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Abstract 
This paper proposes and evaluates a new mechanism for I/O and network rate policing.  The goal 
of the  proposed system is to provide an simple, yet effective way to enforce resource limits on 
target classes of jobs in a system.  The basic approach is useful for several types of systems 
including running background jobs on idle workstations, and providing resource limits on network 
intensive applications such as virtual web server hosting. Our approach is quite simple, we use a 
sliding window average of recent events to compute the average  rate for a target resource The 
assigned limit is enforced by forcing application processes to sleep when they issue requests that 
would bring their resource utilization out of the allowable profile. Our experimental results that 
show that we are able to provide the target resource limitations within a few percent, and do so 
with no measurable slowdown of the overall system. 

 

1. Introduction 

This paper proposes and evaluates rate windows, a 
new mechanism for I/O and network rate policing. 
Integrated with our existing Linger-Longer 
infrastructure for policing CPU and memory 
consumption [15], the rate windows give 
unprecedented control over the resource use of 
user applications. More specifically, rate windows 
is a low-overhead facilit y that gives us the abilit y 
to set hard per-process bounds on I/O and network 
usage.  

Current general-purpose UNIX systems 
provide no support for prioriti zing access to other 
resources such as memory, communication and 
I/O. Priorities are, to some degree, implied by the 
corresponding CPU scheduling priorities. For 
example, physical pages used by a lower-priority 
process will often be lost to higher-priority 
processes. LRU-like page replacement policies are 
more li kely to page out the lower-priority 
process's pages, because it runs less frequently. 
However, this might not be true with a higher-

priority process that is not computationally 
intensive, and a lower priority process that is. We 
therefore need an additional mechanism to control 
the memory allocation between local and guest 
processes. Like CPU scheduling, this modification 
should not affect the memory allocation (or page 
replacement) between processes in the same class. 

This abilit y has applications in several areas; 
we perform a detailed investigation of two in this 
paper. First, we show that network and I/O 
throttling is crucial in order to provide guarantees 
to users who allow their workstations to be used 
in Condor-li ke systems. Condor-li ke faciliti es 
allow guest processes to eff iciently exploit 
otherwise-idle workstation resources. The 
opportunity for harvesting cycles in idle 
workstations has long been recognized [12], since 
the majority of workstation cycles go unused. In 
combination with ever-increasing needs for 
cycles, this presents an obvious opportunity to 
better exploit existing resources.  

However, most such policies waste many 
opportunities to exploit cycles because of overly 
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conservative estimates of resource contention. Our 
linger-longer approach [14] exploits these 
opportunities by delaying migrating guest 
processes off of a machine in the hope of 
exploiting fine-grained idle periods that exist even 
while users are actively using their computers. 
These idle periods, on the order of tens of 
milli seconds, occur when users are thinking, or 
waiting for external events such as disks or 
networks. Our prior work consisted of new 
mechanisms and policies that limit the use of CPU 
cycles and memory by guest jobs. The work 
proposed in this paper complements that work in 
extending similar protection to network and I/O 
bandwidth usage.  

Second, we show that rate windows can be 
used to eff iciently provide rate policing of 
network connections. Rating limiting is useful 
both for managing resource allocations of 
competing users (such as virtual hosting of web 
servers) and can be used for rate-based clocking 
of network protocols as a means of improving the 
utili zation of networks with high bandwidth-delay 
products [7, 13]. 

The rest of this paper is organized as follows. 
Section 2 describes the implementation of rate 
windows and evaluates its use with micro-
benchmarks. Section 3 reviews the Linger-Longer 
infrastructure, motivates the use of rate windows 
for Linger-Longer. In particular, we show that a 
significant class of guest applications is still able 
to affect host processes via network and I/O 
contention. Further we show that there is no 
general way to prevent this using CPU and 
memory policing that still allows the guest to 
make progress. Section 4 describes the use of rate 
windows in policing file I/O, and Section 5 
describes its use with network I/O/. Finally, 
Section 6 reviews related work and Section 
Error! Reference source not found. concludes. 

2. CPU and memory policing 

Before discussing rate windows, we place this 
work in the context of the Linger-Longer 
resource-policing infrastructure [14]. The Linger-
Longer infrastructure is based on the thesis that 
current Condor-li ke [11] policies waste many 
opportunities to exploit idle cycles because of 
overly conservative estimates of resource 
contention. We believe that overall throughput is 
maximized if systems implement fine-grained 
cycle stealing by leaving guest jobs on machine 
even when resource-intensive host jobs start up. 
However, the host job will be adversely affected 
unless the guest job’s resource use is strictly 
limited. Our earlier work strictly bounded CPU 
and memory use by guest jobs through use of a 
few, simple modifications to existing kernel 
policies.  

These policies rely on two new mechanisms. 
First, a new guest priority prevents guest 
processes from running when runnable host 
processes are present. The change essentially 
establishes guest processes as a different class, 
such that guest processes are not chosen if any 
runnable host processes exist. This is true even if 
the host processes have lower runtime priorities 
than the guest process. Note that running with 
“nice –19” is not suff icient, as the nice’d process 
can still consume between 8%, 15%, and 40% of 
the CPU for Linux (2.0.32), Solaris (SunOS 5.5), 
and AIX (4.2), respectively [15]. 

We verified that the scheduler reschedules 
processes any time a host process unblocks while 
a guest process is running. This is the default 
behavior on Linux, but not on many BSD derived 
operating systems. One potential problem of our 
strict priority policy is that it could cause priority 
inversion. Priority inversion occurs when a higher 
priority process is not able to run due to a lower 
priority process holding a shared resource. 
However, this is not possible in our application 
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domain because guest and host processes do not 
share locks, or any other non-revocable resources. 

Our second mechanism limited guest 
consumption of memory resources. Unfortunately, 
memory is more diff icult to deal with than the 
CPU. The cost of reclaiming the processor from a 
running process in order to run a new process 
consists only of saving processor state and 
restoring cache state. The cost of reclaiming page 
frames from a running process is negligible for 
clean pages, but quite large for modified pages 
because they need to be flushed to disk before 
being reclaimed. The simple solution to this 
problem is to permanently reserve physical 
memory for the host processes. The drawback is 
that many guest processes are quite large. 
Simulations and graphics rendering applications 
can often fill all available memory. Hence, not 
allowing guest processes to use the majority of 
physical memory would prevent a large class of 
applications from taking advantage of idle cycles. 

We therefore decided not to impose any hard 
restrictions on the number of physical pages that 
can be used by a guest process. Instead, we 
implemented a policy that establishes low and 
high thresholds for the number of physical pages 
used by guest processes. Essentially, the page 
replacement policy prefers to evict a page from a 
host process if the total number of physical pages 
held by the guest process is less than the low 

threshold. The replacement policy defaults to the 
standard clock-based pseudo-LRU policy up until 
the upper threshold. Above the high threshold, the 
policy prefers to evict a guest page. The effect of 
this policy is to encourage guest processes to steal 
pages from host processes until the lower 
threshold is reached, to encourage host processes 
to steal from guest processes above the high 
threshold, and to allow them to compete evenly in 
the region between the two thresholds. However, 
the host priority will l ead to the number of pages 
held by the guest processes being closer to the 
lower threshold, because the host processes will 
run more frequently. 

We modified the Linux kernel to support this 
prioriti zed page replacement. Two new global 
kernel variables were added for the memory 
thresholds, and are configurable at run-time via 
system calls. The kernel keeps track of resident 
memory size for guest processes and host 
processes. Periodically, the virtual memory 
system triggers the page-out mechanism. When it 
scans in-memory pages for replacement, it checks 
the resident memory size of guest processes 
against the memory thresholds. If they are below 
the lower thresholds, the host processes’ pages are 
scanned first for page-out. Resident sizes of guest 
processes larger than the upper threshold cause 
the guest processes’  pages to be scanned first. 
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Figure 1: Threshold validations – Low and high thresholds are set to 50MB and 70 MB. At time 90, the host job 
becomes I/O-bound. Host process acquires 150 MB when running without contention, guest process acquires 128 
MB without contention. Total available memory is 179 MB. 
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Between the two thresholds, older pages are paged 
out first no matter what processes own them. 

We validated our memory threshold 
modifications by tracking the resident memory 
size of host and guest processes for two CPU-
intensive applications with large memory 
footprints. The result is shown in Figure 1. The 
chart shows memory competition between a guest 
and a host process. The application behavior and 
memory thresholds shown are not meant to be 
representative, but were constructed to 
demonstrate that the memory thresholds are 
strictly enforced by our modifications to Linux’s 
page replacement policy. The guest process starts 
at time 20 and grabs 128MB. The host process 
starts at time 38 and quickly grabs a total of 128 
MB. Note that the host actually touches 150 MB. 
It is prevented from obtaining all of this memory 
by the low threshold. Since the guest process’ 
total memory has dropped to the low threshold, all 
replacements come from host pages. Hence, no 
more pages can be stolen from the guest. At time 
90, the host process turns into a highly I/O-bound 
application that uses littl e CPU time. When this 
happens, the guest process becomes a stronger 
competitor for physical pages, despite the lower 
CPU priority, and slowly steals pages from the 
host process. This continues until ti me 106, at 
which point the guest process reaches the high 
threshold and all replacements come from its own 
pages. For this experiment, we deliberately set the 
limits very high to demonstrate the mechanism. 
5/10% of total memory are very acceptable guest 
job memory limits for most of cases. However, 

these values can be adapted at run time to meet 
the different requirements of applications. 

3. Rate Windows 

3.1 Policy 
First, we distinguish between “unconstrained” and 
“constrained” job classes. The default for all 
processes is unconstrained; jobs must be explicitl y 
put into constrained classes. The unconstrained 
class is allowed to consume all available I/O. 
Each distinct constrained class has a different 
threshold bandwidth, defining the maximum 
aggregate bandwidth that all processes in that 
class can consume. As an optimization, however, 
if there is only one class of constrained jobs, and 
no I/O-bound unconstrained jobs, the constrained 
jobs are allowed unfettered access to the available 
bandwidth.  

We identify the presence of unconstrained 
I/O-bound jobs by monitoring I/O bandwidth, 
moving the system into the throttled state when 
unconstrained bandwidth exceeds threshhigh, and 
into the unthrottled state when unconstrained 
bandwidth drops below threshlow. Note that 
threshlow is lower than threshhigh, providing 
hysteresis to the system to prevent oscill ations 
between throttled and un-throttled mode when the 
I/O rate is near the threshold. The state of the 
system is reflected in the global variable 

throttled. Note that the current unconstrained 
bandwidth is not an instantaneous measure; it is 
measured over the li fe of the rate window, defined 
below. 

3.2 Mechanism 
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The implementation of rate windows is 
straightforward. We currently have a hard-coded 
set of job equivalence classes, although this could 
be easily generalized for an arbitrary number. 
Each class has two kernel window structures, one 
for file I/O and one for network I/O. Each window 
structure contains a circular queue, implemented 
via a 100-element array (see Figure 2).  The 
window structure describes the last I/O operations 
performed by jobs in the class, plus a few other 
scalar variables. The window structure only 
describes I/O events that occurred during the 
previous 5 seconds, so there may be fewer than 
100 operations in the array. We experimented 
with several different window sizes before 
arriving at these constants, but it is clearly 
possible that new environments or applications 
could be best served by using other values. We 
provide a means of tuning these and other 
parameters from a user-level tool. 

We currently trigger our mechanism via 
hooks placed high in the kernel, at each of the 
kernel calls that implement I/O and network 

communication: read(), write(), send(), etc. 

Each hook calls rate_check() with process ID, 
I/O length, and I/O type. The process ID is used to 
map to an I/O class, and the I/O type is used to 
distinguish between file and network I/O.  The 

rate_check() routine maintains a sliding 
window of operations performed for each class of 

service and for the overall system. We maintain a 
window of up to 100 recent events.  However, to 
prevent using too old of information, we limit the 
sliding window to a fixed interval of time 
(currently 5 seconds). 

Define Bw, the window bandwidth, as the total 
amount of I/O in the window’s operations, 
including the new operation. Define Tw, the 
window time, as the interval from the beginning of 
the oldest operation in the window until the 
expected completion of the new operation, 
assuming it starts immediately. Let Rt be the 
threshold bandwidth per second for this class. We 
then allow the new operation to proceed 
immediately if the class is currently throttled and: 

w
t

w

B
R

T
>  

Otherwise, we calculate the sleep() delay as 
follows: 

delay w
w

t

B
T

R
= −  

This process is ill ustrated graphically in Figure 3. 
Note that we have upper and lower bounds on 
allowable sleep times.  

Sleep durations that are too small degrade 
overall eff iciency, so durations under our lower 
bound are set to zero. Sleep durations that are too 
large tend to make the stream bursty. If our 
computed delay is above the computed threshold 
we break the I/O into multiple pieces and spread 

4KB 16KB60KB

100
msec

500
msec

80
msec

12KB

75
msec

5 seconds

100 i tems

Avg.
Rate

 
Figure 2: Maintaining a sliding window of resource utilization. 
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Figure 3: Policing I/O Requests. 
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the total delay over the pieces. This is will not 
affect application execution since for file I/O 
requests will eventually be broken into individual 
disk blocks and for network connections TCP 
provides a byte-oriented stream rather than a 
record oriented one2816.   

We chose Linux as our target operating 
system for several reasons. First, it is one of the 
most widely used UNIX operating systems. 
Second, the source code is open and widely 
available. Since many active Linux users build 
their own customized kernels, our mechanisms 
could easily be patched into existing installations 
by end users. This is important because most PCs 
are deployed on people's desks, and cycle-stealing 
approaches are probably more applicable to 
desktop environments than to server 
environments. Also since our mechanism simply 
requires the abilit y to intercept I/O calls, it would 
be easy to implement as a loadable kernel 
modules on systems that defined an API to 
intercept I/O calls. Windows 2000 (nee Window 
NT) and the stackable filesystem [9] provide the 
required calls. 

In order to provide the finer granularity of 
sleep time to allow our policing to be 
implemented, we augmented the standard 2.2 
                                                           
2816 For UDP this is not a problem since the max user level 
request is constrained by the network’s MTU. 

Linux kernel with extensions developed by KURT 
Real-time Linux project [3]. 

4. File I/O Policing 

In order to validate our approach, we conducted a 
series of micro-benchmarks and application 
benchmarks.  The purpose of these experiments is 
three fold. First, we want to show that our 
mechanism doesn’ t introduce any significant 
delay on normal operation of the system.  Second, 
we want to show that we can effectively police the 
I/O rates.  Third, since our policing mechanism 
sits above the file buffer cache, it will be 
conservative in policing the disk since hits in 
cache will be charged against a job classes’s 
overall file I/O limit. We wanted to measure this 
affect. 

We first measured resource usage in order to 
verify that the use of rate windows does not add 
significant overhead to the system. We ran a 
single tar program by itself both with and without 
rate windows enabled. The completion time of the 
tar application with rate windows enabled was 
less than the variation between consecutive runs 
of the experiment. This was expected, as there are 
no computationally expensive portions of the 
algorithm. Note that this experiment does not 
account for the system cost of extra context 
switches caused by sleeping guest jobs. 
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Second, we ran two instances of tar, one as a 
guest job and one as a host job. Figure 4a 
represents a run with throttling enabled, and 
Figure 4 shows a run without throttling. There is 
no caching between the two because they have 
disjoint input. The guest job is intended to be 
representative of those used by cycle-stealing 
schedulers such as Condor. Unless specified 
otherwise, a “guest” job is assumed to be 
constrained to 10% of the maximum I/O or 
network bandwidth, whereas a “host” process has 
unconstrained use of all bandwidth.  

In both figures, the guest job starts first, 
followed somewhat later by the host job. At this 
point, the guest job throttles down to its 10% rate. 
When the host job finishes, the guest job throttles 

back up after the rate window empties. The 
sequence on the left is with throttling, on the right 
without. Note that the version with I/O throttling 
is less thrifty with resources (the jobs finish later). 
This is a design decision: our goal is to prevent 
undue degradation of unconstrained host job 
performance regardless of the effect on any guest 
jobs. 

We look at the behavior of one of the tar 
processes in more detail i n Figure 5. The point of 
this figure is that despite the frequent and varied 
file I/O calls, and despite the buffer cache, disk 
I/O’s get issued at regular intervals that precisely 
match the threshold value set for this experiment. 
Note that actual disk I/O.  

0

1000

2000

3000

4000

5000

6000

7000

8000

0 10 20 30 40 50 60 70 80 90

time (sec)

I0
 r

at
e 

(k
B

/s
) 

host

guest

0

1000

2000

3000

4000

5000

6000

7000

8000

0 10 20 30 40 50 60 70 80 90 100

time (sec)

IO
 r

at
e 

(k
B

/s
)

host 

guest

 
(a) (b) 

Figure 4: File I/O of competing tar applications with (left) and without (right) file I/O policing. 
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Figure 5: I/O sizes vs. time for tar 
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Our third set of micro-benchmark experiments 
is designed to look at the distribution of sleep 
times for a guest process. For this case, we ran 
three different applications.  The first application 
was again a run of the tar utilit y.  Second, we ran 
the agrep utilit y across the source directory for the 
Linux kernel looking for a simple pattern that did 
not occur in the files searched.  Third, we ran a 
compile workload that consisted of compili ng a 
library of C++ methods that were divided among 
34 files plus 45 header files.  This third test was 
designed to stress the gap between monitoring at 
the file request level and the disk I/O level since 
all of the common header files would remain in 
the file buffer cache for the duration of the 
experiment.  

A histogram (100 buckets) of the sleep 
durations is shown in Figure 6. We have omitted 
those events that have no delay since their 

frequency completely dominates the rest of the 
values. Figure 6(a) shows the results for the tar 
application.  In this figure, there is a large spike in 
the delay time at 20msec since this is exactly the 
mean delay required for the I/O the must common 
sized I/O request of 10K bytes to be limited to 500 
KB/sec. Figure 6(b) shows the results for the 
compilation workload.  In this example, the most 
popular sleep time is the maximum sleep duration 
of 100msec.  This is due to the fact, that at several 
periods during the application execution, the 
program is highly I/O intensive and our 
mechanism was straining to keep the I/O rate 
throttled down. Figure 6(c) shows the sleep time 
distribution for the agrep application. The results 
for this application show that the most popular 
sleep time (other than no sleep) was 2-3 ms. This 
is very close to the mean sleep time of 2.5 ms for 
this application. 
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Fourth, we examine the relationship between 
file I/O and disk I/O. File I/O can dilate because i) 
file I/O’s can be done in small sizes, but disk I/O 
is always rounded up to the next multiple of the 
page size, and ii ) the buffer cache’s read-ahead 
policy may bring speculatively bring in disk 
blocks that are never referenced. File I/O can also 
attenuate due to buffer cache hits, which is a 
consequence on the I/O locality of the 
applications. We measured 1) the total amount of 
file I/O requested, 2) the actual I/O requests 
performed by the disk, 3) the total number of I/O 
events 4) the total number of I/O events that were 
delayed by sleep calls, 5) the total amount of sleep 
time, 6) the total runtime of the workload, and 7) 
the average actual disk I/O rate (total disk I/O’s 
divided by execution time). The results are shown 
in Table 1.  

Looking first at the difference between file 
I/O and disk I/O, note that file I/O is equal to the 

disk I/O for tar, 14% less for agrep, and 233% 

larger for compile. Notice that for the two I/O 
intensive applications, the overall I/O rate for the 
application is very close to the target rate.  

We did not observe poor read-ahead behavior 

in our experiments; agrep’ s behavior is due to 
small reads being rounded to larger disk pages. 

The low file I/O number for compile, of course, 
is due to good buffer cache locality. 

Since the temporal extent of our window 
automatically adapts based on the effective I/O 
rate (due to the limit of 100 items), we wanted to 
look at how the size of this window changed 
during the execution of a program. Figure 8 shows 
the distribution of the effective window size for 
the compilation workload. The bar chart on the 
left shows the effective window size (in seconds) 
for the workload when it is run without any I/O 
rate control. The curve on the right shows the 
same information when I/O rate control is 
enabled. In both cases the effective window size is 
much less than the upper limited of 5 seconds.  
The average size for the limited case is 0.98 
seconds, and 1.71 seconds for the limited case. 
<what is the conclusion for this ??> 

Metric Tar Agrep Compile 

Total File I/O  103.0 MB 50.0 MB 23.3 MB 
Total Disk I/O  103.0 MB 58.1 MB 10.0 MB 
Total I/O Events 17,430 11,526 3,859 
Total Sleep Events   6,928   3,324 1,004 
Total Sleep Time 178.0 sec 83.3 sec 29.1 Sec 
Total Execution Time 211.2 sec 108.7 sec 70.6 Sec 
Average I/O Rate 487 KB/sec 534 KB/sec 141 KB/sec 

Table 1: I/O Application Behavior 
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The full story of the I/O dilation is seen when 
we look at the time varying behavior of the I/O.  
Figure 7 shows the one-second average I/O rates 
for the compile workload.  Notice that although 
this workload has considerable hits in the file 
buffer cache, our mechanism ensured that the 
actual disk I/O rate was less than the target rate of 
500KB/sec. The requested I/O rate peaks are 
higher than our target limit, due to the fact we 
average I/O requests over a 5 second window and 
we are showing data over a 1 second window in 
this figure. 

Although we do not claim that our set of I/O-
intensive applications is representative, our 
experiments support our intuition that file I/O 
dilation is not a problem. Rather, the main 
concern is that of lost opportunity. Consider an 
example where we would li ke to share all 

available bandwidth equally between two 
applications. We can set thresholds for each 
application at half of the maximum achievable 
disk bandwidth. However, good buffer cache 
locality would mean that file I/O at this rate would 
generate less, possibly much less, disk I/O. Such 
attenuation represents unused bandwidth. 

There are two potential approaches to 
recouping this lost bandwidth. The first is to add a 
hook into the buffer cache to check for a cache 
miss before adding the I/O to our window, and 
deciding whether to sleep. We deliberately have 
not taken this path because we wish to keep our 
system at as high a level as possible. We could 

currently move our entire system into libc 
without loss of functionality or accuracy. This 
would be compromised if we put hooks deeper 
into the kernel. 
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Figure 7: I/O Rates for the Compile Workload. 
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Figure 8: Comparison of Effective Window Size (Compilation workload). 
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A second approach is to use statistics from 

proc file system to apply a “normalization factor” 
to our limit calculations. Of necessity, this would 
be inexact. The advantage is that it can be 
implemented entirely outside of the kernel. We 
are currently pursuing this approach, but the 
mechanism is not yet in place. 

5. Network I/O policing 

Policing network I/O is easier than file I/O 
because there is no analogue to the file buffer 
cache or read ahead, which dilate and attenuate 
the effective disk I/O rate. Hence, network 
bandwidth is a somewhat better target for our 
current implementation of rate windows than file 
I/O. Since contention for network resources is 
probably more common than disk bandwidth 
contention, this preference is fortuitous. 

5.1 Linger longer: Throttling guest processes 
Most of the experiments in Section 4 assumed the 
use of rate windows in a linger-longer context. 
We ran one more linger-longer experiment, this 
time with network I/O as the target. One of the 
main complaints about Condor and similar 
systems is that the act of moving a guest job from 
a newly loaded host often induces significant 
overhead to retrieve the application’s checkpoint. 
Further, periodic checkpointing for fault tolerance 
produces bursty network traff ic. This experiment 

shows that even the checkpoint is throttled and 
can be prevented from affect host jobs.  

Figure 9 shows two instances of a guest 
process moving off of a node because a host 
process suddenly becomes active. Moving off the 
node entails writing a 90MB checkpoint file over 
the network. This severely reduces available 
bandwidth for the host workload (a web server2817 
in this case) in the unthrottled case shown in 
Figure 9a. Only after the checkpoint is finished 
does the web server claim most of the bandwidth.  

In the throttled case shown in Figure 9b, the 
condor daemon’s network write of the checkpoint 
consumes a majority of the bandwidth only until 
the host web server starts up. At this point, the 
system enters throttling mode and the bandwidth 
available to the checkpoint is reduced to the guest 
class’s threshold. Once the web server becomes 
idle again, the checkpoint resumes writing at the 
higher rate. 

5.2 Rate-based network clocking 
Finally, we look at the use of rate windows to 
perform an approximation of rate-based clocking 
of network traff ic. Such clocking has been 
proposed as a method of preventing network 
contention and improving utili zation in transport 
protocols. Specifically, modifying the TCP 
                                                           
2817 The host process could be any network intensive process 
such as an FTP or a Web browser. 
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Figure 9: Guest job checkpoint vs. host web server 
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protocol stack to send out packets at a preset 
interval has advantages in 1) avoiding TCP slow-
start, 2) preventing burstiness as a result of ACK 
compression, and 3) preventing downstream 
congestion. With our current placement of hooks 
high in the kernel, rate windows can only address 
the third motivation. Note, however, that our 
implementation is protocol independent, i.e. it 
works just as well for UDP as for TCP.  

Figure 10 shows achieved bandwidth for three 
Apache web servers run on a single host. Each 
server is driven by clients that repeatedly request 
the same file. Hence, all requests but the first are 
satisfied in the server’s cache and the performance 
of the servers is completely limited by available 
bandwidth. The total available bandwidth is 
~11MB/sec with the smaller problem size, the 
three servers are limited to 1.5MB, 3MB, and 
6MB, respectively. The maximum bandwidth 
achieved with the large files is 11.5MB, and 
8.6MB with the small files. Hence, the thresholds 
do not permit the servers to use all of the available 
bandwidth in the first case, but do in the second.  

Note that the deviation from the threshold by 
the small -file streams (especially the largest 
stream) is not a faili ng. In fact, this is a 
problematic use of rate windows since our 

guarantees are not-to-exceed guarantees, not at-
least guarantees. Rate windows are actually ideal 
for this use because congestion problems only 
arise when bandwidth exceeds specific bounds, so 
the guarantee is of the correct polarity. 

A second consequence of this characteristic is 
that rate windows implicitl y smooth bursty traff ic. 
Consider a rate-based stream that, despite the rate-
base clocking, encounters temporary congestion 
and backoff . When the transmissions continue, a 
straightforward implementation would attempt to 
“make up” the lost time by transmitting at above 
the desired rate for some amount of time. This, in 
turn, could cause more congestion.  

With rate windows, the decisions about how 
long or whether to sleep is based solely on the 
history contained in the window, which currently 
contains 100 or five seconds worth of I/O 
requests, whichever is less. A rate-window-based 
stream will attempt to make up losses within the 
window, but “ forgets” losses that occur before the 
window’s events. As a result, extra use of 
bandwidth in order to make up delayed 
transmission are strictly, and implicitl y, bounded 
by a combination of target bandwidth and window 
size. 

6. Related work 
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Figure 10: Three web servers: The numbers on the left are for 1.7MB files, for 71KB files on the right.  



 

 12 

Previous work on exploiting available idle time on 
workstation clusters used a conservative model 
that would only run processes when the local user 
was away from their workstation, and no local 
processes were runnable.  Condor [11], LSF [19], 
and NOW [2] use variations on a “social contract” 
to strictly limit interference with local users. 
However, even with these policies, there is some 
disruption of the local user when they return since 
the guest process must be evicted and the local 
state restored. The Linger-Longer approach 
permits slightly more disruption of the user, but 
tries to limit the delay to an acceptable level. One 
system that used non-idle workstations was the 
Stealth distributed scheduler [10]. It implemented 
a priority-based approach to running guest 
processes. However none of the tradeoffs in how 
long to run guest processes, or the potential of 
running parallel programs were investigated.  

In the area of operating system support for 
providing resource management, research and 
commercial operating systems have provided 
similar functionality. In the IRIX [16], the Miser 
feature provides deterministic scheduling of batch 
jobs. Miser manages a set of resources, including 
logical CPUs and physical memory, that Miser 
batch jobs can reserve and use in preference to 
interactive jobs. This strategy is almost the 
opposite of our approach, which promotes 
interactive jobs. 

Aron and Druschel’s soft timers [1] provide a 
way to implement rate-based clocking of network 
protocols.  Although their motivation, avoiding 
the penalty of TCP slow-start for small file 
transfers over high delay-bandwidth networks, is 
different than ours, limiting the fraction of the 
server’s network bandwidth that a single http 
client or virtual host server gets, both techniques 
can be used to achieve similar ends.  For example, 
soft timers could be used to limit the rate at which 
data is sent from a server by setting the soft timer 
longer than the optimal rate for the link.  

Likewise, our rate throttling mechanism could be 
used to provide rate-based clocking of packets by 
limiting a connection to a packet rate that matches 
the capacity of the bottleneck link between the 
two communicating parties. 

The idea of regulating traff ic rates in the 
network has been extensively studied. Congestion 
avoidance schemes such as leaky bucket [17] and 
its variants [6, 18] use averages over various time 
intervals to determine which traff ic is within its 
negotiated bandwidth.  However, since these 
approaches are designed for policing traff ic at 
routers, they must drop non-conforming traff ic.  
In contrast, since our approach is at the source, we 
can delay traff ic to enforce bandwidth limits. 

The idea of resource partitioning through the 
use of virtual machines has been popular both in 
the 1970s [8] as well as in recent projects such as 
Disco [5].  The key difference is that while virtual 
machines provide hard isolation of resource 
between VMs at considerable runtime overhead, 
our approach is a simple extension to an existing 
operating system on runtime library. 

7. Discusion 

As mentioned in Section 2, researchers have long 
recognized that idle machines represent a vast 
untapped resource. Two long-term trends are 
increasing this opportunity. First, increased 
connectivity across the Internet allows for 
utili zation of resources in much wider domains. 
Second, new software technologies are making it 
possible to better exploit heterogeneous sets of 
workstations. For example, new Java compilers 
promise to allow write-once/run-anywhere 
applications to perform within a small factor of 
the best host-code compilers for traditional 
languages. These two trends vastly increase the 
set of candidates for wide-area computing. 

Systems li ke Condor [11] exploit this 
opportunity by allowing guest processes to run on 
idle participating machines. Existing systems 
focus on coarse-grained idle periods when users 
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are away from their workstations. Returning users, 
or the start of any significant local processes, 
cause guest processes to be migrated off the local 
machine in order to avoid impacting the local 
user. By providing better resource management, 
we are able to be more aggressive in our use of 
found resource and thus expand the opportunities 
to run guest jobs.  In addition, by providing a rate-
limited way to migrate jobs off nodes we can 
reduce one of the most annoying types of 
disruption provided by cycle stealing systems. 

Our placement of hooks high in the kernel has 
two advantages. First, we are above the protocol 
stack and so transparently catch all protocols. 
Second, the implementation could easily be 
adapted to be part of the C-runtime library, or 
even of a specific application.  For example, 
consider the problem of running a collection of 
web servers running in a virtual hosting 
environment. The abilit y of our system to provide 
fixed bandwidth allocations to each virtual host 
could be implemented by patching the web 
servers. Recall from Section 3 that all of the 
necessary information can be collected by 
observing the execution of network system calls. 
A user-level implementation would intercept these 
calls and use a shared memory region to store the 
history information. Techniques such as online 
binary editing [4] could be used to implement rate 
windows in user-space without access to the 
application source code. 

 

8. Conclusions and Future Work 

We have presented a simple strategy to allow an 
operating system to throttle the rate at which disk 
and network communication is performed.  Our 
technique is simple and general purpose.  By 
changing parameters such as the window size, it is 
possible to adapt the granularity of the approach.  
One obvious area of future work is to provide a 
complete study of the abilit y of the system to 
handle finer granularity policing of resources by 

dynamically adjusting the window size. Since our 
mechanism requires only the abilit y to monitor 
and delay user level I/O requests, we could 
implement our approach in user space libraries, or 
as loadable kernel modules. 

Our experiments demonstrated that we are 
able to enforce resource limits on applications.  
For I/O bound applications, we showed that 
despite the fact our mechanism is located close to 
the application level I/O requests we are able to 
enforce limits at the physical device level despite 
the imposition of the buffer cache and disk read 
ahead between our mechanism and the physical 
device.  An area of future work is to implement a 
feedback mechanism to normalize the policing of 
I/O requests based on buffer cache hit rates. 

For the network case, we demonstrated that 
rate windows allow effective bandwidth sharing 
and protection of network resources to allow guest 
jobs to run on (and migrate off) workstations 
without causing interference to host processes.  

Finally, we plan to evaluate the overall 
effectiveness of our resource isolation techniques 
for a full scale cycle-stealing system.  <what else 
to mention here??> 
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