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On the Adjoint MatrixG. W. StewartABSTRACTThe adjoint AA of a matrix A is the transpose of the matrix of the cofactorsof the elements of A. The computation of the adjoint from its de�nition in-volves the computation of n2 determinants of order (n�1)|a prohibitivelyexpensive O(n4) process. On the other had the computation from the for-mula AA = det(A)A�1 breaks down when A is singular and is potentiallyunstable when A is ill-conditioned. In this paper we �rst show that the aj-doint can be perfectly conditioned, even when A is ill-conditioned. We thenshow that if due care is taken the adjoint can be accurately computed fromthe inverse, even when the latter has been inaccurately computed. In an ap-pendix to this paper we establish a folk result on the accuracy of computedinverses.1. IntroductionLet A be a real matrix of order n and let Aij denote the submatrix of A that is com-plementary to the element aij . Then the adjoint1 of A is the matrixAA = 0BBB@ det(A11) � det(A12) � � � (�1)n+1A1n� det(A21) det(A22) � � � (�1)n+2A2n... ... ...(�1)n+1 det(A21) (�1)n+2 det(A22) � � � (�1)2nA1n 1CCCAT : (1.1)In the language of determinant theory, the adjoint is the matrix whose (i; j)-element isthe cofactor of the (j; i)-element of A. (For background see [6].)The (i; j)-element of AA is also the derivative @ det(A)=@aji, as can be seen byexpanding det(A) in cofactors along the jth row of A and di�erentiating with respectto aji. Thus the adjoint is useful in optimization problems that involve determinants orfunctions of determinants.But the adjoint is a remarkable creature, well worth studying for its own sake. It hasan unusual perturbation theory, and it can be computed by a class of algorithms thatat �rst glance appear unstable. These statements are a consequence of the well-knownrelation AAA = AAA = det(A)I;1The adjoint treated here is not the adjoint of functional analysis, which corresponds to the transposeor conjugate transpose of A. 1



2 On the Adjoint Matrixor when A is nonsingular AA = det(A)A�1: (1.2)The perturbation theory is unusual because although AA and A�1 di�er only bya scalar factor the matrix A�1 has singularities while AA is analytic| in fact, it is amultinomial in the elements of A. It turns out that multiplying by the determinantsmooths out the singularities to give an elegant perturbation expansion.The computational consequences of (1.2) are that we can, in principle, calculatethe adjoint of a nonsingular matrix A by computing its inverse and determinant andmultiplying. This approach has the advantage that it can be implemented with o�-the-shelf software. However, if A is ill-conditioned | that is, if A is nearly singular| theinverse will be inaccurately computed. Nonetheless, in we will show that this method,properly implemented, can give an accurate adjoint, even when the inverse has beencomputed inaccurately.This paper is organized as follows. In x2 we will treat the perturbation of the adjoint.In x3 we will describe a general algorithm for computing the adjoint and discuss thepracticalities of its implementation. In x4 we will give some numerical examples. Thepaper concludes with an appendix on a folk theorem about the accuracy of computedinverses.The singular value decomposition will play a central role in this paper. We will writeit in the form A = U�V T; (1.3)where U and V are orthogonal and� = diag(�1; �2; : : : ; �n); �1 � �2 � � � � � �n � 0:The function k � k will denote the Euclidean norm of a vector or the spectral norm of amatrix; i.e., kAk = maxkxk=1 kAxk = �1:For more on norms and the singular value decomposition see [3]For later use we note that (1.2) implies that for nonsingular A and B(AB)A = BAAA:By continuity, this relation continues to hold when A and B are singular.Finally, we will also use the following characterization of the singular value decompo-sition of AA. Assuming that A is nonsingular, we have from (1.3) that A�1 = V��1UT.



On the Adjoint Matrix 3Moreover det(A) = det(U) det(V ) det(�) = det(U) det(V )�1 � � ��n. It follows that if weset 
i =Yk 6=i �i and � = diag(
1; : : : ; 
n); (1.4)then AA = det(U) det(V )V �UT (1.5)is the singular value decomposition of AA. By continuity, this result also holds forsingular A.2. Perturbation theoryWe have already noted that on the space of n�n matrices, the inverse has singularitieswhile the adjoint is analytic. Since the singularity of A is equivalent to �n being equal tozero, we should expect perturbation bounds for the adjoint not to depend on the inverseof �n|as do those for the inverse. In this section we will show that the sensitivity ofAA depends on the inverse of �n�1. (For the perturbation of matrix inverses, see [9,Ch. III].)We will begin with a �rst-order perturbation expansion for the adjoint.Theorem 2.1. Let A have the singular value decomposition (1.3). Let 
j and � bede�ned by (1.4) and let 
ij = 
i�j = Yk 6=i;j �k:Let E be a perturbation of A and let(A+ E)A = AA + F:Then with Ê = UTEVV TFU = det(U) det(V )0BBB@Pk 6=1 �̂kk
k1 ��̂12
12 � � � ��̂
1n��̂21
21 Pk 6=2 �̂kk
k2 � � � ��̂2n
2n... ... ...��̂n1
n1 ��̂n2
n2 � � � Pk 6=n �̂kk
kn1CCCA+O(kEk2):(2.1)



4 On the Adjoint MatrixProof. We have A + E = U(� + Ê)V T. Since the adjoint of an orthogonal matrix isits determinant times its transpose,(A+ E)A = [U(�+ Ê)V T]A= (V T)A(�+ Ê)AUA= det(U) det(V )V (� + Ê)AUT� det(U) det(V )V (� + F̂ )UT= det(U) det(V )(AA + V F̂UT)= det(U) det(V )(AA + F ):For de�niteness we will assume that det(U) det(V ) = 1. It then follows that the �rst-order approximation to V TFU is just the �rst-order approximation to F̂ in the equation(� + Ê)A = � + F̂ . Because � is diagonal this approximation may be obtained bycomputing the determinants in (1.1) and throwing out higher order terms.Speci�cally, consider the (1; 1)-element of �+ F̂ , which is the determinant ofdiag(�2; �3; : : : ; �n) + Ê11;where Ê11 is the submatrix complementary to �11. Now it is easily seen that an o�-diagonal perturbation of diag(�2; �3; : : : ; �n) leaves its determinant unchanged; i.e., theo�-diagonal elements of Ê have no �rst-order e�ects. It follows that the (1; 1)-elementof the adjoint is approximated byYk 6=1(�k + �̂kk) �= 
1 +Xk 6=1 �kk
k1;so that the (1; 1) element of F̂ isPk 6=1 �kk
k1. The other diagonal elements are treatedsimilarly.For the o�-diagonal elements of F̂ , consider the (3; 1)-element, which is the deter-minant of 0BBBBB@0 �2 0 � � � 00 0 0 � � � 00 0 �4 � � � 0... ... ... ...0 0 0 � � � �n1CCCCCA+ Ê13:The determinant of �rst term in this sum is una�ected by the perturbations other thanin its (2; 1)-element. Thus the �rst-order approximation to the (3; 1)-element of the



On the Adjoint Matrix 5adjoint is det0BBBBB@ 0 �2 0 � � � 0�̂31 0 0 � � � 00 0 �4 � � � 0... ... ... ...0 0 0 � � � �n1CCCCCA = ��31
31:The other o�-diagonal elements are treated similarly.2We can turn the perturbation expansion (2.1) into a �rst-order perturbation boundas follows. Let DÊ be the diagonal of Ê and letN = 0BBB@ 0 
12 � � � 
1n
21 0 � � � 
2n... ... � � � ...
n1 
n2 � � � 0 1CCCA :Then the matrix in (2.1) can be written in the formM + (Ê �DÊ)�N;where M is the diagonal of the matrix in (2.1) and \�" denotes the Hadamard (compo-nentwise) product. Since 
n;n�1 is an upper bound on the 
ij , we havekMk � kDÊk
n;n�1 � (n�1)kEk
n;n�1:By a generalization of a theorem of Schur [5, p. 333], the the 2-norm of (Ê �DÊ)�N isthe product of kÊ �DÊk and the 2-norm of the column of largest 2-norm. Hencek(Ê �DÊ)�Nk � pn�1kÊ �DÊk
n�1;n:It follows that kFk � (n�1 +pn�1)
n�1;nkEk+O(kEk2):2Another approach is to assume A is nonsingular and write (� + F̂ )(�+ Ê) = det(�+ Ê)I. Setting� = det(� +E) � det �, we can show thatF̂ = ��det(�) � �AÊ�Adet(�) � FE�det(�) :Replacing � with a �rst-order expansion and discarding FE�=det(�) gives (after some manipulation)the �rst-order approximation to F̂ .



6 On the Adjoint MatrixIf we divide by kAAk = 
n and note that kAk = �1, we getkFkkAk � (n�1 +pn�1)�1
n�1;n
n kEkkAk +O(kEk2):Hence kFkkAk � (n�1 +pn�1) �1�n�1 kEkkAk + O(kEk2); (2.2)which is our �rst-order perturbation bound.There are two comments to be made on this bound. First, it shows that the normwiserelative perturbation of the adjoint depends on the ratio �1=�n�1. This should becontrasted with the ratio �1=�n = kAkkA�1k for perturbations of the inverse. Thus Acan be arbitrarily ill conditioned or even singular while its adjoint is well conditioned.Second, the factor n� 1 in the bound is necessary. For let A = I and E = �I . ThenF �= (n � 1)�I , whose norm is n � 1. It should be stressed that the factor was derivedunder the assumption that all the 
ij are equal, and in practice it is likely to be anoverestimate.3. Computing the adjointAs we pointed out in the introduction to this paper, the adjoint of a nonsingular matrixA can be computed by the following algorithm.1. Compute A�1.2. Compute det(A).3. AA = det(A)A�1.Mathematically, this algorithm works for any nonsingular matrix A. Numerically, ifA is ill-conditioned | that is, if �1=�n is large| the matrix A�1 will be computedinaccurately. Since the adjoint itself is insensitive to the size of �n, we are in danger ofcomputing an inaccurate solution to a well conditioned problem. The remarkable factis that if A�1 is computed with some care, the multiplication by det(A) wipes out theerror.Speci�cally, suppose we can factor A in the formA = XDY;where X and Y are well conditioned and D is diagonal. The singular value decompo-sition is such a factorization; however, as we shall see there are others. Given such afactorization, we have mathematically AA = det(X) det(D) det(Y )(X�1D�1Y �1). Al-gorithmically we proceed as follows.



On the Adjoint Matrix 71. Factor A = XDY , where X and Y are well conditionedand D is diagonal.2. Compute U = X�1.3. Compute V = D�1U .4. Compute W = Y �1X .5. AA = det(X) det(D) det(Y )W .Two facts account for the success of this algorithm. First, the algorithms thatcompute the XDY factorizations to be treated later produce a computed factorizationthat satis�es XDY = A+E (3.1)where kAk=kEk is of the order of the rounding unit. Second, if the operations in steps2{4 are properly implemented, then the computed W |call it ~W | satis�es~W = W + F; (3.2)where kFk=kWk is of the order of the rounding unit. In the parlance of rounding-erroranalysis, the XDY factorization is computed stably while the matrix W is computedaccurately.Combining these facts we see that the computed adjoint is near the adjoint of A+E. If AA is well conditioned, then it is near the adjoint of (A + E), which is nearthe computed adjoint. Thus well conditioned adjoints are computed accurately. Theaccuracy of the adjoint deteriorates as it becomes increasingly ill-conditioned, but thedeterioration is of the same order of magnitude as that caused by the small perturbationE in A.As we have said, the existence of E in (3.1) is a property of the algorithm used tocompute an XDY factorization. The existence of F in (3.2) is a folk theorem in matrixcomputations, which is useful in explaining the behavior of computed inverses. Sincethis result has not, to my knowledge, been given a precise quantitative form, we stateand prove it in the appendix.Before turning to speci�c XDY factorizations, an observation on singular matricesis in order. Mathematically, a singular matrix must result in a matrix D in which atleast one diagonal element is zero| in which case the algorithm cannot proceed. In thepresence of rounding error this eventuality is unlikely. If, however, D does have a zerodiagonal element, the cure is to perturb it slightly and proceed. Since X and Y are wellconditioned, this perturbation will be equivalent to a small perturbation in E, and thealgorithm will behave as described above.To apply our algorithm we need a factorization XDY for which X and Y are wellconditioned. In addition, the matrices X and Y must be such as to make the com-putations in steps 2, 4, and 5 e�cient. The singular value decomposition is such a



8 On the Adjoint Matrixfactorization. However, there are three other candidates: the LU decomposition withcomplete pivoting, the pivoted QR decomposition, and the pivoted QLP decomposition.We treat each of these four decompositions in turn.� The singular value decomposition. If A = U�V T is the singular value decompo-sition of A, then we may take X = U , Y = V T, and D = � to getAA = det(U) det(V ) det(�)V��1UT (3.3)The computation of U��1V T is straightforward. Since U and V are orthogonal, theirdeterminants are �1; but it may be di�cult to determine the sign. If the singular valuedecomposition is calculated by reduction to bidiagonal form followed by the QR algo-rithm, then U and V are products of Householder transformations, whose determinantis �1, and plane rotations, whose determinant is 1, followed by row or column scalingby a factors of �1 to make the �i positive. Thus in principle it is possible to calculatethe determinants during the course of the algorithm by keeping track of the transforma-tions. Unfortunately, o�-the-shelf software (e.g., from LINPACK [2] or LAPACK [1])does not do this.� The completely pivoted LU decomposition. When Gaussian elimination withcomplete pivoting is used to compute an LU decomposition, we obtain a factorizationof the form A = �RLDU�C;where L and U are unit lower and upper triangular and �R and �C are permutationmatrices (the subscripts stand for row and column permutation). Taking X = �RL andY = U�C, we haveAA = det(�R) det(�C) det(D)�TCU�1D�1L�1�TR:Because L and U are triangular the computation of �TCU�1�L�1�R is straightforward.Moreover, det(�R) = (�1)number of row interchangesand det(�C) = (�1)number of column interchangesand thus can be calculated from the pivot information that must be returned with thedecomposition.We have mentioned above, that the factors X and Y in our formula should be wellconditioned. For the singular value decomposition, their orthogonality guaranteed their



On the Adjoint Matrix 9well conditioning. In the present case, the complete pivoting strategy tends to make Land U well conditioned. (The reasons, which have to do with how well the diagonalmatrix D re
ects the condition of A, are imperfectly understood. For more, see [8]).Additional security is provided by the fact that triangular systems are often solved moreaccurately than their condition warrants (See [4, Ch. 8] and the comments at the endof this paper.) If complete security is desired, a condition estimator [4, Ch. 14] can beused to check the status of L and U .� The pivoted QR decomposition. The pivoted QR decomposition factors A in theform A = QDR�C;where Q is orthogonal, R is unit upper triangular, and �C is is a permutation. SettingX = Q and Y = R�C, we haveAA = det(Q) det(�C) det(D)�TCR�1D�1QT:Once again it is easy to calculate �TCR�1D�1QT. The usual algorithm uses n � 1Householder transformations to triangularize A, so that det(Q) = (�1)n�1. On theother hand, det(�C) = (�1)number of column interchanges ;which can be computed from the output of the algorithm.The algorithm generally produces a well-conditioned R, although there is a well-know counterexample. As with the the completely pivoted LU decomposition, we canuse a condition estimator to check the status of R.� The pivoted QLP decomposition. This decomposition, which can be computedfrom by two applications of orthogonal triangularization with column pivoting, can bewritten in the form A = �RQLDP�C;where P and Q are orthogonal, L is unit lower triangular, and �R and �C are permu-tation matrices [7]. If we set X = �RQL and Y = P�C, then from our formulaAA = det(Q) det(P ) det(�R) det(�C) det(D)�TCPTL�1D�1QT�TR:The calculation of �TCPTL�1D�1QT�TR is routine. The determinants of Q and P are(�1)n�1, and the determinants of PR and PC can be determined from the interchangesmade in the course of the algorithm.



10 On the Adjoint MatrixThere remains the question of which decomposition to use in practice. The singularvalue decomposition is obviously the safest since X and Y are perfectly conditioned.Unfortunately, o�-the-shelf software does not provide the wherewithal to implementthe formula. Of the alternatives, Gaussian elimination with complete pivoting is thecheapest. However, the standard packages do not have a complete pivoting option.The pivoted QR decomposition can be implemented with o�-the-shelf software, and inall but contrived examples the triangular factor will be well conditioned. The pivotedQLP decomposition is relatively new, but experience suggests that it is close to thesingular value decomposition in safety, and, like the pivoted QR decomposition, theformula can be implemented with o�-the-shelf software.4. Numerical examplesIn this section we will give some numerical examples to show that our algorithms canactually compute an accurate adjoint from an inaccurate inverse. They were performedin MATLAB with a rounding unit of about 10�16.The �rst example was constructed as follows. Let A0 be a matrix of standard normaldeviates of order 50, normalized so that kA0k = 1. In the singular value decompositionA0 = U�0V T, set �n = 10�15 and �n�1 = 10�1 to get � and set A = U�V T. ThusA�1 has a condition number �1=�n = 1015, and we can expect a computed inverse of Ato be almost completely inaccurate. The condition number of AA, on the other hand, is�1=�n�1 = 10, so we should be able to compute it accurately. The following table givesthe results of some computations with this kind of matrix, repeated �ve times over.a(A)11 SVD QRD LUD QRSVD7:5e�25 8:0e�15 5:0e�15 3:4e�15 4:3e�02�1:5e�24 4:8e�16 2:7e�15 2:7e�15 6:2e�021:2e�25 2:8e�14 5:3e�15 2:5e�15 5:1e�02�1:2e�24 2:1e�15 3:7e�15 6:0e�15 5:7e�02�2:5e�25 4:4e�15 7:5e�15 4:0e�15 1:7e�02The �rst column shows the (1; 1)-element of the adjoint. The second shows the relativeerror in the approximation to that element computed from the singular value decompo-sition. The third column contains the relative normwise error in the adjoint computedfrom the pivoted QR decomposition (the QRD adjoint) compared to the SVD adjoint.The fourth column contains the same for the adjoint computed from a partially-pivotedLU decomposition. We will discuss the �fth column a little later.The small size of the �rst column serves to remind us that in computing determinantswe must be careful to avoid over
ows and under
ows. In particular, for any scalar �,(�A)A = �n�1AA. Hence, minor rescalings of A are magni�ed greatly in the adjoint.



On the Adjoint Matrix 11It is an O(n4) process to compute the adjoint directly from its determinantal de�ni-tion (1.1)| something too time consuming for a matrix of order 50. We have thereforelet the adjoint computed from the singular value decomposition stand for the actualadjoint in assessing the QRD and LUD adjoints. The fact that the the second columnshows that (1; 1)-element is almost fully accurate gives us some con�dence in this pro-cedure. The fact that the QRD adjoint tracks the SVD adjoint so well (column 3) givesus additional con�dence. Thus we conclude that the QRD adjoint, which is easy tocompute, gives accurate results.Although we have treated the completely pivoted LU decomposition above, thefourth column of the table shows that for this class of problems Gaussian eliminationwith partial pivoting works just as well.The �fth column column illustrates a subtle point in implementing these algorithms.In the SVD formula AA = det(U) det(V ) det(�)V��1UT;the determinant det(�) must be the determinant of � computed to low relative error.It might be thought that we could substitute � det(A), where det(A) is computed from,say the QR decomposition. But this determinant will in general be di�erent from det(�),the relative error approaching one as �n approaches the rounding unit. The �fth columngives the relative error in the SVD adjoint when this substitution is made. There ispractically no accuracy.To illustrate our perturbation theory, the same example was run with �n�1 = 10�5.Thus the condition number of the adjoint is 105, and we should expect a loss of four or�ve �gures in our computed values. The following table shows that this is exactly whathappens. a(A)11 SVD QRD LUD QRSVD2:8e�29 2:9e�11 5:3e�12 4:9e�12 4:9e�025:9e�30 2:2e�11 1:8e�11 9:3e�12 7:1e�02�3:3e�27 1:6e�12 2:4e�12 8:1e�12 1:7e�02�2:5e�28 1:1e�12 5:9e�12 3:2e�12 2:2e�022:4e�30 2:1e�11 1:1e�11 1:0e�11 1:1e�01Although we cannot expect our algorithms to give fully accurate results in this case, atleast the deterioration is no worse that is warranted by condition of the problems.It is worth noting that I have been unable to construct counterexamples to makethe QRD adjoint and the LUD adjoint fail. We will return to this point at the end ofthe appendix to this paper



12 On the Adjoint MatrixA. Appendix: The accuracy of computed inversesLet A = XDY , where D is diagonal and X and Y are presumed to be well conditioned.In this appendix we will be concerned with the computation of A�1 = Y �1D�1X�1in 
oating-point arithmetic with rounding unit �M. Without loss of generality, we mayassume that kXk = kSk = kY k = 1:We will assume that the computations are arranged so that products likeW = Y �1Vhave a forward error analysis of the form~W = 
(Y �1V ) = U +H;where k ~W �WkkWk � �kY �1k�M = kY �1k�: (A.1)Here � is a constant that depends on the order of the matrices and the details of thealgorithm, but does not depend on Y and V . Since we are concerned with the broadoutlines of the analysis, not speci�c bounds, we will introduce an adjustable constant� into which constants like � may be merged|as in (A.1) above. In particular, ifk ~W �Wk=kWk is small, we can replace it with k ~W �Wk=k ~Wk by adjusting � slightlyin (A.1).The �rst step is to compute U = X�1. If ~U = 
(X�1), then~U = X�1 + F; kFkkUk � kX�1k�: (A.2)Now consider V = D�1U . What we compute is~V = 
(D�1 ~U) = D�1 ~U + G:Since D is diagonal the elements of ~V are relative perturbations of those of D�1 ~U oforder �M. It follows that kGkk ~V k � �: (A.3)Since ~V = D�1X +D�1F + G = V +D�1F +G; (A.4)



On the Adjoint Matrix 13we have k ~V � V k � (kS�1kkFk+ kGk)�:Since V X = S�1, kV k � kS�1k:Hence by (A.2)k ~V � V k � (kFkkX�1k+ k ~V k)� � (1 + kX�1k)maxfkV k; k ~V kg�:By adjusting � if necessary, we getk ~V � V kk ~V k � (1 + kX�1k)�:Finally, ~W = 
(Y �1 ~V ) = Y �1 ~V +H; kHkk ~Wk � kY �1k�:Hence k ~W �Wk � kY �1kk ~V � V k+ kHk� [kY �1k(1 + kX�1k)k ~V k+ kY �1kk ~Wk]�� [kY �1k(1 + kX�1k)kWk+ kY �1kk ~Wk]�:It follows that k ~W �WkkWk � kY �1k(2 + kX�1k)�Reintroducing the norms of X and Y , we have the following theorem.Theorem A.1. Let A = XDY , where D is diagonal. Let A�1 = Y �1D�1X�1 becomputed in 
oating-point arithmetic with rounding unit �M in such a way that eachstep has a forward error analysis analogous to (A.1). Then if ~A�1 denotes the computedvalue of A�1, k ~A�1 �A�1kkA�1k � 
�(Y )[2 + �(X)]�M;where 
 is a constant independent of X , S, and Y and�(X) = kXkkX�1k and �(Y ) = kY kkY �1k:



14 On the Adjoint MatrixThe key feature of this result is that the condition number �(S) does not appearin the �nal bound. This implies that as long as the ill-conditioning of A is con�ned toS its inverse will be accurately computed. Decompositions that have this property arecalled rank-revealing decompositions, and it is no coincidence that the decompositionstreated x3 are regarded as generally rank revealing.The diagonality of S is essential to the above analysis. Without it the bound (A.3)would depend on kS�1k. However, there is a subtle point that is easy to miss: kV kmust be adequately large. For otherwise the error D�1F in (A.4) could overwhelm V .Fortunately, we have kV k � kS�1k from the relation V X = S�1.This point explains why we cannot use the above analysis to claim that solutions of(XDY )b = d are computed accurately. For even if we compute u = X�1b accuratelyin a normwise sense, we cannot guarantee that ~v�1~u is normwise accurate unless v =S�1X�1b is su�ciently large. Unfortunately X�1 is now trapped between S�1 and b,and we cannot derive a bound like kvk � kS�1k. We can only hypothesize it.Finally, we point out that assuming that the condition numbers ofX and Y are smallessentially says that ~U and ~W are computed accurately [see (A.1) and (A.2)]; and, infact, this assumption of accuracy is su�cient to establish the accuracy of the computedinverse. In particular, it is known that triangular systems|even ill-conditioned ones|are often solved with high accuracy [4, Ch. 8]. The fact the X- and Y-factors in thedecompositions of xx3{4 are either well-conditioned (i.e., orthogonal) or triangular, mayaccount for the di�culty the author had in constructing counterexamples.References[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users'Guide. SIAM, Philadelphia, second edition, 1995.[2] J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart. LINPACK User'sGuide. SIAM, Philadelphia, 1979.[3] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins UniversityPress, Baltimore, Maryland, 3rd edition, 1996.[4] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia,1996.[5] R. A. Horn and C. R. Johnson. Topics in Matrix Analysis. Cambridge UniversityPress, Cambridge, 1991.[6] P. Lancaster and M. Tismenetski. The Theory of Matrices. Academic Press, NewYork, 1985.
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