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Understanding what neural networks learn from training data is of great interest

in data mining, data analysis, and critical applications, and in evaluating neural

network models. Unfortunately, the product of neural network training is typically

opaque matrices of floating point numbers that are not obviously understandable.

This difficulty has inspired substantial past research on how to extract symbolic,

human-readable representations from a trained neural network, but the results

obtained so far are very limited (e.g., large rule sets produced). This problem

occurs in part due to the distributed hidden layer representation created during

learning. Most past symbolic knowledge extraction algorithms have focused on

progressively more sophisticated ways to cluster this distributed representation. In

contrast, in this dissertation, I take a different approach. I develop ways to alter

the error backpropagation neural network training process itself so that it creates a

representation of what has been learned in the hidden layer activation space that is

more amenable to existing symbolic representation extraction methods.

In this context, this dissertation research makes four main contributions. First,



modifications to the backpropagation learning procedure are derived mathematically,

and it is shown that these modifications can be accomplished as local computations.

Second, the effectiveness of the modified learning procedure for feedforward networks

is established by showing that, on a set of benchmark tasks, it produces rule sets that

are substantially simpler than those produced by standard backpropagation learning.

Third, this approach is extended to simple recurrent networks, and experimental

evaluation shows remarkable reduction in the sizes of the finite state machines

extracted from the recurrent networks trained using this approach. Finally, this

method is further modified to work on echo state networks, and computational

experiments again show significant improvement in finite state machine extraction

from these networks. These results clearly establish that principled modification

of error backpropagation so that it constructs a better separated hidden layer

representation is an effective way to improve contemporary symbolic extraction

methods.
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Chapter 1

Introduction

Error backpropagation is the most widely used supervised learning method for

neural networks and has achieved success in a wide range of applications. There are

several variants of the algorithm that are used to train both feedforward and recurrent

networks. Almost all of them are driven by minimizing the sum of squared error

between the network’s actual output values and the teaching signals. The hidden

units’ activation patterns are central to a network’s decision at the outputs because

they form the internal representation of the input. During error backpropagation

training, the learning algorithm is free to create any hidden layer representation as

long as it minimizes the error at the output. While there has been much work on

training neural networks to achieve lower output error rates, faster speed, and simpler

sets of weights, there is currently only a limited understanding of how to directly

influence the creation of the hidden layer representation and how this representation

affects various performance measures of a network.

Another issue with error backpropagation is that the end result of training is

large opaque weight matrices of floating point numbers that are very difficult for a

person to understand. This difficulty has inspired substantial research on how to

extract a symbolic, human readable representation from trained backpropagation

networks. Such representations are useful for knowledge acquisition and data mining
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because they allow us to gain insight into the data. Moreover, they are instrumental

in verifying neural network solutions for critical applications. An an example, in

the credit risk evaluation task, a single yes/no decision is not sufficient because one

must also provide reasons for denying an application to make sure that one complies

with appropriate laws. In spite of a large amount of work addressing this issue

[2, 4, 14, 37, 57], the results obtained are still very limited.

There are three main approaches that have been taken in past work on symbolic

representation extraction from neural networks: pedagogical, decompositional and

eclectic (a hybrid of the first two) [2, 37]. Pedagogical methods consider a neural

network to be a black box oracle that provides class labels for any input vectors,

including the ones that are not in the training set. Notable algorithms include OSRE

[19], RE-RX [71], and Minerva [36]. They extract input-output rules without looking

at the units and weights. Decompositional methods investigate hidden units and

weight matrices to produce rules that follow the internal working of the networks

[37, 73, 83]. Eclectic methods are a hybrid of the other two methods. Decompositional

methods are the most popular and successful methods mainly because they can take

advantage of more knowledge about the networks. Our focus in the rest of this

dissertation will be on decompositional methods.

Many decompositional methods share an important clustering step in which

the hidden activation space is divided into regions that will: (1) lead to the same

classification at the output (for feedforward network), or (2) represent states of the

network dynamics (for recurrent networks). For both types of networks, the result

of this step is crucial in determining the quality of the final results. If the cluster

2



regions are numerous or ambiguous, the symbolic representation will be complex

and verbose. On the other hand, having just a few clear-cut regions will lead to

simple symbolic representations that are easy to understand. Research in this area

has largely focused on creating progressively more powerful clustering methods,

better ways to express the rules, and learning networks with fewer weights. In

contrast, relatively little work has been done on altering training methods to learn a

better hidden representation so that any symbolic representation extraction method

becomes more effective. Potentially, a better hidden layer representation might allow

the extraction of fewer and more compact regions in the hidden activation space,

thereby leading to a more concise and easier-to-understand symbolic representation.

1.1 Goals and Specific Aims

The central goal of this research is to develop ways to influence neural network

training so that it produces better separated hidden activation patterns, and to

study how the altered training methods affect a network’s accuracy, performance,

generalizability, and comprehensibility. More specifically, the intent is to create

methods that will allow the extraction of simpler symbolic representations from

neural networks while maintaining the networks’ performance. My hypothesis is

that among the many possible encodings that can appear at the hidden layer during

learning, the ones that create a more separable set of activation patterns will be

easier to convert into symbolic forms. Further, because the hidden layer activation

space is bounded, being limited by the range of the activation functions, as we make
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the portion of space occupied by activity patterns more separable, for example,

pushing the hidden unit activation vectors away from each other in appropriate ways,

they will form clusters of activation vectors with greater separation from each other.

In this context, the following are the specific objectives of this research:

1. Derive modified error backpropagation learning rules that lead to better sepa-

rated representations of hidden unit activation patterns in feedforward neural

networks. The main approach to be taken is to augment the usual error function

with new “error” terms that increase when the hidden layer activation vectors

are closer together. In the spirit of neural computation, these new error terms

should be capable of being computed or approximated locally and efficiently.

Gradient descent is applied on the combined error terms to adapt the weights so

that the network produces the correct output with a better separated internal

representation than would occur with standard backpropagation.

2. Apply the modified error backpropagation method that is derived as above

to a battery of data sets to determine the effects such an approach has on

extracting symbolic representations from a feedforward network’s learned

mapping. Historically, most past work on representing what a neural network

has learned symbolically has focused on developing increasingly powerful rule

extraction algorithms. In contrast, my goal is not to develop new rule extraction

algorithms but to apply existing ones to networks trained with and without

the new error terms, and then compare the final number and accuracy of the

rules extracted. Experimental results are used to show that better separated
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activity patterns allow the extraction of fewer clusters and intervals of hidden

unit activations, thus leading to fewer intermediate rules being extracted by

the rule extraction process, and to fewer rules overall.

3. Generalize the methods derived above for feedforward networks having static

inputs to simple recurrent networks having temporal sequences as inputs. A

simple recurrent network, as that term is used here, has a set of context units

that is the network’s internal representation of input it has processed so far,

thus giving the network a context when it processes a new input. The methods

used for feedforward networks are now used to make the training process create

internal representations that are more separable and can be divided into fewer

well-defined clusters. I then test the hypothesis that this helps extract simpler

finite state machines (FSMs) from recurrent networks on data sets consisting

of temporal sequences generated from both regular and context-free grammars.

4. Extend the above methods to work with echo state networks (ESNs). ESNs are

large recurrent neural networks whose connections from input units to hidden

units, and connections among hidden units forming a reservoir, are typically

initialized randomly and held fixed, while only connections from the reservoirs

to the output layer are trained. Building on the results above, I design ways

to adapt the weights from the input layer to the hidden layer that create a

better separated hidden unit representation. Then I test the hypothesis that

such representations also facilitate the extraction of FSMs from ESNs.

This research extends our knowledge of neural networks’ internal encoding
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and how to influence the learning process to get better encodings for subsequent

representations in symbolic forms. Furthermore, it presents ways to extract simpler

sets of symbolic rules and simpler FSMs, which allows us to understand how the

networks work, and also to understand the data better. In addition, it provides

better ways to initialize and train different types of recurrent neural networks, and

opens new paths to improve and design new neural network training algorithms.

1.2 Overview

The rest of this dissertation is organized as follows. Chapter 2 presents

background information about supervised learning in feedforward, simple recurrent,

and echo state neural networks. It then discusses existing symbolic representation

extraction methods for the above types of networks. Chapter 3 presents three

new error terms that encourage error backpropagation to learn a better separated

encoding at the hidden layer of feedforward networks while keeping classification

accuracy as good as with regular error backpropagation. It also presents a symbolic

rule extraction algorithm for feedforward neural networks and shows how, using this

altered encoding, significantly simpler sets of symbolic rules can be extracted from

the networks without sacrificing accuracy. Chapter 4 presents the generalization of

one new error term to simple recurrent networks, an FSM extraction algorithm, and

how it takes advantage of the better encoding to produce simpler FSMs. Chapter

5 presents the extension of the above methods to ESNs and FSM extraction from

ESNs. It also discusses extensive experiments to verify the separability of ESNs’ very
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high dimensional activation space and compares the methods developed here with

ESN+, a variant of ESN. Chapter 6 concludes the dissertation and discusses future

research directions.
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Chapter 2

Background

This chapter briefly reviews the main artificial neural network architectures,

from simple feedforward networks to recurrent networks, that are directly relevant

to the proposed research. We will first look at how each type of network is set

up and trained to produce correct behaviors, and then at methods for symbolic

representation extraction from neural networks.

Figure 2.1: A typical artificial neuron r. The values a1 . . . an are activations of
input neurons, w1 . . . wn are connection weights, and ar is the activation level of the
output/response unit. The latter neuron sends its activation σ(

∑
wiai) to other

neurons.

Artificial neural networks are computational models inspired by biological

neural networks [54]. A network consists of simple interconnected units, or neurons,

where each unit/node receives input from other units and sends its output to others.

Figure 2.1 shows an artificial neuron model first described by McCulloch and Pitts

in 1943 [54]. It takes a weighted sum of the inputs, passes the sum through an
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activation function, usually a step threshold or a sigmoid function, and then sends

the output value to other receiving neurons. This paradigm persists today in most

artificial neural network models.

When f is a linear function, a network of such neurons can only do a linear

transformation on the input, and thus can only learn a linear function of the input

pattern. When f is a linear threshold function (or other non-linear function), a

network with only input and output units can only learn to classify linearly separable

inputs. But when we assemble neurons with nonlinear activation functions, such as

logistic or hyperbolic tangent functions, so that intermediate neurons are also present,

the network can exhibit much more complex behaviors, including approximating any

discrete/continuous function, discrete time dynamical systems or Turing machines

[7, 28, 77]. In such a network, neurons are typically divided into three classes by

their role: input units represent the input given to the network, output units express

the network’s output, and hidden units do the internal computations.

Artificial neural networks can learn to produce a correct/target behavior by

adjusting their connection weights. Error backpropagation is the most popular

supervised learning algorithm for training neural networks. A form of error back-

propagation was first described by Rosenblatt in 1962 [66], and gained popularity

in 1986 with a more modern version produced by the work of Rumelhart, Hinton,

Williams [67]. The algorithm computes the derivative of the error function with

respect to each weight efficiently by propagating the error signal from the output

units to the input.
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2.1 Multilayer Feedforward Neural Networks

A multilayer feedforward neural network is a type of artificial neural network

in which the units are organized into ordered layers and there are only connections

in the forward direction, so the network is acyclic. While networks with multiple

hidden layers are appropriate for some problems, such as hierarchical processing

and function compositions, networks with one hidden layer remain the most popular

architecture because they are simpler and relatively fast but still can approximate

any function with a finite number of hidden units [28]. In this research, we will

focus initially on networks having one hidden layer. Figure 2.2 shows a very simple

example of a fully connected feedforward neural network.

Figure 2.2: A fully connected feedforward neural network illustrating input, hidden
and output layers.

The activation of the jth hidden unit when the pth input pattern is presented

is typically calculated as the logistic function of the weighted sum of inputs:

apHj
= σ(

∑
i∈input

wjix
p
i )

where

• xpi is the ith input unit value of the pth training instance.
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• wji is the weight from the ith input unit to the jth hidden unit, and

• σ() is the logistic function σ(x) = 1
1+e−x .

The activation of the kth output is calculated as the logistic function of the

weighted sum of hidden unit activations:

apOk
= σ(

∑
j∈hidden

vkja
p
Hj

)

where vkj is the weight from the jth hidden unit to the kth output unit. Another

way to look at what the activation rule does is that it maps the input vector xp of

the pth training instance to the hidden activation vector apH , and maps the hidden

activation vector apH to the output vector apO.

In supervised training with multilayer feedforward neural networks, target

correct values of the output units for each set of input values are given. Training

amounts to adjusting the weights so that the network’s actual output and the

target output match within a given tolerance. This is most commonly done by

error backpropagation where the error, or difference of output and target values, is

propagated from the output layer back to the hidden layer.

The usual error function computed over the output units is designated E1 here,

and is given by:

E1 =
1

2

N∑
p=1

∑
k∈output

(T p
k − a

p
Ok

)2

where T p
k is the target output for the kth output unit when the pth input pattern is

presented, and N is the size of the input data set (number of input-output pairs

in the training data). At each layer, the error signals are used to compute new
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weights. The appropriate weight change rules are derived using gradient descent

[55]. For networks using logistic units and the E1 error function above, the weight

changes ∆vpkj and ∆wp
ji for vkj and wji when the pth training example is presented

are computed as follows:

δpOk
= (Tk − apOk

)(apOk
)(1− apOk

)

∆vpkj = ηδpOk
apHj

δpHk
=

∑
k∈output

vkjδ
p
Ok

(apHj
)(1− apHj

)

∆wp
ji = ηδpHk

xpi (2.1)

where η is a small learning rate. This algorithm has been widely successful in training

feedforward networks for classification and regression problems [26].

Throughout this dissertation, RPROP [64] (resilient backpropagation), an

improved, modern version of the backpropagation learning algorithm that trains

networks faster by adjusting the weight update based solely on the direction of the

gradient instead of also including the magnitude of the derivatives is used. It also

requires fewer training parameters than regular backpropagation does. The main

idea of RPROP is that if the product ∂Et

∂wji
× ∂Et−1

∂wji
< 0, i.e. the gradient ∂E

∂wji
at time

step t changed sign, the last weight update must have “overshot” the target. Thus,

the next weight update for wji should be smaller, otherwise, the weight update can

be larger to speed up training.

The RPROP algorithm lets each weight wji have an associated weight update

value ∆ji that is initialized to a small value, typically 0.1. Then, at each time step t,

if ∂Et

∂wji
× ∂Et−1

∂wji
< 0, ∆ji is decreased, usually by half, because the last weight update
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“overshot”. Alternatively, ∆ji is increased if ∂Et

∂wji
× ∂Et−1

∂wji
> 0. Finally, each weight

wji is increased or decreased depending on the direction of the gradient ∂E
∂wji

and the

magnitude of the weight update value ∆ji:

wji = wji − sign(
∂Et

∂wji

)×∆ji

There are two previous types of past work that have modified the error function

E1 to guide error backpropagation learning and are closely related to the work

proposed here: regularization and the SIR (Separation of Internal Representations)

model. Regularization restricts the hypothesis space by adding more information to

a problem in order to prevent overfitting. For neural networks, this is usually done

by adding penalty terms to the error function to limit the number of connections,

hidden units, or weight sizes. One of the most popular and efficient methods is weight

decay which uses an additional error term Ed = λ
∑

j

∑
iw

2
ji that is added to E1 to

prevent weights from getting too large [46]. Having large weights makes learning

unstable and impairs networks’ ability to generalize to novel data. Unimportant

weights are usually reduced by this term to near zero, and could subsequently be

removed.

The second closely related work, the SIR model, was published in two recent

papers [47, 48]. In the first of these papers [47], the authors adopt the same philosophy

that one should maximally separate the activity patterns in different classes. But

the specific approach taken in SIR was limited in that it works only on one layer

networks (no backpropagation), it does not combine with error minimization (E1),

and it was just a preliminary demonstration that one could separate patterns better.
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A subsequent recent paper [48] suggests that such an approach could be integrated

with error backpropagation in a fashion similar to what is done here. However, this

latter work did not actually describe the derived learning method in detail, making

it problematic for others to use. It presented a global learning approach in which the

complete network state is required to compute each weight change. That is both

computationally expensive and in violation of the spirit of neural computation where

the whole point is to implement learning as local computation. The authors only

applied the algorithm to small feedforward problems (Fisher’s Iris data set [3], and

an 8-bit encoding problem), and did not examine rule extraction from trained neural

networks in any systematic way as is done in this thesis.

2.2 Simple Recurrent Neural Networks

Because feedforward neural networks can only learn the relationships between

fixed length multivariate input and output patterns, they would need to use a moving

window to process sequential data, such as time series. In this approach, the input

layer consists of k groups of input units corresponding to k time steps that are

needed to look back, each group presenting the input signals to be received at a

different time step [70]. Figure 2.3 shows an example of a feedforward neural network

as it processes a sentence using a moving window in a next-word prediction task.

At the first time step, the network receives the first two words of the sentence the

quick brown fox jumps over . . . and learns to predict the target word brown at the

output layer. Next, it receives the second and third word (quick, brown) and learns
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Figure 2.3: A feedforward neural network processes a sentence using a moving window
of size 2. Arrows denote the directed connections from the input layer to the hidden
layer and from the hidden layer to the output layers. The input layer is drawn as
two blocks to signify that two groups of input units receive two input symbols at
each time step.

to predict the fourth word fox. In this network, the window allows the network to

look back one time step in the past beside the current word. This usually results

in too many weights being needed because the hidden units have to be connected

to each set of inputs for every time step the network looks back. Furthermore, the

weights are usually duplicated for processing the same type of input, and this leads

to poor generalization. Thus, the network is limited to looking back only a few time

steps to keep the number of weights from growing too big.

Elman recurrent neural network was introduced by Elman in 1990 [17] to

address the problem above. It is allows recurrent connections without having fully

arbitrary connectivity among the units. Elman network belongs to a class of recurrent

networks called simple recurrent networks because only the forward connections

are trained. There are many variants of simple recurrent networks [43], which may

contain many layers and complex connectivity, but Elman network is the most

15



popular. From here on in this dissertation, we will mean this variant when we refer

to simple recurrent networks.

Figure 2.4: A small simple recurrent neural network; the number of nodes in each
layer varies and can be quite large.

In these networks, the recurrent connections are fixed, not arbitrary, and

restricted to performing a copy operation so that no special backpropagation method

is required. Then, a set of units called context units are added to the network as

illustrated in Figure 2.4. These units’ activations are not from the input data but

instead copied from either the activations at the output layer or the hidden layer

from the last time step. Thus, the context units store a representation of the past

time steps inputs and activity of the network. The recurrent connections are from

the hidden layer to the context layer, and only copy the activations from the hidden

layer in the previous time step to the context layer.

Figure 2.5 shows an example of how a simple recurrent network is trained on a

next-word prediction task on the sentence The quick brown fox jumps . . . through

16



Figure 2.5: An example of how a simple recurrent network is trained on a next-word
prediction task through the first three time steps.

the first three time steps. At the beginning, the context unit’s activation vector

is usually initialized to aH0 = 0 and the network receives an input activation for

the word the. The hidden unit activation and the output vector can be calculated

as aH1 and aO1 , respectively. The difference (error) between the output aO1 and

the representation of the correct target quick is then used by error backpropagation

to calculate the proper weight changes in a manner similar to that of feedforward

networks. As noted above, only the forward weights (in white) are changed, while

the recurrent connections from the hidden layer to the context layer (in black) are

not. These connections are fixed and only serve to copy the activations. Next,

at the second time step, aH1 is copied from the hidden layer to the context layer.

The network now receives the next word quick and the context aH1 . Thus, aH1 is

considered to store the “context” in which the word the has been processed. Using

the augmented input, the network calculates the hidden activation vector aH2 and

the output aO2 are calculated. Now, aH2 stores the context in which two words the

and quick have been processed. Error backpropagation is again used to calculate the
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weight changes. The process is repeated until the end of the sentence.

Formally, the activation of the jth hidden unit when the input pattern at time

step t is presented is calculated as the logistic function of the weighted sum of inputs

and context activations:

atHj
= σ(

∑
i∈input

wjix
t
i +

∑
i∈context

wjix
t
i)

where

• xt is the augmented vector of the input and the context at time step t;

• wji is the weight from the ith input/context unit to the jth hidden unit; and

• σ() is the logistic function σ(x) = 1
1+e−x .

Similarly, the activation of the kth output is calculated as the logistic function

of the weighted sum of hidden unit activations:

atOk
= σ(

∑
j∈hidden

vkja
t
Hj

)

where vkj is the weight from the jth hidden unit to the kth output unit (see Figure 2.4).

The activation rule maps the augmented input vector xt at time step t consisting of

the input data and the context, to a hidden unit activation vector atH . Then, atH is

mapped to an output vector atO.

The usual error function computed over the output units is:

E1 =
1

2

N∑
t=1

∑
k∈output

(T t
k − atOk

)2

where T t
k is the target output for the kth output unit at time step t, and N is the

length of the input sequence.
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Training a simple recurrent network proceeds by presenting the training se-

quence to the network repeatedly and using error backpropagation to calculate the

weight changes. Learning only occurs on forward connections because the backward

copy connections are fixed. At each time step, the activation from the previous

time step is copied back to the context layer, and then the network acts and can

be trained exactly like a feedforward network with the input consisting of both the

input data and the context values. For networks using logistic units and the E1 error

function above, the weight change ∆vtkj and ∆wt
ji for vkj and wji at time step t are

computed as follows:

δtOk
= (Tk − atOk

)(atOk
)(1− atOk

)

∆vtkj = ηδtOk
atHj

δtHk
=

∑
k∈output

vkjδ
t
Ok

(atHj
)(1− atHj

)

∆wt
ji = ηδtHk

xti (2.2)

Simple recurrent networks have been used successfully in learning temporal

sequence tasks including context-free languages [6, 65], next word predictions [18],

and word forms and pronunciations [76]. In this past work, the authors analyzed

the state space and state trajectory to gain an understanding into how the networks

worked, predicted, and generalized, and why they did not work in certain cases.
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2.3 Echo State Networks

One of the biggest problems with using recurrent networks is that there is still

no efficient algorithm to train large networks. An echo state network (ESN) is a

recent approach that addresses this problem in an interesting way: it typically does

not train the input → hidden and the hidden → hidden (recurrent) connections at

all [39]. In an echo state network, typically only the connections from the hidden

units to the output units are trained, while the rest are initialized randomly and held

fixed. As illustrated in Figure 2.6, the set of hidden unit is called the reservoir and

usually consists of a large number of hidden units, usually 100 or more. Hidden units

receive activation from a sparse random subset of other hidden units, so they respond

differently and produce their own sequence of activation values as input signals come

into the network. The connections from the hidden units to the output units are seen

Figure 2.6: A small but otherwise typical echo state network with 2 input units and
2 output units. Connections from input units to the reservoir and connections inside
the reservoir are generated randomly and sparsely. The reservoir is fully connected
to the output units. These latter connections are trained so that the output comes
to match the target training signals.
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as capturing the relevant dynamics from these “basis” activation patterns. These

hidden-to-output connections are trained in a supervised manner so that the output

matches the desired values for every time step, and such training is very fast. These

connections are also called “read-out” because they select and aggregate the complex

dynamics of the hidden units in the reservoir to produce the output.

Training an echo state network proceeds by presenting the training sequence

to the network continuously and recording the activations atHj
of each hidden unit at

time step t in the reservoir. The output activation atOk
is computed as:

atOk
=

∑
j∈hidden

wout
kj a

t
Hj

with wout
kj being the weight of the connection from the jth hidden unit in the reservoir

to the kth output unit and atHj
being the activation of the jth hidden unit at time

step t. atHj
is computed as:

atHj
= σ

( ∑
i∈hidden

wres
ji a

t−1
Hi

+
∑

i∈input

win
ji x

t
i

)
(2.3)

where

• wji is the weight from the jth hidden unit to the ith hidden unit;

• win
ji is the weight from the ith input unit to the jth hidden unit; and

• wres
ji is the weight from the ith hidden unit to the jth hidden unit, both in the

reservoir; and

• xt is the input vector at time step t.

21



The goal is to learn the weight matrix of wout
kj that minimizes the sum of

squared differences between the output atOk
and the desired output Tk(t). That can

be done very efficiently by linear regression as shown in [39]. Training an echo state

network only needs one pass through the data, is thus very fast, and has been shown

to be very effective in many problems [41, 42, 52].

In order for the echo state network approach to work, the randomly generated

reservoir has to have the “echo state” property which depends on the connection

weights and the training data. The property can be stated informally as “if the

network has been run for a very long time (from minus infinity time), the current

network state is uniquely determined by the history of the input and the teacher-

forced output (target)” ([40]). The formal mathematical definition can be found in

[39]. While necessary and sufficient conditions for the echo state property are not

known, there is a heuristic to generate a reservoir that gives this property for most

training data [39]: generate a sparse weight matrix with random small weights, then

scale it so that its spectral radius is smaller than 1.

It remains an open problem to construct the reservoir, or adapt it so that it has

richer, more appropriate dynamics for a particular problem. In fact, it was reported

by Prokhorov in [60] that out of 1000 runs in which the author trained an echo state

network on the Mackey-Glass [53] problem, a task for which echo state network was

shown to have superior performance, only a fraction of the solutions achieved high

accuracy, and most diverged quickly after a few hundreds of time step. Currently, it

is not possible to know if a reservoir is good or not for a problem before seeing the

results of training [60].
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2.4 Symbolic Representation Extraction

Symbolic representation extraction from neural networks is the process of

generating a set of symbolic, human-understandable representations that can be

used to determine the output of a neural network without putting the input through

the network itself. With this, a person can understand better what was learned

from the data and be more confident about the network’s output. Consequently, it

can be used for knowledge acquisition, data mining, and verifying neural network

solutions for use in mission critical applications. Typically, the result of symbolic

representation extraction from a feedforward network is a set of symbolic rules,

while the result of extraction from a recurrent network is a finite state machine

(FSM)[27]. Consequently, the processes are called rule extraction and finite state

machine extraction, respectively. This section will present an overview of both types

of extraction with a focus on past work that is most relevant to this research.

2.4.1 Rule Extraction from Feedforward Neural Networks

A feedforward neural network training algorithm learns a mapping between

the input and the output units in the form of a weight matrix consisting of floating

point numbers. The large matrix often involved makes it very difficult for a person

to know what the network has learned. As noted earlier, that has inspired a large

amount of work addressing this issue, but the results obtained are still very limited

[2, 11, 13, 35, 37, 80]. Most of these methods extract propositional logic rules having

the form
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(inputi1 = v1, inputi2 = v2, ...)→ class = Cj

or the form of M of N rules [72, 82]:

((M of (inputi1 , inputi2 , . . . , inputiN ) are on),. . . ) → class = Cj

There is also some work that extracts fuzzy rules [8, 30] or first order logic rules

[57]. While M of N rules can be more expressive with the same number of rules in

some problems, propositional logic rules are more intuitive to read and there has

been extensive work on this type of rules. The work presented in this thesis also

extracts propositional logic rules from feedforward networks, so it should be directly

comparable to much of this past related work.

Three main approaches have been taken in past work on rule extraction from

neural networks: pedagogical, decompositional, and eclectic (the latter being a hybrid

of the first two) [2]. Pedagogical methods consider a neural network as a black box

oracle that provides class labels for both seen and unseen inputs. They extract

rules by examining the output of the network without looking at the units and

weights. Decompositional methods investigate hidden unit activations and weight

matrices to produce rules that follow the internal working of the networks. While

pedagogical methods are virtually independent of the network architecture, topology,

and training algorithm, and can even be applied to non-neural network techniques,

they cannot utilize the available information captured by weights and connections in

the networks like decompositional methods do, and they do not directly capture the

internal representation of the neural networks. For these reasons, in this research we

will be using solely the decompositional approach to rule extraction.

This latter approach first extracts the rules that explain the mapping between
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the hidden unit activation patterns and the output, and then extracts the rules

governing the input-hidden layer relationship. These intermediate rules are then

combined to produce the final input-output rules. One of the earliest work using

this approach is the Validity Interval Analysis (VIA) method [78, 79]. VIA extracts

rule in the form:

if input ∈ hypercube HI
i then class is C.

A hypercube is defined using a set of intervals: {[a1, b1], [a2, b2], . . . , [an, bn]}, where

n is the number of dimensions. A vector (x1, x2, . . . , xn) is in the hypercube if and

only if: a1 ≤ x1 ≤ b1, a2 ≤ x2 ≤ b2, . . . , an ≤ xn ≤ bn.

VIA starts by assigning random hypercube HH
i in the hidden unit activation

space to hidden unit activation vectors. For each HH
i , VIA use linear programming

to calculate a hypercube HI
i in the input space such that input vectors inside HI

i

have their corresponding hidden activation vectors inside the hypercube HH
i in the

hidden unit activation space. In other words, if input ∈ hypercube HI
i then hidden

unit activation vector ∈ hypercube HH
i .

The hypercubes in the input space and hidden activation space are then

continuously refined so that they are small and non-overlapping. Then, it is assumed

that hidden activation vectors in each hypercube HH
i only maps to output vectors

belonging to a single class C. The combined result is that if an input vector belongs

to the hypercube HI
i , its corresponding hidden activation vector will belong to the

hypercube HH
i , and then the output class will be C. Figure 2.7 shows a simplified

example of VIA’s extracted rules and hypercubes. After the hypercubes are refined,
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Figure 2.7: A simplified example of the VIA method on a network with two input units,
two hidden units, and two output classes. The shaded boxes denote the hypercubes
in the input and hidden activation spaces. The arrows represent the intermediate
rules expressing how hypercubes in input spaces are mapped to hypercubes in hidden
activation spaces, and from hypercubes in hidden activation spaces to the final output
class.

the input-hidden rules are extracted. In this example, if an input vector

x1
x2

 ∈ HI
1

is given at the input, the hidden activation vector

h1
h2

 ∈ HH
1 . In addition, if a

hidden activation vector is in HH
1 , the activation rule will result in only class A at

the output layer. The two rules are then combined to:

if input ∈ HI
1 then class is A.

The main limitation of the VIA method is that when the hidden activation patterns

are distributed, it requires a large number of hypercubes HH
i , HI

i to divide them,

and thus it leads to a large number of rules.

A different approach is taken in NeuroRule in which the individual hidden

unit activation patterns are clustered and discretized [50, 74]. This algorithm uses
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Figure 2.8: An example of hidden unit activation clustering and discretization by
NeuroRule using a 2-dimensional hidden unit activation space. Each cross represents
one hidden activation vector. See text for details.

a small parameter ε to determine whether a hidden unit activation value is “close”

enough to a cluster, and thus is considered to have the same discretized value as

the other activation values in the same cluster. For instance, Figure 2.8 shows a

two-dimensional hidden unit activation space with 6 hidden unit activation vectors.

The activation values of hidden unit h1 are: 0.20, 0.22, 0.24, 0.26, 0.60, and 0.64.

With ε = 0.1, the algorithm finds two clusters {0.20, 0.22, 0.24, 0.26} and {0.60, 0.64}

for h1 and assigns two discretized values, 0.25 and 0.62, to them (averages of values

in a cluster). It also finds two clusters {0.20, 0.24} and {0.7} for h2 and assigns two

discretized values 0.215 and 0.7 to them. Consequently, the four vectors at the lower

left corner all have discretized coordinate (0.25, 0.22) and the other two vectors have

discretized coordinate (0.62, 0.22) and (0.62, 0.7). If all four vectors at the lower left

corner map to the same class C at the output, the discretization is a success because

the algorithm can extract the rule:
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if (h1, h2) is close to (0.25, 0.22) then class is C.

Then, NeuroRule will extract the rules prescribing the conditions on the input such

that the hidden activation vector will be close to (0.25, 0.22), and combine that rule

with the hidden-output rule above. Otherwise, if all four vectors do not map to the

same class, the algorithm reduces ε and repeats the procedure again. A lower value of

ε results in smaller clusters and hence increases the chance that all hidden activation

vectors with the same discretized coordinates map to the same class. However, it

also results in having more clusters.

Figure 2.9: An example of NeuroLinear’s hidden unit activation discretization on a
2-dimensional hidden unit activation space. Each cross represents one hidden unit
activation vector. The dotted lines indicate where the activation range is divided into
intervals. The left figure shows the initial division in which each value is assigned
a separate interval. The right figure shows the final result after the intervals have
been merged.

A similar approach is taken in NeuroLinear [75] in which the range of each

hidden unit’s activation is divided into multiple intervals having different sizes using

the Chi2 method [49]. The main idea is that the algorithm starts by assigning each

unique hidden unit activation value a very small interval that contains the value,
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then repeatedly merges adjacent intervals as long as each grid cell produced by the

intervals (as shown in Figure 2.9) maps to exactly one class at the output. This

requirement is similar to the requirement in the preceding method in which each

hypercube must map to a single class. At the beginning, each unique activation

has its own interval so the grid cells are very small; hence each grid cell is trivially

mapped to exactly one class at the output. The Chi2 method uses a heuristic to

choose the next pair of intervals to be merged given that the resulting grid cells

still uniquely map to one class. When no more intervals can be merged, one rule

describing the conditions on the input will be extracted for each grid cell having at

least one hidden activation vector. Each rule can then be easily made into a rule

describing the conditions on the input so that the output is a certain class.

Research in this area has largely focused on learning networks with fewer

weights and better ways to express the rules. Most methods use the highly distributed

representation produced by standard backpropagation, and a common problem has

been the production of fairly large rule sets. Relatively little work has been done on

inducing training methods to learn a better hidden layer representation so that any

rule extraction process becomes more effective. Potentially, a better representation

might allow the first stage to extract fewer and more compact regions in hidden

activation space, thus leading to a more concise, easier-to-understand set of rules. It

is this simple idea that is pursued in this research work.

There are a number of criteria for evaluating rule extraction methods [2]. The

two most important ones are classification accuracy and number of rules. First, the

rules must at least perform the classification as well as the correspondingly source
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network. Second, the number of rules should be kept small so that a human can

understand them more easily. Both criteria will be used in evaluating the methods

presented in this research.

2.4.2 Finite State Machine Extraction from Recurrent Neural Net-

works

While most past work with feedforward networks has focused on rule extraction,

work with recurrent networks has largely focused instead on extracting finite state

machines (FSMs) that capture the state transition of a network’s dynamics. Consider

the example of a simple recurrent network learning the sequence “The quick brown

fox jumps . . . ” shown earlier in Figure 2.5. Here aH0, aH1, aH2, and aH3 are four

vectors of context unit activations that give the network a “context” of what it has

seen before. Given the context aH0 and the input The, the network activation rule

deterministically calculates the hidden unit activation vector aH1 and the output

vector aO1. Then, aH1 becomes the context for the next time step. A recurrent

neural network is a dynamical system in which the states are the vectors of hidden

unit activations and the evolution rule is the activation rule of the neural network.

We can also view this same dynamics as a finite state machine as illustrated in

Figure 2.10. When the initial state aH0 receives the input symbol “the”, it makes

a transition to the state aH1. In addition, aH1 produces an output symbol “quick”.

Similarly, at state aH1, the input symbol “quick” makes the transition to state aH2

and produces the output “brown”. This is the dynamics of the Moore machine, a
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Figure 2.10: A simple recurrent network’s dynamics viewed as a finite state machine.
The shaded circles denote the states. The solid arrows denote the transitions while
the labels on the arrows denote the input symbol. The dotted arrows denote the
output function.

class of FSM. From here on in this dissertation, we will mean this class of FSM when

we refer to a FSM.
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Figure 2.11: Finite state machine for the badigu language. Each circle represents one
state, and the double circle represents the initial state. Symbols inside circles are
the FSM’s outputs (prediction of the next symbol). With this specific grammar, all
states are acceptable terminal states. The transitions are shown by the arrows and
labeled by their corresponding input symbols.

The example in Figure 2.10 is a simplified case in which only one sequence is

learned. In practice, a state aH0 can receive different inputs and can have transitions

to multiple states such as in Figure 2.11. This latter figure shows the Moore

machine for the badigu regular language. The regular expression for the language is

(ba|dii|guuu)∗. In other words, it contains strings having only three substrings ba,
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dii, or guuu. In comparison with a regular FSM, a Moore machine may not have

accept/reject states. The more important difference is that a Moore machine has

an output function mapping each state to the output alphabet. Namely, each state

has to produce one output symbol. In Figure 2.11, the initial state can receive three

different input symbols b,d, and g. If the input is b, the current state is changed to

the left most node with the output a. This is the correct prediction for the next

input symbol because an a must follow a b. Similarly, if the input is d, the next state

predicts an i, then another i.

As a neural network learns a data set consisting of many sequences, there

are a very large number of states aHi. Fortunately, it is often possible to cluster

these states into a small number of clusters so that the transitions between clusters

mirror the transitions between their constituent aHi’s, and the output symbol of

each cluster also mirrors the output symbol of its aHi’s. The result is a FSM that

closely approximates and expresses the dynamics of the original neural network’s

temporal data sets. Most symbolic representation extraction from recurrent networks

has achieved success using this approach. Since the final result is a FSM, it is often

called finite state machine extraction. It should be noted that if the data set is

generated from an FSM, this method can potentially learn that underlying FSM

or an equivalent one. On the contrary, if the underlying language is more complex,

such as a context-free grammar, the resulting FSM can only learn an approximate

model of the data.

In early work, the hidden unit activation patterns of simple recurrent networks

trained on a battery of temporal data generated from known FSMs were studied [10].
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It was found that the patterns form clusters in the hidden unit activation space .

Moreover, the clusters usually corresponded to the states of the source FSMs. Similar

results were also found when simple recurrent networks were trained on context-free

grammars [18]. These results support the approach described above and provide the

basis for most finite state machine extraction work done subsequently.

The work most relevant to this dissertation is done by Schellhammer et. al.

[69]. In this work, FSMs are extracted from simple recurrent networks on a next-

word prediction task. The networks were trained on texts derived from a primary

school reader. After training, a k-means algorithm was used to cluster the hidden

unit activation patterns. As a result, k was the number of states of the extracted

FSM. There is a trade-off between accuracy and comprehensibility: large values of k

resulted in more accurate but difficult to understand FSMs. On the contrary, smaller

k’s produced simpler FSMs but with less accuracy. Among different values of k

from 6 to 22, 18 produced a relatively simple FSM that is as accurate as a tri-gram

model while the tri-gram model is obviously very difficult to understand. A modified

approach was taken in [86] in which a large value of k was used for k-means, then a

symbolic machine reduction algorithm was used on the extracted FSM. In addition,

hierarchical clustering was also used as in [1, 68].

Another method used to find clusters is dividing the hidden unit activation

space into qn equally-sized hypercubes, where n is the number of hidden units and

each unit activation’s range is divided into q equally-sized intervals [24, 58]. While

qn can be very large, only hypercubes containing activation vectors are assigned one

state of the FSM, so the size of the FSM can be kept manageable.
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For simple recurrent neural networks, existing approaches for FSM extraction

use various methods to partition the state space by different clustering methods

and vector quantization with limited success. As with feedforward networks, during

learning error backpropagation is free to create any encoding scheme over the hidden

units as long as the final error at the output layer is minimized. This again presents

a problem for clustering and vector quantization methods because often the hidden

layer representations are so complex or distributed that very many clusters are

required to partition the space.

A recent survey of rule extraction algorithms for recurrent networks can be

found in [37]. Research in this area has largely focused on better clustering and vector

quantization methods, but relatively little work has been done on inducing training

methods to learn a better hidden layer representation so that any finite state machine

extraction process become more effective. Potentially, a better representation might

allow partitioning the hidden activation space into fewer regions, thus leading to a

FSM with fewer states. A few past studies took this approach by forcing hidden layer

representations to be binary vectors. For example, in [86] the hidden units’ sigmoid

activation functions were replaced with threshold functions and a pseudo-gradient

learning method was used during training. Although the representation capability

of the hidden layer is restricted, experiments showed that the networks can still

perform well on some simple data sets. It is unclear whether the same approach can

be applied to larger or real-world data sets. Similarly, in [45] training was modified

so that a trained network only has weights with values either H or −H, and hidden

activation vectors have only one component with value 1 while the rest are 0. While
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this local hidden layer representation makes clustering very easy because the number

of clusters is the number of hidden units, the networks trained using this fully local

representation method are even more constrained than in [86]. A different approach

was used in [12] where an interpolation scheme was adopted to move the hidden

activation vectors closer to the center of the clusters. While this avoided the problem

of binary vectors, the activation values are no longer computed solely on activation

rules, thus compromising the representation capability of the network.

To the best of my knowledge, while echo state networks have achieved much

success in recent years, there is only one published work on extracting FSM from

ESN [23]. The lack of research in this area is probably caused by the difficulty in

extracting information from reservoirs because they have a large number of hidden

units. In other words, the hidden unit activation spaces that have to be partitioned

have a large number of dimensions. Furthermore, the activation spaces are very

distributed because the weights are initialized randomly and not trained. In order

to counter the latter problem, the authors in [23] used ESN+ (developed in [5, 22])

which has an equation assigned to each weight from the input to the reservoir. It

was shown that the same FSM extraction method can extract a much simpler FSM

from an ESN+ than from a regular ESN.
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Chapter 3

Rule Extraction From Feedforward Neural Networks

This chapter begins by introducing a modified error backpropagation learning

rule that leads to better separated representations of hidden unit activation patterns

in feedforward networks [32, 33]. The main approach to be taken is to augment

the usual error function E1 with a new “error” term named E2 that increases when

the hidden layer activation vectors are closer together. Then, an efficient and local

way to compute the gradient of E2 with respect to each weight is derived. Next,

an illustrative example is presented to visualize the working of the E2 term and

its effectiveness. E2 is then evaluated systematically on five large public artificial

and real-world data sets. The results show that E2 indeed helps to extract simpler

rule sets without compromising the standard sum of squared error at the outputs.

Finally, two more advanced terms E3 and E4 developed from E2 are presented, along

with experimental results that compare them to E2 and to the popular C4.5rules

software.

3.1 New Error Term E2

In this chapter we are interested in extracting rules from multilayer feedforward

neural networks with one hidden layer as shown in Figure 2.2. The result shown here

is adaptable to other kinds of networks and forms a basis of the work in subsequent
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chapters. First, a penalty term E2 that decreases as the hidden unit activation

vectors are further apart is introduced:

E2 = −1

2

N∑
p=1

N∑
q=1

∑
k∈hidden

(apHk
− aqHk

)2

where apHk
is the activation of the kth hidden unit when the pth input pattern is

presented and aqHk
is analogous for the qth input pattern. Thus E2 is the sum over

all pairs (p, q) of the squared Euclidean distance between two hidden activation

vectors for the pth and qth input patterns. The negative sign ensures that when

neural network training minimizes the measure E2, it will maximize the distances

between the hidden layer vectors. When p = q, only zeroes enter the sum so no

special attention is given to that situation.

The new total error function guiding learning is:

E = αE1 + βE2

where α, β > 0, α + β = 1. Note that the double sum over p and q can make E2

quite large relative to E1, so β must be quite small to scale E1 and E2 appropriately.

In order to train the network with error backpropagation, we need to compute

the components of the gradient of E given by:

∂E

∂wji

= α
∂E1

∂wji

+ β
∂E2

∂wji

∂E

∂vkj
= α

∂E1

∂vkj
+ β

∂E2

∂vkj

where wji is an input-to-hidden weight, and vkj is a hidden-to-output weight. Of

course, the standard terms ∂E1

∂wji
and ∂E1

∂vkj
can be computed efficiently as in [26]. We
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also have ∂E2

∂vkj
= 0 ∀j, k with vkj being the weight to the kth output unit from the

jth hidden unit because E2 does not have any vkj component.

Now,
∂Ep

2

∂wji
can be computed efficiently as follows. Let E2 =

∑
pE

p
2 where:

Ep
2 = −1

2

N∑
q=1

∑
k∈hidden

(apHk
− aqHk

)2 (3.1)

The gradient of the error Ep
2 with respect to weight wji can be calculated as:

∂Ep
2

∂wji

=
∑

k∈hidden

∂Ep
2

∂apHk

∂apHk

∂wji

Because
∂apHk

∂wji
= 0 with k 6= j, we have:

∂Ep
2

∂wji

=
∂Ep

2

∂apHj

∂apHj

∂wji

= −1

2

N∑
q=1

∑
k∈hidden

∂(apHk
− aqHk

)2

∂apHj

∂apHj

∂wji

= −
N∑
q=1

∑
k∈hidden

(apHk
− aqHk

)

(
∂apHk

∂apHj

−
∂aqHk

∂apHj

)
∂apHj

∂wji

With k 6= j, we have
∂apHk

∂apHj

∂apHj

∂wji
= 0 and

∂aqHk

∂apHj

∂apHj

∂wji
= 0 because apHk

and aqHk
do

not have wji components. So:

∂Ep
2

∂wji

= −
N∑
q=1

[
(apHj

− aqHj
)

(
∂apHj

∂apHj

−
∂aqHj

∂apHj

)]
×
∂apHj

∂wji

= −
N∑
q=1

[
(apHj

− aqHj
)

(
1−

∂aqHj

∂apHj

)]
×
∂apHj

∂wji

For p 6= q, we can assume that aqHj
does not change when we process pattern p.
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This leads to
∂aqHj

∂apHj

= 0 or (1−
∂aqHj

∂apHj

) = 1. When p = q, we have (apHj
− aqHj

) = 0. So:

∂Ep
2

∂wji

= −
N∑

q=1,q 6=p

(apHj
− aqHj

)×
∂apHj

∂wji

(3.2)

= −((N − 1)apHj
−

N∑
q=1,q 6=p

aqHj
)
∂apHj

∂wji

= −(NapHj
−

N∑
q=1

aqHj
)
∂apHj

∂wji

= −N(apHj
− aHj

)
∂apHj

∂wji

with N being the number of training patterns (a constant) and aHj
being the

average activation of the jth hidden unit over all input samples. As with the usual

backpropagation derivation using the logistic transfer function, we have
∂apHj

∂wji
=

apHj
(1− apHj

)xpi . Thus,

∂Ep
2

∂wji

= −N(apHj
− aHj

)apHj
(1− apHj

)xpi (3.3)

It is remarkable that when computing ∂E2

∂wji
for the pth input sample, besides looking

at the activation of the jth hidden unit and the ith input unit as is done with the

usual backpropagation training, we only need one more value aHj
which can be

computed and stored locally at the jth hidden unit. This local property is highly

desired in neural network training.

3.2 Rule Extraction Algorithm

The same rule extraction algorithm is used for both the experimental con-

dition (E = E1 + E2) and the control condition (E = E1, which is basic error
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backpropagation). The outline of the rule extraction algorithm in both cases is as

follows:

• Step 1: Train the network.

• Step 2: Cluster the individual hidden unit activation values.

• Step 3: Extract rules explaining the output in terms of clustered hidden unit

activation values.

• Step 4: Prune unnecessary weights connecting the input layer to the hidden

layer.

• Step 5a: If the data consists of continuous attributes: generate rules in the

form of linear inequalities on inputs for hidden unit activation cluster values.

• Step 5b: If the data consists of binary attributes: generate decision tree rules

for each hidden unit activation value cluster using the program C4.5rules [61].

Steps 1 to 4 are similar to past rule extraction methods in [50, 75, 82] but differ

in a number of ways: (1) a different error function that puts a strong emphasis on

hidden unit activation patterns’ separability rather than pruning [34], (2) a different

learning algorithm, and (3) C4.5rules for extracting the simplified hidden-output

mapping is used. Regardless of these differences from past work, the same rule

extraction procedure is applied in comparing standard backpropagation (E1) versus

the enhanced method (E1 + E2).

RPROP [64] (resilient backpropagation) is used in step 1. It is an improved

backpropagation learning algorithm that trains networks faster by adjusting the
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weight update based on the direction of the gradient instead of the magnitude

of the derivatives. It also requires few training parameters. The error function

is augmented with the popular weight decay term Ed = λ
∑

j

∑
iw

2
ji to prevent

weights from getting too large [46]. Weight decay has been shown to improve the

generalization performance of neural networks (regularization). This term is used

implicitly in both control and experimental simulations in this work.

The logistic hidden unit activation values are in the range (0, 1). After training,

the values experienced at each hidden unit can be clustered together into disjoint

intervals [0, r1), [r1, r2), ..., [rn, 1] such that we only need to know which interval the

hidden activation values are in to determine the class label of training instances.

The Chi2 discretization algorithm [49] is used to cluster the activation values. This

algorithm first makes one interval for each activation value, sorts the intervals in

increasing order, and then uses χ2 statistics to determine which pair of adjacent

intervals should be merged next. Some pairs of intervals are not allowed to be merged

because that would affect the classification accuracy. For example, when there are

two training examples p and q with different class labels such that apHj
is in the first

interval and aqHj
is in the second interval, the two intervals cannot be merged as we

no longer could determine which class label to assign knowing only the interval that

the jth hidden unit is in.

Step 3 extracts rules having the form (Hi1 = l1, Hi2 = l2, ...) → class = cj

which means that if the ith1 hidden unit’s activation value is in interval l1 and the

ith2 hidden unit’s activation value is in interval l2 and . . . then classify the sample as

class cj. Rule extraction is done using C4.5rules. This extraction step is also a base
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step in other rule extraction algorithms. It is very important to have fewer rules at

this point because the number of rules here strongly affects the final number of rules

that ultimately specify the input-output relationship.

The novelty of this method is in the use of the new error term that “pushes”

the hidden activation vectors away from each other, so that (as seen below) their

component values tend to cluster toward the two ends of the interval [0, 1]. This in

turn results in many hidden units having values clustered into only two intervals

[0, r), (r, 1]. Having such simple binary splits is highly desirable for making fewer

and simpler rules.

Step 4 prunes the network by removing unnecessary connections from the input

units to the hidden units. Pruning reduces the number of weights, thus making rules

with continuous inputs simpler. It also helps in extracting simpler rules for discrete

inputs. A simple pruning scheme that greedily removes weights in increasing order

of their magnitudes and stops when the accuracy in the validation set drops below a

specified threshold is used.

Step 5 is different for continuous and discrete attributes. If the inputs consist

of continuous attributes, rules that depend upon when the jth hidden unit activation

is in an interval [r1, r2) can be generated directly as follows:

r1 ≤ aHj
< r2

r1 ≤ σ(wj1x1 + wj2x2 + ...+ wjnxn) < r2

σ−1(r1) ≤ wj1x1 + wj2x2 + ...+ wjnxn < σ−1(r2) (3.4)
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Not all xi are present in each rule since unnecessary weights were already pruned

in step 4. Every hidden-output rule produced in step 3 is a conjunction of which

interval each hidden unit value must be in, so the terms in the conjunctions can

easily be pruned with the above inequality to produce rules explaining the output

classification directly from the input.

For problems with discrete inputs, C4.5rules [61] is used to generate one set of

rules for each hidden unit’s activation. The rules tell the conditions on inputs that

would make a hidden unit activation value fall into one interval. For example, a rule

for the jth hidden unit has the form:

(xi1 = b1, xi2 = b2, . . .)→ aHj
∈ kth interval

Because the rules in this step are only concerned with which interval a hidden

unit activation is in, there are usually very few simple rules. Each term Hi = li

in step 3 is then replaced with the input-hidden layer rules. Next, the boolean

expressions are simplified, and the duplicates are removed. The final result of these

steps is rules explaining the classification directly from the input values.

If, as sometimes occur, both continuous and discrete input attribute exist,

the common approach is to discretize all the continuous attributes and then any

method that works with discrete attributes can be used. Alternatively, there is also a

little work on extracting rules directly from mixed discrete and continuous data sets

[62, 71]. In this thesis, we will focus on data sets with either continuous or discrete

attributes.

The important distinction between this rule extraction method and C4.5rules

is that C4.5rules generates a single decision tree/rule set directly from the data set
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while this method generates two intermediate rule sets and combines them. The first

rule set captures the relationship between the hidden activation intervals and the

output. It is usually very simple with very few rules because of the improved hidden

activation patterns. The second rule set explains the relationship between the hidden

activation intervals and the input data. These rules are also simple because they

are concerned with specific hidden activation intervals. It should also be noted that

methods other than C4.5rules could be used to extract these intermediate rules.

3.3 An Illustrative Example

In this section, the hidden unit encodings learned by the neural network for

the waveform problem [3] are used to illustrate this approach. The waveform data

set consists of 5000 instances of waves. Each wave is characterized by 21 continuous

inputs with noise. The problem is to classify these waves into one of three classes.

First the inputs are standardized using z-values [15]. The 5000 instances are

divided randomly into three sets: 4000 for training, 500 for testing, and 500 for

validation. A three layer feedforward neural network with 4 hidden units is trained

on the data.

After training, the hidden unit activations (apH1
, apH2

, apH3
, apH4

) of the four hidden

units for each instance p can be calculated. This vector is an encoding of the 21-

dimension vector input. We are interested in how these 4 dimensional vectors are

arranged in the four dimensional space when the new error term E2 is used and

when it is not. Without losing generality, 3 of the 4 dimensions are chosen arbitrarily
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in order to visualize the locations of these vectors in the following representative

example from one of the runs.
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Figure 3.1: Input patterns throughout hidden unit activation space for the waveform
problem after training with (a) regular backpropagation (E = E1) versus (b) the
same error function but augmented to include the new error term (E = E1 + E2).

Figure 3.1a shows the training data patterns plotted in hidden unit activation

space after the network has been trained with the regular sum of squared error

function E1 used in standard backpropagation. It can be seen that the vectors are
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clustered into 3 groups corresponding to the 3 classes. While many of them are

in the corners or along the edges, quite a number are spread out over the interior

instead and close to vectors in other classes. These vectors make it hard to draw

planes separating the clusters; in other words, more rules would be expected to be

needed to explain the hidden activation-output activation relationship.

What we want to do is to push these vectors further away from each other

during learning so that it is easier to separate them. This is done with the help of

the new error term E2 that penalizes having vectors close together. The effect of the

training with this new error term is shown in Figure 3.1b. The three clusters are

more visible as they move closer to the edges and three corners, and fewer vectors

are in the interior. Clearly, the augmented learning procedure (Figure 3.1b) pushes

the interior hidden encodings for input patterns in different classes further from each

other than with standard backpropagation (Figure 3.1a) in this example.

3.4 Experimental Results

The goal of this evaluation is to compare the number of rules extracted from

a trained error backpropagation network when E2 is included in the error function

(experimental condition) versus the number when E2 is not included (control condition

of E1 alone, i.e., standard backpropagation). It is not, however, to show that the

extraction method presented in this chapter is superior to existing ones, but to

show that training with E2 produces better separated encoding at the hidden layer,

and thus would improve the performance of existing rule extraction methods. The
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effectiveness of the rule extraction method is evaluated on five data sets having more

than 1000 instances selected arbitrarily from the UCI Machine Learning Repository

[3]: the waveform, yeast, image-segmentation, nursery and splice problems. These

are large and difficult data sets with many attributes and classes.

Table 3.1: Data Sets Used for Evaluation

data set no.attrs no.class no.instances input

waveform 21 3 5000 continuous

yeast 8 10 1484 continuous

imgseg 18 7 2310 continuous

nursery 8 5 1296 discrete

splice 60 4 3190 discrete

Table 3.1 shows the characteristics of the five data sets used in the experiments.

Three of these have continuous inputs: the waveform problem involves classifying

waves into one of three classes based on 21 noisy features, the yeast problem is a

protein localization site determination problem, and the image segmentation problem

classifies pixels in images using 17 continuous value features. The other two data

sets have discrete/categorical inputs. Data set nursery is an application ranking

database for admission to nursery schools. Applications are classified into 5 classes

indicating how strongly the applicant is recommended. The 8 categorical attributes

are encoded into 25 binary input units using nominal encodings: a category with m

unique values is encoded as m binary input units, with only one bit corresponding to

the value being on. A set of 1296 (10%) instances were chosen randomly from 12961

instances in the original data set to shorten the running time. The splice problem is

to recognize the boundary between exons and introns in a DNA sequence. The 60
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attributes, each representing one nucleotide {A,T,G,C}, are encoded into 240 binary

input units.

For each data set, the settings for both the experimental and control runs are

as follows:

1. Ten-fold cross validation scheme: each data set is split randomly into 10 subsets

of approximately equal size. Eight subsets were used for training, one was used

for validation and one for measuring the accuracy of the extracted rules. The

procedure is repeated 10 times, where each time one different subset was used

as the testing set. Each experiment is also run 10 times with different random

initial weights. The reported number of rules and accuracy are averages over

all 100 runs. Having so many runs ensures that any improvement comes from

the method and not just by chance. For the image-segmentation data set,

which was already divided into training and test sets by the data donor, the

original training and test sets are merged into one single set so that ten-fold

cross validation can be used as with other data sets.

2. In each run, the experiments with and without the new error terms have the

same starting point - i.e., matched initial weights and data set division to make

comparison maximally compatible. Paired t-tests are used to evaluate the

results.

3. Weight decay rate was set to 0.00001.

4. β was set to 0.00001 for waveform and nursery, 0.00005 for yeast, 0.0003 for the

splice problem, and 0.00007 for the image-segmentation problem. To determine
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these values, a few pilot runs were done with each data set where β is initialized

to 0 (the control case of using E1 alone) and slowly increased until the accuracy

rate dropped more than 5% compared to the control case. This determined

the values of β that were used for the 100 runs reported in the experimental

results (and also for α since α = 1 − β). The contribution of βE2 is much

more significant than it looks. At the end of training, E1 is of the order of 102

because it is a sum of over 1000 squared errors from all output units. E2 is

of the order of 106 because it is the sum over all pairs of Euclidean distances.

These choices of β make the contribution of E2 about 5% ∼ 70% of E for the

five problems.

5. The number of output units corresponds to the number of classes in the

data. When doing a classification, the class whose output unit has the highest

activation value is chosen as the class for the instance.

6. Continuous input attribute values were standardized with z-value scores [15].

7. RPROP with weight backtracking was set up to run for a maximum of 400

epochs or until validation error goes up for 10 consecutive epochs. η+ and

η− are set to 1.25 and 0.5, respectively. The network with highest validation

accuracy was saved for subsequent rule extraction.

Table 3.2 and Figure 3.2 show the effect of the new error term E2 on the

network’s average testing error (E1/N) and the average distances among hidden unit

activation vectors (−2E2/N
2) where N is the number of data instances. A network’s
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Table 3.2: Regular versus Modified Backpropagation (Averaged over 100 Runs)

data set
E1/N −2E2/N

2

regular new regular new

waveform 0.128 0.149 1.632 1.949 (+19%)

yeast 0.384 0.393 0.706 1.190 (+69%)

imgseg 0.085 0.107 1.979 2.684 (+35%)

nursery 0.075 0.095 1.050 1.125 (+7%)

splice 0.068 0.073 0.971 1.175 (+21%)

Figure 3.2: Mean squared distance and mean squared error of networks trained by
regular and modified backpropagation.
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average testing error and average squared distance between hidden activation vectors

are shown after training with regular backpropagation versus the new combined error

term. Since E2 is 1/2 of the sum of squared distances between each pair (total N2

pairs) of activations, −2E2/N
2 is the average squared distance between each pair.

The regular columns show results when the networks were trained with “regular”

backpropagation using E = E1. The new columns show the results with E = E1 +E2.

These data show that activation pattern distances were increased up to 69% with

only a small change in network errors. The small change in E1 backs the hypothesis

that it is possible to make error backpropagation learn a different encoding that

satisfies other criteria (smaller E2) while still maintaining the network’s accuracy.

Modified backpropagation was able to learn an encoding with increased pattern

separation at the hidden layer that had higher total squared distances between the

hidden unit activation vectors while still maintaining near minimum error at the

output layer. The choice of β has a strong impact on the accuracy and E2.

Figure 3.3 shows the values of (a) E1/N and (b) −2E2/N
2 during one training

run on the waveform data set using error backpropagation with the regular error

function E1 and with the new error term E2. The training error was slightly higher

when trained with E = αE1 + βE2. This is expected because error backpropagation

has to minimize both terms in this latter case. But the change is very small and

not enough to affect the overall classification accuracy significantly. Figure 3.3(b)

shows the average squared distance between hidden unit activation pairs −2E2/N
2.

Training quickly increases the distance in both cases, but significantly more when
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Figure 3.3: A typical plot of (a) average network error E1/N and (b) average hidden
layer activation pattern separation −2E2/N

2 during network training.
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trained with E = αE1 + βE2.

Table 3.3: Means (σ) of Accuracy and Number of Rules over 100 Runs

Data set
No. of rules Rule accuracy

E1 E1 + E2 reduced E1 E1 + E2

waveform 70.12 (26.89) 14.30 (13.56) 80% 85.08% (1.96) 85.19% (2.04)

yeast 90.17 (23.09) 51.37 (18.23) 43% 51.55% (4.21) 51.40% (4.37)

imgseg 38.34 (9.27) 32.02 (7.37) 16% 91.58% (2.33) 89.29% (3.06)

nursery 192.42 (95.34) 41.85 (43.85) 78% 88.55% (4.01) 89.33% (2.86)

splice 90.21 (84.42) 78.66 (54.49) 13% 90.19% (3.81) 89.85% (4.09)

Figure 3.4: Mean number and accuracy of rules extracted from networks trained by
regular and modified backpropagation.

Table 3.3 and Figure 3.4 present the experimental results concerning rule

extraction. The new error term helped reduce the number of rules significantly, at

least 13% for the splice problem and up to 80% for the waveform problem. The

new, smaller sets of rules also have roughly the same classification rates as the ones

produced without the new error term (rightmost columns of Table 3.3). Note that

53



the accuracy rate for the yeast problem is quite low, but it is still comparable to the

best published results of 54% in [29]. The reason for such a low accuracy rate is that

the data set is very difficult with 10 classes unevenly distributed.

Table 3.4: P-value of t-tests Comparing E1 and E1 + E2

data set avg. no. of rules accuracy rates

waveform 5.4× 10−35 0.4818

yeast 4.7× 10−25 0.7179

imgseg 1.9× 10−06 6.4× 10−9

nursery 4.3× 10−28 0.0456

splice 0.243 0.5574

Paired t-tests are used to determine whether the reduction in numbers of

rules and the change in accuracy caused by training with E1 versus E1 + E2 are

significant, using a standard significance level 0.05. Bonferroni correction [20] for

10 tests requires significance to be defined as p < 0.05/10 = 0.005. Statistically

significant changes are printed in italics in Table 3.3. Corresponding p-values are

shown in Table 3.4. The reduction in numbers of rules is significant in all cases

(p from 5.4 × 10−35 to 1.9 × 10−6) except for the splice problem (p = 0.243). The

change in accuracy is not significant in all cases (p from 0.45 to 0.71) except for the

image-segmentation problem (p = 6.4× 10−9). The tests confirmed that E2 reduced

the number of rules without degrading accuracy.

More significantly, the best among 100 runs in the experiments were able to

extract even smaller rule sets than the averages described above. Rule extraction

using E2 extracted only 5 rules explaining the classification of 5000 waveform data
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instances with 88% accuracy rate, 19 rules for the yeast data set with 57% accuracy,

17 rules for the image-segmentation data set with 90% accuracy, 15 rules for the

nursery data set with 93% accuracy, and 14 rules for the splice data set with 94%

accuracy. These are better than the best numbers of rules using E1: 14, 49, 19, 15,

and 19 respectively.

3.5 Class Label-Aware Separation

Since E2 incorporates the sum of distances between all pairs of hidden unit

activations, its effect is to push every activation pattern away from the rest. Such

an approach ignores class labels, and this omission suggests another more targeted

strategy. If one could take into account the class labels of the training data, then

just the activation patterns of instances from different classes could be pushed apart,

while instead the activations of instances from the same class could be treated

differently, i.e., they could be pushed closer to one another. Potentially such an

approach could be even more effective in lowering the number of rules generated.

Therefore, two new penalty terms E3 and E4 are proposed: E3 penalizes hidden unit

activation vectors from different classes having small Euclidean distances, while E4

penalizes hidden unit activation vectors from the same class having big Euclidean

distances. More specifically, E3 and E4 are given by:

E3 = −1

2

N∑
p=1

N∑
q=1

class(q)6=class(p)

∑
k∈hidden

(apHk
− aqHk

)2

E4 =
1

2

N∑
p=1

N∑
q=1

class(q)=class(p)

∑
k∈hidden

(apHk
− aqHk

)2
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It is important to note the negative sign in E3 and its absence in E4. Minimization of

E3 and E4 increases the distances of hidden activation vectors from different classes

and decreases the distances of activations from the same class.

3.5.1 Learning Rules

As with E2, we need
∂Ep

3

∂wji
and

∂Ep
4

∂wji
in order to compute the weight change for

gradient descent. Computing
∂Ep

3

∂wji
follows the same derivation as with

∂Ep
2

∂wji
, until

Equation 3.2. The only difference is that the sum is only over q’s that are in a

different class from p. Let C(p) be the set of training patterns having the same class

as p. We have:

∂Ep
3

∂wji

= −
∑

q /∈C(p)

(apHj
− aqHj

)×
∂apHj

∂wji

= −

 ∑
q /∈C(p)

apHj
−
∑

q /∈C(p)

aqHj

× ∂apHj

∂wji

(3.5)

Consider the left factor of Equation 3.5: ∑
q /∈C(p)

apHj
−
∑

q /∈C(p)

aqHj


= (N −NC(p))a

p
Hj
− (

N∑
q=1

aqHj
−
∑

q∈C(p)

aqHj
)

= NapHj
−NC(p)a

p
Hj
−NaHj

+NC(p)a
C(p)
Hj

= N(apHj
− aHj

)−NC(p)(a
p
Hj
− aC(p)

Hj
)

= N(apHj
− aHj

)−NC(p)(a
p
Hj
− aC(p)

Hj
) (3.6)

with NC(p) being the number of training patterns in the same class as p and a
C(p)
Hj

is

the average activation of the jth hidden unit when patterns in C(p) are presented at
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the input layer. Substituting Equation 3.6 to Equation 3.5 gives:

∂Ep
3

∂wji

=
(
N(apHj

− aHj
)−NC(p)(a

p
Hj
− aC(p)

Hj
)
)

× apHj
(1− apHj

)xpi

Similarly, we can compute
∂Ep

4

∂wji
as

∂Ep
4

∂wji

=
∑

q∈C(p)

(apHj
− aqHj

)×
∂apHj

∂wji

=

 ∑
q∈C(p)

apHj
−
∑

q∈C(p)

aqHj

× ∂apHj

∂wji

=
(
NC(p)a

p
Hj
−NC(p)a

C(p)
Hj

)
×
∂apHj

∂wji

=
(
NC(p)(a

p
Hj
− aC(p)

Hj
)
)
×
∂apHj

∂wji

=
(
NC(p)(a

p
Hj
− aC(p)

Hj
)
)
apHj

(1− apHj
)xpi

Computing
∂Ep

3

∂wji
and

∂Ep
4

∂wji
is also local because it requires only local information

to be stored at each hidden unit: the average activation and number of examples for

each class. However, unlike with E2, hidden units must also know the target class of

each instance. This can be done by backpropagating the class label from the output

layer to the hidden layer together with the error signal.

3.5.2 Experimental Results

The purpose of this second set of experiments is to evaluate the effectiveness

of the new error terms E3 and E4 on the same five large data sets described earlier.

The results are compared with regular error backpropagation, error backpropagation

with E2, and with C4.5rules.
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Table 3.5: Means (σ) of Accuracy and Number of Rules over 100 Runs

data set
waveform yeast imgseg

#rules accuracy #rules accuracy #rules accuracy

E1 70.12 (26.89) 85.08% (1.96) 90.17 (23.09) 51.55% (4.21) 38.34 (9.27) 91.58% (2.33)

E1&E2 14.30 (13.56) 85.19% (2.04) 51.37 (18.23) 51.40% (4.37) 32.02 (7.37) 89.29% (3.06)

E1&E3&E4 8.79 (3.77) 85.71% (2.34) 52.52 (17.67) 51.75% (4.43) 26.12 (8.18) 91.86% (2.11)

C4.5rules 77.50 (8.50) 77.30% (1.63) 36.50 (4.32) 59.22% (5.15) 30.00 (1.80) 95.70% (1.00)

data set
nursery splice

#rules accuracy #rules accuracy

E1 192.42 (95.34) 88.55% (4.01) 90.21 (84.42) 90.19% (3.81)

E1&E2 41.85 (43.85) 89.33% (2.86) 78.66 (54.49) 89.85% (4.09)

E1&E3&E4 29.15 (21.08) 89.93% (2.41) 26.92 (14.63) 90.93% (4.19)

C4.5rules 71.49 (6.03) 91.29% (2.74) 39.90 (3.67) 94.33% (1.18)

Figure 3.5: Mean number of rules extracted from networks trained by regular
backpropagation, E1 +E2 , E1 +E3 +E4 , and mean number of rules learned by
C4.5rules.
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Figure 3.6: Mean accuracy of rules extracted from networks trained by regular
backpropagation, E1+E2 , E1+E3+E4 , and mean accuracy of rules learned by
C4.5rules.

As described earlier in Section 3.4, the results of rule extraction using E =

αE1 + βE2 already show a clear improvement over E = E1 (summarized in rows

E1 and E1 + E2 of Table 3.5). The results with E3 and E4 are even better for four

out of five data sets (see Table 3.5, Figures 3.5 and 3.6). The numbers of rules for

the waveform and splice data sets are reduced further by 40%, the number of rules

for the nursery data set is reduced further by 31%, and the number of rules for the

image-segmentation data set is reduced further by 19%, with no significant change

in classification accuracy rates. For the fifth data set yeast, the result is the same as

with E2.

Paired t-tests are used to determine whether the reduction in numbers of rules

and the change in accuracy caused by training with E1 versus E1 + E2 and E1 + E2

versus E1 + E3 + E4 are significant. Bonferroni correction for 20 tests (5 data sets

× 2 settings × 2 criteria) requires p < 0.05/20 = 0.0025. Statistically significant
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Table 3.6: P-value of t-tests on Number of Rules

data set E1 vs E1+E3+E4 E1+E2 vs E1+E3+E4

waveform 6.3× 10−42 0.0001

yeast 2.6× 10−22 0.6524

imgseg 3.3× 10−15 5.3× 10−6

nursery 7.4× 10−31 0.0063

splice 1.4× 10−11 1.3× 10−14

Table 3.7: P-value of t-tests on Accuracy Rates

data set E1 vs E1+E3+E4 E1+E2 vs E1+E3+E4

waveform 0.0005 0.0007

yeast 0.6262 0.4305

imgseg 0.2994 4.3× 10−11

nursery 0.0002 0.0103

splice 0.2125 0.0680

changes are printed in italics in Table 3.5. Corresponding p-values are shown in

Table 3.6 and 3.7. The tests showed that E1 +E3 +E4 further reduced the numbers

of rules significantly compared to training with E1 +E2 in three data sets waveform,

image-segmentation, and splice with p < 0.0001. For the other two, the reduction

is still significant compared to training with E1 (regular error backpropagation)

with p < 1.4 × 10−11. These tests also showed that the changes in accuracy rates

are not significant with the exception of waveform and image-segmentation using

E1 + E3 + E4 versus E1 + E2, nursery using E1 versus E1 + E3 + E4. Interestingly,

in these three cases, the accuracy rates actually increased with the use of the newer

penalty terms. Overall, training with new error terms E2, E3, and E4 showed a

significant reduction in number of rules with insignificant change in accuracy over
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regular error backpropagation.

Table 3.8: Means (σ) of Number of Antecedents over 100 Runs

data set nursery splice

E1 5.6 (1.1) 6.3 (1.4)

E1&E2 3.4 (1.1) 6.6 (1.1)

E1&E3&E4 3.1 (0.8) 6.1 (1.2)

C4.5rules 3.5 (0.2) 4.5 (0.1)

(a30 = G, a31 = T, a34 = G)→ class E
(a29 6= T, a30 = G, a31 = T, a32 = A)→ class E
(a4 6= A, a22 6= A, a27 6= A, a27 6= G, a28 = A, a29 = G, a31 6= T )→ class I
(a4 6= A, a22 6= A, a27 6= A, a27 6= G, a28 = A, a29 = G, a30 6= G)→ class I
(a17 6= G, a20 6= A, a23 6= A, a27 6= A, a27 6= G, a28 = A, a29 = G, a30 6= G)→ class I
(a17 6= G, a20 6= A, a23 6= A, a27 6= A, a27 6= G, a28 = A, a29 = G, a31 6= T )→ class I
(a4 6= A, a21 6= A, a22 6= A, a27 6= A, a27 6= G, a28 = A, a29 = G, a32 6= A, a34 6= G)→ class I
(a17 6= G, a20 6= A, a21 6= A, a23 6= A, a27 6= A, a27 6= G, a28 = A, a29 = G, a32 6= A, a34 6=
G)→ class I
(a29 6= G, a34 6= G)→ class N
(a29 6= G, a33 = G)→ class N
(a29 6= G, a30 6= G)→ class N
(a28 6= A, a32 = C)→ class N
(a28 6= A, a31 6= T )→ class N
(a28 6= A, a30 6= G)→ class N
(a27 = G, a31 6= T )→ class N
(a13 6= T, a27 = A, a31 6= T )→ class N
Default rule: class N

Figure 3.7: A rule set extracted from a neural network trained on the splice data set.
Here ai denotes the nucleotide at position i, where ai can be either A, T, G, or C. I
(intron), E (exon), and N (neither) are the three classes of the DNA sequences to be
predicted.

When extracting rules from data sets having all discrete input attributes such

as nursery and splice, it is important to have small numbers of antecedents per rule to

keep the rules easier to understand. Further, it is conceivable that when lowering the

number of rules when using E2 or E3 + E4, one might simultaneously be increasing

the number of antecedents per rule, thereby compromising the parsimony gained by
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the modified hidden layer presentation. Table 3.8, which shows the average number

of antecedents per rule for each method, indicates that this problem did not occur.

These averages are either lower or almost the same. It shows that this method was

able to reduce the number of rules without making the rules more complex. With the

nursery data set, the rules extracted using the new error terms actually have fewer

antecedents per rule. The average is about the same as with C4.5rules, yet there are

many fewer rules compare to C4.5rules result. Figure 3.7 shows one rule set extracted

from the data set splice with 17 rules where the average number of antecedents is

higher than with C4.5rules but still not too overly complex to understand.

As described in Step 5b of the algorithm (Section 3.2), the rules in Figure

3.7 were constructed by combining two sets of input → hidden rules and hidden →

output rules. First, the Chi2 algorithm (Step 2) divided hidden unit 2’s activation

range into two intervals [0, 0.56) and [0.56, 1], hidden unit 3’s activation range into

two intervals [0, 0.67) and [0.67, 1], and did not divide hidden unit 1’s activation

range. Using the intervals above, Step 3 extracted the following hidden → output

rules:

h3 ∈ [0.67, 1]→ class E

h2 ∈ [0, 0.56) and h3 ∈ [0, 0.67)→ class I

h2 ∈ [0.56, 1]→ class N

Default rule: class N

For each of the above rules, a set of input → hidden rules was extracted. For

instance, two conditions (a30 = G, a31 = T, a34 = G) and (a29 6= T, a30 = G, a31 =

T, a32 = A) were extracted for the condition that h3 ∈ [0.67, 1]: Combined with the
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rule h3 ∈ [0.67, 1]→ class E, the following two rules were extracted:

(a30 = G, a31 = T, a34 = G)→ class E

(a29 6= T, a30 = G, a31 = T, a32 = A)→ class E

In the same way, the rules for the second and third hidden → output rule were

extracted. The three sets of rules were then put together into the final set of rules in

Figure 3.7.

When extracting rules from data sets having continuous attributes such as

waveform, yeast, and image-segmentation the parsimony of rules is measured by

the number of terms left in Equation 3.4, which also indicates the number of input-

hidden weights after pruning. The average numbers of these weights are increased

insignificantly from 49.8 to 54.2 for the waveform data set, 17.3 to 17.6 for the yeast

data set, and dropped slightly from 65.66 to 63.67 for both E2 and E3 +E4 compared

to E1. It should be noted that because the format of the rules (inequalities) for these

two continuous input data sets are different from C4.5rules’s, the number of rules

are not directly comparable. Pruning has a side effect that reduces the fidelity of

the rule extraction method. Fidelity is a measure of how closely the extracted rules

follow the network’s behavior. In all experiments, the average accuracies of the rules

and the networks differed by no more than 3%.

More significantly, the best among 100 runs in the experiments were able to

extract even smaller rule sets than the averages described above. Rule extraction

using E3 + E4 extracted only 5 rules explaining the classification of 5000 waveform

data instances with 89% accuracy rate, 23 rules for the yeast data set with 52%
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Table 3.9: Means (σ) of Accuracy and Number of Rules over 100 Runs with Rules
Resulting in Default Class Removed

data set
waveform yeast imgseg

#rules accuracy #rules accuracy #rules accuracy

E1 44.34 (18.18) 85.08% (1.94) 61.29 (19.04) 51.61% (4.40) 38.34 (9.27) 91.58% (2.33)

E1&E2 9.33 ( 8.24) 85.20% (2.08) 35.86 (12.94) 51.42% (4.41) 32.02 (7.37) 89.29% (3.06)

E1&E3&E4 6.20 ( 2.40) 85.73% (2.32) 37.52 (12.86) 51.86% (4.19) 26.12 (8.18) 91.86% (2.11)

data set
nursery splice

#rules accuracy #rules accuracy

E1 113.04 (69.74) 88.57% (4.04) 28.73 (31.61) 88.55% (4.45)

E1&E2 25.25 (29.78) 89.37% (2.81) 31.19 (31.26) 89.18% (4.32)

E1&E3&E4 18.85 (13.56) 89.94% (2.43) 15.88 ( 6.25) 90.12% (4.57)

Figure 3.8: Mean number of rules extracted from networks trained by regular
backpropagation, E1 +E2 , and E1 +E3 +E4 with rules resulting in default class
removed.
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Figure 3.9: Mean accuracy of rules extracted from networks trained by regular
backpropagation, E1 +E2 , and E1 +E3 +E4 with rules resulting in default class
removed.

accuracy, 12 rules for the image-segmentation data set with 92.21% accuracy, 13

rules for the nursery data set with 93.8% accuracy, and 17 rules for the splice data

set with 94% accuracy. Rule extraction with new error terms clearly outperformed

the popular rule-based system C4.5rules in extracting rules for four out of five data

sets. For the remaining yeast data set, it also helped reduce the number of rules,

although not enough to surpass C4.5rules.

C4.5rules’ rules usually overlap, have to be applied in order, and a default class

is assigned if no rule matches the input data. Some of the rules have the outcome

the same as the default class. Since this rule extraction method uses C4.5rules, the

final combined rules also have the same properties. When the rules that have the

same outcome as the default are removed, one would expect that the accuracy rates

to decrease significantly, but they did not. Table 3.9, Figures 3.8 and 3.9 show the

results with these rules removed. The average numbers of rules were significantly
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lower while there are insignificant changes to the accuracy rates. The reason could be

that each intermediate rule set is responsible for an interval of hidden unit activation

so its rules are simple and not overlapping. Such rule sets can be simplified by

removing rules having the same outcome as the default class. The combination of

these simple rules thus does not need these extra rules either.

Table 3.10: Average Time for Rule Extraction (RE) and Total Running Time
(Seconds)

data set
waveform yeast imgseg nursery splice

RE total RE total RE total RE total RE total

E1 7.3 12.1 1.1 2.5 3.6 7.5 0.8 1.8 0.8 3.3

E1&E2 4.5 11.3 1.0 2.6 3.6 9.0 0.7 2.2 0.8 7.7

E1&E3&E4 6.9 17.7 1.0 2.9 3.6 11.9 0.7 2.8 0.9 14.5

Table 3.10 shows the average running time in seconds spent on rule extraction

and the total running time including training the networks. All experiments were run

on an Intel Core2 2.4 GHz system. The new penalty terms increased the running time

due to more computation, as would be expected. In particular, the most increase

in running time was recorded with the splice data set and it was only 4.4 times. In

their original forms, E2, E3, and E4 require N times more computation to compute

than E1 where N takes values from 1296 to 5000. But the derivation using local

computations made it possible to keep the increase in running time surprisingly low

even though N = 3190 for the splice data set.
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3.6 Discussion

In this chapter, a method is presented for improving the extraction of symbolic

rules from multilayer feedforward neural networks by adding additional terms to

the error function is presented. These terms encourage the formation of a more

separable internal representation at the hidden layer. Efficient ways to incorporate

them into the training process while retaining local computations are also derived and

implemented. Unlike past rule extraction methods, this method focuses on modifying

training so that existing rule extraction methods work more effectively. The three

introduced penalty terms E2, E3, and E4 share the same purpose of making the

hidden unit activations of different classes more separable. While E2 is simple and

does not rely on class labels, E3 and E4 are more complex and employ class labels

to increase and decrease the activation distances discretionarily.

Extensive experiments with five large, publicly available data sets showed that

this approach helped reduce the number of rules significantly without sacrificing

classification accuracy. Rule sets extracted from networks trained with E2 are smaller

than with regular error backpropagation. Even fewer rules can be extracted from

networks trained with E3 and E4. These results showed that the rule extraction

method also outperformed the popular C4.5rules program in four out of five of these

data sets. An important future research direction will be to compare these results

with those of other rule extraction methods in the literature.

The aim of this work was not to produce a new rule extraction algorithm,

but to provide an improved way to train networks that might help most rule
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extraction algorithms using the decompositional approach. The rule extraction

process being used is fairly standard and similar to those used in many other

algorithms. Those algorithms use different approaches to extract the intermediate

rules, from exhaustive search to complicated heuristics. Here C4.5rules is used as

a standard and straightforward algorithm in order to generate the intermediate

rules. This should not be confused with using C4.5rules to generate rules directly

from the whole data set. The same rule extraction algorithm is used for both

the control condition (regular backpropagation using E1 alone) and experimental

learning condition (E2, E3, and E4) to show the effectiveness of the new terms on

rule extraction algorithms using the hidden activation intervals. It is hypothesized

that any rule extraction method using a similar approach will benefit from the use

of these terms.

The surprising result with the default class in Table 3.9 demonstrated another

advantage of neural network based rule extraction. The extracted rules often appear

to be non-overlapping, so that rules resulting in the default class could be removed.

Such rule sets are easier to apply and also easier for a person to use to study properties

of data sets. Although it is not clear what caused the rules to be non-overlapping,

the answer is likely to be the way neural networks using regular backpropagation

divide the input space using hidden unit activation intervals.

Experimental results showed that accuracy rates and E1 changed very little

when networks were trained with the augmented penalty terms. This demonstrates

a well-known property of neural networks: that there are many possible encodings

at the hidden layer that can provide correct outputs. These encodings are biased
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towards more separation of activity patterns with the approach introduced here.

Based on these promising results, an important future research direction will be

to study other ways to bias the encodings beyond the sum of squared distances.

Presumably this approach can also be applied to other error backpropagation learning

rules with different error functions such as [9, 51, 85],

As with many approaches using penalty terms, there is a trade off in terms

of parameter adjustments: a small value of α will make the activation patterns

very separated and good for rule extraction, but it cannot keep the training error

low enough. The opposite holds for small β. The problem is to influence the

training enough to produce the desired separation without compromising E1 or

accuracy. Since no single value of β that works best across all data sets is found, an

important future direction for research is to study different schemes to adapt α and β

automatically as training progresses. Such work might try to establish properties of

a data set that predict reasonable values for β, or investigate how varying β during

training as a function of error rate influences the rule acquisition process.

69



Chapter 4

Finite State Machine Extraction from Simple Recurrent Networks

In this chapter, the error term E2 in the previous chapter is generalized to

work with simple recurrent networks (“Elman networks”; see Section 2.2) [31]. The

purpose of E2 is once again to make hidden layer activation patterns more separated

from one another. It is not obvious a priori that the method will continue to work

unaltered on simple recurrent networks because these networks’ temporal dynamics

is completely different from feedforward networks’ static mapping. Moreover, it is

necessary to extract finite state machines instead of propositional logic rules from

simple recurrent networks. Above all, the hidden layer is now affected not only by

the input, but also by the context layer, so it is unclear if the term E2 will still be

effective in pushing the activation patterns in the hidden layer apart. Therefore, it

is imperative to evaluate the effect of E2 systematically on a variety of data sets.

This chapter starts by reexamining E2 and the gradient calculation in the

context of simple recurrent networks. Next, a simple algorithm to extract FSMs that

takes advantage of the improved representation is introduced. Finally, computational

experiments on four data sets generated from regular and context-free grammars are

used to evaluate the effect of E2 on FSM extraction.
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4.1 Generalizing E2

In this section we are interested in extracting FSMs from simple recurrent

networks with one hidden layer as shown in Figure 4.1. The error function, as defined

in Section 2.2, is computed over the output units:

E1 =
1

2

N∑
t=1

∑
k∈output

(T t
k − atOk

)2

where T t
k is the target output for the kth output unit at time step t, and N is the

length of the input sequence.

Figure 4.1: A small simple recurrent neural network; the number of nodes in each
layer varies and can be quite large.

The penalty term E2 is generalized to recurrent networks as:

E2 = −1

2

N∑
t=1

N∑
t′=1

∑
k∈hidden

(atHk
− at′Hk

)2

where atHk
is the activation of the kth hidden unit at time step t and at

′
Hk

is analogous

at time step t′. Thus E2 is the sum over all pairs (t, t′) of the squared Euclidean

distance between two hidden activation vectors at time step t and t′. The negative
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sign ensures that when neural network training minimizes the measure E2, it will

maximize the distances between the hidden layer vectors. When t = t′, only zeroes

enter the sum so no special attention is given to that situation. As a result, E2

decreases as the hidden unit activation vectors are further apart:

As before, the total error function guiding learning is:

E = αE1 + βE2

where α, β > 0, α + β = 1. Note that the double sum over t and t′ can make E2

quite large relative to E1, so β must be quite small to scale E1 and E2 appropriately.

In order to train the network with error backpropagation, we need to compute

the components of the gradient of E given by:

∂E

∂wji

= α
∂E1

∂wji

+ β
∂E2

∂wji

∂E

∂vkj
= α

∂E1

∂vkj
+ β

∂E2

∂vkj

where wji is an input-to-hidden weight, and vkj is a hidden-to-output weight. Of

course, the standard terms ∂E1

∂wji
and ∂E1

∂vkj
can be computed efficiently as in [17]. We

also have ∂E2

∂vkj
= 0 ∀j, k with vkj being the weight to the kth output unit from the

jth hidden unit because E2 does not have any vkj component. As shown in Section

3.1,
∂Ep

2

∂wji
can be computed efficiently as follows:

∂Et
2

∂wji

= −N(atHj
− aHj

)atHj
(1− atHj

)xti

with N being the length of the training data sequence, and aHj
being the average

activation of the jth hidden unit over all time steps. The equation is identical to

Equation 3.3 for feedforward networks except for the superscript of the term atHj
as
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might be expected. Each hidden unit activation atHj
at time step t plays the role of

the activation of the hidden unit for the pth training example.

Note that the derivation above used a single N -length sequence just for clarity.

When training with multiple sequences with different lengths, it is trivial to extend

the method so that N is the total length of all training sequences and aHj
is the

average activation over all training time steps.

As with feedforward networks, when computing ∂E
wji

for time step t, besides

looking at the activation of the jth hidden unit and the ith input unit as is done with

the usual backpropagation training, we only need one more value aHj
which can be

computed and stored locally at the jth hidden unit. This local property is highly

desirable in neural network training.

4.2 Finite State Machine Extraction

The same FSM extraction algorithm is used for both the experimental condition

(E = E1 + E2) and the control condition (E = E1, which is basic backpropagation).

An outline of the FSM extraction algorithm in both cases is:

• Step 1: Train the network.

• Step 2: Cluster the hidden unit activation vectors.

• Step 3: Construct the FSM with clusters as states.

• Step 4: If there are two hidden unit activation vectors v1 and v2 in the same

cluster C such that upon receiving the same input xt, the next state vectors v′1
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and v′2 are in two different clusters, split cluster C and go to Step 3.

• Step 5: If hidden unit activation vectors in one cluster produce different

predictions at the output layer, split the cluster and go to Step 3.

These are typical steps used in previous FSM extraction algorithms [37, 38]. In

this study, RPROP [64] (resilient backpropagation) is used again in Step 1. It is

an improved backpropagation learning algorithm that trains networks faster by

adjusting the weight update based on the direction of the gradient instead of the

magnitudes of the derivatives. It also requires fewer training parameters.

In Step 2 the K-means clustering algorithm [44] is used. K is set to the number

of output symbols. This is a lower bound of the number of states because each state

can only predict one output symbol. Hence, an FSM has to have at least as many

states as output symbols. Step 2 is only executed once so K only varies by data sets.

Note that in subsequent steps, the algorithm K-means is used again but with values

of k determined in different ways as explained below.

Step 3 is done by going over the training data sequence to construct the FSM

state transition function and the output function. At time step t, let st be the

current input symbol. Using the input encoding scheme, the augmented input vector

xt is constructed from the encoding of st and the context units atH copied from the

previous time step. Applying the network activation rule, the hidden unit activation

at+1
H at the next time step is calculated. Suppose atH is in cluster C0 and at+1

H is

in cluster C1, the transition C0
st−→ C1 will be added to the FSM state transition

function. Intuitively, atH is the “state” of the network after processing the input
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patterns up until time t. Also, the input st changes the network’s state to at+1
H .

From a FSM perspective, st is the symbol that causes the transition atH → at+1
H .

Besides, the clusters C0, C1 represent the activation patterns that are close to atH

and at+1
H , respectively. That is, activation patterns, or the network’s “state”, in C0

are expected to make the same transition under the same input st to the activation

patterns in C1.

Steps 4 and 5 split existing clusters into smaller ones. That is, the hierarchy

resulting from clustering is not kept and the new clusters are used as new states in

the FSM. For example, let N be the number of clusters/states and we need to split

cluster Ci into 3 clusters. The K-means algorithm is again used to cluster the set of

vectors belonging to cluster C into 3 clusters C ′0, C
′
1, and C ′2. After this step, the

FSM will have N + 2 states, with Ci being replaced by C ′0, and two new clusters C ′1

and C ′2.

With any given activation vector atH , the network activation rule lets us calculate

the output vector atO, which can be decoded to a symbol. Therefore, for each cluster

C, the activation rule is used to calculate the output vectors from all hidden unit

activation vectors atH belonging to it. Subsequently, the output symbols can be

decoded from the output vectors. Because the activations are in the same clusters,

they are close together; hence the output vectors produced by them are similar and

should be decoded to a single symbol. If more than one symbol is produced by atH

in the same cluster C, this cluster will be split in Step 5.

As other finite state machine extraction work, we are only concerned with the

next-word/symbol prediction task. In the same way, the input symbol is encoded
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at the input layer using the one-hot encoding scheme (explained in the following

section) so that all the attributes are binary. Hence, unlike in the previous chapter,

no distinction in the algorithm needs to be made between continuous and discrete

value attributes.

4.3 Experimental Methods

The goal of this evaluation is to compare the FSM extracted from a trained

simple recurrent network when E2 is included in the error function (experimental

condition) versus the number when E2 is not included (control condition of E1 alone,

i.e., standard backpropagation). The effectiveness of the FSM extraction method

is evaluated on two data sets generated by regular languages and two data sets

generated from context-free languages consisting of 50 to 1500 sequences. The first

two data sets have been used extensively in the past in evaluating FSM extraction

methods from regular languages [17, 37, 38, 48, 25]. The second two data sets have

been used repeatedly in evaluating recurrent neural networks performance and FSM

extraction methods from context-free languages [21, 22, 23, 84].

The first data set is generated from the regular language badigu, first used

in [17] to evaluate the learning capability of simple recurrent networks. The reg-

ular expression defining it is (ba|dii|guuu)∗. The alphabet consists of 6 symbols:

{b, a, d, i, g, u}. Figure 4.2 shows an FSM for this language. In the language, every

b is followed by exactly one a, every d is followed by exactly two i’s and every g

is followed by exactly three u’s. The task for the neural network is to predict the
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Figure 4.2: Finite state machine for the badigu language. Each circle represents one
state, and the double circle represents the initial state. Symbols inside circles are
the FSM’s outputs (prediction of the next symbol). With this specific grammar, all
states are acceptable terminal states. The transitions are shown by the arrows and
labeled by their corresponding input symbols.

next symbol given the preceding ones. Obviously, every a, i, and u can be predicted

perfectly, but b, d, and g are random and cannot be predicted. This data set consists

of 50 sequences of strings in the language with length from 5 to 50. The network is

given symbols one by one and has to predict the next symbol.

The second data set is generated from the Tomita #4 language [81]. The

language is defined as any string over the alphabet {0, 1} that does not have “000” as

a substring. The task for the neural network is to tell whether the symbols presented

up until each time step constitute a string in the language. This task is of interest

because the correct output is completely determined at each time step, while about

30% of the symbols in the badigu task cannot be predicted (the b, d, and g symbols

are random).

The third and fourth data sets are generated from the context-free grammars

(CFG) in Tables 4.1 and 4.2. CFG #1 was used previously in [21] to evaluate

recurrent network performance on CFGs. It is used here to evaluate the ability
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Table 4.1: Context Free Grammar #1

S → Simple | Right | Center
Simple → N V N [end]
Right → N V N who V N [end]
Center → N who N V V N [end]
N → n1|n2|n3|n4

V → v1|v2|v3|v4

Table 4.2: Context Free Grammar #2

S → NPsubj | NPobj [end]
NPsubj → Nsubj (70%) | Nsubj SRC (6%) | Nsubj ORC (9%) | Nsubj PPsubj (15%)
NPobj → Nobj (70%) | Nobj (6%) | Nobj (9%) | Nobj PPobj (15%)
SRC → that V NPobj

ORC → that Nsubj V
PPsubj → from NPsubj | with NPsubj

PPobj → from NPobj | with NPobj

Nsubj → Nfemale | Nmale

Nobj → Nanimal

Nfemale → women | girls | sisters
Nmale → men | boys | brothers
Nanimal → bats | giraffes | elephants | dogs | cats | mice
V → chase | see | swing | love | avoid | follow | hate | hit | eat | like

Table 4.3: Properties of Data Sets Used for Evaluation

data set No.symbols No.seq. Avg.length Network

badigu 6 50 25 6-2-6

Tomita #4 2 50 30 2-2-2

CFG #1 10 1000 4 10-4-10

CFG #2 26 1500 5 26-3-26
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of the algorithm on a relatively simple data set where the states and transitions

can be easily checked. CFG #2 is a large and difficult CFG used in [22, 23] to

evaluate recurrent networks and FSM extraction from them. While CFG #1 has

only 10 terminal symbols and simple production rules, CFG #2 is considerably more

complex. It has 26 terminal symbols and many more production rules with deeply

nested structures. However, all nouns are plural so subject-verb agreement rules

are not necessary. These two CFGs are chosen so that the extraction algorithm

can be evaluated on both simple and complex grammars. Table 4.3 summarizes the

sizes and characteristics of the four data sets. It also shows the size of the network

layers used in the experiments (e.g. 6-2-6 means 6 input, 2 hidden, and 6 output

units). Exploratory simulations with a larger number of hidden units produced no

qualitatively different results.

For all data sets, the settings for the experimental and control runs are identical

except for which error function is used, and are similar to those used with feedforward

networks in the preceding chapter, with some modifications:

1. Ten-fold cross validation scheme: Each data set is split randomly into 10

subsets of approximately equal size. Eight subsets were used for training,

one for validation, and one for measuring the accuracy of the networks. The

procedure is repeated 10 times, each time using a different subset as the testing

set. Each experiment is also run 10 times with different random initial weights.

The reported number of rules and accuracy are averages over all 100 runs.

Having so many runs ensures that any improvement comes from the method
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and not just by chance.

2. In each run, the experiments with and without the new error terms have the

same starting point, i.e., matched initial weights and data set division, to make

comparison maximally compatible.

3. RPROP with weight backtracking was set up to run for a maximum of 1000

epochs. The network with highest validation accuracy was saved for subsequent

FSM extraction.

4. A local one-hot encoding scheme is used to encode the input symbol. For

instance, let n be the size of the input symbol set. The ith symbol is encoded

as ~aI = (aI1 , aI2 , . . . , aIn) with aIk = 0.9 for k = i and aIk = 0.1 for k 6= i. For

CFG #2, aIk is encoded exactly as in [23] to make the results comparable.

Thus, aIk is encoded using 0.99 for k = i and 0.01 for k 6= i instead.

Fixing the values of α and β improperly during training either causes E2 to be

not effective (when β is too small), or E1 to be not effective with a large error E1 at

the end (β is too large). At the beginning, E1 is very large, hence α has to be small

so that the gradient from E1 does not drown out the gradient from E2. Conversely,

near the end of training, E1 is small, and thus α needs to be bigger to keep the

network error low. While using α and β is good for describing and calculating

∂E2/∂wji, a more practical way to control the contributions of E1 and E2 is used.

First, note that ∂E/∂wji = ∂E1/∂wji + ∂E2/∂wji where wji is some individual

weight. Let d1 and d2 be the mean of the magnitude of ∂E1/∂wji and ∂E2/∂wji
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respectively. It follows that d1 and d2 are two positive scalars that approximate the

contributions of E1 and E2 in the gradient ∂E/∂wji. Hence, the ratio d2/d1 changes

during training: it is very small at the beginning when E1 is large and becomes large

near the end when E1 is small. In order to keep E1 and E2’s contributions relatively

stable, this ratio is fixed to d2/d1 = γ during the training process. This can easily

be accomplished by scaling ∂E2/∂w in each training epoch. Conveniently, RPROP

only uses the sign of ∂E/wji instead of using both the sign and the magnitude as

other error backpropagation methods. As a result, the scaled ∂E1/∂wji + ∂E2/∂wji

can be readily used by RPROP without further normalization. The value of γ is set

to 0.9 for badigu and CFG #1, 0.5 for Tomita #4 and 1 for CFG #2 based on a few

pilot simulations.

The experiments in this section are implemented in C++ and run single

threaded on a Core i7 3.4 GHz CPU. The average time for each run ranges from 0.5

seconds (for Tomita #4) to 25 seconds (for CFG #2) depending on the data set and

experiment settings.

4.4 Results

4.4.1 An Illustrative Example

Here the hidden unit encodings learned by a two-hidden unit neural network for

the badigu problem is used to illustrate the approach. After training, the hidden unit

activation vector (aH1 , aH2) of the two hidden units for each time step is calculated.

This vector is an encoding of the current “state” of the network after seeing all
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previously presented symbols. Each state alone is sufficient to calculate the output

vector, which is the prediction of the next symbol. We are interested in how these

vectors are arranged in the hidden activation space when the new error term E2 is

used versus when it is not. During FSM extraction, these vectors are divided into

clusters, and each cluster is represented as one state of the FSM. Consequently, it is

desirable that there are as few as possible states in the FSM so that a human can

understand the FSM easily.

Figure 4.3a shows the hidden unit activation space after the network has

been trained with the regular sum of squared error function E1 used in standard

backpropagation. Note how the clusters spread through the interior regions of the

space in Figure 4.3a, as would be expected from the results in Chapter 3. While

the clusters are not circular, circles are added to the plot only to make it easy to

see which activation vectors belong to which clusters. In addition, the centers of

the circles are the means of the vectors belonging to the clusters, while the radius

is the maximum distance to the vector furthest from the center. As a result, some

circles overlap, but this does not mean that the clusters do. Furthermore, some

clusters contain vectors that spread out more so the circles are bigger. In Figure 4.3a,

there are 12 circles representing the 12 clusters/states the FSM extraction algorithm

found using standard backpropagation. Some of the states are quite close together

as if they could be merged into one. Nonetheless, none of them could, including the

closest ones, because either (1) given the same input symbol to the two states, the

FSM would move to different states, or (2) the hidden activation vectors belonging
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Figure 4.3: A typical hidden unit activation vectors throughout all time steps for the
badigu problem after training with (a) regular backpropagation (E = E1) versus (b)
the same error function but augmented to include the new error term (E = E1 +E2).
Note that the clusters are not circular, circles are only added for illustrative purposes
to delineate the clusters.
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Figure 4.4: Hidden unit activation vectors throughout all time steps for the badigu
problem after training with the augmented error function E1 + E2. The 7 clusters
delineated by the 7 circles represent the 7 states of the extracted FSM. The arrows
connecting the circles denotes the transitions in the FSM.

to the two states produce different symbols at the output. These situations are used

as the preconditions for Step 4 and Step 5 of the FSM extraction algorithm described

in Section 4.2.

Figure 4.3b shows the hidden unit activation space after the network with

initial weights identical to those used in the previous example has been trained with

the help of E2. The new error term E2 pushed the activations apart while E1 keeps

the activations that should be together close to one another. Clearly, the combined

effect is that these activation vectors are automatically grouped into fewer very tight

and separated clusters. The number of clusters has been reduced from 12 to 7 and

most of the vectors are almost identical so they are on top of each other in the plots

and were represented by just a few crosses. Further, unlike when E1 is used alone,

clusters are now preferentially located along boundaries (contrast Figure 4.3a with
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Figure 4.3b).

It is important to note the difference between this approach and the common

previous approaches that force hidden activation vectors to be binary values [45, 86].

While most activations have 0/1 components, many of them have other components

not equal to 0/1. Hence, only two hidden units are necessary to encode the solution.

The binary vector approaches would need more hidden units to encode 7 states.

Even so, the encoding scheme is very restrictive. The approach presented in this

work allows more efficient and flexible encodings at the hidden layers.

In Figure 4.4, arrows showing the state transition graph corresponding to

Figure 4.3b are added. The extracted FSM is isomorphic to the source FSM shown

in Figure 4.2. The big cluster near (0, 0) represents the initial state, which is the

only state from which the one cannot predict the next symbol. But the dynamics of

neural networks require that the network has to attempt to predict some output the

best it can. Hence, there are multiple subclusters inside this cluster that actually

predict either b, d, or g, although with low accuracy. The path through the three

clusters on the bottom right, the clusters on the top left, and the single cluster on

the top right represent the paths that predicts guuu, dii, and ba respectively.

Table 4.4: Regular versus Modified Backpropagation (Averaged over 100 Runs)

data set
E1/N −2E2/N

2

regular new regular new

badigu 0.185 0.197 0.613 0.729 (+19%)

Tomita #4 0.003 0.001 0.576 0.650 (+13%)

CFG #1 0.413 0.420 0.605 1.061 (+75%)

CFG #2 0.752 0.766 0.823 1.000 (+22%)
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Figure 4.5: Mean squared distance and mean squared error of networks trained by
regular and modified backpropagation.

4.4.2 Systematic Evaluation

Table 4.4 and Figure 4.5 show the effect of the new error term E2 on the

network’s average testing error (E1/N) and the average squared distances among

hidden unit activation vectors (−2E2/N
2) where N is the total length of all training

sequences. A network’s average testing error and average squared distance between

hidden activation vectors are shown after training with regular backpropagation

(control condition) versus the new combined error term (experimental condition).

Since E2 is 1/2 of the negated sum of squared distances between each pair (total N2

pairs) of activations, −2E2/N
2 is the average squared distance between each pair.

The regular columns show results when the networks were trained with “regular”

backpropagation using E = E1. The new columns show results with E = E1 + E2.

These data show that activation pattern distances were increased up to 75% with

only a small change in network errors. The small change in E1 again supports the
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hypothesis that it is possible to make error backpropagation learn a different encoding

that satisfies other criteria (smaller E2) while still maintaining near minimum error

at the output layer.

Table 4.5: Means (σ) of Number of States and Transitions over 100 Runs

Data set
No. of states No. of transitions

regular new regular new

badigu 115.76 (91.9) 9.44 (6.3) 162.09 (119.2) 18.15 (9.2)

Tomita #4 18.45 (24.3) 6.63 (4.4) 34.00 (42.1) 13.05 (8.8)

CFG #1 72.05 (71.8) 7.36 (4.8) 198.00 (167.4) 28.80 (15.8)

CFG #2 73.53 (69.3) 6.20 (2.6) 206.89 (156.6) 44.60 (11.8)

Figure 4.6: Mean number of states and transitions of finite state machines extracted
from networks trained by regular and modified backpropagation.

Table 4.5 and Figure 4.6 present the experimental results concerning FSM

extraction. The new error term helped to reduce the number of states and the

standard deviations significantly. With regular error backpropagation (E1), the
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number of states of the extracted FSM is sometimes very large because the hidden

activation space is very distributed, and hidden activation vectors encoding different

outputs are close together. The latter problem makes it very difficult to separate

these vectors into distinct clusters. As a result, the control algorithm has to partition

the hidden activation space into large numbers of regions. In other words, the FSM

has to have a lot of states. This problem has been reported previously by others in

which the number of states of FSMs extracted for the same problem varied from 6

to 190 [23]. Remarkably, using data generated using the same method, the FSM

extraction algorithm presented in this work produced FSMs with an average of 6.2

states, very close to 6.

The large standard deviations in Table 4.5 for the regular/control runs raise

the question of whether the reduction in average number of states is statistically

significant. For this purpose, paired t-tests are used using a standard significance

level of 0.05. Bonferroni correction [20] for 4 tests requires the significance to be

defined as p < 0.05/4 = 0.0125. The corresponding p-values for the four data sets are

all very low and well below 0.0125. The largest p-value is only 5.8× 10−6 for Tomita

#4, and the smallest p-value is 2.2× 10−16 for badigu. These tests confirmed that

the improvement from E2 is statistically significant. Large standard deviations in

the control experiments are consistent with past experience of FSM extraction from

recurrent networks [23, 38]. Table 4.5 (right two columns) shows that the numbers

of transitions and the standard deviations are also markedly reduced by using E2.

For badigu and Tomita #4 data sets, the data was generated from simple human-
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Figure 4.7: Extracted FSM for data set Tomita #4. The circles and arrows represent
the states and transitions of the FSM respectively. The state with the double circle
is the initial state. At each state, the network outputs a symbol A(ccept) or R(eject)
to indicate whether the input so far belongs to or does not, respectively, the Tomita
#4 language. Those symbols are shown on the FSM’s node labels. The labels on
the arrows denote the input symbols for the transitions.

designed FSMs. Moreover, they have been studied under FSM extraction before in

[17, 37]. These earlier studies found that the simplest FSMs, the ones with fewest

states and transitions, are the original source FSMs. The FSM extraction algorithm

presented in this work also found these FSMs in the best runs. The extracted

FSMs are shown in Figure 4.4 and Figure 4.7. To the best of my knowledge, while

previous work has been able to extract the simplest FSMs in the reported best runs,

none has reported extensive experiments with multiple runs using different data

partitioning and initial weights as is done here. This FSM extraction algorithm

performs consistently well on 100 runs with 10-fold cross validation and different

initial weights. The average number of states for the two badigu and Tomita #4

problems (9.44 and 6.63) are very close to the number of states of the original source

FSMs (7 and 4).

Even though data set CFG #1 has been used previously to study the perfor-
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mance of recurrent networks [21, 22], I am not aware of any work that evaluated

FSM extraction on it. The data set is interesting because a huge number of sentences

could be generated from very simple production rules. Consequently, this is difficult

N

en d

n1 ,n2 ,n3 ,n4

V

V

v1,v2,v3,v4

v1,v2,v3,v4

N

who

N

n1 ,n2 ,n3 ,n4who

n1 ,n2 ,n3 ,n4

Figure 4.8: Extracted FSM for data set CFG #1. The circles and arrows represent
the states and transitions of the FSM respectively. The state with the double circle
is the initial state. The symbol on each node label indicates the prediction of the
network/FSM about the next word type at the corresponding state. The labels on
the arrows denote the input symbols for the transitions.

for a simple recurrent neural network to learn because the hidden layer has to encode

a lot of different network states. On the other hand, the extracted rules should be

simple and easy to check for correctness because there are only three main types

of sentences: N-V-N-end, N-V-N-who-V-N-end, and N-who-N-V-V-N-end. Figure

4.8 shows one extracted FSM from CFG #1 with only 6 states. Moreover, all three

aforementioned sentence types can be traced as three paths on this FSM. It appears

that this is the FSM with fewest states that can mimic the dynamics of CFG #1.
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Experimental results in Table 4.5 show that E2 helped reduced the average number

of FSM states from 72.05 to 7.36, which is close to 6.

N
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boys ,bro thers ,g i r l s

m e n , s i s t e r s , w o m e n

N
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e n d t h a t

boys ,bro thers ,g i r l s

m e n , s i s t e r s , w o m e n

a v o i d , c h a s e , e a t

fol low,hate ,hi t

l ike , love ,see , swing

boys ,bro thers ,g i r l s

m e n , s i s t e r s , w o m e n

 t h a t

Figure 4.9: Extracted FSM for data set CFG #2. Same notation as in Figure 4.8.

Figure 4.9 shows an extracted FSM for CFG #2. The methods in creating

the data sets used for training and extracting FSMs in [23] are followed exactly in

order to make the results comparable. That is, the network is trained on the full

grammar in Table 4.2, while the extraction in this figure is done on a reduced test

set consisting of sentences in the form N-V-N-that-N-V-end. In addition, instead

of labeling the FSM’s nodes with the predictions of the exact words, the nodes are

labeled with the word types {N, V, end, that}. For instance, a node is labeled with

N if the corresponding state only predicts nouns from the grammar in Table 4.2.

Note that if a state predicted both N and V, it would have been split by Step 5 of

the extraction algorithm.
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Figure 4.9 shows the extracted FSM from one run. The FSM is very comparable

to the 6-state FSM found in [23] while having only 5 states. It gives us a very clear

picture of what was learned from the data. The network learned that the initial word

of a sentence was a noun N as shown in the initial state. It is always followed by a

V, a N, and a that. Then it goes back to another N-V. Here the network predicts

that the sentence will continue with another noun, while a sentence in the test set

should end here. This is because there are different ways a sentence continues at

this point in the training set: it can either continue with another N or it can end.

From the FSM, we know that the network learned that a N is more likely to appear

next. But the FSM also accepts an end at that state and begins a new sentence

by predicting a N right after that. In summary, the FSM successfully modeled the

dynamics in the test set. Since the design of the test set (also the data set used

for FSM extraction) in [23] requires that the set consists of only one sentence form

N-V-N-that-N-V-end, the extracted FSM is much simpler than if it were extracted

from the full training set. The average results showed that E2 consistently helped

reduce the average number of states from 73.53 to 6.2.

While Figure 4.9 shows 6 transitions, Table 4.5 shows that the average number

of transitions for CFG #2 is 44.6, which is much higher than 6. The reason is that

in Figure 4.9, similar transitions are grouped together and shown as one arrow (but

with very long labels), hence there are actually many transitions in the figure.

Out of 100 runs, 27 produced the best FSMs with only 5 states. While these

FSMs are better than results reported in earlier studies (6 states) [23], they still
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Figure 4.10: Hand-design minimal FSM for CFG #2. Same notation as in Figure
4.8.

have one state more than the smallest FSM a human can design by hand as shown

in Figure 4.10. The only difference between the extracted FSM in Figure 4.9 and

the optimal FSM in Figure 4.10 is the initial state. The extracted FSM uses the

initial state as the beginning of a sentence and does not reuse it for the beginning

of subsequent sentences. While it is possible for a human to recognize that the

two states at the top and bottom of Figure 4.9 can be merged into one to make

a simpler net, Figure 4.9 allows us to learn the way a simple recurrent network

organizes its hidden layer representation, namely, using two different regions of the

space for the beginnings of sentences. This limitation is likely due to the fact that

a simple recurrent network’s starting state is a fixed, unlearnable initial hidden

activation vector, while a learned state at the beginning of a sentence must satisfy

three conditions: (1) be the result of the network activation when the end input is

given to the network while the network state is at the end of a sentence, (2) prepare

the network to predict a new sentence, and (3) predict a noun. The network must
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have been unable to reuse the given fixed initial hidden activation vector for the

beginnings of sentences.

4.5 Discussion

In this chapter, a method to improve the extraction of finite state machines from

simple recurrent backpropagation networks after training by adding an additional

term E2 to the error function is presented. This new term encourages the formation

of a more separable internal representation at the hidden layer, and is readily

incorporated into the training process while still retaining local computations. This

method is superior to similar approaches in the past in that it does not force the

hidden activation vectors to be binary, thus allowing more flexible encoding at the

hidden layer and making the method applicable to many complex problems.

Extensive experiments with four data sets, two from regular languages and two

from context-free languages, showed that this approach consistently and substantially

reduces the number of states and number of transitions of the extracted FSMs without

sacrificing accuracy. While previous studies have been able to extract optimal FSMs

from trained networks, they only showed the results of a few chosen runs, many of

which apparently produced large, complex FSMs. To the best of my knowledge, this

work is the first to demonstrate the consistent extraction of small, understandable

FSMs across numerous runs. This is significant because it shows that this method

performs well across different initial weights and data divisions, and shows that the

improved results are not just the result of the best run.
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As with many approaches using penalty terms, there is a trade-off in terms of

parameter adjustments. Too large a value of γ, the term to control the contribution

of E1 and E2, will make the activation patterns very separated and good for FSM

extraction, but it cannot keep the training error low enough. The opposite holds for

too small a value of γ. The problem is to influence the training enough to produce

the desired separation without compromising E1 for accuracy. Unfortunately, no

single γ value has been found to work well across all data sets. Hence, it remains a

parameter that has to be determined experimentally. How to optimize γ or make it

adaptive is an important issue for future study.
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Chapter 5

Finite State Machine Extraction from Echo State Networks

In this chapter, the term E2 and the learning rule used in the preceding chapter

are modified to work on echo state networks (ESNs). Recall that ESNs consist of a

hidden layer, the reservoir, whose internal nodes are recurrently connected (see Figure

5.1). These recurrent intra-reservoir connections are sparse, randomly generated, and

have random fixed weights that do not change during learning. There is typically no

direct connection from the input layer to the output layer. Only the weights from

the reservoir to the output layer are trained, and this can be done very efficiently

by linear regression. ESNs have been used successfully in many applications with

temporal data, such as control problems and predicting the next items of sequences

Figure 5.1: A small but otherwise typical echo state network (ESN) with 3 input units
and 2 output units. Connections from input units to the reservoir and connections
inside the reservoir are generated randomly and sparsely. The reservoir is fully
connected to the output units only. Only these latter connections are trained so that
the output comes to match the target training signals.
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[42, 52].

Modifications are needed to the methods developed in previous chapters because

ESNs are markedly different from simple recurrent networks in several aspects. First,

recall that with ESNs, the regular sum of squared error E1 is usually not used for

training the weights from the input layer to the hidden layer and the weights between

hidden units (Section 2.3), while E1 is used for training all weights in simple recurrent

networks. Thus, the term E2 can only be used by itself without the help of E1.

Second, there are large numbers of hidden units in an ESN, usually 100 or higher,

compared to only a few in simple recurrent networks. This raises several issues,

such as: (1) how effective E2 can be when pushing the very high-dimensional hidden

activation pattern vectors away from each other; (2) whether the more separated

activation patterns still cluster into groups that represent the “states” for FSMs;

and (3) whether a K-means algorithm can still extract these clusters effectively.

Furthermore, the “echo state” dynamics of ESNs is different from simple recurrent

networks’ dynamics. For these reasons, this chapter begins with a reexamination of

E2 and the derivation of a learning rule to increase E2 in ESN. A novel method for

applying the learning rule to ESNs is then presented. The tests and results needed

to verify the effectiveness of E2 in increasing the separability of the hidden unit

activation patterns are also discussed. Finally, the computational experiment results

of ESNs on the same data sets used in Section 4.3 are presented and analyzed. These

experiments show the effectiveness of E2 by comparing the FSM extraction result

with regular ESNs, ESNs trained with E2, simple recurrent networks, and a new

architecture ESN+ developed by others [5, 22].
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5.1 E2 Derivation and Algorithm

5.1.1 The Derivation

In this section, we are concerned with ESNs as described in Section 2.3. Figure

5.1 show a small but otherwise typical echo state networks with 3 input units, 2

output units, fully connected input → hidden and hidden → output connections, and

sparse inter-reservoir hidden → hidden connections. There is no direct connection

from the input layer to the output layer. While some variants of ESNs have optional

direct connections from the input layer to the output layer, the addition of these

connections does not affect the derivation below, and the methods described here

will work the same. In the same way as with recurrent networks, ESNs are trained

with temporal sequences: at each time step, an input pattern and a corresponding

target vector (the desired correct output) are presented. If the training data has

multiple input (and corresponding target) sequences, the sequences are presented

successively.

We now consider how learning in an ESN can be modified so as to produce

more highly separated, but hopefully still clustered, sets of activity patterns over an

ESN’s reservoir. First, E2 is defined similarly to E2 in previous chapters:

E2 = −1

2

N∑
p=1

N∑
q=1

∑
k∈hidden

(apHk
− aqHk

)2

where apHk
is the activation of the kth hidden unit at time step p , aqHk

is analogous

for time step q, and N is the total number of time steps over all input sequences. For

instance, if the training data has two input sequences with length N1 and N2, then

98



N = N1+N2, and p, q ∈ {1 . . . N}. Hence, there are N hidden unit activation vectors

corresponding to N time steps, and E2 is the sum over all (N2/2) squared Euclidean

distances between these N hidden unit activation vectors. Let E2 =
∑

pE
p
2 where:

Ep
2 = −1

2

N∑
q=1

∑
k∈hidden

(apHk
− aqHk

)2

Unlike with feedforward and simple recurrent networks, aHk
of ESNs are

calculated differently as in Equation 2.3:

atHj
= σ(int

Hj
) = σ

( ∑
k∈hidden

wres
jk a

t−1
Hk

+
∑

k∈input

win
jkx

t
k

)
(5.1)

where wres
jk and win

jk are the intra-reservoir weights between hidden units in the

reservoir and the weights from the input layer to the reservoir, respectively, and

xtk is the value of the kth input unit at time step t. We need to calculate
∂Ep

2

∂wres
ji

for

i ∈ hidden and
∂Ep

2

∂win
ji

for i ∈ input. This derivation follows, and is similarly to that

in Section 3.1 until Equation 3.2. Now, for i ∈ input, we have:

∂apHj

∂win
ji

=
∂(σ(inp

Hj
)

∂win
ji

=
dσ(inp

Hj
)

dinp
Hj

∂inp
Hj

∂win
ji

= apHj
(1− apHj

)

( ∑
k∈hidden

∂wres
jk a

p−1
Hk

∂win
ji

+
∑

k∈input

∂win
jkx

p
k

∂win
ji

)

We have
∑

k∈input
∂win

jkx
p
i

∂win
ji

= xpi because
∂win

jk

∂win
ji

= 0 with i 6= k. Note that xpi is a

constant because it is the input at time step p. It is typical not to propagate the error

beyond one time step [40], so we can assume ap−1Hk
is a constant here. Consequently,∑

k∈hidden
∂wres

jk ap−1
Hk

∂win
ji

= 0 since wres
ji is always treated as a constant when doing a partial
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derivative with respect to win
ji . Thus, for weights between input and hidden nodes:

∂apHj

∂win
ji

= apHj
(1− apHj

)xpi

Combined with Equation 3.2, we have:

∂Ep
2

∂win
ji

= −N(apHj
− aHj

)apHj
(1− apHj

)xpi (5.2)

This result is identical to Equation 3.1 for simple recurrent networks in the

preceding chapter. Turning to
∂Ep

2

∂wres
ji

for i ∈ hidden, we have:

∂apHj

∂wres
ji

=
∂(σ(inp

Hj
)

∂wres
ji

(5.3)

=
dσ(inp

Hj
)

dinp
Hj

∂inp
Hj

∂wres
ji

= apHj
(1− apHj

)

( ∑
k∈hidden

∂wres
jk a

p−1
Hk

∂wres
ji

+
∑

k∈input

∂win
jkx

p
i

∂wres
ji

)
(5.4)

We have
∑

k∈hidden
∂wres

jk ap−1
Hk

∂wres
ji

= ap−1Hi
because

∂wres
jk

∂wres
ji

= 1 with i = k and
∂wres

jk

∂wres
ji

= 0

otherwise. Also,
∑

k∈input
∂win

jkx
p
i

∂wres
ji

= 0 because the numerator does not have any wres
ji

component. Thus,

∂apHj

∂wres
ji

= apHj
(1− apHj

)ap−1Hi

Combined with Equation 3.2, we have:

∂Ep
2

∂wres
ji

= −N(apHj
− aHj

)apHj
(1− apHj

)ap−1Hi
(5.5)

Equation 5.5 is slightly different from its counterpart in feedforward networks

in that the last term on the right side is ap−1Hi
, the activation of the hidden unit at the
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preceding time step; whereas the last term is the input attribute xpi for feedforward

networks. As in previous chapters, we only need aHj
, which can be computed and

stored locally at the jth hidden unit, in addition to the activations of the units and

its inputs in order to compute ∂E2

∂wji
and ∂E2

∂win
ji

. This local property is highly desired in

neural network training.

It is important to note that for ESNs, the regular error function E1 is only

used to train the weights from the reservoir to the output layer, while win
ji and wres

ji

are initialized randomly but are not trained with E1. This allows ESNs to be trained

efficiently by linear regression because only one layer of weights has to be trained,

i.e., there is no propagation of error signals. Thus, ∂E2

∂wres
ji

and ∂E2

∂win
ji

are the only

gradients used for training win
ji and wres

ji . In addition, Equations 5.2 and 5.5 show

that the calculation of the gradients does not involve looking at the target signal

T t. Therefore, the process of increasing E2 of an ESN is effectively unsupervised

learning. I use “unsupervised” here because E1, which measures performance error,

is not used.

Not training with E1 presents an important problem with this method: wres
ji

and win
ji can potentially grow very large, thus making the network unstable and not

amenable to generalizing well. Indeed, having large weights has been one of the main

sources of poor generalization, and there has been a lot of work (e.g., regularization,

resulting in weight decay) to tackle the problem [46, 63]. Exploratory experiments

confirmed that wres
ji and win

ji grew large very quickly. Therefore, weight decay as

described in Section 3.2 (paragraph 3) is used to keep the magnitude of the weights
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relatively small based on an additional error term that is to be minimized:

Ed =
λ

2

∑
j∈hidden

∑
i∈input

(win
ji )

2 +
ϕ

2

∑
j∈hidden

∑
i∈hidden

(wres
ji )2

where λ and ϕ are coefficients determining the amount of decay. It can be easily

calculated that ∂Ed

∂win
ji

= λwin
ji and ∂Ed

∂wres
ji

= ϕwres
ji . The combined gradient of E with

respect to win
ji and wres

ji are:

∂Ep
2

∂win
ji

= −N(apHj
− aHj

)apHj
(1− apHj

)xpi + λwin
ji

∂Ep
2

∂wres
ji

= −N(apHj
− aHj

)apHj
(1− apHj

)ap−1Hi
+ ϕwres

ji

Besides the sigmoid function, tanh is another widely used activation function for

ESNs. The derivation above also works with the tanh activation function, with only a

small change from apHj
(1−apHj

) to (1−(apHj
)2) because d(tanh(x))/dx = (1−tanh2(x)).

So, if the hidden units in the reservoir use the tanh activation functions:

∂Ep
2

∂win
ji

= −N(apHj
− aHj

)(1− (apHj
)2)xpi

∂Ep
2

∂wres
ji

= −N(apHj
− aHj

)(1− (apHj
)2)ap−1Hi

However, in the remainder of this chapter, only the sigmoid activation is used to be

consistent and comparable with previous chapters and relevant work by others.

5.1.2 Algorithm to Decrease E2 in an ESN

We use gradient descent to decrease E2 (i.e., to increase the separation of

reservoir patterns) by making the weight changes ∆win
ji = −η ∂E2

∂win
ji

and ∆wres
ji =

−η ∂E2

∂wres
ji

. The algorithm can be summarized as follows:
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Initialize win and wres randomly

Scale wres so that ρ(wres) is equal to a specified spectral radius

for iteration = 1 to num iteration do

calculate aHj
for j ∈ reservoir

for j ∈ reservoir, i ∈ input, t time steps do

∆win
ji = ηN(atHj

− aHj
)atHj

(1− atHj
)xti − λwin

ji

win
ji = win

ji + ∆win
ji

∆wres
ji = ηN(atHj

− aHj
)atHj

(1− atHj
)at−1Hi

− ϕwres
ji *

wres
ji = wres

ji + ∆wres
ji *

end for

end for

Pilot experiments with both data sets CFG #1 and CFG #2 found that changes

made to wres
ji by the algorithm only caused negligible quantitative change in E2

and finite state machine extraction. A possible explanation is that the spectral

radius scaling procedure has made the changes ineffective. In particular, recall that

in order for ESNs to possess the “echo” state property, the spectral radius ρ(W )

(the largest eigenvalue) of the reservoir weight matrix has to be smaller than 1,

and the closer that the spectral radius is to 1 the longer in time that the reservoir

dynamics “remembers”. Besides, we have ρ(kW ) = kρ(W ) where k is a scalar

constant. Therefore, this property is usually enforced by scaling the weights between

units in the reservoirs so that the spectral radius is always equal to a chosen constant,

commonly in [0.8, 0.95]. In regular ESNs, this procedure is only used for initialization
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because the intra-reservoir weights are not changed. Here, the intra-reservoir weights

are changed by this algorithm, so the procedure has to be applied either after each

iteration, or after all iterations have been complete in order to maintain the “echo”

state property of the networks. Neither of these methods was effective for E2 and

FSM extraction. Hence, the final algorithm is modified so that it does not change

wres
ji , i.e. the two lines marked with a (*) are removed. This also fits with the

traditional spirit of ESNs of not changing wres
ji at all during learning.

The algorithm starts by initializing the weights from the input layer to the

reservoir and the weights between units inside the reservoir according to typical ESN

initialization methods. Then, for each iteration, the average activations of units

in the reservoir aHj
are computed and used to calculate the weight change ∆win

ji

for weight win
ji of the connection from the ith input unit to the jth hidden unit in

the reservoir using Equation 5.2. The weight change ∆win
ji is then augmented with

the weight decay. In this weight change, η is the learning rate and λ is the weight

decay coefficient. As with other gradient descent methods, a large learning rate η

makes learning fast but unstable while a small learning rate makes learning occur

too slowly. Experimental results show that setting η = 0.01, λ ∈ {0.2, 0.4} (data

set dependent), and num iteration = 60 generally gives a good balance between

learning speed and quality of the final result. The parameter num iteration was

determined using pilot runs by observing the performance of the network and FSM

extraction when successive iterations were applied. If num iteration is too small,

the algorithm does not decrease E2 enough, and thus extracts large FSMs. Setting

num iteration larger than 60 does not improve the results further, and in some cases,
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reduces the accuracy rates at the outputs. This behavior is largely similar to the

tradeoff of α and β for feedforward networks and γ for simple recurrent networks.

5.2 Experimental Methods

This section describes the experimental methods used to evaluate the effec-

tiveness of training ESNs with E2. First, it is pointed out that the two data sets

CFG #1 and CFG #2 already used in the previous chapter can be reused, and that

allows one to compare the results here with simple recurrent network results. Next,

the experimental setting is presented. Lastly, a method to normalize E2 for better

quantitative evaluation is discussed and explained.

The main experiment compares FSM extraction from regular ESNs (control

condition) versus from ESNs trained with E2 (experimental condition). The hypoth-

esis is that it is possible to make ESNs use a different encoding at the reservoir that

facilitates the extraction of simpler FSMs, while maintaining the performance in

terms of sum of squared error at the output layer.

5.2.1 Data Sets

The same FSM extraction procedure as that used in Section 4.2 can be used to

extract FSMs from ESNs because ESNs and simple recurrent networks have similar

dynamics. Namely, the ESNs’ hidden activation vectors also represent the internal

reservoir’ “state” of the ESN, and both types of networks process temporal sequences.

For these reasons, it would be logical to use the same data sets already used to
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evaluate E2 on simple recurrent networks to evaluate E2 on ESNs. However, the

data sets badigu and Tomita #4 cannot be used with ESNs for several reasons. First,

I discovered that the extraction algorithm is already able to consistently extract

FSMs with only 7 states, the minimal number of states as discussed in Section

4.3, from regular ESNs (control condition, 30-unit reservoir, sum of squared error

is similar to that reported in the same section). Thus, E2 would not be able to

improve any further using the methods derived above. This is a surprising result:

how can randomly initialized networks have a perfect internal representation space?

The reason for this lies in one important property of ESNs: the reservoir state (the

hidden unit activation vector) of an ESN is completely determined by a long enough

sequence of input, and is not dependent on the initial state. For instance, the states

of an ESN after receiving two sequences:

• d1, d2, . . . , dk, s1, s2, . . . , sm

• d′1, d′2, . . . , d′k, s1, s2, . . . , sm

are identical if m is large enough. Therefore, the number of ESN states is limited to

the number of these long-enough s1, . . . , sm sequences. For the badigu data set, it is

likely that the simplicity of the language allows the reservoir states to be completely

determined by relatively short sequences. In addition, it is obvious that there are only

a limited number of short sequences because strings in this language are comprised of

only three subsequences: ba, dii, and guuu. Hence, there are only a limited number

of reservoir states. In brief, the number of states of an ESN with the badigu data set

is small by its own nature.
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The Tomita #4 data set is unsuitable for ESN learning because the correctness

of the predictions required by this data set rely on the complete input strings (i.e.,

whether the string has “000” in it or not) whereas ESNs have to ignore the beginnings

which may or may not contain the string “000”. Thus, ESNs fail to process this data

set correctly. It is however possible to modify the sequence generation process so

that no string “000” occurs in the ignored prefixes of the sequences so that a network

is always in A(ccept) states after it has processed the beginnings. In that case, the

reasoning in the preceding paragraph for the data set badigu also holds true for this

data set, hence the number of states of an ESN with this data set would also be

small by its own nature.

For these reasons, only CFG #1 and CFG #2 are used to evaluate FSM

extraction from ESNs trained with and without E2. As these two data sets are much

more difficult than badigu and Tomita #4, the omission of badigu and Tomita #4

does not significantly weaken the evaluation.

5.2.2 Experimental Settings

As presented in Section 2.3, the ESN training algorithm is a linear regression

problem that does not utilize a validation set. Hence, 10-fold cross validation is not

used as in the previous two chapters. However, it is necessary to run the experiments

multiple times under different condition to ensure that any difference in the control

condition results and the experimental condition results are not due to chance. For

that reason, cross validation is replaced by using 10 different sets of training and
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separate test data created randomly with different random seeds. Each set of data

was given to 10 different randomly generated ESNs (i.e., random initial weights).

Furthermore, to ensure the validity of the comparisons, identical starting points

(initial random weights) and data are given to the corresponding control and the

experimental runs.

For all data sets, the settings for the experimental and control runs are identical

except for the particular learning algorithm to be tested in each experiment:

• Reservoir connectivity is 15%: Each unit in the reservoir connects randomly to

approximately 15% other units.

• 50 and 100 units are used in the reservoir for CFG #1 and CFG #2, respectively.

• λ is set to 0.2 and 0.4 for CFG #1 and CFG #2, respectively.

• η is set to 0.01.

• num iteration is set to 60.

• Spectral radius is scaled to 0.95.

• 20 time steps at the beginning of the training sequences are used to stabilize

the network before training commences.

These are typical settings employed by previous work [39, 52].

The experiments are implemented in C++ and run single threaded on a Core i7

3.4 GHz CPU. The average time for each run ranges from 1 to 2 minutes depending

on the data set and experiment settings. PCA analysis (Section 5.3.2.1) is done
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in Octave [16], an open-source numerical computation software environment very

similar to Matlab.

5.2.3 E2 Normalization

In the following experimental section, we need a quantitative measure to

compare the separability of the hidden unit activation patterns. Unlike in the

preceding chapters with feedforward and recurrent networks where E2 was used

both to drive the algorithm and to evaluate the separability of the hidden unit

activation patterns, E2 alone cannot be used to quantify the separability of hidden

unit activation patterns in ESNs because it is possible to decrease E2 without making

the patterns more amenable to clustering. As an example, consider Figure 5.2 that

shows two 2-dimensional made-up hidden unit activation space patterns with 16

hidden activation vectors each. The activations are limited to [0,1] because of the
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Figure 5.2: Two sets of simple made-up hidden unit activation space patterns with
two hidden units. Each cross represents one hidden unit activation pattern. While
the value of E2 for the patterns on the right is much smaller (more negative) than
the value for the space on the left, it is equally difficult to cluster the two spaces
because all patterns are equally distributed.
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sigmoid activation function. Obviously, the one on the right has a smaller E2 (i.e.,

a larger sum of squared distance, since E2 is defined as the negation of the sum)

because the vectors are much further from each other. However, from a clustering

perspective, the one on the right is as difficult to cluster as the one on the left

because it also has 16 evenly distributed points. In other words, the one on the right

is not qualitatively better than the one on the left in terms of how distributed or

separated the activations are. As a result, if a method only scales the space so that

the activations are closer to the boundaries, it would reduce E2 without making the

space any better. For that reason, E2 alone is not a good measure for how separated

an activation space is. In this section, I will use a measure called normalized E2,

designated E ′2, to quantitatively assess how amenable to clustering a set of activity

patterns are in the hidden activation space. In order to compute E ′2, the hidden

activation vectors’ components are first linearly scaled so that each component’s

maximum and minimum value is 1 and 0, respectively. Next, E ′2 is calculated as the

negation of the sum of squared distances between these scaled vectors. Thus, E ′2 is

invariant to scaling, i.e. if an algorithm only scales the hidden activation patterns

evenly similar to what is shown in Figure 5.2, it would make no change to E ′2.

Being a gradient descent-based method, the algorithm that reduces E2 presented

in this work changes the weights in any way that reduces E2; hence, it would: (1)

make the activation vectors further away from each other; and (2) scale the activation

vectors as discussed above. Hence, the quantitative reduction in E2 reflects the result

of both (1) and (2), while we are only interested in how much the activation vectors

are further apart (1). In contrast, E ′2 allows us to assess quantitatively how effective
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the algorithm is in accomplishing (1) alone.

Note that this was not a problem with feedforward networks (Chapter 3) and

simple recurrent networks (Chapter 4) because E1 was used at the same time E2

was used to keep the activation patterns together. Namely, if a certain method

only scales to make the activation patterns closer to the boundaries, the sum of

squared error E1 would grow very large. Therefore, it was not necessary to use E ′2

in Chapters 3 and 4.

5.3 Results

This section first presents the main experiment comparing FSM extraction

from regular ESNs (control condition) versus from equivalent ESNs trained with

E2 (experimental condition). Next, a battery of tests and analyses are presented

to verify that the decrease in E2 actually results in improving the separability into

clusters of the activity patterns in the hidden activation space. These results are

also compared and contrasted with results of extracting FSMs from a variant of ESN

called ESN+ [22].

Table 5.1: E1 and E2 of Regular versus Modified ESN (Averaged over 100 Runs)

Data set
E1/N −2E ′2/N

2

regular new regular new

CFG #1 0.417 0.410 9.132 12.383 (+36%)

CFG #2 0.904 0.835 14.478 22.165 (+53%)
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5.3.1 Regular ESN versus ESN with E2

Figure 5.3: Mean squared distance and mean squared error of regular ESNs and
ESNs trained with E2.

Table 5.1 and Figure 5.3 show the effects of the new error term E2 on the

network’s average testing error (E1/N) and the average squared distances among

hidden unit activation vectors (−2E2/N
2) where N is the total number of time steps

of all training sequences. A network’s average testing error and average squared

distance between hidden activation vectors are shown after training regular ESNs

(control condition) versus after training ESNs improved by E2 (experimental or

“new” condition). Both sets of experiments use the same learning rate η = 0.01 and

are run for 60 epochs. Since E2 is 1/2 of the negated sum of squared distances

between each pair (total N2 pairs) of activations, −2E2/N
2 is the average squared

distance between each pair. The regular columns show results with regular ESNs.

The new columns show results with ESNs augmented with E2. These data show that

activation pattern distances were increased up to 53% with only a small change in
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network errors for CFG #1, and a notable 9% reduction in error for CFG #2 from

0.904 to 0.835. Paired t-tests found that all changes in Table 5.1 are statistically

significant (p-value < 2.2 × 10−16). The small change in E1 for CFG #1 and the

reduction of E1 for CFG #2 support the hypothesis that it is possible to make error

backpropagation learn a different encoding that satisfies other criteria (smaller E2)

while still maintaining near minimum error at the output layer.

The improvement in E1 for CFG #2 is completely unexpected. It is the first

experiment in which modifying E2 has caused any statistically significant changes in

E1 (paired t-test gives p < 2.2× 10−16). To understand this, we compare the mean

E1/N for regular ESNs (0.904) with mean E1/N for simple recurrent networks in

Table 4.4 (0.752). It is clear that regular ESNs perform worse than simple recurrent

networks in terms of sum of squared errors. The poor performance of ESNs on this

data set has been observed previously in [23]. In that work, the authors compared

three architectures ESN, ESN+, and Markov models on the same data that is used

here. Their results showed that ESN+ performs “at least as well as Markov models”

([23]), while regular ESN performed much worse than both. ESN+ is a variation

of ESN proposed in [5, 23] specifically for this data set. In the next section, I will

present and discuss more results comparing ESN+ with ESN improved with E2.

Table 5.2: Means (σ) of Number of States and Transitions over 100 Runs

Data set
No. of states No. of transitions

regular new regular new

CFG #1 82.42 (10.3) 21.40 (3.5) 293.95 (28.4) 66.00 (12.2)

CFG #2 192.03 (51.2) 6.74 (4.8) 380.00 (63.3) 42.64 (16.3)
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Figure 5.4: Mean number of states and transitions of finite state machines extracted
from regular ESNs and ESNs trained with E2.

Table 5.2 and Figure 5.4 present the experimental results concerning FSM

extraction. The new error term helped to reduce the numbers of states and standard

deviations significantly for both data sets. The control experiments extracted very

large FSMs with hundreds of states to explain what the ESNs have learned. Similar

large numbers of states were previously reported in [23] when the authors extracted

FSMs from regular ESNs trained on CFG #2.

The large standard deviations in Table 5.2 for the regular/control runs raise

the question of whether the reduction in average number of states is statistically

significant. For this purpose, paired t-tests with a standard significance level of 0.05

are used. Bonferroni correction [20] for 2 tests requires the significance to be defined

as p < 0.05/2 = 0.025. We found that the corresponding p-values for both pair of

experiments are below 2.2× 10−16. These tests confirmed that the improvement from

E2 is statistically significant. Table 5.2 (right two columns) shows that the numbers

of transitions and the standard deviations are also markedly reduced by using E2.
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Even though the mean number of states for CFG #1 has been reduced signif-

icantly, the mean is still relatively high compared to the average of 7.36 achieved

with simple recurrent networks, and the best run produced an FSM with 18 states.

While this is a significant improvement to the hundreds of states in regular ESN and

indicates that the activation space is a lot more separated, the final FSM is still too

complicated for a human to read and understand what the network has learned.

0,V

5,N

avo id , cha se , e a t

fol low,hate ,hi t

l ike , love ,see

swing

1,N

boys ,bro thers ,g i r l s

men , s i s t e r s ,women

2,N

4,V

boys ,bro thers ,g i r l s

men , s i s t e r s ,women

3,V

e n d

t h a t

avo id , cha se , e a t

fol low,hate ,hi t

l ike , love ,see

swing

boys ,bro thers ,g i r l s

men , s i s t e r s ,women

Figure 5.5: Extracted FSM from ESN for data set CFG #2. Same notation as in
Figure 4.8 except that node labels also contain a state number.

For CFG #2, in order to compare results with [23] and with the simple recurrent

networks of Chapter 4, the same method in creating the data sets is used for training

and extracting FSMs as was used for CFG #2 in Chapter 4. That is, the network is

trained on the full grammar in Table 4.2, while the extraction in this figure is done

on a reduced test set consisting of sentences in the form N-V-N-that-N-V-end. Figure
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5.5 shows an extracted FSM for CFG #2 with 6 states. It is the FSM with the

smallest number of states the method was able to extract. Unlike the FSM extracted

from simple recurrent network in Figure 4.9, extracted FSMs from ESNs do not have

initial states. The reason is that the beginning of each training sequence must be

used to stabilize the network and then be discarded, so the first recorded state is

usually some state in the middle of a sentence. Nevertheless, it is clear that state #1

encodes the beginning of each sentence because it is reached by an end transition. As

we follow the FSM from this state #1, we see that it makes the correct predictions

at states #1, #0, and #5, but makes a mistake of predicting a V at state #4. This

is wrong because the subsequence N-V-N-V does not appear in the training data. If

we continue to follow the sentence through state #2 and back to #4, the predictions

are correct. At state #3, the FSM predicts a V while we expect an end. However,

this is not a misprediction because the subsequence N-V-V appears very often in the

data. Compared to the FSM extracted from a simple recurrent network in Figure

4.9, this FSM makes more mistakes. This is not unexpected because of the high sum

of squared error E1 as reported in Table 5.1. Yet the extraction result has allowed

us to see exactly where the network made the mistakes, in terms of how it organizes

its internal representations to make the prediction.

In [23], the authors showed that the same extraction method produced an

FSM with the same number of states (6) from ESN+, but the FSM does not make

the mistake pointed out in the preceding paragraph. It was also reported that a

very large FSM with 190 states was extracted from a regular ESN. Unlike the work

presented here, [23] did not use multiple runs, so it is not possible to compare the
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average results.

5.3.2 Verification of Separation into Clusters

With simple recurrent networks as in Chapter 4, the hidden layer contains a

small number of hidden units, usually 3 or smaller. This allows us to visualize the

hidden activation space in 2 or 3 dimensional graphs, such as the examples in Section

3.3 and Section 4.4.1. In contrast, the number of hidden units in the reservoirs

of ESNs is usually very large. Here, principal component analysis, histograms of

distances, and a test with weight redistribution are used to inspect the new hidden

activation space patterns created with the help of E2, and to verify that the method

indeed makes the reservoir activation space patterns more separable.

5.3.2.1 Principal Component Analysis

Principal component analysis (PCA) [15, 59] is one of the most widely used

tools for dimensionality reduction. PCA finds a linear transformation of the original

data so that the first dimension is in the direction of maximum variance, and

subsequent dimensions have the next highest variances. By taking just the first

few PCA dimensions, we have a projection of the data onto a space with fewer

dimensions while preserving much of the variance in the data. This allows us to

visualize the high-dimensional hidden activation space and the qualitative effect of

E2 on separability of the hidden activation space patterns. Furthermore, one can

calculate how much variance is preserved in each new projected dimension, and thus
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Figure 5.6: A typical projection of the hidden activation patterns of a regular ESN
having 100 hidden units trained on the CFG #2 data set onto a 3 dimensional space
using PCA. The projected activation vectors appear to form many loose clusters.
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Figure 5.7: A typical projection of the hidden activation patterns of an ESN having
100 hidden units augmented with E2 trained on the CFG #2 data set onto a 3
dimensional space using PCA. The projected activation vectors appear to form a
small number of easily distinguished clusters.
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can determine how close the transformed low dimensional space approximates the

data.

Figure 5.6 shows the projection of a hidden activation space of a regular ESN

having 100 hidden units trained on the CFG #2 data set onto a 3 dimensional space.

While most of the vectors tend to cluster together, there are a lot of clusters and

some of the clusters are not separated clearly. Moreover, only 30% of the variance is

retained by this projection. Thus, the underlying data is even more complex and

much more difficult to cluster.

Figure 5.7 shows the projection of a hidden activation space of an ESN with

identical initial weights but augmented with E2 on the same data set. There are

many fewer clusters and all of the clusters are cleanly separated. Furthermore, 99.9%

of the variance is retained using just the first 3 dimensions compared to only 30%

in Figure 5.6 for a regular ESN. This indicates that this reduced dimensional space

reflects the original (non-PCA) activation space very accurately.

It is interesting to note that the distances between the projected points in

Figure 5.7 are much longer than the distances in Figure 5.6 by looking at the scale of

the axes. Recall that PCA projection preserves the total variance in the data, which

is equivalent to the sum of squared distance to the multidimensional mean vector.

Thus, the longer distances between points in Figure 5.7 indicate that the hidden

unit activation vectors in the original space are also further apart. In summary, the

original (non-PCA) activation space patterns are very separable. This indicates that

training with E2 has indeed made the vectors in the hidden activation space better

separated and easier for clustering.
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5.3.2.2 Histograms of Distances

While it is not possible to visually look at the 100-dimensional hidden unit

activation space, we can indirectly inspect the distances between the individual

vectors. If a set of patterns are very distributed, most of the distances will be longer

and there would be much variation in the distances. If a space consists of a small

number of tight clusters, there would be two different sets of distances: (1) the

distances between the vectors inside the same cluster should be relatively small; (2)

the distances between the vectors in different clusters should be relatively large. In

addition, if a1, a2 are in cluster A and b1, b2 are in cluster B, the distances D(a1, b1)

and D(a2, b2) of two pairs of vectors (a1, b1) and (a2, b2) should be very similar to the
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Figure 5.8: A typical histogram of normalized distances between hidden unit acti-
vation vectors of a regular ESN trained on the data set CFG #2. The histogram
exhibits a mostly Gaussian-like distribution indicating that the distances between
hidden unit activation vectors are largely random.
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Figure 5.9: A typical histogram of normalized distances between hidden unit activa-
tion vectors of an ESN augmented with E2 trained on the same data set as in Figure
5.8. Compared with Figure 5.8, there are many more sharp spikes. This is more
consistent with the presence of tight clusters (see text).

distance between their two clusters A, B. If there are k clusters, then there should

be roughly k(k − 1) different values for distances among the k clusters. Hence, the

distances between pairs of vectors would be closer to one of these k(k − 1) values

rather than be distributed in a continuous range.

Figure 5.8 and 5.9 show the histograms of normalized distances between all

pairs of hidden activation vectors for a regular ESN and for an ESN augmented with

E2 on CFG #2. First, the training sequence is run through each ESN and all 8878

hidden activation vectors are recorded. Then, the vectors are normalized as described

in Section 5.2.3. Next, all 40 million distances among all pairs are calculated and

put into 500 histogram bins.

In Figure 5.8 for a regular ESN, the inter-vector distances vary over a wide
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range from 3.1 to 4.5 and exhibit a shape similar to that of a Gaussian distribution.

This is expected from a very distributed activation space representation. We can

see that there are two small spikes near 0 and 0.8. It was found that 48% of the

distances in these two spikes come from distances between the states of the network

after receiving the special symbol end indicating the end of a sentence, and the

rest are mostly caused by activation vectors being close to each other by chance.

The reason for the states of the network after receiving the special symbol end

being close together is that there are a large number of input symbols end (1,500

for 1,500 training sentences, out of 8878 input symbols), and upon receiving these

symbols at the input, the network’s reservoir states (the hidden activation vectors)

move to a generally small region, so the distances between them are under 0.5. It

is important to recall that the hidden activation vectors in ESNs are not trained

by E1, so the states of the reservoir become similar only because they receive the

same input (end), not because the network “knows” it is the end of a sentence.

Thus, hypothetically, if there were a lot of symbols x other than end in the training

sentences, the distances between the hidden activation vectors after receiving the

symbol x would similarly create a spike. Moreover, because since there is no “force”

(E1, as with simple recurrent networks) to pull the similar states close together, this

region is not very small. Consequently, the distances between these states have a

Gaussian-like distribution rather than a sharp spike at 0.

In Figure 5.9 for an ESN augmented with E2, the largest histogram bin is

close to 0. This matches the expectation that activation vectors are in tight clusters,

thus producing lots of pairs with short distances. The rest of the distribution also
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contains notably more sharp spikes than in Figure 5.8 as we anticipated above.

5.3.2.3 Weight Permutation Analysis

It was observed that training ESNs with E2 changed the range of the input

→ hidden weights (i.e., the minimum and maximum weights). Thus, it is needed to

make sure that the improvement in FSM extraction presented in previous sections is

not only because of the change in the range of the weights, but also because of the

specific arrangement of them created by training with E2. For each ESN already

trained with E2, let a corresponding ESN∗E2
be the same trained ESN but with its

input → hidden weights randomly permuted (no further training). ESN∗E2
is then

compared with regular ESN and ESN trained with E2 on FSM extraction.

Table 5.3: ESN∗E2
versus ESN with E2 and ESN (Averaged over 100 Runs)

Data set
E1/N −2E ′2/N

2

ESN ESN∗E2
ESNE2 ESN ESN∗E2

ESNE2

CFG #1 0.417 0.416 0.410 9.132 7.065 12.383

CFG #2 0.904 0.867 0.835 14.478 5.967 22.468

Table 5.4: Means (σ) of Number of States and Transitions over 100 Runs

Data set
No. of states No. of transitions

ESN ESN∗
E2

ESNE2
ESN ESN∗

E2
ESNE2

CFG #1 82.42 (10.43) 78.49 (8.1) 21.40 (3.5) 293.95 (28.4) 284.56 (25.2) 66.00 (12.2)

CFG #2 192.03 (51.2) 121.40 (12.0) 6.74 (4.8) 380.00 (63.3) 283.94 (22.1) 42.64 (16.3)

Tables 5.3 and 5.4 show that ESN∗E2
performs very similarly to regular ESN

on CFG #1. For CFG #2, ESN∗E2
shows a small improvement over regular ESN,
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but is still much worse than ESN trained with E2. These results confirm that the

improvement is indeed specifically from training with E2 and not just due to weight

magnitude changes.

5.3.3 Learning with E2 versus ESN+

ESN+ is a method for calculating each individual win
ji directly from data. It

was developed in [5, 22] to improve the prediction accuracy of ESN on CFG #2 and

was used again in [23] to extract FSMs. In [5], the authors found that simple word

co-occurrence statistics contain a lot of useful semantic information. This motivated

the work in [22] to assign the weights win
ji entirely based on word co-occurrence

statistics. In particular, consider an ESN with NI input units and NH hidden units,

with NI < NH , and where the input layer uses one-hot encoding so there are also

NI input symbols. Each connection from the ith input unit to the jth hidden unit

where i ∈ {1..NI} and j ∈ {1..NI} is then set to:

win
ji = N × N(i, j) +N(j, i)

N(i)N(j)
(5.6)

where N is the total length of the training sentence, N(i, j) is the number of times

the ith symbol is followed by the jth symbol, and N(i) is the number of times the

ith symbol appears in the training data. Note that the equation only applies for

j ∈ {1..NI}. For j ∈ {(NI + 1)..NH}, win
ji is set to 0 for i ∈ {1..NI}. In other words,

an input symbol will stimulate the hidden unit corresponding to the symbols that

are more likely to follow or precede it. For instance, in CFG #2, the word boys, often

being the first word of a sentence, usually follows end (the special marker for the
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end of a sentence), and precedes verbs such as like, chase, and see. So the weights

coming from the input unit corresponding to boys to the hidden units corresponding

to end, like, chase and see are set with a relatively higher value than the rest of

the weights from boys. As the task of the network is to predict the next word, this

alone already gives the network a lot of information about how to do the task. If

the next word depended on only the preceding word, the network could do perfect

predictions using just this information. However, the task requires more than just

the preceding word, so the network also needs the dynamics from the intra-reservoir

connections. This ESN+ method was found to improve predictive performance of

ESNs significantly for CFG #2, and helped the FSM extraction in [23] to reduce the

size of the extracted FSMs significantly.

I implemented ESN+ and ran it 100 times with the same data sets and initial

condition as described in Section 5.2.1. The average mean squared error for 100 runs

is 0.813, less than the average mean squared error 0.835 of ESNs trained with E2.

The average normalized −2E ′2/N
2 is 27.1, 22% larger than the 22.2 value for of ESNs

trained with E2. While ESN+ outperforms ESN trained with E2 in both E1 and E2,

it suffers from an important drawback: the method requires global computations. In

particular, the quantities N(i, j) in Equation 5.6 have to be computed separately

outside of the network, and this involves looking at data structures in a global

manner. In contrast, training with E2 is done only on the network while each node

only stores limited local data (aHj
). In the spirit of neural computation, it is very

important that a method is local so that it remains biologically plausible and scalable

to larger architectures.
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Figure 5.10: A typical projection of the hidden activation space of an ESN+ having
100 hidden units trained on the CFG #2 data set onto a 3 dimensional space using
PCA. The projected activation vectors appear to cluster together more than in
Figure 5.6 for a corresponding regular ESN, but there are still a large number of
clusters, and they again are not cleanly separated.

Despite having a large −E ′2, FSM extraction from ESN+ trained on the CFG

#2 data set produces FSMs with 131.8 states on average, significantly larger than the

average 6.74 from ESNs trained with E2 (paired t-test gives p < 2.2× 10−16). Figure

5.10 shows a typical projection of the hidden activation space of an ESN+ onto a

3 dimensional space. Note that 98% of the variance is retained in this projection.

The patterns in this space are more separated, and activations are clustered together

more than with a regular ESN (see Figure 5.6). However, there are still a large

number of clusters and they are not as clearly separated as in Figure 5.7 for the

corresponding ESN trained with E2 on the same data. This partly explains why

FSMs extraction via ESN+ did not work very well.
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Figure 5.11: A typical histogram of normalized distances between hidden unit
activation vectors in an ESN+ trained on the same data set as in Figure 5.8. There
are now spikes indicating the presence of clusters, but the spikes are not as sharp as
in Figure 5.9.

Figure 5.11 shows the histogram of the same ESN+ with identical data sets

used in Figures 5.8 and 5.9 above, i.e., for CFG #2. First, this figure does not

show the Gaussian distribution pattern as in Figure 5.8 of a regular ESN, indicating

that that the distances are more diverse. Second, there are many more spikes in

the data, but they do not appear to be as sharp as in Figure 5.9 (from an ESN

trained with E2). The sharpness of the spikes directly corresponds to the tightness

of the clusters. That is, if two clusters are small, the distances between hidden unit

activation vectors belonging to the two clusters are very similar, and this would

create a sharp spike in the histogram. Furthermore, this would create many short

distances, which are absent in the figure. Thus, it appears that the clusters are not

as tight as the clusters created by training ESNs with E2. Having loose clusters make
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clustering very difficult because it is harder to distinguish one cluster from another.

5.4 Discussion

In this chapter, a method is presented for improving the extraction of finite state

machines from echo state networks by adapting the weights from the input layer to the

reservoir using an error term E2. This term encourages the formation of a more easily

separable internal representation at the reservoir, and is readily incorporated into

the training process while retaining local computations and maintaining performance

accuracy. Extensive experiments with two context-free language data sets showed

that this method can reliably extract smaller FSMs from ESNs augmented with E2

than with regular ESNs. To the best of my knowledge, this is only the second work

that has extracted symbolic representations from ESNs, and is the first work that

uses a distance-based clustering approach.

The large size of ESN reservoirs poses significant challenges to analyzing the

hidden unit activation space and to verifying that the E2 term indeed helps create a

better separated representation. Tests with principal component analysis, histograms

of distances, and weight distributions confirm that training ESNs with E2 results in

hidden activation patterns that are grouped into a small number of tight clusters

that are more amenable to clustering and hence better FSM extraction.

The surprising result with the increase in accuracy for the data set CFG #2

shows another advantage of training ESNs with E2. A possible explanation for the

increase is that the improved encoding at the reservoir creates a richer reservoir

128



dynamics, and that this allows networks to learn better predictions at the output

layer. However, the accuracy level is still below what can be achieved with ESN+.

A promising research direction is to study the weights and hidden unit activation

patterns created by training ESNs with E2 and ESN+, or a combination of both, in

order to train ESNs that are both superior in accuracy and more cooperative with

FSM extraction.

Although the method presented here can extract relatively small, understand-

able FSMs from ESNs augmented with E2, these FSMs are still somewhat larger

than those extracted from simple recurrent networks. With many more units in the

reservoir, ESNs arguably have more flexibility than simple recurrent networks in

forming hidden layer encodings that are both good for low output error and FSM

extraction. Moreover, this allows ESNs to work on larger problems because the

reservoir can encode more information and have more complex dynamics. Hence, it

would potentially be very valuable to improve this method so that one can extract

symbolic representations from larger data sets.

As shown in the PCA analysis, the hidden activation space of ESNs augmented

with E2 can be approximated very closely using low dimensional PCA projections.

This conceivably can lead to a new approach that extracts symbolic representations

using these reduced-dimension spaces instead of the high dimensional hidden activa-

tion space. This could open up new research in extracting symbolic representations

from ESN trained on regression and control problems in which both the input and

output are continuous values [42, 52]. At present, although ESNs are very successful

with these problems, almost no past work has been done in extracting symbolic
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representations from them partly because of the difficulties involved in working with

large reservoirs.
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Chapter 6

Conclusion

This chapter concludes this dissertation by summarizing the work and high-

lighting the contributions to symbolic representation extraction from a variety of

neural networks architectures. It also discusses the limitations and suggests possible

future work that would build on the reported results.

6.1 Summary

While neural networks have achieved success in a wide range of applications,

it remains a difficult problem to understand what a network has learned during

training because the result of the learning process is generally large opaque matrices

of floating point numbers. Therefore, much work has been done to extract symbolic,

human-readable representations from learned networks. Past research in this area

has largely focused on building progressively more powerful methods to extract and

express the symbolic representations. Most of these methods contain a common task:

clustering the activity patterns in the hidden unit activation space. The activity

patterns are the network’s internal representation of the input. During training, the

network is free to create any internal representation that is useful, as long as the

error at the output is minimized. The activity patterns produced are usually very

distributed, thus making the clustering task very difficult. Moreover, the results of
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clustering are often complicated, with many clusters and with cluster boundaries at

times being difficult to identify.

This dissertation focuses on improving the separability of hidden layer activity

patterns so that any symbolic extraction method working with the more separated

activity patterns can do better. The central hypothesis in this thesis is that it is

possible to alter training methods to learn a better internal representation that

is amenable to the clustering task with only negligible change to the error at the

output. To support this hypothesis, methods were developed to augment the popular

error backpropagation algorithm so that it creates better internal representations on

feedforward, simple recurrent, and echo state networks.

In this context, the error term E2 was first introduced in Chapter 3 to help

increase the distance between hidden activation vectors with feedforward neural

networks. It was hypothesized that the combined effect of the original error function

E1, which keeps activation vectors that should be together close to one another, and

the new error term E2 that pushes activation vectors away from each other, is that

activation vectors will form tight clusters that are further away from each other.

As a result, it would be much easier to cluster the hidden activation patterns. An

efficient way to calculate the gradient of E2 with respect to network’s weights was

derived. This was a crucial step in incorporating the term into gradient descent using

standard error backpropagation. Furthermore, it is remarkable that the derived

calculation of the gradient only requires values that can be computed and stored

locally at each hidden unit. This local property is highly desired in neural network

training.
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The effectiveness of training with both E1 and E2 was illustrated in an example

of two neural networks trained with and without E2 on the data set waveform. The

final hidden activation spaces were shown and clearly demonstrated that E2 helped

to make the activation vectors cluster into three separate groups, while in contrast

the patterns in the hidden activation space of the network trained with regular error

backpropagation were very distributed.

A simple algorithm was derived that extracts symbolic rules from feedforward

neural networks, taking advantage of the improved hidden layer representation when

E2 is used (Chapter 3). The algorithm was evaluated on five large public data sets

having more than 1000 instances from the UCI Machine Learning Repository. These

data sets are difficult, and have many attributes and classes. It was found that the

algorithm performed well on all five data sets relative to standard backpropagation

learning. Careful considerations were taken to ensure the validity in the experiments.

First, the settings for the control (regular error backpropagation with E1 alone)

and the experimental (E1 with E2) runs were identical except for the error function

being used. Second, 10-fold cross validation were used throughout all experiments.

Furthermore, each experiment was repeated 10 times with different random initial

weights. Thus, the reported results are averaged over all 100 runs. Having so many

runs ensured that any improvement came from the method and not just by chance.

The results clearly demonstrated that E2 consistently helps to increase the average

sum of squared distances between hidden activation vectors, thus creating a sparser

activation space. More importantly, it also helped reduce the average number of rules

extracted from trained networks significantly. Moreover, the best runs with E2 also
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produced simpler rule sets than the best runs with regular error backpropagation.

Building upon the success of E2, I introduced two new class-aware terms E3

and E4 that push the activation patterns of instances from different classes apart and

pull the activation patterns of instances from the same classes together, respectively.

Local learning rules were again derived to compute the gradient of E3 and E4 with

respect to the weights. Extensive experiments on the same five data sets were then

conducted to compare networks trained with E1, E1 + E2, E1 + E3 + E4, and with

the popular C4.5rules program. The results showed that E3 and E4 help to extract

even simpler rule sets than with E2 alone, and that the neural network based rule

extraction method outperforms C4.5rules.

Throughout all of these experiments, the accuracy rates and E1 value changed

very little when networks are trained with the augmented terms, relative to when

they are trained with the unaugmented E1 alone. This supports the hypothesis

that there are many possible encodings at the hidden layer that can provide correct

outputs. The additional E2, E3, and/or E4 terms bias these encodings toward more

separated ones that facilitate rule extraction. Another advantage of neural network

based rule extraction was found during the analysis of the default class output.

Extracted rules appeared to be non-overlapping, and did not require a default class

output as in C4.5rules. Such rule sets are easier to apply and also easier for a person

to understand.

A limitation of feedforward neural networks is that they are not suitable for

processing temporal sequences, an important class of data. Instead, simple recurrent

networks with feedback connections and context units can learn and represent such
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data more naturally. In addition, the extracted representations must also be able

to express the temporal dynamics in data. Hence, finite state machines rather than

symbolic rules are usually extracted from simple recurrent networks. In Chapter

4, E2 was generalized to work on simple recurrent networks. The derivation of the

gradient for E2 with respect to the weights was reexamined and modified accordingly

but still retains the local property as with feedforward networks. Then, a simple

example with the data set badigu was used to verify the effectiveness of training with

E2 versus training with regular error backpropagation. Two hidden layer activation

spaces of networks trained with and without E2 from identical initial conditions

showed that training with E2 indeed pushed the activation vectors apart, and the

activation vectors grouped into few very tight and separated clusters. Moreover, the

number of clusters was also reduced significantly.

A simple algorithm was introduced to extract finite state machines (FSMs) from

simple recurrent networks. This algorithm takes advantage of the better separated

hidden representation. The algorithm was used to evaluate FSM extraction from

networks trained with and without E2 on four different data sets generated from

both regular grammars and context-free grammars. Again, multiple runs with 10-fold

cross validation and identical control/experimental set-up were used to ensure the

validity of the experiments. The results clearly demonstrated that training with

E2 consistently reduces the average sizes (number of states and transitions) of the

extracted FSMs on all data sets. These averages are also very close to the simplest

hand-design FSMs.

Finally, E2-modified backpropagation was adapted to work on echo state
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networks (ESNs), a variant of recurrent neural networks with a large number of

hidden units (the reservoir) and special ways of training its weights. ESN posed

unique challenges to adapting the error term E2, to incorporating E2 into the training

procedure, and to analyzing the effectiveness of E2. The derivation for the gradient of

E2 with respect to the weights was reexamined and modified to work with ESN while

retaining solely local computations. Then, a new unsupervised weight modification

method was devised to improve the hidden activation space using E2.

The large numbers of hidden units in ESNs makes it very difficult to visualize

the corresponding high dimensional hidden activation space with two or three

dimensional plots. Hence, dimensionality reduction using PCA was used to analyze

the hidden activation space of an ESN having 100 hidden units on a large context-

free grammar data set. Two reduced-dimension hidden activation spaces, one from

regular ESN and the other from ESN adapted with E2, showed clear improvement

in separability of the hidden activation space patterns with the help of E2. In

addition, another test for the impact of E2 was done by investigating the histograms

of Euclidean distances between all pairs of hidden activation vectors. The histogram

of distances from regular ESN showed a pattern of distances produced from sparsely

distributed activation vectors, while the histogram from ESN adapted with E2 showed

a pattern of distances produced from fewer and tighter clusters. In brief, these careful

tests support the hypothesis that E2 improves hidden activation spaces for better

clustering.

Finally, a series of experiments on two complex context-free grammars showed

that training with E2 aided the FSM extraction process in producing machines with
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many fewer states and numbers of transitions. A surprising result is that E2 even

helped improve the prediction accuracy of ESNs on the data set CFG #2. As far as

accuracy is concerned, ESN+ [22] is a variant of ESN that calculates directly the

input-hidden layer weights in order to improve the network’s prediction accuracy.

Experiments were done to compare and contrast the results of ESN trained with E2

and ESN+. The results showed that ESN+ has better prediction accuracy than ESN

trained with E2. However, ESN+ suffers an important draw back: it requires global

computations while using E2 still only requires local computations. Turning to finite

state machine extraction, the hidden activation space of ESN+ was analyzed and

its patterns were found to be only slightly more separated than regular ESN. Thus,

ESN+ does not support clustering-based FSM extraction in the same way that using

E2 does.

6.2 Contributions

Throughout this dissertation, I have argued that it should be possible to make

neural networks learn a better separation of hidden activation patterns that is more

amenable to symbolic representation extraction, while still maintaining accuracy

of the outputs. Along the way of building the arguments for this, the following

contributions have been made:

• I proposed three new error terms E2, E3, and E4 for feedforward neural networks

that helped to create better separated hidden activation patterns. While E2 is

class-unaware and pushes all hidden activation vectors away from each other,
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E3 and E4 selectively push the hidden activation vectors encoding different

classes away from each other and pull the hidden activation vectors encoding

the same class closer together. The combined effect of the new error terms

and the regular sum of squared error is that similar hidden activation vectors

automatically cluster together, making it easier to extract symbolic rules from

trained networks. Using gradient descent, I derived efficient and local learning

rules to incorporate these terms into error backpropagation-based network

training algorithms.

• I applied the modified error backpropagation methods derived above to five

large real-world data sets and found that they consistently helped improve a

rule extraction algorithm, reducing the size of the rule set while maintaining

classification performance. To rule out the effect of randomness and be more

confident in the results, the experiments were repeated multiple times with

different initial weights, and 10-fold cross validation was used. Accordingly,

results were averaged over 100 runs in which each pair of control and experi-

mental runs started from identical initial conditions. This methodical testing

procedure was used throughout the dissertation and distinguishes this work

from many past studies of rule/FSM extraction.

• I generalized E2 and the learning rule to simple recurrent backpropagation

networks. Trained with the regular sum of squared error E1 augmented by

E2, these recurrent networks also created tight clusters in the hidden unit

activation space. This allowed clustering, one of the crucial steps in extracting

138



FSMs from recurrent networks, to be done much more efficiently and accurately.

The effectiveness of E2 on FSM extraction was demonstrated empirically on

four data sets generated from regular and context-free grammars. Again, the

accuracy of the networks was kept virtually unchanged despite the addition of

the new terms. Also, the experiments were repeated multiple times and the

averages were reported instead of the best runs.

• I also adapted E2 to echo state networks, which are very large recurrent

networks with special training procedures. ESN poses unique difficulties in this

case because of the high dimensional state spaces. An efficient unsupervised

method was derived to increase the distances between hidden activation vectors

in ESN. The method was demonstrated to be effective in encouraging hidden

activation vectors to form clusters in reservoir activation spaces through two

careful experiments in which PCA and histograms of distances were applied.

Empirical experiments with two large data sets generated from context-free

grammars showed that the better separated activation vectors in the reservoir

helped to extract simpler FSMs from the networks.

6.3 Limitations and Future Directions

As in many approaches using penalty terms, there is a trade-off: a too big

contribution of E2 relative to E1 will make the activation patterns very separated and

very good for clustering, but if the contribution of E2 is too small, the improvement

in the hidden activation space representation will be minimal. The problem is to
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influence the training enough to produce the desired separation without compromising

E1 or accuracy. In this work, the coefficients for E1 and E2 had to be chosen

empirically. As such, a method that automatically determines the contribution of E2,

or adapts it during training, could be invaluable in making the methods introduced

here more applicable and easy to use.

One limitation of the proposed error terms is that they all depend on the

Euclidean distances among the activation vectors. The Euclidean metric is simple,

easy to work with, and has been used by most past rule extraction algorithms. But

it may not be the best metric in measuring the similarity of representations because

it grows quickly when vectors are further apart in very high dimensional spaces such

as hidden unit activation spaces. Hence, an important future research direction

will be to study other ways to bias the encodings beyond sum of squared Euclidean

distances. Potentially, other distance metrics may be able to improve the separability

of hidden activation space with even less effect on E1.

In each 100-run experiment, there were usually a few runs that resulted in very

large rule sets or FSMs with a large number of states. Such runs are responsible for

most of the variance in the sizes of the extracted rule sets and the FSMs. A study

into what exactly caused these runs to be immune to E2 would conceivably yield

insights into how to improve E2 further.

Finally, another major future research direction would be to study how to

apply this approach to other recent neural network architectures, such as evolved

designs of recurrent networks [43], or generalized LSTM [56]. Since E2 has now

been applied successfully to a substantial a variety of neural network architectures,
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including feedforward, simple recurrent, and ESN architectures, it is hopeful that

the approach will also be applicable and effective in other types of networks.
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