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Chapter 1: Introduction

1.1 Motivation

Manually teleoperating a serial manipulator, and in particular manually tele-

operating a serial manipulator in space from the ground, is a complex task which

requires the operator to split their attention between command dialogues, data

streams, and video feeds. These various elements are displayed on a robotic con-

trol console; a workstation with multiple screens containing the aforementioned

elements, as well as a mouse, keyboard, and hand controllers. Though the input

devices for teleoperation control are relatively straightforward to operate, it may be

difficult, if not impossible, to fix mistakes made while remotely operating a robot

in space, so it is imperative that the display elements of the console are arranged

in the best possible configuration for the task to be performed. Ideally, using the

information displayed on the console, operators should easily be able to maintain a

mental model of the manipulator’s position and environment, while simultaneously

monitoring task-relevant telemetry and inputting commands.

It is possible that the scan patterns between these elements may be the defining

factor in facilitating the operators’ ability to absorb the necessary information, so

it may be possible to gather the information needed to improve the operators’ scan

1



patterns by tracking the operators’ eye movements. Eye tracking is already widely

used as a tool for evaluating user interfaces, in applications ranging from web design

[1] to aircraft cockpits [18]. However, there are no known instances of using eye

tracking to evaluate a robotic control console, let alone a console specifically meant

for space applications.

The NASA mission, OSAM-1 (On-orbit Servicing, Assembly, and Maintenance

1), has a specific need for a well-designed space robot control console. OSAM-1 is

a mission set to launch in 2023, with the goal of refueling the Landsat 7 satellite

on orbit. Landsat 7 was not designed to be refueled, so capturing and refueling it

while still on orbit is a complicated, multi-step process which will make use of a pair

of serial manipulators on board the OSAM-1 spacecraft. Trained robot operators

are tasked with developing procedures, and then operating the serial manipulators

through the mission of refueling Landsat 7. In order to determine which console

configurations are best for the OSAM-1 robot operators, a variety of evaluation

methods should be considered; the hypothesis of this thesis is that eye tracking may

be an effective way to generate metrics to evaluate the placement of information on

multiple monitors for a robotic control station.

1.2 Research Objective

The objective of this research is to perform an eye tracking study on the console

to be used by the OSAM-1 robot operators, and to develop conclusions about the

human factors of the console for the task tested. This may be a somewhat limited

2



objective, but it is in service of a larger objective: to lay the groundwork for further

research that can help answer questions regarding the ideal robotic control console

configuration for the OSAM-1 mission as a whole, and for robotic control operations

in general.

1.3 Thesis Structure

Chapter 2 presents key background information regarding robot operations and

eye tracking. Chapter 3 will explain the methodology of the experiment performed.

Chapter 4 will provide a broad overview of the results of the experiment and describe

some of the data processing techniques used. Chapter 5 will apply a series of analysis

techniques to the data gathered and discuss the takeaways. Finally, Chapter 6 will

summarize the results of this research, describe problems encountered and lessons

learned, and then suggest future work.

3



Chapter 2: Background

2.1 Manually Teleoperating Serial Manipulators

As mentioned before, manually teleoperating a robot is a difficult and attention-

intensive task, which requires that operators be thoroughly trained. As such, there

is a large amount of specialized expertise and knowledge needed. Below, a handful

of robot operations concepts relevant to the research performed are explained.

2.1.1 Joint vs Cartesian Space/Movement

There are two ways of thinking about the pose (position and orientation) of

a serial manipulator’s end-effector: joint and Cartesian pose. Joint position is the

configuration of each of the manipulator’s individual actuators. In a typical manip-

ulator consisting only of rotational (as opposed to “prismatic” or telescoping) joints,

the manipulator’s joint pose is represented by a list of angles which describe each

individual actuator. Cartesian pose is the position and orientation of the manipu-

lator’s end-effector in space. The manipulator’s Cartesian pose is represented by a

set of translational coordinates for the end-effector’s position and a set of angular

coordinates for the end-effector’s orientation. When commanding a manipulator to
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move, it is common to either send a command in either joint or Cartesian space.

2.1.2 Hand Controllers

As an alternative to manually entering values in joint or Cartesian space, it

is common to control a manipulator’s pose using hand controllers. A typical setup

consists of two hand controllers: rotational and translational, as seen in Figure 2.1.

Each is used for three degrees of freedom, and typically directly controls the pose

of the manipulator’s end-effector.

Figure 2.1: Translational (left) and rotational (right) hand controllers.

2.1.3 Contact Operations

Any operations that involve a manipulator making contact with a fixed object

are generally considered to be particularly difficult and possibly dangerous, for fear

of causing damage to the manipulator, the target object, or both. A common way

of dealing with this problem is compliance. This can take a few different forms; with

the help of a force-torque sensor, a software control loop can provide compliance.
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Alternatively, it can be mechanical, in the form of physical “springiness” in either

the end-effector or the target object. In the case of the task performed in this thesis,

compliance comes from a spring between the end-effector’s tooling and the body of

the manipulator. Typically, during contact operations, the operator will need to

closely monitor a display containing contact force and torque information.

2.1.4 Camera Views

Especially in situations where a robot cannot be seen directly by its oper-

ator, multiple camera views displaying its position from a variety of angles are

extremely important [5]. Having multiple camera views from orthogonal, or at least

significantly distinct, angles is particularly useful when performing operations which

require precision. Additionally, camera overlays may be used in cases where precise

alignment is needed. These take the form of fixed lines drawn over the video feed

which help operators judge misalignments. The use of multiple camera views and

overlays can be seen in the operation of the Space Station Remote Manipulator

System (SSRMS), a manipulator on board the International Space Station. In op-

erating the SSRMS, great care is taken to select and display the camera views which

best capture the overall view of the manipulator and provide an advantageous view-

point for determining if the manipulator is in danger of colliding with the structure

of the space station. Overlays, meanwhile, are used for alignment purposes during

tasks involving making contact using the end-effector [10] [6].
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Figure 2.2: A camera view with an overlay (green dotted lines) on it.

2.2 Eyes, Eye Tracking, and Eye Tracking Analysis

Human eyes have two primary modes: saccades and fixations. Fixations, which

as their name suggests are when the eyes are at rest, tend to indicate focusing on

something and taking in information. Saccades are extremely fast movements during

which the eyes move from one fixation to another [1]. Humans are effectively blind

during saccades, meaning that we are only able to absorb information with our eyes

while fixating. The one exception to this is smooth pursuit, which is when the eyes

are able to smoothly follow a moving object [18].

During fixations, the in-focus field of view is surprisingly narrow; in-focus

vision is a narrow circular cone of about two degrees, or “the size of a thumbnail

at arm’s length” [19]. Outside of the in-focus view, vision becomes increasingly

unreliable. Between blindness during saccades and our narrow field of view, discrete

7



Figure 2.3: An illustration of fixations and saccades across several screens.

fixations of the eyes are a simple, yet effective way to estimate what data a subject

has access to. This does not necessarily mean that the subject is absorbing whatever

it is they are looking at, but it is safe to assume that if a subject’s eyes never fixate

in a given area, they have not absorbed the data that might be in that area.

Because fixations are the time in which eyes are capable of absorbing infor-

mation, it is important that eye tracking software have a robust definition of what

qualifies as a fixation. There are a variety of algorithms to detect whether the eyes

are in a fixation, saccade, or smooth pursuit, which generally depend on metrics such

as eye velocity and travel distance [14]. The algorithm used on the data gathered in

this research is the Tobii I-VT (Attention) filter [15], which after heavily filtering the

data, essentially defines fixations as a period of more than 60 milliseconds in which

the eyes travel at most 0.5 degrees, at a speed of less than 100 degrees/second.
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Once eye tracking information has been recorded, there are many tools for

transforming and reducing it to a point where it can be more easily analyzed. The

following subsections contain explanations of some tools to be used later in this

thesis.

2.2.1 Image Mapping

Figure 2.4: An example of a fixation (red circle) mapped from the video recorded
by the eye tracking glasses (left) to a static image of the overall scene (right).

The simple first step is to map the data to an image. The eye tracking glasses

used in this thesis record video and are able to tell where the subject’s eyes are

looking only in the context of the recorded video. In order to convert this to useful

information, the data needs to be mapped to a static image of the visual scene,

where eye location data becomes available as a set of coordinates on the image [7].

Image mapping can be done manually, but this is a tedious and time consuming

task, so this was done automatically, using Tobii Pro Labs for this research. It

is worth mentioning that automatic image mapping is generally reliable, but can

9



sometimes be incomplete or inaccurate.

2.2.2 Areas of Interest

Mapped images can be divided up into areas of interest, commonly abbrevi-

ated as AOIs. These are a useful tool for breaking down a visual scene into regions

of reference for analysis, as software can automatically detect if a given fixation

falls within an AOI on a mapped image [1] [19]. Upon mapping data into AOIs,

several different useful metrics can be extracted, such as fixations per AOI, total

time per AOI, and average time per fixation in a given AOI [16] [18]. Movements

between AOIs may also be mapped into transition matrices which display the fre-

quency or probability of transitioning between AOIs [2], or graphs which display the

same information via graph theory [9]. AOI transitions may even be modelled as

Markov chains [12], probability models in which the current state only depends on

the previous state.

Figure 2.5: A console with areas of interest on its screens.
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2.2.3 Events

Events are simply “timestamps” that can be exported along with other eye

tracking data. Events can be used to indicate when a subject reaches a certain

milestone in their task, and may mark the beginning or end of periods of particular

interest in analysis.

2.2.4 Heatmaps

Figure 2.6: An example of a heatmap made from the data gathered in this research.

One common visualization of eye tracking data is the heatmap, a color-coded

map overlaid onto the scene over which eyes are tracked [1]. Heatmaps are intuitive

and easy to read, but it’s important to take note of what type of heatmap is being

displayed. Heatmap types can be categorized in a few different ways:

• Fixation vs Duration: Fixation heatmaps count the number of fixations, while

duration heatmaps count total time. Fixation and duration heatmaps may

11



differ dramatically if the length of fixations differs between different areas of

the mapped scene [3].

• Absolute vs Relative: When a heatmap includes data from multiple data-

gathering runs, absolute heatmaps simply add all data together, while relative

heatmaps scale data according to the amount of data in the run [3].

Unless stated otherwise, the heatmaps in this thesis are relative fixation, mean-

ing that they display fixations, scaled such that all included data-gathering runs are

weighted equally.

2.2.5 Eye Tracking Metrics

Once eye tracking data has been gathered and reduced, there are many ways

that it might be interpreted to draw conclusions about a given user interface. Poole

and Ball (2006) [16] describe these many metrics and their uses. These include:

• Fixation frequency/fixations per AOI: More fixations in an AOI indicate that

it is more attention-grabbing or simply that the information contained within

is used more often.

• Fixation duration per AOI: Longer fixations in a given area indicate that the

contained elements might contain more data by volume, or that the data might

otherwise be more difficult to absorb.

• Proportional dwell time/total time per AOI: Total time spent per AOI gives

a broad overview of overall attention which combines the information present

12



in both fixation frequency and fixation duration.
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Chapter 3: Methodology

Figure 3.1: The Motoman MH250 robot used in this experiment.

In collaboration with NASA Goddard, an eye tracking test was performed

on a group of OSAM-1 robot operators, which involved performing a training task

on the OSAM-1 team’s Motoman MH250 robot while wearing eye tracking glasses.

This task consisted of aligning the “wobble socket” end-effector (a hex socket on a

compressible spring) of the MH250 with a hexagonal cap in a “cap bathtub”, and

fully enveloping it with the end-effector. Currently, the OSAM-1 team does not

14



officially have a standard configuration for laying out the various data sources that

operators need, such as GUI (graphical user interface) elements and camera views.

The point of the experiment to follow, then, is to gather data which may point to an

optimal arrangement for the various scenes on the monitors of the control station.

3.1 Screens/GUI Configuration

The console used for this experiment has 8 screens, as seen in Figure 3.2. When

referring to a specific screen throughout this thesis, terms like “bottom center right”,

or “top outer left” will be used to describe the screen’s position. Each configuration

may have several different elements, which are described below:

1. An “overall” view, from a camera mounted on a nearby wall. The “overall”

view contains both the entire robot and the cap bathtub.

2. A “safety” view, from below the hex cap bathtub, perpendicular to the end-

effector.

3. A camera based on the left side of the end-effector that provides a view of the

wobble socket. When viewed on the screen, an overlay (dotted green lines, as

seen in Figure 3.2) helps the operator visualize a straight line from the end of

the end-effector to the target hex cap. For brevity, this may be referred to as

EE-left.

4. A counterpart to EE-left, on the right side of the end-effector. These views are

orthogonal to one another. For brevity, this may be referred to as EE-right.
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5. The display for inputs to a DVR (digital video recorder) used by the robot op-

erators. This display contains several different facility camera views, including

all four camera views used specifically for this task. This display was optional.

6. A PC displaying a robot control GUI, robot visualization (referred to as the

“viz”), and instructions, which all together take up 2-3 screens. This will be

elaborated on below.

7. There will often be at least one screen left blank.

Figure 3.2: Eight screen setup, labelled with numbered boxes. In the list above, the
number for each description corresponds to the matching number for the screens
here. It should be noted that video views can be arranged on any screen as part of
the console set-up.

There were three primary elements displayed on the PC:

1. Viz: The “viz” is a visualization of the robot in an empty scene. Broadly, it has

two uses for the task performed. It can be used as an additional camera view,

having the ability to zoom and rotate to view all angles of the robot at will, but

lacking any of the robot’s environment (while the viz can be used to display

the robot’s environment, this feature was not used in this experiment). It can

16



Figure 3.3: The end-effector cameras (circled in red).

also be used to display the orientation of the robot’s coordinate axes, which

can be particularly helpful in acquainting the operator with the operation of

the hand controls.

2. Instructions: The instructions for the task being performed, open in Microsoft

Word.

3. Graphical User Interface: The GUI used by the OSAM-1 team consists of

several different elements which fulfil various functions for controlling the robot

and displaying data. GUI elements are “dockable”, meaning that they can be

rearranged within the primary GUI window, or can be split off into their own

separate windows.
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Figure 3.4: A screenshot of the viz, clearly displaying a model of the MH250.

Figure 3.5: A screenshot of the Word document, as it appears in on the PC.
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Figure 3.6: A screenshot of the GUI as it was used in a data gathering run.

3.2 Test Subjects

The test subjects for this experiment were a group of 6 trained OSAM-1 robot

operators at NASA Goddard. Unfortunately, the data for one of these robot opera-

tors could not be used, as the eye tracking glasses were unable to calibrate for them.

Therefore, there were ultimately 5 complete datasets to be analyzed. The robot

operators will be referred to as participants A, B, C, D, and E. Previous experience

as a robot operator varied from just a few months to as much as 12 years.

In order to obtain approval for the use of human subjects, paperwork was sub-

mitted to and approved by the University of Maryland’s Institutional Review Board

(IRB). This paperwork can be seen in Appendix F. Because this experiment took

place at NASA Goddard, it was originally planned to submit this paperwork to an

IRB at NASA, but upon inquiring it was understood that there were no established

protocols for submitting or approving IRB paperwork at NASA Goddard, at least
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through the OSAM-1 team.

3.3 Experimental Design

The design of these consoles, as well as the tasks to be performed on them,

have innumerable variables, and is already very much in flux, so it emerged that

the best strategy might be to evaluate a simple, generic task in a handful of console

figurations, so as to provide a guideline for future work. This approach has the

additional advantage of making it easier to compare and contrast various console

configuration variables, as many of the metrics measurable through eye tracking are

far more useful when measured against metrics from other console designs.

Ultimately, three different console/GUI configurations were tested with each

test subject. In order of testing for all test subjects, these are:

1. The operator’s personally chosen configuration. It was decided that this should

be the first configuration that operators use, so that the operators are not

influenced by the “standard” configuration in choosing their personal config-

uration.

2. A “standard” configuration, deemed by senior robot operators to be typical

for the task to be performed.

Outer left Center left Center right Outer right
Top Overall EE-left EE-right Safety
Bottom Blank Instructions GUI + Viz DVR

Table 3.1: Table describing the standard configuration.

20



Figure 3.7: Standard configuration overall picture.

Figure 3.8: Standard bottom left center screenshot, with blank space to the left and
instructions to the right.
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Figure 3.9: Standard bottom right center screenshot, with the GUI to the left and
viz to the right.

3. An “altered” configuration chosen to be significantly different from both the

standard configuration and all of the personally chosen configurations, while

keeping certain configurable elements deemed to be essential. Originally, only

the first two configurations were planned, but an additional run using this con-

figuration was added to introduce more variation in the console configuration.

The most noteworthy similarities to the “standard” are that the end-effector

cameras stayed in the two top center screens of the console, the instructions

and GUI stayed in the two bottom center screens of the console, respectively,

and the force and torque plots remained on the top of the bottom right cen-

ter screen. Beyond those similarities, an attempt was made to scramble the

remaining GUI elements and camera views. Because it was thought that it

might be particularly interesting to gauge the effects of a 2x3 layout rather

than a 2x4 one, the rightmost column of screens was omitted. As shown in
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Figure 3.8, the standard configuration put the instructions by themselves on

a single screen, with the visualization and GUI together on a second monitor.

Since the instructions are essentially a fixed width, the ”altered” configuration

placed the viz window on the unused portion of the instructions screen, giving

the operator a full monitor for the GUI.

Outer left Center left Center right Outer right
Top Overall EE-left EE-right Safety
Bottom Blank Instructions GUI + Viz DVR

Table 3.2: Table describing the altered configuration.

Figure 3.10: Altered configuration overall picture.
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Figure 3.11: Altered bottom left center screenshot, with blank space to the left and
instructions to the right.

Figure 3.12: Altered bottom right center screenshot, with the GUI to the left and
viz to the right.

Throughout this thesis, specific data gathering runs may be referred by their

operator letter and run number. For example, test subject C’s third data gathering

run (altered configuration) may be referred to as C3.
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If an operator expressed that they were inexperienced with the task, they were

allowed to start with a “dry run” before moving along to the recorded trials. In

preparation for the personally chosen configuration, GUI layout was “scrambled”

before each operator’s first run, and the screens were unmapped from their video

feeds, forcing the operators to rearrange the console according to their own prefer-

ences, or at least use semi-randomly arranged GUI elements, in attempt to ensure

that the operator’s personally chosen configuration was organically chosen. During

all data gathering runs, a curtain was drawn between the operator and the robot,

such they could only use the camera views on the console instead of being able to

directly look at the robot.

Figure 3.13: The operator’s view of the workcell from their console, blocked by the
curtain.
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3.4 Task Performed

The test was a simple training task consisting of aligning the robot’s “wobble

socket” end-effector over a fitting hexagonal cap, and pressing forward with 10 N of

force. The complete instructions can be seen in Appendix A, but the overall task is

summarized below:

1. Move to approach position:

A scripted joint movement, commanded from the keyboard into the GUI.

This command, as well as all other joint movements, is sent by entering the

desired joint space values into the joint movement dialogue one-by-one. This

movement is from the manipulator’s initial resting position to an “approach”

position.

2. Move to coarse alignment:

Another joint movement to the “coarse alignment” position, which is approx-

imately 12 inches axially away from the cap. There were purposely minor

inaccuracies built into the supplied joint space values, such that the operator

would have to manually make corrections in the next step.

3. Corrections to coarse alignment:

Operators used hand controllers in Cartesian space to move the end-effector

to visually correct the inaccuracies from step 2, using the overlays on the end-

effector views to help visualize a straight line from the end-effector. The goal
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of this step was to keep the end-effector approximately the same distance from

the hex cap, but correct the rotational and translational inaccuracies such that

the cap and end-effector become axially aligned.

4. Move to fine alignment:

Operators moved the end-effector approximately 6 inches towards the hex cap

to reach “fine alignment”. Operators were allowed to perform this step using

either hand controllers as before, or a Cartesian movement dialogue similar to

the joint movement dialogue; most used hand controllers.

5. Corrections to fine alignment:

Similar to step 3, only applied to the fine alignment position.

6. Press forward on cap until 10 N of axial force is measured:

Operators used the hand controllers to contact the hex cap using the end-

effector, and pressed forward, compressing the spring element of the wobble

socket until 10 N of axial force was measured on the force display in the GUI.

7. Rotate the wobble socket until it’s aligned and springs forward to envelope the

cap:

Run the manipulator’s torquer tool drive using the tool drive dialogue in the

GUI. A simple button press corresponded to a 180 degree turn. When the hex

in the socket aligned with the hex cap, it sprung forward, enveloping it, and

the tool drive stopped rotating.
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8. Press forward on cap until 10 N of axial force is measured:

Similar to step 6, only already seated on the hex cap.

9. Back away until axial forces are completely relieved:

Remove the wobble socket from the hex cap; the run is complete when all

forces go to zero.

Figure 3.14: The hex cap “bathtub” (left) and the end-effector, with the wobble
socket circled in red (right).

3.5 Data Gathering Methods

There are two primary types of eye tracking setups in common usage: screen-

based (fixed to a computer/TV screen) and head-based (attached to the subject’s

head; usually look a lot like glasses). Because this is an evaluation of a large,

multi-screen control station setup, with multiple input sources (video streams, robot
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control interface, etc), a screen-based solution was infeasible and a head-based setup

was chosen: the Tobii Pro Glasses 2.

Figure 3.15: Tobii Pro Glasses 2, the eye tracking glasses used in this experiment
[17].

Interviews were performed before and after the tests with each subject. Open-

ing interviews were treated as an opportunity to introduce the participants to the

eye tracking glasses, and determine which of the interchangeable nosepieces would

best fit them. The operators were also asked if they wore contact lenses, and if

those contact lenses were of a particularly strong prescription, as it was known from

previous investigations that the glasses occasionally do not work if the subject is

wearing strong prescription contact lenses. The operators were asked about their

previous experience as robot operators, both broadly, and their experience with the

task to be performed and the “standard” console configuration they would be using.

After the operators’ second and third runs through the task, they were asked

whether they felt their performance was impacted by using a different console con-

figuration. They were also asked about their comfort level wearing the glasses while
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operating the robot, and whether or not it had an impact on their performance.
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Chapter 4: Results

4.1 Participant Background

Table 4.1 contains the relevant background information from each participant:

Participant
Previous experience as a
robot operator

Previous experience on
this task

A 3.5 years Once, 4 months ago
B 6 years No
C 4 months No

D About 12 years
Years of experience on
similar tasks

E 6 months No

Table 4.1: Table containing operator background information.

4.2 Eye Tracking Glasses + Participants

Before running the task, all participants indicated that they did not expect the

eye tracking glasses to affect their performance except Participant C, who thought

they might slightly impede their ability to see the screen.

After running the tasks, the participants generally indicated that the glasses

had little impact on their performance, though there were some minor complaints:
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• Participant B said that the glasses sometimes blocked sections of their view,

which meant that they sometimes needed to make extra head movements.

• Participant C also said that the glasses blocked sections of their view, and

described a slight “glare” from the glasses. They believed the glasses were a

minor distraction, but attributed this to having rarely worn glasses previously.

• Participant D said that the glasses were a very minor distraction, and also

described mild discomfort from the glasses resting on their nose for an extended

period of time.

• Participant E also mentioned discomfort from the glasses resting on their nose.

4.3 Learning Effects

In interviews, operators consistently indicated that over the course of perform-

ing the task multiple times in a row, they got better at performing the task. Most

operators performed the task twice in immediate succession on the personal and

standard configurations, and then performed their third run in the altered config-

uration several weeks later. The resulting learning effects can be seen in the data

in multiple areas; most operators spent significantly less time on subtasks that re-

quired direct operator input on their second run. Additionally, all operators spent

more time looking at the screen with the instructions on it on their first run than on

their second run. Operators were specifically told that they would not be evaluated

based on how long they took to complete the task, but it is interesting to note that
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all operators took less time for the task on their second run than on their first.

Participant
Personal

Configuration
Standard

Configuration
Altered

Configuration
A 18:05 12:24 15:15
B 13:03 9:42 13:16
C 26:51 22:50 28:57
D 36:53 12:05 14:05
E 14:29 14:10 15:42

Table 4.2: Minutes taken on each run for each participant.

One operator observed that because the purposely inaccurate joint values in

the coarse alignment joint move were the same during every run, they were able

to make coarse alignment corrections far more easily with each subsequent run.

Additionally, several operators mentioned that they were initially unfamiliar with

the Cartesian orientation of the commands sent by the hand controllers, meaning

that they greatly improved in subtasks that required use of the hand controllers

as they performed additional runs. Due to the limited number of test subjects and

available testing time, there was no opportunity to more carefully control or quantify

the learning effects. This would be an important element in protocols for future,

more detailed tests.

4.4 Console Configuration

During opening interviews, only one operator (participant B) indicated that

their typical console configuration would be significantly different from the “stan-
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dard”. This proved to be true in data gathering; in the personally chosen config-

uration round of testing, only participant B rearranged the screens in a way that

meaningfully deviated from the “standard”. This is despite the fact that, as men-

tioned previously, the personally chosen configuration was the first round of testing,

and that the console was purposely scrambled such that the operators had to arrange

all of the screens and GUI elements themselves for the personal configuration.

Most participants detected only minor performance differences between the

different console configurations. However, when transitioning to an unfamiliar con-

figuration, most participants described some difficulty adjusting, particularly to the

rearranged GUI elements in the “altered” configuration.

A few additional observations made by the operators regarding the various

console configurations included:

• In the altered configuration, having the overall and safety views on the left

side of the console felt further away from the operator than they were if they

had been to their right.

• Also in the altered configuration, the force and torque graphs were somewhat

smaller, which made them somewhat more difficult to use.

• In some cases when it was more convenient to do so, operators said they looked

at the DVR display if it was on a side of the console that didn’t have a desired

camera view.
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4.5 Initial Patterns Observed

Figures 4.1 and 4.2 are a pair of heatmaps to give an overview of the eye-

tracking results. These heatmaps include data from all participants on the runs in

the standard and fixed configurations. Data from the personal configurations is not

displayed, as the variations in configuration would make a composite display useless.

These results will be discussed in greater detail in the next chapter.

Figure 4.1: Combined heatmap of all operator data in the standard configuration.

Figure 4.2: Combined heatmap of all operator data in the altered configuration.

As seen in Figures 4.1 and 4.2, operators tended to focus their attention on

three screens, regardless of the overall configuration: the screen showing the GUI,
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and in particular on the force and torque plots, and the two screens showing end-

effector camera view. Considering the task performed, it makes intuitive sense that

these are the areas which received the most focus.

4.6 Eye Tracking Data Processing

In order to even begin to make sense of the data being processed, several steps

were taken to transform it from its initial ”raw” form. The first step in this process

was to import it into Tobii Pro Labs, an analysis software designed for initial data

processing of data from Tobii eye trackers. Upon being imported into Tobii Pro

Labs, data was mapped, using the ”automatic mapping” option to a wide view of

the overall console and screenshot(s) of the PC screens and two different sets of

images, both of which had AOIs denoting individual screens.

Additionally, all runs were given ”events” corresponding to important points

in the run. These events were used as markers for the purposes of breaking the

overall task up into subtasks for analysis. The standard events recorded are:
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Event Name Placement in task
start init move Beginning of initial robot movement
end init move End of initial robot movement
start move to CA Beginning of move to course alignment
end move to CA End of move to course alignment
start CA corrections Beginning of move to course alignment
end CA corrections End of move to course alignment
start move to FA Start of move to fine alignment
end move to FA End of move to fine alignment
start FA corrections Start fine alignment corrections
end FA corrections End fine alignment corrections
start move to contact Start move toward contact with hex cap
make contact Contact is made between the end-effector and hex cap
at 10N nonseated Measure 10 N in axial force, not seated on hex cap
torque Tool drive is activated
at 10N seated Measure 10 N in axial force, seated on hex cap

Table 4.3: Standard set of events recorded.

Most of these events are essentially “bookends” of various subtasks within the

overall task, though there is one exception: “torque” is when the operator activates

the tool drive, which may happen multiple times. For events such as ”start move

to FA” and ”end move to FA”, even if the subject stopped their movement in the

middle of this subtask, or even returned to a previous task, the ”end move to FA”

event would not happen until fine alignment was actually reached. In cases where

subtasks were skipped, their corresponding events were added at the same time as

the closing bookend for the previous subtask.

After being processed in Tobii Pro Lab, the data was exported as TSV (Tab

Separated Value) files. The TSVs are run through a script to convert this data

to MAT files (binary MATLAB data), which could be imported into MATLAB.
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Once in MATLAB, data was pared down to only include successfully image-mapped

fixations, before being further analyzed.

Figure 4.3: An illustration of the data processing workflow.

4.7 Dealing With Incomplete + Inaccurate Data

It is important to note that the eye tracking glasses are not perfect; on average,

eyes are successfully tracked about 90% of the time. There are outliers however,

most notably Participant D, whose percentage of tracked gaze samples dropped to

as low as 67%. It would be infeasible to determine this empirically, but based on

anecdotal observations in dealing with the eye tracking data, it seems that the eye

tracking glasses were most likely to lose track of Participant D’s gaze when they were

looking at the top row of screens. Therefore, it could be assumed that Participant

D has more fixations and overall time spent on the top row of screens than the data

suggests.

Further complicating things, the mapping software is imperfect in its ability

to map eye location to an image of the scene, meaning that the mapping to a

given image is frequently incomplete, or even inaccurate. Therefore, in order to
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supplement mapping to the overall view, the eye tracking data was also mapped to

screenshots from the PC.

Participant
Run
Number

Percentage of
Tracked Gaze
Samples

Percentage of Total
Time Mapped-
Only overall view

Percentage of Total
Time Mapped-
Overall view +
PC screenshot

A
1 98% 87.1% 88.6%
2 96% 83.4% 85.0%
3 98% 91.9% 92.3%

B
1 98% 87.3% 88.6%
2 98% 57.6% 69.3%
3 97% 90.7% 90.9%

C
1 90% 72.7% 73.8%
2 90% 58.3% 60.7%
3 94% 87.4% 88.1%

D
1 67% 47.9% 53.7%
2 83% 46.7% 55.3%
3 67% 55.3% 56.1%

E
1 86% 78.8% 78.9%
2 92% 52.8% 62.7%
3 92% 66.0% 72.6%

Table 4.4: Percentage of usable data at various points in data processing.

Sometimes when mapping to more than one image, fixations were detected in

different locations in each image, essentially meaning that eye tracking data some-

times indicated that eyes are in two places at once. This is a consequence of the

occasional errors in image mapping; given mapping eye tracking data to two differ-

ent images, if inaccurate mapping occurs when mapping to one image, but not the

other, the resulting eye locations will conflict with one another. These conflicting

periods were not insignificant; on average, they lasted approximately 12 seconds per
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data-gathering run. It would be infeasible to fix all of these instances of conflict, as

this would require manually determining the correct location on every instance of

every run; in some cases there were more that 100 instances in a single run. Anecdo-

tally in combing through the data, there seemed to be a roughly equal split between

errors made mapping to the overall view and the PC screenshots, so it was decided

that all instances of conflicting fixations should simply be removed. This resulted

in a smaller amount of usable data, but the resulting data is more accurate.

Figure 4.4: An example of inaccurate mapping. See the red circle in the left and right
images, indicating the actual eye location (left), and the eye location as mapped to
the overall view (right).
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Chapter 5: Analysis

This chapter will apply a series of analysis techniques to the data gathered

and discuss the takeaways. These analysis techniques will typically consist of a way

of transforming the data gathered to generate a new data representation. These

transformations will become increasingly complex over the course of this chapter,

culminating in an exploration of a consistent finding from these data representations.

5.1 Attention on Each Screen

Figures 5.1 and 5.2 are charts breaking down percentages of time each operator

spent looking at each screen in the standard and altered configurations. Composite

results from the personal configurations are again not shown due to the differences in

screen configurations. Similar data analyses for each of the test subjects individually

are presented in Appendix E, and in that case the personal configuration can be

accurately compared to the other two test cases.
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Figure 5.1: Time percentages per screen, standard configuration.

Figure 5.2: Time percentages per screen, altered configuration.
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Regardless of screen configuration, most time is usually spent on the GUI; this

validates the central location of the GUI screen. EE-left and EE-right are often the

next most viewed screens after the GUI, with EE-left nearly always more viewed

than EE-right. Meanwhile, relatively little time is spent on overall and safety views,

with the least overall time (other than the blank and DVR screens, which received

a nearly negligible amount of attention) spent on the safety screen.

A broad trend is that more time is nearly always spent on the instructions

in the altered configuration than the standard configuration. The primary reason

for this is thought to be learning effects; as mentioned previously, all operators

performed their tests on the personal and standard configurations in immediate

succession, meaning that the operators had the best knowledge of the task during

the standard configuration test. Having the viz grouped with the GUI in the altered

view accounts for some of this, but in instances when the AOI data for the viz is

viewed on its own, it is usually almost negligible. Other than this, the only other

significant trend in the typical attention given to screens between the standard and

altered views is that the overall view gets a few percentage points more attention in

the standard configuration than the altered configuration.

Note that D3 has a particularly high percentage for the GUI and overall view,

and particularly low percentages for EE-left and EE-right. This can be explained

by the particularly low percentage of gaze samples in D3, which tend to be dropped

more often when looking at the top row of screens, as was described in Section 4.7.
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Figure 5.3: Time per fixation per screen, standard configuration. Note that ”0” is
used to denote that there were no fixations on a given screen.

Figure 5.4: Time per fixation per screen, altered configuration. Note that ”0” is
used to denote that there were no fixations on a given screen.

Another simple representation of the data acquired is average time spent per
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fixation per screen. The most immediate observation that can be made is that

longer fixations tend to occur on the GUI, instructions, and end-effector views,

while relatively brief glances are made at overall and safety views. This tracks with

what one would expect given the information available on these screens; a smaller

volume of task-relevant information can be drawn from overall and safety views

than the precise alignment information on the end-effector views, the data readouts

and inputs on the GUI, and the information in the instructions. On the blank

and DVR screens, it is difficult to draw any conclusions about what information

might be absorbed, as average time per fixation tends to vary dramatically, likely

because there are fewer instances of these screens being looked at, and therefore

fewer samples to average together.

An item of interest here is that eye tracking studies tend to indicate that

users more familiar with a user interface tend to have longer fixations [18]. In this

research, it might be expected that this effect would have the most noteworthy

impact on the standard configuration, where the senior robot operators would be

most familiar with the console. In line with this, note that participants C and E

are the least experienced robot operators and generally have longer fixation times

than other operators in the standard configuration, at least on the most viewed

screens such as the instructions and GUI. In a surprising exception to this trend,

participant D, who is the most experienced robot operator, has by far the longest

fixation lengths while on the standard configuration.
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5.2 Transition Matrices, Paired Screens, and GUI Pivoting

In order to better understand operators’ eye movements between screens, tran-

sition matrices were generated which mapped the number of transitions between the

set of screens available on a given run. These matrices were generated by applying

the following transformations and filters to the dataset from each data gathering

run:

1. The data was filtered to timesteps containing fixations only.

2. If there was a gap between fixations larger than 1 second, the fixation at the

start of that gap was removed.

3. Data was filtered to only contain the first timestep of each fixation.

4. Data was filtered to only contain fixations within the specified AOIs.

5. Each remaining fixation is stepped to the previous timestep, within a set of

data filtered by steps 1 and 4, but not steps 2 or 3. The resulting fixations on

either side of this step are saved coupled together as an “initial” fixation and

a “next” fixation.

After being categorized by screen-to-screen pairing, each run was then nor-

malized by the total number of transitions made, and then averaged together by

configuration. The resulting matrices for the standard and altered configurations

can be seen in Figures 5.5 and 5.6.
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Figure 5.5: Screen transition matrix, standard configuration.

Figure 5.6: Screen transition matrix, altered configuration
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An observation that can be made from this data is that frequent transitions

most often come in pairs, where if there are frequent transitions from screen A to

B, there will also be frequent transitions from screen B to A. Essentially, this means

that most screen transitions involve operators “bouncing” between two screens. As

was the case with the simple visualizations of time spent per screen and fixations

per screen, the GUI almost universally got the most attention; nearly every screen

consistently has transitions to and from the GUI, essentially making the GUI a

“pivot” point around which the operator’s attention revolved. The other screens

most often paired with the GUI are, in order from most to least frequent, are the

instructions, EE-left, and EE-right. By far the most common screen pairing not

including the GUI is EE-left and EE-right, which matches with the intended use of

these views in tandem with one another.

5.3 Transitions vs Distance Travelled

Next, the transition frequencies defined in the previous section will be com-

pared to the distance travelled between screens. Rather than using the centerpoint

of screens to calculate distance travelled, distances were calculated based on the

average location on screens on both ends of the transition, in order to capture the

specifics of the typical behavior in transitioning between screens. In order to trans-

late the pixel distances on the mapped images to real-world inches, some estimates

were made, so the inch distances may not be perfect. It is estimated that the

distances here are accurate within a 1.5 inch margin of error at most.

48



Figure 5.7: Scatterplot of distances vs next fixations, standard configuration (out-
liers circled in red and labelled).

Figure 5.8: Scatterplot of distances vs next fixations, altered configuration (outliers
circled in red and labelled).
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The resulting plots mostly illustrate that there is an inverse relationship be-

tween the distance between screen transitions and the transition frequency, with

some outliers. This is an intuitive result which indicates that in both the standard

and altered configurations, screens are, for the most part, arranged such that the

screens which need to be transitioned between frequently are closer together. It is

important to note that the most viewed screens in these configurations (the central

four) are functionally very similar to one another, and so this similar inverse rela-

tionship is to be expected. An alternative interpretation, though, is that operators

simply transitioned more between adjacent screens because it was easier to do so.

As with the transition matrices, datapoints tend to be paired; transitions from A to

B and B to A occupy a similar space. There is some noticeable drift though; it is

clear that operators do not usually make transitions from the same starting point

or ending points.

Notable outlying paired data points include GUI and EE-left, and GUI and

overall in both configurations. The relationship between the GUI and EE-left is

thought to be the result of an unknown attractive quality in EE-left and will be

examined in further detail in Section 5.4.

It is easily understood why there would be at least somewhat frequent tran-

sitions between the overall view and the GUI; the GUI is essentially the center of

focus for the operator, and the overall view is a broadly useful picture of the robot

being operated. The distance between these views is similar in both the standard

and altered configurations, though it is slightly closer in the altered configuration,

where the overall view is on the bottom row of screens instead of the top. It is
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noteworthy that there is actually a slightly higher transition rate between these two

screens in the overall configuration than in the altered configuration. It is ultimately

not clear what to make of this outlier; this may be an instance where it is simply a

slightly longer transition distance than is proportional to the transition frequency.

There is a single data gathering run in which the GUI and overall views are

adjacent: A1. Images of A1 and its transition matrix can be seen in Figures 5.9 and

5.10, respectively. In this configuration, there is no significant change in transition

frequency between the GUI and overall views from any other configuration. There

are also no outlying differences in any of the metrics such as time per fixation or

overall time for the overall view when compared to the aggregated metrics for the

standard and overall views. There is, however, a slightly higher overall time spent

on the overall view in the personal configuration for participant A alone than in

the other two configurations tested. This can be interpreted in two different ways:

First, that operators will make the same number of transitions between two linked

screens and pay the same amount of attention to the outlying screen, regardless

of their distance. Second, that the distance relationship between these two screens

is essentially meaningless in the gathered attention data. Regardless, this is only

a single datapoint, so neither of these interpretations should be given too much

weight.
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Figure 5.9: Overall picture,participant A, personal configuration

Figure 5.10: Screen transition matrix, participant A, personal configuration.
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5.4 Focus on EE-left over EE-right

An interesting trend is the tendency to focus more on EE-left than EE-right,

particularly given that in every configuration, EE-left is further from the GUI than

EE-right. Of the 15 data gathering runs, there are only three in which more time

is spent looking at the right end-effector than the left. These instances occur in

no particular pattern; each is with a different operator in a different configuration

(C1, D3, E2), indicating that they are most likely not linked to the differences

in configuration or operator. Time per fixations on the EE-left and EE-right are

usually roughly equal, which could be interpreted as meaning that operators absorb

similar kinds of information on each screen, as would be expected, but are drawn to

EE-left more often.

It is unclear what causes the focus on EE-left, as the two end-effector cameras

are orthogonal and the views are meant to be complimentary to one another. It is

possible that the quirks of the task being performed, such as the alignment changes

needed, somehow favor EE-left. To examine this possibility, the overall task can be

broken down into three segments, during each of which operators would be expected

to have a different rationale for looking at the end-effector views. Table 5.1 breaks

down these three segments.
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Segment Start Event End Event
Assumed rationale for looking at
end-effector cameras

1
start init
move

end move
to CA

No particular reason; may be used to
supplement the overall view in confirming
motion on the joint movements.

2
end move to
CA

make
contact

To bring the “wobble socket” in line with
the hex cap after the misalignment at the
end of the coarse alignment joint movement.

3
make
contact

at 10N
seated

To confirm that the “wobble socket” is aligned
with the hex cap and to determine if the
“wobble socket” has sprung forward to
envelope the hex cap.

Table 5.1: Breakdown of task segments for EE-left and EE-right analysis.

Upon breaking down the task into these segments, the percentage of time

looking at each end-effector view can be determined during each segment, using

similar charts to those for the overall task.
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Figure 5.11: Percentage of time spent on EE-left and EE-right.

The primary takeaway from this data is that the focus on EE-left persists

regardless of the rationale for looking at it. However, it seems that during segment

2, the gap between EE-left and EE-right is less pronounced. This is likely a result of

the operators having to use both screens in tandem in moving into alignment, which

may indicate that EE-left is simply seen as the “default” in checking the end-effector

views.
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Another possible explanation is simply that people, broadly speaking, tend

to look at interface elements on the left before the right, and consequently tend to

pay more overall attention to elements on the left rather than the right. It is a

common finding in user interface design research that people tend to follow an “F-

shaped” pattern in navigating an interface, where attention is initially drawn to the

top and left elements of an interface, and that users are less likely to see elements

of an interface if they are further down and to the right [1]. A limitation of this

theory is that these are separate screens, and that these findings in user interface

design research typically apply to single screens, and to webpages in particular, but

it is possible that the instinct to “read” an interface from left to right extends to

multi-screen displays. Operators might use EE-left as an entry point to viewing the

end-effector, and only continue to EE-right if they require more data. If this was

true, one might expect there to be more transitions from EE-left to EE-right than

EE-right to EE-left, which does not hold true according to the transition matrices

presented earlier in this chapter.

Ultimately, it is unclear what causes this phenomenon, and it may be an area

which can be examined in further research. However, the implication that in a set

of paired camera views, one of these views might be more useful, or even simply

more attractive, could have broader ramifications in robotic console design. For

example, it might be preferable to have the more attractive in a pair of views be

more centrally located, or located adjacent to a dominant element of the overall

console, such as the GUI in the case of this research.
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Chapter 6: Conclusions, Lessons Learned, and Future Work

6.1 Summary of Conclusions

The most important conclusion of this research, which encompasses all of the

conclusions to follow, is that eye tracking does appear to be an effective tool for

evaluating a robotic control console. The open questions left by this research in

combination with the experimental conclusions to follow illustrate that this may be

a ripe area for future research.

The most certain conclusion that can be specifically drawn from the data gath-

ered is that for the case of the task performed, on all console configurations, the GUI

is the most important element of the console, attention-wise. Therefore, placing the

GUI on a central screen of the console seems to be ideal, as in addition to garnering

the most overall attention, it seems to be the screen that the operator’s attention

tends to “pivot” off of. This conclusion is most likely immediately applicable to the

vast majority of robotic control consoles, OSAM-1 included.

Very consistently throughout the tests performed, EE-left received more atten-

tion than EE-right; EE-left is even more strongly linked to the GUI for transitions

than EE-right. Though it is unclear what causes this phenomenon, EE-left appears

to be the default that operators use for assessing the status of the end-effector, only
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moving to EE-right to draw a contrast to the data gathered from EE-left. This may

have wider implications in robotic console design, as it possibly entails that among

two paired camera views, one may be more attractive or possibly more useful, and

therefore should be displayed in a more central location.

Broadly speaking, there was found to be a roughly inverse relationship between

the transition distance between screens and the frequency of transitions between

those screens, regardless of configuration. This may be just as much a result of well-

arranged screen configurations as it is simply that it is easier to transition between

adjacent screens; ultimately there is not enough variation in screen configuration

data to make a definitive judgement.

6.2 Problems Encountered

Despite the interesting results, it is important to acknowledge that this re-

search is ultimately an initial effort in the use of eye tracking to assess robotic

control station configurations, and has identified numerous problems and complica-

tions. It is important to make these problems known, both to allow for more accurate

judgements of the efficacy of this research, and to ensure that future experiments do

not experience these problems. Some of these may have been mentioned elsewhere,

but for accessibility, below is a list of all of the known problems encountered while

gathering data for this study:

• There were originally meant to be 6 subjects for this study, but the glasses

were unable to calibrate for one of them. The suspected reason for this is that
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they had previously had LASIK eye surgery, as Tobii documentation mentions

that eye surgery may leave scars on the cornea that interfere with eye tracking

[11]. Interestingly, another subject for whom the glasses were able to calibrate

for had also had LASIK.

• None of the nosepieces supplied with the Tobii glasses provided an appropriate

fit for participant D, and as a result the glasses sat too high on their head,

meaning that there were a lower percentages of vision samples than would have

been preferred. Typical gaze sample percentages for all other subjects were

at least 90%, while this participant’s gaze samples were 67%, 83%, and 67%

percent, respectively. Data from this subject, though useful, was somewhat

limited.

• All but one operator chose a configuration very close to, if not identical to the

“standard” for their personally chosen configuration, meaning that an entire

round of testing was essentially redundant. Based on exit interviews and other

discussions with the team, this is thought to be a result of having been trained

by the senior robot operators, who designed the standard configuration.

• Over the course of their runs through the task, operators learned the task and

performed better. This may have impacted the data in several areas, such as

spending less overall time looking at the instructions, and having a far easier

time correcting for the purposely misaligned coarse alignment. One subject

suggested that it may have helped to move to a differently misaligned coarse

alignment each time, so as to prevent the operator from learning the required
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alignment corrections.

• Because testing took place over the course of more than a month in an active

work area, changes were sometimes made to the console and workcell which

may have had an impact on data collection and operator performance. It is

recommended that future testing onsite at NASA Goddard take place during

the most compressed timeline possible so as to prevent changes to the workcell

environment and console.

– The camera for the overall view was mounted on a wall, but its pan, tilt,

and zoom settings could be controlled remotely. At one point between

testing, the camera’s setting were changed and attempts were made to

return it to its original configuration. These attempts were mostly suc-

cessful, but it is worth noting that the overall camera view may not be

identical between all runs.

– The camera for the safety view was not mounted to anything, but was

instead simply placed on the ground below the hex cap bathtub. Its

position remained fairly consistent, but shifted somewhat over the course

of the experiment. Again, mostly successful attempts were made to return

the camera to its original configuration.

– Screen resolution of the bottom center right screen had been changed

between when most of the operators did their second and thirds testing

rounds. This wasn’t caught until after most of the third round data had

already been gathered, but upon discovering this, it was decided that this
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would be treated as a feature of the altered screen configuration. For the

first two rounds for all subjects, the resolution was 2560x1440. For the

final round for all subjects, resolution was 2048x1152.

– The screens were sometimes tilted somewhat differently between testing

rounds.

• Some instructions for the task were omitted, ignored, misinterpreted, or oth-

erwise incorrectly implemented.

– Gravity compensation setting was not specified in the instructions; some

operators assumed it should be set on, others proceeded without it. Mid-

way through D1, the operator decided that it should be set on, and added

it to the instructions, assuming it had been erroneously left out. It was

later discovered that gravity compensation had been left out intentionally

by the robot operator who wrote the instructions. Gravity compensation

may have had some impact on the ease of operating the robot, though

the subjects who performed the task without it did not seem to have been

impacted.

– Though the instructions said to do so, the end-effector light was not

turned on by some operators. In some cases, the subject or researcher

realized that the lights had not been turned on midway through the task,

and the lights were promptly turned on, but there were cases where the

lights were kept off for the entire run. This may have impacted the

operator’s ability to see the wobble socket making contact with the hex
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cap.

– Some operators skipped instructions by blending them together. For ex-

ample, there are several cases where operators performed corrections to

the fine alignment while also moving to fine alignment, allowing them to

essentially skip a step in the instructions. This blending and compound-

ing of user errors typically escalated over the course of a data gathering

run, and was complicated by the fact that some users sometimes needed

to return to previous steps. The result of this problem is that particu-

larly for the later steps of the task, it was all but impossible to accurately

partition many of the data gathering runs into subtasks for the purpose

of analysis.

• It was discovered that during D1, the fastener keeping the hex cap in the

“bathtub” had come loose, leading to the hex cap spinning freely when the

tool drive was activated. The operator briefly paused and recording was tem-

porarily stopped to fix this problem.

• It was planned to perform additional tests with this set of test subjects, or

to increase the size of the subject population. Due to the shutdown of NASA

Goddard due to the coronavirus pandemic, further human testing was not

possible, and is still infeasible at the time of writing.
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6.3 Future Work

The research performed here is explicitly meant to be a baseline for future work

to build upon. In addition to accounting for the problems encountered, future work

should be consciously designed to answer specific questions raised by this research, in

contrast with the experiment performed, which was essentially designed to answer

the very broad question of how robot operators’ eyes behave while performing a

task. Many hypotheses can be drawn from this data, which will be elaborated

on below through a series of ideas for future experiments, in rough order from

most immediately feasible to least. Note that it may be advantageous for a future

researcher to draw on elements of many of these ideas in designing a new experiment.

1. Build on this research by repeating the same basic experiment but with more

test subjects, and measures taken to quantify or remove the observed learning

effects, and mitigate the various other problems encountered in collecting data.

Performing with more test subjects may remove what biases may occur in the

limited population studied in this research, as well provide additional data for

dealing with learning effects. However, there is a highly limited population of

trained robot operators available, so it may be necessary to expand beyond

exclusively using robot operators as test subjects. It may in fact be interest-

ing to examine data gathered from non-robot operators for reasons beyond the

advantages of testing with more subjects. Because the experiment performed

involved operating expensive hardware, it would be preferred that any exper-
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iment involving non-robot operators be simulated, rather than actually being

run on a physical robot. Future versions of this experiment may also benefit

from considering additional participant characteristics, such as handedness, or

considering new areas of analysis, such as whether it is easier for subjects to

transition between screens verticallyN or laterally.

2. An important conclusion of this research is that screens tend to be paired,

attention-wise. The most frequently occurring pairs were EE-left and EE-

right, the GUI and instructions, and the GUI and EE-left. It is important to

note that in literally every data gathering run performed, screens containing

the GUI, instructions, and the end-effector views were in the same position

relative to one another. The configuration used makes intuitive sense; it is

only natural to assume that as the most important cameras views, the end

effector cameras should be front and center, and that the GUI, most notably

the force and torque displays, should be as close as possible to the end effector

screens, particularly during contact operations. It also makes intuitive sense

that the instructions should be near the center of the console, and as close

as possible to the GUI, where commands are entered. However, experiments

should be performed to determine just how essential this configuration is by

scrambling the screens more dramatically. It is hypothesized that there is a

quantifiable benefit to grouping more frequently transitioned screens closer

together, so experiments in this vein may be used to test this hypotheses.

(a) One test with a scrambled configuration should specifically break apart
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the most commonly paired screens. It is always a possibility that part

of the reason transitions occur so commonly between two screens is at

least in part simply because they are close together, and not because

they are naturally linked in the data that operators gather from them.

In particular, because the GUI is generally the ”pivot” which most other

screens are paired with, this may entail moving the GUI to a corner of

the console, surrounded primarily by less often used screens.

(b) To specifically test the relationship between the end-effector views and

force and torque displays on the GUI, an experiment could vary the posi-

tion of the force and torque displays relative to end-effector camera views,

and have the subjects perform contact operations, paying close attention

to how long it takes the operators to notice that they’re in contact, while

in various configurations. This test might take some inspiration from the

standard display intrusion test. A limitation of this is that it may be

dangerous for hardware, and could not be performed with the current

OSAM-1 simulation software, as it lacks the ability to simulate contact

operations.

3. Early in the analysis for this research, it was anticipated that breaking the data

analysis for the overall task into smaller subtasks and contrasting performance

on these subtasks to one another might yield particularly interesting results.

Because of the length of the overall task and the variables which occur and

compound over its course, it became difficult to consistently divide the length
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of all data gathering runs into discrete subtasks in the first place, let alone

compare and contrast these subtasks among different runs. As a result, this

area of analysis was largely dropped in favor of primarily analyzing each data

gathering run as a whole. In order to better isolate smaller subtasks and so

facilitate analyzing data on a subtask-by-subtask basis, it may be preferable

to have operators perform several very small tasks, as opposed to one long

one. For example, this could entail individually performing all of the subtasks

from the experiment performed here, but at the end of each subtask, data

collecting would stop and the robot would be reset to a standardized position

for starting the next subtask. The difficulty here is that these subtasks-based

trials would likely be time intensive and require significant help from the robot

operators.

4. This research was highly limited in that it only involved collecting data on

a single, relatively simple training task. The task was selected because it

was a simple training task which bears some resemblance to some of the more

attention-intensive tasks to be performed on OSAM-1, but more realistic tasks

may be better for evaluating the console’s usefulness in flight. Ideally, various

tasks should be evaluated which run the gamut of teleoperation tasks, both

specifically on OSAM-1, and generally in teleoperation of serial manipulators.

Particularly in regards to OSAM-1, these tasks should utilize as many different

types of camera views and GUI elements as possible, to evaluate the consoles

to their fullest possible extent. It may also be advantageous to introduce other
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flight-like complications, such as a delayed signal.

5. Cognitive load is a metric of working short-term memory used in a given task,

which researchers have been working to establish a relationship to eye move-

ments [4]. Recent approaches to estimate cognitive load involve using an eye

tracking system to monitor pupil diameter and microsaccades (tiny eye move-

ments smaller than a saccade, during a fixation) [13]. Regardless of a specific

link to cognitive load, changes in both pupil diameter and microsaccades have

been shown to correlate with task difficulty [8]. Future experiments could use

these metrics, which can be gathered using the same eye tracking system used

in this research, to determine if there is a link between either cognitive load

or task difficulty and screen configurations.

Testing has revealed the complexity and painstaking nature of eye tracking,

particularly with the extreme visual field of the OSAM-1 control station configura-

tion, but the results indicate that there is some useful information to be gathered

from the procedure, and in particular point to areas which can be explored in greater

detail. The human element makes the data gathered extremely noisy and sometimes

difficult to interpret; this is compounded by the fact that for this particular area

of study, there is a very small available population of potential test subjects. The

best way forward is simply to gather more data and try to plan and execute future

experiments as well as possible.
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Appendix A: Task Performed

The following pages contain the procedure given to robot operators for the

experiment performed. This procedure was written by Zakiya Tomlinson.
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MH250 Procedure – Wobble Socket Eyetracker Task 

 

Configuration: 

 MH-250 with OTCM-S and Wobble Socket Training Tool (has tool cameras, but no lights) 

o Make sure the fitting around the wobble socket is tight 

 SMA Cap Bathtub Training Hardware mounted to underside of OSCAR (with handles removed) 

 SA Camera 101 below SMA cap bathtub; SA Cameras 203 watching the whole robot 

 

  
Figure 1 – SA Camera 101 Figure 2 – SA Camera 203 

 

Ensure all facility lights and OTCM-S lights are turned on 

 

Required GUI Displays/Plots:

 Wrench Measured Force 

 Wrench Measured Torque 

 Joint pose move 

 Cartesian pose move 

 Rate Input 

 Fault log  

 Wrench Meas_T soft limits 

 OTCM-S Control 

 

Tool Configuration: 

X Y Z Roll Pitch Yaw 

0 0 0.849 45 -90 -180 

 

Mass Properties: 

Mass (kg) CM_E X (m) CM_E Y (m) CM_E Z (m) 

30 .01 .005 .5 

 

Do not select a scene for the Visualization (OSCAR is incorrectly placed in the red scene) 

Set the Visualization robot payload to the MFT2 (closest cousin to the Wobble Socket tool) 

Configure tool cameras with crosshairs overlays, with the centerline aligned with the tooltip. 

Do not have the terminal window with the deployer or yiax application visible during data collection 

(both contain information that should not be recorded for an external source). 

Make sure the walkway gate to the workcell is tied shut with the “DO NOT ENTER” sign in place. 

Add notes (if applicable) to Test Ticket #18640 

Joint pose tolerance: +/- 0.01 degrees.   
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Procedure: 

1. If the robot is not already at the position below, perform a joint pose maneuver at 2% velocity to: 

J1 J2 J3 J4 J5 J6 

-37.752 42.681 -28.551 -97.575 92.647 14.033 

 

2. Begin data collection. 

 

3. Perform a Joint Pose Maneuver at 2% velocity to: 

J1 J2 J3 J4 J5 J6 

-9.635 49.997 -50.322 -18.682 91.032 44.923 

 

 
Figure 3 – SA Camera 203 View 

 

4. Perform a Joint Pose Maneuver at 2% velocity to Coarse Alignment: 

J1 J2 J3 J4 J5 J6 

-20.558 34.908 -17.011 -23.958 77.459 56.745 

 

 
Figure 4 – SA Camera 203 View 
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5. Perform corrections as required in order to coarsely align the socket with the top-right cap. 

  
Figure 5 – Left Tool Camera View Figure 6 – Right Tool Camera View 

 

6. Maneuver 6 cm +X (tool frame) to Fine Alignment Position. 

Perform alignment corrections as required. 

 

7. Set Wrench Measured Soft Limits: 

F_X F_Y F_Z T_X T_Y T_Z 

25 25 25 8 8 8 

 

Zero Sensor & Reset Wrench Extremes 

 

8. Maneuver +X (tool frame) until fully seated over cap with 10N axial force (expect 4-5 cm of motion) 

 Note: If hex is not aligned, tool will compress at point of first contact instead. 

 If hex cap is still visible after reaching 10N compression, perform CW torquer rotations at 

4N-m for as many 0.5 turn increments as necessary to get the socket to align with the cap 

(socket will spring forward once aligned). 

 Once socket is aligned with cap, continue +X motion until fully seated with 10N axial force 

 

9. Back away until axial forces are completely relieved (no tool compression). 

 Note: This is the point at which the cap would be unscrewed, but this will not be performed 

for this evaluation. 

 

10. Stop data collection  

 

11. Back away to a safe distance (approx. 10cm). 

Perform a 0.5 turn 4 N-m CW torquer rotation to reset alignment with hex cap. 

Set wrench soft limits to max values (9999 N, 999 Nm). 

 

12. Perform a joint pose maneuver at 2% velocity to the starting pose: 

J1 J2 J3 J4 J5 J6 

-37.752 42.681 -28.551 -97.575 92.647 14.033 
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Appendix B: Interview Questions Asked

B.1 Pre-Test Interview

The following is the loose script for the opening interview:

1. Introduce and explain the eye tracking glasses.

2. Do you wear contacts? If so, would you say that it is a particularly strong

prescription?

3. Have subject try on the eye tracking glasses, and try out different nosepieces,

selecting the one they will use for the test based on a combination of comfort

and centering glasses on eyes.

4. Attempt to calibrate the glasses.

5. Do you think the glasses will in any way impede your performance?

6. Describe your experience as a robot operator.

7. Explain the task to be performed. Have you done this task before? How many

times/how recently?
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8. Show the subject an overall picture of the standard console configuration. Have

you used this console configuration before? Would you say that it is conven-

tional for the task to be performed?

9. Show the subject a screenshot of the GUI configuration to be used. Have you

used this GUI configuration before? Would you say that it is conventional for

the task to be performed?

10. A quick disclaimer: Data gathered will not be attributable to you. We will not

publish your identity. Any results that involve data from specific participants

will refer to you as participant A, B, etc. Also, don’t rush, go at your own

pace, go as you normally would. I may be timing you, but the purpose of this

test is not to evaluate you based on speed.

B.2 Post-Test Interview

The following is the loose script for the post-test interview:

1. Do you think there was a significant difference in your performance due to

having performed this test multiple times?

2. Do you think the console configuration had an impact on your performance?

3. Do you think wearing the eye tracking glasses had an impact on your perfor-

mance?
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Appendix C: Personal Screen Configuration

Figure C.1: A1 configuration overall picture.

Outer left Center left Center right Outer right
Top DVR EE-left EE-right Safety
Bottom Blank Instructions GUI + Viz Overall

Table C.1: Table describing the A1 configuration.
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Figure C.2: B1 configuration overall picture.

Outer left Center left Center right Outer right
Top Safety EE-left EE-right Safety
Bottom DVR Instructions GUI Viz

Table C.2: Table describing the B1 configuration.
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Figure C.3: C1 configuration overall picture.

Outer left Center left Center right Outer right
Top Overall EE-left EE-right Safety
Bottom Blank Instructions GUI + Viz DVR

Table C.3: Table describing the C1 configuration.
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Figure C.4: D1 configuration overall picture.

Outer left Center left Center right Outer right
Top Overall EE-left EE-right Safety
Bottom Blank Instructions GUI + Viz DVR

Table C.4: Table describing the D1 configuration.
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Figure C.5: E1 configuration overall picture.

Outer left Center left Center right Outer right
Top DVR EE-left EE-right Overall
Bottom Blank Instructions GUI + Viz Safety

Table C.5: Table describing the E1 configuration.
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Appendix D: Time Taken per Subtask

Participant
Run
Number

Move to
approach
position

Move to
coarse
alignment

Corrections
to coarse
alignment

Move to
fine
alignment

Corrections to
fine alignment

A
1 34.6 20.0 2:15.7 31.7 ???
2 35.1 20.5 2:06:6 46.1 ???
3 36.6 20.6 2:13.4 33.3 1:14.8

B
1 35.4 19.9 28.1 18.6 16.9
2 36.1 16.6 20.8 17.0 14.1
3 33.5 19.8 24.3 37.1 14.8

C
1 33.1 22.5 3:44.0 38.9 ???
2 31.1 16.5 2:20.0 1:24.6 49.7
3 31.3 17.4 4:55.0 1:15.7 2:16.8

D
1 37.7 17.0 1:41.1 30.4 ???
2 37.9 18.6 1:37.1 45.2 27.9
3 32.7 18.5 1:07.9 19.6 1:36.0

E
1 35.1 22.8 3:23.9 1:24.9 1:24.9
2 34.2 20.5 4:17.5 1:48.3 1:48.3
3 34.6 17.6 1:57.2 1:41.3 ???

Table D.1: Table describing the E1 configuration.

The events which form the bookends of these subtasks were recorded manually

using the Tobii software, which allowed events to be entered by watching playback

from the glasses recordings and pressing buttons events occurred. Note that in cases

where “???” is listed instead of a time, lines between tasks were blurred, making it

extremely difficult to assess a beginning and end time to tasks. Also note that times
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for later subtasks are not included, as in many data-gathering runs lines between

tasks become increasingly blurred as the task continued, to the point where it would

be impossible to simply express the amount of time that the later subtasks took.
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Appendix E: Additional Figures Generated

E.1 Time Percentage per AOI

Figure E.1: Participant A time percentage per AOI.
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Figure E.2: Participant B time percentage per AOI.

Figure E.3: Participant C time percentage per AOI.
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Figure E.4: Participant D time percentage per AOI.

Figure E.5: Participant E time percentage per AOI.

83



E.2 Time per Fixation per AOI

Figure E.6: Participant A time per fixation per AOI.

Figure E.7: Participant B time per fixation per AOI.
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Figure E.8: Participant C time per fixation per AOI.

Figure E.9: Participant D time per fixation per AOI.
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Figure E.10: Participant E time per fixation per AOI.
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Appendix F: Institutional Review Board Paperwork

What follows are the documents submitted to the Institutional Review Board

in order to obtain approval for the human subjects in this experiment.
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- 1 - Generated on IRBNet

  
 University of Maryland College Park
 Institutional Review Board

 

 IRB Initial Application - Part 1

 

Last edited by: Casey Kracinovich Full

Last edited on: February 14, 2020 Expedited

[click for checklist] Exempt

[1566449-1] Evaluation of a Space Robotics Control Console Using Eye Tracking Glasses

Answer all questions on this form completely, include attachments and obtain signatures of Co-
Investigators and your department IRB Liaison prior to final submission on IRBNet.

I. Principal Investigator

Name: Dave Akin Status: Faculty

Department: ENAE- Aerospace Engineering

Phone: 301.405.1138 Email: dakin@ssl.umd.edu

Address: 382 Technology Dr, College Park, MD 20742

II. Faculty Advisor N/A

Note: A faculty advisor is required if the PI is a student resident or fellow and the Faculty Advisor MUST
sign this package through IRBNet.

Name:    

Department:  

Phone:  Email:  

Address:  

III. Co-Investigators N/A

Note: All co-investigators MUST sign this package through IRBNet.

Name: Casey Kracinovich

Department: ENAE- Aerospace Engineering

Phone: 4127285085 Email: casey@ssl.umd.edu

Address: University of Maryland, Neutral Buoyancy Research Facility, 382 Technology Dr, College
Park, MD 20742

IV. Funding Information N/A

Note: A copy of the awarded grant application (minus budgetary information) must be provided.

F.1 IRB Initial Application - Part 1
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- 2 - Generated on IRBNet

Status Funding Type Sponsor Name ORAA # COI

Awarded Subcontract Aviation Technical Services  No
Funding Title:  

V. Project Information

Lay Summary:

Manually teleoperating a robot arm requires the operator to split their attention between command
dialogues, data streams, and video feeds. We seek to evaluate the human factors of the design of a
robotics control console, using eye tracking glasses to gain insights into the ways in which
operators interact with the various console elements. Using the data we gather, we will gain insights
into how the various elements of a robot control console might ideally be arranged.

Requested Review Path:
 Full

 Expedited

 Exempt

Projected Completion Date: 09/30/2020

Research Category:
 Faculty or Staff Research

 Graduate Student Research

 Student/Faculty Collaboration

 Undergraduate Student Research

 Other:

   

Academic Committee Review:
 Yes - Masters committee

 Yes - Dissertation committee

 No additional academic review required

Participant Incentives:
 Cash

 Check

 Raffle/ Lottery:
 

 Extra Credit/ Course Credit:
 

 Gift:
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 Food:
 

 Other:
 

 Not Applicable

VI. Performance Sites

Performance Sites Engaged in Human Subject Research:
(where the research will be conducted)

 UMCP - Campus:  

 University of Maryland - Extension:  

 Campus Health Center

 Universities at Shady Grove:  

 Schools:  

 Prison/Jail:  

 Other:

NASA Goddard

Is this an international study?
 Yes [complete Section 10 of Initial Application Part 2]

 No

 If yes: International Sites:
 

VII. Subject Information

Targeted Populations:
 Normal adult/healthy persons

 Cognitively impaired persons

 Economically disadvantaged persons

 Educationally disadvantaged persons

 Elderly/aged persons

 Hospital patients or outpatients

 Illiterate persons

 Individuals with physical disabilities

 Minority group(s)

 Minors/children
[inclusion of anyone under 18 requires a Parental Consent Form]

 Non-English speakers
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 Pregnant women

 Prisoners

 Students (non-minors)

 UMCP employees

 Other special characteristics and special populations:

Space robot operators

Informed Consent Process:
 Informed consent will be obtained from subjects and documented with a signed, written consent

form

 Informed consent will be obtained from subjects, but no signed consent form will be used. This
includes oral consent and implied consent (e.g., completing a survey).
[please see the Requesting a Waiver of Informed Consent Guidance]

 Fully informed consent will not be obtained from all subjects. This includes deception, withholding
information, etc.
[please see the Requesting a Waiver of Informed Consent Guidance]

Will you be collecting health information from or as a HIPAA covered entity?
(See the HIPAA section of the IRB website for more information and additional resources.)

 No

 Yes, data are de-identified or constitute a limited data set.

 Yes, subject's authorization will be obtained or a waiver or alteration of authorization will be
requested.
[complete IRB Form HIPAA]

VIII.Research Procedures

Research Procedures:
 Records review - retrospective

 Records review - prospective

 Education research

 Behavioral experiments

 Behavioral observation

 Questionnaires/surveys

 Interviews

 Audiotaping/videotaping

 The Internet

 Deception
[describe debriefing process in Section 7 of Initial Application Part 2]

 Cancer Interventions (health promotion, implementation, etc.)

 None of the above
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Biomedical Procedures:
 Tissue banking

 Biopsy

 Blood draw:  

 Use of pre-existing tissues

 Clinical tests

 Radiology

 Radiation/X-ray/DEXA

 fMRI
[use IRB fMRI templates]

 Pregnancy screening

 EKG

 EEG

 Genetic analysis

 None of the above

IX. Assurances and Signatures

Assurances
This research, once approved, is subject to continuing review and approval by the IRB. The principal
investigator will maintain records of this research according to IRB guidelines. If these conditions are not
met, approval of this research could be suspended or terminated.
 

Electronic signatures certify that:

• The signatory agrees that he or she is aware of the policies on research involving participants of
the University of Maryland College Park and will safeguard the rights, dignity, and privacy of all
participants.

• The information provided in this application form is correct.
• The principal investigator will seek and obtain prior written approval from the IRB for any substantive

modification in the proposal, including but not limited to changes in cooperating investigators/
agencies as well as changes in procedures.

• Unexpected or otherwise significant adverse events in the course of this study which may affect the
risks and benefits to participation will be reported to the IRB.

• The research will not be initiated and subjects cannot be recruited until final written approval is
granted.

The following signatures are required for new project submissions:

• Principal Investigator
• Co-Investigator(s)
• IRB Liaison (click here for list)
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- 6 - Generated on IRBNet

INSTRUCTIONS TO RESEARCHERS
 [top]

Now that you have completed this document, check your work, attach all appropriate documents,
electronically sign and submit your work. Based on your responses, the following additional
documentation must be included with this package before submission. Upload additional documentation
in the Designer.

Documents available in the IRBNet Forms and Templates Library:

• Consent Form (template and Completion Guide in Library)

Additional required documentation:

• Grant application for any awarded funding

If you have any questions, please refer to the guidelines in the IRBNet Forms and Templates Library or
contact irb@umd.edu.
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Institutional Review Board 
1204 Marie Mount Hall ● 7814 Regents Drive ● College Park, MD 20742 ● 301-405-4212 ● irb@umd.edu 

 

 
Page 1 of 4  Revised: 6/30/2017 

 

 
INITIAL APPLICATION PART 2 

 
1. Abstract:   
 

Manually teleoperating a robot arm requires the operator to split their attention between 
command dialogues, data streams, and video feeds. We seek to evaluate the human 
factors of the design of a robotics control console, using eye tracking glasses to gain 
insights into the ways in which operators interact with the various console elements. 
Using the data we gather, we will gain insights into how the various elements of a robot 
control console might ideally be arranged. This experiment is specifically in support of 
the Restore-L mission, a mission to robotically capture and refuel the Landsat-7 satellite 
while still on orbit. It will therefore involve trained Restore-L robot operators as subjects. 
No personally identifiable information for these robot operators will be published, as 
researchers will take care to protect their identity. There will be an identification key, kept 
in a secure location, which will link the subjects to their identities. 
 

2. Subject Selection: 
 

a. Recruitment: The investigators will use contacts at NASA Goddard working on the 
Restore-L mission to recruit robot operators. We are already in contact with the lead 
robot operators, who can help us organize times to perform testing. We will recruit the 
participants via email. We will submit a letter from NASA Goddard granting us 
permission to conduct research at their site with their employees as an amendment.  
Note that the University of Maryland is currently under Severe Research Restrictions 
because of the COVID-19 outbreak. We will not begin enrolling participants for in-person 
procedures while these restrictions are still in place. 
 

b. Eligibility Criteria:  Subjects will be trained robot operators at NASA Goddard, working 
on the Restore-L mission. Subjects must be at least 18 years of age to participate. 

 
c. Rationale: As this experiment is in support of the Restore-L mission, and the resulting 

console will ideally be used on the actual mission, we ideally should have trained robot 
operators, and ideally, robot operators trained to perform on the Restore-L mission.  

 
d. Enrollment Numbers: We expect to have 6 subjects.  

 
e. Rationale for Enrollment Numbers: There are 6 trained robot operators working on the 

Restore-L mission. 
 
3. Procedures: 
 

In the days or weeks leading up to the experiment, participants will be given a brief 
introductory interview, expected to take about 15 minutes, in which they will be 
introduced to the eye tracking glasses and asked a couple questions regarding their 
previous experience as a robot operator. 

F.2 IRB Initial Application - Part 2
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The procedures involve operating a robot through a basic training task three times, with 
the console in three different configurations, all while wearing eye tracking glasses. Each 
run is expected to take no more 30 minutes. If the operator indicates that they are 
inexperienced with the training task, they will be allowed to have a “dry run” without 
wearing eye tracking glasses before starting the planned data gathering runs. During all 
data gathering runs, a curtain will be drawn between the operator and the robot, such 
that they need to look at the camera views on the console instead of being able to 
directly look at the robot. After the second and third of the data gathering runs, they will 
be given a brief questionnaire, taking about 5 minutes, regarding their performance and 
feelings about the console configuration. 
Note that the University of Maryland is currently under Severe Research Restrictions 
because of the COVID-19 outbreak. We will not perform in-person procedures while 
these restrictions are still in place. 

 
4. Risks: 

 
The only risks from participating in this research study are the risks normally associated 
with operating a robot in the subjects’ normal work; the worst of which being possible 
physical harm to a person who might interfere with the robot, or permanent damage to 
expensive hardware. Given the safety measures already in place (e.g. gated robotic 
workcell to keep people from interfering and trained emergency stopper present for all 
robot operations) as well as their status as a trained robot operator, these risks are 
assumed to be extremely unlikely. 
There may be a mild discomfort from using a somewhat different console configuration, 
though we expect that this will be easily mitigated if the subjects perform the tasks at 
their own pace, so as to gradually grow accustomed to the new configuration. We will 
emphasize in the opening interview that this is not a time-based evaluation and that the 
subjects should take all the time they need. 
The eye tracking glasses to be used are very light and unobtrusive, but may cause mild 
discomfort as well. To mitigate this, in the opening interview, subjects will try on the 
glasses and be asked if they find them to be at all uncomfortable; if they indicate a 
significant level of discomfort, minor alterations, such as changing out the nosepiece of 
the glasses, can be made. For any potential sources of discomfort, if a subject 
complains or visibly seems uncomfortable during the experiment, they will be allowed to 
stop to take a break, or stop altogether if necessary.  
 

5. Benefits: 
 
There are no direct benefits for participants. Possible benefits include data that may help 
design an improved, more ergonomic, robotic control console for the robot operator 
subjects. We hope that, in the future, other people might benefit from this study through 
improved understanding of robotic user interface design. 
 

6. Confidentiality: 
 
The identifiable data collected will be the subjects’ answers to the initial interview 
questions regarding their history as a robot operator. Additionally, video data will be 
recorded with the eye tracking glasses. It is unclear if this will be identifiable, as the 
video will be taken from the perspective of the subject, but it is at least worth mentioning. 
Any potential loss of confidentiality will be minimized by storing data in a locked office, 
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on a password protected computer or locked cabinets. Only the researchers conducting 
this experiment will have access to identifiable data. 
 
Participants’ names will not be included on any of the collected data. A code will be 
placed on the data. Through the use of an identification key, the research will be able to 
link data to identities. Only the researchers will have access to the identification key. Any 
identifiable data will be retained for seven years before being deleted or shredded. 
 

7. Consent Process: 
 
Researchers will obtain consent with a written consent form. One researcher will explain 
the research project and explain the consent form to each potential participant. The 
consent process will be conducted privately in a secured lab space. Participants will read 
and sign the consent form before participating in any experiment or filling out any 
surveys. 
No part of this study involves deception. 
All research participants will receive a copy of the consent form for their records. 

 
8. Conflict of Interest: 

  
Not applicable. 
 

9. HIPAA Compliance: 
 
Not applicable. 
 

10. Research Outside of the United States: 
 

Not applicable. 
 
11. Research Involving Prisoners: 

 
Not applicable. 
 

12. SUPPORTING DOCUMENTS 
 

Your Initial Application must include a completed Initial Application Part 1 (On-Line 
Document), the information required in items 1-11 above, and all relevant supporting 
documents including: consent forms, letters sent to recruit participants, questionnaires 
completed by participants, and any other material that will be presented, viewed or read 
to human subject participants. 
 

 
The consent forms in your approved IRBNet PACKAGE must be used.  When 
creating or editing your consent form, please provide the most recent IRBNet 
package number at the bottom, right corner of the consent form.  This ensures 
you are using the most “up-to-date” version of the form.   
 
To find your IRBNet package number, go to the MY PROJECTS tab and click on 
the title of your project. In the PROJECT OVERVIEW page, your IRBNet package 
number will be listed at the top, next to your project title.    
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The following message, or a variation of it, is to be a recruitment email for the 6 robot 

operators at NASA Goddard. Note that “ROBO” is a term used at NASA meaning Robot 

Operator and “ROC” is an acronym for Robot Operations Center. 

 

Hi ROBOs! 

 

I’m emailing to ask you to participate in an experiment in which you wear eye tracking glasses 

while performing a simple training task involving operating the MH250 robot. What follows is a 

brief description of the experiment: 

The procedures involve operating a robot through a basic training task three times, with the 

console in three different configurations, all while wearing eye tracking glasses. Each run is 

expected to take no more 30 minutes. If you indicate that you are inexperienced with the training 

task, you will be allowed to have a “dry run” without wearing eye tracking glasses before starting 

the planned data gathering runs. During all data gathering runs, a curtain will be drawn between 

you and the robot, such that you need to look at the camera views on the console instead of 

being able to directly look at the robot. After the second and third of the data gathering runs, you 

will be given a brief questionnaire, taking about 5 minutes, regarding your performance and 

feelings about the console configuration. 

 

I know that you’re all over 18, but for IRB reasons, I’m required to mention in this email that 

you must be at least 18 years of age to participate in this experiment. So if you’re interested 

and over 18, please let me know. 

 

If you agree to participate, I’d like to meet with each of you individually in the ROC for about 

15 minutes each to ask some questions regarding your previous experience as a robot 

operator and introduce you to the eye tracking glasses. If possible, I’d like to meet at some 

point in the next couple days. Please let me know if you have 15 minutes free sometime soon. 

 

Also, please respond to both my NASA email and my school email (cc’d; 

casey@ssl.umd.edu), as I am not reliably onsite, and don’t have remote email access. 

 

Thank you 

Casey Kracinovich 

F.3 Recruitment Material
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Introductory Questions 

These are eye tracking glasses; they will track your eyes. 
Do you wear contacts? Would you describe them as a strong or light prescription? 
Answer: 

 

***Have subject put on glasses and attempt calibration*** 
Success/failure: 

 
 
 
 
***Experiment with different glasses nosepieces and decide which fits the subject’s 
nose best*** 
Best nosepiece: 
 
 
 
 

Do you think the glasses will impact your performance at all? Are they at all 
uncomfortable? 
Answer: 
 
 
 
 
 

How long have you been a robot operator and what is your previous experience 
operating robots? 
Answer: 

 
 
  

***Briefly describe task to be performed*** 
Have you done this task before? How many times/how recently? 
Answer: 

 

 

***Show the subject a picture of the “standard” screen configuration*** 
Have you used this screen and camera view configuration before? 
Answer: 

 

 

F.4 Introductory Questions
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***Show the subject a screenshot of the “standard” GUI configuration*** 
Have you used this GUI configuration before? 
Answer: 

 

 

Some final notes and reminders: 
Data published will not be attributable to you-  
We will not publish your identity and any results that involved data from specific 
participants will call you participant A, B, etc. 
Also: when performing this task, don't rush, go at your own pace, go as you normally 

would. I may be timing you, but I am not evaluating you on how fast you go; it’ll just be 
so I can record timestamps of when you get to certain milestones. 
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Post-Task Questions 

So far, have you noticed that the eye tracking glasses have had any impact on your 
performance? Have they been uncomfortable at all? 
Answer: 

 

 
 
 
 
 
 
 
 

Has performing this task multiple times in a row had any impact on how easy/difficult it 
was for you? 
Answer: 

 
 
 

 

 

 

 

 

Has this alternative screen/GUI configuration had any impact on how well you 
performed the task? What is that impact? 
Answer: 

 

F.5 Post-Task Questions
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Institutional Review Board 
 1204 Marie Mount Hall ● 7814 Regents Drive ● College Park, MD 20742 ● 301-405-4212 ● irb@umd.edu 

 

CONSENT TO PARTICIPATE 

  

Project Title 
 

Evaluation of a Space Robotics Control Console Using Eye 

Tracking Glasses 

Purpose of the Study 
 

This research is being conducted by Dr. David Akin at NASA’s 

Goddard Space Flight Center. We are inviting you to participate in 

this research project because you are a trained robot operator.   

 

The purpose of this research project is to evaluate the human 

factors of the design of a robotics control console, using eye 

tracking glasses to gain insights into the ways in which operators 

interact with the various console elements. Using the data we 

gather, we will gain insights into how the various elements of a 

robot control console might ideally be arranged.   

Procedures 

 

In the days or weeks leading up to the experiment, you will be given 

a brief introductory interview, expected to take about 15 minutes, in 

which you will be introduced to the eye tracking glasses and asked 

a couple questions regarding your previous experience as a robot 

operator. 

 

The procedures involve operating a robot through a basic training 

task three times, with the console in three different configurations, 

all while wearing eye tracking glasses. Each run is expected to take 

no more 30 minutes. If you indicate that you are inexperienced with 

the training task, you will be allowed to have a “dry run” without 

wearing eye tracking glasses before starting the planned data 

gathering runs. During all data gathering runs, a curtain will be 

drawn between you and the robot, such that you need to look at the 

camera views on the console instead of being able to directly look at 

the robot. After the second and third of the data gathering runs, you 

will be given a brief questionnaire, taking about 5 minutes, regarding 

your performance and feelings about the console configuration. 

Potential Risks and 

Discomforts 

 

The only risks from participating in this research study are the risks 
normally associated with operating a robot in your usual work; the 
worst of which being possible physical harm to a person who might 
interfere with the robot, or permanent damage to expensive 
hardware. Given the safety measures already in place (e.g. gated 
robotic workcell to keep people from interfering and trained 
emergency stopper present for all robot operations) as well as your 
status as a trained robot operator, these risks are assumed to be 
extremely unlikely. 
There may be a mild discomfort from using a somewhat different 
console configuration, though we expect that this will be easily 

F.6 Consent Form
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mitigated if you perform the tasks at your own pace, so as to 
gradually grow accustomed to the new configuration. We will 
emphasize in the opening interview that this is not a time-based 
evaluation and that you should take all the time they need. 
The eye tracking glasses to be used are very light and unobtrusive, 
but may cause mild discomfort as well. To mitigate this, in the 
opening interview, you will try on the glasses and be asked if you 
find them to be at all uncomfortable; if you indicate a significant level 
of discomfort, minor alterations, such as changing out the nosepiece 
of the glasses, can be made. For any potential sources of 
discomfort, if you indicate that you are uncomfortable you will be 
allowed to stop to take a break, or stop altogether if necessary. 

Potential Benefits  Possible benefits include data that may help design an improved, 
more ergonomic, robotic control console. We hope that, in the 
future, other people might benefit from this study through improved 
understanding of robotic user interface design.  

Confidentiality 

 

 

The identifiable data collected will be your answers to the initial 
interview questions regarding your history as a robot operator. 
Additionally, video data will be recorded with the eye tracking 
glasses. It is unclear if this will be identifiable, as the video will be 
taken from your perspective, but it will be treated as identifiable data 
regardless. Any potential loss of confidentiality will be minimized by 
storing data in a locked office, on a password protected computer or 
locked cabinets. Only the researchers conducting this experiment 
will have access to identifiable data.      
 
If we write a report or article about this research project, your 
identity will be protected to the maximum extent possible.  Your 
information may be shared with representatives of the University of 
Maryland, College Park or governmental authorities if you or 
someone else is in danger or if we are required to do so by law.  

Right to Withdraw 

and Questions 

Your participation in this research is completely voluntary.  You may 

choose not to take part at all.  If you decide to participate in this 

research, you may stop participating at any time.  If you decide not 

to participate in this study or if you stop participating at any time, 

you will not be penalized or lose any benefits to which you otherwise 

qualify. Your decision to participate or not participate will not 

have a negative or positive impact on your employability status 

or relationship with the NASA Goddard Space Flight Center. 

 

If you decide to stop taking part in the study, if you have questions, 

concerns, or complaints, or if you need to report an injury related to 

the research, please contact the investigator: 

 

Dr. David Akin 

Building 382 Technology Dr., Room 2100D 

College Park, MD 20742 

301-405-1138 

dakin@ssl.umd.edu 
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Participant Rights  

 

If you have questions about your rights as a research participant or 
wish to report a research-related injury, please contact:  

 
University of Maryland College Park  

Institutional Review Board Office 
1204 Marie Mount Hall 

College Park, Maryland, 20742 
 E-mail: irb@umd.edu   

Telephone: 301-405-0678 
 

For more information regarding participant rights, please visit: 
https://research.umd.edu/irb-research-participants  

 

This research has been reviewed according to the University of 

Maryland, College Park IRB procedures for research involving 

human subjects. 

Statement of Consent 

 

Your signature indicates that you are at least 18 years of age; you 

have read this consent form or have had it read to you; your 

questions have been answered to your satisfaction and you 

voluntarily agree to participate in this research study. You will 

receive a copy of this signed consent form. 

 

If you agree to participate, please sign your name below. 

Signature and Date 

 

NAME OF PARTICIPANT 
[Please Print] 

 

SIGNATURE OF 

PARTICIPANT 

 

DATE 
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