, E, I, M) Patients are classified into low-risk group if their LIRICS based
cellular crosstalk score exceeds the population median. (B, F, J, N) Patients are classified
into low-risk group if their IMPRES score [14] exceeds the population median. (C, G,
K, O) Patients are classified into low-risk group if their TIDE score [105] is less than the
population median. (D, H, L, P) Patients are classified into low-risk group if their MPS
score [176] is less than the population median. Significance in the difference of survival
trends of the two groups is calculated using the log-rank test. Time on x-axis is measured
in days.
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5.4 Discussion

This study presents a computational tool, CODEFACS and a pipeline, LIR-

ICS, that enables an (averaged) ‘virtual single cell’ characterization of the TME

from bulk tumor expression data. Applying these tools, we identify cell type spe-

cific ligand-receptors interactions that are active and functionally important within

individual tumor microenvironments, in modifying patients’ survival and response

to ICB. Applying CODEFACS to 8000 tumors from TCGA, we estimate the cell-

type-specific gene expression profiles of each individual tumor sample thus enabling

the analysis of the TCGA at a cell-type-specific resolution. Integrating these data

with LIRICS, we systematically characterized the immune cellular crosstalk of the

tumor microenvironments of different tumor types. We identified a shared core of

intercellular TME interactions in DNA mismatch repair deficient tumors, which are

associated with improved patient survival and high sensitivity to immune check-

point blockade therapy. One potentially interesting implication of these findings is

that immunomodulators enhancing T-cell co-stimulation (e.g, via the 41BB recep-

tor) might improve patients’ response to ICB irrespective of their tumor mutation

burden. Finally, focusing on melanoma, we show that one can bootstrap on the

large deconvolved data resource from TCGA using machine learning techniques to

discover cell-cell interactions within the TME that successfully predict patients’

response to immune checkpoint blockade.

Now, while we have provided a toolkit to discover clinically relevant cell-cell

interactions from bulk tumor expression, there are some important limitations that
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should be noted and potentially further improved upon in the future. First, it

requires prior information about the cell type composition of the input tumors, or

alternatively, knowledge of the pertaining cell-types’ gene expression or methylation

signatures that can be used to infer their abundances, and its accuracy depends on

the accuracy of the latter. Second, its prediction power is limited to subsets of the

whole exome genes, and its performance deteriorates for lowly-abundant cell types.

However, the confidence scores provided partially alleviate this limitation, allowing

the user to rank genes in each cell-type by the quality of predictions of the expression

of each gene in a given cell-type. Third, regarding LIRICS, it is currently restricted

to well defined immune related ligand-receptor interactions between tumor, immune,

stromal and epithelial cell types and does not consider the spatial localization of

cells in the TME. The inclusion of the latter with the advent of forthcoming spatial

transcriptomics data is likely to lead to considerably more informative interaction

inference approaches.

(The source code related to this work is currently under review for a patent.

All codes and data will be made publicly available upon publication.)
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Chapter 6

Conclusions

Tumor heterogeneity is a significant hurdle to developing cures for cancer.

Hence, to keep up with this constantly evolving enemy, it is important to develop

computational methods that parse these high dimensional genomic datasets and

unearth underlying patterns that can help us make sense of this heterogeneity. In

this work, we present some concrete examples.

6.0.1 Contributions to our understanding of epigenetic heterogeneity

in cancer

In chapter 2, we developed a computational framework to explore how epi-

genetic heterogeneity in cancer cells may lead to functional rewiring of genes via

dynamic changes in the protein-protein interaction network. With the help of breast

cancer and adjacent normal breast tissue gene expression data from TCGA, we show

how functional re-wiring events that are frequently selected in cancer modulate pa-

tient survival in general and lead to an improved clustering of clinically relevant

breast cancer subtypes. Such functional heterogeneity explains why many genetic

interactions are context specific, making their translation to clinically effective tar-

geted therapies a challenge. Currently, the exception to these trends are synthetic

lethal interactions between single strand and double strand break DNA repair path-
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ways, which are highly conserved in all eukaryotic cells [11]. However, there has

been renewed interest in the identification of additional robust genetic interactions

in tumor cells with the emergence of high throughput CRISPR screening technolo-

gies [59, 78, 10, 183, 165, 210]. Another aspect fundamental to characterization

of epigenetic heterogeneity is our ability to model how cells respond to different

genetic or environmental perturbations. A pre-requisite to building such models

is having good functional annotations of biological networks. However, such an-

notations are currently sparse [213]. To make some progress in this direction, we

developed and validated new mixed integer linear programming formulations that

utilize high-throughput genetic screening data and the network topology to anno-

tate biological networks of cells with directions of signal flow and signs representing

different functional activation or inhibitory effects. Overall, we demonstrated that

our method markedly outperforms the state of the art for this task.

6.0.2 Contributions to our understanding of genetic heterogeneity in

cancer

In chapter 3 we shifted gears to understand how intra-tumor genetic hetero-

geneity impacts anti-tumor host immune responses in melanoma. From the com-

putational side, we developed an unbiased approach to estimate the number of

genetically distinct cancer cell clones in any given tumor sample by utilising both

point mutation and copy number alteration information on each sample. Our results

from patient and mice data suggest that increased intra-tumor genetic heterogene-
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ity leads to reduced overall immunogenicity of the tumor sample despite similar or

higher levels of tumor mutation burden thereby impairing host anti-tumor immune

responses. These findings are clinically relevant as the FDA recently approved tumor

mutation burden as a biomarker for responses to anti-PD1 treatment in metastatic

solid tumors [224]. Our results indicate that an elevated mutation burden may

lead to poorer responses to immune checkpoint blockade therapies in melanoma

if accompanied by an increased intra-tumor genetic heterogeneity. Hence, moving

ahead, it is going to be important to account for the intra-tumor genetic heterogene-

ity of the sample when using the tumor mutation burden as a biomarker to decide

which patient should receive immune checkpoint blockade treatments. In addition,

in chapter 4, we came up with statistical machine learning techniques to uncover

novel factors explaining the observed heterogeneity of recurrent chromosome arm

gains and losses in cancer. Overall, our analysis of the GTEx and TCGA databases

revealed that the normal transcriptional state of different chromosome arms in a

tissue can influence which arm is recurrently gained or lost in emerging cancer types

from that tissue.

6.0.3 Contributions to our understanding of micro-environmental het-

erogeneity in cancer

In chapter 5, we developed a new computational tool CODEFACS that markedly

improves over the state of the art method, CIBERSORTx, in reconstruction of cell

type specific transcriptomes from bulk gene expression profiles of each tumor sam-
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ple. With this tool we are not only able to infer the abundance of different cell

types in each sample, but also the transcriptional states they exist in. This informa-

tion is key for deciphering which cell types are likely to interact with each other in

each patient’s tumor micro-environment and which of these interactions are likely to

modulate responses to immunotherapy. Using our tool we deconvolved the TCGA

collection to provide a cell type specific molecular atlas of ≈ 8000 tumor samples.

This resource can serve as a valuable test bed for the immuno-oncological research

community to test specific hypotheses about specific cell types and the effect of their

interactions with other cell types on clinical outcomes of patients.

Overall, our analysis of the TCGA and immune checkpoint blockade treated

datasets using CODEFACS + LIRICS reveals that while tumor neo-antigens are

a necessary ”ignition switch” to activate T cells, additional co-stimulatory signals

in the TME (for eg: 41BB-41BBL, ULBP2-NKG2D) might be required to sus-

tain effective anti-tumor immune responses upon releasing the brakes using immune

checkpoint blockade treatments. In the future, finding the right balance is going to

be key to maximizing clinical benefit of patients while minimising immune related

adverse events.

Although this work focuses on studying the tumor microenvironment, these

methods can be applied to discover important cell-cell interactions in noncancerous

tissues under a variety of normal and disease states. One interesting application

that we envision is the characterization of clinically relevant intercellular interactions

occurring at the maternal-fetal interface using corresponding bulk gene expression

data and pregnancy outcome information, whose elucidation may help treat and
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mitigate preeclampsia and other pregnancy related complications. One can also use

our tools to study bulk gene expression data from pre-malignant tissue samples and

compare them against malignant samples to elucidate cell-cell interaction dynamics

on the way malignancy. Finally, one can use our tools to deconvolve expression data

from autoimmune disorders to learn more about the underlying immune interactions.

6.0.4 The challenges and road ahead

The rate at which genomic datasets are being generated is gradually increasing.

Furthermore, with the emergence of self-supervised deep learning [106], in principle

we should be able to directly extract features associated with specific patterns of

genomic alterations in patients and overlay them on top of clinical data to identify

new biomarkers. However, there are two fundamental challenges unique to this

domain that need to be addressed. First, is the lack of standardized data pre-

processing methodologies and second, is the curse of high dimensionality, which can

lead to model overfitting. For instance, several recent publications have reported

discrepancies between different RNA-seq expression quantification methods based

on the sample preservation protocol, reference transcriptome version used and choice

of method (alignment based vs alignment free) [250, 203, 64, 227, 194]. This can

dramatically affect reproducibility of the learned predictive models. While in fields

like computer vision and natural language processing, such issues are addressed by

feeding the models with more data from other related domains or data augmentation,

such a strategy is still not scalable to genomics datasets given their incredible high
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dimensionality. To address this challenge, injecting prior mechanistic or expert

knowledge into the feature representations would be key [12].

With the emergence of methods that integrate genomic knowledge with non-

invasive imaging or liquid biopsy technologies [47, 141, 94], accessing specific features

of each patient’s tumor and the surrounding micro-environment will only get easier.

This will enable real-time monitoring of patient responses from diverse perspec-

tives and hence provide a much more pragmatic and scalable framework for guiding

precision medicine-based treatment combinations.

Although development of methods discussed above will make management of

tumor heterogeneity easier in clinics, it will still not solve the problem. Additional

effort should also be invested in basic science; understanding the mechanisms fueling

tumor heterogeneity. For example, it is important to study the mechanisms of gen-

eration and re-integration of extrachromosomal DNA elements into cancer genomes,

which is a major driver of intra-tumor genetic heterogeneity and treatment resis-

tance [114]. This could reveal novel ways to uniquely target cancer cells so that they

don’t diversify and bounce back in response to standard of care treatments.
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[58] Álvaro de Mingo Pulido, Alycia Gardner, Shandi Hiebler, Hatem Soliman,
Hope S. Rugo, Matthew F. Krummel, Lisa M. Coussens, and Brian Ruf-
fell. TIM-3 Regulates CD103+ Dendritic Cell Function and Response to
Chemotherapy in Breast Cancer. Cancer Cell, 33(1):60–74.e6, 2018.

[59] Peter C. DeWeirdt, Kendall R. Sanson, Annabel K. Sangree, Mudra Hegde,
Ruth E. Hanna, Marissa N. Feeley, Audrey L. Griffith, Teng Teng, Saman-
tha M. Borys, Christine Strand, J. Keith Joung, Benjamin P. Kleinstiver,
Xuewen Pan, Alan Huang, and John G. Doench. Optimization of AsCas12a for
combinatorial genetic screens in human cells. Nature Biotechnology, 39(1):94–
104, 2021.

[60] M. Dmitrijeva, S. Ossowski, L. Serrano, and M.H. Schaefer. Tissue-specific
dna methylation loss during ageing and carcinogenesis is linked to chromo-
some structure, replication timing and cell division rates. Nucleic Acids Res,
46:7022–7039.

[61] M. Dong, A. Thennavan, and E. Urrutia. Scdc: bulk gene expression decon-
volution by multiple single-cell rna sequencing references. Brief Bioinform,
22(1):416–427.

[62] M. Durrbaum and Z. Storchova. Effects of aneuploidy on gene expression:
implications for cancer. FEBS J, 283:791–802.

[63] W. Erskine, I. Kusmenoglu, F. J. Muehlbauer, and R. J. Summerfield. Breed-
ing for increased biomass and persistent crop residues in cool-season food
legumes. Genetics, 148(4):191–197, 2000.

[64] Celine Everaert, Manuel Luypaert, Jesper L.V. Maag, Quek Xiu Cheng, Mar-
cel E. DInger, Jan Hellemans, and Pieter Mestdagh. Benchmarking of RNA-
sequencing analysis workflows using whole-transcriptome RT-qPCR expres-
sion data. Scientific Reports, 7(1), 2017.

[65] Natalie S. Fox, Syed Haider, Adrian L. Harris, and Paul C. Boutros. Land-
scape of transcriptomic interactions between breast cancer and its microenvi-
ronment. Nature Communications, 10(1), 2019.

[66] et. al Frederick Acre Vargas. Fc-Optimized Anti-CD25 Depletes Tumor-
Infiltrating Regulatory T Cells and Synergizes with PD-1 Blockade to Eradi-
cate Established Tumors. Immunity, 46(4):577–586, 2017.

[67] William K. Funkhouser, Ira M. Lubin, Federico A. Monzon, Barbara A. Zehn-
bauer, James P. Evans, Shuji Ogino, and Jan A. Nowak. Relevance, Patho-
genesis, and testing algorithm for mismatch repair-defective colorectal carcino-

182



mas: A report of the association for molecular pathology. Journal of Molecular
Diagnostics, 14(2):91–103, 2012.
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