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INTRODUCTION

Choosing relevant environmental predictor variaidesne of the most universal
challenges in modeling geographic patterns of biedity (Aradjo and Guisan 2006,
Synes and Osborne 2011, Williams et al. 2012). §hauodel output is fundamentally
driven by predictor variable input (Araujo and Gans2006), the drivers of biotic
distributions may be unknown (Dudgeon et al. 2@f¥i8)navailable (Austin 2002). In this
context, considerable research has examined poediatiable spatial scale (Peterson et
al. 2011, Wang et al. 2003, Morley and Karr 2002ckey and Lindenmayer 2001,
Austin and Van Niel 2011), variable selection teghes (Mac Nally 2000, Pearce and
Ferrier 2000), and methods of managing inter-végiaslationships (Braunisch et al.
2013). Comparatively poorly studied but also pa#diythighly influential is the
immediacy with which environmental predictor vatedare related to biotic
distributions (Austin 1980).

Broadly, predictor variables can be classified@®ximal” or “distal” based on
their physiological relevance to biota (Austin 198@anklin 1995, Guisan and
Zimmermann 2000, Austin 2002). Proximal variablesatibe direct physiological
influences on biotic distributions, such as nutri&vailability for plants or water
temperature for aquatic organisms. In contrastaiNsriables do not have a direct
physiological influence, but can indirectly drivetic distributions if they are
correlatively or causally related to proximal vées (Austin 2002, Williams et al. 2012,
Elith and Leathwick 2009). Elevation and latitude aelassical distal variables. From a
theoretical perspective, models based on proxirmahkiles are preferable to models

based on distal variables because the relatiomstipeen proximal drivers and distal
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surrogates may be weak and/or spatially or tem|yaradonsistent (Austin 2002, Elith
and Leathwick 2009, Williams et al. 2012).

Though in theory proximal variables should prodowee robust biodiversity
models, in practice they are often not used in rhfittieg. Most proximal variables must
be collected by field measurement and are therefioagailable in the full-coverage
layers necessary for predictive mapping (AustinZ0bhstead, full-coverage
environmental predictors are typically derived fr@ig, remote sensing, or via
interpolation of point data. The majority of GlSdaremote sensing-derived variables are
distal and may not characterize habitat at theapatales most relevant to biotic life
histories (Cord et al. 2013). Interpolated varialdee estimates based on discrete
measurements and may not be indicative of on-tbargt conditions. In short, the
predictors most relevant to biology are rarely kalde for spatial prediction, while those
available for mapping may have only indirect or rpgmated influence on biotic
distributions.

How much explanatory and predictive power is I@saaesult of the exclusion of
largely proximal field-measured variables from buasity models, and how does that
alter management inference? Though the literateneiglly supports the theory that
proximal variables are more effective predictoamthlistal variables (Leathwick and
Whitehead 2001, Zimmermann et al. 2007, Kristereteal. 2012), comparisons have
been sparse on account of the relative difficuftidentifying and collecting sufficient
proximal information (Austin 2002) and the gredenest in predictive mapping. Such
comparisons are particularly lacking in streams rarets, for which differences between

models built with field-measured versus derivedaldes may be especially pronounced
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due to dendritic habitat geometry (Grant et al.Z20@apidly changing environmental
conditions (Dettinger and Diaz 2000), and integrabf upstream influences (Nelson et
al. 2009).

Despite the theoretical predictions, the importaofcgerived predictor variables
in stream biodiversity models could be greater ti@importance of field-measured
variables. Conditions in streams change quicklgugh time and across space,
integrating diverse drainage basin processes assllpp reducing the relevance of one-
time field measurements (Sala 2000, Benda et 84,2Dudgeon et al. 2006, Nelson et
al. 2009).

It is more likely, however, that the unique atttidsiof streams will decrease the
explanatory and predictive abilities of derivediahles relative to field-measured
variables. Possible reasons for decreased impertaiterived variables in stream
biodiversity models are manifold. First, the branghand hierarchical geometry of
streams makes interpolation of point measuremaefiisult (Benda et al. 2004, Grant et
al. 2007). As a result, available interpolated afales are often measured on land rather
than in the channel (Hijmans et al. 2005) and matycapture channel conditions.
Additionally, given the connected nature of strazatworks (Fisher 1997), stream biota
respond to both local and upstream drivers (Moaley Karr 2002, Kratzer et al. 2006,
Urban et al. 2006, Stanfield and Kilgour 2013). Whierived variables can provide a
surrogate for upstream influences by characteridnagnage areas and flow pathways,
field-measured variables collected in streams ceflee true effects of those influences.
Relatedly, a large proportion of a stream netwsrkamprised of small, potentially

ephemeral or intermittent headwaters (Freeman €08I7), which are often largely



unmapped (Elmore et al. 2013) and narrower thameb@ution of environmental grids
(30 meters, in the case of Landsat). Without kngwtire location and characteristics of
these ecologically important stream channels (Fageet al. 2007), it is difficult to
guantify the effects of various watershed land comehich are attenuated differently
across land and through channels (Johnson et@l, 2@n Sickle and Johnson 2008,
Walsh and Kunapo 2009).

In this study, | focused on comparisons betwedd-fiseasured and derived
variables as predictors in Maryland stream biodiégmodels. While not perfect
proxies, field-measured and derived variables aapagement-relevant analogs to
proximal and distal variables. | used a commuretyel modeling method — generalized
dissimilarity modeling (GDM; Ferrier et al. 2007}e-model pairwise compositional
dissimilarity as a function of environmental an@gephic distances. GDM considers all
species in an assemblage, regardless of raritypaovides a robust method of
statistically selecting, weighting, and transforgnoandidate environmental variables
such that they best represent biological pattdfesrier et al. 2007). GDM also lends
itself to the development of biological classificat systems and mapped patterns, which
may be particularly useful for management (Leathwetal. 2011, Snelder et al. 2012).

The primary goal of this research was to assessfthets of excluding field-
measured variables from predictive stream bioditsersodels. Specifically, | aimed to
(1) understand the relative merits of using fieldasured versus derived variables as
predictors in stream biodiversity models, (2) idigrthe individual environmental
variables with the greatest influence on fish angtrtebrate compositional turnover in

Maryland streams, thereby providing informationt tten inform future variable



measurement and derivation, and (3) quantify tiferénce in management inference

yielded by biodiversity models built with field-m&a&ed versus derived variables.



METHODS
Study region

This research involves first through fourth ordieeams in Maryland west of the
Chesapeake Bay. The region is characterized byvwallalong gradients in population
density, land cover, elevation, and geology antbadbarray of stream habitat types.
Population density ranges from 2604.7 people pearsgkilometer in Baltimore City to
17.7 people per square kilometer in Garrett Co(Mtgrld Media Group 2014), with
land cover of the eastern portion of the studyaedieing predominantly urban and the
western portion largely forested (Homer et al. 2(€@. 1a). Cultivation of crops and
livestock is prevalent in much of the central stadga (Homer et al. 2007). Elevation
ranges from sea level at the Chesapeake Bay igasteto 1024 m in the western part of
the state (Reger and Cleaves 2008).

The study region spans five physiographic provinfregiuently grouped by the
Maryland Department of Natural Resources (MDNRY ithree regions: the Coastal
Plain (C), the Piedmont (P), and the Highlands. Cbastal Plain is characterized by low
relief and unconsolidated sand, gravel, silt, dag,dhe Piedmont by rolling hills and
hard igneous and metamorphic rock, and the Higlslémydcomparatively steep terrain
and faulted and folded sedimentary and metamomplsic (Schmidt 1993, Reger and
Cleaves 2008). For the purposes of these analyseparated the Highlands into two
components: the Chesapeake (H) and Youghioghengd%ips (Fig. 1a, b). Streams in
the Youghiogheny basin are the only in Maryland thain to the Gulf of Mexico, and
the separation acknowledges the Youghiogheny sndidbiotic communities. | modeled

each of these four areas separately, recognizengple of their unique geologic character
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and geomorphic history in governing biotic disttibns and influential habitat variables
(Melles et al. 2014).

(@)

(b)

Figure 1. Maps of study region showing (a) landezdvom the 2001 National Land
Cover Database (Homer et al. 2007) and topogragid/(b) stream survey locations
visited by MDNR as part of the Maryland Biologi&tream Survey. Red and pink
polygons in the upper panel depict developmengerngare forest, blues are wetlands or
open water, and yellows are agriculture.



Maryland is an ideal study area for three reasemst, there is considerable
interest in the conservation and restoration ofGhesapeake Bay, the largest estuary in
the United States. Maintaining and promoting thiegrity of Maryland’s freshwater
streams is critical to the Bay’s ecological funotimy (Goetz et al. 2004). Second, the
MDNR has surveyed fish and benthic invertebratedanyland streams for almost two
decades (Fig. 1b). The resultant dataset provixiesllent spatial coverage and is coupled
with field-measured habitat variables (Strankole2@07). Finally, EImore et al. (2013)
recently produced a detailed stream map for therRat River watershed and several
adjacent watersheds, covering the entirety of theysarea.

Elmore et al.'s (2013) map was produced using maxirantropy (MaxEnt,
Phillips et al. 2006) and terrain and soil varialtie predict stream presence at 10m
resolution. Predictions included previously unmapplannels, notably headwaters and
streams lost to urbanization, and suggested teatl#tional Hydrography Database
(NHD) underestimates stream network density in Néamy by up to 250%. Using
Elmore et al.'s (2013) map allowed more precis@ing of biological survey locations
to stream channels and more accurate measuremin® thdw path distance between
land and stream pixels, which was used in sevét@leoderived environmental variables
(see below). However, it is also important to nbeg ElImore et al.'s (2013) models were
trained on stream presences collected from fullgdted watersheds, and the map
therefore reflectpotential stream density rather than existing channels. Avath
altered land use may have either higher or loweast density than predicted, depending

on the type of development (Elmore et al. 2013)l, 8espite its potential to misclassify



current channels, Elmore et al.'s (2013) map isicenably more consistent in its

accuracy across physiographic provinces than thB.NH

Species occurrence data

Species occurrence data were collected as pdredilaryland Biological Stream
Survey (MBSS), a program originated and administénethe MDNR (Stranko et al.
2007). The MBSS follows standardized protocolsamgle fish and benthic invertebrates
in 75 m segments of non-tidal first, second, thamakl fourth order streams (Stranko et al.
2007). The majority of the sample sites were setecandomly, using a probability-
based design, while some were selected to answeifisgnanagement or research
guestions.

Briefly, MBSS sampling proceeded as follows. Benihivertebrate sampling was
conducted in March and April using a 4 mesh D-net. Twenty square feet of habitat
were sampled at each site by choosing 20 locaf@ribe D-net and manually disturbing
the substrate in the square foot immediately upsird_ocations were chosen to be a
proportional representation of the habitats likelyontain the most diverse benthic
invertebrate communities (described in Strankd.€2@)7). Taxa were identified and
guantified in the lab, where each benthic sample spsead over a gridded tray and a
random number was chosen to determine which 5m §rad cell should be sampled
(Boward and Friedman 2011). All invertebrates i thosen cell were identified. If the
total number of individuals identified was equabtogreater than 120, analysis of that
sample was complete. If there were fewer than d@¥iduals in the cell, another cell

was randomly selected.



Field sampling of fish was conducted between JuteSeptember, the low-flow
period, via double-pass electrofishing (StrankaleR007). To ensure that fish neither
exited nor entered the site during electrofishivigck nets were positioned at the top and
bottom of the 75 m segment, as well as at tributanfluences. All caught fish with
body length over 30 mm were censused. Fish weretedwand identified to species in
the field, when possible.

In three major sampling periods over 18 years (18@H11), the MBSS collected
data for approximately 100 fish and 600 invertebtaka. This study uses data from the
86 native fish identified to species and the 58Ertebrate taxa identified to family or
genus at 2,165 unique site-years. To ensure thstiraley points coincided with EImore
et al.'s (2013) mapped streams, site locations aai@ snapped to the nearest stream cell
by flow direction (i.e. points were never snappeddlls upstream of their reported
locations). Points farther than 300 m from streafisor located on flat terrain without
clear flow direction were individually examined amchere possible, were manually
moved to a stream location according to theira@scription recorded on MBSS
datasheets.

| considered only native fish species becauseigtalitions of non-native
species are likely to be dominated by factors otih@n environmental conditions (e.g.,
Christmas et al. 2001, Kilian et al. 2012). | colegiseparate Maryland native fish lists
for each region of interest (Y, H, P, and C) udimg USGS database for Nonindigenous
Aquatic Species (United States Geological Surveyd20maps from the NatureServe
non-profit organization (Natureserve 2014), pultiamas by MDNR employees and

contractors (Southerland et al. 2005, Stranko.&tCdl0), and expert knowledge from a
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specialist involved with MBSS sampling (Appendix. &) cases when sources

conflicted, | favored USGS data.

Environmental predictor variables

Field-measured variables

Field-measured environmental variables were catbbly the MBSS at survey

locations coincident with faunal sampling (Stramt@l. 2007). They include stream

measurements relating to flow and gradient, inastréabitat, and water chemistry

(Table 1). I omitted unordered categorical variatdad variables with five or fewer

ordered categories to accommodate GDM'’s use of@mviental distances in model

fitting (Ferrier et al. 2007). To maintain sampiees, | also omitted any field-measured

variable lacking measurements at >1000 site-years.

Table 1. Field-measured variables collected byMB&SS at survey locations and
considered as environmental predictor variables.

Variable code

Description

Flow and gradient

ST_GRAD Stream gradient (%), measured from the dtneam boundary of the
sample segment to the upstream boundary with donmater
(1995-2004) and a level (2007-2009)

DischargeCFS Summer stream flow (cfs), standarsée method

Habitat

INSTRHAB In-stream fish habitat structure rating2@)

EPI_SUB Epifaunal substrate rating (benthic invendée habitat, 0-20)

VEL_DPTH Velocity/depth diversity rating (0-20)

POOLQUAL Pool/glide/eddy quality rating (0-20)

RIFFQUAL Riffle/run quality rating (0-20)

EMBEDDED Embeddedness: percentage that gravel,lepabd boulder particles are
surrounded by sediment or flocculent material

SHADING Percentage of segment that is shaded

AESTHET Trash rating (0-20)

MAXDEPTH Maximum depth in sample reach (cm)

AVGWID Average wetted width of the 1, 25, 50, arislii points of the sample
segment (M)

AVGTHAL Average thalweg depth of the 1, 25, 50, attdm points of the sample
segment (cm)

AVG_VEL Average velocity of the 1, 25, 50, and 75wints of the sample

segment (m/s)
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Variable code Description

Water chemistry

PH_LAB Spring pH (pH units), measured in the lab
COND_LAB Spring conductancgufho/cm), lab
ANC_LAB Acid neutralizing capacityueq/L), lab
DOC_LAB Dissolved organic carbon (mg/L), lab
SO4_LAB Sulfate (mg/L), lab

NO3_LAB Nitrate nitrogen (mg/L), lab
TEMP_FLD Summer in-situ water temperature (°C)
DO_FLD In-situ dissolved oxygen (mg/L)
PH_FLD In-situ summer pH (pH units)
COND_FLD In-situ summer conductangar(ho/cm)

Derived variables

Derived environmental variables were calculatedg§1S and remote sensing
data or downloaded from online databases (e.g./Jd@bm, Hijmans et al. 2005). They
emphasize local and watershed-scale physical diesistics considered important to
biotic distributions and include measures of toppdry, hydrography, soils, climate, and
land use (Austin 2002, Pease et al. 2011, Allari208@ble 2). All derived variables are
temporally-invariant and were created at or resaohfd 10 m resolution to match the
scale of the stream network maps.

Topographic variables attempt to characterize leayks shape and, by extension,
stream channel shape and related stream charticerssich as flow speed and substrate
type (Melles et al. 2014). They were derived usiri) m digital elevation model (DEM)
from the National Elevation Dataset (NED, Geschle2002, see Julian et al. 2012 for
details).

Hydrographic variables capture flow and networkrabteristics. Eight-way flow
direction and flow accumulation (i.e. watershecasimere derived using the Terrain
Analysis Using Digital Elevation Models toolset (IZEM, Tarboton 2014). Stream

12



length and network density were measured from Enetral.'s (2013) stream map, and
attempt to characterize the residence time of watesatersheds, the relative importance
of terrestrial and aquatic inputs, and the areavaflable connected habitat (ElImore et al.
2013). A set of “stream burial” variables were ded that quantify the extent to which
stream segments have been paved over or directedulverts, pipes, or concrete-lined
ditches (Elmore and Kaushal 2008). Burial-relatadables were calculated using the
National Land Cover Database impervious surface (Hamer et al. 2007) and USGS
30-cm aerial photography (Elmore and Kaushal 2088¢am burial is highly correlated
with urbanization and disproportionately affectastve headwater species (Elmore and
Kaushal 2008).

Soils data were derived from the Natural Resou@msservation Service’s Soil
Survey Geographic Database (SSURGO, Soil Survdy/isth). Soils variables were
mapped at broad scales (1:12,000 to 1:63,360) @&nd @ollected on land over many
years. However, many of the SSURGO variables pialgnhave a strong influence on
in-stream conditions: silt-clay % influences runpéitential and flashiness, soil
erodibility and bulk density are related to stresediment load, and soil pH and bedrock
depth can affect water chemistry. Derived annuamsirface air temperature is also
extrapolated from measurements taken on land (Higned al. 2005). Stream and air
temperatures often are closely related, but tregiogiship may not be linear (Mohseni
and Stefan 1999) and varies regionally (Hilderbrandl. 2014).

Land use and land cover metrics are some of theé coosmonly-used predictors
of water quality and biotic assemblages (Hardingl.€1998, Allan 2004, Van Sickle and

Johnson 2008, Utz et al. 2010). Forest, canopyrconatland, agriculture, and
13



impervious surface comprise the land covers availiitbm the NLCD that are relevant
to the mid-Atlantic United States (Homer et al. 2D0mpervious surface and canopy
cover are mapped as continuous percentages; a@feconsidered either present or
absent. Forest, canopy cover, and wetlands ar¢éevedlland covers that tend to have
neutral or positive effects on water quality anéain biota. Indeed, use of riparian
buffers to mitigate harmful effects of developmentwaterways has become gospel in
both science (Mander et al. 1997) and law (Led. &084), and wetlands are sufficiently
effective contaminant sinks that humans are engmgéhem (Hansson et al. 2005). In
contrast, agricultural land cover is the most psin@cause of stream impairment in the
United States, frequently leading to eutrophica{ioesch et al. 2001) and
sedimentation (Lenat 1984). Proportionally, urbation may have even greater
deleterious effects on stream systems than agrreu{Paul and Meyer 2001, Poff et al.
2006): streams draining impervious surface areas tie suffer higher contaminant
levels, increased temperature and erosion, andegregdrologic irregularity than
streams draining undeveloped areas (Allan 2004 skved al. 2005).

Many of the derived variables described above wekeloped as multiple
versions differing in their spatial attributes: (@gal, (2) nonspatial accumulated, and/or
(3) spatially-explicit accumulated. Local deriveaiiables reflect the region containing or
directly adjacent to a survey site. For non-hydapgic variables, such as land use, local
variables were calculated in a 30 x 30 meter (Jxx8l) window around the site. For
example, the variable “local canopy cover” is therage percent canopy cover on land

in nine 10 x 10 meter pixels, with the site locatas the central pixel. If the variable was
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hydrographic, calculating a local variable invohady stream cells in 30 x 10 meter
window (1 upstream and 1 downstream pixel and itedacation as the central pixel).

Accumulated variables, both nonspatial and spgt@tblicit, consider the
characteristics of a stream pixel's upstream basrefined by a D8 flow path and flow
accumulation raster derived using TauDEM (Tarb@0h4). Nonspatial accumulated
variables measure the average value of a variabliaé entire upstream basin. For
example, nonspatial accumulated canopy cover iatbeage percent canopy cover in all
upstream pixels that flow into a given locationcbntrast, spatially-explicit accumulated
variables attempt to accommodate the fact that epstream pixel is unlikely to have the
same influence on a particular downstream pixéirgdon et al. 2007, Van Sickle and
Johnson 2008, Peterson et al. 2011, Sheldon 2052). Spatially-explicit versions of the
five land covers (forest, wetland, agriculture, @ay cover, and impervious surface) were
calculated using the following inverse-distanceghéing scheme adapted from Peterson
et al. (2011):

> 1 WFA
%LU=-_— x100.

D WFA

i=1
LU is the land use of a given class (e.g., for&8it)s the weight given to an upstream
pixel, i, according to its distance from the nearest strémme (distance+1) FA is the
number of pixels that flow into pixel(flow accumulation weight). In the case of
discretely classified land usdk) is an index equal to one for the pixels classiisdhe
land use of interest and zero for all other pixkighe case of land uses with continuous

scores)(K) is equal to the continuous value. Thus, | weigletach pixel of those five
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land uses by (1) flow path length between it astteam and (2) the number of pixels
that flow into it. Closer land pixels (along flovaits) were more heavily weighted than
farther land pixels; land pixels through which maraer flows were more heavily
weighted than those through which less water fldwseasured distances along
TauDEM-derived flow paths between a land use paxel the closest stream pixel.

For the purposes of this study, | grouped nonapatid spatially-explicit
accumulated variables together as “accumulatedetkrii Therefore, three broad variable
sets are compared, differing in measurement locamal technique: field-measured
variables are collected by the MBSS in-situ, la=lived variables are interpolated or
derived and estimated at or directly adjacent ¢ostlrvey point, and accumulated derived
variables are interpolated or derived and estimapstream of the survey point (Table

2).

Table 2. Derived variables considered as predidgtogeneralized dissimilarity models.
Local versions characterize conditions directlyaadpt to stream pixels (1 x 3 pixels or 3
x 3 pixels); accumulated versions characterizeseithlean upstream conditions
(“accumulated”) or upstream conditions where eaghblps weighted by flow path
distance to the stream and number of contributirglp (“spatial acc.”). All variables
were created at or resampled to 10 m.

Derived variable Versions Description/Units/Sour ce

code

Topographic

slp local Slope (degrees), NED DEM.
accumulated

plan local Transverse curvature at cell, perpendicular to flow
accumulated direction (1/100 elevation units), NED DEM

prof local Longitudinal curvature at cell, parallel to flowrélction

accumulated (1/100 elevation units), NED DEM

Hydrographic

dem10mp local 8 Direction flow raster 1= East, 278t€., TauDEM

dem10mad8 accumulatedNumber of 10x10 meter pixels that flow into thegdjx
TauDEM

str_len local Length of stream (km), Elmore et al. (2013)

accumulated map
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Derived variable Versions Description/Units/Sour ce

code
str_den accumulatedUpstream network density (km/Kjm EImore et al.
(2013) map
confluence_num accumulatetlumber of stream segments that come together
on a pixel, ElImore et al. (2013) map.
str_blen local Length of stream burial (km), burial
accumulated probability classified using NLCD 2001 30 m ISA éay
bp_2001 local Burial probability (0-1), determinasing
NLCD 2001 30 m ISA layer
str_bp accumulatedBurial probability accumulated (0-1),
determined using NLCD 2001 30 m ISA layer
str_blen_den accumulatedpstream burial density (km/Kindetermined using

NLCD 2001 30 m ISA layer

!_and Use/Land Cover

isa local Proportion impervious surface area, 0-1.
accumulated NLCD 2001 impervious surface data, 30 m

isa_fls_nor spatial acc.

cc local Proportion canopy cover, 0-1.
accumulated NLCD 2001 canopy cover data, 30 m

cc_fls nor spatial acc.

for local Proportion forest presence, 0-1.
accumulated NLCD 2001 forest data, 30 m, forest ={41,42,43}

for_fls nor spatial acc.

ag local Proportion agriculture presence, 0-1.
accumulated NLCD 2001 LULC data, 30 m, agriculture = {81,82}

ag_fls_nor spatial acc.

wet local Proportion wetland presence, 0-1.
accumulated NLCD 2001 LULC data, 30 m, wetlands = {90,95}

wet fls nor spatial acc.

Soils

sicl local Proportion of soil volume (0-1) that is below B in
accumulated texture, SSURGO, 0.6 ha

kfw local Soil erodibility (K value), SSURGO, 0.6 ha
accumulated

bd local Bulk density indicator of soil compaction (g/&mn
accumulated SSURGO, 0.6 ha

brd local Distance from soil surface to top of bedrock lajgem),
accumulated SSURGO, 0.6 ha

ph local Relative acidity or alkalinity of a soil sample (pHits),
accumulated SSURGO, 0.6 ha

Climate

sat local Annual mean temperature (°C*10), WorldClim 2.5

accumulated arc-minutes, Bioclim variable 1

Community-level modeling
| used community-level models because of theintghit rapidly analyze

assemblages with large numbers of species, makef atsa for infrequently-recorded
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taxa, and extrapolate patterns beyond sampled comtigsi(Ferrier and Guisan 2006,
Fitzpatrick et al. 2011, Jones et al. 2013) — aleptial boons for management
applications. Additionally, community-level modelse valuable tools for variable
assessment because they assimilate the responsespfspecies, so conclusions may be
less sensitive to atypical species/environmentioglahips.

Specifically,| compared field-measured, local derived, and acdated derived
environmental predictor variables using generaldisdimilarity modeling (GDM), a
community-level, nonlinear matrix regression teciua that models pairwise site
compositional dissimilarity (beta diversity) asumétion of environmental and
geographic distance (Ferrier et al. 2007). GDM aunodates two nonlinearities
common in large ecological datasets: variatiorherate of compositional turnover along
environmental gradients (non-stationarity), anddhevilinear relationship between
compositional dissimilarity and environmental/geaggric distance (Ferrier et al. 2007,
Allan 2004, Dodds et al. 2010).

GDM addresses non-stationarity in rates of specmver along gradients by
using maximum likelihood estimation to fit flexiblpositively monotonic I-splines to
each predictor variable (Ferrier et al. 2007). Bfedlt and to avoid over-fitting, each I-
spline has three knots, and the segments betweendhe modeled as quadratics. The
shape of the I-spline indicates the rate of bialagturnover at each position along the
gradient (Ferrier et al. 2007). The amplitude &f Hspline, quantified by the sum of its
coefficients, corresponds to the relative imporéaatthe predictor variable in
contributing to biological turnover between paifsibes, holding all other variables

constant (Ferrier et al. 2007). Thus, the I-splimespartial regression fits that provide a
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biologically-supported relationship between envimemtal and geographic distance and
compositional dissimilarity (Fitzpatrick et al. 281 I-splines thereby provide a means to
select, weight, and transform environmental predicariables objectively such that they
best represent biological patterns (Ferrier e2@0.7, Leathwick et al. 2011, Williams et
al. 2012). GDM accommodates the asymptotic natbicempositional similarity metrics
by transforming the scaled relationship betweewlipters and compositional
dissimilarity using a generalized linear model (GLMth an exponential link function
(Ferrier et al. 2002, 2007).

Fitting GDMs requires a site x taxa table and aesgponding site x environment
table. The first table comprises the response bigji@nce data are converted into
pairwise site biological distances (in this casayBCurtis dissimilarity). The second
table, once converted into environmental/geogragisiances, comprises the predictor
variables. GDM uses these data to derive I-splamesapply the GLM transformation.
All GDM analyses were performed in R version 3R1Core Team 2013) using the
GDM package available from R-Forge (http://r-fargaroject.org, Manion et al. 2014).
For this research, | converted MBSS abundancetdaieesence/absence, which is
considered more reliable for the un-censused benthertebrates (Boward and
Friedman 2011). | omitted pairwise comparisons keetwsites surveyed in different
years to minimize the effects of unmeasured yearlyronmental variation, and |
included geographic distance as a predictor imaltiels.

| fit a total of 56 GDMs using all available occemnce data from the MBSS.
These included separate models for each combinaticegion (4), taxon (fish, benthic

invertebrates), and variable set (seven combinsitbdithree variable groups). To select
19



from the candidate predictor variables, | first o@d highly correlated variables. | tested
Pearson and Spearman correlations within eachblars@t for each region and removed
variables in pairs or groups correlated >|0.7ging@tg those variables of correlated sets
that | considered most biologically relevant (Wths et al. 2012, Austin 2002). | also
tested for correlations across variable sets.drfélv cases in which variables were
correlated across sets (i.e. local derived withuaadated derived, accumulated derived
with field-measured, or local derived with field-asaired), | retained the variable
deemed most biologically relevant. Manually chogssandidate variables in cross-group
comparisons could influence conclusions regardihglwvvariable sets are most
effective. However, cross-group correlations ware rand only three variables were
omitted as a result: accumulated surface air teatpes, accumulated soil erodibility, and
flow accumulation (Appendix C).

After removing correlated variables, | tested fatistical significance of
predictor variables in each model using a custockward selection procedure. First, |
built a GDM with all candidate predictor variabkesd removed predictors with a sum of
I-spline coefficients equal to zero, as they hadeatationship to biological turnover. | re-
fit the GDM without the irrelevant predictors (“fuhodel”) and fit a third GDM
(“reduced model”) omitting the predictor associatéth the least compositional change,
i.e. the variable with the lowest sum of I-splireefficients (Fitzpatrick et al. 2011). |
subtracted the deviance explained of the reducetkhitom the deviance explained of
the full model. To reduce computational burdenseissed with matrix randomization
and numerous model fitting routines, | omitted vheable if the difference was less than

two percent of the models’ mean deviance explaitigbe difference was greater, |
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randomized species relationships 500 times andecté®0 GDM null model pairs, one
model with the full predictor set and one with teduced set. If at least 5% of the null
model differences in deviance explained were grebasn the true difference in deviance
explained (i.e. p < 0.05, the variable in questi@s no more explanatory than a random
variable), | omitted the variable in question aagdeated the procedure for the next least-
relevant predictor. Alternatively, if the true difence in deviance explained was among
the top 5% of the null differences, | retained vheable and the selection procedure

ended (Fitzpatrick et al. 2011).

Evaluation of field-measured and derived variable sets

| compared models within region and taxon, so thg difference between them
was predictor variable set, and | evaluated thethriee complementary ways:
explanatory power, parsimony, and predictive abiliimeasured how well models were
able to explain the data using deviance explaittemethod GDM uses to assess fit. |
also used variation partitioning (strictly speakidgviance partitioning) to determine the
amount of deviance uniquely explained by each etlinee variable groups for each
region-taxon combination (Borcard et al. 1992, \téhi¢r 1984, Jones et al. 2013).
Deviance partitioning quantified the extent to whdifferent variable sets explained
redundant or complementary biological informatiBriefly, the procedure involved
subtraction of deviance explained values from meéelvith different variable sets to
determine how much deviance explained was attiiideiti® each set of variables
individually. For example, the proportion of dewtarexplained (DE) attributable to

field-measured variables alone is:
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DEfield measured variables unige DEall three variable sets DE|ocal and accumulated derived variables

Unlike deviance explained, Akaike Information Crid& (AIC) penalizes models
for additional parameters, thereby assessing numieplexity in conjunction with fit (i.e.
parsimony, Akaike 1974). | assessed parsimony usi@gweights. To calculate AIC,
which GDM does not report, | fit GDMs in R as lagdar binomial generalized linear
models (GLMs). Biological similarity was a functiah environmental distance, with a
log link function and binomial observation errori(lsk et al. 2011). | extracted log-
likelihood (L) from GLM model objects and definedmber of parameters (k) as the
number of non-zero I-spline coefficients, plus dorethe intercept term. Then, |
calculated AIC as (2*k)-(2*L), penalizing modelstiva greater number of parameters.
AIC weights, reflecting which model had the mogpsort from a parsimony standpoint,
were calculated using the R package MuMIn (Bartob42.

Beyond being explanatory and parsimonious, mod&$ulifor management must
also have the ability to make reasonable predisttorunsurveyed locations. | measured
predictive ability by assessing how well modelsaith training data were able to predict
withheld test data. For each region-taxon/varigkelecombination, | randomly partitioned
site pairs 50 times into training (70%) and tes(iB@0) sets. | fit GDMs using the
training data and the variables pre-selected byp#ugward selection procedure and then
used the fitted models to predict compositionasidiarity to the withheld 30% of site
pairs. | assessed predicted compositional disgityilizn two ways: (1) using Spearman
correlations to show the correspondence betweeahagbee and observed dissimilarities,

and (2) using median percent error calculatiorgetermine the magnitude of the
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difference between predicted and observed disgitnéis. | compared correlations and
median percent errors within region-taxon pairsg$iruskal-Wallis rank sum tests
followed by multiple comparison tests.

Additionally, because a different number of valegldfrom each group was
available to the models, | used chi-square testietermine whether models with all

variables available to them preferentially seledteth particular sets.

Management inference: predicting indices of biotic integrity

Stream management decisions are often informeddtsias such as Indices of
Biotic Integrity (IBls, Karr 1981, Southerland ¢t 2007). To determine the difference
between the environmental variable sets in theectrtf managerial inference, | used
GDM-transformed environmental variables and theeeride machine learning method
random forests (Breiman 2001) to predict two séiBIs: those based on field-measured
variables and those based on derived variablegnl tompared predicted and MDNR-
calculated IBIs to assess the disparity betweewndhiable sets from a management
perspective.

For each region-taxon pair, | trained GDMs builthwield-measured variables
only and GDMs built with derived variables onlydd and accumulated together, as this
is likely the set that managers would use) on Bdoa partitions (70%) of survey
locations. | used the I-splines to transform premgcfrom environmental space (I-spline
x-axis) into biological space (I-spline y-axis)yégaging GDM'’s ability to weight
environmental gradients so that they best reprdseltgical patterns. | then trained a

random forest model on the transformed predictotis @bserved IBI as a response, used
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GDM to transform environmental gradients at the 3fi%ites withheld, and predicted
IBI for that holdout with the random forest modetalculated percent error for each
pairwise comparison and used Spearman correlatorsmpare observed and predicted
IBIs for each random partition. Both percent erramsgl Spearman correlations were

compared using Welch'’s t-tests.
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RESULTS

Evaluation of field-measured and derived variable sets

Explanatory power

GDM explained between 3.8 and 43.4% of the deviamcempositional
turnover, depending on variable set, region, ardrtgFig. 2). The least explanatory
model was built with only local derived variablég for Youghiogheny fish. The most
explanatory models, with the same deviance expawere built for Youghiogheny
benthic invertebrates with variables from all greypAL) and Youghiogheny benthic
invertebrates with field-measured and accumulatetveld variables (FA).
Youghiogheny fish had the greatest range in deea&xplained values between models
fit with different variable sets (35.7%), followég Youghiogheny benthic invertebrates
(33.1%). Models for the Coastal Plain benthic itelerates had the smallest range in
deviance explained values (10.9%). The averageadegiexplained for benthic
invertebrate and fish models built with derivedighles (AL) was 23.0% and 21.2%,
respectively. Average deviance explained for benthrertebrate and fish models built
with field-measured variables (F) was 29.6% an@%8.and average deviance explained
for models selecting from all variable sets (FALYsAB2.7% and 32.6%.

Within each region-taxon pair, the model built wathly local derived variables
(L) always had the lowest deviance explained, tlue models that included field-
measured variables (F, FL, FA, FAL) always hadhigiest deviance explained, and
models built with accumulated derived variables AR) were intermediate. For all
regions and both taxa, the effect of adding loesived variables to another variable set

(e.g., addition of L variables to A, F, or FA setss negligible.
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Figure 2 Deviance explained values igeneralized dissimilarity modebuilt with all
available MBSS datm four regions and for both fish and benthic ingbrate. Each
panel is a regiomaxon pairF =field-measured, L = local derived, aAd= accumulate(
derived variables.

Across regions and taxa, local derived variablequetly explained betweezero
and 2.0% of the deviance in biological turnover, almost nothing that the other varia
sds did not also explain (Fig). Accumulated derived variables uniquely explai
between 1.0 and 4.7% of the deviance, and-measured variables unicy explained
between 4.1 and 18.0%. Single variable sets (lanl, F) used in Coastal Plain moc
tended to uniquely explain a lower propan of the deviance than variable «in other
models, reflecting the fact that Coastal Plain n®degeneral ad low devianc:
explained values.

Field-measuredariablesexplained thgreatest amount of unique dence in the

Youghiogheny regionwhich usually had higher overalleviance explained vall than
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the other regions. Of the deviance explained byvtbughiogheny FAL fish model
(39.5%), two-fifths (15.5%, red cross, Fig. 3) wamquely attributable to field-measured
variables. Of the deviance explained by the Yougihemy FAL benthic invertebrate
model (43.4%), over two-fifths (18.0%, red triandteg. 3) was uniquely attributable to

field-measured variables.
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Figure 3. Deviance uniquely explained by each Wdeiset (F =field-measured, L = local
derived, A = accumulated derived) for region-tapaiirs. Note that some of the local
derived percentages are negative because modatsweperfectly nested.

Parsimony

In all region-taxon pairs except Coastal Plain benhvertebrates, models
including field-measured variables as predictoithée FAL models or FA models) were
most supported by AIC (Appendix D). In the caséhef Coastal Plain benthic

invertebrates, the model built with only local deed variables was best supported, likely
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because all models were comparatively poor inrgggon-taxon pair (Fig. 2) and had
similar AICs, such that number of parameters weddheavily in the evaluation.

It is most useful to calculate AIC weights considg only models built with L,
A, AL, and F variable sets so that the weightsritye@flect variable set differences. For
all region-taxon pairs except the Coastal Plairthiennvertebrates, the model built with

field-measured variables had AIC weight >0.98 (€&l
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Table 3. Generalized dissimilarity model AICs, adesing only models built with local derived (L);@mulated derived (A), local
and accumulated derived (AL), and field-measurga/éifiable setsAAIC shows the difference between the current madelthe
best model, which is marked with a star (*). fgl@e AIC weights, and K is the number of parameters

Youghiogheny Highlands Piedmont Coastal Plain
Models AIC AAIC AIC,, K AIC AAIC AIC,, K AIC AAIC AIC, K AIC AAIC AIC,, K
L 2376.1 333.88 0.000 4 9731.0 673.94 0.000 |14 B389 6579.23 0.000 9 179855 1069.5 0.000 17
Fish A 2157.3 115.07 0.000 20 9399.9 342.81 0.000 | 9 ®HF2 221494 0.000 1B 17312.3 396.2 0.000 25
AL 2172.3 130.07 0.000 1P 9362.5 305.36 0.000 | 1441812 2104.26 0.000 12 17290.0 373.9 0.000 28
F 2042.2* 0.00 1.000 12 9057.1* 0.00 1.000 |18 59312 0.00 1.000 17 16916.1* 0.0 1.000 27
L 1653.4 25.88 0.000 § 7901.1 101.01 0.000 |15 34853175.12 0.000 14 9593.0* 0.0 0.974 10
Benthic A 1637.7 10.17 0.006 14 7825.7 25.67 0.000 |12 3@/04 26.21 0.000 17 9601.9 8.9 0.012 22
Inverts AL 1636.2 8.60 0.013 16 78184 18.39 0.000 |11 36692 14.68 0.001 22 9602.2 9.2 0.010 21
F 1627.6* 0.00 0.981 1y 7800.1* 0.00 1.000 (15 36B78 0.00 0.999 2 9603.6 10.6 0.005 28
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Predictive ability

Fitted relationships between predicted and obsecvetpositional dissimilarity
for all variable sets, taxa, and regions were ctogbe one-to-one line (Appendix E).
However, Kruskal-Wallis rank sum tests showed ti#ttin each region-taxon pair, there
were significant differences in how effectively nedslfit with different variable sets
predicted Bray-Curtis dissimilarities between wialthsite-pairs (Fig. 4a, b). Within
region-taxon pairs, the only models that did natehsignificantly different Spearman
correlations were built with only derived varialgioups (A vs. L models and A vs. AL
models) or both included field-measured variabkesq. FL, FL vs. FAL, etc., Appendix
F). Similarly, except in the case of two CoastalifPbenthic invertebrate model
comparisons (A vs. F and AL vs. F), the only nagngficant differences in percent error
were between models that both included or botmdidnclude field-measured variables
(Appendix F).

Overall, the pattern in predictive ability was itieal to the pattern in explanatory
power (Fig. 2): models built with only local derd/gariables had the lowest predictive
ability (average Spearman correlation between olesesind predicted Bray-Curtis
dissimilarities was 0.30, average median perceot &ras 18.3 %), followed by models
built with accumulated derived variables (A and mbdels both had an average
0.47 and an average median percent error of 16 M&dels built with field-measured
variables had the best predictive ability (F modheld averagp = 0.54, average median

percent error = 15.3%).
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Figure 4. Boxplot®f (a) Spearman correlatiobetween observed and predic Bray-
Curtis dissimilaritieswhere each box summarizes 50 correlation coefftsi and (b
percent error opredicted Bra-Curtis dissimilarities, whereagh box summarizes !
median percent errorB.=field-measured, L = local derived, and A = accuned
derivedvariables. For significant differences between Isoxéhin region-taxon pairs,
see Appendix F.
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I mportant individual variables

Once correlated variables were removed (Append¢c€?) and the backward
selection process was completed, the final GDManet between one and 16
environmental predictor variables (Appendix G). Benthic invertebrate models, the
five most common environmental predictors wereteeldo land use, substrate, and
gradient, and included weighted impervious surtaea (isa_fls_nor, 12 models),
accumulated derived bedrock depth (brd_acc, 12 lpdeeld-measured stream gradient
(ST_GRAD, 12 models), local derived burial probigpifop_2001, 11 models), and
field-measured riffle quality (RIFFQUAL, 11 modeBppendix H). The most common
environmental predictors of fish turnover were t@deto network position, substrate,
temperature and gradient, and included field-meaksiream gradient (ST_GRAD, 14
models), local derived surface air temperature (sat 13 models), accumulated derived
bedrock depth (brd_acc, 13 models), flow accumutatdem10mad8, 12 models), and
field-measured discharge (DischargeCFS, 12 moAelsendix H).

In models for which field-measured, accumulatedveel; and local derived
variables were all candidates (FAL models), fieldasured conductance (COND_FLD)
and weighted impervious surface area (isa_fls_werge most strongly related to benthic
invertebrate compositional turnover across reg(éig. 5a). Field-measured stream
gradient (ST_GRAD) was most strongly related th iempositional turnover and was

chosen as a predictor in all regions except thes@b®lain (Fig 5b).
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Figure 5.Relative importance of predictor variables seleéteda) benthic invertebra
and (b) fishgeneralized dissimilaritmodels when field-measured (Rccumulater
derived (A) and local derive (L) variables were candidates. Relative importan:
guantified as the sum o-spline coefficients and normalized so that the tlerad the bar:
representing a single region sums to one. Syml®{sto the bars show whettr
unselected variables were removed as a resLO) correlationanalysis oi(*) by
backward selection.
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Though the field-measured variables as a set weresaalways superior to

derived variables in terms of explanation, predittiand parsimony, chi-square tests

showed that field-measured variables were not chbgehe backward selection

procedure out of proportion to their availabilifyaple 4). This is true both when derived

variables were considered as a single categoryAl, # which case there were many

more derived than field-measured variables avalébable 4a), and also when derived

variables were separated, in which case the Higlsland Coastal Plain had

approximately the same number of variables in satfand the Youghiogheny and

Piedmont had a greater number of field-measuredhlas (Table 4b).

Table 4. Chi-square test results showing whethedliptors from particular variable sets
were selected for inclusion in generalized dissanty models out of proportion to their
availability. Variable sets tested were (a) ALFsand (b) L vs. A vs. F, where F = field-
measured, L = local derived, and A = accumulatet/elé variables. Significant results
are starred (*).

. Number of Chi
| L voaas® | Condisste | S
Region Taxon Variables Statistic p-value
L A AL F|L A AL F
(a)
Youghiogheny Fish 5 5 27 19 0.312 0.577
Youghiogheny Benthic Inverts 4 |5 27 (19 @75 0.385
Highlands Fish 5 7 26 14 2.872 0.090
Highlands Benthic Inverts 4 3 26 14 0.190 .668
Piedmont Fish 3 8 27 17 5.392  0.020*
Piedmont Benthic Inverts 6 |8 27 17 2.022 1586.
Coastal Plain Fish 7 6 29 15 0.842 0.359
Coastal Plain Benthic Inverts 6 |6 29 |15 52.3 0.245
(b)
Youghiogheny Fish 1 4 b 15 12 19 2.493 0.288
Youghiogheny Benthic Inverts 0 4 5 15 12 19 405 0.103
Highlands Fish 2 3 T 14 12 14 3.119 0.210
Highlands Benthic Inverts 1 3 3 14 12 14 1.367 0.505
Piedmont Fish 1 2 B 15 12 17 5.659 0.059
Piedmont Benthic Invertg 1 5 8 15 12 17 4,589 .100
Coastal Plain  Fish 1 6 6 15 14 5 4.052 0.132
Coastal Plain Benthic Inverts 1 5 6 15 14 15 593. 0.166
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Management inference: predicting indices of biotic integrity

Field-measured variables were not consistentlyebettedictors of IBIs than
derived variables (Fig. 6a, b). Rather, predictioh#Is using derived variables had a
lower mean percent error and were more stronglsetaied with MDNR-calculated IBls
for five of the eight region-taxon pairs. Without@rrection for multiple comparisons,
IBI predictions using field-measured variables wagmificantly more correlated with
MDNR-calculated IBls for three region-taxon pairglgredictions using derived
variables were significantly more correlated witlbbMR-calculated IBIs for two.
Conversely, use of field-measured variables yielgredlictions with significantly lower
mean percent errors for two region-taxon pairs,@erd/ed variables yielded predictions
with significantly lower mean percent errors fored. With a Bonferroni correction, each
variable set produced predictions with a signiftgahigher mean Spearman correlation
for one region-taxon pair a significantly lower mgaercent error for two region-taxon
pairs. Neither derived nor field-measured varialleswved regional or taxon-based

patterns in ability to predict IBIs.
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Figure 6. Boxplot®f (a) Spearman correlations between MDN&eulated ani

F
Variables

predicted IBls, where each box sumrzes 50 correlation coefficients, and percent
errors of predicted IB|svhereeach box summarizes errors inrafplicates and outliers

have been suppressed visualization purposes. F =field-measured Ahd=

accumulated and local deri\ variables, transformed using GDM prior to randome$b

modeling.
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DISCUSSION

If statistical models are to be used to map padtef biodiversity, they must be fit
using derived, full-coverage environmental variak&ustin 2002). However, derived
variables are often only indirectly related to taxahysiology (i.e. distal), and are
therefore predicted by theory to be less effedfmam proximal variables, which are
typically field-measured (Austin 1980, Franklin B)®ustin 2002). This research had
three main goals: to compare stream biodiversitgetsofit using field-measured and/or
derived variables, to identify the major environt@wulrivers of Maryland fish and
invertebrate community turnover, and to determimetlver modeling with field-
measured versus derived variables leads to diffenenagement inference. Results
showed that field-measured environmental variable®st always produced models that
were more explanatory, had greater predictivetggbéind were more parsimonious than
derived variables. Field-measured variables alptagxed a larger amount of unique
deviance. However, though performance of derivecites as a group was
comparatively poor, several of the individual dedwpredictors were among the most
important, and the predictive superiority of figtteasured variables did not persist when

the dimensionality of the data was reduced to mamagt-relevant indices.

Evaluation of field-measured and derived variable sets

Explanatory power

The amount of deviance explained by the modelsldped for this study is on
par with that reported by other studies employiiMsin stream networks (Leathwick et
al. 2011, Snelder et al. 2012). Leathwick et &G11) models explained an average of

18.5% of the deviance in benthic invertebrate comiguurnover and 16.3% of
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deviance in fish community turnover in New Zealahidey used only derived variables,
including several measures of temperature, floapes| and habitat, and considered
variables at multiple spatial scales. Snelder.R8l12) used GDM to model benthic
invertebrate and fish beta diversity in France, explained 41% and 35% of deviance,
respectively. They used a relatively modest selevived variables which included site
and watershed slope and temperature, watersheigipagon, site altitude, and several
physical and geographical watershed characteristics

Snelder et al.'s (2012) comparatively high deviamqaained values may in part
be attributable to the particularly long environnamgradients across continental France
(Murphy 2010, Snelder et al. 2012), while Leathwetlal.'s (2011) comparatively low
deviance explained values were possibly relatedgammission of human land use
variables (e.g., impervious surface). However féoe that deviance explained values for
the Maryland freshwater taxa models were lower thaelder et al.'s (2012) and higher
than Leathwick et al.'s (2011) could also be attable to the different sample sizes
(Guisan and Zimmermann 2000). Deviance explaindgbgaend to decrease with a
greater number of observations and a smaller nuofiqrameters (Guisan and
Zimmermann 2000).

For this study, deviance explained values withgiae-taxon pairs are directly
comparable, as models with different variable st fit using the same site pairs. The
consistent increase in deviance explained when lmadgduded field-measured variables
supports the hypothesis that field-measured vasaykeld more explanatory models than
derived variables. Indeed, the observed higherashea explained of models built with

field-measured variables is especially compelliagause the group of derived variables
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used in this study was comparatively large and istipated, and represents an extension
of variables previously used in community-leveeatn biodiversity models (e.g.,
Leathwick et al. 2011, Snelder et al. 2012). Irtipalar, the base stream map is more
realistic than the NHD (Elmore et al. 2013), anel skream burial metrics (Elmore and
Kaushal 2008) and land use inverse weighting (Beteet al. 2011) are relatively novel.
The theoretical explanation for the greater exglanygoower of field-measured
variables is that they tend to be more physioldbjicalevant and therefore more closely
related to taxon distributions. In contrast, mastved variables are relevant to biota via
potentially varying relationships with more proxindgivers. The nature of stream
networks might also have contributed to the highgranatory power of field-measured
variables: the dendritic shape and integrative neabfi streams makes deriving variables
challenging. Specifically, interpolation of streameasurements must take into
consideration directionality (Peterson et al. 20t8pfluence locations (Benda et al.
2004), and connectivity (Grant et al. 2007); myrsadall, ephemeral, or intermittent
channels have been traditionally difficult to maging remote sensing tools alone
(Elmore et al. 2013); and predictor variables nohstracterize both upstream and local
drivers of biotic distributions (Morley and Karr @D, Kratzer et al. 2006, Urban et al.
2006, Stanfield and Kilgour 2013). The importantermvironmental influences on biotic
distributions at multiple scales, in particularhighlighted by the poor explanatory

power of local derived variables compared to acdated derived variables.
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Parsimony

AIC demonstrated that not only do field-measureriades result in more
explanatory models, they also typically produce enmarsimonious models. The only
exception was the Coastal Plain benthic invertelstdbr which the model fit with local
derived variables (L) had the greatest AIC suppidits model had lower deviance
explained and predictive ability than its compamoeodels, but also had many fewer
parameters — ten compared to other models with tharetwice that number — and AIC
and deviance explained values among the models nekxtévely close.

The Coastal Plain is the region of Maryland witaserelief (Reger and Cleaves
2008). As a result, it is the region where theastrenap, which depended heavily on flow
direction modelling based on a hydrologically-coteel DEM, is likely to be least
accurate. Map inaccuracies make drainage areasdiificelt to identify and
accumulated derived variables less reliable. Addélly, the Coastal Plain encompasses
some of the most urbanized areas in Maryland. Dingbination of high impervious
surface cover and elevated hydrological sensittatynperviousness (Utz et al. 2011)
likely results in greater surface runoff and insesflashiness (Paul and Meyer 2001,
Walsh et al. 2005), and field-measured variabléschvrepresent only the moment of
sampling, are not likely to characterize extrenvégh both accumulated derived and
field-measured variables potentially explainingsleslogical turnover in the Coastal
Plain, local variables could explain comparativ@lgre. This logic does not extend to
Coastal Plain fish models, for which a larger nundddocal derived variables was
selected and the accumulated derived and field-medsariables performed

comparatively better.
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Predictive ability

In the context of management, conservation, arndnason planning, the ability
of models to make predictions to unsurveyed looatis among their most important
attributes, as reliable predictions can amelioexqgensive, time consuming monitoring
programs that are the cornerstone of many conteemparanagement decisions
(Kristensen et al. 2012). Predictive ability of thedels in this study exhibited the same
pattern as deviance explained, with models inclgidield-measured variables being
most predictive. The average correlations betwémserwed and predicted Bray-Curtis
dissimilarities produced by models in this studyevelightly lower than those achieved
by other stream modeling studies (r = 0.37 to GoB8&ristensen et al. [2012], r = 0.64
for Usio [2007],p. = 0.30,paaL = 0.47 ancpe = 0.54 for this study), potentially because
others used Pearson correlations to assess atasisifi or single species predictions
rather than Spearman correlations to assess coryndissimilarity. Still, correlation
coefficients for A, AL, and F models were suffidigrhigh and percent errors
sufficiently low that these models could be uséiutelping to prioritize
conservation/restoration and in targeting monigeifforts. Conversely, models built

with only local derived variables may not be asfuise

I mportant individual variables

In addition to comparing field-measured and derivadables as sets, this
research illuminated some of the individual envimemtal characteristics that drive fish
and benthic invertebrate turnover in Maryland. Diesiine consistent superiority of

models built with field-measured variables in dega explained, AIC, and predictive
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ability, some individual derived variables alsofpemed well. Derived variables were
among the most common chosen by the backward melgmocedure, and a derived
variable was the second most important predictdreathic invertebrate community
turnover.

The mixture of field-measured and derived varialhest frequently selected by
GDM corresponds to the four regimes identified bglles et al. (2014) as “critical to
aquatic ecosystem functioning and diversity:” tloavfregime, the temperature regime,
the nutrient regime, and the sediment regime.rmgseof variables in this study, flow
regime was characterized by gradient and hydrogeaptwork position measures,
temperature regime by derived temperature, ansrsgdiregime by soils and substrate
variables. Land use characterized all four reginiis. differences between variables
chosen for the greatest number of fish and bemki&rtebrate models were slight, but
network position and temperature were chosen nwrish models, while land use was
chosen for more invertebrate models.

Network position (i.e. flow accumulation, dem10mpud&y have been chosen for
a greater number of fish models than benthic im@ete models because most fish,
unlike benthic invertebrates (Bilton et al. 2004g anable to disperse across land at any
stage in their life cycle. Additionally, fish areone likely to be limited by physical
channel size, given their greater mass. One woyda temperature and land use,
however, to be frequent predictors for turnovebbath taxa. Both Snelder et al. (2012)
and Leathwick et al. (2011) identified temperatgmean annual watershed temperature
and segment air temperature, respectively) asiablarthat strongly contributed to

benthic macroinvertebrate classifications, and Hasvkt al. (2000) concluded that the
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importance of latitude, longitude, and elevatioheir models suggested temperature as
a main driver of invertebrate composition. Fromechanistic standpoint, Anderson and
Cummins (1979) found that temperature influencadhie invertebrate metabolism,

food quality and quantity. Likewise, land use hasrbfound to be an important influence
on fish habitat via its effects on nutrients, comtzants, hydrology, sedimentation, and
cover (Allan 2004, Weijters et al. 2009, Peasd.€2GL1).

Though they were not among the most frequentlycsedevariables, however,
temperature was still a relatively common predictoinvertebrate turnover, and land use
was a relatively common predictor of fish turnovsycal derived surface air temperature
was chosen for five benthic invertebrate modelsHaMP_FLD, the field-measured
version, was chosen for eight (Appendix H). Derivezighted impervious surface area
was chosen for seven fish models. These variabégsnot have been selected more
frequently because they are an imperfect approxamatue conditions rather than
because the environmental characteristic they attémrepresent is not important: air
temperature only approximates stream temperatuohgkhi and Stefan 1999,
Hilderbrand et al. 2014), a single temperature megsent only approximates the
regime, and 2001 data from the National Land C@atabase only approximates cover
at the time of biotic sampling.

In addition to the quantifying the number of madier which predictors were
chosen, relative variable importance can be meddyresumming normalized I-spline
coefficients across regions (Fig. 5, Fitzpatriclale2011). Considering only FAL
models, the majority of the most important predistof community turnover were field-

measured. For benthic invertebrates, the three impstrtant variables were field-
43



measured conductance (COND_FLD), weighted accuedil@erived impervious surface
area (isa_fls_nor), and field-measured nitrate (NG®B). For fish, field-measured
stream gradient (ST_GRAD), field-measured pH (PHB)LAand field-measured stream
discharge (DischargeCFS) were most important. @radind pH were characterized by
both field-measured and derived variables; thatetsoskelected the field-measured
versions provides additional evidence for the ostgeriority of the field
measurements and corroborates the results of tdelrmomparisons.

Derived variables can also be important predictoosyever, even when they are
“competing” with field-measured variables in modélsr example, weighted impervious
surface area had the second greatest sum of kesphefficients of variables included in
benthic invertebrate models, corroborating publistiredings that impervious surface is a
strong predictor of mid-Atlantic stream assembla@@sg et al. 2005, Utz et al. 2009),
sensitive aquatic species (Stranko et al. 2008),‘stneam health” more generally (Goetz
et al. 2004).

Nonetheless, it is important to note that variatviportance can be contingent on
gradient length (Murphy 2010). For example, sitethe Youghiogheny region are
almost all highly forested, resulting in a shortefst gradient (Homer et al. 2007). If
forest cover does not emerge as an important gozdicthe Youghiogheny, it could be
because there is little forest cover turnover. Addally, variable importance can be
affected by the variable selection routine, an@ekivard selection procedure based on I-
splines fit holding all other variables constamtages variable interactions. If a

predictor’s influence on biotic distributions ispart dependent on its association with
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another predictor (i.e. sedimentation and nutrgamifaminant addition [Lemly 1982,

Magbanua et al. 2013)), the predictor may be ewasky eliminated.

Management inference: predicting indices of biotic integrity

When modeling IBIs instead of community dissimilarihe pervasive superiority
of the group of field-measured variables disappkadepending on the region and taxon
and with no discernable trend, field-measured Wéegwere better, worse, or equivalent
to derived variables in their ability to predicti$BTo the extent that management
decisions rely on IBIs, these results suggestttietlifference between field-measured
and derived variables would not have an apprecigfidet on management inference.
With mean Spearman correlations between MDNR-caledland predicted IBIs ranging
from 0.47 (F variables, Youghiogheny fish) to O(A& variables, Piedmont benthic
invertebrates) and mean percent errors from 20(FF ¥ariables, Youghiogheny benthic
invertebrates) to 35.9 % (F variables, Youghioghisty), both models built with field-
measured variables and with derived variables cbeldseful in informing management
decisions. In the future, it is possible that medmluld yield even higher correlations
between calculated and predicted IBIs if modeégians corresponded with the regions
for which Maryland IBIs were calibrated (includibgth warmwater and coldwater
Highlands for Maryland fish IBIs, etc., Southerlagtdal. 2005).

In a similar study that modeled a management-rekewveetric, Kristensen et al.
(2012) compared the abilities of field-measured-giream”) and derived (“cost-
effective GIS-derived”) variables to predict theeoaence of fish assemblages in Danish

streams. Kristensen et al.'s (2012) derived vagmblere comprised of only land use
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variables and measured at three spatial scalesfitid-measured variables were
comparable to those in this study. Though Kristareteal. (2012) found that models
including field-measured variables produced a siygmgher number of correct
classifications, they concluded that cost-effectieeved variable models were adequate
for targeting management efforts. Overall, reswikse similar: when predicting data
aggregated to a management-relevant scale, derareables performed similarly to field

variables.

Future model improvements

How can the explanatory power, predictive abilggd parsimony of future
stream biodiversity models be improved? The resuiggyest that the inclusion of field-
measured variables, or perhaps derived variabédtiter approximate field-measured
variables, would have a positive effect on eacthe$e metrics. Additionally, models
could likely be improved with the inclusion of cadalte variables reflecting past land
use, temporal trends, or extreme conditions (Hgrdiral. 1998, Zimmermann et al.
2007), as well as modeled stream temperature téilderbrand et al. 2014). Previous
research has considered multiple methods of weightpstream land use (e.g., Peterson
et al. 2011) and suggested that weighting schehwmsdd consider in-stream as well as
over-land flow distance (Van Sickle and Johnson8200

Beyond inclusion of additional covariates, modelald be improved with
increased taxonomic resolution: benthic invertedwan this study were identified to
family or genus, but species within those aggregatcould respond to different

environmental drivers (Hawkins et al. 2000) andnewéhin species, individuals are
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likely to exhibit varying tolerances (Clark et 2011). Multiple visits to survey sites
would be more likely to characterize typical asskgés, as fish and benthic
invertebrates are mobile taxa and may change totafssociated with juvenile dispersal
(Schlosser 1998, Jackson et al. 1999, Verberk €08B), seasonal migration (Todd and
Rabeni 1989, Bronmark et al. 2008), daily cyclesh(&ss and Haney 2006, Kobler et al.
2012), or within a season and without clear, pitathie pattern (Macneale et al. 2005,
Belica and Rahel 2008). Additionally, incorporatimindispersal abilities (Nekola and
White 1999, Grant et al. 2007) and biotic interaasi (Hutchinson 1957, Aradjo and
Rozenfeld 2013), frequently neglected in biodiigreiodels (Pearson and Dawson

2003), could improve model explanatory and predectbility.

Conclusions

Collectively, this research represents one of gvedmpirical tests of the
proximal/distal theory in stream systems. It elaté$ some of the drivers of stream beta
diversity in Maryland and provides a basis for lfiert predictive Maryland stream
biodiversity modeling. Field-measured variablesenguperior to derived variables in
explanation and prediction of fish and benthic melerate community turnover, and they
almost always produced more parsimonious modelaieder, some derived variables
were also important, and there was little diffeebetween the variable sets in terms of
prediction of aggregated, management-relevant @sdid biotic integrity. The results
broadly corroborate the theory that proximal vaealare more robust predictors than
distal predictors, but also support the use of ibEdity models built with derived

variables in IBl-based management decisions.
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ADDENDUM

| believe this work will be a useful addition to Méand stream biodiversity
research and the broader predictor variable lieeatMy largest struggle in completing it
was with the optimization algorithibynamicFOAM (the Dynamic Framework for
Occurrence Allocation in MetacommunitieBynamicFOAM uses predictions from an
alpha diversity model, predictions from a beta tsity model (e.g., GDM), a value of
gamma diversity, and available community compositiata to predict biotic
composition at all locations in the study regiorofddny et al. 2011). | hoped to apply
DynamicFOAM because | felt that predictions of communitynposition would be a
useful addition to predictions of compositionalnower from a management standpoint.
However,DynamicFOAM had never been applied to a dendritic systefore, and
results, when obtained, were nearly nonsensicel.ubclear whether this was a failure in
the input files or the algorithm, but it was impib$s to troubleshoot thoroughly from a
graphical user interface. ADynamicFOAM results were omitted from the final
document.

Another struggle was conceptually to unite the prat/distal theory with the
reality of field-measured and derived variable skts true that these are not exactly the
same, but | believe that field-measured and denwzthbles represent the most
management-relevant analogs to proximal and distgébles, and that focusing on them
provided more useful results in terms of model ss®ent and future variable derivation
efforts.

Were | to begin this project again, | would makeesal small adjustments in the

methods. First, | would use multiple community-lewvedeling techniques to assure that
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the results demonstrate true differences betweeabla sets rather than an artifact of the
modeling framework. | would also not have includagtlidean distance as a predictor, as
it is likely less useful in streams than networktdnce (Rouquette et al. 2013). | would
have assessed variable correlations all at oncaenods the entire state rather than by
variable group and within region, so that all medebuld have started with the same
candidate variable pool and been more comparahke difawback of a comprehensive
correlation assessment is that correlations coelcegionally-dependent, but
interpretation would have been simpler. | wouldsidar partitioning beta diversity into
its species turnover and nestedness componentsh wiould allow assessment of the
underlying nature of community turnover (Baselgad@0Finally, | would explore
options for variable selection techniques beyorzkWard selection, which is not an
optimal procedure (Duarte Silva 2001). There acenti@any variables to try all possible
subsets (Hocking 1976), but perhaps Furnival andMis (1974) branching and
bounding algorithm could be applied in a GDM franoekv

| do not expect that these improvements would cedhg conclusions of this
research because | do not believe that they wdtddtae directional relationships
between models built with different variable s&ather, they could refine understanding
of mechanism, facilitate interpretation, and inseethe total explanatory and predictive

power of the models.
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APPENDICES

Appendix A. Fish considered native and non-native in anahggi®ons, based on the
USGS database for Nonindigenous Aquatic SpecieddtlStates Geological Survey
2014), NatureServe (2014), Southerland et al. 28@%anko et al. 2010, and expert
advice. “1” denotes native and “0” denotes nonveati

Coastal

Species Youghiogheny Highlands Piedmont Plain
ALEWIFE 0 1 1 1
AMERICAN BROOK LAMPREY 0 0 1 1
AMERICAN EEL 0 1 1 1
AMERICAN SHAD 0 0 1 1
ATLANTIC NEEDLEFISH 0 0 1 1
BANDED DARTER 0 0 0 0
BANDED KILLIFISH 0 1 1 1
BANDED SUNFISH 0 0 0 1
BAY ANCHOVY 0 0 0 0
BLACK CRAPPIE 1 0 0 0
BLACKBANDED SUNFISH 0 0 1 1
BLACKNOSE DACE 1 1 1 1
BLUE RIDGE SCULPIN 0 1 1 1
BLUEBACK HERRING 0 0 1 1
BLUEGILL 1 0 0 0
BLUESPOTTED SUNFISH 0 0 1 1
BLUNTNOSE MINNOW 1 1 1 1
BROOK TROUT 1 1 1 1
BROWN BULLHEAD 1 1 1 1
BROWN TROUT 0 0 0 0
CENTRAL STONEROLLER 1 1 1 1
CHAIN PICKEREL 0 1 1 1
CHANNEL CATFISH 1 0 0 0
CHECKERED SCULPIN 0 1 1 1
COMELY SHINER 0 1 1 1
COMMON CARP 0 0 0 0
COMMON SHINER 1 1 1 1
CREEK CHUB 1 1 1 1
CREEK CHUBSUCKER 1 1 1 1
CUTLIP MINNOW 0 1 1 1
CUTTHROAT TROUT 0 0 0 0
EASTERN MOSQUITOFISH 0 0 1 1
EASTERN MUDMINNOW 0 1 1 1
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Species

Coastal

Youghiogheny Highlands Piedmont Plain

EASTERN SILVERY MINNOW

FALLFISH

FANTAIL DARTER
FATHEAD MINNOW
FLATHEAD CATFISH
FLIER

GIZZARD SHAD
GLASSY DARTER
GOLDEN REDHORSE
GOLDEN SHINER
GOLDFISH

GREEN SUNFISH
GREENSIDE DARTER
INLAND SILVERSIDE
IRONCOLOR SHINER
JOHNNY DARTER
LARGEMOUTH BASS
LEAST BROOK LAMPREY
LOGPERCH
LONGEAR SUNFISH
LONGNOSE DACE
LONGNOSE GAR
MARGINED MADTOM
MOTTLED SCULPIN
MUD SUNFISH
MUMMICHOG
NORTHERN HOGSUCKER
ORIENTAL WEATHERFISH
PEARL DACE

PIRATE PERCH
POTOMAC SCULPIN
PUMPKINSEED
QUILLBACK

RAINBOW DARTER
RAINBOW TROUT
REDBREAST SUNFISH
REDEAR SUNFISH
REDFIN PICKEREL
RIVER CHUB
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Coastal

Species Youghiogheny Highlands Piedmont Plain
ROCK BASS 1 0 0 0
ROSYFACE SHINER 1 1 1 1
ROSYSIDE DACE 0 1 1 1
SATINFIN SHINER 0 1 1 1
SEA LAMPREY 0 1 1 1
SHIELD DARTER 0 1 1 1
SHORTHEAD REDHORSE 0 1 1 1
SILVERJAW MINNOW 1 1 1 1
SMALLMOUTH BASS 1 0 0 0
SPOTFIN SHINER 0 1 1 1
SPOTTAIL SHINER 0 1 1 1
STONECAT 1 0 0 0
STRIPEBACK DARTER 0 1 1 1
STRIPED BASS 0 1 1 1
STRIPED SHINER 1 0 0 0
SWALLOWTAIL SHINER 0 1 1 1
SWAMP DARTER 0 0 1
TADPOLE MADTOM 0 0 1 1
TESSELLATED DARTER 0 1 1 1
WALLEYE 0 0 0 0
WARMOUTH 0 0 0 0
WHITE CATFISH 0 1 1 1
WHITE CRAPPIE 1 0 0 0
WHITE PERCH 0 1 1 1
WHITE SUCKER 1 1 1 1
YELLOW BULLHEAD 1 1 1 1
YELLOW PERCH 1 1 1 1
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Appendix B. Intra-group Pearson and Spearman variable caoeta® |0.7|. Outlines

delineate groups of correlated pairs that havealabes in common. Chosen variables are

in italicized bold font, others were omitted.

Field-measured variables

Youghiogheny, Field-measured

Piedmont, Field-measured Variablg

S

Variables
COND_FLD COND_LAB
RIFFQUAL EPI_SUB
MAXDEPTH POOLQUAL
AVGTHAL MAXDEPTH
MAXDEPTH VEL_DEPTH
ANC_LAB PH_LAB
AVGWID DischargeCFS

Highlands, Field-measured

Variables
PH_FLD PH_LAB
PH_FLD ANC_LAB
COND_FLD COND_LAB
COND_FLD SO4_LAB
ANC_LAB PH_LAB
ANC_LAB COND_LAB
SO4_LAB COND_LAB
COND_FLD ANC_LAB
VEL_DPTH INSTRHAB
POOLQUAL INSTRHAB
RIFFQUAL INSTRHAB
POOLQUAL VEL_DPTH
MAXDEPTH VEL_DPTH
AVGTHAL VEL_DPTH
MAXDEPTH POOLQUAL
AVGTHAL POOLQUAL
AVGTHAL MAXDEPTH
AVGTHAL AVGWID
VEL_DPTH DischargeCFS
RIFFQUAL DischargeCFS
AVGWID DischargeCFS
AVGTHAL DischargeCFS
AVG_VEL DischargeCFS

AVGWID DischargeCFS
AVGTHAL AVG_WID
POOLQUAL VEL_DPTH
MAXDEPTH VEL_DPTH
MAXDEPTH POOLQUAL
AVGTHAL MAXDEPTH
VEL_DPTH DischargeCFS
AVGTHAL DischargeCFS
AVGTHAL VEL_DPTH
POOLQUAL AVGTHAL
EPI_SUB INSTRHAB
ANC_LAB PH_LAB
ANC_LAB COND_LAB
COND_FLD COND_LAB
SO4 LAB ANC_LAB
COND_FLD ANC_LAB
Coastal Plain, Field-measured
Variables
PH FLD PH_LAB
ANC_LAB PH_LAB
ANC_LAB COND_LAB
SO4 LAB COND_LAB
COND_FLD SO4_LAB
COND_FLD COND_LAB
COND_FLD ANC_LAB
EPI_SUB INSTRHAB
POOLQUAL INSTRHAB
POOLQUAL VEL_DPTH
MAXDEPTH POOLQUAL
AVGTHAL POOLQUAL
AVGTHAL MAXDEPTH
MAXDEPTH VEL_DPTH
AVGWID DischargeCFS
AVGTHAL AVGWID
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Local derived variables

Youghiogheny, Local Derived

Variables
ph_loc bd_loc
str_blen_loc isa_loc
bp_2001 isa_loc
bp_2001 str_blen_loc
str_len_loc str_blen_loc

Highlands, Local Derived Variable

7

ph_loc bd_loc
for_loc cc_loc
str_blen_loc isa_loc
bp_2001 isa_loc
bp_2001 str_blen_loc
str_len_loc str_blen_loc
Piedmont, Local Derived Variable
ph_loc bd_loc
str_blen_loc isa_loc
bp_2001 isa_loc
bp_2001 str_blen_loc
str_len_loc str_blen_loc
Coastal Plain, Local Derived
Variables
ph_loc bd_loc
str_blen_loc isa_loc
bp_2001 isa_loc
bp_2001 str_blen_loc
str_len_loc str_blen_loc

Accumulated derived variables

Youghiogheny, Accumulated
Derived Variables

cc_acc ag_acc
for_acc ag_acc
ag_fls_nor ag acc
for_acc cc_acc
for_fls nor cc_acc
for_fls nor for_acc
for_fls nor ag_fls_nor
for_fls nor cc_fls_nor
str_bp_acc isa_acc
isa_fls nor isa_acc
str_blen_den isa_acc
isa_fls nor str_bp_acc

str_blen_den Igir acc

str_blen_den isa fls nor
str_den str_bp_acc
str_den str_blen_den
sicl_acc kfw_acc
prof_acc plan_acc
str_len_acc str_blen_acc
demlOmad8 str_blen_acc
deml0mad8 str_len_acc
wet fls nor  wet_acc
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Accumulated derived variables, continued

Highlands, Accumulated Derived Piedmont, Accumulated Derived
Variables Variables
cc_acc_loc ag_acc str_bp_acc isa_acc
for_acc_loc ag_acc isa fls nor isa_acc
ph_acc ag_acc str_blen_den isa_acc
dp_acc ag_acc isa_fls nor str_bp_acc
ag_fls_nor ag_acc str_blen_den str_bp_acc
cc_fls_nor ag_acc str_blen_den isa fls nor
for_fls nor ag_acc str_len_acc str_blen_acc
for_acc cc_acc dem10mad8 str_blen_acc
slp_acc cc_acc dem10mad8 str_len_acc
ag_fls_nor cc_acc wet fls nor wet_acc
cc_fls_nor cc_acc for_fls nor cc_fls_nor
for_fls nor cc_acc ag_fls nor ag_acc
dp_acc for_acc ph_acc bd_acc
ag_fls_nor for_acc for_acc cc_acc
cc_fls_nor for_acc plan_acc prof_acc
for fls nor for acc Coastal Plain, A_ccumulated Derive
- = - Variables

cc_fls_nor ag_fls_nor ph_acc bd_acc
for_fls nor ag_fls_nor for_acc cc_acc
for_fls nor cc_fls_nor isa_acc for_acc
isa_acc for_acc str_bp_acc isa_acc
for_fls nor isa_acc isa fls nor isa_acc
isa_fls_nor isa_acc isa_acc_loc cc_acc
isa_fls_nor for_fls nor str_blen_den isa_acc
sicl_acc kfw_acc isa_fls nor str_bp_acc
prof_acc plan_acc str_blen_den isa fls nor
str_len_acc str_blen_acc str_blen_den str_bp_acc
dem10mad8 str_blen_acc prof_acc plan_acc
dem10mad8 str_len_acc str_len_acc str_blen_acc
wet_fls nor wet_acc dem10mad8 str_blen_acc
str_blen_den isa_fls_nor dem10mad8 str_len_acc
str_bp_acc sat_acc wet_fls_nor for_fls nor
str_blen_den str_bp_acc wet_fls_nor wet_acc

ag_fls nor ag_acc

str_den slp_acc
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Appendix C. Inter-group Pearson and Spearman variable cowaktt |0.7|. A candidate
variable change of NA indicates that despite tlwssigroup correlation, no action was
taken. This occurred when the less-relevant cagétathe pair had previously been

omitted due to presence in another correlated group

Candidate Variables

Correlate 1 Correlate 2 Change
Youghiogheny | isa_fls_nor str_blen_loc NA
isa_fls_nor isa_loc NA
Local & sat_acc sat_loc omit sat_acc
Accumulated | Highlands cc_fls_nor cc_loc NA
Derived sat_acc sat_loc omit sat_acc
Variables Piedmont kfw_acc kfw_loc omit kfw_acc
sat_acc sat_loc omit sat_acc
Coastal Plain sat_acc sat_loc omit sat_acc
Local Derived | Youghiogheny | NA NA NA
& Field- Highlands NA NA NA
measured | Piedmont NA NA NA
Variables Coastal Plain NA NA NA
Accumulated | Youghiogheny | DischargeCFS  deml10mad8 omit deml10mad8
Derived & Highlands NA NA NA
Field-measured Piedmont DischargeCFS  dem10Omad8 omit dem10mad8
Variables Coastal Plain NA NA NA
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Appendix D. AICs compared for GDMs with all seven variable sa&sIC shows the difference between the current maddlthe
best model, marked with a star (*). Al@re AIC weights, and K is the number of paramdtmreach model. Variable codes: L =
local derived, A = accumulated derived, F = fieldasured.

Youghiogheny Highlands Piedmont Coastal Plain
Models| AIC AAIC AIC, K AIC AAIC AIC,, K AIC AAIC AIC,, K AIC AAIC AIC,, K
L 2376.1 393.7 000 4 97310 849.3 0.00 |14 658927271.7 0.00 9| 179855 1190.0 0.00 17
A 2157.3 1749 000 20 93999 518.2 0.00 |9 61527307.4 0.00 13 173123 516.7 0.00 25
AL 21723 189.9 0.00 19 93625 480.7 0.00 |14 612172996.8 0.00 12 17290.0 4944 0.00 28
Fish F 20422 59.8 0.00 1p 9057.1 1753 0.00 |18 5931225 0.00 17 16916.1 1205 0.00 27
FL 2026.2 43.8 0.00 19 8997.2 1155 0.00 |24 58986365.8 0.00 20 16910.0 1144 0.00 29
FA 1988.3 5.9 0.05 26 8885.8 40 0.12 |25 58467.0 .646 0.00 25 16795.6* 0.0 1.00 34
FAL 1982.4* 0.0 0.95 24 8881.8* 0.0 0.88 28 58420.5 0.0 1.00 25| 16828.7 33.1 0.00 31
L 16534 31.0 000 § 79011 133.6 0.00 |15 36853.132.2 0.00 14 9593.0* 0.0 0.97 10
A 1637.7 153 0.00 14 78257 582 0.00 |12 36704.23.48 0.00 17, 9601.9 8.9 0.01 22
Benthic AL 1636.2 137 000 16 78184 51.0 0.00 (11 36692.771.8 0.00 22 9602.2 9.2 0.01 21
Inverts F 1627.6 5.1 0.03 1y 7800.1 32,6 0.00 |15 36678.0 .2570.00 26| 9603.6 106 0.01 28
FL 1625.1 2.7 0.11 18 77986 311 0.00 |18 36675.44.65 0.00 25 9609.4 164 0.00 30
FA 1622.4* 0.0 0.43 19 77675* 0.0 090 [6 36620.8*0.0 094 29 9607.0 139 0.00 28
FAL 1622.4* 0.0 043 19 77718 43 010 [13 36626.45.6 0.06 28 9613.8 20.7 0.00 29
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Appendix E. Predicted vs. observed compositional dissimildotyall generalized d|SS|m|Iar|ty models, ploteith best-fit line
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Appendix F. Statistically significant differences in GDM alylito predict Bray-Curtis
dissimilarity measured using (a) Spearman coraaatbetween predicted and observed
dissimilarities and (b) percent error. Hatcheddéhotes model pairs that were
significantly different. Variable codes: L = loa#¢rived, A = accumulated derived, F =
field-measured.
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Appendix G. Variables included in final GDMs, ordered by imfaorice as assessed by the sum of I-spline coefécigi is
the most important variable. Region codes: Y = Yoagheny, H = Highlands, P = Piedmont, CP = Cod3f&h. Taxon
codes: F = fish, B = benthic invertebrates. Vaeatdes: L = local derived, A = accumulated derjved field-measured.

Region | Y Y H H P P CP CP

Taxon F B F B F B F B

Vars L L L L L L L

V1 plan_loc sicl_loc sat_loc bp_2001 Geographic 2001 bp_2001 Geographic
V2 Geographic  bp_2001 bp_2001 ph_loc sat_loc sat_lo Geographic bp_2001
V3 Geographic  ph_loc sat_loc sicl_loc sicl_loc r_En_loc kfw_loc

V4 cc_loc sicl_loc Geographic brd_loc Geographic kfw_loc str_len_loc
V5 str_len_loc ag_loc bp_2001 brd_loc sicl_loc cc_loc

V6 Geographic wet_loc str_len_loc ag_loc

V7 brd_loc sicl_loc ph_loc for_loc

V8 plan_loc slp_loc ag_loc sat_loc

V9 brd_loc

Region | Y Y H H P P CP CP

Taxon F B F B F B F B

Vars A A A A A A A

V1 demlOmad8 isa fls nor demlOmad8 sicl_acc demd8®ma demlOmad8 ag_fls_nor plan_acc
V2 brd_acc slp_acc brd_acc bd_acc sat_acc str_den eml@mnad8 isa_fls_nor
V3 prof_acc bd_acc str_blen_den for_fls_nor for_acc sat_acc wet_acc brd_acc
V4 isa_fls nor ag_acc sat_acc str_blen_den sicl acc isa_fls_nor sat_acc Geographic
V5 sat_acc wet_fls_nor Geographic demlOmad8  Gebgrap for_acc isa_fls_nor ph_acc

V6 bd_acc Geographic brd_acc brd_acc slp_acc afor dem10mad8
V7 slp_acc Geographic ag_fls_nor ph_acc fc_a

V8 str_den Geographic kfw_acc wet_acc
V9 ag_acc brd_acc Geographic ag_fls_nor
V10 Geographic brd_acc kfw_acc
V11l confluence_num

V12 sicl_acc
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V13 plan_acc

V14 for_fls_nor

Region | Y Y H H P P CP CP

Taxon F B F B F B F B

Vars AL AL AL AL AL AL AL AL

V1 demlOmad8 isa fls nor demlOmad8 sicl_acc demd8ma str_den ag_fls_nor prof_acc
V2 str_den bd_acc bp_2001 bp_2001 for_acc dem10mad8em10mad8 brd_acc

V3 brd_acc slp_acc sat_loc str_blen_den sicl _acc t lega bp_2001 Geographic
V4 isa_fls_nor sicl _loc brd_acc for_fls_nor Geodriap for_acc wet_acc ph_acc

V5 bd_acc ag_acc str_blen_den demlOmad8  sat_loc 206p Geographic isa_fls_nor
V6 prof_acc wet_fls_nor sicl_acc brd_acc brd_acc cl_kc ph_acc deml10mad8
V7 plan_loc Geographic  Geographic Geographic a&p_ for_acc for_acc

V8 sat_loc cc_loc isa_fls_nor prof_acc wet ac
V9 slp_acc ag_fls_nor str_len bp_ 2001
V10 Geographic Geographic kfw_acc ag_fls_no
V11l brd_acc isa_fls_nor kfw_acc
V12 brd_acc

V13 sicl_acc

V14 for_fls_nor

V15 sat_loc

Region | Y Y H H P P CP CP

Taxon F B F B F B F B

Vars F F F F F F F F

Vi PH_LAB DO_FLD ST_GRAD COND_FLD PH_LAB NO3_LAB BchargeCFS COND_FLD
V2 ST_GRAD NO3_LAB TEMP_FLD PH_FLD SO4_LAB SO4_LAB MAXDEPTH Geographic
V3 NO3_LAB PH_LAB DischargeCFS NO3_LAB DischargeCFSEMP_FLD DOC_LAB TEMP_FLD
V4 AVGTHAL ST_GRAD DO_FLD ST_GRAD MAXDEPTH AESTHET PH_FLD INSTRHAB
V5 Geographic SO4_LAB DOC_LAB SHADING COND_FLD EMBBED TEMP_FLD PH_FLD

V6 AESTHET INSTRHAB Geographic ST_GRAD PH_LAB Geaphic AVG_VEL
V7 RIFFQUAL COND_FLD EMBEDDED Geographic COND_FLD COND_FLD RIFFQUAL
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V8 Geographic  Geographic RIFFQUAL DischargeCFSHADING AESTHET
V9 ST_GRAD AESTHET DOC_LAB
V10 Geographic NO3_LAB NO3_LAB
Vi1 INSTRHAB INSTRHAB DO_FLD
V12 AVG_VEL ST_GRAD MAXDEPTH
V13 RIFFQUAL

Region | Y Y H H P P CP CP

Taxon F B F B F B F B

Vars FL FL FL FL FL FL FL FL

Vi PH_LAB DO_FLD ST_GRAD COND_FLD PH_LAB NO3_LAB BthargeCFS COND_FLD
V2 ST_GRAD PH_LAB TEMP_FLD PH_FLD DischargeCFS SQAB MAXDEPTH Geographic
V3 NO3_LAB NO3_LAB bp_2001 bp_2001 SO4_LAB EMBEDDEDDOC_LAB TEMP_FLD
V4 AVGTHAL bp_2001 DischargeCFS ST_GRAD MAXDEPTH tdac PH_FLD PH_FLD

V5 SO4_LAB  SO4_LAB  sat_loc NO3_LAB COND_FLD TEMP_BL TEMP_FLD INSTRHAB
V6 sat_loc ST GRAD DO _FLD ph_loc ST_GRAD Dischar§&C Geographic AVG_VEL
V7 plan_loc RIFFQUAL DOC_LAB Geographic Geographic sicl_loc COND_FLD kfw_loc

V8 bp_2001 DOC_LAB INSTRHAB SHADING sat_loc AESTHET NO3_LAB bp_2001

V9 Geographic AESTHET COND_FLD EMBEDDED RIFFQUAL SVYRHAB SHADING RIFFQUAL
V10 Geographic MAXDEPTH ST_GRAD bp_2001 DO@B.
V11 ph_loc PH_LAB INSTRHAB NO3_LAB
V12 Geographic Geographic ST_GRAD AESTHET
V13 AESTHET DO_FLD
Vi4 MAXDEPTH
Region | Y Y H H P P CP CP

Taxon F B F B F B F B

Vars FA FA FA FA FA FA FA FA

V1 PH_LAB isa_fls nor ST _GRAD PH_FLD PH_LAB NO3_LAB ag_fls_nor COND_FLD
V2 ST_GRAD DO_FLD dem10mad8 COND_FLD SO4_LAB SO4BA MAXDEPTH TEMP_FLD
V3 SO4_LAB PH_LAB DO_FLD sicl_acc DischargeCFS dgn PH_FLD INSTRHAB
V4 NO3 LAB hd_acc TEMP_FLD ST _GRAD MAXDEPTH sat acc DischargeCFS Geographic
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V5 prof_acc for_fls_ nor str_den for_fls_nor sat_acc TEMP_FLD sat_acc ph_acc

V6 isa_fls nor SO4 LAB sat acc str_blen_den ST_GRAD EMBEDDED demlOmad8 isa_fls_nor
V7 slp_acc ST_GRAD DOC_LAB SHADING COND_FLD ST _GRAD DOC_LAB PH_FLD

V8 str_den slp_acc INSTRHAB brd_acc Geographic doc_ kfw_acc AVG_VEL
V9 brd_acc RIFFQUAL COND_FLD  Geographic RIFFQUAL  dohargeCFS ph_acc for_acc
V10 sat_acc Geographic  brd_acc isa_fls_nor flsanor RIFFQUAL
V11 AVGTHAL DischargeCFS PH_LAB TEMP_FLD defrhad8
V12 Geographic Geographic AVG_VEL wet_acc _lack

V13 slp_acc SHADING

V14 AESTHET for_acc

V15 RIFFQUAL INSTRHAB

V16 brd_acc Geographic

V17 Geographic

Region | Y Y H H P P CP CP

Taxon F B F B F B F B

Vars FAL FAL FAL FAL FAL FAL FAL FAL

Vi ST_GRAD isa_fls_nor ST_GRAD PH_FLD PH_LAB NO3_BA ag_fls_nor COND_FLD
V2 PH_LAB DO _FLD deml0Omad8 bp_2001 DischargeCFS 3@8 MAXDEPTH prof_acc

V3 SO4_LAB  PH_LAB bp_2001 COND_FLD SO4_LAB str_den PH_FLD TEMP_FLD
V4 isa_fls nor bd_acc DO_FLD sicl_acc MAXDEPTH dat_ DischargeCFS ph_acc

V5 brd_acc for_fls nor TEMP_FLD ST_GRAD ST_GRAD TEMFLD deml1l0Omad8 INSTRHAB
V6 NO3 LAB SO4 LAB sat_loc for_fls_nor COND_FLD id#s_nor DOC_LAB Geographic
V7 prof_acc ST _GRAD brd_acc brd_acc for_acc EMBEDDE bp_2001 AVG_VEL
V8 sat_loc slp_acc str_den Geographic sat_loc SRR ph_acc isa_fls_nor
V9 slp_acc RIFFQUAL INSTRHAB Geographic for_acc ENIP_FLD kfw_loc

V10 AVGTHAL Geographic DOC_LAB RIFFQUAL Discharg&S SHADING RIFFQUAL
V11 Geographic COND_FLD TEMP_FLD slp_acc forc ac PH_FLD
V12 DischargeCFS brd_acc AVG_VEL Geographic  or_acc

V13 Geographic RIFFQUAL kfw_acc brd_acc
V14 brd_acc wet_acc

V15 Geographic
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Appendix H. Total number of GDMs for which variables were stdd. For each taxon, a
variable was a candidate for 16 models (i.e. anrmactated variable could have been in
A, AL, FA, and FAL models in four regions). Variabtodes: L = local derived, A =

accumulated derived, F = field-measured.

Number of models
for which selected

Number of models
for which selected

Variable BENTHIC FISH Variable BENTHIC FISH
ST_GRAD 12 14 str_len local 2 3
brd accumulated 12 13 str_blen_den accumulate 3 2
bp_2001 local 11 10 ph local 3 2
COND_FLD 9 10 MAXDEPTH 2 2
deml10mad8 accumulate 7 12 AVGTHAL 0 4
isa_fls_nor spatial _ plan local

- = accumulated 12 0 4
sat local 5 13 kfw local 3 1
TEMP_FLD 8 9 brd local 2 2
DischargeCFS 4 12 cc local 3 0
NO3_LAB 10 6 ag local 2 1
RIFFQUAL 11 4 ag accumulated 2 1
PH_LAB 7 8 plan accumulated 1 1
SO4_LAB 8 J| wetfisnor PR e 2 0
for accumulated 8 7 slp local 1 0
INSTRHAB 6 7 confluence_num accumulate| 0 1
PH_FLD 8 4 for local 0 1
slp accumulated 8 4 wet local 1 0
DOC_LAB 3 8 EPI_SUB 0 0
DO_FLD 6 4 VEL_DPTH 0 0
sat accumulated 2 8 POOLQUAL 0 0
AESTHET 7 2 AVGWID 0 0
str_den accumulated 4 5 COND_LAB 0 0
sicl local 6 3 ANC_LAB 0 0
sicl accumulated 4 5 prof local 0 0
for_fls_nor Zggltﬂulated 6 ] dem10mp local 0 0
ag_fls_nor spatial accumulated

— = accumulated 4 4 str_len 0 0
SHADING 3 4 str_blen local 0 0
AVG_VEL 7 0 str_ben accumulated 0 0
prof accumulated 2 5 str_bp accumulated 0 0
bd accumulated 5 2 isa local 0 0
EMBEDDED 6 0 isa accumulated 0 0
wet accumulated 2 4 cc accumulated 0 0

accumulated cc_fls_nor spatial
kfw 2 4 — = accumulated 0 0
ph accumulated 4 2 bd local 0 0

65



LITERATURE CITED

Akaike, H. 1974. A new look at the statistical mbidentification. IEEE Transactions on
Automatic Control 19:716—723.

Allan, J. D. 2004. Landscapes and Riverscapesifitheence of Land Use on Stream
Ecosystems. Annual Review of Ecology, Evolutiord &ystematics 35:257-284.

Anderson, N. H., and K. W. Cummins. 1979. Influenoédiet on the life histories of
aguatic insects. Journal of the Fisheries Boa@arfada 36:335-342.

Araujo, M. B., and A. Guisan. 2006. Five (or soalénges for species distribution
modelling. Journal of Biogeography 33:1677—1688.

Araujo, M. B., and A. Rozenfeld. 2013. The geogiasicaling of biotic interactions.
Ecography:001--010.

Austin, M., and K. P. Van Niel. 2011. Improving ses distribution models for climate
change studies: variable selection and scale: 8pégstribution models for
climate change studies. Journal of Biogeograph$-38:

Austin, M. P. 1980. Searching for a model for usgegetation analysis. Vegetatio
42:11-21.

Austin, M. P. 2002. Spatial prediction of speciesgtribution: An interface between
ecological theory and statistical modelling. Ecadaggmodelling 157:101-118.

Barton, K. 2014. MuMIn: Multi-model inference. Rgkage version 1.10.0.
http://CRAN.R-project.org/package=MuMIn.

Baselga, A. 2010. Partitioning the turnover andedisess components of beta diversity:
Partitioning beta diversity. Global Ecology and ggography 19:134-143.

Belica, L. A. T., and F. J. Rahel. 2008. Movemaritsreek chubs, Semotilus
atromaculatus, among habitat patches in a plaiearst Ecology of Freshwater
Fish 17:258-272.

Benda, L., N. L. Poff, D. Miller, T. Dunne, G. Ra=y G. Pess, and M. Pollock. 2004.
The network dynamics hypothesis: how channel nédsvstructure riverine
habitats. BioScience 54:413-427.

Bilton, D. T., J. R. Freeland, and B. Okamura. 2@ispersal in Freshwater
Invertebrates. Annual Review of Ecology and Systars&2:159-181.

66



Boesch, D. F., R. B. Brinsfield, and R. E. Magni2@01. Chesapeake Bay
Eutrophication. Journal of Environmental Quality 3TB—-320.

Borcard, D., P. Legendre, and P. Drapeau. 1992abkiag out the Spatial Component of
Ecological Variation. Ecology 73:1045.

Boward, D. M., and E. Friedman. 2011. Maryland tgptal stream survey laboratory
methods for benthic macroinvertebrate processinigg@axonomy. Maryland
Department of Natural Resources.

Braunisch, V., J. Coppes, R. Arlettaz, R. Suchdnchmid, and K. Bollmann. 2013.
Selecting from correlated climate variables: a magurce of uncertainty for
predicting species distributions under climate gearEcography 36:971-983.

Breiman, L. 2001. Random Forests. Machine LearAb§—32.

Bronmark, C., C. Skov, J. Brodersen, P. A. Nilsssord L.-A. Hansson. 2008. Seasonal
Migration Determined by a Trade-Off between Predatmidance and Growth.
PLoS ONE 3:e1957.

Christmas, J., R. Eades, D. Cincotta, A. ShielsyviRer, J. Siemien, T. Sinnott, and P.
Fuller. 2001. History, management, and statustobduced fishes in the
Chesapeake Bay basin. Pages 97-+41®. D. Therres, editor. Proceedings of
Conservation of Biological Diversity: A Key to tiiestoration of the Chesapeake
Bay Ecosystem and Beyond, May 10-13, 1998. Maryepartment of Natural
Resources.

Clark, J. S., D. M. Bell, M. H. Hersh, M. C. Kwk, Moran, C. Salk, A. Stine, D. Valle,
and K. Zhu. 2011. Individual-scale variation, spsescale differences: inference
needed to understand diversity: Individual-scaleatian, species-scale
differences. Ecology Letters 14:1273-1287.

Cord, A. F., R. K. Meentemeyer, P. J. Leitdo, ani¥dclavik. 2013. Modelling species
distributions with remote sensing data: bridgingcglinary perspectives. Journal
of Biogeography 40:2226-2227.

Dettinger, M. D., and H. F. Diaz. 2000. Global dweristics of stream flow seasonality
and variability. Journal of Hydrometeorology 1:28%0.

Dodds, W. K., W. H. Clements, K. Gido, R. H. Hildeaind, and R. S. King. 2010.
Thresholds, breakpoints, and nonlinearity in frestans as related to
management. Journal of the North American Benthold@ociety 29:988—-997.

Duarte Silva, A. P. 2001. Efficient Variable Scremgnfor Multivariate Analysis. Journal
of Multivariate Analysis 76:35—62.

67



Dudgeon, D., A. H. Arthington, M. O. Gessner, Zikkawabata, D. J. Knowler, C.
Lévéque, R. J. Naiman, A.-H. Prieur-Richard, D.ocSM. L. J. Stiassny, and C.
A. Sullivan. 2006. Freshwater biodiversity: impaorta, threats, status and
conservation challenges. Biological Reviews 81:163.

Elith, J., and J. R. Leathwick. 2009. Species ation Models: Ecological Explanation
and Prediction Across Space and Time. Annual Rewielacology, Evolution,
and Systematics 40:677-697.

Elmore, A. J., J. P. Julian, S. M. Guinn, and MF&zpatrick. 2013. Potential Stream
Density in Mid-Atlantic U.S. Watersheds. PLoS ONEZ&1819.

Elmore, A. J., and S. S. Kaushal. 2008. Disappgdreadwaters: patterns of stream
burial due to urbanization. Frontiers in Ecology éine Environment 6:308—-312.

Ferrier, S., M. Drielsma, G. Manion, and G. Wats202. Extended statistical
approaches to modelling spatial pattern in biodiigin northeast New South
Wales. Il. Community-level modelling. Biodiversi®yConservation 11:2309—
2338.

Ferrier, S., and A. Guisan. 2006. Spatial modeltihgiodiversity at the community
level. Journal of Applied Ecology 43:393-404.

Ferrier, S., G. Manion, J. Elith, and K. Richards®@d07. Using generalized dissimilarity
modelling to analyse and predict patterns of betardity in regional biodiversity
assessment. Diversity and Distributions 13:252—264.

Fisher, S. G. 1997. Creativity, Idea Generationl, ttae Functional Morphology of
Streams. Journal of the North American Bentholddsaeiety 16:305-318.

Fitzpatrick, M. C., N. J. Sanders, S. Ferrier, J.dngino, M. D. Weiser, and R. Dunn.
2011. Forecasting the future of biodiversity: d tdssingle- and multi-species
models for ants in North America. Ecography 34886~

Fitzpatrick, M. C., N. J. Sanders, S. Normand, JS@nning, S. Ferrier, A. D. Gove, and
R. R. Dunn. 2013. Environmental and historical imizron beta diversity:
insights from variation in rates of species turnoadeng gradients. Proceedings of
the Royal Society B: Biological Sciences 280:20181t20131201.

Franklin, J. 1995. Predictive vegetation mappirepgraphic modelling of biospatial

patterns in relation to environmental gradientegiress in Physical Geography
19:474-499.

68



Freeman, M. C., C. M. Pringle, and C. R. Jacks0072Hydrologic Connectivity and
the Contribution of Stream Headwaters to Ecolodiatdgrity at Regional
Scalesl. JAWRA Journal of the American Water ReszsIAssociation 43:5-14.

Furnival, G. M., and R. W. Wilson. 1974. Regressibg Leaps and Bounds.
Technometrics 16:499-511.

Gesch, D., M. Oimoen, S. Greenlee, C. Nelson, Mu&k, and D. Tyler. 2002. The
national elevation dataset. Photogrammetric engimg@nd remote sensing
68:5-11.

Goetz, S. J., C. A. Jantz, S. D. Prince, A. J. Bnilit Varlyguin, and R. K. Wright. 2004.
Integrated analysis of ecosystem interactions iaitkd use Change: The
Chesapeake Bay watershed. Pages 263#2R5S. DeFries, G. P. Asner, and R.
A. Houghton, editors. Geophysical Monograph Sedaserican Geophysical
Union, Washington, D. C.

Grant, E. H. C., W. H. Lowe, and W. F. Fagan. 2Q0Vving in the branches: population
dynamics and ecological processes in dendritic okdsv Ecology Letters
10:165-175.

Guisan, A., and N. E. Zimmermann. 2000. Predidbiabitat distribution models in
ecology. Ecological modelling 135:147-186.

Hansson, L.-A., C. Bronmark, P. Anders Nilsson, Enébjornsson. 2005. Conflicting
demands on wetland ecosystem services: nutriegritien, biodiversity or both?
Freshwater Biology 50:705-714.

Harding, J. S., E. F. Benfield, P. V. Bolstad, GH8Ilfman, and E. B. D. Jones. 1998.
Stream biodiversity: The ghost of land use pasic&edings of the national
academy of sciences 95:14843-14847.

Hawkins, C. P., R. H. Norris, J. N. Hogue, and J.F&minella. 2000. Development and
evaluation of predictive models for measuring tleddgical integrity of streams.
Ecological Applications 10:1456-1477.

Hijmans, R. J., S. E. Cameron, J. L. Parra, Po@eg, and A. Jarvis. 2005. Very high
resolution interpolated climate surfaces for gldaat areas. International Journal
of Climatology 25:1965-1978.

Hilderbrand, R. H., M. T. Kashiwagi, and A. P. Fraska. 2014. Regional and Local

Scale Modeling of Stream Temperatures and Spatiopbeal Variation in
Thermal Sensitivities. Environmental Managemenfig422.

69



Hocking, R. R. 1976. A Biometrics Invited PapereTAnalysis and Selection of
Variables in Linear Regression. Biometrics 32:1.

Homer, C., J. Dewitz, J. Fry, M. Coan, N. Hoss@inl.arson, N. Herold, A. McKerrow,
J. N. VanDiriel, and J. Wickham. 2007. Completiorth&f 2001 national land
cover database for the coterminus United StatestoBhrammetric Engineering
and Remote Sensing 73:337-341.

Hutchinson, G. E. 1957. Concluding remarks. ColdrigpHarbor Symposia on
Quantitative Biology 22:145-159.

Jackson, J. K., E. Mcelravy, and V. I. Resh. 199Mhg-term movements of self-marked
caddisfly larvae (Trichoptera: Sericostomatidaed @alifornia coastal mountain
stream. Freshwater Biology 42:525-536.

Johnson, T. E., J. N. Mcnair, P. Srivastava, anB Hart. 2007. Stream ecosystem
responses to spatially variable land cover: an goglly based model for
developing riparian restoration strategies. FresémBiology 52:680-695.

Jones, M. M., S. Ferrier, R. Condit, G. ManionA§uilar, and R. Pérez. 2013. Strong
congruence in tree and fern community turnoveesponse to soils and climate
in central Panama. Journal of Ecology 101:506-516.

Julian, J. P., A. J. ElImore, and S. M. Guinn. 2@annel head locations in forested
watersheds across the mid-Atlantic United Stateghysiographic analysis.
Geomorphology 177-178:194-203.

Karr, J. R. 1981. Assessment of Biotic IntegrityrigsFish Communities. Fisheries 6:21—
27.

Kilian, J. V., R. J. Klauda, S. Widman, M. Kashiwdg. Bourquin, S. Weglein, and J.
Schuster. 2012. An assessment of a bait industhyaagler behavior as a vector
of invasive species. Biological Invasions 14:146811

King, R. S., M. E. Baker, D. F. Whigham, D. E. \e|IT. E. Jordan, P. F. Kazyak, and
M. K. Hurd. 2005. Spatial considerations for lingiwatershed land cover to
ecological indicators in streams. Ecological adlmns 15:137-153.

Kobler, A., Y. Humblet, G. Knaepkens, B. Engelemd &. Eens. 2012. Diel movement
of bullhead (Cottus perifretum) in a lowland streddel movement of bullhead.
Ecology of Freshwater Fish 21:453—-460.

Kratzer, E. B., J. K. Jackson, D. B. Arscott, A.Aufdenkampe, C. L. Dow, L. A.
Kaplan, J. D. Newbold, and B. W. Sweeney. 2006. iglagertebrate distribution
in relation to land use and water chemistry in Néwk City drinking-water-

70



supply watersheds. Journal of the North AmericantBaogical Society 25:954—
976.

Kristensen, E. A., A. Baattrup-Pedersen, and Harielersen. 2012. Prediction of stream
fish assemblages from land use characteristicdigatpns for cost-effective
design of monitoring programmes. Environmental Manmg and Assessment
184:1435-1448.

Leathwick, J. R., T. Snelder, W. L. Chaddertorklih, K. Julian, and S. Ferrier. 2011.
Use of generalised dissimilarity modelling to imyedhe biological
discrimination of river and stream classificatioR$ver classification for
conservation management. Freshwater Biology 56:21-3

Leathwick, J. R., and D. Whitehead. 2001. Soil atmdospheric water deficits and the
distribution of New Zealand’s indigenous tree spscFunctional Ecology
15:233-242.

Lee, P., C. Smyth, and S. Boutin. 2004. Quantiateview of riparian buffer width
guidelines from Canada and the United States. abofrEnvironmental
Management 70:165-180.

Lemly, A. D. 1982. Modification of benthic inseatramunities in polluted streams:
combined effects of sedimentation and nutrientatimnient. Hydrobiologia
87:229-245.

Lenat, D. R. 1984. Agriculture and stream watediguaA biological evaluation of
erosion control practices. Environmental manager@s8383—-343.

Mac Nally, R. 2000. Regression and model-buildmgonservation biology,
biogeography and ecology: The distinction betwead-raconciliation of—
“predictive’and “explanatory”’models. Biodiversity &onservation 9:655-671.

Mackey, B. G., and D. B. Lindenmayer. 2001. Towadserarchical framework for
modelling the spatial distribution of animals. Jumalrof Biogeography 28:1147—
1166.

Macneale, K. H., B. L. Peckarsky, and G. E. Like&2B05. Stable isotopes identify
dispersal patterns of stonefly populations livilhgng stream corridors.
Freshwater Biology 50:1117-1130.

Magbanua, F. S., C. R. Townsend, K. J. HagemanCam Matthaei. 2013. Individual
and combined effects of fine sediment and the behbiglyphosate on benthic
macroinvertebrates and stream ecosystem functreshiwater Biology 58:1729—
1744.

71



Mander, U., V. Kuusemets, K. Ldhmus, and T. Maurit@@7. Efficiency and
dimensioning of riparian buffer zones in agricudiuratchments. Ecological
Engineering 8:299-324.

Manion, G., M. Fitzpatrick, and M. Lisk. 2014. Gdin@reate generalised dissimilarity
models. R package version 1.0/r63. http://R-Forgedgect.org/projects/gdm.

Melles, S. J., N. E. Jones, and B. J. Schmidt. 2B%4luation of Current Approaches to
Stream Classification and a Heuristic Guide to Dayieg Classifications of
Integrated Aquatic Networks. Environmental Managens3:549-566.

Millar, R. B., M. J. Anderson, and N. Tolimieri. 20. Much ado about nothings: using
zero similarity points in distance-decay curvelggy 92:1717-1722.

Mohseni, O., and H. G. Stefan. 1999. Stream tentyeyair temperature relationship: a
physical interpretation. Journal of Hydrology 2183%+141.

Mokany, K., T. D. Harwood, J. M. Overton, G. M. Rar, and S. Ferrier. 2011.
Combininga - andp -diversity models to fill gaps in our knowledge of
biodiversity: Filling gaps in biodiversity knowledgEcology Letters 14:1043—
1051.

Morley, S. A., and J. R. Karr. 2002. Assessing Redtoring the Health of Urban
Streams in the Puget Sound Basin. Conservatioro@yol6:1498—-1509.

Murphy, J. 2010. Quantifying the relationship bewé&mnd cover and biological
condition of headwater streams. Freshwater Foru72814.

Natureserve. 2014. NatureServe web service. AdimgvA. USA.
http://services.natureserve.org. Accessed Jan 2014.

Nekola, J. C., and P. S. White. 1999. The distaleoay of similarity in biogeography
and ecology. Journal of Biogeography 26:867—-878.

Nelson, K. C., M. A. Palmer, J. E. Pizzuto, G. Eod\en, P. L. Angermeier, R. H.
Hilderbrand, M. Dettinger, and K. Hayhoe. 2009.deasting the combined
effects of urbanization and climate change on streeosystems: from impacts to
management options. Journal of Applied Ecology 84+163.

Paul, M. J., and J. L. Meyer. 2001. Streams inlth®Ean Landscape. Annual Review of
Ecology and Systematics 32:333-365.

Pearce, J., and S. Ferrier. 2000. An evaluatiaitefnative algorithms for fitting species
distribution models using logistic regression. Bgital Modelling 128:127-147.

72



Pearson, R. G., and T. P. Dawson. 2003. Predittmgnpacts of climate change on the
distribution of species: are bioclimate envelopalsie useful? Global ecology
and biogeography 12:361-371.

Pease, A. A., J. M. Taylor, K. O. Winemiller, andR King. 2011. Multiscale
Environmental Influences on Fish Assemblage StredtuCentral Texas
Streams. Transactions of the American Fisherieee80t40:1409-1427.

Peterson, E. E., J. M. Ver Hoef, D. J. Isaak, F#lke, M.-J. Fortin, C. E. Jordan, K.
McNyset, P. Monestiez, A. S. Ruesch, A. Sengupt&adin, E. A. Steel, D. M.
Theobald, C. E. Torgersen, and S. J. Wenger. 2ad8elling dendritic
ecological networks in space: an integrated netwerkpective. Ecology Letters
16:707-719.

Peterson, E. E., F. Sheldon, R. Darnell, S. E. Band B. D. Harch. 2011. A comparison
of spatially explicit landscape representation radthand their relationship to
stream condition. Freshwater Biology 56:590-610.

Phillips, S. J., R. P. Anderson, and R. E. Schagid@6. Maximum entropy modeling of
species geographic distributions. Ecological Madgl190:231-259.

Poff, N. L., B. P. Bledsoe, and C. O. Cuhaciyar0@Mydrologic variation with land
use across the contiguous United States: Geomoapkiecological
consequences for stream ecosystems. Geomorphodo2y47~285.

R Core Team. 2013. R: A language and environmerdtédistical computing. R
Foundation for Statistical Computing, Vienna, Aissthttp://www.R-project.org/.

Reger, J. P., and E. T. Cleaves. 2008. Explan&aityfor the physiographic map of
Maryland.

Rouquette, J. R., M. Dallimer, P. R. Armsworth,JKGaston, L. Maltby, and P. H.
Warren. 2013. Species turnover and geographicratistan an urban river
network. Diversity and Distributions 19:1429-1439.

Sala, O. E., F. S. Chapin Ill, J. J. Armesto, Eld®, J. Bloomfield, R. Dirzo, E. Huber-
Sanwald, L. F. Huenneke, R. B. Jackson, A. KinRigl.eemans, D. M. Lodge,
H. A. Mooney, M. Oesterheld, N. L. Poff, M. T. Sykdé3. H. Walker, M. Walker,
and D. H. Wall. 2000. Global Biodiversity Scenariosthe Year 2100. Science
287:1770-1774.

Schloss, A. L., and J. F. Haney. 2006. Clouds, @ladr twilight? Mayfly nymphs
recognise the difference. Freshwater Biology 519:0D89.

73



Schlosser, 1. J. 1998. Fish recruitment, dispeesal, trophic interactions in a
heterogeneous lotic environment. Oecologia 113:268-—

Schmidt, M. F. 1993. Maryland’s geology. Tidewdaeeiblishers. Centreville, Maryland.

Sheldon, F., E. E. Peterson, E. L. Boone, S. Sjigdt. Bunn, and B. D. Harch. 2012.
Identifying the spatial scale of land use that nsbsingly influences overall river
ecosystem health score. Ecological Application 223—2203.

Van Sickle, J., and C. B. Johnson. 2008. Paramgistance weighting of landscape
influence on streams. Landscape Ecology 23:427-438.

Snelder, T., J. B. Ortiz, D. Booker, N. Lamourotix,Pella, and U. Shankar. 2012. Can
bottom-up procedures improve the performance ehstrclassifications? Aquatic
Sciences 74:45-59.

Soil Survey Staff. n.d. Natural Resources Consem&ervice, United States
Department of Agriculture. Web Soil Survey. httwe#bsoilsurvey.nrcs.usda.gov/.
Accessed 2013, 2014.

Southerland, M. T., M. J. Kline, D. M. Boward, G. Rogers, R. P. Morgan Il, P. F.
Kazyak, R. J. Klauda, and S. A. Stranko. 2005. MeMogical indicators to better
assess the condition of Maryland streams. Maryleplartment of Natural
Resources.

Southerland, M. T., G. M. Rogers, M. J. Kline, RMbrgan, D. M. Boward, P. F.
Kazyak, R. J. Klauda, and S. A. Stranko. 2007. bamg biological indicators to
better assess the condition of streams. Ecolofsidatators 7:751-767.

Stanfield, L. W., and B. W. Kilgour. 2013. How proxty of land use affects stream fish
and habitat. River Research and Applications 29:805.

Stranko, S. A., D. M. Boward, J. Kilian, C. Millard. J. Becker, R. Gauza, A. Schenk,
A. Roseberry-Lincoln, and M. O’Connor. 2007. Mangdigbiological stream
survey sampling manual: field protocols. MarylanepBrtment of Natural
Resources.

Stranko, S. A., S. E. Gresens, R. J. Klauda, KiNan, P. J. Ciccotto, M. J. Ashton, and
A. J. Becker. 2010. Differential effects of urbaatipn and non-natives on
imperiled stream species. Northeastern Naturaliia3-614.

Stranko, S. A., R. H. Hilderbrand, R. P. Morgan,W. Staley, A. J. Becker, A.
Roseberry-Lincoln, E. S. Perry, and P. T. Jacob3008. Brook Trout Declines
with Land Cover and Temperature Changes in Marylalwith American Journal
of Fisheries Management 28:1223-1232.

74



Synes, N. W., and P. E. Osborne. 2011. Choiceetfigior variables as a source of
uncertainty in continental-scale species distrdoutnodelling under climate
change: Predictor uncertainty in species distrdgsutnodels. Global Ecology and
Biogeography 20:904-914.

Tarboton, D. 2014. Terrain analysis using digitalation models (TauDEM). Version 5.
http://hydrology.usu.edu/taudem/taudem5/index.hiuotessed Jan 2014.

Todd, B. L., and C. F. Rabeni. 1989. Movement aabitdt Use by Stream-Dwelling
Smallmouth Bass. Transactions of the American Fiseé&ociety 118:229-242.

United States Geological Survey. 2014. Nonindigsraguatic species database,
Gainesville, Florida. http://nas.er.usgs.gov. AsegesJan 2014.

Urban, M. C., D. K. Skelly, D. Burchsted, W. Prieed S. Lowry. 2006. Stream
communities across a rural-urban landscape gradieversity and Distributions
12:337-350.

Usio, N. 2007. Endangered crayfish in northern dapastribution, abundance and
microhabitat specificity in relation to stream arghrian environment. Biological
Conservation 134:517-526.

Utz, R. M., K. N. Eshleman, and R. H. HilderbraB@11. Variation in physicochemical
responses to urbanization in streams between twdeA¥antic physiographic
regions. Ecological Applications 21:402-415.

Utz, R. M., R. H. Hilderbrand, and D. M. Boward.020 Identifying regional differences
in threshold responses of aquatic invertebratésnit cover gradients. Ecological
Indicators 9:556-567.

Utz, R. M., R. H. Hilderbrand, and R. L. Raeslyl@0Regional differences in patterns of
fish species loss with changing land use. Bioldg@anservation 143:688—699.

Verberk, W. C. E. P., H. Siepel, and H. Esselird0& Life-history strategies in
freshwater macroinvertebrates. Freshwater Biol®)§ 522—-1738.

Walsh, C. J., and J. Kunapo. 2009. The importafhcgland flow paths in determining
urban effects on stream ecosystems. Journal didindn American Benthological
Society 28:977-990.

Walsh, C. J., A. H. Roy, J. W. Feminella, P. D.tlbgtham, P. M. Groffman, and R. P.

Morgan. 2005. The urban stream syndrome: curreowledge and the search for
a cure. Journal of the North American Bentholog®atiety 24:706—723.

75



Wang, L., J. Lyons, and P. Kanehl. 2003. Impactdrbian Land Cover on Trout Streams
in Wisconsin and Minnesota. Transactions of the Aca@ Fisheries Society
132:825-839.

Weijters, M. J., J. H. Janse, R. Alkemade, and A. Verhoeven. 2009. Quantifying the
effect of catchment land use and water nutriententrations on freshwater river
and stream biodiversity. Aquatic Conservation: Marand Freshwater
Ecosystems 19:104-112.

Whittaker, J. 1984. Model Interpretation from thdditive Elements of the Likelihood
Function. Applied Statistics 33:52.

Williams, K. J., L. Belbin, M. P. Austin, J. L. Ste and S. Ferrier. 2012. Which
environmental variables should | use in my biodsitgrmodel? International
Journal of Geographical Information Science 26: 208 7.

World Media Group. 2014. Maryland population densibunty rank.
http://www.use.com/rank/maryland-state-populati@mslty--county-rank.htm.
Accessed 11 July 2014.

Zimmermann, N. E., T. C. Edwards, G. G. MoisenSTFrescino, and J. A. Blackard.
2007. Remote sensing-based predictors improvealdigon models of rare, early
successional and broadleaf tree species in Utalndloof Applied Ecology
44:1057-1067.

76



