CSTR-3784 January 1997
ISR-TR-97-55

User Interfacesfor a Complex Robotic Task: A
Comparison of Tiled vs. Overlapped Windows

J. Corde Lan€', Steven P. Kuester', and Ben Shneiderman’

SpaceSystems Laboratory”

Human-Cumputer Interadion L aboratory’
Department of Computer Science, Institute for Systems Research’
University of Maryland, College Park, MD 207423255
email: corde@sd.umd.edu, len@cs.umd.edu

Abstract

High complexity tasks, such as remote teleoperation d robaic vehicles, often require multiple
windows. For these complex tasks, the windows necessary for task completion, may occupy
more aeathan available on a single visua display unit (VDU). Since the focus of the robaic
task constantly changes, moduar control panels that can be opened, closed, and moved on the
screen are invaluable to the operator. This sudy describes a spedfic robaic task and the need for
a multi-window interface that can be eaily manipulated. This paper examines two multi-
windowv management strategies: tiled (fixed size) and arbitrary overlap. Multi-window seaches
were performed using the two management styles and they were compared onthe basis of seach
completion time and error rates. Results with 35 novce users sowed faster completion times
for the tiled management strategy than for the abitrary overlap strategy. Other fadors such as
the number of windows avail able, the number of displayed windows, workload of opening o
closingwindows, and effed of leaning are discussd.

Keywords: tiled, overlapped, user interfacedesign, windonv management

Date: January 1997

User Interfaces for a Complex Robotic Task: A
Comparison of Tiled vs. Overlapped Windows

J. Corde Lane
corde@sd.umd.edu
Spae Systems Labaratory, University of Maryland, Coll ege Park, MD 20742

Steven P. Kuester
Spae Systems Labaratory, University of Maryland, Coll ege Park, MD 20742

Ben Shneiderman
ben@cs.umd.edu
Human-Computer Interaction Labaratory, Dept. of Computer Science, University of Maryland,
College Park, MD 20742

1.0Introduction

Figure 1: Simulation of the Ranger vehicle repairing asatellite

The Space Systems Laboratory condicts reseach in
areas of human fadors and spacerobdics. A current
projed is Ranger; a four-armed, freeflying roba
developed to perform maintenance tasks on satellit es.
Creaing an effedive human-computer interfacewill
require the caability for an operator to quickly
reorganize the numerous control panels as the focus
of the task changes.

1.1 RANGER PROJECT BACKGROUND

The Ranger vehicle has a propusion modue which
allows it move fredy and to rendezvous with a target
satellite. This propuson modue houwes all
spacecaft bus aubsystems (power, guidance
navigation and control, communicaions, thermal
control). The forward sedion hdds the computer
and eledronics used to control the four robaic ams.

Ranger has one grapple am which attaches to the
satellite aad moves Ranger into pcsition. Two
dexterous arms perform the maintenancetasks. The

Propulsion

Grapple
Arm

Figure 2: Ranger schematic ill ustrating the vehicle arms and
propulsion module

video arm is controlled to provide an optimum view
to the operator.

12 DESIGNING THE HUMAN-COMPUTER
INTERFACE

The human-computer interfaceto control this vehicle
requires multiple control panels that will need to be
changed as the focus of the task changes.
Contralling this robaic vehicle nat only requires a
computer interface to monitor changes in the
propusion modue, similar to a traditional satellite,
interadive and highly informative control panels are
nealed to be ale to control ead of the four arms.
This vehicle will be operated remotely from a ground
station at University of Maryland.

A popuar paradigm for satellite cntrol stationsisto
generate full size ontrol panels representing key

systems of the satellite. The operator can flip though
the many screens quickly, and view the data
_telemetr) fromrthe sﬁelhte Th[sfull Vscrem controI

panels work well when the tasks for the operator are
well defined. Viewing lettery power levels,
adjusting the

| oo Dty | Gepge | Viko |1 Cd] Cie | Disiey | e Viso |3 rt) Cose | gy | e | Voo |1 Cr e | oy L e |1 s
[Sendprr]]

T

{ N

Figure 3: Robotic Control Station Interfacein overlap and tiled mode

satellite orientation, and monitoring temperature
gradients can be performed effedively with the
appropriate wntrol panel. Control of the systems of
the propusion modue might be éle to follow this
paradigm, as only infrequent commands to the
vehicle ad constant monitoring is necessry.
However, control of any robaic am, withou using
preplaned tragjedories, is a highly interadive
relationship between the operator and computer
interface Many control panels are nealed to control
and monitor only one am. Graphicd displays of the
arm’s orientation, low level diagnastics for determine
errors in control software, rudimentary control for
testing individual parts within the am, graphing data
showing the history of power usage, and many more
panels are opened to asdst the operator in performing
arobdic task.

A single operator has the caability of not only
controlling and monitoring al spacecaft bus
subsystems, but also controlling ore to four of the
robaic ams. Sincethe Ranger vehicleis designed to
perform multiple generic maintenance tasks, a well
developed procedure can na be developed. The
vehicle and operator must constantly be ale to adjust
to the dhanging conditions whil e performing the task.
This capability requires the mputer human
interfaceto change & the focus of the operator shifts.
Instead of using full screen control panels, the
Ranger control station will use small moduar panels,
shown in figure 3. Analogous to airplane cockpit
gauges and sensor padkages, these cntrol panels are

spedalized and wsed together to buld a austomized
cockpit for the operator. The aility to add, delete,
and move aoundthe gpropriate panels is esential
for successul completion d the robaic task. This
study examines methods of window management
which will make the operator effedive in
manipulating the many control panels required to
control a cmplex robaic vehicle.

1.3 PREVIOUS RESEARCH

Several window management strategies exist that can
be used for complex system interfaces. In the ealy
eighties, Xerox developed ore of the first tiled
window management strategies for its STAR system.
Shortly theredter, Apple developed a much more
flexible abitrary overlap windonv management
strategy in its Finder 1.0 using gudlines dill
followed today (Apple Computer, 1992. Sincethen,
both strategies have cntinued to evolve. Since their
conception, reseachers have tried to determine
which task domain is best suited for ead of these
two windov management strategies. For example,
Lifshitz and Shneiderman (Lifshitz and Shneiderman,
1991 found that for a seach and retrieval task,
subjeds preferred a tiled interface that gave them
control of tile placement as oppcsed to computer
determined placement.

Some of the task domain that has been evaluated has
included complex tasks (multiple windows and
subtasks). The ROOMS system alowed users to
organize many virtual workspaces (Henderson et al.,
1993. Each workspace was a room where many
windows were dedicated to completing a spedfic

L
L

task. The user could quickly switch rooms to work
on ancother task. The CUBRICON Intelligent
Window Manager used a mputer agorithm
weighing fadors to determine a window's
importance and automaticdly change the screen
layout (Funke & a., 1993. Kandogn and
Shneiderman (1997 developed atiled strategy which
alowed the user to dredly and incrementally
reshape atarget windov while the computer would
compensate resizing the remaining windowns For
complex tasks such as controlling a teleroba or
nuclea reador, it is important to determine which
window management strategy is appropriate.

1.4 PROBLEM STATEMENT

This dudy examines two multi-windov management
strategies for complex systems. tiled and arbitrary
overlap. The two management styles will be
compared using criteria of faster performance and
fewer errors.

2.0Theory

This sdion describes the theory behind bah the
tiled and arbitrary overlap interfaces. We begin with
a description d a user’s cognitive model and haw it
relates to complex tasks, then present the particulars
of ead interface

2.1 MEMORY MODELS

Althoughmany memory models have been proposed
(Sanders and McCormick, 1993, the ncept of
memory being separated into sensory storage, short
term memory, and long term memory is one of the
most common. In this model, the human perceves
sensory input and retains it briefly in sensory storage.
The human then determines whether the information
is useful by means of the short term memory; also
referred to as working memory. If the informationis
useful or encourtered repetitively, it is gored in long
term memory for later recdl. In this modd, it is the
working memory that performs all the cognitive tasks
that the human requires. Working memory is where
humans formulate models of their environment based
on sensory perception from sensory storage and past
experiences from longterm memory.

22 MEMORY MODELS AS APAIED TO
COMPLEX TASKS

How the human organizes their environment in
working memory is criticd to task performance The
Syntadic-Semantic model (Shneiderman, 1992
asaimes users form a semantic model of the based on
their perception d the dements presented on the
display. The users syntadic knowledge is used to
interpret the set of symbals that make up this text into
meaningful thoughs and ideas, while the semantic

model is composed of the ideas that the reader
generates. Different window management strategies,
such as tiled or arbitrary overlap, can be cnsidered
different syntax for the user to apply their semantic
model. In human fadors, much effort is put into
determining appropriate syntax for interfaces based
on weer's existing memory models. Unfortunately,
the systems are often highly simplified and ony
require asingle model of the system to be retained in
working memory. More mplex systems may
require semantic models that are too large to fit in
working memory. In this case, the user must
continuowly swap smaller subsets of a semantic
model from longterm memory to short term memory
as the task set changes. The concept of a mwmplex
task can be defined to be atask set that maximizes a
human’s cognitive workload dwe to frequent change
of semantic memory modelsin working memory. By
chocsing an appropriate windov management
strategy (syntax), user’'s arealy overloaded cogritive
workload can be reduced.

2.30VERVIEW OF THE INTERFACES

Two multiple windonv management strategies were
considered for this gudy: tiled and arbitrary overlap.
The tiled interfaceincludes a group d nonresizable
windows that can occupy twelve discrete locations on
the perimeter of the display. The abitrary overlap
interface dows users to organize windows in any
locdion onthe screen. Figure 4 shows a graphicd
representation d ead interface

The two management styles diverge in hov windows
are organized. The abitrary overlap window
strategy allows the user to open, close, and move
windows throughot the entire screen (Shneiderman,
1992. Also, windows are freeto owerlap ead cther.
This dyle is gmilar to the Madntosh Finder and
Microsoft Windows 95. This gives the dfed of
“two-and-a-half dimensions’ since windowns can
appea behind a in front of other windows. This
management style is popuar because it allows dired
manipulation which gives users greaer control over
the system. However, many users fal into the
cluttered desktop syndrome: many windows on the
screen owerlap ead other, making it difficult to
locae the gpropriate window. Also, some windows
are buried deg beneah athers and canna be found
until certain windows are moved o closed. Unlike
the abitrary overlap interface the tiled interface
allows opening, closing, and movement of windows
without overlap. If windows are hidden completely
by aher windows, they are dosed to prevent "piles-
of-tiles'. This prevents the necessty for user's to
remember where hidden tiled windowvs might be
locaed.

3.0Implementing the Interfaces

This dudy examined the performance speed and
errors of 35 subjeds using ore of the two
management styles. The test was run wing Silicon
Graphics Indigo? (SGI) workstations. The two
interfaces were aeaed using the SGI's graphics
library, Forms, developed by Mark Overmars.
Syntax for manipulating the main window and bdh
tiled and arbitrary overlap interfaces are described
below.

| . I

[~ > 1|

n |
I
%_I Y% g I

@

=

= O
1] 1]
T 1 — THie [Dipay].
T, L N, N
(o]
BB [owh e '
$ D - E
0 D I
L]

H N |
H HE =N

(b)

E EjE =
E Hi= =
=

Figure 4: Two multiple window management strategies: (a) arbitrary overlap and (b) tiled

3.1 MAIN AND SUBTASK WINDOWS

The interfface onsisted of one main windov and
many subtask windows. The main windon was
intended to have the primary focus of the subjed. It
dictated to the subjeds what tasks were needed to be
performed, showed current progress scored users
past performance, and was used in the aedion o
subtask windows. Subtask windows were smaller
and contained four buttons in eadh o the four
corners. An aphanumeric symbal in the ceter
identified the windowv. By clicking on the four
buttons of the epropriate subtask window, as
indicated by the main window, subjeds completed a
comporent of the task set cdled atrial.

3.2 THE ARBITRARY OVERLAP INTERFACE

In the abitrary overlap interface the SGI's IRIX
windov management environment was used to
manipulate the subtask windows. By clicking the
right mouse button onthe title bar of a window, a
pop-down menu would show windowv management
options. The functions included: moving the
window, raising the windov abowe dl other
overlapping windows, and lowering the window
below al overlapped windows. There were no
options to allow window resizing. These window
management functions could also be performed in
other ways. A window could be raised by clicking
the left mouse button on the title bar or window
border. If the mouse button is held, the window
could be dragged to any locaion on the screen.
Finaly, both interfaces could close windows by
choasing ‘ Close' from the pull down menu.

3.3THE TILED INTERFACE
Thetiled interfacedid na take advantage of the IRIX
windowv management environment. A different title

bar was used and it did nd retain the windown
management border. To move asubtask window, the
user would instead use the mouse to adivate apull
down menu from the title bar and choose the
‘Arrange..” option. This would open the ‘Arrange
dialog box with thumbnail representations sowing
the locations that subtask windows could be moved
to. The user would choose the button correspondng
to the desired locdion, then hit the ‘OK’ button. The
subtask windonv would then be moved to that
locdion. If another subtask window arealy existed
there, the two subtask windows would swap
locdions. A ‘Cancd’ button was also provided on
the ‘Arrange’ dialog boxto abort the move. Sinceno
overlapping was allowed, raise or lower fedures
were not needed.

3.4 CONTROL FOR BIAS

Control for biases were made in the placement of
subtask windows. Because the tiled interface
required the ‘Arrange’ dialog box the same dialog
box, withou its functiondlity, was included in the
arbitrary overlap interface This gave equa number
of mouse dicksin the placanent of subtask windows
for both window management strategies.

4.0TheHypothesis

Our hypahesis predicts that, after leaning,
performance times will be faster and error rates will
be lower for the tiled interface The tiled interface
simplifies users cognitive workload by relieving them
of seaching dfficulties that may be assciated with
overlapping windows. We eped expert users to
show faster completion times with lower error rates

on the tiled interface for reasons smilar to those
mentioned above.

50TheTest

A test was developed which required subjeds to
perform several seaches on a group d items that
either were not on the screen (tiled) or were hidden
by aher overlapping windows (arbitrary overlap).
This test was sleded to determine how the two
interfacetypes aff eded memory retention cgpabiliti es
of the subjeds. The test was the same for all
subjeds, independent of the interface being
manipulated. The only difference was the syntax
required to complete the tasks on the two interfaces.
The subjeds were instructed to perform a series of
subtasks as quickly, and with as few errors, as
possble. Eadch subtask consisted of eliminating an
alphanumeric from the main window by clicking all
four buttons in the correspondng subtask windaow.

5.1 MAIN WINDOW
At the beginning d the test, the main windowv would
appea onablank screen (seefigure 5).

ain
[Fle [letter [MNumber]| Symbol |

D W|> |&|T
~| =

Figure 5: The Main Window

Main

Al _Fle | uﬂzh{Number | Syrbol |

Wi~

Time (sec)

‘ﬂ q I 0.0000 | }I 2'

Figure 6: Menu Activation

The main windov was fixed in the ceter of the
screen when wsing the tiled interface The subjeds
using the abitrary overlap interface ould placethe
main window wherever they desired. After the
‘Play’ button was pressd, the test would begin. Six

alphanumerics would fill the white boxes in the main
window. These dphanumerics represented which
subtask windows had to be manipulated. Eadh
subtask window corresponced to a singe
alphanumeric charader. The windows were divided
into three céegories: letters (A,B,C,D,T,W), numbers
(1,2,3,4,5,6), and symbds ($, # %,&, ?, >). This
gave atotal of 18 subtask windows which could be
manipulated. The tiled interface ould ony display
twelve subtask windows at a time while the abitrary
overlap could orly display abou nine withou
overlap. The dphanumerics were chasen to prevent
confusion. For example, the letter ‘O’ and the
number ‘0" were not used to avoid conflict.

5.2 CREATING SUBTASK WINDOWS

At the beginning d the test, no subtask windows
were open. Therefore, subjeds had to open the
spedfied subtask windows to be manipulated. To
open a subtask window, subjeds would move the
mouse to the gpropriate pull-down-menu (letters,
numbers, or symbadls) and chocse the gpropriate
alphanumeric item. The ‘Arrange’ dialog boxwould
pop upand could be placed anywhere on the screen
(seefigure 7).

=l Arrange
] =
] Main | |
{[_Ale [Letter [Number | Symbol | | [OK] [_Cancel ||

I+ D Wi> & |T
H R EADL

Figure 7: The‘Arr ange’ Dialog Box

For the abitrary overlap interface subjeds pressd
the ‘OK’ button in the ‘Arrange’ dialog box The
‘Arrange’ dialog box dsappeaed and the cosen
subtask window could be placed anywhere on the
screen (seefigure 8).

For the tiled interface the ‘Arrange’ dialog boxXs
thumbnail representations allowed subjeds to place
the subtask windowv a a discrete locaion on the
screen. Then, after pressing ‘OK’ button, the
‘Arrange’ dialog box dsappeaed and the subtask
windowv was opened in the spedfied locaion. In
figure 8, the subtask window would appea in the

upper left corner of the screen. If a subtask window
already existed in that locdion, it would have been
destroyed. No piles-of-tiles were dlowed. In bah
interfaces, a subtask window that aready existed on
the screen could na be reopened.

S

{_Fle | Display |

e —

| Fle [Letter | Murber | Syrbol |

D W|> & |T

Time (sec)
H 4 (fooo] H[W

Figure 8: The'Subtask Window'

=| noMame

|_Fle | Display |

I
m - m

Main i
\ Fle | Letter || MNumber || Symbol | I

D W [& [T
I~ | W

Figure 9: The ‘D’ Subtask Window Being Manipulated

5.3 MANIPULATING SUBTASK WINDOWS

The subtask window could then be manipulated to
complete one of the six subtasks. To successully
manipulate a subtask window, ead o the four
buttons in the @rners of the windon were pressed.
After eath buton was pressed, it would light up.
Figure 9 shows the 'D' subtask window with three of
the four buttons siccessully manipulated. When all
four buttons were pressd, in any order, the lights in
the four buttons would turn off and the crrespondng
alphanumeric would dsappea in the main window.
After the last button is pressed in the 'D' subtask
window the screen would appea asin Figure 10.

Subjeds then continued by creaing ancther
appropriate subtask windowv and manipulating it.
The six subtasks could be completed in any order.
As ead alphanumeric subtask window was corredly
manipulated ancther field in the main window would

disappea.

5.4 COMPLETING TRIALSAND TEST
When the sixth subtask was performed, that trial was
completed. The next trial would begin and another

= noName

|__Rle | Display |

D

i

=| Main | ——

hain

[Fle | Letter [Murber | Symial |

Wi & [T

Time (sec)
H e ‘ﬂl 4] 0.0000 |M

Figure 10: The ‘D’ Subtask Completed

six aphanumerics were displayed in the main
window. Thetime indicator would show the amourt
of time, in semnds, it took for the last trial to be
completed. Figure 11 shows the first tria nea
completion, only one more button in the ‘&' subtask
window needs to be manipulated. Once that button
was pressd, the display would look like figure 12.
Six new aphanumerics were displayed as the next
trial began. After the completion d a trial, any

subtask windows currently on the screen became
immediately available for manipulation. It was not
necessary for them to be dosed and reopened for use
on subsequent trials. Other subtasks may have
required the aedion d new subtask windows. As
the trials continued, the subjed had to work within
the spedfic window manager. Many adivities the
subjeds performed included: creaing the necessary
subtask windows, possbly eliminating subtask
windows not needed, moving subtask windows to
related groups, and scanning for the crred subtask
window. After ten trials were ompleted, the system
indicated the termination d the test. Many variables
cdculated by the system, during the test, were then
sent to a data file. These variables included trial
completion times, error rates, number of subtask
windows opened duing ead trial, and the number of
subtask windows displayed at the beginning d ead
trial.

=] noNeme [noName

TFie_1 Display]

1]

File]|_Letter] Number | Symbol |

Time (sec)
Play
1 «I 1' 0.0000 }I ﬂ
=|_noName 3= noName = |
[|!
Disple
[_File | Display | T Fle_] Dispiay | |

LT, L, U
I I | |

Figure 11: The Last Subtask to be Completed for Arbitrary
Overlap Interface

= noName —[noName L= |\["noName

|_File | Display]| TFile] Display |

| File | Display

E SR E
—
|__Fle | Letter | humber | Symbol |
oy Time (sec)
«I{Fsz.wﬂ }Iﬂ
=|_noNeme 3 [=| noName =1
[]}
[—File | Display] e] Dopey | || A

oL, gL
1 1T ri I |

Figure 12: Trial One Complete, Trial Two Initiated for
Arbitrary Overlap Interface

6.0Subjeds

The demographics aurvey showed that ninety-one
percent of the subjeds used some kind o computer
windows environment often, while the other nine
percent had dill occasionally used a windows
environment. To aaquaint the subjeds with the test
eah subjed viewed a four minute video which
briefly explained the eperiment and the two
management interfaces. Next, the subjeds filled ou
a demographics survey. This was used to determine
biases in the eperiment. Subjeds then went to a
Silicon Graphics Indigo? workstation and were
informed which interfacethey would use. The test
coordinator then went through a dedklist of items
that subjeds would perform using the interface This
was a step-by-step tutorial explaining what needed to
be dore to perform the tasks. Throughou the
tutorial, subjeds were ale to ask questions. After
completing the orientation , subjeds filled ou a
consent form. The test was then initiated. Upon
completion, subjeds filled ou a questionraire rating
many o the system’s attributes.

7.0Results

Thirty-five subjeds completed the experiment.
Eighteen performed the test using the abitrary
overlap interface The other seventeen used the tiled
interface In addition, two subjeds were tested as
experts. As the subjeds went through ead trial of
six subtasks, several variables were monitored. At
the cwmpletion d the test, a data file was creaed
which contained the following information abou
eat o the ten trials. completion time, number of
errors, number of windows opened, and the number
of window onthe screen at the beginning o the trial.

7.1 COMPLETION TIMES

Subjeds were instructed to move throughthe test as
fast as posshle. The test had a pseudorandom
sampling d the dghteen alphanumeric subtasks.
Equal amourts of letters, numbers, and symbadls
appeaed as gsubtasks. However, the seed for
generating the randaom subtasks remained the same
for all subjeds. Therefore, al subjeds experienced
the same sequence of subtasks (i.e. 4DW>&T, then
3CB2T1, then >4#6%C, etc). This level of
consistency shows in the data. Figure 13 shows the

average completion times of al subjeds for eath
trial.

w0777 T T]
0]
£ 80 B —_
§ T]
3 601 .
g_ - <
N & N D
o o 3
O 40F L —
pt C (o g < o -
% - 4
& 20| —©— Arbitrary Overla]
z TF|— o -Tied 1
o) S T T T T R A
1 2 3 4 5 6 7 8 9 10

Trial #

Figure 13: Average Completion Time of All 35 Subjeds

* gtatistically significant at the 0.05 level
Table 1: Completion Timein Secndsand Standard
Deviations in a Group for Each Sultask for 35 subjeds

Both the ahbitrary overlap and tiled interfaces foll ow
similar trends. General leaning can be seen as the
completion times deaease urtil they stabilize during
thefinal trials. Both interfaces gike onthe fifth and
eighth trials. The difficulty for those trials was
higher for al subjeds. Table 1 shows the arerages
and standard deviations for eat interface All data
has units of secondks.

7.2 EXPERT STUDY

Two expert subjeds were evaduated on bdh
interfaces. These subjeds had ower one hou of
experienceon bdh interfaces. For ead interface the
two subjeds completion times were averaged for
ead trial. Figure 14 shows the two averages.

10

10— T T T T

1) L -

OE’ sof —o6— Arbitrary Overlapj-

N — & - Tiled

K] -

% 60

= C

g C

O 40

Q : b _)

g r o—<]

o 20| X

> - J

< L]
o1 110

0 1 2 3 4 5 6 7 8 9 10

Trial #

Figure 14: Average Completion Times For 2 Experts For Each
Trial

7.3 NUMBER OF WINDOWS OPENED

Figure 15 shows the average number of subtask
windows that were opened for ead trial. The
general shape of the arve is smilar to the average
completion time. This dows a passble relationship
between the number of windows opened and the trial
completion time. After the initial trias, the subjeds
using the tiled interface were forced to open more
subtask windows than subjeds using the abitrary
overlap interface

[e2 2N

—©— Arbitrary Overla
— & -Tiled

ﬂ

e d

Average Number of Windows Openec
N w IS (6]

Trial #

Figure 15: Average Number of Subtask Windows Opened for
Each Trial for Both Interfaces

Figure 16, shows the average trial completiontime &
afunction d the amourt of windows opened for that
trial. Unfortunately, the results are not statisticdly
valid at the 0.05 level. This may be due to biasesin
the eperiment and the observable trends merit
further study.

=
o
(]

(o]
?

o)
oF

N
?

—o— Arbitrary Overlag}]
—-& - -Tiled

Average Completion Times [s]
N
?

..Fr-i'.l...l...l.

0 [RN N RN N
0 1 2 3 4 5 6 7

Number of Windows Created

Figure 16: Average Trial Completion Time Dependent On The
Amount Of Windows Opened That Trial

74 NUMBER OF WINDOWS
DISALAYED

Figure 17 shows the average number of windows
displayed onthe screen at the beginning d ead trial.
The «arves for ead inteface @pea to
asymptoticdly approach the maximum number of
diplayed windows: twelve for the tiled and eighteen
for the abitrary overlap.

INITIALLY

Initially Displayed
©

— & -Tiled

Average Number of Windows

T [T r [rr[rrrrrr
T BN BT BTG

—=©— Arbitrary Overla1

1 2 3 4 5 6 7 8 9 10
Trial #

Figure 17: Average Number of Subtask Windows Initially
Displayed at Each Trial for Both Interfaces

8.0Discusdon

This gudy presents suppating evidence that a tiled
interfacemay provide faster navigation times than an
arbitrary overlap interfacefor certain circumstances.
A task that challenged subjeds memory retention
cgpabiliti es was used. This smulated complex task
was designed to be similar to the workload associated
with controlli ng amobil e telerobdic vehicle.

8.1 COMPLETION TIME
In figure 13, for al ten trias the overall average
completion time was dorter for the tiled interface

11

than for the abitrary overlap interface A t-test was
used to confirm statisticd significance d the 0.05
level (Devore, 1991). This quicker completion time
may be due to the tiled interfacés ladk of overlap.
The subjeds gent lesstime reorganizing the screen
and were &le to complete the trials faster. By nat
allowing to owerlap, subjeds could quickly scan the
screen to seeif awindow existed. With the abitrary
overlap interfface many subjeds lost a window
underneah the duttered desktop. One subjed spent
minutes moving and searching windows to find the
last window necessary to complete atria. The
benefits of overlapping multiple windows in any
subjedive fashion kecane atrap for many subjeds.
With the abitrary overlap interfaceit was difficult
for the subjed to optimize dl of the screen space ad
to pdacewindows in an orderly fashion. Since the
tiled interface onstrains the subjed to place
windows in discrete locaion, it creaes an organized
environment which produces faster and easier work.
Also as the trials progressd for both interfaces,
completion times were reduced. This suggests
leaning.

Because the mmpletion times deaeassed gedly
between the first and last trials, an oweral average
may nat be the best indicetor of performance A t-
test was performed for ead trial reveding statistica
significant differences for trials 2-5. It appeas that
the tiled interface is useful for novices but, as
experience level increases, subjeds develop schemes
independent of the interfacetype that asdsts them in
completing the complex tasks. This dows that,
given a leaning period, humans are highly adaptive
to complex tasks.

8.2 EXPERIENCED USER RESULTS

With orly two expert subjeds tested, the average
completion time for al trials was lower for the tiled
interface The aedion d subtask windowvs aned
to be afador in their subtask completion times.
During the first two trials the expert subjeds would
“set up’ the windows in strategic groupngs.
Sometimes the experts opened additional windows to
complete the groups. This would then speal up the
completion times for succesgve trials. Humans use
these schemes to reduce the large mgnitive workload
creded by the mmplex task. This suggests that
humans will find aher ways of adapting to complex
tasks outside of taking advantage of an interfacés
syntax. This would explain the long initia
completion times followed by asteg drop. Thetiled
interface forced organization d the windows and
therefore caised substantially lower completion
times for the beginning trials. The epert's
experience ca also be seen when comparing their
results (figure 14) with the 35 novce subjeds (figure
13). The epert average completiontime for all trials

was 189 semnds and 148 semnds sorter than
novice times for the abitrary overlap and tiled
interfaces respedively. More epert subjeds may
substantiate these results.

8.3 DEPENDENCY OF COMPLETION TIMES ON
OPENING WINDOWS

The general shape of the completion time airves
(figure 13) suggest a dependency on the number of
windows opened for ead tria (figure 15). Further
analysis of the data led to no statisticd significance
In figure 16, a general increase in completion time
can be noted as the number of windows opened
grows. This increase is more pronourced with the
tiled interface However due to the large standard
deviations, no datisticd significance was found
With a greder number of subjeds, a satisticd
relationship may be derived. As figure 15 confirms,
more windows are opened by the users of the tiled
interfacethan the abitrary overlap. This is becaise
the tiled interfacelimits the total displayed windows
to twelve. However, even with the increased
workload of creding additional windows, the tiled
interface ompletion times were lower. The benefits
of the organizaional structure of the tiled interface
outweigh its disadvantages of creaing additional
windows.

8.4 GUIDELINES FOR FUTURE RESEARCH

More etensive testing may find a datisticd
difference in completion times for expert subjeds.
Since only two subjeds were tested, only broad
based comparisons could be made. Also the dfeds
of leaning could be cdculated to see how a novice
develops into an expert. An investigation could
define the nredion between the aedion o
windows and completion time. By making the test
more difficult, the amourt of errors a subjed
commits on an interface would also prove useful.
Further analysis could find ou to what extent the
“cluttered desktop’ dows the completion time. In
this gudy, the difference in error rates between the
two interfaces was not satiticdly significant.
However, the task used in this gudy was smple to
understand and perform. Further study, looking into
more difficult tasks may bring ou greder difference
in error rates.

9.0Concluding Remarks

Results ow that for novice users, a tiled interface
produces faster completion times than an arbitrary
overlap interface in performing complex multiple
window management tasks. As users becmme more
experienced, completion times are reduced while
performance differences between tiled and arbitrary
overlap lessdefined. This suggests that humans are

12

highly adaptive axd seledion d appropriate window
management strategies is only important for novice
users. Future reseach shoud focus on further
analysis of expert users. Further research also shoud
pursue whether such independent variables as
number of windows opened, percentage of windows
hidden, and frequency of subtasks affed user's
completiontimes and error rates.

10.0References

Apple Computer, Inc. (1992. Macintosh Human
Interface Guidelines. Addison Wedley, Reading, MA.

Bly, Sara A., and Rosenberg, Jarrett K. (1986. A
Comparison d Tiled and Overlapping Windows.
Proceddings of ACM CHI’ 86 Conference on Human
Factors in Computing Systems, ACM, New York,
101-106.

Devore, Jay L. (199]). Probabhlity and Satistics for
Engineering and the Science Brooks/Cole
Publishing Company, CA.

Funke, Doudas J, Ned, Jeanette G., and Paul,
Rajendra D. (1993. An Approach to Intelligent
Automated Windonv Management. Internationd
Journal of Man-Machine Sudies 38, 949-983

Henderson, D. Austin, Jr. and Card, Stuart K. (1993.
ROOMS: The Ise of Muliple Virtual Workspaces to
Reduce Space Contention in a Windown-Based
Graphicd User Interface NASA Technical Report
93N70287

Kandogan, Eser and Shneiderman, Ben (1997).
Elastic Windows: Evauation d Multi-Window
Operations Proceddings of ACM CHI’' 97 Conference
on Human Factors in Computing Sstems, ACM,
New York.

Lifshitz, J. and Shneiderman, B. (1991). Multi-
Window Browsing Strategies for Hypertext
Traversal. Proc. Thirtieth Annud Tednical
Symposium of the Washington, DC Chaper of the
ACM, 121-131

Norman, Kent L., Weldon Linda J, and
Shneiderman, Ben (1986. Cogntive Layouts of
Windows and Multiple Screens For User Interfaces.
Internationd Journal of Man-Machine Sudies 25,
229248

Plaisant, Catherine, Carr, David, and Shneiderman,
Ben (1995. Image browsers Taxonamy and Design
Guidleines. IEEE Sdtware 12, 21-32.

Sanders, Mark S. and McCormick, Ernest J. (1993.
Human Factors In Engneaing And Design.
McGraw-Hill, Inc., New York .

Shneiderman, Ben (1992. Designing the User
Interface Second Edition. Addison Wedley, Reaing,
MA.

Woods, David D. (1984). Visua Momentum: A
Concept to Improve the Cogntive Couding o

13

Person and Computer. Internationd Journal Marn-
Machine Studies, 21, 229-244.

Woods, David D. (1989. The Cogritive Engineaing
of Problem Representation, Human-Computer
Interaction on Complex Systems, Academic Press
London

