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ABSTRACT

The adjoint A* of a matrix A is the transpose of the matrix of the cofactors
of the elements of A. The computation of the adjoint from its definition in-
volves the computation of n? determinants of order (n — 1) — a prohibitively
expensive O(n*) process. On the other had the computation from the for-
mula A% = det(A)A™! breaks down when A is singular and is potentially
unstable when A is ill-conditioned. In this paper we first show that the aj-
doint can be perfectly conditioned, even when A is ill-conditioned. We then
show that if due care is taken the adjoint can be accurately computed from
the inverse, even when the latter has been inaccurately computed. In an ap-
pendix to this paper we establish a folk result on the accuracy of computed
inverses.

1. Introduction

Let A be a real matrix of order n and let A;; denote the submatrix of A that is com-
plementary to the element a;;. Then the adjoint! of A is the matrix

det(A11) — det(A12) cee (=) Ay, T
—detiaz et(Aa cee (1) T2 A,
JA = d t'(A ) d t(A ) (-1) | A "
(—1)n+1‘det(A21) (_1)n+2‘det(A22) e (_1)2‘7%/1171

In the language of determinant theory, the adjoint is the matrix whose (4, j)-element is
the cofactor of the (j,¢)-element of A. (For background see [6].)

The (i,j)-element of A* is also the derivative @ det(A)/daj;, as can be seen by
expanding det(A) in cofactors along the jth row of A and differentiating with respect
to aj;. Thus the adjoint is useful in optimization problems that involve determinants or
functions of determinants.

But the adjoint is a remarkable creature, well worth studying for its own sake. It has
an unusual perturbation theory, and it can be computed by a class of algorithms that
at first glance appear unstable. These statements are a consequence of the well-known
relation

AMA = AAN = det(A),

!The adjoint treated here is not the adjoint of functional analysis, which corresponds to the transpose
or conjugate transpose of A.
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or when A is nonsingular
AN = det(A)A™L. (1.2)

The perturbation theory is unusual because although A* and A~' differ only by
a scalar factor the matrix A~! has singularities while A is analytic —in fact, it is a
multinomial in the elements of A. It turns out that multiplying by the determinant
smooths out the singularities to give an elegant perturbation expansion.

The computational consequences of (1.2) are that we can, in principle, calculate
the adjoint of a nonsingular matrix A by computing its inverse and determinant and
multiplying. This approach has the advantage that it can be implemented with off-the-
shelf software. However, if A is ill-conditioned — that is, if A is nearly singular —the
inverse will be inaccurately computed. Nonetheless, in we will show that this method,
properly implemented, can give an accurate adjoint, even when the inverse has been
computed inaccurately.

This paper is organized as follows. In §2 we will treat the perturbation of the adjoint.
In §3 we will describe a general algorithm for computing the adjoint and discuss the
practicalities of its implementation. In §4 we will give some numerical examples. The
paper concludes with an appendix on a folk theorem about the accuracy of computed
inverses.

The singular value decomposition will play a central role in this paper. We will write
it in the form

A=UxvVT, (1.3)
where U and V' are orthogonal and
Y = diag(o1,09,...,04), oy >0y > >0, > 0.
The function || - || will denote the Euclidean norm of a vector or the spectral norm of a
matrix; i.e.,
4] = a1 4] = o1

For more on norms and the singular value decomposition see [3]
For later use we note that (1.2) implies that for nonsingular A and B

(AB)A = BAAM,

By continuity, this relation continues to hold when A and B are singular.
Finally, we will also use the following characterization of the singular value decompo-
sition of A%, Assuming that A is nonsingular, we have from (1.3) that A=! = VX1,
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Moreover det(A) = det(U) det(V) det(X) = det(U) det(V)oy - - - 0y,. It follows that if we

set

Yi = H g; and T'= diag(717 s 7771)7 (14)
ki
then
AA = det(U) det(V)VTUT (1.5)

is the singular value decomposition of A*. By continuity, this result also holds for
singular A.

2. Perturbation theory

We have already noted that on the space of nxn matrices, the inverse has singularities
while the adjoint is analytic. Since the singularity of A is equivalent to o, being equal to
zero, we should expect perturbation bounds for the adjoint not to depend on the inverse
of 0, —as do those for the inverse. In this section we will show that the sensitivity of
A* depends on the inverse of o,_1. (For the perturbation of matrix inverses, see [9,

Ch. I11).)

We will begin with a first-order perturbation expansion for the adjoint.

Theorem 2.1. Let A have the singular value decomposition (1.3). Let v; and I' be
defined by (1.4) and let

Yi
Yi; = P = H Of-
T ki

Let F be a perturbation of A and let
(A+ EYA= A+ F.

Then with £ = UTEV

Dot Ekk V1 —€12712 e —€Y1n
—€21721 > €RkYh2 e —€2n72n
VIFU = det(U) det(V) ) 2 , +O(|E|P).
_€n1 Tnl _€n27n2 te Ek;ﬁn €kk7kn

(2.1)
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Proof. We have A + £ = U(X + E)VT. Since the adjoint of an orthogonal matrix is
its determinant times its transpose,

(A+ EYA=[U(S+ EWTA
_ (VT)A(E—I— E)AUA
= det(U) det(V)V(X + E)AUT
= det(U) det(V)V(T + F)UT
= det(U) det(V)(A* + VFUT)
= det(U) det(V)(A* + F)

For definiteness we will assume that det(U)det(V) = 1. It then follows that the first-
order approximation to V' FU is just the first-order approximation to Fin the equation
(X + E)A = I + F. Because ¥ is diagonal this approximation may be obtained by
computing the determinants in (1.1) and throwing out higher order terms.

Specifically, consider the (1,1)-element of ¥ + F, which is the determinant of

diag(ag, J3,... ,O'n) + Ella

where Ell is the submatrix complementary to €11. Now it is easily seen that an off-
diagonal perturbation of diag(og, 03, ... ,0,) leaves its determinant unchanged; i.e., the
off-diagonal elements of £ have no first-order effects. It follows that the (1,1)-element
of the adjoint is approximated by

H(O‘k + érk) 1+ E €kkTVk1s

k#1 k#1

so that the (1, 1) element of Fis Zk;ﬂ €t Ve1- The other diagonal elements are treated
similarly.
For the off-diagonal elements of F', consider the (3, 1)-element, which is the deter-

minant of
0 o O 0
0 0 0 0
0 0 o4 -+ 0|4 E13.
O 0o 0 - o,

The determinant of first term in this sum is unaffected by the perturbations other than
in its (2, 1)-element. Thus the first-order approximation to the (3,1)-element of the



On the Adjoint Matrix 5

adjoint is
0 oo O 0
&1 0 0 0
det| 0 0 o4 01 = —€31731-
0O 0 0 - o,

The other off-diagonal elements are treated similarly.? m

We can turn the perturbation expansion (2.1) into a first-order perturbation bound
as follows. Let Dz be the diagonal of I and let

0 72 -+ 7
Yo 0 -0 2,

N = . } .
Tnl  Vn2 ttt 0

Then the matrix in (2.1) can be written in the form
M +(E — Dg)oN,

where M is the diagonal of the matrix in (2.1) and “o” denotes the Hadamard (compo-
nentwise) product. Since 7, ,—1 is an upper bound on the 7;;, we have

M| <[P gllvnn-1 < (n=DEl[n,n-1-

By a generalization of a theorem of Schur [5, p. 333], the the 2-norm of (E — Dg)oN is

the product of ||E — D || and the 2-norm of the column of largest 2-norm. Hence

I~ Dg)oN| < Va—Tl|E - Dy

Yn—1,n-
It follows that

IF)] < (=1 + vVn=1)yn-1] | E]l + O([| E[|*).

2 Another approach is to assume A is nonsingular and write (r+ F)(E + E) =det(X + E)I Setting
6 =det(X + E) — det &, we can show that

5T r*Er*  FET

b= det(Z) ~ det(T) | det(X)

Replacing & with a first-order expansion and discarding F ET/det(X) gives (after some manipulation)
the first-order approximation to F.
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If we divide by ||A%|| = v, and note that ||A|| = a1, we get

F O1Vn—-1,m || E
H (n-1 4 Vi) L=t HAH+O(HEH ).

Hence

L [1E]
nHMH

L Y N L TSN (2.2)

which is our first-order perturbation bound.

There are two comments to be made on this bound. First, it shows that the normwise
relative perturbation of the adjoint depends on the ratio oy/0,_1. This should be
contrasted with the ratio oy /0, = [|A||||[A|| for perturbations of the inverse. Thus A
can be arbitrarily ill conditioned or even singular while its adjoint is well conditioned.

Second, the factor n — 1 in the bound is necessary. For let A = I and F = el. Then
F = (n — 1)el, whose norm is n — 1. It should be stressed that the factor was derived
under the assumption that all the «;; are equal, and in practice it is likely to be an
overestimate.

3. Computing the adjoint

As we pointed out in the introduction to this paper, the adjoint of a nonsingular matrix
A can be computed by the following algorithm.

1. Compute A~L,
2. Compute det(A).
3. AA =det(A)AL

Mathematically, this algorithm works for any nonsingular matrix A. Numerically, if
A is ill-conditioned — that is, if oy/0, is large—the matrix A= will be computed
inaccurately. Since the adjoint itself is insensitive to the size of ¢, we are in danger of
computing an inaccurate solution to a well conditioned problem. The remarkable fact
is that if A=! is computed with some care, the multiplication by det(A) wipes out the
error.

Specifically, suppose we can factor A in the form

A= XDY,

where X and Y are well conditioned and D is diagonal. The singular value decompo-
sition is such a factorization; however, as we shall see there are others. Given such a
factorization, we have mathematically A* = det(X)det(D)det(Y)(X~'D'Y~1). Al-
gorithmically we proceed as follows.
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1. Factor A = X DY, where X and Y are well conditioned
and D is diagonal.

Compute U = X1

Compute V = D~1U.

Compute W =Y 1 X,

A? = det(X) det(D) det(Y)W.

U= W N

Two facts account for the success of this algorithm. First, the algorithms that
compute the XDY factorizations to be treated later produce a computed factorization
that satisfies

XDY = A+ E (3.1)

where ||A||/||£|| is of the order of the rounding unit. Second, if the operations in steps
2—4 are properly implemented, then the computed W —call it W — satisfies

W=W+F, (3.2)

where || F||/||W]| is of the order of the rounding unit. In the parlance of rounding-error
analysis, the XDY factorization is computed stably while the matrix W is computed
accurately.

Combining these facts we see that the computed adjoint is near the adjoint of A +
E. If A% is well conditioned, then it is near the adjoint of (A 4+ F), which is near
the computed adjoint. Thus well conditioned adjoints are computed accurately. The
accuracy of the adjoint deteriorates as it becomes increasingly ill-conditioned, but the
deterioration is of the same order of magnitude as that caused by the small perturbation
FE in A.

As we have said, the existence of F in (3.1) is a property of the algorithm used to
compute an XDY factorization. The existence of I in (3.2) is a folk theorem in matrix
computations, which is useful in explaining the behavior of computed inverses. Since
this result has not, to my knowledge, been given a precise quantitative form, we state
and prove it in the appendix.

Before turning to specific XDY factorizations, an observation on singular matrices
is in order. Mathematically, a singular matrix must result in a matrix D in which at
least one diagonal element is zero—in which case the algorithm cannot proceed. In the
presence of rounding error this eventuality is unlikely. If, however, D does have a zero
diagonal element, the cure is to perturb it slightly and proceed. Since X and Y are well
conditioned, this perturbation will be equivalent to a small perturbation in £, and the
algorithm will behave as described above.

To apply our algorithm we need a factorization X DY for which X and Y are well
conditioned. In addition, the matrices X and Y must be such as to make the com-
putations in steps 2, 4, and 5 efficient. The singular value decomposition is such a
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factorization. However, there are three other candidates: the LU decomposition with
complete pivoting, the pivoted QR decomposition, and the pivoted QLP decomposition.
We treat each of these four decompositions in turn.

¢ The singular value decomposition. If A = ULV " is the singular value decompo-
sition of A, then we may take X = U, Y = V7T, and D = ¥ to get

AA = det(U) det(V) det(2)VE~1oT (3.3)

The computation of UX™'VT is straightforward. Since U and V are orthogonal, their
determinants are +1; but it may be difficult to determine the sign. If the singular value
decomposition is calculated by reduction to bidiagonal form followed by the QR algo-
rithm, then U and V are products of Householder transformations, whose determinant
is —1, and plane rotations, whose determinant is 1, followed by row or column scaling
by a factors of —1 to make the o; positive. Thus in principle it is possible to calculate
the determinants during the course of the algorithm by keeping track of the transforma-
tions. Unfortunately, off-the-shelf software (e.g., from LINPACK [2] or LAPACK [1])
does not do this.

¢ The completely pivoted LU decomposition. When Gaussian elimination with
complete pivoting is used to compute an LU decomposition, we obtain a factorization
of the form

A =TrLDUTg,

where L and U are unit lower and upper triangular and IIg and Il¢ are permutation
matrices (the subscripts stand for row and column permutation). Taking X = Ilg L and
Y = Ullg, we have

AN = det(TIR) det(Tlq) det(D)TEU ' D= LML

Because L and U are triangular the computation of HEU_lfL_lﬂR is straightforward.
Moreover,

det(HR) — (_1)number of row interchanges

and

det(HC ) — (_ 1 )number of column interchanges

and thus can be calculated from the pivot information that must be returned with the
decomposition.

We have mentioned above, that the factors X and Y in our formula should be well
conditioned. For the singular value decomposition, their orthogonality guaranteed their
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well conditioning. In the present case, the complete pivoting strategy tends to make L
and U well conditioned. (The reasons, which have to do with how well the diagonal
matrix D reflects the condition of A, are imperfectly understood. For more, see [8]).
Additional security is provided by the fact that triangular systems are often solved more
accurately than their condition warrants (See [4, Ch.8] and the comments at the end
of this paper.) If complete security is desired, a condition estimator [4, Ch.14] can be
used to check the status of I and U.

¢ The pivoted QR decomposition. The pivoted QR decomposition factors A in the
form

A= QDRIlg,

where @) is orthogonal, R is unit upper triangular, and Il¢ is is a permutation. Setting
X = and Y = Rll¢, we have

AA = det(Q) det(Tlg) det(D)YIER'DIQT.

Once again it is easy to calculate HER_lD_lQT. The usual algorithm uses n — 1
Householder transformations to triangularize A, so that det(Q) = (=1)""'. On the
other hand,
det(Hc) _ (_1)number of column interchanges
- ?

which can be computed from the output of the algorithm.

The algorithm generally produces a well-conditioned R, although there is a well-
know counterexample. As with the the completely pivoted LU decomposition, we can
use a condition estimator to check the status of K.

¢ The pivoted QLP decomposition. This decomposition, which can be computed
from by two applications of orthogonal triangularization with column pivoting, can be
written in the form

A =TIRQLDPIc,

where P and () are orthogonal, L is unit lower triangular, and Iy and Il¢ are permu-
tation matrices [7]. If we set X = [I[r@Q L and Y = Pll¢, then from our formula

AN = det(Q) det( P) det(IIg) det(Ilc) det( D)IEPT L= D1QTIIE.

The calculation of HEPTL_lD_lQTHE is routine. The determinants of () and P are
(=1)"71, and the determinants of Pg and Pc can be determined from the interchanges
made in the course of the algorithm.
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There remains the question of which decomposition to use in practice. The singular
value decomposition is obviously the safest since X and Y are perfectly conditioned.
Unfortunately, off-the-shelf software does not provide the wherewithal to implement
the formula. Of the alternatives, Gaussian elimination with complete pivoting is the
cheapest. However, the standard packages do not have a complete pivoting option.
The pivoted QR decomposition can be implemented with off-the-shelf software, and in
all but contrived examples the triangular factor will be well conditioned. The pivoted
QLP decomposition is relatively new, but experience suggests that it is close to the
singular value decomposition in safety, and, like the pivoted QR decomposition, the
formula can be implemented with off-the-shelf software.

4. Numerical examples

In this section we will give some numerical examples to show that our algorithms can
actually compute an accurate adjoint from an inaccurate inverse. They were performed
in MATLAB with a rounding unit of about 10716,

The first example was constructed as follows. Let Ag be a matrix of standard normal
deviates of order 50, normalized so that ||Ag|| = 1. In the singular value decomposition
Ay = UEOVT, set 0, = 107 and 6,_; = 107! to get ¥ and set A = USVT. Thus
A~! has a condition number oy /c,, = 10'5, and we can expect a computed inverse of A
to be almost completely inaccurate. The condition number of A*, on the other hand, is
01/0,—1 = 10, so we should be able to compute it accurately. The following table gives
the results of some computations with this kind of matrix, repeated five times over.

a{d) SVD  QRD  LUD QRSVD
75e—25 8.0e—15 5.0e—15 3.4e—15 4.3e—02
—1.5e—24 4.8e—16 2.7e—15 2.7e—15 6.2e—02
1.2e—25 2.8e—14 5.3e—15 2.5e—15 b5.le—02
—1.2e—24 2.1e—15 3.7e—15 6.0e—15 5.7e—02
—2.50—25 4.4e—15 T7.5e—15 4.0e—15 1.7e—02

The first column shows the (1,1)-element of the adjoint. The second shows the relative
error in the approximation to that element computed from the singular value decompo-
sition. The third column contains the relative normwise error in the adjoint computed
from the pivoted QR decomposition (the QRD adjoint) compared to the SVD adjoint.
The fourth column contains the same for the adjoint computed from a partially-pivoted
LU decomposition. We will discuss the fifth column a little later.

The small size of the first column serves to remind us that in computing determinants
we must be careful to avoid overflows and underflows. In particular, for any scalar p,
(uA)A = "=t A2, Hence, minor rescalings of A are magnified greatly in the adjoint.



On the Adjoint Matrix 11

It is an O(n?) process to compute the adjoint directly from its determinantal defini-
tion (1.1)—something too time consuming for a matrix of order 50. We have therefore
let the adjoint computed from the singular value decomposition stand for the actual
adjoint in assessing the QRD and LUD adjoints. The fact that the the second column
shows that (1,1)-element is almost fully accurate gives us some confidence in this pro-
cedure. The fact that the QRD adjoint tracks the SVD adjoint so well (column 3) gives
us additional confidence. Thus we conclude that the QRD adjoint, which is easy to
compute, gives accurate results.

Although we have treated the completely pivoted LU decomposition above, the
fourth column of the table shows that for this class of problems Gaussian elimination
with partial pivoting works just as well.

The fifth column column illustrates a subtle point in implementing these algorithms.
In the SVD formula

AN = det(U) det(V) det(Z)VE~LUT,

the determinant det(X) must be the determinant of ¥ computed to low relative error.
It might be thought that we could substitute £ det(A), where det(A) is computed from,
say the QR decomposition. But this determinant will in general be different from det(X),
the relative error approaching one as o, approaches the rounding unit. The fifth column
gives the relative error in the SVD adjoint when this substitution is made. There is
practically no accuracy.

To illustrate our perturbation theory, the same example was run with o,_; = 107°.
Thus the condition number of the adjoint is 10°, and we should expect a loss of four or
five figures in our computed values. The following table shows that this is exactly what
happens.

a{d) SVD  QRD  LUD QRSVD
2.8e-29 29e—11 53e—12 4.9e—12 4.9e—02
5.9e—30 22e—11 18e—11 9.3e—12 7.le—02
—3.3e—27 1.6e—12 2.4e—12 8.de—12 1.7e—02
—2.50—28 1.le—12 5.9e—12 3.2e—12 2.2e—02
2.4e—30 2.le—11 l.le—11 1.0e—11 1.le—01

Although we cannot expect our algorithms to give fully accurate results in this case, at
least the deterioration is no worse that is warranted by condition of the problems.

It is worth noting that I have been unable to construct counterexamples to make
the QRD adjoint and the LUD adjoint fail. We will return to this point at the end of
the appendix to this paper
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A. Appendix: The accuracy of computed inverses

Let A = X DY, where D is diagonal and X and Y are presumed to be well conditioned.
In this appendix we will be concerned with the computation of A=1 = Y- 1D-1X-1
in floating-point arithmetic with rounding unit ¢,;. Without loss of generality, we may
assume that

X1 =151 = [IY]] = 1.

We will assume that the computations are arranged so that products like W = Y1V
have a forward error analysis of the form

W=A(Y"'V)=U+H,
where

W - w]

< aly Hlew = Y e (A1)
W !

Here « is a constant that depends on the order of the matrices and the details of the
algorithm, but does not depend on Y and V. Since we are concerned with the broad
outlines of the analysis, not specific bounds, we will introduce an adjustable constant
¢ into which constants like @ may be merged —as in (A.1) above. In particular, if
|W — W||/||W]| is small, we can replace it with ||[W — W||/||W|| by adjusting e slightly
in (A.1).
The first step is to compute U = X1 If U = fi(X 1), then
£

U=X"14F, 171 < [ XY (A.2)

Now consider V = D~'U. What we compute is

V=f(D7'0)= DU + .

Since D is diagonal the elements of V are relative perturbations of those of D=1 of
order ¢ . It follows that

— < e (A.3)

Since

V=D'X4+D'F+G=V4+D'F+dG, (A.4)
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we have
IV =VI<USTHIEN+ 1G])e.
Since VX = §71,
VI > 157
Hence by (A.2)
IV =V < UFNIX T IVIDe < (L X ) max{ | VI [V e

By adjusting € if necessary, we get

V-V -
V=V g e
IV
Finally,
W=y =y v, ey
W
Hence

I = W< Y=V =V + N
<O+ X DIV + Y= e
< [+ X DIW A+ Y= e

It follows that

W - w]

<Y+ X De
W

Reintroducing the norms of X and Y, we have the following theorem.

Theorem A.1. Let A = XDY, where D is diagonal. Let A=' = Y=1D71X~1 pe
computed in floating-point arithmetic with rounding unit ¢y in such a way that each

step has a forward error analysis analogous to (A.1). Then if A1 denotes the computed
value of A7!,

A7 — A7

T SRR+ R

where = is a constant independent of X, 5, and Y and

R(X) = IXIIXTH and  w(Y) = Y[V ).
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The key feature of this result is that the condition number x(.5) does not appear
in the final bound. This implies that as long as the ill-conditioning of A is confined to
S its inverse will be accurately computed. Decompositions that have this property are
called rank-revealing decompositions, and it is no coincidence that the decompositions
treated §3 are regarded as generally rank revealing.

The diagonality of S is essential to the above analysis. Without it the bound (A.3)
would depend on ||S™!||. However, there is a subtle point that is easy to miss: ||V/||
must be adequately large. For otherwise the error D™1F in (A.4) could overwhelm V.
Fortunately, we have ||V|| > ||S™!|| from the relation VX = §~1.

This point explains why we cannot use the above analysis to claim that solutions of
(XDY)b = d are computed accurately. For even if we compute u = X ~'b accurately
in a normwise sense, we cannot guarantee that ©~'% is normwise accurate unless v =
S=1X~1p is sufficiently large. Unfortunately X ! is now trapped between S~! and b,
and we cannot derive a bound like ||v|| > [|S71||. We can only hypothesize it.

Finally, we point out that assuming that the condition numbers of X and Y are small
essentially says that U and W are computed accurately [see (A.1) and (A.2)]; and, in
fact, this assumption of accuracy is sufficient to establish the accuracy of the computed
inverse. In particular, it is known that triangular systems— even ill-conditioned ones —
are often solved with high accuracy [4, Ch.8]. The fact the X- and Y-factors in the
decompositions of §§3-4 are either well-conditioned (i.e., orthogonal) or triangular, may
account for the difficulty the author had in constructing counterexamples.
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