

Rate Windows for Efficient Network and I/O Throttling

Kyung D. Ryu, Jeffrey K. Holli ngsworth, and Peter J. Keleher

Dept. of Computer Science

University of Maryland
{kdryu,hollings,keleher} @cs.umd.edu

This paper proposes and evaluates a new mechanism for I/O and network rate policing. The goal
of the proposed system is to provide an simple, yet effective way to enforce resource limits on
target classes of jobs in a system. The basic approach is useful for several types of systems
including running background jobs on idle workstations, and providing resource limits on network
intensive applications such as virtual web server hosting. Our approach is quite simple, we use a
sliding window average of recent events to compute the average rate for a target resource. The
assigned limit is enforced by forcing application processes to sleep when they issue requests that
would bring their resource utilization out of the allowable profile. Our experimental results that
show that we are able to provide the target resource limitations within a few percent, and do so
with no measurable slowdown of the overall system.

Contact author:
Dr. Peter Keleher
Computer Science Department
A. V. Williams Bldg.
University of Maryland
College Park, MD 20742-3255
301 405-0345
Fax: 301 405-6707
keleher@cs.umd.edu

 1

Rate Windows for Efficient Network and I/O Throttling

Kyung D. Ryu, Jeffrey K. Holli ngsworth, and Peter J. Keleher

Dept. of Computer Science

University of Maryland
{kdryu,hollings,keleher}@cs.umd.edu

Abstract
This paper proposes and evaluates a new mechanism for I/O and network rate policing. The goal
of the proposed system is to provide an simple, yet effective way to enforce resource limits on
target classes of jobs in a system. The basic approach is useful for several types of systems
including running background jobs on idle workstations, and providing resource limits on network
intensive applications such as virtual web server hosting. Our approach is quite simple, we use a
sliding window average of recent events to compute the average rate for a target resource The
assigned limit is enforced by forcing application processes to sleep when they issue requests that
would bring their resource utilization out of the allowable profile. Our experimental results that
show that we are able to provide the target resource limitations within a few percent, and do so
with no measurable slowdown of the overall system.

1. Introduction

This paper proposes and evaluates rate windows, a
new mechanism for I/O and network rate policing.
Integrated with our existing Linger-Longer
infrastructure for policing CPU and memory
consumption [15], the rate windows give
unprecedented control over the resource use of
user applications. More specifically, rate windows
is a low-overhead facilit y that gives us the abilit y
to set hard per-process bounds on I/O and network
usage.

Current general-purpose UNIX systems
provide no support for prioriti zing access to other
resources such as memory, communication and
I/O. Priorities are, to some degree, implied by the
corresponding CPU scheduling priorities. For
example, physical pages used by a lower-priority
process will often be lost to higher-priority
processes. LRU-like page replacement policies are
more li kely to page out the lower-priority
process's pages, because it runs less frequently.
However, this might not be true with a higher-

priority process that is not computationally
intensive, and a lower priority process that is. We
therefore need an additional mechanism to control
the memory allocation between local and guest
processes. Like CPU scheduling, this modification
should not affect the memory allocation (or page
replacement) between processes in the same class.

This abilit y has applications in several areas;
we perform a detailed investigation of two in this
paper. First, we show that network and I/O
throttling is crucial in order to provide guarantees
to users who allow their workstations to be used
in Condor-li ke systems. Condor-li ke faciliti es
allow guest processes to eff iciently exploit
otherwise-idle workstation resources. The
opportunity for harvesting cycles in idle
workstations has long been recognized [12], since
the majority of workstation cycles go unused. In
combination with ever-increasing needs for
cycles, this presents an obvious opportunity to
better exploit existing resources.

However, most such policies waste many
opportunities to exploit cycles because of overly

 1

conservative estimates of resource contention. Our
linger-longer approach [14] exploits these
opportunities by delaying migrating guest
processes off of a machine in the hope of
exploiting fine-grained idle periods that exist even
while users are actively using their computers.
These idle periods, on the order of tens of
milli seconds, occur when users are thinking, or
waiting for external events such as disks or
networks. Our prior work consisted of new
mechanisms and policies that limit the use of CPU
cycles and memory by guest jobs. The work
proposed in this paper complements that work in
extending similar protection to network and I/O
bandwidth usage.

Second, we show that rate windows can be
used to eff iciently provide rate policing of
network connections. Rating limiting is useful
both for managing resource allocations of
competing users (such as virtual hosting of web
servers) and can be used for rate-based clocking
of network protocols as a means of improving the
utili zation of networks with high bandwidth-delay
products [7, 13].

The rest of this paper is organized as follows.
Section 2 describes the implementation of rate
windows and evaluates its use with micro-
benchmarks. Section 3 reviews the Linger-Longer
infrastructure, motivates the use of rate windows
for Linger-Longer. In particular, we show that a
significant class of guest applications is still able
to affect host processes via network and I/O
contention. Further we show that there is no
general way to prevent this using CPU and
memory policing that still allows the guest to
make progress. Section 4 describes the use of rate
windows in policing file I/O, and Section 5
describes its use with network I/O/. Finally,
Section 6 reviews related work and Section
Error! Reference source not found. concludes.

2. CPU and memory policing

Before discussing rate windows, we place this
work in the context of the Linger-Longer
resource-policing infrastructure [14]. The Linger-
Longer infrastructure is based on the thesis that
current Condor-li ke [11] policies waste many
opportunities to exploit idle cycles because of
overly conservative estimates of resource
contention. We believe that overall throughput is
maximized if systems implement fine-grained
cycle stealing by leaving guest jobs on machine
even when resource-intensive host jobs start up.
However, the host job will be adversely affected
unless the guest job’s resource use is strictly
limited. Our earlier work strictly bounded CPU
and memory use by guest jobs through use of a
few, simple modifications to existing kernel
policies.

These policies rely on two new mechanisms.
First, a new guest priority prevents guest
processes from running when runnable host
processes are present. The change essentially
establishes guest processes as a different class,
such that guest processes are not chosen if any
runnable host processes exist. This is true even if
the host processes have lower runtime priorities
than the guest process. Note that running with
“nice –19” is not suff icient, as the nice’d process
can still consume between 8%, 15%, and 40% of
the CPU for Linux (2.0.32), Solaris (SunOS 5.5),
and AIX (4.2), respectively [15].

We verified that the scheduler reschedules
processes any time a host process unblocks while
a guest process is running. This is the default
behavior on Linux, but not on many BSD derived
operating systems. One potential problem of our
strict priority policy is that it could cause priority
inversion. Priority inversion occurs when a higher
priority process is not able to run due to a lower
priority process holding a shared resource.
However, this is not possible in our application

 2

domain because guest and host processes do not
share locks, or any other non-revocable resources.

Our second mechanism limited guest
consumption of memory resources. Unfortunately,
memory is more diff icult to deal with than the
CPU. The cost of reclaiming the processor from a
running process in order to run a new process
consists only of saving processor state and
restoring cache state. The cost of reclaiming page
frames from a running process is negligible for
clean pages, but quite large for modified pages
because they need to be flushed to disk before
being reclaimed. The simple solution to this
problem is to permanently reserve physical
memory for the host processes. The drawback is
that many guest processes are quite large.
Simulations and graphics rendering applications
can often fill all available memory. Hence, not
allowing guest processes to use the majority of
physical memory would prevent a large class of
applications from taking advantage of idle cycles.

We therefore decided not to impose any hard
restrictions on the number of physical pages that
can be used by a guest process. Instead, we
implemented a policy that establishes low and
high thresholds for the number of physical pages
used by guest processes. Essentially, the page
replacement policy prefers to evict a page from a
host process if the total number of physical pages
held by the guest process is less than the low

threshold. The replacement policy defaults to the
standard clock-based pseudo-LRU policy up until
the upper threshold. Above the high threshold, the
policy prefers to evict a guest page. The effect of
this policy is to encourage guest processes to steal
pages from host processes until the lower
threshold is reached, to encourage host processes
to steal from guest processes above the high
threshold, and to allow them to compete evenly in
the region between the two thresholds. However,
the host priority will l ead to the number of pages
held by the guest processes being closer to the
lower threshold, because the host processes will
run more frequently.

We modified the Linux kernel to support this
prioriti zed page replacement. Two new global
kernel variables were added for the memory
thresholds, and are configurable at run-time via
system calls. The kernel keeps track of resident
memory size for guest processes and host
processes. Periodically, the virtual memory
system triggers the page-out mechanism. When it
scans in-memory pages for replacement, it checks
the resident memory size of guest processes
against the memory thresholds. If they are below
the lower thresholds, the host processes’ pages are
scanned first for page-out. Resident sizes of guest
processes larger than the upper threshold cause
the guest processes’ pages to be scanned first.

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160 180 200

time (sec)

m
e
m
o
r
y

(
M
B
)

host job
m em ory

guest job
m em ory

High Lim it

Low Limit

Figure 1: Threshold validations – Low and high thresholds are set to 50MB and 70 MB. At time 90, the host job
becomes I/O-bound. Host process acquires 150 MB when running without contention, guest process acquires 128
MB without contention. Total available memory is 179 MB.

 3

Between the two thresholds, older pages are paged
out first no matter what processes own them.

We validated our memory threshold
modifications by tracking the resident memory
size of host and guest processes for two CPU-
intensive applications with large memory
footprints. The result is shown in Figure 1. The
chart shows memory competition between a guest
and a host process. The application behavior and
memory thresholds shown are not meant to be
representative, but were constructed to
demonstrate that the memory thresholds are
strictly enforced by our modifications to Linux’s
page replacement policy. The guest process starts
at time 20 and grabs 128MB. The host process
starts at time 38 and quickly grabs a total of 128
MB. Note that the host actually touches 150 MB.
It is prevented from obtaining all of this memory
by the low threshold. Since the guest process’
total memory has dropped to the low threshold, all
replacements come from host pages. Hence, no
more pages can be stolen from the guest. At time
90, the host process turns into a highly I/O-bound
application that uses littl e CPU time. When this
happens, the guest process becomes a stronger
competitor for physical pages, despite the lower
CPU priority, and slowly steals pages from the
host process. This continues until ti me 106, at
which point the guest process reaches the high
threshold and all replacements come from its own
pages. For this experiment, we deliberately set the
limits very high to demonstrate the mechanism.
5/10% of total memory are very acceptable guest
job memory limits for most of cases. However,

these values can be adapted at run time to meet
the different requirements of applications.

3. Rate Windows

3.1 Policy
First, we distinguish between “unconstrained” and
“constrained” job classes. The default for all
processes is unconstrained; jobs must be explicitl y
put into constrained classes. The unconstrained
class is allowed to consume all available I/O.
Each distinct constrained class has a different
threshold bandwidth, defining the maximum
aggregate bandwidth that all processes in that
class can consume. As an optimization, however,
if there is only one class of constrained jobs, and
no I/O-bound unconstrained jobs, the constrained
jobs are allowed unfettered access to the available
bandwidth.

We identify the presence of unconstrained
I/O-bound jobs by monitoring I/O bandwidth,
moving the system into the throttled state when
unconstrained bandwidth exceeds threshhigh, and
into the unthrottled state when unconstrained
bandwidth drops below threshlow. Note that
threshlow is lower than threshhigh, providing
hysteresis to the system to prevent oscill ations
between throttled and un-throttled mode when the
I/O rate is near the threshold. The state of the
system is reflected in the global variable

throttled. Note that the current unconstrained
bandwidth is not an instantaneous measure; it is
measured over the li fe of the rate window, defined
below.

3.2 Mechanism

 4

The implementation of rate windows is
straightforward. We currently have a hard-coded
set of job equivalence classes, although this could
be easily generalized for an arbitrary number.
Each class has two kernel window structures, one
for file I/O and one for network I/O. Each window
structure contains a circular queue, implemented
via a 100-element array (see Figure 2). The
window structure describes the last I/O operations
performed by jobs in the class, plus a few other
scalar variables. The window structure only
describes I/O events that occurred during the
previous 5 seconds, so there may be fewer than
100 operations in the array. We experimented
with several different window sizes before
arriving at these constants, but it is clearly
possible that new environments or applications
could be best served by using other values. We
provide a means of tuning these and other
parameters from a user-level tool.

We currently trigger our mechanism via
hooks placed high in the kernel, at each of the
kernel calls that implement I/O and network

communication: read(), write(), send(), etc.

Each hook calls rate_check() with process ID,
I/O length, and I/O type. The process ID is used to
map to an I/O class, and the I/O type is used to
distinguish between file and network I/O. The

rate_check() routine maintains a sliding
window of operations performed for each class of

service and for the overall system. We maintain a
window of up to 100 recent events. However, to
prevent using too old of information, we limit the
sliding window to a fixed interval of time
(currently 5 seconds).

Define Bw, the window bandwidth, as the total
amount of I/O in the window’s operations,
including the new operation. Define Tw, the
window time, as the interval from the beginning of
the oldest operation in the window until the
expected completion of the new operation,
assuming it starts immediately. Let Rt be the
threshold bandwidth per second for this class. We
then allow the new operation to proceed
immediately if the class is currently throttled and:

w
t

w

B
R

T
>

Otherwise, we calculate the sleep() delay as
follows:

delay w
w

t

B
T

R
= −

This process is ill ustrated graphically in Figure 3.
Note that we have upper and lower bounds on
allowable sleep times.

Sleep durations that are too small degrade
overall eff iciency, so durations under our lower
bound are set to zero. Sleep durations that are too
large tend to make the stream bursty. If our
computed delay is above the computed threshold
we break the I/O into multiple pieces and spread

4KB 16KB60KB

100
msec

500
msec

80
msec

12KB

75
msec

5 seconds

100 i tems

Avg.
Rate

Figure 2: Maintaining a sliding window of resource utilization.

Rate Clocked
Process

?

No

Yes
Exceeds

Target Rate
?

Yes
Compute

Sleep Interval &
Sleep

No

Avg.
Rate

Target
Rate

Library

Kernel

Library

Application

Rate Window

I/O or
Network
Request

Kernel

Application

Figure 3: Policing I/O Requests.

 5

the total delay over the pieces. This is will not
affect application execution since for file I/O
requests will eventually be broken into individual
disk blocks and for network connections TCP
provides a byte-oriented stream rather than a
record oriented one2816.

We chose Linux as our target operating
system for several reasons. First, it is one of the
most widely used UNIX operating systems.
Second, the source code is open and widely
available. Since many active Linux users build
their own customized kernels, our mechanisms
could easily be patched into existing installations
by end users. This is important because most PCs
are deployed on people's desks, and cycle-stealing
approaches are probably more applicable to
desktop environments than to server
environments. Also since our mechanism simply
requires the abilit y to intercept I/O calls, it would
be easy to implement as a loadable kernel
modules on systems that defined an API to
intercept I/O calls. Windows 2000 (nee Window
NT) and the stackable filesystem [9] provide the
required calls.

In order to provide the finer granularity of
sleep time to allow our policing to be
implemented, we augmented the standard 2.2

2816 For UDP this is not a problem since the max user level
request is constrained by the network’s MTU.

Linux kernel with extensions developed by KURT
Real-time Linux project [3].

4. File I/O Policing

In order to validate our approach, we conducted a
series of micro-benchmarks and application
benchmarks. The purpose of these experiments is
three fold. First, we want to show that our
mechanism doesn’ t introduce any significant
delay on normal operation of the system. Second,
we want to show that we can effectively police the
I/O rates. Third, since our policing mechanism
sits above the file buffer cache, it will be
conservative in policing the disk since hits in
cache will be charged against a job classes’s
overall file I/O limit. We wanted to measure this
affect.

We first measured resource usage in order to
verify that the use of rate windows does not add
significant overhead to the system. We ran a
single tar program by itself both with and without
rate windows enabled. The completion time of the
tar application with rate windows enabled was
less than the variation between consecutive runs
of the experiment. This was expected, as there are
no computationally expensive portions of the
algorithm. Note that this experiment does not
account for the system cost of extra context
switches caused by sleeping guest jobs.

 6

Second, we ran two instances of tar, one as a
guest job and one as a host job. Figure 4a
represents a run with throttling enabled, and
Figure 4 shows a run without throttling. There is
no caching between the two because they have
disjoint input. The guest job is intended to be
representative of those used by cycle-stealing
schedulers such as Condor. Unless specified
otherwise, a “guest” job is assumed to be
constrained to 10% of the maximum I/O or
network bandwidth, whereas a “host” process has
unconstrained use of all bandwidth.

In both figures, the guest job starts first,
followed somewhat later by the host job. At this
point, the guest job throttles down to its 10% rate.
When the host job finishes, the guest job throttles

back up after the rate window empties. The
sequence on the left is with throttling, on the right
without. Note that the version with I/O throttling
is less thrifty with resources (the jobs finish later).
This is a design decision: our goal is to prevent
undue degradation of unconstrained host job
performance regardless of the effect on any guest
jobs.

We look at the behavior of one of the tar
processes in more detail i n Figure 5. The point of
this figure is that despite the frequent and varied
file I/O calls, and despite the buffer cache, disk
I/O’s get issued at regular intervals that precisely
match the threshold value set for this experiment.
Note that actual disk I/O.

0

1000

2000

3000

4000

5000

6000

7000

8000

0 10 20 30 40 50 60 70 80 90

time (sec)

I0
 r

at
e

(k
B

/s
)

host

guest

0

1000

2000

3000

4000

5000

6000

7000

8000

0 10 20 30 40 50 60 70 80 90 100

time (sec)

IO
 r

at
e

(k
B

/s
)

host

guest

(a) (b)

Figure 4: File I/O of competing tar applications with (left) and without (right) file I/O policing.

1

100

10,000

1,000,000

0 1 2 3 4 5

Application Requests

Disk Requests

Figure 5: I/O sizes vs. time for tar

 7

Our third set of micro-benchmark experiments
is designed to look at the distribution of sleep
times for a guest process. For this case, we ran
three different applications. The first application
was again a run of the tar utilit y. Second, we ran
the agrep utilit y across the source directory for the
Linux kernel looking for a simple pattern that did
not occur in the files searched. Third, we ran a
compile workload that consisted of compili ng a
library of C++ methods that were divided among
34 files plus 45 header files. This third test was
designed to stress the gap between monitoring at
the file request level and the disk I/O level since
all of the common header files would remain in
the file buffer cache for the duration of the
experiment.

A histogram (100 buckets) of the sleep
durations is shown in Figure 6. We have omitted
those events that have no delay since their

frequency completely dominates the rest of the
values. Figure 6(a) shows the results for the tar
application. In this figure, there is a large spike in
the delay time at 20msec since this is exactly the
mean delay required for the I/O the must common
sized I/O request of 10K bytes to be limited to 500
KB/sec. Figure 6(b) shows the results for the
compilation workload. In this example, the most
popular sleep time is the maximum sleep duration
of 100msec. This is due to the fact, that at several
periods during the application execution, the
program is highly I/O intensive and our
mechanism was straining to keep the I/O rate
throttled down. Figure 6(c) shows the sleep time
distribution for the agrep application. The results
for this application show that the most popular
sleep time (other than no sleep) was 2-3 ms. This
is very close to the mean sleep time of 2.5 ms for
this application.

0

200

400

600

800

1,000

1,200

0 10 20 30 40 50 60 70 80 90

Sleep Time (msec)

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90

Sleep Time (msec)

(a) Tar (b) Compile Workload

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70 80 90

Sleep Time (msec)

(c) Agrep

Figure 6: Distribution of Sleep Times for Tar program.

 8

Fourth, we examine the relationship between
file I/O and disk I/O. File I/O can dilate because i)
file I/O’s can be done in small sizes, but disk I/O
is always rounded up to the next multiple of the
page size, and ii) the buffer cache’s read-ahead
policy may bring speculatively bring in disk
blocks that are never referenced. File I/O can also
attenuate due to buffer cache hits, which is a
consequence on the I/O locality of the
applications. We measured 1) the total amount of
file I/O requested, 2) the actual I/O requests
performed by the disk, 3) the total number of I/O
events 4) the total number of I/O events that were
delayed by sleep calls, 5) the total amount of sleep
time, 6) the total runtime of the workload, and 7)
the average actual disk I/O rate (total disk I/O’s
divided by execution time). The results are shown
in Table 1.

Looking first at the difference between file
I/O and disk I/O, note that file I/O is equal to the

disk I/O for tar, 14% less for agrep, and 233%

larger for compile. Notice that for the two I/O
intensive applications, the overall I/O rate for the
application is very close to the target rate.

We did not observe poor read-ahead behavior

in our experiments; agrep’ s behavior is due to
small reads being rounded to larger disk pages.

The low file I/O number for compile, of course,
is due to good buffer cache locality.

Since the temporal extent of our window
automatically adapts based on the effective I/O
rate (due to the limit of 100 items), we wanted to
look at how the size of this window changed
during the execution of a program. Figure 8 shows
the distribution of the effective window size for
the compilation workload. The bar chart on the
left shows the effective window size (in seconds)
for the workload when it is run without any I/O
rate control. The curve on the right shows the
same information when I/O rate control is
enabled. In both cases the effective window size is
much less than the upper limited of 5 seconds.
The average size for the limited case is 0.98
seconds, and 1.71 seconds for the limited case.
<what is the conclusion for this ??>

Metric Tar Agrep Compile

Total File I/O 103.0 MB 50.0 MB 23.3 MB
Total Disk I/O 103.0 MB 58.1 MB 10.0 MB
Total I/O Events 17,430 11,526 3,859
Total Sleep Events 6,928 3,324 1,004
Total Sleep Time 178.0 sec 83.3 sec 29.1 Sec
Total Execution Time 211.2 sec 108.7 sec 70.6 Sec
Average I/O Rate 487 KB/sec 534 KB/sec 141 KB/sec

Table 1: I/O Application Behavior

 9

The full story of the I/O dilation is seen when
we look at the time varying behavior of the I/O.
Figure 7 shows the one-second average I/O rates
for the compile workload. Notice that although
this workload has considerable hits in the file
buffer cache, our mechanism ensured that the
actual disk I/O rate was less than the target rate of
500KB/sec. The requested I/O rate peaks are
higher than our target limit, due to the fact we
average I/O requests over a 5 second window and
we are showing data over a 1 second window in
this figure.

Although we do not claim that our set of I/O-
intensive applications is representative, our
experiments support our intuition that file I/O
dilation is not a problem. Rather, the main
concern is that of lost opportunity. Consider an
example where we would li ke to share all

available bandwidth equally between two
applications. We can set thresholds for each
application at half of the maximum achievable
disk bandwidth. However, good buffer cache
locality would mean that file I/O at this rate would
generate less, possibly much less, disk I/O. Such
attenuation represents unused bandwidth.

There are two potential approaches to
recouping this lost bandwidth. The first is to add a
hook into the buffer cache to check for a cache
miss before adding the I/O to our window, and
deciding whether to sleep. We deliberately have
not taken this path because we wish to keep our
system at as high a level as possible. We could

currently move our entire system into libc
without loss of functionality or accuracy. This
would be compromised if we put hooks deeper
into the kernel.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80

Time (sec)

I/O
 R

at
e

(M
B

/s
ec

)

Application I/O Rate

Disk I/O Rate

Figure 7: I/O Rates for the Compile Workload.

0
100
200
300
400
500
600

0 1 2 3 4

0

200

400

600

800

0 1 2 3 4

(a) (b)

Figure 8: Comparison of Effective Window Size (Compilation workload).

 10

A second approach is to use statistics from

proc file system to apply a “normalization factor”
to our limit calculations. Of necessity, this would
be inexact. The advantage is that it can be
implemented entirely outside of the kernel. We
are currently pursuing this approach, but the
mechanism is not yet in place.

5. Network I/O policing

Policing network I/O is easier than file I/O
because there is no analogue to the file buffer
cache or read ahead, which dilate and attenuate
the effective disk I/O rate. Hence, network
bandwidth is a somewhat better target for our
current implementation of rate windows than file
I/O. Since contention for network resources is
probably more common than disk bandwidth
contention, this preference is fortuitous.

5.1 Linger longer: Throttling guest processes
Most of the experiments in Section 4 assumed the
use of rate windows in a linger-longer context.
We ran one more linger-longer experiment, this
time with network I/O as the target. One of the
main complaints about Condor and similar
systems is that the act of moving a guest job from
a newly loaded host often induces significant
overhead to retrieve the application’s checkpoint.
Further, periodic checkpointing for fault tolerance
produces bursty network traff ic. This experiment

shows that even the checkpoint is throttled and
can be prevented from affect host jobs.

Figure 9 shows two instances of a guest
process moving off of a node because a host
process suddenly becomes active. Moving off the
node entails writing a 90MB checkpoint file over
the network. This severely reduces available
bandwidth for the host workload (a web server2817
in this case) in the unthrottled case shown in
Figure 9a. Only after the checkpoint is finished
does the web server claim most of the bandwidth.

In the throttled case shown in Figure 9b, the
condor daemon’s network write of the checkpoint
consumes a majority of the bandwidth only until
the host web server starts up. At this point, the
system enters throttling mode and the bandwidth
available to the checkpoint is reduced to the guest
class’s threshold. Once the web server becomes
idle again, the checkpoint resumes writing at the
higher rate.

5.2 Rate-based network clocking
Finally, we look at the use of rate windows to
perform an approximation of rate-based clocking
of network traff ic. Such clocking has been
proposed as a method of preventing network
contention and improving utili zation in transport
protocols. Specifically, modifying the TCP

2817 The host process could be any network intensive process
such as an FTP or a Web browser.

0

2000

4000

6000

8000

10000

0 6 12 18 24 30 36 42 48

Time (sec)

C
o

m
m

. B
an

d
w

id
th

 (
kB

/s
)

guest ckpt

web server

0

2000

4000

6000

8000

10000

0 6 12 18 24 30 36 42 48

Time (sec)

C
o

m
m

. B
an

d
w

id
th

 (
kB

/s
) guest ckpt.

web server

(a) (b)

Figure 9: Guest job checkpoint vs. host web server

 11

protocol stack to send out packets at a preset
interval has advantages in 1) avoiding TCP slow-
start, 2) preventing burstiness as a result of ACK
compression, and 3) preventing downstream
congestion. With our current placement of hooks
high in the kernel, rate windows can only address
the third motivation. Note, however, that our
implementation is protocol independent, i.e. it
works just as well for UDP as for TCP.

Figure 10 shows achieved bandwidth for three
Apache web servers run on a single host. Each
server is driven by clients that repeatedly request
the same file. Hence, all requests but the first are
satisfied in the server’s cache and the performance
of the servers is completely limited by available
bandwidth. The total available bandwidth is
~11MB/sec with the smaller problem size, the
three servers are limited to 1.5MB, 3MB, and
6MB, respectively. The maximum bandwidth
achieved with the large files is 11.5MB, and
8.6MB with the small files. Hence, the thresholds
do not permit the servers to use all of the available
bandwidth in the first case, but do in the second.

Note that the deviation from the threshold by
the small -file streams (especially the largest
stream) is not a faili ng. In fact, this is a
problematic use of rate windows since our

guarantees are not-to-exceed guarantees, not at-
least guarantees. Rate windows are actually ideal
for this use because congestion problems only
arise when bandwidth exceeds specific bounds, so
the guarantee is of the correct polarity.

A second consequence of this characteristic is
that rate windows implicitl y smooth bursty traff ic.
Consider a rate-based stream that, despite the rate-
base clocking, encounters temporary congestion
and backoff . When the transmissions continue, a
straightforward implementation would attempt to
“make up” the lost time by transmitting at above
the desired rate for some amount of time. This, in
turn, could cause more congestion.

With rate windows, the decisions about how
long or whether to sleep is based solely on the
history contained in the window, which currently
contains 100 or five seconds worth of I/O
requests, whichever is less. A rate-window-based
stream will attempt to make up losses within the
window, but “ forgets” losses that occur before the
window’s events. As a result, extra use of
bandwidth in order to make up delayed
transmission are strictly, and implicitl y, bounded
by a combination of target bandwidth and window
size.

6. Related work

0

1000

2000

3000

4000

5000

6000

7000

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

Time (sec)

B
an

d
w

id
th

 (
K

B
/s

ec
)

class 1

class 2

class 3

0

1000

2000

3000

4000

5000

6000

7000

0 10 20 30 40 50 60 70 80 90 100 110 120 130

time (sec)

B
an

d
w

id
th

 (
K

B
/s

ec
)

class 1

class 2

class 3

Figure 10: Three web servers: The numbers on the left are for 1.7MB files, for 71KB files on the right.

 12

Previous work on exploiting available idle time on
workstation clusters used a conservative model
that would only run processes when the local user
was away from their workstation, and no local
processes were runnable. Condor [11], LSF [19],
and NOW [2] use variations on a “social contract”
to strictly limit interference with local users.
However, even with these policies, there is some
disruption of the local user when they return since
the guest process must be evicted and the local
state restored. The Linger-Longer approach
permits slightly more disruption of the user, but
tries to limit the delay to an acceptable level. One
system that used non-idle workstations was the
Stealth distributed scheduler [10]. It implemented
a priority-based approach to running guest
processes. However none of the tradeoffs in how
long to run guest processes, or the potential of
running parallel programs were investigated.

In the area of operating system support for
providing resource management, research and
commercial operating systems have provided
similar functionality. In the IRIX [16], the Miser
feature provides deterministic scheduling of batch
jobs. Miser manages a set of resources, including
logical CPUs and physical memory, that Miser
batch jobs can reserve and use in preference to
interactive jobs. This strategy is almost the
opposite of our approach, which promotes
interactive jobs.

Aron and Druschel’s soft timers [1] provide a
way to implement rate-based clocking of network
protocols. Although their motivation, avoiding
the penalty of TCP slow-start for small file
transfers over high delay-bandwidth networks, is
different than ours, limiting the fraction of the
server’s network bandwidth that a single http
client or virtual host server gets, both techniques
can be used to achieve similar ends. For example,
soft timers could be used to limit the rate at which
data is sent from a server by setting the soft timer
longer than the optimal rate for the link.

Likewise, our rate throttling mechanism could be
used to provide rate-based clocking of packets by
limiting a connection to a packet rate that matches
the capacity of the bottleneck link between the
two communicating parties.

The idea of regulating traff ic rates in the
network has been extensively studied. Congestion
avoidance schemes such as leaky bucket [17] and
its variants [6, 18] use averages over various time
intervals to determine which traff ic is within its
negotiated bandwidth. However, since these
approaches are designed for policing traff ic at
routers, they must drop non-conforming traff ic.
In contrast, since our approach is at the source, we
can delay traff ic to enforce bandwidth limits.

The idea of resource partitioning through the
use of virtual machines has been popular both in
the 1970s [8] as well as in recent projects such as
Disco [5]. The key difference is that while virtual
machines provide hard isolation of resource
between VMs at considerable runtime overhead,
our approach is a simple extension to an existing
operating system on runtime library.

7. Discusion

As mentioned in Section 2, researchers have long
recognized that idle machines represent a vast
untapped resource. Two long-term trends are
increasing this opportunity. First, increased
connectivity across the Internet allows for
utili zation of resources in much wider domains.
Second, new software technologies are making it
possible to better exploit heterogeneous sets of
workstations. For example, new Java compilers
promise to allow write-once/run-anywhere
applications to perform within a small factor of
the best host-code compilers for traditional
languages. These two trends vastly increase the
set of candidates for wide-area computing.

Systems li ke Condor [11] exploit this
opportunity by allowing guest processes to run on
idle participating machines. Existing systems
focus on coarse-grained idle periods when users

 13

are away from their workstations. Returning users,
or the start of any significant local processes,
cause guest processes to be migrated off the local
machine in order to avoid impacting the local
user. By providing better resource management,
we are able to be more aggressive in our use of
found resource and thus expand the opportunities
to run guest jobs. In addition, by providing a rate-
limited way to migrate jobs off nodes we can
reduce one of the most annoying types of
disruption provided by cycle stealing systems.

Our placement of hooks high in the kernel has
two advantages. First, we are above the protocol
stack and so transparently catch all protocols.
Second, the implementation could easily be
adapted to be part of the C-runtime library, or
even of a specific application. For example,
consider the problem of running a collection of
web servers running in a virtual hosting
environment. The abilit y of our system to provide
fixed bandwidth allocations to each virtual host
could be implemented by patching the web
servers. Recall from Section 3 that all of the
necessary information can be collected by
observing the execution of network system calls.
A user-level implementation would intercept these
calls and use a shared memory region to store the
history information. Techniques such as online
binary editing [4] could be used to implement rate
windows in user-space without access to the
application source code.

8. Conclusions and Future Work

We have presented a simple strategy to allow an
operating system to throttle the rate at which disk
and network communication is performed. Our
technique is simple and general purpose. By
changing parameters such as the window size, it is
possible to adapt the granularity of the approach.
One obvious area of future work is to provide a
complete study of the abilit y of the system to
handle finer granularity policing of resources by

dynamically adjusting the window size. Since our
mechanism requires only the abilit y to monitor
and delay user level I/O requests, we could
implement our approach in user space libraries, or
as loadable kernel modules.

Our experiments demonstrated that we are
able to enforce resource limits on applications.
For I/O bound applications, we showed that
despite the fact our mechanism is located close to
the application level I/O requests we are able to
enforce limits at the physical device level despite
the imposition of the buffer cache and disk read
ahead between our mechanism and the physical
device. An area of future work is to implement a
feedback mechanism to normalize the policing of
I/O requests based on buffer cache hit rates.

For the network case, we demonstrated that
rate windows allow effective bandwidth sharing
and protection of network resources to allow guest
jobs to run on (and migrate off) workstations
without causing interference to host processes.

Finally, we plan to evaluate the overall
effectiveness of our resource isolation techniques
for a full scale cycle-stealing system. <what else
to mention here??>

9. Bibliography

1. M. Aron and P. Durschel, "Soft Timers:
eff icient microsecond software timer support
for network processing," SOSP. Dec. 1999,
Kiawah Island, SC, ACM, pp. 232-246.

2. R. H. Arpaci, A. C. Dusseau, A. M. Vahdat,
L. T. Liu, T. E. Anderson, and D. A.
Patterson, "The Interaction of Parallel and
Sequential Workloads on a Network of
Workstations," SIGMETRICS. May 1995,
Ottawa, pp. 267-278.

3. A. Atlas and A. Bestavros, "Design and
implementation of statistical rate monotonic
scheduling in KURT Linux," Proceedings
20th IEEE Real-Time Systems Symposium.
Dec. 1999, Phoenix, AZ, pp. 272-6.

4. B. Buck and J. K. Holli ngsworth, "An API for
Runtime Code Patching," Journal of
Supercomputing Applications (to appear),
2000.

 14

5. E. Bugnion, S. Devine, and M. Rosenblum,
"Disco: Running Commodity Operating
Systems on Scalabe Multiprocessors," SOSP.
Oct 1997, pp. 143-156.

6. T. Faber, L. H. Landweber, and A. Mukherjee,
"Dynamic Time Windows: packet admission
control with feedback," SIGCOMM. Sept
1992, pp. 124 - 135.

7. W. C. Feng, D. D. Kandlur, D. Saha, and K.
G. Shin, "Understanding and improving TCP
performance over networks with minimum
rate guarntees," IEEE/ACM Transactions on
Networking, 7(2), 1999, pp. 173-187.

8. R. P. Goldberg, "Survey of Virtual Machine
Research," IEEE Computer Magazine, 7(6),
1974, pp. 34-45.

9. J. S. Heidemann and G. J. Popek, "File-system
development with stackable layers," ACM
Trans. Computer Systems, 12(1), 1994, pp.
58-89.

10. P. Krueger and R. Chawla, "The Stealth
Distributed Scheduler," International
Conference on Distributed Computing
Systems (ICDCS). May 1991, Arlington, TX,
pp. 336-343.

11. M. Litzkow, M. Livny, and M. Mutka,
"Condor - A Hunter of Idle Workstations,"
International Conference on Distributed
Computing Systems. June 1988, pp. 104-111.

12. M. W. Mutka and M. Livny, "The available
capacity of a privately owned workstation
environment," Performance Evaluation, 12,
1991, pp. 269-284.

13. V. N. Padmanabhan and R. H. Katz, "TCP
Fast Start: A Techniques for Speeding Up
Web Transfers," IEEE GLOBECOMM. Nov.
1998, Sydney, Australia, pp. 41-46.

14. K. D. Ryu and J. K. Holli ngsworth,
"Exploiting Fine Grained Idle Periods in
Networks of Workstations," IEEE
Transactions on Parallel and Distributed
Computing (to appear), 2000.

15. K. D. Ryu, J. K. Holli ngsworth, and P. J.
Keleher, "Mechanisms and Policies for
Supporting Fine-Grained Cycle Stealing,"
ICS. June 1999, Rhodes, Greece, pp. 93-100.

16. Sili conGraphics, IRIX 6.4 Technical Brief,
http://www.sgi.com/software/irix6.5/techbrief.
pdf, , .

17. J. S. Turner, "New Directions in
Communications (or Which Way to the
Information Age?)," IEEE Communications
Magazine, 24(10), 1986, pp. 8-15.

18. L. Zhang, "Virtual Clock: A New Traff ic
Control Algorithm for Packet Switching

Networks," SIGCOMM. Sept. 1990, pp. 19-
29.

19. S. Zhou, X. Zheng, J. Wang, and P. Delisle,
"Utopia: a Load Sharing Facilit y for Large,
Heterogeneous Distributed Computer
Systems," SPE, 23(12), 1993, pp. 1305-1336.

