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This study predicts, analyzes, and isolates the mechanisms of main rotor air-

loads, structural loads, and swashplate servo loads in a severe unsteady maneuver.

The objective is, to develop a comprehensive transient rotor analysis for predict-

ing maneuver loads. The main rotor structural loads encountered during unsteady

maneuvers are important to size different critical components of the rotor system,

particularly for advanced combat helicopters. These include the blade structural

loads, control/pitch-link loads, and swashplate servo loads. Accurate and consistent

prediction of maneuver loads is necessary to reduce the risks and costs associated

with use of prior flight test data as a basis for design. The mechanism of rotor loads

in different level flight regimes is well understood – transonic shock in high speed

flight, inter-twinning of blade tip vortices below the rotor disk at low speed tran-

sonic flight, and two dynamic stall cycles on retreating blade during high altitude

dynamic stall flight. All these physical phenomena can occur simultaneously during

a maneuver.



The goal is to understand the key mechanisms involved in maneuver and model

them accurately. To achieve this, the aerodynamics and structural dynamics of UH-

60A rotor in unsteady maneuvering flight is studied separately. For identification of

prediction deficiencies in each, first, the measured lift, drag, pitching moment and

damper force from the UH-60A Flight Test Program for UTTAS pull-up maneuver

(C11029: 2.16g pull-up maneuver) are used to obtain an accurate set of deforma-

tions. A multibody finite element blade model, developed for this purpose, is used

to perform measured airloads analysis. Next, the resultant blade deformations are

used to predict the airloads using lifting-line and RANS CFD aerodynamic models.

Both lifting-line as well as CFD analyses predict all three stall cycles with pre-

scribed deformations. From the airloads predicted using prescribed deformations,

it is established that the advancing blade transonic stall, observed from revolution

12 onwards, is a twist stall triggered by 5/rev elastic twist deformation resulting

in shock induced flow separation. The 5/rev elastic twist is triggered by the two

retreating blade stalls from previous revolution, which are separated by 1/5th rev.

The accurate prediction of both stall cycles on retreating blade holds the key to

prediction of advancing blade stall. In analysis, advancing blade stall is triggered

by a correct combination of control angles and 5/rev elastic twist. Some discrepan-

cies are observed in higher harmonics of predicted torsion moment, which are not

resolved by using measured airloads.

The structural model and the aerodynamic models are coupled together to

predict blade loads for the maneuver. The structural model is refined to include a

three degrees of freedom swashplate model to calculate servo loads and to study the



effect of swashplate dynamics on rotor loads. Lifting-line coupled analysis, though

of low fidelity, is ideally suited to isolate the effects of free wake and dynamic stall.

It is concluded that the UTTAS maneuver is almost entirely dominated by stall with

little or no wake induced effect on blade loads, even though the wake cuts through

the disk twice during the maneuver. At the peak of the maneuver, almost 75% of the

operating envelope of a typical airfoil lies beyond stall. The peak-to-peak structural

loads prediction from the lifting-line analysis show an under-prediction of 10%–20%

in flap and chord bending moments and 50% in torsion loads. The errors stem from

the prediction of 4 and 5/rev stall loads. Swashplate dynamics appears to have a

significant impact on the servo loads - unlike in level flight – with more than 50%

variation in peak loads.

The coupled analysis using CFD/CSD tight coupling shows considerable im-

provements in the predicted results by using a CFD model over a traditional lifting-

line approach. In particular, the coupled CFD/CSD simulation is able to correctly

predict the magnitude and phasing of the two dynamic stall cycles on the retreating

side of the rotor disk during the maneuver. Further it shows significant improve-

ment in the predicted peak-to-peak structural loads. The advancing blade stall is

not predicted by either of the analyses. CFD/CSD analysis is not able to predict the

advancing blade stall due to less satisfactory prediction of retreating blade dynamics

stall cycles which are sensitive to the grid refinements and turbulence modeling.
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Chapter 1

Introduction

The main rotor structural loads encountered during unsteady maneuvers are

important to size different critical components of the rotor system, particularly for

advanced combat helicopters. These include the blade structural loads, control/pitch-

link loads, and swashplate servo loads. Therefore, the knowledge of the source or

sources of these vibratory loads and accurate methods for their prediction can help

in the expansion of the flight envelope for the helicopter.

The current state-of-the-art for rotor loads prediction is becoming satisfactory

for steady level flight. Level flight conditions with the key aerodynamic mechanisms

of intertwinning rotor wake, transonic pitching moments, and dynamic stall have

all been studied in isolation and understood. Maneuvers have been only studied

using lower order models for study of handling qualities, trajectory optimization,

and wake modeling. Detailed prediction of rotor loads during maneuver using high

fidelity tools has received only limited attention so far.

Accurate analysis and prediction of loads mechanisms in an unsteady maneu-

ver is a critical challenge in the field of rotor aeromechanics, primarily due to the

following two reasons: (1) several complex aerodynamic phenomena can occur si-

multaneously in a maneuver, (2) an inverse solution procedure to determine the trim

variables (pitch control angles, vehicle attitude angles, and yaw control) in order to
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fly a prescribed trajectory is quite involved and not yet available to a satisfactory

level. In steady level flight, the trajectory is simple, and the aircraft Euler equations

reduce to six equilibrium equations from which the trim variables are determined

successfully, such is not the case in a maneuvering flight. The complexity of the

solution procedure has been the primary hurdle for a first principles prediction of

maneuver loads. Today, extensive flight test data from the U. S. Army/NASA Air-

loads Program (Refs. [1,2]) has opened opportunity to bypass this complexity. The

measured values of rotor controls, aircraft attitudes, and flight trajectory can now all

be prescribed from flight test data in order to focus solely on the loads mechanisms.

This chapter introduces the requirements for analyzing helicopter main rotor

loads and swashplate loads during an unsteady maneuver to reduce the empiricism

involved in current design practices. First, the role of maneuver loads in helicopter

design is addressed, and the current approaches used for helicopter design is dis-

cussed. Next, the source of high loads in a helicopter undergoing maneuver is

discussed, followed by the analysis requirements for development of comprehensive

analysis for maneuver. Next, the state-of-art of loads prediction is discussed, and

the description of the goals of the present research, with the challenges associated

with it is described. Finally, the approach taken to address those challenges is ex-

plained and the contributions of the present research is highlighted. The focus of

this work is on the development of methodology for prediction and fundamental

understanding of rotor and swashplate-servo loads for an unsteady maneuver.
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1.1 Importance of Maneuver Loads in Design

Helicopters experience a complex dynamic loading environment due to inter-

action of aerodynamic, structural, centrifugal, and inertial forces. This is the case

for most flight conditions for a helicopter, except for the vertical flight and hover

conditions, where the loads are closest to being static. The dynamic loads experi-

enced by the rotor blades get transmitted to the airframe via hub and are important

in the design of sub-components to safeguard them from fatigue failure.

Typically a helicopter spends the largest time of its operational life in steady

level flight. During steady flight, the loads encountered in the rotor blade constitute

of harmonics that are integer multiples of the rotational frequency. For a Nb-bladed

rotor with identical blades, pNb/rev harmonics of the loads, where p is an integer,

get transmitted from the rotor to the hub during steady flight. These harmonics

in the fixed frame are generated by pNb and pNb ± 1/rev harmonics in the rotating

frame. The accurate prediction of rotor vibrations in the airframe requires a good

understanding of coupling of aerodynamic and dynamic characteristics of airframe

and rotor.

An accurate estimation of maneuver loads is essential for sizing the critical

components of rotor and control system. In general, only the peak-to-peak mag-

nitude of the structural loads are needed for selecting the material properties for

designing a rotor, but the magnitude and phase of higher harmonics of the structural

loads, especially the torsion moment and pitch-link load are critical for sizing the

control system and the swashplate servo actuators, which are located in the fixed
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frame.

1.2 Current Design Practice

Main rotor and other critical components (pitch-links, swashplate, servos etc.)

have traditionally been designed using previous experience and experimental data.

The quote from Bob M. Kee (Ref. [3]) highlighted the state of loads prediction back

in 1959 when the helicopter loads prediction was in its infancy, “Analytical calcu-

lations are carried out on blades. However, experience has shown that theoretical

calculations are a guide to the structural integrity of a metal blade, but that exten-

sive testing must follow”. Crichlow [4] reaffirmed the situation in 1967. More than

twenty years later (1986), prediction methodology had not improved significantly,

“... rotor blade loadings are difficult to accurately predict: all current airworthiness

requirements specify that fatigue analyses must be based on measured loads.”, de

Jonge [5].

Accurate and consistent prediction of maneuver loads is necessary to reduce

the risks and costs associated with use of prior flight test data as a basis for design.

At present, the data from the loads survey is used as the basis for the design of he-

licopters. Currently, the design process for flight qualification of modern helicopters

involves the following four phases: (1) design analysis, (2) ground qualification tests,

(3) aircraft flight tests, and (4) service and evaluation tests [6]. The design analysis

involves the analytical load predictions and static and dynamic structural analyses,

which form the basis for the initial structural substantiation. However, due to the
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inherent assumptions and limitations of the analyses tools, test verification has been

essential. The ground qualification tests involves, model and/or full scale wind tun-

nel testing of the helicopter. In addition, static failure or limit load testing is carried

out to minimize risk during flight testing. Finally, a comprehensive flight test loads

survey is undertaken to evaluate the influence of variables like gross weight, altitude,

air speed, rotor speed and center of gravity. The flight testing must also include

effects due to the changes in mission or configuration requirements. This involves

lot of expenditure in testing, as the flight loads survey: (1) establishes the flight

envelope, (2) provides load and stress data for fatigue substantiation, (3) provides

data to support and/or update predicted loads, (4) provides verification of critical

load distributions and (5) provides a library of test data to be used to support fu-

ture helicopter development. Often, due to the restrictions imposed by the flight

data acquisition systems, along with time and cost associated with flight testing,

conservatism has to be introduced in data reduction, analysis and application. This

results in a conservative design to ensure highest levels of safety, as the prediction

of maneuver loads using the high fidelity prediction tools is seldom attempted due

to inadequacy of tools. With the development of accurate and reliable tools for

loads prediction in maneuvers, such conservatism can be overcome, leading to the

development of a more efficient and agile helicopter.
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1.3 Flight Test Data

The analysis tools developed for the rotor loads prediction can be considered

reliable for design purposes only when they are validated against comprehensive

experimental data. Wind tunnel tests provide a controlled environment for study-

ing specific sets of phenomenon and provide detailed data, which can be used for

validating numerical models for rotor loads. But, unsteady maneuvers, cannot be

simulated in wind tunnels, and only a full scale flight test can provide the desired de-

tailed information (such as pressure distribution, strain gage data, pitch-link loads,

control angles, vehicle attitudes and rates time history) to rigorously validate a

comprehensive analysis for maneuver loads prediction.

The earliest documentation of rotor airloads and structural loads measure-

ments in flight for a maneuver was by Beno in 1973 [7]. The flight tests were

conducted using NH-3A compound helicopter and the CH-53A conventional heli-

copter. Measurements were made for the blade pressures (which were integrated to

obtain sectional airloads) and for root torsion moment, only the banked right turn

flight was considered.

The U.S.Army/NASA UH-60A Black Hawk Airloads Program [1] is the first

detailed flight test program which provided an extensive set of repeatable flight

test data covering steady level flight regimes (high speed, low speed transition,

high thrust and low thrust), steady turns and severe unsteady maneuvers. One

of the blades was instrumented with pressure gages at 9 stations. The pressure

measurements were integrated to obtain airloads (normal force, chord force and
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pitching moment). Another blade was instrumented with 9 flap bending gages, 8

chord bending gages and 4 torsion gages. All four pitch-links were instrumented

along with the three servos under the non-rotating swashplate.

Kufeld and Bousman [8] investigated some of the key flights with high load

factors. Based on the criteria of six structural measurements: pitch-link load, torsion

moment (30% R), and flap and chord bending moments (11.3% R and 60% R), they

identified and ranked the maneuvers from the most to the least severe. The severest

maneuvers noted in this study are listed in Table 1.1. As expected, the highest loads

in different categories are exhibited in a wide range of flight conditions and no single

flight condition has the highest loads in every category of load. For example, a diving

right turn at 140 knots (Counter 11680), which is one of the severest maneuvers,

has the highest torsion moment at 30%R, highest pitch-link load, and highest chord

bending moment at the root, but only 15th most severe in terms of the root flap

bending moment and 14th most severe for chord bending moment at 60%R. This

highlights the importance of studying a wide range of maneuvers, to separately

identify the physical mechanisms involved. Some of the maneuvers flown during the

airloads program lie close to the boundary of the operational envelope of the UH-

60A helicopter. Figure 1.1 shows the plot of rotor thrust against advance ratio for

several key flight conditions flown during the UH-60A flight tests. Each steady flight

condition is depicted by a solid dot joined using lines, while the maneuvers have been

shown using symbols connected using solid line. Two of the severest maneuvers

shown in the Fig. 1.1 achieve the rotor thrust well in excess of the aerodynamic

rotor lift boundary, obtained in wind tunnel testing using a model rotor (known as
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McHugh’s lift boundary [9]). A survey of loads for all flight tests revealed that the

highest loads were seen for the high load factor or high speed conditions or some

combination of both [8]. The examination of aerodynamics loads from UTTAS pull-

up, maneuver which is a 2.1g pull-up with third largest pitch-link loads revealed that

the high loads were a result of dynamic stall occurring in the outboard portion of

the blade. C11029 2.1g pull-up maneuver is based on an Utility Tactical Transport

Aerial System (UTTAS) maneuver of the original UH-60A design specification and

discussed in detail in the coming section.

Multiple dynamic stall cycles (up to three) were common feature of several high

load conditions for both steady and maneuvering flights, for example, UTTAS pull-

up (C11029) and high speed diving right turn (C11679) [10]. The two maneuvers

mentioned above are characterized by highest control loads (second highest pitch-

link loads for C11679, third highest pitch-link load for C11029), arising from multiple

dynamic stall events as shown in Fig. 1.2.

1.3.1 UTTAS Pull-up Maneuver

The second most severe maneuver, designated by Counter 11029, is studied

in this thesis. This maneuver is carried out in a period of 9 seconds and covers 40

rotor revolutions. The reasons for the selection of this flight are: (1) it is one of

the severest maneuvers, and (2) at the time of this study the test data was made

available for this maneuver only. It is a dynamic pull-up that reaches 2.12g at 139

knots and produces the highest root flap bending moment and the third highest
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oscillatory pitch-link load of all the UH-60A maneuvers. Even though the pitch-link

load is only third highest of all the maneuvers, it still exceeds the loads encountered

in operational use (see Fig. 1.3). For example, the peak-to-peak pitch link loads at

this flight are 20% higher than those encountered during free engagement air-to-air

combat test (AACT) flights of similar kind, Ref. [11]. These high loads are possibly

the result of advancing blade transonic effects, three dynamic stall cycles (Fig. 1.2)

and wake interactions. The wake is expected to pass through the rotor disk around

rotor revolution number 10 and 24 – first from below to above and then from above

to below as shown in Fig. 1.4.

The measured load factor and velocity ratio are shown in Figs. 1.5 and 1.6,

which show the critical requirements for this maneuver to maintain a load factor of

1.75g for 3 seconds with less than 30 kts loss in airspeed. The aircraft attitude angles

and angular rates are shown in Figs. 1.7(a) and 1.7(b), with negative representing

the nose down attitude. Due to a discrepancy in the angle of attack measurement for

this maneuver, the aircraft shaft angle has to be derived from the pitch angle. The

aircraft pitch angle when reduced using the measured flight path angle (not shown),

and after accounting for 3◦ forward built-in shaft angle produces the effective shaft

tilt with respect to the on-coming flow which is shown in Fig. 1.4. The shaft and

sidelip angles (Fig. 1.4) angle dictate the evolution of rotor wake.
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1.4 Challenges for Maneuver Loads Prediction

To understand the challenges associated with the development of high fidelity

tools for prediction of maneuver loads, the mechanism of maneuver loads must be

understood. The complex unsteady aerodynamic forces in an unsteady maneuver

may occur due to some or all of the following factors

1. Cyclic variation of blade pitch angle and its rate, resulting in asymmetric flow

on advancing and retreating sides.

2. Reverse flow on the retreating side due to low effective air speeds and large

angles of attack required to counter the lift asymmetry.

3. Multiple dynamic stall cycles. Stall response under high subsonic to transonic

flow excited by controls, elastic twist and inflow.

4. Compressibility and 3D transonic effects on the advancing side.

5. Rotor wake interaction with following blades.

The maneuvers that a helicopter can perform can be broadly classified into

steady turns and unsteady maneuvers. Steady turns (e.g. constant altitude banked

turn, where pitch rate and yaw rate are non zero constants and the roll rate is

zero) in general possesses similar levels of complexity as level flight, from simulation

point of view, but unsteady maneuvers (e.g. a rolling pullout or a high load-factor

pull-up), are far more complicated due to transient nature of blade dynamics, com-

pressibility and dynamic stall. Some of the key aerodynamic events observed during
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an unsteady maneuver have been observed in steady flight conditions – high speed,

low speed transition, and moderate speed high altitude dynamic stall flights [12].

The high speed high vibration flight is dominated by 3D transonic pitching moments

on the advancing side. The moderate speed high altitude flight is dominated by two

dynamic stall cycles on the retreating side. The low speed high vibration transition

flight is dominated by vortex loadings on the advancing and retreating sides. All of

these three mechanisms can occur simultaneously in an unsteady maneuver.

As mentioned earlier, accurate prediction of rotor loads during unsteady ma-

neuver holds the key to advanced rotorcraft design. A well validated reliable analysis

tool can allow quick evaluation and comparison of performance capabilities of dif-

ferent designs and configurations without having to resort to wind tunnel or flight

testing which can be time consuming and economically less viable. Such an analysis

tool when developed would be a valuable asset to the helicopter design community,

making the design process streamlined, and may result in the design of more agile,

low vibration, low noise, and efficient vertical flight vehicles, which may have enor-

mous impact on the civilian short haul flights. To realize this goal, it is important

to understand the physical mechanisms that need to be modeled for prediction of

the loads.

1.5 Requirements for Comprehensive Analysis for Maneuver Loads

The complicated aerodynamics environment encountered during the maneu-

vers result in high aerodynamic and inertial loads. These high loads acting on
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rotor blades cause moderate to large deformations in flap, lag and torsion. Due to

the transient nature of the maneuver, these deformations are no longer similar from

blade to blade, as is the case during steady flight with identical blades (deformations

have same magnitude and only differ in phase). Each blade experiences different

inflow, angle of attack, airloads and deformation. This implies that all the blades

need to be modeled individually. The effect of large deformation and its rate gets

fed back to the aerodynamics and results in a highly non-linear aeroelastic behav-

ior. This makes the modeling of large blade deformation critical for analysis of a

rotor undergoing maneuver. The simulation modeling requirements for prediction

of maneuver loads are listed below.

1. A helicopter rotor undergoing severe unsteady maneuver is expected to un-

dergo large blade deformations. Therefore, structural model capable of mod-

eling large blade deformations is necessary for accurate representation of blade

response. Large deformations can be typically modeled using exact beam for-

mulations or using second order moderate deformation beam model in conjunc-

tion with multibody formulation. The non-linear inertial coupling, multiple

load paths at root end boundary conditions should be included.

2. High control loads experience during the maneuver are of primary interest to

the designers. The servos, rotating and stationary swashplates are sized based

on the servo loads. Therefore, a model for swashplate, servo and full control

system (pitch-links, pitch bearings etc.) is important for accurate control loads

prediction.
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3. Transient aerodynamic model for the analysis of maneuver can comprise of

either: (1) lifting-line based analysis should have quasi-steady aerodynamics

based on airfoil table look-up, near wake and unsteady aerodynamics modeling

for dynamic stall, and time accurate far wake evolution, or (2) 3D Computa-

tional Fluid Dynamic formulations, which have become more feasible with the

advances in parallel computational capabilities of modern computers.

4. Control angles time history is required to simulate the maneuver. These can

be either obtained from the flight test or obtained using a flight dynamic

inverse simulation. The inverse simulation can be performed to either target

the time history of loads and moments encountered by the vehicle or the exact

trajectory itself. In addition, a vehicle trim model may be used for the steady

flight regime. The trim angles thus obtained are applied as steady correction

to the flight test control angle history to make it more suitable for use with

analysis.

5. Modeling of rotor-fuselage interactions. The analysis should incorporate ap-

propriate aerodynamic as well as structural dynamic model of fuselage.

A detailed modeling to account for each and every requirement of the simulation of

the maneuver is prohibitive, primarily due to the enormity of computational time

required. Therefore, depending on the desired level of solution accuracy (loads,

control angle estimation, stability, flight dynamics) and the computational resource

availability, the models mentioned above are combined to setup the simulation of the

maneuver. For example, an analysis comprising of finite element structural model,
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lifting-line aerodynamics, free wake and prescribed history of control angles may not

be adequate for an accurate prediction of blade loads, but these can be used for initial

sizing. It also serves as a good means for physics based studies to isolate different

load mechanisms. Multibody dynamics model combined with RANS CFD model

and prescribed control angles is expected to provide significantly accurate loads

when compare to the lifting-line analysis, and can be used to refine the estimates

made using lifting-line analysis, especially at the limit of stall envelope. But such a

detailed analysis cannot be used routinely due to the associated computational time.

However, none of the above combinations may be appropriate for an estimation of

control angles required to simulate a maneuver or provide estimates of handling

qualities. Such estimations can be obtained using a simple FEM structural model

with modal reduction combined with dynamic inflow based lifting-line analysis.

A survey of development of various elements of the analysis strategy for accu-

rate prediction of loads is necessary to understand the modeling requirements, and

is discussed in following sections.

1.5.1 Structural Model

1.5.1.1 Blade Modeling

The first ever helicopter blades used on Sikorsky’s VS-300 in 1940, were con-

structed using tubular steel spar, plywood ribs with fabric / plywood covering and

were considered essentially rigid for analysis [13]. Flax [14] was first to include the

effects of bending flexibility in the study of blade response in 1947. The analysis
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was still simple as he did not include the effect of blade bending on the inertial and

aerodynamic loads. Around same time, Johnson and Mayne [15] recognized the role

of out-of-plane blade bending on the blade inertial loads and bending moments.

The equations for flap and lag motions for the analysis of rotating blades were

first developed independently by Prima and Handelman [16] and Shulman [17].

While the analysis acknowledged the coupling between flap and lag due to Coriolis

terms, it was neglected to keep the equations linear.

The first successful attempt at deriving linear coupled equations of flap, lag,

and torsion was made by Houbolt and Brooks [18]. The development of hingeless

rotors led to increased interest in blade structural modeling. The Hodges and Dow-

ell [19] came up with coupled non-linear flap-lag-torsion equations for moderately

large deformations in which the non-linear terms were retained through an order-

ing scheme. This beam model underwent several refinements with contributions

from several researchers. Hodges, Ormiston, and Peters [20] extended the formula-

tion by treating the elastic torsion variable as a quasi-coordinate. Also, Kvaternik

et al. [21], Rosen and Friedmann [22] and Johnson [23] led to the development of

moderate deformation second-order nonlinear beam theories.

Crespo da Silva [24] showed that the third-order terms, neglected in earlier

models, have some effect on the rotor aeroelastic stability. But retaining third or-

der terms via ordering schemes greatly increases the complexity of the resulting

equations. This lead to development of large deflection theories which did not rely

upon an ordering scheme. Hodges [25] first derived an implicit set of equations us-

ing compact notations for a beam undergoing large rotations. Simo [26] (and later

15



Hodges [27]) derived an explicit non-linear beam equations using a mixed formu-

lation. Within the assumptions imposed on the physical model, the kinematics of

the equations are exact. The models conforming to this definition are called exact

beam formulations. Hodges derivation, a mixed variational formulation, extended

the analysis of Simo and Vu-Quoc [28] for study of beams undergoing large motions

in space. In this formulation, Hodges prescribed the rigid-body (frame) motions of

the beam as kinematical variables (floating frame), separate from the beam elastic

deformations. These developments led to the emergence of use of multibody dynam-

ics in beam modeling. Simo and Vu-Quoc, on the other hand implicitly included the

frame motion in the beam kinematics. The use of floating frame of reference allows

to treat the elastic deformations and rigid body motions separately, but the coupling

between the rigid-body and elastic motion tends to be complex. The extension of

the floating frame approach is the corotational frame approach. While the float-

ing frame follows an average rigid body motion of the entire flexible component or

substructure, the corotational frame follows an average rigid body motion of an in-

dividual finite element within the flexible component. The goal of these “new” beam

modeling approaches was to derive beam models which are robust enough to handle

large deformations. This can be achieved in two ways: (1) by using the “geometri-

cally exact” beam theories [27–30], or (2) by using multibody formulations [31–33],

that allow both rigid and elastic motion of its components using floating frame ap-

proach as mentioned above. In addition to the floating frame approach mentioned

above, another way of incorporating large deformations using moderate deformation

beam elements is the corotational frame approach, which was initially developed as
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a part of the natural mode method proposed by Argyris et al. [34]. In this approach,

the motion of a finite element is divided into a rigid body motion and natural de-

formation modes. It was developed for the static analysis. The dynamic modeling

of planar continuum and beam type elements using rigid convected frames or coro-

tational frames was developed by Belytschko and Hsieh [35]. The definition of the

corotational frame depends on the type of elements used for modeling the flexible

components. For two-node beam elements, the corotational frame is usually defined

by the vector connecting the two nodes [35, 36].

A third approach commonly used in flexible multibody dynamics is inertial

frame approach, which finds its origin in non-linear finite element methods. This

approach has been used for dynamic analysis of bodies undergoing large rotations

and large deformations since early 1970s [37,38]. Work of Simo and Vu-Quoc [26,28]

and Downer et al. [39] can be classified in to this category. Efforts have been

made recently to integrate large deformation finite element formulations with flexible

multibody system algorithms to develop capabilities for the analysis of engineering

models with significant details [40].

1.5.1.2 Rotor Dynamics Formulations

Complex boundary conditions can be modeled in a generalized manner using

a multibody formulation [41, 42]. Flexible multibody formulations were originally

developed for applications in spacecraft dynamics, to model large, slender space

structures with its components undergoing arbitrary rotations and translations rel-
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ative to one another. The multibody formulations started to find applications in

rotorcraft dynamics due to its ability to increase the scope of analysis, without hav-

ing to re-derive and re-validate the equations with each additional feature. This has

been the shortcoming of the conventional rotor formulations which usually exploits

the topology of rotor system to simplify the derivation of the governing equations,

at the cost of loss of expandability. For example, for an existing rotor model, ex-

tending it to incorporate a fully coupled rotor-fuselage or a rotor-swashplate model

would require a re-derivation and re-validation of the equations.

First rotor aeromechanical analysis to incorporate multibody formulation was

GRASP by Hodges et al. [43], which could model arbitrary configurations of modern

rotors. Apart from the capability to model arbitrary topology, multibody formu-

lations enable modeling of large deformation problems using second-order nonlin-

ear beam theory by breaking the rotor blade into multiple bodies undergoing only

moderate deformations within its local frame. The net deformation is obtained by

adding the local deformations for each body to the net deformation of its parent

body. This approach is used in comprehensive analysis codes like CAMRAD II [32]

and RCAS [33] and is also used for the present study as this methodology helps

to extend the existing finite element formulations for modeling large deformation

problems without the need of using algebraic constraints. For RCAS, the model is

constructed in such a way that the element connectivity and constraints are built

into the element equations. Elements are connected directly to one another without

relative motion between the elements at the connection nodes, except for the hinges

and slides which provides relative motion between the elements. In the present study
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constraints are applied by manually removing the redundant degrees of freedom.

DYMORE [31] and MBDyn [44] are examples of modern flexible multibody

codes which have been developed as multibody codes to begin with and are capa-

ble of modeling arbitrary configurations by using algebraic constraint equations. A

popular method for modeling algebraic constraints, is the Lagrange multiplier tech-

nique which is used in the above mentioned codes. This method finds its root in the

rigid multibody system dynamics. It was first applied to flexible multibody system

using floating frame approach by Thompson and Barr [45], Song and Haug [46].

The main advantage of the Lagrange multiplier method is that the constraints are

satisfied accurately (within the accuracy of the numerical iterations). However, the

modeling flexibility comes at a price. The use of Lagrange multipliers results in a

system of DAEs (Differential Algebraic Equations) with zero terms introduced at

the diagonal of the nonlinear stiffness matrix, which increases the stiffness consid-

erably thereby making the solution procedure more difficult. In addition, the use

of algebraic equations prevents the use of state space stability analysis. The pro-

cedures used for solving DAEs are an active area of research. A survey of classical

and contemporary approaches of constraint modeling for multibody systems can be

found in Refs. [47, 48].

If algebraic equations are not present, full non-linear finite element equations

present in most modern rotorcraft codes can be solved using time-marching schemes

(such as Newmark algorithm), which are ideally suited for transient analysis (such

as studying maneuver), but are not suitable for calculation of rotor trim in level

flight. Time marching procedures require artificial damping to damp out the initial
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condition response of lightly damped modes, such as the rotor lag mode, which

would otherwise take several rotor revolutions to converge. This damping has to be

progressively removed as the solutions approaches the correct periodic steady state

response.

However, the expansion of scope of structural modeling using multibody for-

mulation has not shown any significant improvement, so far, in the accuracy of blade

loads prediction, resulting in the investigation of novel approaches of modeling the

rotor blades. Ref. [49] discusses the ongoing development of a unified formulation

for a 3-dimensional finite element based non-linear multibody analysis for helicopter

rotors. In this approach, rotor blades are modeled using special multibody brick el-

ements, which are developed with the capability to embed arbitrary joint rotations

within a 3-dimensional structure. The goal of this work was to develop scalable

Computational Structural Dynamics (CSD) solver for high fidelity rotorcraft anal-

ysis. The multibody brick formulation is used to study the impact of non-linear

3-dimensional hub end effects in rotors that are not modeled by current generation

beam based models. This facilitates the capability to capture fundamental physics

of 3-D stress fields on rotary wing structures which is not possible with beam based

formulations.

1.5.2 Lifting-line Aerodynamic Model

The analytical modeling of rotor aerodynamics is quite involved due to the

complicated nature of the aerodynamics environment encountered by a rotor. For
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example, for a helicopter flying at its nominal cruise speed, at typical Mach numbers

of operation, the flow near the blade is compressible while the flow in the wake of

the rotor is incompressible as the rotor wake diffuses with the rapid reduction in

velocity. During high speed flight conditions, the flow may be transonic or locally

supersonic on the advancing blade side, where the relative velocity past the blade

is in the direction of the relative free stream, thereby increasing the possibility

of formation of shock waves near the tip of the blade. At the same time, the

retreating blade side where the relative velocity past the blade is in the direction

opposite to the relative free stream, the angle of attack can be greater than that

on the advancing side to encounter lift imbalance, which may cause the blade to

stall, making the viscous effects more important in this region. Due to the sudden

drop in pressure at the blade tip, strong tip vortex may be shed from the blade

tips, which due to the rotation of the blade may interact with following blades,

resulting in the blade vortex interactions (BVI), which is a major source of noise for

helicopters. Flow interactions between a number of individual components of the

helicopter also occur, two important interactions are main rotor–fuselage interaction,

and main-rotor–tail-rotor interactions. All of these aerodynamic mechanisms occur

simultaneously with the evolution and convection of a complex three-dimensional

and, in general, unsteady wake flow.

The aerodynamic modeling typically involves two main components: (1) blade

solution, and (2) wake solution. The blade solution comprises of the airloads (pres-

sure and skin friction) calculated based on the excitation from the blade deforma-

tions and air velocities. The wake solution in itself is composed of near wake and
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far wake components. The classical lifting-line aerodynamic models are inviscid in

nature and therefore, are incapable of calculating the wake directly as part of the

response solution. Therefore, for this case wake has to be modeled seperately as

a system of trailed and shed vortices. The trailed wake is generally partitioned as

the near wake and far wake systems. The near wake accounts for the trailers im-

mediately behind each blade and is coupled to the lifting-line or a lifting-surface

blade model. The far wake accounts for the rolled up vortices from all the blades,

and essentially calculates the non-uniform rotor inflow. The shed wake is modeled

separately using the unsteady aerodynamic modeling.

1.5.2.1 Rotor Wake Modeling

The calculation of accurate airloads depends on the proper modeling of the

inflow and the wake, which is true for all flight conditions, including hover. This

statement by Prof. Gessow [50], made in 1986 Nikolsky lecture, highlights this fact:

“Perhaps the key element in understanding and predicting helicopter characteristics

is knowing the behavior of rotor inflow and wakes.”

The earliest efforts attempting the rotor inflow calculation date from the 1940s

and 1950s, these studies assumed a sweptback, rigid undistorted cylindrical wake for

their inflow calculations for hover and low speed forward flight [51, 52]. Prescribed

wake models were popular during the early 1960s as several researchers contributed

towards their development [53–56], until Scully [57] and Crimi [58] came up with

“distorted wake” or free wake models. Their models were based on experimental
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observations, such as smoke visualization of the wake. The initial efforts were not

very successful due to numerical stability issues associated with the time marching

algorithm. Scully [59] overcame these issues with his relaxation free wake model by

enforcing the periodicity for steady level flight conditions. These wake models were

now “circulation-coupled”, in that the shed and trailing vortex strengths used for

inflow calculations included the radial and azimuthal variations in blade circulation

and the wake structure was more realistic, as it showed distortions and tip vortex

effects in the wake structure. Egolf and Landgrebe [60], and Beddoes [61] extended

the prescribed wake models to forward flight.

Generally, the wake calculations methods are divided into two categories: (1)

time marching, (2) relaxation methods. While, the time-marching methods are

usually very accurate if the time step is small enough, the slowness of the numerically

expensive wake calculations often used to limit the time steps to be as large as 15◦ to

30◦. At such large time steps, time-marching methods are susceptible to numerical

error. The alternative approach was to use an iterative procedure in which spatial

periodicity is enforced as a boundary condition to “relax” the steady free wake

solution, provided such a solution exists [62–65]. Most modern free wake analyses

incorporate modeling of multiple rotors with a generalized set of trailers. Even

though Landgrebe [55], Clark and Leiper [66], and Sadler [67] used time marching

for studying the wake evolution in the late 1960s to early 1970s, the time marching

free wake analysis started to gain popularity only in 1990s, with the advent of fast

computers, which made time marching wake analysis practical.

Typically, the rotor wake is composed of high-strength tip vortices which roll
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up downstream of each blade tip, an inboard vortex sheet and a weaker root vor-

tex [68]. The vorticity in the inboard sheet and the tip vortex is confined to very

thin regions which are surrounded by substantially irrotational fluid. Under the

assumption that the region outside the vortex sheet and the tip vortex is potential

(irrotational and incompressible), the vortex system in the rotor wake can be repre-

sented by the incompressible Biot-Savart law. This means that the wake evolutions

is based on the velocity felt at each point on the tip-vortex and the vortex sheet.

Once the velocity distribution is determined at each point, the wake is advanced

forward in time using an initial-value problem solver. Typical methods used in-

clude first-order explicit Euler [69], Euler predictor-corrector, and a second-order

time marching Adams-Bashforth [70] to name a few. It should be noted that the

Biot-Savart law is only valid for incompressible flow, therefore rotor codes generally

employ the Prandtl-Glauert compressibility correction to model compressible flow

conditions. In these methods, the tip vortex is discretized as a series of line vortex

filaments and is tracked using a Lagrangian technique, which implies that the time

derivative of position equals velocity. These free wake methods accounted for self

induced distortions of a rotor wake, such as roll up, in forward flight.

Bhagwat and Leishman [71, 72] contributed to the development of the com-

prehensive time accurate vortex wake methods. Ref. [71] exhibited second-order

accuracy and grid independent nature for the wake geometry solution for hover and

forward flight. Ref. [72] demonstrated that the relaxation wake was not adequate

and time accurate wake was necessary for modeling maneuvers with significant an-

gular rates. The wake study of maneuvers was later extended by Ananthan and
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Leishman [73, 74].

1.5.2.2 Blade Unsteady Aerodynamics Modeling

Unlike fixed wing, the sectional angle of attack across the rotor blade does not

remain constant during steady flight or maneuver as the blade pitch angle varies with

azimuth. The application of cyclic introduces a rate of change in pitch angle leading

to unsteadiness, in effect causing the blade to pitch and plunge as it goes through

different azimuthal positions. This makes the modeling of unsteady aerodynamics

very involved. It should be noted that the term “unsteady aerodynamics” doesn’t

necessarily implies “dynamic stall” and that the significant unsteady effects may be

present even in the absence of dynamic stall.

Two-dimensional, unsteady aerodynamic theories describing unsteady airfoil

behavior in fully attached flow typically forms the basis for rotor analysis. Most

of the tools necessary for the analysis of incompressible as well as compressible

unsteady aerodynamic problems were developed in 1950s [75]. Incompressible, un-

steady airfoil problems have been formulated by various researchers in both the

frequency domain and the time-domain, primarily by Wagner, Theodorsen, and

Küssner. A good reference documenting the work of these researchers is the classic

text by Bisplinghoff, Ashley and Halfman [76].

For a fully attached flow at low angles of attack, typically the contribution from

the unsteady effects to the magnitude and phase of the net aerodynamic load is less

significant. But as the unsteadiness increases with the increase in reduced frequency,
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k, these contributions start to become more and more significant. The velocity at the

blade element does not remain constant and therefore the definition of k remains

ambiguous, rendering the frequency domain based calculations (Theodorsen) less

useful. This makes the time domain calculations due to Wagner (gives a solution

for the indicial lift on a thin-airfoil undergoing a step change in angle of attack) and

Küssner (solution for a sharp change in vertical upwash velocity) become important

for the rotorcraft aerodynamic modeling. But these models are valid for thin airfoils

in incompressible flows and do not account for phenomenon like separation and

dynamic stall, which is of great importance for the study of a rotor undergoing

unsteady maneuver.

An airfoil undergoing dynamic motion can witness dynamic stall if its angle

of attack goes beyond its static stall limit [77]. The most distinguishing feature

of the dynamic stall phenomenon is the shedding of a concentrated vortical dis-

turbance from the leading-edge region of the blade section, which gets swept over

the chord. This phenomenon results in significant change in sectional airloads by

increasing the lift at the cost of significantly large nose-down pitching moments,

which finally impacts the blade loads significantly. Accurate modeling of this non-

linear phenomenon is only achievable by first principles through numerical solution

of Navier-Stokes equations. But with the availability of large amount of experimen-

tal data for oscillating two-dimensional airfoils in wind tunnels, it became possible

to model dynamic stall using semi-empirical procedures. A number of different ap-

proaches have been developed for modeling of dynamic stall for helicopters. While,

these models are not strictly predictive tools, and can really only be used confidently
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for conditions that are bounded by their validation with experimental or CFD data.

A number of dynamic stall methods can be found in the literature. UTRC

α,A,B method is a pure re-synthesis (empirical) method which reconstructs the

contributions to the dynamic stall airloads using large data tables generated for the

airfoil [78,79]. In this approach, the lift and moment data are correlated as functions

of angle of attack α, A = α̇c/2V and B = α̈(c/2V )2, which assumes that the loads

are independent of the past history of the airfoil motion. This approach was not

widely accepted for its assumptions.

Boeing-Vertol dynamic stall method developed by Gross and Harris [80] and

then later extended by Gormont [81] uses oscillating airfoil data to obtain an em-

pirical expression for the dynamic stall angle

αds = αss + C1

√
α̇c/V (1.1)

where C1 is a function of Mach number, determined from the oscillating airfoil data.

The unsteady effects are first accounted for using Theodorsen’s theory, the “cor-

rected” angle of attack shown above is then used to obtain values of the airloads

from the static force and moment curves. This has the effect of delaying the on-

set of stall to higher angles of attack with increasing pitch rate, a result observed

experimentally. However, the predictions obtained for rotor blades were not very

accurate near the stall regions.

Since the initial efforts, largely empirical in nature, at the development of the

dynamic stall model were not very successful, Beddoes [82, 83] developed a time-

domain dynamic stall model by focusing on the physics of the phenomenon. The
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time domain based unsteady models are well suited for rotor applications. After

accounting for the unsteadiness using the Wagner indicial response function, two

time delays are used to separate the different dynamic stall flow states. The first

delay represents the nondimensional time period in the onset of separation after the

static stall angle has been exceeded, and the second time delay represents the time

taken by the leading edge vortex to travel along the chord till it is shed in the wake.

These time delays were obtained from a statistical analysis of many airfoil tests

over a relatively wide range of Mach numbers. Gangwani [84] developed a similar

model as Beddoes with the difference in the representation of forces and moments

produced by the dynamic stall events. He used a set of equations with empirical

coefficients which were derived from the steady and unsteady airfoil data.

Johnson [85] developed a dynamic stall model using the experimental data

from Ham and Garelick [86]. The assumption that the dynamic stall occurs 3◦

above the static stall limit gave good correlation with the experimental data. It was

assumed that the leading-edge vortex shedding produced a large increase in lift and

moment with a short rise time. This large increase was considered proportional to

the rate of change of angle of attack, α̇.

The ONERA model [87,88], later version known as ONERA Edlin (Equations

Differentielles Linearires) model [89] described the unsteady airfoil behavior (de-

layed angle of attack, lift, drag, and moment increments) using a set of second-order

differential equations. Like various other models, the coefficients in the equations

are determined using the experimental data for oscillating airfoils. The later model

known as ONERA BH (Bifurcation de Hopf) was developed by Truong [90].
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Leishnam and Beddoes [91, 92] developed a dynamic stall model capable of

predicting the 2D unsteady airfoil behavior for use in rotor analysis. The model,

that was initially developed by Beddoes [93], consists of the following components:

(1) an attached flow model for linear unsteady airloads, (2) a separated flow model

for the nonlinear airloads, (3) a dynamic stall model for onset of stall and vortex

induced inflow. It is valid for high subsonic Mach numbers (up to 0.8) and uses first-

order differential equations for the delayed angle of attach and leading-edge vortex

lift calculations. The nonlinear aerodynamic effects associated with flow separation

on the airfoil are derived from Kirchhoff/Helmholtz theory, which is used to relate

the airfoil lift to the angle of attack and an effective trailing-edge separation point.

Most of these models did not account for the 3D effects and the effect of blade sweep

on the dynamic stall model.

The 3-D effects encountered in rotor aerodynamic modeling can be incorpo-

rated using lifting-line, nonlinear lifting-line and lifting-surface models [94]. Dwyer

and McCroskey [95] studied the effect of the spanwise development of the boundary

layer on a rotating blade and reported its effect on delaying the onset of flow separa-

tion to a higher angle of attack. Effect of sweep on the oscillating wing was studied

experimentally by St. Hillaire et al. [96, 97]. These studies identified blade sweep

as a source for delay in the dynamic lift stall. The 3D effects of transonic flow on

the advanced geometry rotor was subsequently studied by several researchers, both

experimentally and analytically [98–101] and incorporated in the dynamic stall mod-

eling [102].

29



1.5.3 CFD based Aerodynamics

The term computational fluid dynamics (CFD) generally refers to conservation

law based solutions of the Navier-Stokes equations or some simplification of these

equations (such as the Euler equations for inviscid flow) or the full potential equation

for potential flow.

As discussed earlier, the main aspects of rotor airloads calculation involves the

modeling of trailed and shed wake, which are modeled separately for conventional

lifting-line analysis, but can be part of the same solution in fully viscous CFD

analysis. However, CFD does provide the option of extraction of the wake from the

airloads calculation for consistent comparison with lifting-line airloads calculations.

Datta et al. [12] provides a detailed survey of the state-of-art of rotorcraft CFD

research.

Early efforts to model rotorcraft aerodynamics using CFD involved inviscid,

irrotational, single equation flow solvers which were incapable of predicting vortical

flows. The objective was to improve the predictions of lifting-line models by captur-

ing transonic shocks. Caradonna and Isom [103] first used potential flow equations

to analyze steady rotor flows, first in hover and then in forward flight [104]. Several

researchers contributed to the development of full potential rotor (FPR) formula-

tions [105–112]. Some of these analyses were adaptations of fixed wing analysis to

rotary wing problem, for example, Egolf and Sparks [110] extended the fixed wing

code by Jameson and Caughey [113] and Shankar and Prichard [111] refined the

analysis by Bridgeman et al. [114] for rotorcraft applications. Full potential meth-
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ods, because of their grid-dependence, suffer from faster vorticity diffusion in the

regions where the vorticity is nonzero. This affects blade loads and moments, leading

to errors in the estimation of various design parameters such as payload capability.

To remedy these deficiencies, Steinhoff and Ramachandran [115] used the idea of

embedding the vortex structure into the flow and calculate the effect of the vorticity

on the surrounding flow without having to calculate the vortical flow itself.

The late 1980s and early 1990s started to witness the development of Eu-

ler and Navier-Stokes formulations for rotorcraft applications. It started with the

development of Euler solvers which could easily be modified to incorporate vis-

cous terms as and when the computational resources started to become available.

The vorticity gradients can be easily modeled by Euler solves resulting in accurate

prediction of 3D unsteady shocks and wave drag. Some of the earliest efforts at

modeling rotorcraft aerodynamics using CFD are due to Pulliam and Steger [116],

Wake and Sankar [117], Srinivasan and McCroskey [118], Agarwal and Deese [119],

and Wake and Baeder [120]. The Navier-Stokes methods have been under constant

development and have had most significant impact on the rotor loads prediction.

CFD analysis coupled to a computational structural dynamics (CSD) model

forms the basis of modern rotorcraft aeromechanics. This coupling can be achieved

in two ways: (1) loose or weak coupling, in which the structural solver and CFD

solver exchange information after every one or more rotor revolutions, (2) tight

coupling or strong coupling where information exchange takes place at every rotor

revolution and time accuracy can be enforced by using Newton like sub-iterations

at each time step. Although a third approach of true aeroelastic coupling is pos-
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sible, in theory, in which the combined fluid-structure problem may be formulated

simultaneously and integrated simultaneously. While this approach has been used in

the fixed wing community [121], rotorcraft researchers have chosen to stay with the

partitioned approaches mentioned above, possibly due to the following reasons: (1)

the frequencies of interest are expected to be adequately resolved using the domain

partitioning approach, (2) the complexity of the aeroelastic rotor problem renders

a full continuum dynamics solution impractical.

Johnson et al. [122] were first to propose the method of loose coupling (also

know as delta method) for coupling the CFD and CSD (Computational Structural

Dynamics) solvers. In this approach, initial loads and deformations are calculated

using conventional lifting-line based comprehensive analysis, the calculated defor-

mations are then used by CFD to obtain new estimate for airloads which are then

applied as delta corrections over the lifting-line airloads. This approach continues

to be the most efficient way of analyzing steady flight conditions and for obtaining

trim angles. If the initial trim angles are known, the tight coupling method involves

marching in time with the structural and fluid solvers exchanging information at

each time step or each sub-iteration level. In tight coupling, it takes significantly

longer to obtain a converged solution than loose coupling, up to 2.5 times as shown

by Altmikus [123], due to the weakly damped lag mode, making the convergence to

trim a challenge. The convergence can be accelerated by using artificial damping to

damp out the initial transient response, which is then removed progressively. Pre-

diction of control angles using tight coupling approach is computationally expensive

and identification of efficient approaches is an active area of research. However,
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if the control angle is known beforehand, tight coupling approach can be used by

avoiding the problematic trim issue [124, 125]. Recent research using CFD/CSD

coupled analysis has focused on the study of high loads and high vibration level

flight conditions using the loose coupling methodology [126–130].

1.5.4 Flight Dynamics

For rotorcraft aeroelastic analysis, in addition to the structural and aerody-

namic models, a procedure for estimation of the control angles is also required. In

the steady flight, this is carried out by trimming the helicopter. The trimming is

done to maintain the equilibrium condition, which is achieved by evaluating the ro-

tor pitch control angles, tail rotor collective and shaft orientation angles to match a

desired helicopter steady state. Johnson [131] provides a good discussion on various

trim options.

But for unsteady maneuvers, a time history of control angles, tail rotor col-

lective and shaft angle orientations are needed to achieve a specific trajectory. This

process of calculation of pilot inputs required to achieve a particular trajectory or

maneuver is referred to as inverse simulation. Thomson and Bradley [132] provided

a good discussion of various inverse simulation procedures currently in use in the

rotorcraft flight dynamics community.

Etkin [133] was possibly the first person to discuss simple inverse simulation

methods applied to a problems such as prescribed roll response using simple lin-

earized models. Wood et al. [134] used a simple energy based method to analyze
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helicopter maneuver. Haverdings [135,136] simulated a desired trajectory for a sim-

plified mathematical model of a helicopter using a “pseudo pilot”.

Towards late 1980s and early 1990s, more general and practical inverse flight

simulation algorithms start to make their appearance, starting with Thomson and

Bradley [137, 138] and then with Hess et al. [139, 140]. The method developed

by Thomson and Bradley resembles a “trim” like calculation carried out at every

time step. The approach used by Hess et al. involves numerical integration, in

which, first the entire trajectory for the maneuver is divided into small steps. Then

at each instance of time, an estimate of the change in the amplitude of control

displacement required to move the aircraft to the next point is carried out. The

error in the resulting position is then estimated and an iterative procedure using a

Newton-Raphson is used to minimize the error by a series of control displacements.

This approach is named “integration inverse method” as apposed to the approach

described in Ref. [137], which is called “differentiation inverse method”, as it involves

a step requiring the differentiation of the trajectory. While the two show comparable

accuracy [141], the integration method is an order of magnitude slower than the

differentiation method, but has become the most widely adopted method, due to its

flexibility and the fact that it is not model-specific.

Both the approaches are susceptible to numerical issues as discussed by Ruther-

ford and Thomson [141], and Lin [142]. Some of these numerical instabilities disap-

peared when the Newton-Raphson step was replaced by a local optimization prob-

lem as demonstrated first by de Matteis et al. [143] and then by Celi [144]. A “two

timescale” method of inverse simulation was proposed by Avanzini and de Mat-
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teis [145], which takes advantage of the fact that the rotor dynamics is significantly

faster than the translational dynamics of the helicopter allowing the use of a coarser

time step for the vehicle dynamics equations. It is very important to note that with

the exception of the Ref. [141, 144], all the methods discussed above excluded the

rotor dynamics. Bottasso et al. [146] proposed a methodology by blending aeroelas-

ticity, flight mechanics, trajectory optimization and optimal control to bridge the

gap between helicopter dynamics and flight mechanics, which till then had mostly

been pursued independently.

It should be noted that the dynamic stall phenomenon is the key mechanism

responsible for the high loads during the unsteady maneuvers that size the rotor

blades. Although adequate for studying handling qualities, none of the methods

discussed above can be expected to work in this regime primarily due to the following

two reasons: (1) inability of lower order aerodynamic models to predict dynamic

stall, and (2) current flight dynamics algorithms are computationally expensive to

be coupled with high-fidelity CFD analysis. Therefore, the high fidelity coupled

flight dynamics simulation remains beyond the state-of-art, and coupled CFD/CSD

simulation have to rely on the flight test data for the control angles.

1.6 Prediction of Rotor Loads - State of Art

The prediction of rotor airloads during maneuver is extremely challening due

to the complex aerodynamic environment that the blade encounters during the ma-

neuver. It is very important to survey the state of rotor loads prediction to fully

35



understand the lessons learnt so far and to identify the key challenges that lie ahead.

1.6.1 Level Flight

The study of level flight is critical for vibration sizing of the helicopter and

serves as the stepping stone towards the ultimate goal of development of reliable

loads prediction tools for maneuvers. This is because, conditions during level flights

are often characterized by unique dominant aerodynamic mechanisms, which allows

it to be studied in isolation and address the challenges associated with its accurate

analysis.

Traditionally, the lifting-line based comprehensive rotorcraft analysis tools

have been used to predict rotor loads in level flight and have been found to be

plagued by two key discrepancies, identified by Bousman in 1999 [147]: (1) negative

lift phase error in high speed flight, and (2) underprediction of blade pitching mo-

ments resulting in significant underprediction of control loads. It is now understood

that the two problems are inter-connected. But, for a long time, it remained un-

solved, with the negative lift peak observed consistently across different rotors and

configurations [148, 149], including full scale and model rotors [150]. The similarity

of airloads for model rotors effectively ruled out the possibility of fuselage effects.

The effort by Torok and Goodman [151], and then Torok and Berezin [152] to isolate

the physics of structural dynamics and aerodynamics, by using measured airloads

to predict flap bending moment and then, use derived torsional deformations (using

a modal approach) from measurements to accurately predict the negative lift phase.
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It indicated that the problem was probably in the calculation of the torsional re-

sponse, which is again related to the accuracy of predicted pitching moment. This

is expected, as the lifting-line based analysis fails to predict the complex yet fun-

damental aerodynamic events occurring over the rotor disk such as the advancing

blade transonic shock observed in the pitching moment, retreating blade stall, and

the vortex wake evolution, roll-up, and interaction with the rotor blades [127, 147].

In addition, the predictions using lifting-line analysis become less accurate close to

the blade tip due to the limited capability of lifting-line based analysis at mod-

eling 3D effects. Due to the coupled nature of the problem, it is always difficult

to conclusively identify the source of discrepancy, whether it is structural or aero-

dynamic, in the prediction. The solution lies in decoupling these two effects, as

demonstrated by Datta et al. [126, 127]. In this work the problem of structural dy-

namics and aerodynamics is decoupled by using measured airloads to calculate an

accurate deformation set, and then using this deformation set to calculate airloads.

It was established that the two problems of advancing blade negative lift phase and

pitching moment prediction are related to each other via the calculation of accurate

structural response.

Recently, with the advances in computing power, researchers have been able

to couple comprehensive CFD solvers with CSD to model steady flight conditions,

without incurring serious computational penalties. Refs. [126, 128–130] analyzed

the three critical steady flight conditions: (1) high speed, µ = 0.37, with advancing

blade negative lift, (2) low speed, µ = 0.15, with blade–vortex interaction, and 3)

high thrust with dynamic stall, µ = 0.24 using “loose” aerodynamic/structural cou-
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pling with Refs. [126, 128, 129] using UMARC in conjunction with TURNS, and in

Ref. [130] using CAMRAD II and RCAS coupled with OVERFLOW-D. It was iden-

tified that the negative lift impulse can be captured accurately only in the presence

of correct torsion response (1 and 2/rev), which is the primary mechanism of vibra-

tory lift for the high speed flight. The 3D unsteady transonic pitching moments were

accurately predicted by CFD, which excites correct torsion response from the blade,

resolving the long standing negative lift phase discrepancy observed with lifting-line

predictions. The CFD calculations for wake appeared to be adequate for vibratory

airloads calculations and the analysis was able to capture the vortex inter-twinning

phenomenon. However, the level of grid refinement necessary for resolving the tip

vortex core structure and BVI loads still posed significant computational challenge.

The dynamic stall cycles observed during the high altitude stall flight condition are

known to be similar to the to the dynamic stall cycles observed in some of the sever-

est maneuvers, as discussed earlier. The “loose coupled” CFD/CSD analysis was

able to predict the retreating blade stall cycles encoutered at the high thrust flight

with good accuracy. The accuracy of this prediction was observed to be dependent

on rotor trim, elastic torsion, and turbulence model, in that order. The first dy-

namic stall event was determined by the correct trim angles, which then triggers the

higher harmonics (4, 5/rev) of the torsion dynamics, which in turn results in the

prediction of second stall due to the change in angle of attack in the fourth quad-

rant. Second stall prediction is also related to the turbulent re-attachment after

the first stall, which is governed by the turbulence modeling with the CFD model

and inflow. This establishes the multidisciplinary nature of the problem of rotor
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loads prediction, with the flight dynamics, CSD and CFD all combining together in

determining the accuracy of predicted blade loads.

A review of the state-of-the-art in main rotor loads in steady level flight – crit-

ical for vibratory loads – using Computational Fluid Dynamics (CFD)/Structural

Dynamics (CSD) coupled analysis can be found in Ref. [12]. The work done using

CFD / CSD analysis paved the way for taking up the challenge of maneuver loads

prediction, where the aerodynamic mechanisms mentioned above, observed to occur

in different flight regimes, occur simultaneously.

1.6.2 Maneuver

The existing tools available for the analysis of the steady-level flight could not

be easily extended for the analysis of the maneuver, as the condition encountered

during maneuvers introduce additional challenges that need to be addressed by the

computational tools: (1) aperiodic rotor airloads and structural response, and (2)

dependence of rotor response on vehicle dynamics. The rotor response in maneu-

vering flight conditions is aperiodic and often occurs over several rotor revolutions

(> 10 revs). This requires a robust and accurate time-marching algorithm. While

the computational tools have matured to the point where they can be reliably used

to model the aperiodic maneuvering rotor response, determining the control settings

necessary to fly a certain vehicle trajectory requires an inverse solution procedure,

as well as the aerodynamic environment surrounding the helicopter fuselage, em-

pennage, and the tail rotor surfaces, and is not attempted at this time. Analysis
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of maneuvering flight, therefore, requires a priori knowledge of the instantaneous

control pitch settings, the freestream velocities, vehicle attitudes, and the pitch, roll,

and yaw rates and accelerations as a function of time. The comprehensive flight test

database obtained from the US Army/NASA Airloads Program [153, 154] contains

the aforementioned data for several maneuvers, which can now be prescribed in the

simulation tools allowing the researchers to focus primarily on the rotor vibratory

loads.

For a long time, maneuvers were only analyzed from the flight dynamics per-

spective using simplified aerodynamic and structural models, primarily due to the

complexity and the challenges associated with such a study. Beno in 1973 [7] tried to

predict air loads for a right turn flight using a normal mode based blade aeroelastic

analysis. The primary focus of this study was on the flight testing. Schillings et

al. [155] presented the measurement and prediction of maneuver performance and

correlation of rotor maneuvering loads for the XV-15 tiltrotor. The blade predic-

tions were compared only qualitatively against the flight test data and the focus of

the study was on performance study.

Sopher and Duh [156] made a systematic attempt to predict the critical design

loads for maneuvers for a SH-60B, Sea-Hawk. In addition, some steady flight cases

for MH-60K and UH-60A were also analyzed. The motivation was to reduce the

part played by empiricism in the design of the flight control systems. For this

work, GENHEL flight dynamics simulation code was coupled to the RDYNE rotor

dynamics code to study level flight as well as maneuvers (a 45◦ angle-of-bank turn

and a symmetric pull-up maneuver) for prediction of pitch-link loads and servo
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loads. RDYNE used elastic blades in conjunction with lifting-line analysis, which

featured Beddoes and Leishman dynamic stall model, and a free wake analysis. The

simulation for maneuver was started from the level flight trim condition, and the

maneuver was simulated by prescribing the change in control angles predicted by

GENHEL to RDYNE. During this, no attempt was made to correct RDYNE thrust

prediction to match the calculated thrust from GENHEL. Predictions for pitch-link

showed good correlation for the magnitude of some of the critical loads, but the

inaccurate phase of the predictions indicated a deficiency in the modeling of the

physics. Especially, the magnitude of aft stationary servo of MH-60K showed error

in magnitude and phase.

A high fidelity simulation of the prescribed UTTAS pull-up was carried out by

Bhagwat et al., Refs. [157, 158], using a multibody finite element structural model

(RCAS) coupled with a Reynolds Averaged Navier-Stokes model (OVERFLOW-

2). This study used a coarse grid with 4.4 million grid points which was first used

by Potsdam et al. [130] for the study of level flight conditions. Baldwin-Barth

turbulenc model was used for the RANS closure. This work demonstrated RANS

capability in predicting two rotor dynamic stall cycles for the first time for a ma-

neuver, and showed that the oscillatory blade structural loads could be predicted

with increased accuracy using isolated rotor calculations. Refs. [157, 158] also com-

pared the predictions from CFD/CSD analysis to those obtained using standalone

RCAS’s lifting-line model, and observed that the lifting-line model failed to predict

the dynamic stall events. Neither of the two analyses was able to resolve the mech-

anism of advancing blade stall. Reference [159] carried out a simpler lifting-line
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analysis, as part of the present research work, also applied to an isolated rotor, with

an attempt to calculate the rotor pitch control angles. However, it was unsuccess-

ful due to large errors stemming from the unknown horizontal tail lift during the

maneuver, and inability to predict the maneuver trajectories in absence of detailed

aircraft data. Subsequently, with availability of flight test control angles, several

researchers have predicted loads for this prescribed maneuver. Ref. [160] focused on

lower fidelity lifting-line predictions using CAMRAD II comprehensive analysis code

and observed that the analysis was not able to capture any of the negative pitching

moment peaks, and the use of semi-empirical ONERA EDLIN dynamic stall model

did not improve the correlation of pitching moment prediction when compared with

the static airfoil table look-up based calculations. Ref. [161], as part of current re-

search used lifting-line analysis for fundamental understanding of maneuver loads

and reported significant improvements (up to 50%) in peak-to-peak pitching mo-

ment prediction with the use of Leishman Beddoes dynamic stall model. Refs. [162]

compared the lifting-line model’s capabilities used in Ref. [161] with CFD/CSD

analysis. The predictions using lifting line analyses in general showed significant

underprediction of peak maneuver loads when compared to the CFD/CSD analy-

sis. Ref. [163] coupled DYMORE, a multibody CSD solver with UMTURNS CFD

solver to study maneuver using wake-coupling approach. Later Sebastian et al. [164]

used the same approach for analyzing maneuver by coupling UMARC2 with UM-

TURNS CFD solver. Pitching moment predictions using wake coupling approach in

Refs. [163,164] failed to resolve the transonic shock in the advancing blade pitching

moment which is a common feature in all wake capturing solutions mentioned above.
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Ref. [165] concentrated on isolating the differences between the time accurate and

serial-staggered coupling approaches and performed simulations only for the first 15

revolutions of the maneuver.

1.7 Objective of Present Research

The objective of this research is the prediction, validation and fundamental

understanding of blade loads and servo loads in an unsteady maneuver. The loads

encountered during severe maneuvers size the critical components of a helicopter

and their accurate prediction and the understanding of the loads mechanism is key

to improved helicopter design. The goal is to: (1) isolate the effects of structural

dynamics, free wake inflow, dynamic stall, swashplate dynamics and rotor pitch

control angles, separately, on the prediction of maneuver loads, and (2) examine the

prediction accuracy of airloads, blade loads, and swashplate servo loads using an

unsteady lifting-line aerodynamic model, and (3) use CFD/CSD coupled analysis

for accurate prediction of blade loads.

These goals are realized in a systematic step-by-step manner, which involves:

(1) methodology development for consistent and accurate prediction capability, (2)

validation of loads with test data for specific flight conditions, and (3) fundamental

understanding. The details are discussed in the following section.
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1.8 Technical Approach

The focus of the present research is on the fundamental understanding of the

mechanisms of high blade loads observed during the pull-up maneuver. Therefore,

a progressively incremental approach is taken, in which, the structural and aerody-

namic models are refined systematically in steps and the improvement from each

refinement is carefully noted and understood. This allows for the isolation and

identification of loads mechanisms.

In the first step, the physics of structural dynamics and aerodynamics is decou-

pled using the flight test data. This is achieved by using the measured airloads from

the flight test. The measured airloads, damper force and control angles from the

flight test are used to simulate the measured airloads problem (also termed as the

mechanical airloads problem), by applying the measured forced on the multibody

structural dynamics model. This serves two purposes: (1) the accuracy of structural

model can be studied by itself, and (2) the validated blade response can be used to

predict airloads in isolation, first with lifting-line analysis and then with Reynolds

Averaged Navier-Stokes (RANS) CFD model, thereby decoupling the structural

dynamics and aerodynamics. The use of same deformations for calculations of air-

loads with the two aerodynamic models ensures their consistent comparison. This

approach helps to identify and understand the mechanism of the multiple pitching

moment stalls, which are the dominant feature of most severe maneuvers.

In the second step, comprehensive analysis is carried out using structural model

coupled to the lifting-line aerodynamic model to isolate the effects of free wake
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inflow, dynamic stall, swashplate dynamics and rotor pitch control angles, on the

prediction of maneuver loads. It should be noted that the lifting-line analysis,

although a low fidelity model, facilitates the separation of the effects of dynamic

stall and wake. It provides direct airfoil angle of attack estimation, which is critical

for better understanding of the airloads mechanism.

Finally, the RANS CFD model is coupled to the structural model for accu-

rate prediction of stall loads during the maneuver, and the airloads predicted using

the coupled CFD/CSD analysis is systematically compared to those obtained using

coupled lifting-line/CSD analysis.

1.9 Contribution of Present Research

The contributions of this research can be broadly summarized in the following

categories

1. Methodology development: This involved the development of multibody blade

structural model, and swashplate dynamics model. These are essential for

modeling large blade deformations and prediction of servo loads. A transient

lifting-line aerodynamic model was also developed and finally CFD/CSD cou-

pling framework was established resulting in accurate blade loads prediction.

2. Prediction, analysis and validation: Both steady (high speed and stall flights)

and unsteady pull-up maneuver was analyzed and results obtained for airloads

and structural loads were validated with the flight test data from UH-60A air-

loads program. The study using steady flight was necessary for identification

45



of swashplate and servo properties which were not available in the public do-

main.

3. Fundamental understanding of physics: The role played by large blade defor-

mations, cyclic variation of control system stiffness and swashplate dynamics

on rotor dynamics was studied and understood. The effects of wake and dy-

namic stall on maneuver loads was isolated. The mechanism of advancing

blade stall was identified and understood.

Based on this work, the specific conclusions can be summarized as follows.

1. The pull-up maneuver appears almost entirely to be a stall dominated maneu-

ver. The high structural loads observed during this maneuver are the outcome

of multiple stall cycles observed across the rotor disk. The dynamic stall

model, provides the most significant improvement to predicted rotor loads,

and the free wake is less important. Almost up to 75% of a typical airfoil

operating envelope (outboard of 67.5% R) during the 10-25 revolutions occur

beyond the static stall boundary. Thus, the sectional airload properties are

governed predominantly by stall phenomenon.

2. The two dynamic stall cycles observed on the retreating side of the blade,

are known to be trim and elastic stalls. The third stall event observed on

the advancing side of the blade, during the peak load factor regime of the

UTTAS pull-up maneuver (revolutions 12 − 20), is identified to be transonic

twist stall of steady nature, resulting from a shock induced flow separation.

It is excited by the 5/rev component of blade elastic twist which in turn
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is triggered by two retreating stalls from the previous revolution, which are

spaced by approximately 1/5th rotor revolution. In addition to 5/rev elastic

twist, the magnitude and extent of the advancing blade stall is also dictated

by the collective angle. For example, a 10% error in collective angle can result

in under-prediction of first stall peak by up to 30%. Both elastic torsion

and rotor collective, together, are key to accurate prediction of advancing

blade stall. Either of the two factors alone may not be sufficient for accurate

prediction of this phenomenon.

3. Use of CFD significantly improves the prediction of pitching moment charac-

terized by the three distinct stall events as the rotor experiences load factors

greater than 1.75g during the maneuver. The two dynamic stall events on

the retreating side are predicted by the CFD/CSD analysis. The lifting-line

analysis is unable to predict the high-frequency stall loads during the ma-

neuver, especially the peak magnitude of pitching moment is under-predicted

significantly.

4. The cyclic variation of control system stiffness, which is a result of the pres-

ence of the servos underneath, and swashplate dynamics does not have any

significant influence on the blade dynamics and structural loads. However,

swashplate dynamics is very important for the prediction of servo loads.

47



1.10 Organization of Thesis

Chapter 1 describes the need and requirements for analysis and prediction

of rotor loads and vibration in a severe unsteady maneuver and its importance in

the evolution of future rotor designs. It reviews the development of the helicopter

aeromechanics and the state-of-art in the loads prediction, and discusses the objec-

tive of this research and highlights the key contributions.

Chapters 2 to 5 describe the steps taken for the attainment of the objectives

set for this research. Chapters 2 describe the details of development and validation

of the structural model using the flight test measured airloads. The aerodynamic

models used in this study are described in detail int chapter 3. The deformations

obtained during the validation of the structural model with the measured airloads

analysis in chapter 2 is used in chapter 3 to validate and compare the predictions

from aerodynamic models followed by the discussion on the mechanism of the ad-

vancing blade stall and the physics governing it. Chapter 4 details the use of lifting-

line based comprehensive analysis for fundamental understanding by isolating the

effects of dynamic stall, wake and swashplate dynamics. Chapter 5 describes the

CFD/CSD tight coupling methodology for improved prediction of airloads and blade

loads.

Chapter 6 summarizes the key conclusions of this research work and recom-

mends the directions for future work.
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Table 1.1: UH-60A flight test most severe maneuvers and their rank orders [8]

Pitch Torsion Flap Flap Chord Chord

Maneuver Counter -link Moment Bending Bending Bending Bending

Load r/R = 0.30 r/R=0.113 r/R=0.6 r/R=0.113 r/R=0.6

RT Turn, 140 KIAS, 60◦ 11680 1 1 15 4 1 14

UTTAS Pull-up, 130 KIAS, 2.1g 11029 3 8 1 15 8 4

RT Turn, 140 KIAS, 55◦ 11679 2 2 23 7 23 15

Dive Roll Pull-out, 120 KIAS 11028 6 5 8 23 3 22

Pull-up, 120 KIAS, 2.25g 11023 10 7 2 26 4 25

LT Turn, 130 KIAS, 60◦ 11686 9 3 7 17 12 5

Descent, 186 KIAS 11682 24 24 28 1 21 2

LT Turn, 120 KIAS, 60◦ 11660 8 4 13 14 7 6

RT Turn, 130 KIAS, 60◦ 11672 13 6 10 18 5 8

UTTAS Pull-up, 130 KIAS, 1.8g 11031 4 14 5 13 11 9
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Figure 1.1: UH-60A Airloads Program thrust speed envelope; comparison

of rotor thrust and advance ratio for maneuvers and level flight conditions
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Figure 1.2: Rotor map of dynamic stall locations for three flight conditions

(C11029, C11679, C9017) [10]
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Chapter 2

Structural Modeling

2.1 Introduction

The analysis of maneuver requires a structural model capable of modeling large

blade deformations. This chapter describes and validates such a structural model

for UH-60A rotor. A swashplate model is also developed, to fulfill two objectives:

(1) prediction of servo-loads and (2) study of effect of periodic variation of control

system stiffness and swashplate dynamics on blade loads. Once the structural model

is developed, it is used to study level flight conditions to: (1) compare three pro-

gressively refined rotor blade structural dynamics formulations for the prediction of

structural loads for a given set of aerodynamic forcing, (2) estimate swashplate-servo

properties, which are not available in public domain, and, (3) study the effect of

coupled rotor-swashplate dynamics on the prediction of servo loads and rotor blade

structural loads. The goal is to isolate the physics of structural dynamics from the

aeroelastic response problem to understand the mechanisms behind high structural

loads encountered during unsteady maneuvers.

Arbitrary large deformations of a flexible beam can be modeled in two ways:

(1) using a geometrically exact beam theory (Ref. [30, 31]), and (2) using a second

order nonlinear beam theory (Ref. [32, 33, 167]) within a multibody formulation.
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The latter uses additional frames attached locally to a set of individual beam finite

elements, within which the elements undergo only moderate (second order) elastic

deformations. Since the multibody formulation is chosen for the current work, the

use of second order beam model is adequate for modeling large deformations and

therefore, the second approach is chosen for this work. The second order non-linear

beam model used is same as the one used in Reference [168]. The structural formu-

lation developed for this study is first verified with analytical solutions for elastica,

after that it is validated with non-linear experimental data for Princeton beam test.

Next, UH-60A rotor structural model is validated for two level flight conditions: a

high-speed level flight (counter 8534: 158 kts, µ = 0.368, CW/σ = 0.0783), and a

high altitude dynamic stall flight (counter 9017: 101 kts, µ = 0.237, CW/σ = 0.135).

The level flight data is used to compare three structural formulations using measured

airloads analysis: (1) a second order nonlinear beam Finite Element Method (FEM)

with modal reduction, (2) a second order nonlinear beam FEM without modal reduc-

tion, and (3) a second order nonlinear beam FEM within a multibody formulation.

These are referred to as FEM with modal, full FEM, and the multibody method,

which is used as the baseline structural model throughout this thesis. The goal of

this study is to identify whether any improvements are provided by large deforma-

tion modeling, and the modeling of exact kinematics of the root end lag-damper

and pitch link on the blade loads. Conceptually, the measured airloads problem

(also termed as the mechanical airloads problem) allows one to assess the accuracy

of the structural model separately from the airloads model. The technique was first

applied by Sweers in 1968 for the XH-51A compound helicopter (Ref. [169]). Subse-
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quently it was applied by Esculier and Bousman (Ref. [170]) on the CH-34 rotor and

by Torok and Goodman on the model UH-60A rotor (Ref. [171]). In practice, the

measured airloads problem can pose significant difficulties. The natural frequencies

of the blades often lie close to the forcing harmonics and because the imposed air-

loads do not change with the calculated response there is zero aerodynamic damping

in the system. Thus, even though uncontaminated with errors associated with pre-

dicted airloads, the measured airloads solution can be extremely sensitive to small

differences in modeling, input parameters, and unavoidable errors in measured air-

loads and their interpolation, factors which are either non-existent or insignificant

for fully coupled solutions.

The second part of this chapter describes a swashplate model, and studies the

effect of swashplate dynamics on servo loads and blade loads. The multibody model

is coupled to the swashplate model in this part of the study. In all cases, measured

airloads, damper forces, and control angles from the US Army/NASA UH-60A flight

test program (Refs. [?,172]) are used for the validation of the analyses. Finally, the

rotor model is used to analyze the UTTAS pull-up maneuver using the measured

flight test data. Once the structural model has been validated, the resulting blade

deformations provide with an accurate set of inputs to test aerodynamic models,

because, the flight test measurement of blade deformations is not available. The

blade deformations obtained using measured airloads analysis, termed as prescribed

or calculated blade deformation, serve as basis for consistently comparing airloads

predicted using different aerodynamic models with flight test and provide an op-

portunity to separate the physics of aerodynamics from the aeroelastic response
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problem. This forms the basis for Chapter 3, where results for lifting-line anal-

ysis are compared to those obtained using a CFD model using prescribed blade

deformations.

2.2 Multibody Formulation with Full FEM

The rotor blades and supporting structures are first divided into several bodies,

rigid and flexible. Each flexible body is discretized into several finite elements. The

rotor is modeled as a second order nonlinear Euler-Bernoulli beam with axial elon-

gation and elastic twist modeled as quasi coordinates (Refs. [19–21]). The current

formulation incorporates additional frames of reference at the individual beam ele-

ment level. Arbitrary large deformations of the beam can be accommodated by the

finite motion of the frames attached to individual elements while the elastic defor-

mations within each element remain moderate. The rigid body motion of the frames

involves large rotations and translations in space. The rotor pitch control angles are

imposed as linear displacements at the bottom of the pitch links and are adjusted

iteratively to generate the measured root pitch angles. The measured damper force

is imposed in a direction based on the exact kinematics of the damper as determined

by its configuration and the instantaneous location of blade attachment point. The

equations of motion are formulated using Kane’s method.
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2.2.1 Blade Coordinate Systems

There are five important coordinate systems, as shown in Fig. 2.1, required

for formulating the blade equations, the hub-fixed system, (XH ,YH ,ZH) with unit

vectors ÎH ,ĴH ,K̂H , the hub-rotating system, (X ,Y ,Z) with unit vectors Î,Ĵ ,K̂, the

undeformed blade coordinate system, (x,y,z) with unit vectors î,ĵ,k̂, unit vectors,

the element coordinate system (xE ,yE,zE) denoted by unit vectors îE,ĵE ,k̂E, and the

deformed element coordinate system, (ξ,η,ς) represented with unit vectors îξ,ĵη,k̂ς .

These reference frames would be referred to as H , R, U , E, and D respectively. The

transformation between hub-fixed and hub-rotating system is defined as





Î

Ĵ

K̂





= TRH





ÎH

ĴH

K̂H





=




cosψ sinψ 0

− sinψ cosψ 0

0 0 1








ÎH

ĴH

K̂H





(2.1)

where ψ is the azimuth angle which is equal to Ωt. The transformation from the

rotating frame to blade undeformed coordinate which is at an angle βp is expressed

by 



î

ĵ

k̂





= TUR





Î

Ĵ

K̂





=




cos βp 0 sin βp

0 0 1

− sin βp 0 cos βp








Î

Ĵ

K̂





(2.2)

The transformations from the blade undeformed frame to element local frame and

the element frame to the deformed blade reference frame would be discussed later

in the text.
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2.2.2 Element Frame Motion

The motion of the beam element frame E is specified relative to the blade

undeformed frame, U . The origin of the element frame is located at the first node

of the beam element, and is rigidly attached to the element, the position of which

is denoted by the vector ~rE which is defined in the element undeformed frame

~rE =

{
rx ry rz

}T





iE

jE

kE





(2.3)

Similarly, velocity and acceleration of the origin of E are defined by the vectors ~vE,

and ~aE . The orientation of the frame E can be specified in terms of transformation

matrix, which is discussed later in text. If ~ωE represents the angular velocity of E

with respect to the inertial frame, then the expressions for velocity and acceleration

can be specified in terms of position and angular velocity as

~vE = ~̇rE + ~ωE × ~rE (2.4)

~aE = ~̈rE + ~̇ωE × ~rE + ~ωE × ~̇rE + ~ωE × (~ωE × ~rE) (2.5)

where ~̇ωE is the angular acceleration, and (̇) is time derivative relative to the local

frame.

2.2.3 Deformed Blade Geometry

The location of an arbitrary point, P , on the beam is defined in the element

reference frame (xE ,yE,zE) attached to the root of the element. The element ref-

erence frame remains rigidly attached to the element and translates and rotates
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as the beam deforms remaining normal to and along the principle axes at the el-

ement root. In the undeformed state element reference frame remains parallel to

the blade’s undeformed frame except for the elements that are swept which are at

and angle defined by the angle of sweep. In the deformed state, orientation of the

element frame E is defined relative to the undeformed frame U using a series of

three successive rotations which are determined by the deformed position of the tip

of the previous element. Let the deformed position of the point P on the blade be

denoted by P ′ (Figure to be attached). A frame attached to point P and deforming

with it to reach the deformed position P ′ defines the deformed coordinate system

(ξ,η,ς) which is the orientation of the principal axis of the cross section at that

location. The deformation of a point P is defined relative to the element reference

frame and has to be transformed to the blade reference frame to obtain the net

deformation for the blade. Deformation of the point P in the frame E combined

with the translational motion of the origin of E (xE ,yE ,zE) and its orientation and

any out of plane warping accurately determines the deformed location P ′ in the

inertial frame. The rotor blades are slender structures and hence can be idealized

as beams. Here cross sectional out of plane warping and shear are neglected, such

that the cross section remains rigid and perpendicular to the elastic axis after de-

formation. This implies that two of the angles are functions of the derivatives of the

deflection variables, while the third angle, the angle of elastic twist – remains the

only rotational variable. This approximation is exact up to moderate deformations.

Modified Euler angles are used to denote rotations needed to align the element

reference frame (xE ,yE,zE) with the deformed frame (ξ,η,ς). The successive rotations
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used are ξ1 about zE resulting in an intermediate system (xE1,yE1,zE1), β1 about

−yE1 resulting in (xE2,yE2,zE2) and finally θ1 about xE2 respectively. The resulting

transformation matrix is given by




îξ

ĵη

k̂ς





= TDE





îE

ĵE

k̂E





(2.6)

where TDE =



cos β1 cos ξ1 cos β1 sin ξ1 sin β1

− cos ξ1 sin β1 sin θ1 − cos θ1 sin ξ1 cos ξ1 cos θ1 − sin ξ1 sin β1 sin θ1 cos β1 sin θ1

− cos ξ1 sin β1 cos θ1 + sin θ1 sin ξ1 − cos ξ1 sin θ1 − sin ξ1 sin β1 cos θ1 cos β1 cos θ1




(2.7)

The TDE matrix is same as the classical TDU matrix [19], with the difference

that the deformations are now relative to the element reference frame.

The position of any generic point on the deformed-blade elastic axis relative

to the origin of the element reference frame measured along the element frame is

given as

~rE = (x+ u)̂iE + vĵE + wk̂E (2.8)

where, x is the radial distance measured from the root of the element frame along

axis xE . The derivative of ~r with respect to the curvilinear distance coordinate of

the deformed beam reference line is a unit vector tangent to the deformed beam

reference line at that location, thus

∂~rE
∂r

= (x+ u)+îE + v+ĵE + w+k̂E (2.9)

∂~rE
∂r

= îξ = T11îE + T12ĵE + T13k̂E (2.10)
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where ()+ = ∂/∂() and Tij is the element on the ith row and jth column of TDE . The

elastic axial elongation, ue is subtracted from total elongation to calculate the unit

vector tangent to the elastic axis.

îξ = (x+ u− ue)
+îE + v+ĵE + w+k̂E (2.11)

By comparing Eqs. 2.10 and 2.11 we get

T11 = (x+ u− ue)
+

T12 = v+

T13 = w+





(2.12)

Invoking the condition for orthonormality of the TDE we get

T 2
11 + T 2

12 + T 2
13 = 1 (2.13)

which gives

(x+ u− ue)
+ =

√
1− v+2 − w+2 (2.14)

Using the two expressions for TDE from equations 2.7 and 2.12

sin β1 = w+

cos β1 =
√
1− w+2

sin ξ1 =
v+√

1− w+2

cos ξ1 =

√
1− v+2 − w+2

√
1− w+2





(2.15)

Using the expressions above in Eq. 2.7 results in

TDE =




√
1− v+2 − w+2 v+ w+

−v+ cos θ1−w+ sin θ1
√
1−v+2−w+2

√
1−w+2

−v+w+ sin θ1+cos θ1
√
1−v+2−w+2

√
1−w+2

sin θ1
√
1− w+2

v+ sin θ1−w+ cos θ1
√
1−v+2−w+2

√
1−w+2

−v+w+ cos θ1−sin θ1
√
1−v+2−w+2

√
1−w+2

cos θ1
√
1− w+2




(2.16)
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where

θ1 = θt + φ̂ (2.17)

with

θt =θ0 + θ1c cosψ + θ1s sinψ + θtw

φ̂ =φ−
∫ rl

0

w+

√
1− v+2 − w+2

(
v++ +

v+w+w++

1− w+2

)





(2.18)

where, rl is the distance measured from the root of the element to the point P .

Making the second order assumptions and applying the ordering scheme described

in Ref. [19] we get

TDE =




1− v′2

2
− w′2

2
v′ w′

−v′ cos θ1 − w′ sin θ1 (1− v′2

2
) cos θ1 − v′w − sin θ1 sin θ1(1− w′2

2
)

v′ sin θ1 − w′ cos θ1 −(1 − v′2

2
) sin θ1 − v′w − cos θ1 cos θ1(1− w′2

2
)




(2.19)

Also,

φ̂ = φ−
∫ rl

0

w′v′′dr (2.20)

2.2.4 Formulation Using Kane’s Method

Kane’s method is used for deriving the equations of motion (Ref. [173]), which

states that

{f ∗}+ {f} = 0 (2.21)

where {f ∗} denotes the generalized inertia forces and {f} denotes all other general-

ized forces including the generalized external forces {fe}, the generalized structural

forces {fs} and the generalized damping forces {fd}

{f ∗}+ {fe}+ {fs}+ {fd} = 0 (2.22)
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The derivation of the various components of the Eq. 2.22 is described in the following

subsections.

2.2.5 Derivation of Inertial Forces

Using Eq. 2.8, the position of the point P ′ on the deformed beam cross section

with respect to the undeformed blade reference can be defined as

~r = ~rEO + (x+ u)̂iE + vĵE + wk̂E + ξîξ + ηîη + ςîς (2.23)

where ~rEO is the position of element reference frame origin with respect to the blade

reference frame. The equation above can be written in the basis U

r = rEO + TUE





x+ u

v

w





+ TUETED





−λφ′

η

ς





(2.24)

The deformations u, v, w are the displacements of the beam elastic axis due to

elastic deformations in the element frame, and η and ς are the cross-sectional posi-

tion coordinates. The deformations at any location can be defined using the shape

function and the nodal degrees of freedom of the beam in the blade undeformed

reference frame as

r =rEO + TUE(r+Hq) + TUETEDrgc

=rEO + TUEu

(2.25)

where r = [x, 0, 0]T , rgc = [−λφ′, η, ς]T and q is the vector of generalized elastic

coordinates and [H ] is the shape function used to discretize the blade deformations.
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As per the definition above u = r+Hq+TEDrgc. The velocity for the point defined

above in the basis of blade reference frame is given by

v = ~̇rEO + TUEω̃{ū}+ TUEu̇ (2.26)

where, ω̄ is the angular velocity defined in the local coordinate system. Further, we

have

~ω × ~u = ω̃u = −ũω (2.27)

where ũ is the skew symmetric matrix defined as

ũ =




0 −u3 u2

u3 0 −u1

−u2 u1 0




(2.28)

with u1, u2, and u3 are components of vector u. The angular velocity vector ω can

be written in terms of the derivatives of the reference rotational coordinates of body

as

ω = Gθ̇ (2.29)

allowing us to rewrite Eq. 2.27 as

ωu = −ũGθ̇ (2.30)

where, G can be specified analytically for Euler angles (φE, θE , and ψE) as

G =




0 cos φE sin θE sinφE

0 sinφE − sin θE cosφE

1 0 cos θE




(2.31)
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Further,

u̇ = Hq̇ + ṪEDrgc + TEDṙgc (2.32)

Using, Eqs. 2.30, and 2.32 in Eq. 2.26 and the fact that {ṙgc} is equal to zero (because

sectional deformation is neglected), we get

v = vEO − TUEũGθ̇ + TUEHq̇+ TUEṪEDrgc (2.33)

The equation above can be rewritten as

v =

[
I −TUEũG TUEH

]




ṙEO

θ̇

q̇



+ TUEṪEDrgc (2.34)

where

[
vEO θ q

]T
is the set of generalized coordinates to be denoted by p. The

acceleration of the point defined in the basis of blade reference can be expressed by

a = v̇ = aEO + 2TUEω̃u̇+ TUE
˙̃ωu+ TUEω̃ω̃u+ TUEü (2.35)

The substitution of expressions for u and it’s derivatives yields

a =r̈EO + 2TUEω̃(Hq̇+ ṪEDrgc)− TUEũ ˙̃ω

+TUEω̃ω̃(r+Hq+ TEDrgc) + TUE(Hq̈+ T̈EDrgc)

(2.36)

which can be written in the form similar to Eq. 2.34 as shown below

a =

[
I −TUEũG TUEH

]




r̈EO

θ̈

q̈



+

[
0 −TUE ω̃ũG 2TUEω̃H

]




ṙEO

θ̇

q̇




+(2TUEω̃ṪED + TUET̈ED)rgc − TUEũĠ

(2.37)
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According to Kane’s method the generalized inertial forces for a system is

given by

{f ∗} = −
∑∫

m{a}∂{v}
∂ṗi

dl (2.38)

where, m is the mass per unit length and ṗi is the time derivative of the ith gener-

alized coordinate. The expressions for {a} and ∂{v}/∂ṗi can be substituted in the

Eq. 2.38 to obtain net inertial forces from which mass matrix can be extracted

{f ∗} =−
∫ l

0

m(




I TUEũ
TG TUEH

GT ũT T
UE −GT ũũG GT ũH

HTT T
UE HT ũG HTH








r̈EO

θ̈

q̈f





+




0 −TUEω̃ũ
TG 2TUEω̃H

0 −GT ũω̃ũG 2GT ũω̃H

0 −HT ω̃ũG 2HT ω̃H








ṙEO

θ̇

q̇f





+(I+GT ũT T
UE +HTT T

UE){(2TUEω̃ṪED + TUET̈ED)rgc

−TUEũĠ})dl

(2.39)

The first term in the equation above represents the symmetric mass matrix. It can

be noted that the mass matrix is highly non-linear.

M = −
∫ l

0

m




I TUEũ
TG TUEH

GT ũT T
UE −GT ũũG GT ũH

HTT T
UE HT ũG HTH



dl (2.40)

2.2.6 Derivation of Generalized Elastic Forces

The generalized elastic forces are obtained by differentiating the strain energy

with respect to the generalized coordinates. The rotor blades being modeled have
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very large aspect ratio allowing them to be treated as slender beams, allowing for

the application of uniaxial stress assumption, i.e. σyy = σyz = σzz = 0. For isotropic

beam operating within elastic limits, the stress-strain relation can be expressed as

σxx = Eǫxx (2.41)

σxη = Gǫxη (2.42)

σxς = Gǫxς (2.43)

where ǫxx is axial strain, and ǫxη and ǫxς are the engineering shear strains defined

by the strain-displacement relations given below

ǫxx =
1

2

(
2
∂rx
∂x

+

(
∂rx
∂x

)2

+

(
∂ry
∂x

)2

+

(
∂rz
∂x

)2
)

(2.44)

ǫxη =
1

2

(
∂rx
∂η

+
∂ry
∂η

+
∂rx
∂x

∂rx
∂η

+
∂ry
∂x

∂ry
∂η

+
∂rz
∂x

∂rz
∂η

)
(2.45)

ǫxς =
1

2

(
∂rx
∂ς

+
∂ry
∂ς

+
∂rx
∂x

∂rx
∂ς

+
∂ry
∂x

∂ry
∂ς

+
∂rz
∂x

∂rz
∂ς

)
(2.46)

After making the assumptions for moderately large deflections, the non-linear strain

displacement relations for a pre-twisted beam, accurate up to second order, are given

by (from Ref. [19])

ǫxx =u′ +
v′2

2
+
w′2

2
− λTφ

′′ + (η2 + ς2)

(
θ′φ′ +

φ′2

2

)

−v′′[η cos (θ + φ)− ς sin (θ + φ)]

−w′′[η sin (θ + φ) + ς cos (θ + φ)]

ǫxη = −
(
ς + ∂λT

∂η

)
φ′ = −ς̂φ′

ǫxς = −
(
η − ∂λT

∂ς

)
φ′ = −η̂φ′





(2.47)
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where λT is the cross-sectional warping function. Using the expressions for φ and u

from Eqs. 2.14 and 2.18 respectively in Eq. 2.47 above results in

ǫxx =u′e − λT (φ̂
′′ + w′v′′′ + v′′w′′)

+(η2 + ς2)(θ′φ̂′ + θ′w′v′′ +
φ̂′2

2
+
w′2v′′2

2
+ φ̂′w′v′′)

−v′′[η cos (θ + φ)− ς sin (θ + φ)]

−w′′[η sin (θ + φ) + ς cos (θ + φ)]

ǫxη = −ς̂(φ̂′ + w′v′′)

ǫxς = −η̂(φ̂′ + w′v′′)





(2.48)

The expression for the strain energy of the beam element is given by

U =
1

2

∫ R

0

[∫ ∫

A

(Eǫ2xx +Gǫ2xη +Gǫ2xς)dηdς

]
dx (2.49)

The elastic deflections ue, v, w, and φ are defined by using interpolating polynomial

shape functions as shown below

u(s) =

4∑

i=1

Hui
(s)ui

v(s) =
2∑

i=1

(Hi(s)vi +Hi+2(s)v
′
i)

w(s) =

2∑

i=1

(Hi(s)wi +Hi+2(s)w
′
i)

φ̂(s) =
3∑

i=1

Hφi
(s)φ̂i





(2.50)
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where s = x
l
is the non-dimensional length with l being length of the element and

the shape functions are give by

Hu1
= −4.5s3 + 9s2 − 5.5s+ 1

Hu2
= 13.5s3 − 22.5s2 + 9s

Hu3
= −13.5s3 + 18s2 − 4.5s

Hu4
= 4.5s3 − 4.5s2 + s





(2.51)

H1 = 2s3 − 3s2 + 1

H2 = l(s3 − 2s2 + s)

H3 = −2s3 + 3s2

H4 = l(s3 − s2)





(2.52)

Hφ1
= 2s3 − 3s+ 1

Hφ2
= −4s2 + 4s)

Hφ3
= 2s2 − s





(2.53)

The generalized structural forces for the generalized coordinates

[
rEO θ q

]
can

be evaluated by differentiating the strain energy U given by Eq. 2.49 with respect

to the generalized coordinates

∂U

∂pi
=

∫ R

0

[∫ ∫

A

(
Eǫxx

∂ǫxx
∂pi

+Gǫxη
∂ǫxη
∂pi

+Gǫxς
∂ǫxς
∂pi

)
dηdς

]
dx (2.54)

to obtain the stiffness matrices. The generalized structural force vector can then be

given by

fs =

[
0 0 0 0 0 0 ∂U

∂qi
· · ·
]T

(2.55)
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which can be written in a matrix form in terms of the generalized coordinates as

fs =




0 0 0

0 0 0

0 0 K








r̄EO

θ

q





(2.56)

It should be noted that all the derivatives of U with respect to the rigid body

translation and rotation would be zero, as the rigid body motions do not result in any

strain. The procedure to derive an expression for K in equation above is discussed

in Ref. [168]. Finally the equations of motion can be obtained using Eq. 2.22 by

substituting the expressions for different components.

2.2.7 Numerical Solution Procedure

The equation of motion is setup for a fixed topology to begin with, by explicitly

constraining the system at the problem definition stage. This obviates the need for

handling algebraic constraints separately, thereby sacrificing topology independence

for simplicity, as there are no algebraic constraint equations with associated La-

grange multipliers. Thus, the resulting formulation can be treated using linearized

system analysis tools. Only the displacement constraints are used (holonomic con-

straints) and as they have been found to be adequate for modeling rotorcraft con-

figurations.

The governing ordinary differential equation obtained using the approach above

is of the form

Mẍ+Cẋ +Kx = F (t,x, ẋ, ẍ) (2.57)
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and is solved by marching in time using Newmark family of method with Hilber-

Hughes-Taylor (HHT) correction (Ref. [174]). The advantage of Newmark family of

methods is that it requires the storage of information for only one time step and can

be second order accurate with appropriate selection of parameters. In the Newmark

method (Ref. [175]), an integration formula that depends on two parameters β and

γ is defined

xn+1 = xn +∆tẋn +
∆t2

2
[(1− 2β)ẍn + 2βẍn+1] (2.58)

ẋn+1 = ẋn +∆t[(1− γ)ẍn + γẍn+1] (2.59)

where, ∆t is the time step size and the xi, ẋi and ẍi represents the generalized coor-

dinates, velocity and acceleration respectively at the ith time step. The Newmark’s

method in itself is implicit and unconditionally stable for γ ≥ 1
2
and β ≥ (γ+0.5)2

4
.

The only combination of β and γ that leads to second-order accuracy is γ = 1
2

and β = 1
4
. This choice of parameters produces the trapezoidal method, which

is unconditionally-stable and second order, but it does not include any numerical

damping in the solution, which is necessary to dissipate non physical high-frequency

oscillations exhibited at very small time steps (≤ 1◦ azimuth). The HHT method

is used as an integrator in this analysis as it is unconditionally stable and offers

desirable level of numerical damping.

The HHT method makes use of the same expressions for the integration for-

mula described above, but uses a modified discretized equation of motion as shown

below

Mẍn+1+(1+α)Cẋn+1−αCẋn+(1+α)Kxn+1−αKxn = F(t̃n+1,xn, ẋn, ẍn) (2.60)
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where

t̃n+1 = tn + (1 + α)∆t (2.61)

Substituting the expressions for xn+1 and ẋn+1 from Eqs. 5.3 and 5.4 in Eq. 2.60

results in the following

[
M+ (1 + α)γ∆tC+ (1 + α)β∆t2K

]
ẍn+1 = (1 + α)F(t̃n+1)− αF(tn) + αKxn

−(1 + α)C [ẋn +∆t(1− γ)ẍn]− (1 + α)K

[
hẋn +

∆t2

2
(1− 2β)ẍn

]
+ αCẋn

(2.62)

which is a set of linear equations of the form

Aẍn+1 = B (2.63)

to be solved at every time step. Only the states at the current time step are needed

for evaluating the elements of [A] and [B]. Once ẍn+1 is calculated, xn+1 and ẋn+1

can be calculated using Newmark formulas. The solution procedure is started by

assuming zero initial deformation (i.e. x1 = ẋ1 = ẍ1 = 0).

HHT method is second order accurate and has the desired stability for −1
3
≤

α ≤ 0 and

γ =
1− 2α

2
β =

(1− α)2

4
(2.64)

The smaller the value of α, the more damping it introduces in the numerical solution.

A value of α = −1
3
was used throughout the analysis.
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2.3 Verification and Validation

The analysis methodology is first validated against analytical and experimental

large deformation data. Two static elasticity problems are considered: (1) the prob-

lem of a cantilever elastica with tip moment and tip forcing, and (2) the Princeton

beam static test problem involving deflection of a cantilever beam data.

2.3.1 Elastica with tip moment and tip force

The shape of the elastic deflection curve of a cantilever beam undergoing large

deflection is called elastica. Assuming that the material of the beam remains linearly

elastic, the exact governing differential equation is given by:

κ =
dθ

ds
= −M

EI
(2.65)

where κ is the curvature of the beam at a given section, θ is the angle of rotation

of the deflection curve, M is the sectional bending moment, E is the modulus of

elasticity, and I is the area moment of inertia of the beam section (Fig. 2.2). For

a beam undergoing large deflections, the differential equation governing the curve

takes the following form:

d2w
dx2

[
1 +

(
dw
dx

)2] 3

2

= −M

EI
(2.66)

where w is the transverse deflection of a point on the beam. The exact analytical

solution of the elastica with tip moment has been described in Ref. [176].
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A multibody model of a uniform cantilever beam of length L of 20 ft is de-

veloped using 20 elements. The bending stiffness, EI is taken to be 9000 lb-ft2 and

a moment of 2500 ft-lb is imposed on the beam tip. The resultant radius of cur-

vature, ρ (= 1/κ) is then 3.6 ft. Figure 2.3(a) verifies the predicted solution with

the analytical solution. For a tip force, the analytical solution takes the form of a

transcendental equation involving elliptic integrals, which can be evaluated using

numerical integration. The solutions are tabulated in Ref. [176], and are used in

Figs. 2.3(b)–(d) to verify the current calculations. The tip force is applied such that

PL2/EI = 5.0. The vertical tip deflection δw, the axial foreshortening δu, and angle

of rotation θb are verified in Figs. 2.3(b)–(d).

2.3.2 Princeton beam test

The Princeton beam test, carried out by Dowell and Traybar (Refs. [177,178]),

provides bending and torsional deformation data for an aluminum cantilever beam

with rectangular cross-section. The beam was rotated to various pitch angles intro-

ducing strong flap-lag-torsion coupling (Fig. 2.4). A multibody model is constructed

to simulate the Princeton beam test setup. The geometric and sectional properties

used for the simulation were obtained from reference [177] and are listed in Table 2.1.

Static deformation data from reference [178] is used to validate the predicted results.

Figure 2.5 compares the predicted flap bending (w/L), lag bending (v/L), and tor-

sion deflections with measured data for a range of tip loading. The deflection in the

softer bending direction called flap showed very good correlation with the test data
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for all loading conditions and for all root pitch angle settings. Predicted torsion

deflection is also predicted satisfactorily. However, the same is not observed in the

stiffer bending direction, and the results are less accurate for the higher loading

conditions (3 and 4 lb cases). This is possibly due to ideal treatment of the support

fixture at the root end of the beam. The beam was held using specially fabricated

fixtures, which were inserted into a milling machine type precision indexing-chuck,

which under higher loading conditions might not be providing ideal cantilever con-

ditions (Ref. [179]).

2.3.3 Classical Formulation with Full FEM and FEM with Modal

Reduction

The classical FEM formulation typically uses a single body coordinate frame

and all deformations and loads are calculated in that particular frame, which are then

transformed to an inertial frame. Within a single body coordinate frame, the second

order (almost-exact) beam model is accurate up to moderate bending deflections of

15% (Ref. [32]). The model described above has been used to model the rotor blade

as a fully articulated beam with flap and lag hinges coincident at 4.66% span, and

is referred to as Classical formulation with Full FEM. Sweep is incorporated as a

center of gravity offset from the straight undeformed elastic axis. The multibody

formulation with full FEM can be reduced to classical FEM formulation in several

steps. First, the additional frames attached at the element level are removed and all

the element to element and element to body transformation matrices are replaced
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by identity matrices. All the deformations and forces are now evaluated in a single

global reference frame located at the blade hub. Second, the pitch link spring-

damper element undergoing exact kinematics is replaced by an equivalent torsional

spring-damper system at the pitch link attachment point, based on the undeformed

geometry. The control angles are now imposed directly. Finally, the lag damper force

is imposed as a set of concentrated forces and moments based on the undeformed

geometry of the damper attachment. To reduce the classical full FEM formulation

further, an eigen analysis is performed on the linearized stiffness and mass matrices.

The first ten linearized modes are then chosen to transform the governing equations

into the modal coordinate system. This is referred to as FEM with modal reduction.

2.3.4 UH-60A Rotor Model for Structural Loads

A multibody model of an isolated UH-60A rotor blade is shown in Fig. 2.6.

The measured airloads, damper force and root pitch angles from the two UH-60A

flight test data points are then used to calculate the structural response. Results

obtained using the classical formulations are compared with those obtained using

the multibody approach.

The multibody model consists of the flexible blade and rigid root end damper

and control linkages. The blade is modeled as a fully articulated beam with flap and

lag hinges coincident at 4.66% span using 20 nonlinear beam elements, with each

element having an individual frame of reference attached to it. The blade property

data are obtained from the NASA (Ames) master database. The swept portion of
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the blade has been modeled using 3 elements with swept elastic axis. The pitch

horn and the hub is modeled using rigid bodies, and the pitch link is modeled as a

linear spring-damper element. The pitch link stiffness is obtained from the measured

equivalent root torsion spring stiffness of 1090 ft-lbs/deg (Ref. [180]), evaluated using

the undeformed pitch-horn length. The control angles are imposed via translational

displacements at the base of the pitch link, which are then iteratively adjusted to

provide the measured root pitch angles. The measured damper force is applied as a

follower force. The direction of the damper force is determined by a vector, one end

of which is attached to the location where the damper is physically connected to the

hub and the other end is attached to the blade at 7.6% of span. The elastomeric

bearing stiffness and damping are modeled as linear springs and dampers.

Table 2.1: Beam geometric and sectional properties used for the analysis

of Princeton beam test

Length, R 20 in

Width, b 0.5 in

Height, h 0.125 in

Density, ρ 0.1014 lb/in3

Poisson’s ratio, ν 0.31

Shear Modulus, G 4.0383 × 106 lb/in2

Young’s Modulus, E 10.576 × 106 lb/in2

Polar Moment of Inertia, J 0.2807 bh3
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Table 2.2: UH-60A rotor blade operating frequencies; collective angle 14.5

degrees; effective root spring stiffness 1090 ft-lbs/degree

Frequencies /rev

First Chord 0.27

First Flap 1.04

Second Flap 2.87

First Torsion 4.38

Second Chord/Third Flap 4.76

Third Flap/Second Chord 5.22

Fourth Flap 7.81

Fifth Flap 11.44

Third Chord 12.52

Second Torsion 12.93

2.3.5 Validation of UH-60 Structural Response and Loads

The multibody formulation is now used to predict the UH-60A structural

response and loads at the two flight conditions. The first ten natural frequencies of

the rotor blade at the operating rotational speed are given in Table 2.2.

2.3.5.1 High Speed Flight (8534: CW/σ = 0.0783, µ = 0.368)

Figure 2.7(a) shows the oscillatory flap angle at the blade root. A damping

value of 4% critical in flap is required for good agreement in magnitude and phase.
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Without this damping, the 1/rev magnitude is over-predicted by 20% (Fig. 2.7(b))

and the 1/rev phase shows an error of 40◦. Note that the effect of damping is

primarily on 1/rev rigid motion, the structural loads due to bending remain unaf-

fected. Under the trim condition, the 1/rev aerodynamic flap hinge moment is a

small number generated by large but 180◦ out of phase inboard and outboard lift

forces. Unavoidable errors in airloads measurements and the issues related to span-

wise and chordwise resolution of data throws this balance off and results in error in

the magnitude of 1/rev response, as the flap frequency is close to 1/rev. More de-

tailed studies on this issues can be found in Refs. [181] and [182]. The root lag angle

(Fig. 2.7(c)) is affected by the 4% structural damping in flap due to the coupling

between flap and lag via the built-in twist angle (9.31◦) near the root. Figure 2.7(d)

shows the root pitch angle. It is determined by the flight test control inputs and

the pitch link flexibility.

The predicted flap bending moments are shown in Fig. 2.8. The peak-to-peak

magnitude of the moments are satisfactorily predicted. The peak moment on the

retreating side at the root station (11.3%R) is caused by the lag damper force. The

flap moment at the root station is affected by the damper force via the built-in

twist angle (9.31◦) near the root. The moments at all other stations are mostly

dependent on the airloads. Figure 2.9 shows the dominant vibratory harmonics

(3-5/rev), both magnitude and phase, varying over span. These harmonics are the

primary source of 4/rev vibration in the fuselage. The radial trends are similar,

although the magnitudes are over-predicted. The 3/rev is predicted within 5%–10%

of the flight test value except at 70%R.
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The predicted lag bending moments are shown in Fig. 2.10. The measured

damper force waveform is shown in Fig. 2.10(a). The bending moment waveform

at the root, is almost entirely determined by the damper force. The sharp gradient

in the moment waveform at all blade locations near 180◦–250◦ azimuths is a direct

effect of the damper force. Figure 2.11 shows the harmonics for the lag bending

moments (1-5/rev). The magnitude of all the harmonics except 3/rev shows similar

trends as test data, and generally follows the predictions in Refs. [181] and [182].

The 2 and 4/rev harmonics are under-predicted and the 5/rev is over predicted. It is

important to note that the chord force data from the flight test is obtained from the

pressure data alone, and hence does not include the effect of viscous drag. However

reference [183], studied the effect of viscous drag from CFD predictions and showed

negligible effect in rectifying this discrepancy.

The torsion moment is shown in Fig. 2.12(a). The torsion moment is important

for the prediction of the pitch link load (Fig. 2.12(b)), which in turn drives the

4/rev servo loads. Even though the peak-to-peak magnitude is satisfactory, there is

significant discrepancy in all harmonics of the waveform, particularly in 3, 4, and

5/rev. The waveform also shows a 15◦ phase discrepancy on the advancing side.

Figure. 2.12(c) shows the harmonic break-up of the pitch link load, and clearly

demonstrates the error in 3, 4, and 5/rev. The pitch link load is the integrated

effect of the span-wise torsion moments, and hence show trend similar to the torsion

moment. The discrepancy in waveform on the retreating side stems from the errors

in higher harmonics (4/rev and higher).

Figure 2.13 compares the predictions from the multibody, full FEM and FEM
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with modal reduction. The comparisons are similar at all radial stations, includ-

ing near the root, hence predictions at only one radial station are shown. There

is no phenomenological difference between any of the predictions. This can be at-

tributed to the fact that the magnitudes of maximum flap and lag deformations at

the blade tip is less than 15%R, and therefore within the limits of moderate defor-

mation assumptions made in the second order beam element. The root causes of the

discrepancies in higher harmonics of the predictions, are clearly unrelated to large

deformations or root end kinematics, and therefore remain unclear at the present

time.

2.3.5.2 High Altitude Stall Flight (9017: CW/σ = 0.135, µ = 0.237)

The oscillatory flap angle at the blade root is shown in Fig. 2.14(a). As in the

high speed case, here a damping value of 5% critical in flap produces good agreement

in magnitude and phase (Fig. 2.14(b)). Again, note that this additional damping

primarily affects the first flap mode and is required only when accurate 1/rev flap

deformations are desired. They do not affect the bending moment predictions, which

are primarily determined by second and higher modes.

Figure 2.15 shows the predicted flap bending moments. The phase and the

higher harmonic content of the waveforms are satisfactory at all locations. For this

flight, the lag bending moment data is available only at the root location (11.3%R).

Similar to high speed flight, it is dominated by the damper force (Figs. 2.16(a) and

(b)). The torsion moments at 11.3%R and 50%R, and the pitch link load are shown
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in Figs. 2.17(a), (b) and (c) respectively. The 4/rev and 5/rev harmonics are the

source of the torsion oscillations on the retreating blade, which are important for

stall prediction at these azimuths (Ref. [183]). Even though the waveforms appear

satisfactory, closer examination of the harmonics (Fig. 2.17(d)) reveal a similar 3, 4,

and 5/rev discrepancy as high speed. There is a significant 6/rev component in this

flight. The analysis fails to predict any of these higher harmonic trends accurately.

A comparison of predictions from the three different formulations, again reveal

no phenomenological difference. Even though for a stall flight, the effect of large

deformations in this flight is expected to be even less pronounced. The rotor is

trimmed to near zero hub moment in this flight and as a result the 1/rev tip flap

displacements are close to zero. The higher frequencies of twist are more pronounced

in this flight, but, their variation is still limited compared to the low frequency

dominated twist in high speed.

2.4 Swash-Plate Dynamics

In this section, a three degree of freedom swashplate model is formulated and

coupled with the blade model. First, a static load analysis is carried out. The

purpose is to estimate the unknown servo stiffnesses. The stiffnesses are estimated

by comparing predictions with test data from Ref. [180]. Second, a dynamic analysis

is carried out using three different swashplate masses: 50 kg, 75 kg, and 85 kg.

The actual swashplate mass is unknown, but it is expected to lie in this range,

as discussed later in the paper. The measured pitch link loads are used for this
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analysis. The purpose is to study the effect of swashplate mass on the servo loads.

Note that a zero mass case, with zero damping, reduces to a geometric force transfer

problem between the four pitch links and the three servos. Third, a coupled blade

swashplate dynamic analysis is carried out using a simple 7 degrees of freedom

model. The measured pitch link loads are no longer used. Instead the measured

airloads are used on the blade, and each blade is now idealized as a single torsion

degree of freedom system. The span-wise integrated pitching moments are imposed

at the blade root as aerodynamic twisting moments. The purpose is to identify

the servo steady displacements necessary to obtain the measured blade root pitch

angles. Finally, the idealized blade model is replaced with the full finite element

based multibody model. This is referred to as the detailed blade-swashplate model.

2.4.1 Swashplate Model

The swashplate is modeled as a thin disk with 3 degrees of freedom: vertical

heave, pitch, and roll. It is attached to the four pitch links on the top, and three

servo actuators at the bottom. The forward stationary link is placed at an azimuthal

location of 123◦56′, the other two servos are arranged with 90◦ between each of them

as shown in Fig. 2.18(a). The rotating and the non-rotating swashplates are not

modeled as separate structures, but idealized together as a single functional element.

It has three functions: (1) transfer loads between the servos at the bottom and the

pitch links on the top, (2) transfer displacements from servos at the bottom to the

pitch links on the top, and (3) apply rotating to fixed frame transformation from

86



top to bottom. The four pitch links, and the three servos are modeled as linear

spring-damper systems.

Consider Fig. 2.18(b). P1, P2, P3, and P4 are the rotating frame pitch link

loads from the blades 1 through 4. The net force and moments in the fixed frame

are then

Px

r
= P1 sin(ψ + φ) + P2 cos(ψ + φ)− P3 sin(ψ + φ)− P4 cos(ψ + φ) (2.67)

Py

r
= −P1 cos(ψ + φ) + P2 sin(ψ + φ) + P3 cos(ψ + φ)− P4 sin(ψ + φ)(2.68)

Pz = P1 + P2 + P3 + P4 (2.69)

where r (= 17.4 in) is the radius of the rotating swashplate where the pitch links are

attached, Px, Py denote the lateral and longitudinal moments respectively acting on

the swashplate, Pz is the force in the vertical direction. ψ is the blade 1 azimuth

angle, and φ is the difference in azimuthal location of a blade and its pitch link. The

UH-60A rotor has leading edge pitch links and when a pitch link is aligned with the

forward servo (at azimuth 123◦56′) the corresponding blade is at 90◦ azimuth, and

thus φ = 33◦56′. That is, when a blade is at 0 azimuth, its pitch link is at φ.

The three servos must be such that they provide the following net reaction

loads on the swashplate

Fz = −mz̈ + Pz (2.70)

Mx = −Ixxω̇x − (Izz − Iyy)ωyωz + Px (2.71)

My = −Iyyω̇y − (Ixx − Izz)ωzωx + Py (2.72)

where, ωx, ωy, and ωz are the angular velocities of the swashplate about the x, y,
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and z axes respectively of a reference frame attached to the vehicle (Fig. 2.18(b)).

These can be related to the swashplate motions as

ωx = α̇x − αyΩ (2.73)

ωx = α̇y + αxΩ (2.74)

ωz = αyα̇x − αxα̇y + Ω ≈ Ω (2.75)

Substituting equations (2.73–2.75) in equations (2.70–2.72) and using Izz = Ixx+Iyy,

results in

Fz = −mz̈ + Pz (2.76)

Mx = −Ixxα̈x − IxxΩ
2αx + Px (2.77)

My = −Iyyα̈y − IyyΩ
2αy + Py (2.78)

where Ixx, Iyy, Izz and m are respectively the moments of inertia about x (lateral),

y (longitudinal), and z (normal) axes and the mass of the swashplate. The servo

loads causing the above net reaction loads are given by

Rf =
Fz

2
+
Mx +My

2rs
sinφ+

Mx −My

2rs
cosφ (2.79)

Rl =
My cosφ−Mx sin φ

rs
(2.80)

Ra =
Fz

2
+
Mx −My

2rs
sinφ− Mx +My

2rs
cosφ (2.81)

where rs (= 10.75 in) is the radius of the stationary part of the swashplate where

the servos are attached, and, Rf , Rl, and Ra are the servo loads for forward, lat-

eral, and aft servos respectively. It should be noted that the lateral servo load

Rl is independent of Fz, because of the asymmetric positioning of the three servos
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across the swashplate. The forward and aft servos are arranged at diametrically

opposite azimuths at approximately 123◦56′ and 303◦56′ while the lateral servo is

half-way at 213◦56′ azimuth. Note that, when all the pitch link loads are same,

i.e. P1=P2=P3=P4, then Mx=My=0 and Rl = 0. The servo deflections needed to

produce the desired swashplate motions z, αx, and αy, are

vf = z + αxrs cosφ+ αyrs sinφ (2.82)

vl = z − αxrs sinφ+ αyrs cosφ (2.83)

va = z − αxrs cosφ− αyrs sin φ (2.84)

where vf , vl, and va denote the forward, lateral and aft servo deflections. Modeling

the servos as linear spring-damper systems, we have

Rf = Ksf (vf − yf) + Csf (v̇f − ẏf) (2.85)

Rl = Ksl(vl − yl) + Csl(v̇l − ẏl) (2.86)

Ra = Ksa(va − ya) + Csa(v̇a − ẏa) (2.87)

where yf , yl, and ya are a prescribed set of static servo deflections necessary to tilt

the swashplate to generate the desired control angles at the blade root.

To obtain the final set of governing equations for the swashplate dynamics, we

substitute expressions 2.67–2.69 in equations 2.76–2.78, and then use them in equa-

tions 2.79–2.81. The resulting expressions are then equated with equations 2.85–

2.87. The final form of the swashplate equations are expressed as below
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


m A1Ixx B1Iyy

0 A2Ixx B2Iyy

m A3Ixx B3Iyy







z̈

α̈x

α̈y




+




2Csf 2Csfrs cos(φ) 2Csfrs sin(φ)

Csl −Cslrs sin(φ) Cslrs cos(φ)

2Csa −2Csars cos(φ) −2Csars sin(φ)







ż

α̇x

α̇y




+




2Ksf 2Ksfrs cos(φ) + A1IxxΩ
2 2Ksfrs sin(φ) +B1IyyΩ

2

Ksl −Kslrs sin(φ) + A2IxxΩ
2 Kslrs cos(φ) +B2IyyΩ

2

2Ksa −2Ksars cos(φ) + A3IxxΩ
2 −2Ksars sin(φ) +B3IyyΩ

2







z

αx

αy




=




A1Px +B1Py + Fz + 2(Ksfyf + Csf ẏf)

A2Px +B2Py +Kslyl + Csl ẏl

A3Px +B3Py + Fz + 2(Ksaya + Csa ẏa)




(2.88)

where,

A1 =
sinφ+ cosφ

rs
A2 = −sin φ

rs
A3 =

sinφ− cosφ

rs
(2.89)

B1 =
sinφ− cosφ

rs
B2 =

cosφ

rs
B3 = −sin φ+ cosφ

rs
(2.90)

The position of the servos and the pitch links are obtained from Ref. [180].

The servo stiffnesses are unknown. They are now identified using the static part of

equation 2.88 in the following manner.

2.4.2 Static Loading

The servo stiffnesses are identified by comparing detailed control system stiff-

ness measurements given in Ref. [180] with predictions from the above formulation.

An approximate stiffness value, from Ref. [184], is also quoted. Three types of static

loading were applied in Ref. [180]: (1) collective, (2) reactionless, and (3) cyclic.
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The same loading conditions are simulated using the above analytical model. In the

case of collective loading, identical leading-edge-down root pitching moments are

imposed in the same direction on all the four blades at each azimuth station (+1824

ft-lbs ). The moments are transmitted to the swashplate via the pitch links and then

to the servos. In the case of reactionless loading, identical root pitching moments

are imposed in opposite directions on alternate blades ( +1824, -1824, +1824, and

-1824 ft-lbs ). In the case of cyclic loading, the root pitching moments are imposed

in cyclical manner.

Figure 2.19(a) shows that the maximum collective stiffness (imposed moment

divided by root twist) occurs near 180◦ but is not symmetric. The model predicts the

same behavior. This is caused by the placement of the servos. The stiffness is high

in the regions immediately above the servos, and low farther away. The magnitude

of prediction depends on the forward and aft servo stiffnesses. The stiffness values

of 1.5 × 107 and 0.58 × 107 N/m for forward and aft servos respectively provide a

good magnitude agreement with test data.

In the case of reactionless loading, the net force and moments on the servos

are zero (Fig. 2.19(b)). Thus this configuration isolates the pitch link stiffness, as

none of the servos are deflected. The test data shows a higher frequency variation

(higher than 1/rev) which is not expected to be predicted by the analysis. This

appears to stem from swashplate elastic deformations which were not included in

the model.

In Ref. [180], cyclic loading is applied in two steps. In the first step, all blades

start with equal loading (1063 ft-lbs), and then the loading on only one set of
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opposite blades is changed, e.g. for blades at 0◦ and 180◦. Loading on one blade is

increased to 1824 ft-lbs while the loading on the opposite blade is decreased to 303

lbs. The loading on the blades at 90◦ and 270◦ remain constant. The net loading on

the blades are then 1824, 1063, 303, and 1063 ft-lbs. This loading condition is called

Cyclic Loading 1. In the second step, the load change is performed on the other two

blades at 90◦ and 270◦. The loads on blades at 0◦ and 180◦ now remain constant.

The experimental stiffness values differ marginally, the predictions, of course, are

identical. Note that the predictions do not depend on the exact magnitudes of

the loading but depend on their variation, however the test data does, because of

the nonlinearities associated with loading hysteresis. The lateral servo stiffness is

determined as 0.45x107 N/m to provide a good magnitude agreement with the cyclic

loading data (Fig. 2.19(c)).

2.4.3 Dynamic loading

The mass of the swashplate is not known, hence the Tischenko equation for

swashplate mass is used to get an estimate. Tischenko (Ref. [185]) considers that

the weight of the swashplate is proportional to the moment of forces coming from

the rotor blades. The forces coming from the rotor blades are in turn proportional

to NbC
2
bR. Thus, the mass of swashplate is given by:

m =WspNbC
2
bR (2.91)

where Nb is the number of blades, Cb is the average blade chord, and R is the blade

radius. The coefficient of mass for the swashplate Wsp is approximately equal to 8
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kg/m3 for most modern helicopters in UH-60A weight category. Using the UH-60A

blade data in the expression above, the mass of the swashplate is estimated to be

around 75 kg (73 kg, 160.94 lbs).

The measured pitch link load from blade 2 is now phase shifted for four blades

and imposed on the swashplate. The swashplate mass is varied about the estimated

value to study its effect on the servo loads prediction. Figures 2.20(a) and (b)

compares the predicted servo loads for the two flight conditions with the test data

without swashplate dynamics, i.e. with swashplate mass set to 0 kg. The servo loads

in the high altitude stall flight are two to three times greater than those occurring in

the high speed flight. Therefore, the loads in the high altitude stall flight is studied

further in Fig. 2.20(c). Here, the harmonics of the three servo loads are shown, and

they are compared with predictions corresponding to swashplate masses of 0, 50,

75, and 85 kg. Note that, unlike the test data, only integer harmonics of the blade

number are expected from the analysis as the imposed pitch link loads are kept the

same for all blades (only phase shifted) and therefore no blade-to-blade dissimilarity

is modeled. It appears that the dynamics of swashplate can have a significant effect

on the servo loads. The frequencies (at 0◦ azimuth) of a 50 kg swashplate are 11.6,

22.4, and 33.4/rev. The frequencies corresponding to 75 and 85 kg masses are 9.48,

18.3, and 27.24/rev, and 8.9, 17.2, and 25.6/rev. Figure 2.20(c) shows that the

4/rev servo loads increase in general with an increase in swashplate mass – this

is simply because the swashplate motions, that are primarily 4/rev, increase with

swashplate inertia as the first natural frequency decreases. The 8 and 12/rev servo

loads are more significantly affected by swashplate dynamics. As expected from the
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frequencies, 8/rev is most sensitive for a 50 kg mass and 12/rev for 85 kg.

The servo loads are predominantly 4/rev and as noted earlier the stall flight

shows a significantly higher 4/rev content than high speed flight. The 4/rev pitch

link load, on the other hand, is higher in high speed flight than in the stall flight,

as shown in figure 2.21. The 4/rev servo loads are the result of 3, 4, and 5/rev

pitch link forcing. The 3/rev forcing is similar in both flight conditions. Thus, it

appears that the 4/rev servo loads are dominated by 5/rev pitch link forcing. The

5/rev pitch link forcing is significantly higher in the stalled flight than in high speed,

and is consistent with the servo loads. The analysis appears to show this trend of

the test data. The magnitude of the servo loads are satisfactorily predicted in both

flights. Thus, even though the 4/rev forcing on the swashplate is twice as high in

high speed, the servo loads are still only half of those in stall flight. This is possibly

because the servo loads for this rotor are dominated by 5/rev forcing.

2.4.4 Seven Degree of Freedom blade-swashplate coupled model

This simple blade-swashplate coupled model is used only to estimate the un-

known servo displacements for the two flights that will be studied with the detailed

blade model in the next section. Here, each one of the four blades is idealized as a

single degree of freedom system having only rigid torsion degree of freedom. The

first torsion frequency of the UH-60A blades is 4.38/rev, corresponding to a pitch

link stiffness of 2.745 × 106 N/m, or equivalently a root spring stiffness of 1090

ft-lbs/deg. The blades are assumed identical. The measured airloads are imposed
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on the rigid blades as integrated root aerodynamic pitching moment at the pitch

bearing.

The steady servo displacements that are required to generate the measured

control angles at the bearing can now be calculated. For the high speed flight, they

are 0.3, 0.07, and 0.3% R (1, 0.23, 1 inches) for the forward, lateral and aft servos

respectively. Figure 2.22(a) shows that the above values produce a good agreement

with the measured blade root pitch angle. Similarly, for the stalled flight, servo

displacements of 0.3, 0.045, and 0.25% R (1, 0.14, 0.8 inches) produce the flight test

measured angles. This is shown in figure 2.22(b).

In the next section, the detailed blade model is coupled to the swashplate

model. The input servo deflections for control angles are those obtained using the

simple model in this section.

2.4.5 Detailed finite element blade-swashplate coupled model

The swashplate model is coupled to the multibody blade model in this section.

The pitch link load obtained at every time step using the blade model is imposed on

the swashplate model and the swashplate motions are calculated. The steady servo

deflections below the swashplate are held fixed at values calculated in the previous

section. The total swashplate motions are then used for the next time step for the

calculation of the blade response. Note that the total motion includes the steady

tilt that is necessary to generate the pitch control angles. The blade-swashplate

coupled analysis is then carried out until periodicity. The inclusion of swashplate
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model in the analysis facilitates the study of effect of cyclic variation of control

system stiffness and the swashplate mass on the rotor dynamics. It is observed that

the swashplate dynamics has an insignificant effect on the overall dynamics of the

rotor (Fig. 2.23). This is attributed to the fact that the swashplate motions do not

have any significant effect on the blade root pitch angle which governs the blade

dynamics (Fig. 2.24).

Figure 2.25(a) shows the predicted servo loads for flight 9017 for a swashplate

mass of 75 kg. The peak-to-peak forward link load is under-predicted by 40%

stemming from a 4/rev error. Figure 2.25(b) shows the harmonic break-up of the

servo loads. Because 4/rev and 5/rev pitch link loads are over-predicted for flight

9017 (Fig. 2.17(d)), the under-prediction of the forward servo load stems from an

under-prediction of 3/rev pitch link load. The peak-to-peak lateral link load is

well predicted, but it shows a 10◦–20◦ error in 4/rev phase. The aft servo load is

predicted well in both magnitude and phase. It can be observed from Figs. 2.23

and 2.25 that swashplate dynamics do not have any effect on the blade loads for

this rotor, but affects the servo loads prediction significantly. Figure 2.25(b) shows

that a deviation of 25% can occur in the magnitude of 4/rev servo loads and an

over-prediction of 100–200% in the magnitude of the 4, 8 and 12/rev servo loads

depending on the dynamics of the swashplate.
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2.5 Prediction of Structural Loads During Maneuver

After validating the blade swashplate model in steady flight, the measured air-

loads analysis is carried out using the flight test data for the pull-up maneuver. The

solution procedure for the analysis with measured airloads, damper loads, and con-

trol angles, starts with a periodic solution for the first revolution which corresponds

to steady flight condition. The steady periodic solution is obtained by using the pe-

riodic airloads taken from rev. 1 of the maneuver by letting the analysis run for 50

revolutions. Once the dynamic response settles into periodicity, then, the maneuver

is initiated. Note that, unlike in level flight, it is not possible to iteratively correct

the root pitch control angles based on the calculated pitch-link deflection. However,

this error, as shown later, is insignificant. The main source of error is the absence of

airloads data (gage out) at the 55% R station. A small amount of damping, 0.02%

of critical, has to be used to decay initial transients during the course of analysis.

This necessitates about 50 revs of initiation run before the imposition of transient

airloads.

2.5.1 Blade Root Deflections

The predicted blade pitch angle is compared with the measured values at the

root (blade #3) in Fig. 2.26. Root pitch angle is the net result of applied rotor

pitch control and elastic pitch-link deflection. The latter being small, the two sets

are expected to match closely.

Figure 2.27 shows the predicted and measured flap angle (blade #1). Investi-
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gation of the time history reveals that for the initial part of the maneuver (revolution

number 0-6) the blade flap angle is predominantly 1/rev, with significant 2/rev only

in the later part of the maneuver. The analysis showed good prediction of root

flap angle at the beginning of the maneuver. The flap angle is over-predicted from

revolution 12 onwards.

2.5.2 Flap and Lag Bending Loads

The time history of predicted flap bending moments (mean removed) at 11.3%R

is shown in Figs. 2.28 and 2.29, and at 50%R is shown in Figs. 2.30 and 2.31. It is

important to note that the sectional airloads at 55% radial station are not available

because of failed instrumentation, Ref. [10]. Therefore the airloads has to be linearly

interpolated between 40% to 67.5% radial stations. This lack of information seems

to have impacted the peak-to-peak magnitude of structural loads in general, and

flap bending moment in particular, throughout the maneuver, especially at 50%R

station (Fig. 2.38(a)), resulting in under-prediction.

The prediction for lag bending moment at 11.3%R is shown in Figs. 2.32

and 2.33. As noted earlier, the bending moment waveform near the blade root is

completely dominated by the damper force and is well predicted throughout the ma-

neuver. Figures 2.34 and 2.35 show the predicted lag bending moment at 50%R. The

sharp gradient in the moment waveform at all radial locations and all revolutions

near 180◦–250◦ azimuths is a direct effect of the damper force (Ref. [181]). Predic-

tions only show fair correlation with the test data at 50% radial station, particularly
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revolution 12 onwards.

2.5.3 Torsion Loads

The torsion moment at 30%R is shown in Figs. 2.36 and 2.37. At the beginning

of the maneuver, it is over-predicted, and there is a discrepancy in the waveform

on the restreating side. This discrepancy is less pronounced in the later part of the

maneuver, due to significant natural response between 4 and 5/rev (the first torsion

frequency is 4.4/rev) and the the predicted magnitude shows good correlation with

the test data (Fig. 2.38(c)). The effect of stall is clearly visible. The peak-to-

peak structural loads are summarized in Fig. 2.38. The pitch-link load (Figs. 2.39

and 2.40) shows a similar trend.

To gain in-depth understanding of the sources of high torsional loads, harmonic

analysis of structural loads and aerodynamic pitching moment is carried out. The

revolutions 14–18 are known to be steady, thereby justifying harmonic analysis.

Figures 2.41 and 2.42 show the predicted 1–10 harmonics for torsion moment at

70% radial station and pitch-link load respectively for the revolution 1. Predictions

for torsion moment as well as pitch-link load show trends similar to flight-test data,

however, 3/rev torsion moment and 4/rev pitch-link load show significant under-

prediction. The predicted pitch-link load harmonics for revolution 14, corresponding

to high load-factor regime, shows only fair correlation with flight-test data as 3/rev

is under-predicted and 5/rev is over-predicted by 60% (Fig. 2.43). It should be

noted that both the flight test data and predictions show significant 5/rev pitch-
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link load during revolution 14, which is consistent with significant 5/rev observed

in flight test pitching-moment (Fig. 2.44). Unlike blade pitching-moment and pitch-

link load, flight test torsion moment for revolution 14, as shown in Fig. 2.45, lacks

significant 5/rev component, consequently, analysis is over-predicting it significantly.

The reason for this observation is not clear, and possibly related to the uncertainties

associated with flight test measurements.

2.6 Conclusions

A detailed finite element multibody structural dynamic analysis is developed

for a rotor-swashplate system. The model is first verified with analytical solutions for

large deformation problems. Next, it is validated with static Princeton beam large

deformation data. Finally, the full scale measured airloads from the full-scale UH-

60A flight tests are used to calculate the structural loads under two flight conditions

– a high speed high vibration flight and a high altitude dynamic stall flight. Selected

predictions were systematically compared between three formulations: full finite

element with multibody dynamics, full finite element, and finite element with modal

reduction. A swashplate model was coupled to the rotor model to study the effect

of swashplate dynamics on structural loads. Based on this study the following key

conclusions are drawn.

1. All three of the structural dynamic formulations: multibody, full finite ele-

ment, and finite element with modal reduction showed identical prediction

of structural loads for the UH-60A rotor at the two flight conditions – a high
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speed high vibration flight (counter 8534: 158 kts, µ = 0.368, CW/σ = 0.0783),

and a high altitude dynamic stall flight (counter 9017: 101 kts, µ = 0.237,

CW/σ = 0.135). The flap bending moment is satisfactory across all harmon-

ics. The chord bending moment is under-predicted in 4/rev and over-predicted

in 5/rev. Torsion moment prediction is least satisfactory for harmonics 3/rev

and higher. The peak-to-peak magnitudes are however correct for all loads.

2. The dynamics of the swashplate do not appear to have a significant effect on

the prediction of torsion loads on the blade and pitch link. The blade loads,

predicted with or without coupled swashplate dynamics, show the same peak-

to-peak and higher harmonic content. The cyclic variation of control system

stiffness is substantial due to the presence of the servos underneath, but it

does not affect the predicted torsion loads.

3. The magnitude of servo loads is affected not only by the pitch link load mag-

nitudes but also by swashplate inertia. Variation of 25% can occur in the

magnitude of predicted 4/rev servo loads depending on the swashplate dy-

namics. Swashplate dynamics is particularly important for the prediction of

higher frequencies of servo loads – 8 and 12/rev servo loads. Over-prediction

of 100-200% can occur in the magnitude of prediction depending on the swash-

plate dynamics. The 4/rev servo load, however, is affected primarily by the

pitch link loads. For the UH-60A rotor, it appears that the 5/rev component

of pitch link load dominates the 4/rev servo harmonic. This conclusion is

consistent across the two flight conditions investigated in the present study.
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4. In the maneuvering flight, predicted structural loads using measured airloads

data show correct trends as flight test. Flap bending moment prediction shows

best correlation among all structural loads predicted. The over-prediction of

root flap angle in the later part of the maneuver might be related to uncertaini-

ties associated with the flight test data, as this over-prediction is consistent

with all analysis as noted in Chapters 3 and 4.

5. Unlike pitch-link load, flight test torsion moment in the stalled region (revolu-

tions 12–20), lack significant 5/rev component predicted by measured airloads

analysis. The blade pitching-moment data from flight test for outboard sta-

tions (77.5%R–92%R) show significant 5/rev. A similar trend is expected for

the torsion loads, which are reactions to the pitching-moment. While, the

flight test pitch-link load is in harmony with this observation, the torsion mo-

ment doesn’t conform. The reason for this discrepancy may be related to the

errors associated with the flight test measurements.
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Figure 2.1: Coordinate systems used in modeling of rotor blade

Figure 2.2: Large deflections of a cantilever beam due to a tip load
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Figure 2.3: (a) Elastica analytical vs. predicted for an Aluminum beam
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ρ = 3.6 ft, (b)–(d) Elastica under tip force – rotation angle (θb), vertical
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Figure 2.4: Schematic representing the Princeton beam test carried by

Dowell and Traybar to study flap-lag-torsion coupling.
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Figure 2.6: Schematic of an UH-60A blade structural model
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predictions for high speed flight C8534, (CW/σ = 0.0783, µ = 0.368)
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Figure 2.14: Predicted root flap, lag and torsion angle using measured

airloads; effect of damping on the root flap angle; high altitude stall

flight C9017 (CW/σ = 0.135, µ = 0.237)
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Figure 2.15: Predicted and measured flap bending moment using measured

air loads from high altitude stall flight C9017 (CW/σ = 0.135, µ = 0.237),

steady loads removed
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Figure 2.16: Predicted and measured lag bending moment using measured

air loads from high altitude stall flight C9017 (CW/σ = 0.135, µ = 0.237),

steady loads removed
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Figure 2.18: (a) Schematic of UH-60A Blade-Swashplate model; (b) De-

tailed Swashplate model with 3 servo actuators (forward, aft and lateral)

and four pitch links (P1, P2, P3 and P4); both the rotating and stationary

swashplates are of the same size but have been shown to have different

sizes for clarity
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Figure 2.19: Predicted individual blade stiffness as a function of rotor
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Figure 2.23: Effect of swashplate dynamics on the pitch link load variation

for coupled blade swashplate model for flight 9017
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Figure 2.25: Predicted and measured servo loads for coupled blade swash-

plate system for flight 9017 (CW/σ = 0.135, µ = 0.237) (a) waveform,

using a swashplate mass of 75 kg, and (b) harmonics using swashplate
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Figure 2.26: Measured (blade #3) and predicted pitch angle at root; pre-

dictions using flight test airloads; time history shown for only 20 revolu-

tions for clarity
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Figure 2.27: Measured (blade #1) and predicted flap angle at root; predic-
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for clarity
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Figure 2.28: Measured and predicted flap bending moment at 11.3%R;

predictions using flight test airloads; mean removed
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Figure 2.29: Measured and predicted flap bending moment at 11.3%R;

predictions using flight test airloads; mean removed
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Figure 2.30: Measured and predicted flap bending moment at 50%R; revs

4–16; predictions using flight test airloads; mean removed
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Figure 2.31: Measured and predicted flap bending moment at 50%R; revs

16–28; predictions using flight test airloads; mean removed

131



4 4.5 5 5.5 6 6.5 7 7.5 8
−4000

0

5000
ft−

lb

 

 

8 8.5 9 9.5 10 10.5 11 11.5 12
−4000

0

5000

ft−
lb

12 12.5 13 13.5 14 14.5 15 15.5 16
−4000

0

5000

ft−
lb

Rotor Revolutions

Flight

Prediction

Figure 2.32: Measured and predicted lag bending moment at 11.3%R; revs

4–16; predictions using flight test airloads; mean removed
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Figure 2.33: Measured and predicted lag bending moment at 11.3%R; revs

16–28; predictions using flight test airloads; mean removed
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Figure 2.34: Measured and predicted lag bending moment at 50%R; revs

4–16; predictions using flight test airloads; mean removed
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Figure 2.35: Measured and predicted lag bending moment at 50%R; revs

16–28; predictions using flight test airloads; mean removed
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Figure 2.36: Measured and predicted torsion moment at 30%R; revs 4–16;

predictions using flight test airloads; mean removed
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Figure 2.37: Measured and predicted torsion moment at 30%R; revs 16–28;

predictions using flight test airloads; mean removed
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Figure 2.38: Measured and predicted peak-to-peak structural loads; pre-

dictions using flight test airloads
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Figure 2.39: Measured and predicted pitch-link load; revs 4–16; predictions

using flight test airloads; mean removed
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Figure 2.40: Measured and predicted pitch-link load; revs 16–28; predic-

tions using flight test airloads; mean removed
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Figure 2.41: Measured and predicted torsion moment harmonics at 70%R

for rev 1 (steady flight conditions); predictions using flight test airloads.
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Figure 2.42: Measured and predicted pitch-link load harmonics for rev 1;

predictions using flight test airloads.
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Figure 2.43: Measured and predicted pitch-link load harmonics for rev 14

(highest load factor); predictions using flight test airloads.
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Figure 2.44: Measured pitching moment harmonics for rev 14 at different

radial stations.
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Figure 2.45: Measured and predicted torsion moment harmonics for rev

14.
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Chapter 3

Aerodynamic Modeling

3.1 Introduction

This chapter describes and validates the aerodynamic modeling of rotor blades.

The objective is prediction and fundamental understanding of airloads during an

unsteady maneuver. Two aerodynamics analyses are used: (1) a lifting-line analysis,

and (2) a 3-D Reynolds Averaged Navier Stokes (RANS) CFD analysis. These two

methodologies in that order define the state-of-art in low and high-fidelity airloads

calculation.

The lifting-line model, although a low fidelity model, facilitates the separation

of the effects of control angles, dynamic stall and wake. In addition, it provides

direct airfoil angle of attack calculation, which is critical for better understanding

of the airloads mechanism. Comparisons of the airloads predicted using lifting-line

analysis to those obtained using CFD helps in the identification of its limitations

in comprehensive rotor analysis for maneuver. The deformations obtained from

measured airloads analysis carried out in chapter 2 is used to predict the airloads.

The use of identical deformations for both the aerodynamic models allows for their

consistent comparison. Further, this isolates the physics of structural dynamics and

aerodynamics and allows them to be studied separately. The prescribed deforma-
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tions serve as an accurate set of input to the aerodynamic models and would be used

in the identification of the physical mechanism of the advancing blade stall which

was never attempted before.

This chapter first discusses the development of a lifting-line based compre-

hensive analysis with focus on the refinements made for maneuver. Next, the

CFD model used in the present study, University of Maryland Transient Unsteady

Reynolds Navier Stokes (UMTURNS), is described briefly. Rotor structural model

described in the chapter 2 is coupled to each aerodynamic model separately to sim-

ulate the UTTAS pull-up maneuver (chapters 4 and 5).

3.2 Lifting-line Analysis

The lifting line aerodynamic model described later in this chapter consistently

combines 2D airfoil table look-up, based on angle of attack calculated using blade

deformation, with Leishman-Beddoes 2D unsteady aerodynamics for attached and

separated flows [91]. The wake modeling includes a Weissinger-L (W-L) type lifting-

surface model for near wake modeling and a time accurate free wake model based

on Ananthan and Leishman [73] for modeling the far wake. The original free wake

model is modified to include flexible blade deformations and a generalized set of

vortex trailers. The blade angle of attack calculation includes the effect of helicopter

roll and pitch motions.

At each azimuth (i.e. time), the inputs into the lifting-line analysis are the

blade deformations for all blades, the instantaneous advance ratio, shaft tilt angles,
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the rotor pitch and roll angles and angular rates, and the control angles. The outputs

from the model are the airloads occurring on all blades, and the inflow velocities

at the blade control points (swept 3/4 chord line) on all blades, at that instant.

Within the model, the airloads are calculated using the inflow velocities obtained in

the previous time step. The current blade deformations are used along with inflow

velocities stored from the previous time step to calculate the airloads, bound circula-

tion distribution, near wake trailer strengths, and near wake induced velocities at the

blade control points. The near wake induced velocities are then used to re-calculate

the airloads. The bound circulation distribution and the current blade deformations

are then used to advance the free wake solution to the present time step. This free

wake solution is then used in the calculation of airloads in the next time step. The

airloads at the present time step are re-calculated including the near wake induced

velocities. The effect of shed wake is incorporated using an unsteady aerodynamic

model. At each time step, the unsteady model is updated based on the change in

airloads from the previous time step. The Leishman- Beddoes unsteady model (for

attached and separated flows) is used in the present analysis. The numerical solu-

tion procedure of the free wake is same as that of the Ananthan-Leishman model,

validated in Ref. [73]. However, the present formulation incorporates flexible blade

deformations in flap, lag, and torsion, and the vortex strengths and boundary condi-

tions are prescribed. The objective is to formulate a Nb bladed transient lifting line

analysis that can be interfaced with a CSD model for a time-marching aeroelastic

solution. In this chapter, the aerodynamic model is validated in isolation.
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3.2.1 Angle of Attack Calculation

The sectional angle of attack for a rotor is the net result of two velocity com-

ponents; the wind velocity and the blade velocity. The blade velocity is determined

by rotor motion relative to the hub, and the motion of hub relative to the helicopter

center of gravity (c.g.). The general expression for which, at a radial station x in

the rotating undeformed frame is

~V = −~Vw + ~Vb + ~Vf (3.1)

where ~Vw is the wind velocity relative to hub fixed frame, due to the vehicle speed

and inflow, ~Vb is the blade velocity relative to the hub fixed frame resulting from

blade motion, and ~Vf is the blade velocity caused by hub motion relative to the c.g.

It should be noted that the ~Vf only includes the effect of fuselage angular speed for

a rigid shaft, the effect of translational speed is already included in ~Vw.

The wind velocity in the non-rotating hub frame can be expressed as:

~Vw = (µΩR)ÎH − (λΩR)K̂H (3.2)

where µ = V cosαs/ΩR is the rotor advance ratio; V is the vehicle forward speed,

αs is the rotor longitudinal shaft tilt (positive nose down); λ is the rotor non-

dimensional inflow; and ΩR is the rotor tip speed.

The wind velocity can be transformed to the rotating deformed frame using

two transformations, first from the hub fixed non-rotating frame to the rotating

frame (Eq. 3.3) and then to the rotating system with the precone angle βp (Eq. 3.5).
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



Î

Ĵ

K̂





= TRH





ÎH

ĴH

K̂H





(3.3)

where

TRH =




cosψ sinψ 0

− sinψ cosψ 0

0 0 1




(3.4)

The second transformation from the rotating frame with no precone to that at a

precone angle is expressed by





î

ĵ

k̂





= TUR





Î

Ĵ

K̂





(3.5)

where

TUR =




cos βp 0 sin βp

0 0 1

− sin βp 0 cos βp




(3.6)

The final expression of the wind velocity in the undeformed frame can be obtained

by substituting Eqs. 3.3 and 3.5 in Eq. 3.2

Vwx
= µΩR cosψ − λΩRβp

Vwy
= −µΩR sinψ

Vwz
= −µΩR cosψβp − λΩR





(3.7)

and making the small angle assumption for βp.
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The blade velocity relative to the hub, in the rotating undeformed frame can

be written as

~Vb = ~̇r + ~Ω× ~r (3.8)

where,

~r = x1î+ y1ĵ + z1k̂ (3.9)

~̇r = ẋ1î+ ẏ1ĵ + ż1k̂ (3.10)

~Ω = ΩK̂ (3.11)

The expressions for x1, y1, z1, ẋ1, ẏ1, ż1 are given by (Ref. [168])

x1 = x+ u− λTφ
′ − v′(y1 − v)− w′(z1 − w)

y1 = v + (y1 − v)

z1 = w + (z1 − v)





(3.12)

where,

(y1 − v) = η cos(θ + φ̂)− η sin(θ + φ̂)

(z1 − v) = η sin(θ + φ̂) + η cos(θ + φ̂)





(3.13)

and

ẋ1 = u̇− λT φ̇
′ − (v̇′ + w′θ̇1 − (w′ − v′θ̇1(z1 − w)

ẏ1 = v̇ + (y1 − v)θ̇1

ż1 = ẇ + (z1 − v)θ̇1





(3.14)

It should be noted that the deformations (u, v, w, φ) used in the above expressions

are no longer defined in the local element frame, which was the case in chapter 2.

The deformations used in the derivation of aerodynamic loads are the deformations

in the undeformed blade reference frame obtained after transforming deformations
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from the respective element frames as described in chapter 2. This facilitates the

derivation of airloads. The blade velocities Vbx , Vby , and Vbz can be expressed in

terms of the expressions shown in Eqs. 3.13 and 3.14 as

Vbx = ẋ1 − y1 cos βp

Vby = x1 cos βp + ẏ1 − z1 sin βp

Vbz = y1 sin βp + ż1





(3.15)

The angle of attack is calculated at 3
4

th
chord location corresponding to η = ηr and

ζ = 0. The final expressions for Vbx , Vby , and Vbz are given by

Vbx = u̇− λT
˙̂
φ
′
− (v̇′ + w′θ̇1)ηr cos θ1 − (ẇ′ − v′θ̇1)ηr sin θ1 − (v + ηr cos θ1)

Vby = v̇ − θ̇1ηr sin θ1 + x+ u− v′ηr sin θ1 − βp(w + ηr sin θ1)

Vbz = ẇ + θ̇1ηr cos θ1 + βp(v + ηr cos θ1)




(3.16)

Since the rotor shaft has been considered rigid the shaft motion is the repre-

sentative of the vehicle motion for all practical purposes. The rigid body fuselage

motion results in blade velocity (at a point at three quarter chord on the rotating

deformed blade) given by

~Vf = ~VF + ~ωf × ~rF (3.17)

where, ~rF is the position vector of this point relative to the vehicle’s center of gravity,

~VF is the velocity with which the fuselage center of gravity is moving in the inertial

frame and ~ωf is the angular velocity relative to the inertial frame. The components
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of Eq. 3.17 are written as:

~rF = (xCGÎF + yCGĴF + hK̂F + ((x+ u)̂i+ vĵ + wk̂ + ηr ĵη) (3.18)

~VF = ẋF ÎI + ẏF ĴI + ˙zF K̂I (3.19)

ωf = −φ̇sÎI − α̇sĴI (3.20)

where φs is the lateral shaft tilt angle (positive advancing side-down). Substituting

Eqs. 3.18, 3.19 and 3.20 in Eq. 3.17 and then transforming the resulting vector to

the undeformed rotating axis (̂i, ĵ, k̂) and dropping all terms higher than ǫ2 in

accordance with ordering scheme, yields

~Vf = Vfx î+ Vfy ĵ + Vfz k̂ (3.21)

where,

Vfx = (ẋF − hα̇s) cosψ + (ẏF + hφ̇s) sinψ

Vfy = −(ẋF − hα̇s) sinψ + (ẏF + hφ̇s) cosψ

Vfy = ˙zF − φ̇sx sinψ + α̇sx cosψ + xcgα̇s − ycgφ̇s

The corresponding transformations involved are give below.





î

ĵ

k̂





= TURTRHTHI





ÎI

ĴI

K̂I





(3.22)
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



î

ĵ

k̂





= TURTRH





ÎF

ĴF

K̂F





(3.23)





î

ĵ

k̂





= TDU





îξ

ĵη

k̂ς





(3.24)

The resultant blade velocity at a radial station x expressed in rotating undeformed

coordinate system is given by

V̂ = Uxî+ Uy ĵ + Uzk̂

= (Vbx − Vwx
+ Vfx )̂i+ (Vby − Vwy

+ Vfy)ĵ + (Vbz − Vwz
+ Vfz)k̂

(3.25)

The sectional airloads are calculated in the deformed blade reference frame using the

resultant velocity and aerodynamic angle of attack. The velocity calculated above

needs to be transformed to the deformed frame




UR

UT

UP





= TDU





Ux

Uy

Uz





(3.26)

Finally, we have

V̂ = URîξ + Uy ĵη + Uzk̂ς (3.27)

where,

UR

ΩR
= u̇− v + v′(x+ µ sinψ)− µ cosψ(1− βpw

′) + λ(βp + w′)

− ηr cos θ0(1 + v̇′) + ηr sin θ0(φ̂− ẇ′ + v′v̇ + w′ẇ

+
1

2
µ cosψ(v′2 + w′2)+(ẋF − α̇sh) cosψ + (ẏF + φ̇sh) sinψ

(3.28)
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UT

ΩR
= [v̇ + u− wβp + φ̂(λ+ ẇ) + v′v + (x+ µ sinψ)(1− v′2

2
)

+ µ cosψ(v′ + φ̂(βp + w′)] cos θ0 + [ẇ + λ+ v(βp + w′)− φ̂v̇

− (x+ µ sinψ)(v′w′ + φ̂) + µ cosψ(w′ + βp − φ̂v′)] sin θ0

−[(ẋF − α̇sh) sinψ − (ẏF + φ̇sh) cosψ] cos θ0

+[żF − φ̇sx sinψ + α̇sx cosψ + xcgα̇s − ycgφ̇s] sin θ0

(3.29)

UP

ΩR
= [ẇ + λ+ vβp + vw′ + µ cosψ(βp + w′ − φ̂v′)

− (x+ µ sinψ)(v′w′ + φ̂)] cos θ0 + [−(v̇ + u)− vv′ + wβp

− φ̂(ẇ + λ)− µ cosψ(v′ + φ̂(βp + w′))

− (x+ µ sinψ)(1− v′2

2
)] sin θ0 + ηr(θ̇0 +

˙̂
φ+ w′ + βp))

−[(ẋF − α̇sh) sinψ − (ẏF + φ̇sh) cosψ] sin θ0

+[żF − φ̇sx sinψ + α̇sx cosψ + xcgα̇s − ycgφ̇s] cos θ0

(3.30)

The angle of attack α, yaw angle Γ, and the incident Mach number M are given by

α ≈ −UP

UT

Γ ≈ UR

UT

M =Mtip

√
U2
P + U2

T





(3.31)

The underlined terms above are contributions from the helicopter maneuver and go

to zero during steady flight. For a pull-up maneuver the contribution from vehicle

pitch rate tends to increase the angle of attack by increasing both UP and UT .

Although the denominator also increases, the net change is more significant for the

numerator resulting in an increase in angle of attack.

Once the angle of attack and Mach number is calculated, the airfoil properties
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can be found using table look-up. The sectional normal force, chord force, and

quarter chord pitching moment and the axial force in the deformed rotating frame

can be given in their non-dimensional form as

L̄w =
γV̂ 2

6a
(Cl cosα + Cd sinα)

L̄v =
γV̂ 2

6a
(Cl sinα− Cd cosα)

M̄φ =
γV̂ 2

6a

c

R
Cm

L̄u = −γV̂
2

6a
Cd sin Γ





(3.32)

where, L̄w, L̄v, L̄u are non-dimensionalized with respect to m0Ω
2R and M̄φ with

respect to m0Ω
2R2. All the velocities are non-dimensionalized with respect to ΩR.

γ is the Lock Number, γ = ρacR4

Ib
, where, flap inertia, Ib =

m0R3

3
. The expressions

for airloads are further manipulated for convenience, and the aerodynamic constants

are replaced with their following expanded forms

Cl = c0 + c1α (3.33)

Cd = d0 + d1α + d2α
2 (3.34)

Cm = f0 + f1α = cmac
+ f1α (3.35)

Using the expressions above in Eqs. 3.31 and 3.32, we obtain the following expres-

sions

L̄w =
γ

6a
(c0U

2
T − (c1 + d0)UTUP + d1|UP |UP ) (3.36)

L̄v =
γ

6a
(−d0U2

T − (c0UP − d1|UP |)UT + (c1 − d2)U
2
P ) (3.37)

M̄φ =
γ

6a

c

R
(Cmac

(U2
T + U2

P )− f1UTUP ) (3.38)

L̄u = − γ

6a
(−d0URUT ) (3.39)
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It should be noted that the airloads thus calculated are in deformed frame and need

to be transformed to undeformed frame before applying to the structural model for

which the following transformation is used




LA
U

LA
V

LA
W





= T T
DU





L̄U

L̄V

L̄W





(3.40)

MA
φ ≈ M̄φ (3.41)

The airloads obtained above only represent the circulatory component. The non-

circulatory component (also called apparent or virtual forces) must be added to the

non-circulatory lift and pitching moment to get total airload. The non-circulatory

lift and pitching moment in their non-dimensionalized form are given respectively

by

(LA
w)NC

m0Ω2R
=
γπ c

R

12a

(
− ẅ
R

+
c
4
+ ed

R
θ̈1 + (x+ µ sinψ)θ̇1

)
(3.42)

(MA
φ̂
)NC

m0Ω2R
=
γπ c

R

12a

( c
4
+ ed

R

ẅ

R
− (

c
4
+ ed

R
)2θ̈1 −

c
2
+ ed

R
(x+ µ sinψ)θ̇1 −

c2

R2

1

32
θ̈1

)

(3.43)

where c is the length of the chord, ẅ is the plunge acceleration (positive up), θ̈1(=

θ̈0 +
¨̂
φ) is the pitch acceleration (positive nose up), and θ̇1 is pitch angular velocity.

3.2.2 Weissinger-L model (Near trailed wake)

The Weissinger-L (W-L) model [186] is essentially a lifting-surface model with

a single chord-wise element. The W-L model represents blade lift using a series of

spanwise horseshoe vortex elements. For a given angle of attack as input the W-L
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model calculates the bound circulation strengths at quarter-chord locations, taken

as the location for lifting-line. The flow tangency condition is imposed at three-

quarter chords where the vertical component of the induced velocity due to bound

vortex system is equal and opposite to the corresponding component of the incident

flow. The bound circulation strengths are used to determine circulation strengths of

near wake trailers, which are used to calculate the induced angle of attack at three-

quarter chord locations. This induced angle of attack is subtracted from the input

angle of attack to obtain the net angle of attack to be used for sectional airloads

calculations.

3.2.3 2D Unsteady Model (Near shed wake and stall vortices)

The Leishman-Beddoes unsteady model [91] (for attached flow and dynamic

stall) is used in the present analysis. The formulation for both attached as well

as separated flow is needed because the maneuver starts with high speed flight

condition where there is no evidence of stall, but as the helicopter starts to pull-up,

two to three stall cycles are observed per rotor revolution. The Leishman Beddoes

dynamic stall model acts on the effective section angles of attack after including free

wake and near wake trailed vorticity. The effect of shed vorticity is then provided

by the unsteady model. This is because, unlike trailed wake, the effect of shed

wake is local and the use of unsteady model allows the effects of compressibility,

viscosity, and dynamic stall to be incorporated. As discussed later in the Chapter

4 on comprehensive analysis, the dynamic stall model seems to be the single most
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important tool needed to analyze the UTTAS pull-up maneuver.

3.2.4 Far Wake Model (Far trailed wake)

The transient far wake model used in the present study is the Maryland Free

wake model which has been validated in Ref. [73]. The original free wake analysis

uses rigid blade model and hence is modified to incorporate flexible blade defor-

mations in flap, lag, and torsion. In addition the vortex strengths and boundary

conditions are prescribed as inputs to the free wake model, which in turn results in

the non-linear inflow distribution as output.

A wake discretization of 2 degree and 2 wake turns is used for all wake cal-

culations. Increasing the wake turns to 4 does not make any significant change in

the predicted inflow during the pull-up maneuver. A single peak free tip vortex

model is used for all the calculations involving free wake model. The strength of

the tip vortex is equal to the maximum bound circulation occurring outboard of

50% blade span. To understand the role played by the inflow prediction on airloads,

the predictions using free wake model are also compared to those obtained using

uniform inflow calculated using rotor thrust and shaft angles. The expression for

quasi-steady inflow in forward flight is given by

λ = µ tanαs +
CT

2
√
µ2 + λ2

(3.44)

for µ > 0.1 it simplifies to

λ = µ tanαs +
CT

2µ
(3.45)

where µ is the advance ratio, αs is the rotor shaft angle and CT is rotor thrust.
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3.3 Reynolds Averaged Navier-Stokes CFD Model

The baseline CFD solver used in the present work is the in-house developed

parallelized version of overset, structured mesh, unsteady RANS solver OVER-

TURNS (OVERset Transonic Unsteady Rotor Navier-Stokes) developed by Sitara-

man and Baeder [187] and Duraisamy and Baeder [188] and recently implemented

with large scale parallelism by Ananthan and Baeder [162]. Time integration is

performed using a second-order backward difference method using Lower-Upper

Symmetric Gauss Seidel (LUSGS) [189]. Newton sub-iterations (typically 8) are

used to remove factorization errors and recover time accuracy for unsteady compu-

tations [190]. The inviscid fluxes are computed using an upwind scheme that uses

Roe’s flux differencing with MUSCL type limiting. The viscous fluxes are computed

using second-order central differencing. The Baldwin-Lomax turbulence model is

utilized for RANS closure for all baseline results. OVERTURNS uses the arbitrary

LagrangianEulerian (ALE) formulation for modeling unsteady flows with motion of

the solid surfaces, as in the case of helicopter flows.

Since the motions of the vehicle undergoing the maneuver are known in terms

of translational and angular rates, and position and attitude are not strictly known.

Use of pseudo material frame requires the grid velocity field to be directly prescribed,

which may result in violation of the geometric conservation law. Therefore, an

alternative approach involving analytical mapping of the Navier-Stokes equations to

a vehicle fixed frame is used. This allows the deformation of vehicle components to

be described relative to the vehicle fixed frame. This alternative mapping is realized

158



via two successive transformations. The first transformation is from an inertial

reference frame, to a body fixed non-rotating frame and the second transformation

involves the projection of the velocity field in the body fixed non-rotating frame to

a body fixed rotating frame. The solver uses a non-inertial vehicle fixed frame of

reference, and the effects of maneuver (attitudes and rates) are incorporated using

source terms in the Navier-Stokes equation [165].

The solver uses an overset mesh system for efficient wake capturing. In this

arrangement, the body-fitted blade meshes are embedded inside a cylindrical off-

body mesh to capture the entire rotor blade-wake aerodynamics – see Fig. 3.1.

The body conforming C-O meshes ensures a better definition of the blade tips,

and consists of 129 points in the wraparound direction (of which 97 points are

on the blade surface), 129 points in the spanwise direction, and 65 points in the

normal direction. The spacing of grids near the blade surface in the normal direction

is approximately 10−5 chord which is required for the viscous calculations. The

background mesh is composed of four overlapping cylindrical quadrants with 49 ×

99×110 in the azimuthal, spanwise, and normal direction respectively. The off-body

mesh uses grid stretching to maintain clustering in regions of high vorticity, i.e., the

root and tip vortex regions in the wake.

The coupling between the different solvers (structural and CFD) is achieved

using Python scripts. Each solver provides a Python class interface which inter-

acts with the FORTRAN modules using FORTRAN to Python Interface generator

(F2PY). Parallelized execution of the code is achieved using pyMPI. The Python

NumPy library is used for general array manipulation and data exchange between
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the solvers. The interpolation of the deformation for grid motion at each time step

is done using the structural solver for the specified grid locations. This ensures the

consistency between grid deformation and beam deformation kinematics. To min-

imize grid movement near the outer boundary of the body fitted grids, a decaying

radial function is applied to the beam kinematic parameters.

3.4 Airloads Using Prescribed Deformations

The deformations obtained using measured airloads analysis are first used to

validate the lifting-line model for the steady flight regime of the maneuver. It is

then used to predict the airloads for the maneuver. It should be noted that the

lifting-line analysis, although a low fidelity model, facilitates the separation of the

effects of dynamic stall and wake, which is important for the identification of stall

physics. It further provides direct airfoil angle of attack estimation, which is critical

for better understanding of the airloads mechanism. Recall, that by prescribed or

calculated deformation we imply the deformations obtained by the application of

the flight test airloads on the structural model.

The procedure for simulation of maneuver using prescribed deformations is

straightforward. The maneuver is initiated from the level flight condition and then

the adjusted control angles (described later) are smoothly applied in an incremental

manner. The vehicle advance ratio, shaft angles, attitudes, and rates from the flight

test are subsequently prescribed. For prediction of airloads, the structural dynamics

model is replaced with pre-calculated structural response from measured airloads
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analysis. The steady, periodic flight condition is used as the initial solution from

which the maneuver is started. It is important to note that, unlike coupled analysis,

the prescribed deformation analysis does not start from a trimmed flight condition.

A conventional trim analysis cannot be carried out in this situation as the blade

response is already frozen. This calls for an estimate of the initial control angles.

The control angles corresponding to trimmed CFD/CSD loose coupling analysis give

good correlation for the predicted airloads at the beginning (rev 1) of the maneuver

(Fig. 3.2). This is because, the deformations obtained using measured airloads

analysis are similar in magnitude and phase to those obtained from CFD/CSD

coupled analysis during the steady part of the maneuver. Therefore, the control

angle used at any time instance for this simulation can be represented by

θ = θCFD/CSDsteady
+ (θF lightmaneuver

− θF lightsteady) (3.46)

where, θCFD/CSDsteady
corresponds to the control angle used for the CFD/CSD

trimmed analysis, θF lightmaneuver
is the control angle measured during the flight test

at any instance of time, and θF lightsteady is the measured angle at time t = 0. Be-

fore discussing the results from the analysis it is important to understand how the

control angle time history from the flight test is estimated.

3.4.1 Control Angle Time History

The flight test control angles are used for the prediction of airloads using the

calculated deformations. There was no direct measurement of the control angles

(θ0, θ1s, θ1c) during the UH-60A flight testing. However, the root pitch angle data,
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which is the net effect of the applied control angle and the blade elastic twist de-

formation at the root, can be used to extract the three control angles by doing

FFT (Fast Fourier Transformations). In order to achieve this the 40 revolutions of

the pull-up maneuver are considered quasi-periodic and the control angles are esti-

mated for all forty revolutions by doing a windowed FFT. The data then can either

be linearly interpolated or pre-interpolated using splines to obtain the entire con-

trol angle time history. The pre-interpolated spline fit to the data allows smoother

control angle variation and is used throughout the analysis.

3.4.2 Results

The predicted normal force using lifting-line analysis, as shown in Fig. 3.2(a),

exhibits correct negative-lift phase and correlates very well with flight test data at

most stations due to the accurate elastic twist obtained from the measured airloads

analysis. Pitching moment (Fig. 3.2(b)), however shows only fair correlation, due

to inherent limitations of lifting-line analysis in predicting transonic shock observed

in outboard blade pitching moment during high advance ratio (µ = 0.375).

After having validated the aerodynamic model for steady high speed flight con-

dition at the beginning of the maneuver, maneuver is finally simulated by prescribing

the calculated deformations along with the flight test control angles and vehicle mo-

tions history data. The predicted and measured pitching moment for revolutions

13–15 and 16–18 are shown in Fig. 3.3(a). The lifting-line model is able to predict

all three stall events. Reference [191] identified the mechanisms of the two retreating
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blade stalls for the high altitude dynamic stall flight (CW/σ = 0.135, µ = 0.237),

which are known to be similar (Ref. [8]) to the dynamic stall cycles observed in the

UTTAS maneuver. The study showed that first retreating stall cycle was caused by

high trim angles in the retreating blade, and the second stall cycle was triggered

by 4 and 5/rev elastic twist deformation that produced a local angle of attack per-

turbation in the fourth quadrant. The mechanism of advancing blade stall is not

known, hence the focus is on its systematic understanding. To isolate the nature

of the advancing blade stall, dynamic stall model in the lifting-line aerodynamic

analysis is turned off and instead static airfoil table look-up is used to predict the

pitching-moments. Figure 3.3(a) shows that while the retreating blade stalls are

no longer predicted, the advancing blade stall is still well predicted, even with the

static airfoil table look-up. This implies that the stall observed in first quadrant is a

transonic stall phenomenon in a static sense and not a dynamic stall vortex induced

event. To identify the contribution of the wake in prediction of this stall, analysis is

carried out without the free wake model. A quasi-steady uniform inflow calculated

using flight test thrust and the effective shaft angle with respect to on-coming flow

is used and all three stall cycles are still present in the predicted pitching moment

(Fig. 3.3(b)), implying that the effect of wake interactions are less significant for

prediction of stall for this flight. The quasi-steady inflow is shown in Fig. 3.4. The

reason for this observation – the high airfoil operating angle of attack that renders

inflow induced contributions to angle of attack as less significant – is discussed in

the chapter 4 during the discussion of comprehensive analysis. Further, no wake

bundling phenomenon is observed by the analysis as the wake gets blown down-
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stream due to high advance ratio. Figure 3.5 shows the mesh plot for flight test

and predicted pitching moment across the disk and the prediction has three distinct

stall cycles, similar to the flight test, thereby validating the lifting-line aerodynamic

model during the maneuver regime.

The calculation above is repeated using the RANS CFD model, described ear-

lier, to reconfirm the observations made using lifting-line analysis and to compare

the airloads predicted using the two approaches. The blade deformations, blade ve-

locities and accelerations used for the lifting-line calculations are interpolated using

splines to 0.25 degree resolution to match the CFD time step. Figure 3.6 shows the

pitching moment at 86.5% span with predicted using CFD with prescribed deforma-

tions. CFD predictions with prescribed deformations show all three stalls like the

predictions from lifting-line model. However, it should be noted that the lifting-line

analysis under-predicts the magnitude of retreating blade stalls significantly and

the predicted phase is less satisfactory. In addition it is also observed that the CFD

prediction of the third stall observed in fourth quadrant, though significantly better

than predictions using lifting-line analysis, are not accurate enough to trigger ade-

quate 5/rev harmonic. The third stall seems to be holding the key to the prediction

of first stall in the following revolution, as discussed in chapter 5.

3.4.3 Mechanism of the Advancing Blade Stall

The advancing blade stall, unlike the first retreating stall, is a very localized

event, occurring over a small region on the outboard side. The mechanism of the
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advancing blade stall, which appears to be a transonic stall is analyzed carefully,

and the effect of torsion, control angles and transonic flow is studied.

Effect of Torsion

The blade elastic twist directly affects angle of attack on the blade and has

been known to influence retreating side stall prediction as concluded during the

study of dynamic stall flight [191]. Therefore, blade elastic twist deformation is an-

alyzed in detail to investigate its possible impact on the advancing side. Figure 3.7

shows the waveform and harmonics of blade tip elastic twist obtained using mea-

sured airloads analysis for revolution 14 of the maneuver. It is observed that elastic

twist deformation has a significant 5/rev harmonic. The role of 5/rev elastic twist is

to increase the angle of attack on advancing side of the blade, via positive (nose-up)

elastic twist, as seen in Fig. 3.7(a). Figure 3.8 shows the airfoil operating enve-

lope, i.e. variation of angle of attack vs. Mach number for deformations obtained

using measured airloads analysis. It can be observed that, with contribution from

5/rev elastic twist airfoil is operating at high angle of attack in the first quadrant,

whereupon entering deeper stall and remaining beyond static stall limit for longer

duration. This results in the prediction of first stall by the lifting-line analysis.

To understand the source of 5/rev component present in elastic twist obtained

from measured airloads analysis, the flight test pitching moment data for revolutions

11–12 is analyzed – those that precede revolution 14. For example, the flight test

pitching moments for rev 11 and 12 show two retreating stall events separated by

70◦ or approximately 1/5-th of a rev – see Fig. 3.9(a), in addition revolution 12
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has an additional stall in first quadrant. This stall is again separated from the

second stall from revolution 12 by another 1/5th rev. This temporal separation of

stall events implies that, pitching moment with at least two such stalls would have

significant 5/rev component, which is confirmed by harmonic analysis of pitching

moment shown in Fig. 3.9(b). This further entails that 5/rev elastic twist needed

to trigger advancing blade stall is a result of excitation by stalls on the retreating

blade from previous revolution.

Effect of Transonic Flow

Further understanding of stall physics is obtained by studying the pressure

variation across the blade chord at the 86.5% spanwise location on the blade. Since,

the advancing blade stall is observed between the azimuthal locations of 25◦ to 50◦,

the coefficient of pressure (CP ) is studied at several azimuth locations for the above

mentioned regions. The CP plot at 25◦ azimuth (Fig. 3.10(a)) shows a strong leading

edge suction and development of a weak oblique shock sitting near 25−30% of chord

as depicted by the sharp gradient in the pressure. This shock triggers flow separation

and creation of the vortex at approximately 30% chord length from the leading edge.

and is responsible for the advancing blade stall as this vortex travels downstream.

By the time blade reaches the 35◦ azimuth, the shock gains in strength, diminishing

the leading edge suction peak as seen in Fig. 3.10(b). Further, the upper surface of

the airfoil now shows a small vortex associated with a small bump near the 40% of

chord which got created between the 25◦ and 35◦ azimuths. Figure 3.10(c) shows

that at 40◦ azimuth it has travelled further downstream and reached 70% of chord
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and then finally it has left the blade by 45◦ azimuth (Fig. 3.10(d)). The shock in

the meanwhile has also travelled upstream towards the leading edge and has gotten

stronger and has destroyed the leading edge suction as seen in Fig. 3.10(d). Based

on the discussion above, it can be concluded that the triggering mechanism for the

flow separation during advancing blade stall is a weak oblique shock, which sets it

apart from the conventional dynamic stall phenomenon.

Effect of Control Angle Perturbation

However, the 5/rev elastic twist cannot be solely responsible for the predic-

tion of advancing blade stall, which is first observed in the flight test data during

revolution 12, but is not predicted by the lifting-line analysis (Fig. 3.11(a)). The

deformation for rev 12 clearly has a significant 5/rev elastic twist component as seen

in Fig. 3.11(b), yet the advancing blade stall is not predicted. A look at the airfoil

operating envelope (Fig. 3.11(c)) reveals that the starting angle of attack is smaller

than the static stall limit and hence the contribution from 5/rev elastic twist is not

adequate to predict a stall. Therefore, the effect of control angles on the prediction

of the stall is also studied by perturbing the control angles from their baseline val-

ues. The collective (15.4◦) and longitudinal cyclic (−9.1◦) angles are perturbed by

10% and lateral cyclic (4.3◦) is perturbed by 20% from their baseline values at the

beginning of the maneuver.

The predictions for revolution 18 correlates very well with the flight test data

for the advancing blade stall magnitude, and is therefore chosen to study the influ-

ence of control angle perturbation. The effect of collective angle perturbation on
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pitching moment prediction for revolution 18 using prescribed deformation is shown

in Fig. 3.12(a). The collective angle directly determines the angle of attack in the

first quadrant (Fig 3.12(b)) and thus determines how deep the stall is, thereby di-

rectly influencing the advancing blade stall magnitude. A 10% increase in collective

results in 10% improvement of advancing blade stall peak from its baseline value,

while a 10% decrease in collective amounts to as much as 30% reduction in the ad-

vancing blade stall peak. Collective angle also has a significant impact on the stall

observed in the third quadrant (second stall), which reconfirms the fact that it is a

trim stall, caused due to high trim angles.

A 10% perturbation in longitudinal cyclic doesn’t influence the angle of attack

at 0◦–45◦ azimuth (Fig. 3.13(b)), unlike collective, and hence its impact on advancing

blade stall prediction is not significant, as seen in Fig. 3.13. Similar to the effect

of longitudinal cyclic, the change in lateral cyclic also doesn’t significantly impact

the advancing blade stall, but it does affect the magnitude and phasing of the

retreating stalls, as observed in Fig. 3.14. The effect of control angle perturbation

on stall prediction establishes the fact that in addition to accurate 5/rev elastic

twist, control angles are also important for accurate prediction of stalls observed

during the C11029 maneuver.

3.5 Concluding Observations

The development of lifting-line model for prediction of airloads in an unsteady

maneuver is discussed. The aerodynamic model is first validated in isolation us-
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ing prescribed deformations obtained from measured airloads analysis. The airloads

predicted using lifting-line are consistently compared to those obtained using a CFD

analysis. The mechanism of the stall in UTTAS pull-up maneuver is studied sys-

tematically and understood. The following conclusions are drawn based on this

study.

1. The advancing blade stall observed during the peak load factor regime of the

maneuver (revolutions 12 − 20) is a transonic twist stall of steady nature. It

is excited by the 5/rev component of blade elastic twist. In the first quadrant,

even though the airfoils in the outboard region of blade are operating at low

to moderate angles of attack, they are very close to the static stall limit due

to high Mach number. The 5/rev component of elastic twist is triggered

by two retreating stalls from the previous revolution which are spaced by

approximately 1/5th rotor revolution. It increases the angle of attack beyond

the static stall limit, in the first quadrant, thereby causing shock induced flow

separation resulting in stall.

2. CFD predict all three stalls with prescribed deformations. The predicted pitch-

ing moment using CFD with prescribed deformation does not capture third

stall with desired accuracy. Third stall in the pull-up maneuver is similar to

second stall of dynamic stall flight which is known to be sensitive to wake and

turbulence modeling. The Baldwin Lomax turbulence model used within the

CFD analysis seems to be inadequate for accurate prediction of dynamic stall.

3. In addition to 5/rev elastic twist, the magnitude and extent of the advancing
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blade stall sequence is also dictated by the collective angle. For example, a

10% error in collective angle can result in under-prediction of first stall peak

by up to 30%.

4. With accurate deformations, lifting-line model is capable of predicting all three

stall events observed during the UTTAS pull-up maneuver, but the stall mag-

nitudes are always under-predicted when compared to those obtained using

CFD as well as flight test. While, use of CFD significantly improves the

magnitude and phasing of the two stalls on the retreating blade, its accurate

prediction continues to be a challenge.
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(a) C-O body-fitted mesh

X Y

Z

(b) Computational domain with eight mesh system

Figure 3.1: Body fitted blade meshes and the cylindrical off-body meshes used in

the OVERTURNS solver.
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Figure 3.2: Measured and predicted normal force and pitching moment for

rev 1; predictions with lifting–line analysis and prescribed deformations

obtained using measured airloads.
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Figure 3.3: Measured and predicted pitching moment at 86.5%R; predic-

tions with lifting–line analysis and prescribed deformations obtained us-

ing measured airloads.
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Figure 3.4: Quasi-steady inflow calculated using measured rotor thrust and

shaft angle.
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Figure 3.5: Measured and predicted pitching moment for revolution 18;

predictions with lifting–line analysis and prescribed deformations ob-

tained using measured airloads.
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Figure 3.6: Measured and predicted pitching moment at 86.5%R; predic-

tions with CFD, lifting-line analysis and prescribed deformations ob-

tained using measured airloads.
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Figure 3.7: Predicted tip elastic twist deformation for rev 14 ; prediction

using measured airloads analysis.
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prescribed deformations obtained using measured airloads.
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Figure 3.9: Flight test pitching moment for revs 11 and 12.
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Figure 3.10: Pressure coefficient (CP ) plotted at 86.5%R for revolution 14

obtained using calculated deformations obtained using measured airloads.
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Figure 3.11: Pitching moment, elastic twist and airfoil operating enve-

lope for rev 12 with prescribed deformations obtained using measured

airloads.
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Figure 3.12: Effect of collective angle perturbation on predicted pitching-

moment at 86.5%R for rev 18 using prescribed deformations obtained

using measured airloads.
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Figure 3.13: Effect of longitudinal cyclic angle perturbation on predicted

pitching-moment at 86.5%R for rev 18 using prescribed deformations

obtained using measured airloads.

179



17 17.25 17.5 17.75 18
−300

−200

−100

0

100

200

Rotor Revolutions

lb
s.

/in

 

 Flight

Baseline
θ

1c
−20%

θ
1c

+20%

(a) Pitching moment

0.3 0.4 0.5 0.6 0.7 0.8 0.9
−5

0

5

10

15

20

25

A
O

A
, d

eg

Mach no

 

 

θ
1c

+20%

Baseline

θ
1c

−20%

0o

90o

180o

270o

(b) Airfoil operating envelope

Figure 3.14: Effect of lateral cyclic angle perturbation on predicted
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Chapter 4

CSD/Lifting-line Aerodynamics Coupled

Analysis

4.1 Introduction

In this chapter, the lifting-line aerodynamic model is coupled to the multibody

structural model to study the impact of free wake, dynamic stall, and control pitch

angles on predicted airloads, blade loads, pitch-link loads, and swashplate servo

loads. While chapters 2 and 3 aimed at isolating the effect of structural dynamics

and aerodynamics, this chapter focuses on: (1) isolating the effects of free wake

inflow, dynamic stall, and rotor pitch control angles, separately, on the prediction

of maneuver loads, and (2) to examine the prediction accuracy of airloads, blade

loads, and swashplate servo loads using an unsteady lifting-line aerodynamic model.

An inverse solution procedure to determine the trim variables (pitch control

angles, vehicle attitude angles, and yaw control) in order to fly a prescribed trajec-

tory is quite involved and not yet available. In steady level flight, the trajectory is

simple, and the aircraft Euler equations reduce to six equilibrium equations from

which the trim variables are easily determined. The complexity of the solution

procedure has been the primary hurdle for a first principles prediction of maneu-

ver loads. Today, extensive flight test data from the U. S. Army/NASA Airloads
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Program (Refs. [1,2]) has opened opportunity to bypass this complexity. The mea-

sured values of rotor controls, aircraft attitudes, and flight trajectory can now all

be prescribed from flight test data in order to focus solely on the loads mechanisms.

4.2 Methodology

The solution procedure for the coupled analysis for maneuver, like the analysis

with measured airloads, starts with a periodic solution for the first revolution which

corresponds to steady flight condition. The steady periodic solution is obtained by

marching in time with the calculated trim angles for rev. 1 of the maneuver, by

letting the analysis run for 6 revolutions. At least 5 − 6 revolutions are needed for

the lightly damped lag-mode to stabilize. Once the dynamic response settles into

periodicity, then, the maneuver is initiated.

The maneuver is initiated from the level flight condition by smoothly merging

the control angles. The velocity ratio, shaft angles, attitudes, and rates are subse-

quently prescribed using the test conditions. During the maneuver, the structural

dynamic and the aerodynamic models are advanced in time after exchanging defor-

mations and airloads at every time step. The procedure is same as a CFD/CSD

tight coupling, except that instead of CFD a lifting-line model is being used. No

sub-iterations are employed to ensure strict time accuracy, i.e. deflections at a given

azimuth are calculated based on airloads from the previous azimuth. The calcu-

lated deflections are then used to advance the airloads to the current azimuth. The

deflections, however, are not updated based on current azimuth airloads. Note that

182



this procedure is also referred to as loose coupling by the fixed wing CFD/CSD

researchers (Ref. [192]).

4.2.1 Inputs to Analysis

The level flight at the beginning of the maneuver is simulated using calculated

rotor control angles using conventional trim analysis. After which the measured con-

trol angles are corrected using the already calculated trim angles. The trim analysis

was calculated using a moment trim targeting thrust and hub moments of 17300 lb,

6059 ft-lb roll left, and 4182 ft-lb pitch down, respectively – corresponding to high

speed level flight Counter 8534. The trim angles thus obtained are then used to

adjust the control angles obtained from the flight test. In this approach the entire

control time history for the maneuver is corrected to match the initial trim angles as

described in chapter 3. The time history of control angles used for UMARC2/lifting-

line analysis are shown in Fig. 4.1. The flight test data used for the analysis of the

UTTAS pull-up maneuver includes translational speed (µΩR), aerodynamic angle

of attack (α) and side-slip angle (β), linear accelerations of helicopter CG (ü, v̈, ẅ)

and vehicle angular rates (p, q, r, ṗ, q̇, ṙ). All measurements are assumed to be refer-

enced to the conventional helicopter non-rotating hub fixed frame. Orientation and

location of hub with respect to the helicopter CG is assumed to be fixed. It should

be noted that the measured data for the accelerations and rates have high frequency

noise which has to be filtered before it is used in the analysis. This is achieved by

taking moving average of the raw data. Entire data set is pre-interpolated using
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splines for the entire maneuver for the desired time discretization for consistency.

A possible discrepancy was noted by Ref. [158] regarding the parity between

measured fuselage angle of attack and pitch angle. For the steady level flight condi-

tion, the fuselage angle of attack and pitch angle are expected to be identical for all

practical purposes, as observed for C8534 flight which is very similar to the initial

steady phase of the C11029 pull-up maneuver. The measured angle of attack seems

to be approximately 3.0◦ larger than the measured pitch angle, implying that either

the vehicle was in a steady climb, or that there is an error in either angle of attack

or pitch angle measurements. Comparison of the data set with the C8534 data re-

vealed that the angle of attack measurement data suffered with a steady offset of

3.0◦, which was then applied to correct the angle of attack data before using it in

the analysis.

4.3 Prediction Using Lifting-Line Coupled Analysis

In this section, the multibody rotor structural model is tightly coupled with

the transient lifting-line aerodynamic model to predict airloads, blade loads, pitch-

link loads and the swashplate servo loads. The baseline results use the full-up

aerodynamic model including free wake and dynamic stall.

4.3.1 Blade Root Deflections

The predicted blade pitch angle is compared with the measured values in

Fig. 4.2. There is a difference between the two because of the control angle correction
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is applied at the beginning of the analysis in order to start from a trimmed level

flight condition as mentioned earlier. Figure 4.3 shows the predicted flap angles.

Unlike the mechanical airloads case, here, predictions are quite different from test

data. The same trend is observed in CFD/CSD analysis as well, which is discussed

in chapter 5. The reasons for the deviation may be attributed to the uncertainty

associated with measuring small angles accurately.

4.3.2 Blade Airloads

The rotor hub force was not directly measured during the UH-60A Airloads

Program and hence has to be computed indirectly, by using either the load factor

measurements or by integrating the sectional normal force. The load factor data is

multiplied with the vehicle weight to obtain the vertical hub force for the present

analysis. The predicted hub force is shown in Fig. 4.4. The predicted vertical hub

force shows fair agreement with the flight test data at the beginning of the maneuver

when the load factor is 1. As the load factor begins to increase when the helicopter

starts to pull-up, there is a significant difference between prediction and flight test

measurement (around 6000 lb). This may be due to the contributions from the

fuselage and the horizontal tail, and has been clarified in Ref. [157]. Towards the

end of the maneuver (revolution 30 onwards), there is an under-prediction of thrust

which seems to be stemming from the under-prediction of mean lift. CFD/CSD

analysis does not suffer with this deficiency and the reason for this is discussed in

chapter 5.
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Figure 4.5 shows the sectional normal forces at 86.5%R predicted by the cou-

pled lifting-line analysis. The prediction is able to predict the mean and peak-to-

peak of the stall airloads during the course of the maneuver, however the predicted

high frequency stall loads are not satisfactory. This is because, accurate prediction

of lift stall requires precise prediction of vortex strength accumulation and move-

ment across the chord length. The pitching moment stalls depend primarily on the

vortex shedding and therefore are relatively easier to predict. Figure 4.6 shows the

sectional chord forces, which are even more difficult to predict, at the same radial

station. Similar to normal force, the stall spikes are not present in the predicted

chord forces. The lower frequencies are well predicted for normal forces as a conse-

quence of which the peak loads are close to test results. The lower frequencies are

over-predicted for chord forces leading to higher peak loads.

The quarter chord pitching moments are shown at two radial stations, 77.5%R

(Figs. 4.7 and 4.8) and 86.5%R (Figs. 4.9 and 4.10). The maneuver starts from high

speed flight condition, therefore, the pitching moment for the first four revolutions

is very similar to that of flight 8534. As we get further into the maneuver (between

revolution 10 and 20) the test data begins to show three pitching moment stall

cycles in each revolution. Two distinct stall cycles on the retreating side sets in

starting from 9th revolution. An additional stall cycle appears on the advancing

side between 12th to 20th rev. This occurs under transonic flow conditions. The

predicted pitching moments are plotted after removing the steady values. It is

observed from Figs. 4.7 and 4.8 that the analysis is able to predict two distinct

stall cycles on the retreating side during the course of the maneuver. The stall on
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the advancing side, which is a transonic stall, is not predicted by the analysis. This

stall, though a dynamic phenomenon, is significantly different from the conventional

dynamic stall as discussed in chapter 3. It is also observed that the predicted stall

spikes are not as sharp as test data and weaken towards the tip. For example, the

predicted pitching moments at 86.5%R as shown in Figs. 4.9 and 4.9 are worse than

the predictions at 77.5%R. This is because the net angle of attack which is used to

calculate the airloads is sum of the applied control pitch angle and the blade elastic

twist. The contribution of the blade elastic twist to the total angle of attack grows

as we move outboards along the blade span. Therefore, any error in the blade elastic

twist prediction has more significant effect on the airloads on the outboard sections.

4.3.3 Blade Structural Loads

The predicted flap bending moment at 50%R is shown in Fig. 4.11. The peak-

to-peak moments are under-predicted by approximately 30% at the beginning of the

maneuver, but the trends along the maneuver are similar to that of the test data.

Figure 4.12 shows the lag bending moment at 50%R. Consistent with chord force

predictions, the trends are less satisfactory compared to flap bending moments.

Figure 4.13 shows the predicted torsion moments at 30%R. Torsion moment

is critical for accurate prediction of pitch-link load, which in turn drives the servo

loads in fixed frame. Accurate prediction of the torsion moment is a challenge due to

the complicated nature of the pitching moment for this particular flight. Although,

the pitch-link load shows similar trend as the torsion moment (Fig. 4.14), the peak-
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to-peak magnitude correlation with flight test is worse as seen in Fig. 4.15 which

summarizes predicted structural loads. This may be due to the fact that the pitch

link load is a net effect of torsional deformation of the blade, the reaction due to

pitch spring and pitch damper and hence, depends on the accuracy of measured

control angles. The effect of control angle perturbation is discussed later in section

on fundamental understanding.

4.3.4 Swashplate Servo Loads

The baseline analysis is carried out with swashplate mass equal to zero. This

is equivalent to the evaluation of servo loads through static force balance between

the pitch-link and servos. The half peak-to-peak values are compared with test data

in Fig. 4.16. The swashplate dynamics has a significant effect on the servo loads

prediction, as evident from the results obtained for a swashplate mass of 75 kg.

For example, the half peak-to-peak forward servo load witnesses a 100% increase in

the predicted magnitude with swashplate mass. However, no feedback effect on the

blade loads are observed, as discussed later.

4.4 Fundamental Understanding

The lifting-line coupled analysis is used to separate out the effect of wake and

dynamic stall on the maneuver loads prediction. To accomplish this, the following

three cases are considered: (1) uniform inflow and quasi-steady airloads using static

airfoil properties, (2) free wake and quasi-steady airloads, and (3) free wake and
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dynamic stall. The last case is the baseline case. In addition, because the control

angles are prescribed from test data, a trim angle sensitivity study is carried out by

perturbing the control angles by 10% of their baseline values.

4.4.1 Effect of Free Wake Model

The rotor wake cuts through the rotor disk on two occasions. The side and

top views of the wake geometry at different stages of the maneuver is shown in the

Figs. 4.17 and 4.18. At the end of revolution 6, the advance ratio, µ is 0.358, and

the aircraft angle of attack, α is −4.09◦ (+ve nose–up), the rotor wake is blown

straight downstream (Figs. 4.17(a), and 4.17(b) ). As the aircraft angle approaches

towards 0◦, the wake gets closer to the rotor disk (Fig. 4.17(c)), the side-slip angle

is very small and hence the rotor wake is fairly straight as seen in the top view

(Figs. 4.17(d)). As observed in Figs. 4.17(e), and 4.17(f), the rotor wake is above

the rotor disk and is moving to the starboard side by the end of revolution 14

(α = +9.75◦, and β = −4.35◦). At this point the helicopter is pulling a load factor

of 2.08–g. The load factor is mainted above 2–g, between revolution number 14–18,

after which the load factor starts to decrease. During this period the wake remains

above the rotor plane for most of time (Fig. 4.18(a)). The rotor wake is again seen

(Fig. 4.18(c)) in the disk plane at the end of the revolution 24 (α = +2.72◦), when

the wake starts to cut from top to bottom towards the end of revolution 24. By

revolution 28 the rotor wake has descended below rotor as shown in Fig. 4.18(e)

(α = −6.51◦, and β = −13.74◦).
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The inflow predicted using the free wake model is compared consistently with

uniform inflow calculated using flight test thrust and the effective shaft angle with

respect to on-coming flow in Fig. 4.19(a). The wake passage is clearly visible near

revolution numbers 10 and 24. A choice of 2 or 4 free turns for the wake does not

impact the inflow calculation as there is no wake bundling phenomena near the disk.

This is expected as at relatively high speeds, the rotor wake gets quickly blown away.

However the wake passage has no effect on the airloads Fig. 4.19(b). It is shown

later that the sectional angles of attack already operate under deep stall during

these revolutions and the wake induced angle of attack variation has little effect on

the airloads. The airloads are determined entirely by the post stall airfoil property

tables. It is observed from the present analysis that in general the free wake does

not affect any of the predicted airloads and structural loads.

4.4.2 Effect of Dynamic Stall

The pull-up maneuver is characterized by three stall cycles, one on the advanc-

ing side and two on the retreating side. The capability of lifting–line models is now

examined in predicting these stall cycles. Figure 4.20(a), shows the predicted and

measured pitching moment at 77.5%R highlights the importance of dynamic stall

modeling. Both the waveform and magnitude of prediction require the dynamic

stall model. The peak-to-peak pitching moment prediction is improved by more

than 50% during revolutions 16–20.

However, the effect on structural loads is less dramatic. Predicted peak-to-
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peak torsional moment at 30%R using dynamic stall model show improvement by

10% to 20%, with respect to those obtained without it (Fig. 4.20(b)) during revolu-

tion number 16–20. Similar trends are exhibited by the pitch-link load (Fig. 4.20(c)

and 4.20(d). It can be observed that the use of dynamic stall model is causing a

significant impact on the peak-to-peak loads during the high load factor regime, e.g.

during revolution 14,when the load factor is more than 2.0g, an improvment of 24%

is observed for peak-to-peak pitch-link load and for revolution 15 the gain is 23%.

The gain in structural loads is less significant because the peak-to-peak loads are

determined primarily by 1/rev, while the stall loads are mostly 4, and 5/rev.

The rotor stall maps showing moment stalls for revolutions 14, 16 and 18 are

shown alongside stall maps from the flight test in Fig. 4.21. The flight test stall

maps reveal three stall cycles in the outboard region of the rotor disk, a stall on

the advancing side near 50◦ azimuth, followed by two stall cycles on the retreating

side. The predicted stall maps also show three moment stall cycles. The first stall

occurring near the 180◦ blade azimuth is starting from the blade inboard stations

(55%R). The other two moment stalls are occurring in the retreating side similar to

the flight test. To understand the mechanism of these stalls we need to look at the

angle of attack at the onset of moment stall. Figure 4.22 shows the angle of attack

variation at 77.5%R. The operating envelope (Fig 4.23(a)) for SC 1095 R8 airfoil

at 77.5%R at rev. 16 reveals that when the blade reaches the 180◦ azimuth, and

attains an angle of attack of 10◦, the local Mach number of 0.54 is sufficient to take

the blade over static stall limits which triggers the dynamic stall model, and thus

the first stall cycle is predicted near 180◦. The remaining two stall cycles occur in a
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similar manner, with the angle of attack remaining deep inside the static stall region.

The contribution of the leading edge vortex to quarter chord pitching moment from

the three stall events for the revolutions 14–18 is shown in Fig. 4.23(b). It appears

that the contribution is not large enough compared to measurements. This under-

prediction leads to a reduced nose down torsion deformation which in turn causes

the first stall to occur earlier in azimuth. Figures 4.23(c) and 4.23(d) show the

airfoil operating envelopes, at 86.5%R and 77.5%R respectively, using all the three

aerodynamic analyses. It shows that all analyses predicts the blade to be operating

under deep stall condition. This is the reason inflow variation has little or no effect

on the loads prediction using present analysis.

4.4.3 Sensitivity to Control Pitch Angles

Because the present flight condition is a prescribed maneuver, and because it

is initiated from trim angles calculated for steady flight conditions, it is important

to understand the sensitivity of the analysis to pitch control angles. The effect of

perturbing the collective and lateral cyclic angles, by 10% of the baseline value,

on the predicted peak-to-peak torsion moment at 30%R is shown in Fig. 4.24. A

variation in collective angle seems to have most significant impact on the overall

dynamics of the rotor, as depicted by the predicted peak-to-peak torsion moment.

Increasing the collective angle by 10% is causing an increase in predicted torsion

moment from the baseline (Fig. 4.24(a)), while a reduction by 10% is resulting

in significant underprediction. This is due to the sensitivity of predicted pitching
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moment to the angle of attack which is primarily governed by the control angles.

The longitudinal and later cyclic perturbation doesn’t have a significant effect on

the overall dynamics as shown in Figs. 4.24(b) and 4.24(c). These observations

are similar to those made in chapter 3 for the predicted airloads using calculated

deformations.

4.4.4 Effect of Swashplate Dynamics

A swashplate mass of 75 kg (165 lb), based on the discussion in chapter 2,

is used to study the effect of swashplate dynamics on rotor and servo loads. The

predicted servo loads, obtained using coupled blade-swashplate dynamics model,

waveform and peak-to-peak values are shown in Fig. 4.16 and peak-to-peak values

show fair correlation with the test data. Figure. 4.25 shows predicted pitching mo-

ment at 77.5%R, torsion moment at 30%R, and the pitch-link load. The swashplate

dynamics does not seem to affect the rotor loads. But, the swashplate dynamics does

have a strong influence on the servo loads which are predominantly 4/rev and 8/rev

(20% of 4/rev). It should be noted that, even though the maneuver being stud-

ied is an unsteady flight, the revolutions 1 − 7, 14 − 18, and 26 − 40 are relatively

steady, and thus the harmonic analysis, though approximate, is valid for establishing

trends. Figure 4.26 shows the predicted trends for 4/rev and 8/rev servo loads. It

can be observed that in the absense of any swashplate dynamics (swashplate mass

0 kg), the predicted servo loads are dominated by 4/rev and this 4/rev in fixed

frame comes from the 3, 4 and 5/rev pitch-link loads in rotating frame. It should
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be noted that even though the peak-to-peak pitch-link load is under-predicted, the

swashplate loads show better correlation with flight test, because the analysis is

able to predict the 3/rev pitch-link load accurately as shown in Fig. 4.27. Further,

when the swashplate mass is included in the analysis, the 4/rev prediction improves

by 20%–40%, but the 8/rev servo loads which are under-predicted in the absense

of swashplate dynamics, are now over predicted. The over-prediction occurs be-

cause the swashplate fundamental frequency for a mass of 75 kg lies close to 8/rev

(9.48/rev).

4.5 Concluding Observations

The airloads, blade loads, pitch-link loads, and swashplate servo loads of the

UH-60A helicopter were predicted and analyzed in a 2.12-g pull-up maneuver. The

rotor control angles and the flight dynamic parameters (flight path and velocities,

attitude angles and rates) were prescribed from flight test measurements (Counter

11029 of UH-60A Airloads Program). A multibody finite element structural model –

including a swashplate servo model – was coupled in time to an unsteady lifting-line

aerodynamic model. The coupling in time was a standard time marching procedure

(tight coupling in rotorcraft nomenclature) without any sub-iterations. This chapter

focused on isolating the effects of free wake, dynamic stall, and rotor control angles,

separately, on the loads mechanism of the maneuver. The purpose of using the

lifting-line aerodynamic model was to isolate the effects of free wake and dynamic

stall modeling and to examine the accuracy level of the lifting-line aerodynamic
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model in predicting the structural loads for a severe flight condition. Because the

maneuver is prescribed, not simulated from first principles, the sensitivity of the

predicted loads to prescribed control angles are also studied. Based on this the

following key conclusions are drawn:

1. The pull-up maneuver appears almost entirely to be a stall dominated maneu-

ver. The dynamic stall model, not the free wake, provides the most significant

improvement to predicted rotor loads. Almost up to 75% of a typical airfoil

operating envelope (outboard of 67.5% R) during the 10-25 revs. occur beyond

the static stall boundary. Thus, the sectional airload properties are governed

predominantly by stall phenomenon.

2. Similar to flight test – where three distinct stall regions are reported – the

analysis also predicts three stall cycles. However, only the two retreating blade

cycles are predicted near the correct regions of the rotor disk. The advancing

blade transonic stall cycle is not predicted at all. Instead, the third cycle is

predicted on the retreating side, together with the first two. In the analysis all

these cycles occur due to multiple leading edge vortex shedding phenomena

governed entirely by the semi-empirical time constants.

3. The rotor wake passes through the rotor disk approximately during the 10th

and 24th revolution. The present analysis does not predict any significant

perturbation in the airfoil operating envelopes due to the wake during these

revolutions. In general, between uniform inflow and free wake, there is 2–4◦

perturbation in sectional angles of attack which occurs in the stalled regions
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with minor impact on the sectional airloads.

4. The predicted peak-to-peak structural loads are unsatisfactory in general.

During the peak load factor of the maneuver, 10–22 revs (above 1.75g), the

flap bending moments are closer to the test data (10–20% underprediction),

followed by chord bending (25% overprediction), then torsion moment (30%

underprediction), and finally pitch-link load (50% underprediction). In addi-

tion, some of the key loads show inconsistent trends. For example, the flap

bending moment in the initial part of the maneuver – which is a steady level

flight – is underpredicted by 30% while the torsion moment is overpredicted

by 30%.

5. The chord bending moment error is primarily due to the absence of the non-

linear damper force in the coupled analysis. In case of measured airloads,

including damper force, the predictions are similar to flight test values. The

error in torsion moment and pitch link load stems entirely from the error in

stall airloads.

6. The swashplate servo loads are determined by the 3, 4, and 5/rev pitch-link

loads and the dynamics of the swashplate. The later appears to be an im-

portant contributor during the maneuver – unlike in the case of level flight.

However, the servo loads, during the maneuver are dominated primarily by

4/rev loading similar to the level flight. Their peak magnitudes, are however

magnified 3 times (forward link) to 5 times (aft link) compared to level flight.

The analysis predicts this trend correctly – primarily due to the accuracy of
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3/rev pitch-link load prediction. The analysis also show a significant impact

of swashplate dynamics on the 8/rev loads.
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Figure 4.5: Measured and predicted normal force at 86.5%R; predictions

using dynamic stall model
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Figure 4.6: Measured and predicted chord force at 86.5%R; predictions

using dynamic stall model
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Figure 4.7: Measured and predicted pitching moment at 77.5%R for rev-

olutions 4-16; predictions using dynamic stall model; mean removed
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Figure 4.8: Measured and predicted pitching moment at 77.5%R for rev-

olutions 16-28; predictions using dynamic stall model; mean removed
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Figure 4.9: Measured and predicted pitching moment at 86.5%R; predic-

tions using dynamic stall model; mean removed
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Figure 4.10: Measured and predicted pitching moment at 86.5%R; predic-

tions using dynamic stall model; mean removed
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Figure 4.11: Measured and predicted flap bending moment at 50%R; pre-

dictions using dynamic stall model; mean removed
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Figure 4.12: Measured and predicted chord bending moment at 50%R;

predictions using dynamic stall model; mean removed
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Figure 4.13: Measured and predicted torsion moment at 30%R; predictions

using dynamic stall model; mean removed
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Figure 4.14: Measured and predicted pitch-link load; predictions using

dynamic stall; mean removed
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(b) Lag bending moment at 50%R
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(c) Torsion moment at 30%R
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(d) Pitch-link load

Figure 4.15: Measured and predicted peak-to-peak structural loads; pre-

dictions using full aerodynamic model with free wake and dynamic stall

for flight C11029
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Figure 4.16: Measured and predicted servo loads (mean removed); predic-

tions using dynamic stall model with swashplate mass of 0 kg and 75 kg;

forward link (servo) is located at 123◦56′ azimuth, lateral link is at 213◦56′

and aft link is at 303◦56′ azimuth
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α = −4.09 °

β = −2.13 °

(a) Side view at the end of rev. 6 (b) Top view at the end of rev. 6

α = +1.58 °

β = −1.912 °

(c) Side view at the end of rev. 10 (d) Top view at the end of rev. 10

α = +9.75 °

β = −4.35 °

(e) Side view at the end of rev. 14 (f) Top view at the end of rev. 14

Figure 4.17: Instantaneous rotor wake geometries during the maneuver;

using 2 wake turns, α is aircraft angle of attack, β is aircraft side-slip

angle
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α = +14.17 °

β = −8.33 °

(a) Side view at the end of rev. 18 (b) Top view at the end of rev. 18

α = +2.72 °

β = −13.86 °

(c) Side view at the end of rev. 24 (d) Top view at the end of rev. 24

α = −6.51 °

β = −13.74 °

(e) Side view at the end of rev. 28 (f) Top view at the end of rev. 28

Figure 4.18: Instantaneous rotor wake geometries during the maneuver;

using 2 wake turns, α is aircraft angle of attack, β is aircraft side-slip

angle
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Figure 4.19: Predicted inflow and effect of free wake model on predicted

pitching moment; prediction using static stall model
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Figure 4.20: Comparison of predicted blade loads using dynamic stall and

static stall aerodynamic models
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(a) Flight stall map rev 14

O Moment stall

(b) Predicted stall map rev 14

(c) Flight stall map rev 16

O Moment stall

(d) Predicted stall map rev 16

(e) Flight stall map rev 18

O Moment stall

(f) Predicted stall map rev 18

Figure 4.21: Measured and predicted rotor stall map; predictions using

dynamic stall model; flight test data from Ref. [10]
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Figure 4.22: Predicted angle of attack at 77.5%R; predictions using dynamic

stall model
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Figure 4.23: Leading edge vortex contribution to 1/4-chord pitching mo-

ment at 77.5%R and predicted airfoil operating envelopes during revolu-

tion 17
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Figure 4.24: Effect of initial trim angle on the predicted torsion moment

at 30%R; predictions using dynamic stall model
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Figure 4.25: Effect of swashplate dynamics on blade loads; predictions

using dynamic stall model; swashplate mass 75 kg
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Figure 4.26: Measured and predicted 4/rev and 8/rev servo loads; predic-

tions using dynamic stall model
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Figure 4.27: Measured and predicted pitch-link load harmonics for revo-

lution 15
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Chapter 5

CSD/Reynolds Averaged Navier Stokes

Coupled Analysis

5.1 Introduction

This chapter describes the coupling of the structural model with the OVER-

TURNS Reynolds Averaged Navier Stokes (RANS) CFD analysis for prediction of

the rotor loads. Chapter 3 discussed airloads predicted by the RANS model using

calculated deformations, obtained from measured airloads, for the maneuver. It was

observed that, with accurate set of deformations, CFD was capable of resolving the

key aerodynamic mechanisms observed during the pull-up maneuver. It was also

concluded that the two of the three stall cycles (second retreating stall and advancing

blade stall) were elastic twist dominated phenomenon and require accurate pitching

moment prediction. Chapter 4 established that for the UTTAS pull-up maneuver,

lifting-line model was incapable of accurately predicting the pitching moment stalls,

responsible for the high blade loads and control loads. Therefore, it was not able to

excite the blade elastic twist reaction necessary to trigger the advancing blade stall.

The goal of the CFD/CSD coupling is to improve the pitching-moment prediction

using high-fidelity model and compare it consistently with the results obtained us-

ing the low fidelity lifting-line analysis. In addition two different coupling methods
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(Conventional Serial Staggered and Time Accurate) for coupling structural model

with the CFD analysis is discussed.

5.2 Fixed Wing vs. Rotary Wing Solution Procedures

Before getting in to the details of CFD/CSD coupling, it is important to

identify the differences between the approaches used for Rotary wing analysis when

compared with their Fixed Wing counterparts. The key difference arises due to the

loading environment that the rotary wing vehicles are subjected to, which differs

markedly from that of fixed-wing aircraft.

CFD/CSD coupled solution for rotorcraft is carried out using domain parti-

tioning approach, this simplifies the solution process by using domain-specific solvers

that solve the fluid and structural governing equations separately using the most

efficient solution strategy for the specific domain. The partitioned domains interact

at the fluid-structure interface to provide the fully-coupled aeroelastic response of

the rotor. But, the first principles solution of rotorcraft aeroelastic problems require

more than just CFD and CSD. A continuous prediction of aircraft operating state

and control angles is also required. This is referred to as Vehicle Flight Dynamics

(VFD). This requirement is imposed because unlike fixed wing the dynamic loads,

flutter (flap-lag) and air resonance characteristics are non-linearly coupled to the ve-

hicle dynamics via the control angles applied at the blade root. The optimal control

problem of determining the control angles needed to execute a helicopter maneu-

ver, whether for a prescribed trajectory or for a prescribed mean loading schedule,
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is beyond the state-of-the-art, even with lower order free wake based lifting-line

aerodynamic models.

5.2.1 Level Flight with Trim

The rotary wing aeroelasticity is inherently non-linear due to a combination

of centrifugal and Coriolis forces arising from the blade rotation, due to which even

the steady flight analysis involves complicated dynamic loadings. The fixed-wing

analysis for steady flight on the other hand is less complicated as the loads are

essentially static in nature. Even for a complicated flutter critical transonic regime,

for a fixed wing fighter aircraft, where unsteady shock motions of three different

types determine the nature of energy exchange between the fluid and the structure,

a linear structural model combined with high-fidelity RANS CFD approach is shown

to be adequate for the analysis [193]. This is unlike the helicopter blades, for which

the flap-lag flutter is determined by aeroelastic non-linearities coupled to vehicle

operating state, making the analysis more involved.

For steady flight conditions the vehicle flight dynamics requirement simpli-

fies to the solution of a six degrees-of-freedom (DOF) equilibrium state for level

flight and eight DOF equilibirum for most general steady maneuvers (for example,

a coordinated helical turn). Calculation of vehicle flight dynamics (also referred as

‘coupled trim’) is the first step for any aeroelastic analysis, both in level flight and

in maneuvers. The trim for CFD/CSD coupled analysis can be obtained using a

loose coupling methodology following the innovative delta method proposed by Tung
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et al. [122] in 1986, which has remained the most efficient approach and has paved

way for current advances in rotorcraft CFD/CSD. This method is also termed as

’loose coupling’, and it should not be confused with the CFD/CSD loose coupling

in fixed wings. Unlike the loose coupling in fixed wing, strict time accuracy can be

enforced for the delta method.

5.2.2 Transient Flight with Prescribed Controls

The ’loose coupling’ is very efficient way for analyzing steady flight, but it

cannot be used for transient analysis and use of ’tight coupling’ is a must. A par-

titioned aeroelastic coupling method is comprised of two components, (1) spatial

(fluid-structure interface), and (2) temporal (time accuracy). The fluid-structure

interface which comprises of transfer of fluid pressure and stresses to blade airloads

and then interpolation of blade deformations to grid motions. The spatial compo-

nent remains the same for all coupling methodologies, be it loose coupling or tight

coupling. The difference lies in the solution procedure of the temporal equations.

Apart from the classical loose coupling procedure, the fluid-structure coupling can

be carried out in the following two ways: (1) conventional serial staggered (CSS), in

which the CFD airloads and the blade loads are exchanged once every time step, and

(2) time-accurate (TA), in which data exchange takes place at every sub-iteration

level ensuring strong coupling. The CSS approach is the conventional procedure of

solving the fluid structure equation in time marching manner with the data exchange

happening at each time step and is identical to the approach used for coupling the
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structural model with the lifting-line analysis as described in chapter 4. It is similar

to the ’loose coupling’ in fixed wing sense as the strict time accuracy is not enforced.

All the baseline CFD/CSD results shown in this chapter have been obtained using

CSS method with a time step of 0.25◦ azimuth.

For the analysis of unsteady maneuver, the analysis procedure can be simpli-

fied, if the rotor control angles and vehicle dynamics are known, either from flight

test or from an isolated lower order inverse flight simulation. Then, the CFD/CSD

analysis can be carried out in an uncoupled fashion from the vehicle flight dynam-

ics making it a straight-forward, partitioned, and resulting numerical-integration

procedure can be similar to those encountered in fixed wing analysis.

However, prescribed controls maneuver analysis must start from a level flight

trim condition. For the present study, ’loose coupled’ trim analysis was carried

out using traditional steady UMARC coupled with the CFD solver to obtain blade

control pitch settings for the steady flight condition, see Ref. [194] for more details.

The steady, periodic flight condition is used as the initial solution from which the

maneuver is initiated. This makes the analysis of maneuver conceptually simpler as

the time history of control angles and vehicle dynamics, either obtained from flight

test or lower order predictions, can be applied as delta corrections to the trim angles

obtained using the ’loose coupling’, thereby uncoupling the vehicle flight dynamics

from the CFD/CSD simulation.
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5.2.2.1 Time Accurate Solution Procedure

Time accurate coupling or strong coupling is achieved by using the Modified

Newton Raphson (MNR) method coupled to the Newmark Algorithm, and is a

tight coupling procedure as per the fixed-wing definition. The governing differential

equation can be rewritten in the following form

M ẍ
(i)
t+∆t + Cẋ

(i)
t+∆t +K∆xt = F i+1

t −Q(i)
r (5.1)

where, notations have their usual meaning and Ft is the external loads vector and

Qr is the internal force vector which is given by

Q(i)
r = Kxt + F

(i)
NL (5.2)

where FNL is the sum of non-linear structural forces. As discussed in chapter 2, the

integration formula that depends on two parameters β and γ is given by

xt+∆t = xt +∆tẋt +
∆t2

2
[(1− 2β)ẍt + 2βẍt+∆t] (5.3)

ẋt+∆t = ẋt +∆t[(1− γ)ẍt + γẍt+∆t] (5.4)

These equations can be rewritten in the following form

ẍt+∆t = 1
β∆t2

[xt+∆t − xt]− 1
β∆t

ẋt +
(
1− 1

2β

)
ẍt

ẋt+∆t = γ
β∆t

[xt+∆t − xt] +
(
1− γ

β

)
ẋt +

(
1− γ

2β

)
ẍt





(5.5)

Substituting Eq. 5.5 in Eq. 5.1 gives the following

K̂t∆x(i+1) = ∆F̂
(i+1)
t+∆t (5.6)
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where

K̂t = 1
β∆t2

M + γ
β∆t

Ct +Kt

∆F̂
(i+1)
t+∆t = F

(i)
t+∆t +M

{
1

β∆t
ẋt +

(
1
2β

− 1
)
ẍt

}
−Q

(i)
r

+ Ct

{
1

β∆t
[xt − x

(i)
t+∆t] +

(
γ
β
− 1
)
ẋt +

(
γ
2β

− 1
)
ẍt

}





(5.7)

The above Modified Newton Raphson method coupled to Newmark Formu-

lation is in predictor-corrector form (Ref. [195]). The procedure can be started by

predicting the structural motions at tn+1 or at time t+∆t. The initial guess for this

prediction is the motion at tn which is used to start the sub-iteration.

At time, t=0 prediction for i = 1 is given by





x
(1)
t+∆t = xt

∆x1 = 0

F
(1)
t+∆t = Ft

The prediction for (i+1)-th sub-iteration is evaluated using information from

i-th sub-iteration step by using Eq. 5.6. After that the structural motions are

transferred to the CFD grid and a single sub-iteration is executed for the CFD. The

loads predicted by CFD are then applied on the CSD and a single sub-iteration step

is executed for the CSD using the latest airloads guess at tn+1. Now the guess for

solution at tn+1 is corrected using

x
(i+1)
t+∆t = x

(i)
t+∆t +∆x(i+1) (5.8)

The predictor-corrector sequence is repeated several times till convergence is at-

tained. Typically 7–8 sub-iteration steps are needed for convergence.

For both CSS as well as TA approaches, the maneuver is initiated from the

level flight condition by smoothly merging the control angles as per the incremental

procedure similar to that used for lifting-line analysis discussed in chapter 4.
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5.3 Results and Discussion

The UTTAS pull-up maneuver is initiated from a steady, level flight condition

with an advance ratio µ = 0.357, and a blade loading coefficient CT/σ = 0.0793. The

steady state solution is obtained from a coupled UMARC/OVERTURNS simulation

using a delta coupling methodology. The solution is then marched in time and the

instantaneous values of the blade control pitch settings, the transient velocities, the

vehicle attitude and attitude rates are prescribed as inputs to the CSD and the CFD

solvers. Note that rather than specifying the actual control pitch settings obtained

from the flight test data, shown in Tab. 5.1, the time histories are corrected using

a constant offset such that the values correspond to the trim solution predicted

by the UMARC/OVERTURNS analysis at time t = 0. The OVERTURNS solver

was coupled with the UMARC2 structural solver, to analyze the transient maneuver.

Both lifting line analysis and OVERTURNS were coupled with UMARC2 to analyze

the differences in the aerodynamic models. In this chapter, the full lifting line model

including the time-accurate free-vortex wake model and the dynamic stall model

described in chapters 3 and 4 is used to compare the lower-order model with the

high-fidelity CFD solver.

5.3.1 Blade Root Deflection

Figure 5.1 shows the time history and peak-to-peak magnitude of the predicted

blade flap angle. Investigation of the time history reveals that for the initial part of

the maneuver (revolution number 0-6) the blade flap angle is predominantly 1/rev,
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with significant 2/rev only in the later part of the maneuver – see Fig. 5.1(b). The

predictions show good correlation with the magnitude as well as the waveform of

the measured root flap angle during the steady flight regime of the maneuver. The

waveform of predicted flap angle shows trend similar to the flight test data during

the entire course of the maneuver. However, after revolution number 7 (Fig. 5.1(c)),

the magnitude of the flap angle is over-predicted, with a maximum over-prediction

by a factor of 2 observed during rev 14, which also corresponds to a high load factor

of 2.08g. This trend of predicted root flap angle has been observed for the analyses

carried out using lifting-line aerodynamics as well as measured airloads.

5.3.2 Blade Airloads

The study of C11029 maneuver can be divided into three different phases. The

initial 5 revolutions are steady, with the pitch and roll angles remaining nearly con-

stant, and would be referred as the steady flight regime. The unsteady phase starts

around revolution 6, with helicopter attaining high pitch rate and linear acceleration

with tip-path-plane tilting backwards. The vehicle load factor crosses 2.0g towards

the beginning of revolution 13, and remains above 2.0g till revolution 18 and would

be called the maneuvering flight regime. After which the vehicle tries to attain back

its original steady level flight attitude which constitutes the third and final phase.
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5.3.2.1 Steady Flight Regime

This section compares the airloads predicted during the steady phase of the

maneuver. The airloads at all the eight flight test radial-stations are compared.

Figures 5.2, and 5.3 show the time histories of the normal force and pitching mo-

ment predicted by two different simulations: (1) coupled UMARC2 with lifting-line

analysis (shown in red), and (2) coupled UMARC2/OVERTURNS analysis (shown

in blue). The analysis with lifting line aerodynamics was performed at a time-step

of 2.0◦, while the CFD/CSD analysis was performed at a time-step of 0.25◦. The

lifting line analysis is unable to resolve the phasing of the negative lift peak ade-

quately. This is primarily due to the inaccurate elastic twist, which in turn is due to

the inaccurate pitching moment prediction by the lifting-line analysis. It can be ob-

served that the lifting-line analysis is unable to accurately predict the large positive

to negative moment oscillation on the advancing side near the tip. This behavior is

a result of the effect of 3D relief on unsteady formation and collapse of shocks on

the advancing blade [165], a 3D phenomenon, which is not properly accounted for

in the lifting-line model. The inadequacy of the lifting-line model in this region is

well documented in literature [129]. CFD/CSD coupled analysis on the other hand

is able to accurately predict the 3D unsteady transonic pitching moment.

5.3.2.2 Maneuvering Flight Regime

Figures 5.4 and 5.5 show the time history of normal force at 86.5% radial

station, predicted using the CFD/CSD coupled analysis. The high-fidelity analysis
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is able to predict the higher harmonic stall loads, which are primarily 4, and 5/rev

during the maneuvering flight regime, which are missed by the lifting-line model.

The prediction of pitching moment is shown at two stations 77.5%R and

86.5%R. Figures 5.6 and 5.7 compare the predictions using CFD/CSD with those

obtained using lifting-line analysis at 77.5%R spanwise station. The prediction us-

ing lifting-line analysis shows ‘relatively’ improved correlation with the flight test

data at this station than compared to the lifting-line prediction at 86.5%R which are

shown in . While, the lifting-line analysis is able to capture the trends of the wave-

form correctly, the stall magnitude is under-predicted all through the maneuver. At

the 86.5%R station shown in Figs. 5.8 and 5.9 CFD/CSD results are consistently

able to predict the two retreating stall cycles. The pull-up maneuver is charac-

terized by three stall cycles occurring across the rotor disk, with first stall cycle

occurring on the advancing side, followed by two dynamic stall events on the re-

treating side, as shown by the dark blue regions in the flight test contour plot for

the non-dimensional pitching moment for the revolution 14 (Fig. 5.10(c)). While

the CFD/CSD analysis is showing fair correlation for the peak magnitude of the

stall loads, the lifting-line model is under-predicting it significantly at most times.

The airloads time histories, particularly the pitching moments, clearly indicate the

dynamic stall phenomenon as the dominant aerodynamic characteristic of the UT-

TAS maneuver. To gain further insight into the severity and the extent of this stall

across the rotor disk the variations of the pitching moments across the rotor disk at

the peak of the maneuver, Fig. 5.10(c), is compared with the conditions observed in

the steady flight conditions, Fig. 5.10(a). The pitching moment variations during
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steady flight conditions are benign and show no steep gradients across the rotor

disk. During this phase, the CFD/CSD analysis shows good correlation with the

flight test data. In contrast, the pitching moment contours for rev. 14 of the flight

test data show steep gradients in the first and fourth quadrants indicating moment

stall near the blade tips. While the flight test data appears to indicate that the

stall is restricted to the outermost regions of the retreating side, the CFD/CSD

analyses predict a much more widespread region of moment variations. This could

be because of the low spanwise resolution of the flight test data (only nine radial

stations across span). The third stall event seen as a pronounced down-up gradient

in the first quadrant is missed by both the computational analyses.

The predicted chord force at 86.5% radial station is shown in Fig. 5.11. In

general, the prediction shows good correlation with the flight test data, but the

peak-to-peak magnitude is over-predicted, this could stem from the fact that the lag-

dynamics of UH-60A rotor is significantly influenced by the non-linear lag damper,

which is not included in the present structural model.

5.3.2.3 Attitude Recovery Phase — The Lift Deficiency Problem

It is important to note that a deficiency in the predicted mean normal forces

during the attitude recovery phase of the maneuver, has been reported by several

researchers [160,163]. A similar discrepancy is also observed in the linearized aerody-

namic analysis conducted using the coupled UMARC2/lifting-line analysis discussed

in chapter 4, but not in the coupled CFD/CSD analysis (Fig. 5.12). The reason for
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this may be attributed to the fact that the lifting-line analysis always under-predicts

the pitching moment stall magnitude by a significant margin, thereby introducing

errors in the steady elastic twist response which accumulates over the period of time

to cause a net deficiency in the angle of attack resulting in reduced mean lift towards

the end of the maneuver.

5.3.2.4 Conventional Serial Staggered vs. Time Accurate Coupling

It is observed that the Conventional Serial Staggered (CSS) CFD/CSD analysis

is able to predict only the two stall events observed on the retreating side of the

blade, and is unable to resolve the advancing blade stall. Therefore, the effect of

time accurate coupling over the airloads prediction is studied. As noted earlier, time

accurate coupling also referred to as CSD/CSD strong coupling is carried out by

exchanging the airloads and deformations between the structure and fluid solvers at

every sub-iteration level.

Figures. 5.13 and 5.14 compare the predicted normal force and pitching mo-

ment at 86.5%R radial station respectively for the two methods. The results ob-

tained using time accurate coupling shows better correlation for the normal force

negative lift peak, and is able to resolve some of the higher frequencies in greater

detail. However, the pitching moment predictions using time accurate coupling re-

veals no new physical phenomenon, as the predictions continue to miss the advancing

blade stall. The reason for which is explained in the next sub-section.
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5.3.2.5 Advancing Blade Stall

The objective is to understand the inability to predict advancing blade stall.

From the study of measured airloads problem, followed by isolated calculation of

airloads using prescribed deformations in chapter 3, it was concluded that with

accurate airloads, the structural dynamic model is capable of predicting accurate

deformations, which in turn predicts all three stalls. The advancing blade stall is

first observed in flight test from revolution 12. Therefore, deformations and airloads

from coupled CFD/CSD analysis for revolutions 12 and 13 are studied carefully to

understand the reason for this inability of the analysis to capture advancing blade

stall.

Figure 5.15(a) shows the predicted pitching moment for revolution 12 using

CFD/CSD coupled analysis as well as CFD with prescribed deformation. The blade

deformations corresponding to coupled CFD/CSD analysis shows similar 5/rev har-

monics as shown in Fig. 5.15(b). Therefore, the reason for first stall being missed

can be either an under-prediction of 5/rev elastic twist or the lower angle of at-

tack set by blade control settings as noted for prediction using lifting-line analysis

discussed earlier in this text. The later seems to be the case.

At the beginning of revolution 13, CFD pitching moment prediction using

prescribed deformations shows sign of advancing blade stall, but is significantly

under-predicted (Fig. 5.16(a)). Similar to rev 12, it may be related to inaccuracies in

the applied control angles. Note that the third stall prediction is unsatisfactory, and

due to this, 5/rev elastic twist for the coupled CFD/CSD analysis is severely under-
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predicted (Fig. 5.16(b)). This under-prediction signifies that coupled CFD/CSD

analysis would not predict advancing blade stall in next rev and 5/rev elastic twist

under-prediction would never be recovered. Therefore, prediction of advancing blade

appears to be tied to accurate prediction of two retreating stalls. The second stall

being determined by control angle is relatively easier to predict, but third stall

is known to be sensitive to turbulence modeling and grid size and its accurate

prediction would require further investigation.

5.3.3 Blade Structural Loads

Predictions of the structural bending moments during the steady phase are

shown in Fig. 5.17. The flap bending moment is almost entirely determined by

the predicted lift. While, the predictions using the CFD/CSD simulation, shows

good agreement with the flight test, the results from the lifting-line model show

poor correlation, with a peak-to-peak under-prediction of 26%. In the absence of

non-linear lag damper model, both the predictions for the lag bending moments are

less satisfactory, as it is dominated by the lag damper force. The predicted torsion

moment using UMARC2/OVERTURNS analysis is showing good correlation with

the flight test, the predictions using the lifting-line analysis also shows peak-to-

peak correlation with an under-prediction of only 10%, however the waveform is less

satisfactory on the retreating side.

As with the steady flight results, the predicted flap bending moment using the

CFD/CSD analysis shows good correlation with the flight test (Figs. 5.18 and 5.19).
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There is an over-prediction in the peak-to-peak magnitude of the lag bending mo-

ment after revolution 7 as shown in Figs. 5.20 and 5.21. Further, the waveform shows

poor correlation with the flight test towards the later part of the maneuver. The

torsion moment time history is shown in Figs. 5.22 and 5.23. The predicted wave-

form is similar to the flight test data, but there is an over-prediction of 40%–60%

in the peak-to-peak magnitude during the maneuver regime. This discrepancy is a

result of over-prediction of the 5 and 6/rev torsional moment (Fig. 5.24), which is

driven by the over-prediction of dynamic stall peaks at the inboard blade locations.

The predicted pitch-link load shows similar trend (Fig. 5.25). The peak-to-peak

magnitude of the structural loads predicted using the CFD/CSD and the lifting-line

analyses is summarized in the Fig. 5.26. In general CFD/CSD analysis is able to

show better prediction for all the structural loads when compared with the lifting-

line model. In particular, the peak-to-peak magnitude of the predicted pitch-link

load is under-predicted by 50% during rev 14 using the lifting-line analysis, while

the CFD/CSD analysis over-predicts it only by 15%. The over-prediction of peak

pitch-link loads, during the revolutions 9–13 is due to premature stall onset in the

CFD/CSD analysis.

5.4 Concluding Observations

The UH-60A UTTAS pull-up maneuver was re-analyzed using a Python-based

CFD/CSD simulation framework. Similar to lifting-line analysis the rotor control

angles and the flight dynamic parameters (flight path and velocities, attitude angles
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and rates) were prescribed from flight test measurements. This study allowed the

identification of the strengths and weaknesses of the traditional lifting-line analysis

when compared to the high-fidelity CFD/CSD simulation. The trim solution for

CFD/CSD analysis was obtained using a loosely coupled UMARC/OVERTURNS

simulation. The key conclusions from this study are summarized here:

1. The pull-up maneuver is characterized by the three distinct stall events as the

rotor experiences load factors greater than 1.75g during the maneuver. The

two dynamic stall events on the retreating side are predicted by the CFD/CSD

analysis. The lifting-line analysis is unable to predict the high-frequency stall

loads during the maneuver, especially the peak magnitude of pitching moment

is under-predicted significantly.

2. CFD/CSD coupled analysis is unable to predict first quadrant stall due to less

accurate prediction of 5/rev elastic twist arising from the under-prediction of

the two retreating blade stalls from previous revolution. The prediction of sec-

ond retreating blade stall is extremely challenging and its accurate prediction

is essential for the prediction of the advancing blade stall.

3. The blade root flap angle over-prediction by the CFD/CSD analysis, is un-

clear and the trend is common to other analyses noted in chapters 2 and 4.

The source of this discrepancy may possibly be related to the inaccuracies

associated with the measurement of very small angles during the flight test.

4. The predictions of the structural loads do not show the same level of corre-

lation as the airloads when compared with flight test data. Even though the
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flap bending moment prediction looks satisfactory, the inability to predict the

structural loads accurately is a problem even with steady flight analysis and

is not an issue specific to the analysis of maneuvering flight.
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Collective Longitudinal cyclic Lateral cyclic

θ0 θ1s θ1c

Flight test 12.32 −9.78 4.68

UMARC standalone (targeted) 14.29 −8.76 3.06

UMARC/OVERTURNS 15.41 −9.13 4.29

Table 5.1: Trim solutions predicted by different simulations for the initial

steady phase of the UTTAS pull-up maneuver.
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Figure 5.2: Predictions of the normal force for steady flight regime (Rev

1) predicted by coupled lifting-line analysis and CFD/CSD

244



0 90 180270360
−50

0

50

100
22.5%R

lb
−

in
/in

0 90 180270360
−20

0

20
40%R

0 90 180270360
−50

0

50
67.5%R

lb
−

in
/in

0 90 180270360
−50

0

50
77.5%R

0 90 180270360
−100

−50

0

50
86.5%R

 

 

0 90 180270360
−100

−50

0

50
96.5%R

Azimuth
0 90 180270360

−100

0

100
99%R

Azimuth

Flight

Lifting−line

CFD/CSD

0 90 180 270 360
−100

0

100
92%R

Azimuth

lb
−

in
/in

Figure 5.3: Predictions of the pitching moment (mean removed) for steady

flight regime (Rev 1) predicted using coupled lifting-line analysis and

CFD/CSD

245



9 9.5 10 10.5 11 11.5 12 12.5 13
−60

0

100

lb
s/

in

Rotor Revolutions

5 5.5 6 6.5 7 7.5 8 8.5 9
−60

0

100

lb
s/

in

 

 Flight

CFD/CSD

Lifting−line

Figure 5.4: Predicted normal force time history for the UTTAS pull up

maneuver; predictions using coupled lifting-line and CFD/CSD at 86.5%R

246



14 14.5 15 15.5 16 16.5 17 17.5 18
−60

0

100

lb
s/

in

 

 

19 19.5 20 20.5 21 21.5 22 22.5 23
−60

0

100

Rotor Revolutions

lb
s/

in

 

 

Flight

CFD/CSD

Lifting−line

Figure 5.5: Predicted normal force time history for the UTTAS pull up

maneuver; predictions using coupled lifting-line and CFD/CSD at 86.5%R
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Figure 5.7: Predicted pitching moment (mean removed) for the UTTAS

pull up maneuver; predictions using coupled lifting-line analysis and

CFD/CSD at 77.5%R
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Figure 5.8: Predicted pitching moment (mean removed) for the UTTAS

pull up maneuver; predictions using coupled lifting-line analysis and

CFD/CSD at 86.5%R
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Figure 5.9: Predicted pitching moment (mean removed) for the UTTAS

pull up maneuver; predictions using coupled lifting-line analysis and

CFD/CSD at 86.5%R
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Figure 5.10: Contour plots of the non-dimensional aerodynamic pitching

moments (mean removed) during revs. 4 and 14 of the UTTAS pull-up

maneuver predicted by UMARC2 coupled with OVERTURNS
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Figure 5.11: Predicted chord force time history for the UTTAS pull up

maneuver; predictions using lifting-line analysis and CFD/CSD at 86.5%R
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Figure 5.12: Comparison of the CFD/CSD and coupled lifting-line simu-

lations showing the lift deficiency problem at 86.5%R
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maneuver using CSS and time accurate approaches at 86.5%R
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Figure 5.14: Predicted pitching moment time history for the UTTAS pull

up maneuver using CSS and time accurate approaches at 86.5%R
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258



5 6 7 8 9
−1800

0

1800

ft−
lb

s

 

 

9 10 11 12 13
−1800

0

1800

ft−
lb

s

Rotor Revolutions

Flight

CFD/CSD

Figure 5.18: Predicted sectional flap bending moment (mean removed)

time histories for the UTTAS pull up maneuver using CFD/CSD at 50%R
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Figure 5.19: Predicted sectional flap bending moment (mean removed)

time histories for the UTTAS pull up maneuver using CFD/CSD at 50%R
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Figure 5.20: Predicted sectional lag bending moment (mean removed) time

histories for the UTTAS pull up maneuver using CFD/CSD at 50%R
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Figure 5.21: Predicted sectional lag bending moment (mean removed) time

histories for the UTTAS pull up maneuver using CFD/CSD at 50%R
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Figure 5.22: Predicted sectional torsional moment (mean removed) time

histories for the UTTAS pull up maneuver using CFD/CSD at 30%R
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Figure 5.23: Predicted sectional torsional moment (mean removed) time

histories for the UTTAS pull up maneuver using CFD/CSD at 30%R
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Figure 5.24: Torsional moment harmonics at 30%R for the rev 14; predic-

tion using CFD/CSD
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Figure 5.25: Predicted pitch-link load (mean removed) time histories for

the UTTAS pull up maneuver using CFD/CSD
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(c) Torsion moment at 30%R
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Figure 5.26: Summary of structural loads predicted using coupled lifting-

line analysis and CFD/CSD
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Chapter 6

Conclusions

6.1 Concluding Remarks

Summary of the key conclusions of this research is presented in this chapter.

The focus of this research work was the development of refined analysis, followed by

prediction and validation with flight test and finally, the fundamental understanding

of the loads mechanisms in a prescribed unsteady maneuver. The UTTAS pull-up

maneuver from the UH-60A flight test database was chosen for the validation of the

predictions. The UTTAS pull-up maneuver designated by counter C11029 is a high

speed (139 kts) 2.1g maneuver, and is the second most severe maneuver from the

structural loads point of view. In the first step, the physics of aerodynamics and

structural dynamics was separated by studying the prediction capability of struc-

tural model in isolation using the flight test airloads data. After the validation of

structural loads, the calculated blade deformations were used to predict the airloads.

The freezing of the response allows for consistent comparison of aerodynamic models

and is also used to study the effect of perturbations in control angles. The airloads

sensitivity study for control angles is necessary for the study of prescribed maneu-

ver, due to the uncertainties associated with the measured control angles. After

the validation of structural loads, the calculated blade deformations were used to
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predict the airloads and all three stall cycles, typical to this flight, were predicted.

The mechanism of the advancing blade was hypothesized as the 5/rev elastic twist,

triggered by the two dynamic stall cycles from the previous revolution on the re-

treating side of the blade. The structural model was then coupled with lifting-line

model to isolate the effect of wake, dynamic stall and swashplate dynamics. Finally

the structural model was coupled to CFD for identification of limitations of the

lifting-line model and improvements in loads prediction provided by CFD analysis.

The conclusions from each section of this thesis are summarized at the end of

each chapter. The key conclusions are also listed below.

1. The advancing blade stall observed during the peak load factor regime of the

maneuver (revolutions 12 − 20) is a transonic twist stall of steady nature.

Study conducted using lifting-line analysis with calculated deformations from

measured airloads revealed that the blade stall in first quadrant was insensitive

to wake or dynamic stall. Harmonic analysis of elastic twist pinned its source

to be the 5/rev elastic torsion excitation. The role of the 5/rev elastic twist is

to increase the angle of attack beyond static stall limit for the airfoils in the

outboard region. Although, these airfoils are operating at low to moderate

angles of attack, they are very close to the static stall limit due to high Mach

number. The 5/rev component of elastic twist necessary for prediction of

advancing blade stall is generated by two retreating stalls from the previous

revolution which are spaced by approximately 1/5th rotor revolution. The

study with CFD revealed that the flow separation causing the stall in the first
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quadrant is caused by a strong shock sitting near mid-chord position.

2. In addition to 5/rev elastic twist, the magnitude and extent of the advancing

blade stall is also sensitive to the collective angle. For example, a 10% error in

collective angle was observed to induce an under-prediction of first stall peak

magnitude by up to 30%.

3. The structural model is able to predict the correct trends for the structural

loads using the measured airloads data, but the root flap angle shows signif-

icant over-prediction in the later part of the maneuver. This discrepancy is

not resolved, even when the structural model is coupled to lifting-line or CFD

model, and might be related to uncertainties associated with the flight test

data.

4. Even though the wake cuts through the rotor disk on two occasions (10th

and 24th revolution) during the maneuver, it appears almost entirely to be

dominated by stall. The dynamic stall model, provides the most significant

improvement to predicted rotor loads, and the free wake does not appear to

be important for prediction of these loads. Almost up to 75% of a typical

airfoil operating envelope (outboard of 67.5% R) during the 10-25 revs. occur

beyond the static stall boundary. Thus, the sectional airloads are governed

predominantly by stall phenomenon, and the 2–4◦ perturbation in sectional

angles of attack in already stalled region only has a minor impact on the

sectional airloads.
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5. The predicted peak-to-peak structural loads using lifting-line analysis are less

satisfactory in general. During the peak load factor of the maneuver, 10–22

revs (above 1.75g), the flap bending moments are closest to test data (10–

20% underprediction), followed by chord bending (25% overprediction), then

torsion moment (30% underprediction), and finally pitch-link load (50% under-

prediction). These errors stem from the aerodynamics and not the structural

dynamics. The error in airloads which shows up in the underprediction of

structural loads is due to the significant underprediction of pitching moments,

as lifting-line analysis is unable to predict transonic shock in the pitching mo-

ment at the beginning of the maneuver and also under predicts the intensity of

dynamic stall cycles with desired accuracy, during the high load-factor regime.

6. The swashplate servo loads are an important design parameter in the overall

helicopter design and their accurate prediction is desired. The swashplate

servo loads in the fixed frame are determined by the 3, 4, and 5/rev pitch-

link loads in the rotating frame and the dynamics of the swashplate. The

servo loads, during the maneuver are dominated primarily by 4/rev loading

similar to the level flight, but the swashplate dynamics seems to play a more

significant role than that observed in steady flight. The peak loads observed

during the maneuver, are magnified by three times (forward link) to five times

(aft link) compared to level flight. The analysis predicts this trend correctly –

primarily due to the accuracy of 3/rev pitch-link load prediction. The analysis

also show a significant impact of swashplate dynamics on the 8/rev loads.
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7. The two dynamic stall events on the retreating side are predicted by the

CFD/CSD analysis. But the analysis is unable to predict first quadrant

stall due to less accurate prediction of 5/rev elastic twist arising from the

under-prediction of the two retreating blade stalls from previous revolution.

The prediction of second retreating blade stall is extremely challenging and

its accurate prediction is essential for the prediction of the advancing blade

stall. The lifting-line model is unable to predict the high-frequency stall loads

during the maneuver, especially the peak magnitude of pitching moment is

under-predicted significantly.

8. The predictions of the structural loads do not show the same level of correlation

as the airloads when compared with flight test data. The lower frequencies of

the structural loads are resolved well when accurate airloads data (flight test

airloads) is used for predicting the structural loads. However, the accurate

prediction of higher harmonics (4/rev and higher) are much harder to pre-

dict. The errors stem from the structural modeling. The detailed modeling of

boundary condition and inclusion of periodic variation of control system stiff-

ness doesn’t seem to have any impact on these loads prediction. The inability

to predict the structural loads accurately using beam element based models is

a problem even with steady flight analysis and is not an issue specific to the

analysis of maneuvering flight and needs further investigation.

In this study the maneuver was studied in a prescribed manner and the flight

dynamics and controls time history available from the flight test was used to decouple
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the flight dynamics to focus solely on the loads mechanisms. This was an unavoidable

simplification due to the challenges associated with the first principle solution to

the problem of blade aeromechanics coupled to flight dynamics. The findings of

this work should be used as a stepping stone for the fully coupled analysis of the

maneuver to verify the findings of this work. For this to become a reality, the validity

of state-of-art flight dynamics inverse simulation techniques would have to be tested

under deep-stall conditions. Further, the computational penalty associated with

coupling conventional Jacobian based inverse simulation approaches to a CFD/CSD

simulation, has to be addressed to make the solution procedure computationally

practical.

6.2 Future Work

This section suggests the future directions for the research. In the present work

a prescribed unsteady pull-up maneuver was studied and the mechanisms responsible

for high loads were identified. It was concluded that the dynamic stall, and not the

rotor-wake interaction, was the standout phenomenon dominating the blade loads.

The study was conducted using the prescribed control angles obtained from the

flight test. The dynamic stall events encountered during this flight were observed

to be sensitive on the control angles used during the solution which stresses out the

importance of a inverse flight dynamics simulation for accurate estimation of the

control angles for the analysis of the maneuver. Further to attain greater confidence

in the tools developed for this analysis, other maneuvers should be analyzed. Until
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a practical inverse flight simulation module is integrated in the CFD/CSD analysis,

steady maneuvers should be studied to get greater insight on the limitations of

the current structural and aerodynamic models. Key recommendation for future

research directions related to this work are summarized below.

1. This study should be expanded to other steady and unsteady maneuvers.

Flight test data is available for several other maneuvers and therefore ana-

lyzing other flights in a prescribed manner appears to be the natural course

of action.

2. An inverse flight dynamic simulation capable of being interfaced with the

current CFD/CSD simulations, without the computational penalty, is the next

most important component of analysis necessary for accurate prediction of

maneuver loads.

3. The prediction of dynamic stall is not satisfactory at all times, the study using

the calculated blade deformations obtained from the measured airloads anal-

ysis, indicated that the error stems from the aerodynamics and not the struc-

tural dynamics. The RANS closure in the present CFD analysis was achieved

using the Baldwin-Lomax turbulence model. The prediction of dynamic stall

is known to be sensitive to turbulence modeling. The effect of turbulence

modeling should be investigated using other turbulence models like Spalart-

Almaras and K-epsilon models. The sensitivity to grid refinements should also

be addressed.

4. During an unsteady maneuver, the interaction between the rotor and the fuse-

274



lage may be of more significance than the steady flight and the rotor-fuselage

structural as well as aerodynamic interaction may be another thrust area that

should be addressed.

5. Greater computational efficiency may be achieved by parallelizing the struc-

tural algorithms and free wake calculations and must be examined.

6. This study focused on a fully articulated rotor and should be carried out for

other rotor configurations, such as hingeless and bearingless rotors.
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Appendix A

Simple Beam Bending Problem

A.1 General Formulation

A simple rotating beam bending problem is considered to illustrate the method-

ology used for modeling the rotor blades. The coordinate system defined for the

problem is shown in Fig. A.1. X, Y represents the coordinate system of the frame

of reference rotating with a constant angular speed Ω, and xE , yE represents the

coordinate system of the element frame of reference. The unit vectors (basis) associ-

ated with these frames are î, ĵ and îE, ĵE respectively. The element frame remains

attached to the root of the element and rotates with it. Let P denote a point on

the beam which moves to its new position P ′ when the beam deforms. The position

vector, rP , of the point P ′ in the inertial frame measured in inertial basis would be

given by

rP = R+ Au (A.1)

where, R is the position of the origin of the element frame (attached to element

root) in inertial frame measured in inertial basis, u is the position of P ′ in element

frame measured in element basis, A is the rotation matrix that rotates the element

frame to inertial frame. In the element frame, the location of point P ′ can be written
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as

u = ū0 + ūe = ū0 +Hqf (A.2)

where ū0 is the undeformed location of point P , ūe is the deformation, H is the

shape function used to interpolate deformation within the element, and qf is the

vector of elastic nodal coordinates. For example, for a two noded beam element

u0 =





x0

y0





and ue =




0 0 0 0

H1 H2 H3 H4








w1

w′
1

w2

w′
2





and

H1 =2s3 − 3s2 + 1

H2 =l(s
3 − 2s2 + s)

H3 =− 2s3 + 3s2

H4 =l(s
3 − s2)

If at the deformed position of the beam the attached xEyE coordinate is ori-

ented at an angle θ with respect to the XY coordinate then the transformation

matrix A is given by

A =




cos θ sin θ

− sin θ cos θ


 (A.3)

The velocity of the point P at its new location P ′ is given by

v = ṙP = Ṙ+ Ȧu+ Au̇ (A.4)

For simplification, lets assume that the position of the root of the beam does not

277



change relative to the inertial frame, i.e. Ṙ = 0. Therefore, we have

ṙP = Ȧu+ Au̇ (A.5)

where

Ȧ =



−θ̇ sin θ θ̇ cos θ

−θ̇ cos θ −θ̇ sin θ


 = −



0 −θ̇

θ̇ 0







cos θ sin θ

− sin θ cos θ


 = − ˜̇

θA (A.6)

and

˜̇θ = θ̇



0 −1

1 0


 = θ̇Ĩ (A.7)

u̇ = ˙̄ue = Hq̇f (A.8)

Using Eqs. A.6 and A.8 in Eq. A.5, we get

ṙP = −θ̇ĨAu+ AHq̇f (A.9)

Similarly, the acceleration can be written as

a = r̈P = −θ̈ĨAu− θ̇ĨȦu− θ̇ĨAu̇+ ȦHq̇f + AHq̈f (A.10)

which on simplification and using the fact that

Ĩ Ĩ = −I (A.11)

gives

a = −θ̈ĨAu− θ̇2Au− 2θ̇ĨAHq̇f + AHq̈f (A.12)

The net inertial force can be estimated using the Kane’s equation given by

{f ∗} = −
N∑

i=1

∫ l

0

m{a}∂{v}
∂ṗi

dl (A.13)
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where, pi is the i-th generalized coordinate. Using expressions for a and v in Eq. A.13

we get

{f ∗} = −
∫ l

0

m(uTAT ĨT +HTAT ){−θ̈ĨAu− θ̇2Au− 2θ̇ĨAHq̇f +AHq̈f}dl (A.14)

which can be written in the form

{f ∗} = −
∫ l

0

m







uTu uT ĨTH

HT Ĩu HTH








θ̈

q̈f





+



−θ̇uT

Ĩu 2θ̇uTH

−2θ̇HTu 2θ̇HT Ĩ








θ̇

q̇f





+ θ̇2HTu


 dl

(A.15)

This equation gives the symmetric element mass matrix,M , and the non-linear

damping matrix, C, given by

M = −
∫ l

0

m




uTu uT ĨTH

HT Ĩu HTH


 dl (A.16)

and

C = −
∫ l

0

m



−θ̇uT

Ĩu 2θ̇uTH

−2θ̇HTu 2θ̇HT Ĩ


 dl (A.17)

Mass matrix is of the form

M =



Mθθ Mθf

Mfθ Mff


 (A.18)

The generalized elastic forces can be obtained by differentiating the net strain energy

with respect to the generalized coordinates to get

K =



0 0

0 Kff


 (A.19)

The total strain energy for a rotating beam element is given by

U =
1

2

∫ l

0

EIw′′2dl +
1

2

∫ l

0

FA(x)w
′2dl (A.20)
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where, FA is the centrifugal force acting at a distance x from the center of rotation.

Substituting for w′′ and w′ in the Eq. A.20 gives

U = qT
f (

1

2

∫ l

0

EIH ′′TH ′′dl +
1

2

∫ l

0

FA(x)H
′TH ′dl)qf (A.21)

thus, the stiffness matrix is given by

Kff =

∫ l

0

EIH ′′TH ′′dl +

∫ l

0

FA(x)H
′TH ′dl (A.22)

The generalized external forces can be given by

fext =





0

fff





=

∫ l

0





0

HTfe




dl (A.23)

in the Eq. 2.22 to obtain the governing differential equation of the form

M ẍ + Cẋ+Kx = f(t, x, ẋ..) (A.24)

which can be solved using methods described in Chapter 2.

A.2 Two Element Rotating Beam

The problem being attempted is a simple rotating beam with a root spring

modeled using two elements. This section describes the procedure to solve such a

problem using the approach described above.

The equation of motion for each element is established with respect to the

local element frame of reference and is solved to calculate deformation in the local

element basis, from which it is then transformed to the global reference frame. In

this approach, the motion of the end of the parent element (adjacent element in the
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direction of beam root) is assigned to the frame of the current element from which

it is transferred to each finite element node using Eqs. A.1, A.5 etc.

Likewise, the forces and moments of the child element are multiplied by the

shape function at the end node. The resulting forces and moments are summed with

element inertial, structural, and external (aerodynamics) forces and moments and

the sum of the forces and moments are passed to the parent element.

Boundary conditions are applied at the element level. For example, for the

two element rotating pinned beam, the first element has all its degrees of freedom,

except the deformation at the pinned station, retained. This is illustrated below for

stiffness matrix which is of the form

K =




0 0 0 0 0

0 K11 K12 K13 K14

0 K21 K22 K23 K24

0 K31 K32 K33 K34

0 K41 K42 K43 K44




(A.25)

To apply a hinge or pinned boundary condition, the second row and column, which

corresponds to the deformation at the hinge location is removed. Similarly, the

presence of a torsional spring is incorporated by its adding the appropriate stiffness

to the K22 element of the stiffness matrix. The second element is rigidly attached

to the end of the first element, therefore, the nodal rotational degree of freedom

θ is no longer an unknown and instead specified as a prescribed quantity. The

deformation and slope at the root node of the second element must be same as that

at the end node of first element, therefore the degrees of freedom corresponding
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to the deformation and slope at the root node of the second element are removed

during the solution process by removing the corresponding rows and columns from

the mass, stiffness, damping matrices and the force vector, which is second and third

rows and columns for the matrix shown above.
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Figure A.1: Coordinate systems for a 1D beam with only flap degree of

freedom
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