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My dissertation studies semi- and non-parametric estimation strategies for the

distribution of heterogeneous causal effects with applications to labor economics and

macroeconomics.

In the first chapter, I propose a nonparametric strategy to identify the dis-

tribution of heterogeneous causal effects. A set of identifying restrictions proposed

in this chapter differs from existing approaches in three ways. First, it extends

the random coefficient model by allowing potentially non-linear interaction between

distributional parameters and the set of covariates. Second, the treatment effect

distribution identified in this chapter offers an alternative interpretation to that of

the the rank invariance assumption. Third, the identified distribution lies within a

sharp bound of distributions of the treatment effect. An estimator exploiting the

identifying restriction is developed by extending the classical version of statistical

deconvolution method to the Rubin causal framework. I show that the estimator is

uniformly consistent for the distribution of causal effects.



In chapter two, I apply the nonparametric method developed in the previ-

ous chapter to the estimation of heterogeneous effects of displacement on earnings

losses. Using the Current Population Survey (CPS) individual-level data from 1996

to 2016, I show that the decline in labor incomes of displaced workers is not only sub-

stantial in magnitude compared to their non-displaced counterparts, but also varies

significantly within groups characterized by, for example, tenure and educational

attainment. I find that displaced workers, on average, lose 19% of their potential

earnings while the dispersion of losses among workers is wide. In addition, estimated

quantile effects of displacement are more dispersed when the local unemployment

rate is higher.

In the third chapter, co-authored with Guido Kuersteiner, we develop a new

asymptotic theory for flexible semi-parametric estimators of dynamic causal effects

in data with discrete policy interventions. Our framework extends existing the-

ory of propensity score weighted estimators to weakly dependent processes. We

show uniform consistency and asymptotic normality by applying a newly-developed

asymptotic theory for the series estimator over a non-compact support. The estima-

tor proposed in this chapter captures non-linear and asymmetric impulse response

functions that are often difficult to be accommodated in parametric models.
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Chapter 1: Nonparametric Identification and Estimation of

Heterogeneous Causal Effects under Conditional

Independence

1.1 Introduction

This chapter introduces a new nonparametric strategy to identify the distribution of

heterogeneous causal effects. In past decades, a growing number of papers pointed

out possible heterogeneity embedded within the causal effects even after controlling

for individual characteristics.1 With the presence of heterogeneity, interpretation

and policy implications that arise from quantitative analyses of causal effects will

be substantially different from a case with homogeneous effects. For example, con-

sider a social experiment providing a job training program for displaced workers to

support their performance in the job market. If the purpose of the program is to

raise the average earnings of workers who participate the job training program, it is

sufficient to estimate mean effects and check if the result is positive and statistically

1For example, Heckman and Robb (1985), Heckman, Smith, and Clements (1997), and Heck-

man, Urzúa, and Vytlacil (2006) discuss how the understanding of heterogeneity in causal effects

can alter policy implications in the context of empirical policy evaluation with observational data.
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significant. However, if the goal is to benefit the maximum number of workers, a

better measurement would be the probability of having positive effects for those

who have participated in the experiment. As illustrated in this example, under-

standing the distributional information of the treatment effect is more important,

both theoretically and empirically.

The causal effect is formally defined via Rubin (1974)’s potential outcome

framework. The outcome of interest, denoted by Y , is supposed to be a partial

observation of a pair of potential outcomes. That is, Y = DY (1) + (1 − D)Y (0)

where Y (1) is the potential outcome of treated, Y (0) is the potential outcome of

controlled, and D is the binary random variable indicating treatment status. As an

example, suppose that we are interested in estimating the potential earnings losses

of workers after being displaced from their previous jobs. If a worker has been

displaced from her previous work, she is assigned to the treated group (D = 1). In

this case, her observed wage is equal to the potential wage of treated (Y = Y (1)).

Otherwise, if a worker has been continuously working for at least three years, then

she is classified as control group (D = 0), and her wage is considered to be equal to

the potential wage of the controlled group (Y = Y (0)). The causal effect is given by

∆ = Y (1) − Y (0) which is the difference between potential outcomes. Specifically

the example of displaced workers, the causal effect of displacement refers to the

earnings differences of a worker who has been displaced from her previous match,

measured by the changes relative to the counterfactual wage that she would have

earned if she were able to continue working in her previous job.

Since the realized value of the causal effects may differ across individuals,

2



a natural way to describe heterogeneity is through the distribution function of ∆.

However, without a further identifying restriction imposed, the distribution of causal

effects is only partially identified up to a range of distribution functions (Fan and

Park, 2010). One caveat of the partial identification approach to the distribution of

causal effects is that it is often difficult to propose concrete policy implications from a

set of distributions of casual effects, as the resulting set of identified distribution may

not exclude unrealistic estimates (Heckman et al., 1997). I consider, instead, the case

where the gains from treatment are independent from the potential outcome absent

of treatment, conditioning on a set of observable characteristics. More precisely,

∆ is assumed to be a random variable that is orthogonal to Y (0) conditional on a

vector of covariates.

The conditionally independent gains assumption is comparable with other ex-

isting frameworks in two ways. First, it is a natural extension to the case when ∆ is

constant within a group characterized by X. This type of restriction is commonly

used in regression analysis, as illustrated in Section 1.2. However, the constant

within-group effect restricts the causal effect ∆ to be fully deterministic with re-

spect to the observable dimension. This implies that there is no dispersion within

the group characterized by X.

Second, the restriction considered in this chapter has similar intuition to that

of rank invariance which is commonly assumed in the context of quantile effects and

quantile regression. The quantile effects function has been one of the most popular

approaches to describing heterogeneity since the earlier work of Doksum (1974).

Chernozhukov and Hansen (2005) study the role of the rank invariance condition

3



for identifying the conditional quantile effect functions. In a later section, I show

that both conditionally independent gains and the rank invariance assumption imply

positive stochastic dependence between potential outcomes conditional on observ-

able characteristics. The difference is that there is a positive chance of switching

ranks between the two treatment statuses under the conditionally independent gains

assumption while rank invariance does not allow for such a case. In this sense, the

restriction I consider in this chapter has a more flexible interpretation in practice.

The nonparametric estimator that corresponds to the identifying assumption

is developed by extending the theory of statistical deconvolution. The intuition is

to exploit the natural linearity in the definition of the causal effect. Notice that the

potential outcome of the treated can be written as the sum of the baseline outcome

and the gains from treatment, such that Y (1) = Y (0) + ∆. If ∆ is assumed to be

orthogonal to Y (0) conditioning on a set of observable characteristics, it follows that

the marginal distribution of Y (1) is equivalent with the convolution of the marginal

distributions of Y (0) and ∆ conditioning on covariates. Then the distribution of ∆

is nonparametrically identified by the inverse Fourier transformation on the ratio of

the characteristic functions of Y (1) and Y (0).

The nonparametric strategy presented in this chapter is an extension of the

classical theory of statistical deconvolution. Since the early work of Carroll and

Hall (1988) and Fan (1991b), asymptotic properties of statistical deconvolution es-

timators have been applied in various contexts. Fan and Truong (1993), Taupin

(2001), Schennach (2004), and Carroll, Delaigle, and Hall (2009) study estimation

strategies using deconvolution in regression models with measurement errors. On

4



the other hand, Horowitz and Markatou (1996), Neumann (2007), and Arellano

and Bonhomme (2012) apply the nonparametric deconvolution method to panel

regression models to estimate the unknown distributions of random effects. In a

methodological sense, the closest approach to the method proposed in this chapter

is a recent paper by Gautier and Hoderlein (2011). They propose an estimation

strategy that utilizes a deconvolution method in the context of selection on unob-

servables. However, the interpretation of the identified distribution of treatment

effects is different. Gautier and Hoderlein (2011) identify the distribution of treat-

ment effects conditional on the individuals who satisfy the monotonicity or, in other

words, compliers. On the other hand, this chapter focuses on the distribution iden-

tified via comparison of individuals in treated and controlled groups, matched with

observable characteristics.

A number of studies emphasize the presence of non-negligible dispersion in

the causal effect across individuals and develop estimation strategies to capture

heterogeneity. Under the rank invariance restriction, the quantile effect function

is a useful object to describe the heterogeneity. Firpo (2007) presents an efficient

semi-parametric estimation strategy for the quantile effect. More recently, Rothe

(2010) and Chernozhukov, Fernández-Val, and Melly (2013) extend the theory to

estimate the effect of policy on changes in counterfactual distributions.

Rank invariance can sometimes be overly restrictive as it fully identifies the

counterfactual distribution conditional on the realized outcome. Alternatively, set

identification has been considered as a more flexible approach. A major advantage

of the set identification approach is that it does not impose a particular stochas-

5



tic relationship between potential outcomes. Heckman et al. (1997) attempt to

identify the range of distributions of the treatment effect by listing every possible

match between quantiles of the marginal distributions of potential outcomes which

are identified under selection on observables assumption. More recent papers by

Chiburis (2010), Fan and Park (2010, 2014), and Fan, Sherman, and Shum (2014)

construct tighter bounds for the set of identified treatment effect distributions. Kim

(2014) considers improving the identification bound by imposing restrictions on the

support of treatment effect distributions in an attempt to sharpen the range of iden-

tified distributions.2 Compared to the partial identification approach, I propose a

set of identifying restrictions under which the distribution of the treatment effect is

point-identified nonparametrically given a pair of marginal distributions of potential

outcomes.

The rest of this chapter consists of the following sections. In section 1.2, I intro-

duce identifying restrictions to recover the distribution of heterogeneous treatment

effects and discuss implications in relation to regression models and the propensity

score matching estimator. In section 1.3, I establish a nonparametric estimator

for the distribution of treatment effects and present useful results for later sections.

Section 1.4 provides asymptotic properties of nonparametric estimators for the treat-

ment effect distribution, and the quantile effect function. In section 1.5, I present a

Monte Carlo experiment to evaluate finite sample properties of the nonparametric

estimators of the mean effect and quantile effects.

2For a comprehensive review of the partial identification approach to distributional treatment

effects, see Abbring and Heckman (2007).
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Notation The Euclidean norm for matrix A is defined as ‖A‖ =
√

tr(A′A). For

a square matrix A, λmin(A) is the smallest eigenvalue of A and λmax(A) is the

largest eigenvalue of A. For a vector x = (x1, · · · , xd)′ ∈ Rd, `α-norm is defined as

‖x‖α = (
∑d

j=1 x
α
j )1/α. For a generic multivariate function g : Rd → R, Lη(µ)-norm

is defined by ‖g‖η = (
∫
‖g(x)‖ηdµ(x))1/η for µ being a probability measure defined

over X . In addition, partial derivatives of g are denoted by∇sg(x) = ∂|s|

∂s1x1···∂sdxd
g(x)

where s = (s1, · · · , sd)′ is the index and |s| = s1 + · · · + sd. For a complex number

c ∈ C, the modulus is defined as |c| =
√
cc̄ =

√
<(c)2 + =(c)2 where c̄ is the complex

conjugate of c while <(·) and =(·) are real and imaginary parts, respectively.

1.2 Identification of Heterogeneous Effects

Heterogeneity in causal effects is described by the shape and size of the dispersion

of ∆ across individuals. In a formal notation, let F∆(·) be the distribution function

of ∆ over the set of possible treatment effect values T ⊆ R. The possible set

of treatment effects is simply defined as a Minkovski difference between supports

of potential outcomes. That is, let Y1,Y0 ⊆ R be the support of Y (1) and Y (0),

respectively. Then T = [inf Y1−supY0, supY1−inf Y0]. In cases where, for example,

Y1 is unbounded, then inf Y1 = −∞ and supY1 =∞.

The distribution of ∆ can be further decomposed into two parts: heterogeneity

within- and between-groups. Let X be a vector of covariates which is a random

vector over the support X ⊆ Rdx with marginal distribution µ. The heterogeneity

embedded in ∆ may be further specified with the conditional distribution which

7



is denoted by F∆(τ |x) = Prob(Y (1) − Y (0) ≤ τ |X = x) for τ ∈ R. Then it is

natural to characterize the within-group heterogeneity by the size of dispersion in

F∆(τ |x) such as F∆(τ ′|x) − F∆(τ |x) for some τ, τ ′ ∈ R. On the other hand, the

between-group heterogeneity is represented by the changes in distribution F∆(τ |x)

such as F∆(τ |x′) − F∆(τ |x) for x, x′ ∈ X . In sum, identification of the conditional

distribution of ∆ is the key to uncovering heterogeneity in causal effects.

1.2.1 Selection on Observables

Identification of the causal effect is achieved with a set of restrictions that can elim-

inate the selection bias in a partially observed outcome. I consider a conventional

framework where the treatment status is randomly determined within a group char-

acterized by a set of observable variables. Precisely, the propensity score to treat-

ment is denoted by p(x) = Prob(D = 1|X = x) for x ∈ X . The following statements

collectively imply that, conditioning on X, D is randomly assigned and there are

positive chances of having both D = 1 and D = 0.

Condition 1.1 (Selection on Observables). For j ∈ {0, 1}, Y (j) ⊥ D|X almost

surely.

Condition 1.2 (Overlapping). There exist p, p ∈ (0, 1) such that p ≤ p(x) ≤ p

almost surely.

Earlier work of Rosenbaum and Rubin (1983) has shown that the two con-

ditions are sufficient for identifying the conditional mean effect by balancing the

samples using the inverse of the propensity scores as sampling weights. The idea is

8



that both Conditions 1.1 and 1.2 collectively specify a stochastic model to compare

the outcomes across different treatment statuses. In other words, a set of observed

outcomes in the control group contains unbiased information on the counterfactual

outcome of the treated group as long as the propensity score values of individuals

in the two groups are the same (Rosenbaum and Rubin, 1983, Theorem 2). The

argument relies on the correct specification of the propensity score function p(x),

which is usually unknown to the researcher. Later in section 1.3, I consider the series

estimation that is robust to parametric specification of p(x) for a fixed number of

covariates X with possibly unbounded support.

Conditions 1.1 and 1.2 do not restrict underlying stochastic models to have a

specific form as in linear regression models. However, for illustration, I discuss the

role of selection on observables and overlapping conditions for identifying heteroge-

neous mean effects using a representative linear regression model as shown in the

following example.

Example 1.1. Consider the following regression model:

Y = Dδ +X ′γ + U (1.1)

where Y is the outcome variable, D is the dummy variable indicating the treatment

effect status, and X is a vector of covariates that are relevant for controlling possible

endogeneity in selection into treatment. The error term denoted by U satisfies

E[U |X] = 0 under the conditional independence assumption. The parameter of

interest in this case is δ. If δ is a constant, it can be identified via OLS estimator and

has a causal interpretation if Conditions 1.1 and 1.2 hold. However, the argument

9



does not hold in general as δ may differ across individuals. Specifically, assume that

δ is a random coefficient. It is natural to consider describing its heterogeneity as

a function of observed individual characteristics. Let E[δ|X] be the portion of δ

explained by X and denote ε ≡ δ − E[δ|X] for the unexplained randomness. The

variance decomposition formula yields the following result:

V ar(δ) = E[V ar(ε|X)]︸ ︷︷ ︸
within−group heterogeneity

+ V ar(E[δ|X])︸ ︷︷ ︸
between−group heterogeneity

(1.2)

It can be shown that the between group heterogeneity is identified by running a

regression model. Substituting δ = E[δ|X] + ε to the equation (1.1),

Y = E[δ|X]D +X ′γ + εD + U ≡ E[δ|X]D +X ′γ + V (1.3)

where V ≡ εD + U . The resulting equation is reasonably well approximated by

a reduced form regression model that has multiple interaction terms between X

and D. Notice that E[V |X] = E[εD|X] + E[U |X] = E[ε|D = 1, X]Prob(D =

1|X) = E[ε|X]Prob(D = 1|X) = 0 as ε is independent of D under the conditional

independence assumption. Therefore, the mean function E[δ|X] is identified by,

for example, OLS coefficients associated with the interaction terms between X and

D. Then what follows is that the between group heterogeneity is obtained by the

variations in E[δ|X] across X.

1.2.2 Conditionally Independent Treatment Effects

As the parameter of interest is the unknown distribution of treatment effects, I intro-

duce an additional restriction to recover the distribution nonparametrically. Notice

that Conditions 1.1 and 1.2 are sufficient to identify the marginal distributions of
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the potential outcomes, Y (1) and Y (0), from observational data. Then it is easy to

show that the characteristic functions of potential outcomes are separately identi-

fied as well under the assumption of selection on observables (Proposition 1.1). The

characteristic functions of each potential outcome will be ingredients for nonpara-

metrically identified distribution of causal effects via deconvolution formula.

The distribution of the treatment effects is identified only by imposing a

stochastic relationship between potential outcomes. A straightforward method is

to consider every possible relationship between potential outcomes and list a range

of identified distributions of causal effects. However, as pointed out by Abbring and

Heckman (2007), this method often results in uninformative bounds for the distri-

bution of causal effects. The rank invariance assumption has been one of the most

popular stochastic models to recover heterogeneity in causal effects. In spite of its

benefits, however, rank invariance constrains the set of identified distributions by

specifying the distribution of counterfactual outcomes as fully conditional on the

observed outcome.3

I propose an alternative model by relaxing the strong dependence property

between potential outcomes into a weaker version. Consider the case when X is

the set of information which fully characterizes the heterogeneity in treatment effect

3An alternative is to parameterize the degree of dependence in terms of the correlation coefficient

between ranks of the potential outcome distributions as in Zimmer and Trivedi (2006). However,

a parametric approach not only restricts the set of identified distributions of the heterogeneous

treatment effect but also has difficulties in justifying any particular parametric model for the

dependence between potential outcomes unless it is based on a structural model with underlying

behavioral assumptions.
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∆ upto a random component that is independent with the counterfactual outcome

Y (0) conditional on X. A simple example is when ∆ is additively separable into

two parts. Suppose that ∆ = δ(X) + ε where δ(·) is a non-stochastic function that

governs the conditional mean of ∆ and ε is a random error which is independent of

Y (0) conditional on X. The case may also be interpreted as a linear shift model

where the distribution of ε governs the size of dispersion in ∆ while X determines

the conditional mean of ∆. Note that in this example, heterogeneity still exists, as

∆ has non-degenerate distribution even after conditioning on X. Instead, the model

restricts stochastic relationship between the gains from treatment and the baseline

outcome to be fully specified for a given X.

The following is the statement of the restriction discussed above in more gen-

eral form:

Condition 1.3 (Conditional Treatment Effect Independence). Y (0) ⊥ ∆|X almost

surely.

The implication of Condition 1.3 can be illustrated as follows. Suppose that the

effect of displacement on earnings is a random object that may have different real-

izations across workers. The effect in general can be correlated—without condition-

ing on worker’s characteristics—with Y (0) which is the counterfactual wage that

a worker would have earned if she hasn’t been displaced. Then what Condition

1.3 means is that within a particular group of workers characterized by X, the ef-

fect of displacement is independent of their rank within the counterfactual income

distribution. For example, among the workers with lower levels of labor market
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experience (X = low), the distribution of potential losses of being displaced is equal

regardless of their relative position in the income distribution (distribution of Y (0)

conditioning on X). However, workers with lower experience levels may suffer more

on average compared to the group of highly trained workers (X = high) following

the involuntary separation from their previous position.

Example 1.2. As stated in Example 1.1, an additional restriction is required to

identify the within-group heterogeneity of the causal effect δ. Condition 1.3 works

in this case as follows. First, note that the outcome Y for the treated group (D = 1)

and controlled group (D = 0) are given as follows:

Y (D = 1) = δ +X ′γ + U ≡ E[δ|X] +X ′γ + η (1.4)

Y (D = 0) = X ′γ + U (1.5)

where η ≡ ε+U . Note that from equation (1.5), U can be estimated by the residual

of the regression of Y on X within a subsample of the controlled group (D = 0).

Similarly, η can be approximated by the residuals from the regression of Y on the

possibly non-linear function of X, conditional on the treated group (D = 1). In the

context of the linear regression model (1.1), Condition 1.3 implies ε ⊥ U |X. As a

result, there are three conditions that collectively identify the conditional variance

of residual heterogeneity ε. First, η = ε + U by construction. Second, both η

and U are consistently estimated by the residuals from the regression equations

(1.4) and (1.5) which leads to consistent estimates of the conditional variances of

η and U . Third, ε and U are independent conditional on X. Then the conditional

variance of ε is simply identified by V ar(ε|X) = V ar(η|X)− V ar(U |X) given that
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Cov(ε, U |X) = 0.

Note that Condition 1.3 does not imply that the potential outcomes are in-

dependent from each other without the existence of any conditioning covariates.

In fact, the potential outcomes are stochastically dependent through the definition

which is Y (1) = Y (0) + ∆. Here, Y (1) can be interpreted as a linear function of

Y (0) shifted by the size of ∆. The definition itself does not give any intuition over

the relationship between Y (1) and Y (0) as the shift ∆ is realized differently across

individuals and possibly correlated with the baseline outcome Y (0) in any direction.

Then by Condition 1.3, the stochastic relationship between Y (0) and ∆ is restricted

within a group characterized by the set of observables. If there is a set of covariates

that collectively contain rich enough information to control possible confounding

factors which causes the selection bias in ∆, we may assume that the causal effect

is ex ante homogeneous at least within a narrowly defined group of individuals.

Within a particular group of individuals indexed by x ∈ X , the stochastic

relationship between the two potential outcomes implied by Condition 1.3 becomes

more clear. Precisely, Condition 1.3 implies positive stochastic dependence between

potential outcomes in the following sense. Let F1|0 be the conditional distribution

of Y (1) given Y (0) for individuals of the same characteristics X = x. That is,

F1|0(y1|y0, x) = Prob(Y (1) ≤ y1|Y (0) = y0, X = x) for y1, y0 ∈ R and x ∈ X .

Conditioning on X, Y (1) is a linear shift of Y (0) by definition, and the size of

the shift is orthogonal to the baseline outcome Y (0). Therefore, the probability of

having a larger draw of Y (1) will increase with Y (0). Such property is formally
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written as follows:

Proposition 1.1. Suppose that Condition 1.3 is satisfied. Then Y (1) is stochas-

tically increasing (SI) in Y (0) conditional on X–that is, F1|0(y1|y0, x) is weakly de-

creasing in y0 for all y1 ∈ R and x ∈ X .

The intuition of Proposition 1.1 is that it partially identifies the distributional

characteristics of counterfactual outcome from the observed outcome of the individ-

uals with same characteristic. For example, consider two workers in the controlled

group who both share the same characteristics X. Suppose that each of the two

workers has an observed wage of y0 and y′0, respectively. Furthermore, consider the

case y0 ≤ y′0 without loss of generality. Then what Proposition 1.1 implies is that

the post-treatment wage of the worker with observed wage y0 is likely to be smaller

than that of the worker with wage y′0. The intuition is similar to that of rank invari-

ance as in both cases, distribution of the post-treatment outcome conditional on a

larger pre-treatment outcome stochastically dominates that of smaller pre-treatment

outcome.

In the context of the empirical application with displaced workers, Y (1) de-

notes the potential wages of displaced workers and Y (0) is that of non-displaced

workers. What follows from Proposition 1.1 is that if a worker is supposed to have

a higher wage if she has not been displaced previously in her career (larger Y (0)),

then she is “more likely” to have higher wage among the displaced workers. It is

less restrictive than the case of the rank invariance under which the distribution of

Y (1) is sharply determined conditional on Y (0). In the context of displaced workers,
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a worker who earned top 1% wage before separation must be at the top 1% after

involuntary separation from her previous job based on the implication of the rank

invariance.4

1.2.3 Nonparametric Identification of Treatment Effect Distribution

The identification of heterogeneous treatment effects in the case of conditionally

independent gains is achieved by applying the theory of statistical deconvolution.

Statistical deconvolution theory has been developed to identify and estimate the

unknown distribution of a latent random variable when it is observed with classical

measurement error with a known distribution (see, for example, Carroll and Hall,

1988; Fan, 1991b,a). Earlier work of Fan (1991b) derives a uniform rate of conver-

gence for a nonparametric deconvolution estimator over a Sobolev class Fα(R) of

functions for α > 0 which is defined as following:

Fα(R) ≡
{
f ∈ C(R) :

∫
R
||ϕf (ω)‖2(1 + |ω|2)αdω <∞

}

where ϕf (ω) ≡
∫
R exp(ιωτ)f(τ)dτ is the characteristic function of a density f .

Later studies extend the theory to the case where measurement error distribution

is unknown while researchers have proxy data to estimate it (Taupin, 2001; Carroll

et al., 2009).

4In a formal notation, difference between Condition 1.3 and rank invariance is given as follows.

Suppose that (Y1, Y0) and (Y ′
1 , Y

′
0) are two random draws from the joint distribution of potential

outcomes conditional on the same X. With Condition 1.3, there exists positive probability of

“reversed rank” in the sense that Prob((Y ′
1 − Y1)(Y ′

0 − Y0) < 0) > 0. On the other hand, the rank

invariance does not allow such possibility as Prob((Y ′
1 − Y1)(Y ′

0 − Y0) > 0) = 1.
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The identification strategy proposed in this chapter is a modification of the

recently developed statistical theory under which measurement error distribution is

replaced by its empirical counterpart. The intuition is that I exploit the linearity

in the definition of the treatment effect and interpret the distribution of observed

outcome for controlled group, denoted by Y (0), as proxy data for the measurement

error. Then by applying Condition 1.3, it can be shown that the distribution of ∆ is

nonparametrically identified via deconvolution of the distribution functions of Y (1)

and Y (0).

I first show that the characteristic functions of the distributions of potential

outcomes are identified. Note that the Conditions 1.1 and 1.2 collectively imply the

strong ignorability as in Rosenbaum and Rubin (1983). Their result implies that the

marginal distributions of both Y (1) and Y (0) conditional on X are fully identified

by the empirical distribution of the observed data conditional on the balancing score

p(X). I extend their result to identify the characteristic functions of Y (1) and Y (0).

Lemma 1.1. Suppose that the Conditions 1.1 and 1.2 hold. Then,

E[exp(ιωY (1))|p(X)] =
E[D exp(ιωY )|p(X)]

p(X)

E[exp(ιωY (0))|p(X)] =
E[(1−D) exp(ιωY )|p(X)]

1− p(X)

Lemma 1.1 states that the characteristic functions of Y (1) and Y (0) are iden-

tified as a product of observable quantities. The first part is the exponential trans-

formation of outcome variables of either treated or controlled group. The second

part is the inverse of the propensity score function which is bounded away from

zero for all X ∈ X following the Condition 1.2. The result is similar to the identi-
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fication strategy discussed in Gautier and Hoderlein (2011) in the sense that they

also identify the characteristic functions of potential outcomes by using the inverse

propensity score values as sampling weights. The difference is in that the propensity

score values in Gautier and Hoderlein (2011) represent the probability of selection

into treatment by unobservables whereas, in my framework, p(X) is a sufficient

statistic to control observable heterogeneity.

Given the characteristic functions of Y (1) and Y (0) in hand, Condition 1.3 is

used to retrieve the characteristic function of the gains from treatment. Recall that

Y (1), the potential outcome of the treated, is the sum of the baseline outcome Y (0)

and the gains from treatment ∆. That is, Y (1) = Y (0) + ∆. Condition 1.3 implies

that Y (0) and ∆ are independent conditional on p(X).

Lemma 1.2. Suppose that Condition 1.3 holds. Then, Y (0) ⊥ ∆|p(X) almost surely.

The argument is interpreted as an extension of the result of Rosenbaum and

Rubin (1983) as it also argues that the propensity score p(x) is a sufficient statistic

for the identification restriction (Condition 1.3). The result implies that the stochas-

tic relationship between baseline outcomes and causal effects is fully captured by

using p(x) as a balancing score. In other words, among the individuals having the

same propensity score value, differences in realized effects are not related to their

potential outcomes. Therefore, we may aggregate the differences in realized out-

comes of treated and controlled groups with the same propensity score weights to

infer the distributional characteristics of causal effects. By indexing the individual

observations with p(x) instead of X, we may reduce the dimensionality dramatically
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and consequently, increase the credibility of the identified causal effect distribution.

As a result of Lemma 1.2, it can be shown that the the characteristic function

of the causal effect ∆ is identified by the ratio of conditional characteristic functions

of the potential outcomes. Consider the characteristic function of the potential out-

come of treated conditional on p(X). Denote ϕj(ω|z) as the characteristic function

of the potential outcome Y (j) for j ∈ {0, 1} conditional on p(X) = z. That is,

ϕj(ω|z) = E[exp(ιωY (j))|p(X) = z]. As suggested by Lemma 1.2, the conditional

characteristic function of Y (1) is written as a product of two characteristic functions,

that of Y (0) and ∆, conditional on p(X). More precisely, ϕ1(ω|z) = ϕ0(ω|z)ϕ∆(ω|z)

where ϕ∆(ω|z) = E[exp(ιω∆)|p(X) = z] denotes the characteristic function of ∆

conditional on p(X) = z. If ϕ0(ω|z) is assumed to be non-vanishing in the sense that

|ϕ0(ω|z)| > 0 for almost all ω ∈ R, the conditional characteristic function of ∆ is

recovered by the ratio ϕ1(ω|z)/ϕ0(ω|z). The formal statement of the identification

result is as follows:

Lemma 1.3. Suppose that 1.1, 1.2, and 1.3 hold. If ϕ0(ω|z) ≥ C > 0 for some

constant C <∞ almost everywhere in R× [0, 1], then ϕ∆(ω|z) is identified.

Moreover, the result further implies that the unconditional version of the char-

acteristic function of causal effects could be identified as the following formula:

Lemma 1.4. Suppose that Conditions 1.1, 1.2, and 1.3, hold. Then ϕ∆(ω) is iden-

tified by

ϕ∆(ω) = E
[1− p(X)

p(X)

E[D exp(ιωY )|p(X)]

E[(1−D) exp(ιωY )|p(X)]

]
(1.6)
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Identification of conditional and unconditional characteristic functions are nec-

essary conditions for the identification of the conditional and unconditional distribu-

tion of causal effects, respectively. It is well-known that the characteristic function

uniquely defines its corresponding distribution function (Billingsley, 2008, p.365).

However, for a more rigorous statement on the identifiability of the causal effect

distribution, a formal statement for the class of “non-vanishing” characteristic func-

tions is required. More specifically, the rate of decay of the characteristic functions

ϕ1(ω|z) and ϕ0(ω|z) as |ω| → ∞ needs to be restricted. It is common to regulate the

tail behavior of the characteristic function by uniform bounds that diminish faster

than or equal to geometric rates. Such restrictions have been introduced initially

by Carroll and Hall (1988) and Fan (1991a,b). Later they were widely adopted

in the statistical deconvolution literature including Taupin (2001), Hall and Lahiri

(2008), Johannes (2009), and Dattner, Goldenshluger, and Juditsky (2011), among

others. Some exceptions are Bonhomme and Robin (2010) and Evdokimov (2010).

I also use the regularization kernel as it can incorporate various types of underly-

ing distributions of potential outcomes. The following is the formal statement of

the “smoothness” restrictions over the tails of conditional characteristic functions

of potential outcomes.

Condition 1.4. For j ∈ {0, 1}, there exist continuous functions Υj, Υj : R+ → R+

such that for an arbitrary constant B <∞,

sup
|ω|≤B,z∈[p,p]

|ϕj(ω|z)| ≤ Υj(B) (1.7)
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inf
|ω|≤B,z∈[p,p]

|ϕj(ω|z)| ≥ Υj(B) (1.8)

The role of Condition 1.4 is to restrict the tail behavior of the characteristic

functions. The inequality (1.7) sets an upper bound that restricts the rate of decay

for the conditional characteristic functions at their tails as we are particularly inter-

ested in the case when B →∞. The existing literature on statistical deconvolution

considers a particular type of upper bound that is the type of case given in Condition

1.4. Specifically, if Υj(B) = Aj|B|cj exp(−Cj|B|γj) for some Aj, Cj, cj, γj > 0, then

the characteristic function of Y (j) is said to be “super-smooth.” On the other hand,

if Υj(B) = Aj|B|−γj for some Aj, γj > 0, then it is said to be an “ordinary-smooth”

case. Note that in both super- and ordinary-smooth cases, the characteristic func-

tions ϕj(ω|z) for j = 0, 1 tend to zero as |ω| → ∞. The rate of decay is mostly

governed by the parameter γj in both cases. For example, if Y (1) is distributed

in normal conditional on p(X), it can be shown that ϕ1(ω|z) is super-smooth with

γj = 2.5

The inequality (1.8) defines a lower bound of the conditional characteristic

functions of potential outcomes. The intuition behind this constraint is to make

the rate of decay for the characteristic function of Y (0) to be slow enough so that

the denominator of the ratio ϕ1(ω|z)/ϕ0(ω|z) does not converge to zero faster than

its numerator. It is a necessary condition to achieve identification and smooth

5Most of the widely-used parametric distributions fall into the category of either super-smooth

or ordinary-smooth distributions. For example, normal, mixture normal, and Cauchy distribu-

tions have super-smooth characteristic functions while gamma and exponential distributions have

ordinary-smooth characteristic functions.

21



asymptotic behavior which will be discussed in later sections.

Remark. Grafakos (2008) establishes a result stating the relationship between the

smoothness of the underlying distribution and the rate of decay of its characteristic

function. Formally, let f be an arbitrary density function and ϕf be its character-

istic function. Suppose that for some integer γ > 0, ∂sf exists and are integrable

for all s ≤ γ. Then ϕf (ω) is bounded by |ω|−γ sup|s|≤γ ‖∂sf‖ (Grafakos, 2008, p.

180). Therefore, we may conclude that any random variable of which underlying

distribution function is continuously differentiable is at least ordinary smooth. On

the other hand, Theorem 3.2.2. in Grafakos (2008) states that given any rate of

decay, there exists an integrable function of which the characteristic function has a

slower rate of decay than what is assumed. This result suggest that the inequality

(1.8) which constrains the lower bound of the rate of decay is not overly restrictive

in practice.

From the uniqueness of the inverse Fourier transformation, the density function

of ∆, denoted by f∆, is obtained by the following formula:

f∆(τ |z) =
1

2π

∫ ∞
−∞

exp(−ιτω)
ϕ1(ω|z)

ϕ0(ω|z)
dω. (1.9)

The expression in (1.9) is well-defined only if the ratio of characteristic functions is

integrable over the real line. The integrability is satisfied by regulating the rate of

decay of the ratio of characteristic functions in the tails.

I present the formal statement of the identification result of the distribution

of treatment effects in two versions. The result for the conditional distribution of ∆
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is given below. The proof is in Appendix A.2.

Proposition 1.2. Suppose that Conditions 1.1–1.4 hold. If
∫

Υ0(x)−2dx < ∞,

then f∆ ∈ Fα(R) is identified by (1.9).

The following example shows how the distribution of treatment effects can

be identified via Proposition 1.2 in a simple model where potential outcomes are

normally distributed.

Example 1.3. Consider a simple two-factor model where the potential outcomes

are given by Y (1) = ∆ + ε and Y (0) = ε with both ∆ and ε having normal

distribution. Specifically, assume that ∆ ∼ N(∆̄, σ2
∆) and ε ∼ N(0, σ2

ε) while

σ∆, σε <∞ denote the finite variances of ∆ and ε, respectively. It is easy to verify

that the marginal distributions of potential outcomes are given by Y (1) = ∆ + ε ∼

N(∆̄, σ2
∆ + σ2

ε) and Y (0) = ε ∼ N(0, σ2
ε) with the assumption of ∆ ⊥ ε, which

is implied by the conditionally independent treatment effect (Condition 1.3). Let

ϕj(ω) be the characteristic function of Y (j) for j ∈ {0, 1}. It is well-known that

the characteristic function of normal distributions is given by ϕ1(ω) = exp
(
ιω∆̄ −

σ2
∆+σ2

ε

2
ω2
)

and ϕ0(ω) = exp
(
−σ2

ε

2
ω2
)
. Then ϕ0(ω) satisfies the condition (ii) of

Proposition 1.2 with g(ω) = exp(−Cω2) for C ≥ σ2
ε/2. Taking the ratio between

ϕ1(ω) and ϕ0(ω), the characteristic function of the causal effect is identified by

ϕ1(ω)/ϕ0(ω) = exp
(
ιω∆̄ − σ2

∆

2
ω2
)
. As it is bounded above by 1, globally convex,

and tends to zero as |ω| → ∞, there exists an absolutely continuous density defined

by the inverse Fourier transformation of ϕ1(ω)/ϕ0(ω). By uniqueness of the inverse
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Fourier transformation, the density of ∆ is equivalent to that of normal with mean

∆̄ and variance σ2
∆.

Using the result of Proposition 1.3 as the main ingredient, we may recover other

kinds of parameters that are useful to describe the shape and size of heterogeneity of

the causal effect ∆. First, the cumulative distribution function of the causal effect

is given by the lower integral of the density f∆ over (−∞, τ ], such as

F∆(τ |z) =

∫ τ

−∞
f∆(t|z)dt (1.10)

Earlier result of Gil-Pelaez (1951) shows that there exists an equivalent closed-form

expression for the distribution of ∆ which is explicitly given as a function of the

underlying characteristic functions ϕ1(ω|z) and ϕ0(ω|z). The formula is given as

follows:

F∆(τ |z) =
1

2
− 1

π

∫ ∞
0

ω−1=
(

exp(−ιωτ)
ϕ1(ω|z)

ϕ0(ω|z)

)
dω (1.11)

I use the expression (1.11) instead of (1.10) as it only has to integrate once over a pos-

sibly unbounded support. This expression has advantage especially while construct-

ing a nonparametric estimator as the integral operation should be approximated

by numerical integration. The following proposition argues that the distribution

of causal effects is identified nonparametrically by equation (1.11). It is a direct

consequence of Proposition 1.3 that establishes the identification of the conditional

characteristic function of the causal effect ∆.

Proposition 1.3. Suppose that Conditions 1.1–1.4 hold. If
∫

Υ0(x)−2dx < ∞,

then the distribution function of the causal effect ∆ is identified by (1.11).
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The conditional quantile effect function of ∆ is identified by the left inverse of

the distribution function F∆. That is,

Q∆(u|z) = inf
τ∈T
{τ : F∆(τ |z) ≥ u} (1.12)

where T is the support of the heterogeneous causal effect. Notice that, by construc-

tion, (1.12) is weakly monotonic in u ∈ [0, 1]. Such property makes the expressions

(1.12) to be easily interpretable as the quantiles of the causal effect ∆. For example,

if Q∆(0.5) = 0, then the treatment is expected to have zero or negative impact with

a probability of 50%.

The following statement formally argues that the quantile effect function is

identified under the same set of restrictions imposed in the previous results on the

density and distribution functions of causal effects.

Corollary 1.1. Suppose that Conditions 1.1, 1.2, 1.3, and 1.4 hold. Then the

quantile effect function of ∆ is identified by (1.12).

Remark. The rank invariance assumption is an alternative approach to identify

quantile effects in a nonparametric way. Earlier work of Doksum (1974) defines

the quantile effect function as the difference between quantile functions of potential

outcomes. Specifically,

QRI
∆ (u|z) = F−1 (u|z)− F−0 (u|z) (1.13)

where F−j (u|z) = inf{y : Fj(y|z) ≥ u} is the quantile function of the potential

outcome where j ∈ {0, 1}. While both F−1 and F−0 are identified only by imposing

Conditions 1.1 and 1.2, QRI
∆ is in general not equivalent with the inverse of the
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conditional distribution of the treatment effect F∆ which is given as the expression

(1.12). In addition to Conditions 1.1 and 1.2, suppose that the rank of Y (1) is equal

to Y (0) conditional on p(X). Chernozhukov and Hansen (2005) show that under this

assumption, the quantile treatment effects function (1.13) has a causal interpretation

and therefore, expression (1.13) represents the quantiles of the distribution of ∆.

1.2.4 Comparison with other Identification Schemes

Full identification of the heterogeneous treatment effect cannot be achieved without

specifying the dependence structure between potential outcomes Y (1) and Y (0). A

convenient way to describe stochastic dependence between two marginal distribu-

tions is to use bivariate copula. A well-known result of Sklar (1959) shows that

for any bivariate distribution, denoted by F (y1, y0), there exists a non-decreasing

function C : [0, 1]2 → [0, 1] such that F (y1, y0) = C
(
F1(y1), F0(y0)

)
where Fj(·), for

j ∈ {0, 1}, denotes the marginal distribution of Y (j). On the other hand, any real-

valued function over [0, 1]2 which generates a bivariate CDF by joining two marginal

distributions is called (bivariate) copula.

Any bivariate copula is known to be bounded by two prototypical functions re-

ferred as Frechét-Hoeffding bounds. More precisely, for any bivariate copula C(u, v),

we have CL(u, v) ≤ C(u, v) ≤ CU(u, v) where CL(u, v) = max{u + v − 1, 0} and

CU(u, v) = min{u, v}.6 The result is used to construct unrestricted bounds on the

distributional causal effect. The following result from Makarov (1982) shows that

any distribution of ∆ identified with a choice of bivariate copula should be bounded

6See Nelsen (2007), Theorem 2.2.3.
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by the distributions implied by Frechét-Hoeffding bounds.

Lemma 1.5 (Makarov, 1982). Suppose that Conditions 1.1 and 1.2 hold. Then for

any z ∈ [p, p], F∆(τ |z) is bounded by

max
{

sup
y∈R

{
F1(y|z)− F0(y − τ |z)

}
, 0
}
≤ F∆(τ |z)

≤ 1 + min
{

inf
y∈R

{
F1(y|z)− F0(y − τ |z)

}
, 0
}

Instead of partial identification, the distribution of causal effects is point-

identified by choosing a specific copula. The rank invariance condition, considered

by Chernozhukov and Hansen (2005) and Firpo (2007) for instance, is one of the

possible choices. It turns out that the bivariate copula implied by rank invariance

is equal to the Frechét-Hoeffding upper bound (see proof of Proposition 1.4 in Ap-

pendix A.2 for details). Hence, given that the marginal distributions of Y (1) and

Y (0) are identified, the distribution of causal effects is recovered as follows:

Proposition 1.4. Suppose that Assumptions 1.1 and 1.2 hold. If (Y (1), Y (0)) are

rank invariant conditional on X, distribution of ∆ is identified by

FRI
∆ (τ |z) = 1 + min

{
inf
y∈R

{
F1(y|z)− F0(y − τ |z)

}
, 0
}
,

for all z ∈ [p, p].

Notice that the distribution of causal effect under rank invariance condition

is equal to the upper bound in Lemma 1.5. Therefore, the distributional treat-

ment effect identified under the conditional independence first-order stochastically

dominates the one recovered under rank invariance case.
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Corollary 1.2. Suppose that Assumptions 1.1, 1.2, and 1.3 hold. Then, F∆(τ |z) ≤

FRI
∆ (τ |z) for all τ ∈ R and z ∈ [p, p].

The proof of Corollary 1.2 follows from Lemma 1.5 given that, by Proposition

1.4, FRI
∆ is equal to the CDF implied by the Frechét-Hoeffding upper bound. The

result is intuitive as can be seen in Figure A.1, which depicts the level curve of

bivariate CDFs of the pair of potential outcomes, under two different assumptions–

rank invariance and conditional independence. For illustrative purposes, I consider

a simple case where both Y (1) and Y (0) are uniformly distributed over the [0, 1]

interval. This implies that the treatment effect ∆ = Y (1) − Y (0) lies in between

[−1, 1]. The blue shaded area in the left panel shows the area that is equivalent to

FRI
∆ (τ) for some τ ∈ [−1, 1]. On the other hand, the area of F∆(τ) identified under

conditional independence is shown as the red shaded region in the right panel. It

is easily observed that the distribution function of ∆ that is identified under rank

invariance dominates that of conditional independence.

Example 1.4. Recall the example with Gaussian distributions for the potential

outcomes. In case of σδ = 0, the distributional causal effect is degenerate at δ = δ̄.

Proposition 1.2 can incorporate with this case as well. If δ = δ̄ with probability one,

both Y (1) and Y (0) follow normal distributions with the same variance σ2
ε but with

different mean. That is, E[Y (1)] = δ̄ while E[Y (0)] = 0. This case fits into the set of

restrictions in Proposition 1.2 as shown previously. The ratio between characteristic

functions is given by ϕ1(ω)/ϕ0(ω) = exp(ιωδ̄), which implies that the density of δ is

degenerated at δ = δ̄. On the other hand, notice that as Y (1) is simply a constant
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shift of Y (0) at amount of δ̄, (Y (1), Y (0)) is now rank invariant. The quantile

functions of each outcomes are given by F−1 (u) = δ̄+σεΦ
−(u) and F−0 (u) = σεΦ

−(u)

where u ∈ [0, 1] and Φ−(·) is the inverse of standard normal CDF. By taking the

difference, we get the quantile function of ∆ as Q∆(u) ≡ F−1 (u)− F−0 (u) = δ̄ for all

u ∈ [0, 1], which is equivalent to the result obtained by Proposition 1.4.

1.3 Nonparametric Estimation

In this section, I describe how to construct the nonparametric estimator of the

distribution of heterogeneous causal effects. I present theoretical results that col-

lectively form the basis for the asymptotic theory which will be discussed in the

following section. Nonparametric estimators of the conditional density function f∆

and distribution function F∆ are constructed by replacing the characteristic func-

tions in (1.9) and (1.11) with their sample counterparts, respectively. However, a

naive substitution of the characteristic functions with their empirical estimates will

in general cause ill-posed inverse problem as noted by, for example, Carroll and Hall

(1988), Fan (1991b), Taupin (2001), and many others. To alleviate this problem, I

consider kernel-based regularization. This method sets a bandwidth and introduces

a weighting kernel to regularize possibly irregular behavior of the empirical approx-

imations of conditional characteristic functions at its center (|ω| → 0) and its tails

(|ω| → ∞). Past studies including, but not limited to, Carroll and Hall (1988), Fan

(1991b,a), Taupin (2001), Hall and Lahiri (2008), Carroll et al. (2009), and Dattner

et al. (2011) show that regularization over the spectral domain guarantees conver-
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gence of the deconvolution estimator to its targeting distribution. In this chapter,

I extend the previous results to attain uniform convergence of the deconvolution

estimator for all conditional distributions over the covariate domain.7

The following is the set of assumptions that will be imposed throughout the

discussion of the empirical implementation and asymptotic properties of nonpara-

metric estimators.

Condition 1.5. Let {(Yi, Di, Xi)}ni=1 be a set of independent samples identically

distributed as (Y,D,X).

Condition 1.6. Suppose that for j ∈ {0, 1}, there exists δ > 2 such that E[|Y (j)|δ|X =

x] <∞ almost surely on x ∈ X .

1.3.1 Estimation of the Propensity Score Function

The first stage is to find a consistent estimator of the propensity score function

p(x). The propensity score function p(x) is an unknown function that is possibly

nonlinear in x. Thus I consider a series approximation method discussed by Hi-

rano, Imbens, and Ridder (2003) and compute the empirical counterpart of p(x).

Precisely, let Ψκ(x) = (ψ1(x), ψ2(x), · · · , ψκ(x))′ be a vector of basis functions sat-

isfying (E[‖Ψκ(X)‖η])1/η = O(zκ) for some η ≥ 1 with a positive sequence zκ.

Without loss of generality, the vector of basis functions is normalized to satisfy

7Some studies on nonparametric estimation for panel regression models discuss technical con-

ditions to achieve uniform convergence of the deconvolution estimator for all conditional distri-

butions. See Horowitz and Markatou (1996), Neumann (2007), Bonhomme and Robin (2010),

Evdokimov (2010), and Canay (2011).
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E[‖Ψκ(X)Ψκ(X)′‖] = Iκ (see Appendix A.1 for details). Denote the logistic cdf

by L(u) = exp(u)/(1 + exp(u)). The sieve approximation of p(x) is defined by

p̂n(x) = L(Ψκ(x)′γ̂κ) where

γ̂κ = arg max
γ∈Rκ

n∑
i=1

(
Di lnL(Ψκ(Xi)

′γ) + (1−Di) ln(1− L(Ψκ(Xi)
′γ))
)

Previous studies have addressed that there are at least two advantages of us-

ing the series approximation for unknown propensity score functions. One is that

if p(x) is a smooth function of a continuously distributed covariates X, the series

estimator gives a robust and consistent approximation of the true propensity score

function (Newey, 1997). Moreover, Hirano et al. (2003) point out that using a con-

sistent estimator of p(x) actually improves finite sample precision of propensity score

weighting estimators and achieve the semi-parametric efficiency bound as shown by

Hahn (1998).

One limitation in existing theories of series estimation of propensity score

functions is that the support X of the vector of covariates is restricted to a closed

and bounded set in Rdx . In Appendix A.1, I discuss how to extend the previous

results to be applied for the case when X has possibly non-compact support. It

is done by adopting some new asymptotic theories recently developed by Belloni,

Chernozhukov, Chetverikov, and Kato (2015) and Hansen (2015).

The following result shows that the series estimator of the propensity score

function is consistent for the unknown function p(x). The size of the approximation

error, which is measured by a weighted norm, is matched with that of Hirano et al.

(2003). The error depends geometrically on the length of basis functions κn which
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increases with respect to the sample size n. However, by controlling the rate of

growth for κn properly, we may eliminate the approximation error in large samples.

The proof of Lemma 1.6 as well as a detailed discussion regarding the series esti-

mation of propensity score functions over a non-compact support can be found in

Appendix A.1.

Lemma 1.6. Suppose that the Conditions 1.1, 1.2 and that of Lemma A.1.2 hold

for η ≥ 1. In addition, suppose that (i) there exists a positive sequence zκ such

that (E[‖Ψκ(X)‖η])1/η = O(zκ), (ii) E[‖Ψκ(X)Ψκ(X)′‖] = Iκ, and (iii) for κ = κn,

κn →∞ and n−1/2κ
1/2(s/dx+1)
n = o(1) as n→∞. Then,

‖p̂n(X)− p(X)‖η = Op

(√
κn
n
zκ

)

The result has practical advantages as it allows the model to incorporate the

case when the true propensity score is a smooth function over non-compact support.

For example, suppose that the past wage profile of a worker is included in a vector of

control variables X. It is usually the case that a series of past wages are considered

to be a good predictor of the worker’s productivity and therefore, the current wage

level. Given that the cross-sectional distribution of earnings is usually right-skewed

and has substantial mass on the upper tail of the distribution, it is arbitrary to

constrain the support X with any finite value, unlike the lower bound which can be

naturally set to be zero. In this case, the result of Lemma 1.6 is especially useful as

it accounts possibility that p(x) can be defined over unbounded support.
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1.3.2 Statistical Deconvolution with Inverse Propensity Score Weighting

Having a consistent estimator of the propensity score function, the next step is to

find sample counterparts of the conditional characteristic functions. In this chapter,

I refer the estimator of the conditional characteristic functions as the empirical

characteristic functions (hereby ECF).

I consider a non-linear projection of the exponential transformation of out-

come variables over the interval [0, 1] to approximate the ECFs. From the result of

Theorem 1.1, it is known that the characteristic functions of potential outcomes are

identified as functions conditional on p(X). Then for all z, both ϕ1(ω|z) and ϕ0(ω|z)

are bounded functions of ω ∈ R over a bounded support [p, p]. Therefore, with some

additional restrictions, they are well approximated by a series of nonlinear functions

indexed by z ∈ [0, 1].

The nonlinear approximation of conditional characteristic functions is done by

projecting the exponential transformation of outcome variables onto a polynomial

series approximation of propensity score function. Let P r(z) be a vector of B-spline

basis functions of arbitrary order r ≥ 2. Specifically, let {b1, b2, · · · , br−2} be equally-

spaced nodes in [0, 1]. The B-spline series is defined as P r(z) = (1, z,max{z −

b1, 0},max{z− b2, 0}, · · · ,max{z− br−2, 0})′ over z ∈ [0, 1]. Then the projections of

ϕ1(ω|z) and ϕ0(ω|z) are given as follows:

ϕ̂1,n(ω|z) = P r(z)′
( n∑
i=1

P r(Ẑi)P
r(Ẑi)

′
)−1( n∑

i=1

P r(Ẑi)Di exp(ιωYi)
)

(1.14)

ϕ̂0,n(ω|z) = P r(z)′
( n∑
i=1

P r(Ẑi)P
r(Ẑi)

′
)−1( n∑

i=1

P r(Ẑi)(1−Di) exp(ιωYi)
)

(1.15)
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where Ẑi = p̂n(Xi) and p̂n(·) is the consistent estimator of p(·) as defined in the

previous section.

The estimators (1.14) and (1.15) approximate conditional characteristic func-

tions reasonably well only if both ϕ1(ω|z) and ϕ0(ω|z) are continuous and smooth

over a compact set [p, p] for all ω ∈ R. The following condition restricts the true

characteristic function to be reasonably smooth at its tails.

Condition 1.7. Let B > 0 be an arbitrary constant. For j ∈ {0, 1}, there exists αj

and βrej,r(ω) and βimj,r (ω) such that sup|ω|≤B |<(ϕj(ω|z))− P r(z)′βrej,r(ω)| = O(r−αjB)

and sup|ω|≤B |=(ϕj(ω|z))− P r(z)′βimj,r (ω)| = O(r−αjB).

Condition 1.7 ensures that the polynomial approximation is reasonably close to the

actual conditional characteristic functions. The parameter αj governs smoothness of

ϕj(ω|z) uniformly for both real and imaginary parts. For example, consider a single

spectrum ω. Then αj is related to the smallest number of continuous derivatives

of both real and imaginary parts in ϕj(ω|z) with respect to z. See the following

example.

Example 1.5. Suppose that the distribution of Y (j) conditional on p(X) = z is

normal with mean µj(z) and variance σ2 <∞. Then the characteristic function of

Y (j) is given by ϕj(ω|z) = exp(ιωµj(z) − σ2

2
ω2) = exp(−σ2

2
ω2) exp(ιωµj(z)). By

the Euler expansion, exp(ιωµj(z)) = cos(ωµj(z))+ ι sin(ωµj(z)) ≈ (1− 1
2!
ω2µj(z)2 +

1
4!
ω4µj(z)4 − · · · ) + ι(ωµj(z) − 1

3!
ω3µj(z)3 + 1

5!
ω5µj(z)5 − · · · ) of which both real

and imaginary parts are continuously differentiable functions with respect to µj(z).
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Therefore, ϕj(ω|z) is well approximated by a polynomial series of z if and only if

µj(z) is continuously differentiable up to αj-th order.

The following result is the key ingredient for constructing a consistent esti-

mator of the density of ∆. It formally states that the ECFs (1.14) and (1.15) are

uniformly consistent for the actual characteristic functions of the potential outcomes.

Theorem 1.1. Suppose that Condition 1.7 and that of Lemma 1.6 hold. In addition,

assume that r = rn satisfies (i) zκr
1/2
n κ

−s/2dx
n = o(1) and (ii) Bn/r

αj
n = o(1). Then,

for j ∈ {0, 1},

sup
|ω|≤Bn,z∈[p,p]

|ϕ̂j,n(ω|z)− ϕj(ω|z)| = Op

(√κnr3
n

n
zκ

)
+Op(r

−αj
n Bn)

as n→∞.

The result shows that the empirical estimators of the characteristic functions

given by (1.14) and (1.15) are uniformly consistent with their population counter-

parts. The rate of convergence consists of two terms as shown in Theorem 1.1. The

first term is related to the approximation error caused by the series estimation of

the propensity score function in the first stage. It is a function of three parameters:

bandwidth κn, size of the basis function zκ, and the order of spline basis rn. The

second term is due to the smoothness assumption (Condition 1.7) imposed on the

conditional characteristic functions. This term is bounded with a proper choice of

bandwidth Bn and corresponding order of splines rn.

Given an empirical approximation of the ratio of ECFs, a naive way to con-

struct an estimator of f∆ is to replace ϕ1(ω|z)/ϕ0(ω|z) in (1.9) with its sample
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counterpart. However, simply replacing the population characteristic functions with

their empirical counterparts does not generally work because of the ill-posed inverse

problem which is common in nonparametric estimators. To alleviate this problem, I

regularize the ratio of ECFs using a kernel function over the spectral domain ω ∈ R

following the approach discussed by Carroll and Hall (1988) and Fan (1991a). The

main idea is to control the rate of decay of the ratio of characteristic functions at

their tails using the spectral cut-off.

Given the ECFs (1.14), (1.15) and the weighting kernel ϕξ(·), the nonparamet-

ric estimator of the conditional density of heterogeneous causal effect is constructed

by replacing the terms in (1.9) with their empirical counterparts. The formula is as

follows:

f̂∆,n(τ |z) =
1

2π

∫
R

exp(−ιωτ)ϕξ(hnω)
ϕ̂1,n(ω|z)

ϕ̂0,n(ω|z)
dω. (1.16)

Expression (1.16) has the following implication. Suppose that the targeting quantity

is the causal effect with a random noise instead of ∆ itself. Specifically, consider

shifting ∆ with the size of ξ, which is a random variable independent with both

Y (1) and Y (0). In addition, ξ is penalized by hn such as hnξ. The target is then

∆ξ ≡ Y (1) − Y (0) + hnξ which is essentially a linear shift of ∆ by the amount of

hnξ. The characteristic function of the “shifted” causal effect is equivalent to that

of the original one multiplied by ϕξ(hnω). The estimator (1.16) is then interpreted

as an empirical counterpart of the inverse Fourier transformation of the conditional

density of ∆ξ. Intuitively, the density function of ∆ξ will converge to that of the

actual causal effect ∆ as hn tends to zero.

36



The ratio between empirical characteristic functions is penalized with a weight-

ing function over the spectral domain. The weighting function consists of two com-

ponents. One is the characteristic function of an auxiliary random variable, denoted

by ϕξ(·). This function serves as a kernel to constraint the region where the ratio

of ECFs is integrated. Another element is the bandwidth which is denoted by hn.

This sequence of non-random scalars manages the range of spectrum over which the

ratio ϕ̂1,n(ω|z)/ϕ̂0,n(ω|z) is integrated to gradually expand as the sample size grows.

The formal statement of the conditions that are necessarily required for the

weighting kernel and bandwidth:

Condition 1.8. Let ϕξ(ω) be a real-valued function over [−1, 1] that satisfies the

following conditions:

(i) ϕξ(ω) is continuously differentiable and symmetric around zero

(ii) ϕξ(ω) = 1 + o(|ω|m) for some m > 2 as |ω| → 0.

Condition 1.9. Let hn be a positive sequence that satisfies the following conditions:

(i) hn = o(1),

(ii) κ
1/2
n n−1/2zκh

−3
n r

(3−4α0)/2
n = o(1), and

(iii) h−1
n r
− 2α0+α1

4
n = o(1).

Condition 1.10. Suppose that the following conditions hold:

(i) Υ1(1/hn) min{κ−1/2
n n1/2z

−3/2
n , rα1

n hn} = o(1)

(ii) Υ0(1/hn)κ
3/2
n n−3/2zκr

9/2
n h−1

n = o(1).
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Condition 1.8 imposed on the spectral kernel ϕξ is equally or less restrictive to that in

other types of deconvolution estimators. For example, earlier work of Fan (1991b)

restricts ϕξ to be more than twice differentiable over R which is more restrictive

than what is given in Condition 1.8. Such an assumption is overly restrictive if the

parameters of interest are the density and the distribution functions of ∆. Therefore,

I only consider the case where a regularization kernel is continuously differentiable

over the spectral domain. Johannes (2009) suggests truncating the ratio of ECFs

to be zero for all |ω| ≥ an with the threshold an tends to infinity as the sample

size grows. The case is also covered by Condition 1.8 as truncating ECFs over

the spectral domain is represented by multiplying with the uniform kernel such as

ϕξ(ω/an) = 1(|ω/an| ≤ 1).

Conditions 1.9 and 1.10 are more specific to the potential outcome framework.

Unlike the classical statistical deconvolution method, the model discussed in this

chapter involves the empirical approximation in the first stage of the estimation

process to recover the distributions of potential outcomes. Therefore, a proper

bandwidth hn should depend on the parameters that are chosen to estimate the

propensity score functions as stated in Condition 1.9. In addition, the asymptotic

behavior of nonparametric estimator of the distribution of causal effects depend on

the tail behavior of the characteristic functions of potential outcome distributions.

Condition 1.10 guides how the bandwidth hn should be adjusted according to the

level of smoothness of the underlying data generating process.

The nonparametric estimator for the conditional distribution of causal effects

∆ is constructed in the same manner. Recall that the conditional distribution of ∆
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is identified by (1.11) as stated in Proposition 1.3. By replacing the conditional char-

acteristic functions with their empirical counterparts and penalizing with spectral

kernel ϕξ, we have the following formula:

F̂∆,n(τ |z) =
1

2
− 1

π

∫ ∞
0

ω−1=
(

exp(−ιωτ)ϕξ(hnω)
ϕ̂1,n(ω|z)

ϕ̂0,n(ω|z)

)
dω (1.17)

where =(·) denotes the imaginary part of complex-valued functions indexed by τ .

A benefit of using formula (1.17) is that, as discussed in previous section, it in-

volves numerical integration only once when integrating the ratio of ECFs over the

spectral domain ω ∈ R+. On the other hand, suppose that we compute F̂∆,n(τ |z)

by integrating f̂∆,n(τ |z) over (−∞, τ ]. Then the estimation procedure should in-

volve numerical integration twice which makes it computationally intense and less

accurate than using the formula (1.17).

Finally, the corresponding estimator for the quantile effect function of ∆ is

defined as the left inverse of the estimator (1.17). That is,

Q̂∆,n(u|z) = inf
τ∈T
{τ : F̂∆,n(τ |z) ≥ u} (1.18)

for u ∈ [0, 1].

While some of the asymptotic properties of nonparametric estimators (1.16),

(1.17), and (1.18) such as the uniform consistency is discussed in the following

section, it is generally unknown whether the estimator (1.16) will converge to a

well-known type of stochastic process. Therefore, I compute the uniform confidence

bounds for (1.16) using the recent result of Chernozhukov, Fernández-Val, Melly,

and Wüthrich (2016). In the paper, they propose a bootstrap-based algorithm to
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obtain uniform confidence bands for functional estimators. Implementation details

can be found in Appendix A.3.

1.4 Asymptotic Properties

In this section, I show that the nonparametric density estimator (1.16) is uniformly

consistent with the true density of ∆. The rate of convergence is shown to be a

function of tuning parameters and it is slower than the conventional
√
n-rate.

With some additional technical assumptions imposed, it can be shown that the

estimator (1.16) is uniformly consistent with the parameter of interest, f∆(τ |z). The

key is to find a proper balance between tuning parameters that are used in either

series approximation of the propensity score function or the range of spectral cut-

off. The former one is denoted by κn, which implies the length of polynomial basis

used to approximate the unknown propensity score function p(x). The latter one is

denoted by hn as in Section 1.3. Other determinants of the speed of convergence are

the size of basis functions, denoted by zκ, and the length of basis rn which controls

the approximation error in ECFs given by (1.14) and (1.15). I choose zκ = κdx/2,

which is obtained by various types of basis functions including, but not limited to,

Hermite polynomial and splines. In addition, I set rn to be proportional to κn in

the sense that rn/κn will be a constant for all n. This will reduce complexity in the

resulting rate of convergence.

The following theorem states the result on consistency of density estimator.

The proof can be found in Appendix A.2.
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Theorem 1.2. Suppose that the assumptions in Proposition 1.2 and Theorem 1.1

hold. In addition, ϕξ(ω) and hn satisfy Condition 1.8, 1.9 and 1.10, respectively.

Then for each z ∈ [p, p], f̂∆,n(τ |z) defined as in (1.16) is uniformly consistent for

f∆(τ |z) on T . Moreover,

sup
τ∈T
‖f̂∆,n(τ |z)− f∆(τ |z)‖ = Op

(
ξf (

1

hn
)

)
where ξf (b) =

(
κn
n

) 3
2 zκr

9
2
n bΥ0(b)−1 + r

−(2α0+α1)
n b4 as n→∞.

Theorem 1.2 shows that the estimator (1.16) is uniformly consistent with the

true density of causal effects (1.9). Notice that the speed of convergence is no longer

equal to the square-root of the sample size. Such a property is typically observed in

any type of nonparametric estimators that involves deconvolution of density func-

tions. However, the rate is even slower than, for example, a nonparametric density

estimator for the classical measurement error model. For example, Fan (1991b)

shows that for the classical deconvolution estimator, optimal rate of convergence

is proportional to the log of sample size. The reason for having a slower rate in

Theorem 1.2 is that the estimation procedure involves an additional source of error

by approximating the conditional characteristic functions with their empirical coun-

terparts. Similar result can be found in Taupin (2001) and Johannes (2009) where

they present a semi-parametric estimator that involves the statistical deconvolution

formula in the context of measurement error models when the error distribution is

approximated by the empirical distribution of proxy observations.

By construction, formula (1.17) yields a point-wise estimator of F∆(τ |z) that

is monotonically increasing as long as the point estimates f̂∆(τ |z) are weakly pos-
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itive for all τ ∈ T and z ∈ [p, p]. Such a property makes the interpretation of the

distribution estimator (1.17) straightforward as it preserves natural properties of the

distribution functions. However, in practice, F̂∆(τ |z) can exceed 1 which violates

the axiom of distribution functions. In a later section, I consider truncating the

distribution and report the normalized estimate. That is, min{F̂∆(τ |z), 1} instead

of F̂∆(τ |z) itself. Chernozhukov et al. (2016) argues that truncating the distribu-

tion function estimates should not harm consistency while improving finite-sample

efficiency by shrinking the distance between F̂∆ and the true distribution F∆.

The following result states that the estimator F̂∆,n(τ) constructed as above

is uniformly consistent with the target parameter F∆(τ). The proof is given in

Appendix A.2.

Theorem 1.3. Suppose that the assumptions in Proposition 1.3 and Theorem 1.1

hold. In addition, ϕξ(ω) and hn satisfy Condition 1.8, 1.9, 1.10 and assume that

Υ1(1/hn)/(Υ0(1/hn)hn) = o(1). Then, for each z ∈ [p, p],

sup
τ∈T
‖F̂∆,n(τ |z)− F∆(τ |z)‖ = Op

(
ξF (

1

hn
)

)

where ξF (b) =
(
κn
n

) 3
2 zκr

9
2
n b(ln(1/b)Υ0(b))−1 + r

−(2α0+α1)
n b4 as n→∞.

Notice that (1.18) is by construction a monotonic function with respect to u

for each z ∈ [p, p]. The property is directly followed by the monotonicity of the

distribution estimator (1.17). Natural monotonicity in Q̂∆(u|z) gives a practical ad-

vantage over the semi-parametric quantile effect function estimators identified via

rank invariance assumption. Bassett and Koenker (1982) point out that empirical
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quantile effect functions can be locally non-monotonic even though such irregular

behavior should be negligible as the sample size approaches to infinity. One reso-

lution for the problem is proposed by Chernozhukov, Fernández-Val, and Galichon

(2010). They consider re-arranging point-wise estimates of the quantile function in

ascending order. This type of additional operation is not necessary for the estimator

given as expression (1.18).

Finally, the estimator of the quantile function of heterogeneous treatment ef-

fects is shown to be uniformly consistent. Corollary 1.3 is the formal statement

for the uniform consistency of the quantile effects estimator (1.18). The result is

directly followed by the argument of Theorem 1.3 and the fact that Q̂∆,n converges

at the same rate as of F̂∆,n.

Corollary 1.3. Suppose that the Conditions in Theorem 1.3 hold. Then, for each

z ∈ [p, p],

sup
u∈[0,1]

‖Q̂∆,n(u|z)−Q∆(u|z)‖ = op(1)

1.5 Monte Carlo Experiment

In this section, I present results from a Monte Carlo experiment under various sce-

narios to analyze the small sample performance of the nonparametric estimator

developed in this chapter. The data generating process (hereby DGP) for the ex-

periment is given as follow. A 2 × 1 random vector of covariates X is given as

X = (X1, X2)′ where Xk ∼ N(0, 0.25) for k = 1, 2 with X1 ⊥ X2. Treatment status

D is assumed to be a binary random variable which is randomly drawn, conditional
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on X. Specifically, let D = 1(α+X1 +X2 +X2
1 +X1X2 +ε ≥ 0) where ε ∼ N(0, 0.3).

Note that parameter α governs the size of the treatment group relative to the control

group in the simulated sample. For a given number of total observations, a larger α

would yield a relatively smaller number of treated compared to that of untreated.

Setting α = 0 as a reference, I experiment with different values of α to investigate

relationships between the relative size of the treated group versus the untreated

group with respect to performance of the nonparametrically estimated distribution

of causal effects in terms of its precision and efficiency.

The propensity score function in the experimental model described above takes

the form p(X) = Φ(−(α + X1 + X2 + X2
1 + X1X2)/σε) where Φ(·) is the standard

normal CDF. The potential outcomes are generated by the following DGP:

Y (0) = µ0 + δ01X1 + δ02X2 + U0

Y (1) = µ1 + δ11X1 + δ12X2 + U1

where U0 ⊥ U1 are the idiosyncratic errors and µ1, µ0, δ0k, δ1k for k = 1, 2 are

parameters for which values will be set later. It is straightforward to see that the

heterogeneous treatment effect is given by

∆ ≡ Y (1)− Y (0) = µ1 − µ0 + (δ11 − δ01)X1 + (δ12 − δ02)X2 + U1 − U0 (1.19)

The model in (1.19) is simple enough to distinguish within- and between-group

heterogeneity into two additively separable terms. Between-group heterogeneity is

fully captured by the mean effect which is a linear function of X1 and X2. Within-

group heterogeneity, on the other hand, is represented by the dispersion in the two
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error terms, U1 and U0. The key is to estimate not only the mean effect, which

is parameterized by µ1, µ0, and δjk for j = 0, 1, k = 1, 2, but also the shape of

heterogeneity represented by the distribution of U1 − U0. For this purpose, I target

not only the mean but also the variance of ∆ to evaluate how precisely the non-

parametric estimator developed in this chapter captures the shape of heterogeneity

in causal effects. Actual values for both mean and variance of the heterogeneous

causal effect are set to be equal to 1.

I consider three different choices for the distributional model of the hetero-

geneity in the causal effect: normal, Laplace, and exponential distributions. The

case with normal distribution is a benchmark where the shape of the distribution

of ∆ is symmetric around its mean and decays at an exponential rate. The Laplace

distribution also represents a symmetric distribution while the density is more con-

centrated around its mean and decays slower than the normal distribution. Finally,

exponential distribution represents a case when the distribution of causal effect is

asymmetric and right-skewed. In all three distributional models, parameters are

adjusted so that the variance of U1 − U0 is equal to 1.

To begin with, I present the result of distribution estimates as Figure A.2 in

Appendix A.4. It consists of 12 panels which is a combination of four sample sizes

(300, 500, 1000, 2000) and three different values of α (0, 0.15, 0.3). In every case, the

underlying distribution of the random component U1 −U0 is assumed to be normal

with mean and variance equal to one. In each panel, I overlay distribution estimates

for each of 1000 Monte Carlo iterations in black solid lines. As illustrated in the

figure, there is a larger dispersion of distribution estimates at tails of distribution.
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This may suggest that even though the nonparametric estimator (1.17) is uniformly

consistent with its true distribution as shown in Theorem 1.3, the rate of convergence

can be uneven between the tails and center of the distribution.

Estimated quantile effect functions of heterogeneous causal effect under various

scenarios are presented as figures in Appendix A.4. Figure A.3 shows the result

when the true distribution of ∆ is assumed to be normal. The figure also contains

4×3 = 12 panels as in the case of distribution estimates shown in Figure A.2. In each

panel, a blue solid line represent the point-wise average of quantile effect estimates

among 1000 experiments. Red dashed lines show the 95% range of quantile effect

estimates for the same number of repetitions. The result shows that for all 12 cases,

the true quantile function, which is depicted with a black solid line, stays in the

confidence interval and close to the average estimates. However, one may observe

that there are small upward/downward biases at the bottom/upper quantiles. This

is mainly due to the fact that distribution estimator is less precise at its tails as

shown by Figure A.2.8

Figures A.4 and A.5 present results from the same experiment as seen by Figure

A.3 with different distributional assumptions. Estimates in Figure A.4 are obtained

with samples generated by assuming that ∆ is drawn from the Laplace distribution.

While the difference is not significant, we may find the quantile function estimates

are downward/upward biased at the bottom/upper half. This may suggest that

8Chernozhukov (2005) finds that the asymptotic distribution of quantile function estimators are

different at extreme quantiles compared to the center. Although his result is based on a different

setting, similar argument can be made for larger deviations at extreme quantiles in this exercise.
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precision of the nonparametric estimator is lower when the underlying distribution

of heterogeneous causal effects decays slower than the normal distribution. However,

the size of the bias becomes smaller as the sample size grows. The bias seems to be

larger in Figure A.5 where the true distribution of ∆ is assumed to be the exponential

distribution. In this case, quantile effects are biased upwards in general, although

the true quantile effect function is within the 95% interval.

To further investigate the overall precision of the nonparametric density esti-

mator (1.16), I compute Mean Integrated Squared Error (MISE) of the estimates.

The formula for the MISE of density estimator is given as

MISE(f) ≡
∫
T

(f̂∆,n(τ)− f∆(τ))2f(τ)dτ

Similarly, precision of the distribution estimator (1.17) is also measured by the MISE

of F̂∆ which is obtained as follows

MISE(F ) ≡
∫
T

(F̂∆,n(τ)− F∆(τ))2f(τ)dτ

Table A.1 shows the resulting MISE under various scenarios. The estimator

matches the true distribution function well in the case of normal and Gumbel dis-

tribution. However, the experiment with the Laplace distribution may suggest that

the estimated density loses precision if the underlying distribution has heavy tails at

both ends. In addition, the first three columns suggest that the overall estimation

errors in f̂∆,n(·) tend to decrease as the relative size of control groups to that of

treated groups increase.
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1.6 Conclusion

In this chapter, I introduced a flexible nonparametric approach to estimate the

heterogeneous causal effects of unknown form in a partial observations framework.

Identification of the causal effect is achieved by introducing conditional indepen-

dence of the treatment effect assumption, the case in which gains from treatment

are independent from the baseline outcome, conditional on a set of observable char-

acteristics. I discussed that the independence between the baseline outcome and

the gains from treatment imply that the counterfactual outcome distribution, con-

ditional on observable characteristics is stochastically increasing with respect to the

observed outcomes. This property relaxes the restrictive implication of the rank

invariance by allowing the possibility for ranks to be different between pre- and

post-treatment.
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Chapter 2: Nonparametric Estimation of Heterogeneous Earn-

ings Losses of Displaced Workers

2.1 Introduction

In this chapter, I study the heterogeneity in earnings losses of displaced workers us-

ing a newly-developed nonparametric estimation method. Recent empirical studies

show that the effect of displacement on (permanent) income is substantially different

across time and individuals.1 I revisit this question focusing on the heterogeneity of

earnings losses due to displacement within worker groups. Using the Current Popu-

lation Survey (CPS) individual-level data from 1998 to 2016, I show that the decline

in labor incomes of displaced workers is not only substantial compared to their non-

displaced counterparts, but also significantly dispersed within groups characterized

by observable characteristics such as tenure. A few examples are the followings.

While less tenured workers lose more on average, the distribution of the effect is

1For example, Davis and von Wachter (2011) estimate workers lose on average 40/23% in

recessionary/expansionary periods compared to non-displaced counterparts. On the other hand,

Abraham, Haltiwanger, Sandusky, and Spletzer (2016) find negative impacts of unemployment

duration on post-displacement earnings even after controlling for work histories.
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more dispersed among more tenured workers. In addition, the size of within-group

heterogeneity of earnings losses is larger when the unemployment rate is high.

Previous researches find that workers involuntarily separated from her previous

position suffer substantial loss in their potential earnings. Earliest results can be

found in, for example, Ruhm (1991) and Jacobson, LaLonde, and Sullivan (1993).

Ruhm (1991) is, to my knowledge, the first to formally estimate the amount of

permanent loss in incomes due to displacement using survey data. On the other

hand, Jacobson et al. (1993) use administrative data from Pennsylvania to estimate

on average 25% loss in permanent income of displaced workers compared to those

who were able to continue in their position throughout the sample period. While

the size of earnings loss may differ in each study, their main argument is supported

by various subsequent studies using both administrative data (Couch and Placzek,

2010; Davis and von Wachter, 2011) and survey data (Carrington, 1993; Stevens,

1997; Farber, 2011, 2015).2

I revisit the question using matched Monthly CPS data from 1996 to 2016.

CPS has comprehensive demographic information of workers which is used to con-

trol for heterogeneity in individual-specific returns to tenure and construct a fair

comparison group to displaced workers. Especially the Displaced Workers Survey

2Couch and Placzek (2010) finds above 10% loss in earnings after displacement using the ad-

ministrative data of Connecticut in 2000s. They argue that Jacobson et al. (1993)’s result may

be biased upward due to industrial reform in Pennsylvania during 1980s. Farber (2015) estimates

the effect using merged CPS data from 1984 to 2010, while the information related to employment

status is augmented from DWS supplement.
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(DWS) supplement provided in every January or February samples contain detailed

information on displaced workers including the reason of separation and earnings

prior to displacement.3 Such information provides better identification strategy by

restricting both treated and controlled group to be the workers having similar pro-

files.

Identification of the causal effect of displacement is based on the assumption

that worker-specific draw of returns to general experience is conditionally indepen-

dent to both observed and unobserved factors in potential earnings. The intuition

follows from the argument by Kletzer (1989) that in case of a permanent job loss, bias

in relationship between post-displacement earnings and pre-displacement tenure is

small as the match quality is randomly drawn. I formalize the intuition and establish

a random coefficient model featuring the following properties. First, workers who

have been re-employed following displacement draw match-specific returns to tenure

from an unknown distribution which is the objective of interest. Second, worker-

specific returns to tenure is conditionally independent to unobserved match quality

given her pre-displacement earnings. Then I show that the distribution of counter-

factual earnings losses following the displacement is nonparametrically identified by

comparing potential wage distribution of displaced workers to that of non-displaced

workers with similar observed characteristics.

This chapter is to shed new light on the topic of permanent income losses of

3DWS consists of supplemental questions asked to individual participants for every even num-

bered years. Additional questions have been asked to eligible survey participants for every January

surveys after 2000 and February surveys until 1998.
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displaced workers by looking at the distributional characteristics of earnings losses.

Since the earlier work of Ruhm (1991), many studies have shown a significant size of

the causal effect of temporary unemployment on wage profile especially on whether

the effect is permanent. While some studies address the differences in the earn-

ings loss by demographic groups of workers (Jacobson et al., 1993; Davis and von

Wachter, 2011), little has been known about the heterogeneity in earnings losses

within each group. Such disparity may have contributed to the rise in wage inequal-

ity in the U.S. economy which has been well documented by, for example, Autor,

Katz, and Kearney (2008) and Acemoglu and Autor (2011). Especially after 2008,

mass layoff events has been occurred more frequently than previous years. In a

broader context, this exercise aims to identify the impact of labor market dynamics

on wage distribution in a less parametric framework than existing work.

Post-displacement earnings losses largely due to the loss of human capital

which is not transferable. In particular, size of the wage loss following the displace-

ment is much worse if larger portion of human capital is specific to the previously-

held job (Kletzer, 1989). The argument is supported by a number of subsequent

studies including, Jacobson et al. (1993), Carrington (1993), Neal (1995), and

Stevens (1997) to name a few. However, there are disagreements on where an

individual worker’s accumulated skills are the most attached to. Jacobson et al.

(1993) and Neal (1995) argue that the skills are mostly attached to their industry

classified at various levels and therefore, switching across different industries may

result in larger earnings loss after displacement. (Carrington, 1993) show that losses

in job-specific skills is the most relevant source of the effect of displacement while
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general labor market condition does not have significant effect.

The question of how to correctly measure the effect of displacement is closely

related with problem of identifying the returns to tenure. Difficulty in estimating

the returns to tenure lies in the fact that workers endogenously decide to accumulate

their human capital. Earlier theories on human capital accumulation process has

been argued that there exists positive returns to tenure and experience (Becker, 1964;

Mincer, 1974; Mortensen, 1978; Mincer and Jovanovic, 1979). However, empirical

studies have also shown that the causality can be reversed since higher match quality

could lead to a position that has large wage and longer lifespan at the same time

(Abraham and Farber, 1987).

Studies have adopted various approaches to control unobserved heterogeneity

in wage process. One way is to introduce proper instrumental variables and im-

plement two-stage estimation procedure where first stage regression is to control

potentially confounding factors between job-specific returns and potential wage of-

fers. Altonji and Shakotko (1987) estimate on average 24% larger wage for 10 years

of tenure in the same position compared to newly hired workers. Subsequent studies

including Topel (1991) and Altonji and Williams (2005) found that the effect can be

smaller. More recently, Dustmann and Meghir (2005) use control function approach

under exclusion restriction which assumes that the endogeneity in unobserved het-

erogeneous skill levels are independent with age if the sample is restricted to young

workers.

On the other hand, properly constructed sample of non-displaced workers can

help identify the counterfactual earnings loss by matching wage profiles across dis-
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placement status. Jacobson et al. (1993) use a comprehensive payroll data of Penn-

sylvanian workers to find that the displaced workers on average suffer wage loss at

least 3 Months prior to separation. From this evidence, we may argue that with-

out controlling workers’ pre-displacement earnings, the effect of losing job-specific

capital will be under-estimated. Motivated by their approach, I estimate the causal

effect of displacement by matching earnings distribution of displaced workers with

its counterpart of non-displaced workers via observable characteristics including past

wage levels. However, due to the limited sample, I can only control for the wage

of previous year which may not reflect the decline of wage just before the date of

displacement.

I contribute to the literature by estimating the distribution of earnings losses

following the displacement. I begin with a theoretical model of wage process fea-

turing heterogeneous returns to tenure as a random coefficient. A nonparametric

estimation strategy developed in Chapter 1 is implemented. The theory extends dis-

tribution estimators for random coefficient models as in, for example, Horowitz and

Markatou (1996), Evdokimov (2010), Canay (2011), and Arellano and Bonhomme

(2012). Major difference is that the observed wages are weighted by estimated

propensity scores to recover the distribution of potential earnings of displaced and

non-displaced workers. Under this assumption, the estimated distribution of the

difference between potential earnings has causal interpretation.

The rest of the chapter consists of the following sections. Section 2.2 shows

summary statistics from the sample used in the empirical analysis focusing on earn-

ings dynamics, demographics, and decision of displaced and non-displaced workers.
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In section 2.3, I present a simple model for potential earnings dynamics and propose

a set of identifying assumptions along with their implications. In section 2.4, I de-

scribe nonparametric estimation method implemented to estimate the distribution

of earnings losses and present the result. Section 2.5, I conclude.

2.2 Data

I use the series of January samples of the Monthly Current Population Survey (CPS)

from 1996 to 2016. The major benefit of using CPS data is that I can exploit a rich

set of information from additional questions available from the Displaced Workers

Survey (DWS) and Job Tenure (JT) supplements. The DWS is collected biannually

and asks detailed questions regarding the labor market status of survey takers, such

as whether the person has been displaced within the last three years, the reason

for displacement. In the same survey Months, JT supplemental questions are also

collected. The supplemental questions has information on previously held job which

includes the type, industry, and length of tenure. The survey has been widely used

in the context of estimation of earnings losses of displaced workers because of its

natural advantages. Some of the noticeable examples are Ruhm (1991), Carrington

(1993), Neal (1995), and Farber (2011, 2015).

There are limitations of using CPS to identify the causal effect of displace-

ment. One of which is that by the structure of survey method, detailed history of

wage profile of an individual can only be tracked back to one and a half years. For

this reason, growing number of studies use administrative data for their rich set
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of information on track history of earnings and matches between employer and its

employees. Jacobson et al. (1993), to my knowledge, is the first study to address

importance of constructing well-represented control group using a comprehensive

observations of Pennsylvanian workers to estimate causal effect of displacement on

earnings. Dustmann and Meghir (2005) use administrative data from Germany to

estimate the returns to experience and tenure while controlling heterogeneity bias

via two-stage method. Davis and von Wachter (2011) use the data of U.S. taxpay-

ers which contains extensively detailed history of earnings. Abraham et al. (2016)

construct a novel dataset by merging Longitudinal Employer-Household Dynamics

(LEHD) and CPS via unique individual identifiers to incorporate detailed informa-

tion on both employer-employee matches and worker characteristics. More recently,

Heredia, Rucci, Saltiel, and Urzúa (2017) estimate heterogeneous returns to experi-

ence and tenure across different labor market institutions using administrative data

from Brazil and Chile.

I address this issue in two ways–one from a theoretical perspective and the

other one in empirical approach. For a theoretical resolution, I build a simple

model to describe the stochastic process for potential wage. The model features

random coefficients that represent worker-specific returns to tenure which is assumed

to be different across workers in both observed and unobserved dimensions. It is

shown that the unknown distribution of returns to tenure is a sufficient statistic to

describe the heterogeneity in earnings losses by displacement. The key to identify the

distribution of earnings losses is to assume that it is independent to the unobserved

match quality for a new job conditional on the pre-displacement wage. Under this

56



assumption, I show that the distribution of earnings losses is nonparametrically

identified by matching the wage distribution of displaced workers to that of non-

displaced workers having similar past wage profile (refer Section 2.3 for details).

The treatment group consists of workers who have been displaced within one

year from the survey date as to match with the sample of non-displaced workers

whose wage of previous year is available. I only consider workers displaced because

of the plant closure which is considered to be a fairly exogenous reason and does

not necessarily reflect workers’ innate ability such as skill level and productivity.

However, it is still possible to have endogenous selection in samples as some plants

may suffer from decrease in productivity at the aggregate level. Therefore, I in-

troduce regional and industry dummies while estimating the propensity score to

displacement to control for heterogeneity across region and industry.4 The region is

controlled at the state level and industry is classified by 3-digit NAICS code.

The control group is constructed by non-displaced workers who have been

continuously working within the same period when displaced workers have been

unemployed. I rule out the case if a worker has switched her job or temporarily

unemployed within a year from the survey date. Such information can be verified

from JT supplement in which workers are asked if they have been working with the

same employer since last year. The sample I use in this chapter can be potentially

4This is related with the concern raised by Couch and Placzek (2010). They argue that the

estimated earnings losses in Jacobson et al. (1993) could be upward biased as Pennsylvania in late

1980s have suffered economic downturn in overall which leads to larger loss in earnings and smaller

re-employment rates.
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biased. As pointed out by Jacobson et al. (1993), workers may start to lose their

wage at least 3 Months prior to displacement due to financial distress that the

firm has. Therefore, the estimated average earnings loss presented in this paper is

possibly over-estimated by not fully incorporating the heterogeneity in firm-specific

characteristics.

The sample used in this exercise consists of about 779,000 worker-year obser-

vations. The outcome variable of interest is log weekly earnings. The numbers are

based on self-reported amount on the wage a worker earned in the past week. There-

fore, earnings reflects not only the hourly wage but also the number of hours worked

within one week.5 The reported wages are normalized by 2010 dollars using the

personal consumption expenditure price index. I use inverse hyperbolic sine (IHS)

transformation of the real wage so as to approximate the log wage without losing

zero entries.6 The treatment variable is defined as a binary indicator which takes

1 if a worker has been displaced at least once within one year. Specifically, only

5I abstract the case in which previous displacement status could alter the decision of working

hours and assume that hours do not vary between the current and previous jobs. This is a

potentially important question if a large portion of displaced workers move from full time to part

time jobs. I exclude such cases as there are only small number of observations relative to the entire

sample.

6IHS transformation of a variable y is defined as IHS(y) ≡ log(y +
√

1 + y2). A benefit of

using IHS instead of log transformation of earnings data is that IHS transformation can naturally

incorporate zero entries by IHS(0) = 0 while overall the function well approximates the log

transformation. This is useful especially for the displaced workers study as the data naturally

contains a large number of zero earnings.
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workers displaced from their previous positions due to a plant closure are included

in the treated group. By doing so, I can further eliminate potentially confounding

factors in treated and controlled groups.

Throughout the sample period, gaps between the average earnings of displaced

and non-displaced workers have been consistently large. To illustrate the annual

variations in wage gaps between displaced and non-displaced workers, I plot within-

year averages of log wages among workers in both groups for every two years from

1996 to 2016. In Figure B.1, the red solid line indicates the evolution of average

weekly wages of non-displaced workers while blue dashed line represents that of

displaced workers. Each data point reflects the within-year average of self-reported

weekly wages in the sample. I also depicted with vertical lines the size of standard

errors for each within-year average. For the last 20 years, differences between the

average wages of both groups has been persistent. Displaced workers earned about

10% less than non-displaced workers on average while the size of wage gap varies

across time. For example, average loss by displacement was larger in 2012 and 2014

compared to other years in the sample.

One possible way to explain the observed wage differences between displaced

and non-displaced workers is that the chance of finding a new job as good as the pre-

displaced position varies across time and individuals. For example, the average wage

level among displaced workers has been steadily decreasing since 2008. This may

have resulted in a lower rate of re-employment among displaced workers. I briefly

investigate this conjecture by summarizing the labor market decision of displaced

workers by survey year.
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Table B.3 summarizes the labor market status of displaced workers for each

year. The labor market status of displaced workers are classified into three groups.

First are the workers who currently-employed, which includes workers who are em-

ployed either full-time or part-time as of the date of survey. While every year about

70% of displaced workers found jobs, the numbers vary across time. Specifically,

there were significant drops in 2010 and 2012. This may be a reason that the aver-

age wage gaps between displaced and non-displaced workers widened following the

recession in 2008 as shown in Figure B.1. Workers who have not been re-employed

after 2008 are still in the labor market. As shown in the second and third columns

in Table B.3, the fraction of displaced workers who were unemployed in 2010-2014

is larger compared to previous years while that of workers who are out of the labor

force was relatively stable throughout the sample period. This evidence suggests

that changes in macroeconomic factors mostly affect the unemployment rate of dis-

placed workers and do not alter the decision to stay out of the labor force.

One potential concern is that there could be other factors that affect the

decision of workers following displacement. In tables B.4 and B.5, I present the

fraction of worker who choose to find a new job, be unemployed, or stay out of

the labor market after being exogenously separated, according to their educational

attainment and age, respectively. As can be seen in table B.4, the ratio of workers

employed following displacement differ by education levels. The ratio of workers

who stay unemployed and out of the labor market is largest among high school

dropouts. This suggests that both quality and frequency of potential job offers that

a displaced worker would face highly depends on her educational attainment. On the
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other hand, the decision of displaced workers does not differ significantly according

to age of displacement except if a worker is over 55. Older workers tend to exit the

labor market rather than finding a new job after being displaced, according to the

evidence shown in table B.5. Based on such observations, I characterize worker types

by their educational attainment and not age to capture the observable heterogeneity

in potential wage offers.

Table B.6 summarizes observed demographic characteristics of workers by

their displacement status. I compare averages of individual characteristics includ-

ing age, sex, race, educational attainment as well as job-related variables, such as

the length of tenure and weekly wage between displaced and non-displaced workers.

Pre-determined demographic characteristics are largely similar between two groups.

On average, workers in both groups are 38-39 years old, about 70% are white, and

about 26% of workers have a bachelor’s degree or higher. Major differences between

displaced and non-displaced workers are found in job-related characteristics. Dis-

placed workers have significantly fewer years of tenure in the current position as

the sample restricts focus to workers who have been separated from their previous

position within the past three years. Displaced workers earn 50 dollars fewer per

week on average compared to the non-displaced workers. Such a difference may

imply that there exists substantially negative effects of displacement.
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2.3 Theoretical Framework

In this section, I present a simple model to describe the wage process of an individual

worker. The model will provide insights for the set of identifying conditions that are

necessary to specify the sources of heterogeneous effects of displacement on earnings

losses. Key features of the theoretical framework introduced in this section are

the following. First, wage difference between displaced and non-displaced workers

is assumed to be a random variable. Second, the distribution of wage difference

is independent with the previous match quality, conditioning on a set of observed

characteristics.

2.3.1 Income Process

Consider a simple model to describe accumulation of human capital of an individual

worker. Denote hijt to be the worker i’s stock of human capital at period t given that

she has been matched with firm j in period t. The stock of human capital is assumed

to consist of three components. The first is the transferable capital which can be

carried over different jobs. Transferable capital is often represented as a function

of general experience (for example, Dustmann and Meghir, 2005). However, due

to the limited information available in CPS and its supplements, I assume that it

is a function of age and education level, while leaving the functional form to be

flexible. The second part is the firm-specific component that cannot be transferred

across different positions in different firms. Non-transferable skill level is assumed

to be a function of the firm-specific experience, or seniority, denoted by sijt. Lastly,
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µijt denotes the match-specific capital which evolves independently with the tenure

within a job.

I assume that the log of human capital evolves following the two features:

(1) increases non-linearly according to the seniority sijt, and (2) generic and job-

specific components are additively separable. The form specifically motivated from

Dustmann and Meghir (2005) and Heredia et al. (2017).7 Specifically, the log of

human capital is assumed to be governed by the following functional form:

lnhijt = g(ait|φi) + f(sijt|φi) + ρijtsijt + µijt (2.1)

where ait is the age of worker i at period t and φi is a set of time-invariant charac-

teristics including sex and educational attainments. In equation (2.1), log of human

capital is decomposed largely into two parts. Term g(ait|φi) is the component cor-

responding to transferable human capital while f(sijt|γi) + ρijtsijt is the portion of

human capital which is specific to the firm. Note that the returns to both general

and firm-specific experiences consist of two parts. Terms g(ait|φi) and f(sijt|φi)

represent the deterministic component of the returns to general and firm-specific

experiences, respectively. Heterogeneity in returns to experiences are governed by

worker types which is reflected by the specification that both functionals f and g

are conditioned on the individual-specific parameter φi. While functional forms for

f and g will remain unspecified in the fully nonparametric approach, I consider

quadratic functions as a reference for benchmark regressions presented in Appendix

B.2.
7Equation 2.1 simplifies the form assumed in Dustmann and Meghir (2005) by excluding sector-

specific components in human capital accumulation process.
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Besides the deterministic component in returns to experiences, there exists

stochastic components in (2.1). Term ρijt denotes the unobserved heterogeneity in

returns to general and firm-specific experiences, respectively. In a later section, I

assume that φi is fully specified by observable characteristics while ρijt is assumed

to be random coefficients. These random coefficients become the source of within-

group heterogeneity in returns to experiences among the workers with the same

observed characteristics.

Suppose that the observed wage of worker i at period t is given as wijt =

reithijt exp(εit). The term reit represents the market returns to human capital of which

heterogeneity across workers is fully captured by one’s education level e. Term εit

is an idiosyncratic error. Taking log transformation on both sides, we have the

following specification for the stochastic process of observed wage:

lnwijt = ln reit + g(ait|φi) + f(sijt|φi) + ρijtsijt + µijt + εit (2.2)

There are two sets of parameters that jointly formulate the heterogeneity in

returns to experience. The first is the worker type φi which governs the deterministic

component of the earnings growth. I assume that worker type is fully characterized

by the observed demographic information that has been pre-determined before en-

tering the labor market. This includes sex, race, and education level. The second

is the unobserved heterogeneity ρijt which is assumed to be a random coefficient.

This represents remaining heterogeneity that is not captured by the differences in

observed characteristics.

There are at least two major challenges in estimating the wage equation (2.2).
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The first is that the accumulation of general and job-specific experiences are results

of endogenous decisions. As pointed out earlier by Abraham and Farber (1987), job

seniority is correlated with unobserved factors including the quality of a worker and

employer-employee match. Such confounding factors lead to a bias in cross-sectional

estimates of returns to tenure, as measured by g(ait|φi) and f(sijt|φi) in the equation

(2.2). While previous studies by Altonji and Shakotko (1987), Altonji and Williams

(2005), and Dustmann and Meghir (2005), among others, use instrumental variables

to control endogeneity bias, I consider matching via observables based on a sufficient

statistic.

It is also important to notice that the returns to tenure in wage equation (2.2)

are heterogeneous across individual workers. Therefore, it is natural to target the

distributions of effects, rather than the mean effect, of displacement on earnings.

One possible approach is to assume a well-known parametric family of distributions

(e.g. normal distribution) for the stochastic component ρijt and implement max-

imum likelihood estimation method. This approach inevitably assumes a strong

set of restrictions which is difficult to justify without the prior knowledge about the

shape of heterogeneity in returns to skills. For example, distribution of the marginal

returns to seniority is possibly more right-skewed among managerial workers than

sales persons.8 Regarding the flexibility in distributional characteristics of heteroge-

neous returns to experience, I use the nonparametric approach developed in Chapter

1 to estimate the unknown distribution of the random parameter without imposing

8Studies found that significant portion of human capital is attached to workers’ previous occu-

pation or task. See, for example, Kambourov and Manovskii (2009) and Pavan (2011).
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parametric assumptions.

2.3.2 Identification of the Heterogeneous Effects of Displacement

The objective of interest is the counterfactual difference in earnings between dis-

placed and non-displaced workers. The effect is different across workers due to

the heterogeneity in accumulated human capital and match-specific components in

observed earnings. In this section, I show how the sample of displaced workers

helps characterizing heterogeneous returns to experience. The result shows that

counterfactual wage loss following displacement is decomposed into unobserved de-

terminants of potential wage level and a function of the worker’s experience and

observed characteristics.

Suppose that we restrict the sample to displaced workers. Specifically, consider

those who have been displaced for exogenous reasons (e.g. plant closure) in period

t − 1 and re-employed in t. Denote Dit−1 = 1 for these workers. If such a worker

is currently employed (at period t) and observed to have wage wij′t for j′ 6= j, then

the observed log wage is decomposed according to the wage process given as (2.2):

lnwij′t(Dit−1 = 1) = ln reit + g(ait|φi) + f(0|φi) + µij′t + εit (2.3)

On the other hand, consider a worker who has been working continuously

between t − 1 and t in the same position. The case is denoted by Dit−1 = 0. Her

observed wage is written as follows:

lnwijt(Dit−1 = 0) = ln reit + g(ait|φi) + f(sijt|φi) + ρijtsijt + µijt + εit (2.4)

The difference between (2.3) and (2.4) consists of two parts. The first is that if a
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worker was displaced in period t−1, she would have lost her wage components related

to her previous work experience. The second is that the match quality of her post-

displacement job will be different from that of her previous job. The counterfactual

difference between observed wages, conditional on the worker’s experience, is given

by

∆it ≡ lnwij′t(Dit−1 = 1)− lnwijt(Dit−1 = 0)

= f(0|φi)− f(sijt|φi)− ρijtsijt + µij′t − µijt (2.5)

Suppose that the worker type φi is fully determined by the observed characteristics.

Then the heterogeneous effects of displacement (2.5) are given as a function of

tenure, observed characteristics, and stochastic components ρijt, µijt, and µij′t.

One way to identify the stochastic components separately is to estimate the

returns to tenure from the wage equation. Recall the wage process (2.2). Dustmann

and Meghir (2005) introduce a set of assumptions under which the deterministic

component of the individual-specific returns to tenure is identified if the stochastic

returns ρijt is mean independent with age, conditional on the observed characteristics

of workers. Such a restriction is justified given that the authors only look at the

sample of young workers and therefore, potential wage offers are independent for

their ages.

Instead, I consider identifying the aggregate loss by displacement as a whole.

This is done by imposing two types of identifying restrictions. One is to match

displaced workers to non-displaced workers with similar earnings and work history

from their previous jobs. The other is to impose a certain type of assumption on
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the stochastic relationship between heterogeneous returns to experience and worker

types. The following is the formal statement of the identifying conditions.

(C1) For all j, {ρijt, µijt} is independent of Dit−1 conditional on φi, ait,, and wijt−1

(C2) ρijt is independent of µij′t for all j′ 6= j conditional on φi, ait, and sijt

(C3) εit is independent of Dit−1

Condition (C1) implies that the unobservable factors in potential earnings

(2.2) drawn after getting a new job are independent with the displacement sta-

tus, conditional on observed characteristics and prior wage level. The assumption

is justified if there is no discrimination against displaced workers conditioning on

that they have the same observed characteristic to non-displaced workers. More

specifically, I assume that workers’ previous wage level wijt−1 is a sufficient statistic

to capture the quality of match in the previously-held position. The argument is

plausible if a worker was separated from the previous job for a reason she cannot

control and her potential employers are aware of that.

Condition (C2) implies that the unobserved heterogeneity in returns to se-

niority is uncorrelated with the match-specific component from a potential new job,

conditioning on the observed components that are collectively characterizing the

labor market condition, worker type, and tenure. This assumption is in general

restrictive given that the re-employment probability differs across individuals. In

this case, the match quality of a new job reflects the worker’s innate ability and pro-

ductivity.9 However, in this paper, I restrict the sample to displaced workers who

9If a worker has been unemployed longer than a year, studies find that the duration of unem-
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have been unemployed for a relatively short period (less than a year) to minimize

the selection bias due to the heterogeneity in unemployment duration.

The idiosyncratic error term εit is assumed to be random as stated in the

condition (C3). It is a necessary assumption to separate stochastic components in

potential wage distribution from one that represents worker heterogeneity and that

reflects purely idiosyncratic errors. One way to interpret this assumption is that εit

only represents variations in potential wage due to factors that are exogenous from

a worker’s point of view. The factors may include, but are not limited to, volatility

in the local labor market due to aggregate business cycles. In a later section, I

compare estimated distributions of earnings losses by workers with different labor

market status characterized by the year and local unemployment rate.

From the three conditions stated previously, it can be shown that the underly-

ing distribution of heterogeneous effects of displacement is identified as a function of

marginal distributions of potential earnings of displaced and non-displaced workers

using the method developed in Chapter 1. The first step is to identify the poten-

tial wage distribution of both groups of workers. Under conditions (C1) and (C3),

the potential wages of both displaced and non-displaced workers are independent

from the displacement status, conditional on observables. Thus the potential wage

distribution of a displaced worker is comparable to a non-displaced worker with

the same work experience, observed characteristics, and the same wage at t − 1 as

the displaced worker earned from the previous position. This implies that the po-

ployment may have a negative impact on the projected wage profile. See, for example, Abraham

et al. (2016).
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tential wage distribution is identified via matching on observables. Specifically, let

p(φi, ait, sijt−1, wijt−1) ≡ Prob(Dit−1 = 1|φi, ait, sijt−1, wijt−1) be the propensity score

to displacement. Then the potential wage distribution of displaced workers as de-

fined in (2.3), conditional on a set of observable characteristics {φi, ait, sijt−1, wijt−1}

is identified by the observed wage distribution of displaced workers weighted by

1/p(φi, ait, sijt−1, wijt−1).

Notice that the condition (C1) is not strong enough to separately identify the

marginal distributions of unobserved heterogeneous factors ρijt, and µijt. However,

it is not necessary to impose a stronger assumption as the objective of interest is the

distribution of the wage difference given as (2.5), not the marginal distributions of

every unobserved factor. Instead, it is sufficient to consider an additional restriction

which is weaker than imposing pairwise stochastic relationships for every pair among

unobserved factors ρijt, and µijt.

A sufficient condition to achieve identification of the distribution of earnings

losses (2.5) is the condition (C2). Note that the wage difference (2.5) is a function

of the tenure, worker type, and unobserved heterogeneity in returns ρijt. As the de-

terministic component is fully identified as a function of observables, the only thing

needed is to have the unobserved heterogeneity drawn independently from other

stochastic components in potential wage offers. Condition (C2) implies that the

match-specific components in potential wage offer is uncorrelated with the returns

to tenure in the previous job, conditional on the aggregate returns to human capital.

Having identified the potential wage distributions of displaced and non-displaced

workers, we may identify the distribution of wage differences as follows. For sim-
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plicity, I abstract the index i and t to illustrate the identification strategy. Denote

lnw1 be the potential wage earned by displaced workers while lnw0 be that of non-

displaced workers. The conditional characteristic functions of potential wage distri-

butions are defined as the exponential transformations of wages. Denote ϕj(ω|φ, a, s) =

E[exp(ιω lnwj)|φ, a, s] for j = 0, 1 as the conditional characteristic functions of

potential wage distributions where ι =
√
−1 and ω ∈ R. From the condition

(C1), we may identify ϕ1(ω|φ, a, s) and ϕ0(ω|φ, a, s) separately by observed wage

distribution weighted by the inverse of propensity score to displacement. Denote

ϕ∆(ω|φ, a, s) as the characteristic function of ∆ which is defined as (2.5). Note

that, conditional on φ, a, and s, the only random component remaining in ∆ is

ρ. What condition (C2) implies is that ∆ is independent to lnw0, conditional

on φ, a, and s. Then we may write the characteristic function of potential wage

distribution of displaced workers as a product of the characteristic functions of po-

tential wage distribution of non-displaced workers and earnings losses. That is,

ϕ1(ω|φ, a, s) = ϕ0(ω|φ, a, s)ϕ∆(ω|φ, a, s). Refer to the proof of Proposition 2.1 in

Appendix B.1 for derivation. Suppose that the characteristic function of potential

earnings distribution of non-displaced workers is non-vanishing in the sense that

ϕ0(ω|φ, a, s) 6= 0 for all ω, φ, a, s. Then the characteristic function of the causal

effect of displacement is identified as ϕ∆(ω|φ, a, s) = ϕ1(ω|φ, a, s)/ϕ0(ω|φ, a, s).

Consequently, the distribution of ∆ is uniquely identified as F∆(τ |φ, a, s) = 1/2 +

(1/2π)
∫

(ιω)−1 exp(−ιωτ)ϕ∆(ω|φ, a, s)dω.10 The following proposition formally states

10The inversion formula is derived in the earlier work by Gil-Pelaez (1951) and later adopted

in the context of statistical deconvolution literature. Refer Hall and Lahiri (2008) and Dattner
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the identification result.

Proposition 2.1. Suppose that conditions (C1), (C2), and (C3) hold. Assume

that ϕ0(ω|φ, a, s) 6= 0 for all φ, a, s, and ω ∈ R, then the conditional distribution of

(2.5) is identified.

The proof of Proposition 2.1 is given in Appendix B.1. In following section, I

propose a flexible estimation method which exploits the intuition from the identifi-

cation result discussed in this section.

2.4 Nonparametric Estimation of Effects of Displacement

2.4.1 Implementation of Estimation Strategy

I implement a nonparametric method developed in the previous chapter to estimate

heterogeneous effects of displacement without having to impose a prior parametric

restriction on the distribution of effects. In this section, I briefly illustrate the esti-

mation strategy followed by remarks on how the propositions shown in the previous

section correspond to the generic set of identification assumptions.

To estimate the distribution of unobserved components in heterogeneous re-

turns to experience, I first compute the adjusted wage after controlling for the

deterministic growth rate. The stochastic components in wage equation (2.2) re-

main after subtracting market returns ln reit and deterministic growth rates g(ait|φi)

and f(sijt|φi). In the benchmark model, ln reit is approximated only with time-fixed

et al. (2011), for example. A more technically detailed discussion on identification via conditional

characteristic functions can be found in chapter 1.
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effects. The model is compared with a more complex version by introducing a set

of dummy variables specific to region, industry, and occupation, interacted with the

time-specific effects.11 For the deterministic component of growth rate, I consider

a quadratic function of the experience. Lastly, note that we restrict our focus to

displaced workers and non-displaced workers who continue to work for at least one

year. For these cases, the mean level of returns to tenure only depends on their ob-

served characteristics which is parameterized by f(0|φi). Therefore, I use a flexible

series estimator for the set of observable characteristics of a worker to estimate the

term f(0|φi).

In sum, the observed wage adjusted after the estimated deterministic compo-

nent is given as

l̂nwijt = lnwijt − l̂n reit − ̂g(ait|φi)− f̂(0|φi)

where l̂n reit,
̂g(ait|φi), and f̂(0|φi) are empirical counterparts of ln reit, g(ait|φi), and

f(0|φi), respectively. Given that the empirical approximations of the three compo-

nents are consistent with their population counterparts in the wage equation (2.2),

the residual wage approximately equals to

l̂nwijt ≈ ρijtsijt + µijt + εit (2.6)

The next step is to find a consistent estimator of the propensity score func-

tion. Denote Xit for the k × 1 vector of covariates associated with worker i at year

t. This includes years of tenure in the previous job, the previous wage, and a set

11Region is classified by states. Industries and occupations are classified with 3-digit NAICS

codes.

73



of worker-specific characteristics such as age, sex, race, and educational attainment.

Denote p(x) for the propensity score function at a specific value Xit = x. That is,

p(x) = Prob(Dit = 1|Xit = x). I implement a series approximation to compute

an empirical estimate of the propensity score function which allows flexible approx-

imation without having to impose a certain parametric restriction. Precisely, let

Ψκ(x) = (ψ1(x), ψ2(x), · · · , ψκ(x))′ be a vector of basis functions. I use polynomials

up to second order including products among the components in Xit. Denote the

logistic cdf by L(u) = exp(u)/(1 + exp(u)) and the sieve approximation of p(x) is

defined by p̂n(x) = L(Ψκ(x)′γ̂κ) where

γ̂κ = arg max
γ

n∑
i=1

(
Dit lnL(Ψκ(Xit)

′γ) + (1−Dit) ln(1− L(Ψκ(Xit)
′γ))
)

Technical results regarding the consistency of series estimators of an unknown

function are discussed in, for example, Newey (1997) and Hirano et al. (2003).

In particular, Hirano et al. (2003) discuss conditions under which the conditional

average treatment effect estimator implemented by a semi-parametrically estimated

propensity score function achieves efficiency bound proposed by Hahn (1998). One

limitation of the existing theory is that Hirano et al. (2003) restrict the support of

covariates to be bounded. This may not be a plausible assumption as Xit includes

previous wage which has a right-skewed distribution. Therefore, I follow recently

developed theory by Belloni et al. (2015) and Hansen (2015) on series estimation of

smooth functions over possibly unbounded support. See the Appendix to Chapter 1

for further detail on technical assumptions imposed on the propensity score function.

Having a uniformly consistent approximation of the propensity score func-
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tion, the next step is to find sample counterparts of the conditional characteristic

functions of potential wage distributions which is referred as the conditional charac-

teristic functions as empirical characteristic functions (hereby ECF). Recall that the

characteristic functions are defined as the population average of exponential trans-

formation of observed wages. Theorem 1.1 argues that the characteristic functions

of potential outcomes are consistently estimated by their sample counterparts. Us-

ing this principle, I construct the ECFs of both displaced and non-displaced workers

using the adjusted wage as given by (2.6).

Note that the condition (C2) implies that the distribution of earnings losses is

independent from the potential wage, conditional on the propensity score. Thus, the

objective that must be estimated is the ECF, conditional on the propensity score

values. I consider an additional step to project empirical characteristic functions

onto the propensity score estimates. Let P r(z) be a vector of B-spline basis functions

of arbitrary order r ≥ 2. Specifically, let {b1, b2, · · · , br−2} be equally-spaced nodes

over the interval [0, 1]. The B-spline series is defined as P r(z) = (1, z,max{z −

b1, 0},max{z − b2, 0}, · · · ,max{z − br−2, 0})′. I construct a vector of basis using

the estimated propensity score value which is denoted by P̂ r
it ≡ P r(p̂n(Xit)). Let

γ1(D,X) = D/p̂n(X) and γ0(D,X) = (1−D)/(1− p̂n(X)) be the inverse propensity

score weights associated with the treatment and control groups, respectively. Then

the ECF is constructed as follows:

ϕ̂j,n(ω|z) = P r(z)′
( n∑
i=1

P̂ r
itP̂

r′
it

)−1( n∑
i=1

P̂ r
itγj(Dit, Xit) exp(ιωl̂nwijt)

)
(2.7)

for j = 0, 1. In Chapter 1, I present a set of technical assumptions under which the
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empirical approximation (2.7) is uniformly consistent with its population counter-

part.

Precision of the approximated characteristic functions depends on the length

of the basis functions which is parameterized with a non-negative integer r. If

r is small, empirical characteristic functions do not approximate their population

counterparts well enough, even with a large sample size. On the other hand, choosing

a too large r may result in over-fitting and therefore, the estimated distribution of

heterogeneous effects will be biased. I choose the optimal degree of approximation

via the cross-validation method which is widely-used in semi-parametric models and

statistical learning models. The idea is to evaluate a measurement of estimation bias

with different choice of degrees and find r that minimizes the bias. Evaluation of

the model is based on the mean integrated squared error which implies the average

squared bias over the point estimates of the distribution of ∆it. Details regarding

the implementation of the cross-validation method are illustrated in Appendix B.3.

A nonparametric estimator for the conditional distribution of causal effects of

displacement is constructed by applying the statistical deconvolution method. Note

that the conditional distribution of heterogeneous effects is independent from the

potential wage distribution, conditional on the covariates. As shown in Proposition

2.1, the conditional distribution of the counterfactual wage difference is identified

by the ratio of the conditional characteristic functions, assuming that ϕ0(ω|z) is

bounded away from zero. Then a naive estimator of the distribution of heterogeneous

effects is constructed by replacing the conditional characteristic functions with their

empirical counterparts. However, simply replacing the population characteristic
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functions with their estimators results in a biased estimate due to the ill-posed

inverse problem (Refer, for example, Carroll and Hall, 1988; Fan, 1991a; Taupin,

2001). Thus I introduce kernel weights to penalize empirical estimates of the ratio of

characteristic functions over the spectrum ω. The distribution function is estimated

by the following formula:

F̂∆,n(τ |z) =
1

2
+

1

2π

∫ ∞
−∞

(ιω)−1 exp(−ιωτ)ϕξ(hnω)
ϕ̂1,n(ω|z)

ϕ̂0,n(ω|z)
dω (2.8)

On the other hand, the corresponding estimator for the quantile effect function

of heterogeneous effects is defined as the left inverse of the estimator (2.8). That is,

Q̂∆,n(u|z) = inf
τ∈T
{τ : F̂∆,n(τ |z) ≥ u} (2.9)

for u ∈ [0, 1].

2.4.2 Propensity Score Specification

The key to eliminating potential selection bias is to find a control group that matches

the distribution of the characteristics of the treated group. The control group is com-

posed of the workers who have been working continuously during the same period

that displaced workers have been unemployed. Using the individual-level identifier,

I merge Monthly CPS data across years to track the past wage profile of workers

back to one year. In addition, I collect workers who have been continuously working

for at least one year from the survey date, as identified from the JT supplement.

Five potential models for propensity score specifications are tested prior to the

full estimation step. Table B.7 shows the results from the test of reverse causality

between a set of explanatory variables and residuals of treatment after controlling
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for the propensity score. Each column indicates different model specifications for the

propensity score function, from the smallest to the largest models. An important

thing to notice is that inclusion of unemployment rates substantively increases the

significance of propensity score models compared to other variables. Therefore, in

the following exercise, I choose the last specification which controls for individual

characteristics, unemployment rates, and past wages.

Treated and controlled groups are matched via the predicted probability of

displacement. One way to investigate the quality of the match is to compare the

distribution of estimated propensity to displacement within each group. Figure B.2

shows that the distribution of characteristics within both the treated and controlled

group are similar to each other. The distribution of estimated propensity score values

largely overlap between displaced and non-displaced workers. This may suggest that

the sample distributions of two groups are well matched.

2.4.3 Distribution of Earnings Losses

I estimate the distribution of the heterogeneous effects of displacement using the

nonparametric approach described in this chapter to investigate how earnings losses

are dispersed across workers. Figure B.3 shows the estimated distribution function of

heterogeneous effects of displacement on earnings losses. The blue solid line in Figure

B.3 indicates the point estimates of the probability distribution function of effects of

displacement on earnings estimated nonparametrically by the deconvolution method

presented in the previous section. The horizontal line indicates the location of the

mean effect which indicates that workers lose about 19% of their earnings following
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the displacement compared to their non-displaced counterparts.

The nonparametric estimation strategy provides information beyond the mean

effect. For a more precise comparison, I present the quantile effects at various levels

in Table B.8. The first column presents the mean effect obtained by numerical

integration of the nonparametrically estimated density. The quantile effects are

computed by the left inverse of the estimated distribution function of the causal

effect, following the procedure described previously. The result shows that the mean

effect estimated via the nonparametric strategy proposed in this chapter matches

well with the benchmark estimates shown in Table B.1 in Appendix B.2.

The following are some of the notable findings. First, there exists a non-

negligible heterogeneity in the distribution of earnings losses caused by displace-

ments. The estimated distribution of ∆ suggests that, for example, the lower 10%

of population would suffer an approximately 70% loss in their wages compared to

their non-displaced counterparts. In addition, one may find that the estimated dis-

tribution of ∆ is slightly right-skewed. This is suggested by the fact that the mean

estimate is larger than the median estimate. This implies that if we only measure

the effect of displacement by its conditional mean effect, we may ignore the fact

that larger fraction of workers may have greater loss than the average estimate of

the effect of displacement.

I further investigate the heterogeneity by looking at the differences between

groups of workers with the same characteristics. First, I look at the differential

impact of displacement within and between groups of workers who are categorized by

their tenure. Table B.9 presents the resulting estimates. The first column shows that
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the average losses following the displacement increase with respect to the seniority.

That is, workers with less tenure prior to displacement tend to have larger average

losses compared to those with longer experience.

Table B.10 shows heterogeneous effects by workers’ education levels. By look-

ing at the mean effects, it is difficult to find differences across groups. Major differ-

ences between workers with different education levels, however, are in the within-

group heterogeneity. It can be found that the effect of displacement is more dispersed

among lower educated workers compared to workers with higher educations. This

may suggest that workers with higher education are more likely to find a new posi-

tion after being displaced that fits well with their set of skills, resulting in smaller

dispersion in post-displacement earnings.

On the other hand, I present the differential effects of displacement across the

labor market condition represented by the unemployment rate. I consider unem-

ployment rates at disaggregated level in three ways. First is the regional level. I use

state level unemployment provided by Local Area Unemployment Statistics. For

industry- and occupation-specific unemployment rates, I compute them by merging

Annual Social and Economic Supplement sample across the sample period. The first

four rows of Table B.11 show estimates of mean and quantile effects by separating

the samples into pre- and post-2008. While the mean effect is slightly larger in

absolute value after 2008, the differences are smaller in quantile effects.

For a better comparison, I look at the other dimensions by separating the

groups by local and industry-specific unemployment rates. The latter part of Table

B.11 shows the result, while the threshold for distinguishing high and low unem-
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ployment in state and industry is 6% which is the median in the sample used in

this application. Unlike the case where the effects of displacement are compared

across years, patterns are more clearly stated when the market condition is defined

with either local or industry-specific unemployment rates. For example, workers in

states with higher unemployment rates suffer 8 percentage points more on average,

compared to those who live in states with lower unemployment rates. The same

comparison yields a 19 percentage point difference between industries with higher

and lower unemployment rates.

In addition, dispersion of the effects of displacement is larger in states and

industries with higher unemployment rates than those with lower unemployment

rates. The argument can be verified by comparing, for example, 10 to 90 percentile

ranges of the cases with either high or low unemployment rates. Among the workers

who have been re-employed in states with high unemployment rates, dispersion of

the effect is 0.1497− (−0.7596) = 0.9093, which is larger than 0.1518− (−0.7353) =

0.8871 of the states with lower unemployment rates. A similar pattern is found

by comparing across industries. The dispersion of the effect of displacement is

0.0657 − (−0.8845) = 0.9501 among the workers who have been working in the

industries with high unemployment rate, larger than the 0.2153 − (−0.6774) =

0.8927 of the industries with lower unemployment rate. Another way to look at

this is to compare extreme cases. The difference between the lower 10% quantiles

of earnings losses is 34 percentage points when we compare across industry-specific

unemployment rates. However, the difference is much smaller for the upper 10%,

which is about 9 percentage points. This implies that the lower mean effect of
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displacement in the tighter labor market is mostly driven by workers who are at the

left tail of the earnings distribution.

In Appendix B.2, I present a sensitivity analysis by estimating the heteroge-

neous effects of displacement on earnings losses via linear regression models. While

the intuition remains the same, regression models yield less significant results when

it comes to the comparison of differential effects across groups of workers. This may

suggest that there exists a highly non-linear relationship between observed charac-

teristics and the distribution of individual-specific effects of displacement. Such a

finding suggests that it is useful to consider a flexible nonparametric method while

analyzing heterogeneous causal effects.

2.5 Conclusion

In this chapter, I investigated the size of within- and between-group heterogeneity

in the earnings losses of displaced workers using a new nonparametric estimation

method. Empirical findings suggest that causal consequences of unexpected dis-

placement are significantly different across individuals. For example, less experi-

enced workers tend to suffer less on average compared to more experienced workers,

while the within-group dispersion of earnings losses among those young workers is

substantially larger. In addition, I also find that a tighter labor market condition

represented by higher unemployment rates can lead to a larger dispersion in the het-

erogeneous effect of displacement. This suggests that measuring the heterogeneity

in the causal effect of displacement by only the conditional mean effect may lead to
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a biased conclusion as it ignores the probability of having significantly larger losses

than the average effect.
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Chapter 3: Semiparametric Estimation of Non-Linear Impulse

Responses with Discrete Policy Shocks (with Guido

Kuersteiner)

3.1 Introduction

In this chapter, we develop a semi-parametric estimator for the non-linear impulse-

response functions with discrete policy shocks. Empirical investigation of effects

of macroeconomic policy across time often relies on the underlying structural as-

sumptions such as Dynamic Stochastic General Equilibrium (DSGE) models (See,

for example, Christiano, Eichenbaum, and Evans, 1999; Christiano, Trabandt, and

Walentin, 2010). The estimation method proposed in this chapter complements the

existing approaches based on structural assumptions by developing an identification

and estimation strategy that is robust to underlying models generating impulse-

response functions.

The method is based on the discussion by Angrist, Jord, and Kuersteiner

(2013) and Angrist, Jordà, and Kuersteiner (2016). In the paper, they propose

flexible econometric method to estimate the dynamic impact of monetary policy on
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macroeconomic outputs including real GDP and treasury yields. The estimation of

the causal effect of monetary policy is implemented by inverse policy score weighted

estimator. They suggest that if the researcher correctly specified the information

set which correctly describes the policy score function, the causal effect of monetary

policy is estimated consistently via inverse policy score weighted average of a set

of forward-looking outcomes. Using the method, they re-investigate the effect of

changes in federal fund rates on aggregate outputs and treasury yields to find asym-

metric impulse-response functions which is difficult to be captured with parametric

models.

We generalize the method proposed by Angrist et al. (2016) to allow more

flexible types of policy score functions. Asymptotic properties for the inverse policy

score estimator are studied when the underlying stochastic process is assumed to be

weakly dependent. We provide a set of conditions to achieve uniform consistency

and asymptotic normality of the semi-parametric estimator while leaving the spec-

ification of policy score functions to be flexible. The result is particularly useful in

following cases. The first is that when a researcher knows about the set of variables

that affect the policy decision while it is hard to specify a certain rule. By using

semi-parametric method, the model automatically determines the best fit for the

model of policy rule. In addition, the method can be useful to test external validity

of impulse-response functions estimated under specific parametric assumptions.

The method proposed in this paper is in line with the theory of inverse propen-

sity score estimators which has been developed extensively for the last few decades.

Regarding the asymptotic properties of propensity score matching estimators, Hahn
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(1998) is the first to present efficiency bounds of semi-parametric estimators of the

causal effect. Further extension to various semi-parametric estimators include, for

example, Hirano et al. (2003) and Abadie and Imbens (2006). Some of the noticeable

recent studies extend the framework to multi-valued treatments (Cattaneo, 2010)

or apply it to dynamic causal effect of monetary policy (Angrist and Kuersteiner,

2011; Angrist et al., 2013, 2016).

The asymptotic properties of the semi-parametric estimator discussed in this

paper is heavily rely on the earlier results on series estimators. Some of the exam-

ples are Geman and Hwang (1982), Newey (1994), Andrews (1994), and Chen and

Shen (1998). More recently, Belloni et al. (2015) and Hansen (2015) extend exist-

ing theories to continuous and differentiable functions over non-compact support.

Especially on the inferential problem, Newey and West (1987) and Andrews (1991)

propose consistent kernel-weighted estimators for asymptotic variance matrix. Later

studies including Ackerberg, Chen, and Hahn (2012), Ackerberg, Chen, Hahn, and

Liao (2014), and Chen and Liao (2015) extends the method to two-stage GMM

estimators under weakly dependent process. We adapt and modify the existing re-

sults to construct consistent estimators for the covariance matrix of semiparametric

impulse response estimators of finite lags.

The rest of this chapter consists of following sections. In section 3.2, we

present stochastic framework and discuss identification conditions for the dynamic

policy effects. In section 3.3, we list a set of conditions to achieve consistency and

asymptotic normality of the semi-parametric estimator and present key results. In

section 3.5, we propose inference theory by constructing feasible test statistics. In
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section 3.6, we implement Monte Carlo exercise to show finite-sample performance

of the estimator in various scenarios. Finally in section 3.7, we conclude.

3.2 Potential Outcomes and Causal Effects

The stochastic environment is determined by the observed vector stochastic process

χt. Denote by yt a ky-vector of outcome variables and by Dt a vector of policy

variables that takes on a discrete number of possible values D = {d0, ..., dJ}. Both

yt and Dt are elements of χt. A leading example is the case of monetary policy where

Dt is the change in the target interest rate the central bank sets. We assume that

the information used by policy makers at time t, is known to the public but not

necessarily observed by researchers. Formally, the relevant information is assumed

to be described by a finite dimensional vector zt which may depend on past and

current observations of yt and Dt and other current and lagged elements of χt. As

an example in the case of monetary policy, zt could be an index constructed from

employment and inflation data as would be the case if the Fed followed a Taylor

rule.

We assume that there are innovations ut that drive the process χt. In formal

statement, we impose the the following probabilistic structure. Let (Ω,F ,P) be

the common probability space on which the sequence ut is defined. Let χ0 be the

initial condition of χt at time 0. Let Ft = σ (χ0, u1..., ut) and assume that there are

measurable mappings Ft such that
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Ft (χ0, u1..., ut, ϕ) = χt (3.1)

where ϕ ∈ Θ is a non-random parameter. The parameter ϕ determines the mappings

Ft and can be finite or infinite dimensional. It follows that χt is adapted to Ft.

Partition ut = (ηt, εt) and assume that Dt = D (zt, ϕ, εt) where zt is measurable

with respect to Ft−1. In this notation εt is called the policy shock. We assume that

εt affects χt only through Dt. This restriction is formalized as follows. Define the set

Ed (zt) = {e ∈ E|D (zt, ϕ, e) = d} and assume that Ft+l (χ0, u1..., (ηt, e) , ut, · · · , ut+l)

is constant for e ∈ Ed (zt) and each d ∈ D. We now give a definition of potential

outcomes.

Definition 3.1. Potential outcomes yϕt,l (d) are defined by

yϕt,l (d) = F y
t+l(χ0, u1, · · · , ut−1, (ηt, e), ut+1, · · · , ut+l, ϕ)

for e ∈ Ed (zt) where F y
t+l(·) is the component corresponding to y of the vector valued

function Ft(·) defined in (3.1).

The causal effect of a policy is defined as the difference yϕt,l(dj) − yϕt,l(d0).

Counterfactual outcomes indexed against regime as well as a policy change allow

us to distinguish the effects of systematic and unexpected changes, though only the

latter are identified in our framework. Note that the notation yϕt,l (d) accounts for

both the timing of the intervention relative to the initial conditions as well as the

delay l at which the effect of the intervention is measured.

The variation that identifies causal relationships is characterized by the selec-
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tion on observables identifying assumption:

Condition 3.1. Selection on observables: yϕt,l(d) ⊥ Dt|zt, ϕ for all l > 0, d ∈ D,

and ϕ ∈ Θ.

Given the structure imposed, Condition 3.1 is identical to the assumption

that εt is independent of u1, · · · , ut−1, ηt, ut+1, · · · , ut+l, conditional on zt. If we

strengthen Condition 3.1 to requiring yϕt,l (dj) ⊥ Dt| (zt, χt−1, ) the then it is enough

to require that εt is indpendent of ηt, ut+1, · · · , ut+l, conditional on (zt, χt−1). Con-

dition 3.1 is somewhat weaker than requiring that εt, ηt are independent sequences

of random variables. Consider the effect of setting Dt = dj on a vector of outcome

variables yt for a given regime, ϕ. Let Yt = (y′t, · · · , y′t+L)′ and define the vector

of potential outcomes Y ϕ
t (d) =

(
yϕt,0 (d) , · · · , yϕt,L (d)

)
. Define the dummy variables

Dt,j = 1 {Dt = dj}. Given a fixed regime the potential outcome of a policy variable

is related to the observed outcome through the following latent variables model:

Yt =
∑
d∈D

Y ϕ
t (d) 1 {Dt = d} (3.2)

Using Equation (3.2) and Condition 3.1, average policy effects, conditional on

covariates zt, are identified as follows

E [Y ϕ
t (dj)− Y ϕ

t (d0)|zt] = E [Yt|Dt = dj, zt]− E [Yt|Dt = d0, zt] . (3.3)

Estimation of the conditional expectations in (3.3) can be considerably simplified if a

parametric model for the policy variable Dt is available. In Angrist and Kuersteiner

(2004, 2011), such a policy model was termed the policy propensity score. Assuming
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that P(Dt = dj|zt) = pj (zt, ϕ) we construct estimates from the fact that

E [YtDt,j|zt] = E [Y ϕ
t (dj) |zt] pj (zt, ϕ) .

Therefore,

E
[
Y ϕ
t (dj)− Y ϕ

t (d0)|zt
]

=
E[YtDt,j|zt]
pj(zt, ϕ)

− E[YtDt,0|zt]
p0(zt, ϕ)

, (3.4)

a formulation that first appeared in Horvitz and Thompson (1952). The LHS of

(3.4) is the impulse response function, generated from the unknown and potentially

nonlinear process for outcomes. In the cross-section literature, (3.4) would be called

an average treatment effect. In Angrist et al. (2013) discuss the relationship of 3.4 to

the literature on non-linear impulse response functions, in particular Gallant, Rossi,

and Tauchen (1993).

One advantage of our approach to non-linear impulse response functions is

that estimation and testing is extremely simple and reduces to computing a mul-

tivariate weighted average. Joint confidence sets for the impulse coefficients are

readily available. We define

θl,j (zt) = E [yt+l|Dt = dj, zt]− E [yt+l|Dt = d0, zt] . (3.5)

The causal effect, or average impulse of the policy innovation at time t on the

outcome variable at time t+ l then is defined as

E
[
yϕt,l (dj)− y

ϕ
t,l (d0)

]
= θl,j

where θl,j has the interpretation of a generalized impulse response of an unexpected

policy change from d0 to dj at time t on the outcome variable at time t + l. The
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policy d0 is a common reference policy. Using the vector notation introduced in

Section 3.2 the impulse response function of the unexpected policy change can be

compactly represented in vector form as

E [Y ϕ
t (dj)− Y ϕ

t (d0)] ≡ θj

where now θj = (θ′0,j, ..., θ
′
L,j)

′ is the impulse response function at horizons 0 to L.

We can further summarize the effects of all possible policy changes by defining the

vector of effects θ as θ = (θ′1, ..., θ
′
J)′. The dimension of θ is k = ky (L+ 1) J with

ky the number of outcome variables, L the horizon of the impulse response function

and J the number of distinct policy choices.

In addition, we may be interested in the effects of the policy variable condi-

tional on the policy being enacted. This effect is defined as

E [Y ϕ
t (dj)− Y ϕ

t (d0)|Dt = dj] ≡ θj,TOT .

This parameter is known as the treatment effect on the treated in the cross-sectional

literature.1 It follows from well known arguments that

E

[
Yt

(
Dt,j

pj(zt, ϕ)
− Dt,0

p0(zt, ϕ)

)
pj(zt, ϕ)

P(Dt = dj)

]
= θj,TOT

The key ingredient in our estimation strategy is the weighting function,

τt,j (ϕ) =

(
Dt,j

pj (zt, ϕ)
− Dt,0

p0 (zt, ϕ)

)
gj (zt, ϕ)

where g (zt, ϕ) = 1 for the unconditional impulse response function and g (zt, ϕ) =

pj(zt)/P(Dt = dj, ϕ) for the impulse response function conditional on the policy

1See, for example, Hirano et al. (2003).
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maker taking action dj. For the estimator of θj we define

ht,j (ϕ) = Ytτt,j (ϕ) (3.6)

and ht (ϕ) =
(
h′t,1, ..., h

′
t,J

)′
. The functions ht are evaluated at ϕ such that ĥt =

ht (ϕ) . Then θ is estimated directly as the sample average of ĥt,

θ̂ = T−1
∑T

t=1
ĥt. (3.7)

Estimation of θ can be understood as a minimum distance procedure where θ̂ solves

arg min
θ

(
T−1

∑T

t=1
ĥt − θ

)′
Ω−1

(
T−1

∑T

t=1
ĥt − θ

)
. (3.8)

Because there are as many parameters as moment conditions the choice of Ω does

not affect the solution to (3.8) which is always (3.7). However, considering (3.8)

is useful in parctice because we may want to constrain the parameter estimates in

θ. There are at least two scenarios that are of parctial importance. Consider the

case where dj = −dj′ , for example dj could stand for a 25 basis point increase in

the Fed target rate while dj′ is a 25 basis point decrease in the target. In a linear

model, such as a conventional VAR, the impulse response for dj has the oposite sign

of the impulse response to dj′ . To impose this constraint in our setting we impose

the restriction θj = −θj′ . More generally, we can consider general linear constraints

of the form θ = Rα with R a fixed and known matrix of dimension k × q and α is

a q × 1 vector of free parameters.

A second possibility consists in modeling θj as a function of a lower dimensional

parameter α. One might for example want to approximate the impulse response

function with a low order polynomial to achieve a parsimonious specification. We
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thus consider more general cases where θ = θ (α) and θ (·) is a known function.

Clearly a special case is θ (α) = Rα. The case R = I covers (3.8). Thus, estimation

of α and θ is based on

arg min
α

(
T−1

∑T

t=1
ht − θ (α)

)′
Ω̂−1

(
T−1

∑T

t=1
ht − θ (α)

)
. (3.9)

In this case the model is generally overidentified or in other words the dimension of

α is less than k, the dimension of ht. The choice of Ω now does matter for efficiency

of the estimator. The optimal Ω in this case is the spectral density matrix of ht

at zero frequency which can be estimated by standard methods such as Newey and

West (1987). Once we obtain an estimate α̂ we estimate θ̂ = θ (α̂).

The asymptotic variance covariance matrix Ωθ of θ̂ is given by

Ωθ =
∞∑

j=−∞

E
[
vt (ϕ0) vt−j (ϕ0)′

]
(3.10)

where vt (ϕ0) = ht (ϕ0) − θ0 + ḣ(ϕ0)Ω−1
ϕ l(Dt, zt, ϕ0) and ḣ(ϕ0) = E [∂ht (ϕ0) /∂ϕ′] .

The formula for Ωθ takes into account that the ’observations’ ĥt used to compute

the sample averages are based on estimated, rather than observed data. It now

follows under regularity conditions detailed below that T 1/2
(
θ̂ − θ

)
d→ N (0,Ωθ) .

Confidence intervals for θ can be constructed from this distributional approximation

in standard ways, using an estimator for Ωθ. In order to estimate Ωθ we start by

forming the sample averages

̂̇h(ϕ0) = T−1

T∑
t=1

∂ht (ϕ̂) /∂ϕ′, Ω̂ϕ = T−1

T∑
t=1

l(Dt, zt, ϕ̂)l(Dt, zt, ϕ̂)′

and letting vt (ϕ̂) = ht (ϕ̂) − θ̂ + ̂̇h(ϕ)Ω̂−1
ϕ l(Dt, zt, ϕ̂). Methods to estimate Ωθ have

been developed in Newey and West (1987, 1994), Andrews (1991) and Andrews and
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Monahan (1992), amongst others.

3.3 Assumptions

This section provides an analysis of the the asymptotic properties for the estimators

proposed in Section 3.2. We make use of results in Andrews (1994), Newey (1994),

and Chen and Shen (1998) for asymptotic approximations of semiparametric esti-

mators. We start with a list of regularity conditions we impose on the process χt

which is defined on the probability space (Ω,F ,P) . Assume that {χt}∞t=1 is strictly

stationary with values in the measurable space (Rr,Br) where Br is the Borel σ-field

on Rr and r is fixed with 2 ≤ r < ∞. Let P be the marginal distribution function

of χt. Let Al1 = σ (χ1, ..., χl) be the sigma field generated by χ1, ..., χl. The sequence

χt is β-mixing or absolutely regular if

βm = sup
l≥1

E

[
sup

A∈A∞l+m

∣∣P (A|Al1)− P (A)
∣∣]→ 0 as m→∞. (3.11)

Condition 3.2. Let χt be a stationary, absolutely regular process such that for some

2 < p < ∞ the β-mixing coefficient of χt satisfies βm ≤ m−p/(p−2). There exists a

δ > 0 such that E
[
‖χt‖2+δ

]
<∞.

We consider the general case where E[1(Dt = dj)|zt] = pj(zt) and pj (z) ∈ P

where P is a class of functions that satisfies the constraint
∑J

j=1 p
j (z) = 1 for all z.

As is the case when the propensity score is parameteric, we need to take estimation

uncertaint of estimating the propensity score into account when deriving the limiting

distribution of our causal parameter θ. Newey (1994) provides formulas for comput-

ing the effect of non-parametric estimation in plug-in procedures. Expressions for
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the correction terms were obtained by Hahn (1998) and Hirano et al. (2003) for the

binary treatment case and by Cattaneo (2010) for the average treatment effect in

the case of multinomial treatments. Let

τt,j
(
p0, pj

)
=

(
Dt,j

pj (zt)
− Dt,0

p0 (zt)

)
gj (zt)

with gj (zt) = pj (zt) . Then ht,j (p0, pj) = Ytτt,j (p0, pj), and

ht (p) =
(
h′t,1
(
p0, p1

)
, · · · , h′t,J

(
p0, pJ

))′
with p =

(
p0, ..., pJ

)
. Now let ξt = (Yt, Dt, zt) and define the function m (ξt, α, p) =

ht (p)− θ (α) . The GMM estimator of α is now defined as

α̂ = arg min
α

(
T−1

∑T

t=1
ht (p̂)− θ (α)

)′
V̂ −1

(
T−1

∑T

t=1
ht (p̂)− θ (α)

)
(3.12)

where p̂ is some non-parametric estimator of p. The influence function of the esti-

mator α then is given by

vt (ξt, α, p) = m (ξt, α, p) + γ (ξt)

where γ (ξt, α, p) =
(
γ1 (ξt) , ..., γ

J (ξt)
)

and explicit formulas for γj (ξt) are given in

the appendix.

To establish an asymptotic distribution for our dynamic treatment effect esti-

mators we impose the following additional high level regularity condition. Low level

conditions under which these assumptions hold are discussed in Section 3.4.

Condition 3.3. The functions pj(zt) = E[1(Dt = dj)|zt] for j = 0, ..., J satisfy the

following conditions:
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(i) infz p
j(z) > p > 0 for all j = 0, .., J .

(ii) Assume that p̂ = (p̂0(zt), · · · , p̂(zt)) are nonparametric estimators of p such

that ‖p̂(z)− p(z)‖4+δ,P = o(T−1/4).

(iii) Let b0,j(zt) = E[Yt(d0)|zt]gj0/p0
0, bj(zt) = −E[Yt(dj)|zt]gj0/p

j
0 + (E[Yt(dj)|zt] −

E[Yt(d0)|zt]), b(z) = diag(b1(z), · · · , bJ(z)) and b0(z) = (b0,1(z), · · · , b0,J(z))′.

Let B(z) = b(z)−b0(z)1′ and ṗκ (zt, ϕκ) = ∂pκ (zt, ϕκ) /∂ϕ
′
κ. Then, there exists

a sequence Πκ of J × Jκ matrices of constants such that

E
[
‖Πκ (IJ ⊗Ψκ (z1))−B (z1)‖2] = o

(
κ−α

)
.

(iv) Let 1
T

∂2(LT,κ(ϕκ))
∂ϕκ∂ϕ′κ

= HT (ϕκ) . Then, ‖HT (ϕ∗κ)−H (ϕ∗κ)‖2 = Op

(
ζ (κ) /

√
T
)
.

(v) ‖H (ϕ∗κ)− Ωϕ,κ‖2
2 = O (κ−αζ (κ)) .

(vi) ‖ϕ̂κ − ϕ∗κ‖ = O
(
ζ (κ) /

√
T + κ−αζ (κ)

)
.

Note that the functions pj(z) satisfy the constraint
∑J

j=0 p
j (z) = 1 by def-

inition and because of the properties of Dt. The constraint 0 ≤ pj (z) ≤ 1 also

holds by defintion while Condition 3.3 imposes additional constraints on the joint

distribution of Dt and zt.

The following result shows asymptotic normality of the semiparametric esti-

mator when the propensity score is estimated nonparametrically. The high level

conditions given here are the same as part of Newey (1994, Assumption 5.1). More

specifically, a high level assumption on the estimation of p is imposed with the re-

maining conditions in Newey (1994) following in a similar way as shown in Hahn

(1998) when Conditions 3.2 and 3.3 hold.
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Theorem 3.1. Assume that Conditions 3.2 and 3.3 hold. In addition, assume that

θ0 = θ (α0) holds and that V̂ →p V where V is given as

V =
∞∑

l=−∞

E
[
(m (ξt, α, p) + γ (ξt)) (m (ξt−l, α, p) + γ (ξt−l))

′]
and where θ̇ (α0) = ∂θ (α0) /∂α′ and θ̇ (α) is assumed to be continuous and Ωθ to be

positive definite. Let κ = T β. Then, it follows that for α̂ as in (3.12) satisfies

√
T (α̂− α)→d N

(
0, θ̇ (α)′ V −1θ̇ (α)

)
.

3.4 Semiparametric Estimation of the Propensity Score

Denote Ψκ (z) = (ψ1κ (z) , ..., ψκκ (z))′ and ϕjκ a κ × 1 dimensional vector of pa-

rameters. Define Ψj,κ (zt, ϕκ) = Ψκ (z)′ ϕjκ and ϕκ = (ϕ′1κ, ..., ϕ
′
Jκ)
′ . An example

for Ψκ (z) is a polynomial which can be defined by letting λ = (λ1, ..., λK) be a

vector of non-negative integers and define zλt =
∏K

l=1 z
λl
t,l where zt,l are the elements

of the vector zt and |λ| =
∑K

l=1 λl is the order of the polynomial. Let λ (q) be a

sequence of vectors indexed by κ. The approximating polynomial then is given by

Ψj,κ (zt, ϕκ) =
∑κ

q=1 z
λ(q)
t ϕq,jκ. The probability pj (zt, ϕ) is obtained by applying the

logistic transfromation of Hirano et al. (2003) and Cattaneo (2010) to Ψj,κ (zt, ϕκ)

and is given by

pjκ (zt, ϕκ) =
exp (Ψj,κ (zt, ϕκ))

1 +
∑J

j=1 exp (Ψj,κ (zt, ϕκ))
, p0

κ (zt, ϕκ) =
1

1 +
∑J

j=1 exp (Ψj,κ (zt, ϕκ))

Let

pκ (zt, ϕκ) =
(
p1
κ (zt, ϕκ) , · · · , pJκ (zt, ϕκ)

)′
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Ψκ (zt, ϕκ) = (Ψ1,κ (zt, ϕκ) , ...,ΨJ,κ (zt, ϕκ))

such that

Ψκ (zt, ϕκ) =
(
IJ ⊗Ψκ (zt)

′)ϕκ. (3.13)

Denoting by Γj (Ψκ (zt, ϕκ)) the mapping Ψκ (zt, ϕκ)→ pjκ (zt, ϕκ) , the inverse of Γj

is given by

Ψj,κ (zt, ϕκ) = log
(
pjκ (zt, ϕκ) /p

0
κ (zt, ϕκ)

)
(3.14)

where p0
κ (zt, ϕκ) = 1−

∑J
j=1 p

j
κ (zt, ϕκ) . Thus, for

Γ (Ψκ (zt, ϕκ)) = (Γ1 (Ψκ (zt, ϕκ)) , ...,ΓJ (Ψκ (zt, ϕκ)))
′

the inverse is given by

Γ−1 (pκ (zt, ϕκ)) =
(
log
(
p1
κ (zt, ϕκ) /p

0
κ (zt, ϕκ)

)
, ..., log

(
pJκ (zt, ϕκ) /p

0
κ (zt, ϕκ)

))′
.

(3.15)

The approximate multinomial log likelihood is then LT,κ (ϕκ) =
∑T

t=1 lκ (Dt, zt, ϕκ)

where lκ (Dt, zt, ϕκ) =
∑M

j=0 Dt,j log (pjκ (zt, ϕκ)) which can be maximized to ob-

tain parameter estimates for ϕκ. Let L (ϕκ) = E [lκ (Dt, zt, ϕκ)] and define ϕ∗κ =

arg maxL (ϕκ) . The estimator ϕ̂κ satisfies

ϕ̂κ = arg max
ϕκ

LT,κ (ϕκ) .

Estimated probabilities are obtained from ϕ̂κ by using a truncating sequence

τκ > 0 where τκ → 0 as κ→∞. Then define

p̂jt = max
(
pjκ (zt, ϕ̂κ) , τκ

)
.
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The following result extends Cattaneo (2010) to the case of stationary, weakly de-

pendent processes with unbounded support. The conditions imposed here are com-

parable Newey (1997), Hirano et al. (2003), and Cattaneo (2010), yet adjusted to

the specific proof strategy employed. In particular, Lp norms rather than uniform

bounds are imposed on the qaulity of the series approximation.

Condition 3.4. i) For s > 0, s not integer, the Hölder space is the space Cs
(
Rd
)

of all bsc-times differentiable functions f with finite norm

‖f‖s,∞ =
∑

0≤|α|≤bsc

‖Dαf‖∞ +
∑
|α|=bsc

sup
x 6=y

|Dαf (x)−Dαf (y)|
|x− y|s−bsc

.

Assume that that for each j, pj(z) ∈ Cs(Rd), bj(z) ∈ Cs(Rd) and b0,j(z) ∈ Cs(Rd).

ii) E[‖Ψκ(zt)‖4+δ] = O(ζ(κ)),

iii) for some δ it holds that the smallest eigenvalue λminE[Ψκ(zt)Ψ
κ(zt)

′] > δ > 0

uniformly in κ.

iv) for all f(z) ∈ L2(P ) there exists a constant C such that, for all κ,

κ∑
l=1

(∫
f (z)ψlκ (z) dP (z)

)2

≤ C <∞.

Theorem 3.2. Let τκ = κ−γ. If Conditions 3.2, 3.3(i) and 3.4 are satisfied then

‖ϕ̂κ − ϕ∗κ‖ = O
(
ζ (κ) /

√
T + κ−αζ (κ)

)
(3.16)

and for p ≤ 4 + δ,∫ ∥∥p(z)− pjκ(z, ϕ̂κ)
∥∥p dP0(z) = Op

(
ζ(κ)p+1

T p/2
+ κ−αpζ(κ)p+1

)
(3.17)

In addition,

‖HT (ϕ∗κ)−H (ϕ∗κ)‖2 = Op

(
ζ (κ) /

√
T
)
, ‖H (ϕ∗κ)− Ωϕ,κ‖2

2 = O
(
κ−αζ (κ)

)
.
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Theorem 3.2 establishes the high level assumptions made in Condition (3.3)

under more primitive assumptions.

3.5 Feasible Tests

3.5.1 Kernel-weighted Long-run Variance Estimator

In this section, we discuss a feasible testing procedure associated with a general type

of joint hypothesis imposed on the parameter of interest, denoted by α. To begin

with, we first construct a consistent estimator of the long-run variance V shown in

Theorem 1. The idea is to apply the plug-in estimator of Ackerberg et al. (2012)

while adjusting for weak dependence of the underlying process.

We begin with illustrating the steps to construct variance estimator. Denote

v̂t = v̂t(ξt, α̂, ϕ̂κ) as the sample analog of the score function. As the score function

itself, its empirical counterpart v̂t also consists of two parts. First, the mean devi-

ation m(ξt, α, p) = ht(ξt, α, p)− θ(α) is approximated by ĥt(ξt, α̂, ϕ̂κ)− θ(α̂) where

ĥt(ξt, α, ϕκ) =
(
ĥt,1(ξt, α, ϕκ), · · · , ĥt,J(ξt, α, ϕκ

)′
and

ĥt,j(ξt, α, ϕκ) = Yt

( Dt,j

pj(zt, ϕκ)
− Dt,0

p0(zt, ϕκ)

)
gj(zt, ϕκ),

for j = 1, · · · , J .

Second, for the influential function, we approximate the linear functional

D(ξt, p) which is explicitly derived in the appendix with sample analog counter-

parts. Following the argument in Chen and Liao (2015), we use a plug-in esti-

mator to construct the empirical counterpart of D(ξt, p). First, we begin with
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the directional derivative, denoted by D(ξt, p0)[p] ≡ ∂l(Dt,zt,p0+τp)
∂τ

∣∣
τ=0

, which is a

linear functional in p. The empirical counterpart of D(ξt, p0)[p] can be written as

D̂(ξt, p̂)[p] = ∂l(Dt,zt,p̂+τp)
∂τ

∣∣
τ=0

where p̂(·) is the sieve approximant of the true propen-

sity score function p0(·). To complete characterization of the influence function, we

need to replace p within D̂(ξt, p̂)[p] with the sieve estimator p̂(·). For an arbitrary

orthornormal sieve space Pκ = {P (·) = Ψκ(·)′ϕκ, E[Ψκ(z)Ψκ(z)′] = Iκ}, we have

a Riesz representor p̂(·) = Ψκ(·)′ϕ̂κ = Ψκ(·)′Ω̂−1
ϕ
̂̇h(α, ϕ̂κ) where Ω̂ϕ is an estima-

tor of Hessian E
[∂l(Dt,zt,p0)

∂p

(∂l(Dt,zt,p0)
∂p

)′]
and ̂̇h(α, ϕκ) is an estimator of gradient

E
[
∂ht(ξt,α0,p0)

∂p

]
.

In sum, we have

v̂t(ξt, α̂, ϕ̂κ) = ĥt(ξt, α̂, ϕ̂κ)− θ(α̂) + ̂̇h(α̂, ϕ̂κ)Ω̂
−1
ϕ

∂lκ(Dt, zt, ϕ̂κ)

∂ϕκ

where

̂̇h(α, ϕκ) =
1

T

T∑
t=1

∂ĥt(ξt, α, ϕκ)

∂ϕ′κ
=

1

T

T∑
t=1

(
∂ĥt,1(ξt,α,ϕκ)

∂ϕκ
· · · ∂ĥt,J (ξt,α,ϕκ)

∂ϕκ

)′
∂ĥt,j(ξt, α, ϕκ)

∂ϕκ
= Yt

( Dt,0

p0(zt, ϕκ)2

∂p0(zt, ϕκ)

∂ϕκ
− Dt,j

pj(zt, ϕκ)2

∂pj(zt, ϕκ)

∂ϕκ

)
gj(zt, ϕκ)

+ Yt

( Dt,j

pj(zt, ϕκ)
− Dt,0

p0(zt, ϕκ)

)∂gj(zt, ϕκ)
∂ϕκ

Ω̂ϕ =
1

T

T∑
t=1

∂lκ(Dt, zt, ϕ̂κ)

∂ϕκ

∂lκ(Dt, zt, ϕ̂κ)

∂ϕ′κ

∂lκ(Dt, zt, ϕκ)

∂ϕκ
=
(
Dt − p(zt, ϕκ)

)
⊗

 1

Pκ(zt)

 .

A consistent estimator of the long-run variance is constructed by using a sym-

metric kernel as in Newey and West (1987, 1994) and Andrews (1991). Let K(·) be

a kernel function that satisfies a certain set of assumptions. Then the kernel-based
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estimator of V is given by

V̂ = Ω̂0 + 2
B∑
h=1

K

(
h

B

)
(Ω̂h + Ω̂′h), (3.18)

where

Ω̂h =
1

T

T∑
t=h+1

v̂tv̂
′
t−h,

for h = 0, · · · , B while B indicating the bandwidth. We may also construct a

variance estimator with centered residual such as

Ṽ = Ω̃0 +
B∑
h=1

K

(
h

B

)
(Ω̃h + Ω̃′h) (3.19)

where Ω̃h = T−1
∑T

t=h+1(v̂t − vT )(v̂t−h − vT )′, vT = T−1
∑T

t=1 v̂t.

Regarding the consistency of V̂ , we consider an additional set of assumptions

that are sufficient to guarantee the consistency of V̂ and Ṽ regarding their target V .

To begin with, we need a more restrictive case then the Condition 3.2 to regularize

the degree of autocorrelation.

Condition 3.5. Let χt be a stochastic process with the following properties: i) Let

{αm}∞m=1 and {βm}∞m=1 be the strong and uniform mixing coefficients, respectively.

For some r ∈ (2, 4] and p > r, either one of the followings is true:

∞∑
m=0

α2(1/r−1/p)
m <∞,

∞∑
m=0

β1−2/p
m <∞

ii) For some δ > 0, E‖χt‖η <∞ where η = max{4 + δ, p}

The symmetric kernelK(·) and bandwidthB are chosen to satisfy the following

regulatory conditions:
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Condition 3.6. The kernel function K(·) satisfies the following properties: i) K(·)

is symmetric around zero, i.e. K(u) = K(−u), ii) supu∈[0,1] |K(u)| ≤ 1, (iii)∫
R |K(u)|du <∞, and iv)

∫
R |K(u)||u|du <∞.

Condition 3.7. B = BT such that for some positive sequence µκ,T → 0, i) BTT
−1 =

o(1), ii) BTµκ,T = o(1), and iii) BTµκ,T‖ϕ̂− ϕ∗‖ = op(1).

With the additional assumptions stated above, one can show that the long-run

variance estimators (3.18) and (3.19) are both consistent with V .

Theorem 3.3. Assume that Theorem 3.1–3.2 hold. In addition, if Conditions 3.5,

3.6, and 3.7 are satisfied, then ‖V̂ − V ‖ = op(1) and ‖Ṽ − V ‖ = op(1).

The proof of Theorem 3.3 is given in the Appendix. While it is sufficient to

choose any type of symmetric kernel satisfying the Condition 3.6 with a sequence

of bandwidth BT that is mildly increasing in the sense of Condition 3.7, we use

Bartlett kernel and optimal bandwidth of Newey and West (1994) in the numerical

example.

3.5.2 Inference Based on Consistent Variance Estimator

Once we have a consistent estimator for the long-run variance, inference problem

becomes straightforward. Using the estimates α̂ and V̂ , one can construct a test

statistics as follow. Let Ω−1 = θ̇(α0)′V −1θ̇(α0) be the inverse of the long-run variance

of α and Ω̂ = θ̇(α̂)′V̂ −1θ̇(α̂) be the estimate of it. As θ̇(·) is assumed to be continuous,

one can expect that ‖Ω̂− Ω‖ = op(1) by the result of Theorem 3.3 and continuous
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mapping theorem. Then the following theorem holds by the result of asymptotic

normality of α̂ (Theorem 3.1), consistency of V̂ (Theorem 3.3), and the Cramér

convergence theorem.

Proposition 3.1. Suppose that α0 ∈ A uniquely satisfies E[ht(ξt, α0, p0)] = θ(α0).

If the regularity conditions in Theorem 3.3 are satisfied, we have

√
T Ω̂−1/2(α̂− α0)

d→ N(0, Idα)

where dα = dim(A).

The result is useful in building standard types of test statistics such as t-test

and Wald test. First, we may construct the t-statistic for the significance test of

individual responses by picking an arbitrary component in α̂. Let ek be a unit vector

in Rdα with one in k-th component and zero elsewhere. Also, denote α̂k as the k-th

component in α̂. That is, α̂k = e′kα̂. Then by continuous mapping theorem, we get

the following result:

Corollary 3.1 (t-Statistic). Given that Proposition 3.1 holds, we have

tT =
α̂k − α0,k√

1
T
e′kΩ̂ek

d→ N(0, 1),

for all k = 1, · · · , dα.

In addition to this, we also construct the Wald statistic. Denote χ2
d for the

chi-square distribution with the degrees of freedom d. Then the result follows by

continuous mapping theorem:
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Corollary 3.2 (Wald-Statistic). Given that Proposition 3.1 holds, we have

WT = T (α̂− α0)′Ω̂−1(α̂− α0)
d→ χ2

dα .

Finally, consider the case dθ > dα where dθ = dim(Θ) = ky × (L + 1) × J .

By construction, we have the number of moment restrictions more than necessary

to identify parameters in the second-stage estimation. Such case allows us to apply

the J-test of over-identification by Hansen (1982). The definition of J-statistic

follows that of Ackerberg et al. (2012) and Chen and Liao (2015), which is a natural

extension of Hansen (1982) into semi-parametric framework. Specifically, the test

statistic is written as follow:

JT =
( 1√

T

T∑
t=1

ĥt(ξt, α̂, ϕ̂κ)− θ(α̂)
)′
V̂ −1

( 1√
T

T∑
t=1

ĥt(ξt, α̂, ϕ̂κ)− θ(α̂)
)

(3.20)

Then the limiting distribution of JT will be a chi-square distribution with degrees

of freedom equal to the difference between the dimension of θ, number of moment

conditions, and that of α, the number of free parameters.

Proposition 3.2. Suppose that the conditions in the above theorem holds. If the

correct null specification is E[ht(ξt, α0, p0)] = θ(α0) and dθ > dα, then we have

JT →d χ2
dθ−dα.

It is easy to interpret the J-test as a test of the validity of (possibly non-

linear) restriction given by θ = θ(α). For example, suppose that we want to test the

symmetry of inflation response to the monetary policy shock. We may use a series

of de-trended aggregate prices changes for the outcome variable yt. And for discrete

policy variables, we may create a set of dummy variables indicating the changes in
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policy rates. Specifically, let Dt be a 3×1 vector with j-th element denoted by Dt,j.

For each j ∈ {0, 1, 2}, we set Dt,0 = 1{∆PRt = 0}, Dt,1 = 1{∆PRt = −0.025},

and Dt,2 = 1{∆PRt = 0.025} where ∆PRt implies the changes in policy rate.

Regarding the moment restriction, for any positive integer L, we may consider a

matrix of constants R = (−1, 1)′ ⊗ IL+1 and set θ(α) = Rα which is equivalent to

θ = (−α′, α′)′. Then we can test the symmetry of impulse-response functions using

the limiting distribution of J-statistic which is, according to the Proposition 3.2,

equivalent to χ2
L+1.

3.6 Monte Carlo

3.6.1 Data Generating Process

We consider a simple AR(1) process augmented with an exogenous policy interven-

tion. More precisely, the DGP is written as follows:

yt = τdt + ρyt−1 + εt (3.21)

where dt ∈ {0, 1} indicates the exogeneously given discrete policy intervention and

εt
iid∼ N(0, σ2

ε) is a random innovation. Discrete policy intervention is assumed to be

a Bernoulli random process with “success” probability conditional on a covariate zt

is denoted by p(zt). Policy-score covariate zt is assumed to be an iid process with

Gaussian distribution with mean µz and variance σ2
z . Then conditioning on zt, the
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probability structure of the the discrete policy variable dt is characterized as follow:

dt|Ft =


1 with probability p(zt)

0 with probability 1− p(zt)

,

where the conditional probability is explicitly written by p(zt) = 1−Φ(δ−ztβ) with

standard normal CDF Φ(·).

The lag coefficient ρ is chosen among three candidates to reflect various de-

grees of persistence, while keeping the yt process to be stationary. Later we discuss

numerical result regarding the changes implied by yt getting closer to the unit root

case.

3.6.2 Benchmark Parametric Estimation

We begin with deriving the explicit formula of the actual dynamic causal effect

implied by the DGP given as (3.21). For any positive integer l, we get the following

decomposition by recursive substitution

yt+l = τdt+l + ρyt+l−1 + εt+l

= τdt+l + ρ(τdt+l−1 + ρyt+l−2 + εt+l−1) + εt+l

= τdt+1 + ρτdt+l−1 + ρ2yt+l−2 + εt+l + ρεt+l−1

= · · ·

= τ

l−1∑
j=0

ρjdt+l−j + ρlyt +
l−1∑
j=0

ρjεt+l−j.
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By taking the conditional expectation on both sides, we have the predicted value of

yt+l as follow:

E[yt+l|Ft] = τ
l−1∑
j=0

ρjE[dt+l−j|Ft] + ρlyt

The dynamic causal effect is defined by the difference between two predicted

outcomes, one is conditioned on dt = 1 while the other one is conditioned on dt = 0.

That is,

θl ≡ E[yt+l|dt = 1]− E[yt+l|dt = 0] = ρlτ (3.22)

and by accumulating the effects, we get the cumulative IRF as θcl ≡
∑l

j=0 θj.

As a benchmark case, we include two parametric estimates for comparison of

the performance with the semi-parametric estimates. Given that we know the para-

metric specification of outcome process (3.21), it is easy to think of estimating the

structural parameters, τ and ρ, directly and get an estimate of θl by plug-in method.

More precisely, estimation is implemented with a simple two-step procedure. First,

regress yt on dt and its lagged observation, yt−1, to get the estimates τ̂ and ρ̂. Then

construct the estimator of dynamic causal effect by replacing ρ and τ in (3.22) for

their corresponding estimator, such as θ̂l = ρ̂lτ̂ . Obviously, cumulative effect can be

easily obtained by accumulating θ̂l’s.

In addition to this, we also consider the local projection method by Jordà

(2005). The estimation is done by the following steps. First, regress yt’s on its own

lags and dt’s to get the residuals. Denote ε̂t = yt− τ̂ dt− ρ̂yt−1 where τ̂ and ρ̂ are the

OLS estimates of τ and ρ, respectively. Then project yt onto {1, ε̂t, ε̂t−1, · · · , ε̂t−L}

where L is a pre-fixed integer which implies the maximum lag of the impulse-response
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Table 3.1: Parameter values used in Monte Carlo experiment.

ρ

τ δ β µz σz σε low mid high

0.33 0.90 0.85 1.00 0.20 0.04 0.70 0.85 0.98

function. Let π = (π0, π̃
′)′ be the projection coefficient of size (L + 1)× 1, with π0

indicating the projection coefficient corresponding to the intercept. Jordà (2005)

argues that the l-th component in π̃, denoted by π̃l, is a local approximation of

Cov(yt, εt−l), which is coherent with the l-th period impulse-response function. Then

the estimate of l-period impulse-response to the discrete policy shock is given by

τ̂ π̃l.

3.6.3 Numerical Results

We simulate 287 observations per each repetition among the total of 1000 based

on to the DGP given by (3.21) and estimate L = 36 periods of impulse-response

functions. The first 37 observations are used as initial conditions, implying that the

effective sample size would be 250. The set of parameter values used to simulate

the data is summarized in Table 3.1.

Point estimates of impulse-response functions are given in the table C.1–C.3.

Each columns indicates the estimates obtained by different options including two

parametric cases and semi-parametric estimation with first-stage policy score esti-

mates computed by ordered probit model, multinomial logit model, and sieve ap-
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proximation via polynomial, trigonometric polynomial, Hermite polynomial, and

wavelet basis. Table C.1 is the result with date simulated under lowest persistence

level, ρ = 0.70. As expected, estimates in all of the different types approach to zero

fast due to a low level of persistence. While every estimates show mild degree of un-

der estimation, not surprisingly, two parametric benchmarks produce more accurate

result compared to semi-parametric estimates. Monte Carlo standard deviations,

numbers shown in the parenthesis, also suggests that the estimates are more dis-

persed across different simulations when we run semi-parametric estimation.

The precision seems to be worsen as we increase the persistence level in time

series process. The result in table C.2 is analogous to that of table C.1 while the

level of persistence is increased to ρ = 0.85. We still observe the tendency to

under estimate impulse-responses while the degree of under-estimation is worsen

as we compute semi-parametrically. Monte Carlo standard deviations also increase

at about 0.02 points compared to the case with the lowest persistence level. Then

it is easy to expect that the problem will become more serious as we increase the

persistence level further close to unit root case. Table C.3 proves such conjecture.

Now the Monte Carlo standard deviation is increased roughly upto 0.15 points in

ordered probit case and 0.185 in sieve estimation with wavelet basis.

One of the possible reasons for the inaccuracy comes from the bias in the

first-stage estimates of policy score functions. Figure C.1 compares policy score es-

timates in various semi-parametric estimation methods. While parametric first-stage

estimates–that is, ordered probit and multinomial logit–relatively well-approximates

the true conditional probabilities, estimation bias appears to be more serious in some
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of the sieve approximations. According to the numerical result shown in our nu-

merical example, it may be safer to use simple geometric polynomial and Hermite

polynomial to minimize approximation bias in finite sample.

Table C.4–C.6 show the mean squared errors for each of the point estimates

of impulse-response functions while underlying process varies in terms of its level of

persistence. In all of the three tables, two parametric benchmark outperform semi-

parametric estimates. By comparing the accuracy among different semi-parametric

estimates, we observe stable numbers across different columns in table C.4–implying

that there is minor information loss in using sieve approximation in the first stage in-

stead of estimation policy scores under correct parametric specification. However, in

table C.5, we observe slight increases in mean squared errors for the sieve estimates,

especially in trigonometric polynomial and wavelet basis. The result corresponds to

the fact shown in figure C.1 where we see larger bias in policy score estimates using

trigonometric polynomial and wavelet basis. The mean squared errors increase even

further as persistence level approaches one. In table C.6, we see the numbers are

roughly doubled between semi-parametric specifications and local projection.

Figure C.2 helps finding one of the source of inaccuracy in semi-parametric

impulse-response estimators. The left column in the figure plots evolution of mean

squared errors at each time periods while the right column plots their bias in absolute

level. In the first row, we see that although there is relatively larger fluctuations in

absolute bias, mean squared error is more consistent across the periods. It suggests

that mean squared error is mostly determined by the variance of estimators, not

by their bias. However, as we increase the level of persistence, bias becomes much
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larger and stable across the periods. Hence, the result shows that it is worthwhile

to consider a bias correction technique especially when the underlying process is

believed to have higher level of persistence.

Lastly, we illustrate the empirical size to check if asymptotic result shown

in section 3.5 hold in our numerical example. Numbers in table C.7–C.9 are the

fractions of estimates that are rejected via t-test.2 The size is controlled at 5%

implying that one should expect, if the test is well-specified, actual number of re-

jections should be close to 1 for each 20 simulations. In table C.7, although we

see some mild deviations from 0.05, empirical size is roughly consistent with the

pre-fixed level. However, in table C.8, slight increases in actual number of rejections

can be found in some cases. The increase in empirical size is especially noticeable in

the earlier periods with estimates via sieve approximations. The problem becomes

worse in table C.9 of which underlying process has the highest level of persistence.

In some cases, empirical size reaches upto 0.15 which is the triple of the actual size.

3.7 Conclusion

In this chapter, we developed a semi-parametric estimator for dynamic causal effects

with discrete policy shocks. The estimator takes the form of inverse propensity score

weighted average which is robust to non-linear and asymmetric impulse-response

functions. Using a recently proposed asymptotic theory, we show that the semi-

parametric estimator is uniformly consistent and asymptotically normal when the

2The test statistic is constructed following the result in corollary 3.1 while α0 is set to be the

actual impulse-response function implied by the parametric specification 3.22.
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underlying data is weakly dependent. As for the inference, we exploit the asymp-

totic normality and construct Wald and F-statistics that can be used to test both

linear and non-linear hypotheses. Test statistics are constructed by substituting a

semi-parametric estimator for the asymptotic variance matrix which is shown to be

consistent under weakly dependent process. Monte Carlo experiments show that the

estimator performs well even when the true impulse-response function is non-linear

and asymmetric.
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Chapter A: Appendix to Chapter 1

A.1 Series Estimation of Propensity Score Function

As the propensity score function p(x) is unknown and possibly nonlinear in x, I

consider the series approximation to estimate p(x) in more flexible setting. Asymp-

totic properties of series estimators are discussed earlier by, for example, Geman and

Hwang (1982) and Newey (1997). Hirano et al. (2003) develop the series estimation

theory to construct the efficient semi-parametric estimator for causal parameters.

While previous studies rely on the assumption that the support X is compact subset

of Rdx , I adopt new asymptotic theory recently developed by Belloni et al. (2015) and

Hansen (2015) to extend the case to smooth functions over possibly non-compact

support.

Let Rκ(x) = (r1(x), r2(x), · · · , rκ(x))′ so that Rκ(x) becomes a triangular array

of the collection of basis functions rj : Rdx → R for j = 1, 2, · · · , κ. The idea is to

approximate a generic, unknown function g : Rdx → R by a linear combination of

the basis functions, which is given by P κ(x)′γκ for some vector of constants γκ ∈ Rκ.

Note that for any unitary matrix Hκ ∈ Rκ×κ, we get Rκ(x)′γκ = Rκ(x)′H−1
κ Hκγκ.
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Therefore, we may choose Hκ properly so that Ψκ(x) = HκR
κ(x) satisfies

∫
X
‖Ψκ(x)Ψκ(x)′‖dµ(x) = Iκ

Approximation Theory By choosing a properly normalized basis, I restrict the

size of triangular array Ψκ(x). Specifically, consider Ψκ(x) such that ‖Ψκ(x)‖η =

O(zκ) for some positive sequence zκ which is weakly increasing with respect to κ.

This condition replaces the usual sup-norm based condition that is not well-defined

in case the support X is possibly non-compact. The bounding sequence zκ is specific

to the type of basis functions. Some of the known examples in one dimensional space

are the following. For polynomial basis Ψκ(x) = (1, x, x2, · · · , xκ−1)′ and zκ = O(κ).

For Fourier series, wavelets, and splines, zκ = O(κ1/2).1

Validity of linear approximation is supported by a classical result in functional

analysis. The key is to find a vector γκ ∈ Rκ which satisfies the following equation:

(∫
X
‖g(x)−Ψκ(x)′γκ‖ηdµ(x)

) 1
η

= O(bκ) (A.1.1)

where bκ → 0 as κ → ∞. Hansen (2015) lists a set of necessary conditions

under which the linear approximation is valid. Suppose that a function g over

Rdx is s times continuously differentiable in the following sense: for all |s| ≤ s,

(
∫
‖∇sg(x)‖η exp(−A‖x‖α)dx)1/η < ∞ for some A > 0 and α ≥ 2. Then the

largest deviation of a linear approximation Ψκ(x)′γκ from g(x) is bounded as fol-

1See Belloni et al. (2015) and Hansen (2015) for the list of known basis functions and their

bounding sequences.
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lows (Mhaskar, 1996; Maiorov and Meir, 1998):

inf
γκ∈Rκ

(∫
‖g(x)−Ψκ(x)′γκ‖η exp(−A‖x‖α)dx

)1/η

= O(κ−
s
dx

(1− 1
α

))

Then it follows that if µ(x) ≤ C exp(−A‖x‖α) for some C <∞, equation (A.1.1) is

satisfied with bκ = O(κ−
sη
dx

(1−1/α)).

Series Estimation of Propensity Score To ensure that the target of approx-

imation stays in between [0, 1], consider approximating the log odds ratio. Define

γκ as a vector of constant which satisfies

(∫
X

∥∥∥ln
p(x)

1− p(x)
−Ψκ(x)′γκ

∥∥∥ηdµ(x)
) 1
η

= O(κ−
s
dx

(1− 1
α

)) (A.1.2)

Note that the transformation ρ(z) = ln z
1−z is monotonically increasing and smooth

over a closed interval z ∈ [p, p] ⊂ (0, 1). Therefore, it follows from the previous

discussion that γκ satisfying (A.1.2) exists only if p(x) is s times differentiable and

∇sp(x) is absolutely continuous and bounded in Lη(µ)-norm.

It is natural to find the best linear approximation by maximizing a criterion

function implied by the log-likelihood. Let L(u) = exp(u)/(1 + exp(u)), the logistic

CDF. Two versions of the series estimators are defined as follows. First, denote the

empirical estimator of p(x) by p̂κ(x) ≡ L(Ψκ(x)′γ̂κ) for γ̂κ = arg maxγ∈Rκ Ln(γ) with

Ln(γ) ≡
n∑
i=1

(
Di lnL(Ψκ(Xi)

′γ) + (1−Di) ln(1− L(Ψκ(Xi)
′γ))
)

On the other hand, we may also define the population-level estimator as p∗κ(x) ≡

L(Ψκ(x)′γ∗) for γ∗κ = arg maxγ∈Rκ L
∗(γ) with

L∗(γ) ≡ E
[
p(X) lnL(Ψκ(X)′γ) + (1− p(X)) ln(1− L(Ψκ(X)′γ))

]
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The first step is to show that the propensity score function p(x) is well-

approximated by the population-level estimator p∗κ(x). The following lemma is the

formal statement of the claim:

Lemma A.1.1. Suppose that the following conditions hold: (i) X ⊆ Rdx, (ii) for

all |s| ≤ s, ∇sp(x) is absolutely continuous and bounded–i.e. for some A > 0,

(
∫
‖∇sp(x)‖η exp(−A‖x‖2)dx)1/η <∞, (iii) µ(x) is bounded away from zero on X ,

and (iv) µ(x) ≤ C exp(−A‖x‖2). Then, for γκ satisfying (A.1.2),

(∫
X
‖p(x)− p∗κ(x)‖ηdµ(x)

) 1
η

= O(κ−
s

2dx zκ)

Proof. The proof follows from the result of Hansen (2015, Theorem 6) by showing

that the difference between actual and approximated propensity score functions is

bounded at the same rate of (A.1.2). Let ξ = supx∈X ‖p(x)(1−p(x))‖ which satisfies

ξ ∈ (0, 1) by Condition 1.2. Note that since L(u) is continuously differentiable over

R. For any u1, u2 ∈ R such that u1 ≤ u2, there exists ū ∈ [u1, u2] satisfying

‖L(u1) − L(u2)‖ ≤ ‖L′(ū)‖‖u1 − u2‖ by the mean value theorem. Then, for all

x ∈ X ,

‖p(x)− p∗κ(x)‖ =
∥∥∥L(ln

p(x)

1− p(x)

)
− L(Ψκ(x)′γ∗κ)

∥∥∥ ≤ ξ‖g(x)−Ψκ(x)′γ∗κ‖

Hence the result follows for any η ≥ 1.

It also needs to be shown that the p̂κ(x) is close enough to the population-

level approximation which is denoted by p∗κ(x) previously. The claim can be verified

by the following lemma which argues γ̂κ converges to γ∗κ with a proper choice of

bandwidth κ.
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Lemma A.1.2. Suppose that the Conditions 1.1, 1.2, and that stated in Lemma

A.1.1 hold. In addition, let κ = κn where κn is a non-stochastic sequence satisfying

κn →∞ and n−1z
2η
η−2
κ log κ = o(1) as n→∞. Then,

‖γ̂κn − γ∗κn‖ = Op(

√
κn
n

)

Proof. The proof follows the argument in Lemma 1 of Hirano et al. (2003). Let

M̂κ = 1
n

∑n
i=1 Ψκ(Xi)Ψ

κ(Xi)
′ which satisfies E[M̂κ] = Iκ. Following result is from

Lemma 2 of Hansen (2015):

‖M̂κ − Iκ‖ = Op

(
z

η
η−2
κ

√
log κ

n

)
(A.1.3)

Since the rate z
η
η−2
κ

√
log κ/n converges to zero as stated, the result (A.1.3) also

implies that ‖M̂κ − Iκ‖ = op(1). Then for an arbitrarily small constant ε > 0,

‖λmin(M̂κ)−1‖ ≥ ε with probability approaching to one. Without loss of generality,

assume that λmin(M̂κ) ≤ 1 and pick ε = 1/2.

Note that Ln(γ) is concave over all γ ∈ Rκ and, by definition, 1
n
∂Ln(γ̂κ)
∂γ

= 0.

Following the proof of Lemma 1 in Hirano et al. (2003), I show that the first order

condition evaluated at γ = γ∗κ also satisfies the first order condition with probability

approaching to one. It can be shown that

E
[∥∥∥ 1

n

∂Ln(γ∗κ)

∂γ

∥∥∥2]
=

1

n
E
[
tr
(

(Di − L(Ψκ(Xi)
′γ∗κ))

2Ψκ(Xi)Ψ
κ(Xi)

′
)]

≤ 1

n
tr(E[Ψκ(Xi)Ψ

κ(Xi)
′]) =

κ

n

For an arbitrary constant C, the Markov inequality yields

Prob
(∥∥∥ 1

n

∂Ln(γ∗κ)

∂γ

∥∥∥ ≥ C

√
κ

n

)
≤ 1

C

n

κ
E
[∥∥∥ 1

n

∂Ln(γ∗κ)

∂γ

∥∥∥2]
=

1

C
(A.1.4)
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which implies that
∥∥∥ 1
n
∂Ln(γ∗κ)
∂γ

∥∥∥ = Op

(√
κ
n

)
. Let

ξ ≡ inf
x∈X

L(Ψκ(x)′γ∗κ)(1− L(Ψκ(x)′γ∗κ)) (A.1.5)

which is strictly positive from Condition 1.2 and the result of Lemma A.1.1. For

arbitrary ε > 0, we may choose a constant C and large enough n such that

Prob
(∥∥∥ 1

n

∂Ln(γ∗κ)

∂γ

∥∥∥ < ξC

√
κ

n

)
≥ 1− ε (A.1.6)

Consider the second-order expansion of Ln(γ) for an arbitrary γ within a shrinking

neighborhood Γn ≡ {γ ∈ Rκ : ‖γ − γ∗κ‖ ≤ C
√
κ/n}. That is,

1

n
Ln(γ) =

1

n
Ln(γ∗κ) +

1

n

∂Ln(γ∗κ)

∂γ
(γ − γ∗κ) +

1

2n
(γ − γ∗κ)′

∂2Ln(γ̄)

∂γ∂γ′
(γ − γ∗κ)

for some γ̄ satisfying ‖γ̄ − γ∗κ‖ ≤ ‖γ − γ∗κ‖ ≤ C
√
κ/n. Note that

1

n

∂2Ln(γ̄)

∂γ∂γ′
= − 1

n

n∑
i=1

L(Ψκ(Xi)
′γ̄)(1− L(Ψκ(Xi)

′γ̄))Ψκ(Xi)Ψ
κ(Xi)

′

≤ −2ξ

n

n∑
i=1

Ψκ(Xi)Ψ
κ(Xi)

′ = −2ξM̂κ (A.1.7)

where the inequality (A.1.7) holds since ξ is the uniform lower bound as defined by

(A.1.5). Given that λmin(M̂κ) ≥ 1/2 with probability approaching to one, we get

‖ 1
n
∂2Ln(γ̄)
∂γ∂γ′

‖ ≤ −ξ for n large enough. Therefore, for any γ satisfying ‖γ − γ∗κ‖ =

C
√
κ/n,

1

n
Ln(γ)− 1

n
Ln(γ∗κ) ≤

∥∥∥ 1

n

∂Ln(γ∗κ)

∂γ

∥∥∥‖γ − γ∗κ‖+
1

2

∥∥∥ 1

n

∂2Ln(γ̄)

∂γ∂γ′

∥∥∥‖γ − γ∗κ‖2

≤
∥∥∥ 1

n

∂Ln(γ∗κ)

∂γ

∥∥∥‖γ − γ∗κ‖+ ξ‖γ − γ∗κ‖2

≤
(∥∥∥ 1

n

∂Ln(γ∗κ)

∂γ

∥∥∥− ξC√κ

n

)
‖γ − γ∗κ‖ < 0
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Therefore, Ln(γ) < Ln(γ∗κ) with probability greater than 1− ε for all γ ∈ Γn \ intΓn.

Thus we have the maximum γ̂κ must be in the interior of Γn for n sufficiently large

which implies ‖γ̂κ − γ∗κ‖ = Op(
√
κ/n).

Suppose that the number of terms in the series expansion κ = κn increases

with respect to the sample size n. The rate of increment should be carefully managed

with a choice of basis functions. In a later part of this section and the results in

Section 1.4, I consider multi-dimensional polynomial series for Ψκ(x). This implies a

bounding sequence of zκ = O(κdx) as discussed above. In this case, we may further

specify the rate condition to be κ4dx
n = o(n).

Denote γ̂n = γ̂κn , γ∗n = γ∗κn , p̂n(x) = p̂κn(x), p∗n(x) = p∗κn(x) to reduce complex-

ity in notation. The formal statement of the uniform consistency of series estimator

is given in Lemma 1.6 in the main text. I present the proof of the statement below.

Proof of Lemma 1.6 By Minkowski inequality,

‖p̂n(x)− p(x)‖η = ‖p̂n(x)− p∗n(x) + p∗n(x)− p(x)‖η

≤ ‖p̂n(x)− p∗n(x)‖η + ‖p∗n(x)− p(x)‖η

From the result of Lemma A.1.1, we know that ‖p∗n(x) − p(x)‖η = O(κ−
s

2dx zκ). In

addition,

‖p̂n(x)− p∗n(x)‖η =
(∫
X
‖Ψκ(x)′γ̂n −Ψκ(x)′γ∗n‖ηdµ(x)

) 1
η

≤ ‖γ̂n − γ∗n‖
(∫
X
‖Ψκ(x)‖ηdµ(x)

) 1
η

= Op

(√
κn
n
zκ

)
as ‖γ̂n− γ∗n‖ = Op(

√
κn/n) from Lemma A.1.2 and ‖Ψκ‖η = Op(zκ) by the assump-

tion given in the statement. Then the result follows by n−1/2κ
1/2(s/dx+1)
n = o(1).
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A.2 Proof of Results

A.2.1 Proof of Proposition 1.1

Let F1|0 denote the conditional distribution of Y (1) given Y (0) and X. That is,

F1|0(y1|y0, x) = Prob(Y (1) ≤ y1|Y (0) = y0, X = x) for y1 ∈ Y1, y0 ∈ Y0, and x ∈ X .

For given x, Y1 is stochastically increasing with respect to Y (0) iff F1|0(y1|y0, x) is

decreasing in y0 for all y1 ∈ Y1. With the Condition 1.3, we have

F1|0(y1|y0, x) = Prob(Y (0) + ∆ ≤ y1|Y (0) = y0, X = x)

= Prob(∆ ≤ y1 − y0|Y (0) = y0, X = x) = Prob(∆ ≤ y1 − y0|X = x)

= F∆(y1 − y0|x)

where F∆ is the CDF of ∆. Consider an arbitrary pair of y0, y
′
0 ∈ Y0 such that

y0 < y′0. Since F∆ is a weakly increasing function over the support, we have F∆(y1−

y0) ≥ F∆(y1 − y′0) for all y1. Then the conclusion follows.

A.2.2 Proof of Lemma 1.1

Note that Conditions 1.1 and 1.2 collectively imply the following: for j ∈ {0, 1},

Y (j) ⊥ D|p(X) (Rosenbaum and Rubin, 1983, Theorem 3). In addition,

E[D exp(ιωY )|p(X)] = E[exp(ιωY )|D = 1, p(X)]Prob(D = 1|p(X))

+ 0 · Prob(D = 0|p(X))

= E[exp(ιωY (1))|D = 1, p(X)]Prob(D = 1|p(X)) (A.2.1)

= E[exp(ιωY (1))|p(X)]Prob(D = 1|p(X)) (A.2.2)
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while (A.2.1) is equal to (A.2.2) because of the independence between Y (1) and D

conditional on p(X). Then the result follows by dividing both sides of (A.2.2) with

respect to Prob(D = 1|p(X)) which is bounded away from zero. Similarly, it can be

easily shown that the characteristic function of Y (0) is identified as follow:

E[(1−D) exp(ιωY )|p(X)] = E[exp(ιωY (0))|p(X)]Prob(D = 0|p(X))

and the result follows from the fact that Prob(D = 0|p(X)) = 1−Prob(D = 1|p(X)).

A.2.3 Proof of Lemma 1.2

Let τ, y ∈ R and z ∈ [p, p] be arbitrary values. Conditional distribution of ∆ being

less than or equal to τ given Y (0) = y and p(X) = z is given by

Prob(∆ ≤ τ |Y (0) = y, p(X) = z) =

∫
{x:p(x)=z}

Prob(∆ ≤ τ |Y (0) = y,X = x)dµ(x)

=

∫
{x:p(x)=z}

Prob(∆ ≤ τ |X = x)dµ(x)

= Prob(∆ ≤ τ |p(X) = z)

while the second equality is followed by the Condition 1.3. Therefore, the result

follows.

A.2.4 Proof of Lemma 1.3

By definition, we have Y (1) = Y (0) + ∆. Using the Condition 1.3, we may decom-

pose the conditional characteristic function of Y (1) as the product of the charac-

teristic functions of Y (0) and ∆. That is, ϕ1(ω|z) = E[exp(ιωY (1))|p(X) = z] =

E[exp(ιω(Y (0) + ∆))|p(X) = z] = E[exp(ιωY (0))|p(X) = z]E[exp(ιω∆)|p(X) =
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z] = ϕ0(ω|z)ϕ∆(ω|z). Given that ϕ0(ω|z) is non-vanishing, we have ϕ∆(ω|z) =

ϕ1(ω|z)/ϕ0(ω|z). Then the result follows from the result of Lemma 1.1 that ϕ1(ω|z)

and ϕ0(ω|z) are identified.

A.2.5 Proof of Lemma 1.4

Let q be a distribution which satisfies
∫ p
p
dq(s) = 1 and for any z ∈ [p, p],

∫ z
p
dq(s) =

Prob(p(X) ≤ z). First, we need to show that the unconditional characteristic

function of the causal effect, denoted by ϕ∆(ω), is identified.

E[exp(ιω∆)] =

∫ p

p

E[exp(ιω∆)|p(X) = z]dq(z)

=

∫ p

p

E[exp(ιωY (1))|p(X) = z]

E[exp(ιωY (0))|p(X) = z]
dq(z)

=

∫ p

p

1− Prob(D = 1|p(X) = z)

Prob(D = 1|p(X) = z)

E[D exp(ιωY )|p(X) = z]

E[(1−D) exp(ιωY )|p(X) = z]
dq(z)

= E
[1− p(X)

p(X)

E[D exp(ιωY )|p(X)]

E[(1−D) exp(ιωY )|p(X)]

]

A.2.6 Proof of Proposition 1.2

Note that Condition 1.4 guarantee that ϕ0(ω|z) is non-vanishing almost everywhere.

Therefore, ϕ∆(ω|z) is uniquely identified by Lemma 1.1. Then the remaining is to

show that the expression (1.9) is well-defined, i.e. ‖f∆(τ |z)‖ <∞. Note that,

‖f∆(τ |z)‖ ≤ sup
τ∈T

∥∥∥ 1

2π

∫
R

exp(−ιωτ)
ϕ1(ω|z)

ϕ0(ω|z)
dω
∥∥∥

≤ 1

2π

∫
R

sup
τ∈T
‖ exp(−ιωτ)‖

∥∥∥ϕ1(ω|z)

ϕ0(ω|z)

∥∥∥dω
=

1

2π

∫
R

∥∥∥ϕ1(ω|z)

ϕ0(ω|z)

∥∥∥dω
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by using the fact that ‖ exp(−ιωτ)‖ = 1 for all ω, τ ∈ R and the dominant con-

vergence theorem. Hence, the result satisfies if and only if ‖ϕ1(ω|z)/ϕ0(ω|z)‖ is

integrable over R. Since infz∈[p,p] ‖ϕ0(ω|z)‖ ≥ Υ0(ω), we have ‖ϕ1(ω|z)/ϕ0(ω|z)‖ ≤

Υ0(ω)−1‖ϕ1(ω|z)‖ almost everywhere on R. By Hölder inequality,

∫
R

∥∥∥ϕ1(ω|z)

ϕ0(ω|z)

∥∥∥dω ≤ ∫
R
‖ϕ1(ω|z)‖Υ0(ω)−1dω

≤
(∫

R
‖ϕ1(ω|z)‖2dω

) 1
2
(∫

R
Υ0(ω)−2dω

) 1
2

Note that (
∫
R Υ0(ω)−2dω)

1
2 < ∞ by assumption. Then the result holds if and

only if
∫
R ‖ϕ1(ω|z)‖2dω is shown to be finite. Suppose that ϕ1(ω|z) is ordinary

smooth. From Condition 1.4 and the property of characteristic functions, there

exists M < ∞ such that ‖ϕ1(ω|z)‖ ≤ 1 for |ω| ≤ M and ‖ϕ1(ω|z)‖ ≤ A|ω|−γ for

|ω| > M . Therefore,

∫
R
‖ϕ1(ω|z)‖2dω ≤ 2

∫ M

0

1dω + 2

∫ ∞
M

A|ω|−2γdω = 2M +
4A

1− 2γ
M1−2γ <∞

Suppose that ϕ1(ω|z) is super-smooth. From Condition 1.4, there exists M < ∞

such that ‖ϕ1(ω|z)‖ ≤ A|ω|c exp(−B|ω|γ) for |ω| > M . Therefore,

∫
R
‖ϕ1(ω|z)‖2dω ≤ 2

∫ M

0

1dω + 2

∫ ∞
M

Aω2c exp(−2Bωγ)dω

= 2M + 21− 2c+1
γ
A

γ
B−

2c+1
γ

∫ ∞
2BMγ

ω
2c+1
γ
−1 exp(−ω)dω

= 2M + 21− 2c+1
γ
A

γ
B−

2c+1
γ Γ

(2c+ 1

γ
, 2BMγ

)
<∞

where Γ(s, x) ≡
∫∞
x
ts−1 exp(−t)dt is the incomplete gamma function which is well-

defined for all s, x ≥ 0.

124



A.2.7 Proof of Proposition 1.3

Given that the Condition 1.4 implies that ϕ0(ω|z) is non-vanishing almost every-

where and Conditions 1.1, 1.2, and 1.3 are satisfied, we have ϕ∆(ω|z) = ϕ1(ω|z)/ϕ0(ω|z)

uniquely identified by Lemma 1.1. Then the formula (1.11) follows from Gil-Pelaez

(1951) and its modification by Dattner et al. (2011).

A.2.8 Proof of Proposition 1.4

For simplicity, I suppress covariate X in notation. Consider transformed variables

U = F−1
1 (Y (1)) and V = F−1

0 (Y (0)), both distributed as Uniform[0, 1]. Note that

as they are rank-preserving transformations, joint distribution of (U, V ) is equal to

the copula of (Y (1), Y (0)) (Nelsen, 2007). Let CRI(u, v) be the bivariate CDF of

(U, V ). From the rank invariance property, we have

CRI(u, v)

v
=

Pr(U ≤ u, V ≤ v)

Pr(V ≤ v)
= Pr(U ≤ u|V ≤ v) =



u
v

if u < v

1 if u = v

1 if u > v

CRI(u, v)

u
=

Pr(U ≤ u, V ≤ v)

Pr(U ≤ u)
= Pr(V ≤ v|U ≤ u) =



1 if u < v

1 if u = v

v
u

if u > v

Thus, we have CRI(u, v) = min{u, v}.
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A.2.9 Proof of Theorem 1.1

The B-spline series of order r ≥ 2 is defined as P r(z) = (1, z,max{z−b1, 0},max{z−

b2, 0}, · · · ,max{z−br−2, 0})′ for z ∈ [0, 1] where {b1, b2, · · · , br−2} are equally-spaced

nodes in [0, 1]. Denote Ẑi = p̂n(Xi) and Zi = p(Xi). Suppose that Lemma 1.6 holds

with η = 1. Then one can show that the following lemma holds:

Lemma A.2.1. For r = rn, E[‖P r(Ẑi)− P r(Zi)‖] = O
(√

κn
n
zκrn

)
Proof. Note that for any z, z′ ∈ [p, p], we have

‖P r(z′)− P r(z)‖ = ‖(0, z′ − z,max{z′ − b1, 0} −max{z − b1, 0},

· · · ,max{z′ − br−2, 0} −max{z − br−2, 0})′‖

= ‖z′ − z‖+
r−2∑
j=1

max{‖z′ − z‖, ‖z′ − bj‖, ‖z − bj‖}

≤ ‖z′ − z‖+ (r − 2) sup
z∈[p,p]

‖z‖‖z′ − z‖

= (1 + (r − 2)p)‖z′ − z‖

Hence, there exists a finite constant C ≥ 1, such that ‖P r(Ẑi)−P r(Zi)‖ ≤ Cr‖Ẑi−

Zi‖. Then from the result of Lemma 1.6, we get

E[‖P r(Ẑi)− P r(Zi)‖] ≤ CrnE[‖Ẑi − Zi‖] = O
(√κn

n
zκrn

)

Define matrices as follow: Mr ≡ E[P r(Zi)P
r(Zi)

′], M r ≡ (1/n)
∑n

i=1 P
r(Zi)P

r(Zi)
′,

and M̂r ≡ (1/n)
∑n

i=1 P
r(Ẑi)P

r(Ẑi)
′. Note that Mr is bounded by

‖Mr‖ ≤ sup
z∈[0,1]

‖P r(z)P r(z)′‖ = O(rn).
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Following results show that both of the stochastic sequences M r and M̂r converge

to Mr and bounded.

Lemma A.2.2. For r = rn, we have the following results:

(i) E[‖M r −Mr‖] = O
(√

r2
n log rn
n

)
(ii) E[‖M̂r −Mr‖] = O

(√
κn
n
zκr

3
2
n

)
+O

(√
r2
n log rn
n

)
Proof of Lemma A.2.2-(i). Note that Zi for i = 1, · · · , n are series of independent

random variables on a compact support [p, p]. Hence, P r(Zi)P
r(Zi)

′ is a sequence

of independent, symmetric, non-negative random matrix of size r × r for r ≥ 2.

In addition, by the property of B-spline series, we have supz∈[p,p] ‖P r(z)‖ = O(
√
r)

as the upper bound. Therefore, ‖E[P r(Zi)P
r(Zi)

′]‖ ≤ supz∈[p,p] ‖P r(z)P r(z)′‖ =

supz∈[p,p] ‖P r(z)‖2 = O(rn). Then the case satisfies the conditions in Lemma 6.2 of

Belloni et al. (2015) which gives the following result:

E[‖M r −Mr‖] = O
(√r2

n log rn
n

)

Proof of Lemma A.2.2-(ii). From the triangle inequality, we get

‖M̂r −Mr‖ ≤ ‖M̂r −M r‖+ ‖M r −Mr‖

Note that

‖M̂r −M r‖ =
∥∥∥ 1

n

n∑
i=1

P r(Ẑi)P
r(Ẑi)

′ − 1

n

n∑
i=1

P r(Zi)P
r(Zi)

′
∥∥∥

≤ 1

n

n∑
i=1

‖P r(Ẑi)P
r(Ẑi)

′ − P r(Zi)P
r(Zi)

′‖
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≤ 2

n

n∑
i=1

sup
z∈[p,p]

‖P r(z)‖‖P r(Ẑi)− P r(Zi)‖

=
2
√
rn
n

n∑
i=1

‖P r(Ẑi)− P r(Zi)‖

Therefore, we have

E[‖M̂r −M r‖] ≤ 2rnE[‖P r(Ẑi)− P r(Zi)‖] = O
(√κn

n
zκr

3
2
n

)
Then the result is followed by Lemma A.2.2-(i).

Lemma A.2.3. Let r = rn and suppose that r2
n log rn/n = o(1) and

√
κn
n
zκr

3
2
n = o(1).

Then the following results hold:

(i) ‖M r −Mr‖ = op(1) and ‖M r‖ = Op(rn)

(ii) ‖M̂r −M r‖ = op(1) and ‖M̂r −Mr‖ = op(1)

Proof of Lemma A.2.3-(i). Let C be a finite constant which satisfies E[‖M r−Mr‖] ≤

C
√

κn
n
zκr

3
2
n . For an arbitrary constant ε > 0, use Markov inequality to have

Prob(‖M r −Mr‖ ≥ ε) ≤ 1

ε
E[‖M r −Mr‖] ≤

C

ε

√
r2
n log rn
n

= o(1)

and the last equality follows from the fact that r2
n log rn/n = o(1). In addition, use

triangle inequality to show that ‖M r‖ ≤ ‖Mr‖+ ‖M r −Mr‖ = Op(rn) + op(1).

Proof of Lemma A.2.3-(ii). From the proof of Lemma A.2.2-(ii), we may find a finite

constant C such that E[‖M̂r −M r‖] ≤ C
√

κn
n
zκr

3
2
n . Then for an arbitrary constant

ε > 0, Markov inequality yields the following relationship

Prob(‖M̂r −M r‖ ≥ ε) ≤ 1

ε
E[‖M r −Mr‖] ≤

C

ε

√
κn
n
zκr

3
2
n = o(1)
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which claims the first result. Then the second result follows from the triangular

inequality such as

‖M̂r −Mr‖ ≤ ‖M̂r −M r‖+ ‖M r −Mr‖ = op(1) + op(1) = op(1)

I present the proof for ϕ1 in here which can be extended to the case of ϕ0 as

well. Note that

|ϕ̂1(ω|z)− ϕ1(ω|z)| =
(
(<(ϕ̂1(ω|z))−<(ϕ1(ω|z)))2 + (=(ϕ̂1(ω|z))−=(ϕ1(ω|z))2

) 1
2

≤ |<(ϕ̂1(ω|z))−<(ϕ1(ω|z))|

+ |=(ϕ̂1(ω|z))−=(ϕ1(ω|z)| ≡ Γre1,n + Γim1,n

I show that both real and imaginary parts uniformly converge to zero at the same

rate. Note that exp(ιωYi) = cos(ωYi) + ι sin(ωYi). Hence, for the real part, we have

Γre1,n =
∥∥∥P r(z)′

( n∑
i=1

P r(Ẑi)P
r(Ẑi)

′
)−1( n∑

i=1

P r(Ẑi)Di<(exp(ιωYi))
)
−<(ϕ1(ω|z))

∥∥∥
≤ ‖P r(z)‖

∥∥∥( n∑
i=1

P r(Ẑi)P
r(Ẑi)

′
)−1( n∑

i=1

P r(Ẑi)Di cos(ωYi)
)

− E[P r(Zi)P
r(Zi)

′]−1E[P r(Zi)Di cos(ωYi)]
∥∥∥

+ ‖P r(z)′βre1 (ω)−<(ϕ1(ω|z))‖

while the first term is decomposed as follows:

∥∥∥( n∑
i=1

P r(Ẑi)P
r(Ẑi)

′
)−1( n∑

i=1

P r(Ẑi)Di exp(ιωYi)
)

− E[P r(Zi)P
r(Zi)

′]−1E[P r(Zi)Di cos(ωYi)]
∥∥∥
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≤
∥∥∥( 1

n

n∑
i=1

P r(Ẑi)P
r(Ẑi)

)−1∥∥∥∥∥∥ 1

n

n∑
i=1

(P r(Ẑi)− P r(Zi))Di cos(ωYi)
∥∥∥

+
∥∥∥( 1

n

n∑
i=1

P r(Ẑi)P
r(Ẑi)

′
)−1

− E[P r(Zi)P
r(Zi)

′]−1
∥∥∥∥∥∥ 1

n

n∑
i=1

P r(Zi)Di exp(ιωYi)
∥∥∥

+
∥∥∥E[P r(Zi)P

r(Zi)]
−1
∥∥∥∥∥∥ 1

n

n∑
i=1

P r(Zi)Di exp(ιωYi)− E[P r(Zi)Di exp(ιωYi)]
∥∥∥

Suppose that λmin(M̂r) ≤ λmin(Mr). For sufficiently large n, we may find ζ < ∞

such that λmin(Mr)− λmin(M̂r) = ζ by Lemma A.2.3-(ii). Then,

∥∥∥( 1

n

n∑
i=1

P r(Ẑi)P
r(Ẑi)

)−1∥∥∥ ≤ 1/λmin(M̂r) = 1/(λmin(Mr) + ζ) < ∞.

In addition,

∥∥∥ 1

n

n∑
i=1

(P r(Ẑi)− P r(Zi))Di exp(ιωYi)
∥∥∥ ≤ 1

n

n∑
i=1

‖P r(Ẑi)− P r(Zi)‖‖Di exp(ιωYi)‖

≤ 1

n

n∑
i=1

‖P r(Ẑi)− P r(Zi)‖

= Op

(√κn
n
zκrn

)
given that ‖Di cos(ωYi)‖ ≤ ‖Di‖‖ cos(ωYi)‖ ≤ 1. For the second term, note that∥∥∥( 1

n

∑n
i=1 P

r(Ẑi)P
r(Ẑi)

′
)−1

−E[P r(Zi)P
r(Zi)

′]−1
∥∥∥ = op(1) by Lemma A.2.2. Since

supz∈[0,1] ‖P r(z)‖ = O(
√
r), we have

∥∥∥ 1

n

n∑
i=1

P r(Zi)Di cos(ωYi)
∥∥∥ ≤ 1

n

n∑
i=1

‖P r(Zi)‖‖Di cos(ωYi)‖

≤ 1

n

n∑
i=1

‖P r(Zi)‖ ≤ sup
Zi

‖P r(Zi)‖ = O(
√
rn)

Given that λmin(E[P r(Zi)P
r(Zi)

′]) > 0, we may bound
∥∥∥E[P r(Zi)P

r(Zi)]
−1
∥∥∥ with

a finite constant 1/λmin(M r). In addition,

‖P r(Zi)Di cos(ωYi)‖ = ‖P r(Zi)‖‖Di cos(ωYi)‖ ≤ ‖P r(Zi)‖ = O(
√
r)
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uniformly for all ω ∈ R. Then we may apply the uniform law of large numbers to

have the following result:

sup
|ω|≤Bn

∥∥∥ 1

n

n∑
i=1

P r(Zi)Di cos(ωYi)− E[P r(Zi)Di cos(ωYi)]
∥∥∥ = op(1)

Therefore, we have

sup
|ω|≤Bn,z∈[p,p]

‖<(ϕ̂1,n(ω|z))−<(ϕ1(ω|z))‖

≤ C
√
rn

(
Op

(√κn
n
zκrn

)
+Op(

√
rn) + op(1)

)
+O(r−α1

n Bn)

= Op

(√κn
n
zκr

3
2
n

)
+O(r−α1

n Bn)

Similarly, it can be shown that the imaginary part of ϕ̂1,n(ω|z) converges uniformly

to that of ϕ1(ω|z) at the same rate.

A.2.10 Proof of Theorem 1.2

Lemma A.2.4. Suppose that the Assumptions in Theorem 1.1 hold. Then,

sup
|ω|≤Bn,z∈[p,p]

∣∣∣∣ ϕ0(ω|z)

ϕ̂0,n(ω|z)
− 1

∣∣∣∣ = Op

(κn
n
zκr

3
n

)
+Op

(
r−2α0
n B2

n

)
Proof. Note that∣∣∣∣ ϕ0(ω|z)

ϕ̂0,n(ω|z)
− 1

∣∣∣∣ = ‖ϕ̂0,n(ω|z)‖‖ϕ0(ω|z)− ϕ̂0,n(ω|z)‖

= ‖ϕ̂0,n(ω|z)− ϕ0(ω|z) + ϕ0(ω|z)‖‖ϕ0(ω|z)− ϕ̂0,n(ω|z)‖

≤
(
‖ϕ̂0,n(ω|z)− ϕ0(ω|z)‖+ ‖ϕ0(ω|z)‖

)
‖ϕ̂0,n(ω|z)− ϕ0(ω|z)‖

≤
(
‖ϕ̂0,n(ω|z)− ϕ0(ω|z)‖+ 1

)
‖ϕ̂0,n(ω|z)− ϕ0(ω|z)‖

then from the result in Theorem 1.1,

sup
|ω|≤Bn,z∈[p,p]

∣∣∣∣ ϕ0(ω|z)

ϕ̂0,n(ω|z)
− 1

∣∣∣∣ =
(
Op

(
n−

1
2 zκκ

1
2
nr

3
2
n

)
+Op(r

−α0
n Bn) + 1

)
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×
(
Op

(
n−

1
2 zκκ

1
2
nr

3
2
n

)
+Op(r

−α0
n Bn)

)
= Op(n

−1z2
κκnr

3
n) +Op(r

−2α0
n B2

n)

Note that

sup
τ∈T
‖f̂∆,n(τ |z)− f∆(τ |z)‖ ≤ 1

2π
sup
τ∈T

∫
R
‖ exp(−ιωτ)‖

∣∣∣∣ ϕ̂1,n(ω|z)ϕξ(hnω)

ϕ̂0,n(ω|z)
− ϕ1(ω|z)

ϕ0(ω|z)

∣∣∣∣ dω
≤ 1

2π

∫
R

∣∣∣∣ ϕ̂1,n(ω|z)ϕξ(hnω)

ϕ̂0,n(ω|z)
− ϕ1(ω|z)

ϕ0(ω|z)

∣∣∣∣ dω
since ‖ exp(−ιωτ)‖ = 1 for all τ, ω ∈ R. Using the triangular inequality, we may

decompose the components as follows:∣∣∣ ϕ̂1,n(ω|z)ϕξ(hnω)

ϕ̂0,n(ω|z)
− ϕ1(ω|z)

ϕ0(ω|z)

∣∣∣
=
∣∣∣ ϕ̂1,n(ω|z)ϕξ(hnω)

ϕ̂0,n(ω|z)
− ϕ1(ω|z)ϕξ(hnω)

ϕ̂0,n(ω|z)

+
ϕ1(ω|z)ϕξ(hnω)

ϕ̂0,n(ω|z)
− ϕ1(ω|z)ϕξ(hnω)

ϕ0(ω|z)
+
ϕ1(ω|z)ϕξ(hnω)

ϕ0(ω|z)
− ϕ1(ω|z)

ϕ0(ω|z)

∣∣∣
≤
∣∣∣ ϕξ(hnω)

ϕ̂0,n(ω|z)

∣∣∣‖ϕ̂1,0(ω|z)− ϕ1(ω|z)‖

+ ‖ϕ1(ω|z)ϕξ(hnω)‖
∣∣∣ 1

ϕ̂0,n(ω|z)
− 1

ϕ0(ω|z)

∣∣∣+
∣∣∣ϕ1(ω|z)

ϕ0(ω|z)

∣∣∣‖ϕξ(hnω)− 1‖

= ‖ϕξ(hnω)‖
∣∣∣ 1

ϕ0(ω|z)

∣∣∣∣∣∣ ϕ0(ω|z)

ϕ̂0,n(ω|z)

∣∣∣‖ϕ̂1,n(ω|z)− ϕ1(ω|z)‖

+ ‖ϕξ(hnω)‖
∣∣∣ϕ1(ω|z)

ϕ0(ω|z)

∣∣∣∣∣∣ ϕ0(ω|z)

ϕ̂0,n(ω|z)
− 1
∣∣∣

+
∣∣∣ϕ1(ω|z)

ϕ0(ω|z)

∣∣∣‖ϕξ(hnω)− 1‖

≡ Φ1,n(ω|z) + Φ2,n(ω|z) + Φ3,n(ω|z)

where

Φ1,n(ω|z) = ‖ϕξ(hnω)‖
∣∣∣∣ 1

ϕ0(ω|z)

∣∣∣∣ ∣∣∣∣ ϕ0(ω|z)

ϕ̂0,n(ω|z)

∣∣∣∣ |ϕ̂1,n(ω|z)− ϕ1(ω|z)| (A.2.3)

132



Φ2,n(ω|z) = ‖ϕξ(hnω)‖
∣∣∣∣ϕ1(ω|z)

ϕ0(ω|z)

∣∣∣∣ ∣∣∣∣ ϕ0(ω|z)

ϕ̂0,n(ω|z)
− 1

∣∣∣∣ (A.2.4)

Φ3,n(ω|z) =

∣∣∣∣ϕ1(ω|z)

ϕ0(ω|z)

∣∣∣∣ |ϕξ(hnω)− 1| (A.2.5)

First, note that Φ1,n(ω|z) = 0 for |ω| ≥ 1/hn by Condition 1.8. Then for all z ∈ [p, p],

∫
R

Φ1,n(ω|z)dω =

∫
|ω|≤1/hn

∣∣∣∣ 1

ϕ0(ω|z)

∣∣∣∣ ∣∣∣∣ ϕ0(ω|z)

ϕ̂0,n(ω|z)

∣∣∣∣ ‖ϕ̂1,n(ω|z)− ϕ1(ω|z)‖dω

≤ sup
|ω|≤1/hn

∣∣∣∣ ϕ0(ω|z)

ϕ̂0,n(ω|z)

∣∣∣∣ ‖ϕ̂1,n(ω|z)− ϕ1(ω|z)‖
∫
|ω|≤1/hn

∣∣∣∣ 1

ϕ0(ω|z)

∣∣∣∣ dω
≤ C

hn

(
1 +Op

(κn
n
z2
κr

3
n

)
+Op

(
r−2α0
n h−2

n

))
×
(
Op

(√κn
n
zκr

3
2
n

)
+Op

(
r−α1
n h−1

n

))
Υ0

( 1

hn

)−1

=
1

hn

(
Op

(
(
κn
n

)
3
2 z3
κr

9
2
n

)
+Op

(
r−(2α0+α1)
n h−3

n

))
Υ0

( 1

hn

)−1

followed by Theorem 1.1 and Lemma A.2.4 given that κ
1/2
n n−1/2zκr

(3−4α0)/2
n h−3

n =

o(1) as implied by Condition 1.9. And the second term yields

∫
R

Φ2,n(ω|z)dω =

∫
|ω|≤1/hn

∣∣∣∣ϕ1(ω|z)

ϕ0(ω|z)

∣∣∣∣ ∣∣∣∣ ϕ0(ω|z)

ϕ̂0,n(ω|z)
− 1

∣∣∣∣ dω
≤ sup
|ω|≤1/hn

∣∣∣∣ ϕ0(ω|z)

ϕ̂0,n(ω|z)
− 1

∣∣∣∣ ∫
|ω|≤1/hn

∣∣∣∣ϕ1(ω|z)

ϕ0(ω|z)

∣∣∣∣ dω
≤ C sup

|ω|≤1/hn

∣∣∣∣ ϕ0(ω|z)

ϕ̂0,n(ω|z)
− 1

∣∣∣∣ 1

hn

Υ1(1/hn)

Υ0(1/hn)

=
(
Op

(κn
n
z2
κr

3
n

)
+Op

(
r−2α0
n h−2

n

)) 1

hn

Υ1(1/hn)

Υ0(1/hn)

which is satisfied for all z ∈ [p, p]. Finally, note that Condition 1.8 implies ‖ϕξ(hnω)−

1‖ = o(|ω|m) for all |ω| ≤ 1/hn. Therefore,

∫
R

Φ3,n(ω|z)dω =

∫
|ω|≤1/hn

∣∣∣∣ϕ1(ω|z)

ϕ0(ω|z)

∣∣∣∣ ‖ϕξ(hnω)− 1‖dω +

∫
|ω|>1/hn

∣∣∣∣ϕ1(ω|z)

ϕ0(ω|z)

∣∣∣∣ dω︸ ︷︷ ︸
=o(1)
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≤ o(1)

∫
R

∣∣∣∣ϕ1(ω|z)

ϕ0(ω|z)

∣∣∣∣ |ω|mdω + o(1) = o(1)

while the result is followed by the result of Proposition 1.2. Therefore, we get

supτ∈T ‖f̂∆,n(τ |z) − f∆(τ |z)‖ ≤ C
(

(κn
n

)
3
2 zκr

9
2
nh−1

n Υ0(1/hn)−1 + r
−(2α0+α1)
n h−4

n

)
with

probability approaching to one.

A.2.11 Proof of Theorem 1.3

Note that for any complex value c ∈ C, =(c) = (c− c)/2ι. Hence, we have

‖F̂∆,n(τ |z)− F∆(τ |z)‖ =
∥∥∥1

2
− 1

2π

∫ ∞
0

(ιω)−1
(

exp(−ιωτ)ϕξ(hnω)
ϕ̂1,n(ω|z)

ϕ̂0,n(ω|z)

− exp(ιωτ)ϕξ(−hnω)
ϕ̂1,n(−ω|z)

ϕ̂0,n(−ω|z)

)
dω − F∆(ω|z)

∥∥∥
≤ 1

2π

∫ ∞
0

|ιω|−1
∥∥∥exp(−ιωτ)

(
ϕξ(hnω)

ϕ̂1,n(ω|z)

ϕ̂0,n(ω|z)
− ϕ1(ω|z)

ϕ0(ω|z)

)
− exp(ιωτ)

(
ϕξ(−hnω)

ϕ̂1,n(−ω|z)

ϕ̂0,n(−ω|z)
− ϕ1(−ω|z)

ϕ0(−ω|z)

)∥∥∥dω
≤ 1

2π

∫ ∞
0

|ιω|−1
∥∥∥exp(−ιωτ)

(
ϕξ(hnω)

ϕ̂1,n(ω|z)

ϕ̂0,n(ω|z)
− ϕ1(ω|z)

ϕ0(ω|z)

)∥∥∥
+
∥∥∥exp(ιωτ)

(
ϕξ(−hnω)

ϕ̂1,n(−ω|z)

ϕ̂0,n(−ω|z)
− ϕ1(−ω|z)

ϕ0(−ω|z)

)∥∥∥dω
≡ 1

2π

∫ ∞
0

|ιω|−1(Ξn(ω|z) + Ξn(−ω|z))dω

where Ξn(ω|z) = ‖ exp(ιωτ)
(
ϕξ(−hnω) ϕ̂1,n(−ω|z)

ϕ̂0,n(−ω|z) −
ϕ1(−ω|z)
ϕ0(−ω|z)

)
‖.

Notice that Ξn(ω|z) is decomposed into three terms such as Ξn(ω|z) ≤ Φ1,n(ω|z)+

Φ2,n(ω|z) + Φ3,n(ω|z) where Φ1,n,Φ2,n,Φ3,n are defined as (A.2.3), (A.2.4), (A.2.5)

as shown in the proof of Theorem 1.3. First, using the fact that Φ1,n(ω|z) = 0 for

|ω| ≥ 1/hn, we have

∫ ∞
0

|ιω|−1Φ1,n(ω|z)dω =
1

2

∫
|ω|<1/hn

|ω|−1Φ1,n(ω|z)dω
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≤ 1

2
sup

|ω|<1/hn

∣∣∣ ϕ0(ω|z)

ϕ̂0,n(ω|z)

∣∣∣|ϕ̂1,n(ω|z)− ϕ1(ω|z)|
∫
|ω|<1/hn

∣∣∣ 1

ωϕ0(ω|z)

∣∣∣dω
≤ 1

hn

(
Op

(
(
κn
n

)
3
2 z3
κr

9
2
n

)
+Op

(
r−(2α0+α1)
n h−3

n

))
(lnhn)−1Υ0

( 1

hn

)−1

while the result is followed by Theorem 1.1 and Conditions 1.9, 1.10. Second, the

integral of the second part of decomposition is bounded as

∫ ∞
0

|ιω|−1Φ2,n(ω|z|dω =
1

2

∫
|ω|<1/hn

∣∣∣ ϕ1(ω|z)

ωϕ0(ω|z)

∣∣∣∣∣∣ ϕ0(ω|z)

ϕ̂0,n(ω|z)
− 1
∣∣∣dω

≤ 1

2
sup

|ω|<1/hn

∣∣∣ ϕ0(ω|z)

ϕ̂0,n(ω|z)
− 1
∣∣∣ ∫
|ω|<1/hn

∣∣∣ ϕ1(ω|z)

ωϕ0(ω|z)

∣∣∣dω
=
(
Op

(κn
n
z2
κr

3
n

)
+Op

(
r−2α0
n h−2

n

)) 1

hn lnhn

Υ1(1/hn)

Υ0(1/hn)

Lastly, we have

∫ ∞
0

|ω|−1Φ3,n(ω|z)dω

=
1

2

(∫
|ω|≤1/hn

∣∣∣∣ ϕ1(ω|z)

ωϕ0(ω|z)

∣∣∣∣ ‖ϕξ(hnω)− 1‖dω +

∫
|ω|>1/hn

∣∣∣∣ ϕ1(ω|z)

ωϕ0(ω|z)

∣∣∣∣ dω)
≤ o(1)

∫
R

∣∣∣∣ϕ1(ω|z)

ϕ0(ω|z)

∣∣∣∣ |ω|m−1dω +
1

hn

Υ1(1/hn)

Υ0(1/hn)
= o(1)

Therefore, we have

sup
τ∈T
‖F̂∆,n(τ |z)− F∆(τ |z)‖ ≤ C

(
(
κn
n

)
3
2 zκr

9
2
n (hn lnhn)−1Υ0(1/hn)−1 + r−(2α0+α1)

n h−4
n

)
with probability approaching to one.

A.2.12 Proof of Corollary 1.3

Pick an arbitrary small number ε > 0. Since F∆(τ |z) is monotonically increasing and

continuous over T , it can be easily shown that Q∆(u|z) is monotonic and continuous
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as well. Therefore, we may find δ1 > 0 such that, for all δ ≤ δ1, ‖Q(u− δ|z)−Q(u+

δ|z)‖ < ε uniformly over u ∈ [0, 1]. For δ2 > 0, there exists n̄ such that for all n ≥ n̄,

sup
τ∈T
‖F̂∆,n(τ |z)− F∆(τ |z)‖ < δ2 (A.2.6)

with probability approaching to one by the result of Proposition 1.3. Note that, for

arbitrary u ∈ [0, 1], and n ≥ n̄,

Q̂∆,n(u|z) = inf
τ∈T
{τ : F̂∆,n(τ |z) ≥ u}

≥ inf
τ∈T
{τ : F∆(τ |z) + δ2 ≥ u} = inf

τ∈T
{τ : F∆(τ |z) ≥ u− δ2}

= Q∆(u− δ2|z)

and similarly,

Q̂∆,n(u|z) = inf
τ∈T
{τ : F̂∆,n(τ |z) ≥ u}

≤ inf
τ∈T
{τ : F∆(τ |z)− δ2 ≥ u} = inf

τ∈T
{τ : F∆(τ |z) ≥ u+ δ2}

= Q∆(u+ δ2|z)

which implies that Q̂∆,n(u|z) ∈ [Q∆(u − δ2|z), Q∆(u + δ2|Z)]. Let δ = min{δ1, δ2}.

Then, ‖Q̂∆,n(u|z)−Q∆(u|z)‖ ≤ ‖Q∆(u− δ|z)−Q∆(u+ δ|z)‖ < ε with probability

approaching to one. Since the inequality holds for arbitrary u ∈ [0, 1], the result

follows.

A.3 Inference via Bootstrap Method

In this section, I discuss the inferential theory on the estimated functional objects

(1.16), (1.17), and (1.18). As the closed-form approximation for asymptotic vari-
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ances of estimators are now available, I consider using bootstrapped samples to

construct the confidence intervals for the estimators.

Recent study by Chernozhukov et al. (2016) present a simple algorithm based

on repeated resampling procedure to approximate uniform confidence interval for es-

timators of the functional object. The algorithm is based on a resampling procedure

and done by the following steps:

Step 1 fix B, compute F̂B
∆ (τ) = {F̂ (b)

∆,n(τ)}Bb=1 with resampled data

Step 2 pointwise robust standard error is computed by

sB∆(τ) =
Q(F̂B

∆ (τ), .75)−Q(F̂B
∆ (τ), .25)

Φ−(.75)− Φ−(.25)

where Q(F̂B
∆ (τ), .) is empirical quantile of F̂B

∆ (τ) and Φ−(·) is the inverse of

standard normal CDF

Step 3 pick a size α and find corresponding factor cα by 1−α quantile of {(F̂ (b)
∆,n(τ)−

F̂∆,n(τ))/sB∆(τ)}Bb=1

Step 4 upper and lower bounds of 100(1−α)% confidence interval are computed by

F̃∆,n(τ)± cαs(τ)

The confidence intervals for the quantile effects are simply constructed by left inverse

of the lower and upper bounds of the intervals of F̂∆,n.

The confidence interval constructed by the above algorithm is known to be

valid in the following sense (Corollary 4, Chernozhukov et al. (2016)). Denote

L(τ) = F̃∆,n(τ) − cαs(τ) and U(τ) = F̃∆,n(τ) + cαs(τ) be the lower and upper
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bound, respectively. Then for the interval [L(τ), U(τ)] indexed by τ ∈ T , F∆(τ) ∈

[L(τ), U(τ)] with probability at least 1− α.

A.4 Tables and Figures

Figure A.1: An illustrative example of identified distributions of treatment effect
under rank invariance and conditional independence assumptions.

Y (0)

Y (1)

1

10 τ

τ = Y (1)− Y (0)

1− τ

(a)

Y (0)

Y (1)

1

10 τ

τ = Y (1)− Y (0)

1− τ

(b)

Table A.1: Finite-sample precision of the nonparametric density and distribution
estimators measured by mean integrated squared errors. Each number represents
the average of mean integrated squared errors among 1000 repetitions.

MISE(f) MISE(F )

Sample Size α = 0.0 α = 0.15 α = 0.3 α = 0.0 α = 0.15 α = 0.3

Normal n = 300 0.0030 0.0033 0.0042 0.0068 0.0061 0.0061
n = 500 0.0029 0.0033 0.0041 0.0065 0.0061 0.0061
n = 1000 0.0027 0.0032 0.0037 0.0062 0.0059 0.0058
n = 2000 0.0026 0.0034 0.0446 0.0061 0.0058 0.0057

Laplace n = 300 0.0012 0.0009 0.0010 0.0209 0.0207 0.0206
n = 500 0.0010 0.0009 0.0009 0.0209 0.0207 0.0207
n = 1000 0.0010 0.0009 0.0008 0.0203 0.0202 0.0204
n = 2000 0.0010 0.0010 0.0199 0.0197 0.0198 0.0199

Exponential n = 300 0.0029 0.0028 0.0028 0.0561 0.0696 0.1031
n = 500 0.0029 0.0028 0.0028 0.0516 0.0676 0.0997
n = 1000 0.0028 0.0027 0.0027 0.0430 0.0629 0.0887
n = 2000 0.0026 0.0026 0.0026 0.0399 0.0610 0.0888

138



Figure A.2: Estimated distribution effect functions for heterogeneous causal effects
when ∆ is drawn from the normal distribution. Black solid lines indicate estimates
of the distribution function of ∆ for each of 1000 iterations. Blue solid line is the
true distribution function of which mean is located by blue dashed line.
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Figure A.3: Estimated quantile effect functions for heterogeneous causal effects
when ∆ is drawn from the normal distribution. Black solid line is the Monte Carlo
average of the quantile effect estimates obtained with 1000 simulations. Red dashed
lines show 95% range of the quantile effect estimates at each point. Blue solid line
indicates the true quantile function.
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Figure A.4: Estimated quantile effect functions for heterogeneous causal effects
when ∆ is drawn from the Laplace distribution. Black solid line is the Monte Carlo
average of the quantile effect estimates obtained with 1000 simulations. Red dashed
lines show 95% range of the quantile effect estimates at each point. Blue solid line
indicates the true quantile function.
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Figure A.5: Estimated quantile effect functions for heterogeneous causal effects when
∆ is drawn from the exponential distribution. Black solid line is the Monte Carlo
average of the quantile effect estimates obtained with 1000 simulations. Red dashed
lines show 95% range of the quantile effect estimates at each point. Blue solid line
indicates the true quantile function.
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Chapter B: Appendix to Chapter 2

B.1 Proof of Proposition 2.1

I begin with showing that the characteristic functions of potential wages of displaced

and non-displaced workers are identified as functions of observed wage, displacement

status, and propensity scores. Consider the case of displaced workers (D = 1). Note

that the observed wage of displaced workers given as (2.3) has deterministic com-

ponent as a function of phi, a, s and stochastic components ρ, µ, ε. From conditions

(C1) and (C3), we have lnw0 independent of D conditional on φ, a, s and log of

previous wage denoted by lnw−1. This implies that

E[D exp(ιω lnw)|φ, a, s, lnw−1] = E[exp(ιω lnw)|D = 1, φ, a, s, lnw−1]p(φ, a, s, lnw−1)

+ 0(1− p(φ, a, s, lnw−1))

= E[exp(lnw1)|D = 1, φ, a, s, lnw−1]p(φ, a, s, lnw−1)

= E[exp(lnw1)|φ, a, s, lnw−1]p(φ, a, s, lnw−1)

Given that the distribution of previous wage lnw−1 is identified via observed wage

distribution, we have ϕ1(ω|φ, a, s) identified as conditional mean of

E[D exp(ιω lnw)|φ, a, s, lnw−1]/p(φ, a, s, lnw−1)

with respect to φ, a, s. Similarly, it can be easily shown that the characteris-

tic function of wage distribution of non-displaced workers is identified via E[(1 −
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D) exp(ιω lnw)|φ, a, s, lnw−1]/(1− p(φ, a, s, lnw−1)).

Next step is to show that the characteristic function of observed wages of

displaced workers is decomposed as a product of the characteristic function of wages

of non-displaced workers and ∆. Note that the only stochastic component in ∆ is ρe

as can be seen in (2.5). Then what condition (C2) implies is that ∆ is independent

to lnw0 conditional on φ, a, and e. Therefore,

ϕ1(ω|φ, a, s) = E[exp(ιω lnw1)|φ, a, s] = E[exp(ιω(lnw0 + ∆))|φ, a, s]

= E[exp(ιω lnw0)|φ, a, s]E[exp(ιω∆)|φ, a, s]

= ϕ0(ω|φ, a, s)ϕ∆(ω|φ, a, s)

where ∆ = lnw1− lnw0 by definition. Hence, we have the characteristic function of

∆ identified as ϕ∆(ω|φ, a, s) = ϕ1(ω|φ, a, s)/ϕ0(ω|φ, a, s) given that ϕ0(ω|φ, a, s) 6= 0

for all ω ∈ R. Finally, the inversion formula shown by Gil-Pelaez (1951) proves that

the conditional distribution of ∆ is equal to

F∆(τ |φ, a, s) =
1

2
+

1

2π

∫ ∞
−∞

(ιω)−1 exp(−ιωτ)ϕ∆(ω|φ, a, s)dω

for τ ∈ R.

B.2 Sensitivity Analysis: Linear Regression

In this section, I estimate the earnings losses via linear regression model. While the

nonparametric method developed in this chapter does not require linearity assump-

tion, results presented in this section has two important implications. One is to

check robustness of the result discussed in section 2.4. In addition, heterogeneous
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mean effects estimated by regression models are compared to that of nonparametric

estimates to emphasize the benefits of using flexible estimation method.

A simple linear model I consider in this section is written as follow:

lnwit = αt + βDit + γ′Xit + εit (B.2.1)

where Yit is the log weekly wage of individual i at year t. The set of covariates include

year fixed effect αt, vector of demographic profiles Xit, and a dummy variable Dit

indicating whether a worker has been displaced or not. The collection of regressors

Xit includes gender, race, educational attainment. The displacement dummy Dit is

defined as described in Section 2.4.

In addition, I estimate a more complex version of regression model to capture

possible heterogeneity in the effects of displacement on earnings losses. The equation

is written as follows:

lnwit = αt +
∑
j∈J

βj1(Tit = j)Dit + γ′Xit + εit (B.2.2)

where j denotes the group of workers specified by various observable characteristics

and J is the finite set of groups. Variable Tit indicates which group that a worker i

at period t belongs to. I specifically look at two types of heterogeneity as in section

2.4. One is the educational attainment of workers which is classified into five groups–

lower than high school, high school graduates, some college, college graduates, and

advanced degree. Another dimension of heterogeneity is local unemployment rates.

This is to investigate how earnings losses are different depending on how severe is

the labor market faced by job seekers.
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Table B.1: Estimates of the effect of displacement on earnings. Dependent variable
is weekly wage measured in 2010 dollars. List of covariates are common across all
models include gender, race, educational attainments, and year dummies.

(1) (2) (3) (4)

Displaced -0.182*** -0.268*** -0.173*** -0.172***
(0.011) (0.011) (0.029) (0.029)

Tenure 0.025*** 0.020*** 0.003*** 0.003***
(0.001) (0.001) (0.001) (0.001)

Tenure2 -0.071*** -0.049*** -0.007*** -0.006***
(0.002) (0.002) (0.002) (0.002)

Past Wage 0.906*** 0.904*** 0.902***
(0.002) (0.002) (0.002)

Fixed Effects
Region X X O O
Industry X X O O
Occupation X X X O

R2 0.023 0.841 0.842 0.843
adjusted-R2 0.022 0.841 0.842 0.842

I begin with presenting estimated coefficients for the simple model (B.2.1)

in Table B.1. Estimates of β are shown in the row labeled as “Displaced” with

their standard errors in parenthesis. As a benchmark, estimates in column (1)

of Table B.1 are produced without controlling for the past wage. By comparing

the estimate in column (1) with that of column (2), we may find that the mean

effect of displacement is over-estimated in absolute if workers are not matched by

their previous wage. However, it is important to point out that the implication

from this finding is different from that of Jacobson et al. (1993). Given that the

previous wage used in this regression is dated back to one year, it does not reflect

the financial distress that the firm may have had before firing its employees. As

suggested in Carrington (1993) and Neal (1995), adding industry fixed effect may

capture the industry-specific wage trend and therefore, reduce downward bias in
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displacement effects. The results shown in columns (3) and (4) suggests that in my

sample, industry- and occupation-specific effects does not alter the mean estimate

of earnings losses significantly.

Besides the over-estimated effect in column (1), mean effect estimates shown

in Table B.1 are largely consistent with the nonparametric estimate discussed in sec-

tion 2.4. However, estimates of the heterogeneous effects through regression model

B.2.2 suggest that we may find richer interpretation by using flexible nonparametric

methods.

In Table B.2, I present estimates for heterogeneous earnings losses by displace-

ment as a function of local unemployment rates. Three types of unemployment rates

are considered. First is the local unemployment rate which is the fraction of unem-

ployed within the same state and same year. Similarly, industry- and occupation-

specific unemployment rates are computed for each industry and occupation, re-

spectively. First two columns for all three cases are estimated by separating the

whole sample into two groups. One is when the unemployment rate is above median

in the sample period–which is about 5.5%–while the other group is the case when

unemployment rates are below median. In general, estimated effect of displacement

is larger in absolute value when the unemployment rates are higher. However, the

difference is not significant.

B.3 Optimal Rate of Approximation via Cross-validation Method

In this section, I illustrate how to implement the cross-validation method to find

the optimal degree of approximation regarding the bias-variance trade-off in the
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nonparametrically estimated distribution of heterogeneous effects. In the context of

the model provided in this chapter, the problem is reduced down to the choice of r,

a non-negative integer representing the degree of approximation pre-determined to

compute the empirical characteristic function (2.7). I find the optimal choice of r

that minimizes the estimation bias by testing candidate values of r.

Cross-validation method is a statistical learning algorithm that has been widely

used for model evaluation. Suppose that we have n number of observations. The

method begins with separating the sample into two groups. One is called “training

set” which is used to estimate the parameter of interest. In this chapter, the objec-

tive is the distribution of causal effects denoted by F∆. Another set of samples is

called “validation set.” These observations are used to compute a measurement of

estimation error which is chosen by the researcher. A typical choice would be the

squared sum of errors, however, I consider mean integrated squared error as it is a

more intuitive measurement to evaluate the bias when the objective of interest is

the distribution function rather than a scalar-valued parameter.

Training and validation sets are chosen by blocking method. The entire sample

is randomly separated into K subgroups of equal size. Pick k-th subgroup among

1, · · · , K as the validation set while the rest of the sample is used for training set. Let

F̂ train
∆,r be the estimated distribution of heterogeneous effects ∆it using the training

set which is computed under a pre-determined value r. This distribution is treated

as if it is a population quantity. Meanwhile, estimate the distribution of ∆it using

validation set as well with the same value r fixed, and denote by F̂ validation
∆,r . Then
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the mean integrated squared error is computes by

MISE(r) = E[(F̂ validation
∆,r (∆it)− F̂ train

∆,r (∆it))
2]

while the expectation is approximated by sample mean over the density estimated

using the training set.

Tuning parameter in this context is the degree of approximation r. I compute

the mean integrated squared errors at non-zero integer values of r to find the value

that minimizes estimation bias.

B.4 Tables and Figures

Figure B.1: Time series plot of average weekly earnings of workers by their displace-
ment status. Blue dashed line indicates the series of average log wages of displaced
workers within each year and red solid line indicates that of non-displaced workers.
Individual wages are based on reported value in Monthly CPS, normalized to 2010
dollar values. Vertical lines at each point shows ±1 standard deviation range of
within-year averages.
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Figure B.2: Distribution of propensity score estimates by treatment groups. Red line
indicates the distribution of estimated propensity scores of the group of displaced
workers (D = 1) while blue line indicates that of the non-displaced workers (D = 0).
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Figure B.3: Estimated distribution of the heterogeneous effect of displacement on
earnings. Scale of the horizontal axis is the log difference in weekly earnings. Blue
solid line represents the point estimates of the distribution function of causal effect
while red dashed lines show 95% confidence interval of point estimates.
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Table B.3: Summary of the labor market status of displaced workers by year within
the sample period. Numbers in each column implies fraction of previously displaced
workers who ended up being either employed, unemployed, or out of the labor force.
Employed workers include both full-time and part-time positions. Column NILF
includes workers who are currently not in the labor force for either being retired or
other reasons.

Year Employed Unemployed NILF

1996 71.31 16.84 11.85
1998 75.64 12.92 11.44
2000 74.61 13.05 12.34
2002 64.32 23.53 12.16
2004 66.67 21.36 11.98
2006 68.83 17.30 13.87
2008 68.56 19.71 11.73
2010 50.88 36.99 12.13
2012 58.45 28.21 13.34
2014 61.80 24.77 13.42
2016 66.90 18.78 14.32

Total 64.76 22.71 12.53

Table B.4: Summary of the labor market status of displaced workers by education
level. Numbers in each column implies fraction of previously displaced workers who
ended up being either employed, unemployed, or out of the labor force. Employed
workers include both full-time and part-time positions. Column NILF includes
workers who are currently not in the labor force for either being retired or other
reasons.

Education Employed Unemployed NILF

less than high school 51.76 31.66 16.58
high school 60.93 25.48 13.59
some college 64.82 21.59 13.60

college 71.81 18.34 9.85
advanced 75.08 16.32 8.60
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Table B.5: Summary of the labor market status of displaced workers by age. Num-
bers in each column implies fraction of previously displaced workers who ended up
being either employed, unemployed, or out of the labor force. Employed workers
include both full-time and part-time positions. Column NILF includes workers who
are currently not in the labor force for either being retired or other reasons.

Age Employed Unemployed NILF

less than 25 63.34 23.76 12.90
25–35 68.77 21.03 10.20
35–45 68.31 21.96 9.73
45–55 64.19 24.15 11.66

more than 55 51.76 24.03 24.21

Table B.6: Demographic characteristics of workers in the sample for both displaced
and non-displaced workers. Numbers shown are group-specific means while their
standard errors are given in paranthesis below.

Displaced Non-displaced Total Displaced Non-displaced Total

Female 0.4326 0.5254 0.5200 Lower than High School 0.1116 0.1114 0.1114
(0.0023) (0.0006) (0.0006) (0.0015) (0.0004) (0.0004)

White 0.7164 0.7289 0.7282 High School 0.3251 0.3106 0.3114
(0.0021) (0.0005) (0.0005) (0.0022) (0.0005) (0.0005)

Black 0.1051 0.0987 0.0990 Some College 0.2131 0.1887 0.1901
(0.0014) (0.0003) (0.0003) (0.0019) (0.0005) (0.0004)

Hispanic 0.1241 0.1083 0.1092 College 0.2837 0.2905 0.2901
(0.0015) (0.0004) (0.0004) (0.0021) (0.0005) (0.0005)

Other 0.0543 0.0642 0.0636 Advanced 0.0665 0.0988 0.0969
(0.0011) (0.0003) (0.0003) (0.0012) (0.0003) (0.0003)

Age 40.7456 43.0089 42.8774 Weekly Wage 103.21 136.59 134.65
(0.0549) (0.0143) (0.0139) (1.52) (0.45) (0.44)

Tenure 7.26 23.86 22.89 Weekly Wage (past) 131.03 111.81 112.93
(0.06) (0.02) (0.02) (1.21) (0.22) (0.22)

Observations 45270 733784 779054
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Table B.7: Specification test for the propensity score to displacement. Numbers
indicate the significance levels (p-values) of each variable tested against the dis-
placement dummy after controlling for the estimated propensity score functions.
Columns indicate different propensity score specifications from the smallest (1) to
the largest (5).

(1) (2) (3) (4) (5)

Worker Characteristics
Female 0.893 0.000 0.000 0.774 0.893
High School 0.959 0.053 0.045 0.928 0.928
Some College 0.943 0.056 0.048 0.970 0.958
College 0.796 0.005 0.003 0.972 0.803
Advanced 0.727 0.002 0.001 0.996 0.728
Black 0.855 0.604 0.636 0.912 0.854
Hispanic 0.804 0.530 0.831 0.852 0.770
Other 0.908 0.450 0.475 0.929 0.912
Unemployment Rates
by Region 0.960 0.000 0.651 0.963 0.973
by Industry 0.000 0.000 0.000 0.036 0.000
by Occupation 0.000 0.008 0.008 0.036 0.000
Other Variables
Year Dummies 1.000 0.274 1.000 1.000 1.000
Tenure 0.995 0.000 0.000 0.989 0.994

Log Likelihood 4.53e+05 4.09e+05 4.09e+05 4.09e+05 4.09e+05
Observations 779054 779054 779054 779054 779054

Table B.8: Estimated quantile effects of the heterogeneous effect of displacement
on earnings. Estimates are the mean and quantile effects of displacement on wage
losses. Standard errors obtained by bootstrap with 1000 repetitions are given in
parentheses.

Quantile Effects

Mean Effect .10 .25 .50 .75 .90

-0.1938 -0.7086 -0.5321 -0.2635 0.1137 0.2201
(0.0083) (0.0270) (0.0056) (0.0045) (0.0050) (0.0050)
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Table B.9: Estimated quantile of the heterogeneous effect of displacement on earn-
ings by groups, classified by pre-displacement tenure. Tenure for displaced workers
is obtained from DWS supplement and tenure for non-displaced workers is from JT
supplement and subtracted by 1 to get the tenure in previous year. Standard errors
are in parentheses.

Quantile Effects

Mean Effect .10 .25 .50 .75 .90

< 1 Year -0.1589 -0.7475 -0.5236 -0.1755 0.3166 0.4439
(0.0005) (0.0023) (0.0007) (0.0007) (0.0004) (0.0004)

1-5 Years -0.1843 -0.7575 -0.5516 -0.2250 0.2523 0.3789
(0.0003) (0.0010) (0.0003) (0.0003) (0.0003) (0.0002)

5-10 Years -0.1602 -0.7371 -0.5286 -0.1847 0.3090 0.4372
(0.0004) (0.0008) (0.0005) (0.0004) (0.0003) (0.0003)

> 10 Years -0.0564 -0.6540 -0.3960 0.0235 0.5644 0.6951
(0.0007) (0.0012) (0.0011) (0.0009) (0.0004) (0.0004)

Table B.10: Estimated quantile of the heterogeneous effect of displacement on earn-
ings by groups, classified by educational attainments. Standard errors are in paren-
theses.

Quantile Effects

Mean Effect .10 .25 .50 .75 .90

< High School -0.1700 -0.6945 -0.5223 -0.2346 0.1762 0.2908
(0.0021) (0.0046) (0.0011) (0.0008) (0.0008) (0.0008)

High School -0.1832 -0.7011 -0.5282 -0.2516 0.1405 0.2507
(0.0015) (0.0033) (0.0007) (0.0007) (0.0007) (0.0008)

Some College -0.1878 -0.7048 -0.5348 -0.2597 0.1321 0.2424
(0.0014) (0.0031) (0.0008) (0.0009) (0.0008) (0.0009)

College -0.1859 -0.7040 -0.5291 -0.2536 0.1358 0.2453
(0.0012) (0.0035) (0.0008) (0.0006) (0.0007) (0.0007)

Advanced -0.1826 -0.7056 -0.5277 -0.2464 0.1512 0.2626
(0.0015) (0.0037) (0.0019) (0.0012) (0.0009) (0.0010)

155



Table B.11: Estimated quantile of the heterogeneous effect of displacement on earn-
ings by groups classified by year, local and industry-specific unemployment rates.
State-level unemployment rates are obtained by Local Area Unemployment Statis-
tics. Industyr- and occupation-specific unemployment rates are computed from
ASEC sample of each year. Standard errors are in parentheses.

Quantile Effects

Mean Effect .10 .25 .50 .75 .90

by Year
before 2008 -0.2088 -0.7499 -0.4947 -0.2278 -0.0008 0.1343

(0.0075) (0.0049) (0.0034) (0.0039) (0.0055) (0.0062)
after 2008 -0.2212 -0.7356 -0.4758 -0.2054 0.0273 0.1681

(0.0072) (0.0042) (0.0031) (0.0037) (0.0050) (0.0062)
by Region
high unemployment rate -0.2546 -0.7596 -0.4911 -0.2201 0.0109 0.1497

(0.0076) (0.0049) (0.0029) (0.0035) (0.0046) (0.0056)
low unemployment rate -0.1786 -0.7353 -0.4822 -0.2148 0.0144 0.1518

(0.0067) (0.0051) (0.0035) (0.0041) (0.0054) (0.0063)
by Industry
high unemployment rate -0.3355 -0.8845 -0.5670 -0.2908 -0.0651 0.0657

(0.0094) (0.0087) (0.0041) (0.0037) (0.0050) (0.0059)
low unemployment rate -0.1375 -0.6774 -0.4373 -0.1685 0.0689 0.2153

(0.0058) (0.0035) (0.0032) (0.0040) (0.0057) (0.0071)
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Chapter C: Appendix to Chapter 3

C.1 Proofs

C.1.1 Definitions, Lemmas and Preliminary Results

For a matrix A, ‖A‖2 = trAA′ is the Euclidian matrix norm. When a is a vector

‖a‖2 = a′a. The matrix norm ‖A‖2
2 is given by ‖A‖2

2 = supx 6=0 x
′A′Ax/x′x. Define

the norm |f |∞ = supχ |f (χ)| for any function f : X→R. Similarly define ‖f‖∞ =

supχ ‖f (χ)‖ for any function f : X →Rd.The following definitions are given in

Rio (1993). For a nonincreasing function h : R→ R define the inverse h−1 (u) =

inf {t : h (t) ≤ u} . Let Qf (u) be the quantile function defined as the inverse of the

tail probability P (|f (χt)| > t) . Let btc be the largest integer smaller or equal to

t ∈ R and define β−1 (u) = inf
{
t : βbtc ≤ u

}
where βbtc is the mixing coefficient

defined in (3.11). Let f (χt) be a measurable function of χt and define

‖f‖2,β =

√∫ 1

0

β−1 (u) [Qf (u)]2 du <∞.

Lemma C.1.1. Let f (χt) and g (χt) be measurable functions of χt where χt satisfies
Condition 3.2. Let F (χt) be an envelope such that |f (χt)| ≤ F (χt) and |g (χt)| ≤
F (χt) and E

[
|F (χt)|2+δ

]
<∞. Then,

∑∞
s=−∞Cov (f (χt) , g (χt)) ≤ 4 ‖F‖2

2,β .

Proof. The proof follows the argument in Rio (1993). In particular,

|Cov (f (χt) , g (χt+m))| ≤ 2

∫ βm/2

0

(
[Qf (2u)]2 + [Qg (2u)]2

)
du

by Rio (1993, p. 594), see also Doukhan, Massart, and Rio (1994, Proposition 1).
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Now use that Qf (u) ≤ QF (u) and Qg (u) ≤ QF (u) such that

∞∑
m=−∞

|Cov (f (χt) , g (χt+m))| ≤ 4

∫ 1

0

β−1 (u) [QF (u)]2 du = 4 ‖F‖2
2,β .

Lemma C.1.2. For any f with ‖f‖2+δ,P < ∞ and if
∑

n>0 n
1/δβn < ∞ it follows

that ‖f‖2,β ≤ C ‖f‖2+δ,P for some C <∞.

Proof. Use Lemma 2 of Doukhan et al. (1994) to bound ‖f‖2,β . In particular, set

φ = x1+δ/2 and define

‖f‖φ,2 = inf
{
c > 0 : E

(
φ
(
(f/c)2)) ≤ 1

}
Λφ (f) = sup

u∈]0,1]

([
φ−1 (u)

]−1/2
Qf (u)

)
such that from Doukhan, Massart, and Rio (1995, p. 402-404), it follows that
Λφ (f) ≤ ‖f‖φ,2 = ‖f‖2+δ,P and from Doukhan et al. (1995, Lemma 2(a)) that

‖f‖2,β ≤ ‖f‖2+δ,P

√
1 +

∫ 1

0

φ∗ (β−1 (u)) du (C.1.1)

where φ∗ (y) = supx>0 [xy − φ (x)] is the dual function of φ. The integral
∫ 1

0
φ∗ (β−1 (u)) du

is bounded if
∑

n>0 n
1/δβn < ∞ by Doukhan, Massart and Rio (1995, p. 403,

S.1).

Lemma C.1.3. Assume Condition 3.4 holds. Let 〈z〉 = 1 + ‖z‖2. Then,
(i)

inf
ϕκ∈Rκ

sup
z∈Rd

∥∥∥∥∥Γ−1 (p (z, ϕ))−Ψκ (z, ϕκ)

〈z〉s(2+δ)/2

∥∥∥∥∥ = o
(
κ−α

)
,

where α = ...
(ii) if E

[
〈z〉s(2+δ)

]
<∞ then

inf
ϕκ∈Rκ

∥∥Γ−1 (p (z, ϕ))−Ψκ (z, ϕκ)
∥∥

2,P
= o

(
κ−α

)
.

Proof. (i) Hansen (2015, Theorem 7) shows the result when dim (z) = 1. Note
that because pj >p by Condition 3.3(i). This implies that Γ−1 (p (z, ϕ)) < ḡ (z) =

Γ−1
(
1/p
)

= K is bounded. Hansen uses w (z) = ḡ (z) |z|s(2+δ) . It follows that up to

an irrelevant constant 〈z〉s(2+δ)/2 ≥ w (z) and thus

sup
z∈Rd

∣∣∣∣∣Γ−1 (p (z, ϕ))−Ψκ (zt, ϕκ)

〈z〉s(2+δ)/2

∣∣∣∣∣ ≤ sup
z∈Rd

∣∣∣∣Γ−1 (p (z, ϕ))−Ψκ (zt, ϕκ)

w (z)

∣∣∣∣
158



such that Hansen’s proof applies for dim (z) = 1. The result needs to be extended
to dim (z) > 1.

For (ii) note that∥∥Γ−1 (p (z, ϕ))−Ψκ (zt, ϕκ)
∥∥2

2,P
=

∫ ∥∥Γ−1 (p (z, ϕ))−Ψκ (zt, ϕκ)
∥∥2
dP (z)

≤
∫ ∥∥∥∥∥Γ−1 (p (z, ϕ))−Ψκ (zt, ϕκ)

〈z〉s(2+δ)/2

∥∥∥∥∥
2

〈z〉s(2+δ) dP (z)

≤

(
sup
z∈Rd

∥∥∥∥∥Γ−1 (p (z, ϕ))−Ψκ (zt, ϕκ)

〈z〉s(2+δ)/2

∥∥∥∥∥
)2 ∫

〈z〉s(2+δ) dP (z)

which implies that

inf
ϕκ∈Rκ

∥∥Γ−1 (p (z, ϕ))−Ψκ (z, ϕκ)
∥∥

2,P

≤ K inf
ϕκ∈Rκ

sup
z∈Rd

∥∥∥∥∥Γ−1 (p (z, ϕ))−Ψκ (z, ϕκ)

〈z〉s(2+δ)/2

∥∥∥∥∥ = o
(
κ−α

)
.

Lemma C.1.4. Define Pκ(zt, ϕ) = diag(pκ(zt, ϕκ)) and Qκ(zt, ϕκ) = (diag(pκ(zt, ϕκ))−
pκ(zt, ϕκ)pκ(zt, ϕκ)

′). Similarly, let

P (zt, ϕ) = diag (p(zt, ϕ)) , Q(zt, ϕ) = (diag(p(zt, ϕκ))− p(zt, ϕκ)p(zt, ϕ)′).

Then, it follows that

(i)

Qκ (zt, ϕκ)
−1 = Pκ (zt, ϕκ)

−1 +
11′

1−
∑J

j=1 p
j
κ (zt, ϕκ)

Q (zt, ϕ)−1 = P (zt, ϕ)−1 +
11′

1−
∑J

j=1 p
j (zt, ϕ)

,

(ii) ‖Qκ(zt, ϕκ)‖ ≤ 2J, ‖Q(zt, ϕκ)‖ ≤ 2J ,

(iii)
∥∥Q (zt, ϕ)−1

∥∥ ≤ 2
√
J/p,

(iv) ‖Qκ(zt, ϕκ)−Q (zt, ϕ)‖2,P = o (κ−α),

(v)
∥∥Qκ(zt, ϕκ)

−1 −Q (zt, ϕ)−1
∥∥

2,P
= o (κ−α),

(vi)
∥∥Qκ(zt, ϕ)−1/2

∥∥ ≤√2J/p
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Proof. For (i) use direct calculation to verify the result. For (ii) note that |pjκ| ≤ 1
by construction such that

‖Qκ(zt, ϕκ)‖ ≤ ‖Pκ (zt, ϕκ)‖+
∥∥pκ(zt, ϕκ)pκ (zt, ϕκ)

′∥∥ (C.1.2)

≤
√
J + J ≤ 2J.

where the same bound holds for Q(zt, ϕκ). For (iii) note that

∥∥Q (zt, ϕκ)
−1
∥∥ ≤ ( J∑

j=1

∣∣∣∣ 1

pj (zt, ϕ)

∣∣∣∣2
)1/2

+
√
J

∣∣∣∣ 1

p0
0 (zt, ϕ)

∣∣∣∣ ≤ 2
√
J

∣∣∣∣1p
∣∣∣∣ . (C.1.3)

For (iv) use

‖Qκ(zt, ϕκ)−Q (zt, ϕ)‖
≤ ‖Pκ (zt, ϕk)− P (zt, ϕ)‖+

∥∥pκ(zt, ϕκ)pκ (zt, ϕκ)
′ − p(zt, ϕ)p (zt, ϕ)′

∥∥
and

E
[
‖Pκ (zt, ϕk)− P (zt, ϕ)‖2] = E

[
J∑
j=1

(
pjκ (zt, ϕκ)− pj (zt, ϕ)

)2

]
= E

[
‖pκ (zt, ϕκ)− p (zt, ϕ)‖2] = o

(
κ−2a

)
by Lemma C.1.3(ii). and∥∥pκ(zt, ϕκ)pκ (zt, ϕκ)

′ − p(zt, ϕ)p (zt, ϕ)′
∥∥

≤
∥∥pκ(zt, ϕκ) (pκ (zt, ϕκ)− p(zt, ϕ))′

∥∥+
∥∥(pκ(zt, ϕκ)− p(zt, ϕ)) p (zt, ϕ)′

∥∥
≤ 2
√
J ‖pκ (zt, ϕκ)− p(zt, ϕ)‖

where
∥∥pκ(zt, ϕκ) (pκ (zt, ϕκ)− p(zt, ϕ))′

∥∥ ≤ ‖pκ(zt, ϕκ)‖ ‖(pκ (zt, ϕκ)− p(zt, ϕ))‖ and

‖pκ(zt, ϕκ)‖ ≤
√
J was used. Jensen’s inequality and Lemma C.1.3(ii) then give the

result. For (v) use the inequality from Lewis and Reinsel (1985, p. 397),∥∥Qκ(zt, ϕκ)
−1 −Q (zt, ϕκ)

−1
∥∥

2
√
J/p

(∥∥∥Qκ(zt, ϕκ)−1/2 −Q (zt, ϕκ)
−1/2

∥∥∥+ 2
√
J/p
) ≤ ‖Qκ(zt, ϕκ)−Q (zt, ϕκ)‖

which implies that ∥∥Qκ(zt, ϕκ)
−1 −Q (zt, ϕκ)

−1
∥∥

2,P
= o

(
κ−α

)
by using the result in (iv).

For (vi) use (i) to obtain

∥∥Qκ(zt, ϕκ)
−1/2

∥∥2
= trQκ(zt, ϕκ)

−1 =
J∑
j=1

1

pjκ (zt, ϕκ)
+ J

1

p0
κ (zt, ϕκ)

.
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Now take

1

pjκ (zt, ϕκ)
=

1

pj (zt, ϕ)
+
pj (zt, ϕ)− pjκ (zt, ϕκ)

pjκ (zt, ϕκ) pj (zt, ϕ)

≤ 1

pj (zt, ϕ)
+

1

p

(
1

p
+

(
1

pjκ (zt, ϕκ)
− 1

pj (zt, ϕ)

))(
pj (zt, ϕ)− pjκ (zt, ϕκ)

)
such that(

E

[
1

pjκ (zt, ϕκ)
− 1

pj (zt, ϕ)

])2

≤ 1

p2
E

[(
1

p
+

(
1

pjκ (zt, ϕκ)
− 1

pj (zt, ϕ)

))2
]
E
[(
pj (zt, ϕ)− pjκ (zt, ϕκ)

)2
]

and by Hölder’s inequality(
1

p
+

(
1

pjκ (zt, ϕκ)
− 1

pj (zt, ϕ)

))2

≤
(

1

p
+

∣∣∣∣ 1

pjκ (zt, ϕκ)
− 1

pj (zt, ϕ)

∣∣∣∣)2

≤ 2

(
1

p

2

+

∣∣∣∣ 1

pjκ (zt, ϕκ)
− 1

pj (zt, ϕ)

∣∣∣∣2
)

Lemma C.1.5. Define Pκ (zt, ϕ) = diag (pκ(zt, ϕκ)) , Dt = (Dt,1, ..., Dt,J)′ , Q (z) =
diag (p (zt, ϕ))−p (zt, ϕ) p (zt, ϕ)′ and Qκ(zt, ϕκ) =

(
diag (pκ(zt, ϕκ))− pκ(zt, ϕκ)pκ (zt, ϕκ)

′) .
Let

H (ϕκ) = −E[∂2lκ (Dt, zt,ϕk) /∂ϕk∂ϕ
′
k]

Ωϕ,κ = E [∂lκ (Dt, zt,ϕk) /∂ϕk∂lκ (Dt, zt,ϕk) /∂ϕ
′
k]

HT (ϕκ) = T−1

T∑
t=1

∂2lκ (Dt, zt,ϕk) /∂ϕk∂ϕ
′
k

If Conditions 3.2, 3.3(i) and 3.4 hold, then,
i)

ṗκ (zt, ϕ
∗
κ)
′ =

∂pκ (zt, ϕκ)

∂ϕ′κ
= Qκ (zt, ϕκ)⊗Ψκ (zt)

′ (C.1.4)

ii)
∂lκ (Dt, zt,ϕk) /∂ϕ

′
k = (Dt − pκ(zt, ϕκ))⊗Ψκ (zt)

′ (C.1.5)

iii)
∂2lκ (Dt, zt,ϕk) / (∂ϕk∂ϕ

′
k) = −Qκ (zt, ϕκ)⊗Ψκ (zt) Ψκ (zt)

′ (C.1.6)

iv) E
[
‖HT (ϕκ)−H (ϕκ)‖2] = O

(
ζ (κ)2 /T

)
,
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v) ‖H (ϕκ)− Ωϕ,κ‖ = O
(
κ−α/2ζ (κ)1/2

)
,

vi) for ϕ̄κ such that ‖ϕ̄κ − ϕ∗κ‖ ≤ ‖ϕ̂κ − ϕ∗κ‖ it follows that ‖H (ϕ∗κ)−H (ϕ̄κ)‖ =

O
(
ζ (κ)2/(4+δ) ‖ϕ∗κ − ϕ̄κ‖

)
,

vii) The smallest eigenvaule of Ωϕ,κ is bounded away from zero uniformly in κ and∥∥H (ϕ∗κ)
−1
∥∥

2
is bounded for all κ.

Proof. For (i), note that by direct calculation using (C.1.4) and the definition of
Ψj,κ (zt, ϕκ) one obtains.

∂pjκ (zt, ϕκ)

∂ϕ′jκ
=
(
pjκ (zt, ϕκ)− pjκ (zt, ϕκ)

2)Ψκ (zt)
′ (C.1.7)

∂pjκ (zt, ϕκ)

∂ϕ′lκ
= −plκ (zt, ϕκ) p

j
κ (zt, ϕκ) Ψκ (zt)

′

such that (i) follows immediately upon stacking the results in (C.1.7).
For (ii) note that it follows from (C.1.65) that

∂l (Dt, zt,ϕk) /∂ϕ
′
k = (Dt − pκ(zt, ϕκ))′Qκ (zt, ϕκ)

−1 ∂pκ (zt, ϕκ) /∂ϕ
′
κ. (C.1.8)

As in Cattaneo (2010), (ii) follows from combining (C.1.8) with (i). Finally, (iii)
follows by differentiating (C.1.5) and applying (C.1.4).

For (iv) note that∥∥Qκ (zt+l, ϕκ)⊗Ψκ (zt+l) Ψκ (zt+l)
′∥∥ ≤ 2J ‖Ψκ (zt+l)‖2 .

Then use Lemma C.1.1 to bound

E
[
‖HT (ϕκ)−H (ϕκ)‖2] (C.1.9)

= T−1

T−1∑
t=1−T

(
1− |l|

T

)
(C.1.10)

× trCov
(
Qκ (zt, ϕκ)⊗Ψκ (zt) Ψκ (zt)

′ , Qκ (zt+l, ϕκ)⊗Ψκ (zt+l) Ψκ (zt+l)
′)

≤ T−18J
∥∥‖Ψκ (zt)‖2

∥∥2

2,β
. (C.1.11)

By Lemma C.1.2 it follows that∥∥‖Ψκ (zt)‖2
∥∥2

2,β
≤ C ‖Ψκ (zt)‖2

4+δ,P = ζ (κ)2/(4+δ)

which establishes the result.
For (v) note that by (iii) it follows that

Ωϕ,κ = −E
[
(Dt − pκ(zt, ϕκ)) (Dt − pκ(zt, ϕκ))′ ⊗Ψκ (zt) Ψκ (zt)

′]
where

E
[
(Dt − pκ(zt, ϕκ)) (Dt − pκ(zt, ϕκ))′ |zt

]
(C.1.12)
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= E
[
(Dt − p (zt, ϕ)) (Dt − p(zt))′ |zt

]
+ (p (zt, ϕ)− pκ(zt, ϕκ)) (p (zt, ϕ)− pκ(zt, ϕκ))′

= Q (zt) + (p (zt, ϕ)− pκ(zt, ϕκ)) (p (zt, ϕ)− pκ(zt, ϕκ))′

and consider

‖H (ϕκ)− Ωϕ,κ‖ (C.1.13)

≤ E
[∥∥(Qκ (zt, ϕκ)−Q (zt))⊗Ψκ (zt) Ψκ (zt)

′∥∥]
+ E

[∥∥(p (zt, ϕ)− pκ(zt, ϕκ)) (p (zt, ϕ)− pκ(zt, ϕκ))′ ⊗Ψκ (zt) Ψκ (zt)
′∥∥] .

Next use the fact that∥∥(Qκ (zt, ϕκ)−Q (zt))⊗Ψκ (zt) Ψκ (zt)
′∥∥ = ‖Qκ (zt, ϕκ)−Q (zt)‖

∥∥Ψκ (zt) Ψκ (zt)
′∥∥

(C.1.14)
where (C.1.14) implies that

E
[∥∥(Qκ (zt, ϕκ)−Q (zt))⊗Ψκ (zt) Ψκ (zt)

′∥∥] (C.1.15)

≤ E
[
‖(Qκ (zt, ϕκ)−Q (zt))‖

∥∥Ψκ (zt) Ψκ (zt)
′∥∥]

where

‖Qκ (zt, ϕκ)−Q (zt)‖ = ‖diag (p (zt, ϕ)− pκ(zt, ϕκ))‖
+
∥∥p (zt, ϕ) p (zt, ϕ)′ − pκ(zt, ϕκ)pκ(zt, ϕκ)′

∥∥ (C.1.16)

≤ ‖p (zt, ϕ)− pκ(zt, ϕκ)‖
+ (‖pκ(zt, ϕκ)‖+ ‖p (zt, ϕ)‖) ‖p (zt, ϕ)− pκ(zt, ϕκ)‖

≤ 3 ‖p (zt, ϕ)− pκ(zt, ϕκ)‖

Now use p (zt, ϕ) = Γ (Γ−1 (p (zt, ϕ))), pκ(zt, ϕκ) = Γ (Ψκ (zt, ϕκ)) , the mean value
theorem leads to

p (zt, ϕ)− pκ(zt, ϕκ) =
∂Γ

∂Ψ

(
Γ−1 (p (zt, ϕ))−Ψκ (zt, ϕκ)

)
(C.1.17)

and because the elements of ∂Γ
∂Ψ

are bounded by 1/2 it follows as shown in Cattaneo
(2010) that

‖p (zt, ϕ)− pκ(zt, ϕκ)‖ ≤ C
∥∥Γ−1 (p (zt, ϕ))−Ψκ (zt, ϕκ)

∥∥ (C.1.18)

for some constant. By Condition 3.4 and Lemma C.1.3(ii) it follows that

E
[∥∥Γ−1 (p (z))−Ψκ (z, ϕκ)

∥∥2
]

= O
(
κ−α

)
such that the second line in (C.1.15) is bounded by

E
[∥∥Qκ (zt, ϕκ)−Q (zt)⊗Ψκ (zt) Ψκ (zt)

′∥∥] (C.1.19)

≤ 3
(
E
[∥∥Γ−1 (p (z))−Ψκ (z, ϕκ)

∥∥2
])1/2 (

E
[
‖Ψκ (zt)‖2])1/2

= O
(
κ−α/2ζ (κ)1/2

)
.
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For the second line in (C.1.13) similarly use

E
[∥∥(p (zt, ϕ)− pκ(zt, ϕκ)) (p (zt, ϕ)− pκ(zt, ϕκ))′ ⊗Ψκ (zt) Ψκ (zt)

′∥∥] (C.1.20)

= 2JE
[
‖p (zt, ϕ)− pκ(zt, ϕκ)‖ ‖Ψκ (zt)‖2]

≤ CE
[∥∥Γ−1 (p (z))−Ψκ (z, ϕκ)

∥∥2
]1/2

E
[
‖Ψκ (zt)‖4]1/2 = O

(
κ−α/2ζ (κ)1/2

)
(C.1.21)

It now follows that

‖H (ϕκ)− Ωϕ,κ‖ = O
(
κ−α/2ζ (κ)1/2

)
. (C.1.22)

For (vi) use

‖H (ϕ∗κ)−H (ϕ̄κ)‖ ≤ E
[
‖(Qκ (zt, ϕ

∗
κ)−Qκ (zt, ϕ̄κ))‖ ‖Ψκ (zt)‖2]

≤ E
[
‖(Qκ (zt, ϕ

∗
κ)−Qκ (zt, ϕ̄κ))‖2]1/2E [‖Ψκ (zt)‖4]1/2

where by (C.1.16) and (C.1.18) it follows that

E
[
‖(Qκ (zt, ϕ

∗
κ)−Qκ (zt, ϕ̄κ))‖2] ≤ E

[
‖Ψκ (z, ϕ∗κ)−Ψκ (z, ϕ̄κ)‖2]

≤ E
[
‖Ψκ (zt)‖2] ‖ϕ∗κ − ϕ̄κ‖2

= O
(
ζ (κ)1/2 ‖ϕ∗κ − ϕ̄κ‖

2
)

which establishes the result.
For (vii) consider

Ωϕ,κ = E
[(
Q (zt) + (p (zt, ϕ)− pκ(zt, ϕκ)) (p (zt, ϕ)− pκ(zt, ϕκ))′

)
⊗Ψκ (zt) Ψκ (zt)

′] .
(C.1.23)

From the fact that (p (zt, ϕ)− pκ(zt, ϕκ)) (p (zt, ϕ)− pκ(zt, ϕκ))′ ⊗Ψκ (zt) Ψκ (zt)
′ is

positive semi-definite for all values of zt it follows that

Ωϕ,κ ≥ E
[
Q (zt)⊗Ψκ (zt) Ψκ (zt)

′] (C.1.24)

where the inequality is in the sense of positive semi-definite matrices. Now using the
fact that Q (zt) ≥ pJIJ as implied by the results in Cattaneo (2010) and Condition
3.3-(i), it follows from Condition 3.4 and Magnus and Neudecker (1980) that

λmin

(
E
[
Q (zt)⊗Ψκ (zt) Ψκ (zt)

′]) ≥ λminE
[
pJ
(
IJ ⊗Ψκ (zt) Ψκ (zt)

′)] (C.1.25)

≥ pJλminE
[
Ψκ (zt) Ψκ (zt)

′] > δ > 0.

Now use the inequality∥∥H (ϕκ)
−1
∥∥

2
≤
∥∥Ω−1

ϕ,κ

∥∥
2

+
∥∥H (ϕκ)

−1 − Ω−1
ϕ,κ

∥∥
2

where
∥∥Ω−1

ϕ,κ

∥∥
2

is bounded because Ωϕ,κ is real symmeric such that the largest eigen-

value of Ω−1
ϕ,κ is the inverse of the smallest eigenvalue of Ωϕ,κ and therefore is bounded

because of (C.1.25) (see Böttcher, 1996, p. 16). The second term tends to zero be-
cause of (v) and the fact that

∥∥Ω−1
ϕ,κ

∥∥
2

is bounded (see Lewis and Reinsel, 1985, p.
397).
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Lemma C.1.6. Let b (z), b0 (z) and B (z) be as defined in Condition 3.3. Then
i) for ϕ̄κ such that ‖ϕ∗κ − ϕ̄κ‖ ≤ ‖ϕ∗κ − ϕ̂κ‖ it follows that∥∥∥K̂κ (ϕ̄κ)−Kκ (ϕ∗κ)

∥∥∥
2

= O

(
ζ (κ)√
T

+ ‖ϕ∗κ − ϕ̄κ‖
)

= op (1)

ii)

(
K̂κ (ϕ̄κ)−Kκ (ϕ∗κ)

)
T−1/2

T ′∑
t=1

ṗκ (zt, ϕ
∗
κ)Qκ (zt, ϕ

∗
κ)
−1 (Dt − p (zt, ϕ))

= Op

(
ζ (κ)3+δ/2/(2+δ/2)

√
T

+ ‖ϕ∗κ − ϕ̄κ‖ ζ (κ)1/(2+δ/2)

)
= op (1) ,

iii) K̂κ (ϕ∗κ)T
−1/2

∑T ′
t=1 ṗκ (zt, ϕ

∗
κ)Qκ (zt, ϕ

∗
κ)
−1 (p (zt, ϕ)− p(zt, ϕ∗κ)) = Op

(
ζ (κ)1/2 κα/2

)
=

op (1) ,

iv) T−1/2
∑T ′

t=1

(
Kκ (ϕ∗κ) ṗκ (zt, ϕ

∗
κ)Qκ (zt, ϕ

∗
κ)
−1 −B (zt)

)
(Dt − p (zt, ϕ)) = op (1) .

v) ‖B (z)‖2 ≤ J2E
[
‖Yt‖2 |zt

](2(1+p)
p

)2

and
∫
‖B (z)‖2 dP0 (z) ≤ J2

(
2(1+p)

p

)2

E
[
‖Yt‖2]

vi)
∫
B (z) (pκ (z)− p0 (z)) dP0 (z) = o (1)

vii)
∫
B (z) dP0 (z) = O (1)

Proof. To show (i) defineH (ϕ∗κ) = −E [∂2l (Dt, zt,ϕ
∗
k) /∂ϕk∂ϕ

′
k] by Lemma C.1.5(vii)

it follows that ∥∥H (ϕ∗κ)
−1
∥∥

2
≤ C1 <∞ (C.1.26)

for all κ. Let Bq,i,j (z) be the i, j-th element of the matrix B (z)Qκ (zt, ϕκ) . Now
consider

‖Kκ (ϕ∗κ)‖
2 ≤

∥∥∥∥∫ B (z) ṗκ (z, ϕ∗κ)
′ dP0

∥∥∥∥2 ∥∥H (ϕ∗κ)
−1
∥∥2

2
(C.1.27)

≤ C

∥∥∥∥∫ B (z)
(
Qκ (zt, ϕ

∗
κ)⊗Ψκ (zt)

′) dP0

∥∥∥∥
≤ C1

(
κ∑
j=l

J∑
i,j=1

(∫
Bq,ij (z)ψlκ (zt)

′ dP0

)2
)1/2

≤ C <∞,

where the first inequality uses Lewis and Reinsel (1985, Equation 2.6) and the sec-
ond inequality uses (C.1.26). The last inequality follows by Condition 3.4-(iv) if it
can be established that Bq,ij (z) ∈ L2 (P0). By (v) below, Lemma C.1.4-(ii), and the

Cauchy-Schwarz inequality
∥∥∫ B (z)Qκ (zt, ϕκ) dP0

∥∥2 ≤
∫
‖B (z)‖2 dP0

∫
‖Qκ (zt, ϕκ)‖2 dP0 ≤

4J2
∫
‖B (z)‖2 dP0 <∞ which establishes that Bij (z) ∈ L2 (P0) as required by Con-

dition 3.4(iv).
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Next note that by arguments given in Lewis and Reinsel (1985, p. 397), it
follows that ∥∥HT (ϕ̄κ)

−1 −H (ϕ̄κ)
−1
∥∥

2
= Op (‖HT (ϕ̄κ)−H (ϕ̄κ)‖2)

and consequently
∥∥HT (ϕ̄κ)

−1
∥∥

2
= Op (1) because

∥∥H (ϕ̄κ)
−1
∥∥

2
is bounded by Lemma

C.1.5(vii). Then, one obtains

∥∥∥∥∫ B (z) ṗκ (z, ϕ∗κ)
′ dP0HT (ϕ̄κ)

−1 −Kκ (ϕ∗κ)

∥∥∥∥
= Op (‖Kκ (ϕ∗κ)‖2)Op

(∥∥HT (ϕ̄κ)
−1
∥∥

2

)
Op (‖HT (ϕ̄κ)−H (ϕ∗κ)‖2) (C.1.28)

where by Lemma C.1.5(iv) and the fact that ‖.‖2 ≤ ‖.‖ one has

‖HT (ϕ̄κ)−H (ϕ̄κ)‖2 = Op

(
ζ (κ) /

√
T
)

(C.1.29)

and by Lemma C.1.5(vi) that

‖HT (ϕ̄κ)−HT (ϕ∗κ)‖2 = O
(
ζ (κ)1/2 ‖ϕ∗κ − ϕ̄κ‖

)
. (C.1.30)

By (C.1.27) it follows that ‖Kκ (ϕ∗κ)‖ = Op (1) . Next, consider∥∥∥∥K̂κ (ϕ̄κ)−
∫
B (z) ṗκ (z, ϕ∗κ)

′ dP0HT (ϕ̄κ)
−1

∥∥∥∥
≤
∥∥∥∥∫ B (z)

(
ṗκ (z, ϕ̄κ)

′ − ṗκ (z, ϕ∗κ)
′) dP0

∥∥∥∥∥∥HT (ϕ̄κ)
−1
∥∥

2
. (C.1.31)

Note that

∂2pjκ (zt, ϕκ)

∂ϕjκ∂ϕ′jκ
=
(
pjκ (zt, ϕκ)− pjκ (zt, ϕκ)

2) (1− 2pjκ (zt, ϕκ)
2)Ψκ (zt) Ψκ (zt)

′

(C.1.32)

∂pjκ (zt, ϕκ)

∂ϕ′lκ
= −plκ (zt, ϕκ) p

j
κ (zt, ϕκ)

(
1− 2pjκ (zt, ϕκ)

2)Ψκ (zt) Ψκ (zt)
′

such that ∥∥∥∥∂2pjκ (zt, ϕκ)

∂ϕjκ∂ϕ′jκ

∥∥∥∥ ≤ 3
∥∥Ψκ (zt) Ψκ (zt)

′∥∥ (C.1.33)

with the same bound holding for the cross-derivatives. Now bounding (C.1.30) one
obtains from (C.1.33) that∥∥∥∥∫ B (z)

(
ṗκ (z, ϕ̄κ)

′ − ṗκ (z, ϕ∗κ)
′) dP0

∥∥∥∥
≤ 3J2

∫
‖B (z)‖ ‖Ψκ (zt)‖2 dP0 ‖ϕ∗κ − ϕ̄κ‖ (C.1.34)

166



≤ 3J2

(∫
‖B (z)‖2 dP0

)1/2(∫
‖Ψκ (zt)‖4 dP0

)1/2

‖ϕ∗κ − ϕ̄κ‖

= O
(
ζ (κ)1/2 ‖ϕ∗κ − ϕ̄κ‖

)
and (C.1.28), (C.1.29), (C.1.30), (C.1.31) and (C.1.34) imply that∥∥∥K̂κ (ϕ̄κ)−Kκ (ϕ∗κ)

∥∥∥ = Op

(
ζ (κ)√
T

+ ζ (κ)1/2 ‖ϕ∗κ − ϕ̄κ‖
)
.

For (ii) use the submultiplicative inequality for Euclidean matrix norms (see Horn
and Johnson, 1985, p. 291), the first term (C.1.70) is bounded by

∥∥∥K̂κ (ϕ̄κ)−Kκ (ϕ∗κ)
∥∥∥

2

∥∥∥∥∥T−1/2

T ′∑
t=1

ṗκ (zt, ϕ
∗
κ)Qκ (zt, ϕ

∗
κ)
−1 (Dt − p (zt, ϕ))

∥∥∥∥∥ .
(C.1.35)

The second term in (C.1.35) is

E

[∥∥∥T−1/2
∑T

t=1
ṗκ (zt, ϕ

∗
κ)Qκ (zt, ϕ

∗
κ)
−1 (Dt − p(zt))

∥∥∥2
]

(C.1.36)

= T−1 tr

(
T∑
t=1

E
[
ṗκ (zt, ϕ

∗
κ)Qκ (zt, ϕ

∗
κ)
−1Q (zt, ϕ)Qκ (zt, ϕ

∗
κ)
−1 ṗk (zt, ϕ

∗
κ)
′])

= trE
[
Q (z1, ϕ)⊗Ψκ (z1) Ψκ (z1)′

]
= E

[∥∥∥Q (z1, ϕ)1/2
∥∥∥2

‖Ψκ (z1)‖2

]
≤ 2J

(
E
[
‖Ψκ (z1)‖4+δ

])1/(2+δ/2)

= 2Jζ (κ)1/(2+δ/2)

such that upon combining (C.1.35), (C.1.36), (C.1.29) and (C.1.30) it follows that
(ii) is

O

(
ζ (κ)3+δ/2/(2+δ/2)

√
T

+ ‖ϕ∗κ − ϕ̄κ‖ ζ (κ)1/2+1/(2+δ/2)

)
= op (1) .

For (iii) recall the definition of ϕ∗κ = arg maxL (ϕκ) with L (ϕκ) = E [lκ (Dt, zt, ϕκ)]
which implies that

0 = E

[
∂lκ (Dt, zt, ϕ

∗
κ)

∂ϕκ

]
= E

[
ṗκ (zt, ϕ

∗
κ)
′Qκ (zt, ϕ

∗
κ)
−1 (Dt − pκ(zt, ϕ∗κ))

]
and consequently, because of E [Dt|zt] = p (zt, ϕ) , it follows that

E
[
ṗκ (zt, ϕ

∗
κ)
′Qκ (zt, ϕ

∗
κ)
−1 (p (zt, ϕ)− pκ(zt, ϕ∗κ))

]
= 0.

This shows that for Υκ (zt, ϕ
∗
κ) = (p (zt, ϕ)− pκ(zt, ϕ∗κ))⊗Ψκ (zt)

E

∥∥∥∥∥T−1/2

T∑
t=1

(p (zt, ϕ)− pκ(zt, ϕ∗κ))⊗Ψκ (zt)

∥∥∥∥∥
2

(C.1.37)
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= tr
T−1∑

l=−T+1

(
1− |l|

T

)
Cov

(
Υκ (zt, ϕ

∗
κ) ,Υκ (zt+l, ϕ

∗
κ)
′) .

Noting that∣∣ψl,κ (zt)
(
pj (zt)− pjκ(zt, ϕ∗κ)

)∣∣ ≤ sup
z

∣∣∣∣pj (z)− pjκ(z, ϕ∗κ)
〈z〉

∣∣∣∣ 〈zt〉 |ψl,κ (zt)|

It now follows from Lemma C.1.1 that

tr
T−1∑

l=−T+1

Cov
(
Υκ (zt, ϕ

∗
κ) ,Υκ (zt+l, ϕ

∗
κ)
′)

≤ 4
J∑
j=1

sup
z

∣∣∣∣pj (z)− pjκ(z, ϕ∗κ)
〈z〉

∣∣∣∣ Jκ∑
l=1

‖ψl,κ (zt) 〈zt〉‖2
2,β . (C.1.38)

Using (C.1.1) the RHS of (C.1.38) can be bounded by

4
J∑
j=1

sup
z

∣∣∣∣pj (z)− pjκ(z, ϕ∗κ)
〈z〉

∣∣∣∣ Jκ∑
l=1

‖ψl,κ (zt) 〈zt〉‖2+δ,P

√
1 +

∫ 1

0

φ∗ (β−1 (u)) du

≤ C
J∑
j=1

sup
z

∣∣∣∣pj (z)− pjκ(z, ϕ∗κ)
〈z〉

∣∣∣∣ Jκ∑
l=1

‖ψl,κ (zt)‖4+δ,P ‖〈zt〉‖4+2δ,P

= O (ζ (κ)κα)

where Lemma C.1.2 and Conditions 3.4(i) and (ii) were used, and the first inequality
uses the Cauchy-Schwarz inequality. This shows that the bound for (C.1.71) is given
by ∥∥∥∥∥K̂κ (ϕ∗κ)T

−1/2

T∑
t=1

ṗκ (zt, ϕ
∗
κ)Qκ (zt, ϕ

∗
κ)
−1 (p (zt, ϕ)− pκ(zt, ϕ∗κ))

∥∥∥∥∥
≤
∥∥∥K̂κ (ϕ∗κ)

∥∥∥
2

∥∥∥∥∥T−1/2

T∑
t=1

ṗκ (zt, ϕ
∗
κ)Qκ (zt, ϕ

∗
κ)
−1/2 (p (zt, ϕ)− pκ(zt, ϕ∗κ))

∥∥∥∥∥
= Op (1)Op

(
ζ (κ)1/2 κα/2

)
.

where
∥∥∥K̂κ (ϕ∗κ)

∥∥∥
2

= Op (1) by (i) and (C.1.27).

For (iv) consider

E

∥∥∥∥∥T−1/2

T∑
t=1

(
Kκ (ϕ∗κ) ṗκ (zt, ϕ

∗
κ)Qκ (zt, ϕ

∗
κ)
−1 −B (zt)

)
(Dt − p (zt, ϕ))

∥∥∥∥∥
2

≤ T−1

T∑
t=1

E
[∥∥(Kκ (ϕ∗κ) ṗκ (zt, ϕ

∗
κ)Qκ (zt, ϕ

∗
κ)
−1 −B (zt)

)
Q (zt)

∥∥2
]
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≤ E

[∥∥∥Kκ (ϕ∗κ) ṗκ (z1, ϕ
∗
κ)Qκ (z1, ϕ

∗
κ)
−1/2 −B (zt)Qκ (z1, ϕ

∗
κ)

1/2
∥∥∥2

×
∥∥∥Qκ (z1, ϕ

∗
κ)
−1/2

∥∥∥2

‖Q (zt)‖2

]

≤ 2JE

[∥∥∥(Kκ (ϕ∗κ) ṗκ (z1, ϕ
∗
κ)Qκ (z1, ϕ

∗
κ)
−1 −B (zt)

)
Qκ (z1, ϕ

∗
κ)

1/2
∥∥∥2
]

= o (1)

(C.1.39)

where ‖Q (z1)‖2 ≤ 2J by Lemma C.1.4(ii) Then, using (C.1.4),

Kκ (ϕ∗κ) ṗκ (z1, ϕ
∗
κ)Qκ (z1, ϕ

∗
κ)
−1 = Kκ (ϕ∗κ) (IJ ⊗Ψκ (zt))

and

Kκ (ϕ∗κ) =

∫
B (z) ṗκ (z, ϕ∗κ)

′ dP0Ω−1
ϕ,κ

=

∫
B (z) (Qκ (z1, ϕ

∗
κ)⊗Ψκ (z1))′ dP0E

[
Qκ (z1, ϕ

∗
κ)⊗Ψκ (z1) Ψκ (z1)′

]−1

shows that Kκ (ϕ∗κ) solves the population projection problem

min
Π
E

[∥∥∥(Π (IJ ⊗Ψκ (z1))−B (z1))Qκ (z1, ϕ
∗
κ)

1/2
∥∥∥2
]

≤ min
Π
E

[
‖(Π (IJ ⊗Ψκ (z1))−B (z1))‖2

∥∥∥Qκ (z1, ϕ
∗
κ)

1/2
∥∥∥2
]

≤ 2J min
Π
E
[
‖(Π (IJ ⊗Ψκ (z1))−B (z1))‖2] = o

(
κ−α

)
where Lemma C.1.4(ii) was used in the second inequality and the last equality
follows from Condition 3.3(iii). This establishes the o (1) result in (C.1.39).

For (iv) note that ∥∥b0,j (zt)
∥∥ ≤ E [‖Yt‖ |zt] /p,

and ∥∥bj (zt)
∥∥ ≤ E [‖Yt‖ |zt] /p+ 2E [‖Yt‖ |zt] = E [‖Yt‖ |zt]

(
1 + 2p

p

)
.

We then have
‖B (z)‖2 ≤

(
‖b (z)‖+

∥∥b0 (z) 1′
∥∥)2

with

‖b (z)‖ ≤ JE [‖Yt‖ |zt]
(

1 + 2p

p

)
and ∥∥b0 (z) 1′

∥∥ ≤ JE [‖Yt‖ |zt] /p
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leading to

‖B (z)‖2 ≤ J2 (E [‖Yt‖ |zt])2

(
2
(
1 + p

)
p

)2

≤ J2E
[
‖Yt‖2 |zt

](2
(
1 + p

)
p

)2

where the second inequality uses a conditional version of Jensen’s inequality. This
implies that∫

‖B (z)‖2 dP0 (z)

≤ J2

(
2
(
1 + p

)
p

)2 ∫
E
[
‖Yt‖2 |zt

]
dP0 (z) = J2

(
2
(
1 + p

)
p

)2

E
[
‖Yt‖2] .

For (v) use the Cauchy-Schwarz inequality∥∥∥∥∫ B (z) (pκ (z)− p0 (z)) dP0 (z)

∥∥∥∥
≤
∫
‖B (z) (pκ (z)− p0 (z))‖ dP0 (z)

≤
∫
‖B (z)‖ ‖(pκ (z)− p0 (z))‖ dP0 (z)

≤
(∫
‖B (z)‖2 dP0 (z)

)1/2(∫
‖(pκ (z)− p0 (z))‖2 dP0 (z)

)1/2

where
∫
‖(pκ (z)− p0 (z))‖2 dP0 (z) = o (1) by Lemma C.1.3(ii) and using (C.1.18)

and where
∫
‖B (z)‖2 dP0 (z) = O (1) by Lemma C.1.6(iv).

For (vi) use∥∥∥∥∫ B (z) dP0 (z)

∥∥∥∥ ≤ ∫ ‖B (z)‖ dP0 (z) ≤
(∫
‖B (z)‖2 dP0 (z)

)1/2

<∞

where the second inequality uses a conditional version of Jensen’s inequality and the
last integral is bounded by (iv).

Consider a stochastic process {ωt,κ}Tt=1 where ωt,κ ∈ Rκ for each t. Denote

Ω̂T ≡ T−1
∑T

t=1 ωt,κω
′
t,κ and ΩT ≡ T−1

∑T
t=1 E[ωt,κω

′
t,κ]. Following lemma extends

the result of Rudelson (1999) and Belloni et al. (2015) by generalizing the case to

weakly dependent processes.

Lemma C.1.7. For ν > 4, ζκ, µκ, following conditions are satisfied: i) E‖ωt,κ‖ν ≤
ζκ, ii) T−1

∑T
t=1 ‖E[wt,κw

′
t,κ]‖ ≤ µκ, and iii) ωt,κ is β-mixing and satisfies Condition

3.2. Then, we have E‖Ω̂T − ΩT‖ = O

(√
µκζ

2/(ν−2)
κ log κ/T

)
.
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Proof. Set cκ = ζ
ν/(ν−2)
κ . Let

Ω̂−T =
1

T

T∑
t=1

ωt,κω
′
t,κ1(‖ωt,κ‖ ≤ cκ)

Ω̂+
T =

1

T

T∑
t=1

ωt,κω
′
t,κ1(‖ωt,κ‖ > cκ).

By triangular inequality, the deviation can be decomposed as

E‖Ω̂T − ΩT‖ = E‖Ω̂−T − E[Ω̂−T ]‖︸ ︷︷ ︸
(1)

+E‖Ω̂+
T − E[Ω̂+

T ]‖︸ ︷︷ ︸
(2)

,

For (1), note that ‖ωt,κω′t,κ1(‖ωt,κ‖ ≤ cκ)‖ = ‖ωt,κ1(‖ωt,κ‖ ≤ cκ)‖2 ≤ c2
κ. And also,

‖E[Ω̂−T ]‖ ≤ 1

T

T∑
t=1

‖E[ωt,κω
′
t,κ1(‖ωt,κ‖ ≤ cκ)]‖

=
1

T

T∑
t=1

max
‖λ‖=1

E
[
(λ′ωt,κ)

21(‖ωt,κ‖ ≤ cκ)
]

≤ 1

T

T∑
t=1

max
‖λ‖=1

E
[
(λ′ωt,κ)

2
]

=
1

T

T∑
t=1

‖E[ωt,κω
′
t,κ]‖ ≤ µκ.

The results collectively satisfies the conditions for Lemma 6.2 of Belloni et al. (2015)
Hence, we conclude

E‖Ω̂−T − E[Ω̂−T ]‖ = O

(√
µκc2

κ log κ

T

)
= O

√µκζ
2

ν−2 log κ

T


Secondly, we show that (2) is also bounded by the same rate. For convenience, let
Wt ≡ ωt,κω

′
t,κ1(‖ωt,κ‖ > cκ)− E[ωt,κω

′
t,κ1(‖ωt,κ‖ > cκ)]. Then,

E‖Ω̂+
T − E[Ω̂+

T ]‖2 = E
[
tr
(

(Ω̂+
T − E[Ω̂+

T ])(Ω̂+
T − E[Ω̂+

T )′
)]

=
1

T 2

T∑
t=1

E [tr(WtW
′
t)] +

1

T 2

∑
t6=s

E [tr(WtW
′
s)]

≤ 1

T 2

T∑
t=1

E
[
‖ωt,κ‖41(‖ωt,κ‖ > cκ)

]
+ o(1) (C.1.40)

≤ 1

T 2

T∑
t=1

E‖ωt,κ‖ν

cν−4
κ

(C.1.41)
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≤ 1

T

ζκ
cν−4
κ

, (C.1.42)

where each of the inequalities are justified by the following arguments: (C.1.40) is
followed by the fact that E[tr(Wt,Ws)] = tr(E[WtW

′
s]) = tr(Cov(ωt,κω

′
t,κ, ωs,κω

′
s,κ))

and the result of Lemma 8 (in page 18), of which conditions are verified by (iii).
(C.1.41) is straightforward by the Lemma 1 of Hansen (2015). And (C.1.42) is from
the condition i). Then from the Liapunov’s inequality, we have

E‖Ω̂+
T − E[Ω̂+

T ]‖ ≤
(
E‖Ω̂+

T − E[Ω̂+
T ]‖2

)1/2

≤

√
1

T

ζκ
cν−4
κ

=

√
ζ

2
ν−2
κ

T
.

Therefore, the result follows.

Lemma C.1.8. Let Ω̂ = T−1
∑T

t=1 Ψκ(zt)Ψ
κ(zt)

′, then E‖Ω̂−Iκ‖ = O

(√
ζ

2/(ν−2)
κ log κ/T

)
.

Proof. The result is followed by Lemma C.1.7 with ωt,κ = Ψκ(zt) where Ψκ(·) is
the κ × 1 vector of basis functions satisfying E‖Ψκ(zt)‖ν = O(ζκ) for ν > 4 and
E[Ψκ(zt)Ψ

κ(zt)
′] = Iκ.

Following lemmas help establish high-level assumptions to guarantee consis-

tency result for the variance estimator defined as (3.18) and (3.19). Let vt =

vt(χt, α0, p0) and v̂t(ϕ) = v̂t(χt, α̂, ϕ).

Lemma C.1.9. i) suptE‖vt‖4+δ <∞ for some δ > 0, there exists a positive sequence
µκ,T → 0 and µ∗κ,T → 0 such that ii) E‖v̂t(ϕ∗)v̂t−h(ϕ∗)′− vtv′t−h‖ = O(µκ,T ) and iii)
‖v̂t(ϕ̂)v̂t−h(ϕ̂)′ − v̂(ϕ∗)v̂t−h(ϕ

∗)′‖ = Op(µ
∗
κ,T‖ϕ̂− ϕ∗‖)

C.1.2 Proofs

Proof of Theorem 3.1. The proof proceeds by verifying that the high level conditions
in Newey (1994) are satisfied. In particular we show that the following conditions
hold:
i) for p0 denoting the true propensity score, there exists a functional D (z, p) that is
linear in p and a function b (ξt) such that for ‖p− p0‖2,P small enough

‖ht (p)− ht (p0)−D (ξt, p− p0)‖2
2,P ≤ b (ξt) ‖p− p0‖2

2,P , (C.1.43)

and
E [b (ξt)]

√
T ‖p− p0‖2

2,P → 0, (C.1.44)

ii) (Stochastic Equicontinuity): let P0 be the true marginal distribution of ξt. Then
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it follows that

T−1/2

T∑
t=1

(
D (ξt, p̂− p0)−

∫
D (ξt, p̂− p0) dP0

)
→p 0, (C.1.45)

iii) There is a function γ (ξt) sucht that

E [γ (ξt)] = 0, (C.1.46)

E
[
‖γ (ξt)‖2] <∞, (C.1.47)

T 1/2

(
T−1

T∑
t=1

(
γ (ξt)−

∫
D (ξ, p̂− p0) dP0

))
→p 0. (C.1.48)

It should be noted that (C.1.48) combines Newey (1994, Condition 5.3 (ii)) with
the last part of Newey (1994, Condition 5.3 (i)). If (C.1.43)-(C.1.48) hold then it
follows from Newey (1994, Lemma 5.1) that

T−1/2
∑T

t=1

(
ĥt (p̂)− θ (α0)

)
= T−1/2

∑T

t=1
(m (ξt, α, p) + γ (ξt)) + op (1) .

(C.1.49)
We thus in turn show that our regularity conditions imply (C.1.43)-(C.1.48). For
(C.1.43), note that from the derivation of Dj and suppressing the argument zt in
gj (zt) and pj (zt) for notational convenience we have for gj = pj that

Dj (ξt, p− p0) =

[
Yt

(
Dt,0

(p0
0)

2p
j
0

(
p0 − p0

0

)
− Dt,j(

pj0
)2p

j
0

(
pj − pj0

))

+ Yt

(
Dt,j

pj0
− Dt,0

p0
0

)(
pj − pj0

) ]
(C.1.50)

and for gj = 1 that

Dj (ξt, p− p0) =

[
Yt

(
Dt,0

(p0
0)

2

(
p0 − p0

0

)
− Dt,j(

pj0
)2

(
pj − pj0

))]
. (C.1.51)

Recall that ht,j (pj, p0) = Yt

(
Dt,j
pj
− Dt,0

p0

)
gj such that it can be shown1 for the case

gj = pj that

ht,j
(
pj, p0

)
− ht,j

(
pj0, p

0
0

)
−Dj (ξt, p− p0) = −YtDt,0

pj (p0 − p0
0)

2

(p0
0)

2
p0

(C.1.52)

such that

‖ht (p)− ht (p0)−D (ξt, p− p0)‖ ≤ ‖Yt‖
(p0

0)
2
p0

(
p0 − p0

0

)2
. (C.1.53)

1See Appendix C.2.
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By the triangular inequality for R one obtains∣∣p0
0

∣∣ ≤ ∣∣p0
∣∣+
∣∣p0 − p0

0

∣∣
such that ∣∣p0

0

∣∣− ∣∣p0 − p0
0

∣∣ ≤ ∣∣p0
∣∣

and using |p0
0| >p and as long as |p0 − p0

0| <p one obtains

1

|p0|
≤ 1

p
+

|p0 − p0
0|

p
(
p− |p0 − p0

0|
) ≤ 1

p
+
|p0 − p0

0|
p2

≤ 1

p

(
1 +

2

p

)
and substituting in (C.1.53) leads to

‖ht (p)− ht (p0)−D (ξt, p− p0)‖ ≤
‖Yt‖

(
p+ 2

)
p4

(
p0 − p0

0

)2 ≤ C ‖Yt‖
∣∣p0 − p0

0

∣∣
where |p0 − p0

0| ≤ 2 was used and C is a generic constant. Squaring both sides of
the inequalty and integrating with respect to dP (z) leads to

‖ht (p)− ht (p0)−D (ξt, p− p0)‖2
2,P ≤ ‖Yt‖

2

∫ ∣∣p0 − p0
0

∣∣2 dP (z) ≤ ‖Yt‖2
∥∥p0 − p0

0

∥∥2

2,P

where

∥∥p0 − p0
0

∥∥
2,P

=

(∫ ∣∣p0 − p0
0

∣∣2 dP (z)

)1/2

≤

(
J∑
j=0

∣∣pj − pj0∣∣2 dP (z)

)1/2

= ‖p− p0‖2,P .

(C.1.54)
When gj = 1 the above calculations are

ht,j
(
pj, p0

)
− ht,j

(
pj0, p

0
0

)
−Dj (ξt, p− p0)

= Yt

(
Dt,j(
pj0
)2
pj

(
pj − pj0

)2 − Dt,0

(p0
0)

2
p0

(
p0 − p0

0

)2

)

such that

‖ht (p)− ht (p0)−D (ξt, p− p0)‖2
2,P ≤

4 ‖Yt‖2 (p+ 2
)2

p8
‖p− p0‖2

2,P

by the same argument as before. Next note that E
[
‖Yt‖2] ≤ E

[
‖ξt‖2] < ∞

by Condition 3.2. This, together with the assumptions in Condition 3.3(ii) that√
T ‖p− p0‖2

2,P = op (1) establishes (C.1.43) and (C.1.44).

To show that (C.1.45) holds consider the case gj = pj. Let D (ξt, p) = f (ξt, zt)
where the j-th component of f is

f j (ξt, zt) = Yt
Dt,0

(p0
0)

2 g
j
0p

0 + Yt

(
−Dt,0

p0
0

)
pj (C.1.55)
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and where f (ξt) is a class of functions indexed by p ∈ P . Similarly, defineD (ξt, p
′) =

g (ξt, zt) for some p′ 6= p. Then, because of linearity D (ξt, p− p′) = f (ξt, zt) −
g (ξt, zt) . For generic ξ = (x, y,D) and noting that |pj|, |Dt,j| and |gj| are all bounded
by 1,it follows that ∥∥f j (ξ, z)

∥∥ ≤ 2
‖Y ‖
p

= F (ξ) (C.1.56)

where such that F (ξ) defined in (C.1.56) is the envelope of f (ξ, z) . By Condition

3.2 it follows that E
[
F (ξt)

2+δ
]
<∞. To show stochastic equicontinuity of f j (ξt) it

is enough to check that f j (ξt) satisfies the conditions of Theorem 3 and Corollary 10
in Kuersteiner (2016), which build on Doukhan et al. (1995). The theorem implies
that f j is Donsker and thus establishes asymptotic stochastic equicontinuity. To
check the conditions of Corollary 10, note that the β-mixing sequence satisfies the
summability requirement

∑∞
m=0m

1/(r−1)βm < ∞ with r > p/2 by Condition 3.2.
Further, f (ξt) ∈ Cs

(
Rd, ϑ

)
with ϑ < −1 by Condition 3.4(i), ‖χt‖p(s−ϑ),P < ∞ by

Condition 3.4(ii). It now follows from Theorem 3 and Corollary 10 in Kuersteiner
(2016) that for T large enough, any η > 0 and any δ > 0 there exists an ε > 0 such
that

Pr

(
sup

‖f−g‖2,β≤ε

∥∥∥∥∥T−1/2

T∑
t=1

(
f (ξt)− g (ξt)−

∫
(f (ξt)− g (ξt)) dP0

)∥∥∥∥∥ > δ

)
≤ δ.

(C.1.57)
Using the basic inequality

Pr

(∥∥∥∥∥T−1/2

T∑
t=1

(
D (ξt, p̂− p0)−

∫
D (ξt, p̂− p0) dP0

)∥∥∥∥∥ > δ

)
(C.1.58)

≤ Pr

(
sup

‖f−g‖2,β≤ε

∥∥∥∥∥T−1/2

T∑
t=1

(
f (ξt)− g (ξt)−

∫
(f (ξt)− g (ξt)) dP0

)∥∥∥∥∥ > δ

)
+ Pr

(
p̂ ∈

{
p : ‖D (ξt, p− p0)‖2,β > ε

})
then establishes (C.1.45) if we can show that the second term is small. Note that
from (C.1.55) it follows that

Dj (ξt, p̂− p0) = Yt
Dt,0

(p0
0)

2 g
j
0

(
p̂0 − p0

0

)
+ Yt

(
−Dt,0

p0
0

)(
p̂j − pj0

)
.

By Lemma C.1.2 it follows that

‖D (ξt, p̂− p0)‖2,β ≤ C ‖D (ξt, p̂− p0)‖2+δ,P

where C =
√

1 +
∫ 1

0
φ∗ (β−1 (u)) du which is bounded as long as

∑
n>0 n

1/δβn <∞.

Then,

‖D (ξt, p̂− p0)‖2,β (C.1.59)
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≤ C ‖D (ξt, p̂− p0)‖2+δ,P

≤ 2C
‖Yt‖4+2δ,P ‖p̂− p0‖4+2δ,P

p

where ‖p̂− p0‖4+2δ,P = o (1) Condition 3.3(ii). Since the RHS of the last inequality
in (C.1.59) tends to zero it follows that

Pr
(
p̂ ∈

{
p : ‖D (ξt, p− p0)‖2,β > ε

})
→ 0.

It then follows that (C.1.45) holds by combining (C.1.58) and (C.1.59).
For (C.1.46) note that

γj (ξt, α, p) = −E [Yt (dj) |zt]
pj (zt)

gj (zt)
(
Dt,j − pj (zt)

)
+ E [Yt (dj)− Yt (d0) |zt]

(
Dt,j − pj (zt)

)
+
E [Yt (d0) |zt]

p0 (zt)
gj (zt)

(
Dt,0 − p0 (zt)

)
.

such that E (γj (ξt, α, p) |zt) = 0 follows immediately because E [Dt,j|zt] = pj (zt) by
definition.

For (C.1.47) note that

∥∥γj (ξt, α, p)
∥∥ ≤ 4

(∥∥∥∥E [Yt (dj) |zt]
pj (zt)

∥∥∥∥+

∥∥∥∥E [Yt (d0) |zt]
pj (zt)

∥∥∥∥) ≤ 8
E [‖Yt‖ |zt]
pj (zt)

(C.1.60)

where
‖E [Yt (dj) |zt]‖ = ‖E [YtDt,j|zt]‖ ≤ E [‖Yt‖ |zt]

was used. Then, using the conditional Jensen’s inequality and (C.1.60) we obtain

E
[∥∥γj (ξt, α, p)

∥∥2
]
≤ 16E

[
(E [‖Yt‖ |zt])2

pj (zt)
2

]
≤ 16

E
[
‖Yt‖2]
p2

and ‖γ (ξt, α, p)‖2 =
∑J

j=1 ‖γj (ξt, α, p)‖
2

such that using Condition 3.2

E
[
‖γ (ξt, α, p)‖2] ≤ 64J

E
[
‖Yt‖2]
p2

<∞

as had to be shown.
Finally, for (C.1.48) consider (C.1.50) where

E
[
Dj (ξt, p̂− p0) |zt

]
=
E [Yt (d0) |zt] gj0

p0
0

(
p̂0 − p0

0

)
− E [Yt (dj) |zt] gj0

pj0

(
p̂j − pj0

)
+ (E [Yt (dj) |zt]− E [Yt (d0) |zt])

(
p̂j − pj0

)
.
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Stack D (ξt, p̂− p0) =
(
D1 (ξt, p̂− p0) , ..., DJ (ξt, p̂− p0)

)′
such that for b (zt) , b

0 (zt)
and e1 defined in Lemma C.1.6 one can write

D (ξt, p̂− p0) =
(
b (zt)− b0 (zt) 1′

)
(p̂− p0) .

In the same way let γ (ξt) =
(
γ1 (ξt) , ..., γ

J (ξt)
)

and recall that forDt = (Dt,1, · · · , Dt,J),
γ (ξt) = (b (zt)− b0 (zt) 1′) (Dt − p0 (zt)). It then follows that for B (z) = b (z) −
b0 (z) 1′, we can write

T 1/2

(
T−1

T∑
t=1

γ (ξt)−
∫
D (ξ, p̂− p0) dP0

)
(C.1.61)

= T 1/2

(
T−1

T∑
t=1

B (zt) (Dt − p0 (zt))−
∫
B (z) (p̂ (z)− p0 (z)) dP0 (z)

)
.

Use the mean value expansion

p̂j − pjκ = pjκ (zt, ϕ̂κ)− pjκ (zt, ϕ
∗
κ) =

∂pjκ (zt, ϕ̄κ)

∂ϕ′j,κ

(
ϕ̂j,κ − ϕ∗j,κ

)
where ϕκ =

(
ϕ′1,κ, ..., ϕ

′
J,κ

)′
and pjκ (zt, ϕκ) only depends on ϕj,κ and where

∥∥ϕ̄j,κ − ϕ∗j,κ∥∥ ≤∥∥ϕ̂j,κ − ϕ∗j,κ∥∥ . Defining

ṗκ (zt, ϕκ)
′ =

∂pκ (zt, ϕκ)

∂ϕ′κ
(C.1.62)

and denoting the remainder term by r (ϕ̂κ − ϕ∗κ) , a J × 1 vector, one obtains

p̂− pκ = ṗκ (zt, ϕ̄κ)
′ (ϕ̂κ − ϕ∗κ) . (C.1.63)

Next, letting

1

T

∂ (LT,κ (ϕκ) /T )

∂ϕκ
= sT (ϕκ) ,

1

T

∂2 (LT,κ (ϕκ))

∂ϕκ∂ϕ′κ
= HT (ϕκ)

and use a mean value expansion of the likelihood to obtain

(ϕ̂κ − ϕ∗κ) = HT (ϕ̄κ)
−1 sT (ϕ∗κ) (C.1.64)

where ‖ϕ̄κ − ϕ∗κ‖ ≤ ‖ϕ̂κ − ϕ∗κ‖ . Let Pκ (zt, ϕ) and Qκ(zt, ϕκ) be as defined in Lemma
C.1.5. Simple algebra then shows that

ṗκ (zt, ϕκ)Qκ (zt, ϕκ)
−1 (Dt − pκ(zt, ϕκ)) = ∂l (Dt, zt,ϕk) /∂ϕk. (C.1.65)

Now consider∫
B (z) (p̂ (z)− p0 (z)) dP0 (z)

=

∫
B (z) (pκ (z)− p0 (z)) dP0 (z) +

∫
B (z) ṗκ (z, ϕ̄κ)

′ dP0 (ϕ̂κ − ϕ∗κ) (C.1.66)

177



such that substituting from (C.1.63), (C.1.64) and (C.1.65) it follows that∫
B (z) ṗκ (z, ϕ̄κ)

′ dP0 (ϕ̂κ − ϕ∗κ) =

∫
B (z) ṗκ (z, ϕ̄κ)

′ dP0HT (ϕ̄κ)
−1 sT (ϕ∗κ) .

(C.1.67)
Now considering (C.1.67), substituting from (C.1.65) one has∫

B (z) ṗκ (z, ϕ̄κ)
′ dP0HT (ϕ̄κ)

−1 sT (ϕ∗κ) (C.1.68)

= T−1

T∑
t=1

∫
B (z) ṗκ (z, ϕ̄κ)

′ dP0HT (ϕ̄κ)
−1 ṗκ (zt, ϕ

∗
κ)Qκ (z, ϕ∗κ)

−1 (Dt − p(zt, ϕ∗κ))

= T−1

T ′∑
t=1

K̂κ (ϕ̄κ) ṗκ (zt, ϕ
∗
κ)Qκ (zt, ϕ

∗
κ)
−1 (Dt − p(zt, ϕ∗κ))

where K̂κ (ϕ̄κ) =
∫
B (z) ṗκ (z, ϕ̄κ)

′ dP0HT (ϕ̄κ)
−1 . Let

Kκ (ϕ∗κ) =

∫
B (z) ṗκ (z, ϕ∗κ)

′ dP0H (ϕ∗κ)
−1 .

To bound (C.1.68), first consider

T−1/2

T∑
t=1

K̂κ (ϕ̄κ) ṗκ (zt, ϕ
∗
κ)Qκ (zt, ϕ

∗
κ)
−1 (Dt − p(zt, ϕ∗κ)) (C.1.69)

=
(
K̂κ (ϕ̄κ)−Kκ (ϕ∗κ)

)
T−1/2

T∑
t=1

ṗκ (zt, ϕ
∗
κ)Qκ (zt, ϕ

∗
κ)
−1 (Dt − p (zt, ϕ)) (C.1.70)

+ K̂κ (ϕ̄κ)T
−1/2

T∑
t=1

ṗκ (zt, ϕ
∗
κ)Qκ (zt, ϕ

∗
κ)
−1 (p (zt, ϕ)− pκ(zt, ϕ∗κ)) (C.1.71)

+ T−1/2

T∑
t=1

(
Kκ (ϕ∗κ) ṗκ (zt, ϕ

∗
κ)Qκ (zt, ϕ

∗
κ)
−1/2 −B (zt)Qκ (zt, ϕ

∗
κ)

1/2
)

×Qκ (zt, ϕ
∗
κ)
−1/2 (Dt − p (zt, ϕ)) (C.1.72)

+ T−1/2

T∑
t=1

B (zt) (Dt − p (zt, ϕ)) . (C.1.73)

By Lemma C.1.6(i)-(iv) it follows that (C.1.69)-(C.1.72) are op (1). It follows from
(C.1.61), (C.1.66), (C.1.67) and (C.1.68) that

T 1/2

(
T−1

T∑
t=1

γ (ξt)−
∫
D (ξ, p̂− p0) dP0

)
=

∫
B (z) (pκ (z)− p0 (z)) dP0 (z) + op (1) = op (1)

where the last line follows from Lemma C.1.6(v)-(vii). This establishes (C.1.48).
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Proof of Theorem 3.2. The proof follows Hirano et al. (2003) and Cattaneo (2010,
Theorem B-1) with the necessary adjustments. First note that by (C.1.18)

E (‖p (zt, ϕ)− pκ(zt, ϕκ)‖)

≤ C0E
(∥∥Γ−1 (p (zt, ϕ))−Ψκ (zt, ϕκ)

∥∥2
)1/2

= O
(
κ−α

)
. (C.1.74)

As shown in Cattaneo (2010), Qκ (zt, ϕk) ≥
∏J

j=1p
j
κ(zt, ϕκ)IJ where the inequality

is in the sense of positive semidefiniteness. If ej is the j-th unit vector in RJ then

e′jQκ (zt, ϕk) ej ≥
∏J

j=1p
j
κ(zt, ϕκ) which implies trQκ (zt, ϕk) ≥ J ·

∏J
j=1p

j
κ(zt, ϕκ) >

0. It is easy to see that trQκ (zt, ϕk) < J. One also obtains∏J
j=1p

j(zt)−
∣∣∣∏J

j=1p
j(zt)−

∏J
j=1p

j
κ(zt, ϕκ)

∣∣∣ ≤∏J
j=1p

j
κ(zt, ϕκ) (C.1.75)

such that

E [Qκ (zt, ϕk)] ≥ E
[∏J

j=1p
j
κ(zt, ϕκ)

]
IJ

≥ E
[∏J

j=1p
j(zt)

]
IJ − E

[∣∣∣∏J
j=1p

j(zt)−
∏J

j=1p
j
κ(zt, ϕκ)

∣∣∣] IJ
(C.1.76)

≥ E
[
p(zt)

J
]
IJ − E

[∣∣∣∏J
j=1p

j(zt)−
∏J

j=1p
j
κ(zt, ϕκ)

∣∣∣] IJ
≥ E

[
p(zt)

J
]
IJ − o

(
κ−α

)
≥ pJIJ − o

(
κ−α

)
By Lemma C.1.8 it follows that for Ω̌ = T−1

∑T
t=1 Ψ̌κ (zt) Ψ̌κ (zt)

′ ,
∥∥Ω̌− I

∥∥ =

O
(
κ/
√
T
)

which in turn implies

λminΩ̌ > 1/2 with probability approaching one (wpa1). (C.1.77)

Now

E
[∥∥∥T−1

∑T
t=1∂l (Dt, zt,ϕ

∗
k) /∂ϕk

∥∥∥] = E

[∥∥∥T−1
∑T

t=1 (Dt − p(zt))′ ⊗Ψκ (zt)
∥∥∥2
]1/2

(C.1.78)

+ T−1
∑T

t=1E
[∥∥(p(zt)− pκ (zt, ϕ

∗
κ))
′∥∥ ‖Ψκ (zt)‖

]
where

E

[∥∥∥T−1
∑T

t=1 (Dt − p(zt))′ ⊗Ψκ (zt)
∥∥∥2
]

(C.1.79)

= T−2

T∑
t=1

trE
[
Q (zt)⊗Ψκ (zt) Ψκ (zt)

′]
= T−2

T∑
t=1

E
[
(trQ (zt)) ‖Ψκ (zt)‖2] (C.1.80)
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≤ JT−2

T∑
t=1

E
[
‖Ψκ (zt)‖2]

= O
(
T−1ζ (κ)2)

where 0 < trQκ (zt, ϕk) < J was used. For the second term note that

E
[∥∥(p(zt)− pκ (zt, ϕκ))

′∥∥ ‖Ψκ (zt)‖
]

≤
(
E
[∥∥(p(zt)− pκ (zt, ϕκ))

′∥∥2
]
E
[
‖Ψκ (zt)‖2])1/2

= O
(
κ−αζ (κ)

)
(C.1.81)

It follows that

T−1
∑T

t=1∂l (Dt, zt,ϕ
∗
k) /∂ϕk = Op

(
T−1/2ζ (κ) + κ−αζ (κ)

)
. (C.1.82)

For the δ in (C.1.25) it follows from (C.1.82) that for any ε > 0 there is a C < ∞
such that for T large enough

Pr

(∥∥∥T−1
∑T

t=1∂l (Dt, zt,ϕ
∗
k) /∂ϕk

∥∥∥ < δ

2
C
(
T−1/2ζ (κ) + κ−αζ (κ)

))
≤ 1− ε

2
(C.1.83)

Next, keeping C and ε fixed as in (C.1.83) and adapting the argument in Hirano
et al. (2003, p. 1180) use a mean value expansion around ϕ∗κ to obtain

sup
‖ϕκ−ϕ∗κ‖≤C

(
ζ(κ)√
T

+κ−αζ(κ)
)E [‖pκ (zt, ϕκ)− pκ (zt, ϕ

∗
κ)‖]

≤ sup
‖ϕκ−ϕ∗κ‖≤C

(
ζ(κ)√
T

+κ−αζ(κ)
)C0E [‖Ψκ (zt, ϕκ)−Ψκ (zt, ϕ

∗
κ)‖]

≤ E [‖Ψκ (zt)‖]C0C

(
ζ (κ)√
T

+ κ−αζ (κ)

)
≤ 2JC0Cζ (κ)

(
ζ (κ)√
T

+ κ−αζ (κ)

)
where the second inequality usesE

[∥∥Qκ (zt, ϕ̄κ)⊗Ψκ (zt)
′∥∥] ≤ E [‖Qκ (zt, ϕ̄κ)‖ ‖Ψκ (zt)‖],

‖Qκ (zt, ϕ̄κ)‖ ≤ 2J by (C.1.2) and Condition 3.4. Using the second order expansion

T−1 (LT,κ (ϕκ)− LT,κ (ϕ∗κ)) = sT,κ (ϕ∗κ) (ϕκ − ϕ∗κ) +
1

2
(ϕκ − ϕ∗κ)

′HT,κ (ϕ̄κ) (ϕκ − ϕ∗κ)
(C.1.84)

with ‖ϕ̄κ − ϕ∗κ‖ ≤ ‖ϕκ − ϕ∗κ‖. By (C.1.6) and the same argument as in Hirano et al.
(2003, p. 1181), we have

1

2
HT,κ (ϕ̄κ) = − (2T )−1

T∑
t=1

Qκ (zt, ϕκ)⊗Ψκ (zt) Ψκ (zt)
′

≥ −2δ

(
I ⊗ T−1

T∑
t=1

Ψκ (zt) Ψκ (zt)
′

)
.
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such that the eigenvalues of (1/2)HT,κ (ϕ̄κ) are bounded away from zero in absolute
value by δ because of (C.1.77). Then, again using the argument in Hirano et al.

(2003, p. 1181), with probability greater than 1 − ε and for ‖ϕκ − ϕ∗κ‖ ≤
ζ(κ)√
T

+

κ−αζ (κ) it follows after rearranging (C.1.84) that

T−1 (LT,κ (ϕκ)− LT,κ (ϕ∗κ)) ≤ sT,κ (ϕ∗κ) (ϕκ − ϕ∗κ)− δ
1

2
‖(ϕκ − ϕ∗κ)‖

2

≤
(
‖sT,κ (ϕ∗κ)‖ −

δ

2
C

(
ζ (κ)√
T

+ κ−αζ (κ)

))
‖ϕκ − ϕ∗κ‖

< 0 w.p. 1− ε/2

such that the result in (3.16) follows from the argument in Hirano et al. (2003, p.
1181).

To establish (3.17) note that p (zt, ϕ)−pκ(zt, ϕκ) = ∂Γ
∂Ψ

(Γ−1 (p (zt, ϕ))−Ψκ (zt, ϕκ)).
For p ≤ 4 + δ, consider∫

‖p (z)− pκ (z, ϕ̂κ)‖p dP0 (z)

≤ 2p−1

∫
(‖p (z)− pκ(z, ϕ∗κ)‖

p + ‖pκ(z, ϕ∗κ)− pκ (z, ϕ̂κ)‖p) dP0 (z) (C.1.85)

where for the first term in (C.1.85) we note that∫
‖p (z)− pκ(z, ϕ∗κ)‖

p dP0 (z)

≤
∥∥∥∥ ∂Γ

∂Ψ

∥∥∥∥p
(

sup
z

∥∥∥∥∥Γ−1 (p (zt, ϕ))−Ψκ (zt, ϕκ)

〈z〉s(2+δ)/2

∥∥∥∥∥
)p ∫

〈z〉s(2+δ)/2 dP0 (z) = o
(
κ−αp

)
by Lemma C.1.3. For the second term in (C.1.85) use∫

‖pκ(z, ϕ∗κ)− pκ (z, ϕ̂κ)‖p dP0 (z) ≤
∫ ∥∥∥∥∂pκ(z, ϕ̃κ)∂ϕκ

∥∥∥∥p dP0 (z) ‖(ϕ̂κ − ϕ∗κ)‖
p

with ∥∥∥∥∂pκ(z, ϕ̃κ)∂ϕκ

∥∥∥∥ ≤ ‖Qκ (zt, ϕκ)‖ ‖Ψκ (zt)‖

such that from ‖Qκ (zt, ϕκ)‖ ≤ 2J it follows that∫ ∥∥∥∥∂pκ(z, ϕ̃κ)∂ϕκ

∥∥∥∥p dP0 (z) ‖ϕ̂κ − ϕ∗κ‖
p ≤ (2J)pE [‖Ψκ (zt)‖p]Op

((
ζ (κ)√
T

+ κ−αζ (κ)

)p)
= ζ (κ)Op

((
ζ (κ)√
T

+ κ−αζ (κ)

)p)
by Condition 3.4(ii) as long as p ≤ 4 + δ. It now follows that∫

‖p (z)− pκ (z, ϕ̂κ)‖p dP0 (z) = ζ (κ)Op

((
ζ (κ)√
T

+ κ−αζ (κ)

)p)
+O

(
κ−αp

)
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= Op

(
ζ (κ)p+1

T p/2
+ κ−αpζ (κ)p+1

)

where κ−αζ (κ) /
√
T = o

(
ζ (κ)2 /T

)
because ζ (κ)2 κ/T → 0 such that ζ (κ)2 /T =

o (κ−1) .

Proof of Theorem 3.3. Throughout the proof, C implies a generic constant. With-
out the loss of generality, consider the case E[vt(χt, α0, p0)] = 0. By triangular
inequality,

‖V̂ − V ‖ ≤
B∑

h=−B

∣∣∣∣K ( hB
)∣∣∣∣
∥∥∥∥∥Ω̂h −

1

T

T∑
t=h+1

v̂t(ϕ
∗)v̂t−h(ϕ

∗)′

∥∥∥∥∥ (C.1.86)

+
B∑

h=−B

∣∣∣∣K ( hB
)∣∣∣∣
∥∥∥∥∥ 1

T

T∑
t=h+1

v̂t(ϕ
∗)v̂t−h(ϕ

∗)′ − E[v̂t(ϕ
∗)v̂t−h(ϕ

∗)′]

∥∥∥∥∥
(C.1.87)

+
B∑

h=−B

∥∥∥∥K ( hB
)
E[v̂t(ϕ

∗)v̂t−h(ϕ
∗)′]− E[vtv

′
t−h]

∥∥∥∥ (C.1.88)

+
∑
|h|>B

‖E[vtv
′
t−h]‖ (C.1.89)

Consider term (C.1.89). By Condition 3.5 and inequality bound for mixing process,

‖E[vtv
′
t−h]‖ ≤ C supt(E‖vt‖p)1/pβ

1−2/p
h ≤ Cβ

1−2/p
h . Then for sufficiently large B, we

get
∑
|h|>B ‖E[vtv

′
t−h]‖ ≤ C

∑∞
h=B β

1−2/p
h = o(1).

For the term (C.1.88), note that

B∑
h=−B

∥∥∥∥K ( hB
)
E[v̂t(ϕ

∗)v̂t−h(ϕ
∗)′]− E[vtv

′
t−h]

∥∥∥∥
≤

B∑
h=−B

∣∣∣∣K ( hB
)∣∣∣∣E‖v̂t(ϕ∗)v̂t−h(ϕ∗)′ − vtv′t−h‖

+
B∑

h=−B

∣∣∣∣K ( hB
)
− 1

∣∣∣∣ ‖E[vtv
′
t−h]‖ (C.1.90)

For the second term in (C.1.90), we have

B∑
h=−B

∣∣∣∣K ( hB
)
− 1

∣∣∣∣ ‖E[vtv
′
t−h]‖ ≤ 2 sup

t
(E‖vt‖p)1/p

B∑
h=0

∣∣∣∣K ( hB
)
− 1

∣∣∣∣ β1−2/p
h

≤ 2C
B∑
h=0

∣∣∣∣K ( hB
)
− 1

∣∣∣∣ β1−2/p
h = o(1)

182



while the first step followed by mixing inequality and second from Condition 3.5,
Condition 3.6 i), ii). For the first term,

B∑
h=−B

∣∣∣∣K ( hB
)∣∣∣∣E‖v̂t(ϕ∗)v̂t−h(ϕ∗)′ − vtv′t−h‖ ≤ O(BTµκ,T )

BT∑
h=−BT

∣∣∣∣K ( h

BT

)∣∣∣∣ 1

BT

≤ O(BTµκ,T )

∫
|K(u)|du = o(1)

which is followed by Condition 3.6 and the result ii) of Lemma C.1.9.
Finally, consider the term (C.1.86). Notice that for each h,∥∥∥∥∥Ω̂h −

1

T

T∑
t=h+1

v̂t(ϕ
∗)v̂t−h(ϕ

∗)′

∥∥∥∥∥ ≤ 1

T

T∑
t=h+1

‖v̂t(ϕ̂)v̂t−h(ϕ̂)′ − v̂t(ϕ∗)v̂t−h(ϕ∗)′‖

= Op(µ
∗
κ,T‖ϕ̂− ϕ∗‖)

followed by the result iii) of Lemma C.1.9. Therefore,

B∑
h=−B

∣∣∣∣K ( hB
)∣∣∣∣
∥∥∥∥∥Ω̂h −

1

T

T∑
t=h+1

v̂t(ϕ
∗)v̂t−h(ϕ

∗)′

∥∥∥∥∥
≤ Op(BTµ

∗
κ,T‖ϕ̂− ϕ∗‖)

BT∑
h=−BT

∣∣∣∣K ( h

BT

)∣∣∣∣ 1

BT

≤ Op(BTµ
∗
κ,T‖ϕ̂− ϕ∗‖)

∫
|K(u)|du = op(1)

which completes the proof of ‖V̂ − V ‖ = op(1).

To show the second part of the Theorem 3.3, it is sufficient to show ‖V̂ − Ṽ ‖ =
op(1). For each h,

Ω̂h − Ω̃h =
1

T

T∑
t=h+1

(
v̂tv̂
′
t−h − (v̂t − vT )(v̂t−h − vT )′

)
=

(
1

T

T∑
t=h+1

v̂t

)
v′T + vT

(
1

T

T−h∑
t=1

v̂t

)′
− vTv′T

Note that by Theorem 3.1,
∑T

t=1 v̂t = Op(
√
T ). This implies that ‖Ω̂h − Ω̃h‖ =

Op(T
−1). Therefore,

‖V̂ − Ṽ ‖ ≤
BT∑

h=−BT

∣∣∣∣K ( h

BT

)∣∣∣∣ ‖Ω̂h − Ω̃h‖

≤ Op(BTT
−1)

BT∑
h=−BT

∣∣∣∣K ( h

BT

)∣∣∣∣ 1

BT
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≤ Op(BTT
−1)

∫
|K(u)|du = op(1)

For Ṽ , it suffices to show that ‖Ṽ − V̂ ‖ = op(1). Note that for each h,

Ω̃h = Ω̂h −

(
1

T

T∑
t=1

v̂t

)(
1

T

T∑
t=1

v̂t

)′

+

(
1

T

T∑
t=1

v̂t

)(
1

T

T∑
t=T−h+1

v̂t

)′
+

(
1

T

h∑
t=1

v̂t

)(
1

T

T∑
t

v̂t

)′

Therefore,

‖Ṽ − V̂ ‖ =

∥∥∥∥∥
B∑

h=−B

K

(
h

B

)
(Ω̃h − Ω̂h)

∥∥∥∥∥
≤

B∑
h=−B

K

(
h

B

)∥∥∥∥∥
(

1

T

T∑
t=1

v̂t

)(
1

T

T∑
t=1

v̂t

)′∥∥∥∥∥
+

B∑
h=−B

K

(
h

B

)∥∥∥∥∥ 1

T
(
∑
t=1

hv̂T +
T∑

t=T−h+1

v̂t)

(
1

T

T∑
t=1

v̂t

)′∥∥∥∥∥ = op(1)

which completes the proof.

Proof of Proposition 3.1. Proof is straightforward by the following decomposition:

√
T Ω̂−1/2(α̂− α0) = (Ω̂−1/2 − Ω−1/2)︸ ︷︷ ︸

op(1)

√
T (α̂− α0)︸ ︷︷ ︸
Op(1)

+Ω−1/2
√
T (α̂− α0)︸ ︷︷ ︸
→dN(0,Ω)

→d N(0, Idα)

where
√
T (α̂ − α0) →d N(0,Ω) by Theorem 3.1 and ‖Ω̂−1/2 − Ω−1/2‖ = op(1) by

Theorem 3.3 and continuous mapping theorem.

C.2 Derivation of Equations (C.1.52) and (C.1.53)

Recall that ht,j (pj, p0) = Yt

(
Dt,j
pj
− Dt,0

p0

)
gj and for gj = pj

Dj (ξt, p− p0)

= Yt

[(
Dt,0

(p0
0)

2p
j
0

(
p0 − p0

0

)
− Dt,j(

pj0
)2p

j
0

(
pj − pj0

))
+

(
Dt,j

pj0
− Dt,0

p0
0

)(
pj − pj0

)]

184



while for gj = 1 we have

Dj (ξt, p− p0) = Yt

(
Dt,0

(p0
0)

2

(
p0 − p0

0

)
− Dt,j(

pj0
)2

(
pj − pj0

))
.

Simple algebra for the case gj = pj then shows that
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(
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0
0

)
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0
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C.3 Tables and Figures

Table C.1: Monte Carlo averages of point estimates of the impulse-response func-
tions at persistence level ρ = 0.70. Each column indicate the following estimation
methods: (P1) parametric estimates, (P2) local projection, (OP) ordered probit,
(MN) multinomial logit, (Pl) sieve approximation with polynomial basis, (TP) sieve
approximation with trigonometric basis, (HM) sieve approximation with Hermite
polynomial basis, and (Wav) sieve approximation with wavelet basis. Numbers in
parenthesis indicate Monte Carlo standard deviations.

Parametric Semi-parametric
Periods Actual (P1) (P2) (OP) (MN) (Pl) (TP) (HM) (Wav)

0 0.330 0.330 0.329 0.326 0.326 0.326 0.326 0.326 0.322
(0.020) (0.032) (0.041) (0.041) (0.041) (0.042) (0.041) (0.043)

1 0.231 0.230 0.230 0.226 0.226 0.226 0.226 0.226 0.223
(0.012) (0.028) (0.050) (0.050) (0.050) (0.050) (0.050) (0.051)

4 0.079 0.078 0.078 0.076 0.076 0.076 0.076 0.076 0.074
(0.008) (0.028) (0.049) (0.049) (0.049) (0.050) (0.049) (0.050)

8 0.019 0.019 0.019 0.016 0.016 0.015 0.016 0.015 0.015
(0.004) (0.026) (0.045) (0.045) (0.045) (0.046) (0.045) (0.046)

12 0.005 0.005 0.005 0.004 0.004 0.004 0.004 0.004 0.003
(0.002) (0.026) (0.047) (0.047) (0.047) (0.048) (0.047) (0.048)

16 0.001 0.001 0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.002
(0.001) (0.026) (0.047) (0.047) (0.047) (0.048) (0.047) (0.048)

20 0.000 0.000 0.000 -0.004 -0.004 -0.004 -0.004 -0.004 -0.005
(0.000) (0.026) (0.045) (0.045) (0.046) (0.046) (0.046) (0.046)

24 0.000 0.000 0.000 -0.004 -0.004 -0.004 -0.004 -0.004 -0.005
(0.000) (0.026) (0.046) (0.046) (0.046) (0.047) (0.046) (0.047)

28 0.000 0.000 0.000 -0.004 -0.004 -0.004 -0.004 -0.004 -0.005
(0.000) (0.027) (0.049) (0.049) (0.049) (0.050) (0.049) (0.049)

32 0.000 0.000 0.000 -0.002 -0.002 -0.002 -0.002 -0.002 -0.003
(0.000) (0.026) (0.044) (0.044) (0.044) (0.045) (0.044) (0.045)

36 0.000 0.000 -0.001 -0.004 -0.004 -0.004 -0.004 -0.004 -0.005
(0.000) (0.026) (0.044) (0.044) (0.044) (0.045) (0.045) (0.046)
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Table C.2: Monte Carlo averages of point estimates of the impulse-response func-
tions at persistence level ρ = 0.85. Each column indicate the following estimation
methods: (P1) parametric estimates, (P2) local projection, (OP) ordered probit,
(MN) multinomial logit, (Pl) sieve approximation with polynomial basis, (TP) sieve
approximation with trigonometric basis, (HM) sieve approximation with Hermite
polynomial basis, and (Wav) sieve approximation with wavelet basis. Numbers in
parenthesis indicate Monte Carlo standard deviations.

Parametric Semi-parametric
Periods Actual (P1) (P2) (OP) (MN) (Pl) (TP) (HM) (Wav)

0 0.330 0.332 0.332 0.323 0.323 0.322 0.322 0.322 0.317
(0.023) (0.039) (0.060) (0.060) (0.060) (0.061) (0.060) (0.062)

1 0.281 0.282 0.280 0.272 0.272 0.271 0.271 0.271 0.267
(0.017) (0.037) (0.066) (0.066) (0.066) (0.067) (0.066) (0.068)

4 0.172 0.172 0.170 0.165 0.165 0.164 0.165 0.165 0.162
(0.010) (0.037) (0.067) (0.068) (0.067) (0.068) (0.067) (0.070)

8 0.090 0.089 0.087 0.080 0.080 0.080 0.080 0.080 0.077
(0.009) (0.039) (0.066) (0.066) (0.066) (0.067) (0.066) (0.068)

12 0.047 0.046 0.045 0.036 0.036 0.036 0.036 0.036 0.034
(0.007) (0.039) (0.062) (0.063) (0.063) (0.064) (0.062) (0.065)

16 0.025 0.024 0.022 0.015 0.015 0.015 0.015 0.015 0.013
(0.005) (0.038) (0.063) (0.063) (0.063) (0.064) (0.063) (0.065)

20 0.013 0.013 0.013 0.003 0.003 0.002 0.003 0.002 0.000
(0.003) (0.038) (0.062) (0.062) (0.062) (0.062) (0.062) (0.064)

24 0.007 0.007 0.006 -0.001 -0.001 -0.002 -0.001 -0.001 -0.003
(0.002) (0.037) (0.060) (0.060) (0.060) (0.061) (0.060) (0.064)

28 0.003 0.004 0.003 -0.003 -0.003 -0.003 -0.003 -0.003 -0.006
(0.001) (0.037) (0.061) (0.061) (0.061) (0.062) (0.061) (0.065)

32 0.002 0.002 0.002 -0.008 -0.008 -0.009 -0.008 -0.008 -0.011
(0.001) (0.038) (0.061) (0.061) (0.061) (0.062) (0.061) (0.064)

36 0.001 0.001 0.000 -0.006 -0.006 -0.006 -0.006 -0.006 -0.008
(0.001) (0.035) (0.063) (0.063) (0.063) (0.063) (0.063) (0.065)
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Table C.3: Monte Carlo averages of point estimates of the impulse-response func-
tions at persistence level ρ = 0.98. Each column indicate the following estimation
methods: (P1) parametric estimates, (P2) local projection, (OP) ordered probit,
(MN) multinomial logit, (Pl) sieve approximation with polynomial basis, (TP) sieve
approximation with trigonometric basis, (HM) sieve approximation with Hermite
polynomial basis, and (Wav) sieve approximation with wavelet basis. Numbers in
parenthesis indicate Monte Carlo standard deviations.

Parametric Semi-parametric
Periods Actual (P1) (P2) (OP) (MN) (Pl) (TP) (HM) (Wav)

0 0.330 0.332 0.301 0.281 0.281 0.277 0.280 0.278 0.262
(0.023) (0.098) (0.141) (0.143) (0.145) (0.151) (0.145) (0.180)

1 0.323 0.325 0.293 0.273 0.273 0.269 0.272 0.270 0.254
(0.022) (0.097) (0.146) (0.147) (0.149) (0.155) (0.149) (0.183)

4 0.304 0.305 0.274 0.252 0.252 0.248 0.252 0.249 0.234
(0.020) (0.098) (0.149) (0.150) (0.152) (0.158) (0.152) (0.185)

8 0.281 0.281 0.248 0.223 0.223 0.219 0.223 0.221 0.205
(0.017) (0.098) (0.151) (0.153) (0.154) (0.160) (0.155) (0.190)

12 0.259 0.259 0.225 0.198 0.198 0.194 0.197 0.195 0.180
(0.014) (0.101) (0.151) (0.152) (0.153) (0.160) (0.155) (0.190)

16 0.239 0.239 0.206 0.177 0.177 0.173 0.176 0.174 0.159
(0.012) (0.099) (0.151) (0.153) (0.155) (0.161) (0.155) (0.189)

20 0.220 0.220 0.189 0.161 0.161 0.157 0.160 0.158 0.144
(0.011) (0.102) (0.150) (0.152) (0.153) (0.159) (0.154) (0.188)

24 0.203 0.202 0.174 0.143 0.143 0.139 0.143 0.141 0.127
(0.010) (0.100) (0.151) (0.153) (0.153) (0.159) (0.154) (0.188)

28 0.187 0.186 0.156 0.127 0.127 0.123 0.127 0.125 0.112
(0.010) (0.101) (0.152) (0.153) (0.152) (0.158) (0.153) (0.187)

32 0.173 0.172 0.141 0.112 0.112 0.108 0.112 0.110 0.097
(0.010) (0.101) (0.148) (0.150) (0.148) (0.154) (0.150) (0.185)

36 0.159 0.158 0.127 0.095 0.095 0.091 0.094 0.092 0.079
(0.010) (0.100) (0.150) (0.152) (0.149) (0.158) (0.150) (0.186)
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Figure C.1: Estimated policy score functions with different first-stage model speci-
fications. Propensity score function is plotted at different quatiles of covariate X.
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Table C.4: Mean squared error of point estimates of the impulse-response func-
tions at persistence level ρ = 0.70. Each column indicate the following estimation
methods: (P1) parametric estimates, (P2) local projection, (OP) ordered probit,
(MN) multinomial logit, (Pl) sieve approximation with polynomial basis, (TP) sieve
approximation with trigonometric basis, (HM) sieve approximation with Hermite
polynomial basis, and (Wav) sieve approximation with wavelet basis.

Parametric Semi-parametric
Periods (P1) (P2) (OP) (MN) (Pl) (TP) (HM) (Wav)

0 0.0004 0.0010 0.0017 0.0017 0.0017 0.0018 0.0017 0.0019
1 0.0001 0.0008 0.0025 0.0025 0.0025 0.0026 0.0025 0.0027
4 0.0001 0.0008 0.0024 0.0024 0.0024 0.0025 0.0024 0.0025
8 0.0000 0.0007 0.0020 0.0020 0.0020 0.0021 0.0020 0.0022

12 0.0000 0.0007 0.0022 0.0022 0.0022 0.0023 0.0022 0.0023
16 0.0000 0.0007 0.0022 0.0022 0.0023 0.0023 0.0023 0.0024
20 0.0000 0.0007 0.0021 0.0021 0.0021 0.0021 0.0021 0.0022
24 0.0000 0.0007 0.0021 0.0021 0.0021 0.0022 0.0022 0.0023
28 0.0000 0.0007 0.0024 0.0024 0.0024 0.0025 0.0025 0.0025
32 0.0000 0.0007 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020
36 0.0000 0.0007 0.0020 0.0020 0.0020 0.0021 0.0020 0.0021
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Table C.5: Mean squared error of point estimates of the impulse-response func-
tions at persistence level ρ = 0.85. Each column indicate the following estimation
methods: (P1) parametric estimates, (P2) local projection, (OP) ordered probit,
(MN) multinomial logit, (Pl) sieve approximation with polynomial basis, (TP) sieve
approximation with trigonometric basis, (HM) sieve approximation with Hermite
polynomial basis, and (Wav) sieve approximation with wavelet basis.

Parametric Semi-parametric
Periods (P1) (P2) (OP) (MN) (Pl) (TP) (HM) (Wav)

0 0.0005 0.0015 0.0037 0.0037 0.0036 0.0038 0.0036 0.0041
1 0.0003 0.0014 0.0044 0.0045 0.0044 0.0045 0.0044 0.0048
4 0.0001 0.0014 0.0046 0.0046 0.0046 0.0047 0.0046 0.0049
8 0.0001 0.0015 0.0045 0.0045 0.0045 0.0046 0.0045 0.0048

12 0.0001 0.0015 0.0040 0.0040 0.0041 0.0042 0.0040 0.0044
16 0.0000 0.0014 0.0040 0.0040 0.0040 0.0042 0.0040 0.0044
20 0.0000 0.0014 0.0040 0.0040 0.0040 0.0040 0.0040 0.0042
24 0.0000 0.0014 0.0037 0.0037 0.0037 0.0038 0.0037 0.0042
28 0.0000 0.0014 0.0038 0.0038 0.0038 0.0039 0.0038 0.0043
32 0.0000 0.0014 0.0038 0.0038 0.0038 0.0039 0.0038 0.0043
36 0.0000 0.0013 0.0040 0.0040 0.0040 0.0041 0.0040 0.0043

Table C.6: Mean squared error of point estimates of the impulse-response func-
tions at persistence level ρ = 0.98. Each column indicate the following estimation
methods: (P1) parametric estimates, (P2) local projection, (OP) ordered probit,
(MN) multinomial logit, (Pl) sieve approximation with polynomial basis, (TP) sieve
approximation with trigonometric basis, (HM) sieve approximation with Hermite
polynomial basis, and (Wav) sieve approximation with wavelet basis.

Parametric Semi-parametric
Periods (P1) (P2) (OP) (MN) (Pl) (TP) (HM) (Wav)

0 0.0005 0.0105 0.0224 0.0229 0.0238 0.0254 0.0237 0.0369
1 0.0005 0.0104 0.0238 0.0243 0.0252 0.0267 0.0251 0.0383
4 0.0004 0.0105 0.0249 0.0253 0.0262 0.0277 0.0262 0.0393
8 0.0003 0.0107 0.0262 0.0267 0.0276 0.0289 0.0276 0.0417

12 0.0002 0.0113 0.0265 0.0270 0.0278 0.0294 0.0280 0.0423
16 0.0002 0.0108 0.0268 0.0272 0.0283 0.0297 0.0283 0.0419
20 0.0001 0.0113 0.0260 0.0265 0.0275 0.0290 0.0275 0.0414
24 0.0001 0.0110 0.0265 0.0270 0.0274 0.0290 0.0276 0.0412
28 0.0001 0.0112 0.0266 0.0271 0.0271 0.0285 0.0274 0.0407
32 0.0001 0.0112 0.0257 0.0263 0.0261 0.0275 0.0264 0.0399
36 0.0001 0.0110 0.0268 0.0273 0.0269 0.0291 0.0271 0.0409
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Figure C.2: Evolution of mean squared errors and absolute biases of point estimates
with different estimation methods.
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Table C.7: Empirical size of t-test the point estimates of impulse-response functions
with underlying process simulated at persistence level of ρ = 0.70.

Semi-parametric
Periods (OP) (MN) (Pl) (TP) (HM) (Wav)

0 0.066 0.067 0.068 0.061 0.060 0.076
1 0.076 0.075 0.075 0.079 0.065 0.076
4 0.076 0.075 0.074 0.082 0.067 0.081
8 0.050 0.050 0.053 0.059 0.050 0.056

12 0.061 0.061 0.064 0.066 0.054 0.053
16 0.075 0.075 0.080 0.072 0.059 0.062
20 0.050 0.050 0.053 0.058 0.043 0.047
24 0.050 0.050 0.056 0.061 0.046 0.053
28 0.068 0.068 0.073 0.077 0.056 0.069
32 0.045 0.046 0.050 0.046 0.041 0.040
36 0.055 0.058 0.059 0.057 0.047 0.051
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Table C.8: Empirical size of t-test the point estimates of impulse-response functions
with underlying process simulated at persistence level of ρ = 0.85.

Semi-parametric
Periods (OP) (MN) (Pl) (TP) (HM) (Wav)

0 0.080 0.079 0.079 0.084 0.057 0.094
1 0.083 0.082 0.086 0.090 0.068 0.101
4 0.077 0.079 0.077 0.077 0.062 0.091
8 0.093 0.092 0.092 0.096 0.060 0.092

12 0.075 0.075 0.076 0.081 0.053 0.077
16 0.069 0.070 0.074 0.073 0.047 0.073
20 0.063 0.064 0.067 0.065 0.043 0.054
24 0.061 0.060 0.068 0.062 0.043 0.071
28 0.067 0.068 0.063 0.055 0.046 0.066
32 0.064 0.064 0.068 0.066 0.041 0.070
36 0.069 0.069 0.069 0.073 0.051 0.052

Table C.9: Empirical size of t-test the point estimates of impulse-response functions
with underlying process simulated at persistence level of ρ = 0.98.

Semi-parametric
Periods (OP) (MN) (Pl) (TP) (HM) (Wav)

0 0.080 0.079 0.079 0.075 0.029 0.104
1 0.085 0.083 0.087 0.074 0.037 0.114
4 0.090 0.086 0.090 0.091 0.039 0.124
8 0.112 0.109 0.108 0.098 0.040 0.134

12 0.131 0.129 0.130 0.120 0.048 0.142
16 0.139 0.137 0.133 0.125 0.047 0.144
20 0.134 0.132 0.134 0.119 0.046 0.147
24 0.144 0.141 0.143 0.128 0.046 0.154
28 0.136 0.134 0.134 0.122 0.053 0.138
32 0.138 0.133 0.133 0.115 0.046 0.151
36 0.140 0.138 0.130 0.117 0.044 0.155
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Jordà, O. (2005): “Estimation and Inference of Impulse Responses by Local Pro-

jections,” The American Economic Review, 95, 161–182.

Kambourov, G. and I. Manovskii (2009): “Occupational Specificity of Human

Capital,” International Economic Review, 50, 63–115.

Kim, J. H. (2014): “Identifying the Distribution of Treatment Effects under Sup-

port Restrictions,” arXiv:1410.5885 [stat], arXiv: 1410.5885.

Kletzer, L. G. (1989): “Returns to Seniority After Permanent Job Loss,” The

American Economic Review, 79, 536–543.

Kuersteiner, G. M. (2016): “Invariance Principles for Dependent Processes In-

dexed by Besov Classes with an Application to a Hausman Test for Linearity,”

arXiv:1603.07978 [stat], arXiv: 1603.07978.

Lewis, R. and G. C. Reinsel (1985): “Prediction of Multivariate Time Series

by Autoregressive Model Fitting,” Journal of multivariate analysis, 16, 393–411.

202



Magnus, J. R. and H. Neudecker (1980): “The Elimination Matrix: Some

Lemmas and Applications,” SIAM Journal on Algebraic Discrete Methods, 1,

422–449.

Maiorov, V. and R. S. Meir (1998): “Approximation bounds for smooth func-

tions in C (R/sup d/) by neural and mixture networks,” IEEE Transactions on

Neural Networks, 9, 969–978.

Makarov, G. D. (1982): “Estimates for the distribution function of a sum of two

random variables when the marginal distributions are fixed,” Theory of Probability

& its Applications, 26, 803–806.

Mhaskar, H. N. (1996): “Neural networks for optimal approximation of smooth

and analytic functions,” Neural computation, 8, 164–177.

Mincer, J. and B. Jovanovic (1979): “Labor Mobility and Wages,” Working

Paper 357, National Bureau of Economic Research.

Mincer, J. A. (1974): Schooling, Experience, and Earnings, National Bureau of

Economic Research, Inc.

Mortensen, D. T. (1978): “Specific Capital and Labor Turnover,” The Bell Jour-

nal of Economics, 9, 572–586.

Neal, D. (1995): “Industry-Specific Human Capital: Evidence from Displaced

Workers,” Journal of Labor Economics, 13, 653–677.

203



Nelsen, R. B. (2007): An Introduction to Copulas, Springer Science & Business

Media.

Neumann, M. H. (2007): “Deconvolution from panel data with unknown error

distribution,” Journal of Multivariate Analysis, 98, 1955–1968.

Newey, W. K. (1994): “The Asymptotic Variance of Semiparametric Estimators,”

Econometrica: Journal of the Econometric Society, 1349–1382.

——— (1997): “Convergence rates and asymptotic normality for series estimators,”

Journal of Econometrics, 79, 147–168.

Newey, W. K. and K. D. West (1987): “A Simple, Positive Semi-Definite,

Heteroskedasticity and Autocorrelation Consistent Covariance Matrix,” Econo-

metrica, 55, 703–708.

——— (1994): “Automatic Lag Selection in Covariance Matrix Estimation,” The

Review of Economic Studies, 61, 631–653.

Pavan, R. (2011): “Career Choice and Wage Growth,” Journal of Labor Economics,

29, 549–587.

Rio, E. (1993): “Covariance Inequalities for Strongly Mixing Processes,” Ann. Inst.

H. Poincar Probab. Statist, 29, 587–597.

Rosenbaum, P. R. and D. B. Rubin (1983): “The Central Role of the Propensity

Score in Observational Studies for Causal Effects,” Biometrika, 70, 41–55.

204



Rothe, C. (2010): “Nonparametric estimation of distributional policy effects,”

Journal of Econometrics, 155, 56–70.

Rubin, D. B. (1974): “Estimating Causal Effects of Treatments in Randomized

and Nonrandomized Studies,” Journal of Educational Psychology, 66, 688–701.

Rudelson, M. (1999): “Random Vectors in the Isotropic Position,” Journal of

Functional Analysis, 164, 60–72.

Ruhm, C. J. (1991): “Are Workers Permanently Scarred by Job Displacements?”

The American Economic Review, 81, 319–324.

Schennach, S. M. (2004): “Estimation of Nonlinear Models with Measurement

Error,” Econometrica, 72, 33–75.
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