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Statistical models used to predict and map patterns of biodiversity require environmental 

variables with full coverage across an area of interest. By necessity, these variables are 

derived from GIS, remote sensing, or via interpolation, and may not be as physiologically 

relevant to biota or as representative of on-the-ground conditions as field-measured 

variables. This research used generalized dissimilarity modeling and occurrence data for 

freshwater fish and benthic invertebrates in Maryland to examine differences in 

explanatory power, predictive ability, and management inference yielded by derived and 

field-measured variables. Across the state and for both taxa, models fit with field-

measured variables were superior in explanation and prediction, and nearly always more 

parsimonious. However, there was little difference between the variable sets in ability to 

predict management-related indices. Results suggest that field-measured variables are 

preferred over derived variables overall, but their absence from predictive models may 

not have a large effect on management inference.       
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INTRODUCTION 

Choosing relevant environmental predictor variables is one of the most universal 

challenges in modeling geographic patterns of biodiversity (Araújo and Guisan 2006, 

Synes and Osborne 2011, Williams et al. 2012). Though model output is fundamentally 

driven by predictor variable input (Araújo and Guisan 2006), the drivers of biotic 

distributions may be unknown (Dudgeon et al. 2006) or unavailable (Austin 2002). In this 

context, considerable research has examined predictor variable spatial scale (Peterson et 

al. 2011, Wang et al. 2003, Morley and Karr 2002, Mackey and Lindenmayer 2001, 

Austin and Van Niel 2011), variable selection techniques (Mac Nally 2000, Pearce and 

Ferrier 2000), and methods of managing inter-variable relationships (Braunisch et al. 

2013). Comparatively poorly studied but also potentially highly influential is the 

immediacy with which environmental predictor variables are related to biotic 

distributions (Austin 1980). 

Broadly, predictor variables can be classified as “proximal” or “distal” based on 

their physiological relevance to biota (Austin 1980, Franklin 1995, Guisan and 

Zimmermann 2000, Austin 2002). Proximal variables describe direct physiological 

influences on biotic distributions, such as nutrient availability for plants or water 

temperature for aquatic organisms. In contrast, distal variables do not have a direct 

physiological influence, but can indirectly drive biotic distributions if they are 

correlatively or causally related to proximal variables (Austin 2002, Williams et al. 2012, 

Elith and Leathwick 2009). Elevation and latitude are classical distal variables. From a 

theoretical perspective, models based on proximal variables are preferable to models 

based on distal variables because the relationship between proximal drivers and distal 
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surrogates may be weak and/or spatially or temporally inconsistent (Austin 2002, Elith 

and Leathwick 2009, Williams et al. 2012).  

Though in theory proximal variables should produce more robust biodiversity 

models, in practice they are often not used in model fitting. Most proximal variables must 

be collected by field measurement and are therefore unavailable in the full-coverage 

layers necessary for predictive mapping (Austin 2002). Instead, full-coverage 

environmental predictors are typically derived from GIS, remote sensing, or via 

interpolation of point data. The majority of GIS and remote sensing-derived variables are 

distal and may not characterize habitat at the spatial scales most relevant to biotic life 

histories (Cord et al. 2013). Interpolated variables are estimates based on discrete 

measurements and may not be indicative of on-the-ground conditions. In short, the 

predictors most relevant to biology are rarely available for spatial prediction, while those 

available for mapping may have only indirect or approximated influence on biotic 

distributions.  

How much explanatory and predictive power is lost as a result of the exclusion of 

largely proximal field-measured variables from biodiversity models, and how does that 

alter management inference? Though the literature generally supports the theory that 

proximal variables are more effective predictors than distal variables (Leathwick and 

Whitehead 2001, Zimmermann et al. 2007, Kristensen et al. 2012), comparisons have 

been sparse on account of the relative difficulty of identifying and collecting sufficient 

proximal information (Austin 2002) and the great interest in predictive mapping. Such 

comparisons are particularly lacking in streams and rivers, for which differences between 

models built with field-measured versus derived variables may be especially pronounced 
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due to dendritic habitat geometry (Grant et al. 2007), rapidly changing environmental 

conditions (Dettinger and Diaz 2000), and integration of upstream influences (Nelson et 

al. 2009). 

Despite the theoretical predictions, the importance of derived predictor variables 

in stream biodiversity models could be greater than the importance of field-measured 

variables. Conditions in streams change quickly through time and across space, 

integrating diverse drainage basin processes and possibly reducing the relevance of one-

time field measurements (Sala 2000, Benda et al. 2004, Dudgeon et al. 2006, Nelson et 

al. 2009).  

It is more likely, however, that the unique attributes of streams will decrease the 

explanatory and predictive abilities of derived variables relative to field-measured 

variables. Possible reasons for decreased importance of derived variables in stream 

biodiversity models are manifold. First, the branching and hierarchical geometry of 

streams makes interpolation of point measurements difficult (Benda et al. 2004, Grant et 

al. 2007). As a result, available interpolated variables are often measured on land rather 

than in the channel (Hijmans et al. 2005) and may not capture channel conditions. 

Additionally, given the connected nature of stream networks (Fisher 1997), stream biota 

respond to both local and upstream drivers (Morley and Karr 2002, Kratzer et al. 2006, 

Urban et al. 2006, Stanfield and Kilgour 2013). While derived variables can provide a 

surrogate for upstream influences by characterizing drainage areas and flow pathways, 

field-measured variables collected in streams reflect the true effects of those influences. 

Relatedly, a large proportion of a stream network is comprised of small, potentially 

ephemeral or intermittent headwaters (Freeman et al. 2007), which are often largely 
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unmapped (Elmore et al. 2013) and narrower than the resolution of environmental grids 

(30 meters, in the case of Landsat). Without knowing the location and characteristics of 

these ecologically important stream channels (Freeman et al. 2007), it is difficult to 

quantify the effects of various watershed land covers, which are attenuated differently 

across land and through channels (Johnson et al. 2007, Van Sickle and Johnson 2008, 

Walsh and Kunapo 2009).   

In this study, I focused on comparisons between field-measured and derived 

variables as predictors in Maryland stream biodiversity models. While not perfect 

proxies, field-measured and derived variables are management-relevant analogs to 

proximal and distal variables. I used a community-level modeling method – generalized 

dissimilarity modeling (GDM; Ferrier et al. 2007) – to model pairwise compositional 

dissimilarity as a function of environmental and geographic distances. GDM considers all 

species in an assemblage, regardless of rarity, and provides a robust method of 

statistically selecting, weighting, and transforming candidate environmental variables 

such that they best represent biological patterns (Ferrier et al. 2007). GDM also lends 

itself to the development of biological classification systems and mapped patterns, which 

may be particularly useful for management (Leathwick et al. 2011, Snelder et al. 2012).  

The primary goal of this research was to assess the effects of excluding field-

measured variables from predictive stream biodiversity models. Specifically, I aimed to 

(1) understand the relative merits of using field-measured versus derived variables as 

predictors in stream biodiversity models, (2) identify the individual environmental 

variables with the greatest influence on fish and invertebrate compositional turnover in 

Maryland streams, thereby providing information that can inform future  variable 
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measurement and derivation, and (3) quantify the difference in management inference 

yielded by biodiversity models built with field-measured versus derived variables. 
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METHODS 

Study region 

This research involves first through fourth order streams in Maryland west of the 

Chesapeake Bay. The region is characterized by relatively long gradients in population 

density, land cover, elevation, and geology and a broad array of stream habitat types. 

Population density ranges from 2604.7 people per square kilometer in Baltimore City to 

17.7 people per square kilometer in Garrett County (World Media Group 2014), with 

land cover of the eastern portion of the study region being predominantly urban and the 

western portion largely forested (Homer et al. 2007, Fig. 1a). Cultivation of crops and 

livestock is prevalent in much of the central study area (Homer et al. 2007). Elevation 

ranges from sea level at the Chesapeake Bay in the east to 1024 m in the western part of 

the state (Reger and Cleaves 2008). 

The study region spans five physiographic provinces, frequently grouped by the 

Maryland Department of Natural Resources (MDNR) into three regions: the Coastal 

Plain (C), the Piedmont (P), and the Highlands. The Coastal Plain is characterized by low 

relief and unconsolidated sand, gravel, silt, and clay, the Piedmont by rolling hills and 

hard igneous and metamorphic rock, and the Highlands by comparatively steep terrain 

and faulted and folded sedimentary and metamorphic rock (Schmidt 1993, Reger and 

Cleaves 2008). For the purposes of these analyses, I separated the Highlands into two 

components: the Chesapeake (H) and Youghiogheny (Y) basins (Fig. 1a, b). Streams in 

the Youghiogheny basin are the only in Maryland that drain to the Gulf of Mexico, and 

the separation acknowledges the Youghiogheny’s distinct biotic communities. I modeled 

each of these four areas separately, recognizing the role of their unique geologic character 
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and geomorphic history in governing biotic distributions and influential habitat variables 

(Melles et al. 2014).  

(a) 

  
(b) 

  
Figure 1. Maps of study region showing (a) land cover from the 2001 National Land 
Cover Database (Homer et al. 2007) and topography, and (b) stream survey locations 
visited by MDNR as part of the Maryland Biological Stream Survey. Red and pink 
polygons in the upper panel depict development, greens are forest, blues are wetlands or 
open water, and yellows are agriculture.  
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Maryland is an ideal study area for three reasons. First, there is considerable 

interest in the conservation and restoration of the Chesapeake Bay, the largest estuary in 

the United States. Maintaining and promoting the integrity of Maryland’s freshwater 

streams is critical to the Bay’s ecological functioning (Goetz et al. 2004). Second, the 

MDNR has surveyed fish and benthic invertebrates in Maryland streams for almost two 

decades (Fig. 1b). The resultant dataset provides excellent spatial coverage and is coupled 

with field-measured habitat variables (Stranko et al. 2007). Finally, Elmore et al. (2013) 

recently produced a detailed stream map for the Potomac River watershed and several 

adjacent watersheds, covering the entirety of the study area.  

Elmore et al.'s (2013) map was produced using maximum entropy (MaxEnt, 

Phillips et al. 2006) and terrain and soil variables to predict stream presence at 10m 

resolution. Predictions included previously unmapped channels, notably headwaters and 

streams lost to urbanization, and suggested that the National Hydrography Database 

(NHD) underestimates stream network density in Maryland by up to 250%. Using 

Elmore et al.'s (2013) map allowed more precise snapping of biological survey locations 

to stream channels and more accurate measurement of the flow path distance between 

land and stream pixels, which was used in several of the derived environmental variables 

(see below). However, it is also important to note that Elmore et al.'s (2013) models were 

trained on stream presences collected from fully forested watersheds, and the map 

therefore reflects potential stream density rather than existing channels. Areas with 

altered land use may have either higher or lower stream density than predicted, depending 

on the type of development (Elmore et al. 2013). Still, despite its potential to misclassify 
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current channels, Elmore et al.'s (2013) map is considerably more consistent in its 

accuracy across physiographic provinces than the NHD.  

Species occurrence data 

Species occurrence data were collected as part of the Maryland Biological Stream 

Survey (MBSS), a program originated and administered by the MDNR (Stranko et al. 

2007). The MBSS follows standardized protocols to sample fish and benthic invertebrates 

in 75 m segments of non-tidal first, second, third, and fourth order streams (Stranko et al. 

2007). The majority of the sample sites were selected randomly, using a probability-

based design, while some were selected to answer specific management or research 

questions. 

Briefly, MBSS sampling proceeded as follows. Benthic invertebrate sampling was 

conducted in March and April using a 450 µm mesh D-net. Twenty square feet of habitat 

were sampled at each site by choosing 20 locations for the D-net and manually disturbing 

the substrate in the square foot immediately upstream. Locations were chosen to be a 

proportional representation of the habitats likely to contain the most diverse benthic 

invertebrate communities (described in Stranko et al. 2007). Taxa were identified and 

quantified in the lab, where each benthic sample was spread over a gridded tray and a 

random number was chosen to determine which 5 x 5 cm grid cell should be sampled 

(Boward and Friedman 2011). All invertebrates in the chosen cell were identified. If the 

total number of individuals identified was equal to or greater than 120, analysis of that 

sample was complete. If there were fewer than 120 individuals in the cell, another cell 

was randomly selected. 
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Field sampling of fish was conducted between June and September, the low-flow 

period, via double-pass electrofishing (Stranko et al. 2007). To ensure that fish neither 

exited nor entered the site during electrofishing, block nets were positioned at the top and 

bottom of the 75 m segment, as well as at tributary confluences. All caught fish with 

body length over 30 mm were censused. Fish were counted and identified to species in 

the field, when possible.  

In three major sampling periods over 18 years (1994-2011), the MBSS collected 

data for approximately 100 fish and 600 invertebrate taxa. This study uses data from the 

86 native fish identified to species and the 581 invertebrate taxa identified to family or 

genus at 2,165 unique site-years. To ensure that all survey points coincided with Elmore 

et al.'s (2013) mapped streams, site locations were auto-snapped to the nearest stream cell 

by flow direction (i.e. points were never snapped to cells upstream of their reported 

locations). Points farther than 300 m from stream cells or located on flat terrain without 

clear flow direction were individually examined and, where possible, were manually 

moved to a stream location according to their site description recorded on MBSS 

datasheets.    

I considered only native fish species because the distributions of non-native 

species are likely to be dominated by factors other than environmental conditions (e.g., 

Christmas et al. 2001, Kilian et al. 2012). I compiled separate Maryland native fish lists 

for each region of interest (Y, H, P, and C) using the USGS database for Nonindigenous 

Aquatic Species (United States Geological Survey 2014), maps from the NatureServe 

non-profit organization (Natureserve 2014), publications by MDNR employees and 

contractors (Southerland et al. 2005, Stranko et al. 2010), and expert knowledge from a 
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specialist involved with MBSS sampling (Appendix A). In cases when sources 

conflicted, I favored USGS data.  

Environmental predictor variables  

Field-measured variables 

Field-measured environmental variables were collected by the MBSS at survey 

locations coincident with faunal sampling (Stranko et al. 2007). They include stream 

measurements relating to flow and gradient, in-stream habitat, and water chemistry 

(Table 1). I omitted unordered categorical variables and variables with five or fewer 

ordered categories to accommodate GDM’s use of environmental distances in model 

fitting (Ferrier et al. 2007). To maintain sample sizes, I also omitted any field-measured 

variable lacking measurements at >1000 site-years. 

 

Table 1. Field-measured variables collected by the MBSS at survey locations and 
considered as environmental predictor variables.  

Variable code Description 
Flow and gradient   
ST_GRAD Stream gradient (%), measured from the downstream boundary of the  

sample segment to the upstream boundary with an inclometer  
(1995-2004) and a level (2007-2009) 

DischargeCFS Summer stream flow (cfs), standard transect method 
Habitat  
INSTRHAB In-stream fish habitat structure rating (0-20)  
EPI_SUB Epifaunal substrate rating (benthic invertebrate habitat, 0-20) 
VEL_DPTH Velocity/depth diversity rating (0-20) 
POOLQUAL Pool/glide/eddy quality rating (0-20) 
RIFFQUAL Riffle/run quality rating (0-20) 
EMBEDDED Embeddedness: percentage that gravel, cobble, and boulder particles are  

surrounded by sediment or flocculent material 
SHADING Percentage of segment that is shaded 
AESTHET Trash rating (0-20) 
MAXDEPTH Maximum depth in sample reach (cm) 
AVGWID Average wetted width of the 1, 25, 50, and 75 m points of the sample 

segment (m) 
AVGTHAL Average thalweg depth of the 1, 25, 50, and 75 m points of the sample  

segment (cm) 
AVG_VEL Average velocity of the 1, 25, 50, and 75 m points of the sample  

segment (m/s) 
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Variable code Description 
Water chemistry  
PH_LAB Spring pH (pH units), measured in the lab  
COND_LAB Spring conductance (µmho/cm), lab 
ANC_LAB Acid neutralizing capacity (µeq/L), lab 
DOC_LAB Dissolved organic carbon (mg/L), lab 
SO4_LAB Sulfate (mg/L), lab 
NO3_LAB Nitrate nitrogen (mg/L), lab 
TEMP_FLD Summer in-situ water temperature (°C) 
DO_FLD In-situ dissolved oxygen (mg/L) 
PH_FLD In-situ summer pH (pH units) 
COND_FLD In-situ summer conductance (µmho/cm) 

 

Derived variables 

Derived environmental variables were calculated using GIS and remote sensing 

data or downloaded from online databases (e.g., WorldClim, Hijmans et al. 2005). They 

emphasize local and watershed-scale physical characteristics considered important to 

biotic distributions and include measures of topography, hydrography, soils, climate, and 

land use (Austin 2002, Pease et al. 2011, Allan 2004, Table 2). All derived variables are 

temporally-invariant and were created at or resampled to 10 m resolution to match the 

scale of the stream network maps. 

Topographic variables attempt to characterize landscape shape and, by extension, 

stream channel shape and related stream characteristics, such as flow speed and substrate 

type (Melles et al. 2014). They were derived using a 10 m digital elevation model (DEM) 

from the National Elevation Dataset (NED, Gesch et al. 2002, see Julian et al. 2012 for 

details).  

Hydrographic variables capture flow and network characteristics. Eight-way flow 

direction and flow accumulation (i.e. watershed size) were derived using the Terrain 

Analysis Using Digital Elevation Models toolset (TauDEM, Tarboton 2014). Stream 
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length and network density were measured from Elmore et al.'s (2013) stream map, and 

attempt to characterize the residence time of water in watersheds, the relative importance 

of terrestrial and aquatic inputs, and the area of available connected habitat (Elmore et al. 

2013). A set of “stream burial” variables were derived that quantify the extent to which 

stream segments have been paved over or directed into culverts, pipes, or concrete-lined 

ditches (Elmore and Kaushal 2008). Burial-related variables were calculated using the 

National Land Cover Database impervious surface map (Homer et al. 2007) and USGS 

30-cm aerial photography (Elmore and Kaushal 2008). Stream burial is highly correlated 

with urbanization and disproportionately affects sensitive headwater species (Elmore and 

Kaushal 2008).  

Soils data were derived from the Natural Resources Conservation Service’s Soil 

Survey Geographic Database (SSURGO, Soil Survey Staff n.d.). Soils variables were 

mapped at broad scales (1:12,000 to 1:63,360) and were collected on land over many 

years. However, many of the SSURGO variables potentially have a strong influence on 

in-stream conditions: silt-clay % influences runoff potential and flashiness, soil 

erodibility and bulk density are related to stream sediment load, and soil pH and bedrock 

depth can affect water chemistry. Derived annual mean surface air temperature is also 

extrapolated from measurements taken on land (Hijmans et al. 2005). Stream and air 

temperatures often are closely related, but the relationship may not be linear (Mohseni 

and Stefan 1999) and varies regionally (Hilderbrand et al. 2014). 

Land use and land cover metrics are some of the most commonly-used predictors 

of water quality and biotic assemblages (Harding et al. 1998, Allan 2004, Van Sickle and 

Johnson 2008, Utz et al. 2010). Forest, canopy cover, wetland, agriculture, and 
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impervious surface comprise the land covers available from the NLCD that are relevant 

to the mid-Atlantic United States (Homer et al. 2007). Impervious surface and canopy 

cover are mapped as continuous percentages; others are considered either present or 

absent. Forest, canopy cover, and wetlands are unaltered land covers that tend to have 

neutral or positive effects on water quality and stream biota. Indeed, use of riparian 

buffers to mitigate harmful effects of development on waterways has become gospel in 

both science (Mander et al. 1997) and law (Lee et al. 2004), and wetlands are sufficiently 

effective contaminant sinks that humans are engineering them (Hansson et al. 2005). In 

contrast, agricultural land cover is the most pervasive cause of stream impairment in the 

United States, frequently leading to eutrophication (Boesch et al. 2001) and 

sedimentation (Lenat 1984). Proportionally, urbanization may have even greater 

deleterious effects on stream systems than agriculture (Paul and Meyer 2001, Poff et al. 

2006): streams draining impervious surface areas tend to suffer higher contaminant 

levels, increased temperature and erosion, and greater hydrologic irregularity than 

streams draining undeveloped areas (Allan 2004, Walsh et al. 2005).  

Many of the derived variables described above were developed as multiple 

versions differing in their spatial attributes: (1) local, (2) nonspatial accumulated, and/or 

(3) spatially-explicit accumulated. Local derived variables reflect the region containing or 

directly adjacent to a survey site.  For non-hydrographic variables, such as land use, local 

variables were calculated in a 30 x 30 meter (3 x 3 pixel) window around the site. For 

example, the variable “local canopy cover” is the average percent canopy cover on land 

in nine 10 x 10 meter pixels, with the site location as the central pixel.  If the variable was 
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hydrographic, calculating a local variable involved only stream cells in 30 x 10 meter 

window (1 upstream and 1 downstream pixel and the site location as the central pixel).  

Accumulated variables, both nonspatial and spatially-explicit, consider the 

characteristics of a stream pixel’s upstream basin, as defined by a D8 flow path and flow 

accumulation raster derived using TauDEM (Tarboton 2014). Nonspatial accumulated 

variables measure the average value of a variable for the entire upstream basin. For 

example, nonspatial accumulated canopy cover is the average percent canopy cover in all 

upstream pixels that flow into a given location. In contrast, spatially-explicit accumulated 

variables attempt to accommodate the fact that each upstream pixel is unlikely to have the 

same influence on a particular downstream pixel (Johnson et al. 2007, Van Sickle and 

Johnson 2008, Peterson et al. 2011, Sheldon et al. 2012). Spatially-explicit versions of the 

five land covers (forest, wetland, agriculture, canopy cover, and impervious surface) were 

calculated using the following inverse-distance weighting scheme adapted from Peterson 

et al. (2011):  

%LU =

I(k)WiFAi

i=1

n

∑

WiFAi

i=1

n

∑
×100.  

LU is the land use of a given class (e.g., forest). Wi is the weight given to an upstream 

pixel, i, according to its distance from the nearest stream, here (distance+1)-1. FAi is the 

number of pixels that flow into pixel i (flow accumulation weight). In the case of 

discretely classified land uses, I(k) is an index equal to one for the pixels classified as the 

land use of interest and zero for all other pixels. In the case of land uses with continuous 

scores, I(k) is equal to the continuous value. Thus, I weighted each pixel of those five 
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land uses by (1) flow path length between it and a stream and (2) the number of pixels 

that flow into it. Closer land pixels (along flow paths) were more heavily weighted than 

farther land pixels; land pixels through which more water flows were more heavily 

weighted than those through which less water flows. I measured distances along 

TauDEM-derived flow paths between a land use pixel and the closest stream pixel. 

 For the purposes of this study, I grouped nonspatial and spatially-explicit 

accumulated variables together as “accumulated derived.” Therefore, three broad variable 

sets are compared, differing in measurement location and technique: field-measured 

variables are collected by the MBSS in-situ, local derived variables are interpolated or 

derived and estimated at or directly adjacent to the survey point, and accumulated derived 

variables are interpolated or derived and estimated upstream of the survey point (Table 

2). 

 

Table 2. Derived variables considered as predictors in generalized dissimilarity models. 
Local versions characterize conditions directly adjacent to stream pixels (1 x 3 pixels or 3 
x 3 pixels); accumulated versions characterize either mean upstream conditions 
(“accumulated”) or upstream conditions where each pixel is weighted by flow path 
distance to the stream and number of contributing pixels (“spatial acc.”). All variables 
were created at or resampled to 10 m. 

Derived variable  
code 

Versions Description/Units/Source 

Topographic   
slp local Slope (degrees), NED DEM. 
 accumulated  
plan local 

accumulated 
Transverse curvature at cell, perpendicular to flow  
direction (1/100 elevation units), NED DEM 

prof local 
accumulated 

Longitudinal curvature at cell, parallel to flow direction 
 (1/100 elevation units), NED DEM 

Hydrographic   
dem10mp local 8 Direction flow raster 1= East, 2=SE, etc., TauDEM 
dem10mad8 accumulated Number of 10x10 meter pixels that flow into the pixel, 

TauDEM 
str_len local 

accumulated 
Length of stream (km), Elmore et al. (2013) 
map 
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Derived variable  
code 

Versions Description/Units/Source 

str_den accumulated Upstream network density (km/km2), Elmore et al.  
(2013) map 

confluence_num accumulated Number of stream segments that come together 
on a pixel, Elmore et al. (2013) map.  

str_blen local 
accumulated 

Length of stream burial (km), burial  
probability classified using NLCD 2001 30 m ISA layer 

bp_2001 local Burial probability (0-1), determined using  
NLCD 2001 30 m ISA layer 

str_bp accumulated Burial probability accumulated (0-1),  
determined using NLCD 2001 30 m ISA layer 

str_blen_den accumulated Upstream burial density (km/km2) determined using  
NLCD 2001 30 m ISA layer 

Land Use/Land Cover   
isa 
 
isa_fls_nor 

local 
accumulated 
spatial acc. 

Proportion impervious surface area, 0-1.  
NLCD 2001 impervious surface data, 30 m 
 

cc 
 
cc_fls_nor  

local 
accumulated 
spatial acc. 

Proportion canopy cover, 0-1. 
NLCD 2001 canopy cover data, 30 m  
 

for 
 
for_fls_nor 

local 
accumulated 
spatial acc. 

Proportion forest presence, 0-1. 
NLCD 2001 forest data, 30 m, forest = {41,42,43} 

ag 
 
ag_fls_nor 

local 
accumulated 
spatial acc. 

Proportion agriculture presence, 0-1. 
NLCD 2001 LULC data, 30 m, agriculture = {81,82} 

wet 
 
wet_fls_nor 

local 
accumulated 
spatial acc. 

Proportion wetland presence, 0-1. 
NLCD 2001 LULC data, 30 m , wetlands = {90,95} 

Soils    
sicl  local 

accumulated 
Proportion of soil volume (0-1) that is below 63 µm in  
texture, SSURGO, 0.6 ha 

kfw  local 
accumulated 

Soil erodibility (K value), SSURGO, 0.6 ha 
 

bd local 
accumulated 

Bulk density indicator of soil compaction (g/cm3),  
SSURGO, 0.6 ha 

brd  local 
accumulated 

Distance from soil surface to top of bedrock layer (cm),  
SSURGO, 0.6 ha 

ph local 
accumulated 

Relative acidity or alkalinity of a soil sample (pH units), 
SSURGO, 0.6 ha 

Climate   
sat  local 

accumulated 
Annual mean temperature (°C*10), WorldClim 2.5  
arc-minutes, Bioclim variable 1 

 

Community-level modeling 

I used community-level models because of their ability to rapidly analyze 

assemblages with large numbers of species, make use of data for infrequently-recorded 
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taxa, and extrapolate patterns beyond sampled communities (Ferrier and Guisan 2006, 

Fitzpatrick et al. 2011, Jones et al. 2013) – all potential boons for management 

applications. Additionally, community-level models are valuable tools for variable 

assessment because they assimilate the responses of many species, so conclusions may be 

less sensitive to atypical species/environment relationships.  

Specifically, I compared field-measured, local derived, and accumulated derived 

environmental predictor variables using generalized dissimilarity modeling (GDM), a 

community-level, nonlinear matrix regression technique that models pairwise site 

compositional dissimilarity (beta diversity) as a function of environmental and 

geographic distance (Ferrier et al. 2007). GDM accommodates two nonlinearities 

common in large ecological datasets: variation in the rate of compositional turnover along 

environmental gradients (non-stationarity), and the curvilinear relationship between 

compositional dissimilarity and environmental/geographic distance (Ferrier et al. 2007, 

Allan 2004, Dodds et al. 2010).  

GDM addresses non-stationarity in rates of species turnover along gradients by 

using maximum likelihood estimation to fit flexible, positively monotonic I-splines to 

each predictor variable (Ferrier et al. 2007). By default and to avoid over-fitting, each I-

spline has three knots, and the segments between them are modeled as quadratics. The 

shape of the I-spline indicates the rate of biological turnover at each position along the 

gradient (Ferrier et al. 2007). The amplitude of the I-spline, quantified by the sum of its 

coefficients, corresponds to the relative importance of the predictor variable in 

contributing to biological turnover between pairs of sites, holding all other variables 

constant (Ferrier et al. 2007). Thus, the I-splines are partial regression fits that provide a 
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biologically-supported relationship between environmental and geographic distance and 

compositional dissimilarity (Fitzpatrick et al. 2013). I-splines thereby provide a means to 

select, weight, and transform environmental predictor variables objectively such that they 

best represent biological patterns (Ferrier et al. 2007, Leathwick et al. 2011, Williams et 

al. 2012). GDM accommodates the asymptotic nature of compositional similarity metrics 

by transforming the scaled relationship between predictors and compositional 

dissimilarity using a generalized linear model (GLM) with an exponential link function 

(Ferrier et al. 2002, 2007).  

Fitting GDMs requires a site × taxa table and a corresponding site × environment 

table. The first table comprises the response variable, once data are converted into 

pairwise site biological distances (in this case Bray-Curtis dissimilarity). The second 

table, once converted into environmental/geographic distances, comprises the predictor 

variables. GDM uses these data to derive I-splines and apply the GLM transformation. 

All GDM analyses were performed in R version 3.0.1 (R Core Team 2013) using the 

GDM  package available from R-Forge (http://r-forge.r-project.org, Manion et al. 2014). 

For this research, I converted MBSS abundance data to presence/absence, which is 

considered more reliable for the un-censused benthic invertebrates (Boward and 

Friedman 2011). I omitted pairwise comparisons between sites surveyed in different 

years to minimize the effects of unmeasured yearly environmental variation, and I 

included geographic distance as a predictor in all models. 

I fit a total of 56 GDMs using all available occurrence data from the MBSS. 

These included separate models for each combination of region (4), taxon (fish, benthic 

invertebrates), and variable set (seven combinations of three variable groups). To select 
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from the candidate predictor variables, I first removed highly correlated variables. I tested 

Pearson and Spearman correlations within each variable set for each region and removed 

variables in pairs or groups correlated >|0.7|, retaining those variables of correlated sets 

that I considered most biologically relevant (Williams et al. 2012, Austin 2002). I also 

tested for correlations across variable sets. In the few cases in which variables were 

correlated across sets (i.e. local derived with accumulated derived, accumulated derived 

with field-measured, or local derived with field-measured), I retained the variable 

deemed most biologically relevant. Manually choosing candidate variables in cross-group 

comparisons could influence conclusions regarding which variable sets are most 

effective. However, cross-group correlations were rare, and only three variables were 

omitted as a result: accumulated surface air temperature, accumulated soil erodibility, and 

flow accumulation (Appendix C). 

After removing correlated variables, I tested for statistical significance of 

predictor variables in each model using a custom backward selection procedure. First, I 

built a GDM with all candidate predictor variables and removed predictors with a sum of 

I-spline coefficients equal to zero, as they had no relationship to biological turnover. I re-

fit the GDM without the irrelevant predictors (“full model”) and fit a third GDM 

(“reduced model”) omitting the predictor associated with the least compositional change, 

i.e. the variable with the lowest sum of I-spline coefficients (Fitzpatrick et al. 2011). I 

subtracted the deviance explained of the reduced model from the deviance explained of 

the full model. To reduce computational burdens associated with matrix randomization 

and numerous model fitting routines, I omitted the variable if the difference was less than 

two percent of the models’ mean deviance explained. If the difference was greater, I 
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randomized species relationships 500 times and created 500 GDM null model pairs, one 

model with the full predictor set and one with the reduced set. If at least 5% of the null 

model differences in deviance explained were greater than the true difference in deviance 

explained (i.e. p < 0.05, the variable in question was no more explanatory than a random 

variable), I omitted the variable in question and repeated the procedure for the next least-

relevant predictor. Alternatively, if the true difference in deviance explained was among 

the top 5% of the null differences, I retained the variable and the selection procedure 

ended (Fitzpatrick et al. 2011).  

Evaluation of field-measured and derived variable sets 

 I compared models within region and taxon, so the only difference between them 

was predictor variable set, and I evaluated them in three complementary ways: 

explanatory power, parsimony, and predictive ability. I measured how well models were 

able to explain the data using deviance explained, the method GDM uses to assess fit. I 

also used variation partitioning (strictly speaking, deviance partitioning) to determine the 

amount of deviance uniquely explained by each of the three variable groups for each 

region-taxon combination (Borcard et al. 1992, Whittaker 1984, Jones et al. 2013). 

Deviance partitioning quantified the extent to which different variable sets explained 

redundant or complementary biological information. Briefly, the procedure involved 

subtraction of deviance explained values from models fit with different variable sets to 

determine how much deviance explained was attributable to each set of variables 

individually. For example, the proportion of deviance explained (DE) attributable to 

field-measured variables alone is:  
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DEfield measured variables unique = DEall three variable sets – DElocal and accumulated derived variables 

 

Unlike deviance explained, Akaike Information Criterion (AIC) penalizes models 

for additional parameters, thereby assessing model complexity in conjunction with fit (i.e. 

parsimony, Akaike 1974). I assessed parsimony using AIC weights. To calculate AIC, 

which GDM does not report, I fit GDMs in R as log linear binomial generalized linear 

models (GLMs). Biological similarity was a function of environmental distance, with a 

log link function and binomial observation error (Millar et al. 2011). I extracted log-

likelihood (L) from GLM model objects and defined number of parameters (k) as the 

number of non-zero I-spline coefficients, plus one for the intercept term. Then, I 

calculated AIC as (2*k)-(2*L), penalizing models with a greater number of parameters. 

AIC weights, reflecting which model had the most support from a parsimony standpoint, 

were calculated using the R package MuMIn (Barton 2014). 

Beyond being explanatory and parsimonious, models useful for management must 

also have the ability to make reasonable predictions to unsurveyed locations. I measured 

predictive ability by assessing how well models fit with training data were able to predict 

withheld test data. For each region-taxon/variable set combination, I randomly partitioned 

site pairs 50 times into training (70%) and testing (30%) sets. I fit GDMs using the 

training data and the variables pre-selected by the backward selection procedure and then 

used the fitted models to predict compositional dissimilarity to the withheld 30% of site 

pairs. I assessed predicted compositional dissimilarity in two ways: (1) using Spearman 

correlations to show the correspondence between predicted and observed dissimilarities, 

and (2) using median percent error calculations to determine the magnitude of the 
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difference between predicted and observed dissimilarities. I compared correlations and 

median percent errors within region-taxon pairs using Kruskal-Wallis rank sum tests 

followed by multiple comparison tests. 

 Additionally, because a different number of variables from each group was 

available to the models, I used chi-square tests to determine whether models with all 

variables available to them preferentially selected from particular sets.  

Management inference: predicting indices of biotic integrity 

Stream management decisions are often informed by metrics such as Indices of 

Biotic Integrity (IBIs, Karr 1981, Southerland et al. 2007). To determine the difference 

between the environmental variable sets in the context of managerial inference, I used 

GDM-transformed environmental variables and the ensemble machine learning method 

random forests (Breiman 2001) to predict two sets of IBIs: those based on field-measured 

variables and those based on derived variables. I then compared predicted and MDNR-

calculated IBIs to assess the disparity between the variable sets from a management 

perspective. 

For each region-taxon pair, I trained GDMs built with field-measured variables 

only and GDMs built with derived variables only (local and accumulated together, as this 

is likely the set that managers would use) on 50 random partitions (70%) of survey 

locations. I used the I-splines to transform predictors from environmental space (I-spline 

x-axis) into biological space (I-spline y-axis), leveraging GDM’s ability to weight 

environmental gradients so that they best represent biological patterns. I then trained a 

random forest model on the transformed predictors with observed IBI as a response, used 
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GDM to transform environmental gradients at the 30% of sites withheld, and predicted 

IBI for that holdout with the random forest model. I calculated percent error for each 

pairwise comparison and used Spearman correlations to compare observed and predicted 

IBIs for each random partition. Both percent errors and Spearman correlations were 

compared using Welch’s t-tests.    
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RESULTS 

Evaluation of field-measured and derived variable sets 

Explanatory power 

GDM explained between 3.8 and 43.4% of the deviance in compositional 

turnover, depending on variable set, region, and taxon (Fig. 2). The least explanatory 

model was built with only local derived variables (L) for Youghiogheny fish. The most 

explanatory models, with the same deviance explained, were built for Youghiogheny 

benthic invertebrates with variables from all groups (FAL) and Youghiogheny benthic 

invertebrates with field-measured and accumulated derived variables (FA). 

Youghiogheny fish had the greatest range in deviance explained values between models 

fit with different variable sets (35.7%), followed by Youghiogheny benthic invertebrates 

(33.1%). Models for the Coastal Plain benthic invertebrates had the smallest range in 

deviance explained values (10.9%). The average deviance explained for benthic 

invertebrate and fish models built with derived variables (AL) was 23.0% and 21.2%, 

respectively. Average deviance explained for benthic invertebrate and fish models built 

with field-measured variables (F) was 29.6% and 28.2%, and average deviance explained 

for models selecting from all variable sets (FAL) was 32.7% and 32.6%.  

Within each region-taxon pair, the model built with only local derived variables 

(L) always had the lowest deviance explained, the four models that included field-

measured variables (F, FL, FA, FAL) always had the highest deviance explained, and 

models built with accumulated derived variables (A, AL) were intermediate. For all 

regions and both taxa, the effect of adding local derived variables to another variable set 

(e.g., addition of L variables to A, F, or FA sets) was negligible.  



 

Figure 2. Deviance explained values for 
available MBSS data in four regions and for both fish and benthic invertebrates
panel is a region-taxon pair. 
derived variables. 
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. Deviance explained values for generalized dissimilarity models 
in four regions and for both fish and benthic invertebrates
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Across regions and taxa, local derived variables uniquely explained between 

and 2.0% of the deviance in biological turnover, i.e. almost nothing that the other variable 
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the other regions.  Of the deviance explained by the Youghiogheny FAL fish model 

(39.5%), two-fifths (15.5%, red cross, Fig. 3) was uniquely attributable to field-measured 

variables. Of the deviance explained by the Youghiogheny FAL benthic invertebrate 

model (43.4%), over two-fifths (18.0%, red triangle, Fig. 3) was uniquely attributable to 

field-measured variables. 

 
Figure 3. Deviance uniquely explained by each variable set (F =field-measured, L = local 
derived, A = accumulated derived) for region-taxon pairs. Note that some of the local 
derived percentages are negative because models were not perfectly nested. 

 

Parsimony 

In all region-taxon pairs except Coastal Plain benthic invertebrates, models 

including field-measured variables as predictors (either FAL models or FA models) were 

most supported by AIC (Appendix D). In the case of the Coastal Plain benthic 

invertebrates, the model built with only local derived variables was best supported, likely 
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because all models were comparatively poor in this region-taxon pair (Fig. 2) and had 

similar AICs, such that number of parameters weighed heavily in the evaluation.   

 It is most useful to calculate AIC weights considering only models built with L, 

A, AL, and F variable sets so that the weights clearly reflect variable set differences. For 

all region-taxon pairs except the Coastal Plain benthic invertebrates, the model built with 

field-measured variables had AIC weight >0.98 (Table 3).
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Table 3. Generalized dissimilarity model AICs, considering only models built with local derived (L), accumulated derived (A), local 
and accumulated derived (AL), and field-measured (F) variable sets. ∆AIC shows the difference between the current model and the 
best model, which is marked with a star (*). AICw are AIC weights, and K is the number of parameters. 

    Youghiogheny Highlands Piedmont Coastal Plain 

  Models AIC ∆AIC AICw K AIC ∆AIC AICw K AIC ∆AIC AICw K AIC ∆AIC AICw K 

Fish 

L 2376.1 333.88 0.000 4 9731.0 673.94 0.000 14 65892.2 6579.23 0.000 9 17985.5 1069.5 0.000 17 
A 2157.3 115.07 0.000 20 9399.9 342.81 0.000 9 61527.9 2214.94 0.000 13 17312.3 396.2 0.000 25 
AL 2172.3 130.07 0.000 19 9362.5 305.36 0.000 14 61417.2 2104.26 0.000 12 17290.0 373.9 0.000 28 
F 2042.2* 0.00 1.000 12 9057.1* 0.00 1.000 18 59312.9* 0.00 1.000 17 16916.1* 0.0 1.000 27 

Benthic 
Inverts 

L 1653.4 25.88 0.000 8 7901.1 101.01 0.000 15 36853.1 175.12 0.000 14 9593.0* 0.0 0.974 10 
A 1637.7 10.17 0.006 14 7825.7 25.67 0.000 12 36704.2 26.21 0.000 17 9601.9 8.9 0.012 22 
AL 1636.2 8.60 0.013 16 7818.4 18.39 0.000 11 36692.7 14.68 0.001 22 9602.2 9.2 0.010 21 
F 1627.6* 0.00 0.981 17 7800.1* 0.00 1.000 15 36678.0* 0.00 0.999 26 9603.6 10.6 0.005 28 
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Predictive ability  

Fitted relationships between predicted and observed compositional dissimilarity 

for all variable sets, taxa, and regions were close to the one-to-one line (Appendix E). 

However, Kruskal-Wallis rank sum tests showed that within each region-taxon pair, there 

were significant differences in how effectively models fit with different variable sets 

predicted Bray-Curtis dissimilarities between withheld site-pairs (Fig. 4a, b). Within 

region-taxon pairs, the only models that did not have significantly different Spearman 

correlations were built with only derived variable groups (A vs. L models and A vs. AL 

models) or both included field-measured variables (F vs. FL, FL vs. FAL, etc., Appendix 

F). Similarly, except in the case of two Coastal Plain benthic invertebrate model 

comparisons (A vs. F and AL vs. F), the only non-significant differences in percent error 

were between models that both included or both did not include field-measured variables 

(Appendix F).  

Overall, the pattern in predictive ability was identical to the pattern in explanatory 

power (Fig. 2): models built with only local derived variables had the lowest predictive 

ability (average Spearman correlation between observed and predicted Bray-Curtis 

dissimilarities was 0.30, average median percent error was 18.3 %), followed by models 

built with accumulated derived variables (A and AL models both had an average ρ =  

0.47 and an average median percent error of 16.4%). Models built with field-measured 

variables had the best predictive ability (F models had average ρ =  0.54, average median 

percent error = 15.3%).  



 

(a) 

(b) 

Figure 4. Boxplots of (a) Spearman correlations 
Curtis dissimilarities, where each box summarizes 50 correlation coefficients, and (b) 
percent error of predicted Bray
median percent errors. F =field
derived variables. For significant differences between boxes within re
see Appendix F. 

of (a) Spearman correlations between observed and predicted
, where each box summarizes 50 correlation coefficients, and (b) 

predicted Bray-Curtis dissimilarities, where each box summarizes 50 
F =field-measured, L = local derived, and A = accumulat

variables. For significant differences between boxes within region
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Important individual variables 

Once correlated variables were removed (Appendices B, C) and the backward 

selection process was completed, the final GDMs retained between one and 16 

environmental predictor variables (Appendix G). For benthic invertebrate models, the 

five most common environmental predictors were related to land use, substrate, and 

gradient, and included weighted impervious surface area (isa_fls_nor, 12 models), 

accumulated derived bedrock depth (brd_acc, 12 models), field-measured stream gradient 

(ST_GRAD, 12 models), local derived burial probability (bp_2001, 11 models), and 

field-measured riffle quality (RIFFQUAL, 11 models, Appendix H). The most common 

environmental predictors of fish turnover were related to network position, substrate, 

temperature and gradient, and included field-measured stream gradient (ST_GRAD, 14 

models), local derived surface air temperature (sat_loc, 13 models), accumulated derived 

bedrock depth (brd_acc, 13 models), flow accumulation (dem10mad8, 12 models), and 

field-measured discharge (DischargeCFS, 12 models, Appendix H).  

In models for which field-measured, accumulated derived, and local derived 

variables were all candidates (FAL models), field-measured conductance (COND_FLD) 

and weighted impervious surface area (isa_fls_nor) were most strongly related to benthic 

invertebrate compositional turnover across regions (Fig. 5a). Field-measured stream 

gradient (ST_GRAD) was most strongly related to fish compositional turnover and was 

chosen as a predictor in all regions except the Coastal Plain (Fig 5b).   

  



 

(a) 

(b) 

Figure 5. Relative importance of predictor variables selected for (a) benthic invertebrate 
and (b) fish generalized dissimilarity 
derived (A), and local derived
quantified as the sum of I
representing a single region sums to one. Symbols next to the bars show whether 
unselected variables were removed as a result of (
backward selection.  

Relative importance of predictor variables selected for (a) benthic invertebrate 
generalized dissimilarity models when field-measured (F), accumulated 
, and local derived (L) variables were candidates. Relative importance is 

ied as the sum of I-spline coefficients and normalized so that the length of the bars 
representing a single region sums to one. Symbols next to the bars show whether 
unselected variables were removed as a result of (�) correlation analysis or 
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Though the field-measured variables as a set were almost always superior to 

derived variables in terms of explanation, prediction, and parsimony, chi-square tests 

showed that field-measured variables were not chosen by the backward selection 

procedure out of proportion to their availability (Table 4). This is true both when derived 

variables were considered as a single category (L + A), in which case there were many 

more derived than field-measured variables available (Table 4a), and also when derived 

variables were separated, in which case the Highlands and Coastal Plain had 

approximately the same number of variables in each set and the Youghiogheny and 

Piedmont had a greater number of field-measured variables (Table 4b).  

Table 4. Chi-square test results showing whether predictors from particular variable sets 
were selected for inclusion in generalized dissimilarity models out of proportion to their 
availability. Variable sets tested were (a) AL vs. F and (b) L vs. A vs. F, where F = field-
measured, L = local derived, and A = accumulated derived variables. Significant results 
are starred (*). 

Region Taxon 

Chosen Variables 
in FAL models 

Number of 
Candidate 
Variables 

Chi 
Square 
Statistic p-value 

    L A AL F L A AL F     
(a) 
Youghiogheny Fish     5 5     27 19 

 
0.312 0.577 

Youghiogheny Benthic Inverts     4 5     27 19 0.754 0.385 
Highlands Fish     5 7     26 14 2.872 0.090 
Highlands Benthic Inverts     4 3     26 14 0.190 0.663 
Piedmont Fish     3 8     27 17 5.392 0.020* 
Piedmont Benthic Inverts     6 8     27 17 2.022 0.155 
Coastal Plain Fish     7 6     29 15 0.842 0.359 
Coastal Plain Benthic Inverts     6 6     29 15 1.352 0.245 
(b) 
Youghiogheny Fish 1 4   5 15 12   19 2.493 0.288 
Youghiogheny Benthic Inverts 0 4   5 15 12   19 4.540 0.103 
Highlands Fish 2 3   7 14 12   14 3.119 0.210 
Highlands Benthic Inverts 1 3   3 14 12   14 1.367 0.505 
Piedmont Fish 1 2   8 15 12   17 5.659 0.059 
Piedmont Benthic Inverts 1 5   8 15 12   17 4.589 0.101 
Coastal Plain Fish 1 6   6 15 14   15 4.052 0.132 
Coastal Plain Benthic Inverts 1 5   6 15 14   15 3.592 0.166 
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Management inference: predicting indices of biotic integrity 

 Field-measured variables were not consistently better predictors of IBIs than 

derived variables (Fig. 6a, b). Rather, predictions of IBIs using derived variables had a 

lower mean percent error and were more strongly correlated with MDNR-calculated IBIs 

for five of the eight region-taxon pairs. Without a correction for multiple comparisons, 

IBI predictions using field-measured variables were significantly more correlated with 

MDNR-calculated IBIs for three region-taxon pairs and predictions using derived 

variables were significantly more correlated with MDNR-calculated IBIs for two. 

Conversely, use of field-measured variables yielded predictions with significantly lower 

mean percent errors for two region-taxon pairs, and derived variables yielded predictions 

with significantly lower mean percent errors for three. With a Bonferroni correction, each 

variable set produced predictions with a significantly higher mean Spearman correlation 

for one region-taxon pair a significantly lower mean percent error for two region-taxon 

pairs. Neither derived nor field-measured variables showed regional or taxon-based 

patterns in ability to predict IBIs.  

 



 

(a) 

 

(b) 

 

Figure 6. Boxplots of (a) 
predicted IBIs, where each box summari
errors of predicted IBIs, where 
have been suppressed for 
accumulated and local derived
modeling.  

of (a) Spearman correlations between MDNR-calculated and 
predicted IBIs, where each box summarizes 50 correlation coefficients, and (b) 

, where each box summarizes errors in all replicate
have been suppressed for visualization purposes. F =field-measured and AL = 
accumulated and local derived variables, transformed using GDM prior to random forest 

 

36 

 

 

calculated and 
zes 50 correlation coefficients, and (b) percent 

replicates and outliers 
AL = 

variables, transformed using GDM prior to random forest 



37 

 

DISCUSSION 

 If statistical models are to be used to map patterns of biodiversity, they must be fit 

using derived, full-coverage environmental variables (Austin 2002). However, derived 

variables are often only indirectly related to taxon physiology (i.e. distal), and are 

therefore predicted by theory to be less effective than proximal variables, which are 

typically field-measured (Austin 1980, Franklin 1995, Austin 2002). This research had 

three main goals: to compare stream biodiversity models fit using field-measured and/or 

derived variables, to identify the major environmental drivers of Maryland fish and 

invertebrate community turnover, and to determine whether modeling with field-

measured versus derived variables leads to different management inference.  Results 

showed that field-measured environmental variables almost always produced models that 

were more explanatory, had greater predictive ability, and were more parsimonious than 

derived variables. Field-measured variables also explained a larger amount of unique 

deviance. However, though performance of derived variables as a group was 

comparatively poor, several of the individual derived predictors were among the most 

important, and the predictive superiority of field-measured variables did not persist when 

the dimensionality of the data was reduced to management-relevant indices.  

Evaluation of field-measured and derived variable sets 

Explanatory power 

 The amount of deviance explained by the models developed for this study is on 

par with that reported by other studies employing GDM in stream networks (Leathwick et 

al. 2011, Snelder et al. 2012). Leathwick et al.'s (2011) models explained an average of 

18.5% of the deviance in benthic invertebrate community turnover and 16.3% of 
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deviance in fish community turnover in New Zealand. They used only derived variables, 

including several measures of temperature, flow, slope, and habitat, and considered 

variables at multiple spatial scales. Snelder et al. (2012) used GDM to model benthic 

invertebrate and fish beta diversity in France, and explained 41% and 35% of deviance, 

respectively. They used a relatively modest set of derived variables which included site 

and watershed slope and temperature, watershed precipitation, site altitude, and several 

physical and geographical watershed characteristics.  

Snelder et al.'s (2012) comparatively high deviance explained values may in part 

be attributable to the particularly long environmental gradients across continental France 

(Murphy 2010, Snelder et al. 2012), while Leathwick et al.'s (2011) comparatively low 

deviance explained values were possibly related to the omission of human land use 

variables (e.g., impervious surface). However, the fact that deviance explained values for 

the Maryland freshwater taxa models were lower than Snelder et al.'s (2012) and higher 

than Leathwick et al.'s (2011) could also be attributable to the different sample sizes 

(Guisan and Zimmermann 2000). Deviance explained values tend to decrease with a 

greater number of observations and a smaller number of parameters (Guisan and 

Zimmermann 2000). 

For this study, deviance explained values within region-taxon pairs are directly 

comparable, as models with different variable sets were fit using the same site pairs. The 

consistent increase in deviance explained when models included field-measured variables 

supports the hypothesis that field-measured variables yield more explanatory models than 

derived variables. Indeed, the observed higher deviance explained of models built with 

field-measured variables is especially compelling because the group of derived variables 
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used in this study was comparatively large and sophisticated, and represents an extension 

of variables previously used in community-level stream biodiversity models (e.g., 

Leathwick et al. 2011, Snelder et al. 2012). In particular, the base stream map is more 

realistic than the NHD (Elmore et al. 2013), and the stream burial metrics (Elmore and 

Kaushal 2008) and land use inverse weighting (Peterson et al. 2011) are relatively novel.  

The theoretical explanation for the greater explanatory power of field-measured 

variables is that they tend to be more physiologically relevant and therefore more closely 

related to taxon distributions. In contrast, most derived variables are relevant to biota via 

potentially varying relationships with more proximal drivers. The nature of stream 

networks might also have contributed to the higher explanatory power of field-measured 

variables: the dendritic shape and integrative nature of streams makes deriving variables 

challenging. Specifically, interpolation of stream measurements must take into 

consideration directionality (Peterson et al. 2013), confluence locations (Benda et al. 

2004), and connectivity (Grant et al. 2007); myriad small, ephemeral, or intermittent 

channels have been traditionally difficult to map using remote sensing tools alone 

(Elmore et al. 2013); and predictor variables must characterize both upstream and local 

drivers of biotic distributions (Morley and Karr 2002, Kratzer et al. 2006, Urban et al. 

2006, Stanfield and Kilgour 2013). The importance of environmental influences on biotic 

distributions at multiple scales, in particular, is highlighted by the poor explanatory 

power of local derived variables compared to accumulated derived variables.  
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Parsimony 

AIC demonstrated that not only do field-measured variables result in more 

explanatory models, they also typically produce more parsimonious models. The only 

exception was the Coastal Plain benthic invertebrates, for which the model fit with local 

derived variables (L) had the greatest AIC support. This model had lower deviance 

explained and predictive ability than its companion models, but also had many fewer 

parameters – ten compared to other models with more than twice that number – and AIC 

and deviance explained values among the models were relatively close.  

The Coastal Plain is the region of Maryland with least relief (Reger and Cleaves 

2008). As a result, it is the region where the stream map, which depended heavily on flow 

direction modelling based on a hydrologically-corrected DEM, is likely to be least 

accurate. Map inaccuracies make drainage areas more difficult to identify and 

accumulated derived variables less reliable. Additionally, the Coastal Plain encompasses 

some of the most urbanized areas in Maryland. The combination of high impervious 

surface cover and elevated hydrological sensitivity to imperviousness (Utz et al. 2011) 

likely results in greater surface runoff and increased flashiness (Paul and Meyer 2001, 

Walsh et al. 2005), and field-measured variables, which represent only the moment of 

sampling, are not likely to characterize extremes. With both accumulated derived and 

field-measured variables potentially explaining less biological turnover in the Coastal 

Plain, local variables could explain comparatively more. This logic does not extend to 

Coastal Plain fish models, for which a larger number of local derived variables was 

selected and the accumulated derived and field-measured variables performed 

comparatively better.   
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Predictive ability 

In the context of management, conservation, and restoration planning, the ability 

of models to make predictions to unsurveyed locations is among their most important 

attributes, as reliable predictions can ameliorate expensive, time consuming monitoring 

programs that are the cornerstone of many contemporary management decisions 

(Kristensen et al. 2012). Predictive ability of the models in this study exhibited the same 

pattern as deviance explained, with models including field-measured variables being 

most predictive. The average correlations between observed and predicted Bray-Curtis 

dissimilarities produced by models in this study were slightly lower than those achieved 

by other stream modeling studies (r = 0.37 to 0.66 for Kristensen et al. [2012], r = 0.64 

for Usio [2007], ρL = 0.30, ρA,AL = 0.47 and ρF = 0.54 for this study), potentially because 

others used Pearson correlations to assess classification or single species predictions 

rather than Spearman correlations to assess community dissimilarity. Still, correlation 

coefficients for A, AL, and F models were sufficiently high and percent errors 

sufficiently low that these models could be useful in helping to prioritize 

conservation/restoration and in targeting monitoring efforts. Conversely, models built 

with only local derived variables may not be as useful.  

Important individual variables 

In addition to comparing field-measured and derived variables as sets, this 

research illuminated some of the individual environmental characteristics that drive fish 

and benthic invertebrate turnover in Maryland. Despite the consistent superiority of 

models built with field-measured variables in deviance explained, AIC, and predictive 
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ability, some individual derived variables also performed well. Derived variables were 

among the most common chosen by the backward selection procedure, and a derived 

variable was the second most important predictor of benthic invertebrate community 

turnover.  

The mixture of field-measured and derived variables most frequently selected by 

GDM corresponds to the four regimes identified by Melles et al. (2014) as “critical to 

aquatic ecosystem functioning and diversity:” the flow regime, the temperature regime, 

the nutrient regime, and the sediment regime. In terms of variables in this study, flow 

regime was characterized by gradient and hydrographic network position measures, 

temperature regime by derived temperature, and sediment regime by soils and substrate 

variables. Land use characterized all four regimes. The differences between variables 

chosen for the greatest number of fish and benthic invertebrate models were slight, but 

network position and temperature were chosen more for fish models, while land use was 

chosen for more invertebrate models.  

Network position (i.e. flow accumulation, dem10mad8) may have been chosen for 

a greater number of fish models than benthic invertebrate models because most fish, 

unlike benthic invertebrates (Bilton et al. 2001) are unable to disperse across land at any 

stage in their life cycle. Additionally, fish are more likely to be limited by physical 

channel size, given their greater mass. One would expect temperature and land use, 

however, to be frequent predictors for turnover in both taxa. Both Snelder et al. (2012) 

and Leathwick et al. (2011) identified temperature (mean annual watershed temperature 

and segment air temperature, respectively) as a variable that strongly contributed to 

benthic macroinvertebrate classifications, and Hawkins et al. (2000) concluded that the 
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importance of latitude, longitude, and elevation in their models suggested temperature as 

a main driver of invertebrate composition. From a mechanistic standpoint, Anderson and 

Cummins (1979) found that temperature influenced benthic invertebrate metabolism, 

food quality and quantity. Likewise, land use has been found to be an important influence 

on fish habitat via its effects on nutrients, contaminants, hydrology, sedimentation, and 

cover (Allan 2004, Weijters et al. 2009, Pease et al. 2011). 

Though they were not among the most frequently selected variables, however, 

temperature was still a relatively common predictor of invertebrate turnover, and land use 

was a relatively common predictor of fish turnover. Local derived surface air temperature 

was chosen for five benthic invertebrate models and TEMP_FLD, the field-measured 

version, was chosen for eight (Appendix H). Derived weighted impervious surface area 

was chosen for seven fish models. These variables may not have been selected more 

frequently because they are an imperfect approximation true conditions rather than 

because the environmental characteristic they attempt to represent is not important: air 

temperature only approximates stream temperature (Mohseni and Stefan 1999, 

Hilderbrand et al. 2014), a single temperature measurement only approximates the 

regime, and 2001 data from the National Land Cover Database only approximates cover 

at the time of biotic sampling.  

 In addition to the quantifying the number of models for which predictors were 

chosen, relative variable importance can be measured by summing normalized I-spline 

coefficients across regions (Fig. 5, Fitzpatrick et al. 2011). Considering only FAL 

models, the majority of the most important predictors of community turnover were field-

measured. For benthic invertebrates, the three most important variables were field-
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measured conductance (COND_FLD), weighted accumulated derived impervious surface 

area (isa_fls_nor), and field-measured nitrate (NO3_LAB). For fish, field-measured 

stream gradient (ST_GRAD), field-measured pH (PH_LAB), and field-measured stream 

discharge (DischargeCFS) were most important. Gradient and pH were characterized by 

both field-measured and derived variables; that models selected the field-measured 

versions provides additional evidence for the overall superiority of the field 

measurements and corroborates the results of the model comparisons.  

Derived variables can also be important predictors, however, even when they are 

“competing” with field-measured variables in models. For example, weighted impervious 

surface area had the second greatest sum of I-spline coefficients of variables included in 

benthic invertebrate models, corroborating published findings that impervious surface is a 

strong predictor of mid-Atlantic stream assemblages (King et al. 2005, Utz et al. 2009), 

sensitive aquatic species (Stranko et al. 2008), and “stream health” more generally (Goetz 

et al. 2004). 

Nonetheless, it is important to note that variable importance can be contingent on 

gradient length (Murphy 2010). For example, sites in the Youghiogheny region are 

almost all highly forested, resulting in a short forest gradient (Homer et al. 2007). If 

forest cover does not emerge as an important predictor in the Youghiogheny, it could be 

because there is little forest cover turnover. Additionally, variable importance can be 

affected by the variable selection routine, and a backward selection procedure based on I-

splines fit holding all other variables constant ignores variable interactions. If a 

predictor’s influence on biotic distributions is in part dependent on its association with 
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another predictor (i.e. sedimentation and nutrient/contaminant addition [Lemly 1982, 

Magbanua et al. 2013]), the predictor may be erroneously eliminated. 

Management inference: predicting indices of biotic integrity 

When modeling IBIs instead of community dissimilarity, the pervasive superiority 

of the group of field-measured variables disappeared. Depending on the region and taxon 

and with no discernable trend, field-measured variables were better, worse, or equivalent 

to derived variables in their ability to predict IBIs. To the extent that management 

decisions rely on IBIs, these results suggest that the difference between field-measured 

and derived variables would not have an appreciable effect on management inference. 

With mean Spearman correlations between MDNR-calculated and predicted IBIs ranging 

from 0.47 (F variables, Youghiogheny fish) to 0.76 (AL variables, Piedmont benthic 

invertebrates) and mean percent errors from 20.7 % (F variables, Youghiogheny benthic 

invertebrates) to 35.9 % (F variables, Youghiogheny fish), both models built with field-

measured variables and with derived variables could be useful in informing management 

decisions. In the future, it is possible that models could yield even higher correlations 

between calculated and predicted IBIs  if modeled regions corresponded with the regions 

for which Maryland IBIs were calibrated (including both warmwater and coldwater 

Highlands for Maryland fish IBIs, etc., Southerland et al. 2005).  

In a similar study that modeled a management-relevant metric, Kristensen et al. 

(2012) compared the abilities of field-measured (“in-stream”) and derived (“cost-

effective GIS-derived”) variables to predict the occurrence of fish assemblages in Danish 

streams. Kristensen et al.'s (2012) derived variables were comprised of only land use 
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variables and measured at three spatial scales; their field-measured variables were 

comparable to those in this study. Though Kristensen et al. (2012) found that models 

including field-measured variables produced a slightly higher number of correct 

classifications, they concluded that cost-effective derived variable models were adequate 

for targeting management efforts. Overall, results were similar: when predicting data 

aggregated to a management-relevant scale, derived variables performed similarly to field 

variables.  

Future model improvements 

How can the explanatory power, predictive ability, and parsimony of future 

stream biodiversity models be improved? The results suggest that the inclusion of field-

measured variables, or perhaps derived variables that better approximate field-measured 

variables, would have a positive effect on each of these metrics. Additionally, models 

could likely be improved with the inclusion of candidate variables reflecting past land 

use, temporal trends, or extreme conditions (Harding et al. 1998, Zimmermann et al. 

2007), as well as modeled stream temperature (e.g., Hilderbrand et al. 2014). Previous 

research has considered multiple methods of weighting upstream land use (e.g., Peterson 

et al. 2011) and suggested that weighting schemes should consider in-stream as well as 

over-land flow distance (Van Sickle and Johnson 2008).  

Beyond inclusion of additional covariates, models could be improved with 

increased taxonomic resolution: benthic invertebrates in this study were identified to 

family or genus, but species within those aggregations could respond to different 

environmental drivers (Hawkins et al. 2000) and even within species, individuals are 
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likely to exhibit varying tolerances (Clark et al. 2011). Multiple visits to survey sites 

would be more likely to characterize typical assemblages, as fish and benthic 

invertebrates are mobile taxa and may change locations associated with juvenile dispersal 

(Schlosser 1998, Jackson et al. 1999, Verberk et al. 2008), seasonal migration (Todd and 

Rabeni 1989, Brönmark et al. 2008), daily cycles (Schloss and Haney 2006, Kobler et al. 

2012), or within a season and without clear, predictable pattern (Macneale et al. 2005, 

Belica and Rahel 2008). Additionally, incorporation of dispersal abilities (Nekola and 

White 1999, Grant et al. 2007) and biotic interactions (Hutchinson 1957, Araújo and 

Rozenfeld 2013), frequently neglected in biodiversity models (Pearson and Dawson 

2003), could improve model explanatory and predictive ability.  

Conclusions 

Collectively, this research represents one of the few empirical tests of the 

proximal/distal theory in stream systems. It elucidates some of the drivers of stream beta 

diversity in Maryland and provides a basis for further, predictive Maryland stream 

biodiversity modeling. Field-measured variables were superior to derived variables in 

explanation and prediction of fish and benthic invertebrate community turnover, and they 

almost always produced more parsimonious models. However, some derived variables 

were also important, and there was little difference between the variable sets in terms of 

prediction of aggregated, management-relevant indices of biotic integrity. The results 

broadly corroborate the theory that proximal variables are more robust predictors than 

distal predictors, but also support the use of biodiversity models built with derived 

variables in IBI-based management decisions.   
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ADDENDUM 

I believe this work will be a useful addition to Maryland stream biodiversity 

research and the broader predictor variable literature. My largest struggle in completing it 

was with the optimization algorithm DynamicFOAM (the Dynamic Framework for 

Occurrence Allocation in Metacommunities). DynamicFOAM uses predictions from an 

alpha diversity model, predictions from a beta diversity model (e.g., GDM), a value of 

gamma diversity, and available community composition data to predict biotic 

composition at all locations in the study region (Mokany et al. 2011).  I hoped to apply 

DynamicFOAM because I felt that predictions of community composition would be a 

useful addition to predictions of compositional turnover from a management standpoint. 

However, DynamicFOAM had never been applied to a dendritic system before, and 

results, when obtained, were nearly nonsensical. It is unclear whether this was a failure in 

the input files or the algorithm, but it was impossible to troubleshoot thoroughly from a 

graphical user interface. All DynamicFOAM results were omitted from the final 

document. 

Another struggle was conceptually to unite the proximal/distal theory with the 

reality of field-measured and derived variable sets. It is true that these are not exactly the 

same, but I believe that field-measured and derived variables represent the most 

management-relevant analogs to proximal and distal variables, and that focusing on them 

provided more useful results in terms of model assessment and future variable derivation 

efforts. 

Were I to begin this project again, I would make several small adjustments in the 

methods. First, I would use multiple community-level modeling techniques to assure that 
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the results demonstrate true differences between variable sets rather than an artifact of the 

modeling framework. I would also not have included Euclidean distance as a predictor, as 

it is likely less useful in streams than network distance (Rouquette et al. 2013). I would 

have assessed variable correlations all at once and across the entire state rather than by 

variable group and within region, so that all models would have started with the same 

candidate variable pool and been more comparable. The drawback of a comprehensive 

correlation assessment is that correlations could be regionally-dependent, but 

interpretation would have been simpler. I would consider partitioning beta diversity into 

its species turnover and nestedness components, which would allow assessment of the 

underlying nature of community turnover (Baselga 2010). Finally, I would explore 

options for variable selection techniques beyond backward selection, which is not an 

optimal procedure (Duarte Silva 2001). There are too many variables to try all possible 

subsets (Hocking 1976), but perhaps Furnival and Wilson's (1974) branching and 

bounding algorithm could be applied in a GDM framework.  

I do not expect that these improvements would change the conclusions of this 

research because I do not believe that they would alter the directional relationships 

between models built with different variable sets. Rather, they could refine understanding 

of mechanism, facilitate interpretation, and increase the total explanatory and predictive 

power of the models.  
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APPENDICES 
 

Appendix A. Fish considered native and non-native in analysis regions, based on the 
USGS database for Nonindigenous Aquatic Species (United States Geological Survey 
2014), NatureServe (2014), Southerland et al. 2005, Stranko et al. 2010, and expert 
advice. “1” denotes native and “0” denotes non-native. 

 Species Youghiogheny Highlands Piedmont 
Coastal 

Plain 
ALEWIFE 0 1 1 1 
AMERICAN BROOK LAMPREY 0 0 1 1 
AMERICAN EEL 0 1 1 1 
AMERICAN SHAD 0 0 1 1 
ATLANTIC NEEDLEFISH 0 0 1 1 
BANDED DARTER 0 0 0 0 
BANDED KILLIFISH 0 1 1 1 
BANDED SUNFISH 0 0 0 1 
BAY ANCHOVY 0 0 0 0 
BLACK CRAPPIE 1 0 0 0 
BLACKBANDED SUNFISH 0 0 1 1 
BLACKNOSE DACE 1 1 1 1 
BLUE RIDGE SCULPIN 0 1 1 1 
BLUEBACK HERRING 0 0 1 1 
BLUEGILL 1 0 0 0 
BLUESPOTTED SUNFISH 0 0 1 1 
BLUNTNOSE MINNOW 1 1 1 1 
BROOK TROUT 1 1 1 1 
BROWN BULLHEAD 1 1 1 1 
BROWN TROUT 0 0 0 0 
CENTRAL STONEROLLER 1 1 1 1 
CHAIN PICKEREL 0 1 1 1 
CHANNEL CATFISH 1 0 0 0 
CHECKERED SCULPIN 0 1 1 1 
COMELY SHINER 0 1 1 1 
COMMON CARP 0 0 0 0 
COMMON SHINER 1 1 1 1 
CREEK CHUB 1 1 1 1 
CREEK CHUBSUCKER 1 1 1 1 
CUTLIP MINNOW 0 1 1 1 
CUTTHROAT TROUT 0 0 0 0 
EASTERN MOSQUITOFISH 0 0 1 1 
EASTERN MUDMINNOW 0 1 1 1 
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 Species Youghiogheny Highlands Piedmont 
Coastal 

Plain 
EASTERN SILVERY MINNOW 0 1 1 1 
FALLFISH 0 1 1 1 
FANTAIL DARTER 1 1 1 1 
FATHEAD MINNOW 0 0 0 0 
FLATHEAD CATFISH 0 0 0 0 
FLIER 0 0 0 1 
GIZZARD SHAD 0 1 1 1 
GLASSY DARTER 0 0 1 1 
GOLDEN REDHORSE 0 0 1 0 
GOLDEN SHINER 1 1 1 1 
GOLDFISH 0 0 0 0 
GREEN SUNFISH 1 0 0 0 
GREENSIDE DARTER 1 0 0 0 
INLAND SILVERSIDE 0 0 1 1 
IRONCOLOR SHINER 0 0 0 1 
JOHNNY DARTER 1 0 0 0 
LARGEMOUTH BASS 1 0 0 0 
LEAST BROOK LAMPREY 0 0 1 1 
LOGPERCH 0 0 1 1 
LONGEAR SUNFISH 1 0 0 0 
LONGNOSE DACE 1 1 1 1 
LONGNOSE GAR 0 0 1 1 
MARGINED MADTOM 0 1 1 1 
MOTTLED SCULPIN 1 1 1 1 
MUD SUNFISH 0 0 1 1 
MUMMICHOG 0 0 0 1 
NORTHERN HOGSUCKER 1 1 1 1 
ORIENTAL WEATHERFISH 0 0 0 0 
PEARL DACE 1 1 1 1 
PIRATE PERCH 0 0 1 1 
POTOMAC SCULPIN 0 1 1 0 
PUMPKINSEED 1 1 1 1 
QUILLBACK 0 1 1 1 
RAINBOW DARTER 1 1 1 0 
RAINBOW TROUT 0 0 0 0 
REDBREAST SUNFISH 0 1 1 1 
REDEAR SUNFISH 0 0 0 0 
REDFIN PICKEREL 0 0 1 1 
RIVER CHUB 1 1 1 1 
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 Species Youghiogheny Highlands Piedmont 
Coastal 

Plain 
ROCK BASS 1 0 0 0 
ROSYFACE SHINER 1 1 1 1 
ROSYSIDE DACE 0 1 1 1 
SATINFIN SHINER 0 1 1 1 
SEA LAMPREY 0 1 1 1 
SHIELD DARTER 0 1 1 1 
SHORTHEAD REDHORSE 0 1 1 1 
SILVERJAW MINNOW 1 1 1 1 
SMALLMOUTH BASS 1 0 0 0 
SPOTFIN SHINER 0 1 1 1 
SPOTTAIL SHINER 0 1 1 1 
STONECAT 1 0 0 0 
STRIPEBACK DARTER 0 1 1 1 
STRIPED BASS 0 1 1 1 
STRIPED SHINER 1 0 0 0 
SWALLOWTAIL SHINER 0 1 1 1 
SWAMP DARTER 0 0 1 1 
TADPOLE MADTOM 0 0 1 1 
TESSELLATED DARTER 0 1 1 1 
WALLEYE 0 0 0 0 
WARMOUTH 0 0 0 0 
WHITE CATFISH 0 1 1 1 
WHITE CRAPPIE 1 0 0 0 
WHITE PERCH 0 1 1 1 
WHITE SUCKER 1 1 1 1 
YELLOW BULLHEAD 1 1 1 1 
YELLOW PERCH 1 1 1 1 
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Appendix B. Intra-group Pearson and Spearman variable correlations > |0.7|. Outlines 
delineate groups of correlated pairs that have variables in common. Chosen variables are 
in italicized bold font, others were omitted.  
 
         Field-measured variables 
 

Youghiogheny, Field-measured 
Variables 

Piedmont, Field-measured Variables 

 COND_FLD COND_LAB AVGWID DischargeCFS 

RIFFQUAL EPI_SUB AVGTHAL AVG_WID 

MAXDEPTH POOLQUAL POOLQUAL VEL_DPTH 

AVGTHAL MAXDEPTH MAXDEPTH VEL_DPTH 

MAXDEPTH VEL_DEPTH MAXDEPTH POOLQUAL 

ANC_LAB PH_LAB AVGTHAL MAXDEPTH 

AVGWID DischargeCFS VEL_DPTH DischargeCFS 
Highlands, Field-measured 

Variables 
AVGTHAL DischargeCFS 

PH_FLD PH_LAB AVGTHAL VEL_DPTH 

PH_FLD ANC_LAB POOLQUAL AVGTHAL 

COND_FLD COND_LAB EPI_SUB INSTRHAB 

COND_FLD SO4_LAB ANC_LAB PH_LAB 

ANC_LAB PH_LAB ANC_LAB COND_LAB 

ANC_LAB COND_LAB COND_FLD COND_LAB 

SO4_LAB COND_LAB SO4_LAB ANC_LAB 

COND_FLD ANC_LAB COND_FLD ANC_LAB 

VEL_DPTH INSTRHAB 
Coastal Plain, Field-measured 

Variables 
POOLQUAL INSTRHAB PH_FLD PH_LAB 

RIFFQUAL INSTRHAB ANC_LAB PH_LAB 

POOLQUAL VEL_DPTH ANC_LAB COND_LAB 

MAXDEPTH VEL_DPTH SO4_LAB COND_LAB 

AVGTHAL VEL_DPTH COND_FLD SO4_LAB 

MAXDEPTH POOLQUAL COND_FLD COND_LAB 

AVGTHAL POOLQUAL COND_FLD ANC_LAB 

AVGTHAL MAXDEPTH EPI_SUB INSTRHAB 

AVGTHAL AVGWID POOLQUAL INSTRHAB 

VEL_DPTH DischargeCFS POOLQUAL VEL_DPTH 

RIFFQUAL DischargeCFS MAXDEPTH POOLQUAL 

AVGWID DischargeCFS AVGTHAL POOLQUAL 

AVGTHAL DischargeCFS AVGTHAL MAXDEPTH 

AVG_VEL DischargeCFS MAXDEPTH VEL_DPTH 

AVGWID DischargeCFS 

AVGTHAL AVGWID 
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Local derived variables          Accumulated derived variables 
 

Youghiogheny, Local Derived 
Variables 

Youghiogheny, Accumulated 
Derived Variables 

ph_loc bd_loc cc_acc ag_acc 

str_blen_loc isa_loc for_acc ag_acc 

bp_2001 isa_loc ag_fls_nor ag_acc 

bp_2001 str_blen_loc for_acc cc_acc 

str_len_loc str_blen_loc for_fls_nor cc_acc 

Highlands, Local Derived Variables for_fls_nor for_acc 

ph_loc bd_loc for_fls_nor ag_fls_nor 

for_loc cc_loc for_fls_nor cc_fls_nor 

str_blen_loc isa_loc str_bp_acc isa_acc 

bp_2001 isa_loc isa_fls_nor isa_acc 

bp_2001 str_blen_loc str_blen_den isa_acc 

str_len_loc str_blen_loc isa_fls_nor str_bp_acc 

Piedmont, Local Derived Variables str_blen_den str_bp_acc 

ph_loc bd_loc str_blen_den isa_fls_nor 
str_blen_loc isa_loc str_den str_bp_acc 

bp_2001 isa_loc str_den str_blen_den 

bp_2001 str_blen_loc sicl_acc kfw_acc 

str_len_loc str_blen_loc prof_acc plan_acc 

Coastal Plain, Local Derived 
Variables 

str_len_acc str_blen_acc 

ph_loc bd_loc dem10mad8 str_blen_acc 

str_blen_loc isa_loc dem10mad8 str_len_acc 

bp_2001 isa_loc wet_fls_nor wet_acc 

bp_2001 str_blen_loc 

str_len_loc str_blen_loc 
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Accumulated derived variables, continued 
 

Highlands, Accumulated Derived 
Variables 

Piedmont, Accumulated Derived 
Variables 

cc_acc_loc ag_acc str_bp_acc isa_acc 

for_acc_loc ag_acc isa_fls_nor isa_acc 

ph_acc ag_acc str_blen_den isa_acc 

slp_acc ag_acc isa_fls_nor str_bp_acc 

ag_fls_nor ag_acc str_blen_den str_bp_acc 

cc_fls_nor ag_acc str_blen_den isa_fls_nor 

for_fls_nor ag_acc str_len_acc str_blen_acc 

for_acc cc_acc dem10mad8 str_blen_acc 

slp_acc cc_acc dem10mad8 str_len_acc 

ag_fls_nor cc_acc wet_fls_nor wet_acc 

cc_fls_nor cc_acc for_fls_nor cc_fls_nor 

for_fls_nor cc_acc ag_fls_nor ag_acc 

slp_acc for_acc ph_acc bd_acc 

ag_fls_nor for_acc for_acc cc_acc 

cc_fls_nor for_acc plan_acc prof_acc 

for_fls_nor for_acc 
Coastal Plain, Accumulated Derived 

Variables 

cc_fls_nor ag_fls_nor ph_acc bd_acc 

for_fls_nor ag_fls_nor for_acc cc_acc 

for_fls_nor cc_fls_nor isa_acc for_acc 
isa_acc for_acc str_bp_acc isa_acc 

for_fls_nor isa_acc isa_fls_nor isa_acc 

isa_fls_nor isa_acc isa_acc_loc cc_acc 

isa_fls_nor for_fls_nor str_blen_den isa_acc 

sicl_acc kfw_acc isa_fls_nor str_bp_acc 

prof_acc plan_acc str_blen_den isa_fls_nor 
str_len_acc str_blen_acc str_blen_den str_bp_acc 

dem10mad8 str_blen_acc prof_acc plan_acc 

dem10mad8 str_len_acc str_len_acc str_blen_acc 

wet_fls_nor wet_acc dem10mad8 str_blen_acc 

str_blen_den isa_fls_nor dem10mad8 str_len_acc 

str_bp_acc sat_acc wet_fls_nor for_fls_nor 

str_blen_den str_bp_acc wet_fls_nor wet_acc 

ag_fls_nor ag_acc 

str_den slp_acc 
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Appendix C. Inter-group Pearson and Spearman variable correlations > |0.7|. A candidate 
variable change of NA indicates that despite the cross-group correlation, no action was 
taken. This occurred when the less-relevant correlate in the pair had previously been 
omitted due to presence in another correlated group.  

    Correlate 1 Correlate 2 
Candidate Variables 

Change  

Local & 
Accumulated 

Derived 
Variables 

Youghiogheny isa_fls_nor str_blen_loc NA 
isa_fls_nor isa_loc NA 
sat_acc sat_loc omit sat_acc 

Highlands cc_fls_nor cc_loc NA 
sat_acc sat_loc omit sat_acc 

Piedmont kfw_acc kfw_loc omit kfw_acc 
sat_acc sat_loc omit sat_acc 

Coastal Plain sat_acc sat_loc omit sat_acc 
Local Derived 

& Field-
measured 
Variables 

Youghiogheny NA NA NA 
Highlands NA NA NA 
Piedmont NA NA NA 
Coastal Plain NA NA NA 

Accumulated 
Derived & 

Field-measured 
Variables 

Youghiogheny DischargeCFS dem10mad8 omit dem10mad8 
Highlands NA NA NA 
Piedmont DischargeCFS dem10mad8 omit dem10mad8 
Coastal Plain NA NA NA 
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Appendix D. AICs compared for GDMs with all seven variable sets. ∆AIC shows the difference between the current model and the 
best model, marked with a star (*). AICw are AIC weights, and K is the number of parameters for each model. Variable codes: L = 
local derived, A = accumulated derived, F = field-measured. 
    Youghiogheny Highlands Piedmont Coastal Plain 

  Models AIC ∆AIC AICw K AIC ∆AIC AICw K AIC ∆AIC AICw K AIC ∆AIC AICw K 

Fish 

L 2376.1 393.7 0.00 4 9731.0 849.3 0.00 14 65892.2 7471.7 0.00 9 17985.5 1190.0 0.00 17 
A 2157.3 174.9 0.00 20 9399.9 518.2 0.00 9 61527.9 3107.4 0.00 13 17312.3 516.7 0.00 25 
AL 2172.3 189.9 0.00 19 9362.5 480.7 0.00 14 61417.2 2996.8 0.00 12 17290.0 494.4 0.00 28 
F 2042.2 59.8 0.00 12 9057.1 175.3 0.00 18 59312.9 892.5 0.00 17 16916.1 120.5 0.00 27 
FL 2026.2 43.8 0.00 19 8997.2 115.5 0.00 24 58986.3 565.8 0.00 20 16910.0 114.4 0.00 29 
FA 1988.3 5.9 0.05 26 8885.8 4.0 0.12 25 58467.0 46.6 0.00 25 16795.6* 0.0 1.00 34 
FAL 1982.4* 0.0 0.95 24 8881.8* 0.0 0.88 28 58420.5* 0.0 1.00 25 16828.7 33.1 0.00 31 

Benthic 
Inverts 

L 1653.4 31.0 0.00 8 7901.1 133.6 0.00 15 36853.1 232.3 0.00 14 9593.0* 0.0 0.97 10 
A 1637.7 15.3 0.00 14 7825.7 58.2 0.00 12 36704.2 83.4 0.00 17 9601.9 8.9 0.01 22 
AL 1636.2 13.7 0.00 16 7818.4 51.0 0.00 11 36692.7 71.8 0.00 22 9602.2 9.2 0.01 21 
F 1627.6 5.1 0.03 17 7800.1 32.6 0.00 15 36678.0 57.2 0.00 26 9603.6 10.6 0.01 28 
FL 1625.1 2.7 0.11 18 7798.6 31.1 0.00 18 36675.4 54.6 0.00 25 9609.4 16.4 0.00 30 
FA 1622.4* 0.0 0.43 19 7767.5* 0.0 0.90 16 36620.8* 0.0 0.94 29 9607.0 13.9 0.00 28 
FAL 1622.4* 0.0 0.43 19 7771.8 4.3 0.10 13 36626.4 5.6 0.06 28 9613.8 20.7 0.00 29 
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Appendix E. Predicted vs. observed compositional dissimilarity for all generalized dissimilarity models, plotted with best-fit line  
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Appendix F. Statistically significant differences in GDM ability to predict Bray-Curtis 
dissimilarity measured using (a) Spearman correlations between predicted and observed 
dissimilarities and (b) percent error. Hatched fill denotes model pairs that were 
significantly different.  Variable codes: L = local derived, A = accumulated derived, F = 
field-measured. 
(a) 

Youghiogheny Highlands Piedmont Coastal Plain 

Comparison Fish 
Benthic 
Inverts Fish 

Benthic 
Inverts Fish 

Benthic 
Inverts Fish 

Benthic 
Inverts 

A-AL                 

A-AF                 

A-L                 

A-F                 

A-FAL                 

A-FL                 

AL-L                 

AL-F                 

AL-FA                 

AL-FAL                 

AL-FL                 

L-F                 

L-FA                 

L-FAL                 

L-FL                 

F-FA                 

F-FAL                 

F-FL                 

FA-FAL                 

FA-FL                 

FAL-FL                 
 

(b)  
Youghiogheny Highlands Piedmont Coastal Plain 

Comparison Fish 
Benthic 
Inverts Fish 

Benthic 
Inverts Fish 

Benthic 
Inverts Fish 

Benthic 
Inverts 

A-AL                 

A-AF                 

A-L                 

A-F                 

A-FAL                 

A-FL                 



60 

 

Youghiogheny Highlands Piedmont Coastal Plain 

Comparison Fish 
Benthic 
Inverts Fish 

Benthic 
Inverts Fish 

Benthic 
Inverts Fish 

Benthic 
Inverts 

AL-L                 

AL-F                 

AL-FA                 

AL-FAL                 

AL-FL                 

L-F                 

L-FA                 

L-FAL                 

L-FL                 

F-FA                 

F-FAL                 

F-FL                 

FA-FAL                 

FA-FL                 

FAL-FL                 
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Appendix G. Variables included in final GDMs, ordered by importance as assessed by the sum of I-spline coefficients. V1 is 
the most important variable. Region codes: Y = Youghiogheny, H = Highlands, P = Piedmont, CP = Coastal Plain. Taxon 
codes: F = fish, B = benthic invertebrates. Variable codes: L = local derived, A = accumulated derived, F = field-measured.  
Region Y Y H H P P CP CP 
Taxon F B F B F B F B 
Vars L L L L L L L L 
V1 plan_loc sicl_loc sat_loc bp_2001 Geographic bp_2001 bp_2001 Geographic 
V2 Geographic bp_2001 bp_2001 ph_loc sat_loc sat_loc Geographic bp_2001 
V3   Geographic ph_loc sat_loc sicl_loc sicl_loc str_len_loc kfw_loc 
V4   cc_loc sicl_loc Geographic brd_loc Geographic kfw_loc str_len_loc 
V5     str_len_loc ag_loc bp_2001 brd_loc sicl_loc cc_loc 
V6     Geographic wet_loc   str_len_loc ag_loc   
V7     brd_loc sicl_loc   ph_loc for_loc   
V8     plan_loc slp_loc   ag_loc sat_loc   
V9       brd_loc         

Region Y Y H H P P CP CP 
Taxon F B F B F B F B 
Vars A A A A A A A A 
V1 dem10mad8 isa_fls_nor dem10mad8 sicl_acc dem10mad8 dem10mad8 ag_fls_nor plan_acc 
V2 brd_acc slp_acc brd_acc bd_acc sat_acc str_den dem10mad8 isa_fls_nor 
V3 prof_acc bd_acc str_blen_den for_fls_nor for_acc sat_acc wet_acc brd_acc 
V4 isa_fls_nor ag_acc sat_acc str_blen_den sicl_acc isa_fls_nor sat_acc Geographic 
V5 sat_acc wet_fls_nor Geographic dem10mad8 Geographic for_acc isa_fls_nor ph_acc 
V6 bd_acc Geographic   brd_acc brd_acc slp_acc for_acc dem10mad8 
V7 slp_acc     Geographic   ag_fls_nor ph_acc for_acc 
V8 str_den         Geographic kfw_acc wet_acc 
V9 ag_acc         brd_acc Geographic ag_fls_nor 
V10 Geographic           brd_acc kfw_acc 
V11             confluence_num   
V12             sicl_acc   
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V13             plan_acc   
V14             for_fls_nor   

Region Y Y H H P P CP CP 
Taxon F B F B F B F B 
Vars AL AL AL AL AL AL AL AL 
V1 dem10mad8 isa_fls_nor dem10mad8 sicl_acc dem10mad8 str_den ag_fls_nor prof_acc 
V2 str_den bd_acc bp_2001 bp_2001 for_acc dem10mad8 dem10mad8 brd_acc 
V3 brd_acc slp_acc sat_loc str_blen_den sicl_acc sat_loc bp_2001 Geographic 
V4 isa_fls_nor sicl_loc brd_acc for_fls_nor Geographic for_acc wet_acc ph_acc 
V5 bd_acc ag_acc str_blen_den dem10mad8 sat_loc bp_2001 Geographic isa_fls_nor 
V6 prof_acc wet_fls_nor sicl_acc brd_acc brd_acc sicl_loc ph_acc dem10mad8 
V7 plan_loc Geographic Geographic Geographic   slp_acc for_acc for_acc 
V8 sat_loc cc_loc       isa_fls_nor prof_acc wet_acc 
V9 slp_acc         ag_fls_nor str_len bp_2001 
V10 Geographic         Geographic kfw_acc ag_fls_nor 
V11           brd_acc isa_fls_nor kfw_acc 
V12             brd_acc   
V13             sicl_acc   
V14             for_fls_nor   
V15             sat_loc   

Region Y Y H H P P CP CP 
Taxon F B F B F B F B 
Vars F F F F F F F F 
V1 PH_LAB DO_FLD ST_GRAD COND_FLD PH_LAB NO3_LAB DischargeCFS COND_FLD 
V2 ST_GRAD NO3_LAB TEMP_FLD PH_FLD SO4_LAB SO4_LAB MAXDEPTH Geographic 
V3 NO3_LAB PH_LAB DischargeCFS NO3_LAB DischargeCFS TEMP_FLD DOC_LAB TEMP_FLD 
V4 AVGTHAL ST_GRAD DO_FLD ST_GRAD MAXDEPTH AESTHET PH_FLD INSTRHAB 
V5 Geographic SO4_LAB DOC_LAB SHADING COND_FLD EMBEDDED TEMP_FLD PH_FLD 
V6   AESTHET INSTRHAB Geographic ST_GRAD PH_LAB Geographic AVG_VEL 
V7   RIFFQUAL COND_FLD EMBEDDED Geographic COND_FLD COND_FLD RIFFQUAL 
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V8   Geographic Geographic   RIFFQUAL DischargeCFS SHADING AESTHET 
V9           ST_GRAD AESTHET DOC_LAB 
V10           Geographic NO3_LAB NO3_LAB 
V11           INSTRHAB INSTRHAB DO_FLD 
V12           AVG_VEL ST_GRAD MAXDEPTH 
V13           RIFFQUAL     

Region Y Y H H P P CP CP 
Taxon F B F B F B F B 
Vars FL FL FL FL FL FL FL FL 
V1 PH_LAB DO_FLD ST_GRAD COND_FLD PH_LAB NO3_LAB DischargeCFS COND_FLD 
V2 ST_GRAD PH_LAB TEMP_FLD PH_FLD DischargeCFS SO4_LAB MAXDEPTH Geographic 
V3 NO3_LAB NO3_LAB bp_2001 bp_2001 SO4_LAB EMBEDDED DOC_LAB TEMP_FLD 
V4 AVGTHAL bp_2001 DischargeCFS ST_GRAD MAXDEPTH sat_loc PH_FLD PH_FLD 
V5 SO4_LAB SO4_LAB sat_loc NO3_LAB COND_FLD TEMP_FLD TEMP_FLD INSTRHAB 
V6 sat_loc ST_GRAD DO_FLD ph_loc ST_GRAD DischargeCFS Geographic AVG_VEL 
V7 plan_loc RIFFQUAL DOC_LAB Geographic Geographic sicl_loc COND_FLD kfw_loc 
V8 bp_2001 DOC_LAB INSTRHAB SHADING sat_loc AESTHET NO3_LAB bp_2001 
V9 Geographic AESTHET COND_FLD EMBEDDED RIFFQUAL INSTRHAB SHADING RIFFQUAL 
V10   Geographic MAXDEPTH     ST_GRAD bp_2001 DOC_LAB 
V11     ph_loc     PH_LAB INSTRHAB NO3_LAB 
V12     Geographic     Geographic ST_GRAD AESTHET 
V13             AESTHET DO_FLD 
V14               MAXDEPTH 

Region Y Y H H P P CP CP 
Taxon F B F B F B F B 
Vars FA FA FA FA FA FA FA FA 
V1 PH_LAB isa_fls_nor ST_GRAD PH_FLD PH_LAB NO3_LAB ag_fls_nor COND_FLD 
V2 ST_GRAD DO_FLD dem10mad8 COND_FLD SO4_LAB SO4_LAB MAXDEPTH TEMP_FLD 
V3 SO4_LAB PH_LAB DO_FLD sicl_acc DischargeCFS str_den PH_FLD INSTRHAB 
V4 NO3_LAB bd_acc TEMP_FLD ST_GRAD MAXDEPTH sat_acc DischargeCFS Geographic 
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V5 prof_acc for_fls_nor str_den for_fls_nor sat_acc TEMP_FLD sat_acc ph_acc 
V6 isa_fls_nor SO4_LAB sat_acc str_blen_den ST_GRAD EMBEDDED dem10mad8 isa_fls_nor 
V7 slp_acc ST_GRAD DOC_LAB SHADING COND_FLD ST_GRAD DOC_LAB PH_FLD 
V8 str_den slp_acc INSTRHAB brd_acc Geographic for_acc kfw_acc AVG_VEL 
V9 brd_acc RIFFQUAL COND_FLD Geographic RIFFQUAL DischargeCFS ph_acc for_acc 
V10 sat_acc Geographic brd_acc     isa_fls_nor isa_fls_nor RIFFQUAL 
V11 AVGTHAL   DischargeCFS     PH_LAB TEMP_FLD dem10mad8 
V12 Geographic   Geographic     AVG_VEL wet_acc brd_acc 
V13           slp_acc SHADING   
V14           AESTHET for_acc   
V15           RIFFQUAL INSTRHAB   
V16           brd_acc Geographic   
V17           Geographic     

Region Y Y H H P P CP CP 
Taxon F B F B F B F B 
Vars FAL FAL FAL FAL FAL FAL FAL FAL 
V1 ST_GRAD isa_fls_nor ST_GRAD PH_FLD PH_LAB NO3_LAB ag_fls_nor COND_FLD 
V2 PH_LAB DO_FLD dem10mad8 bp_2001 DischargeCFS SO4_LAB MAXDEPTH prof_acc 
V3 SO4_LAB PH_LAB bp_2001 COND_FLD SO4_LAB str_den PH_FLD TEMP_FLD 
V4 isa_fls_nor bd_acc DO_FLD sicl_acc MAXDEPTH sat_loc DischargeCFS ph_acc 
V5 brd_acc for_fls_nor TEMP_FLD ST_GRAD ST_GRAD TEMP_FLD dem10mad8 INSTRHAB 
V6 NO3_LAB SO4_LAB sat_loc for_fls_nor COND_FLD isa_fls_nor DOC_LAB Geographic 
V7 prof_acc ST_GRAD brd_acc brd_acc for_acc EMBEDDED bp_2001 AVG_VEL 
V8 sat_loc slp_acc str_den Geographic sat_loc ST_GRAD ph_acc isa_fls_nor 
V9 slp_acc RIFFQUAL INSTRHAB   Geographic for_acc TEMP_FLD kfw_loc 
V10 AVGTHAL Geographic DOC_LAB   RIFFQUAL DischargeCFS SHADING RIFFQUAL 
V11 Geographic   COND_FLD   TEMP_FLD slp_acc for_acc PH_FLD 
V12     DischargeCFS   brd_acc AVG_VEL Geographic for_acc 
V13     Geographic     RIFFQUAL kfw_acc brd_acc 
V14           brd_acc wet_acc   
V15           Geographic     
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Appendix H. Total number of GDMs for which variables were selected. For each taxon, a 
variable was a candidate for 16 models (i.e. an accumulated variable could have been in 
A, AL, FA, and FAL models in four regions). Variable codes: L = local derived, A = 
accumulated derived, F = field-measured. 

    
Number of models 
for which selected       

Number of models 
for which selected 

Variable   BENTHIC FISH   Variable   BENTHIC FISH 
ST_GRAD   12 14   str_len local 2 3 
brd  accumulated 12 13   str_blen_den accumulated 3 2 
bp_2001 local 11 10   ph local 3 2 
COND_FLD   9 10   MAXDEPTH   2 2 
dem10mad8 accumulated 7 12   AVGTHAL   0 4 

isa_fls_nor 
spatial 
accumulated 12 7   

plan local 
0 4 

sat  local 5 13   kfw  local 3 1 
TEMP_FLD   8 9   brd  local 2 2 
DischargeCFS   4 12   cc  local 3 0 
NO3_LAB   10 6   ag local 2 1 
RIFFQUAL   11 4   ag accumulated 2 1 
PH_LAB   7 8   plan accumulated 1 1 

SO4_LAB 
  8 7   

wet_fls_nor 
spatial 
accumulated 2 0 

for accumulated 8 7   slp local 1 0 
INSTRHAB   6 7   confluence_num accumulated 0 1 
PH_FLD   8 4   for local 0 1 
slp accumulated 8 4   wet local 1 0 
DOC_LAB   3 8   EPI_SUB   0 0 
DO_FLD   6 4   VEL_DPTH   0 0 

sat  accumulated 2 8   POOLQUAL   0 0 
AESTHET   7 2   AVGWID   0 0 
str_den accumulated 4 5   COND_LAB   0 0 
sicl  local 6 3   ANC_LAB   0 0 

sicl  accumulated 4 5   prof local 0 0 

for_fls_nor 
spatial 
accumulated 6 2   

dem10mp local 
0 0 

ag_fls_nor 
spatial 
accumulated 4 4   str_len 

accumulated 
0 0 

SHADING   3 4   str_blen local 0 0 
AVG_VEL   7 0   str_ben accumulated 0 0 

prof accumulated 2 5   str_bp accumulated 0 0 
bd accumulated 5 2   isa local 0 0 
EMBEDDED   6 0   isa accumulated 0 0 

wet accumulated 2 4   cc accumulated 0 0 

kfw  
accumulated 

2 4   
cc_fls_nor 

spatial 
accumulated 0 0 

ph accumulated 4 2   bd local 0 0 
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