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A diblock copolymer is a linear-chain molecule consisting of two types of monomer.

Mathematical models for diblock copolymers can aid researchers in studying the material

properties of products as upholstery foam, adhesive tape and asphalt additive. Such models

incorporate a variety of factors, including concentration difference, connectivity of the sub-

chains, and chemical potential. We consider a flow of two macroscopically immiscible,

viscous compressible diblock copolymer fluids.

We first give the derivation of this model on the basis of a local dissipation inequality.

Second, we prove that there exist weak solutions to this model. The proof of existence relies

on constructing an approximating system by means of time-discretization and vanishing

dissipation. We then prove that the solutions to these approximating schemes converge to

a solution to the original problem. We also cast thought on the large-time behavior with

regularity assumption on the limit.
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Chapter 1: Introduction

We consider a flow of two macroscopically immiscible, viscous compressible diblock

copolymer fluids filling a bounded domain Ω ⊂R3. Diblock copolymers are all around us,

found in such products as upholstery foam, adhesive tape and asphalt additives. A diblock

copolymer is a a linear-chain molecule consisting of two types of monomers, A and B. This

class of macromolecules is produced by joining two or more chemically distinct polymer

blocks, each a linear series of identical monomers, that may be thermodynamically incom-

patible (like oil and vinegar). The monomers are arranged such that there is a subchain

of each type of monomers, and those two subchains are grafted together to form a single

copolymer chain. A large collection of diblock copolymers is called a polymer melt. Below

a critical temperature, even a weak repulsion between unlike monomers A and B induces

a strong repulsion between the subchains, causing the subchain to segregate, and this melt

will exhibit a phase separation. Because the chains are chemically bonded, a macroscopic

segregation whereby the subchains detach from one another can not occur. Rather, in a sys-

tem of many such macromolecules, the immisibility of these monomers drives the system to

form structures which minimize contacts between the unlike monomers and this tendency

to separate the monomers into A and B-rich domains is counter balanced by the entropy

cost associated with chain stretching. Because of this energetic competition, a phase sep-

aration on a mesoscopic scale with A-rich and B-rich domains emerges. The mesoscopic

domains which are observed are highly regular periodic structures; for example lamellar,

bcc centered spheres, circular tubes, and bicontinuous gyroids. These structures present
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tremendous potentials for technological applications because they allow for the synthesis

of materials with lored mechanical, electrical, and chemical properties (see [5][28][34])

Each geometry could potentially possess different physical characteristics, and thus the

ability to readily switch between the phases could allow for materials with tunable prop-

erties. Copolymers can be engineered to exhibit specific physical properties which make

diblock copolymers of great technological importance.

All block copolymers belong to a broad category of condensed matter sometimes re-

ferred to collectively as soft materials, which, in contrast to crystalline solids, are character-

ized by fluid-like disorder on the molecular scale and a high degree of order at longer length

scales. Their complex structure can give block copolymers many useful and desirable prop-

erties. The familiar polyurethane foams used in upholstery and bedding are composed of

multiblock copolymers known as thermoplastic elastomers that combine high-temperature

resilience and low-temperature flexibility.[5]

Figure 1.1: Possible geometry of mesoscopic domains for diblock copolymer, from[45]

1.1 Background and Related Work

There are works related to mathematical models for diblock copolymers. Several works

are related mean field theories [4][27] in which one must accurately sum the competing

energetic contributions of the interaction energy and elastic energy due to chain stretch-

ing. Besides mean field theories, a density functional theory was derived by Ohta and

Kawasakin in [44] and [38]. This theory uses several approximations to write the free en-

ergy exclusively in terms of the (averaged) macroscopic monomer density. That free energy
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can be rewrititen in a Cahn-Hilliard like functional which is the standard Cahn–Hilliard free

energy supplemented with a nonlocal term, reflecting the first order effects of the connec-

tivity of the monomer chains.

Choksi provided a derivation of Nishiura and Ohnishi’s nonlocal Cahn–Hilliard-like

functional which is accessible to applied mathematicians. We refer the reader to [15][13]

and the reference therein. Choksi also ran steady-state simulations starting from random

initial data for his model[14]. Simulations based upon minimizing the nonlocal Cahn-

Hilliard-like functional suggest minimizers have phase boundaries which resemble constant

mean curvature surfaces. The phase structures exhibited in simulations includes lamellar,

cylindrical, spherical, double-gyroid. These numerical results on the structures cast a light

on the importance of the inclusion of order parameter that is related to connectivity.

There are various works dealing with two-phase flow. The model goes back to Hohen-

berg and Halperin [37] with the name “model H”. Gurtin et al. [33] gave a continuum

mechanical derivation based on the concept of microforces. The model is a so-called dif-

fuse interface model, where the difference in concentrations of the two fluids plays the role

of the order parameter. To describe a general two-phase flow with droplet formation and co-

alescence of several droplet, Anderson and McFadden[3] developed diffuse interface mod-

els which take a (partial) mixing of the two macroscopically immiscible fluids and a small

mesoscopic length-scale into account. By studying a variant of a model by Lowengrub and

Truskinovsky[42], which consists of the compressible Navier-Stokes equations governing

the motion of the mixture coupled with the Cahn-Hilliard equation for the order parameter,

Abels and Feireisl prove existence of global-in-time weak (distributional) solutions of the

problem on a bounded domain[2]. Heida et. al developed and generalized Cahn–Hilliard

equations within a thermodynamic framework[36][35]. Later, Cherfils and Feireisl et. al

establish the existence of global-in-time weak solutions for Cahn–Hilliard–Navier–Stokes

system with dynamic boundary conditions[12]. A similar model for incompressible fluids
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was studied by Boyer [7], Liu and Shen [8], Starovoitov [48], and Abels [1]. Dynmaic

boundary condition case was considered and introduced in [29], and well-posedness for

the Cahn–Hilliard–Navier–Stokes incompressible model was proved together. Different

types of dynamic boundary conditions were considered for the numerical study of the in-

compressible Navier–Stokes-Cahn–Hilliard equations, see, e.g. Refs. [17], [18], [46], [47]

and [49]. There are also numerical simulation works done for incompressible phase-field

model of diblock copolymer melt[11][40].

Inspired by Choksi[13] and Abel et. al[2], we will focus on a diffuse interface model

for two-phase flow of compressible viscous diblock copolymer fluids, which can help us

study the phase behavior of block copolymers in the melt. This model consists of sys-

tems of several differential equations: compressible Navier-Stokes equations and modified

Cahn-Hilliard type equations. This model differs from Choksi’s because it describes the

interaction of the diblock copolymer with fluid, so it analyzes the dynamic changes and

pattern domain formation of the diblock copolymer melt within a mixture of compressible

fluids.

Comparing to Abel-Feireisl’s work on Navier-Stokes-Cahn-Hilliard, our model intro-

duces a nonlocal term which reflects the first order effects of the connectivity of the monomer

chains, so the dynamics and static state significantly change. Also, this term gives higher

nonlinearity, so the complexity increases.

This article is the first one that deals with the existence theory for the interaction of di-

block copolymer melt with compressible fluid. All the existing literature on the topic deals

with the static problem for diblock copolymers, or the incompressible case. Incompressible

case is an idealized situation, while most engineering applications deal with the interaction

of compressible or weakly compressible fluids for diblock copolymers. The existence result

can can be a great aid during the numerical investigation of the phase separation behaviors

of block copolymers.
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Because this dissertation focuses on the existence theory and the convergence of so-

lutions in large time, the coefficient for average of concentration difference over space is

denoted by M, and the coefficient for intrinsic length scale for minimizer is set to be 1. So

in my work, the relation to Fig 1 is not shown. But our existence theory allows people to do

numerical investigation with any kind of coefficients, so any kind of mesoscopic domains

can be considered.

1.2 Compressible Fluid Model for Diblock Copolymer

In this section we introduce the model that describes the interaction of fluids with di-

block copolymer. We study a variant of a model by Lowengrub and Truskinovsky [42] that

also extends the model presented by Abels et. al.[2] to two order parameters. This model

consists of a system of equations

∂tρ +divx(ρu) = 0 (1.1)

ρ∂tu+ρu ·∇xu−divxS+∇x p =−divx

[
∇xc⊗∇xc− 1

2
|∇xc|2I

]
−divx

[
−∇xw⊗∇xw− (c−M)wI+

1
2
|∇xw|2I

] (1.2)

ρ∂tc+ρu ·∇xc = m∆µ (1.3)

ρµ = ρ
∂ f
∂c

+w−∆c (1.4)

−∆w = c−M (1.5)

where M =
∫

Ω
cdx and p = ρ2 ∂ f

∂ρ
(ρ,c), and

S= 2ν(c,w)D(uδ )+η(c,w)divxuI, (1.6)

D(u) =
1
2
(
∇u+∇uT)− 1

3
divxuI (1.7)
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for some suitable functions ν(c) > 0, η(c) > 0 and the free energy density f (ρ,c) to be

specified later. Here ρ is total density, u is the mean velocity of the fluid mixture, p is

the pressure, c is the (mass) concentration difference of the two components, and µ is the

chemical potential. w is a term related to c via (1.5) and it reflects the first order effects of

the connectivity of the monomer chains. The first equation (1.1) is the usual conservation

of mass. The second equation (1.2) describes the conservation of linear momentum. In

comparison with the compressible Navier-Stokes equation for a single fluid, there is two

extra stress contribution in the stress tensor: ∇xc⊗∇xc− 1
2 |∇xc|2I, which describes cap-

illary effect related to the free energy, and −∇xw⊗∇xw− (c−M)wI+ 1
2 |∇xw|2I, which

explains the nature of the joint A and B subchain interactions in the diblock copolymer

macromolecule. The free energy for this model is as follow:

E f ree =
∫

Ω

ρ f (ρ,c)+
1
2
|∇c|2+1

2
|∇w|2dx (1.8)

representing here the surface energy penalizing mixing of the fluids as well as large varia-

tions of the concentration difference c and subchain connectivity w. Moreover, (1.3)-(1.5) is

a diffusion-convection equation for the concentration difference of modified Cahn-Hilliard

equation which takes subchain connectivity into account. The model is derived and ex-

plained in more detail in section 2.2.

The system is closed by the boundary and initial conditions

u|∂Ω= ∇c ·n|∂Ω= ∇w ·n|∂Ω= ∇µ ·n|∂Ω= 0, (1.9)

(u,c)|t=0= (u0,c0) (1.10)

First, to summarize the core hypothesis, we suppose that Ω ⊂R3 is a bounded domain with

C2-boundary. The viscosity coefficients ν ,η are assumed to be continuously differentiable
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functions of c satisfying

0 < ν ≤ ν(c,w)≤ ν̄ ,0 ≤ η(c,w)≤ η̄ for all c. (1.11)

The specific (homogeneous) free energy f takes the form

f (ρ,c) = fe(ρ)+ f0(c), (1.12)

and is interrelated to the pressure through the equation of state

p(ρ) = ρ
2 ∂ f (ρ,c)

∂ρ
= pe(ρ), fe(ρ) =

∫
ρ

1

p(z)
z2 dz (1.13)

where p ∈C([0,∞)∩C1(0,∞). In what follows, assumption is made that

pe(0) = 0, p1ρ
γ−1 − p2 ≤ p′(ρ)≤ p̄(1+ρ

γ−1) (1.14)

for a certain isentropic expansion factor γ > 3
2 , and f ′(c) is Lipschitz with respect to c, and

G1c−G2 ≤ f ′0(c)≤ Ḡ(1+ c) (1.15)

for all c ∈ R.

The assumption for pe (1.14) is in accordance to ideal gas law.

In literature related to diblock copolyer[13][15],
∫

Ω
wdx is always a constant. For sim-

plicity, we set ∫
Ω

wdx = 0. (1.16)

7



the total energy of the system at time t ∈ (0,T ), t = 0, respectively are denoted by

E(t) =
∫

Ω

ρ(t)|u|2+ρ f (ρ,c)+
|∇xc|2

2
+

|∇xw|2

2
dx (1.17)

E0 =
∫

Ω

ρ
−1
0 |m0|2+ρ0 f (ρ0,c0)+

|∇xc0|2

2
+

|∇xw0|2

2
dx. (1.18)

In addition we set Q(s,t) = Ω× (s, t) and QT = Q(0,T ).

Our main result reads as follows:

Theorem 1.2.1. Let 0< T <∞, let γ > 3
2 , and above assumptions (1.11)-(1.18) be satisfied.

Then for every non-negative ρ0 ∈ Lγ(Ω), measurable m0 : Ω −→ R3 with ρ
−1
0 |m0|2∈

L1(Ω), c0 ∈ H1(Ω), and w0 ∈ H1(Ω) there is a weak solution ρ ∈ L∞(0,T ;Lγ(Ω)), ρ ≥ 0,

u ∈ L2(0,T ;H1(Ω;R3)), c ∈ L∞(0,T ;H1(Ω)), w ∈ L∞(0,T ;H1(Ω)) in the following sense:

1. For every ϕ ∈ D
(
Ω̄× (0,T );R3)

−
∫

QT

(ρu ·∂tϕ +(ρu⊗u+ pI−S) : ∇ϕ)d(x, t)

=
∫

QT

(
(∇c⊗∇c) : ∇ϕ − |∇c|2

2
divϕ

)
d(x, t)

+
∫

QT

(
−(∇w⊗∇w) : ∇ϕ − (c−M)w : ∇ϕ +

|∇w|2

2
divϕ

)
d(x, t)

(1.19)

2. ρ is a renormalized solution of (1.1) in the sense of DiPerna and Lions [16], i.e.,

∫
QT

(ρB(ρ)∂tϕ +ρB(ρ)u ·∇ϕ −b(ρ)divuϕ)d(x, t) = 0 (1.20)

for any test function ϕ ∈ D(Ω̄× (0,T )), and any

B(ρ) = B(1)+
∫

ρ

1

b(z)
z2 dz,

where b ∈C0([0,∞)) is a bounded function.
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3. For every ϕ ∈ D(Ω̄× (0,T ))

∫
QT

(ρc∂tϕ +ρcu ·∇ϕ)d(x, t) =
∫

QT

∇µ ·∇ϕ d(x, t),

∫
QT

ρµϕ d(x, t) =
∫

QT

(
ρ

∂ f (ρ,c)
∂c

ϕ +wϕ +∇c ·∇ϕ

)
d(x, t).

and ∫
QT

∇w ·∇ϕ d(x, t) =
∫

QT

(c−M)ϕ d(x, t)

4. The energy inequality

E(t)+
∫

Q(s,t)
S : ∇xu+ |∇xµ|2d(x,τ)≤ E(s) (1.21)

holds for almost every 0≤ s≤ t ≤ T including s= 0, where E(t), E(0) =E0 are determined

through (1.17)-(1.18).

5. ρ , ρu, c, w are weakly continuous with respect to t ∈ [0,T ] with values in L1(Ω) and

ρ|t=0= ρ0, ρu|t=0= m0, c|t=0= c0, w|t=0= w0.

In the theorem, the assumption that viscosity depends on order parameter c and w is

made. This fact modifies considerably the relation satisfied by the effective viscous flux that

must be handled following the spirit of [20]. The nonlocal term w, which reflects the first

order effects of the connectivity of the monomer chains, changes significantly the dynamics

and static state. Also, this term gives higher nonlinearity, so the complexity increases. It

is challenging to develop converging schemes during the proof for existence. This theorem

address the existence of weak solution to modified NSCH system. The importance of weak

solutions is that the methods in numerical analysis address weak solutions. The existence

provides variational framework for simulations.

The outline of this thesis is as follows: In Chapter 2, we derive the model leading to
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our system (1.1)-(1.5) on the basis of a local dissipation inequality, which plays the role of

the second law of thermodynamics. Moreover, we take advantage of the a priori estimates

obtained from the local dissipation inequality and get some preliminary consequences from

the estimates. In order to construct the weak solution, a two-level approximation scheme is

employed. More precisely, in Chapter 3, we construct solutions to an approximate system

to (1.1)-(1.5), where two extra terms are added to the free energy in order to get a better

integrability of the density. This is done by using an implicit time discretization of the

approximate system. In Chapter 4, we consider the limit of the approximate system to

show our main result. Finally, in Chapter 5, we will address large-time behavior of weak

solutions to this model under regularity assumptions on the limiting system.
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Chapter 2: Derivation of Two-Phase Model and Preliminaries

2.1 Notation

If A,B∈Rn×n are two matrices, then A : B= ∑
n
i, j=1Ai jBi j denotes their scalar product.

If a,b ∈ Rn, then a⊗b ∈ Rn×n is defined by (a⊗b)i j = aib j. The characteristic function

of a set A is denoted by χA. If Ω ⊆ Rn is a domain, then C∞
0
(
Ω;RN) is the set of all

smooth and compactly supported functions f : Ω → RN and C∞
0 (Ω) = C∞

0 (Ω;R). More-

over, for a general set A ⊆Rn we denote C∞

(0)

(
A;RN)= { f ∈ C∞

0
(
Rn;RN)) : supp f ⊆ A

}
and C∞

(0)(A;R) = C∞

(0)(A). For short we also write D
(
A;RN) = C∞

(0)

(
A;RN) and D(A) =

C∞

(0)(A). The usual Lebesgue spaces are denoted by Lq(Ω),1 ≤ q ≤ ∞,∥·∥q, denotes its

norm, and Lq(Ω;X) denotes the corresponding space of q-integrable X valued functions.

The L2(Ω)-scalar product is denoted by (., .)Ω. Furthermore, W s,q (Ω;RN) ,W s,q(Ω),s ≥ 0,

are the Sobolev-Slobodetskii spaces, cf. e.g. [2]. As usual W m,q
0 (Ω),m ∈ N0, is the

closure of C∞
0 (Ω) in W m,q(Ω),W−m,q(Ω) =

(
W m,q′

0 (Ω)
)′
,1 = 1

q +
1
q′ ,H

m(Ω) = W m,2(Ω)

and Hm
0 (Ω) = W m,2

0 (Ω). Finally, Cweak ([0,T ];X) is the space of all weakly continuous

f : [0,T ]→ X and fn → f in Cweak ([0,T ];X) if and only if ⟨ fn(t),x′⟩X ,X ′ →n→∞ ⟨ f (t),x′⟩

uniformly in t ∈ [0,T ] for all x′ ∈ X ′. Here ⟨·, ·⟩X ,X ′ denotes the duality product of X and

X ′.

11



2.2 Derivation

In this section we derive a model for a two-component (binary) fluid mixture in which

the components are compressible, viscous and immiscible and a nonlocal Cahn-Hilliard

diffusion is coupled with internal fluid motion.

2.2.1 Governing equations

We consider two compressible fluids filling a domain Ω ⊂ R3. The mass concentration

of the fluids j = 1,2 is denoted by c j =
M j
M . Let ρ j =

M j
V denote the apparent mass density

of the fluid j and ρ = ρ1 + ρ2 the total density. We denote by u j the velocity of the

fluid j = 1,2 and the velocity u of the mixture is defined as the average velocity given

by ρu = ρ1u1 +ρ2u2.

Our goal in this section is to determine the constitutive relations that describe the phys-

ical properties of the mixture. We assume that the principle of mass conservation as well as

the conservation of linear and angular momentum with respect to the mean velocity hold,

namely

∂tρ +divx(ρu) = 0, (2.1)

ρu̇ ≡ ρ∂tu+ρu ·∇xu = divxT, (2.2)

for a symmetric stress tensor T= T(ρ,c,∇xc,∇xw,D(u)) where D(u) = 1
2(∇xu+∇xu⊤) is

the symmetric part of the velocity gradient, c= c1−c2 denotes the concentration difference

of the two fluids, whereas c1 + c2 = 1, whereas w is a quantity which will be specified in

the sequel.

Without loss of generality we assume for the moment that the exterior forces are zero.

The material time derivative of a quantity Λ is given by Λ̇ = ∂tΛ+u∇xΛ. If we denote by
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F j the mass flux of the fluid j relative to the mean velocity u, then

∂tρ j +divx(ρ ju) = divxF j, (2.3)

which yields to conservation of mass assuming that F1 +F2 = 0. Therefore, the order

parameter c which denotes the concentration difference satisfies the equation

ρ∂tc+ρu ·∇xc = divxF , (2.4)

where F = 2F1, as ρ j = ρc j.

Few remarks on the energy of the mixing are now in order. According to a principle of

the chemical thermodynamics of fluid mixtures there is a limited miscibility between the

so-called immiscible fluid components even at low temperatures. This partial miscibility is

characterized by equilibrium concentrations c1 ≈ 0 (of the first component in fluid 2) and

c2 ≈ 1 (of the second component in fluid 2). As the temperature increases, the two equilib-

rium concentrations approach each other and eventually coincide so that the miscibility gab

c1 − c2 closes at a critical temperature. Above the critical temperature, the system exhibits

a continuous sequence of molecular mixtures for all c ∈ (0,1) and the fluids are considered

to be completely miscible. Below the critical temperature, the equilibrium concentrations

can be obtained by the standard methods of equilibrium thermodynamics. The particular

model of mixing is formulated in terms of the specific free energy f = f (c) which is as-

sumed to be convex if fluids are miscible and non-convex if fluids are partially miscible.

The method for determining equilibrium concentration is based on the following common

tangent condition

d f
dc

|c1 =
d f
dc

|c2 ,

(
f − c

d f
dc

)
|c1 =

(
f − c

d f
dc

)
|c2,
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which is due to Gibbs [31], [32]. For further remarks on the thermodynamics of partially

miscible fluids we refer the reader to Landau and Lifschitz (1958).

The relative motion of the fluids can be described by a diffusional model, namely by

(2.4)

ρ ċ = divxF , (2.5)

where the diffusion flux is assumed to specify a generalized Fick’s law.

Remark 2.2.1. We introduce the Helmholtz free energy of a given volume V of the form:

∫
V

F(ρ,c(x),∇xc(x),w(x),∇xw(x))dx.

where F is defined as following

F(c,∇xc,w,∇xw) = ρ f (ρ,c)+
1
2
|∇xc|2+(c−M)w− 1

2
|∇w|2 (2.6)

where

−∆w = c−M, with B.C. (2.7)

M =
∫

Ω
c(x)dx ∈ (−1,1). Here f

f = fe(ρ)+ f0(c) (2.8)

f0(c) is the free energy. The reason of free energies are in this form will be shown later.

In order to comply with the physical principles of the copolymer melts a modified

nonlocal Cahn-Hilliard equation is introduced. In addition to a concentration gradient to

the specific free energy the standard Cahn-Hilliard free energy is augmented by a long-

range interaction term w associated with the connectivity of the sub-chains in a diblock
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copolymer macromolecule. Here the function w satisfies a Poisson-type equation.

Now, the diffusion flux F is assumed to satisfy a generalized Fick’s law, namely

F = m∇xµ, (2.9)

and

ρ ċ = divx(m∇xµ). (2.10)

Chemical potential is defined as

µ =
δ f
δc

=
∂ f
∂c

−divx
∂ f

∂∇xc
(2.11)

and end up with a Cahn-Hilliard type diffusion equation for c:

ρ ċ = m∆µ, (2.12)

ρµ =
∂F
∂c

−divx
∂F

∂∇xc
(2.13)

2.2.2 Second law of thermodynamics: local dissipation

Let V (t) be an arbitrary volume that is transported with the flow. Then, the total energy

in V (t) is given by

E(t) =
∫

V (t)
ρ
(|u|2)

2
dx+

∫
V (t)

F(c,∇xc,w)dx

=
∫

V (t)
e(ρ,u,c,∇xc,w)dx,
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where

e(ρ,u,c,∇xc,w,∇xw) = ρ
|u|2

2
+ρ f (c,∇xc,w).

Following Gurtin et al (1996) [33] we assume the dissipation inequality:

d
dt

∫
V (t)

e(ρ,u,c,∇xc,w)dx (2.14)

≤
∫

∂V (t)
Tn ·udσ +

∫
∂V (t)

ċt ·ndσ +
∫

∂V (t)
ẇs ·ndσ +

∫
∂V (t)

µF ·ndσ .

for every control volume V (t) transported with flow, where σ denotes the two dimensional

surface measure. In the above relation the term

∫
∂V (t)

Tn ·udσ

represents the energy carried in V (t) due to macroscopic stresses. The term

∫
∂V (t)

µF ·ndσ

represents the energy due to diffusion, whereas the term

∫
∂V (t)

ċt ·ndσ +
∫

∂V (t)
ẇs ·ndσ ,

represents a generalized surface force on a microscopic length scale.

The equivalent local form of (2.14) is

∂te+divx(ue)−divx(T ·u)−divx(ċt)−div(ẇs)−divx(µF ) =: D ≤ 0. (2.15)

Now, (2.1) and (2.2) yield

16



∂t

(
ρ
|u|2

2

)
+divx

(
uρ

|u|2

2

)
= divx(T ·u)−T : ∇xu., (2.16)

which together with

∂tF +divx(Fu) = ∂t(ρ f )+divx(ρ f u) = ρ∂t f +ρu∇x f = ρ ḟ . (2.17)

Combining (2.16) and (2.17) yield

∂t

(
ρ
|u|2

2
+F

)
+divx

((
ρ
|u|2

2
+F

)
u
)
= divx(T ·u)−T : u+ρ ḟ . (2.18)

Now,

divx(ċ t)+divx(ẇs)+divx(µF ) = (2.19)

ċdivxt+∇xċ t+ ẇdivxs+∇xẇs+µ ρ ċ++m|∇xµ|2=

(ρµ +divxt) ċ+divxs ẇ+
[

˙(∇xc) · t+ ˙(∇xw) · s
]

+∇xu : [t⊗∇xc]+∇xu : [s⊗∇xw ]+m|∇xµ|2.

Note,

˙(ρ f )− ( f ρ̇) =

∂F
∂ρ

ρ̇ +
∂F
∂c

ċ+
∂F

∂∇xc
˙(∇xc)+

∂F
∂w

ẇ+
∂F

∂∇xw
˙(∇xw)− f ρ̇ =

ρ
∂ f
∂ρ

ρ̇ +
∂F
∂c

ċ+
∂F

∂∇xc
˙(∇xc)+

∂F
∂w

ẇ+
∂F

∂∇xw
˙(∇xw) (2.20)

Combining now (2.15), (2.18), (2.19) and (2.20) we get

D :=
(

∂F
∂c

−divxt−ρµ

)
ċ (2.21)
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+

(
∂F

∂∇xc
− t
)

˙(∇xc)+
(

∂F
∂w

−divxs
)

ẇ+

(
∂F

∂∇xw
− s
)

˙(∇xw)

−
(
T+ρ

2 ∂ (ρ−1F)

∂ρ
I+ t⊗∇xc+ s⊗∇xw

)
: ∇xu−m|∇xµ|2.

Using (2.13) the last relation takes the form

D :=
(

divx
∂F

∂∇xc
−divxt

)
ċ

+

(
∂F

∂∇xc
− t
)

˙(∇xc)+
(

∂F
∂w

−divxs
)

ẇ+

(
∂F

∂∇xw
− s
)

˙(∇xw)

−
(
T+ρ

2 ∂ (ρ−1F)

∂ρ
I+ t⊗∇xc+ s⊗∇xw

)
: ∇xu−m|∇xµ|2.

So for example we want divxs = ∂F
∂w = (c−M) =−△w = divx(−∇w). Hence, making the

following constitutive assumptions



t = ∇c = ∂F
∂∇xc ,

s =−∇w = ∂F
∂∇w ,

S = T+P(ρ,c,∇xc,w,∇xw)I+ t⊗∇xc+ s⊗∇xw

= 2ν(c)Du+η(c)divxuI,

(2.22)

where,

P(ρ,c,∇xc,w) = ρ
2 ∂ (ρ−1F)

∂ρ
(ρ,c,∇xc,w). (2.23)

we conclude that

D =−2ν(c)|Du|2−η(c)|divxu|2−m|∇xµ|2≤ 0. (2.24)
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Note that, the stress tensor T differs from the stress tensor for a single compressible

Newtonian fluid by two extra stresses, namely the stress ∂F
∂∇xc ⊗∇xc, which is often called

Ericksen’s term and the extra stress ∂F
∂∇w ⊗∇xw which accounts for the nature of the joint A

& B subchain interactions in the diblock copolymer macromolecule. Finally, if we specify

F to be of the form

F(ρ,c,∇xc,w) = ρ f (ρ,c)+
1
2
|∇c|2+(c−M)w− 1

2
|∇xw|2

we have

P(ρ) = ρ
2 ∂ f

∂ρ
(ρ,c)− |∇xc|2

2
− (c−M)w+

1
2
|∇xw|2 (2.25)

Thus, (1.1)-(1.5) are obtained, due to (2.1)(2.2)(2.4) and (2.13), where an assumption is

made for simplicity m = 1.

2.3 Preliminaries: A Priori Bounds and Compactness

In this section, a priori bounds for weak solutions of the system will be discussed.

2.3.1 Total mass conservation

By integration of (1.1) over Ω

∫
Ω

ρ(t)dx =
∫

Ω

ρ0 dx ≡ M0 for almost all t ∈ (0,T ). (2.26)

And we do the same with (1.3),

∫
Ω

ρ(t)c(t)dx =
∫

Ω

ρ0c0 dx for almost all t ∈ (0,T ) (2.27)
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2.3.2 Total energy balance

Integrating (2.15) with respect to Ω, using (1.9) and (2.24)

d
dt

E(t)+
∫

Ω

(
2ν(c,w)|D(u)|2+η(c,w)|divxu|2+m|∇xµ|2

)
(t)dx = 0 (2.28)

for sufficiently smooth solutions, where E(t) is as in (1.17). For weak solutions, this equal-

ity will turn into inequality as in (1.21). The total energy (1.21), together with (1.11), yields

uniform estimates

esssupt∈(0,T )∥ρ∥Lγ (Ω)≤C(M0,E0) (2.29)

esssupt∈(0,T )∥∇xc∥L2(Ω;R3)≤C(M0,E0) (2.30)

esssupt∈(0,T )∥
√

ρu∥L2(Ω;R3)≤C(M0,E0) (2.31)

esssupt∈(0,T )∥∇xw∥L2(Ω;R3)≤C(M0,E0) (2.32)∫ T

0
∥∇xµ∥2

L2(Ω;R3)dt ≤C(M0,E0) (2.33)

where E0 denotes the initial energy defined in (1.18) and M0 is the total mass as in (2.26).

Moreover, by means of Korn’s inequality and hypothesis (1.11),

∫ T

0
∥∇xu∥2

L2(Ω;R3)dt ≤C(M0,E0) (2.34)

2.3.3 Cahn-Hilliard Type Equation

A weak formulation of (1.3)-(1.5), taking the boundary conditions for (c,w,µ) in (1.9)

into account, reads

∫
QT

(ρc∂tϕ +ρcu ·∇v)d(x, t) =
∫

QT

∇µ ·∇ϕd(x, t), (2.35)

20



∫
QT

ρµϕd(x, t) =
∫

QT

(
ρ

∂ f (ρ,c)
∂c

ϕ +wϕ +∇c ·∇ϕ

)
d(x, t) (2.36)

∫
QT

∇w ·∇ϕ d(x, t) =
∫

QT

(c−M)ϕ d(x, t) (2.37)

for any test function ϕ ∈ D((0,T )× Ω̄). In order to estimate ∥c(t)∥L2 and ∥u(t)∥L2 , the

following simple variant of Poincare’s inequality (cf. Lemma 3.1 in [21]) is used:

Lemma 2.3.1. Let Ω⊂R3 be a bounded Lipschitz domain. Assume that ρ is a non-negative

function such that

0 < M =
∫

Ω

ρ dx,
∫

Ω

ρ
γ dx ≤ K,

with γ > 6
5 . Then there exists a constant C =C(γ,M,K) such that

∥∥∥∥w− 1
|Ω|

∫
Ω

ρwdx
∥∥∥∥

L2(Ω)

≤C(γ,M,K)∥∇w∥L2(Ω;R3)

for any w ∈W 1,2(Ω).

Applying the lemma directly with estimates (2.29) (2.31) (2.34), boundary condition

(1.9), and hypothesis on viscosity coefficients (1.11), following bounds are obtained:

∫ T

0
∥u∥2

W 1,2
0 (Ω;R3)

dt ≤C(M0,E0) (2.38)

∫ T

0
∥S∥2

L2(Ω;R3)dt ≤C(M0,E0) (2.39)

Similarly, by estimates (2.27), (2.30), (1.16), and (2.32), the following estimates for c and

w are obtained

ess sup
t∈(0,T )

∥c∥2
W 1,2(Ω)dt ≤C(c0,M0,E0), (2.40)

and

ess sup
t∈(0,T )

∥w∥2
W 1,2(Ω)dt ≤C(E0). (2.41)
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Choosing ϕ = ϕ(t), (2.36) becomes

∫
QT

ρ(t)µ(t)ϕ(t)d(x, t) =
∫

QT

ρ
∂ f (ρ(t),c(t))

∂c(t)
ϕ dx for a.a. t ∈ (0,T ),

because of the estimate of w (1.16). The integral on the right-hand side

∣∣∣∣∂ f
∂c

∣∣∣∣≤ 1+ |c| for all c.

Therefore, in accordance with (2.33), one have

∫ T

0
∥µ∥2

W 1,2(Ω)dt ≤C(c0,M0,E0) (2.42)

Weak formulation (2.37) and C2 boundary condition enable us to apply improved regularity

theorem. With the estimate for c (2.40) and estimate for w (2.41), we now obtain

ess sup
t∈(0,T )

∥w∥2
W 3,2(Ω)≤C(c0,M0,E0) (2.43)

2.4 Strong compactness of gradients of concentration and interaction terms

This is one of the main ingredients of the proof. This result will be later used twice in

the proof for existence theorem. Assume that ρn ≥ 0,

ρn → ρ in Cweak ([0,T ];Lγ(Ω)) , (2.44)

cn → c weakly* in L∞
(
0,T ;W 1,2(Ω)

)
, (2.45)

wn → w weakly* in L∞
(
0,T ;W 3,2(Ω)

)
, (2.46)

∂t (ρncn) is bounded in Lq (0,T ;W−1,q(Ω)
)

for a certain q > 1, (2.47)
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and, in addition,

∫ T

0

∫
Ω

∇cn ·∇ϕ dxdt =
∫ T

0

∫
Ω

√
ρn fnϕ dxdt +

∫ T

0

∫
Ω

gnϕ dxdt +
∫ T

0

∫
Ω

wϕ dxdt (2.48)

∫ T

0

∫
Ω

∇wn ·∇ϕ dxdt =
∫ T

0

∫
Ω

(cn −Mn)ϕ dxdt (2.49)

for any ϕ ∈ D((0,T )× Ω̄), where

 fn → f weakly in L2((0,T )×Ω),

gn → g (strongly) in L1
(

0,T ;L
6
5 (Ω)

)
.

 (2.50)

Our first goal is to show that

∫ T

0

∫
Ω

|∇cn|2dx −→
∫ T

0

∫
Ω

|∇c|2dx (2.51)

which yields with (2.45),

cn −→ c in L2(0,T ;W 1,2(Ω)).

To this end, we observe first that ρ ≥ 0, and

cn → c a.a. on the set {ρ > 0} (2.52)

passing to a suitable subsequence as the case may be. Indeed it follows from (2.44), (2.45)

that

ρncn → ρc weakly-(*) in L∞(0,T ;Lq(Ω)) for a certain q >
6
5
,

which, together with (2.47), gives rise to

ρnc2
n → ρc2 weakly-(*) in L∞ (0,T ;Lr(Ω)) for a certain r > 1.
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Since, by the same token,

(ρn −ρ)c2
n → 0 weakly-(*) in L∞ (0,T ;Lr(Ω)) for a certain r > 1,

we get ∫ T

0

∫
Ω

ρc2
ndxdt →

∫ T

0

∫
Ω

ρc2dxdt,

in particular, (2.52) follows.

We then want to show

wn −→ w a.a. (2.53)

passing to a suitable subsequence. Indeed it follows from (2.46) that

wn is bounded in L∞(0,T ;W 3,2(Ω))

which implies

w2
n is bounded in L∞(0,T ;Lr(Ω)).

for some r > 1. The bound above give rise to

w2
n −→ w2 weakly* in L∞(0,T ;Lr(Ω)),

for a subsequence of wn, which yields,

∫ T

0

∫
Ω

w2
n dxdt −→

∫ T

0

∫
Ω

w2 dxdt.

In particular, (2.53) follows.
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On the other hand, letting n −→ ∞ in (2.48) yields

∫ T

0

∫
Ω

∇c ·∇ϕ dxdt =
∫ T

0

∫
Ω

√
ρ f ϕ dxdt +

∫ T

0

∫
Ω

gϕ dxdt +
∫ T

0

∫
Ω

wϕ dxdt

for any ϕ ∈ D((0,T )×Ω), where

√
ρn fn →

√
ρ f weakly in L2 (0,T ;Lq(Ω)) for a certain q >

6
5
.

In particular, by means of a standard density argument,

∫ T

0

∫
Ω

|∇c|2 dxdt =
∫ T

0

∫
Ω

√
ρ f cdxdt +

∫ T

0

∫
Ω

gcdxdt +
∫ T

0

∫
Ω

wcdxdt (2.54)

Finally, taking ϕ = cn and letting n → ∞ in (2.48), we obtain

lim
n→∞

∫
Ω

|∇cn|2 dxdt =
∫ T

0

∫
Ω

√
ρ f cdxdt +

∫ T

0

∫
Ω

gcdxdt +
∫ T

0

∫
Ω

wcdxdt

which, combined with (2.54), gives rise to the desired conclusion (2.51) as soon as we

observe that

√
ρ f c =

√
ρ f c (2.55)

wc = wc (2.56)

where, according to the standard notation convention adopted in this paper, the bar stands

for a weak limit in L1.

In accordance with (2.52), relation (2.55) is satisfied on the set {ρ > 0} where cn → c

strongly in L1(Ω). Similarly, by (2.53), relation (2.56) is satisfied for any ρ . On the other
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hand, since ρn are non-negative,

ρn → 0 (strongly) in Lq({ρ = 0}) for any 1 ≤ q < γ

whence (2.55) holds on the set {ρ = 0} as well. The proof of (2.51) is now complete.

In the same spirit, our second goal

wn −→ w in L2(0,T ;W 1,2(Ω)).

can be obtain if

(c−M)w = (c−M)w,

which follows from the strong convergence of c in L2(0,T ;W 1,2(Ω)).
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Chapter 3: Existence of the Weak Solution of System with Artificial Pres-

sure

In this chapter, we will discuss the first part of the two-level approximation. In the first

approximation level we add an artificial pressure term that ensures better integrability of ρ

and ρc. This technique is well-known and can be found e.g. in [[20] , [41],[43] ]. More

precisely, we start with the approximate system with artificial pressure added

∫
QT

(
ρδ uδ ·∂tϕ +ρδ (uδ ⊗uδ ) : ∇ϕ +

(
p(ρδ ,cδ )+δρ

Γ

δ

)
divϕ

)
d(x, t)

=
∫ T

0

∫
Ω

(Sδ −Pδ ) : ∇ϕdxdt −
∫

Ω

ρ0,δ u0 ·ϕ(0)dx
(3.1)

for any ϕ ∈ D
(
[0,T )×Ω;R3),
∫

QT

(ρδ ∂tϕ +ρδ uδ ·∇ϕ)d(x, t) =−
∫

Ω

ρ0,δ ϕ

∣∣∣∣
t=0

dx (3.2)

∫
QT

(ρδ cδ ∂tϕ +(ρδ cδ uδ −∇µ) ·∇ϕ)d(x, t) =−
∫

Ω

ρ0,δ c0ϕ

∣∣∣∣
t=0

dx (3.3)

∫
QT

ρµϕ d(x, t) =
∫

QT

(
ρ

∂ f
∂c

ϕ +wϕ +∇xc ·∇xϕ

)
d(x, t) (3.4)

∫
QT

∇w ·∇ϕ d(x, t) =
∫

QT

(C−M)ϕ d(x, t) (3.5)
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for any ϕ ∈ D
(
[0,T )× Ω̄

)
, where

Sδ = 2ν(cδ )D(uδ )+η(cδ )divxuδ I, (3.6)

Pδ = ∇xcδ ⊗∇xcδ −
|∇xcδ |2

2
I−∇xwδ ⊗∇xwδ − (cδ −Mδ )wδ +

|∇xwδ |2

2
I (3.7)

pδ = p(ρ)+δρ
Γ +δρ

2c2 (3.8)

Here, ρ0,δ ∈ LΓ(Ω) such that ρ0,δ ≥ 0, and ρ −→ ρ0 in Lγ(Ω).....

Eδ (t)+
∫

Q(s,t)

(Sδ : ∇xuδ + |∇xµδ |2)≤ Eδ (s) (3.9)

for almost all 0 ≤ s ≤ t ≤ T including s = 0, where

Eδ =
∫

Ω

ρ|uδ |2

2
+ρδ f (ρδ ,cδ )+

|∇xcδ |2

2
+

|∇xwδ |2

2
+

δ

Γ−1
ρ

Γ

δ
+δρ

2c2 (3.10)

The main goal of this section is to prove:

Theorem 3.0.1. Let Γ > 3, δ > 0, and let 0 < T < ∞. Then for every non-negative ρ0,δ ∈

LΓ(Ω), measurable u0 : Ω −→ R3 with ρ0,δ |u0|2∈ L1(Ω), c0 ∈ H1(Ω) and w0 ∈ H1(Ω)

there are some ρδ ∈ L∞(0,T ;LΓ(Ω))∩LΓ+1(QT ), δ ≥ 0, uδ ∈ L2(0,T ;H1(Ω;R3)), cδ ∈

L∞(0,T ;H1(Ω)) wδ ∈ L∞(0,T ;H1(Ω)) solving (3.1)- (3.8) and satisfying (3.9)

In order to prove this theorem, we use a suitable time discretization to approximate

(3.1)-(3.5). For simplicity we will drop the subscript δ in most quantities for the rest of this

chapter.
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3.1 Implicit Time Discretization

Let h> 0. Given (uk,ρk,ck)∈L2(Ω)3×LΓ(Ω)×H1(Ω) we determine (uk+1,ρk+1,ck+1,µk+1)

as a solution of the system

ρu−ρkuk

h
+div(ρu⊗u)−divS

+ε(∇ρ ·∇)u+∇pδ = ρµ∇c−ρ
∂ f
∂c

(ρ,c)∇c
(3.11)

ρ −ρk

h
+div(ρu) = ε∆ρ (3.12)

ρk
c− ck

h
+ρu ·∇c = ∆µ (3.13)

ρkµ = ρk
f (ρk,c)− f (ρk,ck)

c− ck
+w−∆c (3.14)

−∆w = c−M (3.15)

where pδ (ρ) = p(ρ)+δρΓ +δρ2c2, p(ρ) = ρ2 ∂ f
∂ρ

= ρ2 ∂ fe
∂ρ

and

S(ck,∇u) = 2ν(ck)D(u)+η(ck)divxuI, (3.16)

together with the boundary conditions

u|∂Ω= ∂nρ|∂Ω= ∂nc|∂Ω= ∂nw|∂Ω= ∂nµ|∂Ω= 0 (3.17)

Here (3.11)-(3.15) will be understood in the sense of distributions and (3.17) in the sense

of traces of Sobolev functions. Note that (3.12)-(3.13) implies that

∫
Ω

ρk dx =
∫

Ω

ρ dx,
∫

Ω

ρkck dx =
∫

Ω

ρcdx
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which is the time discrete version of (2.26)-(2.27). Moreover, corresponding to (1.16), the

following equality holds ∫
Ω

wdx = 0. (3.18)

Remark 3.1.1. The right hand side of (3.11) is given by

−divx

[
∇xc⊗∇xc− 1

2
|∇xc|2I

]
−divx

[
−∇xw⊗∇xw− (c−M)wI+

1
2
|∇xw|2I

]
=−∆c∇xc+∆w∇xw+∇xcw+(c−M)∇xw

= ρµ∇xc− ∂ f
∂c

∇xc−w∇xc− (c−M)∇xw+∇xcw+(c−M)∇xw

= ρµ∇xc−ρ
∂ f
∂c

∇xc

(3.19)

provided (1.4) (1.5) holds. In the discrete system above, although (1.4) does not hold, the

form of (3.11)-(3.15) provide that a similar energy estimate holds.

Because we have assumption p = ρ2 ∂ fe
∂ρ

, we decompose p = p̃m + pb, where pb ∈

C2([0,∞)), pb ≤ 0 has a compact support, pm(0) = 0 and

p̃m(1+ρ
Γ−1)≤ p̃

′
m(ρ)≤ p̃m(1+ρ

Γ−1). (3.20)

for some constants pm, pm > 0. Moreover, we can see that δρ2c2 > 0. Therefore, by these

assumptions we have that

pδ (ρ,c) = pm(ρ,c)+ pb(ρ), (3.21)

where pm(ρ,c) = p̃m(ρ)+δρ2c2 ≥ 0 is again monotone with respect to ρ . The decompo-

sition of p induces a decomposition of f

f (ρ,c) = fm(ρ,c)+ fb(ρ)
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where fm(ρ,c) =
∫ ρ

0
pm(s,c)

s2 ds+ f0(c) and ρ 7→ ρ fm(ρ,c) is convex and monotone. More-

over, we define the energy

Em(ρ,u,c,w) =
∫

Ω

ρ|u|2

2
+ρ fm(ρ,c)+

|∇xc|2

2
+

|∇xw|2

2
dx

Lemma 3.1.1. Let (uk,ρk,ck,wk) ∈ L2(Ω;R3)×Lγ(Ω)×H1(Ω)×H1(Ω), ρ ≥ 0, and let

0 < ε ≤ 1. Then every (u,ρ,c,w,µ) ∈ H1(Ω;R3)×H2(Ω)4, ρ ≥ 0, solving (3.11)-(3.17)

satisfies the discrete energy estimate

Em(ρ,u,c,w)+ εh
∫

Ω

∂ρ pm

ρ
|∇ρ|2dx+

∫
Ω

ρk |u−uk|2

2
dx

+
∥∇(c− ck)∥2

2
2

+
∥∇(w−wk)∥2

2
2

+α ∥ρ −ρk∥2
2 +h

∫
Ω

S : ∇udx+h∥∇µ∥2
2

≤ Em (ρk,uk,ck,wk)+Rk

(3.22)

for some α > 0 depending only on fm. Here pm = pm(ρ,c) and

Rk = h
∫

Ω

pb(ρ)divudx− εh
∫

Ω

∇ρ ·∇c
∂ 2 (ρ fm(ρ,c))

∂ρ∂c
dx. (3.23)

Moreover, there is some h0 > 0 independent of (uk,ρk,ck,wk) and ε > 0 such that any

solution (u,ρ,c,w,µ) ∈ H1(Ω;R3)×H2(Ω)4 with ρ ≥ 0 satisfies

∥∥∥(ρ
1
2 u,∇c,∇w

)∥∥∥2

2
+∥ρ∥Γ

Γ+h
∥∥∥(u,∇u,µ,∇µ,ε

1
2 ∇ρ,ε

1
2 c∇ρ

)∥∥∥2

2

≤C (Em (ρk,uk,ck,wk)+1)
(3.24)

where C is independent of h with 0 < h ≤ h0, 0 < ε ≤ 1 and ρk, uk, ck, but depends on∫
Ω

ρkdx and
∫

Ω
ρkckdx. Finally, for all 0< h≤ h0 there is some (u,ρ,c,w,µ)∈H1(Ω;R3)×

H2(Ω)4 with ρ ≥ 0 solving (3.11)-(3.17).
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Proof. To prove the energy estimate, we multiply (3.12) with 1
2 |u|

2 and integrating by parts

∫
Ω

ρ|u|2−ρkuk ·u
h

dx+
∫

Ω

div(ρu⊗u) ·udx+ ε

∫
Ω

(∇ρ ·∇)u ·udx

=
∫

Ω

ρ
|u|2

2h
dx−

∫
Ω

ρk
|uk|2

2h
dx+

∫
Ω

ρk
|u−uk|2

2h
dx

Hence, testing (3.11) with u we obtain

∫
Ω

ρ
|u|2

2h
dx−

∫
Ω

ρk
|uk|2

2h
dx+

∫
Ω

ρk
|u−uk|2

2h
dx+

∫
Ω

S : ∇udx

=
∫

Ω

pδ divudx+
∫

Ω

ρµ∇c ·udx−
∫

Ω

ρ
∂ f
∂c

(ρ,c)∇c ·udx.
(3.25)

Moreover, multiplying (3.12) with ∂ρF(ρ), where F(ρ,c) = ρ fm(ρ,c), we obtain

ρ −ρk

h
∂ρF(ρ,c)+div(F(ρ,c)u)

+ pm(ρ)divu = ε∆ρ∂ρF(ρ,c)+ρ∂c f (ρ,c)∇c ·u

since ρ∂ρF(ρ,c)−F(ρ,c) = ρ2∂ρ fm(ρ,c) = pm(ρ,c). Furthermore, since ∂ 2F
∂ρ2 (ρ,c) =

ρ−1∂ρ pm(ρ,c)≥ α

2 > 0 for some α > 0 due to (3.20), we have

∂F
∂c

(ρ,c)(ρ −ρk)≥ ρ fm(ρ,c)−ρk fm (ρk,c)+α (ρ −ρk)
2 .

Therefore

1
h

∫
Ω

(ρ fm −ρk fm (ρk,c))dx+α ∥ρ −ρk∥2
2 ≤−

∫
Ω

pm divudx

−ε

∫
Ω

∂ρ pm

ρ
|∇ρ|2dx− ε

∫
Ω

∇ρ ·∇c
∂ 2 (ρ f )
∂ρ∂c

dx+
∫

Ω

ρ
∂ f
∂c

∇c ·udx,
(3.26)

where fm, pm and their derivatives depend on ρ,c if not stated differently. Moreover,
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multiplying (3.13) with µ and (3.14) with c−ck
h , we obtain

1
h

∫
Ω

ρk ( fm (ρk,c)− fm (ρk,ck))dx+
∥∇c∥2

2
2h

+
∥∇(c− ck)∥2

2
2h

+
∥∇w∥2

2
2h

+
∥∇(w−wk)∥2

2
2h

+
∫

Ω

|∇µ|2dx

≤ ∥∇ck∥2
2

2h
+

∥∇wk∥2
2

2h
−
∫

Ω

ρµ∇c ·u+
M−Mk

h
wdx

=
∥∇ck∥2

2
2h

+
∥∇wk∥2

2
2h

−
∫

Ω

ρµ∇c ·udx

(3.27)

since equation (3.15) (3.18), (a−b) ·a = |a|2
2 + |a−b|2

2 − |b|2
2 for all a,b ∈R3 and f (ρk,ck)−

f (ρk,c) = fm (ρk,ck)− fm (ρk,c). Combining (3.25)-(3.27) we obtain (3.22).

In order to estimate Rk

∣∣∣∣∫
Ω

∇ρ ·∇c
∂ 2 (ρ fm(ρ,c))

∂ρ∂c
dx
∣∣∣∣= ∫ |∇ρ ·∇c (1+ |c|)|dx ≤ ∥(1+ |c|)∇xρ∥2∥∇xc∥2

since ∂ 2(ρ fm)
∂ρ∂c (ρ,c) = f ′0(c).Hence,

|Rk|≤C(h∥divxu∥2+εh∥(1+ c)∇xρ∥2∥∇xc∥2) (3.28)

Moreover, (3.22) and ρ−1∂ pm ≥ 2c2 + p̃m(ρ
−1 +ρΓ−1) due to (3.20) imply that

∥∥∥(ρ
1
2 u,∇c,∇w

)∥∥∥2

2
+∥ρ∥Γ

Γ+h
∥∥∥(u,∇µ,ε

1
2 (1+ logρ)∇ρ,ε

1
2 c∇ρ

)∥∥∥2

2

≤C (Em (ρk,uk,ck)+ |Rk(ρ,u,c)|)

By combining the last two estimates and using Young’s inequalities,

∥∥∥(ρ
1
2 u,∇c,∇w

)∥∥∥2

2
+∥ρ∥Γ

Γ+h
∥∥∥(u,∇µ,ε

1
2 (1+ logρ)∇ρ,ε

1
2 c∇ρ

)∥∥∥2

2

≤C
(

Em (ρk,uk,ck,wk)+1+ εh3/2∥(1+ c)∇xρ∥2
2+h1/2∥∇xc∥2

2

)
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where C is independent of ρ , u, c, ρk, uk, ε , h. Then, there is some h0 > 0 such that

∥∥∥(ρ
1
2 u,∇c,∇w

)∥∥∥2

2
+∥ρ∥Γ

Γ+h
∥∥∥(u,∇µ,ε

1
2 (1+ logρ)∇ρ,ε

1
2 c∇ρ

)∥∥∥2

2

≤C (Em (ρk,uk,ck,wk)+1)

for all 0 < h ≤ h0. Finally, by the same estimates as in Section 2.3.3, Lemma 2.3.1 and

(3.13) implies

∥c∥2
2+h∥µ∥2

2+∥w∥2
2 ≤C

(
∥∇c∥2

2+h∥∇µ∥2
2+∥∇w∥2

2+

∣∣∣∣∫
Ω

ρcdx
∣∣∣∣2 +h

∣∣∣∣∫
Ω

ρkµ dx
∣∣∣∣2
)

≤C′ (Em (ρk,uk,ck,wk)+1)

where C, C′ depend on
∫

Ω
ρ dx =

∫
Ω

ρkdx and
∫

Ω
cdx =

∫
Ω

ρkckdx. This completes the

proof of the uniform estimate (3.24).

Next we prove existence of solutions (for a fixed 0 < h ≤ h0) with the aid of a homotopy

argument and the Leray-Schauder degree. To this end we introduce operators Lk,Fk : X −→

Y with

X = H1
0 (Ω;R3)×H2

N(Ω)4, H2
N(W ) = {u ∈ H2(W ) : ∂nu|∂Ω= 0},

Y = H−1(Ω;R3)×L2(Ω)4,
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and

Lk(u,ρ,c,w,µ) =



divS (ck,∇u)

λρ +div(ρu)− ε∆ρ

∆µ +
∫

Ω
µ dx

−w+∆c+
∫

Ω
cdx

∆w+
∫

Ω
wdx


Fk(u,ρ,c,w,µ) =

ρu−ρkuk
h +div(ρu⊗u)+ ε(∇ρ ·∇)u+∇pδ −ρµ∇c+ρ

∂ f
∂c (ρ,c)∇c(

λ − 1
h

)
[ρ]++ 1

hρk

ρk
c−ck

h +ρu ·∇c+
∫

Ω
µ dx

ρk
f (ρk,c)− f (ρk,ck)

c−ck
−ρkµ +

∫
Ω

cdx∫
Ω

cdx− c+
∫

Ω
cdx


Here λ ≥ max(λ0,

1
h), where λ0 = λ0(ε,K) is the constant in the statement of Lemma 3.1.2

below with K so large that ∥v∥6≤ K for any solution of (3.11)-(3.17). Then by Lemma

3.1.2 below and standard results on elliptic partial differential equations Lk : X −→ Y is

invertible. Moreover, if Lk(u,ρ,c,w,µ) = Fk(u,ρ,c,µ) for some (u,ρ,c,w,µ) ∈ X , then

ρ ≥ 0 by Lemma 3.1.2 and therefore [ρ]+ = ρ . Hence (u,ρ,c,w,µ) ∈ X with ρ ≥ 0 is a

solution of (3.11)-(3.17) if and only if

Lk(u,ρ,c,w,µ) = Fk(u,ρ,c,w,µ)⇔ (u,ρ,c,w,µ) = L −1
k (Fk(u,ρ,c,w,µ))

i.e., v = (u,ρ,c,µ) solves v−L −1
k (Fk(v)) = 0. . Moreover, the operator norms of Lk and

L −1
k can be bounded by a constant independent of ck due to the bound for viscosity coef-

ficients (1.11). Furthermore, it is easy to check that L −1
k Fk : X −→ X is a continuous and

35



compact mapping. Therefore, the Leray-Schauder degree of I −L −1
k Fk is well-defined,

cf. e.g. []. In order to show that deg
(
I −L −1

k Fk,BR(0),0
)
= 1 for sufficiently large R> 0,

let F τ
k (u,ρ,c,w,µ),τ ∈ [0,1], be the operator obtained by replacing for uk,ρk,ck, f in the

definition of Fk(u,ρ,c,w,µ) by uτ
k = (1− τ)uk,ρ

τ
k = (1− τ)ρk + τ,cτ

k = (1− τ)ck and

f τ(ρ,c) = τ
(
ρ

Γ−1 +1+ c2)+(1− τ) f (ρ,c).

Then v = (u,ρ,c,2,µ) ∈ X solves v−L −1
k

(
F τ

k (v)
)
= 0 if and only if (u,ρ,c,w,µ) solve

(3.11)− (3.17) with uk,ρk,ck, f replaced by uτ
k ,ρ

τ
k ,c

τ
k , f τ . Moreover, it is not difficult to

check that for each fixed ε > 0, 0< h≤ h0,
∥∥F τ

k (u,ρ,c,µ)
∥∥

Y can be estimated by the terms

on the left-hand side of (3.24). Hence, if v = (u,ρ,c,w,µ) ∈ X solves v−L −1
k

(
F τ

k (v)
)
=

0, then

∥(u,ρ,c,µ)∥X≤C∥F τ
k (u,ρ,c,µ)∥Y ≤ M (Em (ρk,uk,ck) ,ε,h)

for some continuous function M independent of τ ∈ [0,1]. Hence there is some R > 1 such

that any solution of w−L −1
k F τ

k (w) = 0 with 0 < h ≤ h0, and we got

deg
(
I −L −1

k Fk,BR(0),0
)
= deg

(
I −L −1

k F 1
k ,BR(0),0

)
= 1,

which concludes the proof of the lemma.

The following lemma is from Abel et al. [2, Lemma 3.4].

Lemma 3.1.2. Let K,ε > 0, and let v ∈ H1(Ω;R3) with ∥v∥6≤ K. Then there is some

λ0 = λ0(ε,K)> 0 such that for any λ ≥ λ0 and any f ∈ L2(Ω), there is a unique ρ ∈H1(Ω)

solving

λ (ρ,ϕ)Ω − (vρ,∇ϕ)Ω + ε(∇ρ,∇ϕ)Ω = ( f ,ϕ)Ω (3.29)

for all ϕ ∈ H1(Ω). Moreover, if f ≥ 0, then ρ ≥ 0.
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Now, let N ∈ N be given and set h = T
N and ε = h. If h0 is the constant appear as in

Lemma 3.1.1, then there is some N0 such that N ≥ N0 implies h ≤ h0. Hence, if N ≥ N0,

we can define (uk,ρk,ck,µk,wk), k = 1, ...,N, successively as solution of (3.11)-(3.17) with

(u0,ρ0,c0) as fixed initial values. Moreover, Define gN(t) : (−h,∞) by gN(t) = gk for

t ∈ ((k − 1)h,kh], where g ∈ {u,ρ,c,µ} (setting µ0 = 0) as well as pN
δ
= p

(
ρN ,cN)+

δ
(
ρN)Γ

+δ (ρN)2(cN)2Γ. In what follows we denote

(
∆
+
h f
)
(t) = f (t +h)− f (t),

(
∆
−
h f
)
(t) = f (t)− f (t −h),

(τhg)(t) = g(t −h), ∂
±
t,h f =

1
h

∆
±
h f .

Multiplication of (3.11) by
∫ k(h+1)

kh ϕ(x, t)dt, integration in space, and summation over all

k ∈ N0 gives

(
∂
−
t,h

(
ρ

NuN) ,ϕ)
QT

−
(
ρ

NuN ⊗uN −SN + pN
δ
I,∇ϕ

)
QT

+h
(
∇ρ

N ·∇uN ,ϕ
)

QT
=
(
ρ

N (
µ

N −∂c f N)
∇cN ,ϕ

)
QT

(3.30)

where ϕ ∈C∞

(0)

(
Ω× [0,T );R3) is arbitrary, ∂c f N = ∂ f

∂c (ρ
N ,cN)

SN = 2ν
(
τhcN ,τhwN)D(uN)+η

(
τhcN ,τhwN)divuNI (3.31)

Moreover, using summation by parts, i.e.,

(
∂
−
t,h

(
ρ

NuN) ,ϕ)
QT

=−
(

ρ
NuN ,∂+

t,hϕ

)
QT

− (ρ0u0,ϕ(0))Ω
,
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we conclude

−
(

ρ
NuN ,∂+

t,hϕ

)
QT

− (ρ0u0, ϕ|t=0)Ω
−
(
ρ

NuN ⊗uN −SN + pN
δ
I,∇ϕ

)
QT

+h
(
∇ρ

N ·∇uN ,ϕ
)

QT
=
(
ρ

N (
µ

N −∂c f N)
∇cN ,ϕ

)
QT

(3.32)

for all ϕ ∈C∞

(0)

(
Ω× [0,T );R3). In the same way, one obtains

(
ρ

N ,∂+
t,hψ

)
QT

+(ρ0, ψ|t=0)Ω
+
(
ρ

NuN ,∇ψ
)

QT
= h(∇ρ,∇ψ)QT , (3.33)(

ρ
NcN ,∂+

t,hψ

)
QT

+(ρ0c0, ψ|t=0)Ω
+
(
ρ

NcNuN ,∇ψ
)

QT
=
(
∇µ

N ,∇ψ
)

QT
(3.34)

for all ψ ∈C∞

(0)(Ω× [0,∞)), where we have used that (3.12)-(3.13) implies

ρk+1ck+1 −ρkck

h
+divx(ρkukck) = ∆µk+1 (3.35)

Moreover

τhρ
N

µ
N = τhρ

N f (τhρN ,cN)− f (τhρN ,τNcN)

∆
−
h cN +wN −∆cN (3.36)

Finally, summation of (3.22) with respect to k ∈ N yields

Em(ρ
N(t),uN(t),cN(t),wN(t))+h

∫
Q(s,t)

∂ρ pm(ρ
N ,cN)

ρN |∇ρ
N |2 d(x,τ)

+
∫

Q(s,t)

ρN
∣∣∆−

h uN
∣∣2

2
d(x,τ)+

1
2h

∥∥∇∆
−
h cN∥∥2

L2(Q(s,t))+
1

2h

∥∥∇∆
−
h wN∥∥2

L2(Q(s,t))

+α
∥∥∆

−
h ρ
∥∥2

L2(Q(s,t))+
∫

Q(s,t)
SN : ∇uN d(x,τ)+∥∇µ

N∥2
L2(Q(s,t))

≤ Em
(
ρ

N(s),uN(s),cN(s),wN(s)
)
+Rt,s

(
ρ

N ,uN ,cN)
(3.37)
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for all 0 ≤ s ≤ t ≤ T with s, t ∈ hN0, where

Rt,s
(
ρ

N ,uN ,cN)= ∫
Q(s,t)

(
pb(ρ

N)divuN −h∇ρ
N ·∇cN ∂ 2 (ρ fm)

∂ρ∂c
(ρN ,cN)

)
d(x,τ)

(3.38)

Since Em(ρ
N(t),uN(t),cN(t),wN(t)) = Em(ρ

N(tk),uN(tk),cN(tk),wN(tk)) for all t ∈ (tk −

h, tk] if tk ∈ hN0 ∩ (0,T ), we conclude that (3.37) holds for all 0 ≤ s ≤ t ≤ T with

Rt,s
(
ρ

N ,uN ,cN)= ∫
Q(sk,tk)

(
pb(ρ

N)divuN −h∇ρ
N ·∇cN ∂ 2 (ρ fm)

∂ρ∂c
(ρN ,cN)

)
d(x,τ)

(3.39)

where sk, tk ∈ hN0∩(0,T ) are determined by the condition t ∈ (tk−h, tk] and s∈ (sk−h,sk].

Lemma 3.1.3. There is some h1 > 0 independent of ρN ,uN ,cN and a constant C(ρ0,u0,c0,w0)

depending only Ω,d,ρ0,u0,c0,w0 such that

sup
0≤t≤T

(
∥ρ

N∥Γ+
∫

Ω

ρ
N |uN |2dx+∥cN∥H1+∥wN∥H1

)
+h−

1
2∥∇∆

−
h cN ,∆−

h ρ
N∥L2(QT )+∥uN ,µN ,h

1
2 ρ

N logρ
N ,h

1
2 c∇ρ∥L2(0,T ;H1)

≤C(ρ0,u0,c0)

provided that h = T
N ≤ h1

Proof. since ∂ 2(ρ fm)
∂ρ∂c = f ′0(c) and since pb(ρ) is uniformly bounded, we have

|R0,T (ρ
N ,uN ,cN)|≤C

(
∥divuN∥L2(QT )+h3/2∥(1+ c)∇ρ∥2

L2(QT )+h
1
2∥∇c∥2

L2(QT )

)
.

39



On the other hand (3.37) and ρ−1∂ρ p(ρ)≥ 2|c|2+|1+ logρ|2 due to (3.20) imply

sup
0≤t≤T

(
∥ρ

N∥Γ
Γ+
∫

Ω

ρ
N |u|2+∥∇c∥2

2+∥∇w∥2
2

)
+h−1∥∇∆

−
h c,∆−

h ρ∥2
L2(QT )

+∥∇uN ,∇µ
N ,h

1
2 ∇(1+ logρ),h

1
2 c2

∇ρ∥2
L2(QT )

≤C
(
Em(ρ0,u0,c0,w0)+R0,T (ρ

N ,uN ,cN)
)

Combining this with the previous estimate, choosing 0 < h ≤ h1 sufficiently small, and

using Young inequalities yields

sup
0≤t≤T

(
∥ρ

N∥Γ
Γ+
∫

Ω

ρ
N |u|2+∥∇c∥2

2+∥∇w∥2
2

)
+h−1∥∇∆

−
h c,∆−

h ρ∥2
L2(QT )

+∥∇uN ,∇µ
N ,h

1
2 ∇(1+ logρ),h

1
2 c∇ρ∥2

≤C (Em(ρ0,u0,c0,w0)+1)

The remaining estimates of ∥cN∥L∞(0,T ;L2), ∥wN∥L∞(0,T ;L2) and ∥µN∥L2(QT ) are done in the

same way as in the proof of Lemma 3.1.1

3.2 Improved Density Estimate

In order to show that ρN , N ≥ N0, is uniformly bounded in LΓ+1(QT ), we choose

ϕ = ψ(t)B[P0ρ
N ], where P0ρ

N = ρ
N − 1

|Ω|

∫
Ω

ρ
Ndx.

and ψ ∈C∞
0 (0,T ), in (3.32). Here B is the well-known Bogovskii operator, cf. Bogovskii

[6] or Galdi [30, Chapter III.3]. In particular, B : Lp
(0)(Ω)→W 1,p

0 (Ω;R3) is a bounded op-

erator for all 1 < p < ∞, where Lp
(0)(Ω) = P0Lp(Ω), provided that Ω is a Lipschitz domain.
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Moreover, if g ∈ Lp, g = divv, v ∈ Lq(Ω;R3) such that v ·n|∂Ω= 0, then

∥B[g]∥Lq(Ω;R3)≤C(p,q)∥v∥Lq(Ω;R3) for 1 < p,q < ∞. (3.40)

Because B[P0ρN ] ∈ L∞(0,T ;W 1,Γ(Ω)) (by improved regularity theorem) and Γ > 3,

B[P0ρ
N ] ∈ L∞(0,T ;Cr+α(Ω;R3)) for r+α = 1− 3

Γ
. (3.41)

Therefore, since Γ > 3

∥B[P0ρ
N ]∥L∞(QT ;R3)≤C(ρ0) (3.42)

where P0ρ = div ṽ.

The direct computation using (3.11) yields

∫
QT

ψ(t)pm
(
ρ

N ,cN)
ρ

Nd(x, t)−
∫ T

0
ψ(t)

∫
Ω

pm
(
ρ

N)dx
1
|Ω|

∫
Ω

ρ
Ndxdt

=
∫

QT

ψ(t)
(
SN −ρ

NuN ⊗uN) : ∇B
[
P0ρ

N]d(x, t)

+
∫

QT

ψ(t)
(
ρ

N (
∂c f N −µ

N)
∇cN +h∇uN ·∇ρ

N) ·B[P0ρ
N]d(x, t)

+
∫

QT

ψ(t)ρNuN
τ−hB

[
div
(
ρ

NuN −h∇ρ
N)]d(x, t)

−
∫

QT

ρ
NuN

(
∂
+
t,hψ

)
B
[
P0ρ

N]d(x, t)≡
4

∑
j=1

I j
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where

|I1| ≤ (∥SN(∇u)∥L2+∥ρ
N∥LΓ∥u∥2

L6)
∥∥∇B

[
P0ρ

N]∥∥
L2(QT )

∥ψ∥∞

≤C′ (T,ρ0,c0,u0)∥ψ∥∞,

|I2| ≤
∥∥ρ

N∥∥
L∞(0,T ;LΓ) (∥c∥L∞(0,T ;L6)+∥µ∥L2(0,T ;L6))∥∇c∥L∞(0,T ;L2)∥B[P0ρ

N ]∥∞∥ψ∥∞

≤C (T,ρ0,c0,u0)∥ψ∥∞,

|I3| ≤
∥∥ρ

NuN∥∥
L2(QT )

∥∥B
[
div
(
ρ

NuN −h∇ρ
N)]∥∥

L2(QT )
∥ψ∥∞

≤C (T,ρ0,c0,u0)∥ψ∥∞,

|I4| ≤C (T,ρ0,c0,u0)∥∂tψ∥L∞(0,T )

since Γ > 3. Letting ψ to approach 1 we conclude

δ

∫
QT

(ρN)Γ+1d(x, t)≤C(T,ρ0,u0,c0) (3.43)

and

δ

∫
QT

(ρN)3c2d(x, t)≤C(T,ρ0,u0,c0)

uniformly in N ≥ N0. From the equation above, we get uniform bound in N ≥ N0

∥δ (ρN)2(cN)2∥
L

9
5
≤ δ

1
3∥δ

2
3 ρ

2c
4
3∥

L
3
2
∥c

2
3∥L9≤ δ

1
3C(T,ρ0,u0,c0) (3.44)
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3.3 Passing to the Limit

Using the a priori bounds given by Lemma 3.1.3, by (3.43) and by (3.44), we can pass

to a subsequence again denoted by (ρN ,uN ,cN ,wN ,µN) such that

(ρN ,cN)
∗−−−−⇀

N−→∞
(ρ,c) in L∞(0,T ;LΓ ×H1(Ω))

ρ
N −−−−⇀

N−→∞
ρ in LΓ+1(QT )

pδ (ρ
N ,cN)−−−−⇀

N−→∞
pδ (ρ

N ,cN) in L(Γ+1)/Γ(QT )

(ρNuN ,ρNcN ,SN)−−−−⇀
N−→∞

(ρu,ρc,S) in L2(QT ;R4 ×R3×3)

(uN ,µN)−−−−⇀
N−→∞

(u,µ) in L2(0,T ;H1(Ω;R4))

wN −−−−⇀
N−→∞

w in L2(0,T ;H3(Ω;R3))

as well as

(h∇ρ
N ,h∇(ρN logρ

N),hc∇ρ,∆−
h cN)−−−→

N−→∞
0 in L2(QT ;R7).

As a reminder, the bar stands for a weak limit in L1.

Next we define ρ̃N and ρ̃cN as a piece-wise linear interpolation of ρN(tk), ρN(tk)cN(tk),

respectively, where tk = kh, k = 0, ...,N. More precisely, ρ̃N = 1
h χ[0,h] ⋆t ρN and ρ̃cN =

1
h χ[0,h] ⋆t (ρ

NcN), where the convolution is only taken with respect to the time variable t.

Then

∂t ρ̃
N = ∂

−
t,hρ

N and ∂t ρ̃cN = ∂
−
t,h(ρ

NcN) almost everywhere.
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Thus (3.33) yields that ∂t ρ̃
N is bounded in L2(0,T ;H−1(Ω)), which implies that ρ̃N −→N−→∞

ρ in Lr(0,T ;H−ε(Ω)) for all 1 ≤ r < ∞, ε > 0

ρ̃
N −→N−→∞ ρ in Lr(0,T ;H−ε(Ω)) for all 1 ≤ r < ∞, ε > 0

by the Aubin-Lions Lemma. In particular, this implies

ρ̃
N → ρ in Cweak

(
[0,T ];LΓ(Ω)

)
since

∥∥ρ̃N
∥∥

L∞(0,T ;LΓ(Ω)) is uniformly bounded in N ≥ N0. Moreover,

∥∥ρ
N − ρ̃

N∥∥
L2(QT )

≤
∥∥∆

−
h ρ

N∥∥
L2(QT )

→N→∞ 0.

Hence weak− limN→∞ ρ̃N = weak− limN→∞ ρN = ρ and

ρu = lim
N→∞

ρ
NuN = lim

N→∞
ρ̃

NuN = ρu weakly in L2 (QT )

ρc = lim
N→∞

ρ
NcN = lim

N→∞
ρ̃

NcN = ρc weakly in L2 (QT )

lim
N→∞

ρ
N

µ
N = lim

N→∞
ρ̃

N
µ

N = ρµ weakly in L2 (QT )

since uN and cN converge weakly in L2 (0,T ;H1(Ω)
)
. Moreover, we denote

√
τhρN

f
(
τhρN ,cN)− f

(
τhρN ,τhcN)

cN − τhcN = F
(
τhρN ,cN ,τhcN)

using the convention F(ρ,c,c) = ∂ f
∂c (ρ,c). Then F (ρ,c1,c2) is a continuous function with

respect to (ρ,c1,c2) ∈ [0,∞)×R2 satisfying

|F (ρ,c1,c2)| ≤C
(

1+ρ
1
2 |logρ|

)
(1+ |c1|+ |c2|) .
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Hence
√

τhρN f(τhρN ,cN)− f(τhρN ,τhcN)
cN−τhcN is bounded in L2 (QT ), and we can apply the result

of Section 2.4 to
(
ρ̃N ,cN) using (3.29) together with the fact that τhρN − ρ̃N converges

strongly to zero in Lβ (QT ) for all 1 ≤ β < Γ+1. We concludes that

cN →N→∞ c in L2 (0,T ;H1(Ω)
)
.

wN →N→∞ w in L2 (0,T ;H1(Ω)
)
.

In particular, cN →N→∞ c almost everywhere and wN →N→∞ w almost everywhere in QT

and therefore

S= lim
N→∞

(
2ν
(
τhcN ,τhwN)D(uN)+η

(
τhcN ,τhwN)divuNI

)
= 2ν(c,w)D(u)+η(c,w)divuI= S.

Furthermore, because of the growth estimate of F , we conclude that

ρ
N f
(
τhρN ,cN)− f

(
τhρN ,τhcN)

cN − τhcN ⇀∗
N→∞ ρ

∂ f
∂c

in L∞

(
0,T ;L

6
5 (Ω)

)

for a suitable subsequence.

Having all necessary results at hand, we see that (u,ρ,c,w,µ) solve

−(ρu,∂tϕ)QT
+(ρ0u0, ϕ|t=0)Ω

−
(ρu⊗u−S,∇ϕ)QT

∂ f

= (pδ ,divϕ)QT
+

(
ρµ∇c−ρ

∂ f
∂c

∇c,ϕ

)
QT

(3.45)

45



for all ϕ ∈C∞

(0)([0,T )×Ω;R3), as well as

(ρ,∂tψ)QT
+(ρ0, ψ|t=0)Ω

+(ρu,∇ψ)QT = 0 (3.46)

(ρc,∂tψ)QT
+(ρ0c0, ψ|t=0)Ω

+(ρcu,∇ψ)QT = (∇µ,∇ψ)QT (3.47)(
ρµ −ρ

∂ f
∂c

−w,ψ

)
QT

= (∇c,∇ψ)QT (3.48)

(c−M,ψ)QT
= (∇w,∇ψ)QT (3.49)

for all ψ ∈C∞

(0)([0,T )× Ω̄).

To show ρ
∂ f
∂c = ρ

∂ f
∂c (c), since we have convergence ρN −→ ρ in Cweak((0,T ],LΓ(Ω))

and hypothesis (1.15), then

∫ T

0

∫
Ω

ρ
N ∂ f

∂c
(cN)ϕdx dt =

∫ T

0

〈
ρ

N ,ϕ
∂ f
∂c

(cN)

〉
W−1,2(Ω),W 1,2(Ω)

dt

→
∫ T

0
⟨ρ,ϕ ∂ f

∂c
(c)⟩W−1,2(Ω),W 1,2(Ω)dt =

∫ T

0

∫
Ω

ρ
∂ f
∂c

(c)ϕdx dt.

(3.50)

In order to pass the limit, the following result is still needed

pδ = pδ (ρ),

The almost everywhere convergence of ρN to ρ can yield the above statement. It can be

obtained by similar strategy as in [2, Section 3.3]. We will put it in the appendix A.

Finally, passing to the limit in (3.37) and (3.38), we obtain that

Em(ρ(t),u(t),c(t),w(t))+
∫

Q(s,t)

(
S : ∇u+ |∇µ|2

)
d(x,τ)

≤ Em(ρ(s),u(s),c(s),w(s))+
∫

Qs,t

pb(ρ)divud(x,τ)

Now, using the renormalized transport equation (1.20) for b(ρ) = pb(ρ) and ϕ = χ[s,t]
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(after a simple approximation), we conclude that

∫
Q(s,t)

pb(ρ)divud(x,τ) =−
∫

Ω

ρ(τ) fb(ρ(τ))dx
∣∣∣∣τ=t

τ=s

Summing up, we have proved (3.9), which completes the proof.
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Chapter 4: Vanishing Artificial Pressure Limit

4.1 Uniform Bounds

By virtue of the coercivity of the functions fe, f0 postulated in (1.14), (1.15), the spe-

cific free energy Eδ is bounded from below, and, by the same arguments as in Sections

2.3.1-2.3.3, the energy inequality (3.9) yields the estimates (2.29)-(2.43) with (u,ρ,c,w,µ)

replaced by (uδ ,ρδ ,cδ ,wδ ,µδ ) uniformly in δ > 0. Moreover, (3.9) and (3.10) imply that

δ ess sup
t∈(0,T )

∥ρδ∥Γ

LΓ(Ω)≤C (4.1)

4.2 Refined Pressure Estimates

To derive a uniform bound on the pressure in the reflexive Lebesgue space Lp((0,T )×

ω)), p > 1, we follow the strategy as in [23]: show that the pressure family {p(ρδ ,cδ )}δ>0

is equi-integrable in the following sense:

∫ T

0

∫
Ω

p(ρ,c)ρα

δ
+δρ

Γ+α

δ
+δρ

2+αc2 ≤C. (4.2)
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Let B be the Bogovskii operator as introduced in Section 3.2. Pursuing the main idea of

[23] we use quantities

ϕ(t,x) = ψ(t)B
[

ρ
α

δ
− 1

|Ω|

∫
Ω

ρ
α

δ
dx
]
, ψ ∈ D(0,T )

as test functions in the momentum balance (3.1).

∫
QT

ψ(t)
[
p(ρδ )ρ

α

δ
+δρ

Γ+α +δρ
2+αc2

δ

]
d(x, t)

−
∫ T

0
ψ(t)

∫
Ω

[
p(ρδ )+δρ

Γ

δ
+δρ

2
δ

c2
δ

]
dx

1
|Ω|

∫
Ω

ρ
α

δ
dxdt

=
∫

QT

ψ(t)(Sδ −Pδ −uδ ⊗uδ ) : ∇B
[
P0ρ

α

δ

]
d(x, t)

+
∫

QT

ψ(t)ρδ uδ B
[
div
(
ρ

α

δ
uδ

)]
d(x, t)

−
∫

QT

ρδ uδ (∂tψ)B
[
P0ρ

α

δ

]
d(x, t)≡

1

∑
j=1

I j

|I2|≤ ∥ρ
1
2
δ

uδ∥L∞(0,T ;L2)∥ρ
1
2
δ
∥L∞(0,T ;L2γ )∥ρ

α

δ
∥

L∞

(
0,T ;L

6γ

2γ−3

)∥uδ∥L2(0,T ;L6)

|I3|≤ ∥ρ
1
2
δ

uδ∥L∞(0,T ;L2)∥ρ
1
2
δ
∥L∞(0,T ;L2γ )∥ρ

α

δ
∥

L∞

(
0,T ;L

2γ

γ−1

)

If we pick 0 < α < 2γ−3
6 , |I2|, |I3|≤C(ρ0,c0,u0). In order to bound |I1|, a uniform bound

∥Pδ∥Lp(0,T ;Lp(Ω;R3)) for a certain p > 1 (4.3)

is to be obtained. The constitutive relation (3.4), hypothesis (1.15), and estimates (2.29),

(2.40), (2.42) imply

∥∆cδ∥L∞(0,T ;Lq)≤C for q >
6
5
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then with standard elliptic estimates

∥∇cδ∥L∞(0,T ;Lr)≤C for r > 2. (4.4)

The constitutive relation (3.5) and estimates (2.43) yields

∥∇wδ∥L∞(0,T ;Lr)≤C for r > 2. (4.5)

Moreover,

∥(c−M)w∥L∞(0,T ;L3)≤ ∥w∥L∞(0,T ;L6)∥c∥L∞(0,T ;L6) (4.6)

Thus, (4.3) follows from (4.4), (4.5), and (4.6)

4.3 Strong Compactness of the Concentration Gradients

We follow the arguments of Section 2.4 to obtain that

cδ −→ c in L2(0,T ;W 1,2(Ω)). (4.7)

wδ −→ w in L2(0,T ;W 1,2(Ω)). (4.8)

4.4 Asymptotic Limit for δ −→ 0

First we observe, in accordance with (2.38),

uδ −→ u in L2(0,T ;W 1,2
0 (Ω;R3)) (4.9)
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Then with relation (3.2) and estimate (2.29), we have

d
dt

∫
Ω

ρδ ϕ dx =
∫

Ω

ρδ uδ ·∇ϕdx.

where the right hand side is bounded in L2(0,T ). Thus,

∥∥∥∥∫
Ω

ρδ ϕ dx
∥∥∥∥

C0, 1
2 (0,T )

≤
∥∥∥∥∫

Ω

ρδ ϕ dx
∥∥∥∥

W 1,2(0,T )
≤C

which implies equi-continuity of
∫

Ω
ρδ ϕ dx(t). Then, with this fact, we verity

ρδ −→ ρ in Cweak([0,T ];Lγ(Ω)) (4.10)

for a suitable subsequence of δ −→ 0 by applying [19, Corollary 2.1]. This fact together

with the momentum equation (3.1) imply

ρδ uδ −→ ρu in Cweak([0,T ];Lq(Ω)), q =
2γ

1+ γ
; (4.11)

whence

ρδ uδ ⊗uδ −→ ρu⊗u in L2([0,T ];Lq(Ω)), q =
6γ

3+4γ
. (4.12)

Similarly, by virtue of (1.15) (2.40),(4.7),

ρδ cδ → ρc in Cweak
(
0,T ;Lq (

Ω;R3)) for q =
6γ

6+ γ
, (4.13)

ρδ cδ uδ →∗
ρcu in L∞

(
0,T ;Lq (

Ω;R3)) for q =
3γ

3+ γ
, (4.14)

ρδ

∂ f
∂c

(cδ )→ ρ
∂ f
∂c

(c) in Cweak
(
0,T ;Lq (

Ω;R3)) for q =
6γ

6+ γ
. (4.15)
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and, in view of (2.42) and (2.43),

µδ → µ weakly in L2 (0,T ;W 1,2(Ω)
)
. (4.16)

wδ → w weakly in L2 (0,T ;W 3,2(Ω)
)
. (4.17)

Finally, it follows from the refined pressure estimates established in (4.2) that

∥δρ
Γ

δ
∥

Γ+α

Γ

Γ+α

Γ

≤Cδ
α

Γ

∥δρ
2
δ

c2
δ
∥ 4+2α

4+α

≤ ∥δρ
2
δ

c
2

2+α

δ
∥ 2+α

2
∥c

2α

2+α ∥ 4+2α

α

≤Cδ
α

2+α

Then, we conclude the convergence of the artificial pressure,

p(ρδ ,cδ )⇀ p(ρ,c),

δρΓ

δ
⇀ 0

δρ2
δ

c2
δ
⇀ 0

 in Lq((0,T )×Ω) for a certain q > 1 (4.18)

At this stage, it is easy to let δ → 0 in (3.1) - (3.7) in order to obtain

∫ T

0

∫
Ω

(ρ∂tϕ +ρu ·∇ϕ)dxdt +
∫

Ω

ρ0ϕ

∣∣∣∣
t=0

dx = 0 (4.19)

for any test function ϕ ∈ D([0,T )× Ω̄),

∫ T

0

∫
Ω

(
ρu ·∂tϕ +ρu⊗u : ∇ϕ + p(ρ,c)divϕ

)
dxdt

=
∫ T

0

∫
Ω

(S−P) : ∇ϕdxdt +
∫

Ω

m0 ·ϕ
∣∣∣∣
t=0

dxdt
(4.20)

for any ϕ ∈ D
(
[0,T )×Ω;R3),

∫ T

0

∫
Ω

(ρc∂tϕ +ρcu ·∇ϕ −∇µ ·∇ϕ)dxdt −
∫

Ω

ρ0c0ϕ

∣∣∣∣
t=0

dxdt = 0 (4.21)
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for any ϕ ∈ D([0,T )× Ω̄),

∫ T

0

∫
Ω

∇w ·∇ϕ =
∫ T

0

∫
Ω

(c−M)wdxdt (4.22)

for any ϕ ∈ D([0,T )× Ω̄), where S satisfies (1.6),

P= ∇c⊗∇c− |∇c|2
2 I−∇w⊗∇w− (c−M)wI+ |∇w|2

2 I (4.23)

µ = ρ
∂ f
∂c +w−∆c (4.24)

provided the family of initial data {ρ0,δ ,(ρu)0,δ ,(ρc)0,δ}δ>0 converges at least weakly in

L1.

To complete the prove, we need to remove the bar in (4.20), or equivalently, verifying

ρδ −→ ρ (strongly) in L1((0,T )×Ω),

which will be show in the last section.

4.5 Strong Convergence of the Approximate Densities

To prove strong L1 convergence of ρδ , we apply the method based on certain fine prop-

erties of the effective viscous flux established by P.-L.Lions[41], further investigated in [20]

for the case of non-constant viscosity coefficients.

First, we notice that ρδ ,uδ satisfy (3.2) in the sense of renormalized solutions intro-

duced by DiPerna and P.-L.Lions[16], cf. (1.20):

∫
QT

(
b̃(ρδ )∂tϕ + b̃(ρδ )u ·∇ϕ − (b̃(ρδ )−ρδ b̃′(ρδ ))divuϕ

)
d(x, t)

=−
∫

Ω

b̃(ρ0,δ )ϕ(0)dx
(4.25)
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Above integral identity holds for any ϕ ∈ D([0,T )×Ω), and b̃(ρ) = ρB(ρ) ∈C[0,∞) any

such that b̃′(ρ)≡ 0 for ρ > Mb large enough.

To deduce relation (4.25) from (3.2), we need to apply the regularization technique

developed by Diperna and P.-L.Lions[16] or [43, Lemma 6.9], a step that requires ρδ ∈

L2((0,T )×Ω and uδ ∈ L2(0,T ;W 1,2(Ω;R3). The former condition holds as a result of of

artificial pressure term δ

Γ−1ρδ .

The next thing we want to show is

(
p(ρ,c)−R : S

)
b̃(ρ) =

(
p(ρ,c)−R : S

)
b̃(ρ) (4.26)

where R = (∂xi∂x jδ
−1)i, j. This relation is the core of the existence theory for barotropic

Navier-Stokes system developed by P.-L.Lions [41].

To show (4.26), we take the quantity

ϕ = ψ(t)v(x)∇∆
−1[χΩb̃(ρδ )]

as test function in (3.1), and

ϕ = ψ(t)v(x)∇∆
−1[χΩb̃(ρ)]
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in (4.20). And we obtain the following two estimates,

∫
QT

ψv
(
(p(ρδ ,cδ )+δρ

Γ

δ
+δρ

2c2)I−Sδ

)
: R
[
b̃(ρδ )

]
d(x, t)

=
∫

QT

ψvuδ

(
b̃(ρδ )∇div∆

−1 (ρδ uδ )−ρδ uδ ·R
[
b̃(ρδ )

])
d(x, t)

+
∫

QT

ψvρδ uδ ·∇∆
−1 ((b̃′(ρδ )ρδ − b̃(ρδ )

)
divu

)
+
∫

QT

ψvPδ : R[b̃(ρδ )]d(x, t)

+
∫

QT

(
−ρδ uδ (∂tψ)v

(
∇∆

−1b̃(ρδ )
)
+g ·∇∆

−1b̃(ρδ )
)

d(x, t)

(4.27)

where R = ∇2∆−1 and

g =−
(
(p+δρ

Γ

δ
+δρ

2c2)I−Sδ +Pδ +ρδ uδ ⊗uδ

)
·ψ∇v ;

and ∫
QT

ψ (pI−S) : R
[
b̃(ρ)

]
d(x, t)

=
∫

QT

ψvu
(

b̃(ρ)∇div∆
−1 (ρu)−ρu ·R

[
b̃(ρ)

])
d(x, t)

+
∫

QT

ψvρu ·∇∆
−1 ((b̃′(ρ)ρ − b̃(ρ)

)
divu

)
+
∫

QT

ψvP : R[b̃(ρ)]

+
∫

QT

(
−ρu(∂tψ)v

(
∇∆

−1b̃(ρ)
)
+g ·∇∆

−1b̃(ρ)
)

d(x, t)

(4.28)

where

g =− (p̄I−S+P+ρu⊗ud) ·ψ∇v.

From Div-Curl lemma [20, Lemma 4.2],

b̃(ρδ )∇div∆
−1 (ρδ uδ )−ρδ uδ ·R

[
b̃(ρδ )

]
→ b̃(ρ)∇div∆

−1 (ρu)−ρu ·R
[
b̃(ρ)

]
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As a consequence of (4.7), the ”pressure” term Pδ satisfies

Pδ : R[b̃(ρδ )]→ P : R[b̃(ρ)] weakly in L1((0,T )×Ω)

Then, the convergence results (4.10)-(4.18) with the results above yields (4.26).

Our next step is to use (4.26) to deduce the following

p(ρ,c)b(ρ)− p(ρ,c)b(ρ) =
(

4
3

ν(c,w)+η(c,w)
)
(divb(ρ)u−b(ρ)divu) (4.29)

where the quantity p−
(4

3ν +η
)

div u is usually termed the effective viscous flux.

In order to get (4.29), we apply Lemma A.0.1 as in Appendix A and obtain

R :
[
ν (cδ ,wδ )

(
∇uδ +∇uT

δ

)]
−2ν (cδ ,vδ )divuδ

−→
R :

[
ν(c,w)

(
∇u+∇uT)]−2ν(c,w)divu

(4.30)

weakly in L2 (0,T ;W ω,q(Ω)) for a certain ω > 0. On the other hand, as ρδ satisfies the

renormalized equation (4.25),

b(ρδ )→ b(ρ) in Cweak ([0,T ];Lq(Ω)) for any finite q ≥ 1 (4.31)

as soon as b is uniformly bounded. Combining relation (4.26) with (4.30), (4.31) we obtain

(4.29) (see [19, Chapter 6] and [20] for details).

Equation (4.29) can give us the strong convergence of densities:

ρδ → ρ in L1((0,T )×Ω),

following the same strategy as in [2, Section 4.5]. I will put the detail in Appendix B.

The proof for the main theorem is now complete.
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Chapter 5: Large-Time Behavior

In this chapter, we analyze the large time behavior under assumption that the limit of c

and µ as t → ∞ is Lipschitz continuous.

Theorem 5.0.1 (Large-Time Asymptotic). Let Ω⊂R3 be a bounded domain with a bound-

ary of class C2+ν , ν > 0 and {ρ,u,c} be a weak solution of the model (1.1)-(1.5) with the

initial data {ρ0,u0,c0} satisfying all of the hypotheses in Theorem 1.2.1. Then either (i)

E(t)→ ∞ as t → ∞,

or (ii) there exist positive measurable functions ρs = ρs(x), measurable functions cs and


ρ(t)→ ρs in L1(Ω),

c(t)→ cs weakly in L2((0,T );W 1,2(Ω))

µ(t)→ µs weakly in L2((0,T );W 1,2(Ω))

(5.1)

as t → ∞.

Moreover, if cs and µs are Lipschitz continuous, then ρs is positive, and there exists a

scalar potential F ∈C1(Ω) such that µs∇xcs − ∂ f
∂c ∇xcs = ∇xF in Ω and (ρs,cs,µs) solves

the state problem

{
∇x p(ρs) = ρs∇xF = ρs(µs∇xc− ∂ f

∂c ∇xcs) in Ω, (5.2)

in the sense of distribution.
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Let the sequence {tn}∞
n=1 be such that tn → ∞ and define the sequences un, ρn, cn, fn by

un(t,x) = u(t + tn,x),ρn(t,x) = ρ(t + tn,x),

and

cn(t,x) = c(t + tn,x), fn(t,x) = f (cn(t,x))

for each k = 1,2, ...,N.

Lemma 5.0.1. Under the hypotheses of Theorem 5.0.1, we have

lim
n→∞

∫
ε

0
∥∇un∥2

Lp1(Ω)+
∥∥ρn|un|2

∥∥
Lp2(Ω) +∥ρn | un|∥2

Lp3(Ω)+∥∇xµn∥2
Lp1(Ω) dt = 0,

where

p1 = 2, p2 =
3γ

γ +3
, p3 =

6γ

γ +6
.

The proof of above lemma can be done in similar way as in [26, Lemma 3.1.], using

energy dissipation (2.28).

Observe that, for each fixed n, the triple (ρn,un,cn) is a weak solution to the particle

interaction model in the sense as in the theorem 1.2.1.

As we discussed in section 2.3, we recall some estimates. In accordance with (2.29),
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(2.38), (2.31), (2.39), (2.40), and (2.42)



ρn ∈ L∞([0,ε];Lγ(Ω)),

un ∈ L2([0,ε];W 1,2
0 (Ω)),

√
ρnun ∈ L∞([0,ε];L2(Ω)),

ρun ∈ L∞([0,ε];L
2γ

1+γ (Ω)),

Sn ∈ L2([0,ε]×Ω),

cn ∈ L2([0,ε];W 1,2
0 (Ω))

µn ∈ L2([0,ε];W 1,2(Ω)),

(5.3)

where ε is a positive constant.

Therefore, up to a subsequence, (5.3) yields



ρn ⇀ ρs in L∞([0,ε];Lγ(Ω)),

un ⇀ us in L2([0,ε];W 1,2
0 (Ω)),

cn ⇀ cs in L2([0,ε];W 1,2
0 (Ω)),

µn ⇀ µs in L2([0,ε];W 1,2(Ω)).

(5.4)

Moreover, Lemma 5.0.1 and the estimates un ∈ L2([0,ε];W 1,2
0 (Ω)) in (5.3) yield

lim
n→∞

∫
ε

0
∥un∥2

L2(Ω)dt = 0, (5.5)

which yields

us = 0, a.e. in (0,ε)×Ω, (5.6)
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thanks to the compactness of H1 ↪→ L6.

We notice that, in accordance with section 4.5

ρn → ρs in L1(0,ε;Ω)

cn → cs in L2 (0,ε;H1(Ω)
)

wn → ws in L2 (0,ε;H1(Ω)
)
.

(5.7)

From equation for concentration (1.3), we observe that

∂t(ρc) =−divx(ρcu)+divx(m∇xµ)

in the sense of of distributions on (0,ε)×Ω. Hence,

∫
ε

0
∥ρncn∥W−1,1(Ω)≤ ∥cn∥L2(0,ε;L6(Ω))∥ρnun∥

L2(0,ε;L
6γ

γ+6 (Ω))
+∥∇xµn∥L2(0,ε;L2(Ω))

The right hand side converges to 0, due to Lemma 5.0.1.By Aubin-Lions lemma, thus, we

show ρscs is independent of t.

By taking the limit n → ∞ in the continuity equation (1.1), we can show

∫
ε

0

∫
Ω

ρsφt dxdt = 0 ∀φ ∈C∞
0 ((0,ε)×Ω)

Thus, ρs is independent of t.

Our next goal is to show if µs and cs is Lipschitz continuous, the following holds

• ρs is strictly positive on Ω,

• (ρs,cs,µs) solves the state problem (5.2)

Because limn→∞

∫
ε

0 ∥∇xµn∥L2dx = 0 and the assumption on µs , we have µs is constant

everywhere.
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Together with (5.3) (5.4) (5.7), we can pass to the limit in the equation of balance of

momentum, we get

∇x p(ρs) = ρs(µs∇xc− ∂ f
∂c

∇xcs) in Ω. (5.8)

The right hand side of (5.8)can be expressed as ρs∇xF , where

F = µscs − f (cs) (5.9)

The assumption on cs makes F Lipschitz continuous. Note that we have the following

property:
1
ρs

∇x p(ρs) =
1
ρs

p′(ρs)∇xρs =: ∇xΦ(ρs), (5.10)

where Φ(ρ) =
∫ ρ

0 Z−1 p′(Z)dZ. We have that Φ is a strict increasing function for variable

ρ , thanks to Φ′(ρ) = p′(ρ)
ρ

> 0 and thus F is also a strict increasing function. Using the

state equation in (5.8) with the above property we just show, we achieve the positivity of

ρs, thanks to [25, Theorem 2.1].

The proof of Theorem 5.0.1 is now complete.
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Chapter 6: Conclusions and open problems

This dissertation is the first one that treats the interaction of diblock copolymer melt

with compressible fluid. The works that have been done focus on static problem without

the influence of time, or on the incompressible case which is too idealized. The existence

of weak solutions to the model of compressible viscous diblock copolyer fluid has been

proved here.

The limitation of our results is that this model does not cover the case for free energy

f0(ρ,c) depending also on the density ρ . In physics perspective, it is natural for the free

energy to be related with density in a way that f0(ρ,c) = H(c) logρ +G(c). The result can

be improved by using a more complicated form of free energy density ρ f (ρ,c) involving

logarithm as in [2]:

ρ f (ρ,c) =α1ρ
1− c

2
ln
(

ρ
1− c

2

)
+α2ρ

1+ c
2

ln
(

ρ
1+ c

2

)
−βc2

=ρ

(
α1

1− c
2

ln
1− c

2
+α2

1+ c
2

ln
1+ c

2

)
+ρ lnρ

(
α1

1− c
2

+α2
1+ c

2

)
−βc2,

(6.1)

where α1,α2,β > 0. Moreover, this form of free energy density come from Cahn and

Hilliard [9]: α1
1−c

2 ln 1−c
2 +α2

1+c
2 ln 1+c

2 . It is also called Flory–Huggins logarithmic po-

tential. This f (ρ,c) has a corresponding pressure p(ρ,c) which depends on both density

ρ and concentration difference c. The pressure depending on concentration difference is

62



more physical. Dealing with this type free energy and pressure requires more complicated

work in the proof.

This dissertation gives an insight for large time behavior assuming the regularity on the

limiting system. The large time behavior problem for compressible Navier-Stokes-Cahn-

Hilliard equations still remains open, due to the complicated right hand side of the equation

for conservation of momentum. The existing literature (e.g.[25],[26],[24]) on large-time

behavior for Navier-Stokes system and Navier-Stokes-Fourier system relies heavily on the

regularity of the forcing term. The forcing term is in the form of ρ f (x) where f (x) sat-

isfies confinement hypothesis: bounded and Lipschitz continuous in Ω̄ and the sub-level

sets [ f (x) < k] are connected in Ω for any k > 0. There are also works on large-time be-

havior of fluid–particle interaction model[10] and multicomponent reactive flows[39]. In

these works, they also follows the idea by Feireisl and Petzetolva [25],[26],[24] and has

restriction on the forcing term.

Talking about possible future work, it might be possible to work on dynamic bound-

ary condition problem for this model, if we follow the strategy as in [12] to address the

quantities on boundaries. The idea is to assume the boundary Γ sufficiently smooth, and to

impose the generalized Navier boundary conditions

u ·n = 0

(S(c,∇xu)n)
τ
+βuτ = L (c)∇τc

 on Γ,

where β > 0, together with the Neumann boundary condition for the chemical potential µ

and w

∇xµ ·n = ∇xw ·n = 0, on Γ.
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And for c the dynamic boundary conditions is imposed as follow:

∂tc+uτ∇τc =−L (c)

L (c) =−△τc+ξ c+ k(c)+∂nc

 on Γ

where ξ > 0 is a constant and k a suitable nonlinear function to be specified later. Such

boundary condition can be interpreted as a parabolic equation on Γ.

The incompressible case for diblock copolymer model is another aspect we can look

into. The proof will be completely different and based on spaces of fractional time and

interpolation argument. It is likely doable if we follow the strategies as in [1] which address

the incompressible case for NSCH equation.

There is no existing numerical work done for the interaction of compressible fluid made

of diblock copolymer. But there are simulation results for static case [13][14][15] and

incompressible case[11][40]. Our strategy on implicit-time discretization may be utilized

in proving the convergence of numerical approximations. Because this dissertation focuses

on the existence theory and the convergence of solutions in large time, the coefficient for

average of concentration difference over space is denoted by M, and the coefficient for

intrinsic length scale for minimizer is set to be 1. So in my work, the relation to Fig 1 is

not shown. But our existence theory allows people to do numerical investigation with any

kind of coefficients, so any kind of mesoscopic domains can be considered.

64



Appendix A:

In this section, we will show the omitted detail in section 3.3 for the proof of the fol-

lowing,

pδ = pδ (ρ), (A.1)

as δ → 0.

Since ρ ∈ L2 (QT ) ,u ∈ L2 (0,T ;H1(Ω)
)
, we can use the regularizing procedure of

DiPerna and Lions [16] or [43, Lemma 6.9], to conclude that ρ is a renormalized solu-

tion of the transport equation (1.2) as in (1.20) for all B(ρ) such that b̃(ρ) = ρB(ρ) ∈

C0([0,∞))∩C1(0,∞) and

∣∣b̃′(ρ)∣∣≤


Ct−λ0 if t ∈ (0,1]

Ctλ1 if t > 1

for some λ0 < 1 and λ1 ≤ 1. In particular, we can choose B(ρ) = logρ , which implics that

∂t(ρ logρ)+div(ρ log(ρ)u)+ρ divu = 0 in D ′ (R3 × (0,T )
)

(A.2)

We choose ψ =Ψ′ (ρN)χ[0,t] in (3.33), where Ψ :R→R+is a smooth and convex function,
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then we get

∫
Ω

Ψ
(
ρ

N(t)
)

dx−
∫

Ω

Ψ(ρ0)dx

≤ 1
h

∫ t

t−h

∫
Ω

Ψ
(
ρ

N(τ)
)

dxdτ −
∫

Ω

Ψ(ρ0)dx

=
∫

Qt

∂
−
τ,hΨ

(
ρ

N(τ)
)

d(x,τ)≤
∫

Qt

Ψ
′ (

ρ
N)

∂
−
τ,hρ

N(τ)d(x,τ)

=−
∫

Qt

Ψ
′ (

ρ
N)div

(
ρ

NuN)d(x,τ)+h
∫

Qt

∆ρ
N

Ψ
′ (

ρ
N)d(x,τ)

=−
∫

Qt

((
Ψ

′ (
ρ

N)
ρ

N −Ψ
(
ρ

N))divuN +hΨ
′′ (

ρ
N)∣∣∇ρ

N∣∣2)d(x,τ)

≤−
∫

Qt

(
Ψ

′ (
ρ

N)
ρ

N −Ψ
(
ρ

N))divuNd(x,τ)

because of Jensen’s inequality and ρ̃N = 1
h χ[0,h] ∗t ρN . After a simple approximation we

can replace Ψ(s) by s logs. Hence, passing to the limit N → ∞ and using (A.2), we have

the following

∫
Ω

(ρ logρ −ρ logρ)(t)dx ≤
∫

Qt

(ρ divu−ρ divu)d(x,τ) (A.3)

for almost all t ∈ (0,T ). In what follows, the symbol ∆−1 f = K ∗ f denotes the convolution

of f with the fundamental solution of the Laplacean on R3, where functions defined on Ω

are extended by zero to functions on R3. We choose ϕ = ψ∇∆−1 [ρN] ,ψ ∈ C∞
0 (QT ) in

(3.32) and obtain

∫
QT

ψ
(

pN
δ

I −SN)R [ρN]d(x, t)

=
∫

QT

ψuN (
ρ

N
∇div∆

−1 (
ρ

NuN)−ρ
NuN ·R

[
ρ

N])d(x, t)

+
∫

QT

ψρ
NuN

τ−h∇div∆
−1 (

ρ
NuN −h∇ρ

N)d(x, t)

+
∫

QT

(
−ρ

NuN
(

∂
+
t,hψ

)
τ−h
(
ψ∇∆

−1
ρ

N)+gN ·∇∆
−1

ρ
N
)

d(x, t)
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where R = ∇2∆−1 and

gN =−
(

pN
δ

I −SN +ρ
NuN ⊗uN) ·∇ψ

+hψ∇ρ
N ·∇uN +ρ

N (
∂c f N −µ

N)
∇cN

ψ

With the help of corollary 6.1 in [19], we conclude

lim
N→∞

∫
QT

ψuN (
ρ

N
∆
−1

∇div
(
ρ

NuN)−ρ
NuN ·R

[
ρ

N])d(x, t)

=
∫

QT

ψu
(
ρ∆

−1
∇div(ρu)−ρu ·R[ρ]

)
d(x, t).

Moreover, using the previous results on strong and weak convergence, it is easy to pass to

the limit in all remaining terms to conclude that

lim
N→∞

∫
QT

ψ
(

pN
δ

I −SN)R [ρN]d(x, t)

=
∫

QT

ψu
(
ρ∇div∆

−1(ρu)−ρu ·R[ρ]
)

d(x, t)

+
∫

QT

(
−ρu(∂tψ)

(
∇∆

−1
ρ
)
+g ·∇∆

−1
ρ
)

d(x, t)

where

g =−(pδ I −S+ρu⊗u) ·∇ψ +ρ
∂ f
∂c

∇c−ρµ∇c.

On the other hand, choosing ϕ = ψ∇∆−1ρ in (3.45) and comparing it with the latter iden-

tity, we obtain

∫
QT

ψ (pδ I −S)R[ρ]d(x, t)

= lim
N→∞

∫
QT

ψ
(

pN
δ

I −SN)R [ρN]d(x, t)
(A.4)

67



for all ψ ∈C∞
0 (QT ). Our next goal is to show that

lim
N→∞

(
R :

[
ψν
(
cN ,wN)(

∇uN +
(
∇uN)T

)]
−ψ2ν

(
cN ,wN)divuN

)
= R :

[
ψν(c,w)

(
∇u+∇uT)]−ψ2ν(c,w)divu

(A.5)

weakly in L2 (0,T ;W ω,q(Ω)) for some ω > 0,q > 1. In order to see (A.5), we adapt the

technique of [20]. In particular, we report the following lemma [20, Lemma 4.2].

Lemma A.0.1. Let w ∈ W 1,r (Rd) and V ∈ L2 (Rd;Rd) be given, where r > 2d
d+2 . Then

there exists ω = ω(r)> 0 and q = q(r)> 1 such that

∥R[wV]−wR[V]∥W ω,q(Rd ;Rd)≤C(r)∥w∥W 1,r(Rd)∥V∥L2(Rd ;Rd)

Extending cN ,∂x juN to be zero outside Ω we intend to apply Lemma A.0.1 to

w = ν (cδ ) ,V = [V1,V2,V3] ,Vi = ∂xiuδ , j +∂x juδ ,i, i = 1,2,3,

where j = 1,2,3 is fixed. Indeed as the shear viscosity coefficient ν is (globally) Lipschitz

in c and w, the uniform estimate stated in Lemma 3.1.3 allows us to apply Lemma A.0.1,

with r = 2.

Following step by step the arguments of Section 2.4 we obtain that

cN −→ c in L2(0,T ;W 1,2(Ω)). (A.6)

wN −→ w in L2(0,T ;W 1,2(Ω)). (A.7)

Also, we observe, in accordance with (2.38),

uN −→ u in L2(0,T ;W 1,2
0 (Ω;R3)) (A.8)
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Consequently, in accordance with (A.6), (A.7), (A.8), we get (A.5). Combining (A.5) with

(A.4), we obtain the essential relation

∫
Qt

ψ (pδ ρ − pδ ρ)d(x,τ) =
∫

Qt

ψ

(
4
3

ν(c)+η(c)
)
(ρ divu−ρ divu)d(x,τ).

Choosing ψ =
(4

3ν(c)+η(c)
)−1

above and using (A.3), we obtain

∫
Ω

(ρ logρ −ρ logρ)dx ≤
∫

Qt

(
4
3

ν(c)+η(c)
)−1

(pδ ρ − pδ ρ)d(x,τ)

for some Λ > 0, where, because of the decomposition (3.21),

∫
Qt

(
4
3

ν(c)+η(c)
)−1

(pδ ρ − pδ ρ)d(x,τ)≤ Λ

∫
Qt

(ρ logρ −ρ logρ)

by the same arguments as in [19, Section 6.6.3]. Hence

∫
Ω

(ρ logρ −ρ logρ)(t)dx ≤ Λ

∫
Qt

(ρ logρ −ρ logρ)d(x, t)

which implies ∫
Ω

(ρ logρ −ρ logρ)(t)dx ≡ 0

for all t ∈ (0,T ) because of Gronwall’s lemma. Thus ρN converges almost everywhere to

ρ and

pδ = pδ (ρ), ρ
∂ f
∂c

= ρ
∂ f
∂c

(ρ,c).
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Appendix B:

In this section, we want to show strong convergence of densities ρδ → ρ . We use the

renormalized equation (4.25) for b(ρ) = ρLk(ρ), where

Lk(ρ) =
∫

ρ

1

Tk(z)
z2 dz,

Tk(ρ) = min{ρ,k},ρ ≥ 0.

Accordingly, we obtain

∫
Ω

ρδ Lk (ρδ )(τ)dx+
∫

QT

Tk (ρδ )divuδ d(x, t) =
∫

Ω

ρ0,δ Lk
(
ρ0,δ

)
dx. (B.1)

At this stage, we have to show that the limit quantities ρ , u represent a renormalized so-

lution of (4.19). Following the approach of [22] we introduce the concept of oscillations

defect measure associated to the family {ρδ}δ>0 :

oscp [ρδ → ρ] (O) = sup
k≥1

(
limsup

δ→0

∫
O
|Tk (ρδ )−Tk(ρ)|p dxdt

)
.

We report the following result [19, Chapter 6, Proposition 6.3].

Lemma B.0.1. Let

oscp [ρδ → ρ] ((0,T )×Ω)< ∞ for a certain p > 2. (B.2)
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Then ρ,u represent a renormalized solution of (4.19).

In order to show (B.2), we make use of relation (4.29) for b = Tk. To begin with, as the

pressure p is given through the constitutive relation (1.13) and {cδ}δ
converges strongly,

we observe that

p(ρ,c)Tk(ρ) = p(ρ, ·)Tk(ρ), p(ρ,c) = p(ρ, ·),

where

p(ρ, ·)Tk(ρ) = weakL1 lim
δ→0

p(ρδ ,c)Tk (ρδ ) ,

and, similarly,

p(ρ, ·) = weakL1 lim
δ→0

p(ρδ ,c) .

On the other hand, in accordance with hypotheses (1.14), (1.15), the pressure can be written

in the form

p(ρ,c) = aρ
γ + pm(ρ,c)+ pb(ρ),a > 0, (B.3)

where pm is non-decreasing in ρ and pb ∈C2[0,∞) has compact support in [0,∞).

As pm is non-decreasing in ρ and 0 ≤ Tk(ρ)≤ k, it is easy to check that

(
pm (ρn,c)− pm

(
Tk(ρ),c

))(
Tk (ρn)−Tk(ρ)

)
≥ 0;

whence letting n → ∞ we get

pm(ρ, ·)Tk(ρ)− pm(ρ, ·)Tk(ρ)≥ 0 (B.4)
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while, exactly as in [19, Proposition 6.2], we can show that

∫ T

0

∫
Ω

(
ργTk(ρ)−ργTk(ρ)

)
dxdt

≥ limsup
δ→0

∫ T

0

∫
Ω

|Tk (ρδ )−Tk(ρ)|γ+1 dxdt.
(B.5)

Equation (B.4), (B.5), together with (4.29) and Young’s inequality yields

oscγ+1 [ρδ → ρ] ((0,T )×Ω)< ∞. (B.6)

In particular, with Lemma B.0.1 , the limit functions ρ , u represent a renormalized

solution of (3.2). Thus we get

∫
Ω

ρδ Lk(ρ)(τ)dx+
∫

τ

0

∫
Ω

Tk(ρ)divudxdt =
∫

Ω

ρ0Lk (ρ0)dx

which, together with (B.1), gives rise to

∫
Ω

(
Lk(ρ)−Lk(ρ)

)
(τ)dx+

∫
τ

0

∫
Ω

(
Tk(ρ)divu−Tk(ρ)divu

)
dxdt

=
∫

τ

0

∫
Ω

(
Tk(ρ)−Tk(ρ)

)
divudxdt

(B.7)

for any τ ∈ [0,T ] since ρ0,δ → ρ0 in L1(Ω). Finally, as a consequence of (B.6),

∫
τ

0

∫
Ω

(
Tk(ρ)−Tk(ρ)

)
divudxdt → 0 as k → ∞

whence, by virtue of (4.29),(B.3)-(B.5), we can let k → ∞ in (B.7) in order to obtain

∫
Ω

(ρ log(ρ)−ρ log(ρ))(τ)dx ≤ Λ

∫
τ

0

∫
Ω

(ρ log(ρ)−ρ log(ρ))(τ)dxdt

for a certain Λ > 0 (see Section 6.6 in Chapter 6 in [19] for details). Thus, by means of
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Gronwall’s lemma,

ρ log(ρ) = ρ log(ρ) a.a. in (0,T )×Ω,

in particular

ρδ → ρ in L1((0,T )×Ω).

We have shown the strong convergence of densities.
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