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Hydrogen production from water electrolysis is widely accepted to be the most

sustainable source of hydrogen production, especially when integrated with renew-

able energy sources such as solar or wind energy. Nevertheless, considerable im-

provements still are needed for renewable hydrogen to be fully competitive with the

current fossil fuel energy resources. In this work, we develop and apply compu-

tational tools to model hydrogen production from solar powered water electrolysis

systems.

A kinetic and mechanistic investigation of the oxygen evolution (OER) and

hydrogen evolution (HER) reactions on the active nickel-iron layered double hy-

droxide (NiFe LDH) electrode is presented. Both linear sweep voltammetry and

electrochemical impedance spectroscopy measurements were combined with theo-

retical models describing the electrode kinetics to evaluate the OER and HER rate

constants. The rate determining step and reaction mechanism of the OER and HER

were identified as a result of this analysis.



A computational algorithm to model an integrated PV-electrolysis-battery sys-

tem is presented with the goals of identifying the systems optimal design that maxi-

mizes the hydrogen production rate, minimizes the levelized cost of energy and total

systems cost, while targeting a net-zero grid energy operation. The coupled system

is connected to the electric grid to ensure uninterrupted operation of the electrolyzer.

The model is simulated over one year to include both diurnal and seasonal weather

variations. Over 2 million different design configurations were evaluated, 13 of which

were chosen as the Pareto Front for this optimization problem.

Finally, we develop and apply computational tools to identify optimal design

configurations when integrating a large number of PV cells under shady or faulty

conditions. Monte Carlo simulation is used to introduce the stochastic effect and

uncertainty generated by shading, and the model is simulated under different shad-

ing intensities. With the inclusion of a cost attribute, a multi-objective optimization

problem is developed. Information entropy weight and the Technique for Order Pref-

erence by Similarity to Ideal Solution (TOPSIS) methods were combined to identify

the optimal number of bypass diodes for each shading case. This computational

platform can be extended towards developing simulation-based design tools for the

integration of nano-scale energy devices.
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Chapter 1: Introduction

1.1 Hydrogen Production from Renewable Energy Sources

Currently, finite fossil fuel resources supply the vast majority of the world’s

energy demand [1]. The scarcity of fossil fuel resources, the rising global energy

demand, and the measurable climate change have stressed the need for renewable

energy sources [1].

Hydrogen, as an energy carrier, is a promising candidate to supply the world’s

energy demand. Nevertheless, significant technological barriers must be overcome

for hydrogen to be competitive with current energy resources [2]. Research interest

is growing in hydrogen-economy based applications through either enhancing cur-

rent technologies or designing new production processes, enabling the production

of hydrogen in an efficient and cost effective manner. In addition to production,

challenges in hydrogen storage, transportation, and distribution must be tackled

simultaneously before the hydrogen economy can function at grid-scale level appli-

cations [3]. Currently, up to 96% of hydrogen production is fossil fuel based, which

poses significant long-term environmental threats [4].

To tackle this issue and mitigate the environmental threats, research focus has

shifted towards using renewables as energy source for hydrogen production. As such,
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a range technologies have been developed for the production of renewable hydrogen.

Among them are water electrolysis, biomass conversion, and solar conversion [5].

Water electrolysis is the most mature technology. It is a process of splitting wa-

ter into oxygen and hydrogen by applying electrical potential across two electrodes.

Water splitting reaction consists of two primary half reactions: oxygen evolution

reaction (OER) and hydrogen evolution reaction (HER). To promote sustainability,

renewable energy sources, such as solar or wind, can be used to generate the electric-

ity. Biomass conversion involves thermochemical or biochemical processes to convert

biomass into intermediates that can be further reformed to produce hydrogen [5].

Hydrogen production directly from biomass fermentation is another example of a

biomass conversion process [5]. Solar conversion examples include thermolysis, using

concentrated solar power systems to drive thermochemical reactions, and photoly-

sis, where solar photons are used in biological or electrochemical systems to produce

hydrogen [5].

Hydrogen production by water electrolysis is widely accepted to be the most

sustainable source of hydrogen production, especially when integrated with renew-

able energy sources such as solar or wind energy [4]. It also has the advantage that

it is capable of producing extremely pure hydrogen (>99.999%), which is ideal for

some applications such as fuel cell vehicles. Despite it being known for over 200

years, hydrogen production from water electrolysis constitutes less than 4% of the

current hydrogen economy [6].
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1.2 Active Catalysts for Water Splitting

Numerous efforts have been devoted to developing new catalytic materials with

low cost and high electrocatalytic activity towards water splitting reaction [7]. In

the past few decades, research focus has shifted from the conventional expensive

noble metals, such as Pt and RuO2, towards using efficient, Earth-abundant, and

low cost materials. Among these are transitional metal based materials which offer

high catalytic activity, high stability, and low cost.

Recently, layered double hydroxides (LDH) have attracted enourmous atten-

tion for water splitting applications. LDH materials consist of positively charged

Brucite like layers with divalent or trivalent metal hydroxides. The positive charge

on these layeres originates from the partial substitution of divalent metal cations,

such as Ni2+, Fe2+, Mg2+, Co2+, Cu2+, or Zn2+, with trivalent metal cations like

Fe3+, Al3+, or Mn3+ [8]. The interlayer space separating the LDH layers consists

of anions, such as CO2−
3 or NO−3 , compensating the positively charged LDH lay-

ers [9], [10]. A graphical representation of an LDH materiel can be found in [8].

Lu et al [9] investigated the electrocatalytic activity of a three-dimensional

NiFe LDH electrode towards the OER in alkaline media. Compared to a Ni(OH)2

electrode, the LDH electrocatalyst demonstrated superior activity toward the OER.

The prepared NiFe LDH catalyst was deposited on Ni foam substrate via a one-step

hydrothermal synthesis. The electrode reported a Tafel slope of 50 mV/dec and

an overpotential of 280 mV at a current density of 30 mA/cm2. This electrode

also demonstrated high stability with minimal current degradation of 2.2% under a
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10-hour long constant overpotential application in 1 M KOH electrolyte.

Luo et al [7] also prepared NiFe LDH electrocatalysts on Ni foam via a simple

one-step hydrothemal synthesis. Their prepared films were tested toward both OER

and HER in 1 M NaOH electrolyte. The films reported overpotentials of 240 and 210

mV towards the OER and HER, respectively, at a current density of 10 mA/cm2.

Their water-electrolysis cell was powered by a perovskite tandem cell, allowing a

water splitting current density close to 10 mA/cm2 at an applied voltage of 1.63 V

and a solar-to-hydrogen (STH) efficiency of 12.3 %.

Li et al [10] proposed a new electrochemical method for the fabrication of Fe-

containing layered double hydroxide (MFe-LDHs, M = Ni, Co and Li). The ultrathin

LDH nanoplatelets were grown perpendicular on Ni-foam substrate via a 300 seconds

electrosynthesis procedure followed by a 1-hour long self-oxidation process in air.

All three electrodes demonstrated high electrocatalytic activity toward OER, with

a superior performance of the NiFe LDH electrode. Their NiFe LDH electrode

reported a Tafel slope of 52.8 mV/dec and an overpotential of 224 mV at 10 mA/cm2,

which is 65 mV less than the commercial Ir/C electrode. This fast and effective LDH

preparation method is favorable for large-scale production applications.

Fan et al [11] reported an active Nickel-Vanadium monolayer double hydroxide

for OER, with a Tafel slope of 50 mV/dec and an overpotential of 300 mV at 10

mA/cm2, which is comparable to, but does not exceed, the best-performing NiFe

LDH reported in the literature.

Hou et al [12] prepared a ternary hybrid electrode consisting of NiFe LDH

nanosheets hydrothermally deposited on vertically oriented cobalt selenide (CoSe)
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supported on exfoliated graphene foil for overall water splitting. Their efficient 3D

hybrid electrode used as OER and HER catalyst demonstrated superior activity,

achieving a cell current density of 20 mA/cm2 at 1.71 V, which is well comparable

to the integrated performance of Pt/C and Ir/C catalysts.

In addition to its superior performance as an electrocatalyst, NiFe LDH is a

promising photocatalyst for photo-induced water splitting reaction. Nayak et al [13]

synthesized layered graphitic carbon nitride (g-C3N4) and NiFe LDH composite

photocatalyst for visible light-induced photocatalytic water splitting. They studied

the structural, optical, and morphological properties of multiple composites prepared

at different g-C3N4 wt% loading. The estimated band-gap values of the prepared

composites increased from 2.2 to 2.7 eV as the g-C3N4 loading increased from 0

to 100 wt%. Photocatalytic activity measurement were taken under visible light

irradiation region, and the prepared composites reported high activity toward both

OER and HER, with an optimal performance of the composite with g-C3N4 content

of 10 wt%.

Over the past two decades, LDHs properties have been tailored to meet prac-

tical application requirements in different fields [8]. The application of LDHs is not

limited to their usage as active catalysts, but also can be used as flame retardants,

drug delivery hosts, additives in polymers, and as biomaterials [8], [9]. Ohashi et

al [14] presented the application of MgAl LDH as a non-swelling durable electrolyte

in a solid-state alkaline fuel cell. The LDH catalyst reported promising results, how-

ever, the authors suggested that the electron conduction resistance can be enhanced

by assuring the carbon black particles have adequate contact with each other. Ad-
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ditionally, Li and coworkers [15] developed a biocompatible and stretchable double-

carrier drug delivery system for wound healing applications. Their double-carrier

drug delivery system consists of drug-loaded MgAl LDH nanoparticles incorporated

in hydrogel. The addition of the drug loaded LDH into the hydrogel significantly

enhanced the mechanical properties and biocompatibility of the hydrogel, and de-

layed the drug release, making it a promising candidate for chronic wound healing

applications.

In this work, NiFe LDH is chosen as an electrocatalyst for both OER and HER

due to its high electrocatalytic activity toward both reactions, simple preparation

methods, low cost, and Earth abundance. Although it is not the optimal catalyst

for the HER, it offers economic benefits arising from the use of the same material

for both electrodes while maintaining high catalytic activity [16].

Recent studies demonstrated that tailoring NiFe LDH electrocatalyst can de-

liver superior activity toward the HER. Chen et al [17] presented a strategy to

expedite the HER kinetics on NiFe LDH by partially substituting Fe atoms with

Ru. The Ru-doped NiFe catalyst demonstrated superior electroactivity, with an

overpotential as low as 29 mV at 10 mA/cm2 current density, with a Tafel slope of

31 mV/dec in 1 M KOH electrolyte. Additionally Chen et al [18] reported a similar

strategy to enhance the performance of NiFe LDH as a HER electrocatalyst, by

doping it with Iridium (Ir4+). The Ir4+-doped NiFe LDH catalyst reported an over-

potential of 34 mV at 10 mA/cm2 current density, and a Tafel slope of 32 mV/dec

in 1 M KOH electrolyte.
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1.3 Dissertation Objectives and Outline

The main goal of this thesis research is to develop and apply experimental and

computational techniques that can be used to improve hydrogen production from

solar powered water electrolysis systems.

In Chapter 2, experimental and theoretical techniques are developed and ap-

plied to investigate the kinetics and mechanism of the HER and OER on NiFe LDH

active electrodes. The reaction rate constants are identified as a result of this analy-

sis, and a detailed examination of the reaction mechanism controlling each half cell

reaction is performed. Unlike most studies that focus on either the HER or OER,

we present a complete system kinetics investigation by combining results obtained

from the anode and cathode to fit the electrochemical cell experimental data.

In Chapter 3, we apply the electrolysis cell model identified in Chapter 2 to

design and optimize an integrated electrolysis-solar energy-battery system. The

primary objective is to present computational tools that can be applied to identify

the optimal system configuration required for maximum hydrogen production and

minimum system cost. The model is simulated over a one year timescale to ensure

both diurnal and seasonal weather variations are included.

In Chapter 4, we extend the effect of cloud cover shading to address perfor-

mance mismatch between individual cells in the PV module. We present computa-

tional tools to understand the effect of cell mismatch (caused by partial shading) on

the PV module performance. The primary goal is to identify the optimal number of

bypass diodes in the PV module necessary to maximize performance and minimize
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added costs.

Chapter 5 presents concluding remarks of this work and suggestions for future

work.
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Chapter 2: Kinetics of OER and HER on NiFe LDH

2.1 Introduction and Background

OER and HER are among the most frequently studied reactions in electro-

chemistry. This can be mainly because understanding the OER and HER kinetics

and mechanism is important for numerous renewable energy applications such as

fuel cells and hydrogen production from water electrolysis [19].

Optimizing electrocatalytic activity requires reaching the highest possible cur-

rent density at the lowest possible applied potential. Hence, optimal catalysts are

ones characterized with low overpotential, low Tafel slope, and good stability and

resistivity to corrosion in electrolytes. Overpotential is defined as the difference be-

tween the applied potential and the equilibrium reaction potential. Lower overpo-

tential values means that the catalyst is more capable of producing higher amounts

of hydrogen or oxygen gases at lower applied voltage. Since overpotantial is a func-

tion of the operating current density, it is commonly reported at a current density

of 10 mA/cm2, enabling easy comparison between different electrodes reported in

the literature.

Tafel slope is an important definition in electrochemistry, which provides a

measure of the sensitivity of the electrode’s activity towards an increase in the
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applied potential. It is usually reported in the units of mV/dec, indicating how

much voltage is required for a decade increase in the current. Hence, the lower the

Tafel slope, the more the current increases with rising applied voltage. The Tafel

slope also provides valuable information about the reaction mechanism and the rate

determining step of the overall half-cell reaction [20].

Studying the relation between the reaction kinetic parameters, reaction mech-

anism, adsorbed species coverage, and the overpotential has been the focus of nu-

merous research articles [19]. Different characterization experiments have been used

to reveal valuable insight into the electrochemical reaction kinetics and mechanism.

Among them -which are of interest to this work- are Linear Sweep Voltammetry

(LSV) and Electrochemical Impedance Spectroscopy (EIS).

LSV involves measuring the current while the potential of the working elec-

trode is swept linearly with time with respect to a reference electrode. Tafel plots

can be used to interpret the LSV data, in which the natural logarithm of the cur-

rent is plotted against the potential. To obtain more accurate kinetic data and Tafel

slope values, the effect of the uncompensated solution resistance should be elimi-

nated. Since the voltage is generally applied between the working and the reference

electrodes, a fraction of it will be dissipated due to solution resistance depending on

the cell geometry and type of electrolyte used. This is typically referred to as the

IR drop, which can be corrected either during the experiments (some instruments

have the IR drop correction option) or after the experiment when the value of the

solution resistance is known or can be calculated or measured. EIS experiments

have the advantage of measuring the solution resistance between the working and
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the reference electrode.

EIS involves the application of a small potential or current perturbation to

assure the pseudo linearity in the cell’s response. Hence, for a sinusoidal potential

perturbation, the output current also will be sinusoidal and have the same frequency,

but with a phase shift. The magnitude of the impedance and the phase change

are determined from the potential perturbation and its current response. The EIS

results are normally reported as a Nyquist plot, where the imaginary part of the

impedance is plotted against the real part, or as a Bode plot, where the phase

shift angle and impedance magnitude are plotted against the frequency. The EIS

data can be analyzed to find the equivalent electrical circuit diagram components,

including resistors, capacitors, and inductors, and hence reveal valuable information

about the electrode kinetics.

To obtain the electrode overpotential value, a galvanostatic polarization test

is performed in which the current is kept at a fixed value of 10 mA/cm2, and

the potential is allowed to reach steady state for a period of time. The standard

equilibrium reaction then can be subtracted from the measured potential to yield

the electrode overpotential.

2.1.1 Literature Review

Numerous efforts have been made to investigate the kinetics of OER and HER

on a range of promising catalyst materials. Krstajic et al [21] used the combination

of classical steady-state voltammetry and impedance spectroscopy to understand
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the HER mechanism on Ni electrodes in an alkali medium. They demonstrated that

at low overpotential values the HER proceeds with a combination of a Volmer step,

followed by a rate-controlling Tafel step. The mechanism at higher overpotential,

however, was shown to be a consecutive combination of a Volmer step followed by a

rate controlling Heyrovsky step. Nevertheless, in their model, the authors neglected

the backward reactions of the Heyrovsky and Tafel steps in some parts of the model

to simplify the calculations.

Azizi et al [19] investigated the kinetics and mechanism of HER on tin in an

acidic electrolyte. The resulted kinetic model demonstrate that at lower potential

range, the HER mechanism starts with a Volmer step, followed by parallel Tafel and

Heyrovsky steps. At higher negative potential range, they concluded that the HER

proceeds via a Volmer-Heyrovsky mechanism with the Volmer step being rate con-

trolling. The Tafel slope value measured in this potential range was −126 mV/dec,

which is in agreement with the Volmer step being rate controlling. Similar to Krsta-

jic and coworkers [21], Azizi and coworkers made similar assumptions in neglecting

the backward reaction rates of the Tafel and Heyrovsky in some parts of the model.

For the OER, the mechanism is much more complex since it is a multi-step

reaction pathway involving multiple adsorbed species. Hence, it is generally more

challenging to investigate the kinetic and mechanism of OER. Doyle et al [22] ex-

amined the OER kinetics on hydrous iron oxides in a basic electrolyte. In low

overpotential region, the reported Tafel slope values were found to be 40 and 60

mV/dec under different oxide growth conditions. They indicated that these values

of Tafel slope are typically associated with the formation of the adsorbed peroxide
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(HOO) or the peroxo (OO) surface species being the rate limiting step.

Hu and coworkers [23] performed a kinetic analysis of Ir-Ta mixed oxide elec-

trodes for the OER in acidic electrolyte. The authors made a few assumptions to

simplify the model. Only the surface coverage of OH is considered as state variables,

and hence, was used in the kinetic model. Additionally, the backward reaction rates

of some of the mechanism steps were neglected. As a results, among the six reac-

tion rate constants included in the kinetic model, only three were identified and are

reported in their work.

Garcia-Osorio et al [24] evaluated the electrocatalytic behavior of inactive

materials towards OER. They demonstrated in the materials they studied a Tafel

slope greater than 100 mV/dec, suggesting that the rate controlling step is associated

with the generation of adsorbed hydroxide species. This also indicates the inactivity

of these materials towards OER, since an active catalyst would typically result in

Tafel slope values ranging from 30 to 80 mV/dec. The authors proposed a six-step

OER mechanism, however, they neglected the backward reaction rate of the last step

in the mechanism. From their derived kinetic model, the reaction rate constants were

identified as a result of fitting experimental and theoretical EIS data.

In practice, the efficiency of water electrolysis is limited by the large anodic

overpotential of the OER. Over the last few decades, considerable research effort

has been dedicated to the design and synthesis of new anodic materials with greater

electrocatalytic activity relative to conventional, low Earth-abundant noble metals

[25]. Among these new anodic materials are transitional metal based materials

which offer high catalytic activity and low cost.
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Nickel-Iron Layered Double Hydroxide (NiFe LDH) and other transition metal

layered materials have attracted enormous attention owing to their high electrocat-

alytic activity toward both OER and HER [7], as well as their low cost, simple prepa-

ration methods, and Earth abundance [9]. Layered double hydroxides are positively

charged Brucite like layers that consist of metal (divalent or trivalent) hydroxides,

with an interlayer space consisting of anions, such as CO2−
3 or NO−3 [9], [10]. Nickel

is known to be an active material that resists corrosion better than other transition

metals [26]. In addition, NiFe LDH can be deposited on Ni foam, and the resulting

electrode can be used for OER and HER applications as it offers high electrocatalytic

activity towards both catalytic reactions in an alkaline electrolyte [7]. Although it

is not the optimal catalyst for the HER, it offers economic benefits arising from

the use of the same material for both electrodes while maintaining high catalytic

activity [16].

Lu et al [9] examined the electrocatalytic activity of NiFe LDH electrode to-

wards OER in an alkaline electrolyte. Their electrode demonstrated a Tafel slope

of 50 mV/dec and an overpotential of 280 mV to achieve a current density of 30

mA/cm2. Luo et al [7] reported the performance of NiFe LDH films, with overpo-

tentials of 240 and 210 mV towards the OER and HER, respectively, at a current

density of 10 mA/cm2. Fan et al [11] reported an active Nickel-Vanadium monolayer

double hydroxide for OER, with a Tafel slope of 50 mV/dec and an overpotential

of 300 mV at 10 mA/cm2, which is comparable to, but does not exceed, the best-

performing NiFe LDH reported in the literature.
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2.1.2 Motivation and Goals

Understanding the mechanism of the oxygen evolution reaction (OER) and

hydrogen evolution reaction (HER) is a fundamental step toward optimizing elec-

trocatalytic activity, which is essential for optimal process design and operations

[27]. Integrating a classical steady-state polarization technique with electrochemical

impedance spectroscopy has shown to be effective in providing kinetic analysis of

electrochemical reactions [25].

In this chapter, we investigate the mechanism and kinetics of both OER and

HER on NiFe LDH material. A schematic diagram of the water electrolysis cell

considered in this work is shown in Figure 2.1. We combine the results from analy-

sis of linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy

(EIS) to reveal valuable insight into the reaction mechanism occurring on each elec-

trode. We consider all the forward and backward reaction rates of the OER and

HER when deriving the kinetic model, which yields a better approximation of real

life operation. Unlike most studies that focus on either OER or HER, we present a

complete system kinetics investigation by combining results obtained from the an-

ode and cathode to fit the electrochemical cell experimental data. The results from

this work have great promise and will be used in the following work for the process

design and operation of an integrated electrolysis-solar energy system.
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Figure 2.1: A schematic diagram of the water electrolysis cell, showing the OER

and HER half cell reactions in alkaline media.

2.2 Experimental Electrode Synthesis

The NiFe LDH films were deposited on Ni foam substrates via a simple one-step

hydrothermal synthesis in an autoclave reactor. Ni foam substrates (2 × 1 cm) were

cleaned with concentrated HCl solution for 10 minutes, followed by deionized water

and ethanol each for 10 minutes in an ultrasonic bath. 0.32 g of Ni(NO3)2·6H2O,

0.45 g Fe(NO3)3·9H2O and 0.67 g urea were mixed in 80 ml deionized water until

dissolution [9]. The Ni foam substrates were placed against the wall of a 100 ml

autoclave, and the solution was poured into the autoclave. After allowing 12 hours

of growth in an electric oven at 155 °C, the autoclave was allowed to cool naturally

to room temperature, and the samples were washed with deionized water followed by

ethanol, and dried at 80 °C for 6 hours. Figure 2.2 shows a graphical representation

of the deposition process, and the results are shown in Figure 2.3.
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Figure 2.2: NiFe LDH deposition process on Ni foam substrates.

2.3 Deposited Film Characterization Experiments

The size and morphology of the deposited NiFe LDH samples were character-

ized using a Hitachi SU-70 FEG field-emission scanning electron microscopy (SEM)

operating at 10 kV. SEM images of pure Ni-foam and NiFe LDH film deposited on

Ni foam are shown in Figure 2.5. The morphology shown in Figure 2.4(e) and Fig-

ure 2.4(f) is in agreement with that described in previous work [9], which suggests a

3D vertical growth of LDH nanoplates on the Ni surface and a mesoporous structure

of the LDH material. The LDH nanoplate average size is estimated to be 400 nm

(Figure 2.4(f)).
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(a) Before (b) After

Figure 2.3: Ni foam substrate before (a), and after the film deposition (b).

In addition, X-ray photoelectron spectroscopy (XPS) data were collected with

a Kratos Axis 165 operating in hybrid mode using Mg Kα X-rays (240 W). The use

of Mg Kα X-rays was essential to detect the low concentrations of Fe in the sample

and to overcome the total overlap of Fe 2p with the very intense Ni LMM that

would have occurred if using the normally preferred monochromatic Al source. For

the binding energy calibration, the C1s peak at 284.8 eV was used as a reference.

Charge neutralization was required to minimize sample charging. Survey spectra

and high resolution spectra were collected at pass energies of 160 eV and 40 eV,

respectively.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.4: SEM images of pure Ni foam (a) and (b), and NiFe LDH deposited on

Ni foam (c), (d), (e), and (f).
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XPS data were analyzed using CASAXPS, quantification was performed after

application of a Shirley background taking into account relative sensitivity factors

from the Kratos vision Library and instrument transmission function. Quantification

of the iron was complicated by overlap of the Fe 2p with the O KLL Auger, while

only the 2p1/2 spin-orbit split components were overlapping, we could not use the

3/2 components alone to estimate peak area since the 3/2 and 1/2 components also

overlap. The iron concentration was estimated using a constrained peak fit, using

3 spin orbit split components with spin-orbit splitting fixed at 13.4 eV and area

ratio of 2:1 for the 3/2, 1/2 components, respectively, in accordance with quantum

mechanics. In addition, peak FWHMs and relative area ratios of the three sets

of components were fixed, the Shirley background was then adjusted at the high

binding energy side until both the 3/2 and 1/2 peaks fit the data well.

XPS results (Figure 2.5(a)) show the presence of Ni, Fe, C, and O elements in

the sample, with an estimated ratio of Ni/Fe of about 85.2:14.8. We also noticed by

comparing the XPS results of samples prepared at different temperature that the

ratio of Ni to Fe increases as the synthesis temperature decreases, with an estimated

Ni:Fe ratio of about 95.5:4.5 at 128 °C (Figure 2.5(b)).

X-Ray Diffraction (XRD) patterns of NiFe LDH on Ni foam substrate were

collected on a Bruker C2 Discover diffractometer using a Cu Kα source. Spectra

were collected using a 2D Vantec detector in the range from 8.8 °to 85.6 °. XRD

results in Figure 2.6 show the LDH reflection peaks of (003), (006), and (009),

which represent the behavior of a typical LDH phase, and is in agreement with that

reported in the literature [7], [9], [10].
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Figure 2.5: XPS results for NiFe LDH at 155 °C (a), and 128 °C (b).
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Figure 2.6: XRD characteristics of NiFe LDH deposited on Ni foam substrate. The

peaks marked # represent the Ni foam substrate.

2.4 Electrochemical Measurements

A conventional three-electrode electrochemical cell was used for the measure-

ments with 1 M KOH solution as an electrolyte. The reference electrode chosen was

CH Instruments Alkaline/Mercury Oxide (Hg/HgO/1M NaOH, 0.098 V vs NHE at

25 °C).

A GAMRY interface 1000E potentiostat was used to perform the electrochem-

ical measurements. LSV data were obtained for the cathode (HER electrode) at

the applied potential range −0.93 to −1.7 V vs Hg/HgO, and for the anode (OER

electrode) between the applied potentials 0.48 to 0.93 V vs Hg/HgO reference elec-

trode, with a scan rate of 1 mV/s and a step size of 10 mV. EIS measurements

were taken at different potentials within the LSV potential range. EIS data were
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obtained in the frequency range 0.1 to 1×105 Hz, with an alternating AC voltage of

10 mV. The voltage drop corresponding to the uncompensated solution resistance

was determined from the measurements using the impedance results, and all data

presented in this work are corrected for the IR drop. For the combined electrolysis

cell measurements, LSV data were obtained using a two-electrode cell set up with

the potential range of 1.36 to 2.5 V applied between the anode and cathode.

2.5 NiFe LDH Performance as an HER Electrode

2.5.1 Electrochemical Characterization Results and Analysis

The HER mechanism starts with an electrochemical adsorption of a water

molecule onto an active site on the cathode to produce the adsorbed species H (a

step that is typically referred to as the Volmer step). The hydrogen gas can then

be produced from two competing reaction paths: a chemical recombination of the

adsorbed species H (Tafel step), and an electrochemical desorption step (Heyrovsky

step). The HER mechanism is presented in Table 2.1.

Figure 2.7 represents a galvanostatic polarization test performed at a current

density of -10 mA/cm2, which reveals a potential of -1174 mV. Combining this

value with the HER equilibrium potential of -829 mV vs NHE (equals to -927 mV

vs Hg/HgO), the deposited film reported a cathodic overpotential of 247 mV at a

current density of 10 mA/cm2 toward the HER. This value is higher than the 210

mV overpotential reported by Luo et al [7], yet lower than the 269 mV overpotential

demonstrated by Chen et al [17].
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Table 2.1: HER mechanism in a basic electrolyte [21]. SHER represents active sites

on the HER electrode. Electrons are denoted by e−, and the subscripts (aq) and (g)

denote the aqueous and the gas phases, respectively.

Volmer: H2O(aq) + SHER + e− 
 H + OH−(aq)

Heyrovsky: H + H2O(aq) + e− 
 H2(g) + SHER + OH−(aq)

Tafel: 2H 
 H2(g) + 2SHER

Aside from providing valuable information on the catalyst activity toward an

electrochemical reaction, the Tafel slope can offer valuable insight into the reaction

mechanism. An experimental Tafel plot constructed from the LSV data (Figure 2.8)

shows two distinct Tafel slopes with values of 38.4 and 71.3 mV/dec at lower and

higher potential regions, respectively, demonstrating high electrocatalytic activity

of the prepared film. A change in Tafel slope with increasing potential can be

attributed to a reaction mechanism or pathway change, or to the changes in the

surface coverage of intermediates [27]. It is well accepted in the literature that a Tafel

slope close to 120, 40, or 30 mV/dec indicates that the HER mechanism is controlled

by Volmer, Heyrovsky, or Tafel steps, respectively [27], [28], [29]. Hence, the Tafel

slope value of 38.4 mV/dec reported in this work suggests that the Heyrovsky step

is rate controlling. However, it will be difficult to draw a definitive conclusion about

the mechanism based on the 71.3 mV/dec value observed in the high potential region

since it is not a conventional value for the HER. Further investigation of the reaction

mechanism is discussed in section 2.5.2.
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Figure 2.7: Galvanostatic polarization test performed for the HER electrode at a

current density -10 mA/cm2.

To gain a better insight into the kinetic mechanism that governs the HER,

EIS measurements were taken at different values within the LSV potential range.

Figure 2.9 shows the Nyquist plots of the EIS measurements in the form of semi-circle

shaped spectra. The diameter of the semi-circle decreases as the applied potential

increases, indicating increasing HER activity. The intersection of the spectra with

the real impedance axis at the high frequency range represents the ohmic resistance,

mainly caused by the electrolyte resistance. The high frequency region of HER

Nyquist plots shows a straight line or a deformed semi-circle behavior, which can

be attributed to the porous structure of the active catalyst [30], and is in agreement

with the SEM results presented earlier.
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Figure 2.8: Tafel plot for NiFe LDH as a HER electrode showing two Tafel slopes

at low and high potential regions.

The choice of the equivalent electric circuit representing the EIS spectrum is

crucial in the model. Theoretically, several different circuits can provide a good fit

to the EIS spectrum, but do not necessarily describe the physical phenomena of an

electrochemical system [31]. As such, it is helpful to conduct a literature review

to have a preliminary perception on the mechanism occurring on the electrode, in

addition to performing structural and morphological characterization experiments

of the electrode, such as SEM [31]. It is well known in the literature that Armstrong

and Henderson equivalent electric circuit is well suited to provide a valid physical

interpretation of the HER mechanism [19], [21], [32]. As such, the impedance results

were interpreted by fitting the data to an Armstrong and Henderson equivalent

electric circuit (Figure 2.10) using both Z-view software and EIS Spectrum Analyser

to obtain the equivalent circuit components.
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(d) (e) (f)

(g) (h)

Figure 2.9: Nyquist plots of EIS measurements obtained for the HER at -1.2 V (a),

-1.3 V (b), -1.35 V (c), -1.4 V (d), -1.45 V (e), -1.5V (f), -1.55 V (g), and -1.65 V

(h) vs Hg/HgO.
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Figure 2.10: Armstrong and Henderson equivalent electric circuit.

In Figure 2.10, Rs is the ohmic electrolyte resistance measured between the

working and the reference electrodes, Cdl is the double layer capacitance formed

at the electrode/electrolyte interface, Rct is the reaction charge transfer resistance

across the electrode/electrolyte interface, and Rp and Cp are the pseduo-resistance

and pseduo-capacitance related to the adsorption, desorption and mass transfer

limitations of the adsorbed species H at the working electrode [21], [32]. The Rp and

Cp are also associated with the relaxation of the adsorbed hydrogen surface coverage

as the applied potential changes, with a relaxation time constant τ = RpCp [33].

To obtain a better fit, an inductor was connected in series to the Armstrong and

Henderson circuit, which may account for the cell wires and connection contributions

at high frequencies.

Z-view software provides a wide variety of built-in or user-defined equivalent

circuit models. The fitting results provide error % confidence interval estimates for

each component in the electric circuit, as well as general ”goodness of fit” measure-

ments, such as Chi-squared and sum of squares. The Chi-squared is the square of

the standard deviation between the original experimental data and the fitted theo-

retical spectrum [34]. The sum of squares is proportional to the average percentage

error between the experimental EIS spectrum points and the calculated values [34].

28



In this work, all the EIS fitting results for the HER and OER reported Chi-squared

values of less that 7 × 10−4, and a low sum of squares value confirmed by the low

error % of the individual electric circuit components. This suggests the excellent

fit between experimental and fitted EIS spectrum, which is also confirmed by the

excellent fit shown in the EIS Nyquist plots (Figure 2.9 and Figure 2.16).

The EIS fitting results for the HER are shown in Figure 2.9 and Table 2.2. It

can be seen that the solution resistance is nearly constant, while both the charge

transfer and the psudo-resistances decrease exponentially as the applied voltage

increases, a result that is confirmed by the decrease in the semi-circle diameters of

Figure 2.9.

2.5.2 HER Theoretical Analysis

The electrochemical reaction rate expressions for the Volmer, Herpvsky, and

Tefel steps are given in Equations (2.1), (2.2), and (2.3), respectively [21]. In these

rate expressions, ΘH is the fraction of the surface coverage of the adsorbed interme-

diate H, k′i is the electrochemical rate constant (mol cm−2s−1), ki is the chemical

rate constant (mol cm−2 s−1), koi is the partial standard chemical rate constant (cm

s−1), βi is a symmetry factor, assumed to be 0.5, and η is the overpotential (V).

νV = k′V (1−ΘH)− k′−V ΘH (2.1)

νH = k′HΘH − k′−H(1−ΘH) (2.2)

νT = kTΘ2
H − k−T (1−ΘH)2 (2.3)
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Table 2.2: EIS fitting results to the Armstrong and Henderson equivalent electric

circuit for the HER, and the corresponding relative errors.

V

(V)

Rs (Ω) Rct (mΩ) Rp (mΩ) Cdl (µF) Cp (µF) L (µH)

-1.20 1.509 ± 0.2 1072 ± 5.9 2308 ± 2.8 171.6 ± 2.0 159.5 ± 2.7 0.09 ± 25.7

-1.30 1.498 ± 0.3 304.3 ± 8.7 933.7 ± 3.2 107.1 ± 6.7 140.5 ± 2.6 0.22 ± 11.1

-1.35 1.501 ± 0.3 267.7 ± 9.9 676.9 ± 4.5 103.5 ± 7.8 136.7 ± 2.6 0.21 ± 11.1

-1.40 1.492 ± 0.4 255.6 ± 8.4 552.2 ± 4.3 89.6 ± 9.3 141.1 ± 2.5 0.24 ± 9.8

-1.45 1.489 ± 0.4 205.8 ± 8.7 441.4 ± 5.2 87.1 ± 10.1 141.0 ± 2.4 0.29 ± 8.2

-1.50 1.483 ± 0.4 191.8 ± 7.4 376.8 ± 5.3 81.6 ± 11.3 149.6 ± 2.3 0.30 ± 8.3

-1.55 1.485 ± 0.3 206.4 ± 6.8 287.5 ± 6.1 91.5 ± 7.5 166.6 ± 3.9 0.28 ± 6.2

-1.65 1.469 ± 0.5 158.9 ± 4.8 245.3 ± 5.9 67.3 ± 14.2 170.9 ± 2.4 0.33 ± 7.2

where:

k′i = ki exp

(
−βiFη
RT

)
= koi [H2O] exp

(
−βiFη
RT

)
, i = V,H

k′−i = k−i exp

(
(1− βi)Fη

RT

)
= ko−i[OH

−] exp

(
(1− βi)Fη

RT

)
, i = V,H

kT = koT

k−T = ko−T
PH2

P o
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The steady state kinetics of the HER can be characterized by applying a charge

balance. The current density can then be given as a function of the electrochemical

reaction rates:

ro = j/F = −(νV + νH) (2.4)

For a purely charge transfer controlled process, it is reasonable to assume

that the reciprocal of the charge transfer resistance can be characterized by Tafel

slope. However, it is better to assume that more than one step is involved in the

HER mechanism; hence, the reciprocal of the Faradaic resistance R−1
F is a better

representation of Tafel slope [21], [35]. The Faradaic resistance is defined as the sum

of the charge transfer and pseudo resistances.

R−1
F =

(
∂j

∂E

)
ΘH

= −F

((
∂νV
∂E

)
ΘH

+

(
∂νH
∂E

)
ΘH

)
(2.5)

The rate of change of the adsorbed hydrogen surface coverage can be obtained

by performing a material balance [19]:

r1 =
q

F

(
∂ΘH

∂t

)
= νV − νH − 2νT (2.6)

The steady state coverage is obtained when r1 is set to zero, facilitating the

calculations of the coverage as a function of reaction rate constants. Setting r1 to

zero reveals a second order polynomial in ΘH, which can be solved using:

ΘH =
−b±

√
b2 − 4ac

2a

a = 2 (k−T − kT )

b = −
(
k′V + k′−V + k′H + k′−H + 4k−T

)
c =

(
k′V + k′−H + 2k−T

)
(2.7)
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Equations (2.1), (2.2), (2.4), and (2.5) show the dependency of the current

density and Faradaic resistance on the Volmer and Heyrovsky reaction rate con-

stants, the potential, along with the surface coverage, and Equation (2.7) represents

the surface coverage as a function of all six reaction rate constants, and the poten-

tial. Consequently, j and RF can be theoretically represented as a function of all the

reaction rate constants and the potential. A least squares procedure to fit the the-

oretical current density model with experimental results obtained from the steady

state polarization curve is implemented using scipy.optimize.least squares package

in the Python programming environment. The cost function to be minimized is

minimize F (x) = 0.5×
∑

(ji,exp − ji,th)2 , i = 0, ...,m− 1 (2.8)

where x is the solution set [kV , k−V , kH , k−H , kT , k−T ], m is the number of exper-

imental LSV data points, ji,th is the value of the current density calculated from

Equation (2.4). In the least squares problem, the stopping criteria corresponds to

reaching a stable solution with a tolerance of 1 × 10−12. The value of the cost

function at the optimal solution was 9.90× 10−10.

The chemical reaction rate constants for the individual HER mechanism steps,

Tafel, Volmer, and Heyrovsky, were obtained as a result of the fitting procedure, and

are shown in Table 2.3. Figure 2.11(a) demonstrates the excellent fit of the current-

voltage characteristics with experimental LSV data. The identified reaction rate

model shows a good agreement between theoretically calculated Faradaic resistance

and values obtained from EIS results (Figure 2.11(b)).
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Figure 2.11: Experimental and simulated results of the HER current density (a) and

inverse of Faradaic resistance (b) versus potential.
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Figure 2.12: Tafel, Volmer, and Heyrovsky reaction rates at the obtained kinetic

parameters (a) and hydrogen fractional surface coverage (b) versus potential.
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Table 2.3: Chemical rate constants ki (mol cm−2 s−1) and partial standard chemical

rate constants koi (cm s−1) obtained for HER.

kV k−V kH k−H kT k−T

1.38e-6 1.00e-10 1.94e-10 2.21e-5 5.52e-7 1.00

koV ko−V koH ko−H koT ko−T

2.48e-5 1.00e-7 3.48e-9 2.21e-2 5.52e-7 1.00

The set of identified reaction rate constants in Table 2.3 reveals the Heyrovsky

step as the rate limiting step for the HER on NiFe LDH electrode. Figure 2.12(a)

shows the calculated Tafel, Volmer, and Heyrovsky reaction rates using the identi-

fied kinetic parameters, which reveals a dependence of the HER mechanism on the

potential. At low potential range (below a compensated voltage of -1.31 V, equiva-

lent to an applied voltage of -1.52 V vs Hg/HgO), the HER mechanism starts with

a Volmer step, followed by parallel Tafel and rate controlling Heyrovsky steps. At

higher potential range, the HER mechanism consists of a consecutive combination

of the Volmer step, followed by a rate-controlling Heyrovsky step, with negligible

contribution by the Tafel step. This result is in good agreement with the Tafel slope

analysis presented earlier.
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Figure 2.13: Hydrogen fractional surface coverage (a) and reaction rates (b) for

extended potential range.

Figure 2.12(b) shows the influence of the potential on the adsorbed hydrogen

surface coverage, with a noticeable high coverage value close to unity in all potential

ranges. This observation is expected since the Heyrovsky is the rate controlling step.

A small increase in the coverage value is noticed with increasing potential, which is

associated with the shift between Tafel and Heyrovsky reaction rate values close to -

1.3 V. The Tafel step requires the presence of two adjacent adsorbed hydrogen species

on the surface, resulting in an increase of the coverage as this rate become smaller.

Ultimately, when the Tafel rate reaches a small negligible value, the Volmer and

Heyrovsky rates approach the same value, allowing the surface hydrogen coverage

to reach a stable value (Figure 2.13(a)).

When the theoretical potential range is further extended (Figure 2.13(b)) Tafel

step reaction rate becomes independent of the applied potential, which can be at-

tributed to the surface coverage of the adsorbed intermediate reaching a constant
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high coverage value in this potential region. This conclusion can be drawn by ex-

amining Equation (2.3) and the definition of its rate constants being independent

of potential; however, the dependency of this rate at low potential values originates

from that of the surface coverage.

2.6 NiFe LDH as an OER Electrode

2.6.1 Electrochemical Characterization Results and Analysis

One of the main challenges of OER mechanistic analysis lies in its complexity,

owing to the fact that it involves the transfer of four electrons through a multi-step

reaction pathway in which various reaction intermediates are formed [27]. As a

result, various reaction pathways were proposed for the OER. One of the better-

accepted reaction pathways for the OER was proposed by Dong et al [36] on the

NiFe LDH electrode and is presented in Table 2.4. The OER mechanism starts

when a hydroxide ion OH(aq) adsorbs onto an active site on the anode, followed by a

sequence of intermediate reactions to form the adsorbed species O, HOO, OO before

releasing oxygen gas O2(g) from the adsorbed species OO.
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Table 2.4: OER mechanism in a basic electrolyte [36]. SOER represents active sites

on the OER electrode. Electrons are denoted by e−, and the subscripts (aq) and

(g) denote the aqueous and the gas phases, respectively. All remaining species

correspond to adsorbed surface species.

Step 1: OH−(aq) + SOER 
 HO + e−

Step 2: OH−(aq) + HO 
 O + H2O(aq) + e−

Step 3: OH−(aq) + O 
 HOO + e−

Step 4: OH−(aq) + HOO 
 OO + H2O(aq) + e−

Step 5: OO 
 O2(g) + SOER

In terms of the catalytic performance towards the OER, Figure 2.14 shows a

galvanostatic polarization test performed at a current density of 10 mA/cm2, which

reveals a potential of 548 mV vs Hg/HgO. Combining this value with the OER

equilibrium potential of 401 mV vs NHE (equals to 303 mV vs Hg/HgO), NiFe

LDH demonstrated an excellent overpotential of 245 mV to reach an anodic current

density of 10 mA/cm2. This value is comparable to the 240 mV overpotential

reported by Luo et al [7], and higher than the 224 mV overpotential reported by Li

et al [10].

A Tafel plot (Figure 2.15) constructed from the experimental LSV data shows

a Tafel slope of 48.4 mV/dec, which is less than the 52.8 mV/dec reported by Li

et al [10], and the 50 mV/dec reported by Lu et al [9], demonstrating an excellent

performance of our prepared electrode.
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Figure 2.14: Galvanostatic polarization test performed for the OER electrode at a

current density 10 mA/cm2.

Numerous efforts have been made towards the analysis and interpretation of

the Tafel slope values in terms of the OER mechanism. Doyle et al [25] suggested

that either the formation of the peroxide (HOO) or the peroxo (OO) intermediates

is rate limiting for a Tafel slope of 40 mV/dec on hydrous iron oxide films in basic

electrolytes. Fan et al [11] indicated that the formation of HOO is rate limiting for

NiV LDH with a Tafel slope of 50 mV/dec, and the formation of the O intermediate

is rate limiting for NiFe LDH with a Tafel slope of 64 mV/dec. In addition, Louie

et al [37] stated that a Tafel slope of 40 mV/dec is most likely associated with the

formation of peroxide intermediate reaction as rate limiting.

The 48.4 mV/dec Tafel slope obtained in this work may indicate that either the

formation of O, HOO or OO intermediates in steps 2, 3, and 4, respectively, is the

rate determining step, with step 3 being the most probable. Further investigation
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Figure 2.15: Tafel plot for NiFe LDH as a OER electrode.

of the reaction mechanism is discussed in section 2.6.2.

The OER Nyquist plots in Figure 2.16 show two distinctly identified semicir-

cles: the former is related to the active material porous structure, arising from the

resistance of the ionic conducting paths in the pores filled with the electrolyte [33].

The latter semicircle in the OER Nyquist plot is related to the charge transfer

limitations in the electrode/electrolyte interface.

Figure 2.17 shows the equivalent electrical circuit used to fit the EIS spec-

tra [38], with the fitting results given in Table 2.5. Ideally, the film porous structure

resistance Rf should be independent of potential, however, EIS fitting results (pre-

sented in Table 2.5) demonstrated a slight decrease in the resistance of the first

RC loop with increasing potential, which aids in increasing the overall OER rate

as potential increase. On the other hand, Rct is highly dependent on the potential,

suggesting that the second RC loop is related to the charge transfer limitations.
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Figure 2.16: Nyquist plots of EIS measurements obtained for the OER at 0.55 V

(a), 0.6 V (b), 0.65 V (c), 0.7 V (d), 0.75 V (e), and 0.8 V (f) vs Hg/HgO.
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Figure 2.17: The equivalent circuit used for the OER EIS data fitting.

The constant phase element (CPE) in Figure 2.17 is introduced to improve

the theoretical fit of the EIS spectra. A CPE is often used to represent a non-

ideal capacitor, indicated by a depressed semi-circle behavior in Nyquist plot, which

can be attributed to heterogeneities and porous surfaces [39]. The CPE contains

two parameters: CPE-P corresponding to its capacitance value in the absence of

frequency dispersion, and an exponent CPE-T (or α) ≤1, with a value of 1 for ideal

capacitors [25].

When a CPE is used in a circuit, the real capacitance value can be evaluated.

The capacitance associated with the film resistance Cf can be calculated using the

common Brug equation [40], [41]:

Cf =

[
CPETf

(
1

Rs

+
1

Rf

)α−1
] 1

α
(2.9)

The double layer capacitance Cdl can be calculated from the modified Brug

equation [supplementary information of [33]], [39] for a two-CPE equivalent electric

circuit similar to Figure 2.17:

Cdl =

[
CPETdl

(
1

Rs +Rf

+
1

Rct

)α−1
] 1

α
(2.10)

The identified capacitance values Cf and Cdl are presented in Table 2.6.
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Table 2.5: EIS fitting results to the equivalent electric circuit in Figure 2.17 for the

OER and the corresponding relative errors %.

V

(V)

Rs (Ω) Rf (mΩ) Rct

(mΩ)

CPEf-T

(mFsα−1cm−2)

αf CPEdl-T

(mFsα−1cm−2)

αdl

0.55 1.085 ±

0.2

237.9 ±

3.8

1853 ±

1.5

329.5 ± 9.0 0.43 ±

3.5

919.1 ± 0.6 0.83 ±

0.7

0.60 1.090 ±

0.2

202.9 ±

2.9

576.2 ±

1.2

163.5 ± 9.0 0.51 ±

2.7

760.1 ± 1.0 0.82 ±

0.8

0.65 1.099 ±

0.1

173.5 ±

2.8

335.1 ±

1.5

97.6 ± 9.5 0.58 ±

2.4

693.7 ± 1.4 0.79 ±

1.0

0.70 1.107 ±

0.1

138.2 ±

2.8

254.6 ±

1.6

42.7 ± 10.4 0.68 ±

2.1

652.0 ± 1.7 0.74 ±

1.2

0.75 1.105 ±

0.1

139.2 ±

3.7

185.9 ±

2.7

42.8 ± 13.9 0.67 ±

2.9

644.6 ± 3.0 0.76 ±

1.9

0.80 1.105 ±

0.1

122.8 ±

4.2

160.6 ±

3.2

31.3 ± 15.1 0.72 ±

2.9

672.1 ± 3.6 0.72 ±

2.3
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Table 2.6: Identified capacitance values obtained from EIS fitting results and Equa-

tions (2.9) and (2.10).

V

(V)

Cf (mF) Cdl (mF)

0.55 8.67 856.69

0.60 5.26 584.83

0.65 4.58 442.33

0.70 3.61 324.97

0.75 3.24 315.66

0.80 3.46 269.58

2.6.2 Theoretical Models Describing the Electrode Kinetics

For the OER, the reaction rates can be expressed as:

ν1 = k′1ΘS − k′−1ΘOH (2.11)

ν2 = k′2ΘOH − k′−2ΘO (2.12)

ν3 = k′3ΘO − k′−3ΘHOO (2.13)

ν4 = k′4ΘHOO − k′−4ΘOO (2.14)

ν5 = k5ΘOO − k−5ΘS (2.15)
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where:

k′i = ki exp

(
(1− βi)Fη

RT

)
= koi [OH

−] exp

(
(1− βi)Fη

RT

)
, i = 1, ..., 4

k′−i = k−i exp

(
−βiFη
RT

)
=


ko−i[H2O] exp (−βiFη/RT ) , i = 2, 4

ko−i exp (−βiFη/RT ) , i = 1, 3

k5 = ko5

k−5 = ko−5

PO2

P o

Similar to the HER, the steady state current density and the inverse of Faradaic

resistance of the OER can be characterized by:

r2 = j/F = (ν1 + ν2 + ν3 + ν4) (2.16)

R−1
F =

(
∂j

∂E

)
Θ

= F

((
∂ν1

∂E

)
Θ

+

(
∂ν2

∂E

)
Θ

+

(
∂ν3

∂E

)
Θ

+

(
∂ν4

∂E

)
Θ

)
(2.17)

Due to the complex behavior of the OER in which various reaction intermedi-

ate species are formed, the derivation of the intermediates surface fractional coverage

as a function of the reaction rate constants was challenging. To obtain expressions

for the fractional surface coverage of each intermediate involved in the OER, a ma-

terial balance is performed on each intermediate, with the steady state converge

assumed, to obtain five algebraic equations, in which four are linearly independent:
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ΘS =

(
k′2 + k′−1

)
ΘOH − k′−2ΘO

k′1
(2.18)

ΘOH =

(
k′3 + k′−2

)
ΘO − k′−3ΘHOO

k′2
(2.19)

ΘO =

(
k′4 + k′−3

)
ΘHOO − k′−4ΘOO

k′3
(2.20)

ΘHOO =

(
k′5 + k′−4

)
ΘOO − k′−5ΘS

k′4
(2.21)

Which an be solved simultaneously with:

ΘS + ΘOH + ΘO + ΘHOO + ΘOO = 1 (2.22)

To obtain:

ΘHOO = mΘOO (2.23)

ΘO = jΘOO (2.24)

ΘOH = (ej − fm)ΘOO (2.25)

ΘS = (c(ej − fm)− dj) ΘOO (2.26)
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Where:

m =

(
a− h(bd− bce)

1− bcf − g(bd− bce)

)
(2.27)

j =

(
g(a− h(bd− bce))

1− bcf − g(bd− bce)
− h
)

(2.28)

a =
k′5 + k′−4

k4

(2.29)

b =
k′−5

k4

(2.30)

c =
k′2 + k′−1

k1

(2.31)

d =
k′−2

k1

(2.32)

e =
k′3 + k′−2

k2

(2.33)

f =
k′−3

k2

(2.34)

g =
k′4 + k′−3

k3

(2.35)

h =
k′−4

k3

(2.36)

Substituting Equations 2.23-2.36 in 2.22 yields a single variable equation that

can be solved analytically for ΘOO, which can then be substituted into Equations

2.23-2.26 to obtain analytic expressions for the intermediates fractional surface cov-

erage as a function of all reaction rate constants and the potential.

2.6.3 Evaluation of OER Rate Constants

A least squares procedure is performed to fit the theoretical current density

model with experimental LSV results, and the chemical reaction rate constants for

the OER are obtained (Table 2.7). The least squares problem formulation is similar
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to the HER (2.8), with a cost function of 4.53×10−9 at the optimal solution. The re-

sulting kinetic model shows an excellent agreement between theoretically calculated

and experimental current density and Faradaic resistance values (Figure 2.18).

Table 2.7: Chemical rate constants ki (mol cm−2 s−1) and partial standard chemical

rate constants koi (cm s−1) obtained for OER.

k1 k−1 k2 k−2 k3 k−3 k4 k−4 k5 k−5

2.75e-4 1.61e-8 6.80e-2 1.0e-10 1.08e-9 9.59e-1 1.16e-4 1.29e-3 2.89e-4 9.83e-1

ko1 ko−1 ko2 ko−2 ko3 ko−3 ko4 ko−4 ko5 ko−5

2.75e-1 1.61e-8 6.80e1 1.80e-9 1.08e-6 9.59e-1 1.16e-1 2.32e-2 2.89e-4 9.83e-1

Examining the kinetic parameters in Table 2.7 reveals that step 3, formation

of the peroxide intermediate HOO, is the rate limiting step, which validates the

analysis performed on the measured Tafel slope.

Since a steady state coverage of the individual reaction intermediates is as-

sumed, it follows that the five reaction rate values are equal at any potential, with

an exponentially increasing behavior similar to the current-potential characteristics,

as shown in Figure 2.19(a). This is also supported by the sequential behavior of the

OER, i.e. the consecutive formation of the adsorbed OER intermediates, as opposed

to having two competing reaction pathways as is the case with the HER.
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Figure 2.18: Experimental and simulated results of the OER current density (a)

and inverse of Faradaic resistance (b) versus potential.

A plot of the surface coverage reveals a high coverage value of the adsorbed

O species that is close to unity (Figure 2.19(b)), a consequence of step 3 as rate

limiting. Examining Figure 2.19(b) reveals that at higher potential, ΘO begins to

decrease as a result of a small increase in ΘOO value. This result is reasonable

owing to ko5 value in Table 2.7 being the second smallest value compared to the

remaining rate constants, and the fact that the chemical rate ν5 is less dependent

on the potential compared to the remaining electrochemical reaction rates.
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Figure 2.19: OER reaction rates for the identified kinetic parameters (a) and inter-

mediate species fractional surface coverage (b) versus potential.

2.7 Combined Electrolysis Cell Modeling

The anode and cathode kinetic results can be combined to represent the total

electrolysis cell using Equation (2.37)

Vcell = 1.23 + ηa + ηc + Icell ×Rcell (2.37)

where ηa and ηc are the anode and cathode overpotentials, respectively, corrected

for the IR drop, and Rcell is the total cell electrolyte resistance. Rcell is not the same

as the two solution resistance values Rs obtained from the anode or cathode EIS

fitting results. In fact, it can be assumed that Rcell is the sum of the two resistances

due to the differences in the three- and two-electrode set up used in the electro-

chemical measurements. To illustrate, the electrolyte resistance estimated from the

three-electrode cell corresponds to the solution resistance between the working and

reference electrodes [42], which is approximately half the distance between the elec-
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trodes in the electrochemical cell used.

Figure 2.20(a) demonstrates a good agreement between experimental cell LSV

results and the current-voltage characteristics resulting from Equation (2.37) using

the identified kinetic model. It can be noticed that the theoretical model deviates

somewhat as the current increases, with approximately 5%−7% difference between

the experimental and theoretical current value. Since the magnitude of the current

deviation increases with potential, this behavior can be attributed to overestimation

of the total cell solution resistance Rcell. If the value of Rcell is decreased by 5%,

the theoretical results would result in a perfect fit with experimental values, as

shown in Figure 2.20(b). The overestimated Rcell value obtained from combining

the anode and cathode experimental results can be credited to the position of the

reference electrode, causing a physical barrier between the two electrodes in the

three-electrode cell set up. The cell LSV data, however, were measured by applying

the potential directly between the anode and cathode, without the presence of the

reference electrode in the cell.

The electrolysis cell characteristics reveal significant electrocatalytic activity

of the prepared films towards water electrolysis. A current density of 10 and 100

mA/cm2 can be reached at 1.7 and 2.1 V, respectively. This result is based on a 1

M KOH electrolyte resistance through a distance of approximately 3-4 cm between

the electrodes. However, the commercial electrolyzers stacks have much smaller

electrolyte path and higher concentrations (approximately 25-30% KOH) [6], signif-

icantly reducing the uncompensated resistance of the cell.
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Figure 2.20: Experimental and simulated cell current versus applied potential (a),

and with 5% lower Rcell (b).

Coupling the cathode and anode kinetics results is essential for accurately

predicting the total cell performance, specially when integrating the system with

sustainable energy sources. Since most commercial electrolyzers operate at elevated

temperatures (typically 80 °C) [43], this kinetics analysis offers an advantage of

evaluating the reaction rate constants at different process design parameters, such

as electrolyte concentration or temperature (by assuming exponential dependence

of reactions rate constants on the temperature following Arrhenius Law).

Even though NiFe LDH demonstrated an excellent electrocatalytic activity

towards OER, the electrochemical results presented in this work prove that the

catalyst performance must still be enhanced toward the HER. Recent progress has

demonstrated the ability to enhance the activity of NiFe LDH to reach a cathodic

overpotential of as low as 29 and 34 mV at 10 mA/cm2 by incorporating active metal

atoms in the catalyst such as Ru and Ir [17], [18], allowing superior electrolysis cell

performance.
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2.8 Concluding Remarks

The kinetics and reaction mechanism of HER and OER on a NiFe LDH catalyst

were investigated. Linear sweep voltammetry (LSV) and electrochemical impedance

spectroscopy (EIS) measurements were taken, and the results were then fitted to a

theoretical model relating current density and Faradaic resistance to the chemical

reaction rate constants of the HER and OER.

The kinetics parameters of the HER demonstrated the Heyrovsky step as rate

controlling, a result that is validated by the measured 38.4 mV/dec Tafel slope. Fur-

thermore, the parameter fitting results reveled the dependency of the HER mech-

anism on applied potential. At lower end of potential range, the mechanism of

HER starts with a Volmer step, followed by a parallel Tafel and rate controlling

Heyrovsky step. At higher potential, the contribution of the Tafel step becomes

negligible, with the mechanism being a consecutive combination of Volmer and rate

controlling Heyrovsky steps. The OER kinetics demonstrated the formation of the

adsorbed peroxide (HOO) as the rate determining step, which is in agreement with

the 48.4 mV/dec Tafel slope observed. In higher potential regions, ΘO decreases

as a result of increasing ΘOO value, due to the low value of ko5, and the fact that

the chemical rate ν5 is less dependent on the potential compared to the remaining

electrochemical reactions rates.

Understanding the true kinetic behavior of a system allows for a better pro-

cess design and operation control, especially when certain attributes in the process

changes, such as temperature or electrolyte concentration.

52



Chapter 3: PV-Electrolysis-Battery Coupled System

3.1 Introduction

Generally, two primary approaches are known for solar hydrogen production:

the direct use of solar energy to split water in a photoelectrochemical (PEC) cell, and

photovoltaic (PV) solar cell powered electrolyzers. Currently, the latter approach is

more practical because of higher solar to hydrogen (STH) efficiencies, attributable

to its higher technical state of maturity [43]. In addition, PEC water splitting still

faces challenges generating sufficient photovoltages while reaching acceptable STH

efficiencies and demonstrating electrode material stability [43].

In this chapter, we focus on modeling and optimizing an integrated PV-

electrolysis-storage battery system for optimal hydrogen production. The output

of the PV module is direct current (DC) at a controlled output voltage and hence

nearly insusceptible to variations in solar irradiance levels [6]. This feature is an

asset to the electrolyzer design, which requires a fixed input voltage for consistent

operations. The PV output current, however, is influenced by the irradiance varia-

tions, which can ultimately affect the hydrogen production rate in the electrolyzer

unit. However, the operational mode of the electrolyzer is assumed to follow a

fixed current mode, requiring the battery to discharge in situations in which the PV
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currents are insufficient.

Fortunately, the decreasing trend in the cost of electricity produced by PV

solar cells is an additional advantage for PV powered electrolysis systems [44]. In

the United States, the PV system cost benchmark for commercial applications has

fallen from a value of $5.36 in 2010 to $1.85 in 2017 per Watt DC [45]. In addition,

the commercial scale levelized cost of energy (LCE), defined as the costs associated

with producing 1 kWh of energy, has also decreased from values in the range (0.32-

0.42) $/kWh in 2010, down to values between (0.09-0.12) $/kWh in 2017 [45]. This

cost is expected to even reach values under 0.03 $/kWh in the future for renewable

energy sources such as PV and wind [44].

For our integrated system, the PV modules provide the required energy to

power the electrolyzers, while using the excess power to charge the battery during

peak PV power production. The battery in return will provide the power necessary

for uninterrupted operation of electrolyzers at night. Cloud cover data for College

Park city in Maryland, USA is available for the year 2017. Hence, both diurnal

and seasonal weather variability are included in the model, and an optimal sizing of

individual system elements will be demonstrated.

The coupled system is assumed to be connected to the grid to ensure uninter-

rupted operation of electrolyzer during seasonal weather variations. During times

where the power generated from the PV modules is insufficient to fully meet the

electrolyzer and battery charge/discharge load, power will be supplied by the grid.

On the contrary, excess power will be sold to grid in cases where the power generated

by the PV modules exceeds the integrated system power requirements. A schematic
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diagram of the coupled system is presented in Figure 3.1.
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Figure 3.1: A schematic diagram of the coupled system.

To achieve maximum design and operation sustainability, we aim that the cou-

pled system meets a net-zero energy throughout the whole year. Since the proposed

system is designed for commercial scale applications (with hydrogen production rate

in the range 5-120 Normal m3/h), reaching a value of exactly zero is highly improba-

ble. Instead, the coupled system can be assumed to meet a net-zero energy when the

system meets a cut-off value of ±5% relative to the daily plant power consumption.
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3.1.1 Literature Review

Research efforts are still underway to optimize the design and operation of

sustainable hydrogen production systems. Gibson and Kelly [46] investigated a cou-

pled PV-electrolysis system, in which they examined different system designs to

reach optimal solar to hydrogen (STH) efficiency. They tested multiple commercial

PV modules and concluded that directly coupling the two systems leads to optimal

efficiency in cases where the PV modules are specifically designed to have a maxi-

mum power voltage (Vmp) that matches the electrolyzer operating voltage. In other

cases where there is a mismatch between the PV modules output voltage and the

electrolyzer operating voltage, incorporating a DC-DC converter in the circuit is

beneficial to reach acceptable STH efficiencies.

A hybrid system consisting of PV modules and wind turbines (WT) to power

an electrolyzer is simulated in Khalilnejad et al [47]. Achieving an optimal design

of WT and PV systems to maximize hydrogen production, while minimizing excess

energy generated was the primary focus. The simulation was intended to support

the operation of an off-grid electrolyzer load for a diurnal period (24 h simulation

time) in Miami city.

Aside from the promising usage of hydrogen in fuel cells for transportation

applications, hydrogen can serve as a solar energy storage medium in stand-alone

systems, providing backup power in cases of diurnal weather and long-term seasonal

variations [43]. Lagorse et al [48] proposed a stand-alone street lighting hybrid

system consisting of PV cells, storage battery, and hydrogen powered fuel cells. The
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integration of fuel cells is essential in cases where the battery is unable to provide

necessary power due to long-term seasonal variations. For Geneva, Switzerland, the

optimal system sizing chosen to minimize the system cost, was able to power the

street light all year round.

Hassan et al [49] also investigated a similar hybrid energy system for grid

connected residential applications. The system consists of PV modules as the pri-

mary source of energy, coupled with a storage battery bank and a hydrogen storage

system (electrolyzer, fuel cell, and hydrogen storage tanks) to cover dynamic load

scenarios. They proposed different operation modes of the system based on the

charging/discharging states of the battery and hydrogen storage systems. The hy-

brid system was able to meet the dynamic load demands with excellent grid stability.

The results, however, were only simulated over 24 h period in a typical summer day

in Islamabad.

Integrating renewable power resources, especially wind and PV systems, with

battery storage systems has also been established to meet a certain demand load.

Hongxing et al [50] presented an optimal design model for a hybrid PV-WT-Battery

system to power a telecommunication relay station on a remote island in China. The

model objective was to minimize the annualized cost of the system, while maximizing

the system reliability using the weather data of year 1989 in Hong Kong city.
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3.1.2 Motivation and Goals

An integrated PV-electrolysis-battery system is presented with the goals of

identifying optimal system design. The PV modules provide the necessary power

to run the electrolyzer, while charging the battery during daytime. The battery

will subsequently provide power necessary to ensure uninterrupted operation of the

electrolyzer during night. Diurnal and seasonal weather variations are also included,

and are used to optimize individual system elements. The system is connected to

the electric grid to allow continuous operation. The simulation is implemented in

Python environment, and is run for the calendar year 2017 in College Park city,

Maryland.

The analysis goal is to identify the optimal system configuration necessary to

maximize the hydrogen production rate, minimize total annual cost of the system

(ACS), minimize the levelized cost of energy (LCE), while meeting an annual grid

net-energy within ±5% relative to the daily plant power consumption.

3.2 PV Module Modeling

3.2.1 Solar Irradiance Modeling

The solar constant Esc (= 1366 W/m2) is the maximum direct solar irradiation

reaching the Earth’s surface if none of the radiation is absorbed or scattered by the

atmosphere. The effect of Earth’s atmosphere is a key factor to consider since a

significant fraction of the solar irradiance is either absorbed or scattered by molecules
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and particles in the atmosphere, leading to the definition of two important irradiance

components; direct (ED) and diffuse (EF ). Direct irradiance refers to the direct sun

beams reaching Earth, while the diffuse component corresponds to the fraction of

the solar irradiance scattered by the atmosphere, but eventually reaching the Earth’s

surface. The global irradiance EG is then defined as the summation of the direct

and diffuse components.

The air mass (AM) corresponding to the effective amount of our atmosphere

through which sunlight must pass before reaching the PV modules is approximated

by [51]

AM =
0.89z

cos ζ
for z < 3 km

where z is the site elevation in km, and ζ is the zenith angle, the angle made between

a line segment extending between the Earth and sun and local vertical (with ζ = 0

when the sun is directly overhead).

The direct irradiance reaching a surface that is aligned perpendicular to Sun’s

rays can be approximated by [51]

ED⊥ = Esc × 0.73AM
0.678

(3.1)

From measured data, it is reasonable to assume that the diffuse component

constitutes approximately 10% of the global normal irradiance, and hence the global

normal irradiance can be calculated from

EG⊥ = ED⊥ + EF = 1.11ED⊥ (3.2)
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Equation (3.2) only provides the direct global irradiance at solar noon. To

include the projection effect and the time of the day, Equation (3.3) can be used [51]1.

EG(td, φ, θ) = [(0.11 + cos ζ)ED⊥ ]×H(cos ζ) (3.3)

with

cos ζ = −~ni · ~s (3.4)

~s = 0~x+ 1~y + 0~z (3.5)

~ni = nxi~x+ nyi~y + nzi~z (3.6)

nxi = cosλy sinφ sinθi + sinλy ( cosδ sinφ cosθi + sinδ cosφ) (3.7)

nyi = −sinλy sinφ sinθi + cosλy ( cosδ sinφ cosθi + sinδ cosφ) (3.8)

nzi = −sinδ sinφ cosθi + cosδ cosφ (3.9)

asti = 24 (i/nast) (3.10)

θi = 2π (nast − i) /nast − 2π (td/365) (3.11)

φ = 2π (90o − φoN) /360o (3.12)

where ~ni is the vector normal to and pointing out of the PV module surface, ~s is the

solar radiation vector directed along y-axis, λy = 2πtd/365 is an angle representing

Earth’s mean orbit at td, td is the number of days past the most recent winter solstice,

φ is the latitude in degrees measured north of the equator, θ is the longitude, δ is

the Earth’s declination at td = 0 (equals to 23.44o), ast is the apparent solar time

1The global irradiance model is implemented in Python environment by Prof. Raymond Ado-

maitis, as a toolbox for the research group.
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(with ast = 12 at solar noon, and ast = 0, 24 at midnight), and H is the Heaviside

function and is used to prevent negative irradiance values on the night-side of the

planet. Detailed derivation of these equations is provided in [51].

When a PV module is tilted with an angle θtilt towards the South Pole, φtilt =

φ+ θtilt is used in Equations (3.7), (3.8), (3.9), and (3.12) instead of φ to calculate

~ni,tilt and cos ζtilt. The global irradiance can then be calculated from:

EG(td, φ, θ) = [H(cos ζtilt)ED⊥cos ζtilt + 0.11ED⊥ ]×H(cos ζ) (3.13)

The H(cos ζtilt) term is added to account for cases where the PV module is

tilted away from the Sun’s radiation during daylight (with cos ζtilt < 0 and cos ζ >

0), and hence only receives the diffuse component of the irradiance.

3.2.1.1 Effect of Cloud Cover

The above model calculates the global irradiance falling on a PV module sur-

face given its orientation, at any location as a function of time of the day. However,

the effect of cloud cover is not yet addressed. For a completely cloudy day, it is

reasonable to assume that only the diffuse part of the irradiance constitutes the

global solar irradiance, with 20% the intensity of the direct normal irradiance [52]

Ecloudy = 0.2× E⊥D (3.14)
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Since the clouds cover is typically represented as a fraction between 0 and

1, a simple weighted average is assumed such that the irradiance value is equal to

EG for sunny days (CloudsCover = 0), and Ecloudy for a completely cloudy day

(CloudsCover = 1).

Etotal = CloudsCover × Ecloudy + (1− CloudsCover)× EG (3.15)

An hourly weather forecast for the 2017 year is acquired by executing an API

request from the Dark Sky API website [53]. Hourly cloud cover data then can be

extracted from the weather forecast data. Figures 3.2 and 3.3 provide the cloud

cover data for College Park, MD for the entire year, and for the first week of the

year, respectively, compared to the total solar irradiance calculated Etotal, showing

the inverse correlation between the two.

3.2.2 PV Module Characteristics

Let us consider an array of M parallel rows of PV cells, each row containing

N cells connected in series; this constitutes a basic PV module. If each cell in the

module performs identically, the module performance model can be written in terms

of the diode equation

I = M

{
−IphX(t) + Io

[
exp

(
q
V/N − (I/M)Rs

βkBT

)
− 1

]
+
V/N − (I/M)Rs

Rsh

}
(3.16)

where X(t) is the dimensionless concentrating factor proportional to the global

irradiance so that X(t) = Etotal(t)/(1000 W/m2). The diode ideality factor β ∈ [1, 2]

approaches unity under ideal performance conditions. The series Rs and shunt Rsh
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Figure 3.2: Hourly cloud cover data from Dark Sky API for College Park, MD for

2017 and the solar irradiance Etotal calculated at a module tilt angle of 35°.

resistances approach 0 and positive infinity, respectively, for an ideal PV cell. Io

and Iph are the dark saturation and photo-currents, respectively.

The PV module considered in this work is the SunPower SPR-X21-345 [54],

with its specifications given in Table 3.1 with M = 1 and N = 96, noting that these

characteristics apply to the entire module, not the individual cells.

Examining (3.16) we see that we have five unknown parameters: β, Io, Iph,

Rs, and Rsh and four data points (Voc, Isc, Vmp, and Imp) that, in combination with

(3.16), effectively produce four independent equations. The first equation is the

diode equation (3.16) evaluated at Pmp:

Imp = M

{
−Iph + Io

[
exp

(
q
Vmp/N − (Imp/M)Rs

βkBT

)
− 1

]
+
Vmp/N − (Imp/M)Rs

Rsh

}
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Figure 3.3: Hourly cloud cover data from Dark Sky API for College Park, MD for

the first week of 2017 and the solar irradiance Etotal calculated at a module tilt angle

of 35°.

the second is the Pmp condition itself:

0 =
d

dVmp
VmpM

{
−Iph + Io

[
exp

(
q
Vmp/N − (Imp/M)Rs

βkBT

)
− 1

]
+
Vmp/N − (Imp/M)Rs

Rsh

}

the third corresponds to the short-circuit condition:

Isc = M

{
−Iph + Io

[
exp

(
−q IscRs

MβkBT

)
− 1

]
− IscRs

MRsh

}

and the forth the open-circuit condition:

0 = M

{
−Iph + Io

[
exp

(
q

Voc
NβkBT

)
− 1

]
+

Voc
NRsh

}
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Table 3.1: SunPower SPR-X21-345 module specifications [54] under AM1.5 condi-

tions normalized to 1000 W m−2 irradiance and 25 oC. At the maximum power point

Pmp = VmpImp. Open-circuit voltage is Voc and short-circuit current is Isc.

N A (m2) Voc (V) Isc (A) Vmp (V) Imp (A) Pmp (W)

96 1.63 68.2 6.39 57.3 6.02 345

As such, the system is underdetermined; to identify the additional conditions

required to determine a set of model operating parameters, we define the regular-

ization equations

β = 1, Rs = 0,
1

Rsh

= 0

based on the ideal conditions of each parameter. This now gives us seven equations

and five unknowns. Therefore, we use an iterative non-linear procedure to find the

parameter values on a per-cell basis; results are shown in Figure 3.4 and presented

in Table 3.2. These parameters are then substituted in the diode equation (3.16) to

determine the I − V and P − V characteristic curves at each point during the day

according to the different value of the concentration factor X(t).

Table 3.2: SunPower SPR-X21-345 module parameter fitting results on a per-cell

basis.

Iph (A) Io (A) Rs (Ω) Rsh (Ω) β

6.39 6.28×10−12 6.70× 10−3 2.00× 103 1
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Figure 3.4: SunPower SPR-X21-345 Module parameter fitting results (the negative

sign corresponds to power produced by the PV module). The maximum power point

is denoted in red, and Voc, Isc, Vmp, Pmp, and Imp are listed in Table 3.1

.

As described earlier, PV systems are ideal power supplies for electrolyzers.

This is mainly because the output voltage of the PV modules can be controlled to

relatively constant values as illumination levels change. This is particularly valuable

for fast transients, such as the sudden reduction of irradiance due to a passing

cloud. Furthermore, the use of a DC-DC converter and optimizer ensures that the

output power is at the maximum power point (Pmp, Vmp, Imp). In this analysis, we

assume the electrolyzer follows a constant-current operational mode, which requires

a constant and steady source of voltage. Hence, the mean value of the non-zero Vmp

entries throughout the year is chosen as the operational voltage of the electrolyzer.

Figure 3.5 shows Vmp for the year, with the mean value Vmp,mean calculated to be

55.6 V.

66



0 1000 2000 3000 4000 5000 6000 7000 8000
Aparent Solar Time (h)

35

40

45

50

55

60

V m
p (

V)

Figure 3.5: Non-zero values of the Vmp (i.e., during daylight operation of the PV

module), with the mean value calculated.

3.2.3 Optimal Module Tilt

To optimize PV module performance, we investigate the influence of module

tilt angle on the output power of the PV module. A set of tilt values between 0-90o

is used in the PV model, and the summation of Pmp produced throughout the year is

calculated for each module tilt value. Figure 3.6 shows the values of Pmp harvested

during the 2017 year, with an optimal module tilt of 35°. This value is chosen for

the remainder of the analysis in this chapter.
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Figure 3.6: The effect of module tilt on Pmp value harvested during 2017 showing

an optimal tilt of 35°.

3.3 Electrolyzer Design

Since the early discovery of water electrolysis in 1800 [55], different types

of electrolyzers have been developed. Some are still in the research and develop-

ment (R&D) phase while others are more mature and commercially available. The

main three types are: alkaline electrolyzers, proton exchange membrane (PEM)

electrolyzers, and solid oxide electrolyzers (SOE). Currently, two low temperature

electrolyzers dominate the market: alkaline and PEM electrolyzers [44].

Alkaline electrolysis is the most mature technology among the three. It was

first established in 1800 when Nicholson and Carlisle discovered the electrolytical

splitting of water [55]. Alkaline electrolysis technology consists of two electrodes
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(anode and cathode) immersed in an aqueous electrolyte, separated by a thin mi-

croporous diaphragm divider. The diaphragm allows the transport of the hydroxide

ion from the cathode to the anode, while serving as a physical barrier to separate

the product hydrogen and oxygen gases, preventing the formation of an explosive

mixture [44].

Conventional alkaline electrolyzers typically operate at pressures of 1-30 bar

and temperatures between 70 to 100° C [56]. Most commercial alkaline electrolyzers

operate at 80° C [43], [55], [56]. Water is nominally split at current densities between

100 to 400 mA/cm2 in an aqueous KOH electrolyte with concentrations between 25-

35 wt% [44]. Higher current densities are avoided as they will increase internal

ohmic losses due to the electrolyte [6], [44].

PEM electrolyzers feature a zero-gap membrane architecture in which a solid

polymer electrolyte, such as Nafion, is sandwiched between two porous electrode

layers [44]. Similar to the function of the diaphragm in alkaline electrolyzers, the

solid polymer electrolyte allows the transfer of protons, while physically separating

the evolved gases. PEM electrolyzers typically operate at higher temperatures up to

120° C, and pressure values in the range 20-50 bar [43] [57]. They have an advantage

over the alkaline electrolyzers in that the design is more compact, and that deionized

water is used instead of the hazardous KOH electrolyte [46].

PEM electrolyzers can reach higher current densities, between 600 to 2000

mA/cm2 [44]. This is mainly due to the cell design, forcing the gas bubbles to be

formed on the outer sides of the cell, minimizing ohmic losses in the electrolyte

due to bubble formation at high currents. In addition, the compactness of the cell
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design helps in shortening the distance traveled by ions in the electrolyte, which also

minimizes ohmic losses (the distance traveled in PEM polymer is on the order of 100-

200 µm as opposed to several millimeters in alkaline electrolyzers) [44]. However,

PEM electrolyzers are known to be associated with higher investment, operating,

and maintenance costs, with a factor of 1.5 to 2 times the state-of-art commercial

alkaline electrolyzers [57], [58].

SOE use steam instead of liquid water as the process input, and typically

operate at higher temperatures in the range 700-900° C, and pressures between 1-

15 bar [57]. They are the most promising technology due to their high efficiency,

potentially reaching up to 100%, but they are still in the R&D stage [57].

When discussing SOE, one has to mention the advantages of water electrol-

ysis at elevated temperatures. As temperature is increased, the equilibrium volt-

age required to split water decreases from a value of 1.23 V at 300 K to 0 V at

temperatures higher than 2000 K, where the water dissociation reaction becomes

spontaneous without any applied voltage [43]. The elevated temperature of PEM

electrolyzers (120° C) relative to alkaline electrolyzers (80° C) is insufficient to pro-

duce a noticiable decrease in the required equilibrium water splitting potential, and

the efficiencies of both are 65-70% [43], [57]. However, with high temperature steam

electrolysis at 800-900° C, the efficiency can reach values greater than 90% [43].

The alkaline water electrolyzers are sufficiently developed and qualified to carry

out hydrogen production from renewable energy sources at high production rates.

However, to completely satisfy the requirement of the increasing hydrogen economy,

higher electrolyzer capacities are required [4]. PEM electrolyzers are commercially
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available, yet their cost is high and they are limited to lower capacity applications

compared to alkaline electrolysis units [4], [57]. As a result of this comparative

analysis, we will consider an alkaline water electrolysis unit in this work.

3.3.1 Alkaline Electrolysis

In practice, two major designs are available for alkaline electrolysis: monopolar

and bipolar configurations. A schematic diagram of each type is shown in Figure

3.7.

A monopolar alkaline water electrolyzer design consists of a number of indi-

vidual electrolysis cells (M) electrically connected in parallel. Each cell consists

of an anode and cathode, separated by a porous membrane required to ensure the

separation of hydrogen and oxygen gases produced while allowing the transport of

hydroxide ions through the electrolyte.

Due to the parallel wiring configuration of cells in a monopolar stack, it gener-

ally operates at low voltage and high current. Therefore, in large-scale applications,

multiple stacks (N) are connected in series to ensure the total applied voltage is rea-

sonably distributed over each stack, which eventually reduces ohmic losses caused

by reaching high limiting current values [6].

In bipolar designs, the active electrodes (positive and negative) are connected

to different sides of a conducting metal plate (or a bipole), and they are geometrically

and electrically connected in series [6], [56]. A bipolar stack consisting of N cells

wired in series typically operate at higher voltage and lower currents, hence, multiple
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(a)

(b)

Figure 3.7: A schematic of a monopolar (a) and a bipolar (b) alkaline electrolyzer

design. Adapted from [58].

72



stacks M connected in parallel are required for large-scale applications.

The bipolar design has an advantage in that it is more compact and offers

shorter current paths than the monopolar design. However, becasue of this system’s

compactness and higher operating pressure, a more sophisticated design is necessary,

leading to higher manufacturing costs [56]. Nevertheless, most commercial alkaline

electrolyzers follow the bipolar configuration, hence, a bipolar electrolyzer design is

considered in this work.

The diaphragm choice has critical implications for the electrolyzer design and

operation. The diaphragm must have high ionic conductivity, while being stable in

strong alkaline solutions and high temperatures. For this work, we choose Zirfon

Perl [59], a high quality separator membrane for alkaline water electrolysis. This

membrane is durable in strong alkaline solutions (up to 6 M KOH), and up to 110° C.

It has high number of OH− groups at alkaline pH and low ionic resistance, allowing

higher current values to be reached. Some of the important technical specifications

of this membrane are listed in Table 3.3.

State-of-art commercial alkaline electrolyzers have a cell area of less than 3.6

m2, and an electrolyte gap (the distance traveled by ions in the electrolyte) of several

millimeters [44], [57]. Hence, our design assumes a cell area of 0.5 m2, an electrolyte

gap of 5 mm, an operating temperature of 80° C, and a 25 wt% KOH electrolyte.
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Table 3.3: Physical and operational specifications of the Zirfon Perl membrane [59].

Specification Value

Ionic resistance (at 30° C in 30 wt% KOH) 0.3 Ωcm2

Max temperature 110° C

Max electrolyte strength 30 wt%

Thickness 500 ± 50 µm

3.3.2 Electrolysis Cell Characteristics

In Chapter 2, we investigated the mechanism and kinetics of both OER and

HER on NiFe LDH films deposited on Ni foam substrates. We combined the results

and analysis of linear sweep voltammetry (LSV) and electrochemical impedance

spectroscopy (EIS) to reveal valuable insight on the reaction kinetics and mechanism

occurring at each electrode. The results identified from the anode and the cathode

were then combined to fit the electrochemical cell experimental data.

Now that the electrolyzer design is set, we can investigate the electrolysis cell

characteristics at the nominal set of design parameters. It is well known that most

reaction rate constants of solution reactions vary with temperature according to

Arrhenius law:

ln k ∝ − 1

T
(3.17)
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The electrolyzer is assumed to operate at 80° C, and Equation (3.17) can be

used to recalculate the values of the partial standard reaction rate constants in

Tables 2.3 and 2.7, that were originally evaluated at room temperature. Tables 3.4

and 3.5 list the calculated rate constants for the HER and OER at 80° C.

Table 3.4: Chemical rate constants ki (mol cm−2 s−1) and partial standard chemical

rate constants koi (cm s−1) for HER at 80° C.

kV k−V kH k−H kT k−T

1.27e-05 4.40e-09 7.63e-09 1.29e-4 5.89e-06 1.00

koV ko−V koH ko−H koT ko−T

1.42e-4 1.41e-06 8.54e-08 4.14e-2 5.89e-06 1.00

Table 3.5: Chemical rate constants ki (mol cm−2 s−1) and partial standard chemical

rate constants koi (cm s−1) for OER at 80° C.

k1 k−1 k2 k−2 k3 k−3 k4 k−4 k5 k−5

2.75e-4 1.61e-8 6.80e-2 1.0e-10 1.08e-9 9.59e-1 1.16e-4 1.29e-3 2.89e-4 9.83e-1

ko1 ko−1 ko2 ko−2 ko3 ko−3 ko4 ko−4 ko5 ko−5

3.40e-1 3.08e-7 33.98 4.93e-8 1.03e-5 9.66e-1 1.65 4.31e-2 1.10e-3 9.86e-1
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In addition to its effect on the reaction kinetics, temperature has a crucial

influence on the electrolyte resistivity: higher temperatures promote higher ionic

conductivity in the electrolyte. A 25 wt% KOH electrolyte at 80° C has an ionic

conductivity of 1.302 S/cm [60]. With a 5 mm electrolyte path and 0.5 m2 electrode

area, we can calculate the electrolyte total ohmic resistance as:

Rsolution =
1

Conductivity
× Electrolyte Path

Electrode Area

=
1

1.302 S/cm
× 0.5 cm

5000 cm2

= 7.68× 10−5 Ω

Rmembrane =
Rionic

Amembrane
=

0.3 Ωcm2

5000 cm2

= 6× 10−5 Ω

RΩ = Rsolution +Rmembrane

= 1.368× 10−4 Ω

The molarity of a 25 wt% KOH electrolyte can be calculated from [60]:

M =
(wt% KOH)× ρ

100×Mwt

(3.18)

ρ = A exp (0.0086× wt%) (3.19)

At 80° C, the parameter A in Equation (3.19) is equal to 971.89 kg/m3 [60],

resulting in a molarity of 5.37 M, and an OH− ion concentration of 5.37×10−3

mol/cm3.

To obtain the current-voltage characteristics of a single electrolysis cell in a

stack, Equation 2.37 is mainly used for this purpose, along with Equations 2.4 and
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2.7 to express the HER kinetics, and Equations 2.16 and 2.22-2.36 to express the

OER kinetics. Because of the implicit and complicated nature of these equations,

the determination of the IV characteristics was not straight forward. Instead, a

Newton based method must be implemented for the individual evaluation of the

OER, HER, and electrolysis cell characteristics.

Starting with a vector of I values from 0 to 600 mA/cm2, we first determine the

OER and HER overpotential values (numerically using Newton’s method) associated

with each value of the current. Given the value of the total ohmic resistance, we

then apply Equation 2.37 to calculate the total cell voltage and obtain the cell IV

characteristics. The resulted IV curve is shown in Figure 3.8.
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Figure 3.8: Current-voltage characteristics of the electrolysis cell at 80 C. The dash

lines define the electrolysis cell operating range, approximately between 100-400

mA/cm2.
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Figure 3.8 is crucial in the design and operation of the electrolyzer unit. It will

be used to calculate the current of a single cell in the stack, at a given voltage deter-

mined by the PV module performance. To lower system losses associated with the

cell ohmic resistance, conventional alkaline electrolyzers typically operate at current

densities between 100-400 mA/cm2 [6], [44]. This operating range defines upper and

lower bounds on the numbers of cells N connected in series in an electrolyzer stack.

At this operating range of current densities, the design voltage for each cell should

be kept between 1.65-1.78 V, as seen in Fig. 3.8. Hence, for the coupled system

design optimization purposes, a feasible set of N values is defined as:

Vmp,mean
1.78

≤ N ≤ Vmp,mean

1.65
(3.20)

This results in a feasible set of N values of [32, 33, 34] cells connected in series.

3.3.3 Power of the Electrolyzer

Since the output voltage of the PV modules is DC and is nearly constant

with illumination level [43], the electrolyzer is assumed to follow a fixed current

operational mode. For a fixed N cells wired in series, and M stacks connected in

parallel, the total power of the electrolyzer at any time is equal to:

Pe = M ×N × Vcell × Icell (3.21)

The total hydrogen production rate (mol/s) can be calculated from:

nH2 =
M ×N × Icell

2× F
(3.22)
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Gas flow rates are typically reported as normal cubic meters per hour (Nm3/h).

The volumetric production rate can be calculated using [56]:

VH2 = nH2 × νstd × 3600 (3.23)

where νstd is the volume of an ideal gas at standard conditions. Another important

metric in the electrolyzer design is the specific energy consumption (SEC). SEC

refers to the amount of energy needed in kWh to produce 1 Nm3 of hydrogen, and

can be calculated as

SEC =
Pe
VH2

(3.24)

The state-of-art commercial alkaline electrolyzers typically have a SEC value

of 4.2-4.8 kWh/Nm3 [57].

3.4 Battery Design

Lead acid rechargeable batteries are the most common energy storage devices

associated with PV system applications [48]. With a high efficiency of at least

80% [48], low self-discharge, low cost, high availability (due to large well-established

market worldwide), lead acid batteries are strong competitive in the rechargeable

batteries market, even against the fast developing Li-ion batteries. Despite the high

weight of the lead acid batteries, they remain an excellent candidate for station-

ary renewable system applications where the weight has negligible influence on the

performance. Li-ion batteries with higher cycle life and lighter in weight are more

associated with applications where the battery weight is a significant factor in the

79



design and operation, such as laptops, automotive, and mobile phones. However,

they are more expensive than lead acid batteries.

Sustainability is another advantage of lead acid batteries. Recycling of lead

acid batteries has been established with recycling rates up to 100% [61]. The lead

in these batteries is easily separated from the plastic and acid, and all of these

components can be recovered and re-used with low recycling energy input [61]. This

is not the case for Li-ion batteries where the recycling rates are much lower [61].

A battery model is proposed in (3.25), which is simple yet capable of accu-

rately predicting the stored battery energy at any point in time. The electrolyzer

unit is assumed to be operating at constant current mode, therefore, for a fixed

system design, the battery state of charge (SOC) is solely dependent on the so-

lar irradiance and weather conditions. The battery SOC is a measurement that is

commonly reported when discussing the battery state change with time, and takes

values between 0% (empty) and 100% (fully charged). The battery, therefore, will

only charge when the PV modules are producing excess power, and are required to

discharge when the PV power is insufficient to operate the electrolyzer system.

Considering a lead acid battery with an energy efficiency ηb of 85% [61], the

battery operation can be expressed from energy standpoint:

dEb
dt

=


ηb (PPV (t)− Pe(t)) , PPV (t) ≥ Pe(t)

(PPV (t)− Pe(t)) , PPV (t) < Pe(t)

(3.25)

with

SOC(t) =
Eb(t)

Cap
× 100 (3.26)
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where Eb is the energy stored in the battery, Cap is the battery capacity, and PPV

and Pe are the PV power produced, and electrolyzer power consumed, respectively.

The first case in (3.25) corresponds to a charging state, and the second case is

a discharging state. To extend the life of a lead acid battery, it should not be

completely depleted. Instead, a minimum limit on the battery energy should be

applied. The battery depth of discharge (DoD) is defined as the percentage of the

discharged energy of the battery to the total battery capacity. In this model, a DoD

of 70% is applied as the minimum limit constraint on the battery [62].

For each design configuration investigated, a constraint on the battery capacity

is applied, in which the capacity should be able to provide continuous operation of

the electrolyzer for at least 12 continuous hours when fully charged. This is to ensure

the feasibility of the solution based on our analysis goal. Minimizing the system cost

might force the algorithm to choose a design where the battery capacity is too small

compared to the plant hydrogen production capacity. These cases correspond to

situations where the battery is only able to provide continuous operation for few

hours, i.e., only one or two hours of operation. This case will require purchasing

enormous amounts of energy from the grid, which can off-set limited battery capacity

on days with high irradiance. To illustrate, the small battery size compared to the

power generated by the PV modules will allow it to fully charge rapidly, and the

excess energy will be sold back to the grid, resulting in a net-zero grid energy.

However, we aim to avoid these scenarios since they contrast the objective of this

work, which is to only rely on the grid power in rare cases where the weather

variations have substantial influence the output power of the PV modules.
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3.5 Integrated System

3.5.1 Economic Model

3.5.1.1 System Cost

Our economic model is derived from the annualized cost of the system (ACS),

which mainly consists of the annualized costs of PV (Ca,pv), electrolyzer (Ca,e), and

battery (Ca,bat). The cost of grid electricity (Ca,grid) also is included in the analysis.

The ACS can be calculated using:

ACS = Ca,pv + Ca,e + Ca,bat + Ca,grid (3.27)

For each component in the coupled system, the annualized cost is the summa-

tion of the capital cost (CaCapital), replacement cost (CaRep), and the operation and

maintenance cost (CaO&M). Hence, the total annualized cost of the jth component

can be written as:

Ca,j = CaCapital,j + CaO&M,j + CaRep,j (3.28)

The annualized capital cost for the PV modules and electrolyzer can be cal-

culated using [50]

CCapital,j = Uj × Pj (3.29)

CRFj =
i(1 + i)nj

(1 + i)nj − 1
(3.30)

CaCapital,j = CCapital,j × CRFj (3.31)

where the subscript j is used to denote the component (PV, electrolyzer). CCapital,j
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is the capital investment and installed cost ($), Uj is the unit capital cost ($/kW), Pj

is the power produced or consumed (kW), CREj is the capital recovery factor (nec-

essary to calculate the annual worth from the present value), i is the real discount

rate, and nj is the lifetime of the jth component. Ppv is the nominal power produced

by each module (=0.345 kW [54]) multiplied by the number of PV modules (Mpv).

For the battery capital cost, the Pj is Equation 3.32 is replaced with the

battery capacity (Cap), and the unit capital cost Ubat is given in $/kWh:

CCapital,bat = Ubat × Cap (3.32)

CRFbat =
i(1 + i)nbat

(1 + i)nbat − 1
(3.33)

CaCapital,bat = CCapital,bat × CRFbat (3.34)

The annualized O&M costs for the PV modules and electrolyzer can be determined

from:

CaO&M,j = UO&M,j × Pj (3.35)

The battery annualized O&M costs is:

CaO&M,bat = UO&M,bat × Cap (3.36)

In this work, we assume the project lifetime equals to the PV system lifetime of

30 years [45], hence, no replacement cost is considered for the PV system. Alkaline

electrolysis plants have a lifetime up to 30-50 years; however, stack replacements

are often required before reaching this lifetime [57]. Most state-of-art commercial

alkaline electrolyzers have a stack lifetime between 78,840 and 96,000 hr, equivalent

to 9.2-11.2 years (with 8,585 operational hour per year) [63], [64]. Considering a

83



stack lifetime of 10 years, replacements are required twice during the lifetime of the

project. With a stack replacement cost of 50% of the capital installed cost [63], the

annualized replacement cost is calculated using:

CRep,e = RFRep,e × CCapital,e (3.37)

CaRep,e = CRFe ×
(
CRep,e(1 + i)−10 + CRep,e(1 + i)−20

)
(3.38)

where RF is the replacement cost factor. Lead-acid batteries typically have a lifetime

of 15 years, after which the battery bank is replaced. With a replacement factor

(RF ) of 100%, we can calculate the annualized replacement cost using Equation

(3.40). The economic parameters used in this analysis are given in Table 3.6.

CRep,bat = RFRep,bat × CCapital,bat (3.39)

CaRep,bat = CRFbat × CRep,bat(1 + i)−15 (3.40)

The U.S. Energy Information Administration reported the cost of electricity

for commercial applications in the state of Maryland of 0.1075 $/kWh [65]. Hence,

to calculate the grid annualized cost, the cost of electricity is multiplied by the

net-energy consumption for the year:

Ca,grid = 0.1075× Net Energy (3.41)

Ca,grid can either take a positive or a negative value, depending on the sign of

the yearly net-energy balance for each configuration considered in the optimization

study. A positive sign of the net grid energy is assigned when excess energy is sold

to the grid, and negative for energy supplied by the grid.
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Table 3.6: The economic parameters used in this analysis. A real discount rate i of

6.9% is assumed in this analysis for 2017 [45].

PV Electrolyzer Battery

Uj 1850 ($/kW) [45] 1300 ($/kW) [57] 500 ($/kWh) [61]

UO&M,j (/year) 21 ($/kW) [45] 2.5% ×Ue ($/kW) [57] 3% ×Ubat ($/kWh) [50], [62]

nj (year) 30 [45] 10 [63] 15 [61]

3.5.1.2 Levelized Cost of Energy

The levelized cost of energy (LCE) is a concept frequently discussed when

comparing alternative energy producing systems, particularly with renewables such

as solar or wind. It also is used as a benchmark to evaluate different system con-

figurations and to determine the optimal design. LCE can be defined as the cost

associated with producing 1 kWh of energy. It can be calculated by dividing the

total annualized costs of the hybrid system ($/yr) by the total energy produced by

the PV system (kWh/yr) [66]:

LCE =
Ca,pv + Ca,bat

Ean

(3.42)
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3.5.2 Problem Formulation

In this work, we seek to design and optimize the coupled system with the goals

of maximizing hydrogen production rate while minimizing the total cost associated

with the system design. This implicitly requires finding the right design configu-

ration necessary to ensure high hydrogen production rate, while minimizing excess

power production and system physical dimensions. To promote sustainability, the

optimal design will be required to have an annual net-grid energy balance that falls

within ±5% relative to the daily plant power consumption. In addition to minimiz-

ing the combined system cost, minimizing the LCE also is included to ensure the

optimality of the design.

The optimization variables considered are the number of PV modules con-

nected in parallel (Mpv), number of electrolysis cells in each stack (N), number of

stacks in the electrolyzer unit (M), and battery capacity (Cap). The design variables

values, given in Table 3.7, define a feasible set of 2,364,120 possible configurations to

consider in the optimization problem. The chosen Mpv and Cap ranges are intended

to cover the maximum and minimum electrolyzer power demand at the ranges of N

and M presented in Table 3.7.

3.5.3 Coupled System Model Algorithm

After acquiring the cloud cover data for a specific year, we initialize the set

of design configurations based on the variables given in Table 3.7. For each design

configuration, the algorithm proceeds as a loop with incremental hourly time-steps
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Table 3.7: Range and step size of decision variables considered in the optimization

problem

N M Mpv Cap (kWh)

Minimum value 32 1 100 200

Maximum value 34 10 10000 20000

Step size 1 1 50 50

for the entire year. At each time, the irradiance model is run to evaluate the concen-

tration factor X, which can be used in the PV diode equation to calculate Vmp, Imp,

and Pmp. Vmp is used along with an input value of N to evaluate the electrolysis cell

operating voltage (Vcell), which determines the operating current (Icell) based on Fig.

3.8. The electrolyzer total operating power (Pe) and the hydrogen production rate

(VH2) are then evaluated using Equations (3.21) and (3.23). The battery operating

state and energy level are then evaluated using (3.25), using an initial SOC value

of 50% at t=0.

Battery model initial conditions are defined by setting the maximum and min-

imum operating limits for the investigated design configuration (Ebat,max = Cap,

Ebat,min = (1 −DoD) × Cap). For each time step, if Ppv ≥ Pe, then the battery is

charging, and the charge level at the next point in time is calculated using (3.25).

Before moving to the next time step, we check if the new battery charge is greater
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than the battery capacity, if so, the excess power will be sold to the grid, assuming

a converter efficiency of 90%. If Ppv < Pe, the battery is in discharge mode, and the

new charge level at the next time step is calculated accordingly. The next charge

level is checked against the minimum charge constraint to ensure the battery is not

depleted beyond the 70% DoD assigned; if this is the case, power must be supplied

by the grid (with a 90% converter efficiency). The net grid energy NGE is evalu-

ated at the end of the year, and the annual relative net grid energy RNGE is then

calculated using:

RNGE = 100× NGE

24× Pe
(3.43)

The cost analysis then is performed to determine the total annualized system cost

(ACS) and the levelized cost of energy LCE associated with each design configura-

tion.

The design configuration feasible set was refined as the simulation progresses.

Because the main target is to achieve an annual net grid energy balance (RNGE)

within ±5% relative to the daily plant power consumption, redundant design con-

figurations were eliminated during the simulation process. A cutt-off value on the

RNGE of ±100% was applied to eliminate redundant design configurations and to

reduce simulation time. For example, if a specific configuration (N , M , Mpv, Cap)

resulted in a high negative value of RNGE (such as RNGE = −1000% < −100%),

the electrolyzer designs with greater power consumption (higher values of M) are ig-

nored for this configuration. In other cases where the simulation of a specific design

demonstrated a high positive net-grid energy (RNGE > 100%), higher values of
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Mpv are ignored for this design. In addition, for infeasible designs where the battery

capacity does not meet the minimum requirement to power the electrolyzer for 12

continuous hours, lower values of capacities are considered redundant, and hence,

can be ignored. With this, we were able to only simulate 6.4% design configurations

among the 2,364,120 feasible set.

Figure 3.9 presents a flowchart of the algorithm implemented for each design

configuration considered in the optimization process.

Start

Initialize Model:
𝑁,𝑀,𝑀$%, 𝐶𝑎𝑝

𝐸*,+,- = (1 −𝐷𝑜𝐷)×𝐶𝑎𝑝

Calculate:
𝐼7899, 𝑉7899,𝑃8, 𝑉<=

𝑃$% 𝑡 , 𝑡	 = 0 − 8760

Initialize Simulation:
𝑆𝑂𝐶 0 = 50%

𝐸* 0 = 𝑆𝑂𝐶(0)×𝐶𝑎𝑝
𝐸H899(0), 𝐸*IJ(0), 𝑁𝐺𝐸(0) = 0

Start Simulation
𝑡	 = 0 − 8760

𝑃$%(𝑡) ≥ 𝑃8

𝐸* 𝑡 + 1 = 𝐸* 𝑡 + (𝑃$% 𝑡 − 𝑃8)×∆𝑡×𝜂*
𝐸*IJ 𝑡+ 1 = 𝐸*IJ(𝑡)

𝐸* 𝑡+ 1 > 𝐶𝑎𝑝

𝐸H899 𝑡 + 1 = 𝐸H899 𝑡 + (𝐸* 𝑡+ 1 − 𝐶𝑎𝑝)×𝜂,-%
𝐸* 𝑡+ 1 = 𝐶𝑎𝑝

𝐸H899 𝑡 + 1 = 𝐸H899 𝑡

𝐸* 𝑡 + 1 = 𝐸* 𝑡 + (𝑃$% 𝑡 − 𝑃8)×∆𝑡
𝐸H899 𝑡 + 1 = 𝐸H899(𝑡)

𝐸* 𝑡 + 1 < 𝐸*,+,-

𝐸*IJ 𝑡+ 1 = 𝐸*IJ 𝑡 −
(𝐸* 𝑡 + 1 −𝐸*,+,-)

𝜂,-%
𝐸* 𝑡 + 1 = 𝐸*,+,-

𝐸*IJ 𝑡 + 1 = 𝐸*IJ 𝑡

𝑆𝑂𝐶 𝑡 + 1 = 100×𝐸*(𝑡 + 1)/𝐶𝑎𝑝
𝑁𝐺𝐸(𝑡 + 1) = 𝐸H899(𝑡 + 1)	+𝐸*IJ(𝑡+ 1)

Calculate: 𝐴𝐶𝑆, 𝐿𝐶𝐸

Determine 𝐼7899, 𝑉7899	characteristics

Electrolyzer Model

Economic 
model

Calculate 𝑅𝑁𝐺𝐸

Return: 𝑃8, 𝑉<=, 𝐴𝐶𝑆, 𝐿𝐶𝐸, 𝑅𝑁𝐺𝐸 End

End Simulation

Acquire Cloud Cover Data 

Calculate 𝑋(𝑡) using irradiance model

Calculate 𝐼, 𝑉, 𝑃	using diode equation

Determine 𝐼+$,𝑉+$,𝑃+$

PV Model

Yes No

Yes No

No

Yes

Figure 3.9: Flowchart of the algorithm used for each design configuration considered

in the optimization problem.
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3.6 Simulation Results

3.6.1 Optimal System Design

The simulation results yielded 179 design configurations with an annual net

grid energy (RNGE) within ±5% relative to daily electrolyzer power consumption.

Among these solutions, 13 were chosen as the Pareto-Frontier for the multi-objective

optimization problem and are shown in Figure 3.10. The Pareto-Frontier is a set of

non-dominated solutions, and is typically generated for a multi-objective optimiza-

tion problems, where finding a single best solution is improbable. For each member

of this set, no other solution is completely better in terms of optimizing both ob-

jective functions. Each point in Figure 3.10 corresponds to a specific design, and is

labeled to denote the design configuration.

Figure 3.10 reveals a clear trade-off between the two conflicting objectives:

maximizing the hydrogen production rate requires higher system cost. This result

is expected since higher plant capacity requires more energy input, hence, higher

system physical dimensions. However, we are still able to identify a set of Pareto

points that guarantees maximizing the production rate while minimizing the total

annual system costs. The 13 Pareto points are reported in Table 3.8.

Because this is a mixed-integer optimization problem in which some of the

decision variables can only take integer values, the Pareto front plotted in Figure

3.10 is not smooth. A refined smoother line can be obtained as the step size of

the decision variables approaches zero. However, because of the non-linear relation
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Figure 3.10: Hydrogen production rate and total annual system cost for the 179

design configurations with a yearly relative net grid energy within ±5% relative to

daily power consumption, showing the 13 Pareto-Frontier points. The numbered

points are the Pareto optimal designs, and are listed in Table 3.8.

between Icell and Vcell and their dependency on N , a completely smooth or straight

line is highly improbable.
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Examining the values tabulated in Table 3.8 reveals similarities between the

points 4, 20, and 40. Since the number of electrolyzer stacks (M) in point 20 is

doubled compared to point 4, it follows that the Mpv and Cap values are doubled

as well to conserve optimality of the design. As a result, the RNGE and LCE

are equal for all three designs. This conclusion is significant because it enables

the design of arbitrary plant capacities by multiplying a Pareto optimal point by a

factor, while guaranteeing the new design still lies within the Pareto front. However,

this conclusion cannot be generalized to multiples of N , since the electrolysis cell

current-voltage relation is nonlinear, and so would not result in an optimal design.

Additionally, for safety requirements (mainly to prevent the current from reaching

excessive values), the value of N must be specified based on the PV module output

voltage.

Typically, a plant design process begins by specifying a target hydrogen pro-

duction capacity followed by a detailed economic and technical analysis. Hence,

Table 3.8 can be used as a design guide, since it provides a range of possible plant

capacities and the optimal design configurations.

Table 3.8 also reveals the specific energy consumption (SEC) values in the

electrolyzer unit for each design. The reported values are promising since they are

slightly better than the state-of-art commercial electrolyzer values (4.2-4.8 kWh/Nm3

[57]), demonstrating the potential performance of the Ni-Fe LDH alkaline elec-

trolyzer unit. It is also notable that SEC is affected by the number of cells in

each stack of the electrolyzer (N). This can be derived by examining equations

(3.21), (3.23), and (3.24), which reveal a dependency of the SEC on the operat-
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ing voltage of each cell (Vcell). As N increases, Vcell decreases, resulting in a slight

decline in the SEC value.

On the other hand, Figure 3.11 shows that higher hydrogen production rates

yield lower LCE. This can be understood by Equation (3.42), which indicates that

increasing the hydrogen production rate requires higher input energy (Ean). It

should be noted that the increase in (Ean) exceeds the observable increase in the

PV and battery costs, resulting in a decline in the LCE as the system physical

dimensions increase. However, at high hydrogen production capacities, the increase

in required battery capacity leads to higher system costs, which can exceed the

increase in the annual energy produced throughout the year. Supporting evidence

for this conclusion is provided by the slight increase in the LCE value in Figure

3.11(b) between points 29 and 59. These two points are the optimal designs for

this graph as they maximize VH2 while minimizing LCE, and they are already a

subset of the Pareto Front reported in Table 3.8. The trade-off between the ACS

and LCE illustrated in Figure 3.12, resulting in the Pareto front shown in Figure

3.12(b), which is a subset of the Pareto set reported in Table 3.8. This implies that

optimizing the systems cost and hydrogen production rate implicitly ensures the

LCE is also minimized.
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(a)

(b)

Figure 3.11: Hydrogen production rate and LCE for the design configurations with

an annual net grid energy within ±5% relative to daily power consumption (a), and

a closer look on the Pareto front (b). The numbered points are the Pareto optimal

designs, and are listed in Table 3.8.
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(a)

(b)

Figure 3.12: LCE and the annual system cost for the design configurations with a

yearly net grid energy within ±5% relative to daily power consumption (a), and a

closer look on the Pareto front (b). The numbered points are the Pareto optimal

designs, and are listed in Table 3.8.
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3.6.2 Optimal Design and Relative Net-Grid Energy

Figures 3.13, 3.14, and 3.15 show the spread of the optimal solutions, plotted

as red circles, with respect to the RNGE. Since the electricity cost is less expensive,

one would expect that optimal solutions minimizing the cost are always associated

with negative values of RNGE close to the cut-off value of −5%. However, Figure

3.14 reveals the independency of the Pareto optimal set costs on the RNGE. That

is, the optimal Pareto points are well spread over the entire RNGE domain of ±5%.

This assures the effectiveness of the analysis in finding the optimal system design.

Figure 3.13: Hydrogen production rate and the relative net grid energy, showing the

13 Pareto-Frontier points in red.
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Figure 3.14: Annual cost and the relative net grid energy, showing the 13 Pareto-

Frontier points in red.

The spread of solution set can be attributed to the minimum constraint forced

on the battery capacity, requiring it to power the electrolyzer for at least 12 contin-

uous hours. This ensures that the system does not compensate the battery capacity

and withdraws enormous amounts of energy from the grid to minimize the total

cost.

Another reason for the solution spread over the entire RNGE domain of ±5%

is the trade-off between the Mpv and Cap. To illustrate, let us consider the two op-

timal points 29 and 120 in Tables 3.8 and 3.9. These two points have approximately

the same hydrogen production rate (87.3 and 85.4 Nm3/h, respectively), however

the cost break down for each design is slightly different. Looking at Table 3.9, if we
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Figure 3.15: LCE and the relative net grid energy, showing the 13 Pareto-Frontier

points in red.

only consider the annualized costs associated with PV modules and battery bank,

both points agree on having a PV cost % that is higher than battery cost %. How-

ever, point 29 has a slightly higher PV cost % than point 120, and hence point 29

is associated with a positive RNGE value. This analysis is also valid for the points

(20, 100) and (7, 84) shown in Table 3.9. This is only true in cases where both points

demonstrate higher PV cost % than battery cost %, or higher battery cost % than

PV cost %. In other cases where the two points do not report similar PV-battery

cost breakdown, no definite conclusion can be derived. This case corresponds to

points (4, 170) in Table 3.9, where both points report a negative RNGE value.
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Table 3.9: Cost breakdown for selected optimal points based on PV and Battery

costs only.

Point ID PV Cost % Battery Cost % RNGE %

29 55.5 44.5 1.71

120 55.1 44.9 -2.28

20 53.8 46.2 -4.14

100 55.0 45.0 0.84

7 45.2 54.8 4.81

84 39.8 60.2 -1.53

4 53.8 46.2 -4.14

170 36.4 63.6 -4.93

However, we cannot derive a similar conclusion just by comparing the actual

values of the battery capacity and number of PV modules. The relation between

RNGE and both Mpv and Cap is rather complicated and cannot be generalized.

Nevertheless, a detailed discussion on the isolated effect of each of these variables

on the RNGE and other objective functions will be discussed in section 3.6.3.

Figure 3.16 shows a 3D plot combining the hydrogen production rate, ACS,

and LCE, with Pareto Front points shown in red. These point form the Pareto

plane that minimize LCE and ACS, while maximizing VH2 .
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Figure 3.16: Hydrogen production rate, annual cost, and levelized cost of energy,

with the optimal Pareto points in red.

3.6.3 Influence of Decision Variables

In the following, we discuss the effect of each decision variable on the ACS,

VH2 , LCE, and RNGE, while keeping other variables fixed.

3.6.3.1 Battery Capacity

Obviously, increasing the battery capacity for a specific fixed design will in-

crease the ACS. The LCE will increase as well, because increasing the capacity only

increases the numerator in Equation (3.42). However, VH2 will not be influenced as

it only depends on the electrolyzer design variables N , M .
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The influence of battery capacity on the RNGE depends on the system design

elements that remain fixed. That is, the influence mainly depends on the system

energy requirements and energy supplied by the PV modules. To illustrate, if the

energy generated by PV modules is insufficient (relatively low Mpv values), then the

RNGE increases as Cap increases, as seen in Figures 3.17(a) and 3.17(b). This is

because higher Cap values will be associated with higher initial battery energy at

the start of the simulation (since SOCi=50%). Hence, less energy will be supplied

by the grid throughout the year, causing the RNGE to reach higher values. This

also is confirmed by the fact that designs with higher Cap maintain higher SOC

values throughout the year, requiring less grid energy.

For fixed designs with relatively high energy production, the RNGE behavior

will be different, as shown in Figures 3.17(c) and 3.17(d). As the Cap increases, the

initial battery energy increases, and the SOC will be maintained at higher values

throughout the simulation. Hence, the system will tend to sell energy to the grid

rather than to acquire. The RNGE behavior will then reach a maximum before it

starts decreasing. As the Cap excessively increases, it will be more challenging to

fully charge the battery, and less energy will be sold, as energy is only sold to the

grid when the battery is fully charged.
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(a) (b)

(c) (d)

Figure 3.17: Effect of changing the battery capacity at fixed system design, for Mpv

of 100 (a), 1,000 (b), 1,500 (c), and 10,000 (d).
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3.6.3.2 Number of PV modules

For a fixed design, the LCE will decrease exponentially as Mpv increases. This

can be supported by examining Equation (3.42), where both Ca,pv and Ean increase

linearly with increasing Mpv. The RNGE will increase as a result of increasing Mpv,

as more energy will be produced, and hence, for a fixed design, more energy will be

sold to the grid and less energy is purchased from the grid. Similar to Cap, Mpv does

not affect the hydrogen production rate, as it is assumed to be solely dependent on

the electrolyzer design.

For the system annualized cost, Figure 3.18 shows an increasing trend of the

cost with increasing Mpv, hitting a minimum at lower Mpv values. At small Mpv

values, the system in incapable of generating sufficient power for the electrolyzer,

and an enormous amount of energy must be supplied by the grid, causing high

total system cost. As Mpv slightly increases, the ability to meet the system’s energy

requirements increases. At this point, the increase in the PV system cost is less

than the decrease in the cost of electricity supplied by the grid, leading to a reduced

overall system cost. The curve reaches a minimum, before the additional PV cost

added to the system off-sets the savings in electricity costs, and as a result, the total

cost starts rising. This behavior is independent of the system design kept fixed (i.e.,

similar behavior is noticed for all fixed values of N , M , and Cap).
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Figure 3.18: Effect of number of PV modules Mpv on the total annualized system

cost ACS.

3.6.3.3 Electrolyzer Cells and Stacks

Looking at Equation (3.42), the electrolyzer design variables N and M have no

direct influence on the LCE. However, this conclusion is for a fixed system design,

and should not be confused by the relation between VH2 and LCE in Figure 3.11,

where the entire system design is different for each point in the plot.

As the number of stacks M increases, both VH2 and ACS increase linearly.

Nevertheless, the RNGE decreases exponentially. This exponential decrease is due
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to the linear increase in both NGE and Pe in Equation 3.43.

For an increasing number of cells N , the behavior is reversed. Increasing N

will reduce Vcell, and consequently Icell will reduce according to Figure 3.8. Pe and

VH2 will be more influenced by the decrease in Icell and Vcell, rather than the slight

increase in N values (from N=32 to 33 or 34). As less Pe is needed for higher N

values, the RNGE will increase and ACS will decrease.

3.6.4 Performance of Optimal Design

For each point in the Pareto Front, we can investigate the its performance

throughout the year. We take point 4 in Table 3.8 as an example in this section.

Figure 3.19 shows the relation between Pe, Ppv, and Eb. It can be observed that the

battery charges in cases where the PV power is in excess, and discharges when PV

power is insufficient. The battery SOC is shown in Figure 3.20.

Figure 3.21 reveals the energy sold to and bought from the grid, in addition

to the NGE and battery energy. As seen, energy is sold to the grid at fully charged

states, and is acquired from the grid when the battery reaches its DoD. Figure 3.22

combines the grid energy and the coupled system operating conditions (Pe, Ppv, and

Eb).
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Figure 3.19: Simulation results for point 4 in Table 3.8 showing Pe, Ppv, and Eb for

2017 (a), and the first week of 2017 (b).
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Figure 3.20: Simulation results for point 4 in Table 3.8 showing the battery SOC

for 2017 (a), and the first week of 2017 (b).
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Figure 3.21: Simulation results for point 4 in Table 3.8 showing the battery energy

and the grid energy for 2017 (a), and the first week of 2017 (b).
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Figure 3.22: Simulation results for point 4 in Table 3.8 for 2017 (a), and the first

week of 2017 (b).
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3.6.5 Safety Considerations in Hydrogen Systems

This work mainly focuses on addressing some of the challenges and limitations

in hydrogen production stage. In addition to production, challenges in hydrogen

storage, transportation, and distribution must be tackled simultaneously before the

hydrogen economy can function at grid-scale level applications [3]. If this work is

to be expanded to include other components such as hydrogen storage or delivery,

then safety is an important issue to address.

One of the main challenges in hydrogen transportation and distribution is that

the current infrastructure is mainly used to transport natural gas. As a transition

step toward a completely hydrogen based supply chain, hydrogen can be added and

mixed with natural gas to be transferred in the current pipelines [3]. The main

uncertainty is the amount of hydrogen that can be added safely, which depends on

the characteristics of the natural gas and the design of appliances used in a specific

region [3].

Additionally, hydrogen storage can face safety issues regarding overpressure,

underpressure, overflow, or even dangerously low levels, which might induce risks of

combustion, explosion, pressure build-up, implosion or hydrogen leak [67]. As such,

prevention strategies must be followed and implemented in the operation and design

of integrated hydrogen storage systems [67].
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3.7 Concluding Remarks

In this chapter, a coupled PV-electrolysis-battery system was studied with the

goals of determining optimal system design and operation. The model takes into

account the weather variations in College Park, MD for the calendar year 2017. The

primary aim of the analysis was to identify the system design characteristics (N , M ,

Mpv, and Cap) that maximizes hydrogen production rate, minimizes the system’s

annualized cost and the levelized cost of energy, while maintaining an annual net

grid energy within ±5% relative to daily electrolyzer power consumption.

The simulation results yielded 179 design configuration with a RNGE ±5%,

13 of the designs were identified as Pareto optimal designs for this problem. The

influence of the design variables on the objective functions was investigated and is

presented in this work.

This computational platform to model integrated solar hydrogen systems can

be extended to more complex hybrid systems. For instance, the use of wind power

as a renewable energy source can be added to this problem to promote further

sustainability, and drive the system to off-grid limits.
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Chapter 4: MC Simulation for Optimal Solar Cells Configuration

4.1 Introduction

Current trends in electrical power generation and energy storage research high-

light the promise of micro- and nano-scale devices [68], [69]. Performance issues

arise when integrating these devices, as design and performance mismatch between

devices can cause deviation from the expected performance in a highly nonlinear

manner. The tera- and giga-scale levels of integration necessary for producing and

storing macroscopic levels of energy from nano-scale devices necessitates device in-

tegration strategies that are resilient to the inevitable faults and variability that will

arise in the individual devices. Thus, new computational tools are needed to support

the design, integration, and (advanced) manufacturing of these energy systems. As

a first step towards developing simulation-based design tools for the integration of

nano-scale energy devices, we will examine the problem of determining the optimal

strategy to integrate a large number of photovoltaic (PV) solar cells under shady or

faulty conditions as a proxy for our primary simulation objective.

When one cell in an array of PV cells is shaded, its voltage polarity may reverse

resulting in power consumption instead of production, leading to hotspot formation,

reduced overall power, and even PV module damage. Bypass diodes can be used to
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route current around shaded or faulty cells to partially recover the lost performance.

In this chapter, we focus on modeling tools useful for optimizing the number and

placement of these diodes within a PV cell array.

Singh et al. [70] investigated the effect of random shading levels and positions

on the output of a PV cell array; the potential benefits of bypass diodes, however,

was not included in their analysis. Vemuru et al. [71] examined the effect of random

shading of a PV array on the output power. They concluded that the power of

the randomly shaded array is reduced significantly when no bypass diodes are used,

as apposed to having a fixed number of bypass diodes in the array for the same

shading conditions. Silvestre et al. [72] used Pspice simulation environment to study

the effect of bypass diodes configuration on a PV module. They presented a finite

number of simulation cases in which selected cells were shaded, and demonstrated

how the configuration of a fixed number of bypass diodes affected the results.

4.1.1 Motivation and Goals

In this work, we introduce the stochastic effects and uncertainty generated by

shading, which simulate real-life operating conditions. The objective of this work is

to develop computational tools to identify optimal configurations when integrating a

large number of PV cells under shady or faulty conditions. Monte Carlo simulation

is used to simulate a PV cell module under partially shaded conditions and to find

the optimal number of bypass diodes needed to minimize performance losses. We use

event-driven Monte Carlo simulation, in which each event corresponds to a separate
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shading case. The number of shaded cells and their position in the PV module are

considered random variables, and the model is evaluated under different shading

levels (25%, 50%, 75%, and 100% shading).

An advantage of our choice of MC simulation is that it can be extended to any

shading pattern caused by trees, falling tree leaves, standing birds, close-by build-

ings, and even passing clouds, once the statistical distribution of the shading effect

is known or can be approximated. In nano-scale manufacturing, partial shading can

occur due to tilting in some of the nano-wire solar cells, causing partial blocking of

solar energy. Another potential mismatch in nano-scale devices is the production of

defected nano-wire solar cells, with a short circuit junction. These cases correspond

to a solar cell with low Rsh value, causing a short circuit in the nano-wire solar cell,

and overall power losses.

Combining the cost attribute in addition to performance measures generates

a multi-objective optimization problem. We then combine the information entropy

weight and Technique for Order Preference by Similarity to Ideal Solution (TOP-

SIS) methods to make the final decision and determine the optimal number of bypass

diodes under the different shading cases considered. The entropy weight is a com-

putational technique that can be applied to evaluate the objective weight of each

of the attributes in a multi-criteria decision making problem. The TOPSIS method

uses the computed weights to evaluate the final optimal design, characterized by the

shortest relative distance from the positive ideal solution.
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4.2 Model and Simulation

4.2.1 Governing Equation

The PV module considered in this analysis consists of 96 PV cells connected

in series, where strings (subsets of the full set) of solar cells are wired in parallel to

a bypass diode, as shown in Figure 4.1. The diode equation, (4.1), is used to model

the current-voltage characteristics of each PV cell.

Bypass diodes

N

Figure 4.1: Schematic diagram showing the system’s configuration.

I = XIph − Io
[
exp

(
V + IRs

mVth

)
− 1

]
− V + IRs

Rsh

(4.1)

The diode equation parameters and their values used in this analysis are pre-

sented in Table 4.1. These parameters are intended to approximate a SunPower

SPR-X21-345 PV module. In this analysis, four shading cases are considered: 25%

(X=0.75), 50% (X=0.5), 75% (X=0.25), and 100% (X=0).

4.2.2 Calculating the Current of a String with Shaded Cells

To calculate the current I of a string of N solar cells wired in series, we define

Ct as a counter for the number of shaded solar cells in the string, V1 the voltage
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Table 4.1: Diode equation parameters and their values used in this analysis.

Parameter Definition Value Unit

Iph Photocurrent 3.921 A/m2

Io Dark saturation current 3.870× 10−12 A/m2

Rs Series resistance 1.092× 10−2 Ω

Rsh Shunt resistance 2.516× 103 Ω

m Diode ideality factor 1

Vth Theoretical voltage (kBT/q) 2.57× 10−2 V

across an unshaded cell, and V is the total voltage of the string to find the voltage

across a shaded cell as

Vsh =
V − (N − Ct)V1

Ct
(4.2)

Substituting V1 and Vsh into Equation (4.1), we obtain two diode equations:

one for unshaded cells, and the other for shaded cells. Because the currents of PV

cells connected in series are identical, we can set both equations equal to each other

to find one function of I, V , and V1. This equation can be solved numerically to

find current values I at different string voltages V . However, for every V value we

assume, we have two unknowns I and V1; and hence, a two-dimensional iterative

loop is used. For a known value of V , first we assume I = 0, and using a Newton

procedure, we find the corresponding value of V1. Then the inner loop will re-
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calculate the value of I as a function of the previous V1 and I values. The next

iteration would use the most recent V1 and I values to solve for V1 again, and then

I is re-examined in the inner loop. The stopping criteria corresponds to reaching

converged V1 and I values. This procedure is carried out for each value in the vector

V , resulting in I − V characteristics data for the shaded string.

4.2.3 Model Algorithm

We developed a MATLAB program to calculate the output maximum power

point for each run of the MC simulation. At the start of the program, we have a

vector of values for the voltage ranging from 0 to the open circuit voltage of the

string.

For each value of the voltage, we calculate its corresponding current following

the model presented in sections 4.2.1 and 4.2.2. The string with the highest current

will force the shaded strings to pass the same current. As a result, the bypass diode

will be activated if the shaded strings resulted in a negative voltage.

4.2.4 Monte Carlo Simulation

For the MC simulation, both the number of partially shaded solar cells and

their position are considered random variables. The number of shaded cells is as-

sumed to follow a uniform distribution ranging from 1 to 5 shaded cells, and the

position of the shaded cells also follows a uniform distribution ranging from cell 1 to

cell 96. The position of the shaded cell is important since it determines the number
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of shaded cells in each string, and the number of strings with shaded cells.

For each run of the MC simulation, we start by initiating a vector of values

for the voltage ranging from 0 to the open circuit voltage of the string. The main

idea is to determine at each voltage point whether the bypass diode for each string

would be activated or not under the shading conditions randomly provided. We

assigned 4 shading cases: 25%, 50%, 75%, and 100% shading, and for each of these

cases we have 12 scenarios representing the number of bypass diodes used (1, 2, 3,

4, 6, 8, 12, 16, 24, 32, 48, 96), and for every scenarios, we run the MC simulation

for 10,000 shading events, each with different random number of shaded cells and

random positions, to obtain the module maximum power point Pmp, its standard

deviation, and standard error. A summary of the simulation algorithm for each run

of the MC simulation is presented in the SysML activity diagram in Figure 4.2.

4.2.5 Effect of Bypass Diodes and Shading Factor

To examine the effect of the number of bypass diodes on the module perfor-

mance, the module is simulated with only one shaded cell. As seen in Figure 4.3,

as the number of bypass diodes increases, the output power will also increase, min-

imizing performance losses compared to the unshaded case. To illustrate, as more

bypass diodes are used, the number of cells in each string is reduced. Hence, with

partial shading across the PV module, fewer PV cells are bypassed resulting in P-V

characteristics that are closer to the unshaded case. Hence, the effect of the shaded

cell is minimized with increasing the number of bypass diodes.
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Figure 4.2: Algorithm used for each run of the MC simulation. Note that ”Str” is

the number of strings, which is equal to the number of bypass diodes.

As seen in Figure 4.3, the incorporation of bypass diodes in the PV module has

an effect on the shape of the P-V characteristics. With partial shading of the PV

module, multiple power peaks result, in contrast to one global peak in the unshaded

case. The multiple peaks result form the addition of the voltage of the strings with

shaded cells to the total module voltage. In other words, they result from the de-

activation of the bypass diodes when the string with shaded cells is able to supply

the required load current.
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(a)

(b)

Figure 4.3: Effect of the number of bypass diodes on the module output power (a)

and current (b) with one shaded cells and 50% shading (X=0.5).
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Figure 4.4 demonstrates the effect of shading on the performance of the PV

module, using a fixed number of bypass diodes. As the shaded cell experience greater

shading %, its ability to deliver the required load current decreases, as presented in

4.4(b). This is shown in the delay in de-activating the bypass diodes, causing the

second peak in the P-V module to occur at higher voltages.

The first power peak is generated by the unshaded strings, and the second peak

is formed by both the unshaded and shaded strings. The highest peak represents the

global peak, and it is taken as the Pmp for the module at this operating condition and

design configuration. The position of this global peak is dependent on the shading

conditions and number of bypass diodes. Generally, lighter shadings results in the

global peak to be found at higher voltages, but it is also dependent on the number

of bypassed diodes. Figure 4.5 demonstrates the effect of shading and number of

bypass diodes on the position of the global peak. For a module with 2 bypass diodes,

as in Figure 4.5(a), both 25% and 50% shading cases exhibit maximum power peaks

at higher voltages. However, when the number of bypass diodes is raised to 6, as in

Figure 4.5(b), we observe a shift of the global power peak of the 50% shading case

to lower voltage.

4.2.6 MC Simulation Results

Figure 4.6 presents the mean value of Pmp that results with an increasing

number of MC simulation cases for 8 bypass diodes and 50% shading. 10,000 runs

were performed to ensure the mean value has reached steady state with an acceptable
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(a)

(b)

Figure 4.4: Effect of the shading factor on the output module power (a) and current

(b) with one shaded cell and 8 bypass diodes.
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(a)

(b)

Figure 4.5: Effect of the shading factor and bypass diodes on the position of the

global power peak, with 2 bypass diodes in (a), and 6 bypass diodes in (b).
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standard error value.

Figure 4.6: Evolution of mean value of Pmp with MC runs.

The MC simulation results are provided in Figure 4.7 and Tables 4.2, 4.3, 4.4,

and 4.5. As the number of bypass diodes increases, the mean value of maximum

power also increases. This result is expected since increasing the number of diodes

decreases the number of illuminated PV cells bypassed. The effect of increasing

the bypass diodes is substantial as the degree of shading increases. Even though

increasing the number of bypass diodes may lead to increased leakage currents in

these diodes, this negative effect is compensated by the positive benefits of adding

the diodes [73].
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Table 4.2: MC simulation results for the 25% shading case.

Bypass diodes Mean Pmp (W/m2) SD Pmp (W/m2) SE Pmp (W/m2)

1 179.98 0.506 5.1×10−3

2 179.97 0.499 5.0×10−3

3 179.97 0.498 5.0×10−3

4 179.98 0.507 5.1×10−3

6 179.97 0.500 5.0×10−3

8 180.73 2.104 2.1×10−2

12 181.93 5.108 5.1×10−2

16 183.95 6.456 6.5×10−2

24 188.30 8.145 8.1×10−2

32 192.79 7.705 7.7×10−2

48 199.05 5.246 5.3×10−2

96 205.48 2.640 2.6×10−2
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Table 4.3: MC simulation results for the 50% shading case.

Bypass diodes Mean Pmp (W/m2) SD Pmp (W/m2) SE Pmp (W/m2)

1 125.15 0.42 4.2×10−3

2 125.14 0.41 4.1×10−3

3 128.96 7.02 7.0×10−2

4 132.02 13.81 1.4×10−1

6 139.71 18.46 1.8×10−1

8 147.76 21.10 2.1×10−1

12 164.15 19.26 1.9×10−1

16 175.49 14.79 1.5×10−1

24 186.88 10.29 1.0×10−1

32 192.99 7.76 7.8×10−2

48 199.18 5.35 5.4×10−2

96 205.47 2.66 2.7×10−2
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Table 4.4: MC simulation results for the 75% shading case.

Bypass diodes Mean Pmp (W/m2) SD Pmp (W/m2) SE Pmp (W/m2)

1 64.47 0.24 2.4×10−3

2 79.10 19.91 2.0×10−1

3 86.66 31.55 3.2×10−1

4 101.86 34.65 3.5×10−1

6 126.33 33.21 3.3×10−1

8 143.60 27.14 2.7×10−1

12 163.89 19.46 1.9×10−1

16 175.24 14.91 1.5×10−1

24 186.92 10.19 1.0×10−1

32 192.80 7.80 7.8×10−2

48 199.10 5.29 5.3×10−2

96 205.44 2.67 2.7×10−2
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Table 4.5: MC simulation results for the 100% shading case.

Bypass diodes Mean Pmp (W/m2) SD Pmp (W/m2) SE Pmp (W/m2)

1 0.19 0.112 1.1×10−3

2 37.08 50.463 5.0×10−1

3 70.55 49.042 4.9×10−1

4 94.72 43.672 4.4×10−1

6 125.93 33.550 3.4×10−1

8 143.69 27.344 2.7×10−1

12 164.15 19.306 1.9×10−1

16 175.32 14.783 1.5×10−1

24 186.86 10.274 1.0×10−1

32 192.84 7.755 7.8×10−2

48 199.11 5.244 5.2×10−2

96 205.39 2.670 2.7×10−2
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Figure 4.7: MC results for the four shading cases illustrating the benefit of increasing

the number of bypass diodes.

4.3 Optimal Number of Bypass Diodes

Because the MC simulation clearly demonstrate the effectiveness of using the

highest number of bypass diodes (Figure 4.7), we next consider the cost of adding

the bypass diodes to make the final design decision. The cost of each diode is set to

be $1.5, an approximate cost of TEXAS INSTRUMENTS SM74611 smart bypass

diodes. The TEXAS INSTRUMENTS smart diodes are chosen over the conventional

P-N junction diodes or Schottky diodes to mitigate the issues with current leakage,

power dissipation, and temperature rise in the bypass diodes [73].

The cost attribute added to the performance metric produces a multi-objective

optimization problem. A trade-off design problem results from the cost of adding the

bypass diodes versus the increase in the power generated under shady conditions.
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For typical multi-criteria decision making problems, weights are assigned to each

attribute to reflect the importance of the attribute and its influence on the optimal

solution. Generally, two main categories of weighting methods exist: subjective

and objective methods [74]. The subjective methods are based on the experience

and preference of the decision maker [74]. The objective method determines the

weights using mathematical models, and then evaluates the optimal solution using

the computed weights [74].

4.3.1 Information Entropy Weight

One of the most well-known objective methods is the information entropy

weight method. In information theory, entropy is the amount of uncertainty a

criteria or attribute offers represented by a probability distribution [74], [75]. For a

specific attribute, the entropy weight represents how much alternatives are similar to

each other. The higher the entropy, the smaller the diversity in information carried

by a specific attribute, the less information this attribute provides, and hence, the

less weight is given to this attribute in the decision making process [74].

The entropy method typically starts by setting an (m × n) decision matrix,

with m alternatives, and n attributes considered. In this work, m = 12, representing

the 12 bypass diodes cases, and n = 2, with two attributes to consider: performance

and cost.
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D =



x11 x12 . . . x1n

x21 x22 . . . x2n

...
...

. . .
...

xm1 xm2 . . . xmn


(4.3)

where D is the decision matrix, and xij is the matrix element corresponding to the

value of attribute j (i.e., mean Pmp and cost), for alternative i. To allow for compar-

ison across the attributes, the information offered in matrix D must be normalized

for each attribute to form the P matrix [75] with:

pij =
xij∑m
i=1 xij

, j ∈ [1, . . . , n] (4.4)

where pij are the normalized decision matrix (P ) entries. The entropy (e), diversity

(d), and objective weight (w) associated with each attribute then can be calculated

using [75]:

ej =
−1

ln(m)

m∑
i=1

pij ln(pij), i ∈ [1, . . . ,m], j ∈ [1, . . . , n] (4.5)

dj = 1− ej, j ∈ [1, . . . , n] (4.6)

wj =
dj∑n
j=1 dj

, j ∈ [1, . . . , n] (4.7)

with
∑n

j=1wj = 1. The higher the diversity (d) in information contained by a

criteria, the more important the criteria is for the problem, the higher the weight

(w) assigned to this criteria.
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4.3.2 Selection of Optimal Alternative

After determining the weights associated with the performance and cost at-

tribute, we then apply the Technique for Order Preference by Similarity to Ideal

Solution (TOPSIS) method to make the final design decision. TOPSIS was first

proposed by Hwang and Yoon [76], and it is a ranking method based on calculat-

ing the Euclidean distances of a number of possible alternatives. This technique

is based on identifying the positive ideal solution (PIS) and negative idea solution

(NIS). The PIS is a chosen alternative that maximizes the benefit attributes and

minimizes the cost attributes, whereas NIS is the opposite. The optimal alternative

is characterized by the shortest distance to the PIS and the farthest distance from

the NIS. The PIS (A+) and NIS (A−) are determined using [75]

A+ =
(
p+

1 , p
+
2 , . . . , p

+
n

)
(4.8)

A− =
(
p−1 , p

−
2 , . . . , p

−
n

)
(4.9)

p+
j =

{
max
i
pij, j ∈ J1; min

i
pij, j ∈ J2

}
(4.10)

p−j =
{

min
i
pij, j ∈ J1; max

i
pij, j ∈ J2

}
(4.11)

where J1 and J2 are the sets of benefit criteria and cost criteria, respectively. The

distance then can be evaluated as

d+
i =

√√√√ n∑
j

wj
(
p+
j − pij

)2
, i ∈ [1, . . . ,m] (4.12)

d−i =

√√√√ n∑
j

wj
(
p−j − pij

)2
, i ∈ [1, . . . ,m] (4.13)
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and the relative closeness of each alternative to the ideal solution is

ζi =
d−i

d+
i + d−i

, i ∈ [1, . . . ,m] (4.14)

The higher ζi, the better the alternative. Hence, the alternative with the highest

relative closeness is chosen as the optimal solution.

4.3.3 Entropy Weight and TOPSIS Results

In the following section, we apply the entropy weight method combined with

the TOPSIS method to evaluate the optimal design chosen for each shading case

considered.

4.3.3.1 25% Shading

Using Table 4.2, and a diode cost of $1.5, we construct the normalized decision

matrix P , where each row represent a design alternative (number of bypassed diodes

in Table 4.2), and the first and second column represent the PV module power and

bypass diode cost, respectively.
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P25% =



8.063× 10−2 3.968× 10−3

8.063× 10−2 7.937× 10−3

8.063× 10−2 1.190× 10−2

8.063× 10−2 1.587× 10−2

8.063× 10−2 2.381× 10−2

8.097× 10−2 3.175× 10−2

8.151× 10−2 4.762× 10−2

8.241× 10−2 6.349× 10−2

8.436× 10−2 9.524× 10−2

8.637× 10−2 1.270× 10−1

8.917× 10−2 1.905× 10−1

9.206× 10−2 3.810× 10−1



(4.15)

A+ =

[
9.206× 10−2 3.968× 10−3

]
(4.16)

A− =

[
8.063× 10−2 3.810× 10−1

]
(4.17)

The entropy, diversity, and weight of each attribute is

e =

[
9.996× 10−1 7.513× 10−1

]
(4.18)

d =

[
3.958× 10−4 2.487× 10−1

]
(4.19)

w =

[
1.589× 10−3 9.984× 10−1

]
(4.20)

The distance and relative closeness of each alternative to the ideal solution are

calculated and presented in Table 4.6.
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Table 4.6: TOPSIS results for the 25% shading case.

Bypass diodes d+
i d−i ζi

1 4.553×10−4 3.767×10−1 9.988×10−1

2 3.991×10−3 3.727×10−1 9.894×10−1

3 7.943×10−3 3.688×10−1 9.789×10−1

4 1.190×10−2 3.648×10−1 9.684×10−1

6 1.983×10−2 3.569×10−1 9.474×10−1

8 2.776×10−2 3.489×10−1 9.263×10−1

12 4.362×10−2 3.331×10−1 8.842×10−1

16 5.948×10−2 3.172×10−1 8.421×10−1

24 9.120×10−2 2.855×10−1 7.579×10−1

32 1.229×10−1 2.538×10−1 6.737×10−1

48 1.864×10−1 1.903×10−1 5.053×10−1

96 3.767×10−1 4.555×10−4 1.208×10−3
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The optimal solution for the 25% shading case corresponds to a PV module

with 1 bypass diode, as seen in Table 4.6.

4.3.3.2 50% Shading

Similarly, using Table 4.3, we construct the normalized decision matrix P for

the 50% shading case.

P50% =



6.509× 10−2 3.968× 10−3

6.508× 10−2 7.937× 10−3

6.706× 10−2 1.190× 10−2

6.866× 10−2 1.587× 10−2

7.265× 10−2 2.381× 10−2

7.684× 10−2 3.175× 10−2

8.537× 10−2 4.762× 10−2

9.126× 10−2 6.349× 10−2

9.719× 10−2 9.524× 10−2

1.004× 10−1 1.270× 10−1

1.036× 10−1 1.905× 10−1

1.069× 10−1 3.810× 10−1



(4.21)

A+ =

[
1.069× 10−1 3.968× 10−3

]
(4.22)

A− =

[
6.508× 10−2 3.810× 10−1

]
(4.23)
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The entropy, diversity, and weight of each attribute is

e =

[
9.932× 10−1 7.513× 10−1

]
(4.24)

d =

[
6.770× 10−3 2.487× 10−1

]
(4.25)

w =

[
2.650× 10−2 9.735× 10−1

]
(4.26)

The distance and relative closeness of each alternative to the ideal solution are

calculated and presented in Table 4.7. Similar to the 25% shading, the 50% shading

case optimal solution also corresponds to a PV module with 1 bypass diode, as seen

in Table 4.7.

4.3.3.3 75% Shading

Equation (4.27) represents the normalized decision matrix for the 75% shading

case.
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Table 4.7: TOPSIS results for the 50% shading case.

Bypass diodes d+
i d−i ζi

1 6.800×10−3 3.720×10−1 9.820×10−1

2 7.847×10−3 3.680×10−1 9.791×10−1

3 1.016×10−2 3.641×10−1 9.728×10−1

4 1.329×10−2 3.602×10−1 9.644×10−1

6 2.035×10−2 3.524×10−1 9.454×10−1

8 2.784×10−2 3.446×10−1 9.252×10−1

12 4.321×10−2 3.289×10−1 8.839×10−1

16 5.878×10−2 3.133×10−1 8.420×10−1

24 9.007×10−2 2.820×10−1 7.579×10−1

32 1.214×10−1 2.506×10−1 6.737×10−1

48 1.840×10−1 1.880×10−1 5.054×10−1

96 3.720×10−1 6.801×10−3 1.796×10−2
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P75% =



3.736× 10−2 3.968× 10−3

4.584× 10−2 7.937× 10−3

5.023× 10−2 1.190× 10−2

5.904× 10−2 1.587× 10−2

7.322× 10−2 2.381× 10−2

8.323× 10−2 3.175× 10−2

9.499× 10−2 4.762× 10−2

1.016× 10−1 6.349× 10−2

1.083× 10−1 9.524× 10−2

1.117× 10−1 1.270× 10−1

1.154× 10−1 1.905× 10−1

1.191× 10−1 3.810× 10−1



(4.27)

A+ =

[
1.191× 10−1 3.968× 10−3

]
(4.28)

A− =

[
3.736× 10−2 3.810× 10−1

]
(4.29)

The entropy, diversity, and weight of each attribute is

e =

[
9.754× 10−1 7.513× 10−1

]
(4.30)

d =

[
2.457× 10−2 2.487× 10−1

]
(4.31)

w =

[
8.989× 10−2 9.101× 10−1

]
(4.32)

The distance and relative closeness of each alternative to the ideal solution are

calculated and presented in Table 4.8.
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Table 4.8: TOPSIS results for the 75% shading case.

Bypass diodes d+
i d−i ζi

1 2.450×10−2 3.596×10−1 9.362×10−1

2 2.228×10−2 3.559×10−1 9.411×10−1

3 2.198×10−2 3.521×10−1 9.412×10−1

4 2.128×10−2 3.483×10−1 9.424×10−1

6 2.339×10−2 3.409×10−1 9.358×10−1

8 2.860×10−2 3.334×10−1 9.210×10−1

12 4.226×10−2 3.185×10−1 8.828×10−1

16 5.703×10−2 3.035×10−1 8.418×10−1

24 8.713×10−2 2.734×10−1 7.583×10−1

32 1.174×10−1 2.433×10−1 6.746×10−1

48 1.779×10−1 1.832×10−1 5.073×10−1

96 3.596×10−1 2.450×10−2 6.377×10−2
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Table 4.8 revealed that a PV module design with 4 bypass diodes reported the

highest value of relative closeness ζ, and is therefore chosen as the optimal solution.

4.3.3.4 100% Shading

Equation (4.33) represents the normalized decision matrix for the 100% shad-

ing case.

P100% =



1.169× 10−4 3.968× 10−3

2.324× 10−2 7.937× 10−3

4.421× 10−2 1.190× 10−2

5.935× 10−2 1.587× 10−2

7.891× 10−2 2.381× 10−2

9.004× 10−2 3.175× 10−2

1.029× 10−1 4.762× 10−2

1.099× 10−1 6.349× 10−2

1.171× 10−1 9.524× 10−2

1.208× 10−1 1.270× 10−1

1.248× 10−1 1.905× 10−1

1.287× 10−1 3.810× 10−1



(4.33)

A+ =

[
1.287× 10−1 3.968× 10−3

]
(4.34)

A− =

[
1.169× 10−4 3.810× 10−1

]
(4.35)
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The entropy, diversity, and weight of each attribute is

e =

[
9.327× 10−1 7.513× 10−1

]
(4.36)

d =

[
6.725× 10−2 2.487× 10−1

]
(4.37)

w =

[
2.128× 10−1 7.872× 10−1

]
(4.38)

The distance and relative closeness of each alternative to the ideal solution

are calculated and presented in Table 4.9. For the 100% shading case, Table 4.9

demonstrates an optimal solution of 6 bypass diodes, that is, one bypass diode

connected to each group of 16 PV cells.

As we notice from the entropy and TOPSIS analysis results, the number of

optimal bypass diodes increases as the shading percent increase. This is attributable

to the pattern observable in Figure 4.7. The effect of increasing the number of bypass

diodes on the generated power is substantial as the degree of shading becomes more

significant. The diversity in the mean value of Pmp increases as the shading degree

increases, resulting in a larger entropy weight being assigned to the power attribute.

This is in agreement with results predicted by Equations (4.20), (4.26), (4.32), and

(4.38). The optimal solution, however, can be different if the weight of the attribute

is subjective, with pre-determined weights solely dependent on the decision makers’

preference, judgment, or experience.
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Table 4.9: TOPSIS results for the 100% shading case.

Bypass diodes d+
i d−i ζi

1 5.932×10−2 3.345×10−1 8.493×10−1

2 4.879×10−2 3.311×10−1 8.716×10−1

3 3.962×10−2 3.281×10−1 8.923×10−1

4 3.369×10−2 3.251×10−1 9.061×10−1

6 2.894×10−2 3.189×10−1 9.168×10−1

8 3.042×10−2 3.126×10−1 9.113×10−1

12 4.052×10−2 2.995×10−1 8.808×10−1

16 5.352×10−2 2.862×10−1 8.424×10−1

24 8.115×10−2 2.592×10−1 7.615×10−1

32 1.092×10−1 2.321×10−1 6.800×10−1

48 1.655×10−1 1.785×10−1 5.189×10−1

96 3.345×10−1 5.932×10−2 1.507×10−1
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4.4 Concluding Remarks

A computational algorithm was developed for optimizing PV cell network de-

sign. In this study, the effect of using bypass diodes in a PV module with shaded

cells was examined. Ideally, it was found that the optimal situation corresponds to

having one bypass diode connected to each cell in the module; however, by factoring

in diode cost, it was found that using fewer bypass diodes was economically more

practical.

Combining information entropy weight with TOPSIS methods enabled us to

determine the optimal design for each shading case. It was found that as the shading

degree increases, the diversity in the generated power increases, and as a result, the

performance attribute was assigned a higher weight. Hence, as the shading increases,

the optimal solution shifts towards having a higher number of bypass diodes. For

the 25% and 50% shading, the analysis suggests an optimal design of one bypass

diode in the PV module. However, 4 and 6 bypass diodes were found to be the

optimal design for the 75% and 100% shading cases, respectively.

Our algorithm can find the optimum configuration of bypass diodes for any

module with PV cells wired in series. The MC simulation allows for consideration

of different shading patterns once the statistical distribution of the shading effect

is approximated. The approach developed in this work can be extended to include

randomly distributed manufacturing and other defects.
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Chapter 5: Conclusions and Future Work

Theoretical and experimental based analysis approaches were combined in

Chapter 2 to investigate the kinetics and mechanism of OER and HER on the

active NiFe LDH electrodes. Both LSV and EIS measurements were taken, and

the results were fitted to a theoretical model representing the current density and

Faradaic resistance. The chemical reaction rate constants of the OER and HER were

identified as a result of the fitting procedure. The kinetics parameters of the HER

identified the Heyrovsky step as rate controlling, with a dependency of the mech-

anism on the potential. At lower end of potential range, the Volmer step initiates

the HER, followed by parallel Tafel and Heyrovsky steps. At higher potential, the

HER mechanism was a consecutive combination of Volmer and Heyrovsky step, with

negligible contribution of the Tafel step. The OER results pointed to the formation

of the adsorbed peroxide (HOO) step as rate controlling.

Understanding the kinetic and mechanistic behavior of a system is crucial to

improving process design and operation control. A key contribution of this work is

that the level of modeling detail enables predicting the effect of variations in certain

process parameters such as operational temperature and electrolyte concentration.
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In addition to process design implications, this work can be employed for cat-

alyst design principals. The kinetic approach presented in this work enables the

identification of the rate determining step, giving insight into the reaction mech-

anism. It is known in the literature that shifting the rate controlling step to a

later stage in the mechanism provides lower Tafel slope values and a higher elec-

trocatalytic activity [27]. To illustrate, if analysis of a catalyst reveals the Volmer

adsorption step for the HER as rate controlling with a Tafel slope of 120 mV/dec,

then tailoring catalyst design to enhance the adsorption step can be beneficial in

optimizing catalytic performance.

In Chapter 3, we applied the electrolysis cell current-voltage characteristics

expression derived in the previous chapter to optimize a commercial scale hydrogen

production electrolyzer unit. A computational algorithm was presented to model

and optimize the design of an integrated PV-Electrolysis-Battery system, with the

goals of maximizing hydrogen production and minimizing system’s cost while having

an annual net-grid energy that falls within ±5% relative to daily electrolyzer power

consumption. The approach investigated a total of 2,364,120 design configurations,

13 of which were identified as Pareto optimal designs for this problem.

The computational algorithm presented can be extended to more complex

hybrid systems. Unlike most studies that run the simulation for only a single day,

our model is simulated over one year to include both diurnal and seasonal weather

variations, enhancing the applicability of the optimal designs in real life.
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Computational tools were presented in Chapter 4 to identify optimal design

configurations when integrating a large number of PV cells under shady or faulty

conditions. Event driven Monte Carlo simulation was used to simulate the stochastic

effects of partial shading of some cells in the PV module.

To identify the optimal number of bypass diodes in the PV module, a multi-

objective optimization problem was investigated to minimize both the system’s per-

formance losses caused by PV cell mismatch and the added cost of bypass diodes.

Information entropy weight and TOPSIS methods were combined to identify the

optimal number of bypass didoes for each shading case considered. It was found

that as the shading increases, the optimal solution shifts towards a having higher

number of bypass diodes. A key contribution of this work is that this computational

platform can be extended towards developing simulation-based design tools for the

integration of nano-scale energy devices.

5.1 Suggestions for Future Work

5.1.1 Integrating Wind as Energy Source

It would be interesting to include wind energy as an additional renewable

energy source to power the electrolyzer. With the inclusion of wind energy, the

coupled system can be designed to be a stand alone system (i.e., off-grid). Design

variables can be extended to include the number of wind turbine (WT) towers.
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Because this would be a stand alone system, the optimization objective would

be to maximize the system’s reliability by minimizing the probability that the hybrid

power system (PV, WT, Battery) is unable to provide sufficient power supply to

the electrolyzer. Additionally, the overall objective would include maximizing the

hydrogen production rate and minimizing the total system’s cost. Because wind

energy generally is at its minimum when solar irradiance is at its peak and relatively

high at night [47], it would be interesting to study the interplay between PV and

WT sizing and their effect on hydrogen production and the system’s reliability and

cost.

5.1.2 Species Concentration Profile in the Electrolyte

Understanding the dynamics of species concentration spacial profiles in the

electrolyte between the electrodes is important for process design and operation.

This is particularly valuable for direct-coupled PV-electrolysis stand alone systems

(e.g, a stand alone car fueling station). In these systems, the fast transients, such

as the sudden reduction of irradiance due to a passing cloud, can have an impact on

the electrolyzer operation. Now that the reaction kinetics at the electrodes surface

have been identified in Chapter 2, we can investigate the dynamics and time scale

of species concentration profile under sudden changes before the system returns to

its steady state operation.
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5.1.3 Dynamic Model for the Electrolyzer

Another direction for future work is the development of a dynamic model for

the electrolyzer to investigate the impact of diurnal irradiance variations as well

as irradiance dynamics resulting from passing clouds. It would be interesting to

understand the timescales of the electrolyzer compared to changes in irradiance.

Additionally, a nice objective of this work would be to evaluate whether it is more

economical to provide battery backup to smooth the faster time scale irradiance

disturbances or if the electrolyzer system is robust to those dynamics.

5.1.4 Energy Optimization: International Space Station Case Study

Currently, the PV modules are the main energy source in the International

Space Station (ISS). The PV modules generate sufficient energy to cover the fixed

and variable loads in the station, while charging the battery bank. The battery

operate the station during times of low irradiance. Electrolysis cells are used to

produce oxygen gas for convenient air quality for the crew. Currently, the produced

hydrogen gas from water electrolysis is vented to space [77].

Researchers are investigating a regenerative fuel cell (RFC) system to store

energy on the ISS. The system can operate in electrolysis mode powered by solar

cells, and fuel cell mode to produce electricity, water and heat [78].

Given the fixed and variable loads in the ISS, an energy optimization problem

can be investigated. The problem has interesting dynamics given the 90-minute

orbit of the ISS resulting in continuous changes in the irradiance angle of incidence,
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the complete shading of the earth’s shadow, and the reflected light from the Earth

and Moon.
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