
CS-TR-3784 January 1997
ISR-TR-97-55

User Interfaces for a Complex Robotic Task: A
Compar ison of Tiled vs. Overlapped Windows

J. Corde Lane1, Steven P. Kuester1, and Ben Shneiderman2

Space Systems Laboratory1

Human-Cumputer Interaction Laboratory2

Department of Computer Science, Institute for Systems Research2

University of Maryland, College Park, MD 20742-3255
email: corde@ssl.umd.edu, ben@cs.umd.edu

Abstract
High complexity tasks, such as remote teleoperation of robotic vehicles, often require multiple
windows. For these complex tasks, the windows necessary for task completion, may occupy
more area than available on a single visual display unit (VDU). Since the focus of the robotic
task constantly changes, modular control panels that can be opened, closed, and moved on the
screen are invaluable to the operator. This study describes a specific robotic task and the need for
a multi -window interface that can be easily manipulated. This paper examines two multi -
window management strategies: tiled (fixed size) and arbitrary overlap. Multi -window searches
were performed using the two management styles and they were compared on the basis of search
completion time and error rates. Results with 35 novice users showed faster completion times
for the tiled management strategy than for the arbitrary overlap strategy. Other factors such as
the number of windows available, the number of displayed windows, workload of opening or
closing windows, and effect of learning are discussed.

Keywords: tiled, overlapped, user interface design, window management

Date: January 1997

1

User Interfaces for a Complex Robotic Task: A
Compar ison of Tiled vs. Overlapped Windows

J. Corde Lane
corde@ssl.umd.edu

Space Systems Laboratory, University of Maryland, College Park, MD 20742

Steven P. Kuester
Space Systems Laboratory, University of Maryland, College Park, MD 20742

Ben Shneiderman
ben@cs.umd.edu

Human-Computer Interaction Laboratory, Dept. of Computer Science, University of Maryland,
College Park, MD 20742

1.0 Introduction

Figure 1: Simulation of the Ranger vehicle repair ing a satelli te

The Space Systems Laboratory conducts research in
areas of human factors and space robotics. A current
project is Ranger; a four-armed, free-flying robot
developed to perform maintenance tasks on satellit es.
Creating an effective human-computer interface will
require the capabilit y for an operator to quickly
reorganize the numerous control panels as the focus
of the task changes.

1.1 RANGER PROJECT BACKGROUND
The Ranger vehicle has a propulsion module which
allows it move freely and to rendezvous with a target
satellit e. This propulsion module houses all
spacecraft bus subsystems (power, guidance
navigation and control, communications, thermal
control). The forward section holds the computer
and electronics used to control the four robotic arms.

Ranger has one grapple arm which attaches to the
satellit e and moves Ranger into position. Two
dexterous arms perform the maintenance tasks. The

Video Arm

Dexterous

Arm

Grapple

Arm

Propulsion

Module

Figure 2: Ranger schematic ill ustrating the vehicle arms and
propulsion module

video arm is controlled to provide an optimum view
to the operator.

1.2 DESIGNING THE HUMAN-COMPUTER
INTERFACE
The human-computer interface to control this vehicle
requires multiple control panels that will need to be
changed as the focus of the task changes.
Controlli ng this robotic vehicle not only requires a
computer interface to monitor changes in the
propulsion module, similar to a traditional satellit e,
interactive and highly informative control panels are
needed to be able to control each of the four arms.
This vehicle will be operated remotely from a ground
station at University of Maryland.

A popular paradigm for satellit e control stations is to
generate full size control panels representing key

2

systems of the satellit e. The operator can flip though
the many screens quickly, and view the data
telemetry from the satellit e. This full screen control

panels work well when the tasks for the operator are
well defined. Viewing battery power levels,
adjusting the

Figure 3: Robotic Control Station Interface in overlap and tiled mode

satellit e orientation, and monitoring temperature
gradients can be performed effectively with the
appropriate control panel. Control of the systems of
the propulsion module might be able to follow this
paradigm, as only infrequent commands to the
vehicle and constant monitoring is necessary.
However, control of any robotic arm, without using
preplaned trajectories, is a highly interactive
relationship between the operator and computer
interface. Many control panels are needed to control
and monitor only one arm. Graphical displays of the
arm’s orientation, low level diagnostics for determine
errors in control software, rudimentary control for
testing individual parts within the arm, graphing data
showing the history of power usage, and many more
panels are opened to assist the operator in performing
a robotic task.

A single operator has the capabilit y of not only
controlli ng and monitoring all spacecraft bus
subsystems, but also controlli ng one to four of the
robotic arms. Since the Ranger vehicle is designed to
perform multiple generic maintenance tasks, a well
developed procedure can not be developed. The
vehicle and operator must constantly be able to adjust
to the changing conditions while performing the task.
This capabilit y requires the computer human
interface to change as the focus of the operator shifts.
Instead of using full screen control panels, the
Ranger control station will use small modular panels,
shown in figure 3. Analogous to airplane cockpit
gauges and sensor packages, these control panels are

specialized and used together to build a customized
cockpit for the operator. The abilit y to add, delete,
and move around the appropriate panels is essential
for successful completion of the robotic task. This
study examines methods of window management
which will make the operator effective in
manipulating the many control panels required to
control a complex robotic vehicle.

1.3 PREVIOUS RESEARCH
Several window management strategies exist that can
be used for complex system interfaces. In the early
eighties, Xerox developed one of the first tiled
window management strategies for its STAR system.
Shortly thereafter, Apple developed a much more
flexible arbitrary overlap window management
strategy in its Finder 1.0 using guidlines still
followed today (Apple Computer, 1992). Since then,
both strategies have continued to evolve. Since their
conception, researchers have tried to determine
which task domain is best suited for each of these
two window management strategies. For example,
Lifshitz and Shneiderman (Lifshitz and Shneiderman,
1991) found that for a search and retrieval task,
subjects preferred a tiled interface that gave them
control of tile placement as opposed to computer
determined placement.

Some of the task domain that has been evaluated has
included complex tasks (multiple windows and
subtasks). The ROOMS system allowed users to
organize many virtual workspaces (Henderson et al.,
1993). Each workspace was a room where many
windows were dedicated to completing a specific

3

task. The user could quickly switch rooms to work
on another task. The CUBRICON Intelli gent
Window Manager used a computer algorithm
weighing factors to determine a window’s
importance and automatically change the screen
layout (Funke et al., 1993). Kandogan and
Shneiderman (1997) developed a tiled strategy which
allowed the user to directly and incrementally
reshape a target window while the computer would
compensate resizing the remaining windows For
complex tasks such as controlli ng a telerobot or
nuclear reactor, it is important to determine which
window management strategy is appropriate.

1.4 PROBLEM STATEMENT
This study examines two multi -window management
strategies for complex systems: tiled and arbitrary
overlap. The two management styles will be
compared using criteria of faster performance and
fewer errors.

2.0 Theory

This section describes the theory behind both the
tiled and arbitrary overlap interfaces. We begin with
a description of a user’s cognitive model and how it
relates to complex tasks, then present the particulars
of each interface.

2.1 MEMORY MODELS
Although many memory models have been proposed
(Sanders and McCormick, 1993), the concept of
memory being separated into sensory storage, short
term memory, and long term memory is one of the
most common. In this model, the human perceives
sensory input and retains it briefly in sensory storage.
The human then determines whether the information
is useful by means of the short term memory; also
referred to as working memory. If the information is
useful or encountered repetitively, it is stored in long
term memory for later recall . In this model, it is the
working memory that performs all the cognitive tasks
that the human requires. Working memory is where
humans formulate models of their environment based
on sensory perception from sensory storage and past
experiences from long term memory.

2.2 MEMORY MODELS AS APPLIED TO
COMPLEX TASKS
How the human organizes their environment in
working memory is critical to task performance. The
Syntactic-Semantic model (Shneiderman, 1992)
assumes users form a semantic model of the based on
their perception of the elements presented on the
display. The users’ syntactic knowledge is used to
interpret the set of symbols that make up this text into
meaningful thoughts and ideas, while the semantic

model is composed of the ideas that the reader
generates. Different window management strategies,
such as tiled or arbitrary overlap, can be considered
different syntax for the user to apply their semantic
model. In human factors, much effort is put into
determining appropriate syntax for interfaces based
on user’s existing memory models. Unfortunately,
the systems are often highly simpli fied and only
require a single model of the system to be retained in
working memory. More complex systems may
require semantic models that are too large to fit in
working memory. In this case, the user must
continuously swap smaller subsets of a semantic
model from long term memory to short term memory
as the task set changes. The concept of a complex
task can be defined to be a task set that maximizes a
human’s cognitive workload due to frequent change
of semantic memory models in working memory. By
choosing an appropriate window management
strategy (syntax), user’s already overloaded cognitive
workload can be reduced.

2.3 OVERVIEW OF THE INTERFACES
Two multiple window management strategies were
considered for this study: tiled and arbitrary overlap.
The tiled interface includes a group of non-resizable
windows that can occupy twelve discrete locations on
the perimeter of the display. The arbitrary overlap
interface allows users to organize windows in any
location on the screen. Figure 4 shows a graphical
representation of each interface.

The two management styles diverge in how windows
are organized. The arbitrary overlap window
strategy allows the user to open, close, and move
windows throughout the entire screen (Shneiderman,
1992). Also, windows are free to overlap each other.
This style is similar to the Macintosh Finder and
Microsoft Windows 95. This gives the effect of
“ two-and-a-half dimensions” since windows can
appear behind or in front of other windows. This
management style is popular because it allows direct
manipulation which gives users greater control over
the system. However, many users fall i nto the
cluttered desktop syndrome: many windows on the
screen overlap each other, making it diff icult to
locate the appropriate window. Also, some windows
are buried deep beneath others and cannot be found
until certain windows are moved or closed. Unlike
the arbitrary overlap interface, the tiled interface
allows opening, closing, and movement of windows
without overlap. If windows are hidden completely
by other windows, they are closed to prevent "piles-
of-tiles". This prevents the necessity for user's to
remember where hidden tiled windows might be
located.

4

3.0 Implementing the Interfaces

This study examined the performance speed and
errors of 35 subjects using one of the two
management styles. The test was run using Sili con
Graphics Indigo2 (SGI) workstations. The two
interfaces were created using the SGI’ s graphics
library, Forms, developed by Mark Overmars.
Syntax for manipulating the main window and both
tiled and arbitrary overlap interfaces are described
below.

5

(a) (b)

Figure 4: Two multiple window management strategies: (a) arbitrary overlap and (b) tiled

3.1 MAIN AND SUBTASK WINDOWS
The interface consisted of one main window and
many subtask windows. The main window was
intended to have the primary focus of the subject. It
dictated to the subjects what tasks were needed to be
performed, showed current progress, scored users
past performance, and was used in the creation of
subtask windows. Subtask windows were smaller
and contained four buttons in each of the four
corners. An alphanumeric symbol in the center
identified the window. By clicking on the four
buttons of the appropriate subtask window, as
indicated by the main window, subjects completed a
component of the task set called a trial.

3.2 THE ARBITRARY OVERLAP INTERFACE
In the arbitrary overlap interface, the SGI’ s IRIX
window management environment was used to
manipulate the subtask windows. By clicking the
right mouse button on the title bar of a window, a
pop-down menu would show window management
options. The functions included: moving the
window, raising the window above all other
overlapping windows, and lowering the window
below all overlapped windows. There were no
options to allow window resizing. These window
management functions could also be performed in
other ways. A window could be raised by clicking
the left mouse button on the title bar or window
border. If the mouse button is held, the window
could be dragged to any location on the screen.
Finally, both interfaces could close windows by
choosing ‘Close’ fr om the pull down menu.

3.3 THE TILED INTERFACE
The tiled interface did not take advantage of the IRIX
window management environment. A different title

bar was used and it did not retain the window
management border. To move a subtask window, the
user would instead use the mouse to activate a pull
down menu from the title bar and choose the
‘Arrange..’ option. This would open the ‘Arrange’
dialog box with thumbnail representations showing
the locations that subtask windows could be moved
to. The user would choose the button corresponding
to the desired location, then hit the ‘OK’ button. The
subtask window would then be moved to that
location. If another subtask window already existed
there, the two subtask windows would swap
locations. A ‘Cancel’ button was also provided on
the ‘Arrange’ dialog box to abort the move. Since no
overlapping was allowed, raise or lower features
were not needed.

3.4 CONTROL FOR BIAS
Control for biases were made in the placement of
subtask windows. Because the tiled interface
required the ‘Arrange’ dialog box, the same dialog
box, without its functionality, was included in the
arbitrary overlap interface. This gave equal number
of mouse clicks in the placement of subtask windows
for both window management strategies.

4.0 The Hypothesis

Our hypothesis predicts that, after learning,
performance times will be faster and error rates will
be lower for the tiled interface. The tiled interface
simpli fies users cognitive workload by relieving them
of searching diff iculties that may be associated with
overlapping windows. We expect expert users to
show faster completion times with lower error rates

6

on the tiled interface for reasons similar to those
mentioned above.

7

5.0 The Test

A test was developed which required subjects to
perform several searches on a group of items that
either were not on the screen (tiled) or were hidden
by other overlapping windows (arbitrary overlap).
This test was selected to determine how the two
interface types affected memory retention capabiliti es
of the subjects. The test was the same for all
subjects, independent of the interface being
manipulated. The only difference was the syntax
required to complete the tasks on the two interfaces.
The subjects were instructed to perform a series of
subtasks as quickly, and with as few errors, as
possible. Each subtask consisted of eliminating an
alphanumeric from the main window by clicking all
four buttons in the corresponding subtask window.

5.1 MAIN WINDOW
At the beginning of the test, the main window would
appear on a blank screen (see figure 5).

Figure 5: The Main Window

Figure 6: Menu Activation

The main window was fixed in the center of the
screen when using the tiled interface. The subjects
using the arbitrary overlap interface could place the
main window wherever they desired. After the
‘Play’ button was pressed, the test would begin. Six

alphanumerics would fill t he white boxes in the main
window. These alphanumerics represented which
subtask windows had to be manipulated. Each
subtask window corresponded to a single
alphanumeric character. The windows were divided
into three categories: letters (A,B,C,D,T,W), numbers
(1,2,3,4,5,6), and symbols ($, #, %,&, ?, >). This
gave a total of 18 subtask windows which could be
manipulated. The tiled interface could only display
twelve subtask windows at a time while the arbitrary
overlap could only display about nine without
overlap. The alphanumerics were chosen to prevent
confusion. For example, the letter ‘O’ and the
number ‘0’ were not used to avoid conflict.

5.2 CREATING SUBTASK WINDOWS
At the beginning of the test, no subtask windows
were open. Therefore, subjects had to open the
specified subtask windows to be manipulated. To
open a subtask window, subjects would move the
mouse to the appropriate pull -down-menu (letters,
numbers, or symbols) and choose the appropriate
alphanumeric item. The ‘Arrange’ dialog box would
pop up and could be placed anywhere on the screen
(see figure 7).

Figure 7: The ‘Arr ange’ Dialog Box

For the arbitrary overlap interface, subjects pressed
the ‘OK’ button in the ‘Arrange’ dialog box. The
‘Arrange’ dialog box disappeared and the chosen
subtask window could be placed anywhere on the
screen (see figure 8).

For the tiled interface, the ‘Arrange’ dialog box’s
thumbnail representations allowed subjects to place
the subtask window at a discrete location on the
screen. Then, after pressing ‘OK’ button, the
‘Arrange’ dialog box disappeared and the subtask
window was opened in the specified location. In
figure 8, the subtask window would appear in the

8

upper left corner of the screen. If a subtask window
already existed in that location, it would have been
destroyed. No piles-of-tiles were allowed. In both
interfaces, a subtask window that already existed on
the screen could not be reopened.

Figure 8: The 'Subtask Window'

Figure 9: The ‘D’ Subtask Window Being Manipulated

5.3 MANIPULATING SUBTASK WINDOWS

The subtask window could then be manipulated to
complete one of the six subtasks. To successfully
manipulate a subtask window, each of the four
buttons in the corners of the window were pressed.
After each button was pressed, it would light up.
Figure 9 shows the 'D' subtask window with three of
the four buttons successfully manipulated. When all
four buttons were pressed, in any order, the lights in
the four buttons would turn off and the corresponding
alphanumeric would disappear in the main window.
After the last button is pressed in the 'D' subtask
window the screen would appear as in Figure 10.

Subjects then continued by creating another
appropriate subtask window and manipulating it.
The six subtasks could be completed in any order.
As each alphanumeric subtask window was correctly
manipulated another field in the main window would
disappear.

5.4 COMPLETING TRIALS AND TEST
When the sixth subtask was performed, that trial was
completed. The next trial would begin and another

Figure 10: The ‘D’ Subtask Completed

six alphanumerics were displayed in the main
window. The time indicator would show the amount
of time, in seconds, it took for the last trial to be
completed. Figure 11 shows the first trial near
completion, only one more button in the '& ' subtask
window needs to be manipulated. Once that button
was pressed, the display would look like figure 12.
Six new alphanumerics were displayed as the next
trial began. After the completion of a trial, any

9

subtask windows currently on the screen became
immediately available for manipulation. It was not
necessary for them to be closed and reopened for use
on subsequent trials. Other subtasks may have
required the creation of new subtask windows. As
the trials continued, the subject had to work within
the specific window manager. Many activities the
subjects performed included: creating the necessary
subtask windows, possibly eliminating subtask
windows not needed, moving subtask windows to
related groups, and scanning for the correct subtask
window. After ten trials were completed, the system
indicated the termination of the test. Many variables
calculated by the system, during the test, were then
sent to a data file. These variables included trial
completion times, error rates, number of subtask
windows opened during each trial, and the number of
subtask windows displayed at the beginning of each
trial.

Figure 11: The Last Subtask to be Completed for Arbitrary
Overlap Interface

Figure 12: Tr ial One Complete, Tr ial Two Initiated for
Arbitrary Overlap Interface

6.0 Subjects

The demographics survey showed that ninety-one
percent of the subjects used some kind of computer
windows environment often, while the other nine
percent had still occasionally used a windows
environment. To acquaint the subjects with the test
each subject viewed a four minute video which
briefly explained the experiment and the two
management interfaces. Next, the subjects fill ed out
a demographics survey. This was used to determine
biases in the experiment. Subjects then went to a
Sili con Graphics Indigo2 workstation and were
informed which interface they would use. The test
coordinator then went through a checklist of items
that subjects would perform using the interface. This
was a step-by-step tutorial explaining what needed to
be done to perform the tasks. Throughout the
tutorial, subjects were able to ask questions. After
completing the orientation , subjects fill ed out a
consent form. The test was then initiated. Upon
completion, subjects fill ed out a questionnaire rating
many of the system’s attributes.

7.0 Results

Thirty-five subjects completed the experiment.
Eighteen performed the test using the arbitrary
overlap interface. The other seventeen used the tiled
interface. In addition, two subjects were tested as
experts. As the subjects went through each trial of
six subtasks, several variables were monitored. At
the completion of the test, a data file was created
which contained the following information about
each of the ten trials: completion time, number of
errors, number of windows opened, and the number
of window on the screen at the beginning of the trial.

7.1 COMPLETION TIMES
Subjects were instructed to move through the test as
fast as possible. The test had a pseudo-random
sampling of the eighteen alphanumeric subtasks.
Equal amounts of letters, numbers, and symbols
appeared as subtasks. However, the seed for
generating the random subtasks remained the same
for all subjects. Therefore, all subjects experienced
the same sequence of subtasks (i.e. 4DW>&T, then
3CB2T1, then >4#6$C, etc.). This level of
consistency shows in the data. Figure 13 shows the

10

average completion times of all subjects for each
trial.

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

Arbitrary Overlap
TiledA

ve
ra

g
e

 C
o

m
p

le
tio

n
 T

im
e

 [
s]

Trial #

Figure 13: Average Completion Time of All 35 Subjects

*

*

*

*

 * statistically significant at the 0.05 level
Table 1: Completion Time in Seconds and Standard

Deviations in a Group for Each Subtask for 35 subjects

Both the arbitrary overlap and tiled interfaces follow
similar trends. General learning can be seen as the
completion times decrease until they stabili ze during
the final trials. Both interfaces spike on the fifth and
eighth trials. The diff iculty for those trials was
higher for all subjects. Table 1 shows the averages
and standard deviations for each interface. All data
has units of seconds.

7.2 EXPERT STUDY
Two expert subjects were evaluated on both
interfaces. These subjects had over one hour of
experience on both interfaces. For each interface, the
two subjects’ completion times were averaged for
each trial. Figure 14 shows the two averages.

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9 10

Arbitrary Overlap

Tiled

A
ve

ra
g

e
 C

o
m

p
le

tio
n

 T
im

e
s

[s
]

Trial #

Figure 14: Average Completion Times For 2 Experts For Each
Tr ial

7.3 NUMBER OF WINDOWS OPENED
Figure 15 shows the average number of subtask
windows that were opened for each trial. The
general shape of the curve is similar to the average
completion time. This shows a possible relationship
between the number of windows opened and the trial
completion time. After the initial trials, the subjects
using the tiled interface were forced to open more
subtask windows than subjects using the arbitrary
overlap interface.

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10

Arbitrary Overlap

Tiled

A
ve

ra
g

e
 N

u
m

b
e

r
o

f
W

in
d

o
w

s
O

p
e

n
e

d

Trial #

Figure 15: Average Number of Subtask Windows Opened for
Each Tr ial for Both Interfaces

Figure 16, shows the average trial completion time as
a function of the amount of windows opened for that
trial. Unfortunately, the results are not statistically
valid at the 0.05 level. This may be due to biases in
the experiment and the observable trends merit
further study.

11

0

20

40

60

80

100

0 1 2 3 4 5 6 7

Arbitrary Overlap
Tiled

A
ve

ra
g

e
 C

o
m

p
le

tio
n

 T
im

e
s

[s
]

Number of Windows Created

Figure 16: Average Tr ial Completion Time Dependent On The
Amount Of Windows Opened That Tr ial

7.4 NUMBER OF WINDOWS INITIALLY
DISPLAYED
Figure 17 shows the average number of windows
displayed on the screen at the beginning of each trial.
The curves for each interface appear to
assymptotically approach the maximum number of
diplayed windows: twelve for the tiled and eighteen
for the arbitrary overlap.

0

3

6

9

12

15

1 2 3 4 5 6 7 8 9 10

Arbitrary Overlap
TiledA

ve
ra

g
e

 N
u

m
b

e
r

o
f

W
in

d
o

w
s

In
iti

a
lly

 D
is

p
la

ye
d

Trial #

Figure 17: Average Number of Subtask Windows Initiall y
Displayed at Each Tr ial for Both Interfaces

8.0 Discussion

This study presents supporting evidence that a tiled
interface may provide faster navigation times than an
arbitrary overlap interface for certain circumstances.
A task that challenged subjects’ memory retention
capabiliti es was used. This simulated complex task
was designed to be similar to the workload associated
with controlli ng a mobile telerobotic vehicle.

8.1 COMPLETION TIME
In figure 13, for all ten trials the overall average
completion time was shorter for the tiled interface

than for the arbitrary overlap interface. A t-test was
used to confirm statistical significance at the 0.05
level (Devore, 1991). This quicker completion time
may be due to the tiled interface’s lack of overlap.
The subjects spent less time reorganizing the screen
and were able to complete the trials faster. By not
allowing to overlap, subjects could quickly scan the
screen to see if a window existed. With the arbitrary
overlap interface, many subjects lost a window
underneath the cluttered desktop. One subject spent
minutes moving and searching windows to find the
last window necessary to complete a trial. The
benefits of overlapping multiple windows in any
subjective fashion became a trap for many subjects.
With the arbitrary overlap interface it was diff icult
for the subject to optimize all of the screen space and
to place windows in an orderly fashion. Since the
tiled interface constrains the subject to place
windows in discrete location, it creates an organized
environment which produces faster and easier work.
Also as the trials progressed for both interfaces,
completion times were reduced. This suggests
learning.

Because the completion times decreased greatly
between the first and last trials, an overall average
may not be the best indicator of performance. A t-
test was performed for each trial revealing statistical
significant differences for trials 2-5. It appears that
the tiled interface is useful for novices but, as
experience level increases, subjects develop schemes
independent of the interface type that assists them in
completing the complex tasks. This shows that,
given a learning period, humans are highly adaptive
to complex tasks.

8.2 EXPERIENCED USER RESULTS
With only two expert subjects tested, the average
completion time for all trials was lower for the tiled
interface. The creation of subtask windows seemed
to be a factor in their subtask completion times.
During the first two trials the expert subjects would
“set up” the windows in strategic groupings.
Sometimes the experts opened additional windows to
complete the groups. This would then speed up the
completion times for successive trials. Humans use
these schemes to reduce the large cognitive workload
created by the complex task. This suggests that
humans will find other ways of adapting to complex
tasks outside of taking advantage of an interface’s
syntax. This would explain the long initial
completion times followed by a steep drop. The tiled
interface forced organization of the windows and
therefore caused substantially lower completion
times for the beginning trials. The expert’s
experience can also be seen when comparing their
results (figure 14) with the 35 novice subjects (figure
13). The expert average completion time for all trials

12

was 18.9 seconds and 14.8 seconds shorter than
novice times for the arbitrary overlap and tiled
interfaces respectively. More expert subjects may
substantiate these results.

8.3 DEPENDENCY OF COMPLETION TIMES ON
OPENING WINDOWS
The general shape of the completion time curves
(figure 13) suggest a dependency on the number of
windows opened for each trial (figure 15). Further
analysis of the data led to no statistical significance.
In figure 16, a general increase in completion time
can be noted as the number of windows opened
grows. This increase is more pronounced with the
tiled interface. However due to the large standard
deviations, no statistical significance was found.
With a greater number of subjects, a statistical
relationship may be derived. As figure 15 confirms,
more windows are opened by the users of the tiled
interface than the arbitrary overlap. This is because
the tiled interface limits the total displayed windows
to twelve. However, even with the increased
workload of creating additional windows, the tiled
interface completion times were lower. The benefits
of the organizational structure of the tiled interface
outweigh its disadvantages of creating additional
windows.

8.4 GUIDELINES FOR FUTURE RESEARCH
More extensive testing may find a statistical
difference in completion times for expert subjects.
Since only two subjects were tested, only broad
based comparisons could be made. Also the effects
of learning could be calculated to see how a novice
develops into an expert. An investigation could
define the connection between the creation of
windows and completion time. By making the test
more diff icult, the amount of errors a subject
commits on an interface would also prove useful.
Further analysis could find out to what extent the
“cluttered desktop” slows the completion time. In
this study, the difference in error rates between the
two interfaces was not statistically significant.
However, the task used in this study was simple to
understand and perform. Further study, looking into
more diff icult tasks may bring out greater difference
in error rates.

9.0 Concluding Remarks

Results show that for novice users, a tiled interface
produces faster completion times than an arbitrary
overlap interface in performing complex multiple
window management tasks. As users become more
experienced, completion times are reduced while
performance differences between tiled and arbitrary
overlap less defined. This suggests that humans are

highly adaptive and selection of appropriate window
management strategies is only important for novice
users. Future research should focus on further
analysis of expert users. Further research also should
pursue whether such independent variables as
number of windows opened, percentage of windows
hidden, and frequency of subtasks affect user’s
completion times and error rates.

10.0 References

Apple Computer, Inc. (1992). Macintosh Human
Interface Guidelines. Addison Wesley, Reading, MA.

Bly, Sara A., and Rosenberg, Jarrett K. (1986). A
Comparison of Tiled and Overlapping Windows.
Proceddings of ACM CHI’ 86 Conference on Human
Factors in Computing Systems, ACM, New York,
101-106.

Devore, Jay L. (1991). Probabilit y and Statistics for
Engineerr ing and the Science. Brooks/Cole
Publishing Company, CA.

Funke, Douglas J., Neal, Jeannette G., and Paul,
Rajendra D. (1993). An Approach to Intelli gent
Automated Window Management. International
Journal of Man-Machine Studies 38, 949-983.

Henderson, D. Austin, Jr. and Card, Stuart K. (1993).
ROOMS: The Ise of Muliple Virtual Workspaces to
Reduce Space Contention in a Window-Based
Graphical User Interface. NASA Technical Report
93N70287.

Kandogan, Eser and Shneiderman, Ben (1997).
Elastic Windows: Evaluation of Multi -Window
Operations Proceddings of ACM CHI’ 97 Conference
on Human Factors in Computing Systems, ACM,
New York.

Lifshitz, J. and Shneiderman, B. (1991). Multi -
Window Browsing Strategies for Hypertext
Traversal. Proc. Thirtieth Annual Technical
Symposium of the Washington, DC Chapter of the
ACM, 121-131.

Norman, Kent L., Weldon, Linda J., and
Shneiderman, Ben (1986). Cognitive Layouts of
Windows and Multiple Screens For User Interfaces.
International Journal of Man-Machine Studies 25,
229-248.

Plaisant, Catherine, Carr, David, and Shneiderman,
Ben (1995). Image browsers Taxonomy and Design
Guidleines. IEEE Software 12, 21-32.

13

Sanders, Mark S. and McCormick, Ernest J. (1993).
Human Factors In Engineering And Design.
McGraw-Hill , Inc., New York .

Shneiderman, Ben (1992). Designing the User
Interface Second Edition. Addison Wesley, Reading,
MA.

Woods, David D. (1984). Visual Momentum: A
Concept to Improve the Cognitive Coupling of

Person and Computer. International Journal Man-
Machine Studies, 21, 229-244.

Woods, David D. (1989). The Cognitive Engineering
of Problem Representation, Human-Computer
Interaction on Complex Systems, Academic Press:
London.

