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Abstract

Dynamic bifurcations, including Hopf and period-doubling bifurcations, are found
to occur in a power system dynamic model recently employed in voltage collapse stud-
ies. The occurrence of dynamic bifurcations is ascertained in a region of state and
parameter space linked with the onset of voltage collapse. The work focuses on a
power system model studied by Dobson and Chiang (1989). The presence of the dy-
namic bifurcations, and the resulting implications for dynamic behavior, necessitate
a re-examination of the role of saddle node bifurcations in the voltage collapse phe-
nomenon. The bifurcation analysis is performed using the reactive power demand at
a load bus as the bifurcation parameter. Due to numerical ill-conditioning, a reduced-
order model is employed in some of the computations. It is determined that the power
system model under consideration exhibits two Hopf bifurcations in the vicinity of the
saddle node bifurcation. Between the Hopf bifurcations, i.e., in the “Hopf window,”
period-doubling bifurcations are found to occur. Simulations are given to illustrate the
various types of dynamic behaviors associated with voltage collapse for the model. In

particular, it is seen that an oscillatory transient may play a role in the collapse.

*Department of Electrical Engineering and the Systems Research Center, University of Maryland, College
Park, MD 20742 USA

TDepartment of Mathematics, University of Maryland, College Park, MD 20742 USA

tDepartment of Electrical Engineering, Jordan University of Science and Technology, Irbid, Jordan

$Chung Shan Inst. Sci. and Technol., Lung-Tan, Taiwan, R.O.C.






1 Introduction

Voltage collapse in electric power systems has recently received significant attention in the
literature (see, e.g., [1] for a synopsis). This has been attributed to increases in demand
which result in operation of an electric power system near its stability limits. A number of
physical mechanisms have been identified as possibly leading to voltage collapse. From a
mathematical perspective, voltage collapse has been viewed as arising from a bifurcation of
the power system governing equations as a parameter is varied through some critical value.
In several papers (e.g., [2], [12], [6], [17], [7]), voltage collapse is viewed as an instability which
coincides with the disappearance of the steady state operating point as a system parameter,
such as a reactive power demand, is quasistatically varied. In the language of bifurcation
theory, these papers link voltage collapse to a fold or saddle node bifurcation of the nominal
equilibrium point.

Dobson and Chiang [2] presented a mechanism for voltage collapse which postulates that
this phenomenon occurs at a saddle node bifurcation of equilibrium points. They employed
the Center Manifold Theorem to understand the ensuing dynamics. In the same paper, they
introduced a simple example power system containing a generator, an infinite bus and a
nonlinear load (see Figure 1). The saddle node bifurcation mechanism for voltage collapse
postulated in [2] was investigated for this example in [2] and in [12].

An essential distinction exists between the mathematical formulation of voltage collapse
problems and transient stability problems. In studying transient stability, one often is in-
terested in whether or not a given power system can maintain synchronism (stability) after
being subjected to a physical disturbance of moderate or large proportions. The faulted
power system in such a case has been perturbed in a severe way from steady-state, and one
studies the possibility of the post-fault system returning to steady-state (regaining synchro-
nism). In the voltage collapse scenario, however, the disturbance may be viewed as a slow
change in a system parameter, such as a power demand. Thus, the disturbance does not
necessarily perturb the system away from steady-state. The steady-state varies continuously
with the changing system parameter, until it disappears at a saddle node bifurcation point.

It is therefore not surprising that saddle node bifurcation is being studied as a possible route



to voltage collapse.

However, another possibility is that the steady-state operating point loses stability before
the saddle node bifurcation. If this occurs in a given system, an important implication is that
the margin of stability, i.e., the distance in parameter space to the stability boundary, will be
less than one might expect if saddle node bifurcation were taken as the determinant of voltage
collapse. Stability of the nominal equilibrium point may be lost prior to the saddle node
bifurcation through a Hopf bifurcation. Hopf bifurcation has indeed been found previously
in power system models; see for instance [18], [19], [20]. Hopf bifurcation requires a complex
conjugate pair of eigenvalues to cross the imaginary axis for some parameter value. Hopf
bifurcation, like saddle node bifurcation, is a generic occurrence in one-parameter families
of differential systems. It results in the appearance of a family of small-amplitude periodic
solutions. For details, see for instance [9], [10], [11].

In this paper, we consider the latter possibility noted in the preceding paragraph by
exploring it for the example of [2]. We show that even this simple example admits dynamic
bifurcations in addition to the saddle node bifurcation studied in [2] and [12]. These dy-
namic bifurcations include Hopf bifurcation [9], [10], cyclic fold bifurcation [11] and period
doubling bifurcation [11], [8] . These bifurcations all involve periodic solutions of the system
under consideration. The results for this example are obtained using the bifurcation analysis
software package AUTO [15] and the nonlinear system simulation tool kaos [16].

This paper continues the investigation of [3], where the presence of Hopf bifurcations in
the example model of [2] was first reported. The main results of the present paper appear
also in the authors’ recent paper [4]. After completion of our paper [4], we learned of the
recent work [5], which addresses the same model as that considered here, while emphasizing
the presence of chaotic solutions. In contrast, our emphasis is on the implications of the
bifurcations observed on voltage collapse. However, as in [4], we note that the occurrence of
period doubling bifurcations is a common signal for the presence of chaotic motion [8], and
the model under study is no exception. Note that the existence of chaotic invariant sets in

power system models has been ascertained previously in the literature; see for instance [13]

and [14]. See also reference [5].

In the course of this work, numerical ill-conditioning was observed for the dynamic equa-
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Figure 1: Power system model.

tions of the example power system studied in [2]. This is an artifact of the model under
study, rather than an expected feature of more realistic power system models. Nevertheless,
it was felt that further analysis of the bifurcation behavior of this model‘was called for. To
alleviate the numerical difficulties, in performing the bifurcation analysis the fastest variable
in the model is eliminated through a singular perturbation argument. However, simulations
of both the original and reduced system are presented. The simulations show that little is
lost from a qualitative point of view in the model reduction.

Since this study concentrates on the particular example power system given in [2], detailed
accuracy was not considered to be a main issue. Rather, the goal of this work is to show the
richness of the qualitative behaviors which may occur near voltage collapse, and to illustrate
their effect on system trajectories.

The organization of this paper is as follows. In the next section, we recall the model
power system considered in [2], and give a reduced order version of that model. In Section 3,
bifurcations occurring for the reduced model and the original model are studied. In Section 4,
simulation results are presented which illustrate various effects of the bifurcations of Section

3. Conclusions are collected in Section 5.

2 The Model

The power system under consideration in this paper, previously considered by Dobson and

Chiang [2], is depicted in Figure 1. The three nodes of the equivalent circuit in Fig. 1 are



an infinite busbar, a generator node represented by a constant voltage behind a reactance,

and a load busbar. The system dynamics is governed by the following four differential

equations (2] (P(8,V), Q(8,V) are specified below):

b = w (1)
Md = —dpw + P,

+EnVYysin(é — 6 — 0,) + Ep*Yosind,, (2)
Kpd = =K VP — K,V + Q(6,V) — Qo — Qs (3)
TKywKpV = Kpu Kgo2V? + (Kpu Ky — Kpu Ko )V

+Ku(P(6,V) = Py — P1) = Kpu(Q(6,V) — Qo — Q1) (4)

All symbols used are the same as in [2]. The load includes a constant PQ load in parallel
with an induction motor. The real and reactive powers supplied to the load by the network

are

P(6,V) = —EVY!sin(6 + 6}

—En,VYysin(é — é6p + 05) + (Y sin by + Yy, sin6,,) V2 (5)
Q(6,V) = EgVYy cos(6 + 0))

+En VY cos(8 = b5 + 0) + (Y, cos b + Yy, cos 6,,) V2 (6)

2.1 The Reduced Model

As noted above, the model (1)-(6) presents significant numerical ill-conditioning. To circum-
vent this, we reduce the dimensionality of this model by eliminating from it the variable §.

This is justified for the data used in [2], since Ky is small in comparison with other system

data. The resulting reduced order model is

b = w (7)
Mo = —dpw + P,

+EnVYpsin(6 — 6, — 0n) + Ep?Y,,sind,, (8)
TK,V = ~K,,V — Py— P, + P(§,,V) (9)



where

P(5.,V) = —E\VY/sin(6. + 0))

—E VY sin(6, — b6 + 0,) + (Y sin 6} + Yy, sin0,,)V? (10)
1 S Kil

§. = — cos ™} (———me——) + cos ™} (—=———x) (11)
JE2 + K2, VK2 + K2

S = QO + Ql + vav + I{qv2V2

+(Yy cos O + Yo, cos 0,,) V2 (12)
Ky = E\VYy cosby + E,, VY, cos(8,, — 6) (13)
Kis = —E\VY! sin 0, — EnVY,0 sin(0m — 61) (14)

3 Bifurcations

In this section, the results of a bifurcation analysis of the third order reduced model (7)-
(14) are given, and implications for both the reduced system and the full model (1)-(6) are

discussed. The values we employ for the parameters appearing in the equations above are

the same as those given in [2].

A bifurcation diagram for the third order reduced model (7)-(14) appears in Figure 2.
This diagram relates the voltage magnitude V to the reactive power demand @);. Essential
features of the bifurcation diagram are now summarized. To simplify the discussion, note
first that in Fig. 2 there are six bifurcations depicted. These are labeled HBD, CFB@),
PDB@®), PDB®@, HB® and SNB@®). For simplicity, we may also refer to these bifurcations

through their numbers (D-®), respectively. The acronyms have the following meanings:
¢ HB: Hopf bifurcation
¢ CFB: Cyclic fold bifurcation
¢ PDB: Period doubling bifurcation

e SNB: Saddle node bifurcation
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Figure 2: Bifurcation diagram for reduced model.

For ease of reference, we denote the values of the parameter () at which the bifurcations
D-® occur by QICDQI@, respectively. For ); < QICD, a stable equilibrium point exists with
voltage magnitude in the neighborhood of 1.2. (Upper left in Fig. 2.) As Q, is increased, an
unstable (“subcritical”) Hopf bifurcation is encountered at the point labeled HB() in Fig.
2. As @ is increased further, the stationary point regains stability at Q; = Ql@ through
a stable (“supercritical”) Hopf bifurcation. This stable equilibrium merges with another,
unstable stationary branch and disappears in the saddle node bifurcation labeled SNB@) in
Fig. 2. The numerical computations show that the family of periodic solutions emerging
from the Hopf bifurcation at () and the family of periodic solutions emerging from the Hopf
bifurcation at(®) are one and the same.

Besides the bifurcations of the nominal equilibrium described in the foregoing, the peri-
odic solutions emerging from the Hopf bifurcations at () and @) themselves undergo bifurca-
tions. Determining the location and nature of all of the associated bifurcations is not an easy
computational task, since it involves using numerical continuation to follow the bifurcated
periodic solutions, as well as other solutions bifurcated from them, and so on. However, we

discuss a few of these bifurcations to give an idea of the possibilities.



Since HB(@) is a subcritical Hopf bifurcation, it results in a family of unstable periodic
solutions occurring for @) slightly less than Q1® In Fig. 2, the envelope of this family of
periodic solutions in the variable V is indicated by the pair of dashed curves appearing from
(D and extending to the left. At Q; = Q1® , the unstable periodic solution undergoes a cyclic
fold bifurcation. Thus, in Fig. 2, the continuation of the dashed curve of periodic solutions
for ¢4 near Q1® exists for @); slightly greater than Q1® . A cyclic fold bifurcation is simply
a saddle node bifurcation of periodic solutions. Thus, the unstable periodic solution gains
stability at (), = Ql(@

Simulation evidence indicates that the bifurcation diagram of Fig. 2 is qualitatively the
same for the original fourth order model. In other words, the two Hopf bifurcations, the
period doubling bifurcations, and the cyclic fold bifurcation also occur in the fourth order
model. The main difference in the respective bifurcation diagrams is the parameter interval
(i.e., the range of values of Q1) over which the bifurcation sequence takes place. This interval
is smaller for the fourth order model than it is for the third order model, and closer to the
saddle node bifurcation. To illustrate this, some bifurcation parameter values are noted next.
These are approximate — it was not felt that more detailed calculations were justified. The
parameter value QICD at the first Hopf bifurcation (HB(Q in Fig. 2) is approximately 10.5
in the third order model, while simulations show it to be in the range 10.925-10.95 for the
fourth order model. The parameter value Ql@ at which the second Hopf bifurcation occurs
at approximately 11.408 in the third order model, and is in the range 11.406-11.407 for the
fourth order model.

The original and reduced models show good agreement in a range very close to the saddle
node bifurcation. Indeed, the second Hopf bifurcation is supercritical for both models. For

:1@ <@ < Q1©, i.e., just before the saddle node bifurcation SNB®), the equilibrium is
stable. This holds both for the reduced and the full model. Thus, in a sufficiently small
neighborhood of the parameter value Q1© , the system remains at the steady-state if its initial
condition is at the nominal equilibrium. This is in agreement with the results of [2] and [12].

Of course, it is also true that the system would in all likelihood not be operating at this

equilibrium, due to the effects of the bifurcatjons discussed above.

The appearance of a window of stable large amplitude periodic orbits (see Fig. 2) in
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Figure 3: A stable large amplitude periodic orbit for ¢); = 10.45.

the parameter range QICZ) <@ < Q1® as a result of the cyclic fold bifurcation CFB@®) can
be verified by careful simulation. Indeed, Fig. 3 shows (for the third order model) a stable
periodic orbit which belongs to this family, occurring for @, = 10.45. (The initial condition
used to generate this orbit is (6,, = —0.3,w = —0.001, V = 0.89).)

This stable large-amplitude orbit loses stability at the period doubling bifurcation PDB@®).
At this bifurcation, a new periodic orbit appears which initially coincides with the original
orbit, except that it is of exactly twice the period. The original orbit necessarily loses
stability at such a bifurcation. The branch of period-doubled orbits is not shown in Fig. 2,
nor any further bifurcations from that branch. However, note that another period doubling
bifurcation is found to occur from the periodic orbits emanating from HB®); this bifurcation
is labeled PDB@®) in Fig. 2.

Simulations of the system in the parameter range corresponding to the “Hopf window”
indicate the presence of further bifurcations of periodic orbits, and of aperiodic (chaotic)
orbits. This is expected [8]. There are further period doublings (not shown) just beyond
the period doublings PDB indicated in the figure. This indicates there is a period doubling

cascade, with the resulting chaotic orbit. Indeed one surmises there are an infinite number of
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Figure 4: A chaotic orbit for ¢, = 11.377.

periodic branches, of higher and higher period, paralleling the single exhibited branch from
PDB@® to PDB®@. These consist almost entirely of unstable orbits. The stable dynamical
behavior is chaotic—there is some kind of strange attractor. This is what is observed. In
particular, we have observed chaotic orbits in the general vicinity of the bifurcations occurring
at the far right in Fig. 2 (PDB@, HB® and SNB@®). Chaos is observed in the fourth order
model in the approximate range @; = 11.377 — 11.3825, and for the third order model in the
approximate range (); = 11.38875 — 11.395. Fig. 4 shows such a chaotic orbit for the fourth
order system for the parameter value §; = 11.377. (The initial condition used to generate
this orbit is (6, = 0.3503,w = 0.001,6 = 0.13899,V = 0.915).) Fig. 4a represents the time
simulation of V' vs. time, and Fig. 4b gives the corresponding simulation projected in phase
space onto w vs. 8, coordinates. Note that, in reference [5], Liapunov exponents and power

spectra are calculated as evidence for the presence of chaotic invariant sets.
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4 Voltage Collapse

The bifurcations uncovered in the foregoing analysis are important to the dynamics of voltage
collapse for the model power system under consideration. Fig. 5 shows an example of a
typical voltage collapse for the third and fourth order models within the Hopf window. The
same parameter value is used for both Fig. 5a and Fig. 5b, namely ¢y = 11.25. The
initial conditions used to generate the simulations of Figs. 5a and 5b are also in agreement.
(Specifically, we take (8, = 0.3503,w = 0.001,6 = 0.13899,V = 0.915) for Fig. 5a, and
(6 = 0.3503,w = 0.001,V = 0.915) for Fig. 5b.) Note the oscillatory nature of the
solution, and the more pronounced drop in V for the fourth order model (Fig. 5a) than for
the third order model (Fig. 5b). Fig. 6 shows a simulation of a “cooked” example in which
collapse occurs in a nonoscillatory fashion just after the first Hopf bifurcation point for the
fourth order model (i.e., for @)y slightly greater than QSD) The parameter value used for
this simulation is @y = 11.0. What is cooked about this example is the choice of initial
conditions. For the same parameter value, “most” other choices of initial conditions near
the nominal stationary point give rise to oscillatory collapse, of the type illustrated in Fig.
5.

Fig. 7 shows a typical collapse simulation near to the saddle node bifurcation, for the
fourth order model. This is a very sharp collapse as predicted in [2]. However, it should be
noted that this behavior only occurs if the initial condition is near the nominal equilibrium
for parameter values near Q1© . Such an initial condition is hardly likely, since the previous
bifurcations discussed above will have resulted in an excursion away from the nominal equi-
librium. For the third order model, the collapse is not as sharp, and the voltage undergoes
a small oscillation about zero after the collapse. This is not shown here, and in reality the
model does not capture dynamics for small values of the voltage, since it should not allow
for negative voltage magnitudes. Such voltage excursions occur for both the fourth order

and the third order models.
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Figure 5: Typical voltage collapse in Hopf window.

5 Conclusions

Bifurcations have been studied for a power system dynamic model which has previously been
used to illustrate voltage collapse. It was found that for this model, the nominal operating
point undergoes dynamic bifurcations prior to the static bifurcation to which voltage col-
lapse has been attributed. These dynamic bifurcations result in a reduced stability margin
in parameter space. Moreover, a short oscillatory voltage transient typically occurs prior to
voltage collapse for this model. In addition, it was found that the model admits large am-
plitude bifurcations including cyclic fold and period doubling bifurcations; the latter leading
to period doubling cascades and the resulting chaotic behavior. The relative importance of

these effects in general power systems under stressed conditions is a topic for further research.
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