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Abstract

This paper proposes and evaluates a new mechanism for 1/O and network rate policing. The goal
of the proposed system is to provide an simple, yet effective way to enforce resource limits on
target classes of jobs in a system. The basic approach is useful for several types of systems
including running background jobs on idle workstations, and providing resource limits on network
intensive applications such as virtual web server hosting. Our approach is quite simple, we use a
diding window average of recent events to compute the average rate for a target resource The
assigned limit is enforced by forcing application processes to sleep when they issue requests that
would bring their resource utilization out of the allowable profile. Our experimental results that
show that we are able to provide the target resource limitations within a few percent, and do so

with no measurable slowdown of the overall system.

1. Introduction

This paper propases and eval uates rate windows, a
new mechanism for 1/0 and retwork rate palicing.
Integrated with ou existing Linger-Longer
infrastructure for policing CPU and memory
consumption [15], the rate windows give
unprecadented control over the resource use of
user applications. More spedficdly, rate windows
is a low-overheal fadlity that gives us the aility
to set hard per-processbounds on I/O and retwork
usage.

Current general-purpose  UNIX  systems
provide no suppat for prioritizing accessto ather
resources such as memory, communicaion and
1/O. Priorities are, to some degreg implied by the
correspondng CPU scheduling priorities. For
example, physicd pages used by a lower-priority
process will often be lost to higher-priority
processs. LRU-like page replacament pdlicies are
more likely to page out the lower-priority
processs pages, becaise it runs less frequently.
However, this might not be true with a higher-

priority process that is not computationally
intensive, and a lower priority processthat is. We
therefore need an additional medhanism to control
the memory alocdaion between locd and guest
processes. Like CPU scheduling, this modificaion
shoud na affed the memory allocdion (or page
replacanent) between processs in the same dass

This ability has applicaions in severa aress;
we perform a detail ed investigation d two in this
paper. First, we show that network and I/O
throttling is crucia in order to provide guarantees
to users who allow their workstations to be used
in Conda-like systems. Conda-like fadliti es
alow guest proceses to efficiently exploit
otherwise-idle  workstation resources. The
oppatunity for harvesting cycles in idle
workstations has long been recognized [12], since
the majority of workstation cycles go unwsed. In
combination with ever-incressing neals for
cycles, this presents an obvious oppatunity to
better exploit existing resources.

However, most such pdicies waste many
oppatunities to exploit cycles becaise of overly



conservative estimates of resource @ntention. Our
linger-longer approach [14] exploits these
oppatunities by delaying migrating guest
proceses off of a madine in the hope of
exploiting fine-grained idle periods that exist even
while users are adively using their computers.
These idle periods, on the order of tens of
milli seaonds, occur when users are thinking, or
waiting for external events such as disks or
networks. Our prior work consisted o new
medanisms and pdicies that limit the use of CPU
cycles and memory by guest jobs. The work
proposed in this paper complements that work in
extending similar protedion to network and I/O
bandwidth usage.

Sewnd, we show that rate windows can be
used to efficiently provide rate pdicing of
network conredions. Rating limiting is useful
both for managing resource dlocdaions of
competing users (such as virtual hosting of web
servers) and can be used for rate-based clocking
of network protocols as a means of improving the
utili zation d networks with high bandwidth-delay
products[7, 13.

The rest of this paper is organized as foll ows.
Sedion 2 describes the implementation d rate
windonvs and evaluates its use with micro-
benchmarks. Sedion 3 reviews the Linger-Longer
infrastructure, motivates the use of rate windows
for Linger-Longer. In particular, we show that a
significant classof guest applicaionsis gill able
to affed host processes via network and 1/0
contention. Further we show that there is no
general way to prevent this using CPU and
memory policing that still allows the guest to
make progress Sedion 4 describes the use of rate
windows in pdicing file I/O, and Sedion 5
describes its use with network 1/O/. Finaly,
Sedion 6 reviews related work and Sedion
Error! Reference source not found. concludes.

2. CPU and memory policing

Before discussng rate windows, we place this
work in the ntext of the Linger-Longer
resource-palicing infrastructure [14]. The Linger-
Longer infrastructure is based on the thesis that
current Conda-like [11] pdicies waste many
oppatunities to exploit idle o/cles because of
overly conservative etimates of resource
contention. We believe that overal throughpu is
maximized if systems implement fine-grained
cycle steding by leaving guest jobs on maciine
even when resource-intensive host jobs gart up.
However, the host job will be alversely affeded
unless the guest job’'s resource use is drictly
limited. Our ealier work strictly bounded CPU
and memory use by guest jobs through use of a
few, simple modificaions to existing kernel
pdlicies.

These pdlicies rely on two new medhanisms.
First, a new guest priority prevents guest
proceses from runnng when runreble host
proceses are present. The diange esentialy
establishes guest processs as a different class
such that guest processes are not chasen if any
runrable host processes exist. Thisis true even if
the host processes have lower runtime priorities
than the guest process Note that running with
“nice—19 is nat sufficient, as the niced process
can still consume between 8%, 15%, and 40% of
the CPU for Linux (2.0.32, Solaris (SunOS 5.5),
and AlX (4.2), respedively [15].

We verified that the scheduler reschedules
processes any time ahost processunkbocks while
a guest process is running. This is the default
behavior on Linux, bu not on many BSD derived
operating systems. One potential problem of our
strict priority padlicy isthat it could cause priority
inversion. Priority inversion cccurs when a higher
priority processis nat able to run die to a lower
priority process hoding a shared resource
However, this is not posdble in ou applicaion
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Figure 1: Threshold validations— Low and Hgh thresholds are set to 50MB and 70MB. At time 90, the host job
beames I/0-bound Host processaaqjuires 150 MB when running without contention, guest processaaquires 128

MB withou contention. Total avail able memory is 179 MB.

domain becaise guest and hast processes do nd
share locks, or any other nonrevocable resources.
Our sewmnd mechanism limited guest
consumption d memory resources. Unfortunately,
memory is more difficult to ded with than the
CPU. The st of redaiming the procesor from a
running process in order to run a new pProcess
consists only of saving processor state and
restoring cade state. The st of redaiming page
frames from a runnng process is negligible for
clean pages, bu quite large for modified pages
becaise they neel to be flushed to disk before
being redaimed. The simple solution to this
problem is to permanently reserve physicd
memory for the host processes. The drawbad is
that many guest proceses are quite large.
Simulations and graphics rendering applicdions
can often fill al available memory. Hence, na
alowing gquest processs to use the mgjority of
physicd memory would prevent a large dass of
appli cations from taking advantage of idle gycles.
We therefore dedded na to impose awy hard
restrictions on the number of physicd pages that
can be used by a guest process Instead, we
implemented a pdlicy that establishes low and
high thresholds for the number of physicd pages
used by guest processs. Esentialy, the page
replacement palicy prefers to evict a page from a
host processif the total number of physicd pages
held by the guest process is less than the low

threshald. The replacement palicy defaults to the
standard clock-based pseudo-LRU palicy up urtil
the upper threshold. Above the high threshald, the
policy prefers to evict a guest page. The dfed of
this pdlicy isto encourage guest processes to sted
pages from host processes until the lower
threshald is readed, to encourage host processes
to sted from guest processes above the high
threshald, and to all ow them to compete evenly in
the region ketween the two thresholds. However,
the host priority will | ead to the number of pages
held by the guest processes being closer to the
lower threshold, because the host processes will
run more frequently.

We modified the Linux kernel to suppat this
prioritized page replacanent. Two new global
kernel variables were alded for the memory
thresholds, and are cnfigurable at runtime via
system cdls. The kernel keeps track of resident
memory size for guest processes and host
proceses. Periodicdly, the virtua memory
system triggers the page-out mecdhanism. When it
scans in-memory pages for replacament, it chedks
the resident memory size of guest processes
against the memory thresholds. If they are below
the lower threshalds, the host processes’ pages are
scanned first for page-out. Resident sizes of guest
processes larger than the upper threshod cause
the guest processes pages to be scanned first.



Between the two thresholds, older pages are paged
out first no matter what processes own them.

We wvadidated ou memory threshod
modifications by tradking the resident memory
size of host and guest processes for two CPU-
intensive gplicaions with large memory
footprints. The result is sown in Figure 1. The
chart shows memory competition between a guest
and a haost process The gplication behavior and
memory threshods $own are not meant to be
representative, bu  were  onstructed to
demonstrate that the memory threshdds are
strictly enforced by our modificaions to LinuxX's
page replacanent palicy. The guest process sarts
at time 20 and grabs 128MB. The haost process
starts at time 38 and quickly grabs a total of 128
MB. Note that the host actually touches 150 MB.
It is prevented from obtaining al of this memory
by the low threshdd. Since the guest process
total memory has dropped to the low threshadd, all
replacements come from haost pages. Hence, no
more pages can be stolen from the guest. At time
90, the host processturns into a highly 1/0-bound
applicaion that uses little CPU time. When this
happens, the guest process becomes a stronger
competitor for physicd pages, despite the lower
CPU priority, and slowly steds pages from the
host process This continues until time 106, at
which pdnt the guest process reades the high
threshold and all replacaments come from its own
pages. For this experiment, we deli berately set the
limits very high to demonstrate the medanism.
5/10% of total memory are very acceptable guest
job memory limits for most of cases. However,

these values can be aapted at run time to med
the diff erent requirements of appli cations.

3. Rate Windows

3.1 Policy

First, we distinguish between “unconstrained” and
“constrained” job classes. The default for all
processes is unconstrained; jobs must be eplicitly
put into constrained classes. The unconstrained
class is dlowed to consume dl available 1/O.
Each dstinct constrained class has a different
threshold bandwidth, defining the maximum
aggregate bandwidth that all processes in that
classcan consume. As an optimization, havever,
if there is only one dassof constrained jobs, and
no I/0-bound uwonstrained jobs, the constrained
jobs are dlowed urfettered accessto the avail able
bandwidth.

We identify the presence of unconstrained
I/0O-bound jobs by monitoring 1/0O bandwidth,
moving the system into the throttled state when
unconstrained bandwidth exceels threshyg,, and
into the urthrottled state when urconstrained
bandwidth drops below thresh,, Note that
thresh, is lower than threshyg, providing
hysteresis to the system to prevent oscill ations
between throttled and unthrottled mode when the
I/O rate is nea the threshold. The state of the
system is refleded in the global variable
throttl ed. Note that the arrent unconstrained
bandwidth is nat an instantaneous measure; it is
measured over the life of the rate window, defined
below.

3.2 Mechanism
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Figure 2: Maintaining a sliding window of resour ce utilization.

Figure 3: Policing 1/0 Requests.

The implementation d rate windows is
straightforward. We aurrently have ahard-coded
set of job equivalence dasses, athough this could
be eaily generalized for an arbitrary number.
Eadh classhas two kernel window structures, one
for file /0O and ore for network 1/0. Each window
structure contains a drcular queue, implemented
via a 100element array (see Figure 2). The
window structure describes the last 1/O operations
performed by jobs in the dass plus a few other
scdar variables. The window structure only
describes /O events that occurred duing the
previous 5 sends, so there may be fewer than
100 oprations in the aray. We eperimented
with several different windov sizes before
arriving at these nstants, bu it is clealy
possble that new environments or applicdions
could be best served by using other values. We
provide a means of tuning these and aher
parameters from a user-level todl.

We airrently trigger our medhanism via
hodks placad high in the kernel, at ead of the
kernel cdls that implement 1/O and retwork
communicaion: read(),wite(), send(), €etc.
Eadch hok cdlsrat e_check() with processID,
1/0 length, and I/O type. The processID is used to
map to an 1/O class and the 1/O type is used to
distinguish between file and retwork 1/0. The
rate_check() routine maintains a dliding
window of operations performed for ead classof

service and for the overall system. We maintain a
window of upto 100recet events. However, to
prevent using too dd of information, we limit the
diding windov to a fixed interval of time
(currently 5 secondk).

Define B,,, the window bandwidth, as the total
amourt of I/O in the windown's operations,
including the new operation. Define T,, the
window time, as the interval from the beginning of
the oldest operation in the window until the
expeded completion d the new operation,
asuuming it starts immediately. Let R be the
threshold bandwidth per secondfor this class We
then dlow the new operation to proceed
immediately if the dassis currently throttled and:

B
W
T R

w
Otherwise, we cdculate the sl eep() delay as
follows:

B
delay =—2*-T
R

This processis ill ustrated graphicadly in Figure 3.
Note that we have upper and lower bounds on
allowable slegp times.

Sleg duations that are too small degrade
overal efficiency, so duations under our lower
boundare set to zero. Slegp duations that are too
large tend to make the stream bursty. If our
computed delay is above the cmputed threshold
we bred& the 1/0 into multiple pieces and spread



the total delay over the pieces. This is will not
affea applicaion exeaution since for file I/O
reguests will eventually be broken into individual
disk blocks and for network conredions TCP
provides a byte-oriented strean rather than a
record oriented ore?®’€,

We diose Linux as our target operating
system for severa reasons. Firgt, it is one of the
most widely used UNIX operating systems.
Sewnd, the source @de is open and widely
available. Since many adive Linux uwsers build
their own customized kernels, ou medianisms
could easily be patched into existing install ations
by end wsers. This isimportant becaise most PCs
are deployed on people's desks, and cycle-steding
approadies are probably more @gplicable to
desktop  environments than to  server
environments. Also since our mechanism simply
requires the aility to intercept 1/0 cdls, it would
be eay to implement as a loadable kernel
modues on systems that defined an APl to
intercept 1/0 cdls. Windows 2000 (nee Wndow
NT) and the stadkable filesystem [9] provide the
required cdls.

In order to provide the finer granularity of
deg time to alow ouw pdicing to be
implemented, we aigmented the standard 2.2

2816 For UDP this is not a problem since the max user level
request is constrained by the network’s MTU.

Linux kernel with extensions developed by KURT
Red-time Linux grojed [3].

4. File /O Policing

In order to validate our approach, we mndwcted a
series of micro-benchmarks and applicaion
benchmarks. The purpose of these experimentsis
three fold. First, we want to show that our
mechanism doesn't introduce aly significant
delay on namal operation d the system. Sewond,
we want to show that we can eff edively palicethe
I/O rates. Third, since our pdicing medanism
sits above the file buffer cade, it will be
conservative in pdicing the disk since hits in
cade will be darged against a job classs's
overal file I/O limit. We wanted to measure this
affed.

We first measured resource usage in order to
verify that the use of rate windows does not add
significant overhead to the system. We ran a
single tar program by itself both with and withou
rate windows enabled. The mmpletiontime of the
tar applicaion with rate windows enabled was
less than the variation between conseautive runs
of the experiment. This was expeded, as there ae
no computationally expensive portions of the
algorithm. Note that this experiment does not
acournt for the system cost of extra mntext
switches caused by slegoing guest jobs.
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Figure 4: File1/O of competing tar applicationswith (left) and without (right) file 1/0 policing.

Semnd, we ran two instances of tar, ore & a
guest job and ore & a host job. Figure 4a
represents a run with throttling enabled, and
Figure 4 shows a run withou throttling. There is
no cading between the two becaise they have
disoint inpu. The guest job is intended to be
representative of those used by cycle-steding
schedulers auch as Conda. Unless gedfied
otherwise, a “guest” job is asumed to be
constrained to 10% of the maximum /O or
network bandwidth, whereas a “host” processhas
unconstrained use of all bandwidth.

In bah figures, the guest job starts first,
followed somewhat later by the haost job. At this
point, the guest job throttles down to its 10% rate.
When the host job finishes, the guest job throttles

1,000,000

10,000

100

—— Application Requests

—#— Disk Requests

0 1 2 3 4 5

Figure5: I/O sizesvs. timefor t ar

badk up after the rate window empties. The
sequence on the left is with throttling, onthe right
withou. Note that the version with 1/0O throttling
islessthrifty with resources (the jobs finish | ater).
This is a design dedsion: our goa is to prevent
undwe degradation d unconstrained host job
performance regardless of the dfed on any guest
jobs.

We look at the behavior of one of the tar
processes in more detail in Figure 5. The point of
this figure is that despite the frequent and varied
file I/O cdls, and despite the buffer cade, disk
1/0's get issued at regular intervals that predsely
match the threshald value set for this experiment.
Note that adual disk 1/O.
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Our third set of micro-benchmark experiments
is designed to look at the distribution o slegp
times for a guest process For this case, we ran
three different applications. The first application
was again arun d the tar utility. Seaond,we ran
the agrep utility aaossthe sourcediredory for the
Linux kernel looking for a simple pattern that did
not occur in the files ached. Third, we ran a
compile workload that consisted of compiling a
library of C++ methods that were divided among
34 files plus 45 header files. This third test was
designed to stressthe gap between monitoring at
the file request level and the disk 1/0O level since
al of the cmmon header files would remain in
the file buffer cade for the duration o the
experiment.

A histogram (100 buwckets) of the deeg
durations is shown in Figure 6. We have omitted
those events that have no delay since their

frequency completely dominates the rest of the
values. Figure 6(a) shows the results for the tar
applicaion. Inthisfigure, thereisalarge spikein
the delay time & 20msec since this is exadly the
mean delay required for the 1/0O the must common
sized I/O request of 10K bytesto be limited to 500
KB/sec. Figure 6(b) shows the results for the
compil ation workload. In this example, the most
popuar sleg time is the maximum slegp duation
of 100msec Thisisdue to the fad, that at several
periods during the gplicaion exeaution, the
program is highly 1/O intensive ad ou
mechanism was graining to kee the 1/0 rate
throttled down. Figure 6(c) shows the slegp time
distribution for the agrep applicaion. The results
for this applicaion show that the most popuar
sleg time (other than nosleg) was 2-3 ms. This
is very close to the mean slegp time of 2.5 ms for
this application.



Metric Tar Agrep Compile
Total Filel/O 103.0MB 50.0MB 23.3MB
Total Disk 1/0 103.0MB 58.1MB 10.0MB
Total I/O Events 17,430 11,526 3,859
Total Slegp Events 6,928 3,324 1,004
Total Sleep Time 178.0sec 83.3sec 29.1Sec
Total Exeaution Time  211.2sec 108.7sec 70.6Sec
Average I/O Rate 487KB/sec 534KB/sec 141KB/sec

Table 1: 1/0 Application Behavior

Fourth, we examine the relationship between
filel/O and dsk I/O. File I/O can dlate because i)
file 1/O’s can be dore in small sizes, bu disk 1/0
is aways rounced upto the next multiple of the
page size, and ii) the buffer cate's read-ahead
poicy may bring speaulatively bring in disk
blocks that are never referenced. File I/O can also
attenuate due to bufer cade hits, which is a
consequence on the 1/O locdity of the
applicaions. We measured 1) the total amourt of
file 1/0O requested, 2 the adual /O requests
performed by the disk, 3) the total number of I/O
events 4) the total number of I/O events that were
delayed by slegp cdls, 5) the total amourt of sleg
time, 6) the total runtime of the workload, and 7)
the average adual disk I/O rate (total disk 1/O’'s
divided by exeautiontime). The results are shown
inTablel.

Looking first at the difference between file
I/0 and dsk I/O, nae that file 1/0 is equal to the
disk I/O for t ar, 14% lessfor agr ep, and 2336
larger for conpi | e. Notice that for the two I/O
intensive goplications, the overall 1/0 rate for the
applicaionisvery close to the target rate.

We did na observe poa read-aheal behavior
in ou experiments; agrep’s behavior is due to
small reads being rounded to larger disk pages.
The low file I/O number for conpi | e, of course,
isdueto good bufer cadelocdity.

Since the temporal extent of our window
automaticdly adapts based on the dfedive I/O
rate (due to the limit of 100items), we wanted to
look at how the size of this windon changed
during the exeaution d a program. Figure 8 shows
the distribution d the dfedive window size for
the compilation workload. The bar chart on the
left shows the dfedive window size (in seconds)
for the workload when it is run withou any 1/0
rate control. The arve on the right shows the
same information when 1/O rate ontrol is
enabled. In bah casesthe dfedivewindow sizeis
much less than the upper limited of 5 seconds.
The average size for the limited case is 0.98
seonds, and 1.71seconds for the limited case.
<what isthe mnclusionfor this ??>
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Figure 8: Comparison of Effective Window Size (Compilation workload).

The full story of the I/O dilationis sen when
we look at the time varying behavior of the I/O.
Figure 7 shows the one-second average 1/0 rates
for the compile workload. Notice that athough
this workload hes considerable hits in the file
buffer cade, ou medanism ensured that the
adual disk 1/0 rate was lessthan the target rate of
500KB/sec The requested 1/O rate pedks are
higher than ou target limit, due to the fad we
average 1/0 requests over a5 secondwindow and
we ae showing data over a 1 second window in
thisfigure.

Although we do nd claim that our set of 1/0O-
intensive gplicaions is representative, ou
experiments suppat our intuition that file 1/0
dilation is not a problem. Rather, the main
concern is that of lost oppatunity. Consider an
example where we would like to share dl

available bandwidth equaly between two
applicdtions. We can set thresholds for eadh
applicaion at half of the maximum adievable
disk bandwidth. However, good bufer cade
locdity would mean that file 1/0 at this rate would
generate less posgbly much less disk I/O. Such
attenuation represents unused bandwidth.

There ae two pdentiad approades to
recupng thislost bandwidth. Thefirst isto adda
hodk into the buffer cade to chedk for a cate
miss before alding the 1/O to ou window, and
dedding whether to slegp. We deliberately have
not taken this path becaise we wish to ke ou
system at as high a level as possble. We would
currently move our entire system into |ibc
withou loss of functiondlity or acaracy. This
would be cmpromised if we put hodks degoer
into the kernel.
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Figure 7: 1/0O Ratesfor the Compile Workload.
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Figure 9: Guest job checkpoint vs. host web server

A sewmnd approad is to use statistics from
pr oc file systemto apply a “normali zation factor”
to ou limit cdculations. Of necessty, this would
be inexad. The alvantage is that it can be
implemented entirely outside of the kernel. We
are airrently pursuing this approad, bu the
mechanismisnat yet in place

5. Network 1/0 policing

Policing network 1/O is easier than file 1/0
becaise there is no analogue to the file buffer
cade or read ahead, which dlate and attenuate
the dfedive disk 1/0O rate. Hence network
bandwidth is a somewhat better target for our
current implementation d rate windows than file
I/0. Since @ntention for network resources is
probably more cmmon than dsk bandwidth
contention, this preferenceis fortuitous.

5.1 Linger longer: Throttling guest processes

Most of the experimentsin Sedion 4 assumed the
use of rate windows in a linger-longer context.
We ran ore more linger-longer experiment, this
time with network 1/0 as the target. One of the
main complaints abou Conda and similar
systems is that the a¢ of moving a guest job from
a newly loaded hast often induces sgnificant
overhed to retrieve the goplicdion's chedkpaint.
Further, periodic chedkpainting for fault tolerance
produces bursty network traffic. This experiment
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shows that even the chedkpaint is throttled and
can be prevented from affed haost jobs.

Figure 9 shows two instances of a guest
process moving off of a node becaise a host
process siddenly becomes adive. Moving off the
node entail s writing a 90OMB chedpaint file over
the network. This wverely reduces available
bandwidth for the host workload (a web server®*
in this case) in the unthrottled case shown in
Figure 9a. Only after the dhedkpoaint is finished
does the web server claim most of the bandwidth.

In the throttled case shown in Figure 9b, the
conda daemon's network write of the chedkpoint
consumes a majority of the bandwidth orly urtil
the host web server starts up. At this paint, the
system enters throttling mode and the bandwidth
avail able to the chedkpaint is reduced to the guest
classs threshdd. Once the web server becomes
idle again, the diedkpoint resumes writing at the
higher rate.

5.2 Rate-based network clocking

Finaly, we look at the use of rate windows to
perform an approximation d rate-based clocking
of network traffic. Such clocking has been
proposed as a method d preventing network
contention and improving utili zation in transport
protocols. Spedficdly, modfying the TCP

217 The host processcould be ay network intensive process
such asan FTP or a\Web browser.



protocol stack to send ou packets at a preset
interval has advantages in 1) avoiding TCP slow-
start, 2) preventing burstinessas a result of ACK
compresdon, and 3 preventing downstream
congestion. With ou current placanent of hodks
high in the kernel, rate windows can ory address
the third motivation. Note, however, that our
implementation is protocol independent, i.e. it
works just aswell for UDP asfor TCP.

Figure 10 shows achieved bandwidth for three
Apade web servers run ona single host. Each
server is driven by clients that repeaedly request
the same file. Hence all requests but the first are
satisfied in the server’s cate and the performance
of the servers is completely limited by available
bandwidth. The total available bandwidth is
~11IMB/sec with the smaller problem size, the
three servers are limited to 1.9VB, 3MB, and
6MB, respedively. The maximum bandwidth
adhieved with the large files is 11.9VB, and
8.6MB with the small files. Hence, the threshdlds
do nd permit the serversto use dl of the available
bandwidth in the first case, but doin the second.

Note that the deviation from the threshold by
the small-file streans (espedally the largest
stream) is not a faling. In fad, this is a
problematic use of rate windovs snce our
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guarantees are not-to-exceed guarantees, na at-
least guarantees. Rate windows are adually ided
for this use becaise congestion poblems only
arise when bandwidth exceeds spedfic bounds, so
the guaranteeis of the wrred poarity.

A semond consequence of this charaderistic is
that rate windows impli citly smooth bursty traffic.
Consider arate-based strean that, despite the rate-
base docking, encourters temporary congestion
and badoff. When the transmisgons cortinue, a
straightforward implementation would attempt to
“make up’ the lost time by transmitting at above
the desired rate for some anourt of time. This, in
turn, could cause more mngestion.

With rate windows, the deasions abou how
long or whether to sleg is based solely on the
history contained in the window, which currently
contains 100 a five semnds worth o 1/0
requests, whichever is less A rate-window-based
strean will attempt to make up losses within the
window, bu “forgets’ losses that occur before the
windov's events. As a result, extra use of
bandwidth in oder to make up dlayed
transmisgon are strictly, and implicitly, bouncd
by a mmbination d target bandwidth and windowv
size.

6. Related work
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Figure 10: Three web servers: The numbers onthe left are for 1.7MB fil es, for 71KB files on the right.
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Previous work on exploiting avail able idle time on
workstation clusters used a @nservative model
that would orly run processes when the loca user
was away from their workstation, and no locd
processes were runreble. Conda [11], LSF[19],
and NOW [2] use variations ona “social contrad”
to strictly limit interference with locd users.
However, even with these pdlicies, there is sme
disruption d the locad user when they return since
the guest process must be evicted and the locd
state restored. The Linger-Longer approach
permits dightly more disruption d the user, bu
tries to limit the delay to an acceptable level. One
system that used nonidle workstations was the
Stedth dstributed scheduler [10]. It implemented
a priority-based approach to runnng guest
processes. However nore of the tradeoffs in hav
long to run guest processes, o the potential of
running parall el programs were investigated.

In the aea of operating system suppat for
providing resource management, reseach and
commercial operating systems have provided
similar functiondlity. In the IRIX [16], the Miser
feaure provides deterministic scheduling of batch
jobs. Miser manages a set of resources, including
logicd CPUs and plysicd memory, that Miser
batch jobs can reserve and wse in preference to
interadive jobs. This drategy is amost the
oppaite of our approadh, which promotes
interadive jobs.

Aron and Druschel’s ©ft timers [1] provide a
way to implement rate-based clocking of network
protocols. Although their motivation, avoiding
the pendty of TCP dow-start for small file
transfers over high delay-bandwidth networks, is
different than ous, limiting the fradion d the
server's network bandwidth that a single http
client or virtual host server gets, bah techniques
can be used to achieve similar ends. For example,
soft timers could be used to limit the rate & which
datais snt from a server by setting the soft timer
longer than the optima rate for the link.
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Likewise, our rate throttling mechanism could be
used to provide rate-based clocking of padets by
limiting a cnredion to a padet rate that matches
the cgaaty of the bottlenedk link between the
two communicaing parties.

The idea of regulating traffic rates in the
network has been extensively studied. Congestion
avoidance schemes such as lesky bucket [17] and
its variants [6, 18] use averages over various time
intervals to determine which traffic is within its
negotiated bandwidth. However, since these
approadies are designed for pdlicing traffic a
routers, they must drop nonconforming traffic.
In contrast, sinceour approach is at the source, we
can delay traffic to enforce bandwidth limits.

The ideaof resource partitioning through the
use of virtual macines has been popuar bath in
the 197Gs [8] as well asin recent projeds auch as
Disco [5]. The key differenceis that whil e virtual
madines provide hard isolation d resource
between VMs at considerable runtime overhea,
our approach is a simple extension to an existing
operating system onruntime library.

7. Discusion

As mentioned in Sedion 2, reseacchers have long
recgnized that idle machines represent a vast
untapped resource Two long-term trends are
incressing this oppatunity. First, increased
conredivity aaoss the Internet alows for
utili zation d resources in much wider domains.
Sewnd, rew software techndogies are making it
posshble to better exploit heterogeneous ts of
workstations. For example, new Java compilers
promise to alow write-oncerun-anywhere
applicaions to perform within a small fador of
the best host-code mpilers for traditional
languages. These two trends vastly increase the
set of candidates for wide-area @mputing.
Systems like Conda [11] exploit this
oppatunity by allowing guest processes to run on
idle participating machines. Existing systems
focus on coarse-grained idle periods when users



are avay from their workstations. Returning users,
or the start of any significant locd processes,
cause guest processes to be migrated off the locd
machine in order to avoid impading the locd
user. By providing better resource management,
we ae ale to be more aggressve in ou use of
foundresource and thus expand the oppatunities
to runguest jobs. In addition, by providing arate-
limited way to migrate jobs off nodes we can
reduce one of the most annoying types of
disruption provided by cycle steding systems.

Our placement of hodks high in the kernel has
two advantages. First, we ae éove the protocol
stack and so transparently catch al protocols.
Sewnd, the implementation could easly be
adapted to be part of the C-runtime library, or
even o a spedfic gplicdion. For example,
consider the problem of running a wlledion d
web servers runnng in a virtua hosting
environment. The aility of our system to provide
fixed bandwidth alocations to ead virtual haost
coud be implemented by patching the web
servers. Recdl from Sedion 3 that all of the
necessry information can be lleded by
observing the exeaution d network system cdls.
A user-level implementation would intercept these
cdls and wse ashared memory region to store the
history information. Techniques such as online
binary editing [4] could be used to implement rate
windows in user-space withou access to the
applicaion source mde.

8. Conclusions and Future Work

We have presented a simple strategy to allow an
operating system to throttle the rate & which disk
and retwork communicaion is performed. Our
technique is smple and general purpose. By
changing parameters sich asthe window size, it is
possble to adapt the granularity of the gproad.
One ohvious area of future work is to provide a
complete study of the aility of the system to
hande finer granularity padlicing of resources by
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dynamicdly adjusting the window size. Since our
mechanism requires only the aility to monitor
and dlay user level 1/0O requests, we ould
implement our approach in user spacelibraries, or
as |loadable kernel modues.

Our experiments demonstrated that we ae
able to enforce resource limits on applications.
For 1/0O bound applicaions, we showed that
despite the fad our mechanism is located close to
the gplication level 1/0 requests we ae ale to
enforce limits at the physicd device level despite
the imposition d the buffer cade and dsk read
ahead between ou medhanism and the physicd
device An areaof future work is to implement a
feadbadk medhanism to namali ze the padlicing of
1/0 requests based on bufer cade hit rates.

For the network case, we demonstrated that
rate windows allow effedive bandwidth sharing
and protedion d network resources to all ow guest
jobs to run on (and migrate off) workstations
withou causing interferenceto hast processes.

Finally, we plan to evauate the overall
effediveness of our resource isolation techniques
for afull scde gcle-steding system. <what else
to mention rere??»
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