
ABSTRACT

Title of dissertation: INTERACTIVE EXPLORATION
OF TEMPORAL EVENT SEQUENCES
Krist Wongsuphasawat
Doctor of Philosophy, 2012

Dissertation directed by: Professor Ben Shneiderman
Department of Computer Science

Life can often be described as a series of events. These events contain rich in-

formation that, when put together, can reveal history, expose facts, or lead to discov-

eries. Therefore, many leading organizations are increasingly collecting databases of

event sequences : Electronic Medical Records (EMRs), transportation incident logs,

student progress reports, web logs, sports logs, etc. Heavy investments were made

in data collection and storage, but difficulties still arise when it comes to making

use of the collected data. Analyzing millions of event sequences is a non-trivial

task that is gaining more attention and requires better support due to its complex

nature. Therefore, I aimed to use information visualization techniques to support

exploratory data analysis—an approach to analyzing data to formulate hypothe-

ses worth testing—for event sequences. By working with the domain experts who

were analyzing event sequences, I identified two important scenarios that guided my

dissertation:

First, I explored how to provide an overview of multiple event sequences?

Lengthy reports often have an executive summary to provide an overview of the

report. Unfortunately, there was no executive summary to provide an overview for

event sequences. Therefore, I designed LifeFlow, a compact overview visualization

that summarizes multiple event sequences, and interaction techniques that supports

users’ exploration.

Second, I examined how to support users in querying for event sequences when

they are uncertain about what they are looking for. To support this task, I developed

similarity measures (the M&M measure 1-2) and user interfaces (Similan 1-2) for

querying event sequences based on similarity, allowing users to search for event

sequences that are similar to the query. After that, I ran a controlled experiment

comparing exact match and similarity search interfaces, and learned the advantages

and disadvantages of both interfaces. These lessons learned inspired me to develop

Flexible Temporal Search (FTS) that combines the benefits of both interfaces. FTS

gives confident and countable results, and also ranks results by similarity.

I continued to work with domain experts as partners, getting them involved

in the iterative design, and constantly using their feedback to guide my research

directions. As the research progressed, several short-term user studies were con-

ducted to evaluate particular features of the user interfaces. Both quantitative and

qualitative results were reported. To address the limitations of short-term evalu-

ations, I included several multi-dimensional in-depth long-term case studies with

domain experts in various fields to evaluate deeper benefits, validate generalizabil-

ity of the ideas, and demonstrate practicability of this research in non-laboratory

environments. The experience from these long-term studies was combined into a set

of design guidelines for temporal event sequence exploration.

My contributions from this research are LifeFlow, a visualization that com-

pactly displays summaries of multiple event sequences, along with interaction tech-

niques for users’ explorations; similarity measures (the M&M measure 1-2) and simi-

larity search interfaces (Similan 1-2) for querying event sequences; Flexible Temporal

Search (FTS), a hybrid query approach that combines the benefits of exact match

and similarity search; and case study evaluations that results in a process model

and a set of design guidelines for temporal event sequence exploration. Finally, this

research has revealed new directions for exploring event sequences.

INTERACTIVE EXPLORATION
OF TEMPORAL EVENT SEQUENCES

by

Krist Wongsuphasawat

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2012

Advisory Committee:
Dr. Ben Shneiderman, Chair/Advisor
Dr. Catherine Plaisant
Dr. Amol Deshpande
Dr. Lise Getoor
Dr. David Gotz
Dr. Jeffrey Herrmann

c© Copyright by
Krist Wongsuphasawat

2012

Dedication

To the Wongsuphasawat Family

ii

Acknowledgments

Doing a PhD is a long, complicated and devoted journey. Of course, there were

good, fun, inspiring and exciting moments; otherwise, I would not have survived long

enough to be sitting here writing this dissertation. However, there were also many

challenges and obstacles, which I probably would not be able to go through without

the advice, inspiration and support from these people, whom I deeply appreciate.

First and foremost, I would like to thank my advisor, Ben Shneiderman. Ben

introduced me to the world of information visualization and inspired me to continue

for a PhD after completing my Master’s degree. He is a truly devoted professor who

constantly inspires people around him with his passion and energy. His tremendous

work in HCI is nothing short of amazing. His warmth, encouragement, creativity,

depth and breadth of knowledge, and great vision had helped me greatly throughout

my PhD training. He taught me how to be a good researcher and also showed how

to be a good colleague and a good person. He always supported me when I was in

doubt and celebrated my success with his signature “Bravo!” I am grateful and feel

very fortunate to have a chance to work with and learn from him.

The second person that I would like to thank is Catherine Plaisant. By working

with a great researcher like her, I have learned many design principles and valuable

lessons about how to work with users. In addition, her enthusiasm and energy were

like triple shot espressos that could cheer me up even on a depressing rainy day. I

could not remember how many times I walked to her room (which was conveniently

located right in front of my cubicle) and asked for help or suggestions. She always

iii

helped me with smiles no matter how big or small the problem was. The work in

this dissertation could not have been completed without her invaluable feedback and

suggestions. Similar to Ben, it was my honor and great pleasure to work with and

learn from Catherine.

I am thankful to Lise Getoor, Amol Deshpande, Jeffrey Herrmann and David

Gotz for agreeing to serve on my dissertation committee, for sparing their invaluable

time reviewing the manuscript, and for sharing their thoughtful suggestions that

help me improve this dissertation. Additionally, I would like to thank David Gotz

for offering me an internship at IBM, which was a great experience that led to the

spin-off Outflow project. I am also thankful for the guidance from Samir Khuller

when I started working on Similan.

I owe my thanks to Taowei David Wang who had helped me start my PhD

student life and set many good examples for me to follow. Taking care of his

LifeLines2 while he was away to a summer internship also led me to many ideas

that later became LifeFlow. I appreciate his generous help and suggestions during

the time I was finding my dissertation topic and preparing my proposal. I appreciate

John Alexis Guerra Gómez’s help in the development of LifeFlow and thank him

for taking care of LifeFlow while I was away to a summer internship. Many new

datasets were made available for analysis in the late stage of my dissertation thanks

to Hsueh-Chien Cheng, who developed DataKitchen and made data preprocessing

a much more pleasurable experience.

My colleagues in the Human-Computer Interaction Lab have made my PhD

life such a great memory. I have enjoyed every moment of our discussion, collabora-

iv

tion (and procrastination). I will always remember the brown bag lunches (including

the free pizzas), normal lunches (which people often found me with a bag of Chick-

fil-A), annual symposiums (and the green t-shirts), helpful practice talks, fruitful

brainstorming sessions (aka: productive-procrastination), yummy international cui-

sine tasting, relaxing late-night hangouts in the lab, entertaining discussions in the

cubicles, and all other memorable activities.

I appreciate the support from Mark Smith and his team from the Washington

Hospital, MedStar Health and MedStar Institute for Innovation, especially Phuong

Ho and A. Zach Hettinger. Without the inspirations from their medical problems,

none of the projects discussed herein would have materialized. In addition, I would

like to acknowledge financial support from the National Institutes of Health (NIH)

Grant RC1CA147489 and Center for Integrated Transportation Systems Manage-

ment (CITSM), a tier 1 transportation center at the University of Maryland.

Many thanks to the user study participants: Phuong Ho, Nikola Ivanov,

Michael VanDaniker, Michael L. Pack, Sigfried Gold, A. Zach Hettinger, Jae-wook

Ahn, Daniel Lertpratchya, Chanin Chanma, Sorawish Dhanaphanichakul and Anne

Rose, as well as the anonymized participants in other studies. Their precious feed-

backs have contributed greatly to my research.

Studying abroad and living away from the place that I had been living for my

entire life was never easy. I owe my thanks to the Thai communities in Maryland

and DC area for making this place feel like a home away from home. Thank you

for inviting me to dinners and fun activities on weekends. I am also thankful to my

friends, no matter where you are, who chatted with me when I was bored, frustrated,

v

or just sleepy on Monday morning. Thank you for keeping my sanity in check and

reminding me every once in a while that the dissertation is only a part of my life,

not my entire life.

Words cannot express the gratitude I owe my family. I would not be the

person I am today without the nurture of my parents, grandparents and aunt. My

family always stood by me when I questioned myself on my quest to earn a PhD.

Their support and guidance gave me the strengths to overcome all challenges and

obstacles. They celebrated my achievements, made fun of my photos on Facebook

at certain times, and embraced me with love every time I went home. I also have

to thank my lovely Ben for supporting me to follow my dreams, having faith in me

and adding unforgettable memories every time I returned.

Remembering everybody is a challenging task. I have tried to acknowledge

as many people as I could remember, but if I have inadvertently left anyone out, I

sincerely apologize.

While I am about to finish writing this dissertation in the next paragraph, I

would like to thank the person who created this LATEX template for making my life

easier, and PhDComics for making my life funnier.

Lastly, my gratitude is described in Algorithm 1.

Algorithm 1 Infinite Gratitude

Require: a lot of water
1: for int i=0; i<555; i=i+0 do
2: say(”Thank you.”);
3: end for

vi

Table of Contents

List of Figures xiv

List of Abbreviations xxv

1 Introduction 1
1.1 Overview of the Dissertation . 3
1.2 Contributions . 6
1.3 Dissertation Organization . 7

2 Background and Related Work 11
2.1 Information Visualization . 11

2.1.1 Temporal Data Visualization 11
2.1.1.1 Single-Record Visualization 11
2.1.1.2 Visualization of multiple records in parallel 14
2.1.1.3 Visualization that aggregates multiple records 16

2.1.2 Hierarchy Visualization . 17
2.1.3 State Transition Visualization 21
2.1.4 Flow Visualization . 23

2.2 Query Methods . 23
2.2.1 Query Languages . 24
2.2.2 Query-by-Example Languages 24
2.2.3 Query by Graphical User Interfaces (GUIs) 27

2.2.3.1 Exact Match Approach 27
2.2.3.2 Similarity Search Approach 28

2.2.4 Similarity Measure . 29
2.2.4.1 Numerical Time Series 29
2.2.4.2 String and Biological Sequences 30
2.2.4.3 Event Sequences . 31

2.3 Summary . 33

3 Providing an Overview of Temporal Event Sequences to Spark Exploration:
LifeFlow Visualization 35
3.1 Introduction . 35
3.2 Motivating Case Study . 36

3.2.1 Event Definitions . 36
3.2.2 Example question . 37

3.3 Data Aggregation: Tree of Sequences 38
3.4 Visual Representation: LifeFlow Visualization 42
3.5 Basic Features . 43
3.6 User Study . 48

3.6.1 Procedure . 51
3.6.2 Tasks . 52

3.6.2.1 Tasks 1-9: Simple Features 52

vii

3.6.2.2 Task 10-14: Advanced Features 52
3.6.2.3 Task 15: Overall analysis and finding anomalies . . . 52

3.6.3 Results . 53
3.6.3.1 Tasks 1-14 . 53
3.6.3.2 Task 15 . 54
3.6.3.3 Debriefing . 55

3.6.4 Summary . 55
3.7 Advanced Features . 55
3.8 Summary . 65

4 Querying Event Sequences by Similarity Search 67
4.1 Introduction . 67

4.1.1 Example of Event Sequence Query 67
4.1.2 Motivation for Similarity Search 68
4.1.3 Chapter Organization . 70

4.2 Similan and the M&M Measure: The First Version 71
4.2.1 Introduction to the Match & Mismatch (M&M) Measure . . . 71
4.2.2 Description of the User Interface: Similan 72

4.2.2.1 Overview . 72
4.2.2.2 Events and Timeline 74
4.2.2.3 Alignment . 75
4.2.2.4 Rank-by-feature . 75
4.2.2.5 Scatterplot . 77
4.2.2.6 Comparison . 78

4.2.3 The Match&Mismatch (M&M) Measure 78
4.2.3.1 Matching . 79
4.2.3.2 Scoring . 82
4.2.3.3 Discussion . 84

4.3 User Study . 85
4.3.1 Usability Study Procedure and Tasks 85
4.3.2 Results . 86
4.3.3 Pilot Study of a New Prototype 89

4.4 Similan and the M&M Measure: The Second Version 90
4.4.1 Description of the User Interface: Similan2 90

4.4.1.1 Overview . 90
4.4.1.2 Query . 92
4.4.1.3 Comparison . 93
4.4.1.4 Weights . 95

4.4.2 The Match and Mismatch (M&M) Measure v.2 95
4.4.2.1 Matching . 96
4.4.2.2 Scoring . 100

4.5 User Study . 103
4.5.1 Motivation for a Controlled Experiment 103
4.5.2 Description of the User Interface: LifeLines2 105
4.5.3 Method . 106

viii

4.5.3.1 Research questions 106
4.5.3.2 Participants . 107
4.5.3.3 Apparatus . 107
4.5.3.4 Design . 110
4.5.3.5 Procedure . 111

4.5.4 Results . 112
4.5.4.1 Performance Time 112
4.5.4.2 Error Rates . 114
4.5.4.3 Subjective Ratings 114
4.5.4.4 Debriefing . 115

4.6 Lessons Learned and Ideas for Hybrid Interface 117
4.7 Summary . 119

5 Combining Exact Match and Similarity Search for Querying Event Sequences:
Flexible Temporal Search 121
5.1 Introduction . 121
5.2 Query . 122

5.2.1 How to define a cut-off point? Mandatory & Optional Flags . 122
5.2.2 Specification . 124
5.2.3 Grade & Similarity Score . 127

5.3 FTS Similarity Measure . 128
5.3.1 Preprocessing . 128
5.3.2 Matching . 129
5.3.3 Grading . 133
5.3.4 Scoring . 133
5.3.5 Performance . 134
5.3.6 Difference from the M&M Measure 135

5.4 User Interface . 135
5.4.1 Query Representation . 137
5.4.2 Query Specification . 140
5.4.3 Search Results . 144

5.5 Use case scenario . 145
5.6 Summary . 146

6 Multi-dimensional In-depth Long-term Case Studies 148
6.1 Overview . 148
6.2 Monitoring Hospital Patient Transfers 150

6.2.1 Introduction . 150
6.2.2 Procedure . 150
6.2.3 Data . 151
6.2.4 Analysis . 151

6.2.4.1 First impression . 151
6.2.4.2 Understanding the big picture 153
6.2.4.3 Measuring the transfer time 155
6.2.4.4 Comparison . 156

ix

6.2.5 Discussion . 156
6.3 Comparing Traffic Agencies . 157

6.3.1 Introduction . 157
6.3.2 Procedure . 158
6.3.3 Data . 158
6.3.4 Analysis . 159

6.3.4.1 Quantifying data quality issues 159
6.3.4.2 Ranking the agencies’ performance 161

6.3.5 Discussion . 164
6.4 Analyzing Drug Utilization . 165

6.4.1 Introduction . 165
6.4.2 Procedure . 166
6.4.3 Analysis . 167

6.4.3.1 Drug prescribing patterns 167
6.4.3.2 Drug switching . 167

6.4.4 Discussion . 168
6.5 Hospital Readmissions . 169

6.5.1 Introduction . 169
6.5.2 Procedure . 169
6.5.3 Before the Study . 170
6.5.4 Early Progress . 171
6.5.5 Analysis: Personal Exploration 172
6.5.6 Analysis: Administration . 173

6.5.6.1 Revisit . 173
6.5.6.2 Revisit by recurring patients 175
6.5.6.3 Admission . 177
6.5.6.4 Mortality . 178
6.5.6.5 Revived patients and John Doe 181
6.5.6.6 Identify an interesting pattern and then search for it 181
6.5.6.7 Diagnoses . 184
6.5.6.8 Frequent visitors . 185

6.5.7 Conclusions and Discussion 187
6.6 How do people read children books online? 190

6.6.1 Introduction . 190
6.6.2 Procedure . 191
6.6.3 Data . 191
6.6.4 Analysis . 192

6.6.4.1 Setup . 192
6.6.4.2 First observation . 194
6.6.4.3 How do people read from the second page? 194
6.6.4.4 Reading backwards 194

6.6.5 Conclusions and Discussion 197
6.7 Studying User Activities in Adaptive Exploratory Search Systems . . 199

6.7.1 Introduction . 199
6.7.2 Procedure . 203

x

6.7.3 Data . 203
6.7.4 Analysis . 204

6.7.4.1 Switch of activities 204
6.7.4.2 User activity patterns Part I: Frequent patterns . . . 207
6.7.4.3 User activity patterns Part II: User model exploration212

6.7.5 Conclusions and Discussion 213
6.8 Tracking Cement Trucks . 214

6.8.1 Introduction . 214
6.8.2 Procedure . 215
6.8.3 Data . 215
6.8.4 Analysis . 216

6.8.4.1 Overview . 216
6.8.4.2 Anomalies . 217
6.8.4.3 Monitoring plants’ performance 218
6.8.4.4 Classifying customers from delay at sites 220
6.8.4.5 Search . 221

6.8.5 Conclusions and Discussion 222
6.9 Soccer Data Analysis . 223

6.9.1 Introduction . 223
6.9.2 Procedure . 224
6.9.3 Data . 224
6.9.4 Analysis . 225

6.9.4.1 Finding entertaining matches 225
6.9.4.2 Predicting chances of winning 228
6.9.4.3 Explore statistics . 228
6.9.4.4 Search for specific situations 243

6.9.5 Conclusions and Discussion 245
6.10 Usage Statistics . 247
6.11 A Process Model for Exploring Event Sequences 250

6.11.1 Defining goals . 252
6.11.2 Gathering information . 252

6.11.2.1 Preprocessing data 252
6.11.2.2 Cleaning data . 254

6.11.3 Re-representing the information to aid analysis 255
6.11.4 Manipulating the representation to gain insight 257

6.11.4.1 Manipulating the representation 257
6.11.4.2 Exploring results of manipulation 258
6.11.4.3 Searching for patterns 259
6.11.4.4 Exploring search results 260
6.11.4.5 Handling findings . 261

6.11.5 Producing and disseminating results 263
6.11.5.1 Recording findings 263
6.11.5.2 Producing results . 264
6.11.5.3 Disseminating results 264

6.11.6 Summary . 264

xi

6.12 Design Recommendations . 265
6.13 Summary . 268

7 Conclusions and Future Directions 270
7.1 Conclusions . 270
7.2 Future Directions . 273

7.2.1 Improving the overview visualization 273
7.2.2 Improving the search . 275
7.2.3 Supporting more complex data 276
7.2.4 Supporting new tasks . 278
7.2.5 Scalability and Performance 280

7.3 Summary . 281

A Examples of Temporal Event Sequences 282

B LifeFlow Software Implementation 288
B.1 Overview . 288
B.2 Input Data Format . 288

B.2.1 Event Data File . 289
B.2.2 Attribute Data File (optional) 289
B.2.3 Config File (optional) . 290

B.3 Design . 290
B.3.1 Software Architecture . 290
B.3.2 Code Organization . 291

B.4 Data Structures . 293
B.4.1 Time . 293
B.4.2 Fundamental Data Structures 293
B.4.3 Handling Dataset . 295

B.5 Main Components . 296
B.5.1 Main class . 296
B.5.2 LifeFlow . 297

B.5.2.1 Tree of Sequences . 297
B.5.2.2 Flexible Geometry 297
B.5.2.3 LifeFlow Component 298

B.5.3 LifeLines2 . 300
B.5.4 Flexible Temporal Search (FTS) 301

B.5.4.1 Similarity search . 301
B.5.4.2 User Interface . 302

C Spin-off: Outflow 303
C.1 Introduction . 303
C.2 Motivation . 306

C.2.1 Congestive Heart Failure (CHF) 306
C.2.2 Soccer Result Analysis . 308

C.3 Description of the Visualization . 309

xii

C.3.1 Data Aggregation . 311
C.3.2 Visual Encoding . 312
C.3.3 Rendering . 314

C.3.3.1 Bézier Curve . 314
C.3.3.2 Sugiyama’s Heuristics 314
C.3.3.3 Force-directed Layout 315
C.3.3.4 Edge Routing . 316

C.3.4 Basic Interactions . 317
C.3.5 Simplification . 319
C.3.6 Factors . 321

C.4 Preliminary Analysis . 325
C.5 User Study . 327

C.5.1 Design . 327
C.5.1.1 Procedure . 327
C.5.1.2 Tasks and Questionnaire 328

C.5.2 Results . 330
C.5.2.1 Accuracy . 330
C.5.2.2 Speed . 331
C.5.2.3 Unrestricted Exploration 332
C.5.2.4 Questionnaire and Debriefing 333

C.6 Summary . 335

Bibliography 336

xiii

List of Figures

1.1 LifeFlow : An overview visualization for event sequences 9
1.2 Similan 2 : Query event sequences by similarity 9
1.3 Flexible Temporal Search (FTS): A hybrid approach that combines

the benefits of exact match and similarity search for event sequences . 10

2.1 LifeLines [97] displays a medical history of a single patient on a timeline. 13
2.2 The Spiral visualization approach of Weber et al. [137] applied to the

power usage dataset . 14
2.3 Continuum’s overview panel (top) displays a histogram as an overview

of the data set. [10] . 17
2.4 LifeLines2 [131, 132] displays a temporal summary in the bottom as

an overview of the data set. 18
2.5 Icicle tree in ProtoVis. [21] The visualization is called an icicle tree

because it resembles a row of icicles hanging from the eaves. [66] . . . 19
2.6 Blaas et al.’s state transition visualization: A smooth graph repre-

sentation of a labeled biological time-series. Each ring represents
a state, and the edges between states visualize the state transitions.
This graph uses smooth curves to explicitly visualize third order tran-
sitions, so that each curved edge represents a unique sequence of four
successive states. The orange node is part of a selection set, and all
transitions matching the current selection are highlighted in orange. [17] 21

2.7 Charles Minard’s Map of Napolean’s Russian Campaign of 1812 . . . 23
2.8 An example of query-by-filters: PatternFinder [37] allows users to

specify the attributes of events and time spans to produce pattern
queries. The parameters in the controls are converted directly into
constraints that can be used to retrieve the records. 25

2.9 An example of query-by-example: QueryMarvel [54] allows users to
draw comic strips to construct queries. With its exact result back-
end, the comic strips are converted into rules, as seen in the status
bar. (4). 26

3.1 This diagram explains how a LifeFlow visualization can be constructed
to summarize four records of event sequences. Raw data are repre-
sented as colored triangles on a horizontal timeline (using the tra-
ditional approach also used in LifeLines2). Each row represents one
record. The records are aggregated by sequence into a data structure
called a tree of sequences. The tree of sequences is then converted
into a LifeFlow visualization. Each tree node is represented with
an event bar. The height of the bar is proportional to the number
of records while its horizontal position is determined by the average
time between events. 39

xiv

3.2 Tree of sequences data structure of the event sequences in Figure 3.1:
Each node in the tree contains an event type and number of records.
Each edge contains time gap information and number of records. . . 41

3.3 Two trees of sequences created from a dataset with an alignment
point at B. A positive tree in forward direction and a negative tree in
backward direction. 41

3.4 This screenshot of LifeFlow shows a random sample of patient trans-
fer data based on real de-identified data. The way to read sequences
in LifeFlow is to read the colors (using the legend). For example,
the sequence (A) in the figure is Arrival (blue), Emergency (pur-
ple), ICU (red), Floor (green) and Discharge-Alive (light blue).
The horizontal gap between colored bars represents the average time
between events. The height of the bars is proportional to the num-
ber of records, therefore showing the relative frequency of that se-
quence. The bars (e.g. Floor and Die) with same parent (Arrival
→ Emergency → ICU) are ordered by frequency (tallest bar on top),
as you can see that Floor (green bar) is placed above Die (black
bar). The most frequent pattern is the tallest bar at the end. Here it
shows that the most common sequence is Arrival, Emergency then
Discharge alive. (Please note that this is only a sample dataset
and does not reflect the real performance of any hospital.) 44

3.5 When users move the cursor over an event bar or gap between event
bars, LifeFlow highlights the sequence and shows the distribution of
time gaps. Labels help the users read the sequences easier. A tooltip
also appears on the left, showing more information about the time
gap. In this Figure, the distribution shows that most patients were
discharged within 6 hours and the rest were mostly discharged exactly
after 12 hours. (Please note that this is only a sample dataset and
does not reflect the real performance of any hospital.) 46

3.6 Here LifeFlow is used side-by-side with LifeLines2 so that individual
records can be reviewed by scrolling. When a user clicks on a sequence
in LifeFlow, the sequence is highlighted and all corresponding records
are also highlighted and moved to the top in LifeLines2, allowing the
user to examine them in more detail. In this example, a user noticed
an uncommon pattern of frequent transfer back and forth between
ICU (red) and Floor (green), so he selected those patients to see
more detail. 47

3.7 The same data with Figure 3.4 was aligned by ICU. The user can see
that the patients were most likely to die after a transfer to the ICU

than any other sequence because the black bar is the tallest bar at the
end. Also, surprisingly, two patients were reported dead (see arrow)
before being transferred to ICU, which is impossible. This indicates a
data entry problem. (Please note that this is only a sample dataset
and does not reflect the real performance of any hospital.) 49

xv

3.8 Using the same data with Figure 3.4, the user excluded all event types
except Arrival, Discharge-Alive and Die, i.e. the beginning and
end of hospital visits. All other events are ignored, allowing rapid
comparisons between the patients who died and survived in terms
of number of patients and average time to discharge. Patients who
survived were discharged after 7.5 days on average while patients who
died after 8.5 days on average. (Please note that this is only a sample
dataset and does not reflect the real performance of any hospital.) . 50

3.9 LifeFlow with traffic incidents data: The incidents are separated
by agencies (A-G). Only Incident Notification and Return to

normal (aggregated) events are shown. Other events are hidden.
The agencies are sorted by a simple measure of agency performance
(average time from the beginning to the end). Agency C seems to be
the fastest to clear its incidents, followed by E, A, H, D, F, B and
finally G. 57

3.10 User right-click at the second Arrival event and select “Show at-
tributes summary...” to bring up the summary table, which summa-
rizes the common diagnoses. (Please note that this is only a sample
dataset and does not reflect the real performance of any hospital.) . 59

3.11 User assigned attribute “Status” as “Alive” and “Dead” to the pa-
tients who had pattern Arrival → Discharge-Alive and Arrival

→ Die in Figure 3.8, respectively. After that, the user included other
event types that were excluded earlier and chose to group records by
attribute “Status” to show patterns of “Alive” and “Dead” patients.
Notice that the majority of the dead patients were transferred to
Floor first and later transferred to the ICU before they died. (Please
note that this is only a sample dataset and does not reflect the real
performance of any hospital.) . 60

3.12 User used the measurement tool to measure the time from ICU (red) to
Discharge-Alive (light blue). The tooltip shows that it took about
ten days. The distribution of time gap is also displayed. 63

3.13 The sequences of medical records are split into episodes using an
event type Arrival to define the beginning of an episode. Dotted
lines show separation between episodes. 64

3.14 The sequences of medical records are broken into episodes using an
event type Arrival to define the beginning of an episode. Dotted
lines show separation between episodes. 66

4.1 (top) The M&M measure (bottom-left) High time difference (low match
score) but no mismatch (high mismatch score) (bottom-right) Low
time difference (high match score) but high mismatches (low mis-
match score) . 71

xvi

4.2 A screenshot of Similan, the predecessor of Similan2. Users can start
by double-clicking to select a target record from the main panel. Sim-
ilan will calculate a score that indicates how similar to the target
record each record is and show scores in the color-coded grid on the
left. The score color-coding bars on the right show how the scores are
color-coded. The users then can sort the records according to these
scores. The main panel also allows users to visually compare a target
with a set of records. The timeline is binned (by year, in this screen-
shot). If the users want to make a more detailed comparison, they
can click on a record to show the relationship between that record
and the target record in the comparison panel on the top. The plot
panel at the bottom shows the distribution of records. In this exam-
ple, the user is searching for students who are similar to Student 01.
The user sets Student 01 as the target and sorts all records by total
score. Student 18 has the highest total score of 0.92, so this suggests
that Student 18 is the most similar student. Although Student 41
and Student 18 both have one missing paper submission, Student 41
has a lower match score, therefore, Student 18 has a higher total score. 73

4.3 Relative Timeline: Time scale is now relative to sentinel events (blue).
Time zero is highlighted in dark gray. 74

4.4 Control Panel: (left) Legend of event types (categories) (middle-top)
Users can choose to align events by selecting sentinel event type.
(middle-bottom) Weight for calculating total score can be adjusted
using slider and textboxes. (right) Links in comparison panel can be
filtered using these parameters. 76

4.5 Similan 1.5 prototype: The timeline is continuous and events are split
into rows by event type. 89

4.6 Similarity search interface (Similan2) with the same query as in Fig-
ure 4.11. Users specify the query by placing events on the query
panel. To set the time range of interest and focus on events within
this range, users draw a red box. After clicking on “Search”, all
records are sorted by their similarity to the query. The similarity
score is represented by a number that is the total score and a bar
with four sections. A longer bar means a higher similarity score.
Each section of the rectangle corresponds to one decision criterion,
e.g. the top two records have longer leftmost sections than the third
record because they have lower time difference so the Avoid Time
Difference Score (AT) is high, resulting in longer bars. Figure 4.7
shows how users can adjust the weight. 91

4.7 Similan2’s control panel has 2 tabs. The first tab is “search” as shown
in Figure 4.6. Another tab is “weight and detailed weight”, for which
users can adjust the weight of the four decision criteria using the four
sliders in the left figure. For more advanced customization, they can
even set the weight for each event type within each decision criterion
by clicking on “more details” (right figure). 94

xvii

4.8 (left) M&M Matching v.1 (right) M&M Matching v.2: Events in each
event type are matched separately. 96

4.9 M&M Matching v.2: Dynamic programming table 96
4.10 Four types of difference: time difference, missing events, extra events

and swaps . 100
4.11 Exact match interface (LifeLines2) showing the results of a query for

patients who were admitted to the hospital then transferred to the
Intensive Care Unit (ICU) within a day, then to an Intermediate ICU
room on the fourth day. The user has specified the sequence filter on
the right selecting Admit, ICU and Intermediate in the menus, and
aligned the results by the time of admission. The distribution panel
in the bottom of the screen shows the distribution of Intermediate,
which gives an overview of the distribution and has allowed users to
select the time range of interest (e.g. on the fourth day) by drawing
a selection box on the distribution bar chart. 104

4.12 Performance time a function of the interface type and the tasks (1-5).
Vertical bars denote 0.95 confidence intervals. 112

5.1 How to decide whether a constraint is mandatory or optional 124
5.2 Flexible Temporal Search (FTS) implemented in LifeFlow software:

User can draw a query and retrieve results that are split into two bins:
exact match and other results. In this example, a user is querying
for bounce back patients, which are patients who arrived (blue),
were later moved to the ICU (red), transferred to Floor (green) and
transferred back to the ICU (red) within two days. The results panel
display all bounce back patients in the exact match results while
showing the rest in the other results, sorted by their similarity to
the query. The top patient in the other results has a pattern very
similar to bounce back but the return time to ICU was 4 days. The
physician then can notice this patient and use his/her judgment to
decide whether to consider this case as a bounce back patient or not. 136

5.3 Query Representation: (A) Triangles are mandatory events. (B)
Mandatory negation (red) is a triangle with a strike mark through
the center placed in a balloon . (C) An event that has a time con-
straint (blue) has a path drawn from its glyph in the query strip to the
position on the timeline that represents the beginning of its time con-
straint. The duration of the time constraint is rendered as a rectangle
on the timeline. Solid line and filled rectangle represent mandatory
constraint. (D) Query C with tooltip (E) A circle is an optional event
(green). (F) An optional negation is a mandatory negation that uses
a circle instead of a triangle. (G) An optional version of a time con-
straint in Query C. Dashed line and hollow rectangle are used instead.
(H) Query G with tooltip . 137

xviii

5.4 Gap Representation: The gaps on the left (I,J,K,L) are mandatory
while the gaps on the right are optional (M,N,O,P). Mandatory gaps
are filled and use solid lines while optional gaps are not filled and use
dashed lines. 138

5.5 User can click on an empty location on the query strip to add an
event or a gap to a query. In this example, the user is going to add
something between Floor (green) and Discharge-Alive (light blue).
The location is marked with a cross and an “Add...” popup dialog
appear. User then choose to add an event or a gap, which will open
another dialog. 140

5.6 Weights: Users can adjust the importance of each kind of difference. . 142
5.7 Creating a query from a record: In this example, a user chooses the

record “10010010” as a template. (left) In “use specific time” mode,
each event use its original time from the selected record as an optional
time constraint. (right) In “use gap between events”, all gaps between
events in the selected records are converted into optional gaps in the
query. 143

5.8 Creating a query from an event sequence in LifeFlow: In this example,
a user chooses the sequence Arrival (blue), Emergency (purple), ICU
(red), Floor (green) and Discharge-Alive (light blue) as a template. 144

5.9 Comparison: Four events in the query are matched while one is miss-
ing (light blue) and another one is extra (black). 145

6.1 Patients who visited the Emergency Room in January 2010. 152
6.2 Six patients were transferred from ICU (red) to Floor (green) and

back to ICU (bounce backs). The average transfer time back to the
ICU was six days. The distribution shows that one patient was trans-
ferred back in less than a day. 154

6.3 This figure shows 203,214 traffic incidents in LifeFlow. There is a
long pattern (more than 100 years long) in the bottom that stands
out. I was wondering if there was an incident that could last more
than hundred years, we probably should not be driving any more.
Investigating further, the Incident Arrival time of all those inci-
dents were on January 1th 1900, a common initial date in computer
systems. This suggested that the system might have used this default
date when no date was specified for an incident. 159

6.4 LifeFlow with traffic incidents data: The incidents are separated
by agencies (A-G). Only Incident Notification and Return to

normal (aggregated) events are shown. Other events are hidden.
The agencies are sorted by a simple measure of agency performance
(average time from the beginning to the end). Agency C seems to be
the fastest to clear its incidents, followed by E, A, H, D, F, B and
finally G. 161

xix

6.5 LifeFlow with traffic incidents data from Agency C and Agency G:
Only Incident Notification and Return to normal (aggregated)

events are shown. The incidents are also grouped by incident types.
Most of the incidents that Agency C reported are Disabled Vehicles

which had about 1 minute clearance time on average. 163
6.6 Patient records aligned by the first ED Reg date (light blue): The

bar’s height represents the number of patients. The visualization
shows the proportion of revisits. 174

6.7 Tooltip uncovers more information: Place cursor over a sequence in
Figure 6.6 to see more information from tooltip. For this sequence
with four visits, there were 1501 patients, which is 2.5% of all patients.174

6.8 Patient records aligned by the all ED Reg date (light blue): The
bar’s height represents the number of visits. The first bar after the
alignment point represents the number of visits by all patients who
had at least one visit. The second bar represents the number of visits
by all patients who had at least two visits. 176

6.9 Access more useful information using tooltip– Patients with at least
five visits, which is 3.1% of patients, accounted for 6.6% of visits. . . 176

6.10 Patient records aligned by all ED Reg date (light blue): The total
height represents total number of visits. The ED Reg date bar (light
blue) on the right of the alignment represents all visits. The Admit

date (blue) bar on its right shows 19,576 admissions out of a total of
92,616 visits. 177

6.11 Patients who died: Patient records are aligned by all ED Reg date

(light blue). The total height represents total number of visits. From
the total of 92,616 visits to the ED, there were 788 deaths (red). . . . 178

6.12 Patient records aligned by first ED Reg date (light blue): The total
height represents number of patients. 179

6.13 The majority of the patients died (red) after admission (blue) more
than those who died while in the ED (light blue). 180

6.14 (left) Search for patients who visited, were discharged, came back and
died. No record was returned as an exact match results. However,
records in other results look like the pattern. This was because the
ED Reg date and Discharge date in each record were exactly at the
same time. (right) Refine the query to search for patients who visited,
came back and died. 237 patients were identified. 183

6.15 Summary of Complaints (left) and Diagnoses (right) of the Patients’
First Visits . 184

6.16 Patients with more than 30 visits: (a) Patients with many visits dis-
tributed regularly throughout the year, for example, 1212249 and
1332883 (b) Patients with frequent visits followed by a long gap
(marked by red horizontal lines) then another series of frequent visits,
for example, 1011068 and 2355683 . 186

6.17 International Children’s Digital Library www.childrenslibrary.org . . 191

xx

6.18 The page numbers are color-coded using color gradient from blue to
red. We found that people started their reading on different pages.
Some started from the first page, while others jumped into the later
pages, probably skipping the empty pages in the beginning. The
height of the bars shows that people started on the earlier pages
more than the later pages. 193

6.19 After aligned by the second page: People read in order from (blue
to red). Some flipped back one page and continued reading (small
lines). There are also some long patterns before the second page. . . 195

6.20 The selection shows book sessions in which readers accessed the pages
in the backward direction. 196

6.21 TaskSieve . 200
6.22 Adaptive VIBE . 201
6.23 Before (above) and after (below) filling gaps with colors of previous

events . 204
6.24 Overview of User Behaviors in TaskSieve (above) and Adaptive VIBE

(below): In the visualization-based system (Adaptive VIBE), the
distribution of different actions were denser than in the text-based
system (TaskSieve). The participants switched more frequently by
spending less time (smaller width colored blocks) per action, with
the two additional event types (POI activities (light green) and
Find subset (green)) mixed in the sequences. 206

6.25 Bigrams of user activities visualized in LifeFlow 208
6.26 Bigrams of user activities after aligned by Manipulate UM: The three

most frequent actions before Manipulate UM were still the most fre-
quent actions after Manipulate UM. Seems like the user model ma-
nipulations were in the chain of the three actions repeatedly and the
user model manipulation task needs to be considered as a set with
those friend actions. 211

6.27 LifeFlow showing 821 trips: The majority of the trips had normal
sequences. However, there were some anomalies in the bottom. 216

6.28 Anomalies: 1) Some trucks arrived to the sites but did not fill cement.
2) Some trips were reported to have begun filling cement before arriv-
ing to the sites. 3) Some trips were reported to have loaded cement
before entering plants. 217

6.29 Trips are grouped by Plant ID. Three event types; Enter plant,
Leave site and Return to plant; were excluded to eliminate the
overnight time and provide a more accurate comparison. Trips from
plant “C313” took on average 45 minutes from leaving plants (green)
to arrival at sites (red), which was much longer than other plants.
This is because of its wide area coverage and regular heavy traffic
near its location. 219

xxi

6.30 All events except Start fill cement (blue) and End fill cement

(light blue) are hidden. Next, we aligned by Start fill cement,
grouped by attribute Site ID, and ranked by “Average time to the
end”. We can see cement filling duration at each site ranging from
two minutes to four hours. 220

6.31 Matches that Man U scored the first three goals 226
6.32 Matches that both teams scored in “an eye for an eye” fashion 227
6.33 Matches that Man U conceded early goals and came back to win the

game . 227
6.34 Matches grouped by Score and Result 228
6.35 Summary of all scorelines . 229
6.36 A distribution of the winning goals in all 1-0 matches: Matches are

split into two groups: matches with early goals and late goals. 230
6.37 Matches grouped by Opponent: Man U competed against Chelsea in

this season more often than any other teams. 231
6.38 Matches grouped by Competition: Man U scored (green) the first

goal in the English Premier League (EPL) faster than in the UEFA
Champions League (UCL). 232

6.39 Matches grouped by Competition and Result: Man U scored (green)
the first goal in all matches that won in the UCL. 233

6.40 Matches grouped by Venue and Result: Venues played an important
role in the team’s performance. Man U had a great performance at
home but was not as strong on the road. 234

6.41 Matches grouped by Result and Venue: Most common score in a
draw match is 0-0. Most of these matches are away matches. 235

6.42 Matches grouped by Venue, Score and Opponent Score: For away
matches, the number of matches decreased with an increasing number
of goals scored, but the trend is not the same for home matches. . . . 236

6.43 All matches that Man U played in season 2010-2011 236
6.44 Three fastest goals occurred on the first minute: Using a selection

from distribution, we could select matches that Man U scored very
early. 237

6.45 Javier Hernandez and first goals: We right-clicked on the first green
bar (first goal) and brought up a summary of event attribute “Player”.
Javier Hernandez was the most frequent scorer of the first goal. He
also scored the first goal against Stoke City on the 27th minute twice. 238

6.46 George Elokobi, Wolverhampton Wanderer’s left defender scored the
first goal against Man U twice. Those two goals were the only two
goals in his total 76 appearances for Wolves from 2008–2011. 239

6.47 Display only yellow cards and group matches by Result: Man U
received less booking in winning matches. 240

6.48 Display only red cards for both sides and group matches by Result:
When opponents received red cards (blue), Man U always won. There
was one match that Man U won with 10 players. 242

xxii

6.49 (left) Missed a penalty then conceded a goal : A disappointment for
the fans as the match against Fulham ended with a draw at 2-2.
Nani had a chance to make it 3-1, but he missed the penalty kick.
(right) Missed a penalty but nothing happened after that : Man U was
awarded a penalty kick while the team was leading 1-0, but Wayne
Rooney could not convert it. However, the opponent could not score
an equalizer. 243

6.50 Received a red card then scored a goal: A user searched for a situation
when Man U received a red card then conceded a goal. However, he
could not find any, but found a match against Bolton when Man U
scored after receiving a red card instead. 244

6.51 Features of LifeFlow used in 238 sessions 247
6.52 Analyzing LifeFlow’s tooltip usage with LifeFlow: LIFEFLOW TOOLTIP

(green), a tooltip for LifeFlow sequence, was often used and followed
by LIFELINES2 INSTANCE TOOLTIP (blue), a tooltip for each record.
After that, users often used LIFEFLOW TOOLTIP (green) again, or
LIFELINES2 EVENT TOOLTIP (light blue), which is a tooltip for each
event. 249

6.53 A Process Model for Exploring Event Sequences 251

A.1 Ragnarok job tree . 284

C.1 Outflow processes temporal event data and visualizes aggregate event
progression pathways together with associated statistics (e.g. out-
come, duration, and cardinality). Users can interactively explore the
paths via which entities arrive and depart various states. This screen-
shot shows a visualization of Manchester United’s 2010-2011 soccer
season. Green shows pathways with good outcomes (i.e., wins) while
red shows pathways with bad outcomes (i.e., losses). 305

C.2 Multiple temporal event sequences are aggregated into a represen-
tation called an Outflow graph. This structure is a directed acyclic
graph (DAG) that captures the various event sequences that led to
the alignment point and all the sequences that occurred after the
alignment point. Aggregate statistics are then anchored to the graph
to describe specific subsets of the data. 310

C.3 Outflow visually encodes nodes in the Outflow graph using vertical
rectangles. Edges are represented using two distinct visual marks:
time edges and link edges. Color is used to encode average outcome. . 310

C.4 Link edges are rendered using quadratic Bézier curves. Control point
placement is selected to ensure horizontal starting and ending edge
slopes. 314

xxiii

C.5 A multi-stage rendering process improves legibility. (a) Initial lay-
out after sorting edges by outcome. (b) After applying Sugiyama’s
heuristics to reduce crossings. (c) The final visualization after both
Sugiyama’s heuristics and Outflow’s force-directed layout algorithm
to obtain straighter edges. 315

C.6 A spring-based optimization algorithm is used to obtain straighter
(and easier to read) edges. Nodes and edges are simulated as parti-
cles and springs, respectively. Spring repulsions are inserted between
nodes. During the optimization, nodes are gradually moved along a
vertical axis to reduce the spring tension in their edges. 316

C.7 Edge routing prevents overlaps between time and link edges. (a) A
link edge is seen passing “behind” the time edge above it. Outflow’s
edge routing algorithm extends the link edge horizontally beyond the
occluding time edge. (b) The new route avoids the overlap and makes
the time edge fully visible. 317

C.8 Interactive brushing allows users to highlight paths emanating from
specific nodes or edges in the visualization. This allows users to
quickly see alternative progression paths taken by entities passing
through a given state. 319

C.9 Using the same dataset as illustrated in Figure C.1, a user has ad-
justed the simplification slider to group states with similar outcomes.
Clustered states are represented with gray nodes. This simplified view
shows that as more events occur (i.e., as more goals are scored), the
paths diverge into two distinct sets of clustered states. The simplified
states more clearly separate winning scorelines from losing scorelines.
As more goals are scored, the probable outcomes of the games become
more obvious. 320

C.10 Outflow highlights factors that are strongly correlated with specific
event pathways. In this screenshot, a physician has focused on a group
of patients transitioning from the current state due to the onset of
the “NYHA” symptom. This transition seems to be deadly, as seen
from the color-coding in red. The right sidebar displays medications
(factors) with high correlations to this transition. The factor with
the highest correlation in this example is prescribing antiarrhythmic
agents. This correlation, which may or may not be causal, can help
clinicians generate hypotheses about how best to treat a patient. . . . 322

C.11 Outflow aggregates temporal event data from a cohort of patients
and visualizes alternative clinical pathways using color-coded edges
that map to patient outcome. Interactive capabilities allow users to
explore the data and uncover insights. 325

C.12 The progression from green to red when moving left to right in this
figure shows that patients with more symptoms exhibit worse outcomes.326

C.13 Questionnaire results for each of the eight questions (Q1–Q8) an-
swered on a 7-point scale by study participants. 332

xxiv

List of Abbreviations

ED Emergency Department
EHR Electronic Health Record
EMR Electronic Medical Record
EPL English Premier League
ER Emergency Room
FTS Flexible Temporal Search
HCIL Human-Computer Interaction Lab
IBM International Business Machine
ICU Intensive Care Unit
ICDL Internation Children’s Digital Library
IMC Intermediate Medical Care
Man U Manchester United Football Club
M&M Match and Mismatch
MILCs Multi-dimensional In-depth Long-term Case Studies
MVC Model-View-Controller
NIH National Institute of Health
RPG Role-Playing Game
TC Temporal Categorical
UCL UEFA Champions League
UM User Model
WHC Washington Hospital Center

xxv

Chapter 1

Introduction

“Every moment and every event of every man’s life
on earth plants something in his soul.”

–Thomas Merton

Our lives are defined by events, those tiny yet powerful pieces of informa-

tion. From the day that I started my graduate program (August 2007, enter

graduate school) to the day that I received my doctoral degree (May 2012,

graduation), many events had occurred in-between. Everyday, I woke up (8:00

a.m., wake up), had breakfast (8:15 a.m., breakfast), took a shower (9:00

a.m., shower), then I went to campus (10:00 a.m., work). Some days I had

a meeting (1:00 p.m., meeting) or an important soccer game that I needed to

watch (2:45 p.m., soccer). While I was working in the lab, some patients might

visit the hospital (August 10, 2011 6:11 a.m., arrival), get diagnosed by the

physicians (August 10, 2011 6:30 a.m., emergency room) and have to stay in

the ICU (August 10, 2011 9:05 a.m., ICU) for several days (August 15, 2011

3:00 p.m., discharged).

Each event, or temporal event, contains a timestamp (8:00 a.m.), its event

type (wake up) and additional information that make each event unique and have

a story of its own. However, that is only a small part of its potential. The greater

potential of these events is revealed when they are grouped and connected into event

1

sequences, which connect the dots between the scattered events and transform them

into a more complete story. Here are some examples of event sequences.

1) Student record :

(August’07, enter PhD program) → (April’10, propose) → (May’12, graduate)

2) Human activity :

(8:00 a.m., wake up) → (8:15 a.m., breakfast) → (9:00 a.m., shower) → ...

3) Medical record :

(6:11 a.m., arrival) → (6:30 a.m., emergency room) → (9:05 a.m., ICU) → ...

4) Soccer match:

(1st min, team A goal) → (89th min, team B goal) → (90th min, team B goal)

An increasing number of leading organizations are collecting event sequence

data. Health organizations have Electronic Medical Record (EMR) databases con-

taining millions of records of patient histories. Each patient history contains hospital

admissions, patients’ symptoms, treatments and other medical events. Transporta-

tion systems generate logs of incidents and the timing of their management (first

report, notifications and arrivals of each unit on the scene). Academic institutions

keep detailed records of the educational advancement of their students (classes, mile-

stones reached, graduation, etc.). Web logs, financial histories, market baskets and

data in many other domains can also be viewed as event sequences. (More examples

of event sequences in various domains are listed in Appendix A.)

However, these vast collections of data are not being fully utilized due to

the limited approaches available for analyzing event sequences. Much effort has

been put into designing data storage and information retrieval, but the exploratory

2

data analysis [124]—an approach to analyzing data for the purpose of formulating

hypotheses worth testing—is still insufficiently supported.

1.1 Overview of the Dissertation

To help the users harvest from the diligently collected, rich and informative

but gigantic databases, my dissertation aims to use information visualization tech-

niques to support exploratory data analysis of event sequences. The fundamental

concept of information visualization is that “visual representations and interaction

techniques take advantage of the human eye’s broad bandwidth pathway into the

mind to allow users to see, explore, and understand large amounts of information

at once” [123]. Therefore, I believe that by designing the suitable visual represen-

tations and interaction techniques for exploring event sequences, I can help users

understand and gain new insight from the data.

This dissertation work was initially inspired by working closely with the physi-

cians at the Washington Hospital Center. While helping them analyzing patient

transfers sequences from Electronic Medical Records, I came across two important

tasks that are not supported by the current systems and remain open problems in

the research community. These two tasks are significant not only for analyzing pa-

tient transfers, but also in other event sequences. Seeing the opportunities to make

an impact both theoretically and practically, I defined these two research questions

to drive my research directions.

3

1. How to provide an overview of multiple event sequences?

Although many systems were developed to visualize event sequences. [98, 8,

28, 97, 37, 131, 129], how to visualize an overview of multiple event sequences

still remains a challenging problem. Previous systems can answer questions

regarding the number of records that include a specific event sequence (e.g.,

“How many patients went from the Emergency Room to the Intensive Care

Unit (ICU)?”) but questions requiring an overview are not adequately sup-

ported. For example, a question such as “What are the most common transfer

patterns between services within the hospital?” requires examination of all

records one by one. Being unable to see all records on the screen at once

makes it difficult to spot any pattern. Providing an overview is significant

because it gives users a big picture of the underlying data, in the same way

that an abstract does for a scholarly paper and an executive summary does

for a marketing report. Squeezing a billion records into a million pixels [113]

is also a great challenge in information visualization.

Therefore, I have developed a novel interactive visual overview of event se-

quences called LifeFlow. This approach aggregates and compresses informa-

tion from multiple event sequences into a data structure called tree of sequences

whose size depends on length and total number patterns, thus reducing amount

of information greatly. This data structure is later converted into a LifeFlow

visualization that can display all possible sequences of events and the temporal

spacing of the events within sequences.

4

2. How to support users in querying for event sequences when they

are uncertain about what they are looking for?

Many traditional tools use an exact match approach. Once the query is sub-

mitted, the queries are transformed into constraints and the tools return only

the records that match the constraints. For example, users may want to find

the records that have event “A” followed by event “B” within exactly 2 days,

so they specify the query as A→≤2 days→B. This approach is effective when

the users know exactly what they want.

However, sometimes the users are uncertain about what they are looking for.

For example, the physician wants to find the records that have event Surgery

followed by event Die within approximately 2 days. The value “2 days” is just

an approximation. Specifying narrow queries (e.g., Surgery→≤2 days→Die)

could miss the records that might be “just off” (e.g., a patient who died 2 days

and 1 minute after surgery). Using broad queries (e.g., Surgery→Die) could

return too many results that are not relevant. Query methods that search

for similar records rather than finding exact matches could better support the

exploratory searchers.

Therefore, I have developed methods for searching event sequences based on

similarity. Since then, I have learned from the user studies that using simi-

larity alone also has its limitations, so I have revised and developed Flexible

Temporal Search, a hybrid approach between exact and similarity search for

event sequences.

5

This dissertation describes how I approached these two problems in detail and

include several user studies, ranging from a usability study, controlled experiments

to multi-dimensional in-depth long-term case studies (MILCs) [114] that prove the

benefits of my approaches. Although this research was initially inspired by ap-

plications in the medical domain, I have designed generalizable solutions that are

not domain-specific, and therefore make them applicable to other event sequences

outside of the medical domain, as shown in the case studies.

1.2 Contributions

My contributions from this research are:

1. A tree of sequences, a data structure that aggregates multiple event sequences

while preserving temporal and sequential aspects of the data, and a visual rep-

resentation, called LifeFlow, which compactly displays summaries of multiple

event sequences, along with interaction techniques that facilitate the users’

explorations. (Figure 1.1)

2. Similarity measures (the M&M measure 1-2) and similarity search interfaces

(Similan 1-2) for querying event sequences. (Figure 1.2)

3. A similarity measure and user interface for Flexible Temporal Search (FTS), a

hybrid query approach for querying event sequences that combines the benefits

of exact match and similarity search. (Figure 1.3)

4. Case study evaluations to refine the concept and user interfaces resulting in

6

Concept Language Lines of Code Evaluation

Similan 1 C# 8,138 Usability Study

Similan 2 Adobe Flex 11,629 Controlled Experiment

LifeFlow Java
61,188

Usability Study, MILCs
FTS Java MILCs

Table 1.1: Summary of all software developed in this dissertation

a process model and a set of design recommendations for temporal event se-

quence exploration.

A summary of all software developed in this dissertation and evaluation results

are shown in Table 1.1 and 1.2, respectively.

1.3 Dissertation Organization

The remainder of this dissertation is organized as follows: Chapter 2 provides

a literature review of background and related work; Chapter 3 describes LifeFlow,

an overview visualization for event sequences; Chapter 4 explains Similan and the

M&M measure, a user interface and similarity measure for querying event sequences

by similarity; Chapter 5 then discusses Flexible Temporal Search, a hybrid interface

for querying event sequences that combines the benefits of exact match and similarity

search interfaces; Chapter 6 reports on several multi-dimensional in-depth long-term

case studies that demonstrate the applications of my research in several domains;

Finally, I give concluding remarks and discuss future work in Chapter 7.

7

Concept Evaluation Results

Similan 1 Usability Study A study with eight participants was con-
ducted. The participants believed that Sim-
ilan could help them find students who were
similar to the target student. (Section 4.3)

Similan 2 Controlled Experiment A controlled experiment that compared exact
match and similarity search interfaces showed
that an exact match interface had advan-
tages in finding exact results and also gave
more confidence to the users in tasks that in-
volve counting. On the other hand, similarity
search interface had advantages in the flexi-
bility and intuitiveness of specifying the query
for tasks with time constraints or uncertainty,
or tasks that ask for records that are similar
to a given record. (Section 4.5)

LifeFlow Usability Study A study with ten participants confirmed that
even novice users with 15 minutes of training
were able to learn to use LifeFlow and rapidly
answer questions about the prevalence of in-
teresting sequences, find anomalies, and gain
significant insight from the data. (Section 3.6)

LifeFlow MILCs Eight long-term case studies in six application
domains demonstrated the benefits of Life-
Flow in exploring event sequences and iden-
tifying interesting patterns. Many interesting
use cases and findings were reported. (Chap-
ter 6)

FTS MILCs Two long-term case studies in two application
domains were conducted. FTS was used to
search for particular situations when needed.
Having the similar results give users more con-
fidence when the exact match results is empty.
(Section 6.5 and 6.9)

Table 1.2: Summary of all evaluation conducted in this dissertation

8

Figure 1.1: LifeFlow : An overview visualization for event sequences

Figure 1.2: Similan 2 : Query event sequences by similarity

9

Figure 1.3: Flexible Temporal Search (FTS): A hybrid approach that combines the
benefits of exact match and similarity search for event sequences

10

Chapter 2

Background and Related Work

Time is one of the oldest data types that mankind has ever collected. Artifacts

from the Palaeolithic suggest that the moon was used to reckon time as early as 6,000

years ago [105]. It would be interesting to review the literature of temporal data

back that far, but for the sake of brevity, I select only a number of topics that are

relevant to my research. In this chapter, I review the important techniques used for

visualizing and querying temporal data, especially event sequences, and some other

related areas to provide readers with the context of my dissertation work.

2.1 Information Visualization

2.1.1 Temporal Data Visualization

There has been a long history of visualizing temporal data [6]. I first review

tools that support analysis of a single record, then tools designed to handle collec-

tions of records.

2.1.1.1 Single-Record Visualization

Many systems were designed for analyzing a single record [32, 46, 59, 97, 13, 7].

The most common approach is to use a timeline-based representation. Events are

placed on a horizontal timeline according to their time. One record consists of

11

multiple rows, one for each category of events.

Cousins et al. [32, 33] developed the Timeline Browser for visualizing dia-

betes data of a single patient. The Timeline Browser has one special row in which

the vertical position is used to indicate the value of blood glucose concentration

readings. Other information, such as insulin doses, meals, and clinical studies are

placed on different rows. It also provides zooming, filtering and details-on-demand.

Harrison et al.’s Timelines [46] is an interactive system for collection and visual-

ization of video annotation data. The visualization plots the categories (events and

intervals) on the y-axis and time along the x-axis. Zooming, scrolling and reorder-

ing events are supported. Karam [59] introduced xtg (Timeline Display Generator

for X-windows) for visualizing activities in client-server application—a video con-

ference system. Xtg supports multiple views and zooming with details-on-demand.

It also allows annotation and searching for events in the timeline. LifeLines (Fig-

ure 2.1) was developed by Plaisant et al. [97] to provide a general visualization

environment for personal histories, which was applied to clinical patient records.

Problems, diagnoses, test results or medications are presented as dots or horizontal

lines. Colors can be used to indicate severity or type. Bade et al. [13] presented

MIDGAARD, a timeline-based visualization, which enables the users to reveal the

data at several levels of detail and abstraction, ranging from a broad overview to the

fine structure. Resizing the height of the visualization adjusts the abstraction levels.

PlanningLines [7], a visualization used for representing temporal uncertainties, was

developed to support project management. The glyph consists of two encapsulated

bars, representing minimum and maximum duration, that are bounded by two caps

12

Figure 2.1: LifeLines [97] displays a medical history of a single patient on a timeline.

that represent start and end intervals. TimeZoom [34] allows zooming into regions

of the timeline, permitting arbitrary granularity of time units. It supports multiple

focus regions with various levels of detail, which allows comparison between multiple

regions while preserving the overall context.

Spiral timelines—in which angle represents time interval (time of day, days of

week, months, or years)—were inspired by the cyclic nature of how we organize time

and used to reveal periodic patterns in time series [25, 49, 137]. Carlis et al. [25]

proposed a visualization on a spiral timeline in both 2D and 3D. Visualizations, such

as bar charts or size-coded circles, are placed along the spiral to represent the values

of the events. Hewagamage et al. [49] used multiple 3D spirals on a geographical

13

Figure 2.2: The Spiral visualization approach of Weber et al. [137] applied to the
power usage dataset

map to visualize spatio-temporal patterns. Weber et al.’s work [137], as shown

in Figure 2.2, allowed the users to adjust the length of the cycle to find periodic

patterns. Suntinger et al. [120] visualized event sequence streams by plotting circles

on a radial layout. Outer ring represents more recent time.

Tree-based representation was used by VizTree [72, 73, 74] to detect patterns

in numerical time series. The numerical values are binned into categorical values.

VizTree then displays a prefix tree of patterns and uses edge thickness to repre-

sent frequency. This representation can easily reveal frequent and rare patterns in

the data. They also presented DiffTree as another view that supports comparison

between time series by showing differences between trees.

2.1.1.2 Visualization of multiple records in parallel

To support the analysis of multiple records, a common technique is to stack

instances of single-record visualizations [37, 127]. Many compact and space-efficient

14

single-record visualizations were proposed.

In PatternFinder [37], each record is displayed with a ball-and-chain visual-

ization. LifeLines2 [131] uses a single-record visualization based on LifeLines idea

(Figure 2.4). Vrotsou et al. [127] visualized social science diary data using the

vertical axis to represent time of day while the horizontal axis represent records.

The visualization is compact, using one vertical line with many color-coded sections

that represent events to represent each record. Weber et al.’s spiral-based visu-

alization [137] also supports multiple records by showing each record as one ring.

CloudLines [65] aggregates overlapping events on the timeline using decay function

to better display high and low density areas.

Those tools typically provide searching and filtering mechanisms to enhance

the analysis [37, 131, 129]. LifeLines2 introduces Align-Rank-Filter (ARF) frame-

work to support browsing and searching. The idea is to rearrange the time line

by important events, rearrange records by event occurrence frequency, and filter

by data characteristics. ActiviTree [129] combines the visualization in [127] with

a framework for finding interesting sequential patterns. The query interface uses

a tree-based visualization, showing all the events that occur before and after the

current query pattern with their scores.

In the context of my inspirational case study, users of those tools could find

patients who were transferred with a specific known sequence, or find patients who

were admitted to the ICU at least once, but could not find out what the common

sequences are or spot anomalous sequences.

Some tools allow the users to organize records into hierarchy [23] or groups [92].

15

Timeline Tree [23] is a tree with timelines at the leaf nodes. The tree groups the

timelines into hierarchy based on their attributes. Timeline Tree also has time bars

as an alternative view. The time or order of transactions is encoded using color

coding and the measure is represented by the width of the boxes instead of their

height. Phan et al. [91, 92] proposed a visualization called progressive multiples

that allows the users to create folders to organize timelines into different groups. By

default, all records are placed sequentially in the initial folder. Users can create a

new folder and drag records into the new folder.

However, unlike LifeFlow which provides one visual abstraction that repre-

sents multiple records, these systems do not provide any abstraction. Without the

overview abstraction, users lose the big picture when the number of records exceeds

the maximum number of single-record visualizations that can be displayed on the

screen. For example, the visualization in Figure 2.4 can display only 8 records from

a total of 377 records on the screen. Also, it does not provide a summary or make

common patterns within records stand out.

2.1.1.3 Visualization that aggregates multiple records

Some systems provide an overview of multiple records [48, 10, 132]. Contin-

uum [10] shows a histogram of frequency of events over time while LifeLines2 [132]

has a temporal summary, which is a stacked bar chart that shows the distribution

of event types within each period of time.

These methods can provide the distribution of events by time, which answers

16

Figure 2.3: Continuum’s overview panel (top) displays a histogram as an overview
of the data set. [10]

the questions related to the distribution, such as which type of event occurred most

frequently in January 2007 or which type of event usually occurred within the first

week after patients arrived at the hospital? However, the event sequences within

the records are obscured and thus, it cannot answer questions related to sequences,

such as where did the patient usually go directly after arrival or what is the most

common transfer sequence?

2.1.2 Hierarchy Visualization

To visualize an overview of multiple event sequences, I group all records into

a hierarchical structure called a Tree of Sequences. The overview visualization is

then created from this hierarchical structure. According to Stasko and Zhang [118],

many visualizations for displaying hierarchical structures were developed.

17

Figure 2.4: LifeLines2 [131, 132] displays a temporal summary in the bottom as an
overview of the data set.

18

Figure 2.5: Icicle tree in ProtoVis. [21] The visualization is called an icicle tree
because it resembles a row of icicles hanging from the eaves. [66]

The most common way is to display a node-link layout in 2D [35, 138, 101],

or 3D [104] or hyperbolic space [68, 82]. Some visualizations add more interaction

techniques to enhance the node-edge tree visualizations. For example, SpaceTree [96]

allows node expansion on demand. TreeViewer [61] visualizes trees in a form that

closely resembles botanical trees.

A dendogram [117, 47, 107] is a tree for visual classification of similarity, com-

monly used in biology for grouping species. A dendogram can show the relative

sequence similarity between many different proteins or genes. Generally, the hor-

izontal or vertical axis indicates the degree of difference in sequences and another

axis is used for clarity to separate the branches.

Space-filling techniques use implicit containment and geometry features to

present a hierarchy [55, 66, 38, 21, 118]. TreeMaps [55, 15] display hierarchical data

as a set of nested rectangles. Each branch of the tree is given a rectangle, which is

19

then tiled with smaller rectangles representing sub-branches. A leaf node’s rectangle

has an area proportional to a specified dimension on the data. Icicle tree [66, 38,

21], also called Icicle plot, displays hierarchical data as stacked rectangles, usually

ordered from top to bottom. This visualization directly inspired LifeFlow design

(Figure 2.5). The root takes the entire width. Each child node is placed under its

parent with the width proportional to the percentage it consumes relative to its

siblings. Sunburst [118] is a radial space-filling technique, which is essentially the

polar form of the Icicle tree. At the core is the root of the tree, each concentric

ring represents the child nodes and is partitioned to represent the percentage a node

consumes relative to its siblings.

Using these methods, the sequences of events can be represented. For example,

the users can see what type of events usually occur after A. However, the length of

time between events—which is important in many analyses—is not represented. For

example, the users can see that B usually occurred after A, but they cannot see how

long after A occurred that B occurred. Therefore, LifeFlow was designed to also

display the gap between events.

A phylogenetic tree [69] is a branching diagram showing the inferred evolu-

tionary relationships among various biological species. The edge lengths in some

phylogenetic trees may be interpreted as time estimates, but each node in the tree

represents only one species, while each node in LifeFlow represents multiple records

of event sequences.

20

Figure 2.6: Blaas et al.’s state transition visualization: A smooth graph representa-
tion of a labeled biological time-series. Each ring represents a state, and the edges
between states visualize the state transitions. This graph uses smooth curves to
explicitly visualize third order transitions, so that each curved edge represents a
unique sequence of four successive states. The orange node is part of a selection set,
and all transitions matching the current selection are highlighted in orange. [17]

2.1.3 State Transition Visualization

An alternative approach to aggregate multiple event sequences is to consider

each event sequence as a path through different states. In the simplest case, a state

can be an event type. For example, an event sequence A → B → A represents a

path from state A to state B and back to state A again. A state transition graph then

can be created from multiple event sequences. This idea was explored in a spin-off

project, Outflow (Appendix C).

Most of the state transition visualizations were inspired by a state diagram [20],

or state transition graph. A state diagram is used in computer science and related

fields to represent a system of states and state changes, e.g. finite state machines.

State diagrams are generally displayed by simple node-link diagrams, where each

node represents a state and each directed link represents a state transition [17].

21

Many visualizations based on the state diagrams were developed [125, 136, 99, 100,

17]. These approaches typically focus on displaying multivariate graphs where a

number of attributes are associated with every node.

There are also extensions of a state diagram. For example, a Petri net (also

known as a place/transition net or P/T net) [83] allows transitions from any number

of states to any number of states. This property was designed to support the systems

which can be in multiple states at once. Petri nets offer a graphical notation for

stepwise processes that include choice, iteration, and concurrent execution. It was

invented in 1939 by Carl Adam Petri—at the age of 13—for the purpose of describing

chemical processes [90]. Petri nets are used to display the flow of distributed systems,

where many concurrent processes are executed at the same time. Van der Aalst [83]

adapted Petri nets for workflow management.

However, using an approach based on state transition visualizations also has

some limitations since these visualizations were designed to emphasize the transi-

tions between states (event types, in this case). It is hard to recognize the sequences

of events longer than two events and, therefore, it is harder to find common sequences

or outliers from the records. It is also difficult to incorporate temporal information

into graph visualizations, which are often complex already when there are many

nodes and edges.

22

Figure 2.7: Charles Minard’s Map of Napolean’s Russian Campaign of 1812

2.1.4 Flow Visualization

Cartographers have long used Flow Maps to show the movement of objects

from one location to another, such as the number of people in a migration, the

amount of goods being traded, or the number of packets in a network [93, 102, 22].

The most famous one is Charles Minard’s Map of Napolean’s Russian Campaign of

1812 (Figure 2.7) [40]. However, these flow maps only focus on displaying proportion

of the flow that splits in different ways, without showing temporal information or

steps in the process.

2.2 Query Methods

With respect to my work in overview visualization, related research in visu-

alizations are highlighted and reviewed in the previous section. In this section, I

collect query methods for temporal data including important work in related areas,

23

and summarize them to provide background knowledge for querying event sequences.

2.2.1 Query Languages

A traditional approach to querying temporal data is to use database query

languages. According to Chomicki [30] and Tansel and Tin [122], many research

projects were conducted on designing temporal databases and extending standard

query languages into temporal query languages. Some of the well-known languages

were TQuel [115], TSQL2 [116] and Historical Relational Data Model (HRDM) [31].

However, these temporal query languages were built on top of their specific data

models and users had difficulty in learning their unique syntaxes, concepts, and

limitations. They also support only exact match.

2.2.2 Query-by-Example Languages

To provide a high-level language that offered a more convenient way to query

a relational database (RDB), the query-by-example languages were introduced. Ac-

cording to Ozsoyoglu and Wang[87], the early idea of query-by-example was a lan-

guage that users entered what they expected to see in a database result table into a

form that looked like a result table instead of writing lengthy queries, making it sim-

pler for the users to specify a query. The first was Zloof’s Query-by-Example [145],

which was refined by others [26, 64, 146, 53, 86, 121].

Time-by-Example [121] followed the Query-by-Example idea and adopted sub-

queries concepts from Aggregates-by-Example [64] and Summary-Table-by-Example [86]

24

Figure 2.8: An example of query-by-filters: PatternFinder [37] allows users to specify
the attributes of events and time spans to produce pattern queries. The parameters
in the controls are converted directly into constraints that can be used to retrieve
the records.

25

Figure 2.9: An example of query-by-example: QueryMarvel [54] allows users to draw
comic strips to construct queries. With its exact result back-end, the comic strips
are converted into rules, as seen in the status bar. (4).

to serve a historical relational database (HRDB). HRDB is an extension of RDB

that stores the changes of attribute values over time. For example, a patient entity

had an attribute called room, which was changed every time each patient was moved

to a new room. HRDB can keep track of the room values and Time-by-Example

provides a way to query those values. For instance, the users can ask queries such

as list all rooms a patient was in or which patient was in an ICU room between

January and March?

However, Time-by-Example supports only exact match, operates only on top

of HRDM and still requires the users to learn their languages for specifying con-

ditions in complex queries, e.g. “($sal.T overlaps $dept.T overlaps $msal.T

overlaps $m.T) and $sal.v > $msal.v”.

26

2.2.3 Query by Graphical User Interfaces (GUIs)

2.2.3.1 Exact Match Approach

As the graphical user interfaces (GUIs) were becoming more common, many

GUIs were developed for temporal data [5, 109, 62, 63]. Several GUIs used the

exact match approach, in which users specify exact constraints to construct the

queries. These constraints are often specified via controls, such as sliders or drop-

down lists. The tool then returns only the records that follow every constraint

in the query. Karam [59] presented a visualization called xtg, which allows users

to explore temporal data and do simple searches for events. Hibino and Runden-

steiner [50, 51] proposed a visual query language and user interface for exploring

temporal relationships using slider filters with results displayed in a graph-like vi-

sualization. PatternFinder [37] allows users to specify the attributes of events and

time spans to produce pattern queries that are difficult to express with other for-

malisms. LifeLines2 [131, 132, 130] uses an alignment, ranking and filtering (ARF)

framework to query for event sequences. ActiviTree [129] provides a tree-like user in-

terface with suggestions about interesting patterns to query for sequences of events.

QueryMarvel [54] utilizes and extends the semantic elements and rules of comic

strips to construct queries. Instead of following the exact match approach, Similan

follows the similarity search approach (Section 2.2.3.2), and applied the concept for

querying event sequences.

27

2.2.3.2 Similarity Search Approach

Many GUIs follow the similarity search approach, in which users can draw an

example of what they expect to see as a result of a query. The result from a query is

a list of records, sorted by similarity to the given example. Kato et al. [60] presented

QVE that accepts a sketch drawn by users to retrieve similar images or time series

from the database. IFQ (In Frame Query) [71] is a visual user interface that supports

direct manipulation [111] allowing users to combine semantic expressions, conceptual

definitions, sketch, and image examples to pose queries. Spatial-Query-by-Sketch

allows users to formulate a spatial query by drawing on a touch screen and translates

this sketch into a symbolic representation that can be processed against a geographic

database. Bonhommeet al. [19, 18] discussed the limitations of previous query-by-

sketch approaches and extended the Lvis language, which was developed for spatial

data, to temporal data. The new language uses visual metaphors, such as balloons

and anchors, to express spatial and temporal criteria. QuerySketch [135] allows

users to sketch a graph freehand, then view stocks whose price histories matched

the sketch. Watai et al. [134] proposed a web page retrieval system that enables a

user to search web pages using the user’s freehand sketch. WireVis [27] introduces

techniques to extract bank accounts that show similar transaction patterns. To the

best of my knowledge, existing event sequence query tools have used an exact match

approach. These systems demonstrated the similarity search concept in other types

of data and inspired me to develop a similarity search tool for event sequences.

Timesearcher [52] visualizes multiple timelines as line charts on the same

28

plane, using horizontal and vertical axis to represent time and value, respectively.

Users draw timeboxes, rectangular widgets that can be used to specify query con-

straints, on the timeline to query for all time series that pass through those time-

boxes. In Timesearcher, users can draw an example (timeboxes) to specify the query,

but the timeboxes are converted into exact rules, e.g. January < time < March and

100 < value < 200 , when processing the query in the background. Similan2 allows

users to draw an example, but does not convert the example into any exact rule.

Instead, it compares the example with each record directly and sorts the result by

similarity to the example.

2.2.4 Similarity Measure

Pattern matching computes a boolean result indicating whether an event se-

quence matches the specified pattern, or it does not. In contrast, a similarity mea-

sure calculates a real number measurement that expresses how similar an event

sequence is to the specified pattern.

2.2.4.1 Numerical Time Series

Many similarity measures had been proposed for comparison between series

of numerical values measured over time, such as stock price. Event sequences,

in contrast, are a series of categorical values measured over time. Hence, these

approaches are not directly applicable to event sequences because they were designed

to capture the difference between numerical values, not categorical.

29

Nevertheless, there are some common concepts that are worth mentioning

here. The first concept is lock-step measure, which compares the i-th point of one

time series to the i-th point of another, such as the well-known Euclidean distance.

However, since the mapping between the points of two time series is fixed, these

measures are sensitive to noise and misalignments in time. The M&M measure is

different from lock-step measures because it does not fix the mapping of i-th events

together.

The second concept, elastic measure, allows comparison of one-to-many points

(e.g., Dynamic time warping (DTW) [16] and one-to-many / one-to-none points

(e.g., Longest Common Substring (LCSS)). The sequences are stretched or com-

pressed non-linearly in the time dimension to provide a better match with another

time series. Unlike elastic measures, the M&M measure does not allow one-to-many

mapping.

2.2.4.2 String and Biological Sequences

Edit distance is the number of operations required to transform one string into

another string. The lower the number, the more similar the strings are. Hamming

distance [44], Levenshtein distance [70] or Jaro-Winkler distance [140] are some ex-

amples. The best known such distance is the LCSS distance [11]. A more completed

survey can be seen from [84].

One neighbor area is biological sequence searching. There exist many algo-

rithms for comparing biological sequence information, such as the amino-acid se-

30

quences of different proteins or the nucleotides of DNA sequences. BLAST [9],

FASTA [88] and the TEIRESIAS algorithm [103] are some examples.

Mongeau and Sankoff [81] defined a similarity measure specifically for compar-

ing musical pieces based on number of transformations required to transform one

into another. Their measure allows one-to-many mapping called consolidation/frag-

mentation, which is similar to time warping. Gómez-Alonso and Valls [41] proposed

a similarity measure for sequences of categorical data (without time) based on edit

distance.

These approaches consider the difference in ordering and existence, but do

not consider the time that events occurred. Event sequences might occur at non-

uniform intervals, which made the timing become important. Also, more than one

event could occur at the same time, while two characters or amino acids could not

occur at the same position in the string or biological sequence.

2.2.4.3 Event Sequences

Mannila and Ronkainen [77] introduced a similarity measure for event se-

quences based on three edit operations: insert, delete and move. The move opera-

tion was included to incorporate the occurrence time of the events. This approach

allows only monotonic mapping, which means that the matched events in the target

and candidate sequences must be in similar order, and do not offer a user interface.

Sherkat and Rafiei [110] binned the timeline into intervals and compared events

within each interval.

31

The Match & Mismatch (M&M) measure v.1 [144] calculates a similarity score

from two types of difference: time difference of matched events and number of

mismatches. It supports matching that may not preserve the order of event sequence

(non-monotonic). Timed String Edit Distance [36] inserts timed null symbols into

event sequences before matching. It allows matching between events with different

event types and measured two types of difference: time difference and event type

difference (symbol dissimilarity). Vrotsou et al. [126, 128] identified nine measures to

cover several aspects of similarity. This approach also considers multiple occurrences

of the target sequence in the candidate sequence. Obweger et al. [85] defined single-

event similarity by comparing event attributes. Their event sequence similarity then

combines single-event similarities, order of events and time that the events occurred

with weights and more options. However, their computation time to find the best

match is exponential while others are polynomial.

Some methods extracted “fingerprints” from event sequences and compared

the fingerprints instead of comparing the event sequences directly. Mannila and

Moen [76] detected similar event types by comparing their context. They converted

each context (event sequence around the selected event type) into feature vectors

and developed methods for comparing these vectors. Mannila and Seppänen [78]

mapped event sequences into points in k-dimensional Euclidean space using a ran-

dom function and searched for similar event sequences from their k-dimensional

projections.

The growth of measures for event sequence similarity demonstrates the impor-

tance of these search capabilities in many domains beyond medical interests, such

32

as human activity event streams, business transactions, or legal actions.

2.3 Summary

Decades of innovations in temporal data visualization and query methods are

surveyed and reviewed in this chapter. On one end, researchers had developed

many visualization techniques aiming to present information in a meaningful way

and reveal underlying patterns. There are techniques ranging from displaying a

single record to displaying multiple records in parallel. However, as data collections

grow, it is becoming more difficult to detect any pattern among records when the

users can see only a small portion of a huge dataset. An overview is needed. A few

histogram-based techniques were developed but there are still many scenarios that

they cannot support. Hierarchical, graph and flow visualization techniques seem to

be applicable to some extent but still, they were not designed to support time in

the display. New techniques that can aggregate and provide an overview of multiple

records are needed.

On the other end, many query languages and GUIs were invented for querying

temporal data. Specific query languages are very expressive but found to be complex

and difficult for typical end users. Graphical user interfaces (GUIs) were then used

to bridge the gap. The majority of the GUIs are exact match interfaces, which are

precise, but at the same time, inflexible for queries with uncertainty. A more flexible

alternative, similarity search interface, was used for querying numerical time series

and other non-temporal data. Designing a similarity search interface for querying

33

event sequences remains an open problem. One part of the puzzle is how to define

a similarity measure that can capture different definitions of similarity. A further

question is how to design an interface that can provide both precision of the exact

match and flexibility of the similarity search.

These unsolved problems present exciting research opportunities. The follow-

ing chapters describe how I approached these problems and explain my solutions in

more detail.

34

Chapter 3

Providing an Overview of Temporal Event Sequences to Spark

Exploration: LifeFlow Visualization

3.1 Introduction

Previous work on temporal data visualization can support many types of event

sequence analysis, ranging from examining a single record in detail to various ways

of filtering and searching multiple records. They can answer questions regarding the

number of records that include a specific event sequence, but questions requiring

an overview need innovative strategies. For example, a question such as “What are

the most common transfer patterns between services within the hospital?” requires

examination of all records one by one. Being able to see all records on the screen at

once would greatly facilitate pattern discovery.

Squeezing a billion records into a million pixels [113] is a great challenge in

information visualization. On one hand, researchers want to be able to display

millions of event sequences within limited space—a computer monitor, for instance.

That means the data must be somehow aggregated to create a scalable visualization.

On the other hand, we want to be able to preserve as much important information

as possible. So, a trade-off between what information needs to be preserved and

what information should be compromised has to be made.

35

To address this challenge, I aggregate event sequences into a data structure

called a tree of sequences and introduce a novel interactive visualization called Life-

Flow, which can summarize all possible sequences and the temporal spacing of the

events within sequences. In this chapter, I describe a motivating example from the

medical domain, explain the tree of sequences data structure, then introduce the

LifeFlow visualization, describe the user interface and basic features, present the

results of a user study, and finally describe advanced features that I have developed

while working with the domain experts in long-term case studies. An earlier version

of this chapter has been published in [142].

3.2 Motivating Case Study

The use of information visualization to support patient care and clinical re-

search is gaining momentum [5, 63, 29]. This section describes a particular case

study that motivated the original design of LifeFlow. It was conducted with Dr.

Phuong Ho, a practicing physician in an emergency department, who was inter-

ested in analyzing sequences of patient transfers between departments for quality

assurance.

3.2.1 Event Definitions

These terms will be used when describing the case study.

1. ER: Emergency Room, the section of a hospital intended to provide treatment

for victims of sudden illness or trauma, also called Emergency Department

36

(ED)

2. ICU : Intensive Care Unit, a hospital unit in which patients requiring close

monitoring and intensive care are kept

3. IMC : Intermediate Medical Care, a level of medical care in a hospital that is

intermediate between ICU and Floor

4. Floor : a hospital ward where patients receive normal care

3.2.2 Example question

One of Dr. Ho’s particular interests was the monitoring of bounce backs, which

occurs when a patients’ level of care is decreased then increased again urgently. For

example, a patient’s condition might have improved enough to have him transferred

from the ICU to Floor, but his condition worsened again and he had to be sent back

to intensive care within 48 hours, suggesting he might have left the ICU too early.

This pattern corresponds to a hospital quality metric that is very rarely monitored.

Dr. Ho had been using an MS Excel spreadsheet to find these patients. In an

interview he described the complex and time consuming effort to create the formulas

and view the data. This is due in part to the fact that there are many room types

and special conditions for using those rooms. My research group had previously

worked with Dr. Ho using LifeLines2 [131] and Similan [144] to locate patients

with specific known event sequences such as the one described above. Once it had

become easy to search for specific known sequences we identified other questions

that could not be answered as easily; e.g.: what typically happens to patients after

37

they leave the ER, or the ICU; what are the most common transfer patterns, what is

the percentage of patients transferred from ICU to Floor and how long does it take,

are there any unexpected sequences? All those new questions require a summary

of all the transfer sequences and their temporal attributes. To this end, I propose

LifeFlow to provide an overview of all transfer sequences.

3.3 Data Aggregation: Tree of Sequences

The first step of creating LifeFlow is to aggregate the data into a tree of

sequences. The tree of sequences data structure was designed to preserve two im-

portant aspects of event sequences:

1. Sequence of events

e.g. Arrival→Intensive Care Unit (ICU)→Floor

2. Time gaps between events

e.g. Emergency Room → (and after 5 hours)→ Transfer to ICU

Figure 3.1 illustrates the conversion from four records of event sequences to

a tree of sequences and then LifeFlow visualization. Raw data are displayed on a

horizontal timeline with colored triangles representing events (in the same approach

as LifeLines2 [131]). Each row represents one record. All records are aggregated

into a tree of sequences based on the prefixes of their event sequences. For example,

a record that contains event sequence Arrival → ER → ICU and a record that

contains event sequence Arrival → ER → Floor, share the same prefix sequence

Arrival → ER. By default, the records are grouped event-by-event from the begin-

38

Pa#ent #3 ''

12/02/2008'14:26 'Admit'
12/02/2008'14:26 'Emergency'
12/02/2008'22:44 'ICU'
12/05/2008'05:07 'IMC'
12/08/2008'10:02 'Floor'
12/14/2008'06:19 'Exit'
'

Pa#ent #3 ''

12/02/2008'14:26 'Admit'
12/02/2008'14:26 'Emergency'
12/02/2008'22:44 'ICU'
12/05/2008'05:07 'IMC'
12/08/2008'10:02 'Floor'
12/14/2008'06:19 'Exit'
'

Pa#ent #2 ''

12/02/2008'14:26 'Admit'
12/02/2008'14:26 'Emergency'
12/02/2008'22:44 'ICU'
12/05/2008'05:07 'IMC'
12/08/2008'10:02 'Floor'
12/14/2008'06:19 'Exit'
'

#1'
#2'

#3'

#4'

Pa#ent #1 ''

12/02/2008'14:26 'Arrival'
12/02/2008'14:26 'Emergency'
12/02/2008'22:44 'ICU'
12/05/2008'05:07 'IMC'
12/08/2008'10:02 'Floor'
12/14/2008'06:19 'Exit'
'

time

Event Record

Event
Sequences

LifeLines2

(4 records)

4
 re

co
rd

s

time

Tree of
Sequences

LifeFlow

Represent

Aggregate

Average time Event Bar

Node

End Node

Figure 3.1: This diagram explains how a LifeFlow visualization can be constructed
to summarize four records of event sequences. Raw data are represented as col-
ored triangles on a horizontal timeline (using the traditional approach also used in
LifeLines2). Each row represents one record. The records are aggregated by se-
quence into a data structure called a tree of sequences. The tree of sequences is
then converted into a LifeFlow visualization. Each tree node is represented with an
event bar. The height of the bar is proportional to the number of records while its
horizontal position is determined by the average time between events.

39

ning of the event sequences to the end. In Figure 3.1, all records start with the blue

event so they are grouped together (indicated by dashed rectangle) into a blue tree

node. Then, they all also have the purple event, so they are still grouped together

into a purple node. In the next step, two of them have red events while the other

two have green events, so they are split into red and green nodes. Then do the same

for the rest of the event sequences.

Figure 3.2 shows a tree of sequences in more detail. Each node in the tree

contains an event type and number of records while each edge contains time gap

information and number of records.

In some situations, users may choose to group consecutive events of the same

type together when building the tree of sequences. For example, two consecutive

transfers to Floor can be treated as one transfer with the second transfer ignored.

A record with sequence Arrival → ER → Floor → Floor → ICU is treated as

Arrival → ER → Floor → ICU. This aggregation option can be turned on or off

as needed via the user interface.

Inspired by LifeLines2, LifeFlow allows users to choose any event type to be an

alignment point. This supports tasks such as “what happened to the patients before

and after they went to the ICU?”, in which users can select ICU as an alignment point

to answer. By default, an alignment point is not specified, so all records are aligned

by the first event in the record (Figure 3.2). An invisible root node is used as a

starting point because all event sequences may not start with the same event type,

which can result in multiple trees. Root node can connect these trees together into

one tree.

40

Tree of Sequences

A B

Average time = 3 days
No. of records = 1

C

D

Root

E

No. of records = 4

(without alignment)

D F

F

F

Figure 3.2: Tree of sequences data structure of the event sequences in Figure 3.1:
Each node in the tree contains an event type and number of records. Each edge
contains time gap information and number of records.

Tree of Sequences

B

D

A

C

E

C

A

A

D

D

B

Alignment Point

Positive Tree Negative Tree

(with alignment)

Figure 3.3: Two trees of sequences created from a dataset with an alignment point
at B. A positive tree in forward direction and a negative tree in backward direction.

41

When an alignment point is specified, two trees are built separately from the

alignment point. One tree for the sequences before the alignment (from right to left)

and another tree for the sequences after the alignment (from left to right). Because

the alignment point is time zero, the tree on the left is called negative tree because it

occurs in negative time while the tree on the right is called positive tree. Figure 3.3

shows two trees of sequences built from another dataset with alignment point set at

event type B.

The tree of sequences data structure can be created in O(n) when n is a

total number of events in a dataset. A tree building algorithm iterates through

each record in a dataset and adds more information to existing nodes in a tree or

grow new nodes if necessary. This approach reduces amounts of information from

multiple event sequences into a data structure whose size depends on the number

of patterns instead number of records, and makes it easier to be visualized. I then

design LifeFlow visualization to visualize the tree of sequences. Inspired by the tree

of sequences and LifeFlow, Lins et al. [75] develop an alternative visualization for

the tree of sequences.

3.4 Visual Representation: LifeFlow Visualization

Once a tree of sequences is created, it can be encoded into a LifeFlow visual-

ization (Figure 3.1). Each node of the tree is represented with a color-coded event

bar, matching the color of the event type. The height of a bar is determined by

the number of records in that node proportionally to the total number of records.

42

For example, the red node contains two out of four records, so the height of its

corresponding event bar is 50% of the total height. The horizontal gap between a

bar (e.g. purple bar) and its parent (the blue bar on its left) is proportional to the

mean time between the two events (blue → purple). By default, the representative

time gap is the mean, but users can select other metrics, such as the median. Each

sequence ends with a trapezoid end node.

The LifeFlow visualization scales for number of records, but is limited by

number of patterns in the dataset and number of events in each record. One dataset

that has four records and another dataset that has four millions records may have

the same number of patterns and can be displayed using the comparable amount

of screen space. Recommended datasets should have less than 100 patterns, with

each record having less than 40 events. The number of records should not be an

issue theoretically, but in its current implementation, LifeFlow is recommended for

analyzing datasets with less than 250,000 records.

3.5 Basic Features

I implemented a software prototype LifeFlow as a Java desktop application.

(Please refer to the Appendix B for more implementation detail.) In addition to the

compact visual representation, LifeFlow (Figure 3.4) includes the following interac-

tions to support exploration:

1. Semantic Zooming: The horizontal zoom changes time granularity, while

the vertical zoom allows the users to see rare sequences in more detail. Users

43

Figure 3.4: This screenshot of LifeFlow shows a random sample of patient trans-
fer data based on real de-identified data. The way to read sequences in Life-
Flow is to read the colors (using the legend). For example, the sequence (A) in
the figure is Arrival (blue), Emergency (purple), ICU (red), Floor (green) and
Discharge-Alive (light blue). The horizontal gap between colored bars represents
the average time between events. The height of the bars is proportional to the num-
ber of records, therefore showing the relative frequency of that sequence. The bars
(e.g. Floor and Die) with same parent (Arrival→ Emergency→ ICU) are ordered
by frequency (tallest bar on top), as you can see that Floor (green bar) is placed
above Die (black bar). The most frequent pattern is the tallest bar at the end. Here
it shows that the most common sequence is Arrival, Emergency then Discharge

alive. (Please note that this is only a sample dataset and does not reflect the real
performance of any hospital.)

44

can also right-click any sequence and select “Zoom to this sequence”. The

visualization will animate and zoom to the selected sequence.

2. Tooltip: When users move the mouse cursor over an event bar (Figure 3.5),

a tooltip displays the full sequence of events, and some statistical information,

such as mean time between events, standard deviation, etc.

3. Overlay distribution of gap between events: Hovering the cursor over a

bar displays the distribution of time gaps overlaid on the Lifeflow. Figure 3.5

shows the distribution of length of stay in the ER before the patients were

discharged alive.

4. Sort: Users can sort the sequences with the same parent in different ways: by

the number of records that the bars represent (tallest bar on top) (Figure 3.4)

or by the average time to the end (longest time on top) (Figure 3.8). The

default is to sort by number of records.

5. Integration with LifeLines2: LifeFlow can function as a standalone tool,

but combining it with LifeLines2 facilitates exploration by allowing users to

review individual records as details on demand [112]. By clicking on any

event bar, users select all records that are included in that bar (Figure 3.6).

Selected records are highlighted in the LifeLines2 view. Users can then choose

to keep only the selection and remove everything else, or vice versa. In a

symmetrical fashion, selecting a record in the LifeLines2 view highlights the

pattern contained in that record in the LifeFlow view, allowing the users to

45

Figure 3.5: When users move the cursor over an event bar or gap between event bars,
LifeFlow highlights the sequence and shows the distribution of time gaps. Labels
help the users read the sequences easier. A tooltip also appears on the left, showing
more information about the time gap. In this Figure, the distribution shows that
most patients were discharged within 6 hours and the rest were mostly discharged
exactly after 12 hours. (Please note that this is only a sample dataset and does not
reflect the real performance of any hospital.)

46

Figure 3.6: Here LifeFlow is used side-by-side with LifeLines2 so that individual
records can be reviewed by scrolling. When a user clicks on a sequence in LifeFlow,
the sequence is highlighted and all corresponding records are also highlighted and
moved to the top in LifeLines2, allowing the user to examine them in more detail.
In this example, a user noticed an uncommon pattern of frequent transfer back and
forth between ICU (red) and Floor (green), so he selected those patients to see more
detail.

47

find other records that contain the same sequence.

6. Align: As mentioned earlier, LifeFlow allows users to choose any event type

to be the alignment point. Figure 3.7 shows LifeFlow with alignment. The

vertical dashed line marks the aligned event. The left and right side are what

happened before and after the alignment point, respectively. Now one can see

that in this dataset, patients most often come to ICU from Floor. After that,

they often died.

7. Include/Exclude event types: Using the legend on the left side of the

screen users can check or uncheck event types to include or exclude them from

the sequences. This simple functionality allows powerful transformations of

the display to answer questions. For example, in Figure 3.8, the user unchecked

all event types except Arrival, Discharge-Alive and Die, i.e. the beginning

and end of hospital visits. All other events that could occur during a visit

are ignored and LifeFlow regenerated to show only those three event types,

allowing rapid comparisons between the patients who died and survived in

terms of number of patients and average time to discharge.

3.6 User Study

I conducted a user study to investigate if LifeFlow was easy to learn, and if

users could use the interface efficiently to answer representative questions. Another

goal was to observe what strategies users chose and what problems they would en-

counter, and gather feedback and suggestions for further improvement. The dataset

48

Figure 3.7: The same data with Figure 3.4 was aligned by ICU. The user can see
that the patients were most likely to die after a transfer to the ICU than any other
sequence because the black bar is the tallest bar at the end. Also, surprisingly, two
patients were reported dead (see arrow) before being transferred to ICU, which is
impossible. This indicates a data entry problem. (Please note that this is only a
sample dataset and does not reflect the real performance of any hospital.)

49

Figure 3.8: Using the same data with Figure 3.4, the user excluded all event types
except Arrival, Discharge-Alive and Die, i.e. the beginning and end of hospital
visits. All other events are ignored, allowing rapid comparisons between the patients
who died and survived in terms of number of patients and average time to discharge.
Patients who survived were discharged after 7.5 days on average while patients who
died after 8.5 days on average. (Please note that this is only a sample dataset and
does not reflect the real performance of any hospital.)

50

in this study included 91 records of hospital patient transfer (a subset of real de-

identified data, which included known anomalies to see if participants could find

them). Because medical professionals have very little availability, they are difficult

to recruit for a user study. The data used in the study is simple enough to be under-

stood by students, therefore, the participants in this study were graduate students

(5 male and 5 female) from various departments of the University of Maryland.

None of them were members of the LifeFlow development team.

3.6.1 Procedure

Training consisted of a 12-minute video and five training questions. When the

participants could answer the questions correctly, they could start the study tasks.

The order of the tasks was randomly permuted across participants. The tasks were

representative of the questions proposed by domain experts during the case study,

and designed to test the usability of the main interaction techniques of LifeFlow.

Participants were encouraged to think aloud while performing the tasks. For the

first 14 tasks, observers recorded completion time and errors, if any. Because the

participants needed time to understand the tasks, they were instructed to read the

task description, indicate when they are ready and then start the timer.

51

3.6.2 Tasks

3.6.2.1 Tasks 1-9: Simple Features

The first 9 tasks required understanding the LifeFlow visualization and using

simple interactive features such as tooltips or zooming. The tasks included ques-

tions about frequent sequences (e.g. “Where did the patient usually go after they

arrived?”, “What is the most common pattern?”), number of records in speci-

fied sequences (e.g. “How many patients went from arrival directly into ICU?”),

time between events (e.g. “How long is the average time from ER to ICU?”) and

comparison between sequences (e.g. “After arriving to the ER, patients might be

transferred to Floor or the ICU. Were the patients transferred from the ER to the

ICU faster than from the ER to the Floor?”).

3.6.2.2 Task 10-14: Advanced Features

Four tasks required using advanced features, such as alignment or using Life-

Flow and LifeLines2 in combination (e.g. “Usually, where were the patients before

they were admitted to the ICU for the first time?”, “Retrieve the IDs of all patients

with this transfer pattern.” or “How many patients had the same transfer pattern

as patient no.10010010?”)

3.6.2.3 Task 15: Overall analysis and finding anomalies

In the last task, I asked the participants to imagine themselves as a manager

who was trying to evaluate the performance of the hospital. I gave them 10 minutes

52

to find any surprising, exceptional or impossible sequences that might indicate a

problem in data entry or in hospital procedures, and explain why they thought it

was a problem. I told them to report as many insights as they could in 10 minutes.

I had planted three (realistic) data anomalies:

1. A few patients who died before being transferred to ICU.

2. Patients who bounce back and forth between the ICU and Floor several times.

3. Patients who stayed in the Floor for 3 months.

3.6.3 Results

3.6.3.1 Tasks 1-14

The participants were able to perform the simple and advanced tasks quickly.

They were able to use the interactions to adjust the visualization and retrieve in-

formation that was not presented in the initial view. The average ± SD completion

time for the simple and advanced tasks were 14.9 ± 12.7 seconds and 15.8 ± 12.5

seconds, respectively. Please note that the participants were also narrating their

actions while performing the tasks, which might have slowed them down. Only one

participant made one mistake in a complex task: while retrieving the IDs of all

patients who were transferred with a particularly long sequence she misread a color

and could not find the correct sequence. However, she knew what she needed to do

to retrieve the IDs after the sequence was found.

53

3.6.3.2 Task 15

Eight out of ten participants were able to detect all three anomalies. Two

participants reported only the first two anomalies, but when I directed their atten-

tion towards the third anomaly, they explained that they had noticed it but did

not think it was abnormal because some patients (e.g., cancer patients) might stay

in the hospital for a long time. In addition, they also provided insight about other

sequences that were possible, but undesirable from a manager’s perspective, such

as instances when patients who died in the Floor unit. They also reported surpris-

ing patterns, such as many patients discharged alive directly from the ICU. I also

observed the following common strategies:

1. Examine things that catch the eye first.

2. Scan all sequences systematically top to bottom: When they saw the normal

sequence, e.g., ICU to Floor, they noted that this is good and moved on to

the next sequence.

3. Align by each type of event.

4. Hovering over bars with the mouse to explore distribution and detect outliers

from the distribution.

5. See more detail in LifeLines2: Although I did not display LifeLines2 at the

beginning of this task, several participants opened it to use the combined view.

All participants used strategies 1-3 consecutively. Three participants also fol-

lowed with strategy 4. Four participants followed with strategy 5.

54

3.6.3.3 Debriefing

During the debriefing, typical comments included: “The tool is easy to un-

derstand and easy to use.”, “very easy to find common trends and uncommon se-

quences”, “The alignment is very useful.”, “In LifeFlow, it is easier to see the high

level picture. With LifeLines2, you can check individuals. LifeFlow provides a great

summary of the big picture.” Common suggestions for improvement included in-

creasing the bar width to make it easier to select and reorganizing the tooltip to

make it more readable. Two participants also asked to analyze the data from their

own research with LifeFlow.

3.6.4 Summary

Results suggest that users can learn to use LifeFlow in a short period of time

and that LifeFlow’s overview of the data allows them to understand patterns and

find anomalies. There were several common strategies used when performing data

analysis but not every participant used all strategies, which indicated the need for

a framework to support data analysis.

3.7 Advanced Features

By collaborating with the domain experts in several case studies, I have de-

veloped a better understanding of users’ needs and limitations of LifeFlow. Their

feedback guided me to invent several advanced features along the way to enhance

LifeFlow’s ability to support more complicated tasks. These features are also gen-

55

eralizable and found to be useful for tasks in different domains.

1. Including Non-Temporal Attributes: Records also usually contain non-

temporal attributes, e.g., patient’s gender or category of traffic incidents. These

attributes can be categorized into record attributes and event attributes.

(a) Record attribute is attached to each record of event sequences, for exam-

ple, the gender of the patient or the county in which the patient lives.

While LifeFlow does not focus on displaying these attributes, it allows

users to select record attributes and group records by the selected at-

tribute before the sequences are aggregated. This feature was motivated

by a case study with the Center for Advanced Transportation Technology

(CATT) Lab where the users have 200,000 traffic incident logs from sev-

eral traffic agencies and want to compare their performance, so we wanted

to be able to group the records by agencies and other record attributes

LifeFlow in Figure 3.9 groups traffic incident records by agency before

aggregating by sequence, therefore allowing simple comparison between

agencies. Several attributes can also be used in combination. Please see

the case study in Section 6.3 for further analysis of Figure 3.9 and more

examples of attributes.

(b) Event Attribute is attached to each event. For example, the name of the

attending physician is a property of the event Arrival in a patient record

because the physician may be different for each visit.

56

Figure 3.9: LifeFlow with traffic incidents data: The incidents are separated by agen-
cies (A-G). Only Incident Notification and Return to normal (aggregated)

events are shown. Other events are hidden. The agencies are sorted by a sim-
ple measure of agency performance (average time from the beginning to the end).
Agency C seems to be the fastest to clear its incidents, followed by E, A, H, D, F,
B and finally G.

57

I received a request from my physician partners that they were also in-

terested in the event attributes. They wanted to know the common diag-

noses of the patients for each visit and hoped to see a summary of them.

Therefore, I implemented a way to quickly show the summary by adding

“Show attributes summary...” feature to the right-click menu. Users can

right-click at any event bar and open the summary table that summarize

all event attributes and also record attributes (Figure 3.10. Selecting any

row in the summary table will also select the records in LifeFlow and

LifeLines2 view, allowing users to drill down to the detail.

2. Custom Attributes: Users can assign custom attributes to selected records.

This is found useful when users detect records with a pattern of interest and

want to separate them from the rest. They can assign a custom attribute

using the attribute for grouping. For example, user assigned an attribute

“Status” as “Alive” and “Dead” to the patients who had pattern Arrival →

Discharge-Alive and Arrival→ Die in Figure 3.8, respectively. After that,

the user included other event types that were excluded earlier and chose to

group records by attribute “Status” to show patterns of “Alive” and “Dead”

patients (Figure 3.11).

3. Selection from distribution: Users sometimes find interesting patterns

from the distribution and want to select only part of the sequence to see

more detail. For example, users can see from the distribution in Figure 3.5

that many patients were release exactly after twelve hours. Users can select

58

Figure 3.10: User right-click at the second Arrival event and select “Show at-
tributes summary...” to bring up the summary table, which summarizes the common
diagnoses. (Please note that this is only a sample dataset and does not reflect the
real performance of any hospital.)

59

Figure 3.11: User assigned attribute “Status” as “Alive” and “Dead” to the patients
who had pattern Arrival → Discharge-Alive and Arrival → Die in Figure 3.8,
respectively. After that, the user included other event types that were excluded
earlier and chose to group records by attribute “Status” to show patterns of “Alive”
and “Dead” patients. Notice that the majority of the dead patients were transferred
to Floor first and later transferred to the ICU before they died. (Please note that this
is only a sample dataset and does not reflect the real performance of any hospital.)

60

only those patients to investigate more.

This feature also enhances the functionality of LifeFlow as a query tool. For

example, to find patients who were transferred from ICU to Floor within two

days, users can show the distribution of patients from ICU to Floor and draw

a selection of patients whose transfer gaps were within two days.

4. Measurement: One limitation of LifeFlow is that it displays only time gaps

between consecutive events. For example, for a sequence A → B → C, the

horizontal gaps in the visualization only represent the mean/median time gaps

for A→B and B→C, but the time gap between non-consecutive events (A→C)

is not shown. Users cannot sum the two gaps together because a sum of the

mean/median time gaps between consecutive events (A→B + B→C) is not

always equal to the mean/median time gap A→C. See this counterexample:

(A, 1)→ (B, 2)→ (C, 3)

(A, 1)→ (B, 3)→ (C, 5)

(A, 1)→ (B, 6)→ (D, 9)

(A, 1)→ (B, 7)→ (D, 8)

X̄(A→ B) = 3.5, X̄(B → C) = 1.5, X̄(A→ C) = 3

To overcome this limitation, the measurement tool was developed to help users

retrieve an accurate time gap between any two non-consecutive events. Users

can select any event bar as start and end points and LifeFlow will display the

61

mean, median, SD on the tooltip and overlay the distribution at users’ request.

Users can also make a selection from this distribution (Figure 3.12).

5. Displaying all event bars with equal height: When data includes a large

number of sequences, it could be difficult to review the rare sequences because

they are represented with very thin bars. This option displaying all leaf nodes

using equal height, regardless of the number of records, makes it easier to

review and select rare sequences.

6. Episode: Some event sequences can be split into episodes. For example, a

patient’s medical history may consist of multiple visits. My physician col-

laborator wants to be able to see each visit easily. Therefore, I revised the

visual representation to display a clear separation between episodes using dot-

ted lines and allow users to select an event type that defines the beginning of

an episode from the user interface. For example, in Figure 3.13, the physician

selected Arrival event to separate hospital visits.

7. Rank-by-feature: The gap between events indicates how long it took to

change from the previous event to the next event. With many sequences and

gaps displayed on the screen, finding the longest time gap to locate a bottle-

neck in the process (for example, longest transfer time in the hospital) can

be difficult, especially when some sequences are rare and displayed as very

small bars. To support this task, I adopted the rank-by-feature technique and

included a list of all gaps between events, sorted by chosen criterion (Fig-

ure 3.14). User can choose to sort by mean, median, minimum, maximum and

62

Figure 3.12: User used the measurement tool to measure the time from ICU (red) to
Discharge-Alive (light blue). The tooltip shows that it took about ten days. The
distribution of time gap is also displayed.

63

Figure 3.13: The sequences of medical records are split into episodes using an event
type Arrival to define the beginning of an episode. Dotted lines show separation
between episodes.

64

standard deviation of the gaps. Once user selects any gap from the table, the

visualization will animate and zoom to the selected gap.

3.8 Summary

Analyzing large numbers of event sequences is an important and challenging

task. Lacking ability to see all records on the screen at once makes it difficult to

discover patterns. I introduce a new scalable visualization called LifeFlow that pro-

vides an overview of event sequences to support users’ exploration and analysis. The

LifeFlow visualization is based on aggregating data into a data structure called a tree

of sequences, which preserves all sequences and temporal spacing within sequences.

I report on a short-term user study with ten participants which confirmed that

even novice users with 15 minutes of training were able to learn to use LifeFlow

and rapidly answer questions about the prevalence of interesting sequences, find

anomalies, and gain significant insight from the data. After the short-term study,

I have worked with several domain experts in long-term case studies which led to

deeper understanding of users’ need and guided the improvement and extensions of

LifeFlow to overcome its limitations and support more complex tasks.

Although it was inspired by a case study in the medical domain, LifeFlow can

be applied to many other fields, where event sequences are the main focus, such as

student progress analysis, usability study or web log analysis, and human activities

log analysis in general. I have conducted several case studies that demonstrate

LifeFlow’s applications and report them in Chapter 6.

65

Figure 3.14: The sequences of medical records are broken into episodes using an
event type Arrival to define the beginning of an episode. Dotted lines show sepa-
ration between episodes.

66

Chapter 4

Querying Event Sequences by Similarity Search

4.1 Introduction

Querying event sequences to answer specific questions or look for patterns

is an important activity. Such activities can be utilized in, for example, finding

patients who were transferred from an emergency room to the ICU (Intensive

Care Unit) and died, incidents in which the police arrived 2 hours after incident

notification or a PhD student who proposed a dissertation topic twice before

graduated.

4.1.1 Example of Event Sequence Query

My physician partners in the Emergency Department at the Washington Hos-

pital Center are analyzing sequences of patient transfers for quality assurance. One

of their interests is the monitoring of bounce backs, which occurred when a patient’s

level of care was decreased then increased again urgently, such as:

1. Patients who were transferred from the ICU to the Floor (normal bed) and

then back to the ICU

2. Patients who arrived at the emergency room then were transferred to the

Floor and then back to the ICU.

67

Time constraints are also associated with these sequences (e.g. the bounce

backs should occur within a certain number of hours).

The bounce back patients correspond to a quality metric for the hospital and

are difficult to monitor. The physicians have been using MS Excel to find these

bounce back patients. They exported data from the database and wrote formulas

to express the queries. An interview with the physician who performed these tasks

revealed frustration with the approach because of its complexity and time-consuming

aspects (it took too many hours to create the formulas). I also asked about the

possibility of performing these queries using SQL. He explained that SQL was even

harder for him and he was not quite sure how to start (even though he had earned

a computer science undergraduate degree in addition to his medical degree.)

4.1.2 Motivation for Similarity Search

Specifying temporal queries in SQL is difficult even for computer professionals

specializing in such queries. I gave 6 computing students who had completed a

database course, the schema of a simple dataset and asked them to write a SQL

query to find patients who were admitted to the hospital, transferred to Floor, and

then to ICU (no time constraints were to be specified). Even with this simplified

query, only one participant succeeded after 30 minutes, adding evidence that SQL

strategies are challenging to use for temporal event sequences.

Researchers have made progress in representing temporal abstractions and

executing complex temporal queries [115, 116, 31], but there is little research that

68

focuses on making it easy for end users such as medical researchers, traffic engineers,

or educators to specify the queries and examine results interactively and visually.

To the best of my knowledge, existing event sequence query interfaces have

used an exact match approach, in which each query is interpreted as “every record

in the result MUST follow these constraints”. As a result, the tool returns only the

records that strictly follow every constraint in the query. This approach works well

when the users are fairly certain about their query (e.g. “find all patients admitted

to the emergency room within a week after leaving the hospital.”)

However, an exploratory search [124, 139], in which users are uncertain about

what they are looking for, is gaining more attention. When using the exact match,

broad queries return too many results that are not relevant. Narrow queries miss

records that may be “just off” (e.g. 7.5 days instead of 7 days as specified in the

query). A more flexible query method could help the exploratory searchers.

A similarity search interface has been used to query other types of data, such

as images or text. In this approach, users can sketch an example of what they

are seeking and get similar results. The users then receive a ranked list of results,

sorted by similarity to the query. The ranked results can provide more flexibility

than exact match results, allowing users to capture the “just off” cases. The key

behind similarity search is the similarity measure, which is used to calculate the

similarity score between the query and every record, so all records then can be

sorted by similarity to the query.

69

4.1.3 Chapter Organization

In this chapter, I describe how I developed a new similarity search interface,

Similan, and similarity measure for event sequences, Match & Mismatch (M&M)

measure. Some parts of this chapter have been published in [144] and [143].

Section 4.2 introduces the first version of M&M measure and Similan user

interface. The M&M measure defines similarity as a combination of the time dif-

ferences between pairs of events and the number of mismatches. Similan allows the

users to select an existing record from the database as a target record (query) and

provides search result visualization. An evaluation of the first version is reported in

Section 4.3.

Section 4.4 introduces the second version. To address the limitations of the

first version, Similan2, allows the users to draw an example of an event sequence

by placing events on a blank timeline and search for records that are similar to

their example and improves how events are visualized on the timeline. The M&M

measure v.2 supports richer and more flexible definitions of similarity and improves

performance using dynamic programming.

Section 4.5 reports a controlled experiment compared exact match (Similan2)

and similarity search interfaces (LifeLines2 [131]). I summarize the advantages and

disadvantages of each interface and suggest a hybrid interface combining the best

of both in Section 4.6.

70

Pa#ent#1)
(target)) A" C"

Pa#ent#2)
A" C"

B"

B"

Pa#ent#1)
(target)) A"

Pa#ent#2)
A" C"

B" B"

b)" c)"

Pa#ent#1)
(target)) A" C"

Pa#ent#2)
A" B"C"

B"

B"

C"

Missing"Event" Extra"Event"Matched"Events"

Mismatch"Score"="F(Number"of"Mismatches)"
Match"Score"="F(?me"difference)" }"Total"Score"0"to"1"

?me"

a)"

Figure 4.1: (top) The M&M measure (bottom-left) High time difference (low match
score) but no mismatch (high mismatch score) (bottom-right) Low time difference
(high match score) but high mismatches (low mismatch score)

4.2 Similan and the M&M Measure: The First Version

4.2.1 Introduction to the Match & Mismatch (M&M) Measure

The M&M measure is based on aligning temporal data by sentinel events [131],

then matching events in the query record with events in the compared records. Since

there can be many possible ways to match the events between the two records, I

define an event matching process for the M&M measure, which will be explained in

Section 4.2.3. After the matching is done, the M&M measure is a combination of

two measures:

The first measure, match score, is for the matched events, events which occur

both in the target record and the compared record. It captures the time difference

between events in the target record and the compared record.

71

The second measure, mismatch score, is for missing or extra events, events

which occur in the target record but do not occur in the compared record, or vice

versa. It is based on the difference in number of events in each event type between

the two records.

Match and mismatch score are combined into total score, ranging from 0.01 to

1.00. For all three scores, a higher score represents higher similarity.

4.2.2 Description of the User Interface: Similan

Given two event sequences, the M&M measure returns a score which repre-

sents the similarity between that pair of records. However, the score alone does

not help the users understand of why records are similar or dissimilar. Also, the

M&M measure can be adjusted by several parameters. A tool to assist users in un-

derstanding the results and customize the parameters is needed. To address these

issues, Similan was developed to provide a visualization of the search results to help

users understand the results, and an interface that facilitates the search and param-

eter customization. Similan was written in C# .NET using the Piccolo.NET [14]

visualization toolkit. The design of Similan follows the Information Visualization

Mantra: overview first, zoom and filter, details on demand [112].

4.2.2.1 Overview

Similan consists of 4 panels: main, comparison, plot and control, as shown

in Figure 4.2. Users can start from selecting a target record from the main panel.

72

Figure 4.2: A screenshot of Similan, the predecessor of Similan2. Users can start by
double-clicking to select a target record from the main panel. Similan will calculate
a score that indicates how similar to the target record each record is and show scores
in the color-coded grid on the left. The score color-coding bars on the right show
how the scores are color-coded. The users then can sort the records according to
these scores. The main panel also allows users to visually compare a target with
a set of records. The timeline is binned (by year, in this screenshot). If the users
want to make a more detailed comparison, they can click on a record to show the
relationship between that record and the target record in the comparison panel on
the top. The plot panel at the bottom shows the distribution of records. In this
example, the user is searching for students who are similar to Student 01. The
user sets Student 01 as the target and sorts all records by total score. Student 18
has the highest total score of 0.92, so this suggests that Student 18 is the most
similar student. Although Student 41 and Student 18 both have one missing paper
submission, Student 41 has a lower match score, therefore, Student 18 has a higher
total score.

73

Figure 4.3: Relative Timeline: Time scale is now relative to sentinel events (blue).
Time zero is highlighted in dark gray.

After that, the main and plot panels give an overview of the similarity search result.

Filtering and ranking mechanisms help users narrow down the search result. Users

then can focus on fewer records. By clicking on a particular record, the comparison

panel shows relationships between that record and the target record on demand.

Moreover, mouse hovering actions on various objects provide details on demand in

the form of tooltips.

4.2.2.2 Events and Timeline

Colored squares are used to represent events. Each color represents a event

type (category). Users can customize the colors and check the checkboxes in the

control panel (Figure 4.4) to select interesting event types. The number of events

in each event type is displayed behind the event type name.

Similan’s timeline is not a continuous timeline but divided into bins. The bin

interval is automatically calculated by the application window size and total time

range of the data. As shown in Figure 4.2, the timeline is divided into years (05,

06, 07, 08). In each bin, events are grouped by event types and placed in the same

order. Maintaining the same order allows for visual comparison between records.

Each record is vertically stacked on alternating background colors and iden-

74

tified by its name on the left (see Figure 4.2). Ranking scores (more details in

Section 4.2.2.4) appear on the left hand side before the name. Events appear as col-

ored squares on the timeline. By default, all records are presented using the same

absolute time scale (with the corresponding years or month labels displayed at the

top) and the display is sized so that the entire date range fits in the screen.

A double-click on any record marks that record as a target record. A target

mark will be placed in front of the target record instead of a ranking score. Clicking

on any record selects that record as a compared record. Both the target record and

compared record will be highlighted. Users can move the cursor over colored squares

to see details on demand in the form of tooltips. Also, zooming on the horizontal

axis and panning are possible using a range slider provided at the bottom of the

main panel.

4.2.2.3 Alignment

Users can select a sentinel event type from a drop-down list as shown in Fig-

ure 4.4. By default, the sentinel event type is set to none. When the sentinel event

type is selected, the time scale will change from an absolute time, i.e. real time, into

a relative time. The sentinel event becomes time zero and is highlighted (Figure 4.3).

4.2.2.4 Rank-by-feature

Similan is inspired by the idea of rank-by-feature from Hierarchical Clustering

Explorer (HCE) [108]. These following ranking criteria are derived from the M&M

75

Figure 4.4: Control Panel: (left) Legend of event types (categories) (middle-top)
Users can choose to align events by selecting sentinel event type. (middle-bottom)
Weight for calculating total score can be adjusted using slider and textboxes. (right)
Links in comparison panel can be filtered using these parameters.

measure proposed in this paper.

1. Total Score ranging from 0.01 to 1.00

Total score is the final output of the M&M measure. It is a weighted sum of

match and mismatch scores. The weight can be adjusted and users can see

the result in real-time (Figure 4.4).

2. Match Score ranging from 0.01 to 1.00

This is a score derived from the distance (time difference) between matched

events. I choose to display match score instead of distance because the distance

is a large number, so it can be difficult to tell the difference between two large

numbers and understand the distribution.

3. Number of Mismatches (#Mismatch) ranging from 0 to n

This is the total number of missing and extra events compared to the target

record. The #mismatch is shown instead of the mismatch score because it is

76

more meaningful to the user. Furthermore, I break down the #mismatch into

event types. Positive and negative values correspond to the number of extra

and missing events, respectively.

Users can click on the ranking criteria on the top of the main panel to sort

the records. By clicking on the same criteria once more, the order is reversed. A

triangle under the header shows current ranking criterion. Legends in the control

panel show the range of each ranking score and how they are color-coded. (See

Figure 4.2.)

4.2.2.5 Scatterplot

In addition to displaying results as a list in the main panel, Similan also

visualizes the results as a scatterplot in the plot panel (Figure 4.2). Each record

is represented by a “+” icon. Horizontal axis is the match score, while vertical

axis is the number of mismatches (#mismatch). Records in the bottom-left area

are records with high match score and low number of mismatches, which should be

considered most similar according to the M&M measure.

Moving the cursor over the + icon will trigger a tooltip to be displayed. Click-

ing on a + will set that record to be the compared record and scroll the main panel

to that record. Users can also draw a region on the scatterplot to filter records. The

main panel will show only records in the region. Clicking on the plot panel again

will clear the region and hence clear the filter.

77

4.2.2.6 Comparison

The comparison panel is designed to show similarity and difference between

the target record and the compared record. Lines are drawn between pairs of events

matched by the M&M measure. Line style is used to show the distance value. Strong

links, or links with short distance, are shown as solid lines. Weak links, or links with

large distance, are shown as dashed lines. Events without any links connected to

them are missing or extra events. Users can adjust the distance threshold for strong

links in the control panel. (See Figure 4.4.) Moving the cursor over a link will

display a tooltip showing the event type, time of both events and distance.

Furthermore, users can filter the links by using the filters (Figure 4.4). Users

can filter by setting the minimum and/or maximum distance. By selecting link

types, only the selected types are displayed. Strong links are links with a distance in

the range specified by the slider. Forward Links are links which are not strong links

and the event in the target record occurs before the event in the compared record,

whereas, Backward Links are the opposite.

4.2.3 The Match&Mismatch (M&M) Measure

This section explains the M&M measure in more detail. The base idea is

that similar records should have the same events and the same events should occur

almost at the same time. Therefore, the M&M measure uses the time difference and

number of missing and extra events as the definition of similarity.

The notation below is used to describe a record of event sequence, which is a

78

series of events (t, c). The i-th event in the record is denoted by xi or (ti, ci).

X = {(t, c) | t ∈ Time and c ∈ EventTypes}

4.2.3.1 Matching

The first step is to match the events in the target record with events in the

compared record. There can be many possible ways to match the events into pairs.

Therefore, I define a distance function based on a sum of time difference to guide the

matching. The matching which produces the minimum distance (time difference)

will be selected. Note that the distance from the M&M distance function is not

the final result of the M&M measure, but only part of it. This distance is later

converted to a match score.

M&M Distance Function I first define a distance function between each

pair of events, as follows:

d((t, c), (u, d)) =


|t− u| if c = d

∞ if c 6= d

(4.1)

The distance is computed from the time difference if both events have the

same type. The granularity of time difference (years, months, days, etc.) can be

set. Matching between different event types is not supported, so I set the distance

between every pair of events that has different event types to infinity.

79

A distance function between the target record X and the compared record Y

X = {(t1, c1), (t2, c2), ..., (tm, cm)}

Y = {(u1, d1), (u2, d2), ..., (un, dn)}

is described as the following:

D(X, Y) = min
∑

i∈[1,m],j∈ [1,n] d(xi, yj)

each value of i and j is used exactly once.

(4.2)

A distance function between two records is calculated by matching events from

the two records into event pairs and summing up the distances d(xi, yj) between each

pair. However, this distance function works only when the number of events in both

records are equal because it requires a perfect match between the two records. Also,

even when the number of events are equal, this case can occur:

X = {(t1, “A”), (t2, “A”), (t3, “B”)}

Y = {(u1, “A”), (u2, “B”), (u3, “B”)}

“A”,“B” ∈ event types

This will certainly create at least one pair of different type events, which is

not preferred. Hence, the distance function fills in some null events (null, null) to

equalize numbers of events between the two records in each event type. The two

80

lists above become.

X = {(t1, “A”), (t2, “A”), (t3, “B”), (null, null)}

Y = {(u1, “A”), (null, null), (u2, “B”), (u3, “B”)}

The distance function between each pair of events is revised.

d′((t, c), (u, d)) =



∞ if c and d = null

0 if c = null, d 6= null

0 if c 6= null, d = null

d((t, c), (u, d)) if c and d 6= null

(4.3)

The null events should not be paired together so the distance is infinity. The

pairs that have one null event indicate missing or extra events. The distance function

does not include extra penalty for missing or extra events. Penalty for missing and

extra events will be handled separately by the mismatch score (Section 4.2.3.2).

Therefore, the distance is zero in these cases. Last, if the pair does not contain any

null events, the original distance function is used.

Finally, a distance function between a target record X and a compared record

Y becomes:

D′(X, Y) = min
∑

i∈[1,m],j∈ [1,n] d
′(xi, yj)

each value of i and j is used exactly once.

(4.4)

Minimum Distance Perfect Matching The problem is how to match every

event in X to an event in Y to yield minimum distance. This problem can be

81

converted into an assignment problem [67].

“There are a number of agents and a number of tasks. Any agent can

be assigned to perform any task, incurring some cost that may vary

depending on the agent-task assignment. It is required to that all tasks

are performed by assigning exactly one agent to each task in such a way

that the total cost of the assignment is minimized.”

Let events from X (xi = (ti, ci)) become agents and events from Y (yj =

(uj, dj)) become tasks. Cost of the assignment is d′(xi, yj). Then use the Hungarian

Algorithm to solve the problem.

The time complexity of the Hungarian Algorithm is O(n3) when n is the

number of events in each record. If there are m records in the database, the time to

perform a matching between the target record and all records, assuming that each

record has approximately n events is O(mn3).

4.2.3.2 Scoring

Once the matching is completed. The match, mismatch and total score can

be derived from the matching.

Match Score The distance from M&M distance function captures the time

difference between the two records. However, the distance can be a large number,

which users find difficult to compare. Therefore, I normalize the distance into a

match score, ranging from 0.01 to 1.00. A higher score represents higher similarity.

Only records with zero distance will yield a score of 1.00. Otherwise, the highest

82

possible match score for non-zero distance is bounded to 0.99. The lowest score is

bounded to 0.01 because zero score may mislead the users to think that the target

and compared record are not similar at all. Let n be total number of records in the

dataset. X and Y are the target and compared record, respectively. The match

score (M(X, Y)) is calculated from the following equations:

D′max = Maxj∈[1,n]D
′(X, Yj) (4.5)

M(X, Yi) =


1.00 if D′(X, Yi) = 0

D′
max−D′(X,Yi)

D′
max

∗ .98 + .01 otherwise

(4.6)

Mismatch Score When the number of events in two records are not equal,

there are missing or extra events. A missing event is an event that occurs in a target

record but does not occur in a compared record. An extra event is an event that

does not occur in a target record but occurs in a compared record. For example,

imagine a target record for a patient who has chest pain, followed by elevated pulse

rate, followed by a heart attack diagnosis. If the compared record has only chest

pains and heart attack diagnosis, it has one missing event.

I count a number of mismatches (N(X, Y)), a sum of missing or extra events

in each event type, and normalize it into a mismatch score (MM(X, Y)), ranging

from 0.01 to 1.00. Only records with no mismatch events will yield a score of 1.00.

Other records will score within 0.01 to 0.99 range.

Nmax = Maxj∈[1,n]N(X, Yj) (4.7)

83

MM(X, Yi) =


1.00 if N(X, Yi) = 0

Nmax−N(X,Yi)
Nmax

∗ .98 + .01 otherwise

(4.8)

Total Score The match score and mismatch score are combined into total

score (T (X, Yi)) using weighted sum.

T (X, Yi) = w ∗M(X, Yi) + (1− w) ∗MM(X, Yi) ; w ∈ [0, 1] (4.9)

Increasing the weight w gives match score more significance while decreasing

w gives mismatch score more significance. The default value for weight is 0.5. (Both

are equally significant.) For example, the users may not care whether there is any

missing or extra event so the weight should be set to 1. Similan user interface

allows users to manually adjust this weight and see the results in real-time. (See

Section 4.2.2.4.)

4.2.3.3 Discussion

The concept that the similar records should have the same events (low number

of mismatches) and the same events should occur almost at the same time (low time

difference) is transformed into the M&M measure. Time difference and number of

mismatches are two important aspects of similarity captured by the M&M measure.

Records with high match score are records with low time difference while records

with high mismatch score are records with low number of mismatches. The M&M

measure can be adjusted to give significance to match or mismatch score. By de-

84

fault, the match score and mismatch score are assigned equal weights, so the most

similar record should be the record with low time difference and also low number of

mismatches.

4.3 User Study

A usability study for Similan was conducted with 8 participants. The goals

in this study were to examine the learnability of Similan, assess the benefits of a

scatterplot, learn how the number of events and event types affect user performance,

and determine if users could understand the M&M measure in the context of its use.

I also observed the strategies the users chose and what problems they encountered

while using the tool. Synthetic data based on graduate school academic events,

such as admission, successful dissertation proposal, and graduation, are used. This

choice of data was intended to make the tasks more comprehensible and meaningful

to participants, who were technically oriented graduate students.

4.3.1 Usability Study Procedure and Tasks

Two versions of Similan were used in this usability study: one with full fea-

tures (S-Full) and another without a scatterplot (S-NoPlot). All usability sessions

were conducted on an Apple laptop (15 inch widescreen, 2.2 Ghz CPU, 2GB RAM,

Windows XP Professional) using an optical mouse.

The study had two parts. In the first part, participants had an introduction

to the M&M measure and training with the Similan interface without a scatterplot

85

(S-NoPlot). Then, the participants were asked to perform this task with different

parameters:

Given a target student and dataset of 50 students. Each student record has x

event types of events and the total number of events is between y to z events. Find

5 students that are most similar to the target student using S-NoPlot.

Task 1 : x = 2 , y = 4 and z = 6; Task 2 : x = 4 , y = 6 and z = 10; Task 3 :

x = 6 , y = 8 and z = 16

In the second part, participants were introduced to the scatterplot and asked

to perform task 4, 5 and 6 which are performing task 1, 2 and 3, respectively, but

using S-Full instead of S-NoPlot.

The datasets used in task 1-3 and 4-6 were the same but the students were

renamed and the initial orderings were different. Task 1 and 4 were used only for

the purpose of training. The results were collected from tasks 2, 3, 5 and 6.

In addition to observing the participants’ behaviors and comments during the

sessions, I provided them with a short questionnaire, which asked specific questions

about the Similan interface. Answers were recorded using a seven-option Likert

scale and free response sections for criticisms or comments.

4.3.2 Results

For the first part of this 30-minute study, all participants were observed to

use the following strategy: first select the target student, and then use the ranking

mechanisms to rank students by the total score. In their first usage, some partici-

86

pants also selected the student who had the highest total score to see more detail in

the comparison panel. Afterwards, they just studied the visualization and reported

that these students with high total scores are the answer.

For the second part of the study, which focused on the scatterplot, most of

the participants were observed to use the following strategy: first select the target

student, draw a selection in the plot panel, and then use main panel’s ranking

mechanisms to rank students by the total score. However, a few participants did

not use the scatterplot to do the task at all. They used the same strategy as in the

first part.

Users spent comparable time on tasks 2 and 3 and on tasks 5 and 6. There

was no difference in performance times between tasks 2 and 3 or between tasks 5

and 6, even though there were more events in tasks 3 and 6. This is understandable

since participants reported that they trusted the ranking provided by the interface.

However, users spent more time doing the tasks while using the scatterplot.

All of the participants trusted the total score ranking criterion and used it

as the main source for their decisions. They explained that the visualization in

the main panel convinced them that the ranking gave them the correct answers.

Therefore, in the later tasks, after ranking by total score and having a glance at the

visualization, they simply answered that the top five are the most similar.

All of them agreed that the main panel is useful for its ranking features and

the comparison panel is useful in showing the similarity between the target and

a compared student. However, they had different opinions about the scatterplot.

Some of the participants mentioned that it was useful when they wanted to find

87

similar students. They explained that the similar students can easily be found at

the bottom left of the scatterplot. One participant said that she had to choose

two parameters (#mismatch and match score) when she used the scatterplot. On

the other hand, while using the main panel, she had to choose only one parameter

(total score), which she preferred more. A few of them even mentioned that it is

not necessary to use the scatterplot to find similar students. Although they had

different opinions about its usefulness in finding similar students, they all agreed

that the scatterplot gives a good overview of the students’ distribution. It can show

clusters of students, which could not be discovered from other panels. Also, one

participant pointed out that the main and comparison panels are helpful in showing

how students are similar, while the plot is more helpful in explaining how students

are dissimilar.

Participants had positive comments on Similan’s simple, intuitive and easy to

learn interface. Most of the participants got started without assistance from the

experimenter. Nevertheless, some user interface design concerns were noted. Some

participants noticed that the binned timeline could be misleading in some situations.

Overall, participants liked the simple yet attractive Similan’s interface and

strongly believed that Similan can help them find students who are similar to the

target student. Ranking in the main panel appears to be useful. By contrast,

participants had difficulties in learning the M&M measure, since it combines two

kinds of scores. The scatterplot did not benefit the tasks in this study but it may

prove useful for more complex databases.

88

Figure 4.5: Similan 1.5 prototype: The timeline is continuous and events are split
into rows by event type.

4.3.3 Pilot Study of a New Prototype

According to the user feedback, using a binned timeline can be misleading in

some situations. A pair of events in the same bin can have a longer distance than a

pair of events in different bins. Also, order of events within the same bin is hidden.

Therefore, I develop a new prototype that adopts the continuous timeline used in

Lifelines2 [131] and includes several improvements (Figure 4.5.)

I did a pilot study with 5 participants to compare the binned timeline in

the original version and continuous timeline in the new version and received these

comments: The continuous timeline requires more space for each record and looks

more complicated. The binned timeline is more compact, simpler and therefore

more readable. It gives users less detail to interpret. However, the continuous

timeline does not mislead users when comparing distances or ordering. Both types

of timeline have advantages and disadvantages depending on the task. The binned

timeline is suitable for general tasks that do not require fine-grain information while

the continuous timeline is more suitable when fine-grain information is required.

89

4.4 Similan and the M&M Measure: The Second Version

The first Similan’s usefulness is limited for several reasons: it only allows users

to select an existing record from the database as a query (not to specify an example

of their choice), the binned timeline visualization can be misleading and frustrating

to users in some situations (Figure 4.2), and the similarity measure is not flexible

enough to support different definitions of similarity for different tasks.

Therefore, to address these limitations, a new version of the similarity measure

and the user interface were developed. Similan2 becomes a query interface which

allows the users to draw an example of an event sequence by placing events on a blank

timeline and search for records that are similar to their example using the M&M

measure v.2. The M&M measure v.2 is designed to be faster than the first version

and customizable by four decision criteria, responding to users’ need for richer and

more flexible definitions of similarity. Similan2 allows the users to customize the

parameters in the M&M measure v.2 via the user interface and also changes how

events are visualized on the timeline.

4.4.1 Description of the User Interface: Similan2

4.4.1.1 Overview

Similan2 (Figure 4.6), is an Adobe Air Application using the Adobe Flex 3

Framework. The designs of LifeLines2 and Similan2 have evolved in parallel.

Similan2 adopted the basic display of records from LifeLines2 to solve the

binned timeline issue: each record is stacked on the main panel, events are colored

90

Figure 4.6: Similarity search interface (Similan2) with the same query as in Figure
4.11. Users specify the query by placing events on the query panel. To set the time
range of interest and focus on events within this range, users draw a red box. After
clicking on “Search”, all records are sorted by their similarity to the query. The
similarity score is represented by a number that is the total score and a bar with
four sections. A longer bar means a higher similarity score. Each section of the
rectangle corresponds to one decision criterion, e.g. the top two records have longer
leftmost sections than the third record because they have lower time difference so
the Avoid Time Difference Score (AT) is high, resulting in longer bars. Figure 4.7
shows how users can adjust the weight.

91

triangle icons, and users can customize the visibility and colors of each event type

(category). Users can also align all the records by a selected event type (e.g. align

by admission to the hospital in Figure 4.6). Similan2 also employs an improved

similarity measure (M&M measure v.2), which will be explained in Section 4.4.2.

In Similan2, the panel on the top is called the query panel, where users can

specify their queries. On the right side is the control panel, which provides controls

for users to customize the search parameters. The largest area on the screen is the

main panel, where all records in the data are listed.

4.4.1.2 Query

To perform a query users first create or select an existing record. For example,

to find patients who were admitted, transferred to the ICU room on the first day

and then to the intermediate room on the fourth day, users can start by aligning

all records by Admit. Then users click on the edit button on the query panel to

open a popup window, and drag and drop events onto the empty timeline (i.e. users

can select Admit from the list of event types shown in the popup and click on Add.

The cursor will change into a magic wand and they can drop the event on the line).

Figure 4.6 shows the patterns they created Admit, ICU and Intermediate at time

0, on the first day and fourth day, respectively. The only type of time constraint

that is currently supported by Similan2 is specifying when each event occurred.

Users can also select any existing record as a query by dragging that record

from the main panel and dropping it into the query panel. This is useful for finding

92

patients who exhibit a pattern of events similar to a particular known patient. A

time scope can be drawn on the top of the timeline (See red line in Figure 4.6).

In the example query, drawing a scope from the time zero to the end of the fourth

day will exclude all other events outside of the scope from the search. If no scope is

specified, the entire timeline will be selected by default. The unit for time differences

(e.g. hours or days) can be selected from a drop-down list. Event types that should

be excluded from the search can be unchecked in the control panel.

After clicking on Search, the records are sorted by their similarity score (plac-

ing records with the highest scores on the top). Each record has a score indicator,

a rectangle with four sections of different color (See Figure 4.6.), inspired by Val-

ueCharts [24], a visualization to support decision-makers in inspecting linear models.

The length of a score indicator represents total score. It is divided into four colored

parts which represent the four decision criteria. The length of each part corre-

sponds to the weight ∗ score. Placing a cursor over the score indicator brings up an

explanation tooltip.

4.4.1.3 Comparison

Users can see a detailed comparison of the query and any other record by

dragging that record into the comparison panel in the bottom. Lines are drawn

between pairs of events matched by the M&M measure v.2. Hover over a link brings

up a tooltip showing the event type, time of both events and time difference.

93

Figure 4.7: Similan2’s control panel has 2 tabs. The first tab is “search” as shown
in Figure 4.6. Another tab is “weight and detailed weight”, for which users can
adjust the weight of the four decision criteria using the four sliders in the left figure.
For more advanced customization, they can even set the weight for each event type
within each decision criterion by clicking on “more details” (right figure).

94

4.4.1.4 Weights

By default, the search uses default weights, which means that all criteria are

equally important. However, users may have different meanings for similarity in

mind. Similan2 allows users to adjust the weight of all criteria in the “Weight” tab

in the control panel. (See Figure 4.7.) The weight for each decision criterion can

be adjusted with the slider controls, as well as the weight of each event type for

each decision criteria. A click on “Apply Weight” refreshes the similarity measures

and the order of the records on the display. For example, if the value of time

intervals is not important in this task (e.g. finding patients who were admitted,

transferred to the special room and exited) the user can set a low weight for “Avoid

Time Difference” to reduce its importance. Because the definition of weights can be

complex, Similan2 includes sets of preset weight combinations for users to choose

from. For instance, one preset is called “Sequence”, which uses a low weight for

“Avoid Time Difference” and a high weight for “Avoid Missing Events”.

4.4.2 The Match and Mismatch (M&M) Measure v.2

The M&M measure v.2 improves on the original version in two ways: First,

the matching problem is reduced to a simpler problem than the assignment problem.

Therefore, the matching algorithm can be improved by using dynamic programming

instead of the Hungarian Algorithm. Second, the M&M measure v.2 considers more

types of differences. It splits the number of mismatches into number of missing

events and number of extra events and also includes number of swaps. Moreover,

95

Record#1

(target)
 A!

Record#2

B! C! B! C! C!

M&M Matching v.1! M&M Matching v.2!

A! B!C! B! C! D!

Record#1

(target)
 A!

Record#2

A!

Record#1

(target)

Record#2

B! B!

B! B!

Record#1

(target)

Record#2

C! C! C!

C! C!

Record#2

D!

Figure 4.8: (left) M&M Matching v.1 (right) M&M Matching v.2: Events in each
event type are matched separately.

it increases the flexibility by adding more customizable parameters. The M&M

measure v.2 still consists of two steps: matching and scoring.

4.4.2.1 Matching

The M&M measure does not allow matching between events in different cat-

egories and allows only one-to-one matching. For example, event A can only match

x1! x2! x3! x4! x5! x6! x7! x8! x9!

y1!

y2!

y3!

y4!

Figure 4.9: M&M Matching v.2: Dynamic programming table

96

with event A and cannot match with event B or C. (See Figure 4.8.) Therefore, the

matching can be reduced into a simpler problem by separating the matching for

each event type. The notation below is used to describe an event sequence record,

which is a list of timestamped events (t, c). The i-th event in the record is denoted

by xi or (ti, ci).

X = {(t, c) | t ∈ Time and c ∈ Categories} (4.10)

The M&M measure v.2 splits each record into several lists, one list for each

event type. For example, these two records X and Y

X = {(t1, “A”), (t2, “A”), (t3, “B”)}

Y = {(u1, “A”), (u2, “B”), (u3, “B”)}

“A”,“B” ∈ Categories

are split into XA, XB and YA, YB, respectively.

XA = {(t1, “A”), (t2, “A”)} , XB = {(t3, “B”)}

YA = {(u1, “A”)} , YB = {(u2, “B”), (u3, “B”)}
(4.11)

The problem of “matching events between two records” is then reduced to

“matching events between two lists that contain only events in the same event type”

multiple times, which is simpler. (See Figure 4.8.) For example, matching X and

Y is reduced to matching XA with YA, and XB with YB. A faster algorithm based

on dynamic programming can be used instead of the Hungarian Algorithm to find

the match between XA and YA that produces the minimum time difference.

97

Dynamic Programming Matching Figure 4.9 shows a dynamic program-

ming table. The value in each cell (cell(i, j)) is the minimum cost of matching

subsequences X[1..i] and Y [1..j]. X must be longer or have equal length with Y .

Cross symbols mark the cells that cannot be used because the matches would yield

non-perfect matchings for Y . For example, matching y2 with x1 will cause y1 to

have no match.

The M&M matching v.2 algorithm (Algorithm 2) starts from the top-left cell

and fills the cells from left to right, row by row. For each cell, the cell value is equal

to the minimum between:

1. Cost of matching xi to yj (d(xi, yj) = |xi.time− yj.time|) plus minimum cost

of matching the prefixes (upper-left cell: cell(i− 1, j − 1))

2. Minimum cost of matching yj to some x before xi (left cell: cell(i− 1, j))

which can be represented by this formula:

cell(i, j) = min


d(xi, yj) + cell(i− 1, j − 1)

cell(i− 1, j)

(4.12)

If choice 1 is selected, that cell maintains a link to its upper-left cell. If choice 2

is selected, that cell maintains a link to its left cell. After filling the entire table, the

minimum matching cost is the value of the bottom-right-cell. The matching that

produces the minimum cost can be retrieved by backtracking the link, beginning

from the bottom-right cell.

Time Complexity If the number of events in XA and YA are nA and mA,

98

Algorithm 2 M&M Matching v.2

1: n← length(X)
2: m← length(Y)
3: diff ← n−m
4: c← array[diff+1][m]
5: for j := 0 to m− 1 do
6: for i := 0 to diff do
7: cost ← d(xj+i, yj)
8: if j > 0 then
9: cost ← cost + c[i][j − 1]

10: end if
11: if i > 0 then
12: c[i][j]← min(cost , c[i− 1][j])
13: else
14: c[i][j]← cost
15: end if
16: end for
17: end for

and nA > mA, the time to match the events between XA and YA with dynamic

programming is

O((nA −mA) ∗mA) (4.13)

Using the matching v.1 based on the Hungarian Algorithm, the time complex-

ity of matching events between X and Y is

O((max(nA,mA) +max(nB,mB) +max(nC ,mC) + ...)3) (4.14)

Using the matching v.2, the time complexity is reduced to:

O((nA −mA) ∗mA + (nB −mB) ∗mB + (nC −mC) ∗mC + ...) (4.15)

99

Record#1

(target)
 A! B! C!

Types of Difference!

Record#2

A! B! C!

Record#3

A! C!

Record#4

A! B! C!C!

Record#5

A! C! B!

extra!

missing!
B!

swap!

time difference!

time!

Figure 4.10: Four types of difference: time difference, missing events, extra events
and swaps

4.4.2.2 Scoring

Once the matching is completed. The scores can be derived from the matching.

The first version of the M&M measure considers only two types of difference: time

difference and number of mismatches (missing or extra events). In this second

version, I decided to split the number of mismatches into number of missing and

extra events because these two numbers can have different significance. For example,

users may not care about extra events but want to avoid missing events, or vice versa.

I also included the number of swaps because sometimes the users want the events

in order but sometimes the order is not significant. Therefore, the M&M measure

v.2 considers four types of difference and allows users to customize each type of

difference in more details for each event type. The four types of differences are

listed as follows:

100

1. A match event is an event that occurs in both the query and the compared

record. The time difference (TD) is a sum of time differences within each pair

of matched events. The time difference is kept separately for each event type.

Users also can specify what time unit they want to use for the time difference.

2. A missing event is an event that occurs in a query record but does not occur

in a compared record. The number of missing events (NM) is counted for each

event type.

3. An extra event is an event that does not occur in a query record but occurs

in a compared record. The number of extra events (NE) is counted for each

event type.

4. A swap occurs when the order of the events is reversed. The number of swaps

(NS) is counted for each pair of event categories. For example, in Figure 4.10,

the query has A followed by B then C but record#5 has A followed by A then

C then B. If you draw a line from query’s C to record#5’s C and do the same

for B, it will create one crossing. So, the number of swaps between B and C

(NSB,C) is 1 while NSA,B and NSA,C are both 0.

Since the time difference may not be equally important for all categories, the

total time difference (
∑
TD) is a weighted sum of time difference from each event

type. Users can adjust what is important by setting these weights (
∑
wTD = 1).

∑
TD = wTD

A ∗ TDA + wTD
B ∗ TDB + ... (4.16)

101

Likewise, the total number of missing events (
∑
NM), total number of extra

events (
∑
NE) and total number of swaps (

∑
NS) are calculated from weighted

sums.

∑
NE = wNE

A ∗NEA + wNE
B ∗NEB + ... (4.17)

∑
NM = wNM

A ∗NMA + wNM
B ∗NMB + ... (4.18)

∑
NS = wNS

A,C ∗NSA,C + wNS
B,C ∗NSB,C + ... (4.19)

Four Decision Criteria The 4 types of differences are normalized into a value

ranging from 0.01 − 0.99 and called penalties. The total time difference (
∑
TD),

total number of missing events (
∑
NM), number of extra events (

∑
NE) and total

number of swaps (
∑
NS) are normalized into TD penalty, NM penalty, NE penalty

and NS penalty, respectively. The 4 penalties are converted into these 4 decision

criteria:

1. Avoid Time Difference (AT) = 1− TD penalty

2. Avoid Missing Events (AM) = 1−NM penalty

3. Avoid Extra Events (AE) = 1−NE penalty

4. Avoid Swaps (AS) = 1−NS penalty

Total Score The total score is a weighted sum of the four decision criteria. The

users can adjust the weights (wAT , wAM , wAE, wAS) to set the significance of each

102

decision criteria (
∑
w = 0.99).

T = wAT ∗ AT + wAM ∗ AM + wAE ∗ AE + wAS ∗ AS (4.20)

The total score (T) is from 0.01 to 0.99. The higher score represents higher sim-

ilarity. The weighted sum model was chosen because of its simplicity and ease of

presentation to the users.

4.5 User Study

4.5.1 Motivation for a Controlled Experiment

Using the Multi-dimensional In-depth Long-term Case Study methodology [114],

I worked with a physician by assisting him through the analysis of his data using two

query tools: LifeLines2 [131, 132] (an exact match user interface from my research

group) and Similan2 (similarity search). The physician reported that he was able

to specify his queries easily in much shorter time than with the spreadsheet, and

that he discovered additional patients who he had missed using his earlier work with

Excel. He clearly stated that visualizing the results gave him a better understanding

of the data, which could not have been achieved from his spreadsheet or an SQL

query.

He also hinted at advantages and disadvantages of both visual approaches.

For example he felt that similarity search made it easier to specify the pattern but

looking at the results ranked by similarity was difficult and sometimes frustrating as

103

Figure 4.11: Exact match interface (LifeLines2) showing the results of a query for pa-
tients who were admitted to the hospital then transferred to the Intensive Care Unit
(ICU) within a day, then to an Intermediate ICU room on the fourth day. The user
has specified the sequence filter on the right selecting Admit, ICU and Intermediate

in the menus, and aligned the results by the time of admission. The distribution
panel in the bottom of the screen shows the distribution of Intermediate, which
gives an overview of the distribution and has allowed users to select the time range
of interest (e.g. on the fourth day) by drawing a selection box on the distribution
bar chart.

he was not always confident that the similarity measure was adequately computed

to fit his needs. (The computation is explained in details later in this paper.) Those

contrasting benefits led me to design the controlled experiment to see if I could

confirm those impressions and better understand which query method is better

suited for different tasks.

104

4.5.2 Description of the User Interface: LifeLines2

LifeLines2 was developed during a previous HCIL project, which is described

here only for the purpose of the controlled experiment. LifeLines2 (Figure 4.11) is

a Java application, utilizing the Piccolo 2D graphics framework [14]. In LifeLines2,

each record is vertically stacked on an alternating background color and identified

by its ID on the left. Events appear as triangle icons on the timeline, colored by

their type (e.g. Admission or Exit.) Placing the cursor over an event pops up a

tooltip providing more details. The control panel on the right side includes filters

and other controls. The visibility and color of each event type (category) can be set

in the control panel.

Users can select an event type to align all the records. For example, Figure 4.11

shows records aligned by the Admit event. When the alignment is performed, time

is recomputed to be relative to the alignment event.

Users can apply the sequence filter to query records that contain a particular

sequence, e.g. finding patients who were admitted, then transferred to a special room

and exited. The first step is to select a sequence filter from the “filter by” drop-down

list, then several drop-down lists that contain event types will appear. Users then

set the values of the 1st, 2nd and 3rd drop-down lists to Admit, Special and Exit,

respectively. The records that pass this filter will be selected and highlighted in

yellow. A click on “Keep selected” removes the other records.

To query for records that have events occurring at particular intervals, users

have to first display the distribution of selected events (with the distribution control)

105

then select intervals on the distribution display. For example, to find patients who

were admitted, then transferred to the ICU room on the first day of their stay and

transferred to the intermediate ICU room on the fourth day, users have to align all

the records by Admit, show the distribution of ICU using the “Show Distribution of”

control, then select the first day on the distribution of ICU events at the bottom of

the screen and click on “Keep selected” then show the distribution of Intermediate

and draw a selection box from the first to the fourth day and “Keep selected”. (See

Figure 4.11.) A similar process can be used for consecutive interval specification

using different alignments and filtering.

4.5.3 Method

I conducted a controlled experiment comparing 2 interfaces: LifeLines2, an

exact match interface, and Similan2, a similarity search interface. My goal was

not to determine which tool was superior (as they are clearly at different stages

of refinement and represent different design concepts), but to understand which

query method was best suited for different tasks. Another goal was to observe the

difficulties that users encountered while using the interfaces to perform given tasks.

Both interfaces were simplified by hiding certain controls to focus on the query

features I wanted to compare.

4.5.3.1 Research questions

The evaluation was conducted to answer these research questions:

106

1) Are there statistically significant differences in performance time and per-

formance accuracy between the two interfaces while performing different tasks?

2) Are there statistically significant differences in time and accuracy between

the performance of different tasks while using each interface?

3) Is there a statistically significant difference between the subjective ratings

given by the users for the two interfaces?

4.5.3.2 Participants

Eighteen graduate and senior undergraduate students participated in the study.

I recruited computer science students who are assumed to have a high level of com-

fort with computers, but have no knowledge of either interface. The participants

included 13 men and 5 women, 20 to 30 years of age. Participants received $20

for their 90-minute participation. To provide the motivation to perform the tasks

quickly and accurately, an additional nominal sum was promised to the fastest user

with the fewest errors of each interface.

4.5.3.3 Apparatus

The participants were required to perform the given tasks with the two in-

terfaces: LifeLines2 and Similan. The two software interfaces were running on an

Apple Macbook Pro 15” with Windows XP operating system. The participants

controlled the computer using a standard mouse.

107

Tasks – The tasks were designed based on real scenarios provided by physicians

and simplified to make them suitable for the time limit and participants who had

never used the interfaces before. Participants were requested to find patients in the

database who satisfied the given description. To avoid the effect of alignment choice,

all tasks contained an obvious sentinel event (e.g. Admit). I considered these factors

when designing the tasks:

1. Query type: Either a sequence description was provided or an existing record

was used as a query.

2. Time constraint : Present or not

3. Uncertainty : Yes or No, e.g. the number of events may be precise or not, the

time constraint may be flexible or not.

The tasks that were used in the experiment are listed below:

Task type 1: Description without time constraint, no uncertainty

1: “Find at least one patient who was admitted, transferred to Floor then to ICU.”

1.2: “Count all patients who fit task 1 description”

Task 1 was designed to observe how quickly the participants can use the interface

to specify the query while task 1.2 focused on result interpretation and counting.

Task type 2: Description with time constraints, no uncertainty

2: “Find at least one patient who was admitted and transferred to Intermediate on

the second day then to ICU on the third day.”

2.2: “Count all patients who passed task 2 description.”

108

Task type 3: Description with uncertainty, without time constraint

3: “Find a patient who best matches the following conditions: Admitted and then

transferred to a special room approximately 2 times and transferred to ICU room

after that. If you cannot find any patient with exactly 2 transfers to the special

room, 1-3 transfers are acceptable.”

3.2: “Count all patients who passed task 3 description.”

Task type 4: Description with uncertainty and time constraint:

“Find a patient who best matches the following conditions: Admitted, transferred

to Floor on the first day, ICU approximately at the end of the third day. The

best answer is the patient who was transferred to ICU closest to the given time as

possible.”

Task type 5: Existing record provided as query:

“Find a patient who was transferred with the most similar pattern with patient no.

xx during the first 72 hours after being admitted. Having everything the same is

the best but extra events are acceptable.”

Data – I used a modified version of the deidentified patient transfer data provided

by my partners. The data contained information about when patients were admitted

(Admit), transferred to Intensive Care Unit (ICU), transferred to Intermediate Care

Unit (Intermediate), transferred to a normal room (Floor), and exited (Exit).

Questionnaire – A 7-item, 7-point Likert-scale questionnaire was devised by the

experimenter to measure the learnability and ease or difficulty of using the interfaces

while performing the different tasks, and the level of confidence of the answers they

109

provided for the different tasks. The highest (positive, such as “very easy” or “very

confident”) score that could be attained on the measure was 7; the lowest (negative,

such as “very hard” or “not confident”) score was 1. Thus, higher scores reflected

more positive attitudes toward the interfaces.

Q1: Is it easy or hard to learn how to use?

Q2: Is it easy or hard to specify the query with sequence only?

Q3: Is it easy or hard to specify the query with time constraint?

Q4: Is it easy or hard to specify the query with uncertainty?

Q5: Is it easy or hard to specify the query in the last task?

Q6: How confident is your answer for finding at least one, best answer tasks?

Q7: How confident is your answer for counting tasks?

4.5.3.4 Design

The independent variables were: Interface type (2 treatments): exact match

and similarity search, Task (8 treatments)

The dependent variables were: The time to complete each task, error rate for

each task, and subjective ratings on a 7-point Likert scale.

The controlled variables were: Computer, mouse and window size. I used

equivalent datasets for each interface.

To control learning effects, the presentation order of the LifeLines2 and Sim-

ilan2 interfaces was counterbalanced. To avoid situations in which the users would

110

always find repeating the tasks on the second system easier, since they already know

the answer, I also used two sets of questions and datasets, one for each interface.

The questions in the two sets are different but have the same difficulty level, for

example: “Find at least one patient who was admitted, transferred to Floor then to

ICU.” and “Find at least one patient who was admitted, transferred to Floor then

to IMC.” Half of the participants started with LifeLines2 while another half started

with Similan2.

4.5.3.5 Procedure

Participants were given training which included a brief description of the data

and ten-minute tutorials on how to use the first interface. Then, the participants

had to complete two training tasks. When the participants could answer the training

questions correctly, they were considered ready to perform the study tasks. Next,

the participants were asked to perform eight tasks using the first interface. After

that, the experimenter followed the same procedure (tutorial, training tasks, study

tasks) for the second interface.

Upon completion of the tasks, the participants were asked to complete the

7-point Likert scale questionnaire.

At the end of the experiment, I debriefed the participants to learn about their

experience while using the interfaces for the different tasks and their suggestions for

improving the interfaces.

111

Figure 4.12: Performance time a function of the interface type and the tasks (1-5).
Vertical bars denote 0.95 confidence intervals.

4.5.4 Results

4.5.4.1 Performance Time

To examine the effects of the type of interface and the task on time to perform

tasks 1-5, I conducted a two-way ANOVA with repeated measures. The time to

perform the task was the dependent variable and the type of interface and the task

were within participants independent variables. The results of the analysis showed

that the main effect of the task was significant (F(4, 68) = 15.15, p<.001). The

two-way interaction (interface × task) was also significant (F(4, 68) = 6.63, p<.001).

The main effect of the interface was not found to be significant (F(1, 17) = 1.60,

p=.22).

Figure 4.12 shows the performance time as a function of the interface and

the task. It can be seen that for tasks 1-3, the performance times using the two

112

interfaces are very similar and increase for the tasks with time constraint (2) and

uncertainty (3) (M±SD of 26.83±10.90 s, 39.58±23.92 s and 58.67±33.60 s, re-

spectively). However, the average performance times for tasks 4 and 5 are shorter

using the similarity search interface (M±SD of 51.73±13.21 s and 37.74±18.63 s,

respectively) than while using the exact match interface (M±SD of 68.33±31.18 s

and 72.05±34.41 s, respectively). It can also be observed that the variances in the

performance time of tasks 2-5 are larger while using the exact match.

A post-hoc Duncan test showed that the performance times of tasks 4 and 5 are

significantly shorter while using the similarity search interface (p<.05). When using

the exact match, there were significant differences in performance time between two

homogenous groups: tasks 1-2 versus tasks 3-5 (p<.001). When using the similarity

search, the main significant difference in performance time was between task 3 to

tasks 1 and 5 (p<.05).

Similar analytic procedures were followed in the analysis of the effects of the

interface type and the task on time to perform the counting tasks (1.2, 2.2 and

3.2). The results of the analysis showed that the only effect that was found to be

significant was the main effect of the interface (F(1, 17) = 23.65, p<.001). The

average performance time while interacting with the exact match was significantly

shorter than with the similarity search (M±SD of 2.32±3.75 s and 15.20±25.10 s,

respectively) The main effect of the task (F(2, 34) = 2.05, p=.14) and the interaction

effect (F(2, 34) = 2.03, p=.15) were not found to be significant.

113

Table 4.1: Results of the analysis of subjective ratings given by the participants to
the two interfaces while performing the different tasks. “X” denotes exact match
while “S” denotes similarity search. “*” indicates preferred interface.

4.5.4.2 Error Rates

To compare the error rates between the two interfaces while performing the

different tasks, I performed a McNemar’s test, which is a non-parametric test that

is used to compare two population proportions that are related or correlated to each

other. Since the error rates of tasks 1-3 were zero for both interfaces, I conducted this

analysis only for tasks 4 and 5 (4 and 2 incorrect answers using the exact match,

respectively and no error while using the similarity search). The results of the

analysis showed that there was no significant difference between the two interfaces

in the error rates of task 4 (χ2(1)=3.06,p=.08) and 5 (χ2(1)=1.13,p=.29).

4.5.4.3 Subjective Ratings

To compare the difference between the subjective ratings given by the partic-

ipants to the two interfaces, I conducted a paired-sample t-test for each question.

The results of the analysis are presented in Table 4.1. The results showed that there

was no significant difference for the ease of learning how to use the two interfaces

(Q1). The participants reported the exact match to be significantly easier to use

114

than the similarity search for the task with sequence only (task 1) (Q2). However,

for the tasks with only time constraint (task 2) (Q3) or only uncertainty constraint

(task 3) (Q4), they reported the similarity search to be significantly easier to use

than the exact match. They also reported the similarity search to be significantly

easier to use than the exact match in the task that required them to find a patient

which is the most similar to the given patient (Q5). There was no significant dif-

ference between the confidence levels of the answers for the tasks which required

finding at least one, best answer (tasks 1-5) (Q6). However, the participants were

significantly more confident while using the exact match than the similarity search

to find the answers for the counting tasks (tasks 1.2, 2.2 and 3.2) (Q7).

4.5.4.4 Debriefing

When asked about what they liked in LifeLines2, the participants said that it

is easy for finding a sequence (“Easy to find sequence”, “Very easy to query with

sequence” “Very intuitive to specify sequence”) and counting (“Show only matched

records make it easy to count”, “It gives confidence.”)

However, when asked about what they did not like in LifeLines2, they ex-

plained that it is difficult for uncertain and more complex tasks because they had to

change the query and sometimes, more than one filter is needed. (“It doesn’t find

the similar case when it can’t find the case I want”, “Difficult for complex tasks or

tasks with uncertainty”, “Hard to find approximate best match”, “Harder in Life-

Lines2 because I had to change the query [for the uncertain task]”, “In order to find

115

a patient, sometimes more than one filter is needed.”)

When asked about what they liked in Similan2, the participants said that it

is more flexible and easier to find similar patients. (“Very easy to find the similar

pattern.”, “Similan is more flexible.”, “The similarity measure makes it FAR easier

to find the best matches.”, “Excellent in finding ‘at least one’ type results when

formulating the query is harder [in LifeLines2] due to ambiguity.”) They also said

that it is easier to specify the time constraints in a query and that specifying what

the answers should look like makes the search process more transparent. (“Query

with time constraint is very easy.”, “Time constraint searches are easier to input.”,

“the search process is more transparent.”, “Drag and drop triangles gave me better

control of how the specific sequences should look.”)

However, when asked about what they did not like in Similan2, the partici-

pants expressed difficulty in using it for the counting tasks because it is difficult to

distinguish between the exact match results and the similar results. (“No easy way

to count” “not sure [whether] the top rows are the only answers”) Also, sometimes

it is unclear where to place the events on the timeline. (“In Similan2, it is not im-

mediately obvious where to place the icon for the ‘second day’.”) Two participants

also mentioned that similarity search responded slightly slower than exact match.

Common suggestions for improvement included: “LifeLines2 should have a list

of previous actions and undo button”, “A counter in Similan for all patients that

had a match of X score or better could be helpful.”, “Have individual weight for

events in the query in Similan, so the users can specify if some events are more

important than others.”, “Have more weight presets to choose from.”

116

4.6 Lessons Learned and Ideas for Hybrid Interface

The experiment showed that exact match interface had advantages in finding

exact results. Users preferred to use it to find a simple sequence without time

constraint or uncertainty more than the similarity search. The exact match interface

also gave more confidence to the users in tasks that involve counting. However, users

felt that it was more complex to use for tasks with time constraints or uncertainty

(probably because it required many steps to add each constraint to construct a

query).

On the other hand, the similarity search interface had advantages in the flex-

ibility and intuitiveness of specifying the query for tasks with time constraints or

uncertainty, or tasks that ask for records that are similar to a given record. Users

felt that it is easier to specify the time constraints in a query and that specifying

how the answers should look makes the search process more transparent because

they could see the big picture of their query. However, similarity search interface

was more difficult for tasks that involve counting. The participants requested a

better way to support counting tasks.

The exact match and similarity search interfaces each have their advantages.

How can I combine the best features from these two interfaces to create a new inter-

face that can support tasks with uncertainty and time constraints as well as simpler

and counting tasks? Based on the results of the experiment and my observations

during the longitudinal study with my partners, I list several ideas for hybrid query

interfaces that should be explored in the future:

117

1. Draw an example. Specifying the query by placing event glyphs on a time-

line seems closer to users’ natural problem-solving strategy and the visual

representation of the query also helps users compare results with the query to

notice and correct errors.

2. Sort results by similarity to the query but do not return all records

and allow users to see more if necessary. Showing all records, even those

that do not fit the query, confuses users and reduces confidence in the results.

However, users may want to see more results at certain times. One possible

strategy is to show only exact results first (i.e. like exact match) and have

“more” button to show the rest or the next n records. Another strategy is to

add a borderline that separates the exact results from the near matches. This

may increase confidence and still be useful for exploratory search.

3. Allow users to specify what is flexible and what is not. Even in a

query with uncertainty, users may have some parts of the query that they are

certain about, e.g. patients must be admitted to the ICU (i.e. do not even

bother showing me records with no ICU event). These certain rules can be

applied strictly to narrow down the result set without sacrificing the flexibility

of the other parts of the query.

4. Weights. Whether users would be able to translate more complex data anal-

ysis goals into proper weight settings remains an open issue. One idea to

prevent manual weight adjustment is to provide presets of weights that cap-

ture common definitions of similarity.

118

5. Avoid too many alternative ways to perform the same task. This can

lead to confusion. In the experiment, I found many users used more filters

than necessary.

4.7 Summary

Event sequence data are continuously being gathered by various organizations.

Querying for time-stamped event sequences in those data sets to answer questions or

look for patterns is a very common and important activity. Most existing temporal

query GUIs are exact match interfaces, which returns only records that match the

query. However, in exploratory search, users are often uncertain about what they are

looking for. Too narrow queries may eliminate results which are on the borderline

of the constraints. On the other hand, the similarity search interface allows users to

sketch an example of what they are seeking and find similar results, which provides

more flexibility.

In the beginning, I introduce the M&M measure, a similarity measure for event

sequences. Briefly, the M&M measure is a combination of time differences between

events, and number of missing and extra events. The M&M measure was developed

alongside with Similan, an interactive tool that allows users to search for event

sequence records that are similar to a specified target record and provides search

results visualization. A user study showed promising direction but also identified

rooms for improvement.

To address the limitations from the first version, I developed Similan2, an in-

119

terface that allows users to draw an event sequence example and search for records

that are similar to the example, with improved search results visualization. The

M&M measure was also refined. The M&M measure v.2 is faster and can be cus-

tomized by four decision criteria, increasing its flexibility.

Finally, I conducted a controlled experiment that assessed the benefits of exact

match and similarity search interfaces for five tasks, leading to future directions

for improving event sequences query interfaces that combine the benefits of both

interfaces. These hybrid ideas were explored and led to the Flexible Temporal Search

(FTS) in Chapter 5.

120

Chapter 5

Combining Exact Match and Similarity Search for Querying Event

Sequences: Flexible Temporal Search

5.1 Introduction

My research aims to support users in searching for event sequences when they

are uncertain about what they are looking for. For example, the physician wants to

find the records that have event Surgery followed by event Die within approximately

2 days. The value 2 days is just an approximation.

Many methods are exact match, which does not leave much room for flexibility.

The exact match creates a clear cut-off point for records that pass the query and

excludes records that do not pass from the result set. A too narrow query (e.g.

Surgery→2 days→Die) can inadvertently exclude records that might be slightly

beyond the cut-off point (2.5 days instead of 2 days). In a situation when the users

are not 100% confident about the query, the exact match prevents them from seeing

beyond the cut-off point what they might have missed.

Trying to overcome the limitations of the exact match, many researchers have

developed similarity search for event sequences. These methods calculate the simi-

larity score between each record and the query and return all records sorted by their

similarity scores. The result set now can tell the users which records are more or less

121

similar to the query. However, I have learned from the user study in the previous

chapter that using similarity search also has its limitations. Without a clear cut-off

point, users could not easily or confidently count how many records are acceptable

results. It is more suitable for finding the most similar records to the query.

These lessons guided me to set design goals for a new hybrid user interface.

1. Users must be able to see a clear a cut-off point between records that pass the

query and records that do not.

2. Users must be able to see records that are beyond the cut-off point, sorted by

similarity to the query.

Following these goals, I have designed a new hybrid interface called Flexible

Temporal Search (FTS) which combines the precision of the exact match and flexi-

bility of the similarity search. In this chapter, I will explain the FTS in more detail,

starting from an explanation of the design of the query in Section 5.2, an algorithm

for similarity score computation in Section 5.3, and a user interface in Section 5.4.

5.2 Query

5.2.1 How to define a cut-off point? Mandatory & Optional Flags

The FTS result set is split into two bins: exact match results and other results.

Records that are within the cut-off point are put in the exact match results while

records that are beyond the cut-off point are put in the other results.

The big question here is how could the interface know where the cut-off points

122

should be? The answer lies in the queries. Even in a query with uncertainty, users

may have some parts of the query that they are certain about, e.g. patients must be

in the ICU. If users can specify which part of the query they are certain about, the

cut-off points can be derived from the certain part of the query. Using this concept,

I introduce the mandatory and optional flags that let the users define which part of

the query is flexible or not.

1. Mandatory: When users are certain about some constraints, they specify

them as mandatory, so any record that violates any of these constraints will

be excluded from the exact match results and put in other results.

2. Optional: When users are flexible about some constraints, they can specify

them as optional. Records that pass these constraints will receive bonus simi-

larity scores, but records that violate these constraints are not excluded from

the exact match results. Records with higher similarity scores are displayed

higher in the result set. Therefore, optional constraints allow user to specify

what they prefer to see on the top of the list.

Comparing to the existing interfaces, in exact match (such as LifeLines2), all

events are mandatory while in similarity search (such as Similan), all events are

optional. Figure 5.1 guides how to decide whether a constraint is mandatory or

optional. In summary, users should use mandatory as much as they can, and use

optional to specify what they prefer to see on the top of the list.

123

HOW TO DECIDE WHETHER A CONSTRAINT IS MANDATORY OR OPTIONAL!

Will you accept a record that do not pass this constraint?

Yes, but show records that pass the constraint higher in the results. No.

Mandatory Optional

Figure 5.1: How to decide whether a constraint is mandatory or optional

5.2.2 Specification

Users can specify queries in terms of events, negations and gaps between con-

secutive events. For simplicity and performance, FTS does not support a query that

has events which occurred at the same time.

1. Event: Users add an event that they want and indicate if it is mandatory or

optional.

(a) Mandatory (X): Event X must occur.

• A→ B → C

Find records with pattern A followed by B and C. For example,

find all patients who arrived (A), were transferred to ED (B) and

discharged (C).

(b) Optional (x): Event X should occur, but I can tolerate if it does not.

• A→ b→ C

Find records with pattern A followed by b and C. b is preferred but

not required. For example, find all patients who were transferred

124

from ICU (A) to Floor (C). Being transferred to the IMC (b) in be-

tween is preferred, but it is acceptable if the patients were transferred

to Floor without passing the IMC first.

For each event, users can also specify when they want it to occur. If the time

constraint is not specified, the query will only look for existence of the event

and ignore its time. The time constraint can be mandatory or optional as well.

(a) Mandatory (Xt): Event X must occur within time t.

• AMay2011 → B

Find records with pattern A followed by B and C. A must occur in

May 2011. For example, find all patients who had surgeries (A) in

May 2011 and died (B).

(b) Optional (X≈t): Event X should occur near time t.

• A≈Dec15,1642 → B≈Mar20,1727

Find records with pattern A followed by B. A should occur near Dec

15, 1642 while B should occur near Mar 20, 1727. For example, a

history student wants to find famous scientists who was born (A)

and died (B) closest to Sir Isaac Newton (Dec 25, 1642 – Mar 20,

1727). In this case, the user is certain that the two events (born and

die) must occur, so the events are mandatory. However, the user is

not certain about the timing. He only wants them to be as close to

Newton’s as possible and does not have any time limit, so he set the

timing as optional.

125

2. Negation or Not-occur: Users add negation for an event that they do not

want and indicate if it is mandatory or optional.

(a) Mandatory (¬X): Event X must not occur.

• A→ ¬B → C

Find records with pattern A followed by C without B in between.

For example, find all patients who arrived (A) and were discharged

(C) without being in the ICU (B).

(b) Optional (¬x): Event X should not occur, but I can tolerate if it does.

• A→ ¬b→ C

Find records with pattern A followed by C. It is more preferable not

to have b between A and C, but not prohibited. For example, find

all patients who were in the floor (A) and were discharged (C). It

is more preferable to avoid any additional transfer to another floor

(b), i.e. I want to see patients who exited without being transferred

to another floor on the top, and if there were any patients who were

transferred to another floor, they can be included but show them in

the bottom of the list.

3. Gap: Users can specify gap between consecutive events. Each gap consists

of minimum duration, maximum duration, or both. The gap can also be

mandatory or optional.

(a) Mandatory : The gap must be within specified range.

126

• A→ (0, 10mins]→ B

Find records with pattern A followed by B within ten minutes. For

example, a coach wants to know how many times in this season that

his team conceded (B) a goal within ten minutes after scoring (A).

(b) Optional : The gap should be close to specified range.

• A→≈ [10mins]→ B →≈ [10mins]→ C.

Find records with pattern A followed by B in approximately ten

minutes and followed by C in approximately ten minutes. For exam-

ple, a commentator is narrating a soccer match that the home team

have scored (A), the opponent have retaliated by scoring (B) in ten

minutes, and the home team have just scored again (C) after ten

minutes. He then wants to find another match in the past that is

most similar to his current match. The time gaps in this example are

not mandatory because the user does not have a clear range of what

he expects in the results and he will accept all records no matter how

much the gaps are. He just wants to use these gaps to find the most

similar matches. This is different from the previous example that the

coach knows exactly what he is looking for.

5.2.3 Grade & Similarity Score

When the search is executed, FTS compares each record to the query and cal-

culates its grade and similarity score. The grades are either pass or fail, allowing the

127

interface to group records into exact match and other results, respectively. Records

that violate any of the mandatory constraints are failed. The rest are passed.

The similarity score is computed from 4 types of difference.

1. Missing Events : Events that are in the query but do not exist in the record.

2. Extra Events : Events that are not specified in the query but appear in the

record. It can be broken down into three sub-criteria if the users choose to:

(a) Extra events before the first match

(b) Extra events between the first match and the last match—in other words,

interrupting the query pattern

(c) Extra events after the last match

3. Negation Violations : Events that are listed as negations but appear in the

record.

4. Time Difference: Deviation from the time constraints

Users can set the weight for each type of difference. The total similarity score

is computed from a weighted sum of these criteria (See Section 5.3.4).

5.3 FTS Similarity Measure

5.3.1 Preprocessing

During preprocessing, a query is cut into blocks ([X]) that can be matched

with the events in each records.

128

1. Events and negations are automatically cut into blocks, e.g., A→ ¬B → C is

converted into [A]→ [¬B]→ [C].

2. Each gap is merged with the following event, e.g., A → B → (0, 2days) → C

is converted into [A]→ [B]→ [(0, 2days)→ C].

3. Consecutive negations are merged into special blocks when their order is not

taken into account, e.g., A→ ¬B → ¬C is converted into [A]→ [¬B|¬C]#1 →

[¬B|¬C]#2. When B is already matched in the first block, the algorithm will

remember and not match B in the second block.

After the preprocessing is completed, the computation consists of two steps:

matching and scoring.

5.3.2 Matching

I use a typical dynamic programming approach [4] to find the optimal matching

between the blocks in the query Q = b1, b2, b3, ..., bm and events in each record

R = e1, e2, ..., en. Given the query Q and record R, I use s(i, j) to denote the

maximum similarity vector of matching the first i blocks of the query Q and the

first j events of the record R. With this definition, the maximum similarity vector

of matching query Q and record R is s(m,n).

129

The base conditions and recurrence relation for the value s(i, j) are

s(0, 0) = empty vector

s(i, 0) = s(i− 1, 0) + skip(bi)

s(0, j) = s(0, j − 1) + skip(ej)

s(i, j) = max



s(i− 1, j) + skip(bi)

s(i, j − 1) + skip(ej)

s(i− 1, j − 1) +match(bi, ej)

(5.1)

where skip(bi) and skip(ej) are costs of skipping block bi and event ei, and

match(bi, ej) is a cost of matching block bi and event ej. A match is possible only

when the block and event have the same event type.

To compare two similarity vectors s(i, j) for matching, the values within both

vectors are compared in the following order. If the values are equal, the next values

are used. Otherwise, the rest of the values are ignored.

1. number of matched events (mandatory): The higher number, the more similar

the vectors are.

2. number of matched events (optional): The higher number, the more similar

the vectors are.

3. number of negations violated (optional): In reality, having lower number should

be more similar. However, if it is like that, the algorithm will always skip the

negations, so I reverse the comparison just for matching to trick the algorithm.

130

4. number of negations violated (mandatory): The lower number, the more sim-

ilar the vectors are, but the comparison is reversed for the same reason as

above.

5. number of time constraints (gap & time of occurrence) violated (mandatory):

The lower number, the more similar the vectors are.

6. time difference: The less different, the more similar the vectors are.

7. number of extra events : The lower the number, the more similar the vectors

are. If the users select to treat extra events separately, these three values

will be used. They will be sorted by the weights that the users set for these

sub-criteria.

(a) number of extra events before the first match

(b) number of extra events between the first and last match

(c) number of extra events after the last match

Skipping a block (skip(bi)) in the query does not add any change to the vector

while skipping events in the record (skip(ej)) increases the number of extra events.

Matching (match(bi, ej)) may increase the number of matched events (if the block

is an event) or negations violated (if the block is a negation), incur time difference

or violate time constraints (if the block has any time constraint). For a block with

gap, if the previous block is not matched, the gap is ignored. Algorithm 3 describes

the FTS matching in more detail.

131

Algorithm 3 FTS Matching
1: s(0, 0) = new SimilarityVector();
2: for i = 1 to m do
3: s(i, 0) = s(i− 1, 0).clone();
4: end for
5: for j = 1 to n do
6: s(0, j) = s(0, j − 1).clone().incrementExtraEvent();
7: end for
8: for i = 1 to m do
9: for j = 1 to n do

10: {// Compare between skipping bi and ej .}
11: s(i, j) = max(s(i− 1, j).clone() , s(i, j − 1).clone().incrementExtraEvent());
12: if bi.eventType == ej .eventType then
13: sm = s(i− 1, j − 1).clone(); {// similarity vector for matching bi and ej .}
14: if bi.isNegation() then
15: if bi.isMandatory() then
16: sm.incrementViolatedNegation();
17: else
18: sm.incrementViolatedOptionalNegation();
19: end if
20: else
21: if bi.isMandatory() then
22: sm.incrementMatchedEvent();
23: else
24: sm.incrementMatchedOptionalEvent();
25: end if
26: if bi.hasTime() then
27: diff = bi.getTime().diff(ej);
28: sm.addTimeDifference(diff);
29: if diff > 0 and bi.getTime().isMandatory() then
30: sm.isTimeViolated = true;
31: end if
32: end if
33: if i > 1 and bi.hasTimeGap() then
34: if s(i− 1, j − 1).hasMatched(bi−1) then
35: gap = ej .time− previousMatchedEvent.time;
36: diff = bi.getTimeGap().diff(gap);
37: sm.addTimeDifference(diff);
38: if diff > 0 and bi.getTimeGap().isMandatory() then
39: sm.isTimeViolated = true;
40: end if
41: end if
42: end if
43: end if
44: s(i, j) = max(s(i, j) , sm);
45: end if
46: end for
47: end for

132

Algorithm 4 FTS Grading

1: if s.mandatoryEventMatchedCount() < totalMandatoryEventsCount then
2: return false;
3: else if s.mandatoryNegationViolatedCount() > 0 then
4: return false;
5: else if s.isTimeViolated == true then
6: return false;
7: else
8: return true;
9: end if

5.3.3 Grading

After the matching is completed, the similarity vector of each record is con-

verted into a boolean flag passExactMatch indicating whether a record is included

in the exact match or other results. If any of the mandatory events is not matched,

any of the mandatory negations is matched or any mandatory time is violated, the

flag is set to false. Otherwise, the flag is set to true. (Algorithm 4)

5.3.4 Scoring

The similarity vector is also converted into a numerical similarity score. Users

can set weights (0−100) for optional events, optional negations, time difference and

extra events (and the three sub-criteria of extra events if necessary) to customize

the conversion. The weights for mandatory events and mandatory negations are

fixed to 100.

Before calculating the score, the weights are normalized (w′ = w∑
w

) to make

the total sum equal to 100 (
∑
w′ = 100). Then the total similarity score can be

computed from the equation below (# = number of). To avoid division by zero, I

133

used a custom function called sDivide (Algorithm 5) instead of standard division.

If a denominator is zero, this function returns a specified default value (0 or 1). This

means that if any type of contraint is not set in the query, each record receives a

maximum score (w′ ∗ 1) for that type of constraint.

score = w′mandatory events ∗ sDivide(# matched mandatory events
mandatory events in query , 1)

+ w′optional events ∗ sDivide(# matched optional events
optional events in query , 1)

+ w′mandatory negations ∗ (1− sDivide(# mandatory negations violated
mandatory negations in query , 0))

+ w′optional negations ∗ (1− sDivide(# optional negations violated
optional negations in query , 0))

+ w′time difference ∗ (1− sDivide(time difference
maximum time difference , 0))

+ w′extra events ∗ (1− sDivide(# extra events
maximum # extra events , 0))

(5.2)

Algorithm 5 function sDivide(dividend
divisor , defaultValue)

1: if divisor == 0 then
2: return defaultValue;
3: else
4: return dividend/divisor;
5: end if

If the three sub-criteria of extra events are used, the last line of the equation

above is replaced with three lines of the sub-criteria instead. The final similarity

score is within the range 0 to 100.

5.3.5 Performance

The time complexity of a matching between query and one record is O(mn)

when m is the number of blocks in a query and n is the number of events in compared

134

record. Therefore, the time complexity for a search in dataset is O(mN), when N

is the number of events in the dataset.

5.3.6 Difference from the M&M Measure

The FTS measure has evolved from the M&M Measure (Section 4.4.2). In

summary, there are several difference. (1) The FTS also provides a grade (pass/fail)

while the M&M does not. (2) The FTS can support mandatory and optional con-

straints. (3) The FTS handles negations. (4) The FTS does not handle swap. This

change is due to the matching. In FTS, all events from all event types are matched

at the same time while in the M&M, events are matched seperately for each event

type. A matching from dynamic programming must be monotonic and, therefore,

cannot include swaps. (5) FTS score ranges from 0.00 to 100.0 while M&M score

ranges from 0.00 to 0.99.

5.4 User Interface

I have developed a hybrid user interface for querying event sequences with

FTS and integrated these features into the LifeFlow software (Figure 5.2). The user

interface consists of three main parts: control, query and result panels. The control

panel, inherited from LifeLines2 [131] allows users to align the records by sentinel

events, if necessary. Users can specify query on the query panel and the search

results will appear in the result panel. The following sections (5.4.1, 5.4.2 and 5.4.3)

describe visual representation of FTS query, query specification and search results

135

Figure 5.2: Flexible Temporal Search (FTS) implemented in LifeFlow software: User
can draw a query and retrieve results that are split into two bins: exact match and
other results. In this example, a user is querying for bounce back patients, which
are patients who arrived (blue), were later moved to the ICU (red), transferred to
Floor (green) and transferred back to the ICU (red) within two days. The results
panel display all bounce back patients in the exact match results while showing the
rest in the other results, sorted by their similarity to the query. The top patient in
the other results has a pattern very similar to bounce back but the return time to
ICU was 4 days. The physician then can notice this patient and use his/her judgment
to decide whether to consider this case as a bounce back patient or not.

136

Figure 5.3: Query Representation: (A) Triangles are mandatory events. (B) Manda-
tory negation (red) is a triangle with a strike mark through the center placed in a
balloon . (C) An event that has a time constraint (blue) has a path drawn from its
glyph in the query strip to the position on the timeline that represents the beginning
of its time constraint. The duration of the time constraint is rendered as a rectangle
on the timeline. Solid line and filled rectangle represent mandatory constraint. (D)
Query C with tooltip (E) A circle is an optional event (green). (F) An optional
negation is a mandatory negation that uses a circle instead of a triangle. (G) An
optional version of a time constraint in Query C. Dashed line and hollow rectangle
are used instead. (H) Query G with tooltip

in more detail.

5.4.1 Query Representation

FTS query panel is a combination of timeline and comic strip approaches, as

inspired by Similan [144] and QueryMarvel [54], respectively. The panel is split into

two parts: timeline and query strip.

All events and gaps are rendered as glyphs and placed back to back on the

137

Figure 5.4: Gap Representation: The gaps on the left (I,J,K,L) are mandatory while
the gaps on the right are optional (M,N,O,P). Mandatory gaps are filled and use
solid lines while optional gaps are not filled and use dashed lines.

138

query strip (Figure 5.2). The timeline is used to represent time constraints only.

This design can eliminate occlusion and help users read the query easily. Tooltips

are also available for all these glyphs to help users interpret them. All specifications

in Section 5.2.2 are converted to the following visual representations:

1. Event: All mandatory events are converted into triangles while optional

events are converted into circles. Colors of the glyphs represent event types.

2. Time constraint: Each event that has a time constraint will have a path

drawn from its glyph in the query strip to the position on the timeline that

represents the beginning of its time constraint. Mandatory time constraints

are drawn as solid lines while optional time constraints are drawn as dashed

lines. The duration of the time constraint is rendered as a rectangle on the

timeline. The rectangle is filled when the constraint is mandatory and hollow

when it is optional.

3. Negation: Each negation is rendered similar to an event, but with a strike

mark through the center. Consecutive negations are grouped and placed in a

balloon.

4. Gap: Each gap is represented with a box plot (Figure 5.4). The width of the

box plot represents the time using the same scale with the timeline. The box

part represents minimum value and the extended part represents maximum

value. An arrow is added to the end if there is no maximum value: for example,

a gap more than 2days. Mandatory gaps are filled and use solid lines while

optional gaps are not filled and use dashed lines.

139

Figure 5.5: User can click on an empty location on the query strip to add an event
or a gap to a query. In this example, the user is going to add something between
Floor (green) and Discharge-Alive (light blue). The location is marked with a
cross and an “Add...” popup dialog appear. User then choose to add an event or a
gap, which will open another dialog.

5.4.2 Query Specification

The user interface supports three ways to specify a query:

1. Create a query from scratch: Users can click on an empty location on

the query strip area to add an event or a gap to a query. Click in front of

or behind existing events to add an event before and after, respectively. The

clicked location will be marked with a cross and an “Add” dialog will appear

(Figure 5.5). At this point, users can choose to add an event or a gap. If it

is not possible to add a gap because the clicked location does not have events

140

on both side, the “Add Gap...” button will be disabled.

(a) Add an event : The “Add Event”dialog contains a few questions about the

event. First, do users want this event to occur (event) or not (negation)?

Second, is this mandatory or optional? The dialog box provides some

explanation to help the user choose. If the users want this event to

occur, another question will be asked about timing (“Do you have a time

constraint for this event?”). If the answer is no, then it is done. If the

answer is yes, users can set the time constraint, which can be a point in

time (“occur at”) or an interval (“occur within”). Then users have to

answer the last question (“Will you accept records that violate this time

constraint?”), which will decide whether the time constraint is mandatory

(“No”) or optional (“Yes.”). After answering all questions and clicking

on “Add event”, the new event is added to the query strip.

(b) Add a gap: The “Add Gap” dialog contains one question that asks

whether users will accept records that violate the gap. The answer to

this question is used to decide whether the gap is mandatory (“No”) or

optional (“Yes.”). The rest of the dialog are controls for specifying a time

gap. Once users click on “Add gap”, the new gap is added to the query

strip.

User can modify or delete an event by clicking on its glyph. This will bring up

a “Modify Event” dialog, which is similar to the “Add Event” dialog, but the

buttons are changed from “Add event” and “Cancel” to “Apply”, “Delete”

141

Figure 5.6: Weights: Users can adjust the importance of each kind of difference.

and “Close”. User can modify the parameters, click on “Apply” to see the

changes take effect and “Close” or simply click “Delete” to delete the event.

The same interactions are used for modifying and editing gaps.

2. Create a query from a record: Instead of creating from scratch, users

can right-click on any record in the list and click on “Set as query” to use

that record as a template (Figure 5.7. This can be used for searching similar

records as well. All events in the selected record are automatically converted

into mandatory events in the query. Users can choose between two options:

(a) Use specific time: Each event use its original time from the selected record

as an optional time constraint.

(b) Use gap between events : All gaps between events in the selected records

are converted into optional gaps in the query.

142

Figure 5.7: Creating a query from a record: In this example, a user chooses the
record “10010010” as a template. (left) In “use specific time” mode, each event use
its original time from the selected record as an optional time constraint. (right)
In “use gap between events”, all gaps between events in the selected records are
converted into optional gaps in the query.

Users then can modify the query to suit their needs.

3. Create a query from an event sequence in LifeFlow: Users can pick any

event sequence in LifeFlow as a starting point by right-clicking and selecting

“Set as query” from the context menu (Figure 5.8). All events in the sequence

are automatically converted into mandatory events. After that, users can

modify the query as needed.

The user interface also includes options to adjust the weights and choose event

types to include in the search (Figure 5.6). These weight sliders correspond to the

weights in Section 5.3.4.

143

Figure 5.8: Creating a query from an event sequence in LifeFlow: In this example,
a user chooses the sequence Arrival (blue), Emergency (purple), ICU (red), Floor
(green) and Discharge-Alive (light blue) as a template.

5.4.3 Search Results

The results are split into two bins: exact match and other results. Exact

match results are comparable to emails in inbox while other results are comparable

to emails in spam folder. Users can examine the exact match results (inbox) first,

then look into other results (spam folder) when they cannot find something, or

want to confirm that they are not missing anything. Each bin is displayed using

a list of single-record visualizations, similar to LifeLines2 and Similan. All records

within each bin are sorted by their similarity score. The scores are shown in the

front section of each row using ValueChart [24]. The length of each section of the

colored bars represents the value (after weighted) of each of the four criteria in the

similarity measure. User can place the cursor over each record to see a tooltip that

144

Figure 5.9: Comparison: Four events in the query are matched while one is missing
(light blue) and another one is extra (black).

explains the similarity score on the left (Figure 5.2). To see detailed comparison,

user can right-click and select “Show comparison” to open a comparison window

that explains whether an event is a matched, extra or missing events (Figure 5.9).

5.5 Use case scenario

As mentioned earlier in Section 4.1.1, the bounce back study was the original

motivation of my interest in event sequence query. Bounce back patients are patients

whose level of care was decreased then increased again urgently. The common cases

are patients who were transferred from the ICU to the Floor (normal bed) and then

back to the ICU within a certain number of hours.

145

Therefore, I revisit this scenario to demonstrate how the FTS interface can

support this task and provide the benefits of both the exact match and similarity

search interfaces. Figure 5.2 shows a screenshot of a bounce back query: Arrival

(at time 0)→ ICU→ Floor→≤ 2 days→ ICU. The search results return 5 patients

as exact match results and 95 patients as other results. The exact match results can

be counted quickly and confidently similar to using an exact match interface and

better than when using a similarity search interface. Looking at the other results

shows what is right beyond the cut-off point, which is not possible when using the

exact match interface. The top patient in the other results has a pattern very

similar to bounce back but the return time to ICU was 4 days. While examining

the results, the physician can easily notice this patient and use his/her judgment to

decide whether to consider this case as a bounce back patient or not. If an exact

match interface was used to query this dataset, this patient might have been left

unnoticed.

5.6 Summary

Exact match and similarity search are the two extremes in querying event se-

quences. Both have their own advantages and limitations. In this chapter, I explain

the design of a hybrid interface, Flexible Temporal Search (FTS), that combines the

benefits of both interfaces. FTS allows users to see a clear cut-off point between

records that pass the query and records that do not, making it easier to count and

give more confidence. All records are sorted by similarity, allowing users to see the

146

“just-off” cases that are right beyond the cut-off point. In order to do this, I designed

a new similarity measure which includes information for each constraint whether it

is mandatory or optional. The mandatory constraints are used to decide whether a

record is an exact match or not. The optional constraints are used as bonus points

for ranking results, but are not used for excluding a record from exact match results.

The FTS similarity measure also supports negations, time of occurrences and time

gaps between consecutive events. In addition, I have developed a user interface that

allows users to specify FTS query by placing events on a timeline. Users can start

from an empty timeline, or select one record or an event sequence from LifeFlow as a

template. The user interface also supports search results interpretation and provides

detailed comparison between query and each record. Finally, I have illustrated an

example use case scenario to demonstrate the usefulness of FTS. More applications

of the FTS are included in the case studies in Chapter 6.

147

Chapter 6

Multi-dimensional In-depth Long-term Case Studies

6.1 Overview

Usability testing and controlled experiments are commonly used to evaluate

user interfaces. These approaches have limitations due to their short time limit. It

is difficult to learn how the users will use the tool to solve more difficult problems or

test advanced features that require understanding of more complex concepts from

participants who have just known the user interface for only 1–2 hours. In this

chapter, I describe several case studies that were conducted following the multi-

dimensional in-depth long-term case studies (MILCs) approach.

I recruited participants who expressed interest in using LifeFlow to analyze

their data, learned about their problem, then facilicated the initial phase, such as

data cleaning and conversion, to help them start. After that, I provided necessary

support and periodically collected feedback per convenience of the users. In some

cases, we scheduled meetings (in person or sometimes virtually via Skype) to look at

the data together. In some cases, the participants analyzed their data independently

and later provided feedback through interviews or emails. The early participants

were also involved in an iterative design of the interface where I revised many designs

according to their feedback. Many useful features of the software were added from

these early studies. All stories, analyses, findings and feedback are reported in this

148

Domain Data Size Duration Highlighted Results
(records) (of the study)

6.2 Medical 7,041 7 months Found patients reported dead before
being transferred to the ICU; Sug-
gested potential use for long-term
monitoring of the ED and quality con-
trol.

6.3 Transportation 203,214 3 months Found incidents that were reported to
be longer than 100 years; Comparison
between traffic agencies showed that
the data were reported in inconsistent
ways and could not provide a mean-
ingful comparison.

6.4 Medical 20,000 6 months Analyzed drug prescribing patterns
and drug switching; Detected patients
with possible drug holidays; Led to a
spin-off project to support events with
interval.

6.5 Medical 60,041 1 year Explored patients’ data from a man-
agerial perspective in several aspects:
admission, visit, mortality, diagnoses,
etc.; Found that most dead patients
died after admission instead of dying
in the ED.

6.6 Web logs 7,022 6 weeks Studied how visitors read children’s
book online; Discovered that many
users also accessed the online books in
backward direction.

6.7 Activity logs 60 5 months Analyzed activity logs of two user in-
terfaces; Highlighted the different us-
age characteristics between two user
interfaces; Found activities that are
often used together.

6.8 Logistics 821 6 weeks Tracked cement trucks using auto-
matic sensors and analyzed delivery
patterns; Pointed out inaccurate sen-
sory input; Detected a plant that took
longer delivery time than others.

6.9 Sports 61 5 weeks Picked interesting soccer matches; Re-
ported interesting facts; Found an un-
known defender who scored against
the champions twice. Those two goals
were his only two goals in three years.

Table 6.1: Summary of all case studies

149

chapter. Table 6.1 highlights results from all case studies.

In addition to the case study results, I have derived a process model and a

set of design recommendations for exploring event sequence from usage statistics,

case study results and observations of user behaviors. The process model and design

guidelines are described in Section 6.11 and 6.12, respectively.

6.2 Monitoring Hospital Patient Transfers

6.2.1 Introduction

As mentioned earlier in Section 3.2, the design of LifeFlow was motivated by

this patient transfer case study with Dr. Phuong Ho, a practicing physician in the

emergency department at Washington Hospital Center. Dr. Ho was interested in

analyzing sequences of patient transfers between departments for quality assurance.

As I developed LifeFlow, I continued to work with Dr. Ho to analyze patient transfer

data in more detail.

6.2.2 Procedure

I had 1–2 hour meetings with him tentatively every two weeks for seven

months. Sometimes he visited the Human-Computer Interaction Lab (HCIL). Some-

times I visited him at the hospital. Before the meeting he provided me with the data

that he wanted to analyze, and a few initial questions. I converted the data and

during the meeting, we sat down and looked at the data together. After discussing

the questions sent in advance, he would come up with additional questions and gave

150

feedback about the user interface, therefore closely guiding the development.

6.2.3 Data

A dataset in this study includes 7,041 patients who came to the ER in January

2010 and their 35,398 hospital events. Each record contains room assignments, time

that the patient was assigned to each room, and how he/she was discharged from

the hospital: dead, alive, leave without being seen (LWBS) and absence without

leave (AWOL). I preprocessed the data by grouping the room numbers (e.g. ER15-P,

2G06-P) into types of room:

1. ER: Emergency Room, a section of a hospital intended to provide treatment

for victims of sudden illness or trauma

2. ICU : Intensive Care Unit, a hospital unit in which patients requiring close

monitoring and intensive care are kept

3. IMC : Intermediate Medical Care, a level of medical care in a hospital that is

intermediate between ICU and Floor

4. Floor : a hospital ward where patients receive normal care

6.2.4 Analysis

6.2.4.1 First impression

The first time I showed LifeFlow to Dr. Ho using patient transfer data, he was

immediately enthusiastic and confident that the tool would be useful for looking at

151

Figure 6.1: Patients who visited the Emergency Room in January 2010.

all patients who came to the hospital and, in particular, the emergency room (ER).

He knew that many people would want to see the typical flow of the patients and

the transfer time between rooms. In another meeting, I received additional feedback

from Dr. Mark Smith, the director of the Emergency Department. Finding the

bounce back patients visually in the display elicited comments such as “Oh! This is

very cool!” and led to a discussion of the possibilities of using this tool to analyze

hospital data in the long run.

152

6.2.4.2 Understanding the big picture

In a meeting, I loaded the data into LifeFlow and asked Dr. Ho to review the

flow of patients in the hospital (Figure 6.1). The first thing that he noticed was

the most common pattern, Arrival → ER → Discharge-Alive. 4,591 (65.20%)

of the patients were not admitted to the hospital (discharged directly from the ER).

This is regular and consistent with what he had expected because most of the pa-

tients who visited the ER were not in severe condition and could leave immediately

after they received their treatment, so I removed these 4,591 patients from the visu-

alization to analyze other patterns. The second most common pattern, Arrival →

ER → Floor → Discharge-Alive (1,016 patients, 14.43%), now became more ob-

vious. We decided to remove it too because it was also regular. We followed the same

strategy, selecting regular common sequences and removing them from the visual-

ization to detect the uncommon cases that might be irregular. Dr. Ho noticed that

193 patients (2.74%) left without being seen while 38 patients (0.54%) were absent

without leave. These two numbers could be compared with the hospital standard

for quality control. Then, he saw two patterns that he was interested in (Arrival

→ ER → Floor → IMC and Arrival → ER → Floor → ICU). These patterns

correspond to another quality control metric called step ups, which occurs when the

patients were admitted to a lower level of care (Floor), but later transferred to a

higher level of care (IMC or ICU). Dr. Ho could quickly see from the visualization

that the patients were transferred from Floor to ICU faster than Floor to IMC on

average so he used the tooltip to see the distribution. He captured screenshots to

153

Figure 6.2: Six patients were transferred from ICU (red) to Floor (green) and back
to ICU (bounce backs). The average transfer time back to the ICU was six days.
The distribution shows that one patient was transferred back in less than a day.

compare with practices reported in the research literature, but also commented that

the average time seemed quite good from his knowledge.

I also demonstrated the alignment and used it to analyze the transfer flow

before and after the patients were admitted to the ICU (Figure 6.2). From the to-

tal 181 ICU patients, 85 (46.96%) of them were transferred from the ER and 119

(66.75%) of them were transferred to the Floor after that. However, six patients

were transferred back from Floor to ICU (bounce backs). We saw from the distri-

bution that one patient was transferred back in less than a day. Dr. Ho requested

154

to see these six patients in more detail, so I clicked on the bar, which highlighted

these patients in LifeLines2 view and noted down these patients’ ID. In addition, he

also noticed some anomalous sequences, e.g. a few patient records showed a trans-

fer to ICU after being discharged dead, pointing to obvious errors in data entry or

at least reflecting the possible delays in data entry. Although we did not identify

other surprising transfers (which on the other hand, reflected good quality of care),

this still showed that the tool is useful for monitoring the patient transfer flow. I

also received additional questions from Dr. Ho after the meeting. Some questions

included clear request for alignments (“I want to see this in LifeFlow. Specifically

I want to see a view that shows me where all my [ICU] patients are coming from.”)

indicating that he could understand what the tool is capable of and how to use it

for his task.

6.2.4.3 Measuring the transfer time

Because LifeFlow can easily calculate an average time, Dr. Ho formulated

many queries asking about average time, such as “Of patients who came to the ICU

from the ER, what was the average time it took for transfer of the patient to the

ICU? More specifically, if they went to the ICU, how long did it take from the time

they had arrived at the ER to get to the ICU? Same question for IMC...” or “For all

the quarters, Jan-Mar 09, Apr-Jun 09, Jul-sep 09, Oct- Dec 09 and Jan-Mar 10, I

want an average time from ER to 2G [which is a specific type of ICU room].”

155

6.2.4.4 Comparison

Another use of LifeFlow was to compare different data sets by inspecting the

difference between two side-by-side LifeFlow visualizations. Dr. Ho had a hypothesis

about whether IMC patients were transferred faster during the day (7am-7pm) than

during the night. I opened the same dataset in two windows and filtered the records

by time-of-day filtering, making the two windows contain only patients who arrived

during the day and during the night, respectively. We inspected the difference

between the two visualizations but no significant difference was found. In another

case, we compared patients who were admitted to the IMC at least once in four

quarters: Jan–Mar, Apr–Jun, Jul–Sep and Oct–Dec 2008. We opened the four

datasets in four LifeFlow windows and noticed a difference in the patients who were

transferred from ER to the ICU. In the first, third and fourth quarter, these patients

were later transferred to IMC and Floor, with majority were transferred to the

IMC. However, in the second quarter, all patients were later transferred to the IMC,

suggesting further investigation whether this occurred by chance or any particular

reason.

6.2.5 Discussion

I found that the domain expert (Dr. Ho) was able to understand LifeFlow

rapidly and that LifeFlow was useful to provide an overview of the entire data set,

and to compare and measure the transfer times. Once the data was loaded, he could

quickly see the big picture and find anomalies. Dr. Ho expressed that being able

156

to formulate queries easily gave him more time to look at the data and formulate

new hypotheses or think about other interesting questions. Although he might have

been able to answer some of the questions in SQL, it would be very difficult and

error prone. He also mentioned that LifeFlow would be very useful for long-term

monitoring and quality control because it provides a quick way to inspect the data

from the overview. For example, hospital directors can check the waiting time and

find bottlenecks in the process [39].

6.3 Comparing Traffic Agencies

6.3.1 Introduction

To illustrate how LifeFlow is not in anyway limited to medical applications,

this case study was conducted with the Center for Advanced Transportation Tech-

nology Lab (CATT Lab) at the University of Maryland with the help of another

computer science PhD student, Mr. John Alexis Guerra Gómez [43].

Vehicle crashes remain the leading cause of death for people between the ages

of four and thirty-four. In 2008, approximately 6-million traffic accidents occurred

in the United States. This resulted in nearly 40,000 deaths, 2.5 million injuries,

and losses estimated at $237 billion. While traditional safety and incident analysis

has mostly focused on incident attributes data, such as the location and time of the

incident, there are other aspects of incident response that are temporal in nature

and are more difficult to analyze. LifeFlow was used to examine a dataset from the

National Cooperative Highway Research Program (NCHRP) that includes 203,214

157

traffic incidents from 8 agencies.

6.3.2 Procedure

I attended initial meetings with researchers from CATT Lab and learned about

dataset and problems. Mr. John Alexis Guerra Gómez then facilitated this study

while I was away to an internship at Microsoft Research. During that time, I

provided feedback and technical support remotely. The total duration of this study

was three months.

6.3.3 Data

This dataset has 203,214 records, which contain 801,196 events in total. Each

incident record includes a sequence of incident management events:

1. Incident notification: when the agency is first notified of the incident

2. Incident Arrival: when the emergency team arrives on the scene

3. Lane Clearance: when the lanes are opened, but the incident scene may be

not completely cleared

4. Incident cleared, Incident clearance, and Return to normal: all denote the end

of incidents. For ease of analysis, all three event types are aggregated into the

new event type Return to normal (aggregated).

A typical sequence should start with Incident Notification and finish with

Return to normal (aggregated), with the possibility of having Incident Arrival

158

Figure 6.3: This figure shows 203,214 traffic incidents in LifeFlow. There is a long
pattern (more than 100 years long) in the bottom that stands out. I was wondering
if there was an incident that could last more than hundred years, we probably
should not be driving any more. Investigating further, the Incident Arrival time
of all those incidents were on January 1th 1900, a common initial date in computer
systems. This suggested that the system might have used this default date when no
date was specified for an incident.

and Lane Clearance in between. In addition, the traffic incidents data include two

attributes: the agency (represented with a letter from A to H for anonymity) and

the type of incident (e.g. Disabled Vehicle, Fatal Accident, etc.)

6.3.4 Analysis

6.3.4.1 Quantifying data quality issues

After loading the dataset in LifeFlow, it was noticed immediately that Agency

B contains 6,712 incidents that was more than 100 years long (Figure 6.3). Further

159

analysis showed that Agency B reported the Incident Arrival of those incidents as

January 1st 1900. Since this date is commonly used as the initial date in computer

systems, this suggested that the system the Agency used to register this event

might have used it as a default value when no date was specified. Considering these

incidents as corrupted data, all of them were removed from the dataset. While it

was easy to spot this problem, such anomalies can often remain undetected, and

skew the results of even the simplest of analyses such as calculating the mean time

to clearance. Similarly, 48 incidents from Agency D that are about 10 months long,

in which the Incident Arrival occurs before the Incident Notification, were

found and removed.

The next thing noticed from the data was that there were many incidents that

lasted exactly 24 hours, which seemed unlikely. Using the Align, Rank and Filter

operators, we found that those 24-hour-long incidents had Incident arrival events

occur in the first hour of the day (e.g. 12:30 a.m. April 10 2009) and Incident

notification events happened in the last hour of the same day (e.g. 11:50 p.m.

April 10 2009). This observation seemed to suggest that there were data entry

problems with those incidents, indicating that the operator failed to—or was not

able to—record the correct date of an event (e.g. 12:30 a.m. Apr 11, 2009 as opposed

to 12:30 a.m. Apr 10, 2009). Similar errors were discovered for paths that are about

12 hours long, in which case the errors seem to be problems choosing between AM

and PM in the date. Those anomalies were found quite easily by Mr. Guerra

Gómez, the computer scientist developer, who had no experience in transportation

data. Finding such errors using traditional tools like SQL or manual analysis can

160

Figure 6.4: LifeFlow with traffic incidents data: The incidents are separated by agen-
cies (A-G). Only Incident Notification and Return to normal (aggregated)

events are shown. Other events are hidden. The agencies are sorted by a sim-
ple measure of agency performance (average time from the beginning to the end).
Agency C seems to be the fastest to clear its incidents, followed by E, A, H, D, F,
B and finally G.

be very difficult and time consuming, and requires experienced analysts who would

suspect the existence of such errors.

6.3.4.2 Ranking the agencies’ performance

After cleaning the data, we used the time from when the agencies were notified

until the final clearance of the incidents as a performance measure. The time when

the agency was notified can be indicated by the Incident Notification event.

In order to compare the agencies performance, we first removed the inconsistent

data (incidents that do not start with Incident Notification), which could be

161

performed easily using the equal height overview feature. After the steps above,

the visualization of the data can be seen in Figure 6.4. Incidents are grouped by

agencies. We showed only two event types: Incident Notification (green) and

Return to Normal (Aggregated) (blue), so the horizontal length of each agency’s

path represents the average time from incident notification to final clearance, which

reflects the performance measure for that agency. We then sorted the agencies

according to the length of their paths, resulting in the fastest agency (shortest path)

on the top and the slowest agency (longest path) in the bottom. From Figure 6.4 we

could see that Agency C was the fastest agency to clear its incidents, taking about

5 minutes on average, while the slowest one was Agency G with an average of about

2 hours and 27 minutes.

To investigate deeper into Agency C’s data, we removed the data from other

agencies and looked into the different incident types reported (Figure 6.5). Most of

the incidents that Agency C reported are Disabled Vehicles which had about 1

minute clearance time on average. Looking at the event distribution, we also found

that a large number of the incidents reported Clearance immediately after Incident

Notification. This observation made us wonder if there is any explanation for

these immediate clearances, and encouraged further analysis.

In a similar fashion, Agency G, which seemed to be the slowest agency, were

investigated. Agency G classified their incidents in only two types: Non-ATMS Route

Incident and simply Incident. The Incident incidents had an average length of

about 38 minutes, which is very fast compared to the other agencies. However, the

Non-ATMS Route Incident incidents took on average 5 hours 14 minutes to clear.

162

Figure 6.5: LifeFlow with traffic incidents data from Agency C and Agency G: Only
Incident Notification and Return to normal (aggregated) events are shown.
The incidents are also grouped by incident types. Most of the incidents that Agency
C reported are Disabled Vehicles which had about 1 minute clearance time on
average.

163

This made us realize that when using the average time of all incidents from Agency

G without considering the incident types, Agency G seemed to be slower than other

agencies. While in fact, Agency G performed quite well for incident type Incident.

These evidences showed that the agencies reported their incident management

timing data in inconsistent ways, e.g., Agency C’s incidents with 1 minute clearance

time. Beside timing information, the same problem occurred with incident types

as the terminology was not consistent across agencies or even local areas. Differ-

ence might stem from differences in data entry practices, terminology variations, or

missing data. Policies are needed to decide if, and how, to normalize the data and

tools will be needed to manage this normalization process and provide audit trails

documenting the transformations. At the time of this analysis, these inconsistencies

among agencies restricted further meaningful performance comparison.

6.3.5 Discussion

Although this data analysis was limited and preliminary, domain experts from

the CATT Lab were conducting a more formal analysis of the data. They reviewed

this work and stated that they wished LifeFlow was available earlier on when they

started their own analysis. They confirmed the existence of anomalies that were

found in the data, and stated that their elimination was non-trivial when using

SQL because they had to expect the errors in advance and be careful to exclude

them from their analysis. However excluding all the possible erroneous sequences

in a SQL query would be very difficult. In the end, they needed to review the

164

results of SQL queries to ascertain that there were no longer any errors. Without

LifeFlow, this kind of review and identification of unexpected sequences would be

almost impossible. Finally, they mentioned that LifeFlow would allow them to ask

more questions faster, and probably richer questions about the data. LifeFlow was

also able to reveal unexpected sequences that may have been overlooked, but the

tool also suggested that their prevalence is limited. I believe that using LifeFlow

can assist analysts in exploring large datasets, such as the NCHRP traffic incident

information, in ways that would be very difficult using traditional tools and might

allow analysts to find richer results in less time.

6.4 Analyzing Drug Utilization

6.4.1 Introduction

The U.S. Army Pharmacovigilance center has assembled a data warehouse

of medical records and claims representing the clinical care of 12 million soldiers,

dependents and retirees over a period of five years. They use that data to promote

patient safety in the military and to serve as a federal partner for the FDA’s Sentinel

program studying drug safety signals across the U.S. population. Mr. Sigfried

Gold was a computer scientist at Oracle Corporation working with the PVC. He

was helping the PVC epidemiologist and pharmacists explore drug exposure and

diagnostic events in longitudinal patients. The dataset consists of 20,000 patients

over 7 years with 5-100 medical events per patient.

His initial goal was to look at causal relationships between drug exposure

165

and adverse events. However, after some preliminary attempts, we decided that

causal analysis would require more complex analysis which might go beyond the

capabilities of LifeFlow. We learned that LifeFlow is great for looking at multiple

sequences when each sequence is one process, but less effective when each sequence

consists of events from multiple independent processes because the negligible order

of events from different processes will be used to aggregate the sequences and lead

to a large number of infrequent irrelevant patterns. It also experiences difficulties

when there are a large number of event types, which makes color-coding become

more challenging. Causal analysis would require an analysis with a large number of

event types and possibly includes events from multiple processes.

As a result, we focused on a simpler case which LifeFlow seemed to be di-

rectly applicable by looking at drug utilization: drug prescribing patterns and drug

switching, in particular.

6.4.2 Procedure

Since the data in this study were very sensitive and confidential, I was not

allowed to look at the data by myself. I helped Mr. Gold start his analysis by

generating a fake dataset and demonstrating how to use the software. After he was

familiar with the software, I provided technical support as needed and let Mr. Gold

and the PVC team perform an analysis on their own. We communicate by emails

every 2–3 weeks and had in-person meetings several times at HCIL and PVC. The

total duration of this study was six months before an extension project was spin-

166

offed. In the end, I interviewed Mr. Gold and reported the following results.

6.4.3 Analysis

6.4.3.1 Drug prescribing patterns

The PVC team looked at the drug prescribing data that record when medica-

tions were prescribed. With drugs that the PVC team expected to be chronic, Life-

Flow visualization pointed out that there are always more than half of the patients

who have gaps within their exposures. These could potentially be drug holidays,

i.e., when a patient stops taking a medication(s) for a period of time, anywhere from

a few days to many months or even years if they feel it is in their best interests.

The following question was immediately raised: If the gaps were really repre-

sentative of holidays or they were just brief period between two prescription that

they have enough pills to keep going? LifeFlow helped the PVC identify the patient

cohorts with possible drug holidays and also show potential for taking part in a

deeper analysis to answer this question.

6.4.3.2 Drug switching

Another study focused on how patients switch from one drug to another. One

interesting characteristic of this dataset is that some event types are interval events,

not just point events. For example, an event, such as Drug A or Drug B, has start

and end time, which indicate the exposure period. Two drugs can overlap, increasing

the complexity of the analysis. There were also some periods that patients were not

167

taking any drug.

LifeFlow was designed for point events, which each event has only one time.

We came up with a workaround that converted the data from interval events (Drug

A and Drug B) into point events (Drug A only, Drug A & B, Drug B only and no

drug) before using LifeFlow. This approach was tolerable in the preliminary phase.

However, the conversion increased the overhead in data processing time when any

change had to be made and users lost flexibilty of LifeFlow that can include/exclude

any event type when needed. For example, when analyzing a dataset with drug A,

B and C, including only drug A and B and excluding drug C will require one round

of data preprocessing and including drug C back will require another. Users ended

up spending most of the time preprocessing data, making the analysis more time

consuming and less engaging. There were also several useful features for interval

that Mr. Gold would like to have. Therefore, we decided to fork the LifeFlow project

to create an extension of LifeFlow that can support interval, which is beyond the

scope of this dissertation, to support further analysis.

6.4.4 Discussion

This case study demonstrated the ability of LifeFlow to analyze drug prescrib-

ing patterns, which led to a question whether patients are having drug holidays.

“Statistical techniques for dealing with longitudinal data generally focus

on changes in continuous variables over time, and the problem of identi-

fying patterns of sequence and temporal spacing in categorical events is

168

not handled by standard techniques and software. This problem arises

a lot in analysis of health care data, and this tool opens up a kind of

study that just hasn’t been possible before,” said Mr. Gold.

Working with Mr. Gold also help me identify LifeFlow’s limitations in han-

dling several event types, multiple processes and intervals. “LifeFlow is good for

complex temporal relationships among a small number of variables (event types).”

Understanding these limitations led to a spin-off project beyond the scope of my

dissertation that extended LifeFlow idea to support intervals.

6.5 Hospital Readmissions

6.5.1 Introduction

Hospital readmission shortly after discharge is well known to be a factor in

rising healthcare costs and is felt to be a marker of inpatient quality of care. Dr.

A. Zach Hettinger, a physician at the MedStar Institute for Innovation (MI2), was

interested in the hospital readmissions study. He participated in this LifeFlow case

study to visualize emergency department patient visits over time and planned to

look for patterns in return visits and across chief complaints, and also to look at

high risk populations.

6.5.2 Procedure

I scheduled tentative biweekly meetings for coordination. Our methods for

communication were email, phone, Skype and in-person meetings. In the first few

169

months, I developed an understanding of medical problems while explaining LifeFlow

to Dr. Hettinger. During this period, I learned new requirements that are not

handled sufficiently in LifeFlow and developed new features to support them. After

each new feature was developed, I would demonstrate it and ask for feedback in the

following meeting. This phase lasted for several months. We also had to request

access to patient information, which caused some delay. Towards the end of this

study, I arranged a few Skype sessions with Dr. Hettinger, in which he performed

analyses and shared his screen. I collected results from those sessions and report

them in Section 6.5.5 and 6.5.6. The total duration of this study was one year.

6.5.3 Before the Study

Prior to this study, the hospital was using canned reports involving 72-hour

returns. Dr. Hettinger explained that he was looking at the data using these steps:

1. Pull the data from Azyxxi, an EMR system, in a table view which contains

the following columns:

• Patient ID

• Diagnosis

• Visit Date #1

• Attending Physician #1

• Visit Date #2

• Attending Physician #2

• and many more columns

2. Sort by the date that the he saw the patients (Visit Date #1).

170

3. See if the patients came back. (Visit Date #2 is not blank.)

4. Click on each row to read the diagnosis to learn why they came back plus more

information. This method can be slow and sometimes not helpful.

This method also cannot answer questions such as

• When they see me (Dr. Hettinger), is this their first visit to the hospital? The

table view did not show the data before this visit.

• Azyxxi can show if the patient came back once or did not come back, but

could not show if they come back for the 2nd, 3rd, ... time.

• How many of them came back after seeing me (Dr. Hettinger)? Cannot see

the proportion easily.

• Cannot easily filter by diagnosis type. For example, show patients who were

diagnosed with heartburn only.

With LifeFlow, the questions above can be answered easily.

6.5.4 Early Progress

In the first few meetings, we discussed the data format that LifeFlow can

accept and used a simulated dataset for demonstration. The feedback from these

meetings led to the development of DataKitchen 1, and new LifeFlow interactions

and other improvements:

• Display clear separation between hospital visits (Section 3.7).

1A data conversion tool developed by Hsueh-Chien Cheng, another PhD student

171

• Allow users to filter alignment point by event attributes. For example, attend-

ing physicians and diagnoses are attributes of the event Arrival.

– Find Arrival events when patients visited a specified physician (such as

Dr. Hettinger) and align to see what happened after arrival.

– Find only arrival events when patients visited with a particular diagnosis

(such as chest pain) and see what happen after arrival.

• Selection from distribution (Section 3.7)

• Add/Modify custom attributes (Section 3.7)

• Display attribute summary (Section 3.7)

• New tooltip design

6.5.5 Analysis: Personal Exploration

Dr. Hettinger envisioned using LifeFlow for two applications. The first one is

for a physician to review his/her own performance. The second one is using it for

administrative purposes (Section 6.5.6).

Dr. Hettinger used LifeFlow to select only his patients using the advanced

alignment. He set the alignment point to be a visit to the hospital when the attribute

“attending physician” was him. Then he looked for patients who returned within 72

hours after being discharged. He did not find one, which reflects good performance.

To continue the analysis, he selected a few patients who returned soon after their

discharges and compared the diagnoses before they were discharged and when they

172

came back to see if these two visits were related. If they came back with the

same complaints, it could indicate that the physician missed something during the

patient’s prior visit. LifeFlow provided the physician with more information than

the canned reported that he was previously using.

6.5.6 Analysis: Administration

Another aspect that LifeFlow can be used for is to look at the data from a

managerial perspective and see the overall performance of the hospital. We used an

anonymized dataset which has 92,616 patients visits spread over 60,041 records of

patients in this analysis. The duration of this dataset is one year.

6.5.6.1 Revisit

To see the proportion of patients who visit once, twice and so on, we aligned

them by the first ED Registration. “What I don’t understand is why the patterns

are not sorted by number of visits?” said Dr. Hettinger. I then explained that

the patterns are sorted by number of patients by default, but we could change it.

So, we changed the ranking to “Max time to the end” and saw the patterns sorted

by number of visits (Figure 6.6). The tooltip displays more information when the

cursor is placed over the bar. For example, in Figure 6.7, 1501 patients (2.5%)

visited four times.

173

Figure 6.6: Patient records aligned by the first ED Reg date (light blue): The bar’s
height represents the number of patients. The visualization shows the proportion of
revisits.

Figure 6.7: Tooltip uncovers more information: Place cursor over a sequence in
Figure 6.6 to see more information from tooltip. For this sequence with four visits,
there were 1501 patients, which is 2.5% of all patients.

174

6.5.6.2 Revisit by recurring patients

Another task was to see the number of all visits by patients with at least n

visits. This could tell how many visits that the recurring patients were accounted

for. We excluded all events except ED Reg (registration) date and aligned by

all ED Reg date (Figure 6.8. The patient records were duplicated depending on

their number of visits. This time the bar’s height represents the number of visits

instead of the number of patients. The first bar after the alignment point represents

the number of visits by all patients who had at least one visit. The second bar

represents the number of visits by all patients who had at least two visits. The

tooltip allows access to more useful information (Figure 6.9). “We can quickly make

a nice table out of this,” said Dr. Hettinger. “Patients with at least six visits, which

is 2% of patients, account for 4.3% of visits. Patients with at least five visits, which

is 3% of patients, account for 6.6% of visits. Patients with at least four visits, which

is 5.6% of patients, account for 10.2% of visits and so forth. These are statistics

that people enjoy looking at and can be compared between hospitals.”

In Dr. Hettinger’s opinion, getting the number of visits by the top 5% or more

frequent patients is more interesting than knowing who the top 5% are. “If you

wanna say I just want the top 5%, you are gonna get some random number like the

top 5% have 6.2 visits. That is kinda useless number. It is actually a much better

way to ask the other way round that we just went through down here” said Dr.

Hettinger.

175

Figure 6.8: Patient records aligned by the all ED Reg date (light blue): The bar’s
height represents the number of visits. The first bar after the alignment point
represents the number of visits by all patients who had at least one visit. The
second bar represents the number of visits by all patients who had at least two
visits.

Figure 6.9: Access more useful information using tooltip– Patients with at least five
visits, which is 3.1% of patients, accounted for 6.6% of visits.

176

Figure 6.10: Patient records aligned by all ED Reg date (light blue): The total
height represents total number of visits. The ED Reg date bar (light blue) on the
right of the alignment represents all visits. The Admit date (blue) bar on its right
shows 19,576 admissions out of a total of 92,616 visits.

6.5.6.3 Admission

Next, we looked at the proportion of people that came to the ED and were

admitted We still aligned the data by all ED Reg date but included Admit date

(Figure 6.10). The total height represents the total number of visits. The ED Reg

date (light blue) bar on the right of the alignment represents all visits. The Admit

date (blue) bar on its right shows admissions after visits. There were 19,576 admis-

sions out of a total of 92,616 ED visits.

177

Figure 6.11: Patients who died: Patient records are aligned by all ED Reg date

(light blue). The total height represents total number of visits. From the total of
92,616 visits to the ED, there were 788 deaths (red).

6.5.6.4 Mortality

Using the same alignment by all ED Reg date, the Admit date events were

excluded but Death date events were included. The visualization shows that, from

the total 92,616 visits to the ED, 788 patients died. This number includes both

patients who died in the ED and patients who died after admission (Figure 6.11).

We selected these 788 patients and labeled them by setting an attribute Status

to “Die”, so the patients could be split into dead and alive patients using attribute

Status. The alignment was then changed from all registrations to the first regis-

tration. We zoomed into the dead group, where the visualization shows a proportion

of patients who died on their 1st, 2nd, 3rd visits and so forth (Figure 6.12).

178

Figure 6.12: Patient records aligned by first ED Reg date (light blue): The total
height represents number of patients.

Next, we added the Admit date events back to the visualization (Figure 6.13)

and found that the majority of the patients died after admission, not in the ED as

expected. “You kinda think these people who are coming in and die are gonna die

in the emergency department, but actually looks like large majority of them were

admitted,” said Dr. Hettinger.

We could also see the proportions of patients who were admitted on their

second visits and died, or patients who were admitted twice and died. While the

major patterns can be detected easily, the rare patterns are more complex and more

difficult to interpret. Dr. Hettinger referred to these patterns as “painful to watch”.

So, we changed the alignment to Death date to help us focus on what happened

before they died. Of the people that died, 76% died in the hospital (admitted then

died). The rest never were admitted and died in the ED. If the data are more

179

Figure 6.13: The majority of the patients died (red) after admission (blue) more
than those who died while in the ED (light blue).

reliable and the timestamps are accurate, we could look at patients who died within

30 minutes of showing up in the hospital, for example, patients who came in with

cardiac arrest. There were also some patients who came in alive, but something

happened to them while they were in the ED and they died. These are usually

rare cases. If we have accurate timestamps, we could look at the time distribution.

However, there are many problems with these timestamps. Some patients were

reported dead without registration. Some were admitted but the timestamps are

not in the correct order.

180

6.5.6.5 Revived patients and John Doe

We also noticed that some patients were registered after they died. Is that

because they came in dead and the registration did not get to them, or did they

really come in alive but the timestamps were not consistent? In Dr. Hettinger’s

opinion, these were the patients who came into the ED and died.

There were some patients who came into the ED and died. Some came, were

admitted and died. Then there were some patients with only one timestamp, which

means that they died with no prior registration. These cases are called “John Doe”.

They probably were found dead outside.

6.5.6.6 Identify an interesting pattern and then search for it

Using LifeFlow, Dr. Hettinger was able to drill down to find interesting cases.

One patient visited the ED, was discharged, then came back a few months later,

was admitted and discharged from the hospital, and shortly thereafter came back

and died. He was diagnosed with kidney failure, dehydration, an undefined kidney

problem and kidney disease. This case represents very sick patients that were dis-

charged, came back and then died in the ED. The last diagnoses for this patient were

kidney disease and cardiac arrest. Another patient came in with a headache, was

discharged, came back four months later, then had cardiac arrest and died. Another

patient was diagnosed with adema, shortness of breath and high cholesterol. After

this person was discharged, he/she came back four months later and died. “See, this

pattern right here. It would be awesome if you can reproduce the Similan search,”

181

said Dr. Hettinger. So, we switched to the search tab to specify query “ED Reg

date → Discharge date → ED Reg date → Death date”.

At first, no record was returned as an exact match results (Figure 6.14 left).

However, records in other results look like the pattern that we were looking for.

This caused some frustration, so we removed Discharge date from the query and

submitted the query again. This time we received the expected results (Figure 6.14

right). The results were blank at first because the ED Reg date and Discharge

date in each record were exactly at the same time. This indicated that an additional

data cleaning would be required to correct these two dates. We found the pattern

that we were looking for in the current data and Dr. Hettinger was very happy with

it. “These are exactly the patients that would be interesting to look at,” he said.

“Another thing that you can do is that... From the risk management standpoint,

these are cases that are certainly concerning. I think most deaths ended up getting

reviewed in the ED, but I don’t know if they always go back and look and see what

was their last visits? They might have missed something, but certainly it could be

interesting learning points as well to pull the cases and use it to teach people, so

that if there’s something worthwhile to try to figure out to make it worthwhile to

bring it to people’s attention. That’s great. That’s excellent that you are able to

do that.”

182

Figure 6.14: (left) Search for patients who visited, were discharged, came back and
died. No record was returned as an exact match results. However, records in other
results look like the pattern. This was because the ED Reg date and Discharge

date in each record were exactly at the same time. (right) Refine the query to
search for patients who visited, came back and died. 237 patients were identified.

183

Figure 6.15: Summary of Complaints (left) and Diagnoses (right) of the Patients’
First Visits

6.5.6.7 Diagnoses

Another thing we spent time looking at was the diagnosis. To see the com-

mon complaints from the first visits, we right-clicked on the first ED Reg date bar,

selected “Show attributes summary” and selected the attribute “complaints” (Fig-

ure 6.15 left). In the table that came up, we saw various kinds of pain: abdominal

pain, chest pain, back pain, etc. “This is fantastic. This kind of summary,” said

Dr. Hettinger. These complaints are from the patients. The triage nurses asked

what bring you in today and they answered something. The nurses then had to

decide what to put there. I noticed some patients with “end-stage back pain”, so I

innocently asked if they died after that. “It could be,” replied Dr. Hettinger. “Or

they’re just being sarcastic.”

Then we changed the attribute to “V.Dx-Description-1” (Figure 6.15 right),

which were the ICD-9 codes that the physicians wrote. However, these descriptions

are very specific. For example, Lumbago is a type of back pain. Backache Nos stands

184

for “Backache (not otherwise specified)”. These codes were also spread into multiple

columns (V.Dx-Description-1, V.Dx-Description-2, . . .), so it was not possible to

show accurate counts in here, but at least it gave a sense of what the common

diagnoses were. More preprocessing will be required to summarize these ICD-9

codes.

6.5.6.8 Frequent visitors

This time we used LifeFlow to drill down to patients with frequent visits (more

than 40 visits in one year).

There was one patient who was not admitted in the early visits but after many

visits he/she was eventually admitted. We checked the complaints and diagnoses for

each visit and found that the complaints and diagnoses in the early visits were quite

random. However, the first time he/she was admitted, the diagnosis was “overdosed

pain medication”. The second time was also “overdosed pain medication”. This

patient was admitted and discharged. The third time was “suicidal ideation”. Again,

the patient was admitted and discharged. The fourth time was another “suicidal

ideation”. This time, the patient was admitted to the psychiatric department.

In the bigger picture, we examined the LifeLines2 view on the right side and

characterized two types of patients (Figure 6.16).

1. Patients with clusters of frequent visits : Frequent visits followed by a long gap

then another series of frequent visits. These patients may have some recurring

disease, such as asthma or a mental disorder. The gaps represented when they

185

Figure 6.16: Patients with more than 30 visits: (a) Patients with many visits dis-
tributed regularly throughout the year, for example, 1212249 and 1332883 (b) Pa-
tients with frequent visits followed by a long gap (marked by red horizontal lines)
then another series of frequent visits, for example, 1011068 and 2355683

186

got better. Another possible explanation is that they went to another hospital.

2. Patients with regular visits : Many visits distributed regularly throughout the

year.

In Dr. Hettinger’s opinion, these two types of patients are like the Anscombe’s

Quartet [12] of medical records. They have similar numbers of visits, but are very

different. The difference may be left unnoticed when looking at the statistics but

can be easily detected with visualization.

6.5.7 Conclusions and Discussion

This is the longest case study that I have conducted. Dr. Hettinger had

participated since the very beginning of the development and been involved in many

design iterations. His medical scenarios inspired many parts of the visualization and

user interfaces.

The work in this dissertation was found useful for many hospital readmissions

use cases. Many of which are understanding the overview, for example, checking

admission rate, revisit rate, mortality rate, etc., for which LifeFlow can provide much

more information than the standard canned report. Using zoom and filters, users

can drill down to particular patients and see their details on demand, for example,

examining patients with more than 40 visits. Users may identify an interesting

pattern and then start searching for other patients with similar patterns. This

case study demonstrates a wide range of exploratory activities that the users can

perform on event sequences. At the end of the study, Dr. Hettinger shared his

187

thoughts about LifeFlow in his own words:

“I have enjoyed working with LifeFlow (as well as you and your team). I

have not used LifeFlow directly in any clinical applications, but am still

exploring the best way to use it. However, we have seen interesting pat-

terns within LifeFlow, including patterns of use among frequent visitors

to the ED that may serve as targets for directed intervention to help

patient’s establish care with a primary care doctor and care for chronic

conditions. We also looked at patterns of return visits to the ED and

specifically focused on patient’s that died. These cases could later be-

come important cases for education as well as risk management concern

that might not have otherwise been caught if they did not get visualized

through the standard processes that usually screen for patients that re-

turn within 72 hours. So I believe it will be very useful in the future. I

have spoken with various people at conferences and other meetings who

are interested in the application of LifeFlow with their datasets and I

believe it will provide important insight into many different settings.

I believe there will be two major barriers to the adoption of LifeFlow

for looking at datasets for the average user. One is getting access to the

data set and formatting it in the necessary manner. Data Kitchen in an

excellent tool, and with the use of recipes can automate the task, but

certainly requires a fair amount of trial and error and familiarity to be

used efficiently. Secondly, the controls and features of LifeFlow provide

188

a large amount of customization of the data, but again require training

and familiarity to be used well. Even after not using the software for a

few weeks I have to re-orient myself to the application and frequently

“rediscover” features or where things are located. Even today I found

myself looking for a zoom out feature, to have you inform me that the

feature was already in place by double clicking the zoom bars. Obvious

once you told me, but not apparent from the UI. Not sure the answer

to the problem, but future versions could attempt to make the most

common features more accessible to the novice, with access to the variety

of controls as necessary. This is in no way to diminish what you have

been able to accomplish, and it has been a pleasure to work with you on

the project.”

Working on this case study makes me realize the importance of facilitating the

preprocessing. By making it easier to preprocess the data, users have less hesitation

and overhead to adopt the approach. We also often find data cleaning problems

during the analysis and need to go back to the preprocessing step. In addition,

many design issues were identified, such as freezing the tooltip 2 or interpreting the

alignment 3. Some issues were easy to address while some issues presented more

challenging problems that could lead to future research, such as including attributes

in the similarity search. Dr. Hettinger’s “rediscover” experience demonstrated that

2When the tooltip is very long, it shows a scrollbar, but users cannot move cursor to the
scrollbar because the tooltip will disappear. First, I added a locking mechanism. By pressing F2,
users can lock the tooltip and move cursor to the scrollbar. However, this was found awkward and
unintuitive. After receiving the complaints from Dr. Hettinger, I removed the lock and let users
use arrow keys to control the scrollbar of the tooltip.

3Users often forget that sequences on the left and right of the alignment are not connected.

189

MILCs are also beneficial in testing intuitiveness of the interface repeatedly. He

could remember how to use the main features correctly, but sometimes forgot about

less common features, which could be due to the long duration of this study, issue

in the design, or a combination of both. A challenge due to the length of the study

(≈1 year) is that users might have difficulty keeping track of added and removed

features. Some minor changes could be easily forgotten because users were not

using it everyday and there were many changes happened along the way. In terms

of design, some features were found to be “not apparent from the UI” and need to

be more obvious in the future.

6.6 How do people read children books online?

6.6.1 Introduction

The International Children’s Digital Library (ICDL) (Figure 6.17) is an online

library that contains 4627 children’s books in 61 different languages (as of November,

2011) with over three million unique visitors since its launch in November, 2002. Its

users come from 228 different countries. One very important question that Anne

Rose, the website administrator, wanted to know is how do people read children’s

books from the ICDL website?

This encouraged us to look at the Apache web logs from the ICDL website to

analyze how people read children’s books online.

190

Figure 6.17: International Children’s Digital Library www.childrenslibrary.org

6.6.2 Procedure

I requested access to the server and retrieved apache web logs for ICDL website.

In the early meetings, I learned about the information contained in the web logs

and things we hoped to learn from this dataset. After data conversion, I performed

analyses and requested for meetings when I had questions or noticed interesting

patterns in the data. The total duration of this study was six weeks.

6.6.3 Data

This sample dataset was taken from the period July 01–07, 2011. The original

size of the dataset was about 1GB. We filtered the log entries to select only http re-

quests to access pages of books: http://www.childrenslibrary.org/icdl/BookPage.

191

Each request contains a query string behind the url, such as bookid=amrdima 00310002

&pnum1=6 &pnum2=7 &twoPage=true &lang=English &ilang=English We parsed

the page number and book id from this query string then group the http requests

by IP address and book id into records. Each record represents how each IP address

(user) read one book, or a book session.

IP address + book id Page Time

1 3 3 . 3 7 . 6 0 . 1 9 1 _radjese_00380046 2 2011−06−30 05 : 01 : 0 6

1 3 3 . 3 7 . 6 0 . 1 9 1 _radjese_00380046 1 2011−06−30 05 : 01 : 1 4

1 3 3 . 3 7 . 6 0 . 1 9 1 _radjese_00380046 2 2011−06−30 05 : 01 : 2 0

1 3 3 . 3 7 . 6 0 . 1 9 1 _radjese_00380046 4 2011−06−30 05 : 01 : 2 5

1 3 3 . 3 7 . 6 0 . 1 9 1 _radjese_00380046 6 2011−06−30 05 : 01 : 2 7

Only the first 30 pages are included in the dataset. The processed dataset has

7,022 records and 57,709 events in total.

6.6.4 Analysis

6.6.4.1 Setup

We encoded the page number using color gradient from blue to red. Because

people can also read the books in two modes: single-page (1,2,3, ...) and double-page

(1,2,4,6, ...) 4, we hid the odd pages.

4Page 1 is the cover.

192

Figure 6.18: The page numbers are color-coded using color gradient from blue to
red. We found that people started their reading on different pages. Some started
from the first page, while others jumped into the later pages, probably skipping the
empty pages in the beginning. The height of the bars shows that people started on
the earlier pages more than the later pages.

193

6.6.4.2 First observation

The visualization in Figure 6.18 shows that people started their reading on

different pages. Some started from the first page but some jumped into the later

pages, probably skipping the empty pages in the beginning. The height of the bars

shows that people started on the earlier pages more than the later pages. The color

bars show a smooth gradient meaning that people mostly read in order. (Remember

that the color coding is a gradient from blue to red.)

6.6.4.3 How do people read from the second page?

We aligned by the second page to see the reading pattern after visiting the

second page (Figure 6.19). The decreasing height of the bars, as time went by, shows

that people gradually dropped out while reading. The little long lines that split from

the main trend in each step tell us that some readers flipped back to the previous

page before they continued reading. The color changed becoming a slightly darker

color (previous page) then changed back to the brighter colors (continue reading).

We also noticed some long patterns before the second page.

6.6.4.4 Reading backwards

We zoomed into the mysterious sequence from the previous screen and saw

people reading backwards. (The color changes from red to blue instead of blue to

red.) We were curious so we selected them to see more detail (Figure 6.20).

In the detail view, the visualization shows one reader started reading from

194

Figure 6.19: After aligned by the second page: People read in order from (blue to
red). Some flipped back one page and continued reading (small lines). There are
also some long patterns before the second page.

195

Figure 6.20: The selection shows book sessions in which readers accessed the pages
in the backward direction.

196

page 30 and flipped back all the way to page 2. Another reader read from page 4

to the end and flipped back all the way. And many more cases.

We checked the attributes of these books. They are in English and Span-

ish (left-to-right languages). So there should not be any confusion about reading

direction.

To investigate further, we used the measurement tool to measure the time

from page 2 to page 30 when users accessed the pages in the forward direction. The

mean and median times were 25:02 and 4:45 minutes, respectively.

We also measured the time from page 30 to page 2 when users accessed the

pages in backward direction. The mean and median time were 33 and 24 seconds,

respectively, which is approximately one second per page. It appears as though they

were not reading backwards, just flipping the pages.

6.6.5 Conclusions and Discussion

We dug deeper into several records with backward access one-by-one and hy-

pothesized a few possible scenarios.

1. Finished reading a part of the book : For example, one reader read from page

10 to 18, which is exactly one chapter of the book, then flipped back to page

1 and did not have any interaction after that.

2. Shelf books : ICDL has a membership system, which a member can store books

on his/her virtual shelf for reading later. The system also remembers the last

page read by the member. However, we assumed that some members might

197

open the book and find it at page 30, so they tried to flip it back to the first

page and start reading again from the beginning.

3. Parent preview : Some users read a few pages then flipped back to the be-

ginning and started reading from the beginning. We assumed that this is a

behavior of parents selecting books for their children. They flipped a few pages

to check that it is suitable then went back to the beginning to read it.

From these three possible scenarios, the users seemed to depend heavily on

the page-by-page (previous/next button) navigation. To change from page 30 back

to page 1, they went to the previous page 30 times instead of using other controls

that could let them jump to page 1 faster. This could be because the users could

use their arrow keys to go to previous/next page, which was convenient for them,

so they kept pressing the arrow keys, or the users did not know how to jump back

to the first page directly.

However, finding the real explanation of why many people access the online

children’s books backwards or whether the navigation needs to be improved, will

require a further user study, which is beyond the scope of this case study. Therefore,

we would like to take a step back and summarize what we learned from the ICDL

web logs so far using LifeFlow.

LifeFlow shows potential for helping the ICDL administrator understand how

people are accessing the online books. It highlights the users’ reading behaviors from

the majority that read in order, the readers that skipped the blank early pages going

straight to the content, the readers that flipped back and continued reading, to the

198

readers that flipped backwards all the way back to the first page. By understanding

these behaviors better, the administrator can improve the website to suit the readers

better.

6.7 Studying User Activities in Adaptive Exploratory Search Sys-

tems

6.7.1 Introduction

Adaptive exploratory search systems (ESS) can provide efficient user-centered

personalized search results by incorporating interactive user interfaces. The core

component of the adaptive systems is called a user model, where the users search

tasks, contexts, and interests are stored, so that the systems can adapt to those spe-

cific tasks or contexts. In conventional adaptive search approaches, the user models

are hidden from the users. They are black boxes and the users cannot estimate

easily what is going on inside. Therefore, they cannot expect what personalized

results will be returned from the black box and have very limited capability to cor-

rect the systems unexpected erroneous behaviors. Several approaches tried to solve

this problem by transparently revealing the user model contents and providing the

ability to directly control the user models.

Dr. Jae-wook Ahn, post-doc researcher at the HCIL, developed two adap-

tive ESS called TaskSieve [2] (Figure 6.21) and Adaptive VIBE [1] (Figure 6.22) as

parts of his PhD dissertation work. TaskSieve uses typical ranked lists but it has a

component for adjusting the importance of user model and user queries. Users can

199

Figure 6.21: TaskSieve

explore different search results by switching three sets of weight configurations of

user models versus user queries (1:0, 0.5:0.5, and 0:1) while monitoring their user

model contents. Adaptive VIBE extends the open user model using a reference

point based interactive visualization called VIBE (Visual Information Browsing En-

vironment). It defines the user query and the user model (as the list of keywords)

as reference points (Point of Interest or POIs) and interactively places the search

result documents according to their similarities to each POI. Documents are placed

closer to more similar POIs and users drag the POIs in order to visually explore

the search space. Both systems have log facilities that record user activities. These

200

Figure 6.22: Adaptive VIBE

actions are organized by higher-level categories in Table 6.2 and 6.3. TaskSieve has

six categories of actions while Adaptive VIBE has the same six categories and two

additional.

Dr. Ahn was interested in analyzing user activity sequences from the log files

of the two systems. The log data was extracted from a user study including 33 users

in 60 sessions (20 minutes per session). For each session, the systems were loaded

with news articles from the Topic Detection and Tracking (TDT4) test collection

and the participants of the user study were asked to finish search tasks. Our goal

in this study was to discover two user behavior patterns from the log data.

1. Switch of activities : Typical look up search systems will have simple activity

201

Category Action

Login/out login, logout

Search search

Overview search response, navigate page

Examine doc open doc

Update UM (User Model) save note, remove note

Manipulate UM change UM & query weight

Table 6.2: TaskSieve User Actions

Category Action

Login/out login, logout

Search search

Overview reset visualization

Examine doc view by mouse-over, select doc, open doc

Update UM (User Model) save note, remove note

Manipulate UM change UM and query weight, select UM
POI, move UM POI

POI activities reset POI, select POI, select query POI,
move POI, move query POI

Find subset select similar documents from a POI, mar-
quee selection, range slider filtering, show
similar documents or POIs, view selected
documents, view auto-selected documents

Table 6.3: Adaptive VIBE User Actions

202

switch patterns such as query → examine list → examine documents. We

expected to see different patterns from the open user model based ESS. Users

were supported with more features to explore the search space and view/con-

trol their mental models. We were interested to discover how the users really

exploited those features.

2. User activity patterns : It would be useful to have a list of user activity patterns

regarding how users actually used the features while trying to solve specific

sub-tasks. This knowledge will help improving the future ESS systems with

open user models.

6.7.2 Procedure

Dr. Ahn and I met a few times in the first two months of this study. I

demonstrated the software and explained the data format. After Dr. Ahn was

familiar with the LifeFlow software, he converted his data and analyze them on

his own. He contacted me when he needed technical support or found interesting

patterns. In the end, we wrote a paper together to report the results [3]. The total

duration of this study was five months.

6.7.3 Data

We generated datasets from activity logs of 60 user study sessions for the two

analyses above:

1. List of all actions (per user session) for analyzing switch of activities: One

203

Figure 6.23: Before (above) and after (below) filling gaps with colors of previous
events

dataset for TaskSieve which has 1,716 events and another dataset for Adap-

tiveVIBE which has 10,646 events.

2. Pairs (i.e. bigrams) of actions for analyzing user activity patterns: This

dataset has 19,142 events.

6.7.4 Analysis

6.7.4.1 Switch of activities

We used the high-level action categories (Table 6.2 and 6.3) instead of in-

dividual actions in order to reduce the number of event types and visual clutters.

Next, we merged repeated consecutive events into one event using a “merge repeated

events” option in LifeFlow. However, the sequences are still long and visualizing

the time gap continues to be difficult. So, we enabled another option in LifeFlow to

204

fill the gaps between events with colors of previous events, instead of light gray, to

help us notice the long activities easier (Figure 6.23).

Events are colored as follows: Login/out is not important, so we colored it

gray for less attention. Search is encoded by orange. Overview (show an overview

of search results) is a follow-up event of Search, so it is encoded in yellow to show

connection with Search (orange). Examine doc and Update UM are encoded in

pale blue and blue. Manipulate UM is an interesting event type so it is encoded in

red to make it stands out. Two additional event types from Adaptive VIBE, POI

activities and Find subset, are encoded in light green and green, respectively.

Figure 6.24 compares the overviews of the search activity sequences of TaskSieve

and Adaptive VIBE. Remember that the width of the colored blocks corresponds to

the duration of the action.

The two most frequent activities that occupied the largest portion of the

screens were Examine Doc (pale blue) and Update UM (blue). It had been expected

because the users would spend a significant amount of time reading the snippets

or fulltexts of the documents (Examine Doc) and edit their notebooks. In the two

systems, a notebook editing action automatically leads to updating the user model

(Update UM). What was more interesting was the density of the exploratory ac-

tivities. In the visualization-based system (Adaptive VIBE), the distribution of

different actions was denser than in the text-based system (TaskSieve). The partici-

pants switched more frequently by spending less time (smaller width colored blocks)

per action, with the two additional event types (POI activities (light green) and

Find subset (green)) mixed in the sequence. This observation reflects that they

205

Figure 6.24: Overview of User Behaviors in TaskSieve (above) and Adaptive VIBE
(below): In the visualization-based system (Adaptive VIBE), the distribution of dif-
ferent actions were denser than in the text-based system (TaskSieve). The partici-
pants switched more frequently by spending less time (smaller width colored blocks)
per action, with the two additional event types (POI activities (light green) and
Find subset (green)) mixed in the sequences.

206

fully exploited the richer feature set provided by Adaptive VIBE. At the same time,

the high action switches included a lot of exploratory actions. We could assume

that they were able to take advantage of the flexibility of the visualization system

and performed more exploratory behaviors.

The second observation is the user model manipulation. Users could directly

manipulate the user model weights or drag the user model keywords (POIs), in

order to better reorganize the visualization of retrieved documents, learn about and

control the effects of their user models. In Adaptive VIBE, these activities (red)

were more frequent and prevalent, which suggests that the users more actively used

the visual user model manipulation feature of the system.

6.7.4.2 User activity patterns Part I: Frequent patterns

The second part of the analysis was to find out the exact user behavior pat-

terns. It will help to design more efficient adaptive exploratory search systems if

we could learn how the users really used them. We limited this analysis to Adap-

tive VIBE only, because it provided more diverse adaptive exploration features than

TaskSieve. Each record in this dataset is a bigram taken from a full sequence of

user’s activities in the previous section. For example, a sequence Login/out →

Search → Overview → Examine doc becomes three bigrams: (1) Login/out →

Search, (2) Search → Overview and (3) Overview → Examine doc.

When these bigrams are visualized in LifeFlow, it becomes a distribution of

user actions of length one and two (Figure 6.25). Each bar’s height represents

207

Figure 6.25: Bigrams of user activities visualized in LifeFlow

208

frequency of the action patterns and the horizontal gaps between bars represent the

average time. In this analysis, we did not fill the gap with the colors of previous

events. Reading the visualization from left to right, we could first find out the

most frequent actions by looking at the tallest first level bars and then the following

frequent actions. For example, the most frequent action is Examine doc (pale blue).

For the actions that follow Examine doc, the most frequent action was Examine

doc again while the second and the third were POI Activities and Update UM,

which means that the users moved/selected POIs (not user model POIs in this

case) or updated their user model contents by adding or removing texts to/from the

notebook. This hierarchy of the LifeFlow tree could make the structured analysis of

the bigrams easier than simple frequency counting, by following down the branches

of dominant activities in the first level.

Table 6.4 summarizes the list of frequent bigrams discovered from this analysis.

Overall, the frequencies of the first actions of the bigrams were almost equivalent

except Examine doc. We thus included all event types in the first level and then

counted the top three event types that follow. The findings from the table are as

follows:

1. Many exploratory actions—examine the overview, control the visualization to

change/re-interpret the big picture (including user model update/manipula-

tion), zoom and find subset—were much more prevalent compared to simple

look-up search actions.

2. There are many sequences of repeating events—Examine doc → Examine

209

Table 6.4: List of dominant user activity bigrams

1st activity 2nd activity Frequency

Examine doc Examine doc 6,392
Examine doc POI activities 254
Examine doc Update UM 204

Search Overview 330
Search Examine doc 108
Search Search 48

POI activities POI activities 192
POI activities Examine doc 107
POI activities Find subset 102

Find subset Examine doc 178
Find subset Find subset 93
Find subset POI activities 62

Update UM Update UM 193
Update UM Examine doc 97
Update UM Overview 62

Manipulate UM Manipulate UM 222
Manipulate UM Find subset 53
Manipulate UM Examine doc 37

Overview Examine doc 63
Overview Find subset 58
Overview Overview 46

doc, POI activities → POI activities, Update UM → Update UM and

Manipulate UM → Manipulate UM.

3. User model exploration was used almost as frequently as other actions.

4. This table can be used as a list of possible user actions for similar adaptive

ESS.

210

Figure 6.26: Bigrams of user activities after aligned by Manipulate UM: The three
most frequent actions before Manipulate UM were still the most frequent actions
after Manipulate UM. Seems like the user model manipulations were in the chain
of the three actions repeatedly and the user model manipulation task needs to be
considered as a set with those friend actions.

211

6.7.4.3 User activity patterns Part II: User model exploration

The next step was to look deeper into the user activities regarding how the

users explored and controlled their open user models, which were the core module of

the adaptive ESS. Adaptive VIBE implemented the visual user models as keyword

POIs and allowed users to drag them around the screen, select them for supporting

further actions (e.g. selecting documents similar to the selected POI), disable some

of them temporarily, etc. From the analysis above, these user model manipulation

activities were conducted as significantly as the others. The three most frequent

actions just after Manipulate UM were Manipulate UM (red), Examine Doc (pale

blue), and Find subset (green) (Table 6.4). This suggests that the user model

manipulation actions were done repeatedly and the users could narrow down their

search targets as results of user model exploration.

Therefore, we aligned the sequences by all Manipulate UM. In Figure 6.26,

the right side after the vertical dashed line is the pairs where Manipulate UM was

preceding the second action. The left side is vice versa. We could compare the left

and right side and observe that the three most frequent actions before Manipulate

UM were still the most frequent actions after Manipulate UM. It led us to conclude

that the user model manipulations were in the chain of the three actions repeatedly

and the user model manipulation task needs to be considered as a set with those

friend actions. By looking at the overview again (Figure 6.24 below), we could

confirm that occurrences of Manipulate UM (red), Examine doc (pale blue) and

Find subset (green) are adjacent to each other.

212

6.7.5 Conclusions and Discussion

This case study provided a preliminary analysis of user behavior patterns in

adaptive exploration search systems. We analyzed the log data of a user study that

included various user actions using LifeFlow. From the analysis, we could find that

the user exploration actions were switching more frequently using the visualization-

based adaptive ESS system. At the same time, the user model exploration features

were used as frequently as other features and we could find patterns regarding how

the user model explorations were combined with other exploratory behaviors. We

also generated a list of user action patterns of the adaptive ESS systems for sup-

porting future system design of the same kind. This could be extended to include

deeper analysis of other activities closely related to user model exploration, such as

finding subset, query exploration, and user model updates. Finally, I would like to

include Dr. Ahn’s comment on LifeFlow in his own words:

“LifeFlow is an efficient and powerful tool to analyze complex log data.

I used to store my log data in a database and used SQL to analyze

them. Even though I am familiar with formulating sophisticated SQL

commands, they have innate limitations compared to visualizations such

as LifeFlow. For example, I can get the activity switch statistics using

SQL by calculating the average switch counts. However, they are mostly

aggregated scores and it cannot provide the overview of the distribution

of the activity switches, which LifeFlow can do successfully.

At the same time, the activity switch analysis is prone to a criticism that

213

if the frequent switches only reflect the random and meaningless actions

of the users (probably due to the frustration from a new tool). Using

LifeFlow, we can check the visual length of actions (longer actions will

represent a low chance of random switches) and the regular pattern of

sequences in order to address such concerns.

For identifying the user-model related activity patterns and generating a

meaningful list of those activities, I believe visual analysis using LifeFlow

is one of the most efficient methods. In particular, it was very helpful to

examine the actions before and after the interested actions. Using this

feature, I was able to easily identify the frequent chain of activities that

the users performed during the experiment.”

6.8 Tracking Cement Trucks

6.8.1 Introduction

Freewill FX Co., Ltd., is a company based in Bangkok, Thailand that designs

and produces wireless sensors and mobile tracking devices. Freewill FX’s mission

is to help people lead better lives and to help businesses become more effective by

using mobile and wireless technologies. One of the products that the company offers

is TERMINUS: Advanced Fleet Management System. Knowing just the locations of

your fleet does not provide tangible business benefits. Thus, TERMINUS focuses

more on adapting fleet management systems to business processes and optimizing

fleet utilization to generate measurable business benefits.

214

After hearing about LifeFlow, Mr. Chanin Chanma, product specialist, and

Mr. Sorawish Dhanapanichakul, product manager of TERMINUS, were interested

in looking at one of the datasets that they had in LifeFlow. One of their clients had

ordered devices for tracking cement trucks. The sensory data from these devices

were automatically collected into an excel spreadsheet.

6.8.2 Procedure

Mr. Chanma and I and discussed about the possibility of using LifeFlow to

analyze his data. Following the discussion, he sent me a spreadsheet that contains

sample data. I then converted the data using DataKitchen and contacted him back

with a few screenshots. We then arranged an online meeting via Skype with him

and Mr. Dhanapanichakul to look at the data together. After the online meeting,

I summarized findings from the meeting and requested for additional feedback via

email. The time between each meeting was roughly one week and the total duration

of this study was six weeks.

6.8.3 Data

The dataset consists of 821 trips and 8,091 events. Each trip consists of

multiple events tracked from the beginning to the end of the trip: Enter plant,

Start load cement, End load cement, Leave plant, Arrive site, Start fill

cement, End fill cement, Leave site and Back to plant. IDs of the plant, site

and vehicle were also documented for each trip.

215

Figure 6.27: LifeFlow showing 821 trips: The majority of the trips had normal
sequences. However, there were some anomalies in the bottom.

The raw data was in MS Excel Spreadsheet format. A preprocessing was

required to translate the column headers into English. (They were in Thai.) After

that, the spreadsheet was converted into LifeFlow format using DataKitchen.

6.8.4 Analysis

6.8.4.1 Overview

After loading the dataset with 821 trips, we could see that, most of the time,

the trips occurred step-by-step as expected (Figure 6.27). Then we could see the

216

Figure 6.28: Anomalies: 1) Some trucks arrived to the sites but did not fill cement.
2) Some trips were reported to have begun filling cement before arriving to the sites.
3) Some trips were reported to have loaded cement before entering plants.

time distribution of each step by placing the cursor over and select some trips that

took a longer time than usual from the distribution.

6.8.4.2 Anomalies

In addition to the normal sequences, we also noticed some rare sequences on

the bottom of the screen, so we zoomed into those sequences (Figure 6.28). These

anomalies could be placed into two categories:

1. Incompleted trips : Some trucks did not go to the sites or went to the sites but

217

did not fill the cement. A possible explanation was the trip might have been

cancelled.

2. Erroneous sequences : Some trips were reported with Start fill cement be-

fore Arrive site, or Start load cement before Enter plant, which is il-

logical. Because the mobile sensors trigger events when reaching specified

locations, this indicated inaccurate locations of some plants and sites.

6.8.4.3 Monitoring plants’ performance

Mr. Dhanapanichakul observed that trips from some plants usually take more

time, so we tried to confirm his observation using LifeFlow. However, these trucks

sometimes stay overnight at plants or sites. Comparing the overall time from Enter

plant to Return to plant will include overnight time, resulting in a biased com-

parison. Therefore, three event types; Enter plant, Leave site and Return to

plant; were excluded to eliminate the overnight time and provide a more accurate

comparison. Figure 6.29 shows the visualization after excluding the three event

types and grouping by Plant ID. The ranking was changed to “Average time to the

end” instead of the default “Number of records”, so the plants were sorted by their

trip time. The slowest plant was “C313”, which is located far from the city. The

average time from leaving this plant (green) to arrival at sites (red) was 45 minutes,

which was much longer than other plants. From our discussion with the engineers

at Freewill FX, this plant is responsible for a very wide area coverage and located

in a district with very heavy traffic congestion.

218

Figure 6.29: Trips are grouped by Plant ID. Three event types; Enter plant,
Leave site and Return to plant; were excluded to eliminate the overnight time
and provide a more accurate comparison. Trips from plant “C313” took on average
45 minutes from leaving plants (green) to arrival at sites (red), which was much
longer than other plants. This is because of its wide area coverage and regular
heavy traffic near its location.

219

Figure 6.30: All events except Start fill cement (blue) and End fill cement

(light blue) are hidden. Next, we aligned by Start fill cement, grouped by at-
tribute Site ID, and ranked by “Average time to the end”. We can see cement
filling duration at each site ranging from two minutes to four hours.

6.8.4.4 Classifying customers from delay at sites

The cement company was interested in analyzing the cement filling duration at

each site. This could help the manager decide how to treat their customers according

to the delay incurred. For this analysis, we start by hiding all events except Start

fill cement (blue) and End fill cement (light blue). Next, we aligned by Start

fill cement, grouped by attribute Site ID, and ranked by “Average time to the

220

end”. We could see duration ranging from two minutes to four hours on average

(Figure 6.30). Interesting cases were low-performance sites that took quite a long

time to complete the operation, e.g, four hours. Zooming into the top portion of

the visualization helped us identify those sites.

Similar analysis can be performed to analyze these scenarios:

1. Group by Plant ID and analyze cement loading duration (time gap between

Start load cement and Finish load cement).

2. Group by Vehicle ID and analyze travel time (time gap between Leave

plant and Arrive site).

6.8.4.5 Search

The search could be useful in finding particular patterns. For example:

• Finding trips that had cement loading time longer than a specified time period,

e.g., 40 minutes.

• Finding trips that had cement filling duration longer a specified time period,

e.g., three hours.

• Finding trips that had travel time from plants to sites longer than a specified

time period, e.g., 30 minutes.

221

6.8.5 Conclusions and Discussion

LifeFlow was applied to fleet management in this case study. Because the ce-

ment delivery process is structured and straightforward with little variations, Life-

Flow can easily identify anomalous patterns and detect tracking errors. The ability

to include and exclude events rapidly allows quick explorations of subsets of the

data to answer particular questions, such as cement filling time or travel time from

plants to sites. Grouping event sequences by attributes and ranking support easy

comparison between subgroups, especially when all groups have the same sequence.

Mr. Chanma said that LifeFlow helps them see the data and understand the

big picture. However, the learning curve can be challenging in the beginning. A

proper training is required to help users understand the visualization and learn the

interactions. The Freewill FX team envisioned the possibilities of using LifeFlow for

another scenario when additional data are available. Everyday, the cement company

has to decide how many cars should be sent to a particular plant at the same time.

For example, should they send a fleet of six trucks or three fleets of two trucks each?

Too large fleets can lead to long queues at destinations. To begin answering this

question, we can group the trips by index of the truck in a fleet (1, 2, 3, . . .), and

see how long the following trucks in each fleet (2, 3, 4, . . .) took to fill cement.

222

6.9 Soccer Data Analysis

6.9.1 Introduction

Sports are activities that captivate a wide range of audiences and attract major

media attention. For example, the World Cup 2010 was broadcast in 214 countries

and 715.1 million people—that is one in ten people alive at the time—watched

the final. Key events and statistics from these competitive matches were carefully

collected into sports databases. These databases are invaluable for coaches to learn

their teams’ performance and adjust their coaching strategies. Sports scientists are

studying these data intensively [56] while sports fans also enjoy exploring fun facts

from sports statistics.

In this study, I explore how LifeFlow can be used for analyzing sports data.

The dataset is collected from Manchester United Football Club (Man U), an English

professional soccer club, based in Old Trafford, Greater Manchester, that plays in the

English Premier League. Manchester United has won the most trophies in English

football, including a record 19 league titles and a record 11 FA Cups. It is one of

the wealthiest and most widely supported football teams in the world.

I invited Mr. Daniel Lertpratchya, a PhD student at Georgia Institute of

Technology and a devoted Man U fan who has been supporting the team for more

than ten years, to participate in this study.

223

6.9.2 Procedure

I discussed the possibilities of analyzing data with LifeFlow with Mr. Lert-

pratchya. After he expressed his interest, I sent the software, data and introduction

videos to him via email, and encouraged him to explore the data on his own. I also

provided technical feedback as necessary. Two weeks after, we arranged an 1.5-hour

online meeting via Skype to discuss his findings. I audiotaped this session and later

transcribed and summarized all findings into a report. The total duration of this

study was five weeks.

6.9.3 Data

I gathered the data from all 61 matches that Man U. played in season 2010-

2011. Each match contains the following events:

• Kick off : Beginning of the match

• Score: Man U scored.

• Concede: Opponent scored.

• Pen missed : Man U missed a penalty.

• Yellow : Man U conceded a yellow card.

• Red : Man U conceded a red card.

• Opp Yellow : Opponent conceded a yellow card.

• Opp Red : Opponent conceded a red card.

• Final whistle: End of the match

The dataset also contains the following attributes for each match:

224

• Competition: English Premier League, UEFA Champions League (UCL), FA

Cup, Carling Cup, FA Community Shield or friendly

• Opponent : The opponent team

• Result : win, loss or draw

• Venue: home, away or neutral

• Score: Total Man U goal(s)

• Opponent Score: Total opponent goal(s)

6.9.4 Analysis

6.9.4.1 Finding entertaining matches

The first scenario that we discussed was finding entertaining matches to see

replay videos. Mr. Lertpratchya defined his entertaining matches as follows:

1. Matches that Man U dominated and scored several goals

Mr. Lertpratchya used the LifeFlow view to select matches that Man U scored

the first three goals in a row (Figure 6.31). The detail view on the right show

matches against Birmingham City, Blackburn Rovers, Bursaspor, MLS All

Stars, Newcastle United, West Ham United and Wigan Athletic. He was

interested in the two highest scoring matches against Blackburn Rovers and

Birmingham City when Man U won 7-1 and 5-0, respectively. Using tooltips

to learn about goalscorers (event attributes), we found that Dimitar Berbatov

scored five goals in the Blackburn game and also a hat-trick (three goals) in

the Birmingham game.

225

Figure 6.31: Matches that Man U scored the first three goals

2. Matches that both teams scored in “an eye for an eye” fashion

Another type of entertaining matches was when one team scored a goal and

another team retaliated by scoring in return. We looked for patterns with

alternating Score (green) and Concede (purple) bars and found the match

against Wolverhampton Wanderers (Wolves) in the Carling Cup (Figure 6.32).

In this game, Man U scored and was equalized by Wolves twice before Javier

Hernandez was substituted and scored the winning goal in the stoppage time.

3. Matches that Man U conceded early goals and came back to win the game

Mr. Lertpratchya grouped the matches by results and focused on the winning

matches that start with Concede (purple). There were matches against Black-

pool and West Ham United that Man U conceded two goals and came back

226

Figure 6.32: Matches that both teams scored in “an eye for an eye” fashion

Figure 6.33: Matches that Man U conceded early goals and came back to win the
game

227

Figure 6.34: Matches grouped by Score and Result

to win 3-2 and 4-2, respectively (Figure 6.33).

6.9.4.2 Predicting chances of winning

To see the percentage of winning when Man U scored n goals, we grouped

matches by Score and Result. LifeFlow in Figure 6.34 shows all proportions of

win, loss and draw when Man U score n goals. The proportion can be used for a

rough estimation of winning.

6.9.4.3 Explore statistics

Mr. Lertpratchya and I explored the dataset from sports fans’ perspective and

found the following interesting facts and observations:

228

Figure 6.35: Summary of all scorelines

1. Scoreline

We grouped the matches by Score and Opponent Score (Figure 6.35). From

the visualization, we found that:

• Man U often scored two goals (19/61 matches).

• There were only nine matches (14.75%) that they did not score.

• 2-1 was the most popular scoreline (nine matches), followed by 1-0 (eight

matches).

• In four out of a total of eight matches that Man U won 1-0, the winning

goals occurred within the last ten minutes. – We selected all 1-0 matches,

removed others and saw the distribution split into two groups: matches

with early goals and late goals (Figure 6.36).

229

Figure 6.36: A distribution of the winning goals in all 1-0 matches: Matches are
split into two groups: matches with early goals and late goals.

2. Opponent

Figure 6.37 shows the matches grouped by Opponent.

• Man U competed against Chelsea more often than any other teams (five

matches), and always scored the first goal.

3. Competition

Grouping the matches by Competition, we saw the difference between their

performance in the English Premier League (EPL), a national competition,

and the UEFA Champions League (UCL), the biggest tournament in Europe

(Figure 6.38).

• Man U scored the first goal in the EPL faster than in the UCL: On av-

230

Figure 6.37: Matches grouped by Opponent: Man U competed against Chelsea in
this season more often than any other teams.

erage the first goals came after 27 and 43 minutes for EPL and UCL,

respectively. This is understandable because most teams tended to be

more cautious in the UCL.

• Matches with many goals occurred in the EPL more than in the UCL:

Since the UCL is a more prestigious competition that consists of all the

best teams in Europes, the teams’ qualities are higher and, therefore,

more difficult to score against.

• In all matches that Man U won in the UCL, they scored the first goals :

On the other hand, if they conceded the first goal, they drew or lost

(Figure 6.39).

231

Figure 6.38: Matches grouped by Competition: Man U scored (green) the first goal
in the English Premier League (EPL) faster than in the UEFA Champions League
(UCL).

232

Figure 6.39: Matches grouped by Competition and Result: Man U scored (green)
the first goal in all matches that won in the UCL.

4. Home and Away

Venues played an important role in the team’s performance.

• Man U is very strong at home but not as strong on the road : Grouping

by Venue, the visualization shows that Man U scored first in most of the

home matches. Grouping by Venue and Result (Figure 6.40), we found

that they won most of the home matches and scored first in all of the

winning home matches. Grouping by Result and Venue (Figure 6.41)

shows that many scoreless (0-0) draws are away matches.

• For away matches, the number of matches decreased with an increasing

number of goals scored, but the same is not true for home matches : The

233

Figure 6.40: Matches grouped by Venue and Result: Venues played an important
role in the team’s performance. Man U had a great performance at home but was
not as strong on the road.

234

Figure 6.41: Matches grouped by Result and Venue: Most common score in a draw
match is 0-0. Most of these matches are away matches.

number of goals sorted descending by the number of matches with that

amount of goals are 0,1,2,3,4 and 5 for away matches and 2,1,3,4,0,5 and

7 for home matches (Figure 6.42).

5. Goals

Goals are the most important events in soccer matches.

• Man U often scored first : They scored first 41 times while the opponents

scored first 14 times. The patterns can be seen in Figure 6.43.

• Three fastest goals occurred on the first minute: We aligned by Kickoff

and hide Concede. Using a selection from distribution, we found three

matches that Man U scored very early (Figure 6.44). One match was

235

Figure 6.42: Matches grouped by Venue, Score and Opponent Score: For away
matches, the number of matches decreased with an increasing number of goals
scored, but the trend is not the same for home matches.

Figure 6.43: All matches that Man U played in season 2010-2011

236

Figure 6.44: Three fastest goals occurred on the first minute: Using a selection from
distribution, we could select matches that Man U scored very early.

a friendly match against MLS all stars. Federico Macheda was the

goalscorer. The other two matches are in EPL against Aston Villa and

Chelsea. Javier Hernandez scored in both of them.

• Javier Hernandez was the most frequent scorer of the first goal : We right-

clicked on the first green bar (first goal) and brought up a summary of

event attribute “Player”. The summary table in Figure 6.45 lists fre-

quent scorers of the first goal: Javier Hernandez (ten matches) , Dimitar

Berbatov (nine matches), Wayne Rooney (eight matches).

• Javier Hernandez scored the first goal against Stoke City on the 27th

minute twice: By clicking on “Javier Hernandez” in the summary ta-

ble, the matches that Hernandez scored were selected (Figure 6.45). We

237

Figure 6.45: Javier Hernandez and first goals: We right-clicked on the first green bar
(first goal) and brought up a summary of event attribute “Player”. Javier Hernandez
was the most frequent scorer of the first goal. He also scored the first goal against
Stoke City on the 27th minute twice.

238

Figure 6.46: George Elokobi, Wolverhampton Wanderer’s left defender scored the
first goal against Man U twice. Those two goals were the only two goals in his total
76 appearances for Wolves from 2008–2011.

looked at the entire match detail from the LifeLines2 view and noticed

that he scored against Stoke City in both fixtures on the exact same

minute (27’).

• George Elokobi, Wolverhampton Wanderer’s left defender, not any world-

class striker, scored the first goal against Man U most often: We had

looked that Man U players who scored the first goal so we were curious

about opponent players who scored the first goal. We hid Score and

showed Concede instead, then right-clicked on the first Concede (purple)

bar to see attribute summary (Figure 6.46). Each team meet with Man

U only 2-5 times in this season, so most players scored the first goal

239

Figure 6.47: Display only yellow cards and group matches by Result: Man U
received less booking in winning matches.

against ManUtd only once, except Mr. Elokobi, who scored twice. It was

surprising because he is an unknown defender from a small team. Those

two goals were also the only two goals in his total 76 appearances for

Wolves from 2008–2011.

6. Yellow Cards

• Paul Scholes received the first yellow card most frequently : We hid all

events except Kickoff, Yellow and Final Whistle. We right-clicked the

first yellow card bar and brought up the attribute summary and found

that Paul Scholes, not so surprisingly, received the first yellow cards five

times.

240

• Man U received less booking in winning matches : We grouped matches by

Result and found that 17 out of a total of 40 winning matches were free

from yellow cards (Figure 6.47). This supported our assumption that the

opponents did not put much pressure to Man U defence, so there were

not many fouls. We also thought that the players could be less aggressive

and more disciplined when they were winning.

• In all matches that Man U lost, the opponents received yellow cards.–

This was the opposite situation. We hid all events except Kickoff, Opp

Yellow and Final Whistle and grouped matches by Result. The oppo-

nents received yellow cards in all matches that Man U lost. We made an

assumption that Man U were attacking to score back and the opponents

had to stop them by committing fouls.

7. Red Cards

Figure 6.48 shows only Red and Opp Red and groups matches by Result.

• When opponents received red cards, Man U always won: The team took

advantages of having an extra player well and turned them into victories.

• There was not any match that both teams received red cards : Sometimes

this situation happens in a derby or rival match when the atmosphere is

fiery, or a stressful match when the stake is high. However, it did not

happen during the duration of this dataset.

241

Figure 6.48: Display only red cards for both sides and group matches by Result:
When opponents received red cards (blue), Man U always won. There was one
match that Man U won with 10 players.

242

Figure 6.49: (left) Missed a penalty then conceded a goal : A disappointment for the
fans as the match against Fulham ended with a draw at 2-2. Nani had a chance to
make it 3-1, but he missed the penalty kick. (right) Missed a penalty but nothing
happened after that : Man U was awarded a penalty kick while the team was leading
1-0, but Wayne Rooney could not convert it. However, the opponent could not score
an equalizer.

6.9.4.4 Search for specific situations

Near the end of our session, we discussed whether some situations exist in the

matches or not. To answer these questions, we used the FTS to specify and search

for several situations. Some of the interesting queries are reported below:

1. Missed a penalty then conceded a goal : This was an example of situations that

could lead to newspaper headlines. We found a match against Fulham, in

which Nani missed a penalty while Man U was leading 2-1 (Figure 6.49 left).

243

Figure 6.50: Received a red card then scored a goal: A user searched for a situation
when Man U received a red card then conceded a goal. However, he could not find
any, but found a match against Bolton when Man U scored after receiving a red
card instead.

244

After that Fulham equalized and the match ended at 2-2.

2. Missed a penalty and nothing happened after that : This was the opposite of

the previous situation when the team made mistake and was not punished.

We searched for a pattern Pen missed → no Concede / no Score → Final

whistle (Figure 6.49 right). There was a match against Arsenal, in which

Wayne Rooney missed a penalty while Man U was leading 1-0. Luckily, the

match ended at 1-0.

3. Received a red card then conceded a goal : This was a possible situation because

another team might take advantage of having more players. However, we did

not find any match with this pattern (Figure 6.50). The exact match results

was empty. To confirm the results, we looked at the other results and there

was not any match with red card (red) followed by conceding a goal (purple).

Instead, we surprisingly found a match when Man U received a red card then

scored a goal.

6.9.5 Conclusions and Discussion

This dataset, despite its small size (61 records), is interesting because it has

several attributes that can be used in combination to produce interesting perspec-

tives. Including/Excluding attributes and changing attribute orders were heavily

used features in the analysis. The dataset also contains rich event attributes, such

as goalscorers, that highlight the usefulness of attribute summaries.

Mr. Lertpratchya was able to use the software comfortably after watching an

245

introduction video that I sent him. There were only a few issues that he raised

during the study. The first one was about the time axis in LifeFlow. He was

wondering why some patterns were shorter than 90 minutes, despite the fact that

a soccer match is always 90 minutes long. This is because LifeFlow displays a sum

of averages, which can be shorter or longer than the actual time. Another issue

was when we were looking at yellow cards in the LifeLines2 view, we knew that the

selected yellow card is for a specific player, but the tooltip showed another player

that we did not expect. After a moment of frustration, we realized that both players

had yellow cards at the same time and the events overlapped. On the positive side,

he was satisfied with the software and enjoyed our discussion because it aligned

with his interest. He could understand many interesting facts in a short period of

time. In the last part of our study where the FTS was used primarily, I found that

having the results displayed in two parts give more confidence to the results. When

the exact match results are empty, Mr. Lertpratchya examined the other results

and confirmed that the situations he was looking for did not exist. This is more

beneficial than returning nothing and leave the users wonder whether the query is

wrong or the situation really does not exist.

In summary, this case study demonstrates many ways to use LifeFlow with

soccer data. It can help video subscribers pick interesting matches from an archive

to watch. Mr. Lertpratchya was able to select matches that he felt were entertain-

ing. We also discovered many fun facts in the study. Sports journalists can use

LifeFlow to find these fun facts and write about them in the news. Sports fans like

Mr. Lertpratchya can enjoy exploring interesting statistics in their free time or use

246

CATEGORY_SELECT_ALL
FILTER

CATEGORY_SELECT_NONE
SAVE_CONFIG

REVERT_TO_ORIGINAL
LIFELINES2_SELECT

REMOVE_INSTANCES
LIFEFLOW_SELECT_FROM_DISTRIBUTION

CATEGORY_CHANGE_ORDER
PLUG_DATA

ATTRIBUTE_CHANGE_CHECKBOX
LIFEFLOW_SELECT_SEQUENCE

ALIGN
LIFEFLOW_CLEAR_SELECTION

CATEGORY_CHANGE_CHECKBOX
LIFELINES2_EVENT_TOOLTIP

LIFELINES2_SCROLL
LIFELINES2_INSTANCE_TOOLTIP

LIFEFLOW_VERTICAL_PAN_ZOOM
LIFEFLOW_HORIZONTAL_PAN_ZOOM

LIFEFLOW_TOOLTIP

Frequency (per session)

0 50 100 150 200

0.01
0.04
0.05
0.08
0.08
0.19
0.27
0.28
0.38
1
1.1
1.21
1.43
1.5
3.79

8.48
11.49
13.86

65.83
98.39

157.06

Figure 6.51: Features of LifeFlow used in 238 sessions

them to predict match results. Coaches can analyze their teams’ performance with

LifeFlow and adjust their tactics. Moreover, LifeFlow has potential to be useful for

other sports, which a normal user can foresee. Near the end of our discussion, Mr.

Lertpratchya asked about the possibilities of using LifeFlow for football, hockey,

and other sports.

6.10 Usage Statistics

I have collected action logs of LifeFlow usage since March 2011. After removing

short sessions, which resulted from debugging and testing, 238 sessions were qualified

for usage analysis. The frequencies of actions were counted and plotted as a bar

chart (Figure 6.51).

As shown in Figure 6.51, the most common action was LIFEFLOW TOOLTIP,

followed by LIFEFLOW HORIZONTAL PAN ZOOM and LIFEFLOW VERTICAL PAN ZOOM.

247

The high frequencies of these three actions indicated that users spent most of the

time navigating and exploring the LifeFlow overview visualization. The next three

most common actions were LIFELINES2 INSTANCE TOOLTIP, LIFELINES2 SCROLL

and LIFELINES2 EVENT TOOLTIP, which implied that users were also examining

records in detail using the LifeLines2 view on the right side, but less frequently.

From the frequencies of the three tooltip actions, users seemed to pay more

attention towards higher-level information. LIFEFLOW TOOLTIP, a tooltip for Life-

Flow sequence, was used more than LIFELINES2 INSTANCE TOOLTIP, a tooltip for

each record, and LIFELINES2 INSTANCE TOOLTIP was used more than LIFELINES2

EVENT TOOLTIP, which is a tooltip for each event. After visualizing the tooltip

usage pattern in LifeFlow (Figure 6.52), the visualization shows that tooltip for

LifeFlow sequence (LIFEFLOW TOOLTIP (green)) was often used and followed by

tooltip for each record (LIFELINES2 INSTANCE TOOLTIP (blue)). After that, users

often used LIFEFLOW TOOLTIP (green) again, or LIFELINES2 EVENT TOOLTIP (light

blue). Users rarely used LIFELINES2 EVENT TOOLTIP (light blue) immediately after

LIFEFLOW TOOLTIP (green).

Other than navigational and tooltip actions, other frequent actions were “in-

cluding and excluding events” (CATEGORY CHANGE CHECKBOX), “including and ex-

cluding attributes” (ATTRIBUTE CHANGE CHECKBOX), and “align” (ALIGN).

In terms of selection, users were found selecting top-down from the LifeFlow

overview (LIFEFLOW SELECT SEQUENCE and LIFEFLOW SELECT FROM DISTRIBUTION)

more than selecting bottom-up from the LifeLines2 view (LIFELINES2 SELECT).

248

Figure 6.52: Analyzing LifeFlow’s tooltip usage with LifeFlow: LIFEFLOW TOOLTIP

(green), a tooltip for LifeFlow sequence, was often used and followed by LIFELINES2

INSTANCE TOOLTIP (blue), a tooltip for each record. After that, users often
used LIFEFLOW TOOLTIP (green) again, or LIFELINES2 EVENT TOOLTIP (light blue),
which is a tooltip for each event.

249

6.11 A Process Model for Exploring Event Sequences

Based on usage statistics and observation of user behaviors during the case

studies, I have developed a process model for exploring event sequences (Figure 6.53).

This process model follows the sensemaking loop by Card and others [95, 123], but

emphasizes on event sequence analysis. My process model drew inspirations from

Thomas and Cook’s canonical 4-step process model for analytical reasoning [123]

and its extensions [45, 133]. The process model consists of the following steps:

1. Defining goals.

2. Gathering information.

(a) Preprocessing data

(b) Cleaning data.

3. Re-representing the information to aid analysis.

4. Manipulating the representation to gain insight.

(a) Manipulating the representation.

(b) Exploring results of manipulation.

(c) Searching for patterns.

(d) Exploring search results.

(e) Handling findings.

5. Producing and disseminating results.

(a) Recording findings.

(b) Producing results.

(c) Disseminating results.

250

Defining goals

Gathering information

Cleaning data

Re-representing the information to aid analysis

Manipulating the representation to gain insight

Producing and disseminating results

Manipulating the representation

Exploring results of manipulation

Searching for patterns

Exploring search results

Handling findings

•  Change alignment
•  Include/Exclude event types
•  Include/Exclude/Reorder attributes
•  Filter

•  Understand common trends
•  Extract rare or unexpected patterns
•  Extract difference between groups
•  Examine distributions of time gaps
•  Examine summaries of attributes

•  Examine exact match results
•  Examine other results

Preprocessing data

Disseminating results Producing results Recording findings

Figure 6.53: A Process Model for Exploring Event Sequences

251

6.11.1 Defining goals

In the beginning of an analysis, users are advised to define goals or questions

that they seek to answer. Although it is not strictly required, having goals will clarify

what will be needed in the dataset and guide the appropriate data conversion. For

instance, in the medical case studies, the physicians can treat each visit as one

record or multiple visits of the same patients as one record. In a patient transfer

study, the goal is to learn about common trends of a visit. Treating each visit as

one record emphasizes what happens within each visit. On the other hand, in a

hospital readmission study, users focus on finding returning patients, so it is more

suitable to group multiple visits into one record.

6.11.2 Gathering information

This step consists of two phases: preprocessing raw data into LifeFlow format

and cleaning data errors.

6.11.2.1 Preprocessing data

LifeFlow does not connect to databases directly, but requires users to export

and convert their data into a custom format. A tool called DataKitchen was devel-

oped to help users convert their data. However, users still need to understand the

data format to fully exploit the benefits of LifeFlow. A dataset in LifeFlow consists

of event sequence records. Each record contains events and a set of attributes. Each

event consists of a timestamp, an event type and a set of attributes. The main

252

decisions in this step are defining record and event types.

• Record: Definitions of a record vary according to analysis goals. For example,

in the ICDL study, I first defined a record as an entire http session for each user

that contains all events from when users enter the ICDL website until they

leave the website. However, after realizing that the goal was to understand

how people read books, not understand how people navigate the website, I

redefined a record as a book reading session instead. Each book reading session

contains all events from one user from the time that he/she starts reading one

book until he/she stops reading it. One user can have multiple book sessions.

• Event types: Although LifeFlow does not limit the number of event types, it

is recommended to have less than 15 event types displayed at the same time.

Therefore, it is important to define a minimal set of event types. Here are two

common strategies.

1. Remove irrelevant events from the dataset. For instance, in the ICDL

study, all events that do not represent a page of a book are removed. Users

can choose to leave these events in the dataset and include/exclude them

during analysis as well. However, removing them will make the dataset

more compact and reduce the chances that users will feel overwhelmed

because of having too many event types to choose from.

2. Group multiple event types into a higher-level event type. For exam-

ple, ICU rooms on the 2nd floor (ICU-2nd) and ICU rooms on the 3rd

floor (ICU-3rd) can be grouped into ICU. Users can have both high-level

253

(ICU) and low-level (ICU-2nd, ICU-3rd) event types in the dataset and

include/exclude them according to their needs during analysis.

It is common for users to revisit this step again once they become unsatisfied

with converted data or an analysis goal is redefined. An early phase of each analysis

often consists of trial and error data preprocessings.

6.11.2.2 Cleaning data

After data are converted, users should check for data integrity. From my

observations, this is the first thing to look for after loading data into LifeFlow for

the first time. Users would look at the visualizations and try to ensure that their

data were converted correctly. Some errors due to corrupted timestamps were very

obvious. Common errors found in the case studies fall into these two categories:

1. Illogical sequences : For example, patients died before they were transferred

to ICU (Die → ICU), or cement trucks started filling cement before reaching

construction sites (StartFillCement → EnterSite).

2. Unreasonably long gaps : For example, in the traffic incident study, many in-

cidents were reported to be one hundred years.

However, some errors could be obscured and not discovered until later in the

analysis or even left without being noticed. In the soccer study, we found one match

that Man U lost to the opponent, but the attribute Result for that match was Win.

A systematic way to check for data integrity that could be further explored is to use

integrity constraints in temporal databases as a source of error detection.

254

6.11.3 Re-representing the information to aid analysis

After users are satisfied with their data, a visual analysis would begin. I recom-

mend users to customize the fundamental visual properties, especially color codings

for event types. Choosing appropriate colors can strengthen cognitive process and

aid analysis. Three color-coding strategies were used in the case studies:

1. Distinct color schemes: Use colors that are distinguishable from each other.

It is easier to assign distinct colors to a smaller number of event types. How-

ever, not every dataset has a small (≤ 10) number of event types. When there

are many event types, it can be quite difficult. Here are a few guidelines for

assigning distinct colors:

• If possible, associate meanings of colors with the meanings of events. For

example, in the patient transfer study, ICU events are encoded in red to

indicate critical conditions while Floor events are encoded in green to

indicate safe conditions. In the soccer study, red cards and yellow cards

are encoded with red and yellow, respectively.

• Use neutral color, e.g. different shades of gray, for less important events.

For instance, in the soccer study, Kickoff events are encoded in gray to

capture less attention.

• Reuse the same color if necessary. Some event types that are always apart

can share the same color. For example, in the soccer study (Figure 6.34),

Kickoff and Final whistle events are both encoded in gray. In the

cement truck study (Figure 6.27), blue was used for start loading cement

255

(StartLoadCement) and start filling cement (StartFillCement).

• Use the same color to provide a “bracket” effect. In the cement truck

study (Figure 6.27), red was used to indicate arrivals and departures

from sites (ArriveSite and LeaveSite). It creates a visual block, from

one red bar to another red bar, that contains StartFillCement and

EndFillCement events in between.

2. Sequential color schemes: This type of scheme is useful for showing con-

tinuity when there is an expected sequence of events. For example, in the

ICDL study, page numbers are encoded in a gradient from blue to red to in-

dicate reading direction (Figure 6.18). This strategy can also be applied to

binned numerical values, levels of intensity, age ranges, temperature ranges,

etc. However, assigning different colors for long sequences (> 10 events) can

still be a challenge. Users can assign the same color to consecutive events. For

instance, page 27 and 28 in the ICDL study are encoded with the same color.

3. A combination of both: An advanced color scheme can combine distinct

and sequential colors. As seen in the cement truck study (Figure 6.27), dis-

tinct colors are used primarily and sequential colors are used partially to indi-

cate continuity of loading cement (StartLoadCement → FinishLoadCement)

and filling cement (StartFillCement → EndFillCement). StartLoadCement

and StartFillCement are encoded with blue while FinishLoadCement and

EndFillCement are encoded with light blue.

256

6.11.4 Manipulating the representation to gain insight

Users can apply different visual operators available in LifeFlow to change the

visual representation, search for pattern, explore results and gain insight. To guide

a systematic analysis, I have included a methodology for event sequence analysis,

which was inspired by the 7-step methodology for social network analysis by Perer

and Shneiderman [89].

6.11.4.1 Manipulating the representation

Users can use the following visual operators to manipulate the LifeFlow visu-

alization and display different perspectives of the data.

1. Change alignment: An extreme approach is to try all event types as align-

ment points. However, in a more practical approach, users pick only event

type x that is interesting to ask what happen before or after x.

2. Include/Exclude event types: After each alignment is set, users can in-

clude/exclude different combinations of event types to ask what are the rela-

tionships between event types e1, e2, e3, . . . , en. An extreme approach is to

try all combinations, which could be very time-consuming. Event types that

are irrelevant to an alignment point can totally be excluded. For example,

in the ICDL web logs, when a visualization is aligned by the second page of

the books, an event type “enter wrong password during log in” seems to be

irrelevant.

3. Include/Exclude/Reorder attributes and use them to group records:

257

After an alignment and a set of event types are specified, users may ask if there

is any difference between groups of event sequences when they are grouped by

attributes a1, a2, a3, . . . , an?”, or what are the proportions of each group. Life-

Flow allow users to include/exclude attributes and group the event sequences

in different ways. Using multiple attributes in combination and changing the

order of attributes used for grouping were found to be very useful during the

soccer analysis.

4. Filter: During an exploration, users can select and remove uninterested pat-

terns from the dataset to narrow down. This action can be used in between

the three actions above. An example of this strategy is demonstrated in the

patient transfer study (Section 6.2.4.2).

6.11.4.2 Exploring results of manipulation

After applying the visual operators in Section 6.11.4.1, users examine the

updated visualization to extract findings. If nothing interesting is present, users

may continue manipulating the representation or switch to searching.

1. Understand common trends: Examine both sides of an alignment and

try to answer what happen before and after the alignment. Extract the major

trends from patterns with high proportion. For instance, in the patient transfer

study, most patients came to the ER and were discharged (Figure 6.1). In the

cement truck study, most of the event sequences follow a certain procedure

(Figure 6.27). In the ICDL study, after aligning by the second page, most of

258

the users seemed to read in order and did not have any event before the second

page (Figure 6.19).

2. Extract rare or unexpected patterns: For example, users who read books

in backward direction, traffic incidents that last for more than one hundred

years, or patients who died before they were transferred to the ICU.

3. Extract difference between groups: If one or more attributes are used,

find if there is any difference between groups. For example, in the soccer

dataset when grouped by Competition, the visualization shows that Man U

scored the first goal in the English Premier League (EPL) faster than in the

UEFA Champions League (UCL) (Figure 6.38).

4. Examine distributions of time gaps: Look for interesting gap information

(e.g., three goals occurred on the first minute) or irregularities (e.g., a skewed

distribution of Agency C’s clearance time in the traffic incident study). When

there are many gaps, the rank-by-feature panel (Figure 3.14) can be used to

recommend interesting distributions.

5. Examine summaries of record and event attributes: Look for frequent

record attributes and event attributes. For example, find top goalscorers by

looking at frequency of event attribute Player of event Score (Figure 6.45).

6.11.4.3 Searching for patterns

According to the case studies, there were a few situations that trigger a search.

259

1. During exploration, users find an interesting pattern . For example, in the hos-

pital readmission study, my collaborator saw an interesting pattern (Registration

→ Discharge→ Registration→ Die) from one patient record and searched

for other patients with that pattern (Section 6.5.6.6).

2. Once users are familiar with and gained better understandings of their datasets

from manipulating the representation, they may question existences of partic-

ular scenarios. As reported in the soccer study, my collaborator asked towards

the end of the session if there was any match in which Man U missed a penalty

and then conceded a goal (Section 6.9.4.4).

3. It is also possible that users are already familiar with their datasets and can

start an analysis by testing their hypotheses about existences of particular

patterns.

6.11.4.4 Exploring search results

After the search is executed, users can explore search results to learn and gain

new insight about the patterns that they have just searched for. Similarly, if nothing

interesting is present, users may continue searching or switch to manipulating the

representation.

1. Examine exact match results: See if a specified pattern exists in a dataset.

Count the number of results. Do the results match users’ expectations?

2. Examine other results: If the exact match results are empty, examine other

260

results to confirm that the specified pattern does not exist or check if there

is any similar pattern. Even if the exact match results are not empty, there

could be interesting similar patterns. For instance, my collaborator searched

for a match that Man U received a red card and then conceded a goal. The

exact match results are empty. However, the other results show a match that

Man U received a red card and then scored—to the surprise of both of us

(Figure 6.50).

6.11.4.5 Handling findings

Each finding from an exploration (Section 6.11.4.2 and 6.11.4.4) falls into one

of these three categories: positive (e.g., one that helps users answer their questions),

negative (e.g., one that tells them the answer they seek cannot be answered) and

unexpected (e.g., an unanticipated characteristic of the data is found and led to

new questions) [133]. During this step, users may also redefine their analysis goals

according to their findings.

When users reach a positive finding, they would try to use their domain exper-

tise to comprehend and explain the finding. If the observation sounds and provides

interesting insights, they would record the results for dissemination. For example, in

the ICDL study, we found sequences in which visitors accessed previous pages before

continuing to the next pages, such as 3→ 4→ 3→ 4→ 5. Using an understanding

of how a person normally read a book, we implied that the sequences reflect behav-

iors of people who flipped back to a previous page to catch up some contents before

261

continuing (Section 6.6.4.3). Sometimes a positive finding also introduces new ques-

tions that lead to further analysis. For instance, in the soccer study, after noticing

that Man U often scored first (Figure 6.43), an immediate follow-up question was

how fast did they usually score? This encouraged us to analyze the distribution and

found that the three fastest goals occurred on the first minute (Figure 6.44).

On the other hand, a negative finding could indicate a roadblock. In many

cases, this roadblock can be passed with more data, or better preprocessing and

cleaning, which will push users back to the information gathering step. For ex-

ample, a physician wanted to find common diagnoses for patients’ first visits (Sec-

tion 6.5.6.7). However, the diagnoses were very detailed—such as “Chest Pain Nos”,

“Chest Pain Nec”—and, therefore, could not be grouped to show common trends

until these diagnoses are preprocessed into higher level categories. Some negative

findings are dead-ends which cannot be continued. Some are due to insufficient data

or limitations of LifeFlow. In the hospital readmission study, the discharge times-

tamps were not guaranteed to be accurate, therefore preventing any meaningful

interpretation of the time from registration to discharge. The software limitations

might be resolved by adding new features or delegating further analysis to exter-

nal tools. For example, I was asked if LifeFlow can produce a tabular report that

summarizes number of patients according to number of visits (1,000 patients visited

once, 200 patients visited twice, and so on). LifeFlow can provide number of pa-

tients via tooltips, but does not provide a table that contains all the numbers. This

feature can be added or users can use an external tool to perform this task.

An unexpected finding is a wildcard that could lead to discovery. Similar to

262

a positive finding, if an observation sounds and provides interesting insight, users

would record the results for dissemination. For instance, we found that some visi-

tors accessed books on ICDL website in backward direction (Section 6.6.4.4). Un-

fortunately, many of these unanticipated findings are just illogical sequences, which

indicate data errors and push users back to the information gathering step.

6.11.5 Producing and disseminating results

Once users reach their analysis goals, the last step will be preparing their

findings to share with colleagues. I separate the work in this step into three phases:

recording finding, producing results and disseminating results.

6.11.5.1 Recording findings

This phase occurs immediately after users handle findings and find interesting

insight. Users record important information that will be refined into the final results.

After that, if an analysis is not completed yet, users will go back to manipulate the

representation to gain more insight. There are a few common activities in this phase.

• Record findings : Users jot down the findings, e.g., “In all matches that Man

U won in the UCL, they scored the first goals” or “Patients with at least six

visits, which is 2% of patients, account for 4.3% of visits.”

• Record provenance: Users record an analysis route that took them to their

findings. The provenance is very important because it allows users to repro-

duce the findings and explain their reasoning processes.

263

• Capture screenshots : Screenshots are taken and sometimes annotated.

• Export data: In some cases, users also export the final dataset for further

analysis in external tools. For instance, in the patient transfer study, the

physician can export medical record numbers of the bounce back patients to

examine their medical histories in more detail.

6.11.5.2 Producing results

After all analyses have been completed, users compile all raw findings and

include supplemental information from external sources into final results. If neces-

sary, users can reproduce findings to create better screenshots, capture more detailed

information, etc. Users may also gain more insight while reproducing results.

6.11.5.3 Disseminating results

When LifeFlow users have extracted their insights, the screenshots can be

annotated (graphically and textually), captions can be added and a report generated

as a slide presentation, document, or video. Live presentations to groups and email

dissemination can reach stakeholders who will make decisions about taking action

or refining the analysis.

6.11.6 Summary

The visual analytics process model described in this section is designed to guide

users in learning how to explore event sequences and help designers improve future

264

visual analytic tools. This iterative process promotes insight discovery through

multiple steps that involve data understanding, data cleaning, choosing represen-

tations, hypotheses generation, hypotheses validation and extraction of evidence to

share with colleagues. Currently, this process is conceptual and not yet implemented

in the user interface, but could be in the future.

6.12 Design Recommendations

The case studies, usage statistics and observations have revealed the strengths

and weaknesses of LifeFlow. I have noticed many interesting user behaviors and

generalized these into the a list of recommendations for designing a user interface

for exploring event sequences.

1. Use Align-Rank-Filter (ARF) framework: The ARF framework [131,

132] was originally developed for a list of multiple event sequences. However,

applications of this concept are not limited to the list view only. Alignment

works well with the LifeFlow overview and has proven to be one of the most

useful features in the case studies. Changing the reference point often opens up

new perspectives and triggers new questions from a new angle. Ranking offers

a way to reorder and organize visual components to gain new insight, such

as ranking the LifeFlow sequences by time instead of cardinality. Filtering

allows users to trim the dataset and focus on a subset of data. The filtering

mechanisms interact directly with an underlying data model and, therefore,

can operate independently from any visual components.

265

2. Provide multiple levels of information that can be accessed in an

organized manner: Event sequence information can be grouped into three

levels. Users should be able to drill down to a lower level from a higher level.

(a) Event-level : Information specific to each event, such as time or event

type. This is the lowest level.

(b) Record-level : Information specific to each record, such as ID, and aggre-

gations of event-level information within each record, such as number of

events in each event type or sequence of events.

(c) Overview-level : Aggregations of record-level information, such as num-

ber of male patients, and aggregations of event-level information across

multiple records, such as a distribution of events over time or a frequency

table of all sequences of events. This is the highest level.

3. Provide multiple overviews from different aspects: An overview usually

requires data aggregation that sacrifices some aspects of the data. Therefore, it

is very unlikely that only one overview will be enough to summarize all aspects

of the data. For example, LifeFlow can provide a summary of sequences and

gaps between sequences, but it cannot show the temporal aspects as well as

a histogram, e.g., how often a patient visited in January 2010. To this end, I

believe that having multiple overviews will complement each other and provide

a better big picture.

4. Use coordinated multiple views that are loosely coupled: The ben-

266

efits of having multiple views is when using them in combination, they can

complement each other. This can be achieved through brushing and linking.

In addition, not every task will require all views at the same time. There-

fore, each view should be independent and can function without knowing or

requiring the existence of any other view, following the Model-view-controller

(MVC) paradigm. This way, each view can be hidden or displayed as needed,

to better utilize screen space.

5. Incorporate non-temporal attributes: It is challenging to gain insight

from temporal information alone. Including other attributes in the analysis,

such as patients’ genders, physicians’ names, can provide a better understand-

ing of the data. These attributes sometimes can help explain the cause and

effect relationships between events.

6. Support rapid inclusion/exclusion of event types and grouping event

types into hierarchy: As evidenced in the case studies, an ability to include

and exclude events rapidly allows quick explorations of subsets of the data

without going back to another round of preprocessing. Several users expressed

also their needs to dynamically change the granularity of the event types. For

example, ICU can be split into ICU-2ndFloor and ICU-3rdFloor. In the

beginning of an analysis, users want to treat both event types as ICU, but in

the later stage, they want them to be separated.

7. Provide search: Search may often be a forgotten feature in the beginning of

an analysis, but once users have identified an interesting pattern, it becomes

267

a valuable feature to have. Users can come back with the same query a month

later or use the same query in another dataset.

8. Support data preprocessing and cleaning: Data preprocessing and clean-

ing are inevitably parts of the exploratory data analysis. Many visualization

systems delegate these tasks to external tools [58, 57]. However, by including

some simple tasks in the user interface, it can reduce the gap between prepro-

cessing and analysis and facilitate a smoother and more continuous process.

9. Keep history and handle mistakes: An exploratory data analysis consists

of many iterations. Without proper support from the user interface, users will

have hard time remembering what has been done to the data. The final results

should not be only insight, but also analytic provenance—a user’s reasoning

process through the study of their interactions with visualizations [94, 42].

Therefore, the user interface can help by storing history. Also, every once

in a while, users will make a mistake. In my research prototype, “Revert to

original” was found to be a successful feature because it provides a safe point

for users to backtrack to, without reloading the dataset. However, being able

to undo will prevent them from starting over from the beginning and save

more time.

6.13 Summary

As much as it is difficult to judge a book by its cover, it is difficult to evaluate

the benefits of a rich interactive visualization and user interface in a short period of

268

time, especially in a controlled environment. This chapter describes my attempts

to engage with the users, learn and share the understandings of their data and

problems, and use the innovations from my research to tackle their problems in a

new way. Aiming to satisfy users’ needs drives my research towards practical use in

addition to its theoretical contributions. Many limitations from tiny design issues to

requirements for new useful features were identified. Many benefits were confirmed

and new use cases keep being discovered. These case studies provide benefits both

to my dissertation research and to the satisfaction of the users, many of which

are dealing with critical problems in healthcare. By helping them improve their

processes and save more lives in the future, my research is becoming a small part

in changing the world into a better place. My experience from these case studies

also led to a process model and a set of design recommendations for temporal event

sequence exploration that will be useful for future designers.

269

Chapter 7

Conclusions and Future Directions

7.1 Conclusions

Temporal event sequence analysis is an important task in many domains: med-

ical researchers may study the patterns of transfers within the hospital for quality

control; transportation experts may study traffic incident logs to identify best prac-

tices. While previous research has focused on searching and browsing these event

sequences, overview tasks and exploratory search are often overlooked. This disser-

tation describes four contributions that provide new ways to interactively explore

temporal event sequences and describe recommendations for future designers. All

of which are summarized as follows:

1. Overview visualization: Lengthy reports often have an executive summary

to provide an overview of the report. Unfortunately, there was no executive

summary to provide an overview for event sequences. Therefore, the first con-

tribution of my dissertation is developing an interactive visualization called

LifeFlow—which includes data aggregation, visual representation and inter-

action techniques—to provide an overview of millions of event sequences in a

million pixels. By seeing this overview, users can grasp the big picture of the

dataset and often start asking questions about their data that they have never

thought of before. A user study with ten participants confirmed that even

270

novice users with 15 minutes of training were able to learn to use LifeFlow

and rapidly answer questions about the prevalence of interesting sequences,

find anomalies, and gain significant insight from the data. Several MILCs

illustrate its benefits in supporting event sequence analysis in real world prob-

lems.

2. Similarity search interface: In an exploratory search, users can be uncer-

tain about what they are looking for and try to find event sequences that

are similar to the query. I have developed the M&M measure, a similarity

measure, and Similan, a similarity search interface, to support this uncertain

scenario.

The first version allows users to search for event sequences that are similar

to selected target event sequence. A user study showed promising direction

but also identified room for improvement. The second version addresses the

limitations from the first version. The user interface allows users to draw an

event sequence example and search for records that are similar to the example,

with improved search results visualization. The similarity measure was also

sped up and could be customized by more criteria, increasing its performance

and flexibility.

After that, a controlled experiment was conducted to assess the benefits of

exact match and similarity search interfaces for five tasks, leading to future

directions for designing query interfaces that combine the benefits of both

interfaces.

271

3. Hybrid search interface: Searching with an exact match interface, users

may not know what they have missed, but they have confidence in the result

sets and can count the number of records easily. Searching with a similarity

search interface, users can see all records sorted by similarity but have difficulty

deciding how many records should really be accepted to the result sets. The

Flexible Temporal Search (FTS) was then developed to combine the benefits

from both interfaces and provide a more powerful search, so that the users

do not have to choose between the two previous interfaces and make trade-

offs. FTS allows users to see a clear cut-off point between records that pass

the query and records that do not, making it easier to count and giving more

confidence. All records are sorted by similarity, allowing users to see the “just-

off” cases that are right beyond the cut-off point. FTS was found useful in

medical scenarios and was often used in the case studies once the interesting

patterns were identified from the LifeFlow overview.

4. Case Study Evaluations, a Process Model and Design Guidelines: To

evaluate the benefits of this research outside of laboratory environment, I had

recruited domain experts as users and applied these new techniques to tackle

their data analysis problems or offer new ways to analyze their data. While this

dissertation work was initially motivated from medical scenarios, the variety of

applications shown in the case studies demonstrate its generalizability to many

domains where event sequence is the main focus. The experience and lessons

from these studies also led to a process model for exploring event sequences

272

and a set of design recommendations for future visualization designers.

7.2 Future Directions

One goal of this dissertation was to explore this research area and open up new

directions for future researchers. Throughout my PhD study, I have encountered

many limitations in my approach and discovered many new frontiers that I believe

are interesting future directions. Some of which are more specific while others are

more open-ended. I summarize and describe them in this section.

7.2.1 Improving the overview visualization

Although the evaluations demonstrated many benefits of LifeFlow in diverse

applications, it also identified limitations to the design. Improvements would be

welcome for:

1. Representing event types: LifeFlow uses color to represent event types.

This approach has limitations when there are many event types. It is very diffi-

cult to choose different colors for more than 10 categories. Current workarounds

are using many shades of each color to create variations or use same colors for

many event types, but it requires users to carefully pick the colors and does

not always solve the problem. However, there are also benefits of using color.

It creates pre-attentive effect, allowing users to notice some event types easily.

Using colors instead of text labels also make the visualization compact and

clean. Future researchers who find a better way to represent numerous event

273

types, will facilitate still wider usage.

2. Displaying very long event sequences: The current visualization needs a

better way to handle datasets with very long sequences, i.e., sequences with

a large number of events. Each bar in LifeFlow is assigned a fixed width.

The gaps between the bars are used to represent time. When displaying the

overview of the entire dataset before any zooming or filtering, it should be able

to display everything. When the sequences are long, the gaps between bars

are compressed to fit all the bars on the screen. However, in the worst case,

the sequence of bars still cannot fit on the screen even when all the gaps are

zero pixel. New designs might be needed to support these very long sequences.

3. Alignment: When the alignment is set, users often get confused that the

sequences on the same vertical position on the left and right side are the

same records. Actually, they are not, and the two sides (before and after the

alignment) are independent. Even expert users sometimes forget this fact.

4. Displaying gaps between two non-consecutive events in the sequence:

The current design can display a sequence, such as A → B → C, and gaps

between consecutive events (A→ B and B→ C). However, it does not show the

gap between non-consecutive events (A→ C). The horizontal distance between

A and C are the sum of the mean/median time between A → B and B → C,

which may be not equal to A → C. I addressed this limitation by adding an

interaction (measurement tool) that allows the users to measure the time from

A to C. However, many users did not realize in the beginning that horizontal

274

width of an entire sequence does not represent the time from the first event to

the last event in the sequence. Future design needs to emphasize this limitation

to avoid misunderstanding. Moreover, there might be a way to include gaps

between non-consecutive events in the visual display.

7.2.2 Improving the search

The FTS has evolved through many design iterations—beginning from the

similarity search in Similan. I have received many suggestions from users and col-

leagues along the way and used them to improve the design. However, there are still

many improvements that can be made.

1. Clustering results: Instead of showing other results as a list of records. It

could be useful to cluster those records by the reasons that they are excluded

from exact match results. This way, records that fail similar constraints will

be grouped together. By providing a visualization of these clusters, users can

quickly understand an overview of the results.

2. Caching intermediate results to speed up the search: Currently, the

query has to be re-executed every time users adjust weights, which makes it

computationally expensive. It would be more efficient to cache intermediate

results that can be reused to avoid unnecessary computation. The challenge

is designing what could be stored to save the computation.

3. Weights: The FTS user interface allows users to adjust weights and cus-

tomize the similarity measure. However, this freedom to adjust the knobs

275

could also be challenging for users. Previously in Similan, a few experimental

weight presets were implemented and found promising. Developing a set of

common weight presets could help users avoid adjusting the weights manually.

Furthermore, a user study that focuses on weight adjustment could provide

a better understanding of this issue and help designers learn how to design a

better user interface.

4. Including attributes in the query: The FTS focuses only on the tem-

poral aspect of the event sequences, by looking only at the order, existence

and timing of events. However, there is also non-temporal aspect of the event

sequences. They have attributes that should be included in a more completed

query. The attributes include record attributes, such as patient’s gender, and

event attributes, such as room number or diagnosis for each visit. Includ-

ing these attributes in the query will introduce new challenges to both the

similarity measure and query specification.

7.2.3 Supporting more complex data

Event sequence data also have different complexity in each dataset. These

following characteristics require further research to support them:

1. Many similar patterns: The current tree building algorithm groups the

sequences by their prefixes based on the idea that order of occurrence is im-

portant. However, in some datasets, there are many similar sequences that

should have been grouped together to reduce the complexity of the visualiza-

276

tion, but are not grouped because they have different prefixes. For example,

A → B → C → D and A → B → D. Two interesting questions are (1) how to

determine what should be grouped together, and (2) what should be displayed

on the visualization?

2. Streaming data: The techniques in this dissertation were originally devel-

oped for static dataset. However, these techniques might be extended to sup-

port streams of real-time event sequences.

3. Interval-based events: My research focuses on point events, where each

event represents a point in time. However, some events are not just points in

time but have intervals. For example, drug usage contains a start and end time.

This increases the complexity of both the search and visualization to handle

new types of relationships, such as overlap, contain, etc. New approaches have

to be developed to address these new challenges.

4. Multiple concurrent activities: In some cases, a process can be viewed as

a combination of multiple concurrent activities. For example, in the hospital,

patients with difficulty breathing were provided different breathing devices

(e.g, CPAP → BIPAP → Intubation) throughout the treatment. At the same

time, they were transferred between rooms in the hospital (ER → ICU →

Floor). This process, as a result, consist of two concurrent event sequences:

change of devices and room transfers. Each event sequence can be analyzed

individually using the work in this dissertation. However, these two activi-

ties are connected and can provide more complete information when analyzed

277

together, and therefore should not be separated. There are opportunities for

new techniques to handle multiple concurrent event sequences.

5. Concurrent event sequences and numerical time series: Some pro-

cesses may not only consist of multiple activities but also include changes

to numerical variables over time. For example, the patients were transferred

between rooms while the level of blood pressure and heart rate were moni-

tored. Could future researchers develop techniques to help users understand

relationships between all these event sequences and numerical time series from

multiple patients?

7.2.4 Supporting new tasks

Many exploratory tasks in analyzing event sequences were identified during

the MILCs. Many were supported and included in this dissertation work. However,

there were also some tasks that are beyond the scope of this dissertation but show

potential future directions.

1. Comparison: Comparison is one of the interesting tasks that should be ex-

plored further. The aggregated data from LifeFlow, a tree of sequences, could

be used to compare performance of one hospital to another, or performance

of the same hospital in different periods. Using LifeFlow, users can inspect

manually to see the difference between two visualizations, but it is still diffi-

cult to see the changes clearly. I believe that there are research opportunities

for supporting comparisons between multiple tree of sequences, or other trees

278

with values in nodes and edges, in general.

2. Ranking LifeFlow by Feature: An extreme way to explore a dataset is to

try all combinations to include/exclude event types and attributes, which could

lead to a large number of LifeFlow visualizations. Analyzing all of them can be

very exhaustive and time-consuming. Providing a rank-by-feature framework

that can suggest interesting LifeFlow visualizations will be very helpful for the

analysis. The main challenge is defining ranking criteria.

3. Associating outcomes with sequences of events Many event sequences

have associated outcomes. For example, outcomes for medical records could

be measured by cost, mortality or discharge rates. Connecting sequences of

events to their associated outcomes can help data analysts discover how certain

sequences of events may lead to better or worse outcomes.

4. Investigating the cause and effect relationships between events: The

work in this dissertation treat all events in an event sequence as observations,

or effects, and try to show an overview of the effects. However, some event

types could also be considered as factors that may cause the effects. Such

factors, such as the administration of a drug to a sick patient, or a soccer

player receiving a red card (which leaves his/her team short-handed), can

often change the course of subsequent events. Understanding how these factors

influenced the following subsequent events is another important task. Users

should have the options to treat some event types differently as factors and the

visualization should help users detect factors that may influence the effects.

279

7.2.5 Scalability and Performance

My research focuses on the design of the visualizations and user interface,

which are the front-end components. However, the ideal visual exploration tool also

need to be able to handle large datasets effectively and provide responsive feedback

independent of the size of the dataset, and that requires more work in the back-end

components.

1. In-memory issue: For portability and ease of deployment, the working pro-

totype was designed to load all data into memory. However, this design choice

limits the size of the largest datasets to available memory. A scalable design

should hold only necessary data in the memory and store the rest of the data

in the secondary storage via databases or other techniques.

2. Database: Use of database can resolve the in-memory issue and also improve

the performance when the database is properly indexed. A carefully-designed

data model, indexing and query optimization can increase the performance

of the event sequences query and other operations in the back-end of the

visualization.

3. Rendering: Often, when dealing with large datasets, the user interface be-

comes less responsive. This is partly because of the data processing, but

another reason is also the rendering. It is possible that a dataset with millions

of records can lead to millions of objects on the screen. Rendering these many

objects is a very heavy task. In addition, these objects need to be tracked for

event handling and user interactions.

280

4. Cloud computing: Another rising trend in recent years is the rise of cloud

computing and MapReduce clusters. Many time-consuming tasks, such as

data processing, query and rendering, can be accelerated by parallelizing and

offloading the heavylifting to the cloud. Supporting a gigantic dataset in

a responsive manner is a very challenging task, but cloud computing seems

promising to make this task possible.

7.3 Summary

This chapter summarizes all results and contributions from this dissertation.

Each contribution was supported with evaluation results that demonstrate its ben-

efits. I believe that this dissertation has refreshed the way people think about

analyzing multiple event sequences and shows the impact of using event sequences

for understanding many aspects of people’s lives from book reading behaviors to

hospital procedures and more. I have also combined many lessons and feedback

learned from my users and colleagues into a list of interesting future directions,

which could lead to challenging and fruitful research projects. I believe that there

are still many promising opportunities for making sense of these fascinating event

sequences, waiting for the research communities to explore.

281

Appendix A

Examples of Temporal Event Sequences

To exemplify how my research can be used beyond the case studies mentioned

in this dissertation, help prospective users decide whether their datasets are appli-

cable or not, and inspire future researchers about possible datasets, I have compiled

a list of additional event sequence data that I see the possibilities of exploring them

with the work in this dissertation. 1

1. Human activities : Record your daily activities for a period of time and use

the data to reflect on yourself. For example, what is the average time gap

between when the alarm clock rang and the time that you actually woke up?

How long do you take a shower in the morning?

2. Bus stops : Keep track when the buses arrive at each bus stop. Each record is

one bus trip. By analyzing these data, user can track the buses’ performance

or find bottlenecks on the route.

3. Web logs : Each record can be a user or an IP address, and contains all the

pages visited.This can be used to analyze the order that visitors visited pages

on websites. How long did they spend on the pages? Which page did they

visit next?

1Note: Each dataset may require additional cleaning and preprocessing.

282

4. Usability logs : Analyze how users use an application or user interface. See

what features do users often use or what features are often used after certain

actions?

5. U.S. Bill status : The Library of Congress keep history of the U.S. Bills under a

system called Thomas (http://thomas.loc.gov/). A bill history usually follows

this pattern: propose → vote → pass/decline/amend → etc. Each bill can

be declined and revised many times, leading to different patterns.

6. Sports events : In the case study, I demonstrate how to analyze soccer events.

Similar analyses can be performed on football, hockey, baseball, and other

sports.

7. Role-playing game (RPG) characters evolution: In role-playing game, such

as World of Warcraft or Ragnarok (Figure A.1), characters can evolve by

advancing to higher job classes, for example, novice → thief → assassin.

Players have to collect experience points or complete requirements to achieve

the promotion. In game administrators’ and developers’ perspective, it might

be interesting to learn which jobs the players often chose or how long it took

for each job transition, so they can adjust the difficulty and make the game

more balanced.

8. Bug tracking : Project management and bug/issue tracking software, such as

TRAC, are widely used in many companies. Users can report bugs by creating

tickets. Each ticket contains time when it was reported, accepted, completed,

283

Figure A.1: Ragnarok job tree

284

reopened, etc. Users can also indicate the importance level of each ticket or

assign a ticket to a particular developer. These can be used as attributes.

9. Package tracking : Millions of packages are being delivered everyday by carriers

such as FedEx, UPS or DHL. How many of these packages reach the final

destination? How many of these packages are delivered by the guaranteed

time? How often they have to try the second or third delivery attempts?

10. Journal paper review process : Publishing in a journal often requires many

rounds of revising and reviewing. A paper submission could lead to an im-

mediate acceptance, a request for a revision, or a rejection. The revision also

follows the same process again. The publishers might be interested in analyz-

ing the peer review process to see how many papers were rejected? How long

does it take to publish? What are the common paths? Is there any steps that

take too much time and can be accelerated to reduce submission-to-publication

time?

11. Medical check-up: Each person has to go through several stations in check-

up process, for example, blood pressure checking, chest x-rays, pulmonary

function testing, blood test, urinalysis, etc. By tracking the time spent in

each stations and waiting time, the hospital administrators can learn how to

improve the check-up process and customer’s experience.

12. Researchers’ publications : A publication can be viewed as an event, which

can be categoried using the type of the venue (journal, conference, workshop,

285

ldots), type of publication (full paper, short paper, note, ldots), authorship

(first author, second author, ldots), and other attributes. The event sequences

of publications could be used to review researchers’ performance.

13. Student progress : Academic institutions keep track of when students take

classes, propose their dissertation topics, publish papers and graduate. These

academic histories can reflect the quality of education.

14. Manufacturing process : For many manufacturing processes, there are certain

procedure that needs to be followed. Each step in the process can be tracked

and recorded. Production managers then can review the current process and

find room for improvement.

15. Actions on social networks : Billions of users are using the social network, such

as Facebook or Twitter. What are they doing? Is there any interesting pattern

among the random activities? Can we learn their behaviors from their actions?

16. Recurring attendees of an event : There are many annual conferences, sym-

posiums, workshops, meeting, etc. Event organizers may wonder how many

attendees keep coming back? The organizers can keep records of their atten-

dees to answer this question. Each record represents an attendee and contains

all events that he/she attended. For example, Mr. Brown attended CHI’08,

CHI’10, CHI’11 and CHI’12 while Miss Scarlet attended CHI’06, CHI’07,

CHI’08, CHI’10 and CHI’11.

17. StarCraft build orders : Many of the industry’s journalists have praised Star-

286

Craft as one of the best and most important real-time strategy video games

of all time. It is particularly popular in South Korea, where players and

teams participate in professional competitions, earn sponsorships, and com-

pete in televised tournaments. A build order is an early game strategy that

is designed to optimize economy and timing. It indicates an order in which

buildings and units should be produced to maximize efficiency. Expert players

can record their games and parse the build orders from their recorded replays.

Using LifeFlow, these players can find the steps in build order that they often

made mistake to improve their skills.

287

Appendix B

LifeFlow Software Implementation

B.1 Overview

LifeFlow is implemented in Java. Its runtime requirements are machines with

Java Runtime Environment (JRE) 1.6 or above, with at least 1024x768 screen reso-

lution. It has been tested on Mac OS X 10.5-10.7, Windows XP and 7, and Ubuntu

Linux.

As of March 20, 2012, the LifeFlow SVN repository contains 61,188 lines of

code from 867 revisions. This appendix describes its input data format, software

architecture and implementation overview.

B.2 Input Data Format

To simplify deployment and reduce adoption overhead, LifeFlow does not re-

quire any database installation and accepts text files as input data. It uses two

input data files and one config file:

• (Required) Event data file (*.txt) contains all events and event attributes.

• (Optional) Attribute data file (*.attrib) contains record attributes.

• (Optional) Config file (*.xml) keeps the preferred settings of visualization.

288

Table B.1: Sample event data file (sample data.txt)

Record ID Event type Date and Time Event attributes

4318 Arrival 2010-01-19 03:53:00 Entrance-Diagnosis=“Back pain”
4318 ER 2010-01-19 04:14:00
4318 ICU 2010-01-19 04:49:00 Room No.=“125”
4318 Floor 2010-01-19 16:12:00 Room No.=“854”
4318 Exit-DISC 2010-01-20 06:44:00 Physician=“Dr. X”; Exit-Diagnosis=“Back pain”
5397 Arrival 2010-01-19 06:53:00 Entrance-Diagnosis=“Heartburn”
5397 ER 2010-01-19 07:20:00
5397 Floor 2010-01-19 07:46:00 Room No.=“854”
5397 Exit-DISC 2010-01-20 09:44:00 Physician=“Dr. J”; Exit-Diagnosis=“Heartburn”

B.2.1 Event Data File

An event data file is a 4-column tab-delimited text file (Table B.1).

• First column is record ID.

• Second column is event type.

• Third column is date and time in YYYY-MM-DD HH:MM:SS format.

• Fourth column contains event attributes in the format:

attribute-name1="attribute-value1" ; attribute-name2="attribute-value2" ; ...

Use ; to separate between attributes. Leave this column blank if there is not

any event attribute.

B.2.2 Attribute Data File (optional)

An attribute data file stores non-temporal attributes. This file is not required if

there is not any record attribute. It is a 3-column tab-delimited text file (Table B.2),

which has the same name as the event data file but with extension *.attrib, instead

of *.txt.

289

Table B.2: Sample attribute data file (sample data.attrib)

Record ID Attribute name Attribute value

4318 Gender Male
5397 Gender Female

• First column is record ID.

• Second column is attribute name.

• Third column is attribute value.

B.2.3 Config File (optional)

A config file helps users save their customized settings, such as colors of events,

and reuse them in the next analysis. It is an XML file, which is self-descriptive.

B.3 Design

B.3.1 Software Architecture

LifeFlow architecture follows the Model-View-Controller (MVC) paradigm. In

the implementation, I adopted PureMVC, a free open source MVC Framework (avail-

able from http://puremvc.org).

In PureMVC, each view is wrapped by a mediator while each model is wrapped

by a proxy. The mediator and proxy provide PureMVC functionalities while leaving

the original view and model independent from PureMVC. The central Controller is

called facade, which acts like a mothership that knows about all views and models.

The facade let all views and models communicate without knowing each other. The

290

facade also maintains a list of commands that can be triggered by notifications,

such as loading dataset or exit. Commands handle actions that involve multiple

components or actions that should not be handled by mediators or proxies.

Each view is independent and do not know that other views exist. However,

when users perform an action in one view, that action can trigger changes in other

views although the views do not know each other. To achieve this, these components

send notifications. When a notification is issued, the facade (i.e. the mothership)

will notify all mediators and commands that are registered to receive that type of

notifications. Each view has to declare types of notifications that it will handle.

In the ideal MVC, no views and models will know about each other. In Life-

Flow, I relaxed this concept a bit by allowing a mediator (view) to know about proxy

(model). A reference to the proxy of dataset is stored in each mediator. This allows

direct calls to the dataset proxy without passing messages through the facade.

B.3.2 Code Organization

The code are organized to separate classes that are reusable and classes that

are specific to this software.

1. Reusable: Most of the classes in LifeFlow are designed to be indepedent and

reusable. More generic classes, such as time, counter, popup menu or color

palettes, are split into package edu.umd.cs.hcil.frozenlife. Classes that

are more specific to the work in this dissertation are organized in the following

packages:

291

(a) Data structures : Events, records and tree of sequences are contained in

the package edu.umd.cs.hcil.lifeflow.datastructure.

(b) I/O : Package edu.umd.cs.hcil.lifeflow.io contains classes that han-

dle importing/exporting data from/to text files.

(c) ARF : Package edu.umd.cs.hcil.lifeflow.arf contains classes that

provide different kind of alignment, ranking and filtering for the Align-

Rank-Filters framework.

(d) Similarity measure: The similarity measure used in FTS and related

classes are contained in the package edu.umd.cs.hcil.lifeflow.similarity.

(e) User interface components : Package edu.umd.cs.hicl.lifeflow.components

contains LifeFlow, LifeLines2, FTS and other visual components.

2. Application-specific: Classes that are specific to LifeFlow and cannot be

reused are contained in the package edu.umd.cs.hcil.lifeflow.mvc. These

classes make use of the reusable components and combine them into the Life-

Flow software.

(a) Package edu.cs.umd.hcil.lifeflow.mvc.baseclasses contains custom

extensions to the PureMVC classes.

(b) Models are in the package edu.cs.umd.hcil.lifeflow.mvc.model.

(c) Views are in the package edu.cs.umd.hcil.lifeflow.mvc.view.

(d) Commands are in the package edu.cs.umd.hcil.lifeflow.mvc.command.

292

B.4 Data Structures

B.4.1 Time

These two classes are often used to represent time in LifeFlow:

1. AbsoluteTime: Real time, such as Jan 12, 2012. This class wraps Java’s stan-

dard Calendar class. This object can be converted to number of milliseconds

since January 1, 1970, 00:00:00 GMT, and vice versa.

2. RelativeTime: After an alignment is set, the time is represented as time rel-

ative to the alignment time, such as 1 month or -2 years. Relative time can

be positive (after alignment time), negative (before alignment time) or zero

(at alignment time). This object can be converted to number of milliseconds

after alignment time, and vice versa.

These two classes also provide many useful methods for manipulating time.

Both classes extend the ITime interface.

B.4.2 Fundamental Data Structures

These are fundamental building blocks in LifeFlow. All classes are contained

in the package edu.umd.cs.hcil.lifeflow.datastructure.tc. “TC” stands for

“Temporal Categorical”.

• Event : A tuple of time and event type, for example, (August 17, 2008, Arrival

to a hospital). Time is stored as a number of milliseconds since January 1,

1970, 00:00:00 GMT. An immutable class TCEvent represents an event.

293

• Event Attribute: Property of an event. For example, attending physician and

diagnosis are attributes of each visit (Arrival event). Event attributes are

stored in a map (keys,values) in each TCEvent object using attribute names

as keys and attribute values as values.

• Record : One entity of temporal event sequence, for example, a patient. Class

TCRecord represents an event. TCRecord contains a unique ID and multiple

lists of TCEvent: one list that contains all events and one list per event type.

We separate this to optimize filtering events by event types. All TCEvent in

these lists are sorted by time.

• Record Attribute: Property of a record that is not associated with time, for

example, gender and age. Record attributes are stored in a map (keys, values)

in each TCRecord object using attribute names as keys and attribute values

as values.

• Instance: Each copy of record that is shown on the visualization. Class

TCInstance represents an instance. It wraps a record and stores an align-

ment time, a flag that indicates if the instance is selected. One record usually

have only one instance with an alignment time at zero, meaning that an align-

ment point is not specified. One record can also have multiple instances. For

example, patient no. 10002 has three Floor events. After aligning this record

using all Floor events, LifeFlow will duplicate the record into three instances

of this record, each with an alignment point at one of the Floor events. Many

data structures in LifeFlow are extended from TCInstance using the decorator

294

design pattern.

• Group of Instances : Multiple instances of the same record are grouped to-

gether in an TCInstanceGroup object. Both TCInstance and TCInstanceGroup

implements an interface ITCInstance.

• List of Instances : Class ITCInstanceList is a list of ITCInstance, which

can be an instance (TCInstance or its extensions) or a group of instances

(TCInstanceGroup). It keeps track of selected records and instances and pro-

vides methods for rapid selection of records and instances.

B.4.3 Handling Dataset

Each dataset is loaded from text files into a datastructure called RawDataSet.

RawDataset consists of a mapping from category into colors (CategoryLookUpTable)

and an immutable array of all records.

In the beginning of an analysis, when users select a dataset and click on “Ex-

plore”, a new working dataset (WorkingDataSet) is created from the selected raw

dataset RawDataSet. A working dataset contains lists of instances and parameters

for the visualizations. Each TCRecord from the raw dataset is converted into an

TCInstance and added to a list of instances. This list is called the “original list”

(originalList). A “working list” (workingList) is copied from the original list

and used for all operations. When users revert the dataset, a working list is cleared

and copied from the original list again.

A new working dataset can also be created from another working dataset. In

295

this case, the original list in the new working dataset is copied from the current

working list in the old working dataset.

Class WorkingDataSet provides methods for manipulating dataset, such as

align, filter or select. Class WorkingDataSetProxy wraps the WorkingDataSet to

provide the same functionalities and send MVC notifications when the data are

changed.

Class CoreModel maintains a list of all working datasets that are loaded into

the system. It is wrapped into a CoreModelProxy and displayed as a list of all

available datasets in the user interface that allow users to choose from.

B.5 Main Components

B.5.1 Main class

Main class is contained in the package edu.umd.cs.hcil.lifeflow.mvc. Dur-

ing startup, class LifeFlowStarter initializes LifeFlow application by creating an

AppFacade. The AppFacade then instantiates all MVC components and open a

MainWindow. The MainWindow contains a menubar and MainPanel, which contains

all the panels.

296

B.5.2 LifeFlow

B.5.2.1 Tree of Sequences

Class TreeOfSequences is the backbone of LifeFlow visualization. It aggre-

gates multiple event sequences into a tree that is later rendered as a LifeFlow vi-

sualization. TreeOfSequenceBuilder2 takes a list of instances and builds a tree of

sequences from it. User can choose to create a positive tree or a negative tree by

setting a parameter. It iterates through each instance and add the instance to exist-

ing nodes if possible, or add new nodes to the tree if necessary and add the instance

to the new nodes. Each node in the tree (AbstractTreeNode) contains markers

(EventMarker) that can backtrack to all instances and events that are contained in

this node. It also provides methods for finding average time between nodes.

B.5.2.2 Flexible Geometry

I define a coordinate system that can change according to horizontal zoom

factor and vertical zoom factor to support semantic zooming in LifeFlow component.

A value in the FlexibleGeometry is called a FlexibleValue, which is defined by two

values and one factor. This can be described by the following equation:

FlexibleValue v = fixedV alue+ variableV alue ∗multiplyFactor

v = v.f + v.v ∗ v.F

When two FlexibleValue objects share the same multiply factor, they can

297

perform add and subtract operations by adding and substracting their fixed values

and variable values.

v + w = (v.f + w.f) + (v.v + w.v) ∗ F

v − w = (v.f − w.f) + (v.v − w.v) ∗ F

It also supports multiplication by a scalar value s.

v ∗ s = (v.f ∗ s) + (v.v ∗ s) ∗ F

A point in the FlexibleGeometry (FlexiblePoint) is a tuple of two FlexibleValue

objects: x and y. A rectangle in the FlexibleGeometry (FlexibleRectangle) con-

tains four FlexibleValue objects: x, y, width and height.

B.5.2.3 LifeFlow Component

Class JLifeFlow2 is the LifeFlow visual component. It is a JComponent and

can be added to Swing containers. The number “2” is for its version. (I have

rewritten the entire component once to clean up the spaghetti code from the first

version.) JLifeFlow uses Piccolo2D, a scene graph library for Java. Rendering a

LifeFlow visualization consists of the following steps:

1. Preprocessing : All instances are preprocessed to remove excluded event types.

2. Building tree: Convert a list of preprocessed instances into two trees of se-

quences: positive tree and negative tree.

298

3. Plotting : All nodes and edges in the trees are converted into drafts of visual

objects. To support semantic zooming, bounds of a draft are defined using

FlexibleGeometry.

For x position and width, the multiply factor is pixelPerTime, variable value

is time in milliseconds and fixed value is a fixed value in pixels. For example,

Node.width = fixedWidth+ time ∗ pixelPerT ime

For y position and height, the multiplication factor is pixelPerInstance,

variable value is number of instances and fixed value is a fixed value in pixels.

For example,

Node.height = fixedHeight+ numberOfInstances ∗ pixelPerInstance

4. Pinpointing : Calculate the offset of the visualization and multiplication factors

(pixelPerTime and pixelPerInstance) according to component size, zoom

level and offset of the viewport.

5. Painting : Calculate actual dimensions of the visual objects from computed

drafts and zoom factors in the previous steps, create these visual objects and

add them to the Piccolo canvas and bind them with event handlers. Only

objects that are within bounds and visible are created.

6. Painting selection: Render highlight to show selection.

299

This pipeline can be triggered from any step and all following steps after that

will be executed. For example, resizing a window will trigger pinpointing because

the size of the window is change and will affect the zoom factor and offset of the

visualization. After the pinpointing is completed, the visualization and selections

are painted.

B.5.3 LifeLines2

I implement LifeLines2 component in LifeFlow using visual design from the

original LifeLines2 software, but did not reuse its code. Class JLifeLines2 is the

new component. JLifeLines2 groups instances of the same records together and

allows users to collapse or expand the group as needed. It uses an ItemRenderer

to render each component. Future developers can write their custom renderers and

replace the default renderer with theirs. I include two renderers in this software

distribution: one used for default display and another for instances with similarity

scores. JLifeLines2 also provides custom events and event handler interface. The

rendering process consists of the following steps:

1. Creating draft : Create a draft for each instance in the list. It is also used to

keep the state of TCInstanceGroup whether it is currently expanded by user

or not.

2. Sort : Sort the drafts according to specified criteria.

3. Update position: Calculate position on the screen for each draft.

300

4. Plot time: Plot timeline according to component size and zoom factor.

5. Paint : Draw only objects that are within display bounds and visible, add

them to the Piccolo canvas and bind event handlers.

For convenience, I implement class JLifeLines2Panel that wraps JLifeLines2

and includes a scrollbar and header.

B.5.4 Flexible Temporal Search (FTS)

B.5.4.1 Similarity search

A SimilarityQuery object contains query specification. A query consists

of multiple query elements (IQueryElement). When a similarity search is exe-

cuted, an engine (SimilarityEngine) is created for the given SimilarityQuery.

This SimilarityEngine contains a table for dynamic programming, which can

be reused for multiple matchings. The engine performs the similarity search us-

ing the given SimilarityQuery on a given list of ITCInstance and return re-

sults (SimilaritySearchResult). The results contain two lists of instances that

are exact match results and other results. Each instance in these two lists is an

ITCInstanceWithSimilarityScore. It wraps the original ITCInstance that was

passed to the engined and adds a similarity score following the decorator design

pattern.

301

B.5.4.2 User Interface

Class SearchPanel is the FTS user interface. It consists of two main parts:

1. Query Panel : This part is a component called QueryPanel. It has its own

data model (QueryModel) in the back and can convert from this model to

SimilarityQuery, or vice versa. It handles users’ interaction to add Glyph or

Gap to the model. Glyphs include all events and negations. The QueryPanel

utilizes QueryRenderer for rendering different types of glyphs and gaps.

2. Results Panel : This panel consists of exact match results and other results.

Both parts are JLifeLines2 components with item renderer set to a renderer

for displaying an instance with similarity score. When right-click on any in-

stance and select “Show comparison”, it will initialize a ComparisonDialog

and pass the selected ITCInstanceWithSimilarityScore to show the com-

parison. The time scale of these two JLifeLines2 components are bound

together.

302

Appendix C

Spin-off: Outflow

C.1 Introduction

This appendix describes a spin-off project during my internship with the

Healthcare Transformation group at IBM T.J. Watson Research Center. I worked

with Dr. David Gotz to develop an alternative visualization for exploring flow,

factors, and outcomes of temporal event sequences. This visualization, , called Out-

flow [141], aggregates multiple event sequences in a new way and includes summaries

of factors and associated outcomes.

Many event sequences have associated outcomes. For example, outcomes for

EMR data could be measured by cost, mortality or discharge rates. For sports ap-

plications the outcome could be a win, loss or draw. Analyzing common patterns,

or pathways, in a set of event sequences can help people better understand aggre-

gate event progression behavior. In addition, connecting these pathways to their

associated outcomes can help data analysts discover how certain progression paths

may lead to better or worse results.

For example, consider a medical dataset containing information about a set of

patients with a dangerous disease. Each patient is described by an outcome mea-

surement (e.g., if they survived the disease or not) and an event sequence containing

the date that certain symptoms were first observed by a doctor. An analysis of path-

303

ways in such a dataset might lead to the discovery that patients with symptoms A,

B and C were likely to die in the hospital while patients with symptoms A, B and

D were more likely to recover.

Similarly, consider a dataset representing a set of soccer matches where goals

scored are events and wins are considered a good outcome. An analysis of pathways

in this dataset could help answer questions such as, “Does a team win more often

when it comes from behind?”

While analyzing event sequence data as described above can help answer many

questions, there are often external factors—beyond the set of event types that define

an event sequence—that make an analysis even more complex. Such factors, such as

the administration of a drug to a sick patient, or a soccer player receiving a red card

(which leaves his/her team short-handed), can often change the course of subsequent

events. These factors must be incorporated into an analysis to understand how they

influence outcomes.

Finally, event collections can be massive. Major healthcare institutions have

millions of medical records containing millions of event sequences and many different

event types. The scale and variability of this problem can lead to an extremely

complex set of pathways for many scenarios. For example, even for a small data

set with just five event types and where each event sequence has just five events,

there are 3, 125 (55) possible pathways. This vast amount of information can be

overwhelming and makes these datasets difficult to analyze.

To address these challenges, I have designed Outflow, an interactive visualiza-

tion that combines multiple event sequences and their outcomes into a graph-based

304

Figure C.1: Outflow processes temporal event data and visualizes aggregate event
progression pathways together with associated statistics (e.g. outcome, duration,
and cardinality). Users can interactively explore the paths via which entities arrive
and depart various states. This screenshot shows a visualization of Manchester
United’s 2010-2011 soccer season. Green shows pathways with good outcomes (i.e.,
wins) while red shows pathways with bad outcomes (i.e., losses).

305

visual representation. Outflow can summarize collections of event sequences and

display all pathways, time gaps between each step, and their associated outcomes.

Users can interact with the visualization through direct manipulation techniques

(e.g., selection and brushing) and a series of control widgets. The interactions allow

users to explore the data in search of insights, including information about which

factors correlate most strongly with specific pathways.

This appendix describes the Outflow visualization in detail by explaining key

design, rendering process and interaction techniques. I illustrate the generalizability

of Outflow by discussing two applications (a medical use case and a sports statistics

use case) and demonstrate its power via two example analyses and a user study.

The remainder of this appendix is organized as follows: Section C.2 presents

two motivating applications. The Outflow design is discussed in Section C.3. I then

report the evaluation results in Section C.4 and C.5, and summarize in Section C.6.

C.2 Motivation

Outflow provides a general solution for a class of event sequence analysis prob-

lems. This section describes two examples from different application domains which

served as motivating problems for this work.

C.2.1 Congestive Heart Failure (CHF)

Outflow was originally inspired by a problem faced by a team of cardiologists.

They were working to better understand disease evolution patterns using data from

306

a cohort of patients at risk of developing congestive heart failure (CHF). CHF is

generally defined as the inability of the heart to supply sufficient blood flow to meet

the needs of the body. CHF is a common, costly, and potentially deadly condition

that afflicts roughly 2% of adults in developed countries with rates growing to 6-10%

for those over 65 years of age [80]. The disease is difficult to manage and no system

of diagnostic criteria has been universally accepted as the gold standard.

One commonly used system comes from the Framingham study [79]. This sys-

tem requires the simultaneous presence of at least two major symptoms (e.g., S3 gal-

lop, Acute pulmonary edema, Cardiomegaly) or one major symptom in conjunction

with two minor symptoms (e.g., Nocturnal cough, Pleural effusion, Hepatomegaly).

In total, 18 distinct Framingham symptoms have been defined.

While these symptoms are used regularly to diagnose CHF, my medical collab-

orators are interested in understanding how the various symptoms and their order of

onset correlate with patient outcome. To examine this problem, I were given access

to an anonymized dataset of 6,328 patient records. Each patient record includes

timestamped entries for each time a patient was diagnosed with a Framingham

symptom. For example:

Patient#1:(27 Jul 2009, Ankle edema), (14 Aug 2009, Pleural effusion), ...

Patient#2:(17 May 2002, S3 gallop), (1 Feb 2003, Cardiomegaly), ...

The dataset also contains information about medication orders and patient

metadata. Available metadata includes date of birth, gender, date of CHF diagnosis,

and (when applicable) date of death.

307

In line with the use of Framingham symptoms for diagnosis, I assume that

once a symptom has been observed it applies perpetually. I therefore filter the event

sequences for each patient to select only the first occurrence of a given symptom type.

The filtered event sequences describe the flow for each patient through different

disease states. For example, a filtered event sequence symptom A → symptom

B indicates that the patient’s flow is no symptom → symptom A→ symptoms

A and B. I used the presence (or lack thereof) of a date of death as an outcome

measure (dead or alive).

An inspirational task was to examine aggregated statistics for the flows of

many patients to find common disease progression paths. In addition, I wanted to

discover any correlations between these paths and either (1) patient outcomes (i.e.

mortality) or (2) external factors (i.e. medications).

C.2.2 Soccer Result Analysis

Although originally inspired by the medical application outlined above, Out-

flow itself is not domain specific and can generalize to other application areas. To

demonstrate the broad applicability of this work, Outflow is also used to analyze

soccer match results. For example, Figure C.1 shows an Outflow visualization of

the 2010-2011 season for Manchester United Football Club (Man U.), an English

Premier League soccer club based in Old Trafford, Greater Manchester. Man U.

has won the most trophies in English soccer and is one of the wealthiest and most

widely supported teams in the world.

308

The 2010–2011 season was another successful one for Man U. in which they

won multiple trophies. To better understand their route to success, I collected data

from all 61 matches that Man U. played that season. For both Man U. and their

opponents, I captured time-stamped events for every kickoff, every goal scored, and

every final whistle. I also recorded the outcome for every match (win, loss, or draw)

along with timestamped records of every yellow and red card received.

As in the healthcare case, events are cumulative. Each time a goal is scored,

it is added to the scoreline with the goal tally increasing over the course of a match.

Using Outflow, sports analysts are able to see the average outcome associated

with each scoreline, find the average time to the next goal, predict what is likely

to occur next, and understand how non-goal factors, such as red cards, can impact

how a match may progress. This use case is the one tested in an evaluation where

users were asked to perform many of these tasks. The study design and results are

described in detail in Section C.5.

C.3 Description of the Visualization

Outflow’s design consists of four key elements: data aggregation, visual encod-

ing, the rendering process, and user interaction. This core design is then expanded

to support two important features: simplification and factors.

309

m

Outflow Graph

[e1,e2,e3]

[e1,e2]

[e1,e3]

[e2,e3]

[e1,e2,e3,e4]

[e1,e2,e3,e5]

[e1]

[e2]

[e3]

[]

Alignment Point

Average outcome = 0.4
Average time = 26 days
Number of entities = 41

Figure C.2: Multiple temporal event sequences are aggregated into a representation
called an Outflow graph. This structure is a directed acyclic graph (DAG) that
captures the various event sequences that led to the alignment point and all the
sequences that occurred after the alignment point. Aggregate statistics are then
anchored to the graph to describe specific subsets of the data.

[e
1 ,e

2 ,e
3]

[e
1 ,e

3]
[e

1 ,e
2]

[e
2 ,e

3]

[e
1 ,e

2 ,e
3 ,e

4]
[e

1 ,e
2 ,e

3 ,e
5]

Node
End Edge

Color represents
outcome measure

Time
Edge

Link
Edge

Time edge width
represents duration
of transition

Height represents
number of entities

Alignment Point
Target Entity’s Current State

Past Future

Figure C.3: Outflow visually encodes nodes in the Outflow graph using vertical
rectangles. Edges are represented using two distinct visual marks: time edges and
link edges. Color is used to encode average outcome.

310

C.3.1 Data Aggregation

The first step in creating an Outflow visualization is data aggregation. I

define an entity E (e.g., a patient record) as a timestamped (ti) progression through

different states (Si). Each Si is defined as a set of zero or more events (ej) that an

entity has experienced at or before time ti. A transition from state Sm to state Sn

is denoted by Tm→n.

E = (S0, t0)→ (S1, t1)→ (S2, t2)→ (S3, t3)→ . . .→ (Sn, tn)

Si = [e1, e2, e3, . . . , ei]

Given a collection of entities, {E}, I begin by choosing one state (which must

be experienced by all E ∈ {E}) as an alignment point. For example, users can

align a set of medical records around a state where all patients have the same

three symptoms (and no other symptoms). After choosing an alignment point,1 I

aggregate all entities that pass through the alignment point into a data structure

called an Outflow graph (Figure C.2).

An Outflow graph is a state diagram expressed as a directed acyclic graph

(DAG). A node is added to the graph for each unique state observed in {E} (e.g.,

a node for each unique combination of co-occurring symptoms). Edges are used

to represent each state transitions observed in {E}, and they are annotated with

various statistics: the number of entities that make the corresponding transition,

1The system uses S0 (the state where no events have occurred) as the default if no other
alignment point is specified.

311

the average outcome for these entities, and the average time gap between the states.

Therefore, an Outflow graph captures all event paths in {E} that lead to the

alignment point and all event paths that occur after the alignment point. In the

medical analysis example, users can select a target patient from the database and

use the target patient’s current state as the alignment point. This approach allows

for the analysis of historical data when considering the possible future progression

of symptoms for the selected target patient. In the soccer analysis, users can align

by a state with a specific score (e.g., 2-1), which would include only matches that,

at some point in time during the game, reached the specified state (e.g., two “Score”

events and one “Concede” event). This could be useful for prediction by looking at

historic data.

C.3.2 Visual Encoding

Based on the information contained in the Outflow graph, I have designed a

rich visual encoding that displays (1) the time gap for each state change, (2) the

cardinality of entities in each state and state transition, and (3) the average outcome

for each state and transition. Drawing in part on prior work from FlowMap [93]

and LifeFlow [142], I developed the visual encoding shown in Figure C.3.

Node (State): Each state is represented by a rectangle whose height is pro-

portional to the number of entities.

Layer: A graph is sliced vertically into layers. Layer i contains all states with

i events. The layers are sorted from left to right, showing information from the past

312

to the future. For example, in Figure C.1, the first layer (layer 0) contains only one

node, which represents all records before any event. The next layer (layer 1) also

has one node because all games begin with a “Kick off” event. Layer 2, however,

has three nodes because each game evolved in one of three different ways: “Score”,

“Concede”, or “Final whistle”.

Edge (Transition): Each state transition is displayed using two visual marks:

a time edge and a link edge. Time edges are rectangles whose width is proportional

to the average time gap of the transition and height is proportional to the number

of entities. Link edges connect nodes and time edges to convey sequentiality.

End Edge: Each entity can end in a different state. A trapezoid followed by

a circle marks these end points. Like transition edges, the height of the trapezoid

is proportional to the number of entities that end at the corresponding state. The

circles are included to ensure that small end edges remain visible.

Color-coding: Colors assigned to edges are used to encode the average out-

come for the corresponding set of entities. The outcome values are normalized to

the [0,1] range with higher values representing better outcomes. The normalized

values are then mapped to a color scale. In this prototype, the color coding scales

linearly from red (outcome of 0) to yellow (outcome of 0.5) to green (outcome of 1).

The color scale can be adjusted to accommodate users with color vision deficiency.

313

m

a

b

a

b

Origin Point!

Destination Point!

Control Point #1!

Control Point #2!

Figure C.4: Link edges are rendered using quadratic Bézier curves. Control point
placement is selected to ensure horizontal starting and ending edge slopes.

C.3.3 Rendering

Graphs with many nodes and edges can be difficult to visualize due to possible

edge crossings and overlapping visual marks. I apply several rendering techniques

to emphasize connectivity and reduce clutter in the visualization.

C.3.3.1 Bézier Curve

Each link edge is rendered as a quadratic Bézier curve to emphasize the con-

nectivity and flow of the paths in the visual display. I make the control line from

the origin point to the first control point perpendicular to the origin node, and the

control line from the destination point to the second control point perpendicular

to the destination node. As shown in Figure C.4, this ensures that the edges are

horizontal at both the start and end.

C.3.3.2 Sugiyama’s Heuristics

Outflow initially sorts nodes and edges in each layer according to their out-

comes. However, this often leads to unnecessarily complex visualizations because of

314

Figure C.5: A multi-stage rendering process improves legibility. (a) Initial layout
after sorting edges by outcome. (b) After applying Sugiyama’s heuristics to reduce
crossings. (c) The final visualization after both Sugiyama’s heuristics and Outflow’s
force-directed layout algorithm to obtain straighter edges.

edge crossings. Therefore, I apply Sugiyama’s heuristics [119], a well-known graph

layout algorithm for DAGs, to reorder the elements in each layer to reduce edge

crossings. Figures C.5a and C.5b show example layouts of the same data before and

after applying Sugiyama’s heuristics, respectively.

C.3.3.3 Force-directed Layout

Once the order of nodes in a layer has been determined, the next step is to

calculate the actual vertical position for each node. Positions are initially assigned by

distributing the nodes equally along a layer’s vertical axis. However, this approach

can often result in unnecessarily curvy paths (as shown in Figure C.5b) that make

the visualization more difficult to follow.

To produce straighter paths, I apply a spring-based force-directed optimization

algorithm [35] that reduces edge curvature. As illustrated in Figure C.6, nodes and

edges are simulated as particles and springs, respectively. To prevent nodes from

getting too close to each other, spring repulsions are also inserted between nodes.

315

m

•  Spring simulation

x

Each node is a particle.!

Total force = Force from edges - Repulsion between nodes!

Force-directed layout

Figure C.6: A spring-based optimization algorithm is used to obtain straighter
(and easier to read) edges. Nodes and edges are simulated as particles and springs,
respectively. Spring repulsions are inserted between nodes. During the optimization,
nodes are gradually moved along a vertical axis to reduce the spring tension in their
edges.

Through a series of iterations, nodes are gradually moved along the layer’s vertical

axis to reduce the spring tensions. The optimization stops either when the entire

spring system is stable or when a maximum number of iterations has been reached.

Figure C.5c shows the more readable visualization with straightened edges obtained

by applying this force-directed layout algorithm.

C.3.3.4 Edge Routing

When large time differences exist between two alternative paths, time edges

and link edges can overlap as shown in Figure C.7a. This can make it more difficult

for users to trace paths through the visualization during an analysis. I resolve

this issue by routing link edges through an intermediate point that avoids crossings

(Figure C.7b). The intermediate point is calculated by (1) finding the longest time

edge from n neighbor edges in the direction traveled by a link edge (up/down), and

316

(a)

(b)

Figure C.7: Edge routing prevents overlaps between time and link edges. (a) A
link edge is seen passing “behind” the time edge above it. Outflow’s edge routing
algorithm extends the link edge horizontally beyond the occluding time edge. (b)
The new route avoids the overlap and makes the time edge fully visible.

(2) moving the origin of the link edge horizontally beyond the longest time edge’s

x position. This method does not guarantee avoidance for neighbors further than

n. However, in practice a low value of n (e.g., n = 3) provides effective reduction in

overlaps without excessive routing of edges.

C.3.4 Basic Interactions

To allow interactive data exploration, I further designed Outflow to support

the following user interaction capabilities.

Panning & Zooming: Users can pan and zoom to uncover detailed structure.

Filtering: Users can filter both nodes and edges based on the the number of

317

associated entities to remove small subgroups.

Event Type Selection: Users can select which event types are used to con-

struct the Outflow graph. This allows, for instance, for the omission of events that

users deem uninteresting. For example, users in the medical use case can include/ex-

clude a symptom (e.g., “Ankle Edema”) if they deem it relevant/irrelevant to an

analysis. In response, the visualization will be recomputed dynamically.

Brushing: Hovering the mouse over a node or an edge will highlight all paths

traveled by all entities passing through the corresponding point in the Outflow graph

(Figure C.8).

Tooltips: Hovering also triggers the display of tooltips which provide more

information about individual nodes and edges. Tooltips show all events associated

with the corresponding node/edge, the average outcome, and the total number of

entities in the subgroup (Figure C.8).

Pinning: Users can “pin” a node or edge to freeze the brushed selection. This

interaction is performed by clicking on the element to be pinned. Users can then

move the mouse pointer to display tooltips for brushed subsets. This allows the quick

retrieval of information about subsets that satisfy two constraints. For example, a

user in soccer use case can pin soccer games that reached a 2-2 score before moving

the mouse pointer to hover over the 1-0 state to see detailed information about the

set of matches that pass through both nodes.

318

Figure C.8: Interactive brushing allows users to highlight paths emanating from spe-
cific nodes or edges in the visualization. This allows users to quickly see alternative
progression paths taken by entities passing through a given state.

C.3.5 Simplification

The rendering techniques outlined earlier in this section can significantly re-

duce visual clutter and make the visualization more legible. However, there are still

situations when visual complexity arises due to inherent complexity in the underly-

ing data. To enable analyses of these more challenging datasets, Outflow includes a

simplification algorithm that actively simplifies the underlying graph structure used

to construct the visualization.

I apply a hierarchical clustering method that reduces the number of states in

an Outflow graph by merging similar states within the same layer. States with a

similarity distance less than a user-specified threshold are grouped together, while

states that do not satisfy the threshold remain distinct. The user controls the

threshold via a slider on the user interface. This prototype defines the similarity

distance between two states as the difference in average outcomes (Equation C.1).

Alternative measures could be easily substituted (e.g., a similarity-based metric

319

Figure C.9: Using the same dataset as illustrated in Figure C.1, a user has adjusted
the simplification slider to group states with similar outcomes. Clustered states are
represented with gray nodes. This simplified view shows that as more events occur
(i.e., as more goals are scored), the paths diverge into two distinct sets of clustered
states. The simplified states more clearly separate winning scorelines from losing
scorelines. As more goals are scored, the probable outcomes of the games become
more obvious.

using application-specific properties of the underlying entities).

d(nodeA, nodeB) = |nodeA.outcome− nodeB.outcome| (C.1)

The hierarchical process begins as follows. First, each state in a layer is as-

signed to its own cluster for which it is the only member. Then, distances between

all pairs of clusters are computed. The distance between two clusters, defined in

Equation C.2, is determined by the average of the distances between all nodes in

320

the first cluster to all nodes in the second cluster.

d(clusterX , clusterY) =

∑
m∈clusterX&n∈clusterY

d(m,n)

size(clusterX) ∗ size(clusterY)
(C.2)

Once the distances have been computed for all pairs of clusters in a given

layer, clusters are merged in a greedy fashion. The most similar pair of clusters is

merged, and the cluster distances are updated to reflect the new clustering. The

greedy process repeats until either (1) only one cluster remains, or (2) the most

similar pair of remaining clusters has a distance above the threshold specified by

users.

After the simplification process completes, clusters containing multiple states

are rendered as a single node filled with gray in the visualization. To preserve state

transition information, the edges are not merged even though their origin nodes or

destination nodes may have been simplified (Figure C.9). Nodes that are the alone

in their cluster are rendered using the normal Outflow visual encoding.

C.3.6 Factors

As described so far, Outflow provides an interactive visualization of event

pathways and their associated outcomes. However, it does not yet incorporate

external factors that can often influence how the events progress. For example,

while goals determine the pathways in soccer use case, yellow and red cards can

have a major impact on how a game unfolds. Similarly, a CHF patient’s symptoms

may be strongly influenced by the medications they are prescribed. In cases where

321

Figure C.10: Outflow highlights factors that are strongly correlated with specific
event pathways. In this screenshot, a physician has focused on a group of patients
transitioning from the current state due to the onset of the “NYHA” symptom. This
transition seems to be deadly, as seen from the color-coding in red. The right sidebar
displays medications (factors) with high correlations to this transition. The factor
with the highest correlation in this example is prescribing antiarrhythmic agents.
This correlation, which may or may not be causal, can help clinicians generate
hypotheses about how best to treat a patient.

they can be controlled, factors can be important clues to analysts that are working

to figure out if they can influence how an entity’s events may progress.

Given the importance of factor analysis, I extend the basic Outflow data model

to associate a set of timestamped factors (fi, ti) with each entity. Because of the

timestamps, each occurrence of a factor can be placed within the sequence of events

associated with the corresponding entity. The Outflow graph for a set of entities is

constructed as before using only the entities’ events. For each node and edge in the

graph, I then compute additional statistics to identify correlated factors and suggest

them to users via the user interface.

322

For this prototype, I have derived two metrics to detect factors that occur

unusually often (or rarely) before a given state or transition. These metrics could

be easily replaced with more sophisticated metrics that are more suitable for specific

scenarios. In fact, I envision having a collection of metrics that users could choose

from to measure various types of associations.

The prototype’s baseline metrics are inspired by the term frequency-inverse

document frequency (tf?idf) measure [106] used widely in information retrieval:

presence correlation and absence correlation.

1. Presence correlation detects factors that are unusually frequent for a given

state or transition. For states, if a factor fi often occurs before reaching state

Sj while fi rarely occurs elsewhere in the dataset, then fi will be given a

high presence correlation value for the corresponding state. I measure this

correlation using by a present factor frequency-inverse state frequency

(pff?isf) score, which I define as follows.

pff =
number of entities with fi before Sj

number of entities reaching Sj

(C.3)

isfp = log

(
number of states

number of states preceded by fi + 1

)
(C.4)

pff?isf = pff · isfp

A similar calculation is made for transitions by substituting Sj with Tm→n in

Equation C.3 and replacing number of states with number of transitions in

323

Equation C.4. For isfp, only states (or transitions) for the current layer or

earlier are counted.

2. Absence correlation detects factors that are unusually rare for a given state

or transition. For states, if a factor fi rarely occurs before reaching state Sj

while fi occurs commonly elsewhere in the dataset, then fi will be given a

high absence correlation value for the corresponding state. This correlation

is formulated as the absent factor frequency-inverse state frequency

(aff?isf) score defined below.

aff =
number of entities without fi before Sj

number of entities reaching Sj

(C.5)

isfa = log

(
number of states

number of states not preceded by fi + 1

)
(C.6)

aff?isf = aff · isfa

A similar calculation is made for transitions by substituting Sj with Tm→n in

Equation C.5 and replacing number of states with number of transitions in Equa-

tion C.6. For isfa, only states (or transitions) for the current layer or earlier are

counted.

A new sidebar panel is added to the Outflow user interface to display these

correlation scores. When users mouse over any time edge, the panel is updated to

display the most highly correlated present and absent factors for the corresponding

324

Figure C.11: Outflow aggregates temporal event data from a cohort of patients
and visualizes alternative clinical pathways using color-coded edges that map to
patient outcome. Interactive capabilities allow users to explore the data and uncover
insights.

transition. The factor panel can be seen on the right side of Figure C.10. Factors

are listed alphabetically and displayed with a histogram to convey the strength of

the correlation.

C.4 Preliminary Analysis

Outflow was used to view the evolution over time for a cohort of CHF patients

similar to a clinician’s current patient. An initial analysis illuminates a number of

interesting findings and highlights that various types of patients evolve differently.

Here are two examples of the type of analysis that can be performed using the

Outflow technique.

325

Figure C.12: The progression from green to red when moving left to right in this
figure shows that patients with more symptoms exhibit worse outcomes.

Leading Indicators: In several scenarios, patient outcome is strongly correlated

with certain leading indicators. For example, consider the patient cohort visualized

in Figure C.11. The strong red and green colors assigned to the first layer of edges

in the visualization shows that the eventual outcome for patients in this cohort is

strongly correlated with the very first symptom to appear. Similarly, the strong red

and green colors assigned to the first layer of edges after the alignment point show

that the next symptom to appear may be critical in determining patient outcome.

Progressive Complications: In contrast to the prior example, which showed

strong outcome correlation with specific paths, the patient cohort in Figure C.12

exhibits very different characteristics. At each time step, the outcomes across the

different edges are relatively equal. However, the outcomes transition from green

to red when moving left to right across the visualization. This implies that for this

group of patients, no individual path is especially problematic historically. Instead,

a general increase in co-occurring symptoms over time is the primary risk factor.

326

C.5 User Study

I conducted a user study to evaluate Outflow’s ability to support a variety of

event sequence analysis tasks. I first describe the study’s design which asked users

to answer questions about Man U.’s soccer season using a visualization of the data

described in Section C.2.2. I then report the study’s results and discuss its findings.

C.5.1 Design

Twelve users (eight males and four females) participated in this study. All

users were adult professionals who are comfortable with computers. None of the

users would consider themselves “soccer experts”, but all have a basic understanding

of the game. None of the users had any prior experience using Outflow.

C.5.1.1 Procedure

Each user participated in a single 60-minute session during which they were

observed by a study moderator. Each session started with a brief orientation in

which the moderator explained Outflow’s design and interactions. Participants were

then allowed to experiment with the visualization to gain some experience working

with the system.

After roughly 15 minutes, the formal section of the study began. Participants

were asked to perform a list of tasks. While the tasks were performed, the moderator

recorded both accuracy and time to completion for each task. Users were then

asked to freely explore the data and describe any interesting findings. After that,

327

users were given a written questionnaire to gather subjective feedback. Finally,

the moderator debriefed the participants to learn about their experience and any

comments or suggestions they might have.

C.5.1.2 Tasks and Questionnaire

Each user was given a list of 16 tasks to perform. The tasks were designed to

to evaluate people’s ability to understand proportion and cardinality of states and

transitions, transition time, outcome of states and transitions, and factors associated

with transitions.

The first nine tasks were designed to measure the participant’s ability to inter-

pret Outflow’s visual representation. These tasks were further divided into two sets:

practice tasks and test tasks. The first four tasks, unbeknownst to the participants,

were used only to ensure that participants fully explored Outflow’s visual design.

Timing/accuracy data for these tasks was not included in this analysis. The five

test tasks (T1–T5) asked questions similar to the preceding practice tasks, but on

different aspects of the dataset.

The next seven tasks were designed to measure performance when using Out-

flow’s interactive capabilities. Once again, these tasks were split into two groups:

practice tasks and test tasks. The first three were designed to give participants

practice using Outflow’s interactive features and results were not included in this

analysis. The four remaining tasks (T6–T9) asked similar questions about other

aspects of the dataset. The test tasks used in the study are as follows:

328

T1. “Can you find the state where Man U. conceded the first goal?” Objective:

Traverse graph using labels.

T2. “What happened most rarely after Man U. conceded the first goal?” Objective:

Interpret proportion from height of time edge.

T3. “Was it faster to concede a goal or to score a goal from the state in T1?”

Objective: Interpret time from time edge width.

T4. “Was it more likely for Man U. to win or lose after the state in T1?” Objective:

Interpret state outcome.

T5. “What is the most common score after two goals are scored (2-0, 1-1 or 0-2)?”

Objective: Traverse graph and interpret proportion from state node height.

T6. “Can you find the state where Man U. led 2-1?” Objective: Traverse graph

using labels.

T7. “Which transition from the state in T6 led to the lowest percentage of winning?

How many percent?” Objective: Use tooltip.

T8. “Which factor(s) are highly correlated with the transition in T6?” Objective:

Understand factors.

T9. “For games that reached 2-2, which situation resulted in better outcomes? (a)

Scoring to move from down 1-2 into a 2-2 tie or (b) conceding to move from a

2-1 lead to a 2-2 tie?” Objective: Use tooltip. The actual data shows a 0.73

outcome for (a) and a 0.67 outcome for (b). While the similar outcome values

make the difference in color-coding hard to see, the tooltip provides access to

the numerical outcome statistics.

329

At the end of their study session, participants completed a questionnaire. It

contained eight questions (Q1–Q8) to which users responded on a 7-point Likert scale

(1=very easy, 7=very hard). The questionnaire also included free response questions

to gather more subjective feedback. The eight Likert-scale questions included the

following:

Q1. Is it easy or hard to learn how to use?

Q2. Is it easy or hard to interpret proportion of states?

Q3. Is it easy or hard to interpret proportion of transitions?

Q4. Is it easy or hard to interpret transition time?

Q5. Is it easy or hard to interpret outcome of states?

Q6. Is it easy or hard to interpret outcome of transitions?

Q7. Is it easy or hard to understand factors correlated with a transition?

Q8. Is it easy or hard to find a particular state in the graph?

C.5.2 Results

C.5.2.1 Accuracy

Overall, participants were able to complete the tasks accurately with only

three mistakes observed out of 108 total tasks (97.2% accuracy).

Two users erred on T4. These participants were able to identify the node

that was the focus of the question. However, neither responded based on the color

of the identified node. One user looked at all of the future paths and mentally

330

aggregated/averaged the values (incorrectly) to guess at the eventual outcome. This

approach is subject to bias because long paths cover more pixels even if their outcome

is not representative. When told of their mistake, the user said that looking at the

color of the node “would have been trivial. I just forgot.” The second user who

answered T4 incorrectly responded based on the color of the largest outbound path.

While that path corresponds to the most often occurring next event, it does not by

itself represent the overall average outcome for the identified node. I hypothesize

that both errors were due in large part to the users’ lack of experience.

The only other error occurred on T9. However, during the questionnaire por-

tion of the study session, it was determined that the user misunderstood the task.

He actually used Outflow correctly to answer what he thought the question was

asking.

C.5.2.2 Speed

Participants were able to finish the tasks rapidly with average completion times

ranging between 5.33 to 64.22 seconds.2 The wide range in timings reflects in part

variations in task complexity. However, the standard deviations between timings

for individual tasks were fairly large (up to 30.47 s). In general, some users quickly

mapped tasks to a feature of the visualization while others spent more time thinking

about what exactly the question was asking before settling on an answer. Overall,

the times are quite fast and I believe that allowing novice users to precisely answer

2Task completion times were as follows: (T1) Mean=5.33 ± SD=4.18 s; (T2) 8.79 ± 7.09 s;
(T3) 8.16 ± 7.64 s; (T4) 26.26 ± 14.39 s; (T5) 49.53 ± 30.47 s; (T6) 10.19± 3.01 s; (T7) 16.98 ±
10.81 s; (T8) 7.98 ± 4.01 s; (T9) 64.22± 26.92 s

331

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

1
2

3
4

5
6

7

Questions

R
at

in
g

 (1
=v

er
y

ea
sy

, 7
=v

er
y

ha
rd

)

Figure C.13: Questionnaire results for each of the eight questions (Q1–Q8) answered
on a 7-point scale by study participants.

a complex task like T9 in as little as one minute highlights Outflow’s utility.

C.5.2.3 Unrestricted Exploration

After completing the study tasks, users were given time to freely explore the

visualization. Participants were able to quickly identify several interesting aspects

of the dataset. For example, many users quickly found the highest scoring game

which had a total of eight goals. Participants were also drawn to states that had

multiple “arriving” edges and compared outcomes for the alternative paths. This is

similar to what they were asked to do in T9. One user discovered a general trend

that Man U. rarely received yellow cards when they lost. This could be interpreted

as a sign of lack of intensity in those games.

Users also enjoyed “the ability to investigate the progression of a large number

of games on one screen.” Users observed a number of strong global trends, including:

332

(1) Man U. wins a large majority of their games, (2) Man U. wins most high scoring

games, (3) Man U. often comes back after falling behind, and (4) Man U. rarely

loses a game when ahead.

C.5.2.4 Questionnaire and Debriefing

Results from the questionnaire are shown in Figure C.13. A pairwise t-test

between all questions shows no significant difference between the ratings of each

question. Average ratings from all questions are between 1.50–2.33, suggesting that

the participants generally found Outflow easy to learn and easy to use.3

However, not all participants responded in the same way. As shown in Fig-

ure C.13, there were a small number of higher ratings for questions Q5-Q7 that

indicate some frustration. In fact, all of the high scores (> 4) came from a single

participant who had difficulty understanding the difference between the outcome of

a state and the outcome of a transition. He repeatedly asked for clarification and

commented in the questionnaire that tasks on these topics required “some effort

to parse the wording”. The moderator explained that while a state (e.g., 1-1) has

one outcome, the transitions to that state (e.g., conceding to go from 1-0 to 1-1 vs.

scoring to go from 0-1 to 1-1) can have different outcomes. The user understood for

a moment, but then quickly became confused again. His difficulty in grasping this

concept led to his high responses (and slower task completion times).

Based on free response questions and interviews with the moderator, partici-

3Question ratings were as follows: (Q1) Mean=2.33± SD=0.78; (Q2) 1.58±0.67; (Q3) 1.5±0.67;
(Q4) 1.58± 0.90; (Q5) 2.08± 1.56; (Q6) 2.17± 1.53; (Q7) 2.25± 1.71; and (Q8) 2± 0.953

333

pants felt overall that Outflow was “pretty”, “looks cool”, and that the colors were

“very meaningful”. They said that it provides a “good high level view” that en-

codes a lot of information into a single “simple to follow” visualization. In addition,

users felt that the ability to see outcome associated with alternative paths out of

(or into) a given state, and not just the state itself, is a powerful feature. “I like the

difference between states and transitions [which allowed me] to compare two paths

to the same state and to understand differences.” Another participant commented

that “highlighting of paths was very helpful.”

When asked about learning to use Outflow, some participants expressed that

the tool is unique, and therefore required some training to get used to it. However,

those participants also felt strongly that by the end of the study they were proficient

in using the tool. One remarked that they would have done much better on the study

tasks “with a few more minutes of training at the start” suggesting a short learning

curve.

Some limitations of the current design were also identified during the study.

One participant pointed out that users tend to view width as time, but that the

widest sequences don’t necessarily take the longest (in fact, soccer games all take

roughly the same amount of time). This is indeed a limitation of the technique.

Outflow handles graphs with multiple incoming edges to a node. Because these

different paths to a node can have different durations, time can not be represented

horizontally using an absolute time axis. While making comparisons between al-

ternative paths easier, this design choice can make temporal comparisons across

multiple steps somewhat harder.

334

Participants also suggested ideas for new features including (1) the ability to

pin multiple states at once, and (2) moving the display of correlated factors into the

main visualization space (instead of the separate sidebar used in the current design).

C.6 Summary

This appendix shows an example of new ideas that are inspired from the work

in this dissertation. Outflow, a new visualization technique, was designed to summa-

rize temporal event sequences, and show aggregated pathways, factors and outcomes.

New visual representation, a number of interactive features and two simple metrics

for factor recommendations are presented. I provided a detailed description of the

visualization’s design including a multi-step rendering process designed to reduce

visual complexity. A portion of this process—the combination of Sugiyama’s algo-

rithm to reduce edge crossings and force-directed layout to straighten unnecessarily

curvy edges—is also applicable to a more general class of DAG layout problems.

Two preliminary analysis highlight some of the capabilities of this approach. Re-

sults from a user study with twelve participants demonstrated that users were able

to learn how to use Outflow easily within fifteen minutes of training, and were able

to accurately and quickly perform a broad range of analysis tasks.

There are many promising directions to further explore including integration

with forecasting/prediction algorithms, the use of more sophisticated similarity mea-

sures, and deeper evaluation studies with domain experts.

335

Bibliography

[1] Jae-wook Ahn and Peter Brusilovsky. Adaptive visualization of search results:
Bringing user models to visual analytics. Information Visualization, 8(3):167–
179, 2009.

[2] Jae-wook Ahn, Peter Brusilovsky, Daqing He, Jonathan Grady, and Qi Li.
Personalized web exploration with task models. In Proceeding of the 17th
international conference on World Wide Web - WWW ’08, page 1. ACM
Press, 2008.

[3] Jae-wook Ahn, Krist Wongsuphasawat, and Peter Brusilovsky. Analyzing User
Behavior Patterns in Adaptive Exploratory Search Systems with LifeFlow. In
Proceedings of the Workshop on Human-Computer Interaction and Informa-
tion Retrieval (HCIR), 2011.

[4] Alfred V. Aho. Algorithms for finding patterns in strings. In Handbook of The-
oretical Computer Science, Volume A: Algorithms and Complexity, chapter 5,
pages 255–400. 1990.

[5] Wolfgang Aigner and Silvia Miksch. CareVis: integrated visualization of
computerized protocols and temporal patient data. Artificial Intelligence in
Medicine, 37(3):203–18, July 2006.

[6] Wolfgang Aigner, Silvia Miksch, Heidrun Schumann, and Christian Tomin-
ski. Visualization of Time-Oriented Data. Number 1997 in Human-Computer
Interaction Series. Springer, 2011.

[7] Wolfgang Aigner, Silvia Miksch, Bettina Thurnher, and Stefan Biffl. Plan-
ningLines: Novel Glyphs for Representing Temporal Uncertainties and Their
Evaluation. In Proceedings of the International Conference on Information
Visualization (IV), pages 457–463. IEEE, 2005.

[8] Diane Lindwarm Alonso, Anne Rose, and Catherine Plaisant. Viewing per-
sonal history records: a comparison of tabular format and graphical presen-
tation using LifeLines. Behaviour & Information Technology, 17(5):249–262,
September 1998.

[9] Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W. Myers, and
David J. Lipman. Basic local alignment search tool. Journal of Molecular
Biology, 215(3):403–410, 1990.

[10] Paul André, Max L. Wilson, Alistair Russell, Daniel A. Smith, Alisdair Owens,
and M.c. Schraefel. Continuum: designing timelines for hierarchies, relation-
ships and scale. Proceedings of the Annual ACM Symposium on User Interface
Software and Technology (UIST), page 101, 2007.

336

[11] Henrik André-Jönsson and Dushan Z. Badal. Using signature files for querying
time-series data, 1997.

[12] Francis J. Anscombe. Graphs in Statistical Analysis. American Statistician,
27(1):17–21, 1973.

[13] Ragnar Bade, Stefan Schlechtweg, and Silvia Miksch. Connecting time-
oriented data and information to a coherent interactive visualization. In Pro-
ceedings of the Annual SIGCHI Conference on Human Factors in Computing
Systems (CHI), pages 105–112. ACM, 2004.

[14] Benjamin B. Bederson, Jesse Grosjean, and Jon Meyer. Toolkit design for
interactive structured graphics. IEEE Transactions on Software Engineering,
30(8):535–546, August 2004.

[15] Benjamin B. Bederson, Ben Shneiderman, and Martin Wattenberg. Ordered
and quantum treemaps: Making effective use of 2D space to display hierar-
chies. ACM Transactions on Graphics, 21(4):833–854, 2002.

[16] Donald J. Berndt and James Clifford. Using dynamic time warping to find
patterns in time series. In AAAI-94 Workshop on Knowledge Discovery in
Databases, pages 229–248, 1994.

[17] Jorik Blaas, Charl P. Botha, Edward Grundy, Mark W. Jones, Robert S.
Laramee, and Frits H. Post. Smooth graphs for visual exploration of higher-
order state transitions. IEEE Transactions on Visualization and Computer
Graphics, 15(6):969–76, 2009.

[18] Christine Bonhomme and Marie-Aude Aufaure. Mixing icons, geometric
shapes and temporal axis to propose a visual tool for querying spatio-temporal
databases. In Proceedings of the Working Conference on Advanced Visual In-
terfaces (AVI), pages 282–289. ACM, 2002.

[19] Christine Bonhomme, Claude Trépied, Marie-Aude Aufaure, and Robert Lau-
rini. A visual language for querying spatio-temporal databases. In Proceedings
of the ACM International Symposium on Advances in Geographic Information
Systems (GIS), pages 34–39. ACM, 1999.

[20] Taylor Booth. Sequential Machines and Automata Theory. John Wiley and
Sons, New York, NY, USA, 1967.

[21] Michael Bostock and Jeffrey Heer. Protovis: a graphical toolkit for vi-
sualization. IEEE Transactions on Visualization and Computer Graphics,
15(6):1121–8, 2009.

[22] Kevin Buchin, Bettina Speckmann, and Kevin Verbeek. Flow Map Layout
via Spiral Trees. IEEE transactions on visualization and computer graphics,
17(12):2536–44, December 2011.

337

[23] Michael Burch, Fabian Beck, and Stephan Diehl. Timeline trees: visualiz-
ing sequences of transactions in information hierarchies. In Proceedings of
the Working Conference on Advanced Visual Interfaces (AVI), pages 75–82,
Napoli, Italy, 2008. ACM.

[24] Giuseppe Carenini and John Loyd. ValueCharts: analyzing linear models
expressing preferences and evaluations. In Proceedings of the Working Con-
ference on Advanced Visual Interfaces (AVI), pages 150–157. ACM, 2004.

[25] John V. Carlis and Joseph A. Konstan. Interactive visualization of serial pe-
riodic data. In Proceedings of the Annual ACM Symposium on User Interface
Software and Technology (UIST), pages 29–38, New York, New York, USA,
1998. ACM.

[26] N. S. Chang and K. S. Fu. Query-by-Pictorial-Example. IEEE Transactions
on Software Engineering, 6:519–524, 1980.

[27] Remco Chang, Mohammad Ghoniem, Robert Kosara, William Ribarsky, Jing
Yang, Evan Suma, Caroline Ziemkiewicz, Daniel Kern, and Agus Sudjianto.
WireVis: Visualization of Categorical, Time-Varying Data From Financial
Transactions. In Proceedings of the IEEE Symposium on Visual Analytics
Science and Technology (VAST), pages 155–162. IEEE, October 2007.

[28] Cleve Cheng, Yuval Shahar, Angel Puerta, and Daniel Stites. Navigation and
visualization of abstractions of time-oriented clinical data. Section on Medical
Informatics Technical Report No. SMI-97, 688, 1997.

[29] Luca Chittaro. Visualization of patient data at different temporal granularities
on mobile devices. Proceedings of the Working Conference on Advanced Visual
Interfaces (AVI), page 484, 2006.

[30] Jan Chomicki. Temporal query languages: A survey. In Proceedings of
the International Conference on Temporal Logic, volume 827, pages 506–534.
Springer, 1994.

[31] James Clifford and Albert Croker. The Historical Relational Data Model
(HRDM) and Algebra Based on Lifespans. In Proceedings of the IEEE In-
ternational Conference on Data Engineering (ICDE), pages 528–537. IEEE,
1987.

[32] Steve B. Cousins and Michael G Kahn. The visual display of temporal infor-
mation. Artificial Intelligence in Medicine, 3(6):341–357, 1991.

[33] Steve B. Cousins, Michael G Kahn, and Mark E Frisse. The display and ma-
nipulation of temporal information. In Proceedings of the Annual Symposium
on Computer Application in Medical Care, pages 76–80, November 1989.

338

[34] Raimund Dachselt and Markus Weiland. TimeZoom: A Flexible Detail and
Context Timeline. In Proceedings of the Annual SIGCHI Conference on Hu-
man Factors in Computing Systems (CHI) - Extended Abstracts, page 682.
ACM, 2006.

[35] Guiseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis.
Algorithms for drawing graphs: an annotated bibliography. Computational
Geometry, 4(5):235–282, October 1994.

[36] Simon Dobrisek, Janez Zibert, Nikola Pavesić, and France Mihelic. An edit-
distance model for the approximate matching of timed strings. IEEE transac-
tions on pattern analysis and machine intelligence, 31(4):736–41, April 2009.

[37] Jerry Fails, Amy Karlson, Layla Shahamat, and Ben Shneiderman. A Visual
Interface for Multivariate Temporal Data: Finding Patterns of Events across
Multiple Histories. In Proceedings of the IEEE Symposium on Visual Analytics
Science and Technology (VAST), volume 0, pages 167–174. IEEE, October
2006.

[38] Jean-Daniel Fekete. The InfoVis Toolkit. In Proceedings of the IEEE Sympo-
sium on Information Visualization (InfoVis), pages 167–174. IEEE, 2004.

[39] Samuel Fomundam and Jeffrey W. Herrmann. A Survey of Queuing Theory
Applications in Healthcare. Mechanical Engineering, pages 1–22, 2007.

[40] Michael Friendly. Visions and re-visions of Charles Joseph Minard. Journal
of Educational and Behavioral Statistics, 27(1):31–51, 2002.

[41] Cristina Gómez-Alonso and Aida Valls. A Similarity Measure for Sequences
of Categorical Data Based on the Ordering of Common Elements. In Vicenç
Torra and Yasuo Narukawa, editors, Modeling Decisions for Artificial Intelli-
gence, number 1, chapter 13, pages 134–145. Springer, 2008.

[42] David Gotz and Michelle X. Zhou. Characterizing users visual analytic activity
for insight provenance. Information Visualization, 8(1):42–55, January 2009.

[43] John Alexis Guerra Gómez, Krist Wongsuphasawat, Taowei David Wang,
Michael L. Pack, and Catherine Plaisant. Analyzing Incident Management
Event Sequences with Interactive Visualization. In Transportation Research
Board Annual Meeting Compendium, Washington, DC, January 2011.

[44] Richard W. Hamming. Error Detecting and Error Correcting Codes. The Bell
System Technical Journal, 29(2):147–160, 1950.

[45] Derek L Hansen, Dana Rotman, Elizabeth Bonsignore, Nataša Milić-frayling,
Eduarda Mendes Rodrigues, Marc Smith, Ben Shneiderman, and Tony
Capone. Do You Know the Way to SNA ?: A Process Model for Analyz-
ing and Visualizing Social Media Data. Technical Report 3, University of
Maryland: Human Computer Interaction Lab, 2009.

339

[46] Beverly L. Harrison, Russell Owen, and Ronald M. Baecker. Timelines: an
interactive system for the collection and visualization of temporal data. In
Proceedings of Graphics Interface (GI), pages 141–141. Citeseer, 1994.

[47] J. A. Hartigan. Representation of Similarity Matrices by Trees. Journal of
the American Statistical Association, 62(320):1140–1158, 1967.

[48] Susan Havre, Elizabeth Hetzler, Paul Whitney, and Lucy Nowell. ThemeRiver:
visualizing thematic changes in large document collections. IEEE Transactions
on Visualization and Computer Graphics, 8(1):9–20, 2002.

[49] K. Priyantha Hewagamage, Masahito Hirakawa, and Tadao Ichikawa. Inter-
active visualization of spatiotemporal patterns using spirals on a geographical
map. Proceedings of the IEEE Symposium on Visual Languages, pages 296–
303, 1999.

[50] S. Hibino and E.A. Rundensteiner. A visual query language for identifying
temporal trends in video data. In Proceedings of the International Workshop
on Multi-Media Database Management Systems, pages 74–81. IEEE, 1995.

[51] Stacie Hibino and Elke A. Rundensteiner. User interface evaluation of a direct
manipulation temporal visual query language. In Proceedings of the ACM In-
ternational Conference on Multimedia (MULTIMEDIA), pages 99–107. ACM,
1997.

[52] Harry Hochheiser and Ben Shneiderman. Dynamic query tools for time series
data sets: Timebox widgets for interactive exploration. Information Visual-
ization, 3(1):1–18, 2004.

[53] Barry E. Jacobs and Cynthia A. Walczak. A Generalized Query-by-Example
Data Manipulation Language Based on Database Logic. IEEE Transactions
on Software Engineering, SE-9(1):40–57, 1983.

[54] Jing Jin and Pedro Szekely. QueryMarvel: A visual query language for tem-
poral patterns using comic strips. In Proceedings of the IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC), pages 207–214.
IEEE, September 2009.

[55] Brian Johnson and Ben Shneiderman. Tree-maps: A space-filling approach to
the visualization of hierarchical information structures. In Proceedings of the
IEEE Conference on Visualization (Vis), pages 284–291. IEEE, 1991.

[56] Geir Jordet, Esther Hartman, Chris Visscher, and Koen A P M Lemmink.
Kicks from the penalty mark in soccer: the roles of stress, skill, and fatigue
for kick outcomes. Journal of Sports Sciences, 25(2):121–129, 2007.

340

[57] Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Jeffrey Heer. Wran-
gler: interactive visual specification of data transformation scripts. In Pro-
ceedings of the Annual SIGCHI Conference on Human Factors in Computing
Systems (CHI), page 3363, New York, New York, USA, 2011. ACM Press.

[58] Hyunmo Kang, Lise Getoor, Ben Shneiderman, Mustafa Bilgic, and Louis
Licamele. Interactive entity resolution in relational data: a visual analytic
tool and its evaluation. IEEE transactions on visualization and computer
graphics, 14(5):999–1014, 2008.

[59] Gerald M. Karam. Visualization using timelines. In Proceedings of the ACM
SIGSOFT International Symposium on Software Testing and Analysis, pages
125–137. ACM, 1994.

[60] Toshikazu Kato, Takio Kurita, Nobuyuki Otsu, and Kyoji Hirata. A sketch
retrieval method for full color image database-query by visual example. In
Proceedings of the IAPR International Conference on Pattern Recognition,
pages 530–533. IEEE, 1992.

[61] Ernst Kleiberg, Huub van De Wetering, and Jarke J. van Wijk. Botanical
visualization of huge hierarchies. In Proceedings of the IEEE Symposium on
Information Visualization (InfoVis), page 87. IEEE, 2001.

[62] Denis Klimov, Yuval Shahar, and Meirav Taieb-Maimon. Intelligent selection
and retrieval of multiple time-oriented records. Journal of Intelligent Infor-
mation Systems, 35(2):261–300, September 2009.

[63] Denis Klimov, Yuval Shahar, and Meirav Taieb-Maimon. Intelligent visual-
ization and exploration of time-oriented data of multiple patients. Artificial
Intelligence in Medicine, 49(1):11–31, May 2010.

[64] Anthony C. Klug. Abe: a query language for constructing aggregates-by-
example. In Proceedings of the LBL Workshop on Statistical Database Man-
agement (SSDBM), pages 190–205. Lawrence Berkeley Lab, 1981.

[65] Milos Krstajic, Enrico Bertini, and Daniel A. Keim. CloudLines: Compact
Display of Event Episodes in Multiple Time-Series. IEEE Transactions on
Visualization and Computer Graphics, 17(12):2432, 2011.

[66] Joseph B. Kruskal and James M. Landwehr. Icicle Plots: Better Displays for
Hierarchical Clustering. The American Statistician, 37(2):162–168, 1983.

[67] Harold W. Kuhn. The Hungarian method for the assignment problem. Naval
Research Logistics Quarterly, 2(1-2):83–97, March 1955.

[68] Jonh Lamping and Ramana Rao. The Hyperbolic Browser: A Focus+Context
Technique for Visualizing Large Hierarchies. Journal of Visual Languages &
Computing, 7(1):33–55, March 1996.

341

[69] Ivica Letunic and Peer Bork. Interactive Tree Of Life (iTOL): an online tool
for phylogenetic tree display and annotation. Bioinformatics, 23(1):127–8,
January 2007.

[70] Vladimir I. Levenshtein. Binary codes capable of correcting deletions, inser-
tions and reversals. Soviet Physics Doklady, 10(8):707–710, 1966.

[71] Wen-Syan Li, K. Selcuk Candan, Kyoji Hirata, and Yoshinori Hara. IFQ: a
visual query interface and query generator for object-based media retrieval. In
Proceedings of the IEEE International Conference on Multimedia Computing
and Systems, pages 353–361. IEEE, 1997.

[72] Jessica Lin, Eamonn Keogh, and Stefano Lonardi. Visualizing and discovering
non-trivial patterns in large time series databases. Information Visualization,
4(2):61–82, April 2005.

[73] Jessica Lin, Eamonn Keogh, Stefano Lonardi, Jeffrey P. Lankford, and
Donna M. Nystrom. Visually mining and monitoring massive time series.
In Proceedings of the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), page 460, New York, New York, USA,
2004. ACM.

[74] Jessica Lin, Eamonn Keogh, Stefano Lonardi, Jeffrey P. Lankford, and
Donna M. Nystrom. VizTree: a tool for visually mining and monitoring mas-
sive time series databases. In Proceedings of the International Conference on
Very large data bases (VLDB), volume 30, page 1272. VLDB Endowment,
2004.

[75] Lauro Lins, Marta Heilbrun, Juliana Freire, and Claudio Silva. VISCARE-
TRAILS: Visualizing Trails in the Electronic Health Record with Timed Word
Trees, a Pancreas Cancer Use Case. In Proceedings of the IEEE VisWeek
Workshop on Visual Analytics in Healthcare, pages 13–16, 2011.

[76] Heikki Mannila and Pirjo Moen. Similarity between Event Types in Se-
quences. In Proceedings of the International Conference on Data Warehousing
and Knowledge Discovery (DaWaK), pages 271–280. Springer, 1999.

[77] Heikki Mannila and Pirjo Ronkainen. Similarity of Event Sequence. In Pro-
ceedings of the International Workshop on Temporal Representation and Rea-
soning (TIME), pages 136–139, 1997.

[78] Heikki Mannila and Jouni K. Seppänen. Finding similar situations in se-
quences of events via random projections. In Proceedings of the SIAM Inter-
national Conference on Data Mining, pages 1–16. Citeseer, 2001.

[79] P. A. McKee, W. P. Castelli, P. M. McNamara, and W. B. Kannel. The
natural history of congestive heart failure: the Framingham study. The New
England journal of medicine, 285(26):1441–6, December 1971.

342

[80] John J. McMurray and Marc A. Pfeffer. Heart failure. Lancet, 365(9474):1877–
1889, 2005.

[81] Marcel Mongeau and David Sankoff. Comparison of Musical Sequences. Com-
puter and the Humanities, 24(3):161–175, 1990.

[82] Tamara Munzner. H3: laying out large directed graphs in 3D hyperbolic space.
Proceedings of Visualization Conference, Information Visualization Sympo-
sium and Parallel Rendering Symposium (VIZ), pages 2–10,, 1997.

[83] Tadao Murata. Petri nets: Properties, analysis and applications. In Proceed-
ings of the IEEE, volume 77, pages 541–580. IEEE, 1989.

[84] Gonzalo Navarro. A guided tour to approximate string matching. ACM Com-
puting Surveys, 33(1):31–88, March 2001.

[85] Hannes Obweger, Martin Suntinger, Josef Schiefer, and Gunther Raidl. Sim-
ilarity searching in sequences of complex events. In Proceedings of the Inter-
national Conference on Research Challenges in Information Science (RCIS),
pages 631–640. IEEE, May 2010.

[86] Gultekin Ozsoyoglu, Victor Matos, and Meral Ozsoyoglu. Query processing
techniques in the summary-table-by-example database query language. ACM
Transactions on Database Systems, 14(4):526–573, December 1989.

[87] Gultekin Ozsoyoglu and Huaqing Wang. Example-based graphical database
query languages. Computer, 26(5):25–38, May 1993.

[88] William R. Pearson and David J. Lipman. Improved tools for biological se-
quence comparison. In Proceedings of the National Academy of Sciences of the
United States of America, volume 85, pages 2444–2448, April 1988.

[89] Adam Perer and Ben Shneiderman. Systematic yet flexible discovery: Guiding
Domain Experts through Exploratory Data Analysis. In Proceedings of the
International Conference on Intelligent User Interfaces (IUI), page 109, New
York, New York, USA, 2008. ACM.

[90] Carl Adam Petri. Communication with automata. Technical report, DTIC
Research Report, 1966.

[91] Doantam Phan, John Gerth, Marcia Lee, Andreas Paepcke, and Terry Wino-
grad. Visual analysis of network flow data with timelines and event plots.
In Proceedings of the International Workshop on Visualization for Computer
Security (VizSEC), pages 85–99. Springer, 2007.

[92] Doantam Phan, Andreas Paepcke, and Terry Winograd. Progressive multiples
for communication-minded visualization. In Proceedings of Graphics Interface
(GI), page 225, New York, New York, USA, 2007. ACM.

343

[93] Doantam Phan, Ling Xiao, Ron Yeh, Pat Hanrahan, and Terry Winograd.
Flow map layout. In Proceedings of the IEEE Symposium on Information
Visualization (InfoVis), pages 219–224. IEEE, 2005.

[94] William A Pike, John Stasko, Remco Chang, and Theresa A OConnell. The
science of interaction. Information Visualization, 8(4):263–274, 2009.

[95] Peter Pirolli and Stuart Card. The sensemaking process and leverage points for
analyst technology as identified through cognitive task analysis. In Proceedings
of International Conference on Intelligence Analysis, volume 2005, pages 2–4,
2005.

[96] Catherine Plaisant, Jesse Grosjean, and Benjamin B. Bederson. SpaceTree:
supporting exploration in large node link tree, design evolution and empirical
evaluation. In Proceedings of the IEEE Symposium on Information Visualiza-
tion (InfoVis), pages 57–64. IEEE, 1998.

[97] Catherine Plaisant, Rich Mushlin, A. Snyder, J. Li, D. Heller, and Ben Shnei-
derman. LifeLines: using visualization to enhance navigation and analysis of
patient records. In Proceedings of the AMIA Annual Symposium, pages 76–80.
American Medical Informatics Association, 1998.

[98] Seth M. Powsner and Edward R. Tufte. Graphical Summary of Patient Status.
Lancet, 344(8919):386–389, 1994.

[99] A. Johannes Pretorius and Jarke J. van Wijk. Visual analysis of multivariate
state transition graphs. IEEE Transactions on Visualization and Computer
Graphics, 12(5):685–92, 2006.

[100] A. Johannes Pretorius and Jarke J. van Wijk. Visual Inspection of Multivariate
Graphs. Computer Graphics Forum, 27(3):967–974, May 2008.

[101] Edward M. Reingold and John S. Tilford. Tidier Drawings of Trees. IEEE
Transactions on Software Engineering, SE-7(2):223–228, March 1981.

[102] Patrick Riehmann, Manfred Hanfler, and Bernd Froehlich. Interactive Sankey
diagrams. In Proceedings of the IEEE Symposium on Information Visualiza-
tion (InfoVis), pages 233–240. IEEE, 2005.

[103] Isidore Rigoutsos and Aris Floratos. Combinatorial pattern discovery in bio-
logical sequences: The TEIRESIAS algorithm. Bioinformatics, 14(1):55–67,
January 1998.

[104] George G. Robertson, Stuart K. Card, and Jack D. Mackinlay. Information
visualization using 3D interactive animation. Communications of the ACM,
36(4):57–71, 1993.

[105] Richard Rudgley. The Lost Civilizations of the Stone Age. Simon & Schuster,
1999.

344

[106] Gerard Salton and Christopher Buckley. Term-weighting approaches in auto-
matic text retrieval. Information Processing & Management, 24(5):513–523,
1988.

[107] Michael Schroeder, David Gilbert, Jacques van Helden, and Penny Noy. Ap-
proaches to visualisation in bioinformatics: from dendrograms to Space Ex-
plorer. Information Sciences, 139(1-2):19–57, November 2001.

[108] Jinwook Seo and Ben Shneiderman. A rank-by-feature framework for interac-
tive exploration of multidimensional data. Information Visualization, 4(2):96–
113, 2005.

[109] Yuval Shahar, Dina Goren-Bar, David Boaz, and Gil Tahan. Distributed,
intelligent, interactive visualization and exploration of time-oriented clinical
data and their abstractions. Artificial Intelligence in Medicine, 38(2):115–35,
2006.

[110] Reza Sherkat and Davood Rafiei. Efficiently evaluating order preserving sim-
ilarity queries over historical market-basket data. In Proceedings of the Inter-
national Conference on Data Engineering (ICDE), pages 19–30, 2006.

[111] Ben Shneiderman. Direct Manipulation: A Step Beyond Programming Lan-
guages. Computer, 16(8):57–69, August 1983.

[112] Ben Shneiderman. The eyes have it: a task by data type taxonomy for in-
formation visualizations. In Proceedings of the IEEE Symposium on Visual
Languages, pages 336–343. IEEE, 1996.

[113] Ben Shneiderman. Extreme visualization: squeezing a billion records into a
million pixels. In Proceedings of the ACM SIGMOD international conference
on Management of data, pages 3–12. ACM, 2008.

[114] Ben Shneiderman and Catherine Plaisant. Strategies for evaluating informa-
tion visualization tools. In Proceedings of the AVI workshop on BEyond time
and errors novel evaluation methods for information visualization (BELIV),
pages 1–7. ACM, 2006.

[115] Richard T. Snodgrass. The temporal query language TQuel. ACM Transac-
tions on Database Systems, 12(2):247–298, June 1987.

[116] Richard T. Snodgrass. The TSQL2 temporal query language. Kluwer Academic
Publishers, 1995.

[117] Robert R. Sokal and Peter H. A. Sneath. Principles of Numerical Taxonomy.
W. H. Freeman and Co., San Francisco, 1963.

[118] John Stasko and E. Zhang. Focus+context display and navigation techniques
for enhancing radial, space-filling hierarchy visualizations. In Proceedings of
the IEEE Symposium on Information Visualization (InfoVis), pages 57–65.
IEEE, 2000.

345

[119] Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. Methods for Visual
Understanding of Hierarchical System Structures. IEEE Transactions on Sys-
tems, Man, and Cybernetics, 11(2):109–125, 1981.

[120] Martin Suntinger, Josef Schiefer, Hannes Obweger, and M. Eduard Groller.
The Event Tunnel: Interactive Visualization of Complex Event Streams for
Business Process Pattern Analysis. In Proceedings of the IEEE Pacific Visu-
alization Symposium (PacificVis), pages 111–118. IEEE, March 2008.

[121] Abdullah U. Tansel, M. Erol Arkun, and Gultekin Ozsoyoglu. Time-by-
example query language for historical databases. IEEE Transactions on Soft-
ware Engineering, 15(4):464–478, April 1989.

[122] Abdullah U. Tansel and Erkan Tin. The expressive power of temporal rela-
tional query languages. IEEE Transactions on Knowledge and Data Engineer-
ing, 9(1):120–134, 1997.

[123] James J. Thomas and Kristin A. Cook. Illuminating the path: The research
and development agenda for visual analytics. IEEE, 2005.

[124] John W. Tukey. Exploratory Data Analysis. Addison-Wesley, 1977.

[125] Frank van Ham, Huub van De Wetering, and Jarke J. van Wijk. Interactive
visualization of state transition systems. IEEE Transactions on Visualization
and Computer Graphics, 8(4):319–329, October 2002.

[126] Katerina Vrotsou. Everyday mining Exploring sequences in event-based data.
PhD thesis, Linkoping University, 2010.

[127] Katerina Vrotsou, Kajsa Ellegard, and Matthew Cooper. Everyday Life Dis-
coveries: Mining and Visualizing Activity Patterns in Social Science Diary
Data. In Proceedings of the International Conference on Information Visual-
ization (IV), pages 130–138. IEEE, July 2007.

[128] Katerina Vrotsou and Camilla Forsell. A Qualitative Study of Similarity Mea-
sures in Event-Based Data. In Proceedings of the Human Interface and the
Management of Information. Interacting with Information Symposium on Hu-
man Interface, pages 170–179. Springer, 2011.

[129] Katerina Vrotsou, Jimmy Johansson, and Matthew Cooper. ActiviTree: inter-
active visual exploration of sequences in event-based data using graph similar-
ity. IEEE Transactions on Visualization and Computer Graphics, 15(6):945–
52, 2009.

[130] Taowei David Wang, Amol Deshpande, and Ben Shneiderman. A Temporal
Pattern Search Algorithm for Personal History Event Visualization. IEEE
Transactions on Knowledge and Data Engineering, 22(12):1–12, 2010.

346

[131] Taowei David Wang, Catherine Plaisant, Alexander J. Quinn, Roman Stan-
chak, Shawn Murphy, and Ben Shneiderman. Aligning temporal data by sen-
tinel events: discovering patterns in electronic health records. In Proceedings
of the Annual SIGCHI Conference on Human Factors in Computing Systems
(CHI), pages 457–466. ACM, 2008.

[132] Taowei David Wang, Catherine Plaisant, Ben Shneiderman, Neil Spring, David
Roseman, Greg Marchand, Vikramjit Mukherjee, and Mark Smith. Temporal
Summaries: Supporting Temporal Categorical Searching, Aggregation and
Comparison. IEEE Transactions on Visualization and Computer Graphics,
15(6):1049–1056, November 2009.

[133] Taowei David Wang, Krist Wongsuphasawat, Catherine Plaisant, and Ben
Shneiderman. Extracting insights from electronic health records: case studies,
a visual analytics process model, and design recommendations. Journal of
medical systems, 35(5):1135–52, October 2011.

[134] Yasuyuki Watai, Toshihiko Yamasaki, and Kiyoharu Aizawa. View-Based Web
Page Retrieval using Interactive Sketch Query. In Proceedings of the IEEE
International Conference on Image Processing, pages 357–360. IEEE, 2007.

[135] Martin Wattenberg. Sketching a graph to query a time-series database. In Pro-
ceedings of the Annual SIGCHI Conference on Human Factors in Computing
Systems (CHI) - Extended Abstracts, pages 381–382. ACM, 2001.

[136] Martin Wattenberg. Visual exploration of multivariate graphs. In Proceedings
of the Annual SIGCHI Conference on Human Factors in Computing Systems
(CHI), page 811. ACM, 2006.

[137] Marc Weber, Marc Alexa, and Wolfgang Muller. Visualizing time-series on
spirals. In Proceedings of the IEEE Symposium on Information Visualization
(InfoVis), pages 7–13. IEEE, 2001.

[138] Charles Wetherell and Alfred Shannon. Tidy Drawings of Trees. IEEE Trans-
actions on Software Engineering, SE-5(5):514–520, September 1979.

[139] Ryen W. White and Resa A. Roth. Exploratory Search: Beyond the Query-
Response Paradigm. In Synthesis Lectures on Information Concepts, Re-
trieval, and Services, pages 1–98, April 2009.

[140] William E. Winkler. The state of record linkage and current research problems.
Technical report, Statistical Research Division, U.S. Census Bureau, 1999.

[141] Krist Wongsuphasawat and David Gotz. Outflow: Visualizing patient flow by
symptoms and outcome. In IEEE VisWeek Workshop on Visual Analytics in
Healthcare, pages 25–28, 2011.

347

[142] Krist Wongsuphasawat, John Alexis Guerra Gómez, Catherine Plaisant,
Taowei David Wang, Meirav Taieb-Maimon, and Ben Shneiderman. LifeFlow:
Visualizing an Overview of Event Sequences. In Proceedings of the Annual
SIGCHI Conference on Human Factors in Computing Systems (CHI), pages
1747–1756. ACM, 2011.

[143] Krist Wongsuphasawat, Catherine Plaisant, Meirav Taieb-Maimon, and Ben
Shneiderman. Querying Event Sequences by Exact Match or Similarity Search:
Design and Empirical Evaluation. Interacting with computers, 24(2):55–68,
March 2012.

[144] Krist Wongsuphasawat and Ben Shneiderman. Finding comparable temporal
categorical records: A similarity measure with an interactive visualization. In
Proceedings of the IEEE Symposium on Visual Analytics Science and Tech-
nology (VAST), pages 27–34. IEEE, October 2009.

[145] Moshé M. Zloof. Query by example. In Proceedings of the National Computer
Conference and Exposition (AFIPS), pages 431–438. ACM, 1975.

[146] Moshé M. Zloof. Office-by-Example: A business language that unifies data
and word processing and electronic mail. IBM Systems Journal, 21(3):272–
304, 1982.

348

