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With the explosive growth of wireless networking techniques in the last decade,

connecting to the world from any place, at any time and for any body is no longer

just a dream. New concepts of network infrastructures such as mobile ad hoc

networks or dynamic spectrum access networks emerged in recent years to provide

more flexible wireless networking, efficient spectrum usage and robust network con-

nections. With the development of intelligent wireless devices such as cognitive

radios, the network users’ capability has been largely increased. It becomes impor-

tant to analyze and understand the network users’ intelligent behaviors, especially

selfish behaviors. Therefore, we focus our study on these new types of wireless

networks with selfish users, which need to be self-organizing and decentralized.

They are also referred to as autonomous wireless networks.



In order to analyze the selfish behaviors of network users for efficient au-

tonomous wireless networking, we analyze the cooperation in autonomous wire-

less networks under a comprehensive game theoretical framework. Game theory

models strategic interactions among agents using formalized incentive structures.

It not only provides game models for efficient self-enforcing distributed design but

also derives well-defined equilibrium criteria to measure the optimality of game

outcomes for various scenarios.

In this dissertation, we first study the cooperation enforcement in autonomous

wireless networks under noise and imperfect information. We model the interac-

tions among users as multi-stage games and propose a set of belief-assisted ap-

proaches to ensure cooperation by allowing reputation effects or retribution. For

instance, a user in an ad hoc network will forward packets for the others if they

have built up high belief values through their past cooperative behaviors, i.e., for-

warding packets. Further, we investigate the impacts of network dynamics on game

theoretical cooperation stimulation/enforcement in autonomous wireless networks.

We model the dynamic interaction among users as multi-stage dynamic games and

develop various dynamic pricing approaches to stimulate cooperation among users

by using payments as incentives based on auction rules and dynamic programming.

Finally, we exploit the collusive selfish behaviors in autonomous wireless networks

in a non-cooperative game theoretical framework and devise countermeasures to

combat or alleviate collusive behaviors.
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Chapter 1

Introduction

1.1 Motivation

With the explosive growth of wireless networking techniques in the last decade,

connecting to the world from any place, at any time and for any body is no longer

just a dream. The traditional centralized, fixed networks can no longer satisfy

the dramatically increasing demand for wireless services and connections, which

poses imminent challenges on network management and control. New concepts

of network infrastructures emerged in recent years to provide more flexible wire-

less networking, efficient spectrum usage and robust network connections. For

instance, mobile ad hoc networks (MANETs) [1,2] aim to provide wireless services

through multi-hop networking by a set of mobile nodes without requiring central-

ized administration or fixed network infrastructures. In order to fully utilize the

wireless spectrum resources, dynamic spectrum access networks (DSAN) [3–7] al-

lows unlicensed wireless users (secondary users) to dynamically access the licensed

bands from legacy spectrum holders (primary users) on a negotiated or an op-

portunistic basis. Moreover, different from the traditional emergency or military
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situations, these emerging networks are mostly envisioned in civilian applications,

where network users typically do not belong to a single authority and may not

pursue a common goal. Fully cooperative behaviors such as unconditionally for-

warding packets for other users cannot be pre-assumed and the users may tend to

be “selfish”. Therefore, these new types of networks need to be self-organizing and

decentralized, in which the network functions can be run solely by end users. We

refer to such networks as autonomous wireless networks.

Considering the selfishness of network users, before autonomous wireless net-

works can be successfully deployed in practice, the critical issue of cooperation

must be resolved first. Generally speaking, the selfish network users’ objectives are

to maximize their own interests. The users’ cooperative behaviors in wireless net-

works, such as forwarding packets for others or mitigating the interference/collision

to others by keeping silent or lowering their own transmitting power, will usually

harm their own interests. As a result, without sophisticated mechanisms to stimu-

late or enforce cooperation among selfish users, the system performance (through-

put, power consumption or connectivity) of autonomous wireless networks may

be largely deteriorated by the selfish users’ behaviors. Moreover, considering the

node mobility, dynamic topology and unreliable wireless channels, not only the

performance of autonomous networks will be further affected but also it becomes

more difficult to detect the selfish users’ cheating behaviors. Therefore, we need

to analyze the cooperation in autonomous wireless networks based on the selfish

users’ behaviors and further develop efficient and robust cooperation enforcement

approaches to enhance the system performance in various network scenarios.

One of the most important characteristics of autonomous networks is the in-

telligence of selfish network users, which capability becomes even stronger with
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the development of smart wireless devices such as cognitive radios. For instance,

cognitive radios have the potential to provide the users with frequency agility,

adaptive modulation, transmit power control and spectrum sensing ability. It en-

ables them to make intelligent decision on networking behaviors such as packet

forwarding, trust/belief evaluation, or communication parameters such as trans-

mitting power, rate, or operating frequency. Based on the above, different from

traditional centralized networking approaches, it is more natural to study the intel-

ligent behaviors and interactions of selfish users in autonomous wireless networks

from the game theoretical perspective. Generally speaking, game theory [8–10]

models strategic interactions among agents using formalized incentive structures.

It not only provides game models for efficient self-enforcing distributed design

but also derives well-defined equilibrium criteria to study the optimality of game

outcomes for various game scenarios (static or dynamic, complete information or

incomplete information, non-cooperative or cooperative). To be specific, consider-

ing the network dynamics and selfish users, non-cooperative dynamic game theory

is an excellent match to the cooperation study in autonomous wireless networks.

Recently, several schemes have been proposed to enforce or stimulate coopera-

tion in autonomous wireless networks such as MANETs and DSANs [11–29]. These

schemes can be roughly categorized into two types: pricing-based and reputation-

based. In pricing-based methods, such as in [11–16], a selfish node in MANETs

will forward packets for other nodes only if it can get some payment from those

requesters as compensation. As for DSANs, the unused spectrum resources from

legacy spectrum holders can be shared with unlicensed users through auction-based

pricing mechanisms [17–19]. In reputation-based methods, such as in [20–29], a

node determines whether it should interact with others based on their past behav-
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iors, such as forwarding packets for other nodes or request other nodes to forward

packets for it in MANETs, adjusting the transmitting power or time duration in

unused licensed spectrum bands in DSANs. Besides, some efforts have been made

towards mathematical analysis of cooperation in autonomous ad hoc networks us-

ing game theory, such as in [30–38].

Although the cooperation in autonomous wireless networks has been studied in

many existing works and also been analyzed from the game theoretical perspective,

there are still some fundamental issues needed to be exploited in a comprehensive

game theoretical framework. First, most of existing approaches for cooperation

enforcement have assumed perfect observation by network users, and not consid-

ered the effect of noise on the strategy design. However, in autonomous wireless

networks, since central monitoring is in general not available, perfect public ob-

servation is either impossible or too expensive; due to the mobility and wireless

channel variations, the network users’ actions may be disturbed and not correctly

observed even if we assume accurate monitoring of other users. For instance,

when a node has decided to forward a packet for another node, this packet may

still be dropped due to link breakage or transmission errors. Therefore, how to

enforce cooperation in autonomous wireless networks under noise and imperfect

observation still remains unanswered. Second, cooperation in autonomous wireless

networks has been mostly modeled and analyzed in a static way in existing works.

Considering the network dynamics including node mobility, dynamic topology and

wireless traffic variations, the dynamic game theory needs to be further applied to

analyze the cooperation evolvement in long-run scenarios for autonomous wireless

networks. Third, the users’ selfish behaviors have been mostly studied from an

individual point of view. It is worth mentioning that the collusive selfish behaviors
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are able to largely affect the system performance and will be more difficult to be

detected and combatted. How to formally analyze the cooperation under collusive

situations in a game theoretical framework is another highly important issue.

1.2 Contributions and Thesis Organization

This dissertation focuses on developing a comprehensive game theoretical frame-

work for cooperation in autonomous wireless networks under various network sce-

narios. The contributions lie in the following three aspects.

First, distributive cooperation enforcement have been extensively studied in

a comprehensive game theoretical framework for autonomous wireless networks

under noise and imperfect observation [39–44]. In the autonomous MANETs,

we focus on the most basic networking functionality, namely packet forwarding.

Considering the nodes need to infer the future actions of other nodes based on their

own imperfect observations, in order to optimally quantify the inference process

with noise and imperfect observation, a belief evaluation framework is proposed to

stimulate the cooperation, i.e., packet forwarding between nodes and maximize the

expected payoff of each selfish node by using repeated game theoretical analysis

[39–41]. Further, we not only show that the packet forwarding strategy obtained

from the proposed belief evaluation framework achieves a sequential equilibrium

[10] that no user has incentive to deviate from, but also derive its performance

bounds. In the autonomous DSANs, we model the spectrum sharing as a dynamic

pricing game and develop a belief system to assist selfish users to update their

sharing strategies adaptive to the spectrum dynamics only based on their local

incomplete information [42–44]. The proposed belief-assisted pricing approach not

only can achieve the theoretical optimal outcomes using local information, but also
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will introduce much less overhead than traditional approaches.

Second, we enhance the cooperation in dynamic networking scenarios through

dynamic game theoretical studies [42, 45, 46]. Considering the interactions of net-

work users happen numerous times in autonomous wireless networks, we are able to

stimulate or enforce the cooperation among users based on their past behaviors in

long-run scenarios, which achieves better cooperation than traditional static game

theoretical schemes. We analyze the routing process in autonomous MANETs us-

ing multi-stage dynamic games and propose an optimal pricing-based approach

to dynamically maximize the sender/receiver’s payoff over multiple routing stages

considering the dynamic nature of MANETs, meanwhile, keeping the forwarding

incentives of the relay nodes by optimally pricing their packet-forwarding actions

based on the auction rules [45, 46]. Also, by modeling the spectrum sharing in

DSANs as a dynamic pricing game, we are able to coordinate the spectrum allo-

cation among primary and secondary users through a trading process to maximize

the payoffs of both primary and secondary users adapting to the spectrum dynam-

ics [42].

Third, we study the collusive selfish behaviors in autonomous wireless networks

in a non-cooperative game theoretical framework [47,48]. In order to have efficient

and robust dynamic spectrum sharing, we propose a collusion-resistant dynamic

pricing approach with optimal reserve prices designed to combat and alleviate

the impact of user collusion. Moreover, the belief system that is proposed for

cooperation under noise and imperfect observation can also be extended to combat

collusive behaviors. Note that by using appropriate equilibrium concepts from

game theory, the performance bounds of the networks with collusive users is also

derived in this dissertation.
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The remainder of this dissertation is organized as follows. Chapter 2 introduces

the related works and game theoretical models for autonomous wireless networks.

The cooperation enforcement in autonomous MANETs under noise and imperfect

observation is presented in Chapter 3. In Chapter 4, an optimal dynamic pric-

ing framework is discussed for self-organized routing in MANETs. In Chapter 5,

the belief-assisted dynamic game theoretical approach is described for dynamic

spectrum allocation in DSANs. Further, the collusion-resistant multi-stage pricing

game is studied for robust dynamic spectrum allocation in Chapter 6. Finally,

Chapter 7 concludes this dissertation and discusses the future work.
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Chapter 2

Background

2.1 Related Works

2.1.1 Cooperation in Autonomous Ad Hoc Networks

In the literature, many schemes have been proposed to address the issue of co-

operation stimulation in ad hoc networks [11, 13, 20–22, 26]. One way to enforce

cooperation among selfish nodes is to use pricing-based schemes such as [11–13],

in which a selfish node will forward packets for other nodes only if it can get some

payment from those requesters as compensation. For example, a cooperation en-

forcement approach was proposed in [11, 12] by using a virtual currency called

nuglets as payments for packet forwarding, which requires tamper-proof hardware

in each node. Another payment-based system, SPRITE [13], releases the require-

ment of tamper-proof hardware, but requires some online central banking service

trusted by all nodes. Another way to enforce cooperation among selfish nodes

is to use reputation-based schemes with necessary traffic monitoring mechanisms

such as [20–22,26], in which a node determines whether it should forward packets
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for other nodes or request other nodes to forward packets for it based on their

past behaviors. In [20], a reputation-based system was proposed for ad hoc net-

works to mitigate nodes’ misbehaviors, where each node launches a “watchdog”

to monitor its neighbors’ packet forwarding activities. Following [20], CORE and

CONFIDANT systems [21,22] were proposed to enforce cooperation among selfish

nodes which aim at detecting and isolating misbehaving node and thus making it

unattractive to deny cooperation. Moreover, ARCS was proposed in [26] to further

defend against various attacks while providing the incentives for cooperation.

Recently, some efforts have been made towards mathematical analysis of co-

operation in autonomous ad hoc networks using game theory, such as [23, 24, 30–

33, 36, 37]. In [30], Srinivasan et al. provided a mathematical framework for co-

operation in ad hoc networks, which focuses on the energy-efficient aspects of

cooperation. In [31], Michiardi et al. studied the cooperation among selfish nodes

in a cooperative game theoretic framework. In [32], Felegyhazi et al. defined a

game model and identified the conditions under which cooperation strategies can

form an equilibrium. In [33], Altman et al. studied the packet forwarding problem

using a non-cooperative game theoretic framework. Further, Trust modeling and

evaluation framework [23, 24] have been extensively studied to enhance coopera-

tion in autonomous distributed networks, which utilized trust (or belief) metrics

to assist decision-making in autonomous networks through trust recommendation

and propagation. The study of selfish behavior in ad hoc networks using game

theory has also been addressed in [36,37].

Considering the above approaches mostly focus on the basic functionality of

ad hoc networks, namely, packet-forwarding, the cooperation during the routing

process needs to be built upon successful packet forwarding among the nodes and
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is much more complicated than packet forwarding for several reasons. First, the

routing in ad hoc networks involves many selfish nodes at the same time for multi-

hop packet forwarding and the behaviors of the selfish nodes may be correlated.

Moreover, in MANETs, there usually exist multiple possible routes from the source

to the destination. Furthermore, due to mobility, the available routes between the

sources and the destinations may change frequently. In this dissertation, we refer

to path diversity as the fact that in general there exist multiple routes between

a pair of nodes, each with different characteristics, such as the number of hops,

cost (or requested price), and valid time of this route. We refer to time diversity

as the fact that due to the mobility, dynamic topology, and traffic variations, the

routes between two nodes will keep changing over time. In order to achieve efficient

routing in autonomous MANETs, a comprehensive study needs to be carried out

considering the above aspects.

Several approaches have been proposed to exploit the path diversity during the

routing process in autonomous MANETs such as [14–16]. Based on the ideas of

the auction-like pricing and routing protocols for the Internet [49,50], the authors

in [14–16] have introduced some auction-like methods for the cost-efficient and

truthful routing in MANETs, where the sender-centric Vickrey auction has been

adopted to discover the most cost-efficient routes, which has the advantage that

its incentive compatible property ensures the truthful routing among the nodes.

Router-based auction approaches [51], [52] have also been proposed to encourage

the packet-forwarding in MANETs, where each router constitutes an auction mar-

ket instead of submitting bids to the sender. Besides, a strategy-proof pricing

algorithm for the truthful multi-cast routing has been proposed in [53].
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2.1.2 Cooperation in Autonomous Dynamic Spectrum Ac-

cess Networks

The imbalance between the increasing demands of wireless spectrums and limited

radio resources poses an imminent challenge on efficient spectrum sharing. In or-

der to have efficient dynamic spectrum sharing in autonomous wireless networks,

several difficulties need to be first overcome: unreliable and broadcast nature of

wireless channels, user mobility and dynamic topology, various network infrastruc-

tures, and, most importantly, the network users’ behaviors. Traditional spectrum

sharing approaches only assume cooperative, static and centralized network set-

tings. Before efficient dynamic spectrum sharing can be achieved, the network

users’ intelligent behaviors and interactions have to be thoroughly studied and

analyzed. Game theory studies conflict and cooperation among intelligent ratio-

nal decision makers, which is an excellent match in nature to dynamic spectrum

sharing problems.

The advances of cognitive radio technologies make more efficient and intensive

spectrum access possible on a negotiated or an opportunistic basis. The FCC has

began to consider more flexible and comprehensive use of available spectrum [6,7].

The NeXt Generation program of DARPA also aims to dynamically redistribute

allocated spectrum based on cognitive radio technologies [4,5]. Therefore, great at-

tentions have been drawn to explore the dynamic spectrum access systems [54,55].

Traditionally, network-wide spectrum assignment is carried out by a central server,

namely, spectrum broker [56, 57]. Recently, distributed spectrum allocation ap-

proaches [19,27] have been studied to enable efficient spectrum sharing only based

on local observations. In [19], local bargaining mechanism was introduced to dis-

tributively optimize the efficiency of spectrum allocation and maintain bargaining
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fairness among secondary users. In [27], the authors proposed a repeated game

approach to increase the achievable rate region of spectrum sharing, in which the

spectrum sharing strategy can be enforced by the Nash Equilibrium of dynamic

games. Moreover, efficient spectrum sharing has also been studied from a practical

point of view, such as in [58] and [29], which analyzed spectrum sharing games for

WiFi networks and cellular networks, respectively.

From economical point of view, the deregulation of spectrum use further en-

courages market mechanisms for implementing efficient spectrum allocation in au-

tonomous wireless networks, which requires sophisticated game theoretical study

on the behaviors and interactions of network users. Researchers have already

started to study dynamic spectrum access via pricing and auction mechanisms

[17, 18, 58, 59]. In [17], the authors proposed an auction-based mechanism to ef-

ficiently share spectrum among the users in interference-limited systems. In [58],

the price of anarchy was analyzed for spectrum sharing in WiFi networks. A de-

mand responsive pricing framework was proposed in [59] to maximize the profits

of legacy spectrum operators while considering the users’ response model to the

operators’ pricing strategy. In [18], the authors considered multi-unit sealed-bid

auction for efficient spectrum allocation.

2.2 Game Theoretical Models

Game theory models the interactions among rational, mutually aware players,

where the decisions of some players impacts the payoffs of others. A game consists

of a set of players, a set of moves (or strategies) available to those players, and a

specification of payoffs for each combination of strategies.

The intelligent behaviors of selfish users in autonomous wireless networks can
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Figure 2.1: Prisoner’s dilemma in strategic form.

be studied using game theoretical models [39, 40, 42, 43, 45–47, 60]. For instance,

in autonomous MANETs, the players are all the network nodes, which may act

as service providers: packets are scheduled to be generated and delivered to cer-

tain destinations; or act as relays: forward packets for other nodes. The strategy

space may include packet forwarding decision, route participation, route selection,

or belief/trust build-up and update. The payoff can be defined considering var-

ious system measurements such as throughput, lifetime or power consumption.

In autonomous DSANs, the players are all the network users including both pri-

mary and secondary users. The strategy space for each user consists of various

actions related to dynamic spectrum sharing. Specifically, for secondary users, the

strategy space includes which licensed channel they will use, what transmission

parameters (such as transmission power or time duration) to be applied, what is

the price they agree to pay for leasing certain channels from the primary users,

etc. For primary users, the strategy space may include which unused channel they

will lease to secondary users and how much they will charge secondary users for

using their spectrum resources, etc. The payoff functions are modeled to measure

each selfish user’s throughput or spectrum efficiency.

There are two ways of representing games: normal form and extensive form
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[8–10]. The normal form (or strategic form) game is usually represented by a

matrix which shows the players, strategies, and payoffs. An example of prisoner’s

dilemma in strategic form can be shown in Figure 2.1. The extensive form can be

used to formalize games with some important order. Games in extensive form are

often presented as trees. Each vertex (or node) represents a point of choice for a

player. The player is specified by a number listed by the vertex. The lines out

of the vertex represent a possible action for that player. The payoffs are usually

specified at the bottom of the tree.

2.2.1 Non-cooperative and Cooperative Games

Considering the availability of centralized authorities, game theoretical study can

be categorized into two types: non-cooperative game and cooperative game. In

non-cooperative games, without centralized control, the selfish network users do

not cooperate so that any cooperation among them must be self-enforcing [9].

Thus, the study on cooperation in autonomous wireless networks matches the sce-

narios of non-cooperative games very well. The non-cooperative game theory pro-

vides us efficient distributed game designs and cooperation stimulation mechanism.

In order to have an efficient autonomous wireless network considering the users’

selfishness, the corresponding algorithm may generally result in a multi-objective

optimization problem. Non-cooperative game theory also equips us well-defined

optimization criteria to measure the optimality in the above scenarios with mul-

tiple agents. To be specific, Nash Equilibrium [9] is an important concept to

measure the outcome of a non-cooperative game, which is a set of strategies, one for

each player, such that no selfish player has incentive to unilaterally change his/her

action. In order to further measure the efficiency of game outcomes, Pareto Op-
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timality [9] is defined such that an outcome of a game is Pareto optimal if there

is no other outcome that makes every player at least as well off and at least one

player strictly better off.

In cooperative games, the users are able to make enforceable outcomes through

centralized authorities. Thus, for cooperative games, the interests lie in that how

good the game outcome can be. In other words, how to define and choose the

optimality criteria in cooperative scenarios. Although cooperative game theory

may not directly help us solve the cooperation issue in autonomous wireless net-

works, it is useful to measure the efficiency of the solution that we obtain from

non-cooperative game study on autonomous wireless networks. Further, it is worth

mentioning that Nash Bargaining Solution (NBS) [9] plays an important role

in cooperative games, which is a unique Pareto optimal solution to the game mod-

eling bargaining interactions based on six intuitive axioms. To be specific, NBS

divides the remaining spectrum resources among users in a ratio equal to the rate

at which the payoff can be transferred after the users are assigned with the minimal

resources [9]. NBS can be represented as a product of extra resources assigned to

each user, which is also referred to as linear-proportional fairness criterion if no

minimal resources are pre-assigned [61,62].

2.2.2 Repeated Games

In the above example of prisoner’s dilemma, although a better outcome can be

achieved if both prisoners stay silent, the selfishness of each prisoner will lead to

the non-cooperative Nash Equilibrium outcome that both prisoners betray. Thus,

the question rises that how to achieve better game outcomes in non-cooperative

games. Considering that a strategic game may not be played only once, if a
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similar strategic game is played numerous times, the game is called a repeated

game. Unlike a game played once, a repeated game allows for a strategy to be

contingent on past moves, thus allowing for reputation effects and retribution. The

player’s payoff in a repeated game is a discounted summation of her/his payoff at

each stage. One of the most important results in repeated game theory is Folk

Theorem [9], which asserts that for infinite repeated games there exists a discount

factor δ̂ < 1 such that any feasible and individually rational payoff can be enforced

by an equilibrium for any discount factor δ ∈ (δ̂, 1). Thus, by playing a strategic

game many times, more efficient Nash Equilibria can be achieved in a repeated

game framework. Note that in a repeated game, the strategic space needs to be

the same for each player in every stage of the repeated game; otherwise, the game

becomes a general multi-stage game.

In autonomous MANETs, the packet forwarding interactions between the net-

work users can be similarly modeled as repeated games. For instance, it is obvious

that if the packet forwarding interaction between two users happens only once,

both users will have no incentive to forward packets for the other; if the packet

forwarding interaction may happen many times between two users, one user may

tend to help the other to forward packets by considering that the other user may

return the favor in the future for mutual benefits. Based on the above, studying

the user behaviors in autonomous MANETs in a repeated game framework will

enable efficient cooperation among selfish users by reputation effects or retribution.

2.2.3 Dynamic Games

Considering that the cooperation in autonomous wireless networks is a dynamic

process, how the interactions among network users evolve over time based on the
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network dynamics needs to be further studied. Therefore, general dynamic game

models need to be considered to study the strategic game in multi-stage man-

ner or further represent it in extensive form if the users take actions sequentially.

In dynamic games, if complete information is available, i.e., the set of strategies

and payoffs for each user are common knowledge, Subgame Perfect Equilib-

rium (SPE) can be used to study the game outcomes, which is an equilibrium

such that users’ strategies constitute a Nash Equilibrium in every subgame [9] of

the original game. If complete information is not available, Sequential Equi-

librium [9] is a well-defined counterpart of SPE under such circumstance, which

guarantees that any deviations from the equilibrium will be unprofitable. More-

over, in non-cooperative games with incomplete information, the players need to

build up certain beliefs of other players’ future possible strategies to assist their

decision making. The concept of Perfect Bayesian Equilibrium (PBE) [8,10] is

built upon the belief system to measure the game outcomes in the above scenarios.

To be specific, a PBE is a set of strategies and beliefs such that, at any stage of the

game, strategies are optimal given the beliefs, and the beliefs are obtained from

equilibrium strategies and observed actions using Bayes’ rule.

2.2.4 Auction Games

Considering the negotiated or leasing-based dynamic spectrum sharing in au-

tonomous DSANs, primary users attempt to sell unused spectrum resources to

secondary users for monetary gains, while secondary users try to acquire spectrum

usage permissions from primary users to achieve certain communication goals,

which generally introduces reward payoffs for them. Noting that the users may be

selfish and won’t reveal their private information unless proper mechanisms have
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been applied to ensure that their interests will not be hurt, the interactions among

users in such scenarios can be modeled as a multi-player non-cooperative game

with incomplete information, which is generally difficult to study as the players do

not know the perfect strategy profile of others. However, based on the above game

settings, the well-developed auction theory [63], one of the most important appli-

cations of game theory, can be applied to formulate and analyze the interactions.

In auction games [63], according to an explicit set of rules, the principles (auc-

tioneers) determine resource allocation and prices on the basis of bids from the

agents (bidders). In dynamic spectrum sharing games, the primary users can be

viewed as the principles, who attempts to sell the unused channels to the secondary

users. The secondary users are the bidders who compete with each other to buy

the permission of using primary users’ channels. Further, multiple sellers and buy-

ers may coexist, which indicates the double auction scenario. It means that not

only the secondary users but also the primary users need to compete with each

other to make the beneficial transactions possible by eliciting their willingness of

the payments in the forms of bids or asks. In the double auction scenarios of the

DSSG, Competitive Equilibrium (CE) [63] is a well-known theoretical predic-

tion of the outcomes. It is the price at which the number of buyers willing to

buy is equal to the number of sellers willing to sell. As for autonomous MANETs,

considering there may exist multiple possible routes between a source-destination

pair, auction-like pricing-based mechanisms [14–16] can also be introduced for the

cost-efficient and truthful self-organized routing.
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Chapter 3

Cooperation Enforcement in

Autonomous Ad Hoc Networks

Mobile ad hoc networks (MANET) have drawn extensive attention in recent years

due to the increasing demands of its potential applications [1, 2]. In traditional

crisis or military situations, the nodes in a MANET usually belong to the same

authority and work in a fully cooperative way of unconditionally forwarding packets

for each other to achieve their common goals. Recently, the MANETs are also

envisioned to be deployed for civilian applications [11, 13, 20–22, 26, 30, 45], where

nodes typically do not belong to a single authority and may not pursue a common

goal. Consequently, fully cooperative behaviors cannot be directly assumed as the

nodes are selfish to maximize their own interests. The cooperation enforcement

becomes important for the above autonomous MANETs.

Although several schemes have been proposed to perform game theoretical anal-

ysis on cooperation in autonomous ad hoc networks as we discuss in Chapter 2,

most of them have assumed perfect observation, and not considered the effect of

noise on the strategy design. In this chapter we study the cooperation enforcement
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for autonomous mobile ad hoc networks under noise and imperfect observation, and

focus on the most basic networking functionality, namely packet forwarding. Con-

sidering the nodes need to infer the future actions of other nodes based on their

own imperfect observations, in order to optimally quantify the inference process

with noise and imperfect observation, a belief evaluation framework is proposed

to stimulate the packet forwarding between nodes and maximize the expected

payoff of each selfish node by using repeated game theoretical analysis. Specifi-

cally, a formal belief system using Bayes’ rule is developed to assign and update

beliefs of other nodes’ continuation strategies for each node based on its private

imperfect information. Further, we not only show that the packet forwarding strat-

egy obtained from the proposed belief evaluation framework achieves a sequential

equilibrium [10] that no user has incentive to deviate from, but also derive its

performance bounds. The simulation results illustrate that the proposed packet

forwarding approach can enforce the cooperation in autonomous ad hoc networks

under noise and imperfect observation with only a small performance degradation

compared to the unconditionally cooperative outcomes.

The remainder of this chapter is organized as follows. In Section 3.1, we illus-

trate the system model of autonomous ad hoc networks under noise and imperfect

observation. In Section 3.2, static and repeated packet-forwarding game models

are provided. Vulnerability analysis for autonomous MANETs under noise and

imperfect observation is carried out in Section 3.3. In Section 3.4, we propose the

belief evaluation framework and carry out the equilibrium and efficiency analysis

for one-hop and multi-node multi-hop packet forwarding. The simulation studies

are provided in Section 3.5. Finally, Section 3.6 summarizes this chapter.
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3.1 System Model

We consider autonomous ad hoc networks where nodes belong to different author-

ities and have different goals. Assume all nodes are selfish and rational, that is,

their objectives are to maximize their own payoff, not to cause damage to other

nodes. Each node may act as a service provider: packets are scheduled to be gen-

erated and delivered to certain destinations; or act as a relay: forward packets for

other nodes. The sender will get some payoffs if the packets are successfully deliv-

ered to the destination and the forwarding effort of relay nodes will also introduce

certain costs.

In this chapter we assume that some necessary traffic monitoring mechanisms,

such as those described in [13,20,26], will be launched by each node to keep tracking

of its neighbors’ actions. However, it is worth mentioning that we do not assume

any public or perfect observation, where a public observation means that when an

action happens, a group of nodes in the network will have the same observation,

and perfect observation means all actions can be perfectly observed without any

mistake. In ad hoc networks, due to its multi-hop nature and the lack of central

monitoring mechanism, public observation is usually not possible. Meanwhile, to

our best knowledge, there exist no such monitoring mechanisms in ad hoc networks

which can achieve perfect observation. Instead, in this chapter, we study the

cooperation-enforcement strategies based on imperfect private observation. Here,

private means that the observation of each node is only known to itself and won’t

or cannot be revealed to others.

We focus on two scenarios causing imperfect observation in ad hoc networks.

One scenario is that the outcome of a forwarding action may be a packet-drop

due to link breakage or transmission errors. The other scenario is that a node
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Figure 3.1: Packet forwarding in autonomous ad hoc networks under noise and

imperfect observation.

has dropped a packet but is observed as forwarding the packet, which may hap-

pen when the watchdog mechanism [20] is used and the node wants to cheat its

previous node on the route. Figure 3.1 illustrates our system model by showing

a network snapshot of one-hop packet forwarding between two users at a certain

time stage under noise and imperfect observation. In this figure, there are two

source-destination pairs (S1, D1) and (S2, D2). S1 and S2 need to help each other

to forward packets to the destination nodes. At this stage, node S1 drops the

packet and observes the packet-drop signal of node S2’s action, while node S2

forwards the packet and observes the forwarding signal of node S1’s action. The

action and observation of each node are only known to itself and cannot or will not

be revealed to other nodes. Due to transmission errors or link breakage between S2

and D1, S2’s forwarding action is observed as a packet-drop signal; due to possible

cheating behavior between S1 and D2, a forfeit forwarding signal may be observed

by S2. Therefore, it is important to design strategies for each node to make the

optimal decision solely based on these imperfect private information.
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3.2 Packet-Forwarding Game Models

We model the process of routing and packet-forwarding between two nodes forward-

ing packets for each other as a game. The players of the game are two network

nodes, denoted by i ∈ I = {1, 2}. Each player is able to serve as the relay for

the other player and needs the other player to forward packets for him based on

current routing selection and topology. Each player chooses his action, i.e., strat-

egy, ai from the action set A = {F,D}, where F and D are packet forwarding and

dropping actions, respectively. Also, each player observes a private signal ω of the

opponent’s action from the set Ω = {f, d}, where f and d are the observations

of packet forwarding and dropping signals, respectively. Since the player’s obser-

vation cannot be perfect, the forwarding action F of one player may be observed

as d by the other player due to link breakage or transmission errors. We let such

probability be pf . Also, the noncooperation action D may be observed as the

cooperation signal f under certain circumstances. Without loss of generality, let

the observation error probability be pe in our system, which is usually caused by

malicious cheating behaviors and indicates that the group of packets is actually

dropped though forwarding signal f is observed. For each node, the cost of for-

warding a group of packets for the other node during one stage of play is `, and

the gain it can get for the packets that the other node has forwarded for it is g̃.

Usually, the gain of successful transmission is for both the source and destination

nodes. Noting that the source and destination pair in ad hoc networks usually

serves for a common communication goal, we consider the gain goes to the source

for the game modeling without loss of generality.

We first consider the packet forwarding as a static game [8], which is only played

once. Given any action profile a = (a1, a2), we refer to u(a) = (u1(a), u2(a)) as the
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Figure 3.2: Two-player packet forwarding game in strategic form.

expected payoff profile. Let a−i and Prob(ωi|a−i) be the action of the ith player’s

opponent and the probability of observation ωi given a−i, respectively. Then, ui(a)

can be obtained as follows.

ui(a) =
∑
ωi∈Ω

ũi(ai, ωi, a−i) · Prob(ωi|a−i), (3.1)

where ũi is the ith player’s payoff determined by the action profile and his own ob-

servation. Then, calculating u(a) for different strategy pairs, we have the strategic

form of the static packet forwarding game as a matrix in Figure 3.2. Note that

g = (1− pf ) · g̃, which can be obtained from (3.1) considering the possibility of the

packet-drop.

To analyze the outcome of a static game, the Nash Equilibrium [8, 10] is a

well-known concept, which is a set of strategies, one for each player, such that

no selfish player has incentive to unilaterally change his/her action. Noting that

our two-player packet-forwarding game is similar to the setting of the prisoner’s

dilemma game, the only Nash equilibrium is the action profile a∗ = (D, D), and the

better cooperation payoff outcome (g − `, g − `) of the cooperation action profile

{F, F} cannot be practically realized in the static packet-forwarding game due
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to the greediness of the players. However, generally speaking, the above packet

forwarding game will be played many times in real ad hoc networks. It is natural to

extend the above static game model to a multistage game model [8]. Considering

that the past packet-forwarding behaviors do not influence the feasible actions or

payoff function at current stage, the multistage packet forwarding game can be

further analyzed using the repeated game model [8,10]. Basically, in the repeated

games, the players face the same static game at every period, and the player’s

overall payoff is a weighted average of the payoffs at each stage over time. Let ωt
i

be the privately observed signal of the ith player in period t. Suppose that the

game begins in period 0 with the null history h0. In this game, a private history

for player i at period t, denoted by ht
i, is a sequence of player i’s past actions

and signals, i.e., ht
i = {aτ

i , ω
τ
i }t−1

τ=1. Let H t
i = (A × Ω)t be the set of all possible

period-t histories for the ith player. Denote the infinite packet-forwarding repeated

game with imperfect private histories by G(p, δ), where δ ∈ (0, 1) is the discount

factor and p = (pf , pe). Assume that pf < 1/2 and pe < 1/2. Then, the overall

discounted payoff for player i ∈ I is defined as follows [8].

Ui(δ) = (1− δ)
∞∑

t=0

δtut
i(a

t
1(h

t
1), a

t
2(h

t
2)). (3.2)

Folk Theorems for infinite repeated games [8] assert that there exists δ̂ < 1 such

that any feasible and individually rational payoff can be enforced by an equilibrium

for all δ ∈ (δ̂, 1) based on the public information shared by players. However, one

crucial assumption for the Folk Theorems is that players share common information

about each other’s actions. In contrast, the nature of our repeated packet forward-

ing game for autonomous ad hoc networks determines that the nodes’ behaviorial

strategies can only rely on the private information histories including their own

past actions and imperfectly observed signals. Such a minor game-setting change
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from the public observation to the private observation due to noise and imperfect

observation will make a substantial difference in analyzing the efficiency of the

packet-forwarding game. In the situation of imperfect private observation, no re-

cursive structure [64] exists for the forwarding strategies since the player decides

their actions according to various private histories. Each node must conduct sta-

tistical inference to detect potential deviations and estimate what others are going

to do next, which can become extremely complex due to the imperfect observa-

tion [65,66].

3.3 Vulnerability Analysis

In this section, we analyze the vulnerability caused by noise and imperfect obser-

vation in autonomous MANETs. First, we study the system vulnerability in the

scenario of one-hop packet forwarding. Then, we further exploit the effect of noise

and imperfect observation in the scenario of multi-hop packet forwarding.

In the scenario of one-hop packet forwarding, the interactions between a pair

of nodes forwarding packets for each other can be modeled as the two-player game

in the previous section. Although it is seemly a minor game-setting change from

the public observation to the private observation due to noise and imperfect ob-

servation, such change on game-setting introduces substantial challenges on the

interactions, outcomes and efficiency of our packet-forwarding game, which can be

illustrated as follows. First, the noise and observation errors indicate that simple

TIT-for-TAT [33,67] strategies is not able to enforce efficient cooperation paradigm

among users since such equivalent retaliation strategy leads to inefficient nonco-

operative outcomes. Second, considering the selfishness of the users along with

the effects of noise and imperfect observations, the users won’t share their action
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information or observations of others’ actions, which indicates that no public in-

formation available for the users. Therefore, the users are not able to coordinate

their strategies for efficient outcomes relying only on private histories, i.e., no re-

cursive structure [64] exists for the forwarding strategies since the players decide

their actions according to various private histories. Third, although the dynamic

game theory has studied and defined the equilibrium concepts on the outcomes of

the game with imperfect information, such as Sequential Equilibrium (SE) [8, 10]

or Perfect Bayesian Equilibrium (PBE) [8, 10], it doesn’t provide generalized effi-

cient mechanisms to achieve SE or PBE in the scenarios of private information.

Note that generous tit-for-tat (GTFT) [67] is able to partly alleviate the impact

of noise and imperfect observation on the efficiency of the packet forwarding game

outcomes by assuming that the nodes may be generous to contribute more to the

network than to benefit from it. However, if the constraint of the private infor-

mation is taken into consideration, GTFT cannot work properly. Because, due

to the game-setting of private observation, one user doesn’t know the other user’s

observation of her/his actions and only has the imperfect observation of the other

user’s actions, which leads to the result that efficient TFT cannot be carried out.

Based on the above discussions, the noise and imperfect observation cause sev-

eral vulnerability issues even for simple one-hop packet forwarding in autonomous

MANETs, which can be illustrated as follows.

• Since the nodes make decisions based on private information, Each node must

conduct statistical inference to detect potential deviations and estimate what

others are going to do next. Existence of noise and the constraint of imperfect

observation will result in false alarms or detection errors. Selfish nodes may

be able to utilize such fact to contribute fewer efforts while getting more
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benefits from others.

• Considering that the nodes are not willing to or not able to share their

information, the nodes cannot rely on others’ past experiences or recommen-

dations on the nodes’ behaviors, which gives the selfish nodes more flexibility

on their cheating behaviors.

• With the presence of noise or observation errors, the cooperative nodes may

falsely accuse other cooperative nodes of seemly non-cooperative behaviors,

which is actually caused by link breakage or transmission errors. How to

maintain the cooperative paradigm in such scenarios remains a challenging

problem.

In the scenario of multi-node and multi-hop packet forwarding, more sophis-

ticated vulnerability issues will be raised considering the challenges of the self-

organizing routing and the correlation of the nodes’ actions. In general, due to the

multi-hop nature, when a node wants to send a packet to a certain destination, a

sequence of nodes need to be requested to help forwarding this packet. We refer to

the sequence of (ordered) nodes as a route, the intermediate nodes on a route as

relay nodes, and the procedure to discover a route as route discovery. The routing

process includes route discovery and packet forwarding. The route discovery car-

ries out three steps consecutively. First, the requester notifies the other nodes in

the network that it wants to find a route to a certain destination. Second, other

nodes in the network will make their decisions on whether agreeing to be on the

discovered route or not. Third, the requester will determine which route should be

used. Based on the discussion of the routing process, we can see that the action

and observation of one node on a route will largely affect the behaviors of other

nodes on this route or alternative routes between the source and destination nodes,
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which in reverse affects the the behavior of the original node. The above proper-

ties of multi-node and multi-hop packet forwarding may lead to more vulnerability

issues than one-hop packet forwarding illustrated as follows.

• In the scenarios of multiple nodes on one route, in order to detect or pun-

ish the users with cheating behaviors, the coordination needs to be built

up among multiple nodes to have effective detection or punishment, which

becomes very complicated and requires sophisticated strategy designs con-

sidering only private information available to each node.

• Since the routing process involves different steps, the seemingly cooperative

behaviors at each stage may jointly have cheating effects across multiple

steps. From the game theoretical point of view, each stage game in our

dynamic packet forwarding game consists of several subgames, such as route

participation subgame or route selection subgame. The vulnerability issues

need to be considered not only for each subgame but also for the overall

game.

• The multi-hop routing makes the observation of nodes more difficult as the

packet-drop action at one node will affect the outcome of the multi-hop

routing. Such propagation effects can be taken advantage of by selfish nodes

to cheat for more payoffs.

In order to combat the above vulnerability issues on autonomous MANETs

under noise and imperfect observation, it is important to study novel strategy

framework comprehensively considering these issues.
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3.4 Belief-Based Cooperation Enforcement

In this section, we first develop a belief evaluation framework for two-player packet

forwarding game in attempt to shed light on the solutions to the more complicated

multi-player case. Efficiency study is then carried out to analyze the equilibrium

properties and performance bounds. Further, a belief evaluation framework is pro-

posed for general networking scenarios with multiple nodes and multi-hop routing.

3.4.1 Two-Player Belief-Based Packet Forwarding

In order to have an efficient and robust forwarding strategy based on each node’s

own imperfect observation and actions, enlightened by [66], we propose a belief

evaluation framework to enforce cooperation.

First, we define two strategies, i.e., σF and σD. Let σF be the trigger coopera-

tion strategy, which means that the player forwards packets at current stage, and

at the next stage the player will continue to forward packets only if it observes

the other player’s forwarding signal f . Let σD be the defection strategy, which

means that the player always drops packets regardless of its observation history.

Such strategies are also called continuation strategies [66]. Since both of the two

strategies also determine the player’s following actions at every private history, the

strategy path and expected future payoffs caused by any pair of the two strategies

are fully specified. Let Vα,β(p, δ), α, β ∈ {F, D} denote the repeated game payoff

of σα against σβ, which can be illustrated by the following Bellman equations [68]

for different pairs of continuation strategies.

VFF = (1− δ)(g− `)+ δ((1−pf )
2VFF +pf (1−pf )VFD +pf (1−pf )VDF +p2

f ·VDD),

(3.3)
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VFD = −(1−δ)`+δ((1−pf )(1−pe)VDD+pf (1−pe)VDD+pe(1−pf )VFD+pfpeVFD),

(3.4)

VDF = (1−δ)g+δ((1−pf )(1−pe)VDD +pe(1−pf )VDF +pf (1−pe)VDD +pepfVDF ),

(3.5)

VDD = (1−δ) ·0+δ((1−pe)
2VDD +pe(1−pe)VDD +pe(1−pe)VDD +p2

e ·VDD). (3.6)

Note that the first terms on the right hand side (RHS) of the above equations

represent the normalized payoffs of current period, while the second terms illustrate

the expected continuation payoffs considering four possible outcomes due to the

noise and imperfect observation. By solving the above equations, Vα,β(p, δ) can be

obtained as follows.

VFF = (1− δ)(g − `) + δ((1− pf )
2VFF +

pf (1− pf )VFD + pf (1− pf )VDF + p2
f · VDD), (3.7)

VFD = −(1− δ)` + δ((1− pf )(1− pe)VDD +

pf (1− pe)VDD + pe(1− pf )VFD + pfpeVFD), (3.8)

VDF = (1− δ)g + δ((1− pf )(1− pe)VDD +

pe(1− pf )VDF + pf (1− pe)VDD + pepfVDF ), (3.9)

VDD = (1− δ) · 0 + δ((1− pe)
2VDD +

pe(1− pe)VDD + pe(1− pe)VDD + p2
e · VDD). (3.10)

Then, we have VDD > VFD, for any δ, p. Furthermore, if δ > δ0, then VFF > VDF ,

where δ0 can be obtained as

δ0 =
`

(1− pf − pe)g − [pf (1− pf )− pe]`
. (3.11)

Suppose that player i believes that his opponent is playing either σF or σD, and is

playing σF with probability µ. Then the difference between his payoff of playing
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σF and the payoff of playing σD is given by

4V (µ; δ, p) = µ · (VFF − VDF )− (1− µ) · (VDD − VFD). (3.12)

Hence 4V (µ) is increasing and linear in µ and there is a unique value π(p, δ) to

make it zero, which can be obtained as follows.

π(δ, p) =
−VFD(δ, p)

VFF (δ, p)− VDF (δ, p)− VFD(δ, p)
, (3.13)

where π(p, δ) is defined so that there is no difference for player i to play σF or

σD when player j plays σF with probability π(δ, p) and σD with probability 1 −
π(δ, p). For simplicity, π(δ, p) may be denoted as π under the circumstances with

no confusion. In general, if node i holds the belief that the other node will help

him to forward the packets with a probability smaller than 1/2, node i is inclined

not to forward packets for the other node. Considering such situation, we let δ be

such that π(δ, p) > 1/2.

It is worth mentioning that equation (3.12) is applicable to any period. Thus,

if a node’s belief of an opponent’s continuation strategy being σF is µ, in order to

maximize its expected continuation payoff, the node prefers σF to σD if µ > π and

prefers σD to σF if µ < π. Starting with any initial belief µ, the ith player’s new

belief when he takes action ai and receives signal ωi can be defined using Bayes’

rule [8] as follows.

µ(ht−1
i , (F, f)) =

µ(ht−1
i )(1− pf )2

µ(ht−1
i )(1− pf ) + pe · (1− µ(ht−1

i ))
, (3.14)

µ(ht−1
i , (F, d)) =

µ(ht−1
i )(1− pf ) · pf

µ(ht−1
i ) · pf + (1− pe) · (1− µ(ht−1

i ))
, (3.15)

µ(ht−1
i , (D, f)) =

µ(ht−1
i )(1− pf ) · pe

µ(ht−1
i ) · (1− pf ) + pe · (1− µ(ht−1

i ))
, (3.16)

µ(ht−1
i , (D, d)) =

µ(ht−1
i )pf · pe

µ(ht−1
i ) · pf + (1− pe) · (1− µ(ht−1

i ))
. (3.17)
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Table 3.1: Two-Player Packet Forwarding Algorithm

1. Initialize using system parameter configuration (δ, pe, pf ):

Node i initializes his belief µ1
i of the other node as π(δ, p)

and chooses the forwarding action in period 1.

2. Belief update based on the private history:

Update each node’s belief µt−1
i into µt

i using (3.14-3.17) according to

different realizations of private history.

3. Optimal Decision of the player’s next move:

If the continuation belief µt
i > π, node i plays σF ;

If the continuation belief µt
i < π, node i plays σD;

If the continuation belief µt
i = π, node i plays either σF or σD.

4. Iteration:

Let t = t + 1, then go back to Step 2.

From on the above discussion, we propose a two-player packet forwarding algorithm

based on the developed belief evaluation framework in Table 3.1. Note that by

using the proposed belief system, each node only needs to maintain its belief value,

its most recent observation and action instead of the long-run history information

of interactions with other users.

3.4.2 Efficiency Analysis

In this part, we show that the behaviorial strategy obtained from the proposed al-

gorithm with well-defined belief system is a sequential equilibrium [10] and further

analyze its performance bounds.

First, we briefly introduce the equilibrium concepts of the repeated games with

imperfect information. As for the infinitely repeated game with perfect infor-

mation, the Nash Equilibrium concept is a useful concept for analyzing the game

outcomes. Further, in the same scenario with perfect information, Subgame Per-

fect Equilibrium (SPE) [10] can be used to study the game outcomes, which is
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an equilibrium such that users’ strategies constitute a Nash equilibrium in every

subgame [8] of the original game, which eliminate those Nash Equilibria in which

the players’ threats are incredible. However, the above equilibrium criteria for the

infinitely repeated game require that perfect information can be obtained for each

player. In our packet forwarding game, each node is only able to have its own

strategy history and form the beliefs of other nodes’ future actions through im-

perfect observation. Sequential Equilibrium [10] is a well-defined counterpart

of subgame perfect equilibrium for multi-stage games with imperfect information,

which has not only sequential rationality that guarantees that any deviations will

be unprofitable but also consistency on zero-probability histories.

In our packet-forwarding game with private history and observation, the pro-

posed strategy with belief-system can be denoted as (σ∗, µ), where µ = {µi}i∈I

and σ∗ = {σ∗i }i∈I . By studying (3.14), we find that there exists a point φ such

that µ(ht−1
i , (F, f)) < µ(ht−1

i ) as µ(ht−1
i ) > φ while µ(ht−1

i , (F, f)) > µ(ht−1
i ) as

µ(ht−1
i ) < φ. Here, φ can be calculated as φ = [(1 − pf )

2 − pe]/(1 − pf − pe).

It is easy to show that µ(ht−1
i , (ai, ωi)) < µ(ht−1

i ) when (F, d), (D, f) and (D, d)

are reached. Since we initialize the belief with π we have µt
i ≤ φ after any belief-

updating operation if π < φ. Considering the belief updating in the scenario that

π ≥ φ becomes trivial, we assume π < φ thus µt
i ∈ [0, φ] and φ ≥ 1/2. Then,

let the proposed packet-forwarding strategy profile σ∗ be defined as: σ∗i (µi) = σF

if µi > π and σ∗i (µi) = σD if µi < π; if µi = π, the node forwards packets with

probability π and drops them with probability 1− π. Noting that π(δ, p) ≤ φ, we

obtain another constraint on δ, which can be written as follows.

δ ≥ δ =
`

[(1− pf )2 − pe] · g + ` · pe

. (3.18)

Using the above equilibrium criteria for the repeated games with imperfect in-
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formation, we then analyze the properties of the proposed strategy illustrated in

Table 3.1 through the following theorems.

Theorem 3.4.1 The proposed strategy profile σ∗ with belief-system µ from Table

3.1 is a sequential equilibrium for π ∈ (1/2, φ).

Proof See the appendix at the end of this chapter.

Theorem 3.4.2 shows that the strategy profile σ∗ and the belief system µ ob-

tained from the proposed algorithm is a sequential equilibrium, which not only

responds optimally at every history but also has consistency on zero-probability

histories. Thus, the cooperation can be enforced using our proposed algorithm

since the deviation will not increase the players’ payoffs. Then, similar to [66], it

is straightforward to prove the following theorem, which addresses the efficiency of

the equilibrium and shows that when the pe and pf are small enough, our proposed

strategy approaches the cooperative payoff g − `.

Theorem 3.4.2 Given g and `, there exist δ̃ ∈ (0, 1) and p̃ for any small positive

τ such that the average payoff of the proposed strategy σ∗ in the packet-forwarding

repeated game G(p, δ) is greater than g − `− τ if δ > δ̃ and pe, pf < p̃.

However, in real ad hoc networks, considering the mobility of the node, channel

fading and the cheating behaviors of the nodes, it may be not practical to assume

very small pe and pf values. A more useful and important measurement is the

performance bounds of the proposed strategy given some fixed pe and pf values.

We further develop the following theorem studying the lower bound and upper

bound of our strategy to provide a performance guideline. In order to model

the prevalent data application in current ad hoc networks, we assume the game

discount factor is very close to 1.
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Theorem 3.4.3 Given the fixed (pe, pf ) and discount factor of the repeated game

δG close to 1, the payoff of the proposed algorithm in Table 3.1 is upper bounded

by

Ū = (1− κ) · (g − `), (3.19)

where

κ =
pf · [g(1− pf ) + `]

(1− pf − pe)(g − `)
. (3.20)

The lower bound of the performance will approach the upper bound when the dis-

count factor of the repeated game δG approaches 1 and the packet forwarding game

is divided into N sub-games as follows: the first sub-game is played in period

1, N +1, 2N +1, ... and the second sub-game is played in period 2, N +2, 2N +2, ...,

and so on. The optimal N is

N = blog δ/ log δGc, (3.21)

The proposed strategy is played in each sub-game with equivalent discount factor

δN
G .

Proof By substituting Vα,β obtained from (3.7)-(3.10) into (3.13), we have

π(δ, p) =
`

g − `
· 1− δ(1− pf )

2

δ(1− pf − pe)
. (3.22)

Then, since the node i is indifferent of forwarding or dropping packets if its belief

of the other node is equal to π, the expected payoff of the node i at the sequential

equilibrium (σ∗, µ) can be written as

V (π, δ, p) = π(δ, p) · VDF (δ, p) + (1− π(δ, p)) · VDD(δ, p). (3.23)

It is easy to show that V (π(δ, p), δ, p) is a decreasing function in δ when δ ∈ (0, 1).

Then, the upper bound of the expected payoff can be obtained by letting δ be the
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smallest feasible value. From (3.11) and (3.18), we have δ > δ and δ > δ0. Since

δ > δ0, we can derive the upper bound of the payoff of the proposed algorithm as

(3.19) by substituting δ into (3.23).

However, the discount factor of our game is usually close to 1. Generally, δ is

a relatively smaller value in the range of (0, 1). In order to emulate the optimal

discount factor δ, we introduce the following game partition method. We partition

the original repeated game G(p, δG) into N distinct sub-games as the theorem

illustrates. Each sub-game can be regarded as a repeated game with the discount

factor δN
G . The optimal sub-game number N , which minimizes the gap between

δN
G and δ, can be calculated as N = blog δ/ log δGc.

As there is always difference between δN
G and δ, it is more important to study

the maximal gap, which results in the lower bound of the payoff using our game

partition method. Similar to [69], we can show that by using the optimal N ,

δN
G ∈ [δ, δ̄], where δ̄ = δ/δG. Substituting δ̄ into (3.23), we have the lower bound

of the payoff of our proposed algorithm with the proposed game partition method.

When δG approaches 1, and δ̄ approaches δ, the payoff of our algorithm achieves

the payoff upper-bound.

In the above theorem, the idea of dividing the original game into some sub-

games is useful to maintain the efficiency when δ approaches one for our game

setting. A larger δ indicates that future payoffs are more important for the total

payoff, which results in more number of sub-games. Since there are multiple sub-

games using the belief-based forwarding strategy, even if the outcomes of some

sub-games become the non-cooperation case due to the observation errors and

noise, cooperation plays can still continue in other sub-games to increase the total

payoff.
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3.4.3 Multi-Node Multi-Hop Packet Forwarding

In the previous parts, we mainly focus on the two-player case, while in an ad hoc

network there usually exist many nodes and multi-hop routing is generally enabled.

In this section, we model the interactions among selfish nodes in an autonomous

ad hoc network as a multi-player packet forwarding game, and develop the optimal

belief evaluation framework based on the two-player belief system.

Multi-Node Multi-Hop Game Model

In this section, we consider autonomous ad hoc networks where nodes can move

freely inside a certain area. For each node, packets are scheduled to be generated

and sent to certain destinations. Different from the two-player packet forwarding

game, the multi-player packet forwarding game studies multi-hop packet forward-

ing which involves the interactions and beliefs of all the nodes on the route. Before

studying the belief-based packet forwarding in this scenario, we first model the

multi-player packet forwarding game as follows:

• There are M players in the game, which represent M nodes in the network.

Denote the player set as IM = {1, 2, ...,M}.

• For each player i ∈ IM , he has groups of packets to be delivered to certain

destinations. The payoff of successfully having a group of packets delivered

during one stage is denoted by g̃.

• For each player i ∈ IM , forwarding a group of packets for another player will

incur the cost `.

• Due to the multi-hop nature of ad hoc networks, the destination player may

be not in the sender i’s direct transmission range. Player i needs to not only
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find the possible routes leading to the destination (i.e., route discovery),

but also choose an optimal route from multiple routing candidates to help

forwarding the packets (i.e., route selection).

• Each player only knows his own past actions and imperfect observation of

other players’ actions. Note that the information history consisting of the

above two parts is private to each player.

Similar to [30], we assume the network operates in discrete time. In each time slot,

one node is randomly selected from the M nodes as the sender. The probability

that the sender finds r possible routes is given by qr(r) and the probability that

each route needs h̄ hops is given by qh̄(h̄) (assume at lease one hop is required in

each time slot). Note that the h̄ relays on each route are selected from the rest

of nodes with equal probability and h̄ ≤ bg̃/`c. Assume each routing session lasts

for one slot and the routes remain unchanged within each time slot. In our study,

we consider that delicate traffic monitoring mechanisms such as receipt-submission

approaches [13] are in place, hence the sender is able to have the observation of

each node on the forwarding route.

Belief Evaluation System Design

In this part, we develop an efficient belief evaluation framework for multi-hop

packet forwarding games based on the proposed two-player approach. Since a

successful packet transmission through a multi-hop route depends on the actions

of all the nodes on the route, the belief evaluation system needs to consider the

observation error caused by each node, which makes a direct design of the belief

system for the multi-player case very difficult. However, the proposed two-player

algorithm can be applied to solve the multi-player packet forwarding problem by
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considering the multi-node multi-hop game as many two-player games between the

source and each relay node. Let Rt
i denote the set of players on the forwarding

route of player i in tth period. Let µi,j denote the sender i’s belief value of the

node j on the route. The proposed forwarding strategy for the multi-player case

is illustrated as follows.

Belief-based Multi-hop Packet Forwarding (BMPF) Strategy: In the

multi-node multi-hop packet forwarding game, given the discount factor δG and

p = (pe, pf ), the sender and relay nodes act as follows during different phases of

routing process.

• Game partition and belief initialization: Partition the original game into N

sub-games according to (3.21). Then, each node initializes its belief of other

nodes as π(δN
G , p) and forwards packets with probability π(δN

G , p).

• Route participation: The selected relay node on each route participates in

the routing if and only if its beliefs of the sender and other forwarding nodes

are greater than π.

• Route selection: The sender selects the route with the largest µi = Πj∈Ri
µij

with µij > π from the route candidates.

• Packet forwarding: The sender updates its belief of each relay node’s contin-

uation strategy using (3.14)-(3.17) and decides the following actions based

on its belief.

In the above strategy, the belief value of each node plays an important role. The

nodes who intentionally drop packets will be gradually isolated by other nodes since

the nodes who have low belief value of the misbehaved nodes will not cooperate

with them or participate in the possible routes involving these nodes. With the
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help of route participation and selection stage, our strategy successfully simplifies

the complicated multi-node multi-hop packet forwarding game into multiple two-

player games between the sender and relay nodes. But, the equivalent two-player

gain g here is different from that in Table 3.1, which needs to further cope with the

error propagation and routing diversity depending on the routing statistics such as

qr(r) and qh̄(h̄). Note that the roles of sender or relay nodes may change over time

depending on which source-destination pair has packets to transmit. As each node

is selfish and trying to maximize its own payoff, all nodes are inclined to follow

the above strategy for achieving the optimal payoff. In order to formally show the

cooperation enforcement, we have the following theorem.

Theorem 3.4.4 The packet forwarding strategy and belief evaluation system spec-

ified by the BMPF Strategy lead to a sequential equilibrium for the multi-player

packet forwarding game.

Proof A sequential equilibrium for the game with imperfect information is not

only sequential rational but also consistent [10]. First, we prove the sequential

rationality of the proposed strategy using the one-step deviation property [10],

which indicates that (σ, µ) is sequentially rational if and only if no player i has a

history hi at which a change in σi(hi) increases his expected payoff.

In route participation stage, we assume each forwarding node j ∈ Ri has built

up a belief value of the sender i as µji and the belief values of any other relay

node k ∈ Ri. One-step deviation property is considered for the following three

subcases for any forwarding node j: First, if µji > π and µjk > π, k 6= j, a one-

step deviation is not to participate in the routing. In this case, the forwarding

node will miss the opportunity of cooperating with the sender, which has been

shown to be profitable for the forwarding node in (3.12). Second, if µji < π and
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µjk > π, k 6= j, a one-step deviation is to participate in the routing. Since the

relay node j will drop the packet from the sender i, the equivalent cooperation

gain g in Table 3.1 will decrease due to packet-drop of the participated nodes,

which also decreases the future gain of node j. Although node j does not afford

the cost to forward packets for node i, its future gain will be damaged due to a

smaller g. Thus, one-step deviation is not profitable in this subcase. Third, if

µji < π and there exists node k such that µjk < π, the noncooperation forwarding

behavior may happen since node j’s belief of node k is lower than the threshold

π. Such possible noncooperation outcome may decrease the expected equivalent

gain g, which results in future payoff loss as (3.19) shows. Therefore, in all of the

above three subcases of the route participation stage, one-step deviation from the

BMPF Strategy cannot increase the payoffs of the nodes.

In route selection stage, two subcases need to be considered for one-step de-

viation test. First, if the largest µi with µij < π, ∃j is selected as the forwarding

route, there are noncooperation interactions between the sender i and relay j,

which decreases the expected equivalent gain g and then lower the future payoffs.

Second, if not the route with largest µi is selected, the expected gain g can still

be increased by another route with larger successful forwarding probability. Thus,

one-step deviation is not profitable in the route selection stage.

Further, Theorem 3.4.2 can be directly applied here to prove the sequential

rationality for every packet-forwarding stage. To sum up, the BMPF Strategy

is sequential rational for the multi-node multi-hop packet-forwarding game. Be-

sides, following the definition of the consistency for sequential equilibria [10], it

is straightforward to prove it for our BMPF Strategy. Therefore, the proposed

multi-player packet-forwarding strategy is a sequential equilibrium.
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Since the above theorem has proved that the BMPF Strategy is a sequential

equilibrium, the cooperation among the nodes can be enforced and no selfish node

will deviate from the equilibrium. As all nodes will follow the proposed strategy

to have optimal payoffs, the expected gain g in Table 3.1 can be written as follows.

g = g̃ · Er,h̄[1− [1− (π(1− pf ))
h̄]r]− E(h̄) · π`, (3.24)

where E(h̄) is the expected number of hops and Er,h̄ represents the expectation

with respect to the random variables r and h̄. The first term on the RHS of (3.24) is

the expected gain of the sender considering multiple hops and possible routes; the

second term on the RHS is the expected forwarding cost of sender i for returning

the forwarding favor of the other relay nodes on its route. Note that π in (3.24)

is also affected by g as shown in (3.22), which makes the computation of g more

complicated. However, as we show in Theorem 3.4.2, the optimal π approaches φ

when δ approaches δ. Considering the situations when δG approaches 1, π can be

very close to φ as δ is approached. Then, we can approximate g by substituting π

with φ in (3.24), which is only determined by pf and pe.

3.5 Simulation Studies

In this section, we investigate the cooperation enforcement results of our proposed

belief-based approach by simulation.

We first focus our simulation studies on one-hop packet forwarding scenarios

in ad hoc networks, where the two-player belief-based packet forwarding approach

can be directly applied to. Let M = 100, g = 1 and ` = 0.2 in our simulation.

In each time slot, any one of the nodes is picked with equal probability as the

relay node for the sender. For comparison, we define the cooperative strategy, in
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Figure 3.3: The average payoffs of the cooperative strategy and proposed strategy.

which we assume every node will unconditionally forward packets with no regard

to other nodes’ past behaviors. Such cooperative strategy is not implementable

in autonomous ad hoc networks. But it can serve as a loose performance upper

bound of the proposed strategy to measure the performance loss due to noise and

imperfect observation.

Figure 3.3 shows the average payoff and performance bounds of the proposed

strategy based on our belief evaluation framework for different pf by comparing

them with the cooperative payoff. Note that pe = 0.01 and δG = 0.99. It can

be seen from Figure 3.3 that our proposed approach can enforce cooperation with

only small performance loss compared to the unconditionally cooperative payoff.

Further, this figure shows that the average payoff of our proposed strategy satisfies

the theoretical payoff bounds developed in Theorem 3.4.2. The fluctuation of the

payoff curve of our strategy is because only integer number of sub-games can be
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Figure 3.4: Payoff ratios of the proposed strategy to the cooperative strategy.

partitioned into from the original game. Figure 3.4 shows the ratio of the payoffs

of our strategy to those of the cooperative strategy for different pe and pf . Here

we let δG = 0.999 to approach the payoff upper bound. It can be seen from

Figure 3.4 that even if pf is as large as 0.1 due to link breakage or transmission

errors, our cooperation enforcement strategy can still achieve as high as 80% of

the cooperative payoff.

In order to show that the proposed strategy is cheat-proof among selfish users,

we define the deviation strategies for comparison. The deviation strategies differ

from the proposed strategy only when the continuation strategy σF and observa-

tion F are reached. The deviation strategies will play σD with some deviating

probability pd instead of playing σF as the proposed belief evaluation framework.

Figure 3.5 compares the nodes’ average payoffs of the proposed strategy, coopera-

tive strategy and deviation strategies with different deviating probabilities. Note

that δG = 0.999 and pe = 0.1. This figure shows that the proposed strategy has
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much better payoffs than the deviating strategies.

Then, we study the performance of the proposed multi-hop multi-node packet

forwarding approach. Before evaluating the performance of our proposed strat-

egy, we first need to obtain the routing statistics such as qr(r) and qh̄(h̄). An

autonomous ad hoc network is simulated with M nodes randomly deployed inside

a rectangular region of 10γ × 10γ according to the 2-dimension uniform distribu-

tion. The maximal transmission range is γ = 100m for each node, and each node

moves according to the random waypoint model [70]. Let the “thinking time”

of the model be the time duration of each routing stage. Dynamic Source Rout-

ing (DSR) [70] is used as the underlying routing to discover possible routes. Let

λ = Mπ/100 denote the normalized node density, i.e., the average number of

neighbors for each node in the network. Note that each source-destination pair is

formed by randomly picking two nodes in the network. Moreover, multiple routes

with different number of hops may exist for each source-destination pair. Since the

routes with the minimum number of hops achieve the lowest costs, without loss of

generality, we only consider the minimum-hop routes as the routing candidates.

In order to study the routing statistics, we first conduct simulations to study

the hop number on the minimum-hop route for source-destination pairs. Let

hmin(ni, nj) = ddist(ni, nj)/γe denote the ideal minimum number of hops needed

to traverse from node i to node j, where dist(ni, nj) denotes the physical distance

between node i and j, and let ˜̄h(ni, nj) denote the number of hops on the actual

minimum-hop route between the two nodes. Note that we simulate 106 samples of

topologies to study the dynamics of the routing in ad hoc networks. Firstly, Figure

3.6 shows the approximated cumulative probability mass function (CMF) of the

difference between the ˜̄h(ni, nj) and hmin(ni, nj) for different node densities. Based
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Figure 3.5: Payoff comparison of the proposed strategy and deviating strategies.

Figure 3.6: The cumulative probability mass function of the hop-number difference

between the ˜̄h(ni, nj) and hmin(ni, nj).
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on these results, the average number of hops associated to the minimum-hop route

from node i to j can be approximated using the dist(ni, nj), γ, and the correspond-

ing CMF of hop difference, which also gives the statistics of qh̄(h̄). Besides, it can

be seen from Figure 3.6 that lower node density results in having a larger number of

hops for the minimum-hop routes, since the neighbor nodes are limited for packet

forwarding in such scenarios. Secondly, we study the path diversity of the ad hoc

networks by finding the maximum number of minimum-hop routes for the source-

destination pair. Note that there may exist the scenarios where the node may

be on multiple minimum-hop forwarding routes for the same source-destination

pair. For simplicity, we assume during the route discovery phase, the destination

randomly picks one of such routes as the routing candidate and feedbacks the

routing information of all node-disjoint minimum-hop routes to the source. Figure

3.7 shows the CMF of the number of the minimum-hop routes for different hop

number when the node density is 30. This figure actually shows the qr(r) statistics

when the ideal minimum hop number is given. Based on the routing statistics

given in Figure 3.6 and Figure 3.7, we are able to obtain the expected equivalent

two-player payoff table for multi-node and multi-hop packet forwarding scenarios

using (3.24).

We compare the payoff of our approach with that of the cooperative one in

Figure 3.8. Note that multi-hop forwarding will incur more costs to the nodes

since one successful packet delivery involves the packet forwarding efforts of many

relay nodes. Also, the noise and imperfect observation will have more impact on the

performance as each node’s incorrect observation will affect the payoffs of all other

nodes on the selected route. We can see from Figure 3.8 that our proposed strategy

maintains high payoffs even when the environment is noisy and the observation
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Figure 3.7: The cumulative probability mass function of the number the minimum-

hop route when the node density is 30.

Figure 3.8: Average payoffs of the proposed strategy in multi-node multi-hop sce-

narios.
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error is large. For instance, when pe = 0.2 and pf = 0.1, our proposed strategy

still achieves over 70% payoffs of the unconditionally cooperative payoff.

3.6 Summary

In this chapter, we study the cooperation enforcement in autonomous ad hoc net-

works under noise and imperfect observation. By modeling the packet forward-

ing as a repeated game with imperfect information, we develop the belief evalua-

tion framework for packet forwarding to enforce cooperation in the scenarios with

noise and imperfect observation. We show that the behaviorial strategy with well-

defined belief system in our proposed approach not only achieves the sequential

equilibrium, but also maintains high payoffs for both two-player and multi-player

cases. Notice that only each node’s action history and imperfect private observa-

tion are required for the proposed strategy. The simulation results illustrate that

the proposed belief-based cooperation enforcement approach achieves stable and

near-optimal equilibria in ad hoc networks under noise and imperfect observation.

3.7 Appendix: Proof of Theorem 3.4.2

First, we prove the sequential rationality of the solution obtained by our algorithm.

It is already shown in [10] that (σ, µ) is sequentially rational if and only if no player

i has a history at which a change in σi(hi) increases his expected payoff. This is

also called the one-step deviation property for sequential equilibrium, which we

use in our proof to show the sequential rational property of the proposed solution.

There are three possible outcomes considering the relation between µ and π.

1) If µi(h
t−1
i ) > π, a one-step deviation from σ∗ is to drop packets in current
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period and continue with σ∗ in the next period. Since the action player i chooses

is D, the operators (3.16) and (3.17) need to be considered for updating beliefs.

Noting that µi(h
t−1
i , (D, f)) is an increasing function with respect to µ(ht−1

i ) and

µ(ht−1
i ) ≤ 1, we can obtain that µi(h

t−1
i , (D, f)) < pe. Since π > 1/2 and pe < 1/2,

we have the continuation belief satisfying µi(h
t−1
i , (D, f)) < π. Then only the

following two sub-cases need to be considered.

(i) Suppose µi(h
t−1
i , (D, d)) ≤ π. In this case, since µi(h

t−1
i , (D, d)) ≤ π and

µi(h
t−1
i , (D, f)) ≤ π, the one-step deviation results in the continuation strategy

σD. Considering the node’s current action D, the deviated node will play σD in

this sub-case. But, (3.12) shows that the rational node prefers σF than σD when

µi(h
t−1
i ) > π. Then, a one-step deviation here cannot increase the payoff of the

node.

(ii) Suppose µi(h
t−1
i , (D, d)) > π. The one-step deviation is to drop packets in

current period and continue with σD if the history information set (D, f) is reached

or continue with σF if (D, d) is reached. Compared with the first sub-case, we find

that the one-step deviation differs from σD only when the information set (D, d)

is reached. Let 4V̂ (µ) be the payoff difference between the proposed solution and

the one-step deviation, which can be written as

4V̂i(µ
t−1
i ) = 4Vi(µ

t−1
i )− δ[µt−1

i · pf + (1− pe) · (1− µt−1
i )] · 4Vi(µ(ht−1

i , (D, d))),

(3.25)

where the first term on the RHS is the payoff difference between σF and σD, and the

second term on the RHS is the conditional payoff difference when (D, d) is reached.

Noting that (3.17) indicates µi(h
t−1
i , (D, d)) < µi(h

t−1
i ) and 4V (µ) is an increasing

function in µ. we have 4Vi(µi(h
t−1
i )) > 4Vi(µi(h

t−1
i , (D, d))). Moreover, as the

coefficient of the second term in (3.25) is less than one, 4V̂i(µi(h
t−1
i )) is strictly
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greater than zero. Thus, the one-step deviation is not profitable in this sub-case.

Since there is no sub-cases other than the above ones, we show that if µi(h
t−1
i ) >

π, the one-step deviation cannot increase the payoff for the node.

2) If µi(h
t−1
i ) < π, a one-step deviation from σ∗ is to forward packets in cur-

rent period and continue with σ∗ in the next period. Considering π < φ and

µi(h
t−1
i , (F, d)) is an increasing function in µi(h

t−1
i ), we can show that µi(h

t−1
i , (F, d)) <

1/2 if µi(h
t−1
i ) < π, thus µi(h

t−1
i , (F, d)) < π. Then, there are two sub-cases:

(i) If µi(h
t−1
i , (F, f)) ≥ π, the one-step deviation from σ∗ becomes playing the

cooperation strategy σF . As we have shown in (3.12), σD is preferable to σF if

µi(h
t−1
i ) < π.

(ii) If µi(h
t−1
i , (F, f)) < π, the deviated strategy differs from σF only when

the private history (F, f) is reached. Let 4Ṽ (µi(h
t−1
i )) be the payoff difference

between the equilibrium strategy σD and the one-step deviation strategy, which

can be obtained as

4Ṽ (µi(h
t−1
i )) = 4V (µi(h

t−1
i ))−δ[µi(h

t−1
i )(1−pf )+pe·(1−µi(h

t−1
i ))]·4V (µi(h

t−1
i ), (F, f)).

(3.26)

Note that 4V (µi(h
t−1
i )) < 4V (µi(h

t−1
i ), (F, f)). considering µi(h

t−1
i , (F, f)) >

µi(h
t−1
i ). As the coefficient of the second term on the RHS in (3.26) is less than

one, we have a positive 4Ṽ (µi(h
t−1
i )), which shows that the one-step deviation in

this subcase cannot increase payoff.

3) If µi(h
t−1
i ) = π the node is indifferent between forwarding packets and drop-

ping packets from (3.12). Obviously, a one-step deviation will not change the

expected payoff.

By studying the above three cases, we prove that the proposed strategy (σ∗, π)

of the packet forwarding game is sequential rational when π ∈ (1/2, φ).
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Then, we prove the consistency of the proposed strategy. Since the proposed

strategy is a pure strategy when µi 6= π we construct a completely mixed strategy

(σε
i , µ

ε
i), which is constructed by allowing a tremble with a small probability ε

from purely forwarding strategy or dropping strategy. By applying (3.14)-(3.17)

to calculate the belief-update system with tremble, it is easy to show that µε
i

converges to µi when ε approaches zero. Therefore, given a sequence ε̄ = (εn)∞n=1

satisfying limn→∞ εn = 0, we can show that the sequence (σεn
i , µεn

i )∞n=1 of strategies

with completely mixed strategies converges to the proposed strategy (σ∗, µ) while

the belief system being updated by Bayes’ rule.

Therefore, since the proposed strategy satisfies the sequential rationality and

consistency properties when π ∈ (1/2, φ), it is a sequential equilibrium for the

packet-forwarding game with imperfect private observation.
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Chapter 4

Optimal Dynamic Pricing for

Autonomous Ad Hoc Networks

In this chapter, we study the cooperation among selfish users during the routing

process in autonomous ad hoc networks, which is built upon the cooperation of

the packet forwarding among users and requires more sophisticated mechanisms

to stimulate cooperation while more network users are involved for efficient self-

organized routing.

Although the existing pricing-based approaches [14–16] have achieved some

success in cost-efficient and incentive-compatible routing for MANETs with selfish

users, most of them assume that the network topology is fixed or the routes between

the sources and the destinations are known and pre-determined. Further, none

of the existing approaches have addressed how to exploit the time diversity for

efficient routing. In order to encourage cooperation among selfish users and achieve

optimal pricing-based routing, both path diversity and time diversity of MANETs

should be exploited. Specifically, the source (here we assume the source pays

to the forwarding nodes) is responsible for exploiting the path diversity, such as
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introducing competition among the multiple available routes through auction, to

minimize the payment needed at the current stage. Each node also needs to exploit

the time diversity to maximize its overall payoff over time. In each stage the source

adaptively decides the number of packets being transmitted according to the price

it needs to pay, which is determined by the current routing conditions. For instance,

when the routing conditions are good (i.e., the cost to transmit a packet is low),

more packets should be transmitted in the current stage; otherwise, less or no

packets should be transmitted in the current stage.

In this chapter, we consider the routing process as multi-stage dynamic games

and propose an optimal pricing-based approach to dynamically maximize the

sender/receiver’s payoff over multiple routing stages considering the dynamic na-

ture of MANETs, meanwhile, keeping the forwarding incentives of the relay nodes

by optimally pricing their packet-forwarding actions based on the auction rules.

The main contribution of this chapter are multi-fold: First, by modeling the

pricing-based routing as a dynamic game, the senders are able to exploit the time

diversity in MANETs to increase their payoffs by adaptively allocating the packets

to be transmitted into different stages. Considering the mobility of the nodes, the

possible routes for each source-destination pair are changing dynamically over time.

According to the path diversity, the sender will pay a lower price for transmitting

packets when there are more potential routes. Thus, the criterion for allocation

can be developed based on the fact that the sender prefers to send more packets

in the stage with lower costs. Second, an optimal dynamic programming approach

is proposed to implement efficient multi-stage pricing for autonomous MANETs.

Specifically, the Bellman equation is used to formulate and analyze the above dy-

namic programming problem by considering the optimization goal in terms of two
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parts: current payoffs and future opportunity payoffs. A simple allocation algo-

rithm is developed and its optimality is proved based on the auction structure and

routing dynamics. Third, the path diversity of MANETs is exploited using the

optimal auction mechanism in each stage. The application of the optimal auc-

tion [71] makes it possible to separately study the optimal allocation problem and

the mechanism design of the auction protocol based on the well-known Revenue

Equivalence Theorem [71], which simplifies the dynamic algorithm while keeping

the optimality.

The remainder of this chapter is organized as follows: The system model of

autonomous MANETs are illustrated in Section 4.1. In Section 4.2, we formulate

the pricing process as dynamic games based on the system model. In Section

4.3, the optimal dynamic auction framework is proposed for the optimal pricing

and allocation of the multi-stage packet transmission. In Section 4.4, extensive

simulations are conducted to study the performance of the proposed approach.

Finally, summary is given in Section 4.5.

4.1 System Description

We consider autonomous mobile ad hoc networks where nodes belong to differ-

ent authorities and have different goals. We assume that each node is equipped

with a battery with limited power supply, can freely move inside a certain area,

and communicates with other nodes through wireless connections. For each node,

packets are scheduled to be generated and delivered to certain destinations with

each packet having a specific delay constraint, that is, if a packet cannot reach the

destination within its delay constraint, it will become useless.

In our system model, we assume all nodes are selfish and rational, that is, their
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objectives are to maximize their own payoff, not to cause damage to other nodes.

However, node are allowed to cheat whenever they believe cheating behaviors can

help them increasing their payoff. Since nodes are selfish and forwarding packets

on behalf of others will incur some cost, without necessary compensation, nodes

have no incentive to forward packets for others. In our system model, we assume

that if a packet can be successfully delivered to its destination, then the source

and/or the destination of the packet can get some benefits, and when a node

forwards packets for others, it will ask for some compensation, such as virtual

money or credits [12, 13], from the requesters to at least cover its cost. In our

system model, to simplify our illustration, we assume that the source of a packet

pays to the intermediate nodes who have forwarded the packet for it. However,

the proposed schemes can also be easily extended to handle the situation that the

destinations pay. Like in [13], we assume that there exist some bank-like centralized

management points, whose only function is to handle the billing information, such

as performing credit transfer among nodes based on the submitted information

by these nodes. Each node only needs to contact these central banking points

periodically or aperiodically.

In general, due to the multi-hop nature of ad hoc networks, when a node wants

to send a packet to a certain destination, a sequence of nodes need to be requested

to help forwarding this packet. We refer to the sequence of (ordered) nodes as a

route, the intermediate nodes on a route as relay nodes, and the procedure to dis-

cover a route as route discovery. The routing protocols are important for MANETs

to establish communication sessions between each source-destination pair. Here,

we consider the on-demand (or reactive) routing protocols for ad hoc networks, in

which a node attempts to establish a route to some destination only when it needs
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to send packets to that destination. Since on-demand routing protocols are able to

handle many changes of node connectivity due to the node’s mobility, they perform

better than periodic (or proactive) routing protocols in many situations [72–74] by

having much lower overheads. In MANETs, due to the mobility, nodes need to fre-

quently perform route discovery. In this chapter, we refer to the interval between

two consecutive route discovery procedures as a routing stage, and assume that for

each source-destination pair, the selected route between them will keep unchanged

in the same routing stage. Furthermore, to simplify our analysis, we assume that

for each source-destination pair, the discovered routes in different routing stages

are independent.

After performing route discovery in each stage, multiple forwarding routes can

be exploited between the source and the destination. Assume there are ` possible

routes and let vi,j be the forwarding cost of the jth node on the ith route, which is

also referred to as the node type in this chapter. Considering possible node mobility

in MANET, ` and vi,j are no longer fixed values, which can be modelled as random

variables. Let the probability mass function (PMF) of ` be f̃(`) and the corre-

sponding cumulative density function (CMF) be F̃ (`). And, vi,j is characterized

by its probability density function (PDF) f̂i,j and the cumulative density function

(CDF) F̂i,j. Define the cost vector of the ith route as vi = {vi,1, vi,2, ..., vi,hi
},

where hi is the number of forwarding nodes on the ith route. Thus, we have the

total cost on the ith route ri =
∑hi

j=1 vi,j, which is also a random variable. Let the

PDF and CDF of ri be fi and Fi, respectively.

Figure 4.1 illustrates our system model by showing a network snapshot of

pricing-based multi-hop routing between a source-destination pair. It can be seen

from this figure that there are three routing candidates with different number
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of hops and routing costs (such as energy-related forwarding costs) between the

source-destination pair. Each route will bid as one entity for providing the packet

forwarding service for the source-destination pair at this routing stage. Then, the

source will choose the route with the lowest bid to transmit the packets. The price

that the source pays to the selected route may be equivalent to the asked price or

include a premium than the true forwarding cost. Note that the asking prices from

each route and the payment from the source may vary according to the applied

pricing mechanisms. Further, the payment that the source provides to the selected

route needs to be shared among the nodes on the selected route in a way that no

node on the selected route has incentive to deviate from the equilibrium strategy.

Considering the network dynamics due to the node mobility, dynamic topology or

channel fading, the number of available routes, the number of required hops and

the forwarding costs will change over time. In Figure 4.2, we consider a dynamic

scenario and illustrate the relationship of the number of packets to be transmitted

and the lowest cost of the available routes at each stage. In order to maximize its

payoff by utilizing the time diversity, the source tends to transmit more packets

when the cost is lower and transmit less packets when the cost is higher. The

optimal relationship between them will be derived in later sections.

4.2 Pricing Game Models

In this chapter, we model the process of establishing a route between a source and

a destination node as a game. The players of the game are the network nodes.

With respect to a given communication session, any node can play only one of

the following roles: sender, relay node, or destination. In autonomous MANET,

each node’s objective is to maximize its own benefits. Specifically, from the sender’s
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Figure 4.1: Pricing-based routing in autonomous MANETs.

Figure 4.2: Dynamic pricing-based routing considering time diversity.
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point of view, he/she aims to transmit its packets with the least possible payments;

from the relaying nodes’ points of view, they want to earn the payment which not

only covers their forwarding cost but also gain as much extra payment as possible;

while from the network designers’ point of view, they prefer that the network

throughput and/or lifetime can be maximized. Therefore, the source-destination

pair and the nodes on the possible forwarding routes construct a non-cooperative

pricing game [8]. Since the selfish nodes belong to different authorities, the nodes

only have the information about themselves and will not reveal their own types

to others unless efficient mechanisms have been applied to guarantee that truth-

telling does not harm their interests. Generally, such non-cooperation game with

imperfect information is complex and difficult to study as the players do not know

the perfect strategy profile of others. But based on our game setting, the well-

developed auction theory can be applied to analyze and formulate the pricing

game.

The auction games belong to a special class of game with incomplete informa-

tion known as games of mechanism design, in which there is a “principal” who

would like to condition his actions on some information that is privately known

by the other players, called “agents”. In auction, according to an explicit set of

rules, the principle (auctioneer) determines resource allocation and prices on the

basis of bids from the agents (bidders). In the pricing game, the source can be

viewed as the principle, who attempts to buy the forwarding services from the

candidates of the forwarding routes. The possible forwarding routes are the bid-

ders who compete with each other for serving the source node, by which they may

gain extra payments for future use. In order to maximize their own interests, the

selfish forwarding nodes will not reveal their private information, i.e., the actual
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forwarding costs, to others. They compete for the forwarding request by eliciting

their willingness of the payments in the forms of bids. Thus, because of the path

diversity of MANET, the sender is able to lower its forwarding payment by the

competition among the routing candidates based on the auction rules. It is impor-

tant to note that instead of considering each node as a bidder [14,15], we consider

each route as a bidder in this chapter, which has the following advantages: First,

by considering the nodes on the same forwarding route as one entity, the sender can

fully exploit the path diversity to maximize its own payoffs. Second, since it has

been proved in [14] that there does not exist a forwarding-dominant protocol for

ad hoc pricing games, the route-based bidding approach makes it possible to study

the payoff-maximization allocation and cheat-proof mechanism design sequentially.

Moreover, less bidding information is required for route-based approach.

In this section, we first consider the static pricing game (SPG), which is only

played once for the fixed topology. Then, the dynamic pricing game (DPG) is

studied and formulated considering playing the pricing game for multiple stages.

4.2.1 The Static Pricing Game

In this subsection, we study the static pricing game model. By taking advantage of

the auction approach, our goal is to maximize the profits of the source-destination

communication pair for transmitting packets while keeping the forwarding incen-

tives of the forwarding routes. Specifically, considering an auction mechanism

(Q,M) consists of a pair of functions Q : D → P and M : D → RN , where D is

the set of announced bids, P is the set of probability distributions over the set of

routes L. Note that Qi(d) is the probability that the ith route candidate will be se-

lected for forwarding and Mi(d) is the expected payment for the ith route, where
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d is the vector of bidding strategies for all routes, i.e., d = {d1, d2, .., d`} ∈ D.

Then, the payoff function of the ith forwarding route can be represented as follows

Ui(di, d−i) = Mi(di, d−i)−Qi(di, d−i) · ri. (4.1)

Before studying the equilibria of the auction game, we first define the direct reve-

lation mechanism as the mechanism in which each route bids its true cost, di = ri.

The Revelation Principle [71] states that given any feasible auction mechanism,

there exists an equivalent feasible direct revelation mechanism which gives to

the auctioneer and all bidders the same expected payoffs as in the given mech-

anism. Thus, we can replace the bids d by the cost vector of the routes, i.e.,

r = {r1, r2, ..., rL} without changing the outcome and the allocation rule of the

auction game. Therefore, the equilibrium of the SPG can be obtained by solving

the following optimization problem to maximize the sender’s payoff while providing

incentives for the forwarding routes

E`,r

[
max
Q,M

{
g ·

∑̀
i=1

Qi(r)−
∑̀
i=1

Mi(r)
}]

(4.2)

s.t. Ui(ri, d−i) ≥ Ui(di, d−i),∀di ∈ D (4.3)

Qi(r) ∈ {0, 1},
∑̀
i=1

Qi(r) ≤ 1.

where the constraint (4.3) is also referred as the incentive compatibility (IC) con-

straint, which ensures the users to report their true types, and g is the marginal

profit of transmitting one packet.

4.2.2 The Dynamic Pricing Game

Considering the dynamic nature of MANET, the network topology may change

over time due to the mobility of the nodes. Thus, the route discovery needs to
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be performed frequently. Moreover, for different routing stages, there may exist

different number of available routes with different number of hops. It is important

for each source-destination pair to decide the transmission and payment behaviors

for each stage according to the route conditions. Therefore, the pricing game under

such dynamic situation can no longer be modelled as static games. Game theorists

use the concept of dynamic games to model such multi-stage games and analyze

the long-run behaviors of players. In dynamic games, the strategies of the players

not only depend on the opponents’ current strategies but also the past outcomes

of the game and the future possible actions of other players. Our pricing game for

MANET falls exactly into the category of dynamic games. In this chapter, we will

focus on studying the dynamic pricing game.

Intuitively, the sender prefers to transmit more packets when more routing

candidates are available and the number of hops is small. Because, considering the

application of auction protocols in each stage, the sender has a higher probability to

get the service with a lower price when there are more bidders (routes) with lower

type values. Moreover, the practical constraints in MANET need to be considered

in DPG, such as the delay constraint of packet transmission or the bandwidth

constraint of the maximal number of packets being able to be transmitted within

an unit time duration. Therefore, in order to maximize their profits, the source-

destination pair needs not only to optimally allocate the packets to the routes

within one time period but also to schedule the packets for all periods. In our

DPG, it is important to note that the optimal packet transmission strategy for

each source-destination pair is affected by both the past plays and the future

possible outcomes. Generally speaking, the packet transmission decision is made

by comparing the current transmission profit and future opportunity profits. Also,
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due to the delay and bandwidth constraints, the past transmission plays affect

current decision-making. Capturing the dynamics becomes the key to the optimal

solution of our DPG. Let `t denote any realization of the route number at the tth

stage and r be a realization of the types of all routing candidates. Consider a

T -period dynamic game, the overall payoff maximization problem for the source-

destination pair can be formulated as follows.

T∑
t=1

βt · E`t,rt

[
max
Q,kt

{[
G(Kt) ·

`t∑
i=1

Qi − kt ·
`t∑

i=1

Mi(rt)
]}]

s.t. Ui,t(ri,t, d−i,t) ≥ Ui,t(di,t, d−i,t), ∀di,t ∈ D

Qi ∈ {0, 1},
L∑

i=1

Qi ≤ 1.

kt ≤ B,

T∑
t=1

kt = M. (4.4)

where kt is the number of packets transmitted in the tth stage and Kt is the vector

of the numbers of the transmitted packets in the first T −t+1 stages, which can be

represented as Kt = {kT , kT−1, ..., kt}. Note that a smaller t in this chapter stands

for a later time stage. Here, G(Kt) is the profit that the sender gains in the tth

stage, which may not only depend on how many packets are transmitted in current

stage, i.e., kt, but also be affected by how many packets have been transmitted in

previous stages, Kt+1. Considering the rate-distortion theory [75], we assume the

profit function is concave in kt. For example, the marginal profit of transmitting

one more packet when a lot of packets have already been transmitted should be

limited. Also, β is the discount factor for multistage games, and the subscript t

indicates the tth routing stage. Note that T and B are the delay constraint and

the bandwidth constraint, respectively. M is the total number of packets to be

transmitted within T stages.
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The above DPG formulation (4.4) extends the optimal pricing problem to the

time dimension, which can exploit the potential of time diversity in the autonomous

ad hoc network considering its dynamic nature. However, directly solving the

nonlinear integer programming problem is very difficult. Because, not only does

the current routing realization affect the allocation decision, but also the past play

and allocation decision influence the feasible actions and payoff functions in the

current period.

4.3 Optimal Dynamic Pricing-Based Routing

In order to achieve efficient self-organized routing in the DPG considering the dy-

namic nature of MANETs, we propose the optimal pricing-based routing approach

in this section. First, the optimal auction mechanism is considered for maximizing

the payoffs for the source-destination pair while keeping the forwarding incentives

of the relaying nodes. Then, the dynamic multi-stage game is further formu-

lated using the optimal auction and dynamic programming approach. Finally, the

mechanism design and the profit-sharing among the nodes on the selected route

are considered for the proposed approach.

4.3.1 Optimal Auction for Static Pricing-Based Routing

In Section 4.2, we have formulated the static pricing game based on the auction

principles as the optimization problem (4.2). Here, we further utilize the results

of the optimal auction [76] to simplify the optimization problem. From [76], we

know that by considering the optimal auction, the sender’s expected total payoff

can be expressed only in terms of the allocation Q, which is independent of the
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payment to each route candidate. Specifically, the optimization problem (4.2) can

be rewritten as follows.

E`,r

[
max

Q

{
g ·

∑̀
i=1

Qi(r)−
∑̀
i=1

Ji(ri)Qi(r)
}]

, (4.5)

s. t. Qi(r) ∈ {0, 1},
∑̀
i=1

Qi(r) ≤ 1.

where J(ri) = ri +1/ρ(ri), and ρ(ri) = fi(ri)/Fi(ri) is the hazard rate [76] function

associated with the distribution of the routing cost. Note that J(ri) is also called

the virtual type of the ith player. It’s proved in [76] that the solution of the above

optimization also satisfies the incentive compatible constraint. The assumptions

for the above formulation are rather general: (1) F is continuous and strictly

increasing, (2) the allocations Qi(ri, r−i) are increasing in ri. From (4.5) and

the Revenue Equivalence Theorem, it follows that all mechanisms that result in

the same allocations Q for each realization of r yield the same expected payoff.

Thus, in order to obtain the optimal pricing strategies, the mechanism design

process proceeds in two steps: First, find the optimal allocation Q(r); second,

find an implementable mechanism that produces Q for each realization r. By

using the optimal auction approach for pricing, the payoff-maximized allocation

for the sender is to choose the route with the minimal virtual type J(ri) when

g − J(ri) ≥ 0, otherwise the sender will not transmit the packet as it will cause

negative payoff and violate his individual rationality. Therefore, if we assume J(v)

is strictly increasing in v, we can define v∗ = maxv{(g−J(v)) = 0} as the reserved

price for the sender, which is the largest payment he/she can offer for transmitting

a packet. Note that the distributions that have increasing J(v) include the uniform,

normal, logistic, exponential distributions, etc.
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Based on the above discussion, we find that the static pricing game is not

efficient if the current routing realization shows a high cost. Considering the dy-

namic properties of MANET, a more efficient pricing mechanism can be achieved

by studying it as a multistage game and optimally allocating the packet transmis-

sions over multiple time periods.

4.3.2 Optimal Dynamic Auction for Dynamic Pricing-Based

Routing

Considering the optimal auction results in the DPG model formulated in Section

4.2, we further propose the optimal dynamic auction framework for pricing in au-

tonomous MANET. As it is difficult to directly solve (4.4), we study the dynamic

programming approach in our proposed framework to simplify the multistage op-

timization problem.

Define the value function Vt(x) as the maximum expected profit obtainable

from periods t, t− 1, ..., 1 given that there are x packets to be transmitted within

the constraint of time periods. Simplifying (4.4) using the Bellman equation, we

have the maximal expected profit Vt(x) written as follows

Vt(x) = E`t,r

[
max
Q,kt

{[
G(Kt) ·

`t∑
i=1

Qi− kt ·
`t∑

i=1

J(vi)Qi

]
+ β · Vt−1(x− kt)

}]
, (4.6)

s.t. Qi(r) ∈ {0, 1},
`t∑

i=1

Qi(r) = 1, kt ≤ B.

Moreover, the boundary conditions for the above dynamic programming problem

are

V0(x) = 0, x = 1, ..., M, (4.7)
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Recall that we have the delay constraint T of the maximal allowed time stages and

the bandwidth constraint B of the maximal number of packets able to be trans-

mitted for each stage. Based on the principle of optimality in [68], an allocation Q

that achieves the maximum in (4.6) given x, t and r is also the optimal solution for

the overall optimization problem (4.4). Note that the above formulation is similar

to that of the multi-unit sequential auction [77] studied by the economists.

First, note that from (4.6) and the monotonicity of J(·), it is clear that if the

sender transmits k packets within one time period, these packets should be all

awarded to the forwarding route with the lowest cost ri. Therefore, define

Rt(k) = max
Q

{
G(Kt) ·

`t∑
i=1

Qi(r)− k ·
`t∑

i=1

J(ri)Qi(r) : Qi(r) ∈ {0, 1},
∑

i

Qi(r) = 1

}
,

(4.8)

which can also be solved and written as

Rt(k) =





0 if k = 0,

G(k,Kt+1)− k · J(r(1)) if k > 0,
(4.9)

where r(1) means the lowest cost of the forwarding routes. Thus, the dynamic

optimization objective (4.6) can therefore be rewritten in terms of Rt(k) as follows:

Vt(x) = E`t,r

[
max

0≤kt≤min{B,x}
{Rt(kt) + β · Vt−1(x− kt)}

]
, (4.10)

which is also subject to (4.7). Let k∗t (x) denote the optimal solution above, which

is the optimal number of packets to be transmitted on the winning route at the

tth stage given remaining capacity x. Letting 4Rt(i) ≡ Rt(i) − Rt(i − 1) and

4Vt(i) ≡ Vt(i)− Vt(i− 1), we can rewrite the maximal expected profit Vt(x) as

Vt(x) = E`t,r

[
max

0≤kt≤min{B,x}

{ kt∑
i=1

[4Rt(i)− β · 4Vt−1(x− i + 1)]

}]
+ β · Vt−1(x).

(4.11)
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The above formulation will help us to simplify the optimal dynamic pricing prob-

lem.

Then, in order to solve the dynamic pricing problem (4.6)-(4.7), we need to

first introduce the following lemmas based on (4.11).

Lemma 4.3.1 If 4Vt−1(x) ≥ 4Vt−1(x + 1), then k∗t (x) ≤ k∗t (x + 1) ≤ k∗t (x) +

1,∀x ≥ 0.

Proof We study the left hand side (LHS) inequality first. If k∗t (x) = 0, the

inequality holds true. If k∗t (x) > 0 and considering the assumption 4Vt−1(x) ≥
4Vt−1(x+1), the optimal allocation k∗t (x+1) may be higher due to the additional

packet in queue. Hence, k∗t (x + 1) ≥ k∗t (x).

As for the right hand side (RHS) inequality, we prove it by contradiction.

Assume k∗t (x + 1) ≥ k∗t (x) + 2. From (4.9), we know that R(k) is decreasing in

its argument. Further, from (4.11) and the assumption of this lemma 4Vt−1(x) ≥
4Vt−1(x + 1), we obtain that achieving the optimal k for the tth stage in (4.11) is

equivalent to finding the maximal k satisfying the following inequality

4Rt(k) > β · 4Vt−1(x− k + 1). (4.12)

Therefore, given the optimal k∗t (x + 1), we have

4Rt(m) > β · 4Vt−1(x + 1−m + 1), for m = 1, 2, ..., k∗t (x + 1). (4.13)

As we assume k∗t (x+1) ≥ k∗t (x)+2 and letting m = k∗t (x)+2 in (4.13), we obtain

4Rt(k
∗
t (x) + 2) > β · 4Vt−1(x + 1− (k∗t (x) + 2) + 1)

= β · 4Vt−1(x− (k∗t (x) + 1) + 1). (4.14)
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Since R(k) is decreasing in k, (4.14) can be further written as

4Rt(k
∗
t (x) + 1) ≥ 4Rt(k

∗
t (x) + 2)

> β · 4Vt−1(x− (k∗t (x) + 1) + 1). (4.15)

Considering the optimality criterion of k∗t (x) in (4.12), k∗t (x) should be the largest

number of packets satisfying (4.12). Therefore, (4.15) contradicts the optimality

of k∗t (x). The RHS inequality is proved.

It can be seen from the proof of Lemma 4.3.2 that the optimal allocation of

packet transmission over multiple stages can also be determined under the condi-

tion 4Vt−1(x) ≥ 4Vt−1(x + 1). Then, we will prove the above condition holds for

all t in the following lemma.

Lemma 4.3.2 4Vt(x) is decreasing in x for any fixed t and is increasing in t for

any fixed x.

Proof See the Appendix at the end of this chapter. The idea of

this lemma can also be illustrated in an intuitive way as follows. At any fixed time

period, the marginal benefit 4Vt(x) of each additional packet declines because

the future possible routes are limited; therefore, the chance of transmitting the

additional packet at low prices also decreases. Similarly, for any given remaining

packet number x, the marginal benefit of an additional packet increases with t,

because more number of possible future routes are available when more remaining

time periods; therefore, the chance of getting a higher marginal benefit goes up.

Also, Lemma 4.3.2 relaxes the assumption of Lemma 4.3.2 and we always have

k∗t (x) ≤ k∗t (x + 1) ≤ k∗t (x) + 1,∀x ≥ 0.

Considering Lemma 4.3.2 and Lemma 4.3.2, the optimal allocation of packet

transmission for the proposed dynamic auction framework can be characterized by
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the following theorem.

Theorem 4.3.3 For any realization (`t, r) at the tth stage, the optimal number of

packets to transmit in state (x, t) is given by

k∗t (x) =





max{1 ≤ k ≤ min{x,B} : 4Rt(k) > β · 4Vt−1(x− k + 1)}
if Rt(1) > β · 4Vt−1(x);

0 otherwise.

(4.16)

Moreover, it is optimal to allocate these k∗t (x) packets to the route with the lowest

cost ri.

Proof Vt(x) is the summation of two terms in (4.11). As the second term is

fixed given x, the optimal k∗t maximizing the first term needs to be studied. Based

on the definition (4.9), 4R(·) is decreasing in its argument. Also, 4Vt−1(·) is

decreasing in its argument from Lemma 4.3.2. Thus, 4R(k)−β ·4Vt−1(x−k +1)

is also monotonically decreasing in k. Therefore, the optimal allocation at tth time

period with x packets in queue, k∗t (x), is the largest k for which this difference is

positive.

Theorem 4.3.2 shows how the source node should allocate packets into different

time periods. The basic idea is to progressively allocate the packets to the route

with the smallest realization of J(r(1)) until the marginal benefit 4Rt(i) drops

below the marginal opportunity cost 4Vt−1(x− i + 1).

In order to have the optimal allocation strategies using Theorem 4.3.2, we first

need to know the expected profit function 4Vt(x),∀t, x. For finite number of time

periods, T , in problem (4.6), the optimal dynamic programming proceeds backward

using the Bellman equation [68] to obtain 4Vt(x). Due to the randomness of the

route number and its type, it is difficult to obtain the close-form expression of

4Vt(x). Thus, we use simulation to approximate the values of 4Vt(x) for different
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t and x, which proceeds as follows: Start from the routing stage 0. For each stage

t, generate N samples of the number of available routes and their types, which

follow the PDF f`(`) and fi(ri), respectively. For each realization and for each

pair of values (x, t), calculate k∗t (x) using Theorem 4.3.2. By using the conclusion

of Lemma 4.3.2, we simplify the computation of k∗t (x) and only need O(NM)

operations to calculate Vt(x) for all x at fixed t time period. Therefore, O(NMT )

operations are required for the whole algorithm. Note that the computation of

Vt(x) can be done off-line, which will not increase the complexity of finding the

optimal allocation for each realization.

We then study the expected profit function for infinite number of routing stages.

Such scenario gives the upper-bound of the expected profit, because the source

node can wait until low-cost routes being available for transmission. For infinite

horizon, the maximal profit Vt(x) in (4.6) can be rewritten as

V ∗(x) = E`,r

[
min
Q,k

{
`t∑

i=1

(G(K)− k · J(ri))Qi(r) + β · V ∗(x− k)

}]
(4.17)

or, equivalently, V ∗ = T V ∗, where T is the operator updating V ∗ using (4.17).

Assuming S is the feasible set of states, The convergence proposition of the dynamic

programming algorithm [68] states that: for any bounded function V : S → R,

the optimal profit function satisfies V ∗(x) = limp→∞(T pV )(x), ∀x ∈ S. As V (x)

is bounded in our algorithm, we are able to apply the value iteration method to

approximate the optimal V (x), which proceeds as follows: Start from some initial

function for V (x) as V 0(x) = g(x), where the superscript stands for the iteration

number. Then, iteratively update V (x) by letting V p+1(x) = (T V p)(x). The

iteration process ends until |V p+1(x) − V p(x)| ≤ ε, for all x, where ε is the error

bound for V ∗(x).
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4.3.3 Mechanism Design

In the previous part, we have developed the optimal dynamic pricing-based routing

approach. Next, our task is to find auction mechanisms that achieve the derived

optimal strategy. Many auction forms can be applied to achieve the optimal strat-

egy. Considering the truth-telling property of the second-price auction, we focus

on this mechanism in our chapter.

In a traditional second-price auction, the bidder with the highest bid wins the

item and pays the second highest bid for it. In our framework, the source node

is trying to find the route with the lowest cost, which implies the application of

reverse second-price auction. The source node allocates the packet transmission

to the route with the lowest payment bid and actually pay the second-lowest bid

to the selected route. Moreover, the auction mechanism can be performed in

many forms, such as open auctions and sealed-bid auctions. Open auctions allows

the bidders to submit bids many times until finally only one bidder stays in the

game. In sealed-bid auctions, the bidders only submit their bids once. Considering

the sealed-bid auctions require less side-information and hence save the wireless

resources, we analyze the sealed-bid second-price auction for our optimal allocation

policy.

It is important to note that the straightforward application of the reverse

second-price auction can not guarantee the truth-telling property of the bidders.

Let J̃t(r) = G(1,Kt+1)− J(r) and r̃t = J̃−1
t (4Vt−1(xt)), where xt is the packets to

be transmitted from the tth stage. Considering the scenario where the lowest cost

of the routes rt
(1) > r̃t, it can be seen from Theorem 4.3.2 that no packet will be

assigned for forwarding within current time period. Hence, the route with the low-

est cost may have incentive to bid below their true cost and satisfy the threshold
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constraint. In this way, this route will win the packet and get positive payoff as

the sender awards it the second lowest bid. But the expected profit of the sender

will decrease according to (4.11). Therefore, we need to modify the second-price

mechanism by using r̃t as the reserved price for every stage, which is the highest

price that the sender agrees to pay for transmitting one packet within current time

period. Specifically, given the submitted bid vector, dt = {d1,t, d2,t, ..., d`,t}, the

sender allocates the packet to the route with lowest bid below the reserved price

and the selected route gets the payment max{d(2), r̃}, where d(2) is the second

lowest type of the forwarding routes.

Note that the mechanism we developed above can prevent the single route from

not reporting the true cost. But in the presence of collusion of the routes, it may

be not able to maintain the truth-telling property. This problem can be fixed

from two aspects: First, the greediness of the selfish routes can help to prevent

the collusion. Assume two routes collude to increase their profits. The collusion

requires the two routes to act and share the extra gain cooperatively. But, the

greediness of the routes decide that the cooperative game can not be carried out

between them. The noncooperative behaviors will eventually lead to an inefficient

outcome and break the collusion of the players. Second, in our scheme, the sender

can discourage the collusion among the routes by setting a higher reserve price.

The collusion behaviors of bidders is also referred as the bidding ring in the context

of the auction theory. The optimal reserve price is analyzed in [71] to combat the

collusion of bidders, which can be directly applied to our scheme for handling the

route collusion.
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4.3.4 Profit Sharing among the Nodes on a Selected Route

In the above sections, we have developed the optimal dynamic routing approach

through multi-stage pricing in MANETs and designed the mechanism of the second-

price auction with reserved prices to assure the truth-telling property of each route.

But, we consider each route as an entity. Thus, the residual problem is that how to

share the forwarding profits of the route defined as in (4.1) among the forwarding

nodes on the route. Although the proposed mechanism can ensure the truth-telling

of each route as one bidder, the cooperation among the nodes on one route can not

be pre-assumed and truth-telling mechanisms need to be further designed for the

profit-sharing problem. In this part, we will first prove that no dominant truth-

telling strategy exists for each node on the selected multi-hop forwarding route in

static profit-sharing scenarios. Then, the truth-telling profit-sharing mechanisms

are designed to enforce the cooperation among the nodes on the selected route in

dynamic scenarios.

As the nodes on the same forwarding route belong to their own authorities,

they will act greedily to get more profits from the total profits that the route

gains, which forms a static profit-sharing game (SPSG). The players in the profit-

sharing game are all the nodes on the same forwarding route. The payoff of each

node is defined as the profits it obtained through packet forwarding efforts, which

is represented as Pi,j for the jth node on the ith route. The action strategy of the

jth node on the ith discovered route can be represented as {αi,j, v̂i,j}, where αi,j

is the the percentage of profits that this node will get for its packet forwarding

efforts and v̂i,j is the forwarding cost that it reported while performing the route-

based pricing. Note that v̂i,j may not be the true forwarding cost and our aim is

to design mechanisms to enforce the truth-telling behaviors. Assume the number
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of hops on the ith route is hi. Let the profit-sharing vector for the ith route be

αi = {αi,1, αi,2, ..., αi,hi
}, where

∑hi

j=1 αi,j = 1. Denote the reported cost vector of

the nodes on the ith route as v̂i = {v̂i,1, v̂i,2, ..., v̂i,hi
}. Recall that the type vector of

the nodes on the ith route is defined as vi = {vi,1, vi,2, ..., vi,hi
} and the PDF of vi is

f̂i, which we assume to be identical for all nodes without loss of generality. Then,

we study the existence of the dominant truth-telling strategies in the following

theorem.

Theorem 4.3.4 There exists no dominant truth-telling strategy {αi, v̂i} in the

static profit-sharing game.

Proof We prove this theorem by contradiction. Assume α∗i is a dominant truth-

telling profit-sharing strategy in the static profit-sharing game, which means by

using α∗i , every forwarding node’s dominant strategy on the ith route is to report its

true type (or cost). Equivalently, if the jth node reports a higher cost, v̂i,j = vi,j+ε,

than its true type vi,j while other nodes report the true value, the jth node will

get a lower profit. In order to show the dominant strategy α∗i , we need to calculate

and compare the node’s profit when it is cheating or not. First, the total profits

of the ith route are obtained and then we study the profit of each node. Based

on our second-price mechanism and considering (4.1), the total profits of the ith

route can be represented as follows.

Ui(r̂i) = Prob(r̂i < r(1)(r−i)) · (Er−i
[r(1)(r−i)|r̂i < r(1)(r−i)]− r̂i), (4.18)

where r̂i is the bidding cost of the ith route, which the ith route believes to be the

true cost, but may be not if some node on the ith route is cheating by reporting a

higher type value, and r(1)(r−i) represents the lowest cost of all routes except the

ith route. Without loss of generality, we assume the PDF of ri to be identical for
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all routes as f . By using the results of order statistics [78], we have the condition

expectation of the payment as follows.

Er−i
[r(1)(r−i)|r̂i < r(1)(r−i)] =

1

[1− F (r̂i)]`−1

∫ ∞

bri

[1− F (x)]`−1dx. (4.19)

Noting that the probability of winning the auction for the ith route is

Prob(r̂i < r(1)(r−i)) = [1− F (r̂i)]
`−1. (4.20)

Substituting (4.19) and (4.20) into (4.18), the total profits can be written as

Ui(r̂i) =

∫ ∞

bri

[1− F (x)]`−1dx. (4.21)

Then, using the profit-sharing strategy α∗i , the profit of the jth node on the ith

route can be calculated. We consider two cases: (a) the node reports the true type

vi,j; (b) the node cheats and reports a higher value v̂ = vi,j + ε. For case (a), the

profit of the jth node on the ith route is represented as follows.

Ui,j(vi,j) = α∗i,j · Ui(ri)

= α∗i,j ·
∫ ∞

ri

[1− F (x)]`−1dx. (4.22)

For case (b), the profit includes the cheating profit of reporting an extra cost ε and

the allocated profit from the ith route, which can be written as

Ui,j(v̂i,j) = ε · Prob(r̂i < r(1)(r−i)) + α∗i,j · Ui(r̂i)

= ε · [1− F (ri + ε)]`−1 + α∗i,j ·
∫ ∞

ri+ε

[1− F (x)]`−1dx. (4.23)

Subtracting (4.22) from (4.23), we have

Ui,j(v̂i,j)− Ui,j(vi,j) = [1− F (ri + ε)]`−1 ×
{

ε− αi,j

∫ ri+ε

ri

[1− F (x)]`−1

[1− F (ri + ε)]`−1
dx

}
.

(4.24)
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From the Mean Value Theorem, we know that there exists some λ ∈ [0, 1] satisfying

∫ ri+ε

ri

[1− F (x)]`−1

[1− F (ri + ε)]`−1
dx = ε ·

(
[1− F (ri + λε)]

[1− F (ri + ε)]

)`−1

. (4.25)

And, for simplicity, let

Ψ(ε) =

(
[1− F (ri + λε)]

[1− F (ri + ε)]

)`−1

, (4.26)

which is a decreasing function in ε, and has the limit

lim
ε→0

Ψ(ε) = 1. (4.27)

Thus, there always exists a positive value δ. When ε < δ, Ψ(ε) < 1/α∗i,j. Further,

by putting (4.25) into (4.24), we have

Ui,j(v̂i,j)− Ui,j(vi,j) = ε · [1− F (ri + ε)]`−1[1− α∗i,j ·Ψ(ε)]. (4.28)

Therefore, ∃δ, for ε < δ, Ui,j(v̂i,j)−Ui,j(vi,j) > 0, which contradicts the assumption

that α∗i,j is a dominant truth-telling strategy. Considering such contradiction holds

for any α∗i,j, we finally prove that there does not exist a cheat-proof strategy for

the profit-sharing game.

Since there is no dominant truth-telling strategy in static profit-sharing games

as Theorem 4.3.4 shows, it is necessary to design certain mechanisms to enforce

the cooperation among the forwarding nodes on the same forwarding route. There

are many ways to design such mechanisms. For instance, an intuitive idea is to

provide over-payment to the nodes on the winning route as the compensation for

their cooperative behaviors. The over-payment should be more than the cheating

gain the nodes can obtain. But who is responsible for the over-payment? It

is not reasonable to ask the sender for the payment-compensation. Because, in

this way, the sender may have incentives to switch his/her transmission to the
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route with higher true cost, which asks for less over-payment. It is also a rational

behavior for such route to require a less over-payment, which may make them have

a positive payoff instead of losing the auction with zero payoffs. Therefore, a more

practical way is to let the central-bank periodically compensate the forwarding

nodes with some payments. The over-payment amount can be decided based on

the Vickrey-Clarke-Groves (VCG) mechanism [15, 71], which pays each node the

difference between the routing cost without this node and the other nodes’ routing

cost with the presence of this node. It is important to note that the application of

the VCG mechanism here does not conflict with our dynamic pricing mechanism.

They are carried out separately by the central bank and the sender for ensuring

the cooperation of forwarding nodes on one route and maximizing the total profits

of the sender, respectively.

However, the over-payment method still requires some information of the overall

topology and forward costs, which may not be available in dynamic scenarios.

In order to have enforceable truth-telling mechanisms, it is reasonable to model

the profit-sharing interactions as a repeated game for each route. Generally

speaking, repeated games belong to the dynamic game family, which play a similar

static game many times. The overall payoff in a repeated game is represented as a

normalized discounted summation of the payoff at each stage game. A strategy in

the repeated game is a complete plan of action, that defines the players’ actions in

every stage game. At the end of each stage, all the players can observe the outcome

of the stage game and decide the future actions using the history of plays. The

repeated profit-sharing game (RPSG) can be defined as follows.

Definition 4.3.5 Let Γ be a static profit-sharing game and β be a discount factor.

The T -period profit-sharing repeated game, denoted as Γ(T, β), consists of game Γ

80



repeated T times. The repeated game payoff is given by

Pi,j =
T−1∑
t=0

βtP t
i,j, (4.29)

where P t
i,j denotes the payoff of the jth node on the i the route in period t. If T

goes infinity, then Γ(∞, β) is referred to as the infinite repeated game.

Note that Nash Equilibrium [8] is an important concept to measure the out-

come of the SPSG, which is a set of strategies, one for each player, such that no

selfish player has incentive to unilaterally change his/her action. However, the

selfishness of players will result in inefficient non-cooperative Nash Equilibriums

in static games. As for dynamic games, Subgame Perfect Equilibrium (SPE)

can be used to study the game outcomes, which is an equilibrium such that users’

strategies constitute a Nash equilibrium in every subgame [8] of the original game.

In the RPSG, since the game is not played only once, the players is able to make

decisions conditioning on past moves for better outcomes, thus allowing for repu-

tation effects and retribution. Therefore, in order to measure the outcome of the

RPSG, we apply the Folk Theorems [8,64] of the infinite repeated games to have

the following theorem.

Theorem 4.3.6 In RPSG, there exists a discount factor β̂ < 1 such that any

feasible and individually rational payoff can be enforced by an equilibrium for any

discount factor β ∈ (β̂, 1).

The above theorem illustrates that feasible profit-sharing outcomes can be en-

forced in the RPSG when no dominant strategy is available. However, it didn’t

answer the question that how the feasible profit-sharing outcomes can be enforced,

that is, how to design the enforcing mechanisms in the RPSG. First, we define two

strategies: the cooperative strategy and non-cooperative strategy. In cooperative
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strategy, the node will report the true forwarding cost; in non-cooperative strategy,

the node will report a very high forwarding cost so that the route with this node

will not be selected for packet forwarding. Similar to [64, 79, 80], we propose the

following mechanism to enforce truth-telling strategies for the RPSG.

CArtel Maintenance Profit-sharing (CAMP) mechanism:

(1) Each node on the selected route plays the cooperative strategy at the first

stage;

(2) If the cooperation strategy is played in stage t and Ui =
∑hi

j=1 Pi,j ≥ Ũ ,

each node plays the cooperative strategy in stage t + 1;

(3) If the cooperation strategy is played in stage t and Ui < Ũ , each node

switches to a punishment phase for T − 1 stages, in which the non-cooperative

strategy is played regardless of the realized outcomes. At the T th period, each

node switches back to the cooperative strategy.

Note that Ũ is the cartel maintenance threshold. Similar to [64, 79, 80], the

optimal Ũ and T can be obtained using the routing statistics. The proposed

CAMP mechanism uses the non-cooperative punishment launched by all nodes

to prevent any deviating strategies from the cooperative strategy. Specifically,

although the deviating behaviors may benefit a node at current stage, its payoff

will be decreased more in future stages. By using the CAMP mechanism, the

truth-telling profit sharing is enforceable among the nodes on the selected route.

Based on Theorem 4.3.4, we can enforce any feasible profit sharing strategy such

as equal sharing or proportional sharing according to the effort of each node.
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4.4 Simulation Studies

In this section, we evaluate the performance of the proposed dynamic pricing ap-

proach in multi-hop ad hoc networks. Note that the simulation setup is similarly to

that in Chapter 3. We consider an ad hoc network whereN nodes are randomly de-

ployed inside a rectangular region of 10γ m × 10γ m according to the 2-dimension

uniform distribution with the maximal transmission range γ = 100m for each node.

Let λ = Nπ/100 denote the normalized node density, that is, the average number

of neighbors for each node in the network. Each node moves according to the ran-

dom waypoint model [70]: a node starts at a random position, waits for a duration

called the pause time, then randomly chooses a new location and moves toward

the new location with a velocity uniformly chosen between vmin and vmax. When it

arrives at the new location, it waits for another random pause time and repeats the

process. The physical layer assumes that two nodes can directly communicate with

each other successfully only if they are in each other’s transmission range. The

MAC layer protocol simulates the IEEE 802.11 Distributed Coordination Function

(DCF) with a four-way handshaking mechanism [81]. Table 4.1 shows all simu-

lation parameters. Note that each source-destination pair is formed by randomly

picking two nodes in the network. And, multiple routes with different hop number

may exist for each source-destination pair. Since the routes with the minimum

number of hops have much higher probabilities to achieve lower costs, without loss

of generality, we only consider the minimum-hop routes as the bidding routes for

simplicity in the proposed optimal dynamic auction framework. Considering the

mobility of each node, its forwarding cost is no longer a fixed value and we assume

that its PDF f̂(v) follows the uniform distribution U [ū, u], which has the mean µ

and the variance σ2. Thus, using the Central Limit Theorem [78], the cost of a
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Table 4.1: Simulation Parameters

Node Density 10, 20, 30

Minimum Velocity (vmin) 10 m/s

Maximum Velocity (vmax) 30 m/s

Average Pause time 100 seconds

Dimensions of Space 1000m × 1000m

Maximum Transmission Range 100 m

Average Packet Inter-Arrival Time 1 seconds

Data Packet Size 1024 bytes

Link Bandwidth 8 Mbps

h-hop route can be approximated by the normal distribution with the mean h · µ
and variance h ·σ2. In our simulation, we first study the dynamics of MANET and

then illustrate the performance of our proposed framework for different network

settings.

In order to study the dynamics of MANET, we first conduct simulations to

study the number of hops on the minimum-hop route for source-destination pairs,

which can be found in Chapter 3 and shown in Figure 3.6. Secondly, we study the

time and path diversity of MANET by finding the maximum number of minimum-

hop routes for the source-destination pair. Note that there may exist the scenar-

ios where the node may be on multiple minimum-hop forwarding routes for the

same source-destination pair. For simplicity, we assume during the route discovery

phase, the destination randomly picks one of such routes as the routing candidates

and feedbacks the routing information of node-disjoint minimum-hop routes to the

source. Figure 4.3 shows the CMF of the number of the minimum-hop routes for

different hop number when the node density is 10. The results for the node den-
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Figure 4.3: The cumulative probability mass function of the number of the

minimum-hop route when the node density is 10.

sity 20 and 30 are shown in Figure 4.4 and Figure 3.7, respectively. It can be seen

from the above figures that when the node density is increasing, the probability of

having more routes between each source-destination pair is becoming much higher.

Such facts also indicate a higher order of path diversity can be exploited when each

node has more neighbors. Moreover, the possibility of getting more routes for the

route with more hops is much lower since the path diversity for multi-hop routing

is limited by the forwarding node with the worst neighboring situation. Therefore,

the number of routing candidates and their types can be approximated using the

above results.

In the following parts, we consider the performance for three different schemes:

our scheme with finite time horizon, our scheme with infinite time horizon and the

fixed allocation scheme. Note that the infinite time horizon can not be achieved in

real application. But it can serve as a upper bound for measuring the performance
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Figure 4.4: The cumulative probability mass function of the number of the

minimum-hop route when the node density is 20.

of our scheme. The fixed scheme allocates a fixed number of packets into each stage

while also using the optimal auction at each stage. Assume the cheat-proof profit

sharing mechanisms are in place to ensure the cooperation of the forwarding nodes

on the same route. Let the benefit function be G(K) = g ·k, where g is the benefit

of successfully transmitting one packet. Note that the simulation parameters are

set as T = 20, M = 100 and B = 10. Let g = 60, ū = 10, and u = 15. In

Figure 4.5, we compare the overall profits of the three schemes for different node

densities. The concavity of the simulated value functions of our scheme matches

the theoretical statement in Lemma 4.3.2. It can be seen from the figure that our

scheme achieves significant performance gains over the fixed scheme, which mainly

comes from the time diversity exploited by the dynamic approach. We observe

that the performance gap of the two schemes becomes larger when the node density

decreases. Thus, in order to increase the profits under the situations of low node
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Figure 4.5: The overall profits of our scheme with finite time horizon, our scheme

with infinite time horizon and the fixed scheme.

densities, it becomes much more important to exploit the time diversity. Also, the

total profits of our scheme increases with the increment of the node density due to

the higher order of path diversity. Besides, since the performance gap between the

schemes with finite and infinite time horizon is small, only a few routing stages are

required to exploit the time diversity.

In Figure 4.6, the average profits of the three schemes are shown for different

node densities. This figure shows that the average profit of transmitting one packet

decreases as there are more packets to be transmitted. It is because the packets

need to share the limited routing resources from both the time diversity and path

diversity. When the node density is 30, the average profit degrades much slower

than other cases since the potential of utilizing both the time diversity and path

diversity is high. The overall profits of our scheme with finite time horizon are

compared for different total packets in Figure 4.7 for node density being 10. This
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Figure 4.6: The average profits of our scheme with finite time horizon, our scheme

with infinite time horizon and the fixed scheme.

figure shows that the overall profits increases with more routing stages due to the

time diversity. Also, the saturation behavior can be observed when using more

stages. In Figure 4.8, the overall profits are compared for different time stages.

Considering the limited routing resource, the overall profits saturate when the

packet number is high.

4.5 Summary

In this chapter, we study how to conduct efficient pricing-based routing in au-

tonomous MANETs by assuming that the packet-forwarding will incur a cost to the

relay node and the successful transmission brings benefits to the source-destination

pairs. Considering the dynamic nature of MANET, we model the routing procedure

in autonomous MANETs as a multi-stage pricing game and propose an optimal
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mitted when the node density is 10.
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dynamic pricing-based routing approach to maximize the payoffs of the source-

destination pair while keeping the forwarding incentives of the relay nodes on the

selected routes by optimally pricing their packet-forwarding services through the

auction protocol. It is important to notice that not only the path diversity but

also the time diversity in MANETs can be exploited by our dynamic pricing-based

approach. Also, the optimal dynamic auction algorithm is developed to achieve

the optimal allocation of packets to be transmitted, which provides the corre-

sponding pricing rules while taking into consideration of the node’s mobility and

the routing dynamics. Extensive simulations have been conducted to study the

performances of the proposed approach. The results illustrate that the proposed

approach achieves significant performance gains over the existing static routing

approaches.

4.6 Appendix: Proof of Lemma 4.3.2

Proof First, we prove that 4Vt(x) is decreasing in x at any fixed time period

t. Note that the induction method is used to prove this part of Lemma 4.3.2. For

t = 0, the lemma obviously holds since V0(x) = 0 for all x. Assume the inductive

hypothesis for period t− 1 as 4Vt−1(x) ≥ 4Vt−1(x + 1). Then, we will show that

if the inductive hypothesis holds, 4Vt(x) also decreases.

Consider a realization of `t routes and their cost vector r = (r1, r2, ..., r`t).

Define the inner maximized term in (4.10) as follows

Ut(x, `t, r) = max
0≤k≤min{B,x}

{Rt(k) + β · Vt−1(x− k)}, (4.30)

and define the difference function as

4Ut(x, `t, r) = Ut(x, `t, r)− Ut(x− 1, `t, r). (4.31)
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Thus 4Vt(x) can be obtained as

4Vt(x) = E`t,r[4Ut(x, `t, r)]. (4.32)

For simplicity and without loss of generality, we omit the arguments `t, r in4Ut(x, `t, r)

and simply use 4Ut(x). Moreover, it can be seen from (4.32) that it is sufficient

to prove that 4Ut(x) is decreasing in x for the proof that 4Vt(x) is decreasing in

x.

Using the inductive hypothesis and Lemma 4.3.2, we have the constraint on

k∗t (x + 1) as

k∗t (x) ≤ k∗t (x + 1) ≤ k∗t (x) + 1. (4.33)

Based on the constraint, we then study the value of 4Ut(x+1) for the two possible

outcomes, k∗t (x + 1) = k∗t (x) and k∗t (x + 1) = k∗t (x) + 1:

1). If k∗t (x+1) = k∗t (x), then 4Ut(x+1) = β ·4Vt−1(x−k∗t (x)+1) from (4.30)

and (4.31). Also, from the optimal condition of k in (4.12), we know

4Rt(k
∗
t (x + 1) + 1) ≤ β · 4Vt−1(x + 1− (k∗t (x + 1) + 1) + 1). (4.34)

Considering k∗t (x + 1) = k∗t (x), (4.34) can be rewritten as

4Rt(k
∗
t (x) + 1) ≤ β · 4Vt−1(x− k∗t (x) + 1). (4.35)

2). Similarly, If k∗t (x+1) = k∗t (x)+ 1, then 4Ut(x+1) = 4Rt(k
∗
t (x)+ 1) from

(4.30) and (4.31), and

4Rt(k
∗
t (x) + 1) > β · 4Vt−1(x− k∗t (x) + 1). (4.36)

Thus, it can be concluded from the above two cases that 4Ut(x + 1) satisfies

4Ut(x + 1) = max{4Rt(k
∗
t (x) + 1), β · 4Vt−1(x− k∗t (x) + 1)}. (4.37)
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Consider now4Ut(x+1) and4Ut(x) and compare their values. Given the con-

straint on k∗t (x) by Lemma 4.3.2, the value of 4Ut(x+1) in (4.37), and considering

that 4Rt(m) and 4Vt−1(m) decrease in their arguments, we have the following

expressions.

4Ut(x)

= max{4Rt(k
∗
t (x− 1) + 1), β · 4Vt−1(x− 1− k∗t (x− 1) + 1)}

≥ max{4Rt(k
∗
t (x) + 1), β · 4Vt−1(x− (k∗t (x)− 1))}

= 4Ut(x + 1). (4.38)

Therefore, the first part of Lemma 4.3.2 is proved by the above discussion.

Next, we show that 4Vt(x) is increasing in t for any fixed x. Similarly, it

suffices to prove the statement for a particular realization `t, r.

Following the results in (4.37), we get that

4Ut(x) ≥ β · 4Vt−1(x− k∗t (x)), (4.39)

and from the fact that 4Vt−1(·) is decreasing, we have

4Ut(x) ≥ β · 4Vt−1(x). (4.40)

As taking the expectation with respect to `t, r on both sides of (4.40) does affect

the inequality, we prove

4Vt(x) ≥ 4Vt−1(x). (4.41)
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Chapter 5

Belief-Assisted Pricing for

Dynamic Spectrum Allocation

5.1 Introduction

Recently, regulatory bodies like the Federal Communications Commission (FCC)

in the United States are recognizing that current static spectrum allocation can be

very inefficient considering the bandwidth demands may vary highly along the time

dimension or the space dimension. In order to fully utilize the scarce spectrum

resources, with the development of cognitive radio technologies, dynamic spectrum

access becomes a promising approach to increase the efficiency of spectrum usage,

which allows unlicensed wireless users to dynamically access the licensed bands

from legacy spectrum holders based on leasing agreements.

Cognitive radio technologies have the potential to provide the wireless devices

with various capabilities, such as frequency agility, adaptive modulation, transmit

power control and localization. The advances of cognitive radio technologies make

more efficient and intensive spectrum access possible on a negotiated or an oppor-
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tunistic basis. Although the existing dynamic spectrum access schemes described

in Chapter 2 have achieved some success on enhancing the spectrum efficiency

and distributive design for autonomous DSANs, most of them focus on efficient

spectrum allocation given fixed topologies and cannot quickly adapt to the dy-

namics of wireless networks due to node mobility, channel variations or varying

wireless traffic. Furthermore, existing cognitive spectrum sharing approaches gen-

erally assume that the network users will act cooperatively to maximize the overall

system performance, which is a reasonable assumption for traditional emergency

or military situations. However, with the emerging applications of mobile ad hoc

networks envisioned in civilian usage, the users may not serve a common goal or

belong to a single authority, which requires that the network functions can be

carried out in a self-organized way to combat the selfish behaviors. In dynamic

spectrum allocation scenarios, the users’ selfishness causes more challenges for effi-

cient mechanism design, such as incentive-stimulation and price of anarchy [8,58].

Therefore, novel spectrum allocation approaches need to be developed considering

the dynamic nature of wireless networks and users’ selfish behaviors.

Considering a general network scenario in which multiple primary users (legacy

spectrum holders) and secondary users (unlicensed users) coexist, primary users

attempt to sell unused spectrum resources to secondary users for monetary gains

while secondary users try to acquire spectrum usage permissions from primary

users to achieve certain communication goals, which generally introduces reward

payoffs for them. In order to solve the above issues, we consider the spectrum shar-

ing in autonomous DSANs as multistage dynamic games and propose a dynamic

pricing approach to optimize the overall spectrum efficiency, meanwhile, keeping

the participating incentives of the users based on double-auction rules and coping

94



with the budget constraints by dynamic programming. The main contributions of

this chapter are multi-fold. First, by modeling the spectrum sharing as a dynamic

pricing game, we are able to quickly and accurately coordinate the spectrum allo-

cation among primary and secondary users through a trading process to maximize

the payoffs of both primary and secondary users. Further, we develop a belief

system to assist greedy users update their strategies adaptive to the spectrum

demand and supply changes, which not only approaches the theoretical optimal

outcomes of the spectrum allocation problem but also substantially decreases the

pricing overhead due to frequent bid/ask updates and message exchange. Third,

by considering the budget constraints of the secondary users, the proposed dy-

namic pricing approach is able to further exploit the time diversity of spectrum

resources.

The remainder of this chapter is organized as follows: The system model of

dynamic spectrum allocation is described in Section 5.2. In Section 5.3, we for-

mulate the spectrum allocation as pricing games based on the system model. In

Section 5.4, the belief-based dynamic pricing approach is proposed for the optimal

spectrum allocation. The simulation studies are provided in Section 5.5. Finally,

Section 5.6 summarizes this chapter.

5.2 System Description

We consider the wireless networks where multiple primary users and secondary

users operate simultaneously in a wireless network, which may represent various

network scenarios. For instance, the primary users can be the spectrum broker con-

nected to the core network and the secondary users are the base stations equipped

with cognitive radio technologies; or the primary users are the access points of
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a mesh network and the secondary users are the mobile devices. On one hand,

every primary user has the license of using a certain spectrum range, which can

be divided into non-overlapping orthogonal channels. Considering that the autho-

rized spectrum of primary users may not be fully utilized over time, they prefer

to lease the unused channels to the secondary users for monetary gains. On the

other hand, since the unlicensed spectrums become more and more crowded, the

secondary users may try to lease some unused channels from primary users for

more communication gains by providing leasing payments.

In our system model, we assume all users are selfish and rational, that is, their

objectives are to maximize their own payoffs, not to cause damage to other users.

However, users are allowed to cheat whenever they believe cheating behaviors can

help them to increase their payoffs. Generally speaking, in order to acquire the

spectrum licenses from regulatory bodies such as FCC, the primary users have

certain operating costs. With regard to secondary users, in order to have the

rewards of achieving certain communication goals, they want to utilize more spec-

trum resources. The selfishness of both primary and secondary users will prevent

them from revealing their private information such as acquisition costs or reward

payoffs, which makes traditional spectrum allocation approaches not applicable

under this scenario. Therefore, novel spectrum allocation approaches need to be

developed which not only optimize the spectrum efficiency but also extract the

private information from the selfish parties through certain mechanisms to assist

the optimization of spectrum allocation.

Specifically, we consider the collection of the available spectrums from all pri-

mary users as a spectrum pool, which totally consists of N non-overlapping chan-

nels. Assume there are J primary users and K secondary users, indicated by the
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set P = {p1, p2, ..., pJ} and S = {s1, s2, ..., sK}, respectively. We represent the

channels authorized to primary user pi using a vector Ai = {aj
i}j∈{1,2,...,ni}, where

aj
i represents the channel index in the spectrum pool and ni is the total number

of channels which belong to user pi. Define A as the set of all the channels in the

spectrum pool. Moreover, denote the acquisition costs of user pi’s channels as the

vector Ci = {caj
i

i }j∈{1,2,...,ni}, where the jth element represents the acquisition cost

of the jth channel in Ai. For simplicity, we write c
aj

i
i as cj

i . As for secondary user

si, we define her/his payoff vector as Vi = {vj
i }j∈{1,2,...,N}, where the jth element

is the reward payoff if this user successfully leases the jth channel in the spectrum

pool.

5.3 Pricing Game Model

In this chapter, we model the dynamic spectrum allocation problem as a pricing

game to study the interactions among the players, i.e., the primary and secondary

users. Based on the discussion in the previous section, we are able to have the

payoff functions of the players in our dynamic game. Specifically, if primary user

pi reaches agreements of leasing all or part of her/his channels to secondary users,

the payoff function of this primary user can be written as follows.

Upi
(φAi

, αAi
i ) =

ni∑
j=1

(φaj
i
− cj

i )α
aj

i
i , (5.1)

where φAi
= {φaj

i
}j∈{1,2,...,ni} and φaj

i
is the payment that user pi obtains from

the secondary user by leasing the channel aj
i in the spectrum pool. Note that

αAi
i = {αaj

i
i }j∈{1,2,...,ni} and α

aj
i

i ∈ {0, 1} which indicates if the jth channel of user

pi has been allocated to a secondary user or not. For simplicity, we denote α
aj

i
i as
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αj
i . Similarly, the payoff function of secondary user si can be modeled as follows.

Usi
(φA, βA

i ) =
N∑

j=1

(vj
i − φj)β

j
i , (5.2)

where φA = {φj}j∈{1,2,...,N}, βA
i = {βj

i }j∈{1,2,...,N}. Note that βj
i ∈ {0, 1} illustrates

if secondary user si successfully leases the jth channel in the spectrum pool or not.

Hence, the strategies of the primary users and secondary users are actually defined

by αAi
i and βA

i , respectively.

Since the players may have conflict interests with each other, our dynamic spec-

trum sharing game can be modeled as a multi-stage non-cooperation game. To be

specific, from the primary users’ point of view, they want to earn the payments by

leasing the unused channels which not only cover their spectrum acquisition costs

but also gain as much extra payments as possible; from the secondary users’ point

of view, they aim to accomplish their communication goals by providing the least

possible payments to lease the channels; while from the network designers’ point

of view, they attempt to maximize the network performance, which in our case is

the spectrum efficiency. Therefore, the spectrum users involved in the spectrum

sharing process construct a non-cooperative pricing game [8, 10]. Since the self-

ish users are their own authorities, they will not reveal their private information

to others unless some mechanisms have been applied to guarantee that it is not

harmful to disclose the private information. Generally, such non-cooperative game

with incomplete information is complex and difficult to study as the players do

not know the perfect strategy profile of others. But based on our game setting,

the well-developed auction theory [63] can be applied to formulate and analyze the

pricing game.

In auction games [63], according to an explicit set of rules, the principles (auc-

tioneers) determine resource allocation and prices on the basis of bids from the
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agents (bidders). In our spectrum allocation pricing game, the primary users can

be viewed as the principles, who attempts to sell the unused channels to the sec-

ondary users. The secondary users are the bidders who compete with each other to

buy the permission of using primary users’ channels, by which they may gain ex-

tra payoffs for future use. In our pricing game, multiple sellers and buyers coexist,

which indicates the double auction scenario. It means that not only the secondary

users but also the primary users need to compete with each other to make the

beneficial transactions possible by eliciting their willingness of the payments in the

forms of bids or asks. Specifically, the double auction is one of the most common

exchange mechanisms, used extensively in stock markets such as the New York

Stock Exchange (NYSE) or commodity markets such as Chicago Merchandize Ex-

change (CME). The most important property of double auction mechanism is its

high efficiency, which is still not fully understood in economic theory. Moreover,

it can respond quickly to changing conditions of auction participants. However, in

order to achieve the full efficiency of the double auction mechanism, a lot of mes-

sages need to be exchanged among the auction participants, which can be easily

implemented by powerful central authorities in stock or commodity markets. It is

worth noticing that in autonomous wireless networks either central authorities can

be pre-assumed or the bandwidth of control channels is very limited. Therefore,

we aims to develop an efficient pricing approach for spectrum allocation, which

not only has the prevalence of the double auction mechanism but also uses simple

message exchanges to quickly and accurately coordinate the spectrum sharing.
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5.4 Belief-Assisted Dynamic Pricing

5.4.1 Static Pricing Game and Competitive Equilibrium

Assume that the available channels from the primary users are leased for usage of

certain time period T . Also, we assume that the cost of the primary users and

reward payoffs of the secondary users remain unchanged over this period. Before

this spectrum sharing period, we define a trading period τ , within which the users

exchange their information of bids and asks to achieve agreements of spectrum

usage. The time period T + τ is considered as one stage in our pricing game. We

first study the interactions of the players in static pricing games. Note that the

users’ goals are to maximize their own payoff functions. As for the primary users,

the optimization problem can be written as follows.

O(pi) = max
φAi

,α
Ai
i

Upi
(φAi

, αAi
i ), ∀i ∈ {1, 2, ..., J} (5.3)

s.t. Ubs
a

j
i

({φ−aj
i
, φaj

i
}, βA

i ) ≥ Ubs
a

j
i

({φ−aj
i
, φ̃aj

i
}, βA

i ),

ŝaj
i
6= 0, aj

i ∈ Ai. (5.4)

where φ̃aj
i

is any feasible payment and φ−aj
i

is the payment vector excluding the

element of the payment for the channel aj
i . Note that ŝaj

i
is defined as follows.

ŝaj
i
=





sk if β
aj

i
k = 1,

0 if β
aj

i
k = 0,∀k ∈ {1, 2, ..., K}.

(5.5)

Thus, (5.4) is the incentive compatible constraint [63]. It means that the secondary

users have incentives to provide the optimal payment because they cannot have

extra gains by cheating on the primary users. Similarly, the optimization problem

can be written for the secondary users as follows.

O(si) = max
φA,βA

i

Usi
(φA, βA

i ), ∀i ∈ {1, 2, ..., K} (5.6)
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s.t. Ubpj
({φ−j, φj}, βA

i ) ≥ Ubpj
({φ−j, φ̃j}, βA

i ),

p̂j 6= 0, βj
i = 1. (5.7)

where p̂j is defined as

p̂j =





pk if βj
i = 1, j ∈ Ak, α

j
k = 1

0 otherwise,∀k ∈ {1, 2, ..., J}.
(5.8)

Similarly, (5.7) is the incentive compatible constraint for the primary users, which

guarantees that the primary user will give the usage permission of their channels

to the secondary users so that they can receive the optimal payments.

Figure 5.1: Illustration of supply and demand functions.

From (5.3) and (5.6), we can see that in order to obtain the optimal allocation

and payments, a multi-objective optimization problem needs to be solved, which

becomes extremely complicated due to our game setting that only involves incom-

plete information. Thus, in order to make this problem tangible, we analyze it

from the game theory point of view. Generally speaking, game theory provides

well-developed equilibrium concepts or optimality criteria to study the outcomes
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of games. For instance, Nash Equilibrium [10] is an important concept to mea-

sure the outcome of a non-cooperation game, which is a set of strategies, one for

each player, such that no selfish player has incentive to unilaterally change his/her

action. In order to further measure the efficiency of game outcomes, Pareto Op-

timality [8] is defined such that a Pareto optimal outcome cannot be improved

upon without hurting at least one player. Often, a Nash equilibrium is not Pareto

optimal while Pareto optimal outcomes may not be sustained considering the self-

ishness of the players. Further, considering the double auction scenarios of our

pricing game, Competitive Equilibrium (CE) [82] is a well-known theoretical

prediction of the outcomes. It is the price at which the number of buyers willing

to buy is equal to the number of sellers willing to sell. Alternatively, CE can also

be interpreted as where the supply and demand match [63]. The supply function

can be defined as the relationship between the acquisition costs of primary users

and the number of corresponding channels; the demand function can be defined

as the relationship between the reward payoffs of secondary users and the number

of corresponding channels. We describe the supply and demand functions in Fig-

ure 5.1. Note that CE is also proved to be Pareto optimal in stationary double

auction scenarios [83]. It is worth noting that in order to achieve the CE the tradi-

tional continuous bid/ask interactions among players will involve a great amount

of message exchanges and require powerful centralized control, which may not be

applicable to wireless networking scenarios due to the limited bandwidth of control

channels.
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5.4.2 Belief-Assisted Dynamic Pricing Scheme

Considering network dynamics due to mobility, channel variations or wireless traf-

fic variations, the secondary users may have different reward payoffs of acquiring

certain channels from primary users at different time stages. Specifically, since

the secondary users can be mobile devices, they may move out the access range of

certain channels and hence the corresponding reward payoffs vj
i are regarded as 0.

Or, the secondary users may face various channel fading conditions within different

spectrum ranges or during different time periods, which changes their payoff values

vj
i at different time stages. Moreover, the costs of primary users will also change

over time due to network dynamics. For instance, if the legacy users themselves

have larger spectrum demands, some legacy channels may not be available for leas-

ing anymore, which actually indicates an infinite leasing cost of those channels in

our pricing model. In brief, cj
i and vj

i need to be considered as random variables

in dynamic scenarios, which we assume to satisfy the probability density functions

(PDF) fc(c) and fv(v), respectively. Therefore, considering dynamic network con-

ditions, we further model the spectrum sharing as a multi-stage dynamic pricing

game. Let γ be the discount factor of the multi-stage game. Based on (5.3) and

(5.6), the objective functions for the primary users and secondary users can be

rewritten as follows.

Õ(pi) = max
φAi,t,α

Ai
i,t

Ecj
i ,vj

i
[
∞∑

t=1

γt · Upi,t(φAi,t, α
Ai
i,t )], (5.9)

Õ(si) = max
φA,t,β

A
i,t

Ecj
i ,vj

i
[
∞∑

t=1

γt · Usi,t(φA,t, β
A
i,t)], (5.10)

where the subscript t indicates the tth stage of the multi-stage game. Generally

speaking, there may exist some overall constraints of spectrum sharing such as each

secondary user’s total budget for leasing spectrum resources or each primary user’s
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total available spectrum supply. Under these constraints, the above problem need

to be further modeled as a dynamic programming process [45,68] to obtain optimal

sequential strategies by considering some state parameters such as the number of

channels to be allocated at every stage or the residual monetary budget. However,

the major difficulty of dynamic spectrum sharing lies in that how to efficiently

and quickly update the spectrum sharing strategies adapt to the changing network

conditions only based on local information. Therefore, in the following parts,

we first focus on developing a belief-assisted dynamic pricing approach, which can

not only approach CE outcomes but also responds quickly to networking dynamics

while only introducing limited overhead. Then, the total budget constraint is taken

into consideration and a dynamic programming approach is further proposed to

obtain the optimal sequential strategies.

Belief-Assisted Dynamic Pricing for Efficient Spectrum Allocation

Since our pricing game belongs to the non-cooperation games with incomplete in-

formation [10], the players need to build up certain beliefs of other players’ future

possible strategies to assist their decision making. Considering that there are mul-

tiple players with private information in the pricing game and what directly affect

the outcome of the game are the bid/ask prices, it is more efficient to define one

common belief function based on the publicly observed bid/ask prices than gener-

ating specific belief of every other player’s private information. Hence, enlightened

by [82], we consider the primary/secondary users’ beliefs as the ratio their bid/ask

being accepted at different price levels. At each time during the dynamic spectrum

sharing, the ratio of asks from primary users at x that have been accepted can be
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written as follows.

r̃p(x) =
µA(x)

µ(x)
, (5.11)

where µ(x) and µA(x) are the number of asks at x and the number of accepted asks

at x, respectively. Similarly, at each time during the dynamic spectrum sharing,

the ratio of bids from secondary users at y that have been accepted is

r̃s(y) =
ηA(y)

η(y)
, (5.12)

where η(y) and ηA(y) are the number of bids at y and the number of accepted

bids at y, respectively. Usually, r̃p(x) and r̃s(y) can be accurately estimated if a

great number of buyers and sellers are participating in the pricing at the same

time. However, in our pricing game, only a relatively small number of players are

involved in the spectrum sharing at the specific time. The beliefs, namely, r̃p(x)

and r̃s(y) cannot be practically obtained so that we need to further consider using

the historical bid/ask information to build up empirical belief values. Considering

the characteristics of double auction, we have the following observations:

• If an ask x̃ < x is rejected, the ask at x will also be rejected;

• If an ask x̃ > x is accepted, the ask at x will also be accepted;

• If a bid ỹ > x is made, the ask at x will also be accepted.

Based on the above observations, the players’ beliefs can be further defined as

follows using the past bid/ask information.

Definition 5.4.1 Primary users’ beliefs: for each potential ask at x, define

r̂p(x) =





1 x = 0
P

w≥x µA(w)+
P

w≥x η(w)P
w≥x µA(w)+

P
w≥x η(w)+

P
w≤x µR(w) x ∈ (0,M)

0 x ≥ M

(5.13)
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where µR(w) is the number of asks at w that has been rejected, M is a large enough

value so that the asks greater than M won’t be accepted. Also, it is intuitive that

the ask at 0 will be definitely accepted as no cost is introduced.

Definition 5.4.2 Secondary users’ beliefs: for each potential bid at y, define

r̂s(x) =





0 y = 0
P

w≤y ηA(w)+
P

w≤y µ(w)P
w≤y ηA(w)+

P
w≤y µ(w)+

P
w≥y ηR(w) y ∈ (0, M)

1 y ≥ M

(5.14)

where ηR(w) is the number of bids at w that has been rejected. And, it is intuitive

that the bid at 0 will not be accepted by any primary users.

Noting that it is too costly to build up beliefs on every possible bid or ask price,

we can update the beliefs only at some fixed prices and use interpolation to obtain

the belief function over the price space. Then, it is worth discussing the effect of the

available public information on the efficiency of the above belief system. First, in

the scenario that only local information is available to each user, the user updates

the belief based on her/his own observed past bid/ask information, which results

in more message exchanges to achieve the equilibrium price. Second, considering

the broadcast nature of wireless channels, the neighbors’ bid/ask information may

be observed by the users, which can also be utilized to update the beliefs. In this

scenario, the users may have part of the public information besides of their private

information, which may accelerate their belief-updating pace and result in more

efficient pricing process. Moreover, if the users have the access to all the public

information such as ask/bid interactions through some centralized point, the above

belief function is able to quickly reflect current supply and demand relationships.

Before using our defined belief functions to assist the strategy decisions, we

first look at the Spread Reduction Rule (SRR) of double auction mechanisms.
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Generally, before the double auction pricing game converges to CE, there may

exist a gap between the highest bid and lowest ask, which is called the spread

of double auction. The SRR states that any ask that is permissible must be

lower than current lowest ask, i.e., outstanding ask [82], and then either each new

ask results in an agreed transaction or it becomes the new outstanding ask. A

similar argument can be applied to bids. By defining current outstanding ask

and bid as ox and oy, respectively, we let r̄p(x) = r̂p(x) · I[0,ox)(x) for each x and

r̄s(y) = r̂s(x) · I(oy,M ](y) for each y, which are modified belief function considering

the SRR. Note that I(a,b)(x) is defined as

I(a,b)(x) =





1 if x ∈ (a, b);

0 otherwise.
(5.15)

By using the belief function r̄p(x), the payoff maximization of selling the ith pri-

mary user’s jth channel can be written as

max
x∈(oy,ox)

E[Upi
(x, j)], (5.16)

where Upi
(x, j) represents the payoff introduced by allocating the jth channel when

the ask is x, and then E[Upi
(x, j)] = (x− cj

i ) · r̄p(x). Similarly, as for the secondary

user si, the payoff maximization of leasing the jth channel in the spectrum pool

can be written as

max
y∈(oy,ox)

E[Usi
(y, j)], (5.17)

where Usi
(y, j) represents the payoff introduced by leasing the jth channel in the

spectrum pool when the bid is y, and then E[Usi
(y, j)] = (vj

i −y) · r̄s(y). Therefore,

by solving the optimization problem for each primary and secondary user using

(5.16) and (5.17), respectively, primary and secondary users can make the optimal

decision of spectrum allocation at every stage conditional on dynamic spectrum
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Table 5.1: Belief-assisted dynamic spectrum allocation

1. Initialize the users’ beliefs and bids/asks

¦ The primary users initialize their asks as large values close to M

and their beliefs as small positive values less than 1;

¦ The secondary users initialize their bids as small values close to 0

and their beliefs as small positive values less than 1.

2. Belief update based on local information:

Update primary and secondary users’ beliefs

using (5.13) and (5.14), respectively

3. Optimal bid/ask update:

¦ Obtain the optimal ask for each primary user by solving (5.16);

¦ Obtain the optimal bid for each secondary user by solving (5.17).

4. Update leasing agreement and spectrum pool:

¦ If the outstanding bid is greater than or equal to the outstanding ask,

the leasing agreement will be signed between the corresponding users;

¦ Update the spectrum pool by removing the assigned channel.

5. Iteration:

If the spectrum pool is not empty, go back to Step 2.

demand and supply. Based on the above discussions, we illustrate our belief-

assisted dynamic pricing algorithm for spectrum allocation in Table 5.1.

Dynamic Pricing with Budget Constraints

Based on the belief-assisted dynamic pricing algorithm developed above, in this

part we further consider the optimal spectrum allocation when each secondary

user is constrained by a total monetary budget for leasing spectrum usage. Note

that the spectrum allocation problem can be similarly solved when the overall

constraints exist for primary users.

Considering the budget constraints of secondary users, we rewrite their opti-
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mization objectives as follows.

Ô(si) = max
φA,t,β

A
i,t,ψi

Ecj
i ,vj

i
[
∞∑

t=1

γt · Usi,t(φA,t, β
A
i,t, ψ̃i,t)], (5.18)

s.t. Ubpj ,t({φ−j,t, φj,t}) ≥ Ubpj ,t({φ−j,t, φ̃j,t}), (5.19)
∞∑

t=1

ψt ≤ Bi. (5.20)

where ψi = {ψi,t}t∈{1,2,...,∞} and ψi,t is the total monetary payment used during

the tth stage for the ith secondary user leasing the channels. Moreover, Bi is

the ith secondary user’ total budget. Note that ψ̃i,t = Bi −
∑τ=t−1

τ=1 ψi,τ , which is

the residual budget at the tth stage and can be considered as a state parameter.

Hence, (5.19) and (5.20) are the incentive compatible constraint and total budget

constraint, respectively. As it is difficult to directly solve (5.18), we study the

dynamic programming approach to simplify the multistage optimization problem.

Define the value function Qsi,t(ψ̃i) as the ith secondary user’s maximum ex-

pected payoff obtainable from periods t, t+1, ...,∞ given that the monetary budget

left is ψ̃i. Simplifying (5.18) using the Bellman equation [68], we have the maximal

expected payoff Qsi,t(ψ̃i) written as follows.

Qsi,t(ψ̃i) = max
φA,t,β

A
i,t,ψi

{Ecj
i ,vj

i
[Usi,t(φA,t, β

A
i,t, ψ̃i) + γ ·Qsi,t+1(ψ̃i − ψi,t)]}, (5.21)

s.t. Ubpj ,t({φ−j,t, φj,t}) ≥ Ubpj ,t({φ−j,t, φ̃j,t}). (5.22)

The boundary conditions for the above dynamic programming problem are

Qsi,∞(ψ̃i) = 0, ψ̃i ∈ (0, Bi]. (5.23)

Note that the first term on the right hand side (RHS) of (5.21) represents the

payoff at current stage and the second term on the RHS of (5.21) represents the
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future payoff obtained after the tth stage give the budget state ψ̃i − ψi,t. Further,

applying the principle of optimality in [68], the spectrum sharing configuration

{φA,t, β
A
i,t, ψi} that achieves the maximum in (5.21) given ψ̃i, t and the statistics

of cj
i , v

j
i is also the optimal solution for the overall optimization problem (5.18).

In order to obtain Qsi,t(ψ̃i), the maximal payoff of one stage needs to be first

derived for different residual budget values ψ̃i. The difference of the current payoff

function in (5.18) and the one-stage payoff function in (5.6) lies in that the applied

budget constraint affects the outcomes of the pricing game. For instance, even

though both the primary users and secondary users can achieve higher payoffs

by assigning a channel to user si, the user si may not have enough budgets to

lease this channel. Thus, the algorithm in Table 5.1 cannot be directly applied

here for optimal spectrum sharing. We need to modify the bid update step as

follows: user si updates his/her bid by min{ψ̃i, y}, where y is obtained from (5.17).

Note that it is highly complicated to derive the close-form solution for the one-

stage payoff function in (5.18) [63, 83].Thus, we use simulation to approximate it

for different residual budget values, which proceeds as follows: Generate a large

number of samples of the secondary and primary users with reward payoffs and

costs satisfying fv(v) and fc(c), respectively. Using the above modified version of

the algorithm in Table 5.1, calculate the average one-stage payoffs given different

ψ̃ based on the outcomes of the spectrum allocation samples.

By using the numerical results of the one-stage payoff function, we then de-

rive Qsi,t(ψ̃i) using dynamic programming methods. Considering infinite spectrum

allocation stages, the maximum payoff Qsi,t(ψ̃i) in (5.21) can be written as follows.

Q∗
si
(ψ̃i) = max

φA,t,β
A
i,t,ψi

{Ecj
i ,vj

i
[Usi,t(φA,t, β

A
i,t, ψ̃i) + γ ·Q∗

si
(ψ̃i − ψi,t)]}, (5.24)

or, equivalently, Q∗
si

= T Q∗
si
, where T is the operator updating Q∗

si
using (5.24).
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Let S be the feasible set of the state parameter. The convergence proposition

of the dynamic programming algorithm [68] can be applied here, which states

that: for any bounded function Q : S → R, the optimal payoff function satisfies

Q∗(x) = limp→∞(T pQ)(x),∀x ∈ S. As Qsi
(ψ̃i) is bounded in our algorithm, we

are able to apply the value iteration method to approximate the optimal Qsi
(ψ̃i),

which proceeds as follows: Start from some initial function for Qsi
(ψ̃i) as Q0

si
(ψ̃i) =

g(x), where the superscript stands for the iteration number. Then, iteratively

update Qsi
(ψ̃i) by letting Qp+1

si
(ψ̃i) = (T Qp

si
)(ψ̃i). The iteration process ends until

|Qp+1
si

(ψ̃i)−Qp
si
(ψ̃i)| ≤ ε, for all ψ̃i ∈ S, where ε is the error bound for Q∗

si
(ψ̃i).

Intuitively, the basic idea behind our dynamic pricing approach for spectrum

allocation with budget constraints can be explained as follows: Considering the

overall budget constraints, the users make their spectrum sharing decisions not

only based on their current payoffs but also based on expected future payoffs.

Specifically, if the competition for spectrum resources is high at current stage,

the users prefer to save their monetary budgets for future usage, which will yield

higher overall payoffs for the users. Therefore, by using our proposed dynamic

pricing approach, the spectrum allocation can be optimized not only in the space

and frequency domains but also in the the time domain.

5.5 Simulation Studies

In this section, we evaluate the performance of the proposed belief-assisted dynamic

spectrum sharing approach in wireless networks. Considering a wireless network

covering 100 × 100 area, we simulate J primary users by randomly placing them

in the network. These primary users can be the base stations serving for different

wireless network operators or different access points in a mesh network. Here
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Figure 5.2: Comparison of the total payoff for the proposed scheme and theoretical

Competitive Equilibrium.

we assume the primary users’ locations are fixed and their unused channels are

available to the secondary users within the distance of 50. Then, we randomly

deploy K secondary users in the network, which are assumed to be mobile devices.

The mobility of the secondary users is modeled using a simplified random waypoint

model [70], where we assume the “thinking time” at each waypoint is close to the

effective duration of one channel-leasing agreement, the waypoints are uniformly

distributed within the distance of 10, and the traveling time is much smaller than

the “thinking time”. Let the cost of an available channel in the spectrum pool

be uniformly distributed in [10, 30], the reward payoff of leasing one channel be

uniformly distributed in [20, 40]. If a channel is not available to some secondary

users, let the corresponding reward payoffs of this channel be 0. Note that J = 5

and 103 pricing stages have been simulated. Let ni = 4, ∀i ∈ {1, 2, ..., J} and

γ = 0.99.

We first focus our simulation studies on dynamic spectrum sharing without

112



Figure 5.3: Comparison of the overhead between the proposed scheme and contin-

uous double auction scheme.

budget constraints, which can be used to illustrate the efficiency of the proposed

belief-assisted pricing algorithm for spectrum allocation. In our simulation, the

local bid/ask information within the transmission range of each node is used for

belief construction and update. In Figure 5.2, we compare the total payoff of

all users of our proposed approach with that of the theoretical CE outcomes for

different number of secondary users. It can be seen from this figure that the

performance loss of our approach is very limited compared to that of the theoretical

optimal solutions. Moreover, when the number of secondary users increases, our

approach is able to approach the optimal CE. It is because that the belief function

reflects the spectrum demand and supply more accurately when more users are

involved in spectrum sharing.

Now we study the overhead of our pricing approach. Here we measure the

pricing overhead by showing the average number of bids and asks for each stage.

In Figure 5.3, the overhead of our pricing approach is compared to that of the

traditional continuous double auction when the same total payoff is achieved. As-
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Figure 5.4: Comparison of the total payoffs of the proposed scheme with those of

the static scheme.

sume the minimal bid/ask step δ of the continuous double auction to be 0.01. It

can be seen from the figure that our approach substantially decreases the pricing

communication overhead. Note that when decreasing the overhead, our proposed

approach may introduce extra complexity to update the beliefs.

Then, we study the dynamic spectrum allocation when each secondary user

is constrained by his/her monetary budget. For comparison, we define a static

scheme in which the secondary users make their spectrum-leasing decisions without

considering their budget limits. Without loss of generality, we assume that the

budget constraints for the secondary users are the same. In Figure 5.4, we compare

the total payoffs of our proposed dynamic programming scheme with those of the

static scheme for different budget constraints. It can be seen from the figure that

our proposed scheme achieves significant performance gains over the static scheme

when the budget constraints are taken into consideration. Also, when the budget

limits increase, the proposed scheme achieves higher gain by further exploiting the
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time diversity.

5.6 Summary

In this chapter, we have studied dynamic pricing for efficient spectrum allocation

in wireless networks with selfish users. We model the dynamic spectrum allocation

as a multi-stage game and propose a belief-assisted dynamic pricing approach to

maximize the users’ payoffs while providing them the participating incentives via

double auction rules. Further, the dynamic pricing under the budget constraints of

secondary users is analyzed using dynamic programming. Simulation results show

that the proposed scheme can approach the optimal performances by only using

limited overhead. Moreover, the time diversity of spectrum resources can be fully

exploited when budget constraints exist.

115



Chapter 6

Multi-Stage Pricing Game for

Collusion-Resistant Dynamic

Spectrum Allocation

In this chapter, we focus on studying the collusive behavior of selfish users in

autonomous DSANs. We first discuss the impact of user collusion on auction-

based dynamic spectrum allocation approaches in Section 6.1. In Section 6.2, we

study collusion-resistant dynamic spectrum allocation for two simplified scenarios:

(1) multiple secondary users and one primary user (MSOP); (2) one secondary

user and multiple primary users (OSMP). Further, we extend our study to a more

generalized spectrum allocation scenario with multiple primary users and multiple

secondary users (MSMP) in Section 6.3. The simulation studies and summary are

provided in Section 6.4 and Section 6.5, respectively.
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6.1 User Collusion in Auction-Based Spectrum

Allocation

In order to have a robust dynamic spectrum allocation mechanism in wireless net-

works with selfish users, the cheating behaviors of selfish users need to be well

studied and counteracted. Otherwise, the spectrum allocation mechanism may be-

come unsustainable and leads to unpredictable outcomes. On one hand, spectrum

allocation can be generally regarded to be similar to generic medium access control

(MAC) problems in existing systems and studied from the perspective of wireless

resource allocation [19, 27, 57]. On the other hand, efficient spectrum allocation

can be achieved by studying it from the perspective of the driving economic force

and mechanisms [18, 42, 59]. Therefore, the unique property of dynamic spectrum

allocation imposes new challenges on its mechanism design against cheating be-

haviors. Basically, all the cheating behaviors related to MAC problems in wireless

system still threaten the functionalities of spectrum sharing mechanisms. More im-

portantly, wireless spectrum becomes a scarce resource and has huge economical

potential, which can only be exploited through efficient pricing-based market de-

signs. Thus, the cheating threats on these market designs make the robust dynamic

spectrum access a even more complicated problem. Since the cheating behaviors

on MAC protocols can still be solved using traditional countermeasures and the

auction mechanisms has the incentive-compatible property for each single user, we

will focus our study on efficient collusion-resistant dynamic spectrum allocation

mechanism.

Although incentive-compatibility can be assured in most auction-based dy-

namic spectrum allocation approaches such as the optimal auction [45,63] or Vick-
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Figure 6.1: No collusion in pricing-based dynamic spectrum allocation.

rey auction [63], which indicates that no selfish user will cheat on the auction

mechanism unilaterally, one prevalent cheating behavior, the bidding collusion

among users, has been generally overlooked. To be specific, the bidders (or sellers)

act collusively and engage in bid rigging with a view to obtaining lower prices (or

higher prices). The resulting arrangement is called the bidding ring. In the sce-

narios of auction-based spectrum allocation, the bidding ring among the primary

users (or secondary users) will result in increasing their utilities by collusively leas-

ing the spectrum channels at a higher price (or at a lower price). Considering the

spectrum dynamics caused by wireless channel variations, user mobility or varying

wireless traffic, it becomes difficult to tell if the price variation comes from possible

bidding collusion or the varying demand and supply of spectrum resources. Hence,

traditional auction-based spectrum allocation mechanisms become vulnerable and

unstable with the presence of collusive behaviors.

In Figure 6.1 and Figure 6.2, we illustrate a snapshot of pricing-based dynamic

spectrum access networks where there is no user collusion and exists user collusion,

respectively. In the above figures, we consider the primary base station as the
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Figure 6.2: User collusion in pricing-based dynamic spectrum allocation.

primary user and the unlicensed mobile users as the secondary users. When there

is no user collusion as in Figure 6.1, the pricing interactions between the primary

user and secondary users leads to efficient spectrum allocation. When there exist

several bidding rings as in Figure 6.2, each bidding ring will elicit only one effective

bid for spectrum resources, which distorts the supply and demand of spectrum

resources and yields inefficient spectrum allocation. Further, in the extreme case

that all secondary users collude with each other, arbitrary low bid price will become

eligible. Thus, collusion-resistant dynamic spectrum allocation is important for

efficient next generation wireless networking.

In the scenarios of traditional open ascending price, i.e., English auction (or

reverse English auction) [63], there is one seller and multiple buyers (or one buyer

and multiple sellers). In order to combat the bidding ring, the seller (or buyer)

can enhance their utilities by setting proper reserve prices as in [63] based on the

size of the bidding ring, i.e, the number of collusive users, and the statistics of

each user’s true value. However, in our scenarios of dynamic spectrum allocation

with multiple primary and secondary users having only local information, either
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the number of collusive users are not available or the determination of reserve

price becomes very complicated given limited imperfect information. Therefore,

how to design efficient collusion-resistant dynamic spectrum allocation mechanisms

becomes an imminent and crucial task.

6.2 MSOP and OSMP Scenarios

In this part, we develop the robust dynamic spectrum allocation mechanisms

against user collusion in the scenarios of MSOP and OSMP. Note that the MSOP

scenarios may indicate the situations that several mobile users are competing for

the spectrum resources from the base station in cellular wireless systems; while

the OSMP scenarios may illustrate the situations that several network operators

or service providers are competing for offering spectrum services to the users. Now,

we study the MSOP scenarios first and similar analysis can be applied to OSMP

scenarios.

Consider there are one primary user and multiple secondary users in a snap

shot of wireless networks, which indicates that only one primary user pi is avail-

able for providing spectrum leasing services. The standard ascending price open

auction is chosen for the secondary users to compete for the spectrum resources,

which is theoretically equivalent to sealed-bid second-price auction [63]. Here, the

presence of user collusion among secondary users may generate extra utilities for

the collusive users by suppressing competition for spectrum resources. Due to the

network dynamics and imperfect available information, neither the primary user

can make a credible assumption about the presence of user collusion or the num-

ber of collusive users, nor there exist trust-worthy anti-cartel authorities in the

network. Therefore, the only instrument giving the primary user possible lever-
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age against collusion is to set an optimal reserve price. In the rest of this part,

we first derive the theoretical optimal reserve price for our spectrum allocation

game similar to [63]. Then, by considering the properties of our spectrum alloca-

tion game such as unknown number of collusive users and imperfect/local bidding

information, a collusion-resistant dynamic spectrum allocation mechanism is devel-

oped to efficiently allocate spectrum resources while combating collusive cheating

behaviors.

Specifically, we assume that K secondary users are divided into Kr bidding

rings and the size of the kth bidding ring is mk. Note that
∑Kr

k=1 mk = K, mk ≥ 1.

Basically, the collusion among the secondary users within each bidding ring does

not affect the strategies of users out of the bidding ring. Further, the bidding ring

can be represented by the collusive secondary user with the highest reward payoff

[63]. The other collusive users only submit non-serious bids at or below reserve

price, which substantially limits the competition among secondary users. Thus,

instead of K effective competing secondary users, only Kr effective users should be

considered for bidding spectrum resources. Assume the equivalent reward payoff

of the kth bidding ring is ν
aj

i
mk , the highest reward payoff among mk collusive users

for the aj
i th channel in the spectrum pool. Thus, the payoff vector for effective

users can be represented as {νaj
i

1 , ν
aj

i
2 , ..., ν

aj
i

Kr
}. Note that we omit the superscript aj

i

in the following parts for simplicity if the spectrum assignment is only considered

for one specific channel. Further, let the highest and second highest reward payoff

among all effective secondary users to be v(1) and v(2), respectively.

In order to combat the collusive behaviors of secondary users, the primary user

needs to set a reserve price, which means its spectrum resources won’t be sold lower

than the reserve price. Considering the theoretical equivalence of open ascending
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price auction and second-price auction, we then study the optimal reserve price

for second-price auction setting in our spectrum allocation game. Let the optimal

reserve price to be φr,pi
. Then, the spectrum channel can be leased by pi if and

only if v(1) > φr,pi
. Moreover, if v(2) > φr,pi

, the spectrum channel is leased for

v(2); otherwise, it is leased at the reserve price φr,pi
. Let Fv(1)

(x) and Fv(2)
(x)

denote the cumulative density functions (CDF) of v(1) and v(2), respectively. Let

fv(1)
(x) and fv(2)

(x) denote the probability density functions (PDF) of v(1) and v(2),

respectively. Now, the expected utility gain of the primary user with reserve price

φr,pi
by leasing her/his jth channel can be written as

E
Vi,c

a
j
i

i

[Upi
(aj

i , φr,pi)] = (φr,pi
− E[c

aj
i

i ])(Fv(2)
(φr,pi

)− Fv(1)
(φr,pi

))

+

∫ M

φr,pi

(z − E[c
aj

i
i ])fv(2)

(z)dz, (6.1)

Where M represents the largest possible vj
i . Note that the first term on the right

hand side (RHS) of (6.1) represents the utility when the spectrum channel is leased

at the reserve price. This happens if v(1) > φr,pi
but v(2) < φr,pi

. The second term

on the RHS of (6.1) represents the utility when v(2) ≥ φr,pi
.

Assuming that an interior maximum exists for (6.1), the optimal reserve price

φ∗r,pi
satisfies the following first-order condition of (6.1).

Fv(2)
(φ∗r,pi

)− Fv(1)
(φ∗r,pi

)− (φ∗r,pi
− E[c

aj
i

i ])fv(1)
(φ∗r,pi

) = 0. (6.2)

Thus the optimal reserve price can be determined by the above (6.2) if the statis-

tical descriptions for v(1) and v(2) are available.

Similarly, in the scenarios of OSMP, if we let the lowest and second lowest

acquisition costs among all effective primary users be c(1) and c(2), respectively,

the expected utility gain of the secondary user si with reserve price φr,si
by leasing
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a channel from the primary users can be written as

EVi,C[Usi
(φr,si

)] = (E[vj
i ]−φr,si

)(Fc(1)(φr,si
)−Fc(2)(φr,si

))+

∫ φr,si

0

(E[vj
i ]−z)fc(2)(z)dz.

(6.3)

Correspondingly, the first-order condition of (6.3) can be obtained as follows if an

interior maximum exists for (6.3).

Fc(2)(φ
∗
r,si

)− Fc(1)(φ
∗
r,si

) + (E[vj
i ]− φ∗r,si

)fc(1)(φ
∗
r,si

) = 0. (6.4)

However, in general scenarios of spectrum allocation, each user operates only

based on her/his local information and there may be no anti-cartel authorities.

Thus, the number of collusive users and the number of bidding rings are unknown to

each user. Consequently, even though the statistics of each user’s reward payoff is

available or can be estimated under homogeneous settings, the order statistics [78]

of v(2) and c(2) cannot be derived without the information of the number of collusive

users. Then, how to further obtain the optimal reserve prices considering the

constraints in our spectrum allocation game remains unanswered.

Since our pricing game belongs to the non-cooperation games with incomplete

information [10], the players need to build up certain beliefs of other players’ future

possible strategies to assist their decision making. In order to obtain the optimal

reserve prices from (6.2) and (6.4) for robust spectrum allocation, we first derive

the belief functions for primary and secondary users in the scenarios of MSOP and

OSMP, respectively. Similar to Chapter 5, we consider the primary/secondary

users’ beliefs as the ratio their bid/ask being accepted at different price levels as

in (5.11) and (5.12). The primary and secondary users’ beliefs, namely, r̃p(x) and

r̃s(y) cannot be practically obtained so that we need to further consider using the

historical bid/ask information to build up empirical belief values. In the scenarios

of MSOP, we have the following observations: if a bid ỹ > y is rejected, the bid at
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y will also be rejected; if a bid ỹ < y is accepted, the bid at y will also be accepted.

Based on the these observations, the secondary users’ beliefs can be further defined

as follows using the past bidding information.

Definition 6.2.1 Secondary users’ beliefs: for each potential bid at y, define

r̆s(y) =





0 y = 0
P

w≤y ηA(w)P
w≤y ηA(w)+

P
w≥y ηR(w)

y ∈ (0,M)

1 y ≥ M

(6.5)

where ηR(w) is the number of bids at w that has been rejected, M is a large enough

value so that the bids greater than M will definitely be accepted. And, it is intuitive

that the bid at 0 will not be accepted by any primary users.

In the scenarios of OSMP, the primary users’ beliefs can be similarly derived

as follows using past ask information.

Definition 6.2.2 Primary users’ beliefs: for each potential ask at x, define

r̆p(x) =





1 x = 0
P

w≥x µA(w)P
w≥x µA(w)+

P
w≤x µR(w)

x ∈ (0,M)

0 x ≥ M

(6.6)

where µR(w) is the number of asks at w that has been rejected. Also, it is intuitive

that the ask at 0 will be definitely accepted as no cost is introduced.

Noting that it is too costly to build up beliefs on every possible bid or ask

price, we can update the beliefs only at some fixed prices and use interpolation

to obtain the belief function over the price space. Considering the characteristics

of open ascending auction in the scenarios of MSOP, the secondary user with the

highest reward payoff doesn’t need to bid her/his true value to win the auction.
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In stead, she/he only needs to bid at the second highest possible payoff to have

all other secondary users drop out of the auction. Therefore, the secondary users’

belief function (6.5) actually represents the CDF of v(2). Similarly, the primary

users’ belief function (6.6) represents the CDF of c(2).

Further, since the total number of active secondary user and the statistics of the

reward payoff for each user are generally available, the PDF of v(1) in the scenarios

of MSOP can be easily obtained using the order statistics in [78] as follows.

Fv(1)
(x) =

∏

i∈{1,2,...,K}
Fvi

(x). (6.7)

Also, the PDF of c(1) in the scenarios of OSMP can be similarly obtained as

follows [78].

Fc(1)(y) = 1−
∏

i∈{1,2,...,J}
(1− Fci

(y)). (6.8)

Therefore, the optimal reserve price for the primary user to combat user collusion in

the scenarios of MSOP can be obtained from (6.2) using (6.5) and (6.7). Moreover,

as for the scenarios of OSMP, the optimal reserve price for the secondary user can

be obtained from (6.4) using (6.6) and (6.8).

6.3 MSMP Scenarios

In the general scenarios of MSMP, efficient collusion-resistant spectrum allocation

needs to be carried out among multiple primary users and secondary users while

considering various user collusion patterns happening on both sides of spectrum

markets, which becomes highly complicated and difficult to be analyzed. In this

part, we will first derive a collusion-resistant dynamic spectrum allocation mech-

anism for MSMP scenarios based on the results for the OSMP/MSOP scenarios.

Then, a lower bound is developed to measure the performance of the proposed
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mechanism by considering the extreme case of all-inclusive collusion within pri-

mary users and secondary users.

Before we derive the collusion-resistant dynamic spectrum allocation mecha-

nism, let’s discuss several upcoming challenges due to MSMP scenarios. First, the

user collusion may happen not only within the primary users but also within the

secondary users. The outcomes of the spectrum allocation game are determined

by the collusive behaviors on both sides of the spectrum market. Second, the user

collusion highly distorts the true supply and demand of spectrum resources so that

the spectrum allocation efficiency will be deteriorated. It is because that except

the primary user with the lowest acquisition cost and the secondary user with

the highest reward payoff, the supply or demand of the spectrum resources from

other users in the bidding rings will no longer be elicited through bidding process.

Also, the dynamic nature of spectrum resources requires that the countermeasures

to the user collusion are able to easily adapt to the spectrum dynamics by using

only limited resources such as bandwidth of control channels or implementation

complexity.

Consider an important property of the bidding ring in our game settings that

the collusive behaviors within a bidding ring won’t affect the strategies of the users

who are not in the bidding ring. It means that, for instance, a primary user’s opti-

mal reserve price is only determined by the spectrum demand statistics and won’t

be affected by the collusive behaviors of other primary users. Similar arguments

can be applied to the secondary users. Therefore, an efficient collusion-resistant

dynamic spectrum allocation approach in MSMP scenarios can be similarly derived

based on the results of the above discussion on the scenarios of OSMP and MSOP.

First, the definition of the beliefs of primary users and secondary users need
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to be redefined according to the characteristics of double auction. We have the

following new observations in the scenarios of MSMP:

• If a bid ỹ > x is made, the ask at x will also be accepted;

• If an ask x̃ < y is made, the bid at y will also be accepted.

Based on the above observations, the users’ beliefs in the scenarios of MSMP

can be further refined as follows using the past bid/ask information. Note that

Definition 5.4.1 for the primary users and Definition 5.4.2 for the secondary users

r̂p(x) and r̂s(x), respectively, in Chapter 5 can also be applied here. By using

these belief functions and the order statistics of v(1) and c(1) given the number of

active primary and secondary users, the optimal reserve price for the primary user

pi and secondary user si can be obtained for MSMP scenarios as φ∗r,pi
and φ∗r,si

,

respectively.

Similarly, after applying the Spread Reduction Rule of double auction, we use

the belief function r̄p(x) from Chapter 5. Considering the optimal reserve price

φ∗r,pi
, the payoff maximization of selling the ith primary user’s jth channel can be

written as

max
x∈(oy,ox),x>φ∗r,pi

E[Upi
(x, j)], (6.9)

where Upi
(x, j) represents the payoff introduced by allocating the jth channel when

the ask is x, and then E[Upi
(x, j)] = (x−cj

i )· r̄p(x), x > φ∗r,pi
. Similarly, considering

the optimal reserve price φ∗r,si
for the secondary user si, the payoff maximization

of leasing the jth channel in the spectrum pool can be written as

max
y∈(oy,ox),y<φ∗r,si

E[Usi
(y, j)], (6.10)

where Usi
(y, j) represents the payoff introduced by leasing the jth channel in the

spectrum pool when the bid is y, and then E[Usi
(y, j)] = (vj

i − y) · r̄s(y), y <
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Table 6.1: Collusion-resistant dynamic spectrum allocation

1. Initialize the users’ beliefs and bids/asks

¦ The primary users initialize their asks as large values close to M

and their beliefs as small positive values less than 1;

¦ The secondary users initialize their bids as small values close to 0

and their beliefs as small positive values less than 1.

2. Belief update based on local information:

Update primary and secondary users’ beliefs

using (5.13) and (5.14), respectively

3. Optimal reserve price for primary and secondary users:

Update primary users’ optimal reserve prices φ∗r,pi
using (6.2), (6.7) and (5.13);

Update secondary users’ optimal reserve prices φ∗r,si
using (6.4), (6.8) and (5.14).

4. Optimal bid/ask update:

¦ Obtain the optimal ask for each primary user by solving (6.9) given φ∗r,pi
;

¦ Obtain the optimal bid for each secondary user by solving (6.10) given φ∗r,si
.

5. Update leasing agreement and spectrum pool:

¦ If the outstanding bid is greater than or equal to the outstanding ask,

the leasing agreement will be signed between the corresponding users;

¦ Update the spectrum pool by removing the assigned channel.

6. Iteration:

If the spectrum pool is not empty, go back to Step 2.

φ∗r,si
. Therefore, by solving the optimization problem for each effective primary

and secondary users using (6.9) and (6.10), respectively, the optimal decisions of

spectrum allocation at every stage can be made conditional on dynamic spectrum

demand and supply. Note that when a leasing agreement for one specific spectrum

channel is achieved for a pair of primary and secondary users, the order statistics of

v(1) and c(1) need to be updated as well as the optimal reserve prices for achieving

the next leasing agreement. Based on the above discussions, we illustrate our

collusion-resistant dynamic pricing algorithm for spectrum allocation in Table 6.1.

In order to measure the performance of the proposed collusion-resistant dy-
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namic spectrum allocation mechanism, we derive its performance lower bound

with the presence of user collusion in the following parts.

An efficient spectrum allocation scheme can be achieved by balancing the sup-

ply and demand of spectrum resources as shown in Chapter 5. Thus, it is straight-

forward that the most inefficient spectrum allocation occurs when all the supply

and demand information are concealed by the collusive behaviors of selfish users,

which happens when two all-inclusive collusion are formed among the primary

users and secondary users, respectively. Under this situation, the spectrum al-

location game becomes a bargaining game between two players, i.e, the primary

user p(1) with lowest acquisition cost c(1) and the secondary user s(1) with highest

reward payoff v(1). By studying this extreme case, the lower bound of the proposed

collusion-resistant scheme can be obtained.

Generally speaking, the primary user p(1) and secondary user s(1) value a spec-

trum channel differently so that a surplus is created. The objective of the bar-

gaining game is to determine in which way the primary and secondary users agree

to divide the surplus. Considering our bargaining game only involves two players,

assume the minimal utilities that the users may obtain during the bargaining pro-

cess to be Up(1)
and U s(1)

for user p(1) and s(1), respectively. Let U = {Up(1)
, U s(1)

}.
Assume S to be a closed and convex subset of R2, which represents the set of fea-

sible utilities that the users can achieve if they cooperate with each other. Thus,

our bargaining game between primary user p(1) and secondary user s(1) can be

represented by (s,U). Moreover, assume a bargaining solution to (s,U) to be rep-

resented as ϕ(s,U) = (U b
p(1)

, U b
s(1)

). Among all possible bargaining outcomes, the

Nash Bargaining Solution [9] provides a unique and fair Pareto optimal out-

come considering that the bargaining solution satisfies the following six axioms.
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• Individual Rationality: (U b
p(1)

, U b
s(1)

) ≥ (Up(1)
, U s(1)

);

• Feasibility: (U b
p(1)

, U b
s(1)

) ∈ S;

• Pareto Optimality: If (Up, Us) ∈ S, and (Up, Us) ≥ (U b
p(1)

, U b
s(1)

), then

(Up, Us) = (U b
p(1)

, U b
s(1)

);

• Independence of Irrelevant Alternatives: If (U b
p(1)

, U b
s(1)

) ∈ S̃ ⊂ S, and

(U b
p(1)

, U b
s(1)

) = ϕ(S,U), then (U b
p(1)

, U b
s(1)

) = ϕ(S̃,U);

• Independence of Linear Transformations: For any linear transforma-

tion ψ, ϕ(ψ(S), ψ(U)) = (ψ(U b
p(1)

), ψ(U b
s(1)

));

• Symmetry: If S is invariant under all exchanges of agents and Up(1)
= U s(1)

,

then U b
p(1)

= U b
s(1)

.

Noting that the above axioms are generally true for our bargaining game (s,U),

the corresponding Nash Bargaining Solution can be represented as follows.

max
φb

Ec(1),v(1)
[Up(1)

(φb, c(1)) · Us(1)
(φb, v(1))] (6.11)

s.t. G(Up(1)
, Us(1)

) ≤ Ũ , (6.12)

Up(1)
, Us(1)

≥ 0, (6.13)

where Up(1)
(φb, c(1)) = φb−c(1) and Us(1)

(φb, v(1)) = v(1)−φb
. The two constraints give

the feasible sets of Up(1)
and Us(1)

. Note that based on the definition of linear utility

functions for the users, the constraint (6.12) can be simplified as Up(1)
+ Us(1)

≤
v(1) − c(1). Therefore, the lower bound of the spectrum efficiency in the presence

of user collusion can be obtained by solving (6.11). Moreover, after a leasing

agreement is achieved between a primary user and a secondary user, the spectrum

allocation continues by solving (6.11) with updated statistics of v(1) and c(1).
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Figure 6.3: Comparison of the total utilities of the CE, pricing scheme without

reserve prices, and the proposed scheme with different user collusion.

6.4 Simulation Studies

In this section, we evaluate the performance of the proposed belief-assisted dynamic

spectrum sharing approach in wireless networks with user collusion. The simulation

setup is the same as in Chapter 5

In Figure 6.3, we compare the total utilities of the competitive equilibrium,

our dynamic pricing scheme with reserve prices, and our dynamic pricing scheme

without reserve prices under various situations of user collusion. It can be seen

from the figure that when there is no user collusion, the dynamic pricing scheme

without reserve prices is able to achieve similar performance compared to the the-

oretical CE outcomes. Moreover, with the presence of user collusion, the proposed

scheme with reserves prices achieves much higher total utilities than those of the

scheme without reserve prices. Note that the total utilities increase when the num-
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ber of secondary users increases. It is because that the competition among more

secondary users helps to increase the spectrum efficiency. However, under the sce-

narios of user collusion, the performance gap between the proposed scheme with

reserve price and the CE becomes greater when the number of secondary users

increases. The reason is that the proposed scheme with reserve prices needs to set

more strict reserve prices to combat severe user collusion when there are more sec-

ondary users. Further, the lower bound of the proposed collusion-resistant scheme

shown in Figure 6.3 provides an efficient measurement for the maximal possible

performance loss due to user collusion.

Now we study the overhead of the proposed scheme using the average number

of bids and asks for each stage. In Figure 6.4, the overheads of the proposed scheme

with or without reserve prices are compared to those of the traditional continu-

ous double auction when the same total utility is achieved. Assume the minimal

bid/ask step δ of the continuous double auction to be 0.01. It can be seen from

the figure that our approach substantially decreases the pricing communication

overhead under either the situations with user collusion or without user collusion.

Note that while decreasing the overhead, our proposed approach may introduce

extra complexity to update the beliefs and optimal reserve prices.

Then, we study the effect of user collusion for dynamic spectrum allocation

when each secondary user is constrained by his/her monetary budget like we discuss

in Chapter 5. For comparison, we define a static scheme in which the secondary

users make their spectrum-leasing decisions without considering their budget lim-

its. Without loss of generality, we assume that the budget constraints for all sec-

ondary users are the same. By applying our proposed scheme with reserve prices to

the dynamic programming approach in [42] considering budget constraints, we are
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able to similarly obtain the performance of the proposed collusion-resistant scheme

when optimal spectrum allocation needs to be considered over time. In Figure 6.5,

we compare the total utilities of our proposed scheme with those of the static

scheme for different budget constraints when the user collusion is present. Note

that the proposed collusion-resistant scheme is applied to both dynamic and static

pricing considering budget constraints. It can be seen from the figure that with the

presence of user collusion, our proposed scheme with reserve prices achieves sig-

nificant performance gains over the static scheme when the budget constraints are

taken into consideration. That’s because the performance loss due to the setting

of reserve prices can be partly offset by exploiting the time diversity of spectrum

resources.

6.5 Summary

Dynamic spectrum allocation is promising for enhancing the spectrum efficiency for

wireless networks. However, user collusion among selfish users severely deteriorates

the efficiency of spectrum sharing. In this chapter, we model the dynamic spectrum

allocation as a multi-stage pricing game and propose a collusion-resistant dynamic

pricing approach to maximize the users’ utilities while combating their collusive

behaviors using the derived optimal reserve prices. Further, the lower bound of the

proposed scheme is analyzed using Nash Bargaining Solution. Simulation results

show that the proposed scheme can achieve high spectrum efficiency by only using

limited overhead under various situations of user collusion.
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Chapter 7

Conclusion and Future Work

In this dissertation we have carried out the game theoretical analysis of cooperation

in autonomous wireless networks. We focus on studying the impact of imperfect

observation, networks dynamics and collusive behaviors on the efficient and robust

game theoretical design of cooperation formation and evolvement among the selfish

users in autonomous wireless networks.

First, we have studied the cooperation enforcement in autonomous wireless net-

works under noise and imperfect information. Most existing works on cooperation

in autonomous wireless networks assume perfect or complete information for each

network user. In this dissertation, we study the cooperation in a game theoretical

framework and propose a set of belief-assisted or pricing-based approaches to en-

sure cooperation among selfish users under various network scenarios. With the aid

of the belief system or pricing interactions, the network users are able to infer other

users’ private information through their observed imperfect information. There-

fore, efficient cooperation can be achieved among selfish users in wireless networks

under noise and imperfect information. Specifically, in autonomous MANETs,

the belief-based packet forwarding approach is proposed to stimulate the packet
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forwarding between the network nodes only based on the privately observed imper-

fect information at each node. In autonomous DSANs, we propose a belief-assisted

approach to achieve efficient dynamic spectrum sharing among primary and sec-

ondary users based on double auction rules. The network users build up its belief

on spectrum demand and supply using their observed local bidding information,

which assists them to make optimal decisions on the corresponding pricing actions.

Second, we have investigated the effect of network dynamics on game theoretical

cooperation stimulation/enforcement in autonomous wireless networks. In order

to have efficient cooperation in dynamic networks scenarios, not only the current

moves of network users but also the past moves need to be taken into consideration

for developing efficient distributive game theoretical mechanisms. The impact of

network dynamics such as mobility, wireless channel fading, or network traffic vari-

ations on the users’ behaviors also needs to be incorporated. In this dissertation,

we model the interaction among users as multi-stage dynamic games and study the

effect of reputation and retribution in long-run scenarios. We propose an optimal

dynamic pricing approach to dynamically maximize the sender/receiver’ payoffs

over multiple routing stages considering the dynamic nature of MANETs, mean-

while, keeping the forwarding incentives of the relay nodes by optimally pricing

their packet-forwarding actions. For DSANs, by modeling the spectrum sharing

as a dynamic pricing game, we propose a distributed pricing approach to optimize

the spectrum allocation based on the double auction rules.

Third, we have further investigated the collusive selfish behaviors in autonomous

wireless networks in a non-cooperative game theoretical framework. Although the

selfish behaviors of individual network users have been studied to ensure coopera-

tion, the collusive selfish behaviors from multiple selfish users have not been fully
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exploited. In this dissertation, we analyze the collusive behaviors in auction-based

cooperation stimulation scenarios and propose a collusion-resistant dynamic pric-

ing mechanism with optimal reserve prices designed to combat or alleviate collusive

behaviors. Moreover, the performance bounds of the autonomous networks with

collusive users are also derived by using appropriate equilibrium concepts from

game theory.

Although in this dissertation we have thoroughly addressed several critical is-

sues in the game theoretical framework for cooperation in autonomous wireless

networks, there still exist many issues that need further investigation. In the fol-

lowing of this chapter, we will discuss several avenues for future research.

The first issue we would like to address is about the belief/trust propagation

in autonomous wireless networks. In previous chapters, we have studied belief

formation in various network scenarios, which helps the selfish users to make op-

timal decisions of their future moves based on others’ behaviorial history. As

we have discussed, the network users in autonomous wireless networks may only

have incomplete and imperfect information of others’ actions and strategy spaces.

Therefore, in order to have efficient cooperation through a entire autonomous net-

work, the network users should be able to update their beliefs/trusts based upon

the reputation propagation involving multiple network users. Our focus will be on

studying the belief/trust propagation using Bayesian game models and deriving

formal game theoretical approaches for the belief/trust built-up, update, propa-

gation and evaluation. Moreover, we would like to incorporate the characteristics

of different autonomous wireless networks while developing the belief propagation

systems. We will also be interested in analyzing the optimality of the derived be-

lief propagation systems using well-defined equilibrium criteria from the dynamic
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game theory.

In this dissertation, we focus our efforts on selfish behaviors of network users

and cooperation stimulation/enforcement among them in autonomous wireless net-

works. The impacts of the malicious users on autonomous wireless networks need

to be further considered and studied. Different from selfish users, the malicious

users aim to cause as much damage to the networks as possible. They are also in-

telligent and even launching attacks in a coordinated way. In order to have robust

autonomous wireless networks, not only the attacks on traditional network func-

tionalities should be considered, but also the attacks on the cooperation paradigms

or belief systems must be combatted. Further, considering the scenarios that var-

ious types of users coexist including cooperative users, selfish users and malicious

users, the game theoretical study requires comprehensive understanding of con-

flicts and cooperation among different types of users. We would like to investigate

the game models incorporating various types of users for autonomous networks and

devise efficient mechanisms to maximize the system performance while limiting the

damage caused by malicious users.

As we mentioned before, smart wireless devices such as cognitive radios enable

more intelligent actions at network users equipped with those devices. For example,

cognitive radios provide the wireless users with various cognitive capabilities such

as frequency agility, adaptive modulation, transmit power control and scheduling

management. More importantly, the cognitive engine in a cognitive radio is able

to make intelligent decisions based on the observed information. In our future

work, we would like to investigate our game theoretical approaches for autonomous

wireless networks by considering the ability of cognitive radios and the cognitive

interactions between the wireless environments and radio devices. Note that there
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are powerful open-source cognitive radio softwares such as GNU Radio [84] and

OSSIE [85] as well as flexible FPGA-based hardware platforms such as USRP

boards [86], which make it possible for the network users to intelligently configure

its communication parameters in software. Therefore, by studying game theoretical

cooperation stimulation/enforcement on the cognitive radio platforms in practical

wireless environments, we will be able to develop practical network protocols for

different applications of autonomous wireless networks based upon the theoretical

approaches and corresponding field results.
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