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INTRODUCTION

The existence of a local cross section to a solution of an

n-dimensional system of autonomous differential equations is a

standard theorem in the theory of ordinary differential

equations. These local cross sections exist at non-fixed points

of the system, and they have certain useful properties. In

particular, these local cross sections can be constructed as

closed (n—l)-dimensional disks, and the trajectories of the

solutions in a neighborhood of the section are homeomorphic to

n.
parallel line segments in a neighborhood of TR . construction

of local cross sections to solutions to a system of autonomous

differential equations {s straightforward, since a non-zero

tangent exists at each non-critical point; then a small disk in

the hyperplane perpendicular to this tangent will be a local

cross section. 1In the more general case of a continuous flow, it

is also possible to show that local Cross sections exist at non-

critical points. Our goal is to present an overview of important

results regarding the existence of local cross sections to a

continuous flow and to exhibit topological properties of these
local cross sections.

This paper will be organized into four chapters. The first

will cover fundamental notions related to local cross sections




and prove that local cross sections exist for continuous flows.
In the second chapter we give an historical review of the origins
of the main ideas on cross sections. The most important past
results will be examined rather carefully. The third chapter
contains theorems describing the topological properties of local
cross sections. Finally, the fourth chapter will be devoted to
the question of when local cross sections for a flow on an
n-dimensional manifold are homeomorphic to the (n-1)-dimensional
closed cell. It will include an unpublished elementary proof of

this fact for surfaces and a counterexample for n = 4.




Chapter 1: FUNDAMENTAL IDEAS

Let X be a locally compact metric space and let TR denote
the real numbers. Let (3 denote the metric on X. A flow on X is
a mapping f: X xR = X such that:

1) f(x,0) = x,

ii) f is continuous on X x R '

iii) f£(£(x,s),t) = £(x,s+t).

For ease of notation, we may abbreviate this flow by
suppressing the f, so we have f(x,t) = xt. Note that for each t,

X - xt is a homeomorphism of X onto X. This one-parameter group

of transformations of the space X onto itself possessing these

properties is also called a dynamical system. Henceforth, we

suppose f is a flow on a locally compact metric space, X. This
includes ’IP\”, topological manifolds (metric spaces such that
every point has a neighborhood homeomorphic to

{veR"*: llvll < 1}), and compact metric spaces.

The set of fixed points of a continuous flow is defined by
Cl=m:{x: %= pfor-allet inTP\}.
A point not in C which for some T > @ satisfies the

condition x(t + T) = xt for all t is called periodic. Since this

equation also admits solutions of nT (n = t1, #2, ...), the



smallest positive T satisfying the condition above is called the

Eeriod of the flow xt.

The set of points [Eipet) ¢ = 0 <t<+0Q} for fixed p is

called the trajectory or orbit of the point p and can be denoted

£(p, -0 4 ) oOr O (p). The set of points

{£(pst) s Pt Lt g_T“},

where p is fixed and _e0¢ T < T < +00, 18 called a finite

i1l be written f(p, [T',T'"']) ox simply

arc of the trajectory and W

plT',T'"]. The number o1 - T' is called the time length of this

arc of the trajectory.

pefinition. Let Xo ¢ c. A closed subset S of X is a local

cross section of length 2% at X, € X if the map

ne s x (b (el €AY X given by h(x,t) = xt is a

homeomorphism of S ¥ {|tl < )} onto a neighborhood of xo, that

is, Xo is an interior point of the image. The image of this

homeomorphism is called a rectangular neighborhood of Xg.

We would like to show that local cross sections exist. To

this end, we nNow construct a special function, G(xt), which will

be used to prove the existence of local cross sections for a flow

f. This construction and some intermediate lemmas will lead to

the main theorem on existence, Theorem 1. Theorem 2 and its

corollary will give some PIOPertieS of local cross sections that

can be derived from our construction.

We will use the notation cl and Int for the operations of

taking the closure and interior, respectively, of a subset of X.

Let X, be @ non-fixed point of £. Since X is metric, it




satisfies the Hausdorff condition, and since it is locally

compact, it is completely regular. Hence there exists a

continuous, real-valued function P on X such that

P(Xo) = 9@ < P(xoto) = 1,

where to > 0, Xote T oo gince we are assuming X is metric,

then P = (> (XorX)/ () (Xo rXo to) will work.

t,
Set G(X) = yP(xs)ds. 1t follows that

0

4o te
G(xt) = SP[(xt)s]ds = SP[x(t+s)]ds

[ o
ttte

= SP(xs)ds, and
t

d G(xt)/d t = Plx(ttte )] - P(Xt).
Clearly G (xt) and d G(xt)/ d t are both continuous functions

of (%,t)-

From this construction it follows in particular that if

then 0 G(xt)/0t =1 and there exists a

neighborhood Ui of %o and 2 > @ such that

dG(xt)/dt > 0 for X c uy, Itl < 4.

So G(xe) > G(¥e) 2 G(xo(-A)), and thus there is a neighborhood

Ua of Xe such that
G(xA) > G(Xo

any neighborhood of x

) = G(xe)} N CLU)[-A,A),

) > G(x(=A)) for all x in Ug .

Lot U be o with C1(U) € [, N U,. Set

g = {x: G(¥

E = S[—'A r?\]-




We will now consider some properties of these objects which

will enable us to prove that S is a local cross section. As we

begin to study S and F, let us note that clearly S and F are
closed and Xo € Se

Lemma 1. cl@) € F.

proof. Take any X in Cl(U). Because Cl(U) C Ug , we know

that G(xQ) > G(Xe) > G(x(-)), where Xo is the non-fixed point

we chose to construct U, and Ua - Therefore, we can find

t € (-A,A) such that G(xt) = G(Xo). But this implies that xt

is an element of S. Therefore, x is an element of F. Hence

clw) ¢ F. //

Lemma 2. If ¥ € B,7%E € B¢ andltlg 2%, then t = 0.

suppose there exists x € S and t € (3,221 such

S is a subset of C1(U) ey ey

proof.

that xt € S. BY definition,
1, where y € cl(u) and [e] <.

which implies that X = yt

Now consider the set y[-32,3 2]. Both x and xt are in

Fi=3 N3N since Cl(U) € U py construction, we know y € U,

and so 9 G(yt)/9t > g for t €

in [-32,321, and so we get
- G(xt) = G(y(t+t')).

=32 ,3 A 1. Also t+t' and t' are

Gyt') = G(x) = G(Xe)

But this is an impossibility, since G(ys) is increasing on

["31 r3ﬁ]o //

Lemma 3. For each x € F there exists a unique y € S and t,

lt\ < ?\, such that x = yt.

proof. Suppose We have yi and Ya in §, and t, and ta

b k2 such that X = y,t,and x = y,t,. This

with |l <A, 17




implies that y,t, = Yata- By the group property of the flow this

implies Y = y.z (t‘_ - t‘). But \ta_ = t\l _<_ ZIA 5 So Vi € S

implies tg - & = ¢ by Lemma 2. Hence t, = ta . Then v, = Yata

= y;t.which implies ¥y, = Ya ° //

Now we are ready to show the main result of this chapter.

Theorem 1. Local cross sections exist at non-fixed points

of the flow f.

proof. Let S and ) be constructed as above. Consider the

map h: § x [-2A,2]1 7 X given by (x,/£) = xt.
Since X is locally compact we can assume Cl(Uy) is compact.

It follows that cl ()., Cl(U)[—) AL, and S are all compact. The

map h is continuous pecause f is. By Lemma 3, h is one-to-one

and onto F. Hence, D is a homeomorphism, because Sx [-A,21 is

compact . Finally, Lemma 1 implies that F is a neighborhood of X

since U is open and this lemma showed that cl(u) C F. //

Let us define the map P: F — S by p(x) =Y if x = yt, where

gesand ltl <2

Lemma 4. The map P is continuous, closed, open, and

p(Cl(u)) = S.

proof. By Lemma 3s the map p 1S well-defined. The map p

wous if for every convergent sequence (Xn) in F

will be contin

say, the sequence (p(xa)) — P(X). Let (Xn) be

p(x) =y=xt, lt] <A,

converging to Xy

a sequence in F converging to x € Fy

and p(Xn) = ¥n = Kntn s lt.l < A. If tp does not converge to t,
there exists a subsequence Xng such that tax converges to

¢ 4 t. Clearly t'€ (-2, since ltal <2 . But




P(Xpe) = Xnebng -y ¥EE, S0d xt'€ CL(S) =S because Xnetng &€ S.

Therefore, t' = ts wife) ™ p(x), and so p is continuous.

Now to show that P is closed let pP(Xa) = Xntn be a sequence

in S converging to y € S- Because [-2 ,72] is compact, there

exists a subsequence (xng) such that (tae) converges to t' in

=2, A]. We know that W) ((Xnetni) (“En)) 7 (y(-t")) € F

since F is closed. Cclearly, p(y(-t") = Y- 1t follows that p is

closed.

To show that p is opehs let V be open in Gled o AJw Lok

x €V, so p(x) = Yr where y € S We need to show that p(V) is a

neighborhood of y in S. gince V is open and h is a

homeomorphism, V 2 h(U ¥ 1) where U is open in S and I is open in

[=AsA)s Clearly U = p(h(U x 1)) C p(V), so p is open.

To complete the proof, we show that p(Cl(U)) = S. Since

Ccl(u) C F and S  cLUyI- XA} the T3P p is onto. Hence

8 € plcli{u)y. obviously: p(C1(U)) ¢ s. So p(Cl(U) =S. //

Given the mapping P above and the properties we showed it

has, we observe that if C1(U) has a property, say ® , and

property 03 is preserved by closed or open continuous maps, then

S has property @ , by Lemma 4. (This will be important later.)

In particular, we have the next theorem.

Theorem 2. The following hold:

(a) 1If cl(u) is connected, then S is connected.

ally connected, then s is locally connected.

(b) 1If cl(u) is loc

proof of (a) . The image of a connected space under a

continuous map is connected.




Proof of (b). Lemma 4 showed that p is a closed map, and

also by Lamma 4 we have p(Cl(U)) = S. A standard result from
topology (see, for example, Hocking and Young, [6], p. 125) is
that the image of a locally connected space under a closed map is
locally connected. Hence p(Cl(U)) = S is locally connected. //

Theorem 2 has a corollary which gives as a consequence an
important property of local cross sections when X is a manifold.

Corollary 1. If Cl(U) can be chosen compact, connected, and
locally connected, then S is arcwise connected. In particular,
if X is a manifold, there exist arcwise connected local cross
sections.

Proof. Theorem 2 proved that if Cl(U) is connected and
locally connected, then S will be connected and locally
connected. S will also be compact since it is a closed subset of
Cl(U), which is compact by assumption. By a standard theorem in
topology (see [6], p. 116), each two points of a compact,

connected, and locally connected metric space can be joined by an

arc in the space. //
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Chapter 2: HISTORICAL REVIEW

The proof for the existence of a local cross section

presented in the previous gsection is a modification of that given
by Hajek in his 1965 paper [4]/ and is very similar to but less

curbersome than Nemitsky and Stepanov's proof, page 333 of [7].

Hajek refers to the work of whitney [81 whose three papers ([8],
[9]1, [1@]) appear to be the sources for most of the important
ideas on local cross sections of flows. This will be more fully
explained later in this section. In addition to his existence
proof, which is in the slightly more general context of separated
uniformisable spaces: Hajek [4] presents a proof of Whitney's
result that if there is a flow on @ o-manifold with a section §
which is a locally connected continuum, then the section is
arc or a simple closed curve. His proof relies

1 dendrite, and later in our paper we

either a simple

on showing that S is a loca
will give a more direct route to this result. Nemistsky and
s the source for their existence

Stepanov [7] cite BebutoV (1] a

proof, but do not mention whitney.

Let us look carefully at whitney's results. In [8]
whitney's primary purpose is 0 study families of curves which
satisfy certain regularity conditions. To understand his

a regular family of curves, we will need to use the

definition of
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notion of the span between two arcs. Whitney considers a family

of curves whose points form a separable metric space with

metric P He gives the following definition, first introduced
by Frechet.

pefinition. Given two arcs, pq and p'q', homeomorphic, with

p corresponding to p' and g to q'. Let d(H) be the upper bound

of all numbers P(r,r') for corresponding points r, r'. Then the

span between the arcs pq and p'q', written 0~ (pa,p'q') is defined

to be the lower pound of the numbers d(H) for all such

homeomorphisms between the two arcs.

Now, we turn to whitney's object of study.

rves forms a reqular family, ¥, if

pefinition. A set of cu

no two intersect, and if given any arc pq of a curve C of the

family and any £ > 0 there isa 0 > @ such that if p' lies on

C' and e(p,p') ¢ § , then there is an arc p'q' of C' such that

o~{pa,pha’) < A

These regularity conditions are satisfied by solution curves

of autonomous systems of differential equations and also by

trajectories of a general flow owing to the continuity in initial

in fact, whitney's ma

ned over any regular family of paths. The

conditions. in purpose in [8] is to show

that a flow can pe defi

bulk of his paper is devoted to proving the next theorem, which

we quote from 81, P- 269.

Theorem. A function £ (p,t) can pe defined over any
Iheor="

(regular) family of paths, with the following properties:
y number t, -©< t <+,

(1) For each point P of X and an
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there is a unique point q = f(p,t) which lies on the curve C

through p, or coincides with p if p is an invariant point.

Further, for each point g of C there is a t such that q = f(p,t).

(2) £(p,t) is continuous in both variables.

(3) If p is not a critical point, f(p,t) moves in the

positive (negative) direction along the curve C through p as t

increases (decreases).

(4) For each point p of X and any two numbers t' and t'',

flf(p, ") ,t""] = £(p,t' + t''); also £(p,0) = p.

Any such function of f we say defines a flow in X.

Without presenting a proof of this theorem, we will give a
brief sketch to try to show the flavor of Whitney's construction.
Whitney covers a regular family of curves with what he calls

tubes and pseudotubes consisting of sets of arcs. These arcs are

non-intersecting and self-compact, that is, any sequence chosen

from these arcs contains a subsequence approaching an arc pq of

the set:nggy 0 (pd,Pndn) = @. For tubes, in addition, any set of

arcs in the tube must contain inner points. He shows that the

ends of these tubes are "cross sections." On the tubes he

defines a continuous mapping which associates a unique number t

to each point on an arc. He patches tubes and pseudotubes

together at fixed points so that the mapping will be continuous

over the whole arc. By modifying some of his earlier

constructions of continuous functions over families of regular
curves, he is able to show that a continuous flow - a function

satisfying all the conditions of his theorem - can be constructed
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over any regular family of paths.

In the course of Whitney's analysis of families of regular
curves there are two important sidelights. They are the key idea
used to prove the existence of cross sections for flows and the
remark that on surfaces local cross sections are arcs. We will
look at these two subtopics separately and in some detail.

We begin by examining the fundamental idea for the local
cross section existence proof. Early in this paper on regular
curves, [8], Whitney gives the following definition, which we
quote.

Definition. Take an arc pq of the regular family F and a
2 > g. The A -neighborhood of pg, N, (pq), consists of all arcs
p'q' of F such that o-(pg,p'q') < A .

He uses this idea of neighborhood as a basis for his
definition of a “cross section," which we quote from [8] p. 256.

Definition. Let p be a point interior to a curve C of the
regular family F. A set of points S forms a cross section
through p if the following hold:

(1) Each point p' of S lies within an arc geo'q.' of F such
that for some Q' > @ each arc of Ny (ge'q,') contains at most one
point of S.

(2) p lies within an arbitrarily small arc qQ,q, of F such
that for some A > @, each arc of N,(ged,) contains exactly one
point of S (hence p is in S).

(3) S is closed.

Whitney concludes [8] with a sketch of an argument intended
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to show that cross sections exist through non-fixed points of a

flow. He sets Qe = £(q,t) and defines a continuous function

\

& = Sf(qt,p)dt-
]

By the group property of a flow he knows (e = eoe * whitney

concludes ([8], section 29):

“"Hence, given a point dg on the curve through q, we find by

a change of variable

£

1+€
§ plaumea

e - ©@ = § p(@uPI%t -

rtial derivative along each curve:

and thus © has a p2

o' (g = del@/dt= PlavP) ~ o (ap) -

o' is continuous and positive near p: ©'(p) = (J(p.,p) 2

Hence on each curve passing peat P we can find a point q
ily seen to form

for which €(qQ) = o(p); these points are eas

a cross section."
Whitney does not offer more in the way of proof for his
claim, but this function € 1S exactly the function ® used by
Nemitsky and Stepanov when they rigorously prove the existence of
cross sections in (7). This function is also the key
£ existence; we called the function G.

construction in our proof ©
1lowed Hajek (41,

idea by doing his proof for the case

Our construction fo who offered a mild

jon of whitney's

uniformisable space.

generalizat
More importantly,

where X is a separated,
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in the last sentence in the above quote Whitney gives the
strategy used in all the existence proofs for local cross
sections.

Now we turn to the second important subtopic in Whitney's
1933 paper [8]. This is his remark that on surfaces local cross
sections are arcs. Whitney gives a short proof that if the space
X is locally connected, then any cross section is locally
connected at all inner points ([8], p. 259). Then he asks, if F
is a regular family of curves filling a region in Euclidean
n-space, is there a cross section through any inner point of a
curve which is a closed (n-1)-cell? His full reply, in the case
of surfaces, is as follows:

"If n = 2, the answer is yes. For any connected cross
section S contains two points p and g such that dropping
out any other point of S disconnects these points; hence S
is an arc." ([8], p. 260)

Moreover, in the study of flows on surfaces, Whitney's paper
of regular curves has been the standard reference for the
existence of local cross sectional arcs. He also says in the
same paper that the answer is in the affirmative for n = 3. We
discuss this later.

Now let us look at the results of another source. Nemitsky
and Stepanov prove existence of local cross sections for both
systems of autonomous differential equations and general flows.

First, consider a non-fixed point of an autonomous system of

differential equations. If N is a neighborhood of this point,
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Nemitsky and Stepanov define a section of N to be a closed set

which has one and only one point in common with every trajectory

arc in N. They prove such sections exist by constructing one

through an arbitrary non-critical point of a differentiable

system ([7], PP 3¢ - 32).

with more effort, Nemitsky and Stepanov flesh out the proof

of the existence of cross sections for the more general flows

introduced in whitney's paper. Given a finite tube or flow box Y

= f(E, [-T,T]) on any set ECX, they call a set FCY, closed in Y,

a local section of ¥ if to each point g €Y there corresponds a

unique number tgq such that £ (q,tq) € F and \t.‘.\ < 2T. Then they

prove this theorem.

Theorem. Given a non-fixed point, Pr of a flow on a metric

space, for a sufficiently gmall t' > @ there can be found a

number 5 > @ so that the tube constructed on S(p,S ) =

{y€x: ()(p,y) ¢ &} of time length 2t' has a local section.

For their proof, they define 2 function akin to our G(xt) as

Whitney does, and they show that the section for the tube Y =

£ (Cls (p» &), l-t', t']) is the set Q of points q€Y for which

Even though E can
we note that they prove the

G(q@) = G(p@) - pe any subset of X in their

definition of Cross section,

existence of a Cross section in the special case where

E=5(rd)-
We mention that the local cross section constructed by

Nemitsky and Stepanov 1S not equivalent to ours, so their proof
equate for us. The most that can be

of existence is pot quite ad
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said if we are given a Cross section constructed by Nemitsky and

Stepanov is that a subset of it can be found which is a local

cross section by our definition. However, a local Cross section

by our definition will also be one according to theirs.

Nemitsky and StepanoVv also prove that a non-critical point

of an autonomous differential system which satisfies existence

and uniqueness conditions (such as a Lipschitz condition) has a

neighborhood, N, in which the trajectories of the system are
nt

homeomorphic to parallel straight lines in E cRoxrR . ([71,

pp. 3¢-32.) For a general flows their main result regarding the

topological properties of the flow in a metric space in a

neighborhood of a non-critical point is the following theorem.
Theorem. If a finite tube Y of time length 2T, constructed
then Y is homeomorphic to a

on a set E, has a local section S,

system of parallel segments of 2 Hilbert space. (171, pp. 236-

238]) .
of course, local cross sections Or transversals have been

used in ordinary differential equations since the time of
Poincaré. A modern construction of a transversal is given by

Hale, for example. suppose we are given an autonomous

differential equation
).( - f(x) (*)

where f: x—+1R” is continuously differentiable and X is
pe the orbit through a non-critical point p

VY:Ba™ A" is continuously

o inR™', lul < &}, Let

open in R™. rLet %
in X. Suppose 2 function

differentiable, where Bd
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Y (@) = p, and suppose the rank of the Jacobian matrix

(2Y (w/0ou] is n - 1 for all u in Ba . Then the set

E"?—' = {x inTR“', X = ‘{)(u), u in Ba }

is called a differentiable (n-1)
£ for each p' € E; , the path &'

—cell through 'p. E is said to

be a transversal to ¥p at P i
-

through p' is not tangent to g" atp'. This is equivalent to

the condition that the tangent yector to ¥’ at p' is linearly

ectors tangent to g™ at p'. This means

independent of those V
D(x,u) = det [ W (w/du, £ ]

4 ¢ for u < & for some

o> 0.

Assume D (P, 9) 4+ ¢. Hence there is an o sufficiently small

to ensure that D(X,1) $ ¢ for |x-p| <%« |ul < &¢, since D(x,u)
n-critical point of (*) a

is continuous. So when P is a no

transversal to KP will always exist at p, and with ¢ chosen
small enough, E"" will be transverse to all the paths that cross

it
Now let us specify that ? (t,p') such that 9(g,p') = p' is
ipes the orbit Xp’ through p'.

the solution of (*) which descr

1 having zero in its interior such that each

There is an interval

Q(t,p'), P' € E

function ®(t,p') = 9 (t,
H is continuou

is defined for t € 1. Therefore, the
Y(u)) can pe thought of as a mapping H

of I XxBa ™ R"™ . sly differentiable in I X Be .

1f we define

t
Il §e(4 (s, ¥ (w)ds

then B €ty Y () £ = g. For convenience, let y = (t,u) and

Hy) = €t Y @)- So we have F(HE)Y) = 7.
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Finally, by the chain rule we know that O H/0y will be
invertible whenever ? F(x,y)/dy and dF/dx are invertible at
(H(y) ,¥). Hence, 9H/ 9y will be invertible at (@,0). So the
inverse function theorem implies that H' exists on a
neighborhood of p. That is, there exists & > @, t > ¢ such that
H is a continuously differentiable homeomorphism of I1(t) X Ba
onto the open set ?(I(E), VB« (2))) in 1R"', where I(t) =
{t: -t < t < t }. Because of this homeomorphism, E"-l
corresponds exactly to our local cross section. Also, for fixed
u, {(Htw: ltl < t } coincides with the arc ' given by the
solution ‘?(t,p'), %4 & < t. The range of the map H is often

called an open path cylinder. For details, see Hale [5], pages

43-44.

The central ideas here — the existence of a transversal

through any non-critical point, p, and the existence of an open

path cylinder having p in its interior — are the ideas we sought

to generalize with our definition of local cross section and the

proof of its existence.

Earlier in this chapter we mentioned that Whitney also

claimed in [8] that a local cross section through a point in 3-

space will be a closed 2-cell. This claim is based on work he

published in his papers [9] and [10]. In [9] Whitney gives a

characterization of a closed 2-cell based on the following

theorems that we quote:
Theorem 1: Let R be a continuous curve containing the

simple closed curve J, such that
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(1) J is irreducibly nomologous to zero in R, and

(2) 1f g is an arc with just its two end points a and b on

J, then R - g is not connected.

Let R' and J' be defined similarly. Then R and R' are

homeomorphic, with J corresponding with J'.

Then, the fact that R is a closed 2-cell follows immediately

from his next theorem, which states:

Theorem 2: If I is a circle in the plane and S is I with

its interior, then S and I satisfy the conditions prescribed for

R and J in Theorem 1%

He notes that J in Theorem 1 corresponds with the circle I,

that is, J is the poundary of Re.

whitney proves in [10] that the hypotheses of Theorem 1 hold

Q is a Cross section through any non-fixed point

3
s in R”. Thus Q, @ local cross

when R = Q where

in a regular family of curve

section, is a closed 2-cell.

1 conjecturée might be that this result of Whitney's

the work of Bing ([2]1, [31) provides

A natura

holds for all n. However s
; %

an interesting counterexample in TR' to the fact that cross

lows in 2 or 3 dimensions are homeomorphic to closed

In his 1957 paper [2], Bing

sections of £

1- or 2-cells, respectively.

3 : ; !
sition space of TR® which is topologically

not a manifold at at least one

describes a decompo

3 e
different from R*, and it 1S

point. The second paper we cite [3] proves the surprising result

that the cartesian product of this decomposition space with R

4
is homeomorphic tO R .
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Now, given any space Y, W€ can always define a flow on

x =y x R by setting

f((YIS) L) = (Yr (s + t)) .

tof Y containing Y € Y, then ClU X {0}

Now, if U is an open se
g) € X of arbitrary length. In

is a local section at Xo = (Yo r

oss section. We now apply these

fact, Y x {0} is a local cr

Let yo be @ point in Y at which Y fails

remarks to Bing's space-

to be a manifold. Then for any neighborhood U of Yo in ¥, S =
Cl() x {@} is a 1ocal Cross section at Xo = (Yo @) which is not

closed 3-disk pecause Y is not a manifold at

homeomorphic to a
any other point on the trajectory of

Yo. Moreover, no gection at
c to a closed 3-disk. We will show this

Xo wWill be homeomorphi

amine the topological properties of local cross

later when we €X
sections in Chapter 3. ysing Bing's dod pone space, as his
example is called, to construct @ flow on a four manifold for
which local cross sections cannot be homeomorphic to a 3-
dimensional disk has peen part of the folklore of dynamical
years.

systems for at least twenty-five
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Chapter 3: PROPERTIES OF LOCAL CROSS SECTIONS

In this chapter, W€ will examine the properties of a local

cross section which can pe derived from its definition. It will

be assumed throughout the chapter that the local cross section,

S, is a compact subset of the locally compact metric space, X.

The main results are:

1) The closure of the winterior" of a local cross section

is a local cross section;

2) Ina finite 1length of time a trajectory can Cross a

local cross section only finitely many times;
3) The topolody of a local cross section is unique in that

local cross sections through distinct points of an orbit always
contain neighborhoods of these points which are homeomorphic;

4) A local cross section containing no periodic points can
continuous function to obtain another

be distorted by means of a

local cross sectionj and

cross section at a non-periodic point always has

5 A local
oss section of any specified length.

a subset which is a local cr

r results as a series of propositions.

we will present ou
cribe a construction for modifying a local cross

ular neighborhood is the closure of

We first des

section soO that the rectand

its interior. TO do this, we will need to identify those points
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in S which are "interior" to S.

As usual, let S be a local cross section at x, § C. Let

gi = {x €85t x € Int(Sl-A,AD}.

We know S' is not empty since Xe is in S'. Now set

S* = Cl(S;) = Cl{X € S: X (=3 Int(s[-;‘r)])}-

proposition 1. (a) S* is a local cross section.

(b) (gH)* = 5%

(c) s'(-7A,2) is open.

@ s =2, ) Int(s*[-2,41) .

(e) S*[-ArA] cLs -2,

(£) S*[-As 2] CllInt(S*[-A,AD].

that the mapping he St AT+ R

I\

"

]

proof _gg (a) . We know

given by h(x,t) = xt is a homeomorphism, SO h restricted to
S* x [-A, A1 will also be a homeomorphism because S*C S. S* is

closed by construction. SOr it remains only to show that
S*[=7\, A] has some points of S* in its interior. Let

X € Si ¢ g*., Then there exists V open in X such that x € V C
Si=A, N1, by definition of S'. This implies n~'(v) is open,
since h is a homeomorphism. Hence there exists a set U, an open
neighborhood of x in S, and a § > ¢ such that U x (_S,S) is a
and, again since h is a homeomorphism, we see

pen subset of X containing U and

subset of h-' V) .

that h(U,(—S, §)) is an ©
[- 2 o This implies

t of S*["]lglo

i
contained in S y € s'C s*, and the open

sats Fill sl b M iBns subse

g* is a local section put we have also shown

We have shown
more. In fact, this argument Proves (s¥)' =8!. It is cleax
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that (S%)' ¢ S because gxc g, Since x in the above argument was

an arbitrary point in g', we have shown the reverse inclusion,

namely s'c (S*)' . SO, S: = (S*); .

proof of (b). This follows jmmediately from (a) because

' = (s%)' implies S* = L) = CLIEM 1 = (8%

Take yés'(—ﬂ,ﬂ). Then y = h(x,t*) = xt*,

Proof 9£ ()
g' we can construct U and &

i |ex| < AL Because X €

where x€ S',
as in the proof of (a) with the added condition that & < 2 - e .

) is an open neighporhood of x, Vt* is an

we are guaranteed that vt* C

Since V = h(U,(—S:S)

open neighborhood of y. Moreover,

ce of § . Hence S'(-'/\,ﬁ) is open.

s'(=2, ) by our choi
clear from (c) that 5 =08

Proof of (d). First, it is
is a subset of ey MY 30 chow the opposite inclusion,

Soy = xt*,
t*\ % "\ . suppose tx = A . Since

let y € Int(s*[-A, A1~ where x € 5%, |l <A

Let us first show that ‘

Lim A+ 1/n= A, this means Lim x(t*x + 1/n) = Y- So every
points which are not elements of

neighborhood of ¥ contains
£ x(tx + 1/n) = x( A+ 1/n)

S*[-A, N, since it can pe shown tha

2,1 for large n.

is not in S*[- it can be shown
that t* $ - A-
g the fact that h is a haneomorphism as before,
and @ < 8 < ’)

an open set in S*[-2 ¢+ M)

Now, usin
- It*l such that

there exists U open in S*

h(u x (tx -8 ,t** §)) =V is
1t follows that v{(-t*) is an open set containing X

containing Y. :
% & (S*)' and we are done

and V(-t*) € Dy k| HERES
shown that (8%)

Vo s

because we haveé already
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proof of (e). It is clear that c1(s‘ (-2,7%)) is a subset

o we need to show the opposite inclusion. Let

of S¥[-Q,A)s S

y € 5*[-2,A) soy = xt* where x € s* and |t*x] <A. 1f x€ g

and |t*| < D there is nothing to prove. We will consider two

cases.

First, if x € g' and t* = 2, theny = 1im x[A (1 - 1/m)],
NnA200

that is, y is the 1imit point of a sequence of points in

s't-2,2). Therefore, ¥ € ci(s' -2,2)). The argument is

similar for t* = -A.

In the second case, Y = <t* but x € s'. Hence, there

ch that xn —7 X assume for convenience

exists (xa) in S; su

t* > g. As before gx(1 - 1/n) — t* and t*(1 - 1/n) € (-2 +2)

for large n. By the continuity of the flow we have
Lim xuft* (1 - /] = (Lim xn)( Lipt*(1 - 1/n) =

xt* = Y.

So y is the 1imit of a sequence of points ins' (-A,2), and

Yy € Cl(s; (=D s A)Y)» Again, similar proofs work for t* < @, and

We have shown in all cases s*[-A o § e o Cl(s"(-) ,2)) and

e el A

hence S*[- A, A
1lows immediately from (e) using the

proof 9__f_£f_)_ This fo

result in (). //

Given X e xand T 2 g, and S a local cross

Progosition 2.
section of length 22 .

1f T & 27 then x[-T,T] cap intersect the local cross

(a)

section S at most oneé time.
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(b) If T > 27 then x[-T,T] intersects S at most finitely

many times. The number of intersections is at most T/2°A.

(c)

An orbit xTR can intersect S at most a countable

nunber of times.

Proof. (a) Since S has length 22, this is clear.

(b) By (a), O(x) can intersect S at most once for every 2}

units of time.
o0

(0 MR = A n22,(n+1)2A ], and xt € S at most once for
te m2A,(m1)2A 1. //

The next result is that the topology of a local cross

section is unique. This idea is stated precisely in Proposition

3.

Proposition 3. Let S, and Sy be local cross sections and
let x, and x, lie in S,; and Sd_; , respectively. If x, and x, are
on the same orbit, then there exist neighborhoods U, and U, of x,
and x, in S, and S,, respectively, such that U, and U, are
homeomorphic.

Proof. Let 29; be the length of S}, i =1, 2. Without

loss of generality, assume Aa g A,. Since &(x,) = 0(){1) , We

must have x, = x,t* for some t*. Since x, € S,', there exists an €

> @ such that the € -ball at x;, Be (Xa) =

{x €X: P(xa,x) < £}, is a subset of Syl-4a/2, Aa/2]. By
continuity, choose & so that Bg(x,)t* C Bg(x,) and Bg(x,) ¢
S, [- i 2:1. Now, using the usual homeomorphism from

St x -2 +A 1 = S, [-2,,2 ], we can find U, an open subset

of S,, with x, € U,, and 7} > @, such that h(Cly, x [-7 g
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Bg (X). Let V be the open set h(U, x (-1,7M)) = V.
Now consider the map r: ClU, — S, given by
r(x) = p(£(x,t*)) =y,
where the map p was defined after Theorem 1 in Chapter 1 for S, .
Specifically, p(xt*) =y, provided xt* = yt for y€ Sa and

ltl < Aa.

Since r is the composition of two continuous functions, it
is continuous. We now show r is one-to-one on ClU,.

If r(x') = r(x''), x', x'' € ClU,, then p(x't*) = p(x''t¥) =
y, where y € S;. That is, yt' = x't* and yt'' = x''t*, where
| €1, \t"! < Aa . Solving for y gives x' = x'"(t' - t'"). If
x' $ x'', we have 22, > It'—t"\ > 2 A, but by construction

2% 22 Q2. This contradiction implies lt'—t"l = ¢ and hence

Since r is one-to-one, r is a homeomorphism on ClU, by
compactness. This implies that r restricted to U, is also a
homeomorphism.

In order to show that r(U,) = U, is open in S, and complete
the proof, consider again V = h(U,,(-™,M)) constructed above.
Since V is open, Vt* is open, and by construction Vt* C B (xp) C
Sal-%a/2, 2a/2). Since p is an open map by Lemma 4, Chapter 1,
p(Vt*) is open in Sz and x, € p(Vt*). Now U,C V, so
Ua = p(Uit*) € p(Vt*). Also, every point in Vt* can be expressed
as x(t+t*) for some x € U, and t with |[t]| <™ < Aa. 1In fact,
since xt* and x(t+t*) are both in B¢ (xa) € Sal-Aa/2, Aa/2], we

know yt' = xt* for some y € S and |t'| < Qa/2, and similarly
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Solving for y' we have y' = y(t'+t-t''), where

\( A/2 + Aa + %/2 = 2}a B0

x(t+t-k) = Y' £,

levretr ] < ler |+ et
implies lt'+t—t"| must be @. Therefore, y

Proposition 2 above

Ul

y' and p(x(t+t*)) p(xt*), and we see that p(Vt*) C p(Ut*).

p(U t*) = ya and Ua = p(U, t*) is open. L/

1}

Therefore, p(Vt¥*)

Proposition 3 is important pecause it guarantees that the

local topological properties of 2 local cross section are

essentially the same at any non-fixed point of a trajectory. We

use this fact in Chapter 4 when we give a local cross section at
a point in R , and this local Cross section turns out not to be
homeomorphic to R®. The local cross section is Bing's dog bone
space. Then we can use Proposition 3 to claim that there will
e local cross

not be any point on the trajectory at which th

section is a 3—dimensional manifold.
The fourth result of this chapter is that under certain

conditions, a local Cross section containing no periodic points

can be distorted by 2 continuous function to obtain another local

a local Ccross sectio

ome X € S and t # 0}, and set

cross section. If S is n of length 22, let

¥ = min{ lt\ . xt € S for s
¥ - oo if xt ¢ s for allt 4 0 and x €S-
2\ (pby Lemma 2, Chapter 1).

It is clear that Y > 2 we have the

following result.

Let S be @ local cross section of length 22

Progosition 4.
ot g: S TR e continuous.

containing no periodic points and 1
y - gl < ¥

- 27 whenever X and

Let ¥ be as above. 1f lg(x

xt, t £ 0, lie in S, then g' = {xg(x): X ¢ s} is also a local
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cross section of length 2.

Proof. S is a closed set and S' is the image of S under the
continuous map x — xg(x), so S' is compact and hence closed.

Now consider the map h*: S' x [-A ,2] — X where h*(y,t) =
yt = £(xg(x),t) = x(g(x)+t) when y = xg(x), x € S. h* is clearly
continuous, since the flow, f, is. Since S is compact, we will
have shown h* is a homeomorphism if we can show h* is one-to-one.

Now suppose h*(y,,t,) = h*(y,,t;). This implies

[xg(x)1t = [x,9(x,)]t, for some x,, x, € S, and SO

[xy9(%,)] (t,-ty) = [x,9(x,)], or equivalently,

X1(g9(xy) + t, -t3) = x,9(x,), and so

X [t -ta+ g(xy) - g(x,)] = x,, where |t,-t;] < 24.
This means x, and x, are on the same orbit.

If x, = xa, then g(x,) = g(x,), which means X, (ti=ty) = %z
and t, = t,,because there are no periodic points in S.

I1f x, # x5 , then lt, -ty + g(x,) - g(x,_)l must be greater
than ¥ . However,

ler - tat gtx) - gl < e - ol + laxy) - g(x)]

< 22+ ¥ -2A =YX .
This contradiction shows that in all cases (y,,t,) = (y,,t,) when
h*(y,,t,) = h*(y,,t;), so h* is one-to-one.

To finish the proof, we also have to show that
Int(S'[-A, 2] # ¢ Let Xo € S'. Choose § = A/2. Since h is
a homeomorphism, we can construct an open set U(-§ , §) in
S[-A, ] where U is open in S and X, € U and, by continuity, we

can also guarantee that lg(x) - g(x')‘ < - Afz for-aldk .zl in



30

U. Then Xog(X) € [U(-§ ,8§)]1g(xe), which is open. 1t suffices
to show that [U(-§ ,8)]g(xs) € S'[-Q,D].

Now, for any y in [U(-§,8)]1g(x%e),

Yy = (xt)g(xe) (where x € 5, |t| < A/2)

X (t+g(xe)) .
Also, for this x, xg(x) € S'. Since xg(x) and (xt)g(xe) are on
the same orbit, there is a time t such that
Xg(X)t = X(t + g(Xo)).
So, since there are no periodic points, t = t + g(xe) - g(x), and
1T] < el + |g(xe) - g(m|
< A/2+ A/2 = ).

Therefore, y € [U(-§,8)1g(X) implies y € S'[-A,A]. Thus
[U(-§ ,8)1g(xe) CS'[-A, Al. Hence Int(S'[-A,A1) # ¢.
Therefore, S' is a local cross section of length 2A. //

The two obvious extreme cases to which this proposition
applies are given in the following corollaries.

Corollary 1. If S is a local cross section and g =
constant, then S' = {xg(x): x € S} is a local cross section.

Corollary 2. If S is a local cross section such that x € S
implies xt ¢ S for all t # @, and if g is any continuous function
from S= M , then S' = {xg(x): x € S} is a local cross section.

Proposition 5. If g is any non-fixed, non-periodic point of
the flow £ on X and S is a local cross section at q of length
2 A, then there exists a local cross section §'<C S at g of any
specified length.

proof. Without loss of generality, assume S = S*. Fix
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T > @#. Let k = min{ P(q,qt): 1 < ltl < 2T}. By Proposition 2
above, k is positive. By continuity in initial conditions, there
exists & > @ such that (.)(q,x) < 8 implies P(qt,xt) < k/2 for
-2T £t < 2T. Without loss of generality, choose & < k/2.

Now, the homeomorphism h defined by the flow on S x [-A , Al~
S[-A,7A] can be used to construct an open set V = h(U, (-1 ,™M))
where U is an open set in S containing q such that
h(Cl(U),[-M,M])C Bg(q). Let S' =Cl(U). Then S' is a local
cross section at q of length 2T.

S' is closed and, by construction, g is an interior point of
s'[-T,T]. The map h of §' x [-T,T] = S'[-T,T] taking (x,t) — xt
is continuous and onto.

It remains to show h is one-to-one. Suppose x,t, = X,ta,
lt), lt.l < T. Then x\ = x,(t,- t,), where |[t,- .| ¢ 2r. If
lti- £, < A, then [t~ t,| = 0. So assume A < |t,- t,| < 2T.
By construction, p(arxy) < § < k/2 implies
P (@(ty= ) ,x,a(t- ty)) < k/2. Using the triangle inequality,
it follows that

()(q'q(tl- tl)) S ()(Q:X.) + P(X,rQ(t;- t|))

Plarxy) + p(xalty- £),a(t= £)

A

k/2 + k/2 = k.

This contradiction implies \ta— t.\ = @. So h is one-to-one. //
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Chapter 4: CROSS SECTIONS OF FLOWS ON MANIFOLDS

In this chapter we consider flows on manifolds. We define
an n-dimensional manifold as a compact metric space, each point
of which has a neighborhood homeomorphic to an open ball in
Euclidean n-space. It has long been known that flows on 2- and
3-dimensional manifolds have local cross sections which are,
respectively, arcs and closed disks. We will present a new
elementary proof of this fact for the 2-dimensional case and
complete the discussion begun in Chapter 2 of a counterexample to
show that this result does not hold when n = 4.

Our first result shows that a local cross section of a flow
on a surface will be an arc.

Theorem 1. Let X be a 2-manifold on which a flow f is
defined. 1If xo ¢ C, then there exists a local cross section at Xo
homeomorphic to [@,1].

Before proving the theorem, we will prove the following
lemma.

Lemma 1. Let X be a manifold with a flow, f, and S a local

cross section. If x € s' and W is a neighborhood of x in S, then
there exists an arcwise connected neighborhood W' of x in S with
W' C W.

Proof of Lemma. Let 27 > # be the length of S. Without
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loss of generality, W is open in S. Hence, W(=} ,7) is open so

s s 0 B B 6 W= B ScSRE RS O

p: Cl(B~ (x)) = S, defined in Chapter 1, taking y —» x, where

y = xt, x € 8", [tl ¢ A. sincep is a closed, continuous map

and Cl (B (x)) is compact, connected, and locally connected, then

P(CL(Bm (x))) = W' is arcwise connected as in the proof of
Corollary 1 in Chapter 1. Finally, W' is a neighborhood of x

because the map p is open- {4

proof of Theorem. Construct the set cl(u) as in Theorem 1,
) is a closed disk and with the added

Chapter 1, such that Cl(U

condition that x(+ 22) ¢ U for all x in U. Let S be the local
eross seckion at ¥e of length 272 constructed as in Chapter 1.
By continuity of the floW and the fact that the homeomorphism h

ghborhood of Xo, we can find U' &

maps Xe into a rectangular nei
and U' (-8 ,8) € U. Then

Cl(u) and § > @ so that Xo e U' open,

W=0'ns is a neighborhood oF %g AN BuenBy the lemma above,

h that W' is an arcwise connected

there exists W' € W Suc
neighborhood of Xe. consider V = W' (-§ ,8), which is open. BY
v ¢ U, since W' cu'.

consider the trajectory of Xe

our choice of & we know Therefore, V is a

neighborhood of Xe contained in U.
in C1(U). There is 2 first negative time, say % « and a first

at which the trajectory of xo leaves

positive time, say g
Cl(Uu). The Jordan Curve Theorem implies that Cl(U) is divided
and Xo (¢ ' B) is on the boundary

into two pieces by KXol ,p )r
Let A be the piece of C1(U)

between these disjoint pieces.

B the region

"pelow" Xol(0f s F ). Since

"above" Xo(% /s f ) and
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V .
C U CCl() and V is also a neighborhood of Xor V na+od

T s . . . .
his implies w'N A # ¢, and, similarly, W'N B # ¢. So there

exists pe W'N Aand g € W N B.

By Lemma 1 above there exists an arc,¥, inw'C S from p to

g. This arc must intersect Xo (& ,p) since it stays inside U',

but xo(¢, @) intersects S at exactly one point: Xo. Hence the
arc ¥ goes through Xo. since § C Sy this arc will be the

desired local cross section at Xe if x, is in Int( o oy g B B

r a continuous function g: ¥ TR , where

¢ § < for x # p9q.

Conside
y = @, and @ < g (x)
Then the set ¥ g v XY(-g) =J

g(p) = 9(a

let Y¥g = {xt: x € ¥, t~ g(x)}-
will be a simple closed curve containing p and d. We know that
¥g and Y (-g) do not intersect except at p and q because 5,

S@,A), and S(-A,0) are disjoint.
to two open regions:

The Jordan Curve Theorem

implies that J divides U in a bounded

and an exterior, Je ¢ Clearly

interior, Jt
the proof is complete. //

%5 8 WJy 2. It PEa ,A1) and
Corollary 1. 1f X is a 2-manifold and S is a local cross

section, then st is a 1- 1 manifold.

dimensiona

proof. Through any point x in s' we can construct a local
(9,11, by the above

cross section which is homeomorphic to

theorem. Therefore, x has @ neighborhood in s which is

1-dimens ional ba

Hence, bY proposition 3,

homeomorphic to the open 11, (g,1). But s is a

local cross section at each x € S'.

Chapter 3, each X in g' must have 2@ neighborhood in §' which is
homeomorphic to (8,1) - This means s' is a 1-dimensional
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manifold. //

Corollary 2. If A is any space such that A xR is
homeomorphic to R*, then A is homeomorphic to R .

proof. Using the projection map of A x TR onto A it
follows that A is connected and separable since R* is connected
and separable. Define the usual flow on the space A x R . Then
S = A x {@} is a local cross section and st = A, since A x (-1,1)
is open in A x R . By Corollary 1, A is a l-dimensional
manifold. So either A =R or A =T. But T x MR is not
homeomorphic to ﬂ{l since T xR is not simply connected.
Therefore, A is homeomorphic to mn ./

Turning to the three dimensional case, we said in Chapter 2
that H. Whitney gave a proof in [10] that if a regular family of
curves fills a region of Euclidean 3-space, then any "cross-
section" contains a "cross-section" which is a 2-cell. For his
proof of this, Whitney used a characterization of the closed 2-
cell which he established in [9]. In his later paper, [10],
Whitney then showed that the cross-section through any non-fixed
point of a regular family in ﬁ{3 satisfies all the conditions of
this characterization. Therefore he concludes that the cross-
section must be a closed 2-cell.

1f we ask how far we can generalize these two results to
higher dimensions, we see right away that the analogous situation
does not hold when n = 4.

Theorem 2. There exists a flow on a 4-manifold with a point

Xo at which every local cross section is not homeomorphic to a 3-
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dimensional disk.

proof. Let Y be Bing's dog bone space, introduced in

Chapter 2. Define a flow on x=Y xR by

£((yrS) fE) & (Ye (s+t)) »

Bing's paper [3] proves that X is a 4-manifold, in fact RY .

Let yo be a point in Y at which ¥ fails to be a 3-manifold.

Such a point exists py Bing's paper , [2], which proves that Y is

n if U is an open set of Y

not homeomorphic to a 3-manifold. The

containing yo € ¥, U i8 not a 3-manifold either at y, and

Cl(U) x {0} is a local cross section at Xo = (Yo s0) € X of any
in fact, Y ¥ {g} is a local cross section at

specified length.

Xpe
Let S' be a local Cross section at Xo- By proposition 3 of

Chapter 3 there exists U' open in s' with Xo e u' such that U' is

homeomorphic to an open set V of ¥ x {0}. Clearly
0od of Yo in Y. Therefore, S!

V = U x {9} for some open neighporh

is not homeomorphic to @ 3-disk. //

In the particular case in which a flow on a differentiable

ions to gifferential equations,

n-manifold is determined by solut

s have a local cross section

then this flow will alway
-disk at any non-critical point. The

homeomorphic to an (n-1)
lution to the differential equation

reason for this is that the sO
respect to x to th
which we outlined in

is differentiable with e same degree that £ is,

So the construction of a transversals
complished at @ non-critical point.

Chapter 2, can always be ac
rentiability of the flow is

ed that the diffe

It should be emphasiz
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the key here. For a general flow, we used the function G(x)

defined in Chapter 1 to construct the local cross section,

S = {x : G(x) = G(Xo)} AN CL-2,A1-
able in x, we could not use the

Since we could not

assume that G was differenti

Implicit and Inverse Function Theorems to study S and we had to

use different methods to prove that S is analogous to the

transversal of ordinary differential equations and shares its

useful properties.
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