
ABSTRACT

Title of dissertation: NONLINEAR DYNAMICS
IN BIOLOGICAL SYSTEMS:
ACTIN NETWORKS AND
GENE NETWORKS
Andrew Pomerance, Doctor of Philosophy, 2009

Dissertation directed by: Professor Wolfgang Losert
Department of Physics

Two problems in biological systems are studied: (i) experiments in microscale

deformations of actin networks and (ii) a theoretical treatment of the stability of

discrete state network models of genetic control.

In the experiments on actin networks, we use laser tweezers to locally deform

actin networks at the micron scale as a model of the action of molecular motors

and other cellular components, and we image the network during deformation using

confocal microscopy. Using these tools, we observe two nonlinear effects. The first

observation is that there are two time scales of relaxation in the network: the

stress induced by deformation relaxes rather quickly, however, the strain relaxes at

a different rate. Additionally, upon removing the deforming force, the initial rate

at which the strain relaxes seems to be independent of the amount of stress still in

the network. The second observation is that large deformations are irreversible, and

imaging the network implies that a large-scale snapping event seems to accompany

this irreversibility.



In the theoretical treatment of gene networks, we focus on the stability of their

dynamics in response to small perturbations. Previous approaches to stability have

assumed uncorrelated random network structure. Real gene networks typically have

nontrivial topology significantly different from the random network paradigm. In

order to address such situations, we present a general method for determining the

stability of large Boolean networks of any specified network topology and predict-

ing their steady-state behavior in response to small perturbations. Additionally, we

generalize to the case where individual genes have a distribution of ‘expression bi-

ases,’ and we consider non-synchronous update, as well as extension of our method

to non-Boolean models in which there are more than two possible gene states. We

find that stability is governed by the maximum eigenvalue of a modified adjacency

matrix (λQ), and we test this result by comparison with numerical simulations. We

also discuss the possible application of our work to experimentally inferred gene

networks and present approximations to λQ in several cases.
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Chapter 1

Introduction to Cell Biology

This dissertation presents results from two different projects on problems in

biophysics. Chapter 2 discusses results of experiments on microscale deformations of

entangled solutions of purified actin, an important component of the cytoskeleton.

Chapters 3 and 4 deal with theoretical results on models of gene networks, which

control the expression of RNA and the amount of proteins in the cell. Consequently,

this chapter is a brief overview of cell biology in order to give biological context to

and motivate the results of later chapters; however, the actual systems under study

are rather isolated from the complicated biological processes described here.

Cells are sacks of organic material separated from their environment by a wall

or membrane, usually constructed of a bilayer of lipids. The structures inside the

sack range from a few strands of DNA and small structures consisting of a few

molecules in the case of bacteria, to highly compartmentalized, large structures

consisting of hundreds of proteins in eukaryotic cells. Broadly speaking, however,

eukaryotic cells consist of two parts, the nucleus and the cytoplasm. The nucleus

contains all the DNA necessary to produce the proteins that make up the cell and will

be the subject of Sec. 1.2. The cytoplasm consists of everything else: mitochondria

(metabolic structures), vesicles (small sacks used for transferring material into, out

of, or within the cell), signaling proteins, etc. In particular, we are concerned with

1



the cytoskeleton, the cellular scaffolding.

1.1 The Cytoskeleton and Actin

The cytoskeleton is the key material component of a cell that gives cells their

shape and produces forces used for locomotion. The cytoskeleton is highly dynamic:

the structures of the cytoskeleton are usually assembled and disassembled many

times a minute as a cell migrates through its environment, and the filaments that

comprise it are constantly growing and shrinking, even in a resting state. Molec-

ular motors traverse filaments of the cytoskeleton, to produce forces on the cell’s

environment or to move material within the cell.

The cytoskeleton is, essentially, a polymer gel consisting of three types of

polymers of varying length and stiffness (see Fig. 1.1):

1. Actin is the smallest (6 nm diameter) and most flexible filament. It tends to

concentrate near the cell membrane and produces protrusions used in motility

and binds to cellular anchors in the substrate. It also plays a key role in

producing the tension in muscular contraction.

2. Intermediate Filaments are larger (10 nm), stiffer filaments that shape and

place the nucleus and other organelles in the cytoplasm.

3. Microtubules are the largest (23 nm) and stiffest filaments of the cytoskeleton.

They form the cilia and flagella (hair- and tail-like structures on the cell surface

used for navigating water environments) and the structures used in cellular

division.
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Figure 1.1: Endothelial cells with cytoskeletal components fluorescently la-

beled. The actin cortex has been labeled with a red fluorescent protein, the

microtubules have been labeled with green fluorescent protein, and the nu-

cleus has been labeled blue. Image Source: National Institutes of Health,

http://rsb.info.nih.gov/ij/images/

Since the experiments of Chapter 2 focus on actin, the following subsections

give more background on those filaments.

1.1.1 Actin: The molecule, the filament, the legend

An excellent review of actin and its binding proteins is Ref. [1], which is

summarized in this subsection. Monomeric actin (see Fig. 1.2), also known as G-

actin, is a 43 kDa globular protein with dimensions 67 × 40 × 37 Å. G-actin has
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Figure 1.2: Image of G-actin monomer and the double helix structure of F-actin.

Image Source: National Library of Medicine, http://ghr.nlm.nih.gov/

four subdomains, which leave a deep fold in the center of the molecule, which binds

a nucleotide, either ATP (forming ATP-actin) or ADP-Pi (forming ADP-actin). G-

actin also forms a complex with divalent cations Mg2+ or Ca2+; if magnesium is

bound, G-actin binds more tightly with the nucleotide.

G-actin solutions above the critical concentration polymerizes to form F-actin,

which is illustrated in Fig. 1.3. The presence of K+ and Mg2+ lowers the critical

concentration by an order of magnitude, and it is under these conditions that most

in vitro studies of actin occur. F-actin filaments have polarity, the two ends being

barbed and pointed. Polymerization proceeds in three steps: (i) dimerization, where

two G-actin molecules are loosely bound and unlikely to elongate; (ii) trimerization,
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Figure 1.3: Illustration of the polymerization of actin.

where a third G-actin monomer is bound to a dimer to form a stable trimer; and

(iii) elongation, where additional G-actin monomers are added to the filament. Ad-

ditionally, during the elongation phase, there is a small amount of disassembly at

both ends of the filament leading to a small amount of G-actin in solution.

While elongation can occur on both ends, monomers are predominantly added

to the barbed end (the critical concentration at the barbed end is an order of mag-

nitude lower than at the pointed end). Filament assembly occurs almost exclusively

with ATP-actin, but, once in the filament, the ATP is normally hydrolyzed such

that the majority of actin in the filament is ADP-actin (see Fig. 1.3). This step

consumes the energy stored in ATP and leads to polymerization being not entirely

reversible since G-actin cannot rephosphorylate ADP; however, in monomer form,

G-actin can easily swap its bound nucleotide to convert ADP-actin to ATP-actin.

Because of its crucial role in the cytoskeleton, actin has perhaps the most

highly preserved structure of all proteins (i.e., most eukaryotic cells have the same

actin to a large degree). Additionally, the genes that code for actin production have

an unusual number of duplicates to mitigate the effects of possible mutations. As a

5



result, there are very few disorders associated with actin dysfunction, but those few

are usually fatal.

1.1.2 Actin in the Cell

The ‘actin cortex’ in most cells is a layer of bound and cross-linked actin

filaments that lies just beneath the lipid membrane of the cell, and this cortex gives

cells their unique shapes and for the most part determines their elastic properties.

Another important function of actin is to produce and transmit forces used for

motility. Many cells ‘walk’ across surfaces in order to find food (such as single-

celled amoebae) or perform other functions (such as white blood cells hunting down

invading pathogens). In many cases, the cell will extend structures in the direction

of travel (such as pseudopodia or filopodia), anchor that protrusion to the substrate

(through the assembly of focal adhesions), and retract the trailing edge of the cell

(through stress fibers that link focal adhesions). Actin plays a crucial role in all

three processes: forces generated by actin polymerization deform the membrane

and create the prehensile structure; focal adhesions, transmembrane complexes of

proteins that bind to the surface, are anchored to the actin cortex; and stress fibers,

which contract to retract the trailing edge of the cell, are bundled actin fibers that

are pulled by molecular motors. Thus actin is an important component of the cell’s

motility machinery.

In order to accomplish all these functions, there is a panoply [1] of actin-

binding proteins that destroy, shape, and rebuild the actin cortex. For instance,
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Figure 1.4: Illustration of the action of some actin binding proteins.

here is a small sample of some actin-binding protein functions, which are illustrated

in Fig. 1.4:

1. Sequestering proteins (e.g., cofilin, thymosin and profilin) bind to actin monomers

to prevent polymerization, and in some cases speeds depolymerization (e.g.

cofilin);

2. Capping proteins (e.g., CapZ, tropomodulin, and gelsolin) bind to the growing

end of an actin filament to prevent further growth or degradation;

3. Severing proteins (e.g., gelsolin) cut long actin filaments into shorter filaments;

4. Cross-linking proteins bind actin filaments together, sometimes flexibly (e.g.,

α-actinin), in well-defined patterns (e.g., Arp2/3), or into bundles (e.g. fascin,

or, under certain conditions, α-actinin).
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1.1.3 Purified Actin

Actin is present in most eukaryotic cells, and could be purified from almost any

one. Muscle cells, however, are the best source of actin, since muscles are essentially

large contractile actin bundles (much like the stress fibers on a subcellular-level).

In the experiments discussed below, actin was prepared from rabbit muscle by the

method of Spudich and Watt [6], which is briefly summarized here.

Actin is purified from rabbit muscle in three phases. In the first phase of actin

preparation, rabbit muscle is treated with acetone to dissove the lipid membranes

surrounding the cells and make the actin soluble. This muscle acetone powder can be

stored at −20 deg C for up to two years. The next phase of preparation extracts actin

from the acetone powder by dissoving the actin in buffers. This yields polymerized

actin, which must be depolymerized in the third phase by dialysis against buffer

without polymerizing agents. Appendix A details the steps to extract polymerized

actin from muscle acetone powder.

Purified actin is polymerized by the addition of K+ and Mg2+ ions and ATP,

and at high enough concentrations, actin forms an entangled polymer solution with-

out crosslinks. The rheology of purified entangled actin solutions, summarized in

Chapter 2, has been extensively studied yet many important questions remain. One

such question is how entangled actin solutions respond to deformations at the sub-

cellular level, such as those that might be experience by a motile cell. Chapter 2 also

presents experiments that actively deform actin solutions and reports observations

about the relaxation of deformations.
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1.2 The Nucleus, DNA, and Gene Networks

Changing gears to motivate the results of Chapters 3 and 4, this section reviews

the nucleus. The nucleus is colloquially known as the ‘brain’ of the cell since all

instructions for making the many proteins that make up a cell are encoded in DNA

located in the nucleus.

1.2.1 From DNA to Protein

Deoxyribonucleic acid (DNA) molecules are long, double-stranded polymers

composed of nucleic acids (also known as DNA bases), which come in four varieties:

adenosine, cytosine, guanine, and thymine. The two strands are complementary to

each other, i.e. the bases of one strand are bound to the bases of the other in base

pairs: adenosine in one strand binds only to thymine in the other, and cytosine

binds only to guanine in the other. Thus one strand, the coding strand, contains

the instructions for assembling a protein; the other, the template strand, is merely

its complement and encodes the same information.

A single double-stranded DNA polymer contains many genes, which are sub-

sections of DNA that encode a single protein. Many genes comprise a chromosome,

which is a complex of DNA and histones, proteins around which DNA is tightly

wound in order to conserve space in the nucleus. There are usually multiple chro-

mosomes in an organism: human cells have 23 chromosomes, while horses have 32

and dogs have 39. These chromosomes are then packaged in the nucleus with various

structural and control proteins.
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Ribonucleic acid (RNA) is a related, single-stranded molecule composed of

similar bases to DNA, with the substitution of uracil for thymine. RNA comes in

many forms for different uses in the cell, many of which are still poorly understood.

Three forms that have well-established roles, however, are messenger RNA (mRNA),

transfer RNA (tRNA), and ribosomal RNA (rRNA), which will be explained below.

In order to produce a protein from DNA, the cell performs two broad steps,

illustrated in Fig. 1.5: (i) transcription, the copying of DNA into mRNA, a single-

stranded copy of the bases encoding a single gene; and (ii) translation, the assembly

of proteins from the mRNA instructions. During transcription, the DNA is unwound

from the histone and a segment of double-stranded DNA is exposed to transcription

molecules. RNA polymerase (RNAP), the enzyme that produces mRNA, is recruited

to the DNA molecule by transcription factors (the subject of Sec. 1.2.2 below),

and initiates transcription by unwinding the DNA and separating the two strands.

RNAP then walks down the template strand, closing the DNA behind it and opening

the DNA in front of it. At each base site on the DNA molecule, RNAP recruits the

complementary RNA base and binds it to the elongating mRNA molecule. RNAP

continues in this way until it is terminated through a variety of mechanisms, and

an mRNA copy of the coding strand leaves the nucleus to be transcribed in the

cytoplasm.

Before describing translation, a brief overview of how information is encoded

by DNA is in order. The fundamental unit of translation is the codon, a sequence

of three bases on the mRNA molecule to be translated. Each of the 64 (43) codons

encode a single amino acid, the subunit from which proteins are built: this is the
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genetic code. There are only about 20 amino acids, so there is significant degeneracy

in the code, but four codons have special meaning. There is one start codon that

initiates translation (and also codes for the amino acid methionine) and three stop

codons that terminate it. Transfer RNA, which is RNA bound to an amino acid,

exposes a 3 base anti-codon, which is the complement of a codon on the mRNA

molecule to be translated.

The main actors in translation are ribosomes, fairly large (20 nm) complexes

of many proteins (see Fig. 1.5) and ribosomal RNA, that have two codon-sized

binding sites. A ribosome binds to an mRNA strand to be translated at the start

codon in the first binding site. A tRNA molecule, bound to methionine and with

anti-codon complementary to the start codon, enters the first binding site. Another

tRNA molecule, bound to its amino acid and with anti-codon complementary to

the second codon in the sequence, enters the second binding site. The ribosome

then binds the two amino acids together, and releases the tRNA molecule in the

first binding site. The ribosome slides the mRNA molecule down one codon such

that the attached tRNA now occupies the first binding site. In this way, the protein

is elongated: complementary tRNA molecules with bound amino acids enter the

second binding site, the ribosome binds the amino acids together and slides down

the mRNA molecule. This continues until a stop codon enters the second binding

site, whereupon the ribosome releases the tRNA molecule and amino acid chain for

further processing to become a functional protein.
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Figure 1.5: Illustration of the process by which DNA encodes the instructions for

making proteins. DNA is first transcribed into mRNA, which is then translated

into an amino acid sequence that forms the final product protein. Image Source:

National Institutes of Health, http://stemcells.nih.gov
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1.2.2 Transcription Factors and Gene Networks

The story of the previous section, of course, is only the coarsest approxima-

tion of DNA transcription and translation. The previous discussion implies that the

process is open loop, such that DNA is being transcribed without any control; this

cannot be the case since differentiated cells in organisms, while sharing the same

DNA, have vastly different constitutions. Actin composes up to 20% of all protein in

muscle cells, but makes up significantly less in neurons. Conversely, neurons are con-

stantly producing neurotransmitters while muscles produce little, if any. Thus, cells

must control the production of protein, and one important mechanism is through

transcription factors.

Transcription factors (TFs) are proteins that directly bind to DNA and control

expression (i.e., the transcription and translation) of a gene, and a good introduction

is Ref. [2], summarized here. In a chromosome in front of most genes, there is a

promoter region. This promoter region is a sequence of DNA bases that are not

transcribed into mRNA for translation, but serve as a segment of DNA where TFs

and other translation mediating proteins can bind. In general, each gene has a

unique promoter region (although closely related or duplicate genes may have very

similar promoter regions). Therefore, at a minimum, TFs contain a DNA-binding

region, which binds to a specific sequence of DNA and determines the target of

the TF. Then, depending on the function of the TF, there may be a region that

recruits other proteins to initiate transcription, i.e., the TF can activate the gene.

Conversely, the TF may contain domains to block transcription of the gene, in

13



which case the TF represses the gene. Other regions of the TF may allow binding

of signalling proteins or other modification to activate or deactivate the activity of

the TF itself. Thus these proteins allow for significant control of DNA expression.

The action of transcription factors forms a complex web of interactions among

the different genes, proteins, and other chemical species in a cell. One way to

conceptualize these interactions is with a gene network: each node in the network

is a gene, and an edge is drawn from one node to another if expression of the source

gene affects expression of the destination gene.

One important, albeit significantly simplified, model of gene networks is the

Boolean network model, where each gene takes on one of two states, on or off. This

model, which will be fully explained in Chapter 3, includes rules for the dynamic

evolution of every gene state. An important property of these networks is their sta-

bility; i.e., whether perturbations in the states of a small number of genes spread to

the entire network or quickly die out. Chapter 3 presents a method for determining

the stability of a given network, and Chapter 4 analyzes the effects of topological

properties on network stability.
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Chapter 2

Relaxation of locally deformed actin networks

2.1 Introduction

Actin is an important semi-flexible, double-stranded bio-polymer that is found

in all eukaryotic cells. Actin filaments are the main component of the cytoskeleton,

which gives cells their shape and transduces the forces required for motility [3, 4].

The actin network is an active component which generates forces for cell de-

formation and motion through two key processes. Actin polymerization can push

the leading edge of cells forward, and is guided by a protein machinery that guides

the location of actin polymerization and filament disassembly. Myosin motors drive

contraction of the actin network, a process for example utilized in retraction of

the uropod of motile cells. The mechanical properties of this active biopolymer

network are of great interest, since cell mechanical properties play a role in many

diseases. For example, metastasis of cancer cells involves pushing of cells through

their environment toward the bloodstream [5].

In motile cells, the actin network experiences significant stresses and defor-

mations [12], which have been shown to increase the apparent stiffness of this pre-

stressed actin network by nearly 100-fold [25]

In this study we investigate experimentally intermetiate scale deformations and

relaxations of in vitro of such semiflexible actin network. Localized deformations in
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such self assembled actin networks are generated by moving beads that are embedded

in the actin network. We focus in this study on the relaxation of these deformations.

In particular we study the transition from reversible to irreversible deformations.

The material properties of actin have been extensively studied, both for its

importance in cell biology and as an interesting polymer science question. Actin is

a semi-flexible polymer, i.e. its persistence length is on the order of the filament

size. This is in contrast to most commercially important polymers, flexible chain

polymers, which are much longer than their persistence length. Various techniques

to measure G∗(ω) have been used in the past, including macroscale rheometry [13,

14, 37], passive single- and multi-point [15, 16, 37] microrheology, magnetic-bead

active microrheology [17, 18, 19], and laser tweezer active microrheology [20]. These

experiments have lead to the discovery of several novel properties of semiflexible

networks that are in contrast to the properties of polymers with flexible chains.

For instance, there is a rubber plateau where the actin solution exhibits 100 Pa

shear modulus plateau at 0.1% volume density, compared to 1 Pa in a polystyrene

solution of comparable volume density [22, 23]. There is also significant strain-

hardening in actin solutions [24, 25], which is shown to be a direct consequence

of the large bending energy and long persistence length [26]. Studies of the creep

response of actin show the existence of a short-time regime where x(t) ∝ t3/4 [18, 27],

corresponding to the high-frequency dependence of the modulus G ∝ ω−3/4 [28, 29].

At long times, the creep response is strictly viscous, x(t) ∝ t. Additionally, there is

an intermediate regime where x(t) ∝ t1/2 which is explained as an osmotic restoring

force generated by filament pile-up [30].
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We study localized deformations of in vitro actin networks as a model for the

localized strains found in cells e.g. strains generated by molecular motors. Localized

deformations in in vitro actin networks are generated by moving beads that are

embedded in the actin network with a laser tweezer. We focus in this study on the

relaxation of these deformations, and in particular on two non-linear effects. First,

we study the effect of allowing stress to relax before releasing imposed strain and

find that the strain relaxation rate is approximately independent of the remaining

stress. We explain this finding in terms of entropic relaxations in the context of the

tube model. Second, we study the transition from reversible to irreversible micro-

scale deformations with increasing strain. Using fluorescence imaging we find that

this transition is accompanied by a ‘snapping’ event with sudden local relaxations

of the actin network, which we can measure with PIV and force measurements.

2.2 Materials and Methods

2.2.1 Sample preparation

Samples were prepared by addition of 0.01% by volume 1µm diameter silica

beads to purified actin in Buffer A, and polymerization was induced by addition

of PB. The polymerizing actin was placed into the sample chamber by pipette and

sealed within 30 seconds. For experiments on the green laser tweezer system, the

sample chamber consisted of a standard microscope slide with a hole drilled through

it and sealed by two Number 2 microscope cover slips attached with nail polish,

which held approximated 100 µL of solution. For experiments on the confocal laser
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tweezer, a small drop of actin was placed on a microscope slide and a Number 2 cover

slip was placed over the drop. The actin samples were allowed to sit approximately

30 minutes before experimentation began and were used for up to 3 hours after

initiating polymerization.

2.2.2 Green laser tweezer experiments

A Biorryx 200 (Arryx, Chicago, IL) holographic laser tweezer was used to

perform bead-pulling experiments. The Biorryx 200 consists of a Nikon inverted

microscope, a Spectra-Physics NdYAG laser, a spatial light modulator, and pro-

prietary phase mask generation software. Beads were imaged at 60x magnification

with a Photron Fastcam PCI at 125 frames per second. The thick samples allow us

to minimize edge effects by studying only beads that are further than 50 µm from

either surface. In order to impose a trajectory on the beads with a spatial light

modulator, the optical trap is moved in a series of closely spaced steps aligned along

the intended trajectory; the bead follows the steps of the trap quickly and then

remains stationary until the next step. The stepping rate and step size determine

the speed. The maximum rate at which traps can be set is the update rate of the

SLM, 15 Hz, and the minimum step size is 194 nm. The minimum step size was

used for all trajectories except for the fastest rates. Step sizes greater than 400 nm

yield poor results, as the bead tends to fall out of the trap. The motion of embedded

beads was measured using particle tracking software developed by Crocker et al. in

[31].
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2.2.3 Direct Imaging of Actin Networks

Actin network deformations and relaxations where imaged directly on a high

speed spinning disc confocal microscope with built in laser tweezer. Briefly, the

apparatus consists of a spinning disk confocal microscope that excites fluorescent

probes that absorb blue laser and emit green light; the spinning disk confocal allows

fast imaging of the sample. Additionally, there is also an infrared laser (1094 nm)

used for trapping embedded microspheres. The tweezer on this system is moved

by deflecting the beam with piezo-controlled mirrors. In order to image the actin

network, the fluorescent speckle technique [36] was used, which involves adding actin

bound to Alex Fluor 488 (Invitrogen, Carlsbad, CA) at low ratio (in our case 1:10).

While the direct tracing of filaments is not possible since the filaments are too

close to each other, image sequences were analyzed using particle imaging velocime-

try, which measures the average deformtion in small regions of the sample by finding

the best overlap between the region in the original image and a displaced region in

the subsequent image [38].

2.3 Results

2.3.1 Small Deformations

Small Deformations are Reversible. Figure 2.1 shows representative trajecto-

ries from 2µm displacements, and the inset shows an image obtained on the confocal

microscope of the strained network. The small perturbations relax consistently back
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Figure 2.1: Three small-strain experiments plotted together. The relaxation speeds

are very similar and the bead returns close to its original position. Inset. Schematic

or image showing the channel formed behind the bead after being displaced.

to their equilibrium positions at roughly the same speeds, and this behavior is con-

sistent up to 4 micron deformations (see Sec. 2.3.2), i.e. roughly four times the cage

size. Additionally, by performing these experiments on the confocal microscope, we

are able to image the effect of these deformations on the surrounding network. We

see that there is a ‘channel’ behind the bead, with what appear to be extended

filaments on either side.

Relaxation Amount Depends on Strain Time. We now investigate how the

channel repairs itself while the network is held in a strained state. In a network that

is locally strained by a 4µm displacement of an embedded bead, which is just at

the transition to irreversible deformation, we measure how the relaxation of strain

changes as a function of time the network was kept under strain in two ways. In

the first, we hold the network in a strained state by keeping a bead at the end of its

trajectory for a waiting time tw. In the second, we strain the network at different
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Figure 2.2: The amount of relaxation vs. the total pulling time for pulls that were

held at their destination (squares) and slow, constant pulls (circles).

rates, such that the time the bead is moving, tm varies by up to a factor of 4. In

both cases, we expect the amount of recoil to decrease as a function of the total

straining time ts = tm + tw due to the viscoelastic properties of actin solutions. In

Figure 2.2, we see that to be the case, and that the channel heals over a timescale

of approximately 10 seconds.

Relaxation Rate is Independent of Strain Time. In addition to the amount of

relaxation, we expect the rate at which the bead initially relaxes should be strongly

influenced by how long the bead was strained. However, this does not appear to be

the case. In Figure 2.3(a) we show representative trajectories of beads after being

pulled 4 µm and held for 1 to 50 seconds. We see that in almost all cases, the

beads recoil at approximately 4µm/s; beads that are pulled slowly also recoil at

roughly the same rate when finally released. By measuring the change in the bead’s

displacement in the trap, we can get measure the relative amount of force that is

being applied to the bead by the actin network. We see in Fig. 2.3(b) that the bead

settles more fully into the trap over a timescale of approximately one second, such
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Figure 2.3: (a) Sample trajectories after holding the bead at its destination for 1, 5,

10, and 50 seconds. The beads were pulled 4 µm . The amount of recoil decreases

with increasing hold time. The initial speed of the recoils are the same for a short

time. The beads recoil back to their equilibrium position at approximately 4 µm/s

that the force is indistinguishable from noise. However, we still observe significant

recoil even after tw = 10s, which is significantly longer than the timescale over which

the force relaxes. We interpret this to mean that the channel heals farthest away

from the bead first, but the area behind the bead remains free of filaments for a

significant amount of time. See the Discussion section for more details.

The observation of a relaxation rate that does not decrease with decreasing

force can be understoood in the context of entropic filament rearrangements within

the tube model. Filaments in a gel are confined by their neighbors into a tube,

within which the filament is free to fluctuate due to thermal or other excitations.

Within such a framework, the dynamics of strain relaxation is governed by the time-

scales of the interactions of filaments with their tubes. Other research indicated that

filaments bunch up in front of the bead with concentration c∗ ∼ l
1/3
p ξ8/3 [18], which

implies a local cage size ξ∗ ∼ 0.5µm. We propose that the speed at which an actin
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Figure 2.4: The relaxation distance vs. the initial displacement. The dashed line

corresponds to perfect recoil in the case of a purely elastic material. Viscoelastic

materials should exhibit an increasing amount of recoil with increased displacement,

however there is a maximum in the relaxation distance at 4 microns. This suggests

some sort of damage to the network for deformations larger than 4 microns.

gel relaxes a local strain is governed by the timescale that filaments collide with

their neighbors (i.e., the entanglement time), and this has been shown to be about

0.1s [35, 37] at these concentrations. We note that the characteristic speed obtained

by ξ∗/τe ∼ 5µm/s.

2.3.2 Large Deformations are Irreversible

Turning our attention to deformations larger than 4 microns, we see that these

deformations do not relax back to their original conformation. In Fig. 2.4, we see

that the amount of recoil drops sharply for deformations larger than 4 microns. Also,

the error bars get significantly larger, which implies that the relaxation is not as

uniform as for smaller displacements. This implies that there may be some damage

being done to the network, and we use spinning disk confocal microscopy together
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4 µm

(a) (b)

Figure 2.5: Confocal images with the deformation field around the pulled bead

superimposed, as calculated by PIV. Two times are shown: (a) when a significant

amount of actin is entrained behind the bead and (b) when the entrained actin snaps

away from the bead while it is still being pulled.

with optical trapping to visualize the actin network while imposing strain in order

to investigate the cause of the irreversibility of the deformation.

To the human eye, real-time movies of the actin network deformations also

show snapping events far from the bead that suddenly appear after the bead is pulled

a large distance. A semi-quantitative analysis of the actin network deformations with

Particle Image Velocimetry (PIV) approaches reveals the deformation and relaxation

fields of the actin network itself, and also captures the snapping event. Figure 2.5

shows the extracted velocity field for a time points just after the snapping event,

and in Fig. 2.6 we plot the velocity profile of the extracted flow field for time points

(a) long before, (b) right before, and (c) right after the snapping event. We see that

just before the snapping event, actin behind the bead is entrained with its motion,

but right after the snapping event, that entrained actin is moving away from the

bead and relaxing towards its initial position.
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Figure 2.6: Extracted flow speed in the direction of the bead pull from PIV along

the direction of pull. The bead position is illustrated with a vertical dashed line in

each panel. Panels (b) and (c) correspond to Figs. 2.5(a)-(b), and show the flow

speed vs. position along the pull. Panel (a) is from before a significant amount

of actin is entrained with the bead. As can be seen, after the snapping event, the

actin retracts from the bead at ∼ 0.5µm/s. After the bead is released, there is a

general relaxation, the peak of which is approximately the same as the retraction

from snapping.
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2.4 Discussion

In this paper we have presented results from two different experiments on mi-

croscale deformations of actin networks with laser tweezers. In the first experiment,

we strained an actin network by moving beads trapped in the network and held it

in the strained state. By holding it in this strained state, the stress in the network

relaxes. However, when releasing the bead from the strained state, the rate at which

the bead returns to its original position appears to be independent of the waiting

time. We infer from this that the speed at which the actin network rearranges it-

self is independent of the stress in the network, and is perhaps driven by entropic

processes rather than relaxing of bent filaments.

In the second experiments, we measured how far pulled beads recoiled towards

their initial position. We observed that beads that are pulled less than about four

microns tend to recoil fully back to their original position, and that the recoil is fairly

uniform over different pulls in the same sample. Once the bead is pulled more than 4

microns, however, beads no longer recoil back to their original position. We imaged

this experiment on a confocal microscope, that allows imagining of the strained

network, and observed a snapping event in long bead pulls, which we hypothesize is

the cause of the irreversible deformations in actin networks.

The recoil speeds and critical distance reported here should not be seen as

representative of any distance scales relevant to actual cells; it depends on a variety

of factors, such as concentration of the actin solution, the size of the tracer beads [32],

cross-linking or other actin-related proteins [14], macromolecular crowding effects
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[33], and surface chemistry of the beads [34]. In fact, the silica beads stick to the

protein, which makes them less-than-ideal for these experiments. Carboxyl-modified

polystyrene spheres do not, on the other hand, and tend to slide between filaments,

which makes it the preferred material for tracers. However, the lower index of

refraction makes for poor trapping on our system, so we were forced to use silica.

Surprisingly, though, the same qualitative behavior is observed with carboxylated

spheres. An interesting series of follow up experiments would determine the scaling

of this behavior with sphere size. Larger spheres should entrain more filaments

and thus be a less singular strain. It could be argued that the critical distance

increases as any one entrained filament slipping or snapping causes an irreversible

deformation. Conversely, one could argue that since more filaments are entrained,

a single snapped filament would not have as much of an impact.
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Chapter 3

Stability of Boolean Models of Genetic Networks

3.1 Introduction

Boolean networks have been extensively investigated as a model for genetic

control of cells [39, 40]. In this model, each gene is represented by a node of a

network, and each node has one of two states: on – i.e., producing (‘expressing’)

its target protein – or off. Directed links between genes indicate that one gene

influences the expression of another. This can correspond to the expressed protein

directly binding to DNA and modulating the transcription of a gene or to other

signaling pathways that modulate DNA transcription. In the standard Boolean

network model, the system evolves in discrete timesteps (t = 0, 1, 2, ...), and at each

step the state of every node is simultaneously updated according to some function of

its inputs. This function approximates the action of activators (proteins which act

to increase expression of a given gene) or inhibitors (proteins which act to reduce

expression). While this model might seem to be an oversimplification considering

the complex kinetics involved in all steps of a transcription pathway, experimental

evidence suggests that real biological systems are, in some cases, reasonably well-

approximated by Boolean networks [41].

In 1969, S.A. Kauffman [39] introduced a type of Boolean network known as

an N -K network. In this model, there are N nodes each having exactly K input
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links, and the nodes from which these input links originate are chosen randomly

with uniform probability. (K is not necessarily small compared to N .) We refer to

the number of input (output) links to (from) a node as the in-degree (out-degree)

of that node. At any given time t, the system state can be represented as an N -

vector whose ith component σi(t) is either zero or one, where i = 1, 2, ..., N . There

are 2N possible states. The function determining the time evolution at each node

is defined by a random, time-independent, 2K-entry truth table. Since this is a

finite, deterministic system, there is always an attractor: eventually, the system

must return to a previously visited state (finiteness), after which the subsequent

dynamics will be the same as for the previous visit (determinism). These attractors

can be fixed points or periodic orbits. Using the Hamming distance between two

states (i.e., the number of nodes for which the σi(t) disagree) as the distance measure,

the system exhibits both what is termed a ‘chaotic’ (or unstable) regime, where the

distance between typical initially close states on average grows exponentially in time,

as well as a stable regime, where the distance decreases exponentially. Between the

two there is a ‘critical’ regime. (Here by ‘close’ we mean that the Hamming distance

is small compared to N .)

As a model of genetic control, these attractors have been postulated to repre-

sent a specific pattern of protein expression which defines the cell’s character [39].

In single-celled organisms, these attractors might be taken to correspond to differ-

ent cell states (growing, dividing, starving, heat- or pH-shocked). In multi-cellular

organisms, different cell types (muscle, nerve, liver, etc.) have different expression

patterns, and, within each type, a cell could be in a variety of states (resting, ‘acti-
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vated,’ dividing, etc.) that each correspond to different expression patterns. Boolean

network approximations have been successful in predicting the gene expression time

sequence of the segment polarity gene network in Drosophilia, a model for embryonic

development where individual cells turn specific proteins on and off in patterns that

guide the growth of certain organs and structures [41]. Since the protein expression

pattern of the cell is modeled from the state of the corresponding Boolean network,

the question of the stability of the network then becomes important: do small per-

turbations in the expression pattern, due perhaps to chemical fluctuations, die out

quickly, returning the cell to its original state, or do they quickly grow, pushing the

cell into another state? The purpose of this paper is to examine the stability of

network dynamics in the context of discrete state models of gene networks.

One motivation for the consideration of dynamical stability is its possible

relevance to cancer. Specifically, we hypothesize that dynamical instability of a

gene network might be a causal mechanism contributing to the occurence of some

cancers. We emphasize that this hypothesis is distinct from the previous hypothesis

of ‘genomic instability’ as a cause of cancer [42]. In particular, genomic instability

has been defined1 as ‘the failure to transmit an accurate copy of the entire genome

from one cell to its two daughter cells.’ In contrast, the instability we refer to is that

of the dynamics of a given gene network, and we use the term ‘dynamical network

instability’ (DNI) to distinguish this condition. We speculate that DNI might arise

from mutations and that, once established, as cells divide, DNI could lead to widely

varying gene expression patterns from cell to cell. We emphasize that DNI implies

1As defined in the glossary of Nature Genetics
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that this variation would arise even in the absence of further mutation. That is,

similar to the concept of chaos in continuous-state dynamical systems (e.g., [43]),

DNI causes exponential sensitivity of typical system trajectories to small changes,

which we speculate may lead to many different outcomes in the course of cell division.

Recent microdissection results indicate wide variations in gene expression patterns

even for nearby cells within the same cancerous tissue [44]. This variability provides

a basis for understanding why cancer can adapt and evade treatment [45].

Another motivation for our study is the argument, put forward by Kauffman

[40], that evolution favors gene networks that are on the border between stability

and instability [46, 47, 48, 49]. Whether or not our cancer hypothesis or Kauff-

man’s stability-border hypothesis holds, the question of dynamical stability of such

networks is crucial to their understanding and use as models.

While previous works have addressed the question of dynamical network sta-

bility in simple, specific types of random networks (e.g. N −K nets), in this paper

we address the question of dynamical network stability for general network topol-

ogy and node attributes. We also consider nonsynchronous update and extend the

considerations to non-Boolean models allowing for the possibility of nodes having

more than two states. Thus our work provides a potentially enhanced framework for

modeling and using the discrete state network paradigm. In particular, we consider

how our network stability considerations can be employed on experimentally derived

gene networks.

In the original N − K nets as proposed by Kauffman, the truth table output

governing node dynamics was randomly chosen with on and off having equal prob-
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ability. Subsequently, it was shown that if the truth table output was biased such

that p denotes the probability of randomly assigning an off output, the transition

between the stable and chaotic regimes depends on p [50]. We term p the ‘expression

bias.’ Additionally, networks with a distribution of in-degrees, but no in-/out-degree

correlation, have been considered in [51, 52, 53, 54], and it has been shown that the

nodal in-degree average, 〈Kin〉, suffices to determine the stability. (Here 〈·〉 indi-

cates average of a nodal quantity over all nodes.) Specifically, the critical average

number of connections, Kc, governing this transition is

Kc = 1/[2p(1 − p)], (3.1)

where the network is stable for 〈Kin〉 < Kc, unstable for 〈Kin〉 > Kc, and critical

for 〈Kin〉 = Kc. Aldana and Cluzel [54] considered the consequences of Eq. (3.1) in

the case of networks with scale-free topology [55], i.e., the probability distribution

P (Kin) (or P (Kout)) that a randomly chosen node has in-degree Kin (out-degree

Kout) is a power-law: P (K) ∝ K−γ. (Since every out-link for a node is an in-link for

some other node, 〈Kin〉 = 〈Kout〉; thus the result is unchanged whether it is the in-

or out-degree that has power-law scaling.) In the case of power-law distributions,

Eq. (3.1) can be rewritten in terms of γ, and there is a rather large range of γ where

the network is stable.

Recently, some authors have noted, but not numerically tested, a generaliza-

tion of Eq. (3.1) that takes into account nodal correlations between the in-degree

and out-degree characterized by the joint Kin − Kout degree distribution function
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P̃ (Kin, Kout). In this case, the critical transition occurs at [65]

〈KinKout〉

〈K〉
=

1

2p(1 − p)
. (3.2)

We emphasize that Eq. (3.1) was derived in the annealed approximation (see

later discussion) for networks with a given in- or out-degree distribution P (K) and

with the complimentary links completely random, and that Eq. (3.2) uses only the

additional information contained in the nodal in-/out-degree correlation. Further-

more, all nodes (‘genes’) were taken to have the same p value. However, gene net-

works, in common with real networks occurring across a broad range of applications,

can be expected to deviate substantially from the above simple network model. Ex-

amples of network properties that could make previous analyses of network stability

inapplicable are assortativity [56] (the tendency for highly connected nodes to pre-

fer or avoid linking to other highly connected nodes) and community structure [57]

(the existence of highly connected, sparsely interconnected subgraphs), two proper-

ties that are not captured in the degree distributions. Additionally, these properties

may have biological implications. For example, a recent paper [58] examined gene

interaction networks from cancerous tissue and found significant community struc-

ture, as well as positive correlation between the in-degree and out-degree of nodes;

additionally, protein interaction networks have been shown to exhibit significant dis-

assortativity [56, 59]. Furthermore, for modeling purposes, it might be important to

allow the expression bias p to vary from node to node (as an extreme example, so-

called housekeeping genes [60] have a predominant tendency to be on, corresponding

to low p, unlike other genes). In this paper, we derive and test the stability criterion
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for large networks with arbitrary network topology and heterogeneous expression

biases. In particular, our theory evaluates the stability of any given network with

its specific topology (i.e., its adjacency matrix A defined subsequently), and by its

node-specific expression biases. We show that stability is determined by the largest

eigenvalue of a modified adjacency matrix, and we numerically test this criterion.

With respect to real gene networks, the synchronous update at integer times

(t = 0, 1, 2, ...) used in the above models represents an additional deviation from

the real situation, where chemical kinetics and transport processes can be expected

to introduce non-trivial dynamics. As a partial step toward remedying this (and to

make Boolean approximations suitable for atmospheric and geophysical processes),

Ghil and Mullhaupt [61] consider a generalization in which t is a continuous variable

and σi(t) depends on σj(t − τij), where τij is a delay time that can be different for

each link from j to i. The original formulation (e.g., in Refs. [39, 50, 51, 52, 53, 54])

corresponds to τij = 1 for all i, j. We will argue and numerically confirm that the

criterion determining the stability/instability border of this generalization of the

Boolean network model is the same as that for the synchronous update models.

In addition to nonsynchronous update, another generalization of Boolean net-

works that we will examine is models in which each node i is allowed to have one

of Si possible discrete states (e.g., for Si = 3, we label the states σi ∈ {0, 1, 2}, and

for Boolean networks Si = 2 for all i). This model may be closer to the behavior

of actual cells, and models with multiple states can be related to certain piece-wise

ODE models of transcription [62, 63]. The general model using arbitrary, multival-

ued truth tables has been previously treated in the special case of N −K networks

34



with all nodes having the same number of possible states S. In the case where each

possible state is equally likely, the critical number of inputs is 2

Kc =
1

1 − 1/S
. (3.3)

The applicability of our work to any specific network and set of node-wise ex-

pression biases may be of particular interest in situations where experimental data

provide the possibility of estimating a gene network and expression biases. Such

information could be used as input to our method which could give an indication

of the stability of a given experimentally-derived network. The possibility that

such analyses may be feasible becomes more and more likely with the rapid tech-

nological advances in obtaining new types of high-quality, quantitative data useful

for deducing gene networks. For example, such analyses could be used to address

the hypothesis that dynamical instability of gene networks is connected with the

occurence of cancer.

3.2 Model

Deterministic Boolean networks are formally defined by a state vector Σ(t) =

[σ1(t)σ2(t)...σN(t)]T , where σi ∈ {0, 1}, and a set of update functions fi, such that

σi(t) = fi(σk(i,1)(t − 1), σk(i,2)(t − 1), ...), (3.4)

where k(i, 1), k(i, 2), ..., k(i,Kin
i ) denote the indices of the Kin

i nodes that input to

node i; we denote this set of nodes by Ki = {k(i, j)|j = 1, 2, .., Kin
i }. The update

2Unpublished results by Sole, RV, Luque, B, and Kauffman, S.
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function fi is defined at each node i by specifying a truth table whose outputs are

randomly populated. Previous analytic results assumed a constant expression bias

for all nodes; however, we allow that, in the truth table for node i, output entries

are randomly assigned zero with probability pi or one with probability 1−pi. In the

case of uniform expression bias, we drop the subscript and use the notation p ≡ pi.

We consider the interaction structure of this system as a graph where the nodes

represent individual elements of the state vector, and a directed edge is drawn from

node j to node i if j ∈ Ki. An adjacency matrix A is defined in the usual way: a

matrix entry Aij is one if there is a directed edge from node j to node i and zero

otherwise.

The stability of a large Boolean network is defined by considering the trajec-

tories resulting from two close initial states, Σ(t) and Σ̃(t). To quantify their diver-

gence, the Hamming distance of coding theory is used: h(t) =
∑N

i=1 |σi(t) − σ̃i(t)|.

If the network is stable, on average h(t) → 0 as t → ∞. In unstable networks,

h(t) quickly increases to O(N), while a ‘critical’ network is at the border separating

stability and chaos.

In order to study the stability of an N − K Boolean network, Derrida and

Pomeau [50] considered an annealed situation and calculated the probability that,

after t steps, a node state is the same on two trajectories that originated from

initially close conditions. (This calculation was later generalized to variable in-

degree [51, 52, 53], and joint degree distribution in [65].) In Derrida and Pomeau’s

‘annealed’ situation, at each time step t the truth table outputs and the network

of connections are randomly chosen. The actual situation of interest, however, is
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the case of ‘frozen-in’ networks, where the truth table and network of connections

are fixed in time. It has been commonly assumed that analytical results obtained

for the annealed case are a good approximation to the frozen-in case (e.g., Refs.

[50, 51, 52, 53]). We also adopt this view in a modified form, and we will test its

predictions with numerical simulations.

The randomization of the network of connections at each time step while

keeping the degree distribution fixed carries the implicit assumption that there is

no additional dynamically relevant structure in the frozen network other than that

contained in the joint degree-distribution P̃ (Kin, Kout). To avoid this assumption,

we obtain theoretical results for a different annealing protocol, which we term ‘semi-

annealed.’ In this semi-annealed procedure, we keep the network fixed (i.e., the

adjacency matrix A does not change with time), and we envision randomly assigning

the output entries of the truth table of each node i at every time t according to the

time-independent expression bias pi assigned to node i. We then imagine tracking

the probability that individual node states σi(t) and σ̃i(t) differ over time with an

N -dimensional difference vector, whose components are yi(t) = 〈〈|σi(t) − σ̃i(t)|〉〉,

where 〈〈·〉〉 denotes an average over every possible small initial perturbation. Here

by ‘every possible small initial perturbation’ we mean all perturbations for which

a small fraction ε of the states are flipped. Additionally, we define the ‘sensitivity’

qi as the probability that the output of fi changes when given two different input

strings, similar to the ‘average sensitivity’ of Ref. [64]. In the case of completely
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random Boolean functions,

qi = 1 −

(

p2
i + (1 − pi)

2

)

= 2pi(1 − pi). (3.5)

Thus, similar to Ref. [50], we can write the update equation for yi as

yi(t) = qi

(

1 −
∏

j∈Ki

(1 − yj(t − 1))

)

. (3.6)

Equation (3.6) follows from noting that the probability that σj and σ̃j are equal is

(1 − yj) and thus the probability that all inputs to node i are equal is the above

product. Note that this equation uses topological information contained in the Ki.

However, we have treated yj, yj′ and qi as if they were probabilities of statistically

independent random events. We hypothesize that this semi-annealed protocol might

be expected to yield good results for frozen-in cases when the network is large and

the fraction of network nodes on short loops is small (the network is ‘locally tree-

like’). To see the problem posed by short loops, consider a node with two inputs

that themselves have inputs both coming from a common node; in this case, the

elements of y(t) in Eq. (3.6) are no longer statistically independent and multiplying

the probabilities is no longer correct. See Ref. [66] for discussion related to the

locally tree-like assumption. Our numerical tests of frozen networks indeed yield

results that agree very well with our semi-annealed hypothesis on large, locally tree-

like networks. We also find our predictions to hold for networks with a large number

of feedforward motifs, a nontree-like three-node subgraph that has been found to be

prevalent in real gene networks [67].

The case where both network states are exactly the same corresponds to yi(t) =

0, which is a fixed point of Eq. (3.6). In order to determine the stability of this
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fixed point, we linearize Eq. (3.6) around y(t) = 0 for small perturbations:

yi(t + 1) ≈ qi

N
∑

j=1

Aijyj, (3.7)

where Aij are the elements of the adjacency matrix A. Equation (3.7) can be written

in matrix form as y(t + 1) = Qy(t) where

Qij = qiAij. (3.8)

The stability is thus governed by the largest eigenvalue λQ of this matrix:

λQ > 1, y = 0 is unstable;

λQ = 1, y = 0 is critical; (3.9)

λQ < 1, y = 0 is stable.

Since Qij ≥ 0, the Perron-Frobenius theorem [68] guarantees that λQ is real and

positive. We also note that, for any given adjacency matrix A and assignment of

qi’s to nodes, Eq. (3.6) can be iterated numerically to predict the expected time-

asymptotic saturation value of the difference in two initially nearby states when

evolved to steady-state. We numerically test this prediction, as well as the stability

criterion in Eq. (3.9) in the next section. 3

As a special case of interest, if the the qi are uniform, qi ≡ q, then λQ = qλ,

where λ is the maximum eigenvalue of the adjacency matrix. This yields the critical

condition,

λ = 1/q. (3.10)

3We note that Eq. (3.8) and the condition λQ = 1 also occurs in the treatment [66] of site

percolation on directed networks where different sites have different removal properties. A similar

condition involving 〈K2〉/〈K〉 also arises in percolation on undirected networks [78].
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Furthermore, for the case of a large network whose links are randomly assigned

subject to a joint probability distribution P̃ (Kin, Kout) at each node (with no as-

sortativity), the mean field approximation for the largest eigenvalue is [69]

λ ≈
〈KinKout〉

〈K〉
, (3.11)

where, since 〈Kin〉 = 〈Kout〉 necessarily, we use the notation 〈K〉 ≡ 〈Kin〉 = 〈Kout〉.

Equations (3.10) and (3.11) yield the same criterion as in Eq. (3.2). In the

case where Kin and Kout are uncorrelated, P̃ (Kin, Kout) = Pin(Kin)Pout(K
out) and

〈KinKout〉 = 〈K〉2, yielding Eq. (3.1).

The eigenvalue of random network adjacency matrices with assortativity has

been considered in Ref. [69], which defines an assortativity measure ρ as

ρ =
〈Kin

i Kout
j 〉e

〈KinKout〉
, (3.12)

where 〈Kin
i Kout

j 〉e denotes an average over all links (i, j) from node i to node j. The

network is assortative (disassortative) if ρ > 1 (ρ < 1). For ρ near one, the largest

eigenvalue λ is approximately given by [69]

λ ≈
〈KinKout〉

〈K〉
ρ. (3.13)

Thus by Eqs. (3.6) and (3.9), it is predicted that, for uniform q, assortativity

(disassortativity) decreases (increases) the critical q value.

In the case of nonuniform qi, we have recently generalized Eq. (3.11) to obtain

an analogous mean field approximation to λQ without assortativity or community

structure,

λQ ≈
〈qKinKout〉

〈K〉
. (3.14)
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Our derivation of (3.14) will be published elsewhere. From (3.14), we see that

correlation (anticorrelation) between q and KinKout decreases (increases) network

stability and that, in the absence of correlation, the result is similar to that for a

uniform q, λQ ≈ 〈q〉〈KinKout〉/〈K〉, with 〈q〉 replacing the uniform q (Eqs. (3.9)

and (3.10)).

We now consider the generalization to allow any number of discrete node

states. We denote the number of possible states of node i by Si, and we label the

possible states 0, 1, 2, ..., Si−1. The number of possible inputs to i from the set Ki of

nodes that influence it is
∏

j∈Ki
Sj. For each of these possible inputs, the truth-table

function fi in Eq. (3.4) assigns one of the Si possible states to node i. Similar to the

Boolean case, we take the assignment to be random and to have an ‘expression bias’

pi,s for each of the s = 0, 1, 2, ...Si−1 node states, where pi,s denotes the probability

that fi, for a given set of inputs, assigns the state s to node i, and
∑

s pi,s = 1 for

all nodes i. As in the Boolean case, we can then introduce the sensitivity qi giving

the probability that two different sets of inputs result in a different updated state

of node i, which, in the random truth table case,

qi = 1 −
∑

s

p2
i,s. (3.15)

With this definition, we see that all our previous reasoning still applies, and Eqs.

(3.6)-(3.9) hold with this generalized expression for the node sensitivities and with

yi(t) interpreted as the probability of disagreement between σi(t) and σ̃i(t). In

the case of uniform number of node states Si ≡ S and equal expression biases

pi,s ≡ ps = 1/S, among these states, Eq. (3.15) becomes q = 1 − 1/S, which, when
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combined with Eq. (3.10) yields the previous result in Eq. (3.3).

Finally, we note that our criticality criterion, λQ = 1, is unchanged by the

presence of delays, as in the models of Refs. [61], and only a slight modification

is required of Eq. (3.6) (i.e., yj(t − τij) replaces yj(t − 1)). The condition λQ = 1

implies that the components of y in Eq. (3.6) are time-independent. Thus we predict

that the delays τij do not influence the result, and the criticality condition in Eq.

(3.9) is independent of the synchronous update structure of the most commonly

used random Boolean network models. Similarly, the time-asymptotic steady state

obtained by repeated iteration of (3.6) is, by definition, time-independent and thus

also does not depend on the τij (although the τij will influence the time-dependent

approach to the asymptotic steady state; see Appendix C).

3.3 Statistical Methods

We numerically test the above predictions on several classes of Boolean net-

works with uniform sensitivity (i.e., qi = q is the same for all nodes):

(a) random networks with Kin = Kout;

(b) random networks with imperfect correlation between Kin and Kout;

(c) networks with assortativity or disassortativity; and

(d) networks constructed as in (a) but with a substantial number of feedforward

loops.
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We additionally test our predictions on two classes of networks with nonuni-

form sensitivities:

(e) networks constructed as in (a) but where nodes have different sensitivities

correlated with the degrees of the nodes; and

(f) networks with significant community structure, where the two communities

have different, uniform sensitivities.

Finally, we test our generalization to more than two node states on networks of type

(a) but with Si = 4 for all nodes. For types (a)-(c) and (e), we use networks with

truncated power-law degree distributions. (Evidence for the presence of this type of

distribution in gene networks has been seen in [70].)

The algorithms for constructing the networks of types (a)-(c) are as follows. (i)

Establish the in- and out-degrees for each node, which are drawn from a distribution,

P (K) ∝



















K−γ, K ≤ Kmax,

0, K > Kmax,

(3.16)

where γ = 2.1 and Kmax = 15 (Boolean case) or Kmax = 8 (Si = 4 case). The out-

degree is initially set to the in-degree. (ii) Randomly swap the out-degrees between

pairs of nodes. If maximal correlation between in- and out-degrees is desired, as in

(a), this step is skipped so that Kin = Kout and 〈KinKout〉 is maximal. A completely

uncorrelated network has every nodal out-degree swapped exactly once, yielding

〈KinKout〉 = 〈K〉2. The quantity 〈KinKout〉, which approximately determines λ by

Eq. (3.11), can thus be tuned by the number of nodes that have their out-degrees
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swapped. (iii) Place links randomly between nodes subject to the constraints of the

specified in- and out-degrees assigned at each node by the ‘configuration model’ [71].

(iv) If networks with assortativity (disassortativity) are desired, as in (c), perform

a given number of link swaps, as in [69], that increase (decrease) the assortativity

ρ in Eq. (3.12). In all cases we employ networks with N = 104 and two initial

conditions separated by a Hamming distance of 100. In Appendix C we discuss

finite size effects that can occur for smaller N .

We emphasize that, although we determine our networks randomly, in our

numerical experiments we do not average over this randomness. Rather, we generate

one random network for each experiment and examine the resulting behavior of that

specific network.

3.4 Results

We test the steady-state predictions of Eq. (3.6) and the criticality condition

of Eq. (3.9) in Fig. 3.1, and compare the calculated critical parameters to the mean-

field-type approximations of Eqs. (3.11), (3.12), and (3.14) in Appendix C. In order

to compare Eq. (3.6) (solid curves in Fig. 3.1) to experimental measurements of

the Hamming distance from numerical evolution of true frozen Boolean dynamical

systems (markers in Fig. 3.1), we calculate the node averaged steady-state fractional

Hamming distance,

ȳ = lim
t→∞

1

N

∑

i

yi(t). (3.17)
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In practice, this limit is calculated as the average Hamming distance from t = 90 to

t = 100 when all delays are the same (τij = 1), and from t = 490 to t = 500 when

nonuniform delays are present. These times are well after the steady-state value is

reached (see Appendix C). Each experimental data point in Fig. 3.1 corresponds to

a single realization of interconnections averaged over 100 realizations of the time-

independent truth table with specified sensitivity as before.

3.4.1 In-/Out-degree Correlations and Heterogeneous Time Delay

Figure 3.1(a) shows the steady-state Hamming distance as a function of the

sensitivity for one network of type (a) (λ = 4.4) and two of type (b) (λ = 2.9, 2.3).

The closed markers in the figure represent experiments with uniform delay τij = 1

on all links, while the open markers correspond to experiments where half the links,

randomly chosen, have τij = 10 and the remainder have τij = 1. Importantly, the

degree distributions are the same for all three networks, and we attain different λ

values by varying the correlation between the in-degree and the out-degrees. We see

from Fig. 3.1(a) that there is close agreement between the theoretical prediction

and the experimental results and our prediction that the presence of delays does not

change the stability is confirmed. Additionally, the measured steady-state Hamming

distance is essentially zero below the critical value of the sensitivity, qcrit = 1/λ

(this point is indicated by vertical downward arrows in Fig. 3.1(a)). We emphasize

that the degree distributions (and hence 〈K〉) are the same for the networks in

Fig. 3.1(a), and thus, if the in-/out-degree correlation were ignored, the observed
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difference between the stability conditions for these networks would not be predicted.

3.4.2 Assortativity/Disassortativity

Figure 3.1(b) shows results obtained when significant assortativity or disas-

sortativity is present (type (c) networks). In this experiment, as well as all those

reported below, the delays are all uniform. The networks under consideration have

the same joint degree-distribution with Kin = Kout. However, each of the networks

have very different assortativities (ρ = 0.52, 1.0, 1.7, defined in Eq. (3.12)), which

yield different largest eigenvalues (λ = 3.0, 4.4, 9.9). Since the joint degree distribu-

tions are the same, Eq. (3.2) would predict that the three networks have the same

stability characteristics. However, since their eigenvalues are very different, we pre-

dict that, as observed, the transitions of the three networks occur at different values

of q. Again the theoretical predictions of qcrit are indicated by vertical arrows.

3.4.3 Motifs

Random construction of networks, as used in the networks above, is expected

to yield networks that are locally tree-like [69]. However, we note that biological

and other types of networks often have motifs (small subgraphs) that occur with

higher frequency than in randomly constructed networks [67]. For gene networks of

E. coli and S. cerevisiae, it was found that the number of feedforward loop motifs

(see inset to Fig. 3.1(c)) is significantly enhanced compared to the expected number

in a randomly constructed network. In these networks, the number of feedforward
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loops per node c is roughly 0.1. Thus we consider a network of type (a) (λ ≈ 2.9

and N = 104) after adding 1000 (c = 0.1) and, in an extreme case, 2000 (c = 0.2)

feedfoward loops. To add a feedforward loop, we randomly choose a node A, follow

a random output to node B, and follow a random output of B to node C. We then

add a link from node A to node C. We do this a given number of times, avoiding

nodes that already participate in an added feedforward loop. In Fig. 3.1(c), we see

that the semi-annealed theory of Eq. (3.6) (solid curve) again agrees well with our

numerical experiments (solid markers). Based on such results, we believe that the

locally tree-like network requirement does not invalidate application of our method

to real gene networks. We also note that the critical point is essentially unchanged

by the addition of loops (adding links only slightly increases the largest eigenvalue),

however more feedforward loops tend to increase the steady-state Hamming distance

for q > qcrit.

3.4.4 Application to S. cerevisiae

As a real biological example, we include in Appendix C a graph similar to

those in Figs. 3.1(a)-(c) using a published network for the yeast S. cerevisiae [79].

3.4.5 Heterogeneous Correlated Sensitivities

Figure 3.1(d) demonstrates the effect of a distribution of qi’s on the stability

of a network with Kin
i = Kout

i = Ki and with correlation between the nodal val-

ues of qi and Ki, i.e., type (d) networks. We consider two situations, one where
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〈qK2〉/(〈q〉〈K2〉) is maximal, and one where it is minimal. The qi are drawn from a

uniform distribution centered at q0 (the abscissa in the figure), with width ∆q = 0.1.

Maximal (minimal) 〈qK2〉 is attained by assigning the largest qi to the node with

the largest (smallest) Ki, the second largest qi to the node with the second largest

(second smallest) Ki, and so on. As can be seen from the figure, there is good

agreement between the semi-annealed theory and the numerical experiments, and

the two networks become unstable at different values of q0. (Vertical arrows again

indicate the points where λQ = 1.)

3.4.6 Community Structure

Figure 3.1(e) shows our results for a case where there is community structure

and community-dependent sensitivity. To construct the networks in Fig. 3.1(e),

consider the case where there are two communities, and we assign a link from node

i in community a to node j in community b with probability θab. We impose the

additional constraints that θaa = θbb ≡ θ∪ and that θab = θba ≡ θ∩, and the size of the

two communities are the same, N/2. We take 〈Kin〉 = 〈Kout〉 = 〈K〉 = (θ∪ + θ∩)N

to be the same for both communities, and we also assume that communities a and

b have different sensitivities qa and qb, respectively. As θ∩ is increased from zero to

θ∩ = θ∪, λQ changes from the case of two completely separated communities to one

of a single random network. Communities a and b have equal sizes of 5000 nodes,

community a has qa = 0.5, and community b has qb = 0.1. In order to vary λQ,

we vary θ∪ and θ∩, keeping their sum constant in order to maintain constant 〈K〉.
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As with the curves in Fig. 3.1(a)-(c), the transition to chaos is governed by λQ

(λQ = 1 at the vertical arrow), and Eq. (3.6) (solid curve) accurately predicts the

numerically observed (solid circles) steady-state Hamming distance.

3.4.7 Non-Boolean Models

Figure 3.1(f) illustrates an application to a case in which there are more than

two possible states at each node. In particular, we consider S ≡ Si = 4 possible

states at each node. (Since the number of possible inputs to the truth table for

node i in this case is 4Kin

i , we take Kmax = 8 due to memory constraints.) Labeling

the possible node states σi ∈ {0, 1, 2, 3}, we take nodes to have uniform expression

biases for occurence of state-label 0, p0 ≡ pi,0, from 0 to 1. The three remaining

labels (σ = 1, 2, 3) also have uniform biases for all nodes i, ps ≡ pi,s = (1 − pi,0)/3.

From Eq. (3.15), q ≡ qi = 1− [p2
0 + (1− p0)

2/3], which has a maximum qmax = 0.75

at p0 = 0.25. As can be seen in the figure, the predicted fraction of nodes with

differing states ȳ (solid curve) also has a maximum there. It is again seen that the

measurements (markers) are well-predicted by the theory.

3.5 Discussion

In this paper, we have presented theoretical results (Eqs. (3.6) and (3.9)) which

predict the steady-state Hamming distance between states evolved from two nearby

initial conditions and the stability of a given network. These results are derived

using the hypothesis that a theory derived in the semi-annealed case approximates
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Figure 3.1: (a) ȳ vs. q for three networks with different largest eigenvalues (λ ≈

5.5, 3.4, 2.3), both with uniform delay on all links τij = 1 (closed markers) and with

half the links having increased delay of τij = 10 (open markers). The solid curves

correspond to the prediction ȳ (defined in Eq. (3.17)) obtained by simulating Eq.

(3.6). The downward vertical arrows correspond to qcrit = 1/λ for each of the three

networks. (b) ȳ vs. q for three networks with different assortativities. (c) ȳ vs. q

for networks with added feedforward motifs, with an illustration of the feedforward

motif (inset). (d) ȳ vs. q0 for networks with maximum correlation (circles) and

minimum correlation (squares) between Kin
i Kout

i and qi, where qi is drawn from

a uniform distribution centered at q0 with width 0.1. (e) ȳ vs. θ∩/(θ∪ + θ∩) for

networks with community structure, where the two communities have qa = 0.5 and

qb = 0.1. (f) ȳ vs. p0 for a network where each node can take one of Si = 4

possible states. p0 is the probability that a zero appears in the truth table output;

the remaining three symbols appear with equal probability.
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the true situation, where by semi-annealed we mean that the network of connections

is frozen, but the truth table at each node is randomly reassigned at each timestep.

For large networks, this approximation was found to give excellent agreement with

the true case of frozen connections and frozen truth tables. Our semi-annealed

hypothesis does not rely on gross statistical properties of the network, but instead

uses the specific network topology, as characterized by the network adjacency matrix,

and the individual node sensitivities to make predictions.

We tested our theoretical predictions with numerical experiments. Previously

unaddressed issues that we considered include the effects of assortativity, nonuniform

time delay, nonuniform sensitivity, motifs, and community structure. In all cases

tested we found good agreement with our theory.

The theory that we have presented and tested above may represent a step

forward in facilitating the application of discrete state dynamical network models

to biological systems. Given a specific genetic interaction network and an estimate

of the node sensitivities, Eq. (3.9) predicts the stability of that particular network

directly from the adjacency matrix. Curated networks already exist in the literature

for model single-cellular systems, and new algorithms continue to be developed for

inferring interaction networks from a wide range of data sources (microarray experi-

ments, GO annotation, genome sequencing, etc.). We note that such a procedure has

the advantage that, because the actual experimentally determined network is em-

ployed, topological aspects such as nodal in-/out- degree correlation, assortativity,

community structure, etc., do not first have to be determined and then statistically

modeled. Thus, by use of our stability criterion (3.9), there is the potential that
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future analysis may be able to evaluate a supposed relationship between the sta-

bility characteristics of various networks and their functioning. For example, one

might test whether cancer gene networks are less stable than those in healthy tissue.

This could lead to the strong variations in gene expression observed in cancerous

tissue [44], even when the underlying gene network is unchanged. We are currently

pursuing research along this line.
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Chapter 4

Approximating λQ

4.1 Introduction

Topological properties of networks have received much attention. The coarsest

topological property is the degree distribution, where the in-degree din
i and out-

degree dout
i of a network node i are defined as the number of directed network links

pointing into and away from node i. At each node, the in-degree and out-degree

may be correlated; this correlation can be characterized by

η = 〈dindout〉/〈d〉2, (4.1)

where 〈·〉 denotes the average of the indicated quantity over all network nodes.

(Since every out-link of a node is an in-link for some other node, 〈din〉 = 〈dout〉 ≡

〈d〉.) Additionally, networks can be assortative or disassortative [56], i.e., nodes

with high degree may prefer or avoid connecting to other nodes of high degree. We

characterize this by a correlation coefficient ρ between the in-degrees din
j and the

out-degrees dout
i at either end of a directed link from node j to node i [69]1,

ρ = 〈din
i dout

j 〉e/(η〈d〉)
2, (4.2)

1This definition of ρ appears in Ref. [69]. Newman [56] characterizes assortativity using a

different quantity, but Eq. (4.2) is more relevant for our purposes.

53



where 〈·〉e indicates an average over all network links. If ρ > 1, the network is

assortative, if ρ < 1 it is disassortative, and it is neutral if ρ is exactly one. Another

example of topological structure is the existence of communities [81], which are

groups of nodes that tend to be densely interconnected within the group but sparsely

connected between groups.

In addition to static topological properties of networks, another area of recent

interest has been dynamical processes taking place on networks. Examples include

synchronization of coupled identical dynamical systems (which may be chaotic) [82],

the onset of coherence in the evolution of heterogeneous network-coupled dynamical

systems (both oscillatory [83], as well as chaotic [84]), the onset of instability in

discrete state models of gene networks [85], percolation on directed networks [66],

and others. In several of these examples [84, 85, 66], an important determining

quantity was shown to be the maximum eigenvalue of the adjacency matrix A, the

elements of which are defined to be Aij = 1 if there is a directed link to node i from

node j and zero otherwise for all i, j = 1, 2, ..., N , where N is the number of network

nodes; Aii ≡ 0 by definition.

Motivated by the importance of λA to these dynamical problems, Ref. [69]

developed theory for obtaining large N approximations to λA from knowledge of

statistical characterizations of the network. For example, it was shown [69] that

random networks constrained only by specification of the joint degree distribution

P (din, dout) have

λA ≈ 〈dindout〉/〈d〉 = η〈d〉, (4.3)
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where P (din, dout) is the probability that a randomly chosen node has in-degree din

and out-degree dout . From (4.3) it is seen that nodal correlation or anticorrelation

between din and dout increases or decreases λA. If an additional assortativity

constraint is imposed, then Ref. [69] obtains

λA ≈ ρη〈d〉, (4.4)

to lowest order in (ρ − 1). Thus assortativity (ρ > 1) tends to increases λA, and

disassortativity (ρ < 1) tends to decrease λA.

However, we note that in two of the cited applications (namely, gene network

stability [85] and site percolation on large directed networks [66]), the formulations

resulted in a somewhat more general eigenvalue problem. Specifically, this problem

was that of determining the largest eigenvalue λQ of a generalized adjacency matrix

Q whose elements are given by

Qij = qiAij, (4.5)

where qi is the ‘bias’ characterizing node i which may be different for each node.

In the special case of uniform qi ≡ q for all i, the problem for λQ reduces to that

for λA, i.e., λQ = qλA, and the previous results such as Eqs. (4.3) and (4.4) can be

employed. However, it is also of interest to consider the more general problem of

determining λQ for nonuniform biases, and it is that problem to which this paper

is devoted. We note that in the site percolation context [66], qi = (1 − pi), where

pi is the probability that node i is removed, while in the gene network context [85],

qi is the probability that the output of gene (node) i is switched to another state if

one or more of its randomly chosen inputs is switched. In either case, qi is in the
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range 0 ≤ qi ≤ 1, and we accordingly restrict ourselves to qi ≥ 0. Since Qij ≥ 0, the

Frobenius-Perron theorem implies that λQ is real and positive.

Our analysis will consider ‘Markovian’ random networks (see Sec. 4.2). This

type of consideration was used in the analysis of λA in Ref. [69], as well as in

a variety of other interesting studies of different network related problems (e.g.,

Refs. [78, 86, 87, 88] which consider epidemic spreading and percolation). Basically,

a Markovian network is one for which the only nontrivial spatial correlations are

between nodes that are directly connected by a single link. Within this framework,

we formulate a theory for determining the λQ of large networks, and we utilize our

theory to examine several significant situations of interest. Examples of our results

are a generalization of Eq. (4.3) (see Eq. (4.17)) showing that correlation between

q and dindout increases λQ, a generalization of Eq. (4.4) (see Eq. (4.28)) showing

that correlation between qiqj and dout
i din

j on edges from j → i increases λQ, and

an analysis of the effect on λQ of network communities tending to have different,

community-dependent q values (see Eq. 4.34).

For later reference we note the following relationships involving the adjacency

matrix,

din
j =

N
∑

i=1

Aij, dout
i =

N
∑

j=1

Aij, (4.6)

〈Sij〉e =

[

∑

i,j

AijSij

]

/
∑

i,j

Aij. (4.7)

By (4.6)

〈din〉 = 〈dout〉 =
1

N

∑

i,j

Aij ≡ 〈d〉. (4.8)
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By (4.6)-(4.8)

〈dout
i 〉e =

[

∑

i,j

Aijd
out
i

]

/
∑

i,j

Aij =
∑

i

dout
i din

i /
∑

i,j

Aij

= 〈dindout〉/〈d〉. (4.9)

4.2 Markovian Networks

We characterize each node i by four attributes: its in-degree din
i , its out-

degree dout
i , its ‘bias’ qi, and its group (or community), labeled σi. We call the triplet

zi = (din
i , dout

i , qi) the ‘generalized degree’ of node i. The number of groups is denoted

s, so that σ = 1, 2, ..., s. If no two nodes have the same attributes (z, σ), then

there is a one-to-one correspondence between i and (z, σ) ∈ {(zk, σk)|k = 1, 2, ...N}.

We consider N -node random networks specified by the following quantities: (i) the

number of nodes in each group Nσ (
∑s

σ=1 Nσ = N); (ii) the degree distribution Pσ(z)

for group σ (σ = 1, 2, ..., s) giving the probability that a node randomly chosen from

group σ has generalized degree z ; and (iii) the probability Π(z, σ|z′, σ′) that, if a

randomly chosen link originates from a node in group σ′ that has degree z′, then

that link points to a node in group σ with degree z . Note that, since every out-link

for a node is an in-link for some other node, the degree distributions Pσ(z) are

constrained to satisfy the relation,

∑

z,σ

NσPσ(z)dout =
∑

z,σ

NσPσ(z)din, (4.10)
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which we denote N〈d〉. Furthermore, we have that Π(z, σ|z′, σ′) satisfies the prob-

ability normalization condition,

∑

z,σ

Π(z, σ|z′, σ′) = 1. (4.11)

By use of this model, we essentially assume that the only non-trivial correlation

between the attributes of two different nodes occurs when they are directly connected

by a single link. For example, if we choose a random outward path of length two

from a node in group σa of degree za , then the probability that the first leg of the

path goes to a node having (zb, σb) , and the second leg of the path goes to a node

having (zc, σc) is given by Π(zc, σc|zb, σb)Π(zb, σb|za, σa).

In order to find the maximum eigenvalue of Q, we consider the iteration

u(n+1) = Qu(n) which, for a typical initial choice of u(0) converges on the eigen-

vector u corresponding to the largest eigenvalue λQ. Relabeling the nodes by their

attributes (z, σ) , we write the components of the vector u = [u1, u2, ..., uN ]T as

ui = v(zi, σi). The ensemble average of the iterated vector v(n)(z, σ) thus evolves

according to

v(n)(z, σ) = q
∑

σ′

∑

z′

Π(z, σ|z′, σ′)(dout)′v(n)(z′, σ′), (4.12)

and we denote the eigenvalue of this evolution by λ̂Q,

λ̂Qv(z, σ) = q
∑

σ′

∑

z′

Π(z, σ|z′, σ′)(dout)′v(z′, σ′). (4.13)

For large N , and a random draw from our Markov ensemble of networks, we

suppose that λ̂Q from (4.13) will typically provide a good approximation to λQ for

the chosen network, and we will test this supposition using numerical experiments.
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In the next section, we apply Eq. (4.13) to obtain analytical approximations to λQ

for several situations of interest.

4.3 Evaluation of λQ

4.3.1 The Effect of Nodal Correlations

We first consider the case s = 1, corresponding to the absence of group struc-

ture. Thus the variable σ may be omitted from Eq. (4.13). We furthermore assume

that zi and zj on the two ends of a link from j to i are uncorrelated. Thus there is

no assortativity, and Π(z |z′) does not depend on z′. Under this assumption, Π(z |z′)

is simply the probability that a randomly chosen link points toward a node with

degree z . This probability is proportional to the number of nodes with degree z ,

and to the number of in-links to such a node,

Π(z |z′) = dinP (z)/〈d〉, (4.14)

where the factor 〈d〉−1 provides the necessary normalization from Eq. (4.11). In-

serting (4.14) into (4.13) we have that

λ̂Qv(z) = qdinP (z)〈d〉−1
∑

z′

(dout)′v(z′). (4.15)

Thus we see that the eigenvector v(z) is

v(z) = qdinP (z), (4.16)

which when inserted into (4.15) yields

λ̂Q = 〈qdindout〉/〈d〉, (4.17)
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where

〈qdindout〉 =
∑

z

qdindoutP (z). (4.18)

Equation (4.17) is the appropriate generalization of Eq. (4.3) to take into account

the node-dependent biases qi that appear in the definition, Eq. (4.5), of the matrix

Q.

If q and dindout are uncorrelated, λ̂Q = 〈q〉λ̂A where λ̂A is given by (4.3). On

the other hand, we see that if q and dindout are correlated (anticorrelated), then λ̂Q

is larger (smaller) than 〈q〉λ̂A.

4.3.2 Assortativity

Next we wish to consider how the result in Eq. (4.17) is modified if we allow

correlation between z and z′. We address this problem perturbatively, and we write

Π(z |z′) as

Π(z |z′) ≈ Π(0)(z |z′) + εΠ(1)(z |z′), (4.19)

where ε is a small expansion parameter, and Π(0)(z |z′) is given by the uncorrelated

result, Eq. (4.14). Similarly expanding the eigenvalue λ̂Q and the eigenvector v(z),

we have

λ̂Q ≈ λ̂
(0)
Q + ελ̂

(1)
Q , (4.20)

v(z) ≈ v(0)(z) + εv(1)(z), (4.21)

where λ̂
(0)
Q is given by (4.17) and v(0)(z) is given by (4.16). Inserting (4.19)-(4.21),

(4.14), (4.16), and (4.17) into (4.13), multiplying the resulting equation by dout ,
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and summing over all z , the terms involving v(1)(z) cancel. Thus we obtain

ελ̂
(1)
Q λ̂

(0)
Q = ε

∑

z,z′

qdout(din)′q′Π(1)(z |z′)P̃ (z), (4.22)

where

P̃ (z) = doutP (z)/〈d〉. (4.23)

is the probability that a randomly chosen link originates from a node of generalized

degree z . With this interpretation of (4.23), we see that (4.22) can be re-expressed

in terms of the link average 〈·〉e,

ελ̂
(1)
Q λ̂

(0)
Q = ε〈qid

out
i din

j qj〉e − 〈qid
out
i 〉e〈qjd

in
j 〉e, (4.24)

where we use the convention that j (i) labels the node that the link comes from

(points to).

Proceeding as in Eq. (4.9), we obtain

〈qid
in
i 〉e = 〈qjd

in
j 〉e = 〈qdindout〉/〈d〉 = λ̂

(0)
Q , (4.25)

which when inserted in (4.24) yields

λ̂Q ≈ λ̂
(0)
Q + ελ̂

(1)
Q = 〈qid

out
i din

j qj〉e/λ̂
(0)
Q . (4.26)

Now defining a new assortativity coefficient appropriate to networks with heteroge-

neous biases qi, we write

ρQ =
〈qid

out
i din

j qj〉e

〈qidout
i 〉e〈qjdin

j 〉e
=

〈qid
out
i din

j qj〉e

(λ̂
(0)
Q )2

, (4.27)

in terms of which Eq. (4.26) takes the suggestive form,

λ̂Q ≈ λ̂
(0)
Q ρQ. (4.28)
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Thus bias assortativity (disassortativity), corresponding to ρQ > 1 (ρQ < 1) yields

λ̂Q > λ̂
(0)
Q (λ̂Q < λ̂

(0)
Q ). Equations (4.27) and (4.28) generalize Eqs. (4.2) and (4.4)

for λA to results for λQ.

4.3.3 Community and Bipartite Structure

We now consider how the presence of several network groups (s > 1) influence

λ̂Q. As in Sec. 4.3.1, we assume that zi is uncorrelated with zj , where zi and zj

are at either end of a link from i to j. However, we do include correlations between

σi and σj along this link, and we characterize this correlation by the s× s matrix of

transition probabilities pσσ′ , giving the probability that a randomly chosen out-link

from a node in group σ′ connects to a node in group σ. With these assumptions,

we have the following result for Π(z, σ|z′, σ′) (analogous to (4.14)),

Π(z, σ|z′, σ′) = D−1(σ′)pσσ′dinPσ(z), (4.29)

where D(σ′) =
∑

z,σ Pσ(z)dinpσσ′ is a normalizing factor (see Eq. (4.11)). Inserting

(4.29) into (4.13),

λ̂Qv(z, σ) = q
∑

σ′,z′

D−1(σ′)dinpσσ′Pσ(z)(dout)′v(z′, σ′). (4.30)

Equation (4.30) immediately determines the z dependence of v(z, σ). Thus we can

write

v(z, σ) = qdinPσ(z)w(σ), (4.31)
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where the σ dependent quantity w(σ) is, as yet, undetermined. Substituting (4.31)

into (4.30) we obtain the following eigenvalue equation for w(σ) and λ̂Q,

λ̂Qw(σ) =
∑

σ

Mσσ′w(σ′), (4.32)

where M is the s × s matrix,

Mσσ′ = D−1(σ′)〈qdindout〉σ′pσσ′ , (4.33)

where 〈·〉σ =
∑

z(·)Pσ(z). Thus the N × N eigenvalue problem for λQ is now

approximated by the much smaller s × s eigenvalue problem (4.32),

λ̂Q = max. eigenvalue[M ]. (4.34)

We have also expanded the group eigenvalue problem to obtain the correction to

(4.34) that is introduced by including correlations between zi and zj along links

from j to i. This analysis proceeds in a manner similar to that in Sec. 4.3.2 and is

omitted.

Note that in the case where the off-diagonal transition probabilities are zero,

pσσ′ = 0 for σ 6= σ′, we have s completely disconnected groups, and that, for pσσ′/Nσ

independent of σ and σ′, the group-dependence on the connectivity is absent. If the

diagonal terms of the matrix pσσ′/Nσ are larger than the off-diagonal terms, then

we say there is ‘community structure’ (i.e., the density of intragroup connections is

larger than the density of intergroup connections).

At the opposite extreme, for the case of two groups (s = 2), if the diagonal

components of the transition probability matrix are zero (pσσ = 0 for σ = 1, 2), then

connections exist only between, and not within, the two groups, i.e., the network is
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‘bipartite.’ Thus, if the diagonal terms of the matrix pσσ′/Nσ are smaller than the

off-diagonal terms, then we say the network has ‘bipartite structure.’

In our numerical tests of Eq. (4.34) in Sec. (4.4.3), we will consider two groups

(s = 2; σ = 1, 2) with equal sizes (N1 = N2 = N/2) and with symmetric transition

properties (p11 = p22 ≡ p0, p12 = p21 ≡ px). We will, in addition, restrict our

consideration to the case where the in-degree/out-degree distributions are the same

for the two groups, but we will allow the biases q for the two groups to be unequal,

with the q’s not correlated with din and dout ; i.e.,

Pσ(z) = P d(din, dout)P q
σ(q). (4.35)

With these conditions Eq. (4.34) reduces to

Mσσ′ = 〈q〉σ′ξpσσ′ , (4.36)

where

ξ = D−1(1)〈dindout〉1 = D−1(2)〈dindout〉2, (4.37)

or

M = ξ









p0〈q〉1 px〈q〉1

px〈q〉2 p0〈q〉2









. (4.38)

From Eqs. (4.34) and (4.38),

λ̂Q = ξ
{

p0(〈q〉1 + 〈q〉2) +
[

p0(〈q〉1 − 〈q〉2)
2 + 4px〈q〉1〈q〉2)

]1/2
}

/2. (4.39)

Equation (4.39) can be put in a somewhat more revealing form by introducing

q± = (〈q〉1 ± 〈q〉2)/2, in terms of which (4.39) becomes

λ̂Q = ξ
{

p0q+ +
[

(p2
0 − p2

x)q
2
− + p2

xq
2
+

]1/2
}

. (4.40)
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From (4.40) we see that, if we keep q+ (the average q value for the whole network)

fixed, but allow the difference between the average q’s in the two groups to increase

(i.e., we increase |q−|), then λ̂Q increases if the network has community structure

(p0 > px), but it decreases if the network has bipartite structure (px > p0).

4.4 Numerical Tests

4.4.1 First-order Approximation

We test the predictions of Eq. (4.17) on networks with equal power-law in-

degree and out-degree distributions. To construct the networks used to test this

hypothesis, we follow the method used in [69]. In particular, we first randomly

construct a list of N degree values by choosing N random numbers drawn from a

given distribution, in this case,

P (d) ∝



















d−γ, dmin ≤ d ≤ dmax,

0, otherwise.

(4.41)

We use γ = 2.5 and adjust dmin and dmax to tune 〈d〉 . We then assign each number

on this list to each node i and we call this assignment the ‘target’ in-degree d̂in
i . Next

we use this same list to assign to each node i a target out-degree d̂out
i , and perform

this assignment in one of three ways: (i) d̂out
i = d̂in

i , yielding maximal 〈dindout〉 and

η; (ii) d̂out
i randomly drawn from the list, yielding 〈dindout〉 ≈ 〈d〉2 and η ≈ 1; or

(iii) the node with the largest d̂in is assigned d̂out equal to the smallest value on

the list, the node with the second largest d̂in is assigned d̂out equal to the second

smallest value on the list, etc., yielding minimal 〈dindout〉 and η. Once the d̂in and
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d̂out are assigned, we construct the network by setting the elements of the adjacency

matrix Aij = 1 with probability d̂in
i d̂out

j /N〈d̂〉 (where 〈d̂〉 = 〈d〉 is the average of the

list values) and 0 otherwise.

After the network is constructed, we assign the biases qi drawn from a uniform

distribution on the interval [0, 1]. For each of the three values of 〈dindout〉, we tune

〈qdindout〉 by swapping the biases of random pairs of nodes to increase or decrease

〈qdindout〉. For example, if we wish to obtain increased 〈qdindout〉 , we only keep

those swaps that increase 〈qdindout〉. In Fig. 4.1, we plot the measured normalized

eigenvalue λQ/〈d〉 vs. 〈qdindout〉/〈d〉2 for 〈d〉 ≈ 10 (open markers) and 〈d〉 ≈ 100

(filled markers) for 〈dindout〉 maximal (circles), minimal (squares), and neutral (tri-

angles) averaged over 10 networks. As can be seen, the markers all fall on the solid

line, λQ/〈d〉 = 〈qdindout〉/〈d〉2.

4.4.2 Assortativity

In Fig. 4.2 we test the predictions of Eq. (4.28). Baseline networks of size

N = 104 with η ≈ 1 and ρ ≈ 1 are constructed as described above, with the

biases qi drawn from a uniform distribution on the interval [0, 1]. We then consider

two methods of tuning ρQ, method (a), which yields networks with ρQ 6= 1 but no

correlation between the degrees and the bias at a given node, and method (b), which

introduces nodal degree-bias correlations.

Method (a). This method is a modified version of the algorithm in [69]:

(i) Randomly choose two links going from j1 → i1 and j2 → i2. (ii) Calculate
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Figure 4.1: λQ/〈d〉 vs. 〈qdindout〉/〈d〉2 for networks of size N = 104 with no

assortativity and 〈d〉 = 100 (filled markers) and 〈d〉 = 10 (open markers). For both

values of 〈d〉, three values of η are considered: maximal (circle), neutral (triangle)

and minimal (squares). Each marker is the average of 10 networks, and the solid

line is the theoretical prediction, λQ/〈d〉 = 〈qdindout〉/〈d〉2.
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qj2qi2 and din
j1

dout
i2

qj1qi2 + din
j2

dout
i1

qj2qi1 . (iii) If the latter value is

larger or smaller (depending on whether the target ρQ is greater or less than one),

delete the original links and place new links from j1 → i2 and j2 → i1, otherwise

keep the original links. (iv) Repeat this process until the target ρQ is achieved.

Method (b). This method is a two-step process. First, we tune ρ by swapping

inputs of random link pairs, and we do this without regard to the node biases, as

in [69], yielding a network with ρQ ≈ ρ. Once ρ is tuned, we further tune the

bias assortativity ρQ by the following: (i) Randomly choose two nodes, i and j.

(ii) Calculate the change in ρQ that would result if the q’s at these two randomly

chosen nodes were interchanged. (iii) If it is desired to increase (decrease) ρQ and

the change in ρQ is positive (negative), then swap the q values; otherwise do not

make the swap. (iv) Repeat the above process until the target ρQ is achieved.

The results of these two methods are in Fig. 4.2. Each marker in the figure is

the average of 10 networks of size N = 104, and we consider networks with 〈d〉 = 10

(open markers) and 〈d〉 = 100 (filled markers) tuned with both methods. In Fig.

4.2(a), we plot the normalized eigenvalue λQ/〈d〉 vs. ρQ for networks tuned with

method (a). Since η is approximately unity and the qi are assigned independently of

the node degrees, λ̂
(0)
Q ≈ 〈d〉〈q〉; the theoretical prediction (solid curve) is therefore

λ̂Q/〈d〉 = ρQ〈q〉. The results of method (b) are shown in Fig. 4.2(b). We consider

networks tuned to ρ ≈ 0.8 (circles), 1.0 (triangles), and 1.2 (squares). Note that

swapping the q values in method (b) changes λ̂
(0)
Q as well as ρQ, and thus λ̂

(0)
Q must

be calculated for every marker. We therefore plot λQ/〈d〉 vs. λ̂
(0)
Q ρQ/〈d〉, and we

see that all the points fall on the theoretical prediction, λQ/〈d〉 = λ̂
(0)
Q ρQ/〈d〉 .
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Figure 4.2: (a) λQ/〈d〉 vs. ρQ for a network of size N = 10000 and average con-

nectivity 〈d〉 = 10 (circles) and 〈d〉 = 100 (squares). Each marker is the average

of 10 networks. (b)λQ/〈d〉 vs. λ̂
(0)
Q ρQ/〈d〉 for networks with structural assortativity

of 0.8 (circles), 1.0 (triangles), and 1.2 (squares) of size N = 10000 and average

connectivity 〈d〉 = 10 (open markers) and 〈d〉 = 100 (filled markers).

69



4.4.3 Community Structure

In Fig. 4.3 we test the predictions of the community structure theory for a

network of size N = 104 with two equally sized groups. Networks are constructed

as described Sec. 4.3.3; Aij = 1 with probability p0 if j and i are in the same group

or probability px if i and j are in different groups. We then consider four cases:

two completely separated components (px = 0, circles), strong community structure

(px = p0/2, squares), no group structure (px = p0, upward pointing triangles), and

strong bipartite structure (px = 2p0, downward pointing triangles). The groups have

uniform biases, q1 = q+ + q− and q2 = q+ − q−, with q+ = 0.5 and q− varying from

0 to 0.5. We plot the measured λQ vs. the difference in group biases, q−, averaged

over 10 networks. The solid curves are the theoretical predictions of Eq. (4.40), and

markers are the average of 10 networks.

Again we obtain excellent agreement between the theory and the numerical

tests. Note that, as mentioned in Sec. 4.3.3, the effect of increasing q− is to in-

crease λQ in the case with community structure and to decrease λQ in the case with

bipartite structure.

4.5 Conclusion

Motivated by recent work on the stability of gene network models [85] and

on percolation on directed networks [66], we have developed and numerically tested

theoretical predictions for the maximum eigenvalues λQ of the modified adjacency

matrix Q defined by Eq. (4.5). Using a Markov network model (Sec. 4.2), we
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Figure 4.3: λQ vs. q− for networks of size N = 104 with two equal groups of varying

type: two completely separated components (px = 0, circles), strong community

structure (px = p0/2, squares), no group structure (px = p0, upward pointing trian-

gle), and strong bipartite structure (px = 2p0, downward pointing triangle). Each

marker is the average of 10 networks, and the solid curves are the theoretical pre-

dictions of Eq. (4.40).
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calculate approximations to λQ for various situations (Sec. 4.3). In particular, we

considered: (i) the effect of correlation between the bias q at a node with the product

dindout at that node; (ii) the effect of correlations between the degrees and biases

for nodes at the two ends of a network link; and (iii) the effect of the existence of

groups of nodes with community or bipartite structure in which different node bias

distributions apply to different groups. We find that the effects discussed strongly

influence the value of λQ, and in all cases our numerical tests (Sec. 4.4) resulted in

excellent agreement with our theoretical results.

This work was supported by NSF (Physics) and by ONR (contract N00014-

07-1-0734). The work of A.P. was partly supported by the NCI intramural program.
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Appendix A

Actin Purification

As outlined in Chapter 1, there are three phases to actin purification from

rabbit muscle. This Appendix will detail the final two phases as muscle acetone

powder is commercially available.

A.1 Extracting Polymerized Actin

Actin is extracted into a buffer known as Buffer A, which consists of 4 mM

Tris, 0.2 mM CaCl2, 0.2 mM Na2ATP, 0.005% NaN3, DTT 0.5 mM, and pH 8.0.

Actin in muscle acetone powder is extracted by the following steps:

1. 10 g muscle acetone powder is stirred with 200 mL Buffer A for 30 minutes to

dissolve actin into the buffer.

2. The mixture is filtered through cheesecloth and the liquid containing actin is

retained.

3. The acetone powder is stirred again in 150 mL of fresh buffer A for 30 minutes.

4. The mixture is filtered through cheesecloth and the liquid is pooled with the

result from step 2, yielding 350 mL of actin in Buffer A.

5. The liquid is centrifuged at 10,000 rpm at 4 degrees C for 1 hr and filtered

through cheesecloth in order to remove small pieces of acetone powder.
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6. The actin in the supernatant is polymerized by addition of 50 mM KCl and 2

mM MgCl2 and allowed to sit at least 2 hours at 4 degrees C.

7. Polymerized actin is stirred with 0.55 M KCl for 30 mins.

8. The polymerized actin is centrifuged at 52,000 rpm and 4 degrees C for 1.5

hr in order to spin the actin filaments out of solution, leaving impurities in

solution.

9. The pellets containing near-solid actin are collected and homogenized in fresh

buffer A, and centrifuged again at 52,000 rpm.

10. The pellets are collected and allowed to soak in Buffer A for at least six hours.

11. The pellets are then homogenized and the result is concentrated polymerized

actin.

The polymerized actin that results from this process is stable and can be stored on

ice for up to 2 months.

A.2 Depolymerization and Final Purification

The polymerized actin from the previous phase is then depolymerized by dia-

lyzing against Buffer A for 4 days. The Buffer A is replaced five times throughout

the dialysis phase. At the end of the dialysis, the resulting solution is eluted through

a Sephadex gel column and fractionated. Fractions containing actin (as determined

by staining with Coomasie Blue) are pooled, and the concentration is measured by
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spectrophotometer, using 0.63 cm−1 mL/mg as the extinction coefficient at 290 nm

and subtraction of the absorption at 330 nm to account for background.
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Appendix B

Overview of Microscopy and Image Processing Techniques

In this Appendix, we give some background on the two microscopy techniques

and the methods of interpreting the resulting images used in Chapter 2, laser tweez-

ers and spinning disk confocal microscopy. In the case of laser tweezers, we spend

some time considering the drawbacks of holographic laser tweezers, which prevented

performing corroborating measurements.

B.1 Laser Tweezers

B.1.1 General Principles

Initial observations of interactions between laser beams and micron-sized par-

ticles were first reported by Ashkin in 1970, and by 1986 he developed a technique

by which small dielectric particles to be manipulated by tightly focused laser beams

[90]. In the case where the index of refraction of the object is higher than the sur-

rounding medium, the object is drawn into the focus of the beam; in the case where

the object has lower index of refraction than the medium, the object is repelled from

the focus.

In the cases of relevance to this dissertation, the trapped particle is signifi-

cantly larger than the wavelength of the trapping beam, a ray optics explanation

suffices for lateral trapping, which is illustrated in Fig B.1. When the light beam
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impinges on the bead, the difference in indices of refraction causes the beam to

refract. This reflection changes the direction of the light beams and, concomitantly,

the momentum carried by the light. Due to conservation of momentum, the bead

feels a force in the direction opposite of the deflection. When the input beam is

Gaussian and the object has higher index of refraction, the force due to refracting

light in the center of the beam is stronger than that at the periphery; thus there is

a net force toward the center of the beam if the object is off-axis. When the object

is in the center of the beam, there is no net lateral force due to refraction. In the

direction of propagation, there are two forces: scattering forces which tend to push

the object in the direction of propagation, and gradient forces which tend to pull

the object into the focus of the beam. If the numerical aperature of the beam is

high enough, the gradient forces can balance the scattering forces and stable trap-

ping can occur; otherwise, the object is pushed out of the trap in the direction of

propagation.

One important use of laser tweezers is force measurement. If the trapped

object has an equilibrium position outside the center of the trap, there must be a

force moving it there. By measuring the displacement from the center of the trap,

the force can be measured (given suitable calibration, of course). This would be a

useful measurement for the actin experiments described in Chapter 2, however the

apparatus on which the experiments were performed, a holographic laser tweezer

system, this is not possible. However, the confocal microscope is well-suited to

these measurements, and they will appear in the paper to be published with our

collaborators.
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Figure B.1: Illustration of lateral optical trapping. (a) When the particle is displaced

in the trap to the left, the force resulting from refracting light to the right, F1, is

smaller than the force resulting from refracting light to the left, F2. The result is a

net restoring force to the right, Fnet. (b) When the particle is in the center of the

trap, F1 and F2 balance each other, so that the net force is down, which is balanced

by radiation pressure. Image courtesy Wikipedia entry on Optical Tweezers.
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B.1.2 Holographic Laser Tweezers

While laser tweezers are a very powerful tool for manipulating micron-sized

objects, one significant drawback is that (without sophisticated techniques that have

their own shortcomings) each laser trap requires its own laser, and that it becomes

increasingly difficult to send multiple lasers through the same microscope objective.

One solution to this problem is holographic laser tweezers, (or holographic optical

trapping, abbreviated HOT). In this technique, a spatial light modulator (SLM)

is placed in the beam path. An SLM is a device composed of a two-dimensional

array of devices that modulate the phase of incoming light. Each of the devices is

independently programmable, so that it can impose an image on the reflected light.

HOT uses the SLM to impose an image that, in the focal plane of the microscope,

appears to be a set of tightly focused Gaussian beams capable of trapping, as above.

Thus, in principle, a single beam can be split into any number of independently

movable traps.

However, there are some serious drawbacks to holographic optical trapping

which render it unsuitable for force measurement. The first is that the beam profile

of a trap is very distorted due to the necessary discretization and quantization

of the SLM device. Additionally, the beam profiles can be very sensitive to the

absolute position of the trap and to the relative positions of an array of traps.

Thus, an accurate force measurement is only possible if the calibration occurs for

every array of traps used in the experiment. While this is not impossible, it becomes

prohibitively difficult if a large number of traps are used that move relative to one
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another.

The more serious problem for the purposes of these experiments relates to the

method by which traps are moved. In a typical laser tweezer setup, a trap can

be moved by moving the mirror that carries the beam into the microscope; in this

way the beam, with approximately constant profile, is smoothly moved in the image

plane. However, in HOT, the traps move discretely, where the SLM presents a series

of images that move the trap in a series of steps. Due to the operation of the SLM,

this in fact leads to the following: (1) a trap is currently on, (2) the trap turns off for

a finite time, and (3) the trap turns back on in a different location. The turn-on and

turn-off of the trap each carry their own complications, such that it is impractical

to attempt force measurements with moving traps.

Despite these drawbacks, HOT can be extremely useful for applying strain

(i.e., known position) in multiple positions to a sample (and it has been used in [89]

in the lab for this), but it is completely unsuited to stress-controlled (i.e., constant

force) experiments.

B.2 Confocal Microscopy

Confocal microscopy is a general technique for improving the contrast and spa-

tial resolution of fluorescence microscopy. In fluorescence microscopy, an excitation

beam (usually a suitably filtered sodium lamp or laser beam) is sent into the sam-

ple which excites fluorescent molecules that emit photons of a higher wavelength.

However, the naive implementation allows significant out-of-focus fluorescent light
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Figure B.2: Schematic beam path in a confocal microscope. The laser illuminates

the sample, which excites fluorescence by the probes in the sample. The fluorescent

light is collected by the object and focused. However, some of the fluorescent light

is emitted by probes outside the focal plane. This light is blocked by a pinhole

aperture in front of the photomultiplier tube, which detects the light. Image courtesy

Olympus Corporation, http://www.olympusfluoview.com/theory/index.html.

into the viewing plane, thus washing out the image. Confocal microscopy applies a

pinhole to the incoming light, which filters the out-of-focus fluorescence. See Fig.

B.2 for a schematic.
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B.3 Image Analysis

B.3.1 Particle Tracking

The goal of particle tracking is, as its name implies, to track the trajectories

of individual particles in a given image sequence. In order to track particles, they

must either be significantly brighter or darker than their surroundings; in the case

of a microscope image of silica beads, the beads appear as approximately Gaussian

blobs against a gray background. John Crocker et al. [31] have developed a sensitive

particle tracking software package for IDL well-suited to this problem that was used

in Chapter 2. In brief, the software performs four steps. The first step is bandpass

filtering step, where small-scale noise and large-scale backgrounds are subtracted

from the image. The next step is a threshold, which sets dark gray areas to black,

but leaves bright spots unchanged. The third step is particle identification, which

attempts to fit a Gaussian blob to bright spots in the image; from this fit, the

center of the blob can be calculated to 0.1 pixels under suitable conditions. In

the final step, the software uses the particles identified in each frame and builds

trajectories by assigning particles in subsequent frames the same label if they are

closest together.

B.3.2 Particle Imaging Velocimetry

Particle imaging velocitmetry (PIV) has a slightly different focus than particle

tracking. Rather than track the trajectories of individual particles, PIV attempts

to track the collective motion of many particles. In this way, it attempts to calcu-
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late the flow-field that best explains the collective motion of nearby particles. In

fluid dynamics experiments, the particles being tracked are actual neutrally buoyant

particles; in our case the particles are filaments of fluorescent actin.

The method by which PIV attempts this is rather different than particle track-

ing. In PIV, the image is segmented into square regions, and the algorithm attempts

to find the displacement of each region such that, in the next frame, the mean

squared difference of the pixel values of original region and the area that the region

is displaced to is minimized. The details of this operation can be rather involved

and will not be summarized here. See Ref. [38] for details on the implementation

used in Chapter 2.
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Appendix C

Technical Notes on Boolean Networks

C.1 Transient Evolution

Figure C.1 shows the time evolution results for networks of type (a) (i.e.,

Kin
i = Kout

i for all i and uniform qi = q). Once a random network is generated, we

simulate the evolution of two close initial conditions and plot the Hamming distance

as a function of time in Fig. C.1. Specifically, we take an arbitrary initial condition

and generate a perturbed initial condition by flipping a fraction ε of the state bits;

in Fig. C.1, ε = 0.01 and N = 1000 corresponding to 10 flipped bits. Figure C.1(a)

shows the Hamming distance as a function of time step t for four cases with different

values of sensitivity (q = 0.5, 0.4, 0.3, 0.2) and uniform delays τij = 1 (as in Eq. [4]).

Each of these four curves are generated using the same network of interconnections

(for which λ = 4.3) and the same perturbation in initial conditions averaged over

100 realizations of the nodal truth tables. For the three cases q = 0.5, 0.4, 0.3,

λQ = qλ > 1, the network is predicted to be unstable. We see in Fig. C.1(a) that

in these cases, the Hamming distance rises and eventually saturates at a constant

value. In the fourth case, q = 0.215 and we have that qλ < 1, and the network is

predicted to be stable, which is demonstrated in the figure. These cases illustrate

the strong effect that in-/out-degree correlations can have: for the value 〈K〉 = 1.89

in the network of Fig. C.1, the prediction from the result for uncorrelated networks,
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Eq. [1], is stability for all values of q (the minimum value of 1/q, the right hand

side of [1], is 2, which exceeds 〈K〉 = 1.89). Figure C.1(b) shows time traces of the

Hamming distance for q = 0.5 when non-uniform delays are present. In the curves

shown, a fraction T = 0, 0.1, 0.5 of the links are randomly chosen and given delays of

τij = 10 with the remaining links having delay τij = 1. The curves are for the same

network as in Fig. C.1(a) with q = 0.5 and are again the average of 100 different

realization of the truth table. (The choice of delayed links is the same for all 100

realizations.) In each case, we see that the network is unstable and the Hamming

distance rises to the same steady-state value, albeit at a slower rate for larger T .

This result thus is consistent with our prediction that whether or not a network is

stable and its final saturation value do not depend on heterogeneity of the delays.

C.2 Finite-Size Effects

In Fig. C.2(a) and (b), we consider the importance of finite-size effects by

varying ε (a parameter which does not appear in the theory) for two different size

networks of type (a). Figure C.2(a) also compares the results of simulating the frozen

case (solid markers) to the semi-annealed case described in the Theory section (open

markers) for N = 103. As before, in simulating a semi-annealed network, at each

time step the nodal truth tables are randomly generated with the same q. The

networks under consideration in Figs. C.2(a)-(b) have T = 0, λ ≈ 5.0, and (a) N =

103 and (b) N = 104. As the figure demonstrates, larger ε yields better agreement

with the theory, and the semi-annealed case seems indistinguishable from the frozen
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Figure C.1: (a) Evolution of the Hamming distance between two initial conditions for

a typical network of size N = 1000 and ε = 0.01 for various values of the sensitivity

and uniform delay τij = 1. (b) Evolution of the Hamming distance between two

initial conditions for a typical network of size N = 1000, q = 0.5, and ε = 0.01.

Results are shown for a network with τij = 1 for all links (solid curve) and with

τij = 10 on 0.1 (dashed curve) and 0.5 (dotted curve) of the links.
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case. Note also that the results for ε = 0.01 (ε = 10−3) and N = 103 is similar to

that for ε = 10−3 (ε = 10−4) and N = 104, suggesting that the relevant quantity

is εN , the number of flipped states. The inset of Fig. C.2(a) shows the histogram

of the Hamming distances used in calculating the point q = 0.4, ε = 0.01 (upward

vertical arrow). The different trials used in generating this histogram correspond to

different truth table realizations. The distribution shown in the inset consists of a

large number of samples with Hamming distance zero and a roughly symmetric part

that has a mean near the theoretical prediction. The overestimation of the mean

by the theory therefore seems to be driven by the relative number of zero samples

compared to the symmetric part.

In order to understand the origin of the zero samples, we note that one way

that they can arise is through ‘irrelevant’ nodes (i.e., nodes that do not influence the

dynamics of the network) and ‘frozen’ nodes (i.e., nodes whose output is independent

of its inputs due to the random assignment of the truth table). Irrelevant nodes can

arise by either having no out-going links or by inputting only to other irrelevant or

frozen nodes. Flipping the value of an irrelevant node, by definition, does not change

the subsequent evolution of the network; if a perturbation between nearby initial

conditions consists solely of such flips, that perturbation dies out quickly. Assuming

that the fraction of irrelevant nodes is independent of N , then the probability that

all εN nodes for which the two initial conditions differ are irrelevant goes to zero

as N → ∞ for constant ε; in this case, the observations should exactly match the

theoretical prediction. This is consistent with the trend indicated by our comparison

of the N = 103 network in Fig. C.2(a) with the N = 104 network in Fig. C.2(b).
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Figure C.2: The steady-state fractional Hamming distance h/N for (a) N = 103

and (b) N = 104 as a function of the sensitivity q for various values of ε, both in

the frozen case (filled symbols) and the annealed case (open symbols). The largest

eigenvalue of this network’s adjacency matrix is λ ≈ 5. While the theory does not

depend on the value of ε, finite-size effects cause a dependence on the number of

flipped bits. The inset to (a) shows a histogram of measured Hamming distances at

q = 0.4 and ε = 0.01 (up arrow).
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C.3 Comparison of Mean-field Eigenvalue Approximations with Ex-

act λQ

For the systems tested in our numerical experiments, Table C.1 shows the

critical parameter values at the stability/instability border as obtained from direct

calculation of the maximum eigenvalue of the matrix Q for the relevant specific

networks (downward arrows in Fig. 3.1 (a)-(f)) compared to the corresponding

results predicted from the mean-field-type theoretical estimates. For the community

structure example we use the approximation,

λQ ≈
N

2

{

θ∪(qa + qb) +
[

θ2
∪(qa − qb)

2 + 4θ2
∩qaqb

]

}

, (C.1)

which applies for the case of two equal communities with symmetric connectivity

probabilities (θab = θba = θ∩, θaa = θbb = θ∪) as in Fig. 3.1(e). The analysis leading

to (C.1) will be published elsewhere.

The largest eigenvalue approximations predict the observed transition to un-

stable behavior quite well, as seen in the table below. The only exceptions to this

agreement are in the case of significant assortativity or disassortativity; however,

this is to be expected since the approximate theory is a linear approximation for

values of ρ close to one. The values of assortativity and disassortativity used in the

paper (1.7 and 0.5) are far from this regime. Nevertheless, even for these cases, the

theory correctly predicts the qualitative trend that assortativity (disassortativity)

decreases (increases) the critical q.
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Figure C.3: ȳ vs. q, calculated from Eq. [17], for the published regulatory network

of S. cerevisiae [35]. The network undergoes a transition from stable to unstable

behavior at qcrit = 1/λ = 0.40.

C.4 Application to the Regulatory Network of S. cerevisiae

Figure C.3, similar to Figs. 3.1(a)-(c), illustrates an application of Eq. [17]

to the published network of the yeast S. cerevisiae [35]. The largest eigenvalue of

this network is λ = 2.5. We have assumed in this plot that each node has the same

sensitivity q, and again we see that the network undergoes a transition from stable to

unstable behavior at qcrit = 1/λ. However, in order to draw any conclusions about

the criticality of the yeast regulatory network, we need a reliable estimate of the

individual qi’s, from which we can calculate λQ. While estimating the sensitivities

may be possible with existing microarray datasets, this is beyond the scope of this

paper.
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Table C.1: Comparison between criticality conditions evaluated directly from Q and

from the approximate theory.

Direct Evaluation Approximate Theory

Critical q’s from Fig. 1(a) 0.22 0.23

(Approx. Theory from Eq. [11]) 0.34 0.34

0.43 0.44

Critical q’s for Fig. 1(b) 0.10 0.13

(Approx. Theory from Eq. [12]) 0.22 0.23

0.33 0.45

Critical q’s for Fig. 1(c) 0.33 0.33

(Approx. Theory from Eq. [11]) 0.34 0.33

0.34 0.34

Critical q0 for Fig. 1(d) 0.19 0.20

(Approx. Theory from Eq. [14]) 0.27 0.28

Critical θ∩/(θ∪ + θ∩) for Fig. 1(e) 0.21 0.21

(Approx. Theory from Eq. [18])

Critical p0 for Fig. 1(f) 0.80 0.80

(Approx. Theory from Eq. [15])
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