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The mergers of black holes and/or neutron stars in binary systems produce the

most extreme gravitational environments in the local universe. The first direct detec-

tions of gravitational waves by Advanced LIGO and Virgo provide unprecedented

observational access to the highly dynamical, strong-curvature regime of gravity.

These measurements allow us to test Einstein’s theory of General Relativity in this

extreme regime. This thesis examines how the gravitational-wave signal produced

during the inspiral—the earliest phase of a binary’s coalescence—can better inform

our understanding of the fundamental nature of gravity.

My work addressing this topic is comprised of two major components. First, I

examine the behavior of binary black-hole and neutron-star systems in various possi-

ble extensions of General Relativity, constructing analytic models of their orbital mo-

tion and gravitational waveform—their gravitational-wave signature—during their

inspiral. The majority of alternative theories I consider modify General Relativ-

ity by introducing a new scalar component of gravity. In many of these theories,



standard perturbative techniques are used to model the inspiral of binary systems.

However, I also examine in depth the non-perturbative phenomenon of scalariza-

tion for which such methods fail. I show that this phenomenon occurs due to a

second-order phase transition in the strong-gravity regime and develop an analytic

framework to model the effect across a range of alternative theories of gravity.

The other component of this thesis is the development of a statistical infras-

tructure suitable for testing General Relativity using gravitational-wave observa-

tions. I adopt a more flexible and modular approach than existing alternatives,

allowing this infrastructure to be immediately applied with a wide range of wave-

form models. In work done in conjunction with the LIGO Scientific and Virgo

Collaborations, I use this statistical framework to place bounds on phenomenologi-

cal deviations from General Relativity using the binary black-hole and neutron-star

events detected during LIGO’s first and second observing runs—no evidence for

deviations from Relativity is found.

These two research directions outlined above are complementary; the type of

statistical inference discussed here requires models for the gravitational-wave signal

produced by inspiraling systems that allow for deviations from General Relativity,

and the analytic models I construct are suitable for this task. In this thesis, I carry

out the complete procedure of building and employing analytic models of gravita-

tional waveforms to place constraints on specific alternative theories of gravity with

observations by LIGO and Virgo.
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Preface

The following several hundred pages comprise my Ph.D. dissertation, the cul-

mination of over half a decade of scientific research. Compiling work on this scale

is a sensible means of justifying one’s qualification for an advanced degree to a

committee (and the institution they represent) that could not directly observe the

completion of said work. Yet this monolithic focus on one individual’s research is

in many way at odds with the pace and practice of modern science, where work is

often finished on much shorter timescales and in collaboration with several others.

The work I present in this dissertation is original and my own but in many cases

has been published previously with several co-authors in peer-reviewed journals.

But, as this dissertation is intended as a measure of my scientific achievement, in

this preface I explicitly delineate the portions of work done with collaborators to

which I was the primary contributor. This preface is not intended as a summary

of the material covered in these chapters; such an overview is reserved until after

a pedagogical introduction to the scientific topics at hand in Section 1.4. Chapters

to which I am the sole contributor employ the pronouns I/my, whereas those that

include work done with collaborators use we/our.

Chapter 1 provides an introduction to the scientific topics covered in this thesis,

a review of relevant literature, and an overview of the remainder of the dissertation.

I was the sole author of this chapter.

Chapter 2 contains work published in Ref. [1]. In this work, I was the primary

contributor to the analysis of non-perturbative phenomena in Einstein-Maxwell-

dilaton gravity (Section 2.2.4). Additionally, I provided the discussion on the

ii



prospects of constraining this theory with gravitational-wave observations of bi-

nary black holes by analyzing bounds on dipole energy flux (Section 2.3.2) and the

estimated fraction of signal-to-noise ratio these deviations from general relativity

would provide for ground-based detectors (Section 2.3.4).

Chapter 3 contains work published in Ref. [2]. I contributed significantly to

every component of this chapter. At many points in the chapter, extended calcu-

lations were carried out independently by myself and collaborator Sylvain Marsat

and then compared as a means of verifying the results; as such, he and I contributed

approximately equally to the work.

Chapter 4 contains work published in Ref. [3]. I was the primary contributor

to and author of all of the work in this chapter.

Chapter 5 contains work published in Ref. [4]. This work serves as a reca-

pitulation, reinterpretation, and extension of many of the results presented in the

previous chapter (and Ref. [3]). As such, I was the primary contributor and was

primarily responsible for all text and figures in the work.

Chapter 6 contains work published in Ref. [5]. Though the overarching ideas

contained in the work arose through discussion between all the co-authors, I was the

primary contributor to all results, text, and figures presented in the chapter with

the exception of the discussion of critical exponents of phase transitions of compact

objects in alternative theories of gravity (Section 6.4.2).

Chapter 7 contains work published in Ref. [6]. This work represents a collabo-

ration between co-authors from the pulsar timing and gravitational-wave communi-

ties; my primary contribution was to the components of the publication focused on
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gravitational-wave observations. Specifically, I was the primary contributor to the

discussion of projected constraints on dynamical scalarization given pulsar-timing

observations at the time of publication (Section 7.4.2).

Chapter 8 contains work published in Ref. [7]. Though my co-authors had car-

ried out analogous calculations in previous work, and thus offered invaluable insight

in carrying out the calculations here, I was primarily responsible for the results and

discussion presented in this chapter. The only component of the work to which I was

not the primary contributor was the discussion of waveform approximants (Section

8.6.1, specifically Figure 8.4).

Chapter 9 contains work published in Refs. [8–10] as well as unpublished

work [11]. While the results presented in this chapter have appeared elsewhere,

the discussion given in this chapter is restricted to results to which I was the pri-

mary contributor, with the following qualifications. In certain places, e.g. Figure

9.1, additional results from Refs. [9, 10] are included to provide comparison between

others’ work and my own; the discussion in the text explicitly distinguishes between

these results and those to which I contributed directly. Additionally, the investi-

gation done to place constraints on higher-order curvature corrections from binary

black hole observations (Section 9.5) was split primarily between myself and col-

laborator Richard Brito. We each made approximately equal contributions to these

results—e.g. I produced results for the left panel of Figure 9.5 while he produced

results for the right. However, I was primarily responsible for all text and figures

presented in this chapter.

Chapter 10 serves as a conclusion for the dissertation, providing a recapitula-
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tion of important results from the previous chapters as well as directions for future

work. I was the sole author for this chapter.
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Chapter 1: Introduction

1.1 Einstein’s theory of general relativity

Formulated by Albert Einstein over a century ago [12, 13], general relativity

(GR) remains one of the most successful physical theories of the modern era. At

its core, the theory embodies the equivalence principle—the notion that a local ob-

server cannot distinguish the effects of gravity from the “fictitious forces” expected

in a non-inertial frame of reference. Mathematically, this stipulation requires that

(locally) the equations that describe the laws of physics including gravity can be

reduced to their non-gravitational analogs through an appropriate choice of coordi-

nate system. The underlying structure of such a coordinate system was established

by Minkowski a decade prior [14]: space and time come fused together as a four-

dimensional spacetime that is covariant under Lorentz transformations. Combining

these two ideas, the natural canvas for a relativistic theory of gravity is curved

spacetime, represented by a differentiable manifold M equipped with a metric gµν

and the unique torsion-free, affine connection compatible with that metric. Grav-

ity is described entirely by the curvature of this connection, as encapsulated by
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the Riemann tensor Rλµσν .
1 At any point in spacetime, one can construct normal

coordinates in which (locally) the metric reduces to that of Minkowski spacetime

ηµν = diag(−1, 1, 1, 1), and thus all laws of physics appear as they would in special

relativity, i.e. in their form absent gravity.

In GR, the metric gµν dynamically responds to matter (or energy) as described

by the Einstein field equations

Rµν −
1

2
gµνR + Λgµν = 8πTµν , (1.1)

where Rµν ≡ gλσRλµσν is the Ricci tensor, R ≡ gµνRµν is the Ricci scalar, Λ is

a cosmological constant, and Tµν is the stress-energy tensor of the matter in the

spacetime, which I collectively represent by the field(s) ψ. As most concisely put by

Misner, Thorne, and Wheeler, these differential equations determine the manner in

which “matter tells space how to curve [and] space tells matter how to move,” [15].

The latter statement can be more clearly seen using the Bianchi identity in conjunc-

tion with Eq. (1.1) to show

∇µT
µν = 0, (1.2)

which, when Tµν describes a point particle minimally coupled to gravity, reduces to

the geodesic equation for that particle’s worldline. Solutions to the Einstein field

1Throughout this thesis, I adopt the sign conventions of Ref. [15] for the Riemann tensor and

its associated covariant derivatives ∇µ. Additionally, unless explicitly stated otherwise, I work in

geometric units where G = c = 1. Greek indices represent temporal and spatial components (e.g.

µ = 0, 1, ...) whereas Latin indices represent only spatial components (e.g. i = 1, 2, ...).
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equations are local extrema of the Einstein-Hilbert action

S[gµν , ψ] =
1

16π

∫
d4x
√−g (R− 2Λ) + Sm[gµν , ψ], (1.3)

where Sm is the action of the matter ψ on the curved spacetime specified by gµν ,

which determines the stress-energy tensor via

Tµν =
−2√−g

δSm
δgµν

. (1.4)

For example, in the aforementioned case of a point particle of mass m minimally

coupled to the metric, the appropriate matter action and stress-energy are

Sm = −m
∫
dτ
√
−gµνuµuν , Tµν =

m√−g

∫
dτ uµuνδ

(4)(γα(τ)− xα), (1.5)

where uµ ≡ dγµ/dτ is the four-velocity of the particle’s worldline γµ, parameterized

by an arbitrary affine parameter τ .

Compared to its non-relativistic predecessors, GR represents a massive repu-

diation in our understanding of the nature of gravity. Accompanying this paradigm

shift, the theory predicts novel phenomena absent in Newtonian gravity. This thesis

primarily contends with two such predictions: black holes (BHs) and gravitational

waves (GWs). I provide a brief introduction to each topic in the remainder of this

subsection.

First predicted only one year after the advent of GR [16], BHs are localized

regions of curvature. The defining feature of BH spacetimes is the presence of an

event horizon. This hypersurface divides the spacetime into interior and exterior

regions such that future-oriented timelike and lightlike curves originating in the for-

mer cannot cross into the latter. Physically, the event horizon represents a one-way
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boundary for the flow of information; any matter or radiation that enters the BH

interior can never escape. Black holes primarily form through the gravitational col-

lapse of matter. Whether a collapsing matter configuration will form a BH depends

primarily on its compactness, i.e. the ratio of its mass to its (linear) size; though still

unproven, the Hoop conjecture [17] posits that a BH forms only when matter of mass

M fits within a spherical shell with the Schwarzschild radius RS = 2M . In our local

universe, the densities needed to form a BH can only occur during the final stage of

the evolution of very massive stars. However, in the very early universe, critically

over-dense regions could have also collapsed to form primordial BHs that may have

survived to the present [18–20]. Current observations point to the existence of astro-

physical BHs of two distinct varieties, distinguished by their mass: stellar-mass BHs

(100M� . M . 102M�) and supermassive BHs (105M� . M . 109M�).2 This

thesis focuses on the former class, as they represent viable sources for ground-based

GW detectors.

A number of properties of BHs predicted in GR offer compelling targets for

both theoretical and observational study. For example, BH spacetimes in GR ap-

pear only to come in a relatively limited variety—this property is often categorized

as the “no-hair conjecture.” This property posits that all isolated BHs coupled to

electromagnetism are uniquely specified by their mass, spin, and electric charge;

contrast this scenario to that of composite systems of charged baryons, which can

differ by any of an infinite number of independent multipole moments. This prop-

2The latter class is sometimes further subdivided into “massive” and “supermassive” BHs; this

distinction is not needed for this thesis, so I categorize those two classes together.
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erty has also been shown to hold for BHs coupled to other fields [21–23] (though not

all [24]). Another intriguing property of BHs in GR is their connection to space-

time singularities. Penrose famously showed that BHs formed through gravitational

collapse will generically host a singularity in their interior region, provided that the

imploding matter obeys the null energy condition [25]. The presence of such a sin-

gularity indicates that GR is non-predictive in such a region and highlights the need

for new physical insight to complete the theory.

Besides BHs, another of the earliest predictions of GR was the existence of

GWs [26, 27]—wavelike perturbations of the metric that propagate energy and mo-

mentum at the speed of light. Their basic structure can be seen by considering

gravity linearized around a flat background, wherein the metric takes the form

gµν = ηµν + hµν with |hµν | � 1. Inserting this ansatz into Eq. (1.1) and drop-

ping terms non-linear in the metric perturbation hµν reveals that its trace-reverse

h̄µν ≡ hµν − 1
2
ηµνη

λσhλσ obeys a wave equation provided that one works in the

Lorenz gauge ∂µh̄
µν = 0:

�h̄µν = −16πTµν , (1.6)

where � is the flat-space D’Alambertian operator. In vacuum, one can use gauge

symmetries to eliminate all but two independent components of this tensor, which

correspond to the two polarizations of GWs predicted in GR. In the appropriate

gauge, these non-trivial components are spatial (h0µ = 0), transverse (ηij∂ihjk = 0)

and traceless (ηijhij = 0). These physical components can be distilled from h̄µν with
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an appropriate projection operator that depends on the direction of propagation n̂

hTT
ij =Λij

kl(n̂)h̄kl, (1.7)

where the superscript denotes the “transverse-traceless” gauge described above; a

complete expression for Λij
kl is given in Eq. (1.39) of Ref. [28].

The central theme of this thesis is to motivate and improve tests of the funda-

mental nature of gravity using GWs. I focus on GWs produced by compact binary

systems, i.e. binaries comprised of objects with compactness C = M/R & 10−2; the

only known astrophysical objects that surpass this threshold are BHs and neutron

stars (NSs). In the remainder of this chapter, I outline the phenomenology of such

GWs and discuss the techniques used to model these predictions. I outline how

these waveform models are employed to detect GWs and to infer the properties of

the signals’ sources and the underlying fundamental physics that govern their be-

havior. Next, I discuss motivations for and examples of modified theories of gravity,

highlighting the potential imprint of such modifications in GW signals observable

with detectors. I describe various considerations involved in formulating tests of

gravity with GW observations. Finally, I end with a more detailed overview of the

work contained in this thesis.
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1.2 Gravitational-wave science with compact binaries

1.2.1 Generation by compact binary coalescence

The GWs produced by coalescing compact binary systems can be divided into

three phases: inspiral, merger, and ringdown. In this section, I provide a brief

overview of each of these phases, highlighting the techniques used to study the two-

body problem in each regime. This thesis primarily focuses on the inspiral behavior

of binary systems, and so I discuss that topic in the greatest detail. However, I

include an abbreviated review of the other phases as a foundation for discussions of

inspiral-merger-ringdown (IMR) models that synthesize information from all regimes

and also to establish the broader context for the inspiral results presented here.

1.2.1.1 Early inspiral

The inspiral phase of a binary system begins with the two bodies well-separated.

The binary is characterized by three independent distance scales: the size of each

body R1 and R2 and their separation r. For compact objects, to which I restrict my

attention, the bodies’ masses satisfy mi ∼ Ri; for convenience, I label the bodies

such that m1 ≥ m2. The inspiral begins in the regime in which there is a clear hi-

erarchy between these various scales, meaning that m2 � m1 and/or m1 � r. The

gravitational radiation produced by the binary during the early inspiral can differ

significantly between these two cases. Accordingly, the computational techniques

used to predict this radiation differ as well. Analytic approaches to the two-body
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problem attempt to solve the field equations (1.1) perturbatively in the appropri-

ate small parameter: q ≡ m2/m1 or ε ≡ M/r, respectively, where M ≡ m1 + m2.

The former approach relies on computing the so-called gravitational self-force of the

smaller body moving in a background spacetime associated with the larger body;

see Ref. [29] and references therein for a pedagogical review of this approach. The

latter approach is known as the post-Newtonian (PN) approximation, which serves

as the foundation for much of the modeling efforts described in the thesis. I outline

a few basic results derived using the PN approximation below, but refer the reader

to Ref. [30] for a detailed review of the subject.

Within the PN approach, the motion of the binary is solved order-by-order in

a power series expansion in the small parameter ε around the Newtonian prediction.

Equivalently, because I consider bound orbits, this is a low-velocity expansion with

ε ∼ v2. The quadrupole formula, computed first in Einstein’s original paper on

GWs [26] , describes the leading-order PN prediction for the GWs observed far

from a compact source. Despite its simplicity, this result offers key insights into the

gravitational radiation from compact binaries that remain true at higher PN orders.

I provide a brief derivation below.

Working within linearized gravity (a valid assumption when working at leading

PN order), Eq. (1.6) can be formally inverted leaving

h̄ij(x
α) =4

∫
d4x′ δ

(
x0 − x′0 − |x− x′|

) Tij(x
′)

|x− x′| ,

=
4

d

∫
d3x′ Tij(tret + x′ · n̂,x′),

(1.8)

where I have used that at distances d ≡ |x| � r far from the binary, the denominator
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can be approximated by |x− x′| = d− x′ · n̂ +O(r2/d) and defined the unit vector

n̂ ≡ x/d and the retarded time tret ≡ x0 − d. Then, one can Taylor expand the

integrand in Eq. (1.8) to

Tij(tret + x′ · n̂,x′) =Tij(tret,x
′) + (x′ · n̂) ∂0Tij(tret,x

′) +
(x′ · n̂)2

2
∂2

0Tij(tret,x
′) + . . . ,

(1.9)

The most relevant time scale of the binary’s motion is its orbital period τorb = r/v;

thus we see that each time derivative above introduces a power of v to the final

result, and so Eq. (1.9) corresponds to a PN expansion. Keeping only the first

term, I insert Eq. (1.9) into Eq. (1.8). Because I am working within the regime

of linearized gravity, the non-linearities in Eq. (1.2) can be neglected, leaving the

identity ∂µT
µν = 0; by repeatedly employing this identity, one can integrate Eq. (1.8)

by parts to show that

h̄ij =
2

d

(
M̈ij(tret) +O(v3)

)
, (1.10)

where Mij ≡
∫
d3x′ T 00xixj is the quadrupole moment of the source. Finally, the

physical (non-gauge) components representing the GWs are extracted by applying

the operator Λij
kl to Eq. (1.10). Note that by simplifying Eq. (1.2) as done above, I

have implicitly assumed that the sources are weakly self-gravitating, i.e. the gravita-

tional field does not comprise a major component of their stress-energy. Given that

I wish to study the behavior of compact objects, whose self-gravity is non-negligible,

this assumption may seem unfounded. However, the property of effacement in GR

guarantees that the strong internal gravitational fields of the compact bodies influ-

ence the dynamics of a binary only at comparatively high PN order: at 2PN for
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spinning bodies and 5PN for non-spinning bodies [31].

I highlight a few important consequences of Eq. (1.10). First, the dominant

component of GWs arises from quadrupolar radiation, i.e. radiation produced by a

time-varying quadrupole moment. Though the derivation above was done only at

leading PN order, in fact, monopolar and dipolar radiation (which dimensional ar-

guments would suggest enter at lower order) are absent in GR even when non-linear

gravitational interactions are considered. These dissipative channels are protected

due to the diffeomorphism invariance of the theory and the fact that gravity is medi-

ated solely by the metric; these conditions guarantee that GWs behave as massless,

spin-2 gauge fields, which cannot be be excited by a purely monopolar or dipolar

source (see Secs. 2.2.3 and 3.3.1 of Ref. [28] for more detail). However, as we shall

see in Section 1.3, many possible extensions of GR violate these two conditions; the

additional dissipative channels available in these theories can dramatically affect the

rate at which compact binaries coalesce.

A second key observation is that GWs produced during the inspiral are di-

rectly linked to the motion of the binary. Using two copies of Eq. (1.4) as the

stress-energy for a binary system, one sees that the quadrupole moment oscillates

at twice the orbital frequency. Hence, for binaries on circular orbits, the dominant

GW frequency is precisely two times the orbital frequency. However, the GW sig-

nal produced by binaries following eccentric orbits is comprised of a more complex

spectrum of Fourier modes. Throughout this thesis, I restrict my attention to sys-

tems on non-eccentric orbits. This assumption is valid for stellar-mass binaries that

form in isolation, as they are expected to have radiated nearly all eccentricity before
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reaching orbital frequencies observable with ground-based GW detectors [28, 32].

However, binaries that form through dynamical processes, such as by dynamical

capture in dense stellar environments [33] or through three-body interactions like

the Kozai-Lidov mechanism [34, 35], may not have time to circularize before be-

coming observable with ground-based detectors; in these scenarios, the binaries can

retain eccentricity up to e . 10−1 upon entering the frequency band of Advanced

LIGO/Virgo. Work to detect and measure such eccentric systems is underway [36],

but I do not pursue it further in this dissertation.

Without eccentricity, the inspiral evolution of a binary is well-described by a

circular orbit whose radius slowly decreases—such a binary is said to follow quasi-

circular orbits. Using the quadrupole formula (1.10) and dimensional analysis, one

can formulate this statement more precisely by comparing the orbital period τorb to

the radiation-reaction timescale τRR, which is the timescale over which the dissipa-

tion of energy through GWs alters the circular orbit. One can approximate τRR as

the ratio of the binding energy E ∼ Mv2 and the rate at which energy is emitted

by the system dE/dt. The energy flux F propagated by gravitational radiation is

encapsulated in the Landau-Lifshitz pseudotensor [37]; in the transverse-traceless

gauge, this is given by F ∼ ḣTT
ij ḣ

ij
TT ∼ v10/d2. Integrating the flux over a sphere of

size d, one finds τRR ∼ E/(dE/dt) ∼M/v8, which differs from the orbital timescale

τorb ∼ r/v ∼M/v3 by a factor of v−5. Thus, during the early inspiral, where v � 1

by assumption, the evolution of the binary is said to be (approximately) adiabatic.

Extending the GW prediction (1.10) to higher PN order requires utilizing

the hierarchy of timescales in the problem. In addition to the the orbital and
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radiation-reaction timescales discussed above, spinning bodies will also precess on

the timescale τprec, with τorb � τprec � τRR. One begins by determining the or-

bital dynamics of the binary, working on short enough timescales that precession

and radiation-reaction enter as sub-leading effects; I carry out this procedure in the

context of two modified theories of gravity in Chapters 2 and 4. Inserting this so-

lution into the stress-energy tensor, one then computes the gravitational radiation

at the given PN order (see Chapter 2 for an example). The precessional dynamics,

which I do not consider in this thesis, are then determined by averaging the pre-

vious solutions over the orbital timescale, while still treating radiation-reaction as

subdominant. Finally, by relating the energy carried away by this outgoing radia-

tion to a commensurate shift in the energy of the orbit, one determines the rate at

which the quasi-circular orbits shrink. All of these pieces are combined to produce

the most accurate prediction for the GWs at a given PN order; I carry out these

last steps in Chapters 2 and 3 for two alternative theories of gravity.

1.2.1.2 Late inspiral and merger

As the orbit of a compact binary shrinks, the perturbative PN approximation

becomes increasingly inaccurate. Ultimately, the description of the system as two

separate bodies breaks down, and one must contend with the non-linearities in

the field equations (1.1) in a non-perturbative way. In this subsection, I discuss

the phenomenology at the end of the inspiral and introduce the effective-one-body

(EOB) formalism [38, 39], a resummation of the PN approximation that extends its
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validity further into the non-linear regime. Finally, I outline how numerical relativity

(NR) is used to compute the GW signal in the highly non-linear regime, and how

these predictions can be incorporated into the previous analytic approaches.

To better understand the behavior of a binary as the PN approximation breaks

down, I first consider the low mass-ratio limit q � 1. To zeroth order in this small

parameter, the smaller mass M2 simply evolves along geodesics of the spacetime

determined by M1. For simplicity, let us assume that the larger mass is a BH.

Then, the quasi-circular orbits that characterize the PN inspiral can only extend up

to the innermost stable circular orbit (ISCO) of the background spacetime. For a

Schwarzschild background, the last (stable) circular orbit has a radius of rISCO =

6M1 ∼ 6M ; if the larger BH has spin, the ISCO radius decreases (increases) for

prograde (retrograde) orbits of the smaller body. After passing through this orbit,

the smaller body plunges into the larger BH on a geodesic with non-negligible radial

velocity. This evolution is quite distinct from the earlier quasi-circular orbits, in

which the velocity was primarily tangential; thus the passage through the ISCO and

the start of the plunge offers a clear indication that the inspiral has ended.

The EOB formalism uses results derived in the PN regime to extend the test-

particle limit used above to non-zero values of q. The overarching aim of this

approach is to map the dynamics of a binary to that of a test body moving in

an effective background spacetime determined by the binary’s characteristics. This

goal is realized by mapping the Hamiltonians and radiation-reaction forces (which

describe the conservative and dissipative sectors of the system, respectively) for test

particle motion to a resummation of PN description of the two-body problem.
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For demonstrative purposes, I simply focus on the conservative sector and ig-

nore the effect of spins. Schematically, one maps the real and effective spacetimes by

identifying conserved action angle variables in the orbits of each. This identification,

in turn, determines a mapping between the 2-body Hamiltonian Hreal describing the

PN motion of two bodies and the Hamiltonian Heff describing the motion of a test

particle moving through the effective spacetime, i.e. Heff = f(Hreal). The energy

map, first derived in Ref. [38] is given by

Heff − µ
µ

=
Hreal −M

µ

[
1 +

η

2

Hreal −M
µ

]
, (1.11)

where µ = M1M2/M
2 is the reduced mass and η = µ/M is the symmetric mass

ratio, or equivalently,

Hreal −M = M

√
1 + 2η

(
Heff − µ

µ

)
−M. (1.12)

The effective spacetime is constructed by first considering generic deformations

to a background Kerr spacetime (or Schwarzschild for non-spinning binaries). From

this ansatz for the effective geometry, one constructs the suitable effective Hamil-

tonian Heff that describes test-body motion in that spacetime. Then, one identifies

a suitable choice of effective spacetime by requiring that Heff satisfy Eq. (1.12) for

an appropriate PN estimate of Hreal. I carry out this procedure in Chapter 2 in

the context of a modified theory of gravity. Note that the knowledge of the real

Hamiltonian is incomplete, e.g. the expression is only known up to some finite PN

order, which leaves some flexibility in how the effective spacetime is defined. Often-

times, one leverages this ignorance by calibrating the model to include information

from other sources, such as from gravitational self-force calculations [40–43] or from
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NR [44, 45]. This extra tuning, particularly from NR simulations, allows the ana-

lytic EOB formalism to track the evolution of a binary through merger, where highly

non-linear interactions arise.

Even discounting its impact on the calibration of EOB models, the advent

of NR simulations of binary systems over the last decade and a half has played a

crucial role in furthering our understanding of compact binary mergers. Numerical

relativity is based on the 3+1 decomposition of spacetime first described within the

Arnowitt-Deser-Misner (ADM) formalism [46, 47], which divides the Einstein equa-

tions into a set of four constraint equations, to be solved on a spacelike hypersurface,

and 12 first order evolution equations, which conserve the constraint equations, i.e.

if the constraint equations are satisfied on one spacelike hypersurface, then they are

also satisfied on nearby slices. However, the first successful numerical evolutions of

BBHs was not achieved until much later [48–50] using multiple different formula-

tions of the Einstein equations. Today, several NR codes actively produce numerical

evolutions of BBHs and BNSs and extract the GW signals they generate, using var-

ious formulations of the Einstein equations, numerical schemes, and computational

techniques; see Refs. [51, 52] and references therein for details. However, such sim-

ulations can be very computationally expensive, taking months to finish even when

parallelized over several hundred cores on supercomputers. Thus, analytic mod-

els remain necessary as a fast and efficient supplement to numerical simulations

to detect GW events with LIGO/Virgo and infer properties of their corresponding

sources.
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1.2.1.3 Ringdown

After merger, the system continues to emit GWs as it relaxes into its final

equilibrium configuration. Sufficiently long after the merger, the system is well-

described by perturbations of the background solution to (1.1) corresponding to the

final remnant object. When the remnant is just given by a vacuum configuration,

e.g. after the merger of a stellar-mass binary black hole (BBH) or neutron-star black-

hole (NSBH) binary, the system is completely described by tensor perturbations on

a Kerr background

gµν = g(Kerr)
µν + hµν , (1.13)

with hµν � 1. I focus on this simple case, but similar phenomenology can occur after

the formation of a hypermassive NS from a binary neutron star (BNS) merger [53,

54], though in that case, the system is described by perturbations to both the metric

and matter fields.

Working within the linear regime, that is ignoring any backreaction of hµν on

g
(Kerr)
µν , and assuming physical boundary conditions, the late-time behavior of hµν is

given by a sum of quasinormal modes whose time-dependence takes the form eiωnt

with a complex frequency ωn [55, 56]. Thus, any distant observer would measure

a GW signal composed of damped sinusoids. Fully non-linear NR simulations of

merging BHs confirm that in astrophysical systems, the post-merger GW signal is

indeed well reproduced by a sum of exponentially decaying sinusoids.
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1.2.2 Observation with ground-based detectors

In the following subsections, I provide an overview of laser-interferometric GW

detectors and how they are used to measure GW. Other techniques for detecting

GWs have been devised (e.g. Weber bars [57–59] and atom interferometry [60–62]),

but I focus only on laser interferometry for the remainder of the thesis.

1.2.2.1 Laser-interferometric detectors

The measurement of GWs involves tracking the motion of freely-falling test

masses, which, absent any external forces, simply follow geodesics of spacetime.

Incident GWs, which are wave-like perturbations of curvature, will induce devia-

tions to the background geodesic motion of the masses. The equivalence principle

guarantees that the response of a single test mass cannot be disentangled from the

gauge freedom in defining a reference frame; however, the relative motion of a sys-

tem of (separated) test masses does provide a signature for GWs. In the limit that

the separation of the masses is much smaller than the curvature scale, the relative

separation ξµ(τ) of the two bodies is given by the geodesic deviation equation

Tα∇α(T β∇βξ
µ) = Rµ

νρσT
νT ρξσ +O

(
ξ2
)

(1.14)

where T µ = dγµ/dτ is the four-velocity of one of the bodies. For weak perturbations

δRµνρσ that vary over different timescales than the background R
(0)
µνρσ (e.g., a static

background curvature produced by the Earth and an incident GW with only non-

zero frequency content), one sees that the change in relative separation of two test
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masses initially at rest scales as δξ ∼ h ξ(0), where h � 1 is the magnitude of

the perturbation and ξ(0) is the separation of the background geodesics. Thus, the

success of a GW detector relies on its ability to resolve small distance variations

between test masses located at long relative distances.

Laser interferometry is an ideal technique for achieving this goal. In its sim-

plest form, a phase-coherent beam of light (e.g., from a laser) is passed through a

beam splitter, and the subsequent beams are directed through two orthogonal arms.

The beams are reflected off mirrors at the end of each arm, and then are recombined

back at the source. The difference in the path length for each beam (modulo the

wavelength of the light) determines the intensity of the combined light, allowing

for relative distance measurements on the sub-wavelength scale. Absent any other

forces, the mirrors in each arm follow geodesics, and so a GW passing through the

detector changes the proper length of each cavity and thus the intensity of the re-

combined beam. In reality, other external forces are applied to the mirrors; some,

like the vertical force to suspend the mirrors in the cavities, do not impact the re-

sponse of the interferometer to an incident GW, whereas others, such as those from

radiation pressure, thermal and seismic fluctuations carried through the suspension

system, or time-varying (Newtonian) gravitational gradients from the external en-

vironment, are more difficult to disentangle from GWs, and thus serve as sources of

noise in the detector.

The LIGO [63] and Virgo [64] instruments refine this basic principle using

more complex optical systems; I outline a few such improvements, but direct the

interested reader to Refs. [63–66] for more detail. Rather than simply recombining
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the laser light after a single transit through the detector, Fabry-Perot cavities are

used for the arms, allowing one to increase the effective path length of the photons

by ∼ O(100), with an equivalent increase in sensitivity to GWs. A similar technique

is used to increase the effective power of the laser by another factor of ∼ O(100); a

power recycling mirror is coupled to the system to capture light emitted from the

beam splitter back to the laser. Increasing the laser power helps to reduce quantum

shot noise in the system, described below.

Experimental noise ultimately determines the sensitivity of a detector, and

consequently the quantity and quality of the GW science for which it can be used.

In the remainder of this section, I outline the major sources of noise in the LIGO

and Virgo instruments. Each source of noise impacts the frequency-dependent re-

sponse of the detector differently, and thus techniques to mitigate noise over some

frequency bands may worsen sensitivity at other frequencies. The calibration of

the detectors involves balancing the various sources of noise to construct the most

effective instrument for the desired science. I discuss two broad categories of noise

sources below: optical read-out noise and displacement noise [28]. The former class

of noise arises from the quantum nature of the optical system, whereas the latter

represents classical disturbances that impact the motion of the test masses.

Optical read-out noise in an interferometer is comprised of quantum shot noise

and radiation-pressure noise. Shot noise occurs due to the quantized nature of light;

because the beam traveling through the detector arms is composed of a finite number

of photons, the intensity of light measured by the interferometer fluctuates follow-

ing Poisson counting statistics. This noise impacts the detector’s sensitivity at high
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frequencies, and can be mitigated by increasing the power of laser light. The pho-

tons in the interferometer exert radiation pressure on the test masses; because the

intensity of photons incident on the test masses fluctuates, so too does this pres-

sure, inducing another source of stochastic noise in the detector. Radiation pressure

noise impacts the low-frequency sensitivity of the detector, and (conversely to shot

noise) can be mitigated by decreasing the amount of laser light in the interferometer.

Thus, a tradeoff between these two sources of noise must be made in the design of

an interferometric GW detector

The two dominant sources of displacement noise are seismic and thermal fluc-

tuations. At very low frequencies, the dominant source of noise comes from seismic

activity, both from anthropogenic (e.g. nearby technicians, cars, etc.) and natural

sources (e.g. surface waves in the Earth’s crust). Some components of this noise

can be mitigated through the complex isolation systems [63], but others, such as

the time-varying gravity-gradients [67] are unavoidable. Thermal fluctuations in

the test masses and the systems used to suspend them also cause small displace-

ments in the faces of the mirrors, which in turn induce small displacements in the

effective length of the detector arms. The impact of thermal noise on the detec-

tor’s sensitivity decreases with frequency, but does so at a lesser rate than seismic

and radiation pressure noise; thus thermal noise plays the most significant role at

moderate frequencies [63].
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1.2.2.2 Bayesian inference with gravitational waves

Laser interferometers are designed to resolve the minute relative distance fluc-

tuations caused by a passing GW. However, as discussed above, instrumental and

environmental noise are unavoidable; typically, noise has a much larger impact on

the detector output than any incident GW. Fortunately, the characteristics of both

the noise and underlying signal are well understood; this knowledge is leveraged

to extract the signal from noise. In this section, I outline the strategies used by

the LIGO and Virgo collaborations to detect GWs and subsequently estimate the

properties of their sources.

For concreteness, I consider the time-dependent output of a single detector

d(t) ≡ h(t) + n(t) where h(t) arises from an incident GW and n(t) from noise;

typically, |h(t)| � |n(t)|. Note that h(t) is a contraction of the GW hij(t − n̂ · x)

(traveling in the n̂ direction) and a detector tensor Dij(n̂), which encapsulates the

directional dependence of the detector’s sensitivity [28]. In anticipation of work to

come, it is often convenient to project the incident GW into a polarization basis. In

the limit that the wavelength of the GW is much larger than the detector, one can

drop the spatial dependence of hij measured at the detector, and thus decompose

the signal into

hij(t) =
∑
A

hA(t)eAij(n̂), (1.15)

where {eAij} are a complete set of polarization tensors. Then the detector response
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is given by

h(t) =
∑
A

FA(n̂)hA(t), (1.16)

where FA(n̂) ≡ DijeAij(n̂) is the antenna pattern of the detector, which represents

the directional-dependence of the detector’s sensitivity to each GW polarization.

The noise in the LIGO and Virgo detectors is approximately stationary, mean-

ing its statistical properties (e.g. mean, variance, etc.) are nearly constant over time.

Without loss of generality, I can assume the mean of the noise 〈n(t)〉 = 0, where

〈. . .〉 represents an ensemble average of noise realizations or, assuming ergodicity, an

average over a long time interval. In the Fourier domain, the correlation function

for a stationary stochastic process takes a particularly simple form

〈ñ∗(f)ñ(f ′)〉 =
1

2
δ(f − f ′)Sn(f), (1.17)

where Sn(f) is the noise spectral density of the detector; due to this simplicity, it

is often more convenient to work in the Fourier domain. The noise is also approxi-

mately Gaussian, meaning that the probability of a particular noise realization n is

given by

P (n) = N exp

[
−1

2
(n|n)

]
, (1.18)

where N is an overall normalization and I have introduced the inner product

(a|b) ≡
∫ ∞
−∞

df
ã∗(f)b̃(f)

Sn(f)/2
= 4 Re

(∫ ∞
0

df
ã∗(f)b̃(f)

Sn(f)

)
. (1.19)

Matched filtering is one approach adopted by the LIGO and Virgo teams to

identify the presence of a GW produced by a coalescing binary system in the data
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stream d(t).3 This technique involves applying a filter to d(t) that amplifies the

presence of the GW h(t) relative to the noise n(t). The optimal (Wiener) filter for

such a task is given in the Fourier domain by [28]

W̃h(f) =
h̃(f)

Sn(f)
, (1.20)

where the subscript highlights the dependence of the filter on h. This choice max-

imizes the (averaged) measured signal-to-noise ratio of the signal 〈ρ〉, where ρ is

defined for a generic filter W as

ρ ≡
∫∞
−∞ df s̃(f)W̃ ∗(f)(∫∞

−∞ df
1
2
Sn(f)|W̃ (f)|2

)1/2
. (1.21)

Using the filter in Eq. (1.20) gives the optimal signal-to-noise ratio SNR ≡ (h|h)1/2.

For stationary, Gaussian noise, ρ2 follows a χ2 distribution with two degrees of

freedom whose mean is determined by the optimal SNR of the underlying GW.

Thus, for a particular noise realization n(t), the magnitude of ρ allows one to de-

termine the statistical significance of the presence of a non-zero GW in the data.

Larger ρ corresponds to a higher statistical significance, and thus lower false-alarm

probability—the probability of such a value of ρ being achieved only through noise.

A segment of data is said to contain a GW provided that ρ exceeds some prede-

termined threshold, which corresponds to a desired maximum false-alarm rate. In

practice, the noise in an actual detector is non-stationary and non-Gaussian, and so

ρ2 does not follow a χ2 distribution and serves as a poor test statistic for determining

3Other, more model-independent strategies are also employed to detect GWs, particularly for

short signals. These include the coherent WaveBurst [68, 69] and omicron-LALInference-Burst [70]

pipelines and BayesWave [71] searches.
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the presence of a GW in the data. More sophisticated test statistics are used in its

place to mitigate these non-ideal aspects of the noise. However, I restrict my atten-

tion to the idealized case here, noting that the same overall strategy can be applied

using test statistics better adapted to the noise. Additional statistical significance is

gained by folding into the analysis the fact that a true GW signal should be observ-

able coincidentally across a network of detectors; I ignore this added complication

here.

Gravitational-wave detection requires one to assess whether a GW is present

in a stretch of data. Unlike in the discussion above, the precise form of h (and thus

optimal choice of Wh) is not known ahead of time. To circumvent this problem,

one approach instead uses a large bank of template waveforms {h̃(f ;θ)}, each with

different intrinsic parameters (masses, spins, etc.) and/or extrinsic parameters (dis-

tance, sky location, etc.), represented by θ. The signal-to-noise ratio ρ is computed

using each waveform in the template bank, representing a goodness-of-fit of the

waveform to the data. Using a finite template bank reduces the signal-to-noise ratio

(and thus the statistical significance of a detection) compared to when the optimal

matched filter Wh is used; this reduction can be mitigated using a sufficiently dense

bank of templates. Consider the case where the incident GW is given by h̃(f ; θ̂),

whereas the best-fit waveform in the template bank is h̃(f ;θ). Then ρ̂ computed

using the optimal filter is related to the maximum ρ recovered with the template
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bank by

ρ ≈ ρ̂

1− (h(θ̂)|h(θ))[
(h(θ̂)|h(θ̂))(h(θ)|h(θ))

]1/2

 , (1.22)

where the second term in parentheses is called the mismatch between the two wave-

forms. LIGO and Virgo use template banks constructed such that any possible

waveform in the parameter space of its search has a mismatch of less than 3% with

respect to at least one template; for more detail see Refs. [72–74]. However, one

can also appreciate from Eq. (1.22) the importance of accurate waveform models for

GW detection: inaccuracies in waveform models will further reduce the recovered

signal-to-noise ratio.

The matched-filtering strategies outlined above are optimized to quickly de-

termine whether a stretch of data d contains a GW. However, they do not guarantee

that parameters θ of the best-fit template accurately match the parameters θ̂ of the

true underlying signal. Instead, once a GW is detected, parameter estimation is

carried out within a more comprehensive Bayesian framework. The ultimate goal

of this procedure is to estimate the posterior probability of the parameters of the

signal given the observed data p(θ|d); this probability is given by Bayes’ theorem as

p(θ|d) =
p(θ)p(d|θ)

p(d)
, (1.23)

where p(d|θ) is the likelihood of the data given the parameters, p(θ) is the prior

probability on the model parameters, and p(d) is the evidence for the data. I detail

the significance of each of these terms below.

Again assuming stationary Gaussian noise, the likelihood can be inferred di-

rectly from Eq. (1.18): if the total signal is modeled by d = h(θ) + n, then this
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equation becomes

p(d|θ) = N exp

[
−1

2
(d− h(θ)|d− h(θ))

]
. (1.24)

Note that this is the likelihood corresponding to detection in a single interferometer,

but under the assumption that the noise in each detector in a network is uncorrelated

with the others’, the joint likelihood is simply the product of the likelihood in each

detector.

The prior probability represents the a priori expectation for the distribution

of the model parameters. The particular choice of prior distribution becomes less

relevant if the likelihood is much more sharply peaked with respect to θ; in this limit,

the prior can be treated as approximately constant, and thus only contributes to the

normalization of the posterior. This situation arises for GW signals with high SNR:

if the data corresponds to a loud GW signal with parameters θ̂, i.e. d = h(θ̂) + n,

then the likelihood takes the approximate form

p(d|θ) = N exp

[
−1

2
Γij(θ − θ̂)i(θ − θ̂)j ×

(
1 +O((SNR)−1)] , (1.25)

where Γij =
(
∂h
∂θi
| ∂h
∂θj

)
is the Fisher information matrix evaluated at θ̂. The pos-

terior probability distribution is well approximated by the likelihood provided that

|∇θp(θ̂)| × |
√

Γ−1
ij | � 1, i.e. the prior varies more slowly than the likelihood near

its peak.

Finally, the evidence p(d) does not meaningfully inform the posterior probability—

given the prior and the likelihood, the evidence simply represents the overall normal-

ization of the posterior distribution (which must integrate to unity to be a proper

probability distribution). However, the evidence is a key component in Bayesian
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model selection: given two competing hypotheses (or models) H1 and H2, the odds

ratio between the hypotheses is given by

OH1
H2

=
p(H1|d)

p(H2|d)
=
p(H1)

p(H2)

p(d|H1)

p(d|H2)
, (1.26)

where the last term is the Bayes factor, i.e. the ratio of the evidence for each model.

In principle, the posterior distribution can be computed directly from Eq. (1.23)

(up to normalization) over the full parameter space of θ given a particular set of

priors, waveform model h(θ) and data stream d. In practice, this direct approach is

infeasible due to the high dimensionality of the parameter space and the computa-

tional expense of evaluating the likelihood function Eq. (1.24). Instead, stochastic

sampling methods are used to efficiently and adaptively choose points in the pa-

rameter space for which to evaluate the likelihood and reconstruct the posterior

distribution. The two methods employed in this thesis are Markov chain Monte

Carlo (MCMC) and nested sampling. The MCMC methods employ the Metropolis-

Hastings algorithm [75, 76]: a Markov chain of points in parameter space is con-

structed through a sequence of jump proposals such that the stationary distribution

of the chain matches the posterior probability distribution p(θ|d). The acceptance

or rejection of each proposal (which determines whether the next element of the

chain is the proposed point or current point, respectively) is decided randomly with

a probability related to the relative posterior probability of the proposed and current

points. Nested sampling uses the algorithm of Skilling [77] to estimate a sequence

of likelihood contours and the prior volume within each by picking points in pa-

rameter space with progressively higher likelihood. Then, the posterior distribution
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is reconstructed by re-sampling this sequence of points according to their posterior

probabilities. In conjunction with the LSC Algorithm Library (LAL), I use the

LALInference [78] software package to perform parameter estimation with either of

the sampling techniques mentioned above.

1.3 Testing general relativity with gravitational waves

One of the primary goals of GW science is to probe the fundamental nature of

gravity and test whether it is best described by GR. I begin this section by presenting

theoretical motivations for undertaking this endeavor. I then discuss the form in

which modifications to GR could appear, both at the fundamental level (e.g. in the

action) and as differences in GW phenomenology. Finally, I outline some strategies

used to place constraints on deviations from GR with GWs.

1.3.1 Motivations for modifying general relativity

General relativity has passed every experimental test of the past hundred

years [79]. These tests convincingly validate the predictions of GR over scales of

1µm . ` . 1AU. Yet, there remain several compelling reasons to continue to

explore alternative theories that modify GR on different scales.

As discussed in Sec. 1.1, singularities naturally arise in GR. In addition to

the case of gravitational collapse mentioned earlier, singularities also occur in the

early-time limit of many cosmological models. Singularities point to a deficiency

in the theory; GR becomes non-predictive for the causal future of a singularity.
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However, by appropriately modifying the Einstein-Hilbert action, one can resolve

the interior singularity of BHs [80] or the early-time singularity in cosmological

spacetimes [81, 82].

Ignorance of the fundamental physics underpinning current cosmological mod-

els provides another reason to consider modifications to GR. The ΛCDM model re-

mains the most successful cosmological model to date, yet it posits that the majority

of the energy in the Universe today is comprised of dark energy and dark matter.

While many proposals beyond the Standard Model have been put forth to explain

these dark sectors, none have been confirmed to date. Moreover, the ΛCDM model

seems to require very precise fine-tuning: the value of the cosmological constant Λ

consistent with cosmological observations differs from the vacuum energy expected

via dimensional analysis by 120 orders of magnitude. As an alternative to extend-

ing the Standard Model, modified theories of gravity can also explain some of the

phenomena for which these dark sectors are invoked.

Finally, GR is a strictly classical theory, whereas a complete theory of every-

thing will presumably also incorporate quantum effects into gravity. In principle,

deviations from GR could persist even as one takes the classical limit of such a theory.

For example, in string theory—the most well-known quantum-gravity theory—the

scalar dilaton naturally accompanies the tensor graviton; this additional field could

(in principle) play a role in the classical limit of the theory. Reversing this line of

reasoning, classical modifications to GR could potentially make the theory easier to

quantize. For example, adding higher-order curvature terms to GR makes the the-

ory renormalizable [83]; though this property is not strictly necessary to construct
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a quantum theory of gravity, it would make the quantization of the classical theory

much more straightforward.

In this thesis, I primarily focus on potential deviations from relativity in the

“strong-field” regime, defined as where the (dimensionless) Newtonian potential

ΦNewt ∼ M/R and (dimensionful) curvature scale ξ ∼ M/R3 are both large. Cor-

rections in this regime can potentially alleviate each of the issues discussed above,

either directly (e.g. to resolve singularities or improve renormalizability) or indi-

rectly (e.g. via corrections to behavior on cosmological scales induced by deviations

on much shorter distance scales).

1.3.2 The menagerie of modified gravity

As outlined in Sec. 1.1, GR directly embodies the equivalence principle. How-

ever, it is not the only possible theory of gravity to do so; the same fundamen-

tal tenants are encoded into all metric theories of gravity—theories in which the

non-gravitational fields ψ couple minimally to the metric. Yet, out of all possible

metric theories, GR remains exceptionally simple. This sentiment is made more pre-

cise through Lovelock’s theorem [84, 85]: the Einstein field equations are the only

second-order field equations that respect the equivalence principle and whose ac-

tion is diffeomorphism-invariant, local, and dependent only on the four-dimensional

metric.

Lovelock’s theorem singles out GR as the unique metric theory that satisfies

all of the aforementioned conditions. Conversely, all alternative theories of gravity
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must violate at least one of these requirements. From this perspective, each of the

conditions of Lovelock’s theorem can be viewed as a fundamental pillar on which GR

is based; if any of these pillars are removed, GR is no longer the only possible gravity

theory. In the remainder of this subsection, I discuss examples of alternative theories

that are allowed by relaxing each of these conditions in turn, focusing specifically on

the modifications to GR that impact the GW signal observable with ground-based

detectors. However, I restrict my attention to metric theories (which satisfy the

equivalence principle by construction) and ignore the possibility of field equations

containing derivatives higher than second order, as these would generally manifest

an Ostrogradsky instability [86]. The remaining pillars that one can relax are: (i)

gravity is mediated solely by the metric, (ii) gravity is diffeomorphism invariant, (iii)

gravity is local, and (iv) spacetime is four-dimensional. For brevity, I discuss only

one or two alternative theories of gravity for each condition to highlight the new GW

phenomenology that can occur outside of GR; for a more representative survey of

the landscape of modified gravity, see Refs. [79, 87–89]. Because the phenomenology

manifested in higher-dimensional theories (iv) can be found in the other alternatives

I present, I will not discuss this final type of modification in detail.

1.3.2.1 Additional fields

Perhaps the simplest way to extend GR is to include additional fields that

mediate gravity. In a metric theory, these new fields cannot couple directly to

matter, as this would prevent the universal coupling of the non-gravitational sector

31



to the metric. The prototypical example of such an extension are scalar-tensor (ST)

theories, which include a scalar field non-minimally coupled to the metric. The

action in such theories is given by

SST[gµν , ϕ, ψ] =
1

16π

∫
d4x
√−g eϕ (R− ω(ϕ)gµν∂µϕ∂νϕ− U(ϕ)) + Sm[gµν , ψ],

(1.27)

where I have restricted my attention to the case of zero cosmological constant (which

I continue to do for the remainder of the thesis). Written this way, the scalar field

takes the same form as a dilaton, which arises in many theories of quantum gravity,

e.g. string theory. ST theories are used to incorporate modifications to GR in both

the strong- and weak-gravity regimes. I work within the former class of theories

in several places in this thesis; see Chapters 3-7. For weak-field (i.e. cosmological)

modifications, ST theories are often expressed instead as f(R) theories, whose action

Sf(R)[gµν , ψ] =
1

16π

∫
d4x
√−gf(R) + Sm[gµν , ψ]. (1.28)

can be mapped to Eq. (1.27) via eϕ = f ′(R), ω(ϕ) = 0, and U(ϕ) = eϕR− f(R).

The class of theories described by Eq. (1.27) is actually a very restricted subset

of viable scalar extensions of GR. Horndeski theories [90] cover all possible alterna-

tive theories with a single scalar field whose field equations are second order, so as

to avoid Ostragradsky instabilities. More recently, an even larger classes of “beyond

Horndeski” theories have been established [91–93] whose equations of motion are

higher than second order, but that remain free of ghosts.

The GWs produced from compact binary systems in ST theories differ from

those produced in GR in a number of ways. First, the orbital evolution of a binary
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is impacted by the introduction of the new scalar degree of freedom. The most

dramatic change occurs when the Compton wavelength of the scalar is significantly

larger than the separation of the binary; in this case, the binary can emit dipole

radiation, sourced by a time-varying scalar dipole moment. Recall that dipole radi-

ation is prohibited in GR and, from dimensional analysis, expected to scale with a

weaker power of 1/c (i.e. enter at lower PN order) than quadrupole radiation. Thus,

binaries with non-zero scalar dipole moment can emit significantly more energy and

thus evolve more rapidly than the equivalent system in GR, particularly at large

orbital separations. If the Compton wavelength of the scalar is much smaller than

the orbital separation, then the field will be effectively screened away through a

Yukawa-like potential [94] such that the dynamics much more closely resemble GR

(e.g. no dipole radiation will be emitted). Nevertheless, even in this case, the struc-

ture of the compact objects in the binary can significantly differ from GR, which

can offer another signature of deviations; for example, in massive ST theories, the

mass [95] and tidal deformability [96] of neutron stars can differ from the equivalent

star in GR, which would be imprinted in the GWs produced.

Besides modifications to their source, GWs in ST theories also contain addi-

tional polarization content. Beyond the two transverse-traceless polarizations modes

found in GR, ST theories predict a third transverse breathing-mode that is isotropic

in the plane orthogonal to its wave vector; this new mode corresponds to a helicity-0

state of the graviton. Massive ST theories contain an additional fourth, longitudi-

nal polarization [97]. With just a single detector, the polarization content of a

GW signal is degenerate with the wave’s direction of propagation (or equivalently,
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the relative orientation of the detector and the source), and thus cannot be deter-

mined. However, with a network of N non-coaligned detectors, one can, in principle,

discriminate between N polarization states of the incident wave.

Scalar-tensor theories are a standard first example of modified gravity because

they predict a wide variety a phenomena that are relatively easy to compute. How-

ever, no-hair theorems guarantee that isolated BHs are no different in ST theories

than in GR (although there may be certain astrophysical contexts in which these

theorems can be circumvented [98]). Yet, there exist other extensions of gravity in

which BHs do behave differently than in GR. For completeness, I discuss one such

example: Einstein-Æther (EA) theory. This theory allows for breaking of the local

boost symmetry of GR (i.e. violations of Lorentz invariance) by introducing a unit

vector uµ known as the æther field that represents a preferred timelike direction.

This is a particularly compelling alternative theory because it has recently been

shown to have a well-posed Cauchy formulation [99].

The action for EA theory is given by

SEA =
1

16π

∫
d4x
√−g [R + Lu + λ(uµuµ + 1)] + Sm[gµν , ψ], (1.29)

where

Lu ≡−Kµν
ρσ∇µu

ρ∇νu
σ, (1.30)

Kµν
ρσ ≡c1g

µνgρσ + c2δ
µ
ρ δ

ν
σ + c3δ

µ
σδ

ν
ρ − c4u

µuνgρσ, (1.31)

and uµ is constrained to be a unit timelike vector through the Lagrange multiplier

λ. If uµ is hypersurface orthogonal, then it can be rewritten as the normal vector
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to a preferred time-foliation φ of the spacetime, i.e. uµ = ∇µφ/
√

(∇νφ∇νφ), where

φ = const are spacelike hypersurfaces. In this special case, EA theory coincides with

Khronometric theory [100], which is the low-energy limit of Hor̆ava gravity [101],

a proposed theory of quantum gravity more amenable to standard quantum field

theory techniques than GR.

As with ST theories, the introduction of a new field in EA theory impacts

the evolution of compact binary systems and the propagation of the GWs that they

emit. There exist five propagating modes in EA theory: the two standard tensor

modes found in GR, two transverse vector modes and a single scalar mode [102]. The

existence of scalar and vector modes allows for the emission of dipole radiation. The

amount of dipole radiation emitted by a binary is determined by the relative motion

of the binary and the æther field and the structure of each body. In the limit that

each body moves slowly relative to the æther and at leading PN order, the emission

of scalar and vector radiation is determined by the so-called “sensitivity” of each

body, which depends on the composition of that object. While the sensitivities

of spherically symmetric NSs are known [103], the analogous computation for BHs

has not been undertaken in EA theory4. Nevertheless, spherically symmetric BH

solutions have been constructed in EA theory [105], and their sensitivity is known

to be non-zero [106].

4Note that the calculation of BH sensitivities has been recently computed in Khronometric

theory [104], which corresponds to EA theory for a restricted set of æther field configurations.
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1.3.2.2 Broken diffeomorphism invariance

Massive gravity is a commonly studied alternative to GR that violates diffeo-

morphism invariance. A fully non-linear theory of massive gravity free of ghosts was

derived fairly recently by de Rham, Gabadadze, and Tolley (dRGT) [107, 108]. The

action for dRGT massive gravity is given schematically by

SdRGT[gµν , ψ] =
1

16π

∫
d4x
√−g

[
R +

1

2
m2
g

4∑
n=0

αnLn(Kµν)
]

+ Sm[gµν , ψ], (1.32)

where αn are constant coefficients, mg is the mass of the graviton, Ln[Xµ
ν ] is a

function containing n contractions of X, and Kµν ≡ δµν −
√
gµαfαν where fµν is a

non-dynamical, reference metric; see Ref. [108] for more detail. The appearance of

the reference metric breaks the diffeomorphism invariance of the theory.

A massive graviton has five possible polarization states, as is expected for a

massive, spin-2 particle. In addition to the two helicity-2 transverse traceless modes

also present in GR, the theory predicts a helicity-0 transverse breathing mode and

two spin-1 longitudinal modes [109]. However, the two helicity-1 modes do not

couple directly to matter, and thus are not expected to be produced through bi-

nary coalescence, and the remaining helicity-0 mode is suppressed by Vainshtein

screening [110] in the presence of matter (e.g. within the dark matter halo of a

galaxy) [109]; hence, GWs observed on Earth will typically be of only the polar-

izations expected in GR. However, the presence of non-zero graviton mass causes

these GWs to propagate subluminally. This modification of the dispersion relation

induces a frequency-dependent shift in the overall phase of the incident GW [111].
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Constraining this deviation from the signal predicted in GR allows one to constrain

the mass of the graviton using GWs; I discuss this type of test in more detail below.

1.3.2.3 Non-locality

Adding non-local corrections to GR can both help resolve singularities that

appear in solutions of collapsing matter or evolving cosmologies and potentially ex-

plain the accelerated expansion of our universe. For illustrative purposes, I consider

the theory proposed in Ref. [112], where non-local corrections appear over long dis-

tance scales; these terms could arise as corrections from quantum gravity in the

infrared regime. The action for this theory is given by

Snon-local =
1

16π

∫
d4x
√−g

[
R− 1

6
m2R

(
2−1

)2
R

]
, (1.33)

where m represents the mass scale of new physics. Cosmological solutions in this

theory have been constructed with self-accelerating expansion in which the effective

dark energy is generated by these non-local terms [112]. These solutions are consis-

tent with current Solar System and cosmological observations [113], indicating that

this theory provides a compelling alternative to the current ΛCDM paradigm.

The primary GW signature of this theory is associated with the propagation

of GWs. The non-local terms in Eq. (1.33) dynamically generate a mass for the

conformal mode of the metric; however this mode is non-radiative, and does not

comprise part of the observable GW signal generated in this theory. In fact, unlike

the massive gravity theory discussed in the previous subsection, the only propagating

degrees of freedom in this non-local theory are two spin-2 modes that propagate at
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the speed of light (as in GR) [114]. However, unlike GR, the damping of these modes

as they propagate over cosmological distances differs from that in GR [115].

The amplitude of GWs is inversely proportional to the luminosity distance to

the source dL; this quantity reduces to the distance d in Eq. (1.10) in the special

case that the background spacetime is Minkowskian. However, in more generic

cosmological backgrounds, the luminosity distance will depend on the redshift of the

signal z observed today due to the cosmological evolution of the Universe. In GR,

the luminosity distance for GWs takes the same familiar form as for electromagnetic

waves; for a spatially flat, Friedmann–Lemaitre–Robertson–Walker universe with an

evolving scale factor a(t), I have

dL(z) =
1 + z

H0

∫ z

0

dz′ρ0√
ρR(1 + z′)4 + ρM(1 + z′)3 + ρDE(z)

, (1.34)

where H0 ≡ ȧ0/a0 is the Hubble constant (measured today), ρR, ρM , ρDE are the

density of radiation, matter, and dark energy, respectively, and ρ0 ≡ 3H2
0/(8π) is the

critical density needed to ensure a flat spatial metric. However, in the non-local ex-

tension of GR considered here, the luminosity distance for GWs no longer takes this

form, and so discrepancies can emerge between the luminosity distance recovered

with the electromagnetic signal dEM
L and with the GW signal dGW

L from the same

source. This type of analysis has been carried out using the coincident electromag-

netic and GW observations of GW170817 [116]; however, only weak bounds on this

theory could be placed due to the poor measurement of H0 from those observations.
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1.3.3 Tests of gravity with gravitational waves

1.3.3.1 Testing various facets of gravitational wave signals

The previous subsection outlined the range of phenomenology that can arise in

modified theories of gravity. In this section, I discuss how to formulate tests of GR

given these predictions. I detail three classes of tests, corresponding to various types

of deviations from GR that could be imprinted on the GW signal from a compact

binary inspiral. I first consider deviations to the GW generation by the system,

e.g. modifications to orbital motion of the binary. Next, I formulate tests of GW

propagation. Finally, I discuss tests of the GW polarizations present in an emitted

signal. Though many alternative theories of gravity predict deviations from GR in

more than one of these categories, it is often convenient to consider these various

phenomena independently.

As we have seen in the previous sections, the inspiral portion of the an ob-

served GW signal contains a direct imprint of the orbital motion of the binary that

sources it. Accordingly, deviations to the binary’s evolution due to modifications

to GR impact the inspiral portion of the GW. To measure (or constrain) these de-

viations, one performs Bayesian inference employing the techniques of Sec. 1.2.2.2.

This approach relies on a waveform model to reproduce the observed GW signal;

however, to capture potential deviations from GR, this model must be “generalized”

to include parameterized deviations away from the GR prediction. The additional

modifications are controlled through a set of deviation parameters {δϕ̂n}. Though
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there are several possible ways in which to introduce parameterized deviations to

a GR signal, a common choice for tests of the inspiral evolution is to consider in-

dependent modifications of each series coefficient in a PN-expanded prediction for

the signal [73, 117–123]—in this case, each δϕ̂n represents the extent of deviation

from the GR prediction at a particular PN order. This particular approach for

constructing generalized waveform models can be easily related to the predictions

of many alternative theories of gravity; provided that an alternative theory admits

a low-velocity expansion and that deviations from GR are small, then the signal

predicted in this alternative theory can be mapped to the model outlined above.

Then, using Bayesian inference, one attempts to measure/constrain the deviation

parameters in this model for a given GW observation to determine whether that

signal is consistent with the predictions of GR (i.e. consistent with no deviations

in the waveform model). Chapter 9 focuses on this type of test using observations

made by LIGO and Virgo.

Tests of GW propagation can be designed in much the same way as tests

of GW generation: modifications to the propagation of GWs are introduced to

a GR waveform model through a set of parameterized deviations. For example,

Refs. [9, 10, 111, 122, 124–126] considered corrections to the graviton dispersion

relation in GR, which, in the Fourier domain, is simply E2 = p2, where E and p are

the temporal and spatial components of the wavevector of a propagating plane wave.

These references considered deviations that were polynomial in |p|; as before the

deviation parameters represent the magnitude of the correction at each polynomial

order. Modifications to the dispersion relation modify the phase evolution of the
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GW signal (see Ref. [126]), and these deviations can be constrained in a similar

manner to deviations to GW generation discussed above. Other types of tests of GW

propagation are possible with coincident observations of electromagnetic and GW

signals from a single source. For example, simply computing the difference in time

of arrival between γ-rays and GWs produced by the BNS coalescence GW170817

provided strong constraints on many alternative theories of gravity [127–134].

Tests of GW polarizations differ significantly from those of GW generation or

propagation. They rely on the fact that the directional sensitivity of a given detector

differs for each possible polarization. The directional dependence of the sensitivity

of interferometer I to a GW of polarization A incident from a particular position

in the sky Ω can be expressed as an antenna pattern F
(A)
(I) (Ω). With only a single

detector, the polarization and amplitude of a GW signal are completely degenerate;

it requires a network of detectors to disentangle these quantities. If the sky location

of the source of GWs is known (e.g. from the a coincident electromagnetic obser-

vation), then one approach to identify non-GR polarization content in the signal

employs so-called null streams [135]. With a network of three or more independent

detectors, one can project out the tensorial (GR) modes present in the data stream

from each interferometer via straightforward algebraic manipulation. Then, if any

coherent signal remains across the resulting null streams, this indicates the presence

of non-GR polarization content in the signal. An alternative approach uses Bayesian

model selection (as described in Section 1.2.2.2) to differentiate between different

polarizations [136]. One considers the relative odds that an observed GW can be

described by polarization A versus polarization B by computing the Bayesian evi-
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dence in support of the following hypotheses: the GW signal at detector I is given

by h
(A)
(I) = F

(A)
(I)

ij
hij or the GW signal at detector I is given by h

(B)
(I) = F

(B)
(I)

ij
hij.

Unlike the null stream approach, this method requires some waveform model hij

for the incident GW; in Refs. [9, 122], this analysis was conducted using waveforms

constructed with a morphology-independent sum of sine-Gaussians [71, 137] to con-

strain the polarization content in observed GW signals. However, note that, at

present, the hypotheses used in this test are somewhat artificial; GW sources gener-

ate multiple polarizations of GWs in most modified theories of gravity, whereas the

hypotheses assumed here assume the entire signal is of only one polarization.

1.3.3.2 Designing gravitational-wave tests of general relativity

Tests of GR are commonly classified into one of two contrasting categories:

theory-specific and theory-agnostic tests [88] (or equivalently, direct and parame-

terized tests [89]). These two types of tests differ conceptually in the underlying

assumptions they require. Theory-specific tests are based on the supposition that

a specific theory (or set of theories) correctly describes the classical behavior of

gravity, and then use GW observations to better inform our understanding of these

theories. In contrast, theory-agnostic tests do not rely wholly on any particular the-

ory of gravity, but rather consider the predictions in a parameterized neighborhood

of theories around GR.

The choice of theory-specific or theory-agnostic approach guides the ultimate

design of GW tests (such as those outlined in the previous subsection) one performs.
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For concreteness, let us consider a specific example: suppose I wish to test the inspi-

ral dynamics (GW generation) in a observed signal produced by a coalescing BNS.

A theory-specific test would consider a specific class of theories—for example, ST

theories—in which the GW signal from such a system would differ from the predic-

tions of GR. The dominant non-GR effect in such theories arise from the emission

of dipole radiation, which contributes a -1PN correction to the phase evolution of

the frequency-domain GW signal. The magnitude of this effect is governed by a

set of theory parameters, which, in the case of ST theories, simply characterize the

functions ω(ϕ) and U(ϕ) in Eq. (1.27). In fact, if I assume that U(ϕ) = 0, then the

dominant non-GR effect is determined only by the constant ω0—the first term in

the PN expansion of ω(ϕ) = ω0 + ω′0ϕ + . . .. Thus, a theory-specific test could use

a waveform model generalized to incorporate this -1PN effect (as characterized by

ω0) in hopes of measuring this fundamental parameter of the assumed theory. Or,

one could use Bayesian model selection to compare the relative odds that this ST

theory is favored/disfavored versus a GR model.

In contrast, a theory-agnostic test of similar deviations could be used to con-

strain generic -1PN deviations to the GW signal produced by a BNS in GR. Again,

one must use a waveform model generalized from a GR prediction to include the

possibility of such a -1PN effect. However, unlike in the theory-specific case, the

magnitude of this correction would not be regulated by any fundamental constant of

a theory; instead, one could simply introduce a generic deviation parameter δϕ̂ that

represents a free coefficient that dictates the size of this -1PN term. One could then

employ many of the same statistical techniques in hopes of measuring/constraining
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δϕ̂. The information inferred on this deviation parameter offers a measure of con-

sistency between the observed data and the predictions of GR.

As this example illustrates, the actual procedure for carrying out theory-

specific and theory-agnostic tests can be remarkably similar. And yet, the statistical

questions addressed in each of the outlined tests are fundamentally different. Within

a Bayesian framework, this distinction is inherently manifested in the choice of prior

distribution [p(θ) in Eq. (1.23)] one employs. In fact, as long there exists a bijection

relating ω0 to δϕ̂, one can convert the posterior distribution measured on either

quantity (in the theory-specific or theory-agnostic test outlined above, respectively)

to a posterior on the other; then all differences in the two results stem from the

corresponding choices of priors.

A complementary dichotomy distinguishing different types of GW tests of GR

are the notions of top-down and bottom-up designs [88].5 A top-down approach be-

gins from some fundamental physical principle, e.g. an action or set of symmetries,

and then translates this foundation to a set of observables that can be tested against

data. Conversely, a bottom-up approach starts from some phenomenological model

of observables, then, through comparison against data, infers properties about the

underlying physics at play. The two example tests laid out above would be classi-

fied as top-down (starting from a particular action) and bottom-up (starting from

a phenomenological feature in the GW signal), respectively. However, these two

5Reference [88] presents theory-specific and top-down tests as one and the same, and similarly

with theory-agnostic and bottom-up tests. As laid out in this subsection, I believe that two

categorizations are largely orthogonal, not redundant.
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Figure 1.1: Schematic representation of how the contents of each chap-
ter could be categorized as theory-specific vs. theory-agnostic and top-
down vs. bottom-up tests of GR. For chapters for which additional work
is required to formulate a test of GR (e.g. additional PN computations
are needed), I assume the corresponding missing pieces can be completed
with similar techniques as existing work.
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dichotomies are independent, e.g. one can design a top-down, theory-agnostic test.

To help guide the reader, I present a schematic representation in Fig. 1.1 of how

the various chapters of this thesis (discussed in detail below) would be classified

according to these two categorizations.

1.4 Overview of this thesis

The remainder of the thesis is organized so as to loosely follow the spec-

trum from theory-specific to theory-agnostic tests of gravity using GW observations

of binary inspirals. I begin in Chapters 2 and 3 with perturbative calculations

of waveform models in particular classes of alternative theories of gravity, which

could serve as the foundation for theory-specific tests [1, 2]. In Chapters 4-8, I

turn to models of specific phenomenology that can occur in a range of potential

modifications of GR. Chapters 4-6 contend with a particular phenomenon known

as scalarization that occurs in several alternative theories, culminating in a theory-

agnostic analytic model of the phenomenon [3–5]. Chapter 7 demonstrates how such

a model could be employed to test GR, focusing on a specific alternative theory of

gravity [6]. Chapter 8 examines the potential to test gravity with an even more

widespread phenomenon—the tidal deformations of the compact bodies in inspiral-

ing binaries—using various boson star models as benchmarks to determine whether

exotic compact objects could be distinguished from BHs or NSs [7]. Chapter 9 con-

tends with an even broader range of phenomenology, developing an infrastructure

to allow parameterized deviations to be incorporated into the inspiral phase of a
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generic waveform model and then using this construction to perform various tests

of GR with existing GW observations by LIGO and Virgo. This chapter discusses

theory-agnostic tests performed as part of the LIGO Scientific Collaboration [9, 10]

as well as tests of specific alternative theories of gravity [11, 138]. Finally, Chapter

10 provides some concluding remarks and possible directions for future work.

I briefly summarize the findings documented in each chapter below, highlight-

ing certain specific results and figures that reappear later.

1.4.1 Post-Newtonian and effective-one-body descriptions of binary

black holes in Einstein-Maxwell-dilaton gravity

In Chapter 2, I study the inspiral of BBHs in Einstein-Maxwell-dilaton grav-

ity (EMd) [1]. In this theory, gravity contains an additional scalar component (a

dilaton), which is sourced by electromagnetism. Due to its simplicity, this is a conve-

nient toy model for generic modified theories in which the no-hair theorems of GR no

longer hold: the theory is characterized by a single parameter a, which determines

the coupling strength between the dilaton and Maxwell field. In EMd specifically,

electrically charged BHs also host an additional scalar charge absent in GR. In this

work, I examine BBHs with electric (and scalar) charge, and contrast their behavior

with electrically charged binaries in GR. Though astrophysical BHs are expected

to be electrically neutral6, EMd serves as a useful proxy for more generic no-hair

violations. This work provides a foundation for modeling and testing more generic

6Certain dark matter proposals have been made that would allow BHs to attain significant

electric charge [139–144], which would allow for viable tests of EMd.
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such phenomena using GW detections of BBHs.

Working within the PN approximation, I compute the dynamics and energy

flux of BBHs at next-to-leading order. I use these results to compute ready-to-use

Fourier-domain waveforms for the inspiral in EMd. The key feature that distin-

guishes charged BBHs in EMd from their counterparts in GR is the emission of

scalar dipole radiation (discussed in Sec. 1.2). I study in detail the impact of this

additional energy flux to the gravitational waveform, relative to both charged and

uncharged BBHs in GR. Figure 1.2 depicts the projected constraints that can be set

on the EMd coupling parameter a given a GW measurement of dipole flux consis-

tent with the current best dipole constraint from X-ray binary systems [145]. Here I

parameterize the dipole emission as a dipole-flux ratio B relative to the quadrupolar

flux predicted in GR FGR

F = FGR

(
1 +Bv−2

)
, (1.35)

Current measurements of low-mass X-ray binaries provide a constraint of |B| .

2×10−3 [145] and combined bounds from BBH events observed during the first and

second observing runs of LIGO and Virgo constrain |B| . 3 × 10−3 [10], so I use

|B| . 10−3 as a rough benchmark for my analysis.

As discussed in Section 1.2, the PN approximation becomes increasingly in-

accurate towards the end of the inspiral of BBHs, and more sophisticated tools are

required to model the waveform (and thus test the nature of gravity) beyond this

phase. Following the analogous approach used in GR, I construct an EOB formal-

ism for binaries in EMd to resum the PN results discussed above. This extends
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Figure 1.2: Projected constraints on EMd from dipole flux measure-
ments with GW detectors. Allowed values of EMd coupling a consistent
with a dipole flux ratio of |B| ≤ 10−3 are indicated by the shaded regions
as a function of mass-weighted total electric charge. Colors indicate var-
ious possible electric dipoles consistent with the bound on B. Figure
taken from Ref. [1].

the validity of the EMd model to a more relativistic regime and more accurately

reproduces the test-particle limit. I explore the gauge freedom inherent to any EOB

construction, examining two possible generalizations of the gauge used in GR models

for EMd. This discussion is invaluable as one explores potential EOB formulations

of more generic alternative theories of gravity.

1.4.2 Post-Newtonian waveforms in massless scalar-tensor theories

In Chapter 3, I consider the inspiral dynamics in a broader class of scalar

extensions of GR [2]. I focus on a popular class of ST theories in which an additional

massless scalar field couples non-minimally to the metric [146, 147]. Unlike in EMd,
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all matter couples (indirectly) to this scalar field, but isolated BHs do not because of

no-hair theorems [23, 148]. Thus, the class of theories considered in this chapter can

be tested through the GW observation of BNSs or neutron-star black-hole systems.

Using previously derived PN results [149–151], in this chapter I compute ready-

to-use frequency-domain inspiral waveforms for non-spinning, non-eccentric binary

systems. I use the most accurate (highest PN order) results known at the time

of writing, which correspond to 2PN relative order. As with many scalar exten-

sions of GR, the primary observational signatures of this theory arise from the

emission of scalar-dipole radiation. I discuss in detail two regimes of the inspiral:

the dipole-driven regime, which occurs at very low-frequencies where dipole radi-

ation dominates quadrupolar radiation, and the quadrupole-driven regime, which

occurs later in the inspiral where quadrupolar radiation is dominant. Given current

observational constraints, ground-based and space-based GW detectors are likely

only sensitive to binaries in the latter stage, but binary pulsar measurements could

potentially probe the former.

1.4.3 Dynamical scalarization as a non-perturbative phenomenon

Scalarization of compact objects (BHs and NSs) arises from spontaneous sym-

metry breaking of an additional scalar component of gravity [4, 152]. Scalariza-

tion can significantly alter the evolution of a binary system, hastening the inspiral

and leading to a dramatically different GW signal. Spontaneous scalarization—the

scalarization of a single, isolated object—has been found in several scalar exten-
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sions of GR [147, 153–168]. In contrast, dynamical scalarization—scalarization that

occurs during the coalescence of a binary system—has been demonstrated only for

BNSs in ST theories [169–172]. Chapters 4 and 5 explicitly focus on these theories

known to exhibit dynamical scalarization, while Chapter 6 examines new theories

in which the phenomenon is likely to occur.

In Chapter 4, I show that dynamical scalarization is a non-perturbative phe-

nomenon in the sense that its appearance coincides with the breakdown of the PN

approximation [3]. A similar result was known already for spontaneous scalariza-

tion [153]; thus, my work places the two phenomena on equal footing. I develop a

diagnostic to test the convergence of the PN expansion in the context of scalariza-

tion, which in turn, can be used to estimate the onset of dynamical scalarization.

To model dynamical scalarization, I construct a semi-analytic method that

resums the PN expansion at the level of the action—I denote this resummation as

the post-Dickean (PD) expansion. I perform this resummation by introducing a new

dynamical variable to the Lagrangian of the theory that tracks the non-perturbative

growth of the scalar field near each compact body. Working at next-to-leading order

(1PD, analogous to 1PN), I compute the early-inspiral dynamics of BNSs before and

after dynamical scalarization.

An example of such a result is shown in Fig. 1.3; I plot the scalar mass MS—a

measure of scalarization—of a BNS as a function of orbital and GW frequency. The

blue and green curves depict two models of dynamical scalarization constructed in

Chapter 4. I compare these semi-analytic results against previous phenomenological

models [173] (black with pink shading) and quasi-equilibrium configuration (QE)
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Figure 1.3: Scalar mass Ms as a function of orbital frequency Ω and
gravitational wave frequency fGW for a BNS that undergoes dynamical
scalarization. The blue and green curves correspond to two PD formu-
lations constructed in Chapter 4. These semi-analytic models reproduce
the numerical quasi-equilibrium (QE) configuration calculations of [174]
(dashed black) to within a few percent; the fractional error is shown in
the bottom panel. The PD models achieve comparable accuracy to the
phenomenological model of Ref. [173] (solid black curve with estimated
systematic uncertainty in pink). Because dynamical scalarization is a
non-perturbative phenomenon, it cannot be captured using only the PN
approximation, whose prediction is shown in red. Figure taken from
Ref. [3].

calculations (dashed black) made with NR [174]. The red dot-dashed curve shows

the PN prediction for the scalar mass of the system; the discrepancy between this

perturbative prediction and the QE results confirms that dynamical scalarization is

a non-perturbative phenomenon.
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1.4.4 Dynamical scalarization as a second-order phase transition

Building on the observation in Chapter 4 that the onset of dynamical scalar-

ization coincides with the loss of analyticity of the PN expansion, in Chapter 5, I

aim to explain the physical origin behind the breakdown of the standard perturba-

tive approach. I show explicitly that dynamical scalarization is a second-order phase

transition [4]. Given this perspective, the breakdown of the PN expansion found

previously is unsurprising. Recall that the PN formalism provides an approximate

solution to the Einstein equation expanded perturbatively around a Newtonian so-

lution; in the context of the two-body problem, the evolution of a binary system is

formulated in terms of its behavior at very large separations (the Newtonian limit).

However, because dynamical scalarization is a second-order phase transition, the

order parameters that describe a binary system exhibit discontinuous derivatives at

the onset of scalarization. The PN expansion is blind to phenomenology that arises

spontaneously in the relativistic regime (e.g. a new scalarized phase), and thus can-

not sensibly reproduce dynamical scalarization. Note that despite the similarities

between spontaneous and dynamical scalarization, only the latter phenomenon poses

such an obstacle to the standard PN approach; in contrast, spontaneous scalariza-

tion remains present in a binary system even at very large separations, and thus can

be integrated seamlessly into the PN formalism.

Besides providing a better conceptual understanding of the phenomenon, the

connection between dynamical scalarization and phase transitions offers some in-

sight as to how to best construct analytic models of binary systems that undergo
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Figure 1.4: The Hamiltonian H of an equal-mass BNS (vertical axis)

as function of scalar charge Q and effective parameter c
(2)
eff = c(2) − 1/r.

When c
(2)
eff becomes negative, stable equilibrium scalarized configurations

(Q 6= 0) emerge and unscalarized configurations (Q = 0) become un-
stable. The bottom lower plane shows the phase space of equilibrium
configurations, with the critical point separating the unscalarized and
scalarized phases indicated with the red point. Both H and Q are given
in units of M�, whereas c

(2)
eff is shown with units of M−1

� . Figure adapted
from Ref. [4].

scalarization. In Chapter 5, I construct such a model for binaries in the ST theories

considered in Chapter 4. Like the approach adopted in Chapter 4, I introduce new

dynamical variables that track the scalarization of each body during the evolution

of the inspiral. Unlike the previous approach, which incorporated a large degree of

freedom in how these variables were defined, the construction in Chapter 5 explicitly

uses the scalar charge Q of each body as dynamical variables; these quantities are

a natural choice, as they also serve as order parameters characterizing the second-

order phase transition of dynamical scalarization.
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With this approach, I construct an analytic model of dynamical scalarization

at leading (Newtonian) order. I compute the conservative dynamics of a binary sys-

tem at this order and calculate the Hamiltonian that governs its motion. This mea-

sure of energy allows us, for the first time, to estimate the stability of dynamically

scalarized systems and draw connections to the Landau model of phase transitions.

For example, Fig. 1.4 depicts the appearance of a Mexican-hat shaped potential

(characteristic of a second-order phase transition) during dynamical scalarization of

a binary system. In this diagram, the translucent sheet depicts the Hamiltonian

(vertical axis) of a BNS as a function of scalar charge Q and an effective parameter

c
(2)
eff , defined as the difference between a coefficient c(2) that depends on the structure

of the NSs and the inverse of their separation 1/r. At large distances (positive c
(2)
eff ),

the energy is minimized in an unscalarized configuration (Q = 0). However, below

a critical separation (c
(2)
eff = 0), the local minima shift to scalarized configurations

(Q 6= 0), while the unscalarized configuration becomes unstable. These two phases

are indicated with the green and blue points in Fig. 1.4, respectively, with the crit-

ical point at which scalarization begins marked in red. The equilibrium solutions

are projected onto the bottom plane to depict the phase space of binary configu-

rations; the bifurcation of stable solutions at the critical point demonstrates the

discontinuous first derivative of the order parameter Q expected in a second-order

phase transition.
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1.4.5 Theory-agnostic modeling of dynamical scalarization

Chapters 4 and 5 examined the conceptual and technical challenges of con-

structing an analytic model of dynamical scalarization, yet restricted their scope to

a narrow class of ST theories [153] in which scalarization has been previously been

shown to occur [169–172]. However, the recent discovery of spontaneously scalarized

BH solutions in other scalar extensions of GR [158–168] has renewed interest in such

non-perturbative phenomena in a broader context. Chapter 6 examines scalarization

(spontaneous and dynamical) from a theory-agnostic perspective that encompasses

all theories in which the phenomena are known to occur [5]. I show that any the-

ory that admits spontaneous scalarization must also admit dynamical scalarization.

Additionally, I establish a robust parameterization that completely characterizes

scalarization at Newtonian order that is suitable for searches for deviations from

GR with GW observations.

In keeping with this theory-agnostic direction, I begin by identifying the key

criteria needed for scalarization to occur around a compact object in any modified

theory of gravity: (i) the theory must admit a GR solution, i.e. one in which

the scalar field vanishes and (ii) this unscalarized solution must be unstable to

scalar perturbations. Working in the regime close to the critical point at which

the first scalar mode instability arises (i.e. near the onset of scalarization), I use

effective field theory (EFT) techniques to construct an effective point-particle action

describing each compact object in a binary system. Using this ansatz, I compute

the conservative dynamics governing the inspiral of binary systems at Newtonian
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Figure 1.5: The phase space of scalarization that occurs for BBHs in
EMS gravity. The parameter α modulates the coupling strength between
the Maxwell and scalar fields; three choice are depicted here. Black holes
with substantial electric charge will spontaneously scalarize (SS) across
all orbital/GW frequencies, shown here with light shading. Below the
threshold for spontaneous scalarization, dynamical scalarization (DS)
can still occur, shown with darker shading. The frequency at which dy-
namical scalarization occurs is greater for less electrically-charged BBHs,
as depicted with the dark boundary of the shaded region. Figure adapted
from Ref. [5].

order; this calculation closely resembles the results of Chapter 5.

I demonstrate how this model can be applied to a generic alternative theory

using Einstein-Maxwell-scalar (EMS) gravity as a proxy. In EMS theory, BHs with

sufficient electric charge can spontaneously manifest scalar charge [158]. Starting

from sequences of static, spherically-symmetric solutions, I use this EFT approach

to reconstruct the effective action governing the dynamics of the critical scalar mode

that leads to scalarization; I find close agreement with independent calculations of
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the mode dynamics from linear perturbation analyses of GR solutions. Then, I use

this effective action to explicitly predict the onset of dynamical scalarization across

the parameter space of EMS theory, shown in Fig. 1.5. This result represents the first

prediction of dynamical scalarization in a BBH, and because it is made for a theory

whose formulation in NR has already been established [158], numerical confirmation

would be quite straightforward. Though substantial effort is expended exploring the

full phase space of scalarization in EMS theory, I emphasize throughout Chapter

6 how this same procedure can be straightforwardly applied to other alternative

theories of gravity.

1.4.6 Projected constraints on scalarization by combining pulsar-

timing and gravitational-wave observations

Though GW detectors offer the best hope of detecting phenomenology like

dynamical scalarization, the best constraints on many theories that manifest such

effects come from radio observations of binary pulsars. In Chapter 7, I investigate the

constraints that pulsar timing can set on a popular ST theory that admits sponta-

neous and dynamical scalarization in NSs and determine the degree to which future

GW observations can improve these constraints [6]. Finally, I examine whether the

constraints set on this ST theory rule out the possibility of detecting dynamical

scalarization with GWs; I find that current bounds on the theory are unable to do

so.

I consider the specific class of ST theories introduced in Ref. [153], which was
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also used in Chapters 4 and 5. The strongest bounds on this theory come from

binary NS-white dwarf (WD) systems. The relativistic densities required to trigger

scalarization can be found in NSs but not in WDs, and thus NS-WD systems can

potentially host larger scalar dipoles (and thus greater dipole radiation) than BNSs.

I place constraints on the ST theories of [153] using timing measurements of five

NS-WD systems; prior to this work, constraints had only been set using individual

binary pulsars.

Additionally, in this work, I examine the dependence of these constraints on

the NS equation of state (EOS), i.e. the internal structure of the NS. The constraints

that can be set from a single binary pulsar depend crucially on this unknown nuclear

physics; fortunately, by combining observations from several pulsars, this variance

can be mitigated. Figure 1.6 highlights some of the constraints set using this method:

I plot with colored lines the upper bounds on the dimensionless scalar dipole |∆α| of

a hypothetical BNS consistent with current binary pulsar measurements for different

possible EOSs. The system considered here has a fixed secondary mass of mA =

1.25M� while the primary mass is allowed to vary.

After establishing the most stringent (at the time of writing) constraints from

binary pulsars, I examine the degree to which future GW detections could improve

these bounds. Working in the limit of large SNR, for which the posterior distribution

is well-approximated by Eq. (1.25), I estimate the precision with which current—

Advanced LIGO (aLIGO)—and planned—Cosmic Explorer (CE) and Einstein Tele-

scope (ET)—ground-based GW detectors can measure the scalar dipole of a BNS at

a luminosity distance of 200 Mpc. The bounds achievable with these detectors are
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Figure 1.6: (Colored lines): Upper bound on dimensionless scalar dipole
|∆α| at a 90% confidence level from binary pulsar observations as a
function of primary NS mass for several possible EOSs—the secondary
NS has a fixed mass of mA = 1.25M� and the same EOS as the primary.
(Dashed lines): Projected statistical uncertainty for |∆α| measured for
a BNS at a luminosity distance of 200 Mpc for current and planned
ground-based GW detectors. Figure taken from Ref. [6].

depicted with dashed lines in Fig. 1.6. Because the theoretical values of scalar dipole

constrained by binary pulsars (colored lines) exceed the statistical uncertainty ex-

pected in such a measurement with GWs (dashed lines), I can conclude that current

detectors could potentially extend bounds for a narrow range of mass configurations,

but next-generation detectors will offer much broader improvements. Furthermore,

I investigate whether dynamical scalarization could be observed by GW detectors

given the theory constraints set by binary pulsars; detecting this phenomenon would

provide smoking-gun evidence in support of deviations from GR. Using an identi-

fication criterion established in the literature [175], I use the model constructed in

Chapter 4 to demonstrate several possible binary configurations for which dynamical

scalarization could potentially be detected with Advanced LIGO, thereby validating
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continued study and future searches for the phenomenon.

1.4.7 Tidal signature of boson stars in binary systems

In Chapter 8, I shift my attention from phenomenology that can only occur in

scalar extensions of GR to that which occurs in much broader contexts [7]. Specif-

ically, I explore how tidal interactions between inspiraling bodies can be used to

probe new physics. These interactions are directly linked to the structure of the

compact objects in the binary, and thus may be able to distinguish BHs and NSs

from other exotic alternatives in binary systems. During the adiabatic inspiral, the

dominant tidal interaction is characterized entirely by the tidal deformability Λ of

each body, which describes the linear response of a spherical body’s quadrupole

moment Qij to an externally imposed quadrupolar tidal field Eij, i.e.

Qij = M5ΛEij, (1.36)

where the body’s mass M has been factored out so that Λ is dimensionless.

In this chapter, I investigate whether tidal effects in a GW signal can differ-

entiate BHs and NSs from boson stars (BSs), a compelling toy model for exotic

compact objects. Boson stars are simply self-gravitating clouds of (classical) scalar

field. They are an exemplary class of exotic compact objects because they have been

shown to form dynamically through gravitational collapse and, by tuning the mass

µ of the fundamental boson field, can be constructed with any astrophysical mass.

Various families of BSs have been postulated, each differentiated by the type of

scalar self-interaction they consider. In this thesis, I consider two common choices:
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Figure 1.7: Tidal deformability Λ for massive (top panel) and solitonic
(bottom panel) BSs as a function of mass M , rescaled by boson mass µ.
Colors represent various choices of self-interaction strength, given by λ
and σ0 for massive and solitonic BSs, respectively. Figure adapted from
Ref. [7].

62



massive BSs, characterized by a quartic interaction V (φ) = µ2|φ|2 + λ|φ|4/2, and

solitonic BSs, with the interaction potential V (φ) = µ2|φ|2(1− 2|φ|2/σ2
0)2.

I begin by computing the tidal deformability of each family of BSs across a

broad range of parameter space. This procedure involves first constructing numer-

ical solutions for spherically-symmetric scalar configurations, and then solving the

first-order perturbation equations describing static, tidal deformations of these back-

grounds. Finally, the quantities of interest, i.e. the mass M and tidal deformability

Λ, are extracted from the asymptotic behavior of each of these solutions. Figure 1.7

presents the results of these calculations, in which the tidal deformability is shown

as a function of mass for various choice of self-interaction strength (depicted with

different colors) for massive (top panel) and solitonic (bottom panel) BSs.

I next turn to the question of whether GW detectors can measure tidal de-

formabilities with enough precision to differentiate these classes of BSs from BHs

or NSs. Similar to the approach in Chapter 7, I use the Fisher information matrix,

in conjunction with Eq. (1.25), to estimate the statistical uncertainty expected for

these tidal parameters for canonical systems with aLIGO, ET, and CE. I outline

two strategies for differentiating binary BHs and NSs from binary BSs with a GW

inspiral, the first relying on only a measurement of the tidal deformability of a sin-

gle body and the second combining measurements of each body’s deformability. I

find that massive BSs can be distinguished from BHs with current GW detectors,

but that future detectors would be needed to differentiate solitonic BSs and BHs.

Matters are slightly more complicated for the case of NSs, as they have their own

inherent (non-zero) tidal deformability; however even using current detectors, I find
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that one can differentiate between BNSs and binary BSs.

1.4.8 Parameterized tests of general relativity with generic frequency-

domain waveform models

Chapter 9 introduces new tools to enable tests of GR with GW inspirals across

a variety of contexts. Here I focus on parameterized tests, that is, statistical tests

that aim to measure (or constrain) a set of “deviation parameters” that quantify

discrepancies in an observed GW signal and the predictions of GR. These types

of tests rely on “generalized” waveform models—models in which the parameter

space of a baseline GR waveform is extended to include potential deviations from

GR; these modifications are controlled by a set of deviation parameters. For ex-

ample, in a theory-specific test, these new parameters could represent the physical

constants, masses, couplings, etc. that define a particular theory that one aims to

measure. In contrast, for a theory-agnostic test, these parameters would describe

the phenomenological features in the waveform one wishes to constrain.

The chapter describes a new infrastructure for constructing generalized wave-

forms from any non-precessing7, frequency-domain GR baseline model. Given its

flexibility, this new framework is denoted as the flexible theory-agnostic (FTA) ap-

proach. Prior to the introduction of the FTA framework, parameterized tests of

GW inspirals only employed the small subset of waveform models with known, an-

7The restriction to non-processing waveform models is made for simplicity; extending the ap-

proach documented here to precessing models is relatively straightforward and represents a possible

direction for future work.
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alytic representations in the frequency-domain (e.g. Refs. [73, 118, 120, 122, 176]).

With this new tool, I am now able to extend these tests to new waveform models,

and determine the systematic biases that arise due to the choice of underlying GR

waveform.

I begin Chapter 9 by detailing the construction of the FTA infrastructure and

the statistical framework in which it can be employed. Then, I use this approach

to perform three different tests of GR using GW observations made during the first

and second observing runs of LIGO and Virgo. Unlike in previous chapters, here

I carry out Bayesian inference using the full suite of statistical tools outlined in

Sec. 1.2.2.2.

First, as part of the LIGO Scientific Collaboration, I place theory-agnostic

constraints on phenomenological deviations to the inspiral phase from the catalog

of BBH [10] and BNS [9] observations made by LIGO and Virgo. All tests that I

perform indicate consistency with the predictions of GR. Additionally, I find good

agreement between the bounds recovered using a generalized waveform constructed

with the FTA infrastructure and those constructed with an earlier approach [120, 176]

with a different baseline GR model. This agreement suggests that no significant

systematic errors arise from the choice of waveform model, thereby solidifying the

claim that no deviations from GR are present.

Next, I use the FTA framework to place constraints on Jordan-Fierz-Brans-

Dicke gravity (JFBD) [177–179] from the BNS observation GW170817 [11]. This

ST theory represents one of the oldest and most well-known alternative relativistic

theories of gravity. Although the constraints I place are ultimately not competitive
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with existing bounds from Solar System experiments, this analysis provides a useful

benchmark for GW tests of GR that can be easily understood by a large segment

of the physics community. Jordan-Fierz-Brans-Dicke gravity is characterized by a

single parameter α0, which represents the coupling of the scalar field to test parti-

cles, with α0 = 0 corresponding to GR.8 I perform two complementary analyses on

GW170817 to constrain α0: the first using a waveform model generalized to include

phenomenological deviations from GR (akin to that used in the theory-agnostic

tests described above) and the second using a generalized waveform model adapted

specifically to JFBD. Taking the more conservative bounds from these two analyses,

I find that the observed BNS can set the constraint |α0| . 4× 10−1; for comparison

the strongest bounds from weak-field tests are |α0| ≤ 4× 10−3 [180].

Finally, I examine the constraints that can be placed on certain higher-order

curvature corrections that generically arise in many possible extensions of GR [138].

For definiteness, I examine the particular model proposed in [181], which uses EFT

techniques to construct the generic extension to GR—subject to a number of rea-

sonable assumptions—whose effects are potentially observable by ground-based GW

detectors. Starting from the results of [181], I compute the leading-order PN correc-

tions to a frequency-domain GR waveform predicted in this theory. These deviations

are parameterized by the energy scale Λ (or its equivalent distance scale dΛ ≡ Λ−1)

at which higher-order curvature corrections appear. I use the FTA framework to con-

struct a generalized waveform model including these effects, and then use Bayesian

8For historical reasons, this parameter is often expressed instead as ωBD ≡ 1
2α
−2
0 − 3

2 , where

GR is recovered in the limit that ωBD →∞.
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Figure 1.8: The logarithm of the Bayes factor (BF) between the compet-
ing hypotheses that higher-order curvature corrections do (non-GR) or
do not (GR) arise at a fixed scale distance dΛ. Dashed and dot-dashed
lines depict the BFs recovered using GW151226 and GW170608, respec-
tively, and the solid line indicates the BF achieved by combining both
events. By imposing a conservative significance threshold to select one
hypothesis over the other | log BF ≥ 5| (shown with a horizontal gray
line), I translate these results into a bound on dΛ: I rule out the appear-
ance of higher-order curvature corrections at scales of ∼ 70 − 200 km.
Figure adapted from Ref. [138].

inference to constrain the energy scales at which new physics could appear. My

results are summarized in Fig. 1.8: I plot the Bayes factor (BF) [the last term

in Eq. (1.26)] between the competing hypotheses that higher-order curvature cor-

rections do/do not arise at a given distance scale dΛ. The dashed and dot-dashed

curves respectively depict the BFs recovered using BBH events GW151226 [182] and

GW170608 [183]—the two lowest-mass (longest) BBH events observed during the

first two observing runs of LIGO and Virgo; the solid curves show the BFs achieved

by combining information from both events. The magnitude of the logarithm of the

BF indicates how strongly one hypothesis is preferred over the other. By setting

a conservative significance threshold of | log BF| ≥ 5, I can translate these result

into bounds on dΛ. I find that these GW events can rule out the appearance of
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higher-order curvature corrections arising on distance scales of ∼ 70− 200 km.
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Chapter 2: Hairy binary black holes in Einstein-Maxwell-dilaton the-

ory and their effective-one-body description

Authors: Mohammed Khalil, Noah Sennett, Jan Steinhoff, Justin Vines, and

Alessandra Buonanno1

Abstract: In General Relativity and many modified theories of gravity, iso-

lated black holes (BHs) cannot source massless scalar fields. Einstein-Maxwell-

dilaton (EMd) theory is an exception: through couplings both to electromagnetism

and (non-minimally) to gravity, a massless scalar field can be generated by an elec-

trically charged BH. In this work, we analytically model the dynamics of bina-

ries comprised of such scalar-charged (“hairy”) BHs. While BHs are not expected

to have substantial electric charge within the Standard Model of particle physics,

nearly-extremally charged BHs could occur in models of minicharged dark matter

and dark photons. We begin by studying the test-body limit for a binary BH in EMd

theory, and we argue that only very compact binaries of nearly-extremally charged

BHs can manifest non-perturbative phenomena similar to those found in certain

scalar-tensor theories. Then, we use the post-Newtonian approximation to study

the dynamics of binary BHs with arbitrary mass ratios. We derive the equations

1Originally published as Phys. Rev. D98, 104010 (2018).
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governing the conservative and dissipative sectors of the dynamics at next-to-leading

order, use our results to compute the Fourier-domain gravitational waveform in the

stationary-phase approximation, and compute the number of useful cycles measur-

able by the Advanced LIGO detector. Finally, we construct two effective-one-body

(EOB) Hamiltonians for binary BHs in EMd theory: one that reproduces the ex-

act test-body limit and another whose construction more closely resembles similar

models in General Relativity, and thus could be more easily integrated into existing

EOB waveform models used in the data analysis of gravitational-wave events by the

LIGO and Virgo collaborations.

2.1 Introduction

The first observations of gravitational waves (GWs) from coalescing binary

black holes (BHs) [123, 182–185] and neutron stars [186] offer unprecedented oppor-

tunities to test the highly dynamical, strong-field regime of General Relativity (GR)

[79, 89, 187]. Leveraging the extraordinary precision of GW detectors to test grav-

ity requires waveform models that incorporate potential deviations from GR. One

can construct such models in a theory-independent way by considering phenomeno-

logical deviations to waveform models in GR and then constraining the magnitude

of these corrections, see, e.g., the constructions of [117–120]. Such an approach

has been used by the LIGO and Virgo collaborations to test GR with binary BHs

[73, 122, 123]. Alternatively, one can compute the waveform produced in a particu-

lar alternative theory, which can then be used to measure directly the fundamental
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quantities that define that modified theory of gravity [79].

Here, we adopt the latter approach, focusing on the dynamics of binary BHs

in Einstein-Maxwell-dilaton (EMd) theory. This theory originated as a low-energy

limit of string theory [188, 189]. In EMd theory, a scalar field (the dilaton) couples to

a vector field (the photon) such that BHs with electric charge also source the scalar;

the BH develops a scalar charge, or hair. It has been shown that in GR (and some

scalar extensions) isolated BHs cannot carry such a charge [23, 148]; these results

are often referred to as “no-hair theorems.” Analytic solutions exist in EMd theory

for spherically symmetric BHs parameterized by the dilaton coupling constant a [see

Eqs. (2.1) and (2.2) below for the action]. For a = 0, the theory reduces to Einstein-

Maxwell (EM) theory and the BH solution is the Reissner-Nordström metric. For

a = 1, the solution corresponds to the low energy limit of heterotic string theory.

For a =
√

3, the solution corresponds to Kaluza-Klein BHs [190], and an analytic

solution for charged spinning BHs in EMd theory is only known for that value of a

[191].

In the absence of electric charge, isolated BHs in EMd theory behave as in

GR. Within the Standard Model, astrophysical BHs are expected to be electrically

neutral; however, there exist various theoretical mechanisms beyond the Standard

Model that would allow BHs to accumulate non-negligible charge. For a BH with

charge Q and mass M to accrete a particle with the same-sign charge q and mass m,

gravitational attraction between the two bodies must overpower their electrostatic

repulsion, i.e., q Q . mM , or equivalently Q/M . m/q.2 Furthermore, a charged

2Throughout this work, we use geometric units, in which G = c = 4πε0 = 1, where G is the
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BH will neutralize via spontaneous pair production [192] or interactions with astro-

physical plasmas [193] over timescales that grow with the mass-to-charge ratio of

the available fundamental particles. For electrons, the dimensionless mass-to-charge

ratio me/qe ∼ 10−22 severely limits the charge that BHs can develop through ac-

cretion, and guarantees that any BH charged through other means will discharge

quickly. However, particles with much larger mass-to-charge ratios are predicted in

models of minicharged dark matter [139–141] and would allow BHs to acquire and

retain a much larger electric charge [194]. Similarly, models in which dark mat-

ter is charged under a hidden U(1) gauge field [142–144], a “dark photon,” would

allow for BHs to develop significant hidden charge, provided that the ratio of the

dark-matter particle’s mass to its (hidden) charge is sufficiently large [194]. These

two types of dark matter models are consistent with laboratory experiments and

cosmological observations [195–197]; current constraints restrict the new particles’

mass to 1 GeV . m . 10 TeV [144] and its charge to . 10−14(m/GeV)qe [198] (see

also Fig. 1 in Ref. [194]).

The dynamical evolution of binary BHs in EMd theory has been studied in

various contexts. Numerical-relativity simulations of single and binary BHs were

performed in Ref. [199]. The authors considered small electric charges and found

that the resulting gravitational waveforms are difficult to distinguish from those

in GR. Numerical-relativity simulations of the collision of charged BHs with large

electric charges in EM theory were performed in Refs. [200, 201], where it was found

that a significant fraction of the energy is carried away by electromagnetic radiation.

bare gravitational constant.
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In this work, we compute the conservative and dissipative dynamics of a bi-

nary BH, and the resulting gravitational waveform, in EMd theory, to first order

in the (weak-field and slow-motion) post-Newtonian (PN) approximation. We also

construct an effective-one-body (EOB) Hamiltonian description [38, 39] of the con-

servative dynamics, which provides an analytical resummation of the PN dynamics

to exactly recover the test-body limit. In late 2017, the 1PN Lagrangian for a two-

body system in EMd theory was derived independently in Ref. [202] using a method

different from our own. In that work, the author also discussed an abrupt transition

in the scalar charge of a BH as the external scalar field is varied. However, we show

here that this transition occurs only in binaries composed of nearly-extremal charged

BHs and only near the end of their coalescence. Although extremally charged BHs

are excluded when restricting to the Standard Model of particle physics, they are still

viable in minicharged dark matter and dark photons models, as we have discussed

above.

The paper is structured as follows. In Sec. 2.2, we study the behavior of a

small BH in the background of a much more massive companion. By exploring

the response of this test BH to its external environment, we discuss whether non-

perturbative, strong-field phenomena, akin to those seen in binary neutron stars in

scalar-tensor (ST) theories, can occur in binary BHs in EMd theory. In Sec. 2.3,

we use the PN approximation to study the dynamics of a binary system with an

arbitrary mass ratio. We derive the two-body 1PN Lagrangian and Hamiltonian

(with details relegated to Appendix A) and calculate the scalar charge of the two

bodies. Further, we derive (with details in Appendix B) the next-to-leading order
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PN scalar, vector, and tensor energy fluxes emitted by the binary. Restricting

our attention to quasi-circular orbits, we compute the Fourier-domain gravitational

waveform at next-to-leading-order using the stationary-phase approximation. In

Sec. 2.4, we work out an EOB description of the PN Hamiltonian in EMd theory.

We construct two EOB Hamiltonians: one based on the exact BH solution, and the

other based on an approximation to that solution. The former is more physical in

the strong-gravity regime because it exactly reproduces the dynamics in the test-

body limit; the latter uses the same gauge as EOB models in GR, and thus would

be easier to integrate into existing data-analysis infrastructure. We compare these

two EOB Hamiltonians by calculating the binding energy and the innermost stable

circular orbit to determine the region of the parameter space in which they agree.

Finally, we present some concluding remarks in Sec. 2.5.

2.2 Einstein-Maxwell-dilaton theory

2.2.1 Setup

We consider a generalization of EMd theory presented in Refs. [188, 189] in

the Jordan frame

S =

∫
d4x

√−g̃
16π

e−2aϕ
(
R̃ + (6a2 − 2)g̃µν∇̃µϕ∇̃νϕ− FµνF µν

)
+ Sm(g̃µν , Aµ, ψ),

(2.1)

where ϕ is a scalar field (the dilaton), a is the dilaton coupling constant, Fµν ≡

∇̃µAν − ∇̃νAµ is the electromagnetic field tensor, and tildes signify quantities in

the Jordan frame. We also include some matter fields ψ, which couple minimally
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to g̃µν and, through some fundamental electric charge, to Aµ; we represent this

total matter action schematically with Sm. By construction, electrically neutral,

non-self-gravitating matter configurations will follow geodesics of g̃µν , and thus this

theory respects the weak equivalence principle. However, self-gravitating systems

are bound (in part) through non-linear interactions of the scalar field. The back-

reaction of the scalar field on the metric exerts an additional force on such systems,

causing them to no longer follow geodesics; thus, this theory violates the strong

equivalence principle.

The Einstein frame provides a more convenient representation of EMd theory.

Performing the conformal transformation gµν = A−2(ϕ)g̃µν with A = eaϕ, the action

becomes

S =

∫
d4x

√−g
16π

(
R− 2gµν∂µϕ∂νϕ− e−2aϕFµνF

µν
)

+ Sm(A2(ϕ)gµν , Aµ, ψ), (2.2)

where gµν is the Einstein-frame metric. Here, we primarily work in the Einstein

frame, but occasionally use quantities in the Jordan frame, denoted with tildes. For

a discussion of the equivalence between the two frames see Ref. [203].

For the matter action Sm, we adopt the approach introduced by Eardley [204],

in which each body is treated as a delta function and the dependence on the scalar

field is incorporated into the masses. For charged monopolar point particles, neglect-

ing dipoles/spins and higher multipoles, the matter action in the Einstein frame can

be written as [147]

Sm = −
∑
A

∫
dt

[
mA(ϕ)

√
−gµν vµAvνA − qAAµvµA

]
, (2.3)

where mA(ϕ) is the field-dependent mass of particle A, qA is the electric charge,
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vµA ≡ uµA/u
0
A where uµA is its four-velocity, and the fields are evaluated at the particle’s

location. The mass in the Einstein frame m(ϕ) is related to the mass in the Jordan-

Fierz frame m̃(ϕ) by

m(ϕ) = A(ϕ)m̃(ϕ), (2.4)

where m̃(ϕ) is generally not a constant except for bodies with negligible self-gravity.

In most cases, a closed-form expression for the field-dependent mass m(ϕ)

cannot be found. Instead, one expands the mass about the external/background

value ϕ0 of the scalar field

lnm(ϕ) = lnm(ϕ0) +
d lnm(ϕ)

dϕ

∣∣∣∣
ϕ0

δϕ+
1

2

d2 lnm(ϕ)

dϕ2

∣∣∣∣
ϕ0

δϕ2 +O
(

1

c6

)
, (2.5)

where δϕ ≡ ϕ− ϕ0. The mass expansion can be parameterized in terms of

α(ϕ) ≡ d lnm(ϕ)

dϕ
, β(ϕ) ≡ dα(ϕ)

dϕ
, (2.6)

where α is referred to as the (dimensionless) scalar charge. With these parameters,

the mass expansion can be written as

m(ϕ) = m

[
1 + αδϕ+

1

2
(α2 + β)δϕ2 +O

(
1

c6

)]
, (2.7)

where the field-dependent mass is denoted by the Gothic script m, while the mass

evaluated at the background value of the scalar field is denoted by m. We also drop

the dependence of the parameters on the background value to simplify the notation,

i.e., α ≡ α(ϕ0), and β ≡ β(ϕ0). For the field-dependent parameters, we always

explicitly write α(ϕ) and β(ϕ). The expression for α(ϕ) depends on the structure

of the body; for static BHs, it depends only on the charge-to-mass ratio, whereas

for baryonic matter, it also depends on the body’s composition.
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We note that Eq. (2.3) together with the expansion of the mass (2.7) provide

a systematic construction of an effective source or action for an extended object

in a PN expansion. We neglect couplings to derivatives of the field, which would

correspond to dipole/spin and higher multipole interactions. Due to invariance

under gauge transformations Aµ → Aµ+∂µε, the charges qA must be constant; they

cannot depend on the scalar field like the masses.

2.2.2 Black-hole solution

The metric for an electrically-charged non-rotating BH in EMd theory is given

by [188, 189]

ds2 = −A(r)dt2 +B(r)dr2 + r2C(r)dΩ2, (2.8)

with

A(r) =
(

1− r+

r

)(
1− r−

r

) 1−a2
1+a2

, (2.9a)

B(r) =
1

A(r)
, (2.9b)

C(r) =
(

1− r−
r

) 2a2

1+a2

, (2.9c)

where the constants r+ and r− are given in terms of the Arnowitt-Deser-Misner

mass M and electric charge Q by

M =
r+

2
+

(
1− a2

1 + a2

)
r−
2
, (2.10)

Q2 =
r+r−
1 + a2

e−2aϕ0 . (2.11)

The constant r+ corresponds to the outer horizon, and r− corresponds to the inner

horizon. The surface area of the horizon (entropy of the BH) is proportional to
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r2
+C(r+). Here, we refer to the metric (2.8) as the GHS metric, after Garfinkle,

Horowitz and Strominger who found the solution in that form in Ref. [189].

The electromagnetic four-potential Aµ, for an electrically-charged BH, is given

by

A0(r) = −Q
r
e2aϕ0 , Ai(r) = 0 , (2.12)

and the scalar field ϕ is given by

ϕ(r) = ϕ0 +
a

1 + a2
ln
(

1− r−
r

)
. (2.13)

While we consider only electric charges here, we note that the solution for a magnet-

ically charged BH can be obtained from the above solution via the duality rotation

that sends Fµν → 1
2
e−2aϕεµν

λρFλρ and ϕ→ −ϕ. 3 In addition to the electric charge,

BHs in EMd theory can acquire scalar charge, also called dilaton charge, defined by

[189]

D ≡ 1

4π

∫
d2Σµ∇µϕ, (2.14)

where the integral is over a two-sphere at spatial infinity, leading to

D =
a

1 + a2
r− . (2.15)

Far from the BH, we have ϕ(r) ' ϕ0−D/r+O(1/r2), which means that D acts as

the monopole charge sourcing the scalar field.

3 The results of Sec. 2.2 hold also for magnetic charges if we flip the sign of ϕ. However, the

PN and EOB results in the following sections would change in non-trivial ways for the magnetic

case, since the BH’s Fµν is given by Fθφ = Qm sin θ with a magnetic charge Qm, as opposed to

Ftr = Q/r2 with an electric charge Q (all other components being zero in each case).
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The constants r+ and r− can be expressed in terms of the mass and the dilaton

charge, or the mass and electric charge, as

r− =
1 + a2

a
D

=
1 + a2

1− a2

(
M −

√
M2 − (1− a2)Q2e2aϕ0

)
, (2.16a)

r+ = 2M − 1− a2

a
D

= M +
√
M2 − (1− a2)Q2e2aϕ0 . (2.16b)

Expressing quantities in terms of the dilaton charge D, rather than the electric

charge Q, makes most equations simpler as it avoids the square root. Therefore, in

most of the equations below, we use D instead of Q. The relation between Q and

D can be read off from Eq. (2.16a), or Eq. (2.16b),

Q2 e2aϕ0 =
2M

a
D − 1− a2

a2
D2 . (2.17)

The maximum electric charge of the BH occurs when r+ = r−, which leads to

Qmax e
aϕ0 =

√
1 + a2M. (2.18)

Hence, for nonzero values of a, an EMd BH can be more charged than an extremal

Reissner-Nordström BH with the same mass. Since the dilaton charge is related to

the electric charge via Eq. (2.17), the maximum electric charge (2.18) corresponds

to the maximum dilaton charge Dmax = aM .

Without loss of generality, we set the background scalar field to zero, i.e.,

ϕ0 = 0. To recover the dependence on ϕ0, one can simply rescale all electric charges

by the factor eaϕ0 , and add the constant ϕ0 to the scalar field.4 We also consider

4 To see why this is true, consider the action (2.2) with the transformation Q → Qeaϕ0 and
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only non-negative values of a since the action (2.2) is invariant under a → −a and

ϕ→ −ϕ, so the predictions for negative dilaton couplings are given by changing the

sign of the scalar field.
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Figure 2.1: α(ϕ) for a = 1 with different charge-to-mass ratios (left),
and for different values of a with q = 0.95 qmax (right).

2.2.3 Dynamics of a test black-hole in a background black-hole space-

time

Before turning to the dynamics of a generic two-BH system in EMd theory, it

will be useful to study the test-body limit of such a system, i.e., the limit in which

one body’s mass is negligible compared to the other’s. In EM theory (without the

ϕ → ϕ + ϕ0. The vacuum part of the action is symmetric under that transformation, and in

the matter action (2.3), the mass m(ϕ) is parameterized in terms of the difference ϕ − ϕ0. The

electromagnetic part of the matter action is more subtle; it depends on qvµAµ ∝ Qqe2aϕ0/r,

and hence, one can absorb a factor of eaϕ0 into each of the two charges. However, since A0 =

−Qe2aϕ0/r, the transformation Q→ Qeaϕ0 , ϕ→ ϕ+ ϕ0 is not valid in equations that depend on

Aµ; one first needs to express Aµ in terms of the charges before performing that transformation.
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Figure 2.2: α(r) for a = 1 with different charge-to-mass ratios (left),
and for different values of a (right). In both plots, the charge of the
large BH is extremal Q =

√
1 + a2M , and r is scaled by the horizon

radius, which is given by Eq. (2.16b). For a = 1, the horizon radius is
2M independently of the charge or the coupling constant.

dilaton), the test-body limit of a charged BH corresponds simply to a monopolar

point-mass with constant mass and constant charge. In EMd theory, however, a

BH’s mass must retain a dependence on the dilaton field even as its size goes to

zero. In the zero-size limit, we can use the local value of the (background) dilaton

field ϕ, at the small BH’s location, to determine its mass m(ϕ) in the same way

that a lone finite-size BH’s mass would be determined by the asymptotic value of

the field (as in the previous subsection). This defines what we mean by a “test BH”

in EMd theory.5

Let us suppose a test BH with mass m(ϕ), electric charge q, and dilaton charge

d moves in the fixed background spacetime of a larger BH with mass M , electric

5 This is not to be confused with some uses of the phrase “test body” in the context of ST

theories, where one means a body with negligible self-gravity (unlike a BH), so that the mass in

the Jordan-Fierz frame is constant and the scalar charge is zero.
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charge Q, and dilaton charge D. The mass of the test BH m(ϕ) depends on the

scalar field ϕ generated by the larger BH. The expansion of m(ϕ) is given in terms

of the parameters α and β by Eq. (2.7), and the scalar field ϕ is given by Eq. (2.13).

To find how α and β depend on the mass and charge of the BH, one needs

to find the dependence of the mass on the scalar field. We can get a differential

equation for m(ϕ) from Eq. (2.16a), or Eq. (2.16b), by identifying the mass M and

charge Q with those of the test BH, i.e., M → m(ϕ) and Q → q. The background

value of the scalar field can be identified with the field from the more massive BH

ϕ0 → ϕ, and the scalar charge by D → dm(ϕ)/dϕ, as was shown by the matching

conditions in Ref. [202]. This leads to the equation

dm(ϕ)

dϕ
=

a

1− a2

[
m(ϕ)−

√
m(ϕ)2 − (1− a2)q2e2aϕ

]
, (2.19)

which, as far as we know, has no analytic solution for arbitrary values of a. Never-

theless, we can still obtain an expression for the dimensionless scalar charge, which

is defined by Eq. (2.6),

α(ϕ) =
a

1− a2

[
1−

√
1− (1− a2)

q2e2aϕ

m2(ϕ)

]
, (2.20)

and

β(ϕ) =
a2q2e2aϕ

(1− a2)m2(ϕ)

1− a2√
1− (1− a2) q

2e2aϕ

m2(ϕ)

 , (2.21)

in agreement with Ref. [202].

It is interesting to note that an exact analytic solution to the differential

equation (2.19) can be found when the coupling constant a = 1, that is

m(ϕ) =

√
const. +

1

2
q2e2ϕ . (2.22)
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Since the above expression should give m when ϕ = 0, the integration constant is

found to be m2 − 1
2
q2. Hence,

m(ϕ) =

√
m2 − 1

2
q2 +

1

2
q2e2ϕ . (2.23)

By differentiating m(ϕ), we get the parameters

α =
q2

2m2
, β =

q2

m2
− q4

2m4
. (2.24)

In Fig. 2.1, we plot α(ϕ) as a function of ϕ. We see that the test BH’s

α(ϕ) transitions between two values: zero and a. The function α(ϕ) reaches its

maximum value when the quantity q2 e2aϕ/m2 approaches 1 + a2, which means that

in the Jordan-Fierz frame, the charge q approaches the extremal value
√

1 + a2m̃,

where the mass in the Jordan-Fierz frame m̃ is given by Eq. (2.4). Changing the

charge-to-mass ratio shifts the curve on the horizontal axis, while changing a changes

the maximum value of α and determines how quickly this transition occurs.

We emphasize that the scalar field ϕ generated by the more massive BH is

always negative, as can be seen from Eq. (2.13), so the test BH always descalarizes.

Further, because of the logarithm, the magnitude of ϕ increases slowly with decreas-

ing separation until r approaches the inner horizon r−, where it diverges. For the

scalar charge of the test BH to change dramatically before merging with its much

larger companion, both BHs must be close to extremally charged. As discussed in

Sec. 2.1, extremally-charged BHs can exist in minicharged dark matter and dark

photon models. If the test BH is not sufficiently charged, its scalar charge is close

to zero when well separated from its companion, and then monotonically decreases
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toward zero as the binary evolves. The total shift in the scalar field that the test

BH experiences prior to crossing the outer horizon is given by

ϕ(r+)− ϕ(∞) =
a

1 + a2
ln

[
1−D/Dmax

1− (1− a2)D/2Dmax

]
. (2.25)

Thus, if the large BH is not also sufficiently charged, then the test BH’s scalar charge

does not change dramatically.

In Fig. 2.2, we substitute the expression for the scalar field of the larger BH

ϕ(r) into that for the scalar charge of the test BH α(ϕ), and plot α(r) versus the

separation r scaled by the horizon radius. When setting the charge of the large

BH to its extremal value, Q =
√

1 + a2M , we see that the charge of the test BH

also needs to be near extremal for the descalarization transition to occur. Yet, the

transition only occurs very close to the horizon of the background BH. Hence, we

expect this descalarization to drastically affect the GW signature only during the

late inspiral and plunge of a test BH into a more massive BH and only when the

BHs are nearly-extremally charged, when the horizon, the innermost-stable circular

orbit, and the divergence in ϕ coincide. This result is analogous to extremal Kerr

BHs, where the plunge occurs at significantly smaller separations [205]. However,

a comparable-mass binary does not perform many orbits at small separations due

to stronger radiation reaction, and thus we expect that the transition in the scalar

charge would have a negligible effect on GWs from the inspiral of a comparable-mass

binary.

We note that, while the descalarization transition occurs for near-extremal

BHs, the largest change in the value of α from infinity until, e.g., r = 2r+ occurs
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when the electric charge is q/m ∼ 1, as can be seen in the left panel of Fig. 2.2.

This is due to the slope of α(ϕ) at the background value of the scalar field ϕ0 = 0.

So, in order to increase the change in the scalar charge to observe descalarization,

it is important to have a maximal β(ϕ) ≡ dα(ϕ)/dϕ.

2.2.4 Compact objects in Einstein-Maxwell-dilaton and scalar-tensor

theories

Certain ST theories can exhibit non-perturbative phenomena, known as in-

duced or dynamical scalarization, in binary systems of neutron stars [169–172].

Having established how a BH responds to its scalar environment, we now investi-

gate whether such effects could arise in binary BHs in EMd theory. In Ref. [199], the

authors suggested that dynamical and induced scalarization are much less signifi-

cant in EMd theory than in ST theories. In this subsection, we support this claim

using more quantitative arguments by directly comparing the behavior of BHs and

neutron stars in the respective theories.

In Ref. [3], the authors argued that the onset of induced and dynamical scalar-

ization coincide with a breakdown of the PN approximation. Specifically, these non-

perturbative phenomena indicate that the scalar field has grown beyond the validity

of a PN expansion of m, e.g., Eq. (2.7). A useful diagnostic for determining the

onset of such phenomena is to compare the relative size of the coefficients of such a

power series to the small parameter with which one constructs the expansion.

While both EMd theory and ST theories include an additional scalar field,
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the non-minimal coupling of that field to the Jordan-Fierz (physical) metric can

differ substantially. To facilitate comparisons between these theories, we consider

an expansion of m in GN(ϕ), the parameter that characterizes the gravitational force

felt between two test bodies placed in the scalar background ϕ. In both EMd theory

and ST theories, this Newton’s “constant” is given by

GN(ϕ) ≡ A2(ϕ)

[
1 +

(
d logA
dϕ

)2
]
. (2.26)

We expand m in terms of this quantity

m(GN) = m

[
1 + C1

(
G−G0

N

G0
N

)
+ C2

(
G−G0

N

G0
N

)2

+ . . .

]
, (2.27)

where we have defined

G0
N ≡ GN(ϕ = 0), (2.28a)

C1 ≡
[
d logm

d logGN

]
GN=G0

N

, (2.28b)

C2 ≡
1

2

[
d2 logm

(d logGN)2
+

(
d logm

d logGN

)2

− d logm

d logGN

]
GN=G0

N

. (2.28c)

We compare these coefficients for BHs in EMd theory to that of neutron stars

in Brans-Dicke gravity [177–179], defined by the coupling

ABD(ϕ) = e−α0ϕ, (2.29)

and theories first considered by Damour and Esposito-Farèse (DEF) [147, 153]

ADEF(ϕ) = e−β0ϕ
2/2, (2.30)

in which induced and dynamical scalarization can occur when β0 is sufficiently neg-

ative. In Fig. 2.3, we plot the ratio C2/C1 for compact objects in the various
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Figure 2.3: Ratio of the coefficients C2/C1 defined in Eqs. (2.28b)
and (2.28c) as a function of GN for BHs in EMd theory (solid) and
neutron stars in various ST theories (dashed). Annotated points depict
this ratio at various separations for a test BH with q = 0.99qmax in the
background of a BH with Q = Qmax in EMd theory (r+ refers to the
outer horizon of the background spacetime).

theories. For the ST theories, we consider neutrons stars with m = 1.45M� with

the piecewise polytropic fit to the SLy equation of state constructed in Ref. [206].

The solid curve depicts this ratio for BHs in EMd theory with coupling a = 10. By

comparison, this same quantity is shown with red and blue dashed curves for neu-

tron stars in Brans-Dicke gravity with α0 = 0.03 and in the theory of Damour and

Esposito-Farèse with β0 = −4.4, respectively. Note that by inserting Eq. (2.30) into

Eq. (2.26), one sees that this theory is only defined for GN(ϕ) > G0
N. For reference,

we indicate with black points the separation at which these values are achieved in

EMd theory when the test BH in placed in the background of an extremally charged

BH; r+ corresponds to the outer horizon of the background BH. We see that the

magnitude of the ratio C2/C1 drastically differs between ST theories that manifest
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induced and dynamical scalarization (DEF) and EMd theories. This result indicates

that a perturbative expansion of the dynamics has a larger regime of validity, and

that non-perturbative phenomena are less likely to emerge during the coalescence

of binary BHs in EMd theory.

2.3 Post-Newtonian approximation in Einstein-Maxwell-dilaton the-

ory

2.3.1 Two-body dynamics

To go beyond the test-body limit, treating two-body systems with arbitrary

mass ratios, we employ the PN approximation, which is valid in the weak-field, slow-

motion regime [30]. In Appendix A, we derive results for the conservative dynamics

of a binary BH system in EMd theory, at next-to-leading order in the PN expansion,

i.e., at 1PN order. We employ the Fokker action method [207] (see also Ref. [208]),

which has been used to treat the 4PN dynamics in GR [209], and the 2PN [208] and

3PN [210] dynamics in ST theories. We begin by considering the PN expansions of

the EMd action in Eq. (2.2) and the matter action for point particles in Eq. (2.3),

using the mass expansion in terms of the α and β parameters from Eq. (2.7). From

the initial full action expanded to 1PN order, we obtain field equations for the scalar

field, the metric potential, and the electromagnetic 4-potential. The Fokker action

is obtained by plugging the (regularized) solutions to the field equations back into

the action, eliminating the field degrees of freedom, yielding an action depending

only on the matter variables. We work in the harmonic gauge gµνΓλµν = 0 and the
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Lorenz gauge ∂µA
µ = 0 throughout. The final result for the two-body Lagrangian

is given by

L = −m1 −m2 +
1

2
m1v

2
1 +

1

2
m2v

2
2 +

(
1 + α1α2 −

q1q2

m1m2

)
m1m2

r

+
1

8
m1v

4
1 +

1

8
m2v

4
2 +

q1q2

2r
[v1 · v2 + (n · v1)(n · v2)]

+
m1m2

2r

[
(3− α1α2)(v2

1 + v2
2)− (7− α1α2)(v1 · v2)− (1 + α1α2)(n · v1)(n · v2)

]
− m1m2

2r2

[
(1 + 2α1α2)(m1 +m2) +m1α

2
1(α2

2 + β2) +m2α
2
2(α2

1 + β1)
]

+
q1q2

r2
[m1(1 + aα1) +m2(1 + aα2)]− 1

2r2

[
m1q

2
2(1 + aα1) +m2q

2
1(1 + aα2)

]
+O

(
1

c4

)
, (2.31)

where r ≡ x1 − x2 is the separation between the two bodies, and n ≡ r/r. This

Lagrangian agrees with the one derived by Damour and Esposito-Farèse [147, 208]

when the Maxwell fields are zero. The standard 1PN Lagrangian in GR is obtained

by setting qi = αi = βi = 0, while the Lagrangian in EM theory is obtained when

αi = βi = 0. Note that, since we use the mass expansion in Eq. (2.7) given in terms

of generic parameters α and β, our results are not restricted to BHs in EMd theory,

but are applicable to more generic bodies as well.

During the course of this project, the same 1PN Lagrangian for a two-body

system in EMd theory was derived independently by Julié in Ref. [202]. While our

results agree, our derivation differs from that of Ref. [202] in some notable respects.

In Ref. [202], the (unexpanded) field equations were directly obtained from the

action (2.2), and then those equations were expanded and solved for the fields. The

primary difference with our derivation is in how Ref. [202] constructed the two-body

Lagrangian: (i) taking (only) the matter action for one body (without the field part
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of the action, and without the matter action for the other body), which would apply

if the body were a test body in some given fields, (ii) inserting for those fields the

(regularized) solutions to the field equations resulting from the total (two bodies +

fields) action, and (iii) taking the resultant Lagrangian and “symmetrizing” it with

respect to the two bodies. While this procedure does produce a correct Lagrangian

at 1PN order, it is not justified in general, and it is important to see how the result

can be obtained from a consistent treatment of the full action for the two bodies and

fields. In Ref. [202], it was also found that it is possible to parameterize the 1PN

Lagrangian in EMd theory to have the same structure as the 1PN Lagrangian in

ST theories, which means that many results in ST theories can be directly extended

to EMd theory at 1PN order. We choose not to use that parameterization to make

the dependence on the electric charges more apparent, and because many of our

results are specific to EMd theory, such as calculating the vector energy flux and

developing the EOB Hamiltonians.

The Hamiltonian in the center-of-mass frame can be derived from the La-

grangian using the Legendre transformation [211]

H = v · p− L, (2.32)

where the relative velocity v ≡ v1 − v2 and the center-of-mass momentum

pi =
∂L

∂vi
. (2.33)
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This leads to the energy

E = M +
1

2
µv2 − G12Mµ

r
+

3

8
(1− 3ν)µv4

+
G12Mµ

2r

[(
3− α1α2

1 + α1α2 − q1q2
Mµ

+ ν

)
v2 + νṙ2

]

+
M2µ

2r2

[
(1 + α1α2)2 +X2α

2
2β1 +X1α

2
1β2 +X1

q2
2

Mµ
(1 + aα1)

+X2
q2

1

Mµ
(1 + aα2)− 2

q1q2

Mµ
(1 + aα1X1 + aα2X2)

]
+O

(
1

c4

)
, (2.34)

where ṙ = n ·v, and we defined the total mass M , reduced mass µ, symmetric mass

ratio ν, and the mass ratios Xi in terms of the constant masses m1 and m2 by

M ≡ m1 +m2 , µ ≡ m1m2

M
, ν ≡ µ

M
,

X1 ≡
m1

M
, X2 ≡

m2

M
. (2.35)

We also define the coefficient G12 by

G12 ≡ 1 + α1α2 −
q1q2

Mµ
, (2.36)

which reduces to the usual definition in ST theories when the electric charges are

zero. The advantage of including the charges in G12 is that the Newtonian-order

acceleration is simply given by a = −G12Mn/r
2 +O(1/c2).

Expressing the energy in terms of the center-of-mass momentum p ≡ p1 =

−p2, instead of the velocity, we obtain the Hamiltonian

H = M +
p2

2µ
− G12Mµ

r
− 1

8
(1− 3ν)

p4

µ3
− G12M

2µr

[(
3− α1α2

1 + α1α2 − q1q2
Mµ

+ ν

)
p2 + νp2

r

]

+
M2µ

2r2

[
(1 + α1α2)2 +X2α

2
2β1 +X1α

2
1β2 +X1

q2
2

Mµ
(1 + aα1) +X2

q2
1

Mµ
(1 + aα2)

− 2
q1q2

Mµ
(1 + aα1X1 + aα2X2)

]
+O

(
1

c4

)
, (2.37)
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Figure 2.4: Scalar charges scaled by their asymptotic value as a function
of the separation r of a binary BH scaled by the total mass. In both plots,
the charge-to-mass ratio q1/m1 = q2/m2 = 1 and the dilaton coupling
a = 1; in the left panel ν = 0.24, while in the right ν = 0.1.

where pr = n · p.

Next, we examine how the scalar charges of the two bodies change with their

separation. The dilaton charge is given by

D(ϕ) =
dm(ϕ)

dϕ
= m(ϕ)α(ϕ). (2.38)

For the two bodies, the dilaton charge as a function of the separation r has the

expansion

D1(r) = m1

[
α1 + (α2

1 + β1)ϕ1(r) +
1

2

(
3β1α1 + α3

1 + β′1
)
ϕ2

1(r) +O
(
1/c6

) ]
,

(2.39a)

D2(r) = m2

[
α2 + (α2

2 + β2)ϕ2(r) +
1

2

(
3β2α2 + α3

2 + β′2
)
ϕ2

2(r) +O
(
1/c6

) ]
,

(2.39b)

where β′ ≡ dβ(ϕ)/dϕ|ϕ0
, ϕ1 is the scalar field at the location of body 1, and ϕ2 is
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Figure 2.5: Scalar charges of a binary BH as a function of r for equal
masses (ν = 1/4), dilaton coupling a = 1, and charge-to-mass ratios
q1/m1 = 1, q2/m2 = 1.4 (left) and q1/m1 = 1, q2/m2 = 0.5 (right).

the scalar field at the location of body 2. From the 1PN scalar field in Eq. (A.32),

ϕ1(r) = −α2m2

r
+
m1m2

r2

(
α2 + α1α

2
2 + α1β2

)
− aq1q2

r2

+
aq2

2

2r2
+

1

2
α2m2(n · a2) +O

(
1/c6

)
, (2.40a)

ϕ2(r) = −α1m1

r
+
m1m2

r2

(
α1 + α2α

2
1 + α2β1

)
− aq1q2

r2

+
aq2

1

2r2
− 1

2
α1m1(n · a1) +O

(
1/c6

)
, (2.40b)

where, using a = −G12Mn/r
2 +O(1/c2) and Eq. (B.19),

a1 =
m2

M
a = −G12m2

r2
n+O

(
1/c2

)
, (2.41a)

a2 = −m1

M
a =

G12m1

r2
n+O

(
1/c2

)
. (2.41b)

In Fig. 2.4, we plot D1(r) and D2(r) for charge-to-mass ratios q1/m1 =

q2/m2 = 1, dilaton coupling constant a = 1, and symmetric mass ratios ν = 0.24

and ν = 0.1. The curves are plotted until r = 3M because the PN expansion

becomes inaccurate well before that separation. From the figure, we see that the
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scalar charge of both bodies decreases as the separation decreases, with the charge

of the lighter body decreasing more quickly. Figure 2.5 shows the scalar charge as a

function of the separation for equal masses but with different charge-to-mass ratios.

We keep q1/m1 = 1 while q2/m2 takes the values 1.4 and 0.5. The scalar charge

of the less-charged body decreases more quickly with decreasing separation. These

results are consistent with what was found in the previous section for the scalar

charge of a test BH, but here, we do not see a transition or a divergence near the

horizon.

2.3.2 Gravitational energy flux

From the 1PN expansion, we computed the next-to-leading order scalar, vec-

tor, and tensor energy fluxes for general orbits (see Appendix B for the derivation).

In a 1/c expansion, the leading terms are the scalar and vector dipole fluxes, which

are of order 1/c3, while the leading order tensor flux is of order 1/c5, which is the

same as the next-to-leading order scalar and vector fluxes. We computed the next-

to-leading order tensor flux, which is of order 1/c7, because that is the maximum

level of approximation accessible by use of the 1PN near-field equations. The scalar

and vector dipole fluxes depend on the difference between the charges of the two

bodies. The scalar flux also includes a monopole term that vanishes for circular

orbits.

The total energy flux is the sum of the scalar, vector, and tensor fluxes

F = FS + FV + FT , (2.42)
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where the expressions for the fluxes through next-to-leading order for general orbits

are given in Appendix B. The fluxes for circular orbits are given by

FS =
ν2x4

3G2
12

(α1 − α2)2 +
ν2x5

15G2
12

[
20fγ(α1 − α2)2

+5
(
fSv2 + fS1/r

)
+ 16 (X1α2 +X2α1)2]+O

(
1

c7

)
, (2.43a)

FV =
2ν2x4

3G2
12

(
q1

m1

− q2

m2

)2

+
2ν2x5

15G2
12

[
20fγ

(
q1

m1

− q2

m2

)2

+8

(
X2

q1

m1

+X1
q2

m2

)2

+ 5
(
fVv2 + fV1/r

)]
+O

(
1

c7

)
, (2.43b)

FT =
32ν2x5

5G2
12

+
2ν2x6

105G2
12

(
fTv4 + fTv2/r + fT1/r2 + 672fγ

)
+O

(
1

c9

)
, (2.43c)

where the coefficients f are given by Eqs. (B.36), (B.56), (B.79), and (B.85). The

energy flux is expressed in terms of the parameter x defined by

x ≡ (G12MΩ)2/3 , (2.44)

where Ω is the orbital frequency, which is “perturbatively gauge-invariant” in the

sense that it remains fixed under coordinate transformations to arbitrary PN order.

In Figs. 2.6 and 2.7, we plot the total energy flux in EMd theory with a = 1

relative to the flux when all charges are zero versus the binary’s gauge-invariant

velocity v = (G12MΩ)1/3, i.e., we plot (F − Fq=0)/Fq=0. For comparison, Fig. 2.6

also includes the energy flux in EM, when scalar charges are zero but not the electric

charges. The plots start at v = (G12MΩ)1/3 = 0.15 which corresponds to a total

mass M = 20M�, and a lower GW frequency in the detector of 10 Hz. In the

plots, we used the next-to-leading order scalar and vector fluxes, but only used the

leading Newtonian order tensor flux, because the 1PN energy flux in GR is given by
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Figure 2.6: Energy flux in EMd theory and EM relative to the un-
charged GR flux plotted versus the gauge-invariant velocity for cir-
cular orbits v ≡ (G12MΩ)1/3 for coupling constant a = 1, for equal
masses, and for charge-to-mass ratio q1/m1 = 1, q2/m2 = 0.8 (left) and
q1/m1 = 1, q2/m2 = −0.8 (Right).

FGR ∼ x5 − const. x6; the minus sign of the second term causes the flux to become

negative at large frequencies.

From the plots, we see that at small frequencies (large separations), the dif-

ference with GR is greater than at larger frequencies because the dipole scalar and

vector fluxes dominate (FS ∼ x4 while FT ∼ x5). For equal charges, the scalar and

vector dipole fluxes are both zero, which means the total energy flux is the tensor

flux that is proportional to x5. Hence, the next-to-leading order flux in EMd theory

becomes a constant shift to the GR flux, and the relative flux plotted in the figures

becomes a straight line, as can be seen in Fig. 2.7.

In the two panels of Fig. 2.6, we use charge-to-mass ratios q1/m1 = 1, q2/m2 =

0.8 (left) and q1/m1 = 1, q2/m2 = −0.8 (right). For same-sign charges, at a fixed

frequency, there is a greater difference from GR than for opposite-sign charges and
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Figure 2.7: Energy flux in EMd theory relative to the uncharged GR
flux for coupling constant a = 1 plotted versus v = (G12MΩ)1/3, for
equal masses, and for various charge-to-mass ratios.

also a greater difference between EMd and EM. This is because the energy flux is

inversely proportional to G2
12 = (1 + α1α2 − q1q2/m1m2)2, which is larger when the

electric charges have opposite signs than when they have the same sign. In the right

panel, the plotted curves become negative when F < Fq=0, which occurs because

G12 > 1 for opposite-sign charges, which makes the EMd flux smaller than the GR

flux at some frequency.

In Fig. 2.7, we plot the energy flux for several charge-to-mass ratios. In that

figure, we do not plot the flux in EM theory, because it is almost the same as the

EMd flux for charges qi/mi . 0.5 since FS ∝ α2
i ∝ q4

i /m
4
i , which is much smaller

than FV ∝ q2
i /m

2
i for small charges. The plot shows the flux for same-sign charges

in a log plot; for small charges . 0.01, the EMd flux decreases significantly and

becomes very close to the GR flux.

The most salient feature that differentiates EMd theory from GR from the
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Figure 2.8: Allowed values of EMd coupling a consistent with a dipole
flux constraint of |B| ≤ 10−3 as a function of mass-weighted total electric
charge. Colors indicate various possible electric dipoles consistent with
the bound on B.

perspective of GW observations is the presence of dipole radiation. At leading

order, the energy flux can be written as

F = FGR

(
1 +Bx−1

)
, (2.45)

where FGR is the GR quadrupole flux, and B parameterizes the strength of dipolar

emission, which is given by

B =
5

96

[
(α1 − α2)2 + 2

(
q1

m1

− q2

m2

)2
]
. (2.46)

The presence of dipole flux has been constrained in several types of binary

systems. The best constraints on the B come from radio observations of pulsar–

white-dwarf binaries, which lead to the bound |B| . 10−9 [212]. For binaries con-

taining a single BH, the strongest bound comes from low-mass X-ray binaries, in

which the companion is a main-sequence star: |B| . 2 × 10−3 [145]. To date, no
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bound has been set from GW observations of binary BHs, but at design sensitivity,

LIGO could set a bound of |B| . 8 × 10−4 for a GW150914-like event, and LISA

could lower that bound to 10−8 [145].

We wish to understand how well such a bound on dipole radiation in binary

BHs can constrain EMd theory. Given the discussion above, we consider a hypo-

thetical binary BH observation that constrains the dipole flux to |B| . 10−3. The

coupling a that characterizes EMd theory enters the prediction of B through the

dimensionless scalar charges of the two bodies. Equation (2.46) demonstrates that

for a given value of B, the scalar and electric dipoles are degenerate, and thus no

constraint can be set on a directly with only a bound on the dipole flux. However,

if an independent measurement of the total charges could be made — e.g., through

measurements of the ringdown spectrum of the final remnant—one can potentially

break this degeneracy and constrain EMd theory.

In Fig. 2.8, we show the values of a consistent with |B| ≤ 10−3 as a function of

mass-weighted total charge |q1/m1 +q2/m2| for various possible values of the electric

dipole |q1/m1−q2/m2|. The maximum allowed electric dipole is achieved in the limit

that a = 0, wherein the scalar charges of the BHs vanish and our bound on the dipole

flux translates directly to the bound on the electric dipole |q1/m1− q2/m2| . 0.098.

Unsurprisingly, we find that the constraint that can be set on a depends primarily

on the magnitude of the electric charges in the binary: for equal-mass systems, the

strongest constraints can be set when the BHs have large, nearly-equal charges, and

the weakest constraints when the BHs have small, opposite charges. We see that

for any realistic constraint on dipole flux, the parameter a is completely unbounded
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without an independent measurement of the electric charges.

2.3.3 Gravitational-wave phase in the stationary-phase approxima-

tion

Equipped with PN descriptions of the conservative and dissipative sectors of

binary dynamics in EMd theory, we compute a key observable for GW detections:

the Fourier-domain gravitational waveform. We utilize the stationary-phase approx-

imation to perform this calculation, relying on the fact the GW phase evolves much

more rapidly than its amplitude during the adiabatic inspiral along quasi-circular

orbits.

We consider a GW detector a distance R� λGR ∼ r/v from a binary BH. In

the vicinity of the detector, the metric takes the form

gµν = ηµν + hµν , (2.47)

where ηµν is the Minkowski metric and hµν contains two propagating, transverse-

traceless polarizations h+ and h×, which comprise the GW produced by the binary.6

At the fixed distance R, the GW can be decomposed into spin-weighted spherical

6A GW detector also responds to the scalar field through the coupling given in Eq. (2.2). These

scalar waves represent a transverse breathing polarization of perturbations to the Jordan-Fierz

metric. Because standard search techniques are targeted at the transverse-traceless polarizations,

we consider only those gravitational modes in this work. Differentiating between the various polar-

izations of GWs requires a network of detectors; our ability to identify additional GW polarizations

will improve as more ground-based detectors come online.
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harmonics

h+ − ih× =
∑
`≥2

∑̀
m=−`

−2Y`m(Θ,Φ)h`m(t), (2.48)

where Φ,Θ are angular coordinates that define the propagation direction from the

source to the detector [30]. We further decompose each mode into an amplitude and

complex phase

h`m(t) = A`m(t)eimφ(t), (2.49)

where φ(t) is the orbital phase of the binary.

We compute the Fourier-transform of the GW using

h̃`m(f) =

∫ ∞
−∞

dt h`m(t)e−2iπft. (2.50)

During the adiabatic inspiral, the amplitude and orbital frequency evolve much more

slowly than the orbital phase, i.e., |Ȧ`m/A`m| � Ω and |Ω̇| � Ω2 for m 6= 0 modes.

Thus, the integral in Eq. (2.50) is highly oscillatory and can be approximated by

expanding the integrand about the time at which the complex phase is stationary.

Using the stationary-phase approximation, the Fourier-domain waveform is then

given by

h̃SPA
`m (f) = A`m(f)e−iψ`m(f)−iπ/4, (2.51)

ψ`m(f) = 2πft
(m)
f −mφ(t

(m)
f ), (2.52)

A`m(f) = A`m(t
(m)
f )

√
2π

mΩ̇(t
(m)
f )

, (2.53)

where tmf is defined implicitly as the time at which mΩ(t
(m)
f ) = 2πf . Following the

notation common in the literature, we employ the binary’s gauge-invariant velocity
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for circular orbits v ≡ x1/2 = (G12MΩ)1/3 and introduce a similar notation for the

GW frequency f as vf ≡ (πG12Mf)1/3. Then, by construction, one finds v(t
(m)
f ) =

(2/m)1/3vf and can rewrite Eq. (2.52) as

ψ`m(f) = m

(
1

G12M
v3t(v)− φ(v)

) ∣∣∣∣
v=(2/m)1/3vf

. (2.54)

From here onwards, we focus only on the dominant ` = |m| = 2 modes and drop the

explicit mode numbers for notational simplicity; because we restrict our attention

to non-spinning systems, the modes obey the symmetry relation

h`m = (−1)`h∗`,−m, (2.55)

and thus we can consider only the m = 2 mode without loss of generality.

The orbital phase and frequency are computed using the balance equation

dE

dt
= −F . (2.56)

From this equation, we deduce

φ(v) =φref −
1

G12M

∫ v

vref

dv̂v̂3E
′(v̂)

F(v̂)
, (2.57)

t(v) =tref −
∫ v

vref

dv̂
dE/dv̂

F(v̂)
, (2.58)

where φref and tref refer to an arbitrary reference point in the evolution of the binary.

Inserting these results into Eq. (2.54), the Fourier-domain phase is given by

ψ(f) = 2πftref − φref +
2

G12M

∫ vref

vf

(
v3
f − v3

) E ′(v)

F(v)
dv. (2.59)

The energy flux in terms of x is given by Eq. (2.43a). The energy E is given

by Eq. (2.34), and it can be expressed in terms of x using Eqs. (B.82) and (B.85),
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which leads to

E = −µ
2
x
[
1 + fEx+O

(
1/c4

)]
, (2.60)

where the coefficient fE is given by

fE =
−1

3G2
12

[
G2

12

(
1 + ν

4
+

3− α1α2

1 + α1α2 − q1q2
Mµ

)
− (1 + α1α2)2 −X2α

2
2β1 −X1α

2
1β2

−X1
q2

2

Mµ
(1 + aα1)−X2

q2
1

Mµ
(1 + aα2) + 2

q1q2

Mµ
(1 + aX1α1 + aX2α2)

]
.

(2.61)

To evaluate the integral in Eq. (2.59), we need to distinguish between two

regimes, similarly to what was done in Ref. [2]. In one regime, the electric charges

are small and the inspiral is driven by the tensor quadrupole flux. In the other

regime, the electric charges are large and the inspiral is driven by the dipole flux.

For the quadrupole-driven (QD) case, we approximate the integrand in Eq. (2.59)

by

E ′(v)

F(v)
' E ′(v)

FT (v)

[
1− FS(v) + FV (v)

FT (v)

]
. (2.62)

Then, we expand the integrand using the next-to-leading order fluxes. Evaluating

the integral leads to the phase

ψQD(f) = 2πftref − φref +
1

v5

[
ρQD

0 +
ρQD
−2

v2
+ ρQD2 v2 +O

(
v4
)]
, (2.63)
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with the coefficients

ρQD
0 = − G12

4096ν

{
− 96 + 5

(
fS1/r + fSv2

)
+ 10

(
fV1/r + fVv2

)
+ 40fγ

(
q1

m1

− q2

m2

)2

+
5

168

(
336fE − 672fγ − fT1/r2 − fTv2/r − fTv4

)[
2

(
q1

m1

− q2

m2

)2

+ (α1 − α2)2

]

+ 16

(
X2

q1

m1

+X1
q2

m2

)2

+ 20fγ(α1 − α2)2 + 16 (X2α1 +X1α2)2

}
, (2.64a)

ρQD
−2 = − 5G12

7168ν

[
2

(
q1

m1

− q2

m2

)2

+ (α1 − α2)2

]
, (2.64b)

ρQD
2 = − 5G12

1548288ν

{
− 32256fE +

[
48− 20fE

(
q1

m1

− q2

m2

)2

− 10fE (α1 − α2)2

]

×
(

672fγ + fT1/r2 + fTv2/r + fTv4
)
−
(

672fγ + fT1/r2 + fTv2/r + fTv4 − 336fE

)
×
[
5
(
fS1/r + fSv2

)
+ 10

(
fV1/r + fVv2

)
+ 20fγ(α1 − α2)2 + 40fγ

(
q1

m1

− q2

m2

)2

+ 16

(
X2

q1

m1

+X1
q2

m2

)2

+ 16 (X2α1 +X1α2)2

]
+

5

224

[
2

(
q1

m1

− q2

m2

)2

+ (α1 − α2)2

](
672fγ + fT1/r2 + fTv2/r + fTv4

)2
}
,

(2.64c)

where the coefficients f are given by Eqs. (B.36), (B.56), (B.79), and (B.85). When

the charges are zero, this phase reduces to the next-to-leading order GR result, i.e.,

ρQD
0 → 3/128ν, ρQD

2 → 5(743 + 924ν)/32256ν, and ρQD
−2 → 0.

For the dipole-driven (DD) case, we take the tensor flux at the same order as

the scalar and vector fluxes, i.e., to O(x5). Evaluating the integral in (2.59) leads

to

ψDD(f) = 2πftref − φref +
ρDD

0

v3

[
1 + ρDD

2 v2 +O(v4)
]
, (2.65)
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where the coefficients are given by

ρDD
0 =

G12

ν

[
2

(
q1

m1

− q2

m2

)2

+ (α1 − α2)2

]−1

, (2.66a)

ρDD
2 =

−9

10

[
2

(
q1

m1

− q2

m2

)2

+ (α1 − α2)2

]−1 [
96 + 10

(
fV1/r + fVv2

)
+ 5

(
fS1/r + fSv2

)
− 10(fE − 2fγ)(α1 − α2)2 + 16 (X2α1 +X1α2)2 − 20(fE − 2fγ)

(
q1

m1

+
q2

m2

)2

+ 80(fE − 2fγ)
q1q1

m1m2

+ 16

(
X2

q1

m1

+X1
q2

m2

)2 ]
. (2.66b)

When we set the electric charges to zero, but keep the scalar charges nonzero, this

result agrees with the (ST) result derived in Ref. [2].

We wish to understand how well a GW signal produced in EMd theory [e.g.

Eq. (2.63)] can be distinguished observationally from a signal in GR. Answering this

question definitively falls beyond the scope of this work. To perform such a study,

one would need to perform a Bayesian hypothesis test on injections of EMd signals

into detectors with realistic noise, comparing the relative evidence that the signal

matches template waveforms in either EMd theory or GR; for examples of such

analyses for other modifications to GR, see Refs. [120, 175, 213–215]. Instead of this

detailed study, we compute two comparatively simple measures of distinguishability:

the difference in total phase, and, in Sec. 2.3.4, the number of “useful” GW cycles.

To compare the phase calculated in EMd theory with that in GR, we need to

align the waveforms and then compute dephasing from this alignment point. We

choose to do the alignment around the “merger frequency,” which for simplicity we

choose to be the innermost-stable circular orbit (ISCO) frequency fISCO = 6−3/2/πM

for a Schwarzschild BH. Next, we determine tref and φref such that the waveform
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Figure 2.9: Phase difference in radians between EMd theory and GR as
a function of v, computed in the quadrupole-driven regime, for various
charge-to-mass ratios, and for equal masses (ν = 1/4).

reaches a local maximum at this point and the phase reaches some fixed value, e.g.,

zero. To satisfy these two conditions, one can choose tref and φref such that at fISCO,

dψ(f)/df = 0 and ψ(f) = 0. For the QD case, this leads to

tQD
ref = 108MG

−10/3
12

(
10G

2/3
12 ρ

QD
0 +G

4/3
12 ρ

QD
2 + 84ρQD

−2

)
,

φQD
ref = 12

√
6G
−7/3
12

(
8G

2/3
12 ρ

QD
0 +G

4/3
12 ρ

QD
2 + 60ρQD

−2

)
. (2.67)

Similarly, for the DD case, we get

tDD
ref = 6MG−2

12 ρ
DD
0

(
18 +G

2/3
12 ρ

DD
2

)
,

φDD
ref = 4

√
2

3
G−1

12 ρ
DD
0

(
9 +G

2/3
12 ρ

DD
2

)
. (2.68)

In Fig. 2.9, we plot the difference between the phase calculated in EMd theory

with a = 1 and the phase when all charges are zero, which is the phase in GR

up to 1PN order. For the configurations considered here, v = 0.15 corresponds to

approximately 10 Hz for a 20M� system. Because the charges are relatively small,
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we compute the phase using Eq. (2.63). For systems whose components’ charge-

to-mass ratio qi/mi . 0.01, the two waveforms differ by less than one radian over

the frequency range of a ground-based GW detector. The phase difference does not

depend strongly on the value of a; for values of a ∼ 1000 and charge-to-mass ratios

qi/mi . 10−3 analogous to those considered in Ref. [199], the phase difference agrees

with that shown in Fig. 2.9 within 10%.

2.3.4 Number of useful gravitational-wave cycles

The total number of GW cycles between frequencies fmin and fmax is given by

Ntot =

∫ fmax

fmin

df

2π

dφ

df
, (2.69)

where φ is the gravitational wave phase. The instantaneous number of cycles spent

near some frequency f is defined by multiplying the above integrand by f

N(f) ≡ f

2π

dφ

df
. (2.70)

However, GW detectors are not equally sensitive to all parts of the waveform because

the noise spectral density of the detector is frequency dependent. A better proxy

for how observationally different two waveforms are is to compare the number of

“useful” cycles in each. This measure was originally introduced in Ref. [216]. One

computes the total phase accumulated in each frequency bin and then weights this

estimate by the sensitivity of a detector at that frequency. Because the strain

sensitivity of the detector is concentrated in just a window of frequency space, the

result would also depend on the mass of the system. The number of useful cycles is
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defined by [216]

Nuseful(f) ≡
[∫ fmax

fmin

df

f
w(f)N(f)

] [∫ fmax

fmin

df

f
w(f)

]−1

, (2.71)

where the weight w(f) ≡ A2(f)/fSn(f), while A(f) is the GW amplitude, and Sn(f)

is the noise spectral density of the detector. We use the zero-detuned high-power

noise spectral density of Advanced LIGO at design sensitivity [217].

Using the balance equation dE/dt = −F , and the relation between the GW

phase and orbital frequency φ̇ = Ω, the instantaneous number of cycles in Eq. (2.70)

can be reformulated as

N(f) = − v4

3πMG12

E ′(v)

F(v)
, (2.72)

which can be computed in the quadrupole-driven regime using Eq. (2.62). For

the GW amplitude, we used the Newtonian order approximation for the transverse-

traceless polarizations A(f) ∝ v2, since the effect from the amplitude on the number

of cycles is small compared to the phase. We can then calculate numerically the

number of useful cycles using Eq. (2.71).

In Fig. 2.10, we show the relative difference between Nuseful in EMd theory

with a = 1 and the same quantity when all charges are zero (GR to 1PN order).

The number of cycles in EMd theory is less than in GR except for equal charges,

because the leading dipole radiation dominates the Newtonian order corrections to

the binding energy. We find that for systems with qi/mi ∼ 0.1, the number of useful

cycles in GR and EMd differs by O(1).

The quantity plotted in Fig. 2.10 provides a rough estimate of the observable

size of deviations from GR relative to the overall GW signal strength. We recast
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this quantity in terms of the optimal signal-to-noise ratio (SNR) of the waveforms,

defined by

SNR2 = 4

∫ fmax

fmin

df
|A(f)|2
Sn(f)

. (2.73)

Using Eq. (2.53), this relation can be rewritten as

SNR2 = 4

∫ fmax

fmin

df

f
w(f)N(f), (2.74)

and thus

|N q=0
useful −Nuseful|
N q=0

useful

=
|
(
SNR2

)q=0 −
(
SNR2

)
|(

SNR2
)q=0 =

2|∆SNR|
SNR

+O
((

∆SNR

SNR

)2
)
,

(2.75)

where, ∆SNR =
(
SNRq=0 − SNR

)
is the difference in SNR between signals in GR

and EMd theory. Thus, Fig. 2.10 indicates that corrections arising from the presence

of electric and scalar charges in EMd theory can account for only a few percent of

the total SNR for systems with electric dipole ∼ 0.1.

2.4 Effective-one-body framework

In this section, we construct two EOB Hamiltonians: one based on the GHS

metric Eq. (2.8), in which the potential C(r) 6= 1, which we call the GHS gauge; the

other is based on an approximation to this metric by making a transformation to a

gauge were the potential C(r) = 1, which we call the Schwarzschild gauge.

The EOB Hamiltonian in the GHS gauge is more physical in the strong-gravity

regime since it exactly reproduces the test-body limit of the two-body dynamics.
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Figure 2.10: Number of useful cycles versus the total mass for various
charge-to-mass ratios, and for equal masses (ν = 1/4). The number of
cycles in EMd theory is less than in GR except for equal charges.

That is, it belongs to a class of Hamiltonians implementing exact solutions to the

field equations for isolated objects/BHs. However, this class of Hamiltonians is very

theory specific — for example the analytic ST vacuum metric in Refs. [218, 219]

is distinct from the analytic EMd metric when we set the electromagnetic fields to

zero. In addition, many BH solutions in alternative theories do not even have an

analytic solution that can be used. The advantage of using a Hamiltonian based on

the approximate metric in the Schwarzschild gauge, is that it is easier to implement

in data-analysis studies of GWs observed by LIGO and Virgo. One would take the

existing EOB Hamiltonians in GR as a starting point and add EMd corrections in

the same way as, e.g., tidal corrections are added [220]. Within the regime of small

deviations from GR, the two EOB Hamiltonians in EMd theory are expected to

closely agree.

In Refs. [219, 221], the EOB framework was extended to ST theories. In
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Ref. [219], the motion of a binary BH was mapped to the motion of a test body, such

that the effective metric is a ν-deformation of the ST metric. This approach is similar

to our EOB Hamiltonian in the GHS gauge, but we find a different mapping for the

scalar charge. In Ref. [221], the motion of the binary in ST theory was mapped to

the motion of a test body around an effective BH in GR, but the effective metric

does not reproduce exactly the test-body limit of ST theory. In contrast, whereas

our EOB Hamiltonian in the Schwarzschild gauge is also not exact in the test-body

limit, it still maps the real problem to an effective one in EMd theory (not in GR).

2.4.1 Effective-one-body Hamiltonian in Garfinkle-Horowitz-Strominger

gauge

In the EOB framework, the motion of a binary is mapped to the motion of

a test body in the background of an effective metric. In the effective problem in

EMd theory, we assume that a test body, with mass µ and electric charge q, is

moving in the background of a charged BH with mass M and electric charge Q.

To relate the real two-body problem to the effective one, we impose the following

conditions: (a) M and µ are the total mass and reduced mass of the real description,

i.e., M = m1 +m2 and µ = m1m2/M ; (b) the effective charges Q and q are related

to the real charges by Qq = q1q2, but we do not assume that Q is the total charge;

and (c) the mapping between the real and effective Hamiltonians takes the form

HNR
eff (R,P )

µ
=
HNR(r,p)

µ

[
1 +

ν

2

HNR(r,p)

µ

]
, (2.76)
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where the superscript NR means non-relativistic, i.e., HNR = H −M , and the real

Hamiltonian H is given by Eq. (2.37). The form (2.76) for the “EOB energy map”

[38] has proven useful in GR up to 4PN order [222], in classical electrodynamics

to 2PN order [223], and in ST gravity to 2PN order [221, 224]. In the first post-

Minkowskian approximation, i.e., to all orders in v/c at linear order in G, it can be

shown to exactly resum the dynamics, producing the arbitrary-mass-ratio two-body

Hamiltonian from the test-body Hamiltonian [224, 225]. For the coordinates in the

effective problem, we use uppercase letters, such as R and P , while for the real

problem, we keep using lowercase letters, such as r and p.

The effective action for the test body is given by

Seff =

∫
[−m(ϕ) dτeff + qAµdX

µ] , (2.77)

where τeff is the proper time of the BH and the effective test-mass m(ϕ) depends

on the scalar field ϕ generated by the BH, and has the expansion in terms of the

parameters α and β as

m(ϕ) = µ

[
1 + αϕ+

1

2
(α2 + β)ϕ2 +O

(
1/c6

)]
. (2.78)

Since we do not know, a priori, how the parameters α and β of the effective test

body are related to the real problem, we expand the mass in a 1/R expansion

m(R) = µ

[
1 +

f1

R
+
f2

R2
+O

(
1/c6

)]
(2.79)

and solve for the unknown coefficients f1 and f2.

We take the effective metric of the background to be a deformation of the EMd
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metric in the GHS gauge

ds2
eff = −dτ 2

eff = −A(R)dT 2 +B(R)dR2 +R2C(R)dΩ2 , (2.80)

with

A(R) =

(
1− R+

R

)(
1− R−

R

) 1−a2
1+a2

, (2.81a)

B(R) =
1

A(R)

(
1 +

b1

R

)
, (2.81b)

C(R) =

(
1− R−

R

) 2a2

1+a2

, (2.81c)

where R− and R+ are the radii of the inner and outer horizons of the effective BH,

which are given by Eqs. (2.16a) and (2.16b), i.e.,

R− =
1 + a2

a
D , R+ = 2M − 1− a2

a
D . (2.82)

We choose to define R− and R+ by these relations in terms of D, but not in terms of

Q, because the relation between Q and D is deformed by the mapping. We note that

in the above metric’s ansatz, we have added a deformation to B(R) only because,

in EMd theory at 1PN order, the mapping leads to three equations in f1, f2, and

any deformation to the metric. Thus, we can only determine uniquely one unknown

coefficient in the effective metric. So we choose to take that coefficient to be b1, and

assume the possible deformations to A(R) or C(R) to be zero at 1PN order.

The scalar field for a single BH is given by Eq. (2.13); we add a PN deformation

g2/R
2 such that the effective scalar field is given by

ϕ(R) =
a

1 + a2
ln

(
1− R−

R
+

1 + a2

a

g2

R2

)
. (2.83)
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The electric potential is given by

A0(R) = −Q
R
. (2.84)

We do not add PN corrections to A0 because those corrections can be absorbed in

the PN corrections to the scalar field or to the relation between D and Q. The

coefficient g2 is not independent of f1 and f2, because the mass expansion can also

be expanded directly in ϕ [see Eq. (2.7)]

m(R) = µ

[
1− Dα

R
+

1

R2

(
g2α−

D2α

2a
− a

2
D2α +

1

2
D2α2 +

1

2
D2β

)
+O

(
1/c6

) ]
.

(2.85)

In what follows, we uniquely solve for the coefficients b1, f1, and f2 by matching the

real Hamiltonian to the effective one by a canonical transformation. Matching the

two mass expansions in Eqs. (2.79) and (2.85) allows us to determine the mapping

for the parameters α and β, and for the coefficient g2. The mapping for α is unique,

but the mapping for β and g2 is not unique at 1PN order.

To find the effective Hamiltonian, we first find the effective Lagrangian, in the

equatorial plane Θ = π/2,

Leff = qA0 −m(ϕ)

√
−gµν

dXµ

dT

dXν

dT
,

= qA0 −m(ϕ)

√
A(R)−B(R)Ṙ2 − C(R)R2Φ̇2. (2.86)

Then, applying the Legendre transformation Heff = PRṘ + PΦΦ̇ − Leff yields the

effective Hamiltonian

Heff = −qA0 +

√
A(R)

[
m2(ϕ) +

P 2
Φ

C(R)R2
+

P 2
R

B(R)

]
, (2.87)
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where PΦ = ∂Leff/∂Φ̇ is the angular momentum, and PR = ∂Leff/∂Ṙ is the radial

momentum.

Before matching the Hamiltonians, we need to apply a canonical transforma-

tion from the real variables, r and p, to the effective ones, R and P . At 1PN order,

this transformation is given by [38]

Ri = ri +
∂G1PN

∂pi
, Pi = pi −

∂G1PN

∂ri
, (2.88)

with the generating function

G1PN(r,p) = (r · p)
(
c1p

2 +
c2

r

)
, (2.89)

where the coefficients c1 and c2 are to be determined by the mapping.

Inserting the expansions of the real and effective Hamiltonians into Eq. (2.76),

and applying the canonical transformation, we obtain the five equations:

2c1µ
2 + ν = 0 , (2.90a)

f1 +Mα1α2 = 0 , (2.90b)

M − c2 + µ+ µα1α2 −
qQ

M
+ aD + c1Mµ2 − µc1qQ− µc1f1µ = 0 , (2.90c)

b1 +
qQ

M
+ 2M + 2aD + 4c1µqQ+ 4c1µ

2f1 − 2c2 − µ− µα1α2 − 4c1Mµ2 = 0 ,

(2.90d)

q2Q2

M2
+ q2

2X1 (1 + aα1) + q2
1X2 (1 + aα2)− 2µc2 + 4µf1 + 2νc2f1 − νf 2

1

− 2νf2 + 2Mµ− 2Dµ

a
+ 2aDµ− νD2 + ν

D2

a2
+ 4Mµα1α2 + 2Mµα2

1α
2
2

+ qQ

(
−2 + 2

c2

M
− 2

f1

M
− 2aα1X1 − 2aα2X2 − 2α1α2 − 2ν − 2να1α2

)
+X2νβ1α

2
2 +X1νβ2α

2
1 + µ2 + 2µ2α1α2 + µ2α2

1α
2
2 = 0 . (2.90e)
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Solving these equations respectively for the coefficients c1, f1, c2, b1, and f2 yields

c1 = − ν

2µ2
, (2.91a)

f1 = −Mα1α2 , (2.91b)

c2 = M +
Mν

2
+

1

2
Mνα1α2 −

qQν

2µ
+ aD , (2.91c)

b1 = 0 , (2.91d)

f2 =
D2

2a2
− D2

2
− MD

a
− aMDα1α2 +

aqQD

µ
+
M

2

[
q2

2

m2

(1 + aα1) +
q2

1

m1

(1 + aα2)

]
−M2

[
α1α2 −

1

2
(α1α2)2 − 1

2

(
X2α

2
2β1 +X1α

2
1β2

)]
− aM q1q2

µ
(X1α1 +X2α2) .

(2.91e)

To find the mapping of the scalar charge, we identify the mass expansion in

Eq. (2.79) with the expansion in Eq. (2.85) to give

−Dα = f1 , (2.92a)

g2α−
D2α

2a
− a

2
D2α +

1

2
D2α2 +

1

2
D2β = f2 . (2.92b)

Inserting the solution for f1 and f2 gives a unique mapping for α

α =
M

D
α1α2 , (2.93)

and suggests the following mapping for β

β =
M2

D2

(
X2α

2
2β1 +X1α

2
1β2

)
. (2.94)

Further, we take the mapping of the dilaton charge D of the effective BH to be the

sum of the asymptotic value of the scalar charges of the two bodies, i.e.,

D = m1α1 +m2α2 . (2.95)
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The mapping for α and β agrees with what was found in Ref. [219], but the mapping

for D is different. The reason we choose this mapping for D is that it leads to a

simple deformation to the scalar field

g2 = −1− a2

2a2

(α1 − α2)2

α1α2

DMν . (2.96)

This deformation vanishes in the test-mass-limit ν → 0, and also when a = 1 or

α1 = α2. Other choices for D lead to complicated expressions for g2. In obtaining

this result for g2, we use the expression for the electric charge in terms of the scalar

charge, which is valid for BHs only,

q2
i

m2
i

=
2

a
αi −

1− a2

a2
α2
i . (2.97)

This relation follows from Eq. (2.20) after solving for qi in terms of αi and setting

the scalar field to its asymptotic value.

A convenient mapping for the electric charge is

Q2 = M

(
q2

1

m1

+
q2

2

m2

)
. (2.98)

The reasoning behind this choice is that it is symmetric under the exchange of the

two bodies; it has the correct test-body limit, Q → q1 when m2/m1 → 0 with

q2/m2 held constant; and it appears naturally in EM theory as we show in the next

subsection. With that mapping for Q and D, the relation between them is given by

Q2 =
2M

a
D − 1− a2

a2
D2 − 1− a2

a2
(α1 − α2)2M2ν . (2.99)

One could choose to enforce Eq. (2.17) for generic masses by making a different

choice for D or Q, but this seems to lead to very complicated expressions for them.
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2.4.2 Effective-one-body Hamiltonian in Schwarzschild gauge

In the EMd metric, the potential C(r) 6= 1, but the standard EOB gauge

is the Schwarzschild gauge C(r) = 1. This is the gauge that was used to derive

the original EOB Hamiltonian [38], which was then improved by calibrating it to

numerical-relativity simulations [226]. Therefore, to profit from the best available

EOB Hamiltonian in GR, we need to construct an EMd-EOB Hamiltonian that is

also in the Schwarzschild gauge.

The EMd metric can be transformed to the Schwarzschild gauge by the coor-

dinate transformation r̄2 = r2C(r). However, for arbitrary values of the coupling

constant a, the metric cannot be analytically transformed. Instead, we expand

the EMd metric (2.8) and transform it to get an approximate EMd metric in the

Schwarzschild gauge. We make the coordinate transformation, valid to 1PN order,

r̄2 = r2

[
1− 2a2r−

(1 + a2)r

]
,

⇒ r = r̄ +
a2

1 + a2
r− = r̄ + aD . (2.100)

With that transformation, and inserting the expressions for r− and r+ in terms of

M and Q [Eqs. (2.16a) and (2.16b)], we get

ds2 = −
(

1− 2M

r̄
+
Q2

r̄2

)
dt2 +

(
1 +

2M

r̄

)
dr̄2 + r̄2dΩ2, (2.101)

which is the same as the Reissner–Nordström metric to 1PN order.

As an ansatz for the effective metric, we assume a metric based on the approx-

imate metric (2.101)

ds2
eff = −A(R)dt2 +B(R)dR2 +R2dΩ2 , (2.102)
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with

A(R) = 1 +
a1

R
+
a2

R2
+ . . . , (2.103a)

B(R) = 1 +
b1

R
+ . . . , (2.103b)

and we write the mass expansion as

m(R) = µ

[
1 +

f1

R
+
f2

R2
+O

(
1/c6

)]
, (2.104)

where the unknown coefficients a1, a2, b1, f1, and f2 are to be determined by the

mapping. However, the mapping leads to three equations in those five coefficients,

making two of them arbitrary. We choose to take a1 = −2M and a2 = Q2 so that

the effective metric would agree with the EMd metric in the Schwarzschild gauge

to 1PN order. When we solve for b1, we get b1 = 2M , in agreement with the EMd

approximate metric.

For the effective electric potential, we apply the coordinate transformation

(2.100) with r̄ = R to get

A0(R) = − Q

R + aD
. (2.105)

Applying the same transformation to the scalar field, and adding a PN deformation

g2/R
2, we obtain

ϕ(R) =
a

1 + a2
ln

[
1− 1 + a2

a

D

R + aD
+

1 + a2

a

g2

R2

]
. (2.106)

The mass expansion in terms of ϕ, Eq. (2.78), can now be written as an expansion

in 1/R by

m(R) = µ

[
1− Dα

R
+

1

R2

(
g2α−

D2α

2a
+
a

2
D2α +

1

2
D2α2 +

1

2
D2β

)
+O

(
1/c6

) ]
.

(2.107)
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Following the same method used in the previous subsection, the effective

Hamiltonian is given by Eq. (2.87) with the potential C(R) = 1. The relation

between the real and effective Hamiltonians is given by Eq. (2.76), and the canoni-

cal transformation that relates the real and effective variables is given by Eq. (2.88).

Matching the real and effective Hamiltonians, we obtain the five equations:

2c1µ
2 + ν = 0 , (2.108a)

a1 + 2f1 + 2M(1 + α1α2) = 0 , (2.108b)

2c2 − a1 − 4M + c1a1µ
2 + 2f1c1µ

2 + 2
qQ

M
− 2µ(1 + α1α2 − c1qQ) = 0 , (2.108c)

b1 − 2c2 + 4c1µqQ+ 2a1c1µ
2 + 4c1f1µ

2 − µ− µα1α2 +
qQ

M
= 0 , (2.108d)

M2α2
1α

2
2 +M2X2α2β1 +M2X1α

2
1β2 − a2 − 2M2α1α2 +

2aqQD

µ

+
m1q

2
2

µ
(1 + aα1) +

m2q
2
1

µ
(1 + aα2)− 2a

qQ

µ
(m1α1 +m2α2)− 2f2 = 0 .

(2.108e)

Solving these equations respectively for the coefficients c1, f1, c2, b1, and f2 yields

c1 = − ν

2µ2
, (2.109a)

f1 = −Mα1α2 , (2.109b)

c2 = M +
Mν

2
+

1

2
Mνα1α2 −

qQν

2µ
, (2.109c)

b1 = 2M , (2.109d)

f2 = −a2

2
+
aq1q2D

µ
− aq1q2

µ
(m1α1 +m2α2) +

M

2

[
q2

2

m2

(1 + aα1) +
q2

1

m1

(1 + aα2)

]
−M2

[
α1α2 −

1

2
(α1α2)2 − 1

2

(
X2α

2
2β1 +X1α

2
1β2

)]
. (2.109e)

Choosing a2 = Q2, so that the effective metric agrees with the EMd metric to
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1PN order, the above solution for f2 leads to the mapping

Q2 = M

(
q2

1

m1

+
q2

2

m2

)
. (2.110)

This is because, for the case of EM theory, when we take the parameters α and β

in the solution for f2 to be zero, we get f2 = −a2/2 +M(q2
1/m1 + q2

2/m2)/2. Hence,

requiring that f2 = 0 in EM theory and that a2 = Q2, naturally leads to the charge

map (2.110).

Identifying the mass expansion in Eq. (2.104) with that in Eq. (2.107), leads

to the following mapping for α and β

α =
M

D
α1α2 , (2.111)

β =
M2

D2

(
X2α

2
2β1 +X1α

2
1β2

)
, (2.112)

which is the same mapping that was found in the previous subsection. Further, tak-

ing the mapping of the dilaton charge to also be given as in the previous subsection

D = m1α1 +m2α2, (2.113)

leads to the astonishingly simple result

g2 = 0. (2.114)

With that mapping for D and Q, the relation between them is given by Eq. (2.99).

Interestingly, the above mappings also lead to a ST EOB Hamiltonian in

Schwarzschild gauge at 1PN order. A 2PN EOB Hamiltonian based on an ex-

act analytic solution for the metric and scalar field can be found in Ref. [219]. The

metric in that work also includes a potential C(R) 6= 1, Eq. (II.3) in Ref. [219], and
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that metric is unrelated to the EMd metric when the electric charges are zero. The

scalar field is given by

ϕST =
D

a∗
log

[
1− a∗

r
+
a2
∗ − 2Ma∗

2r2

]
, (2.115)

where a2
∗ = 4(M2 + D2). The author of Ref. [219] found the same mapping for α

and β that we got, but used a different mapping for D (at 2PN order). When we

approximately transform the metric and the scalar field to the Schwarzschild gauge,

in which the potential C(R) = 1, and repeat the same analysis in this section, we

get an EOB Hamiltonian with the same mapping for the scalar charge given in

Eq. (2.113), and with no deformation to the metric or the scalar field to 1PN order.

The point is that the mapping of the scalar charge would be the same in EMd theory

and ST theory, which is another hint that Eq. (2.113) is a good choice at 1PN order.

2.4.3 Comparison of two effective-one-body Hamiltonians in Einstein-

Maxwell-dilaton theory

In this subsection, we compare the two EMd-EOB Hamiltonians with each

other, and also with the EOB Hamiltonian in GR, by calculating the binding energy

and the ISCO. The goal is to investigate the range of parameter space where the

two EMd-EOB Hamiltonians agree.

The mappings of the electric charge, scalar charge, and the parameters α and
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Figure 2.11: Binding energy EB normalized by the total mass M as
a function of MΩ for equal masses, ν = 1/4, and for charge-to mass-
ratios q1/m1 = q2/m2 = 0.99, 0.9, 0.5, and q1/m1 = −q2/m2 = 0.9. To
improve readability, we show the plots only up to the frequency corre-
sponding to R = 1.05RLR or to energy EB/M = 0.015. The point on
each curve indicates the location of the ISCO.

β are the same for the two EMd-EOB Hamiltonians, i.e.,

Q2 = M

(
q2

1

m1

+
q2

2

m2

)
, D = m1α1 +m2α2 ,

α =
M

D
α1α2 , β =

M2

D2

(
X2α

2
2β1 +X1α

2
1β2

)
. (2.116)

For the EOB Hamiltonian in the GHS gauge, the effective metric is the GHS met-

ric for ν = 0 [Eqs. (2.80)–(2.82) with b1 = 0]. For the EOB Hamiltonian in the

Schwarzschild gauge, the effective metric agrees with the Reissner-Nordström met-

ric for ν = 0 [Eq. (2.101)]. Other differences between the two Hamiltonians are in
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the parameters of the mass expansion (2.79), the canonical transformation (2.89),

and the correction to the scalar field [Eqs. (2.83) and (2.106)]. The parameters in

those equations are shown in Table 2.1.

Table 2.1: Difference between the two EOB Hamiltonians in terms of the effective
metric and the parameters of the mass expansion, the canonical transformation, and
the scalar field.

EOB in GHS gauge EOB in Schw gauge
effective metric Eqs. (2.80)–(2.82) Eq. (2.101)

c1 c1 = −ν/2µ2

c2 Eq. (2.91c) Eq. (2.109c)
f1 f1 = −Mα1α2

f2 Eq. (2.91e) Eq. (2.109e)
g2 Eq. (2.96) g2 = 0
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Figure 2.12: Angular frequency at ISCO as a function of the charge-
to-mass ratio q1/m1 from -0.99 to 0.99. In the left panel, q2/m2 =
q1/m1, while in the right, q2/m2 = −q1/m1. An ISCO frequency of
0.062 corresponds to an ISCO radius ∼ 6.4M , and a frequency of 0.13
corresponds to radius ∼ 3.9M .

To find the binding energy from the two EOB Hamiltonians, we start with the

energy map in Eq. (2.76), which gives the relation between the effective Hamiltonian

and the real Hamiltonian. Inverting that relation, we obtain the resummed EOB
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Hamiltonian

HNR
EOB = M

√
1 + 2ν

(
Heff

µ
− 1

)
−M . (2.117)

To obtain the binding energy for circular orbits, we set PR = 0, and solve ṖR =

−∂Heff/∂R = 0 for the angular momentum PΦ. However, that equation cannot be

solved analytically because of the non-linearity of the Hamiltonian. Hence, we solve

the equation numerically for PΦ at specific values of R. Since we want to plot the

binding energy as a function of the orbital frequency Ω, we need to calculate the

orbital frequency via

Ω =
∂HEOB

∂PΦ

=
∂HEOB

∂Heff

∂Heff

∂PΦ

. (2.118)

Then, we calculate the binding energy and orbital frequency as R goes from 100M to

the radius of the light ring. The light ring (or photon orbit) of a (charged) BH metric

in GR is defined as the circular-orbit solution to the geodesic equation of massless

particles. This geodesic equation is actually encoded by our effective Hamiltonian

if we set q = 0 (geodesic motion) and µ = 0 (massless particle). To obtain the light-

ring solution in EMd theory, we hence take the effective Hamiltonian for the case

µ = 0 = q, and impose the conditions for circular orbits PR = 0 and ṖR = 0. The

latter condition means that we look for an extremum of the effective Hamiltonian,

0 = ṖR = − ∂Heff

∂R

∣∣∣∣
µ=q=PR=0

, (2.119)

which is actually a maximum, ∂2Heff/∂R
2 < 0, and the light-ring solution is therefore

unstable. For the Schwarzschild metric in GR, solving this equation for R gives the
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known value RLR = 3M . For the EMd metric in the GHS gauge

RLR =
3

2
M +

aD

2
+

1

2a

[
9a2M2 − 16aMD + 6a3MD + 8D2 − 8a2D2 + a4D2

]1/2
,

(2.120)

while for the approximate metric in the Schwarzschild gauge

RLR =
1

2

[
3M +

√
9M2 − 8Q2

]
, (2.121)

which is the same as the Reissner-Nordström metric since the potential A(R) is the

same in both cases.

In Fig. 2.11, we plot the binding energy scaled by the total mass, EB/M , versus

the orbital frequency MΩ for equal masses, ν = 1/4, and for charge-to mass-ratios

q1/m1 = q2/m2 = 0.99, 0.9, 0.5 and q1/m1 = −q2/m2 = 0.9. The binding energy

diverges at the light ring; to improve readability, we show the plots only up to the

frequency corresponding to R = 1.05RLR or to energy EB/M = 0.015. We plot

the binding energy for four cases: (a) EMd-EOB Hamiltonian in the GHS gauge;

(b) EMd-EOB Hamiltonian in the Schwarzschild gauge; (c) EMd-GHS Hamiltonian

with a = 0, which is EM theory; and (d) EMd-GHS Hamiltonian in the limit where

all charges are zero Q = 0, which is the standard uncharged GR case. [The effective

Hamiltonian for case (c) is that of a charge moving in the Reissner-Nordström

spacetime, and for (d) it is that of a reduced mass in Schwarzschild spacetime.]

The difference between the EM case (a = 0 curve) and the standard astrophysical

scenario of uncharged BHs (Q = 0 curve) quantifies the effect of the electric charges,

while the difference between the EMd Hamiltonian(s) and the EM case quantifies

the effect of the scalar charges.

126



We see from Fig. 2.11 that the electric charges have a larger effect on the

binding energy than the additional scalar charges in EMd theory (except for almost

extreme charges). For small electric charges . 0.5 (lower left panel of Fig. 2.11),

the difference in binding energy between EMd theory and EM theory at the ISCO

is only 9% of the difference between EMd theory and GR with no charges, i.e., the

scalar charge has a very small effect. The difference between the two EMd-EOB

Hamiltonians increases with increasing electric charge and frequency, but they still

agree well. The binding energy of the two Hamiltonians at the ISCO differs by ∼ 6%

for charge-to-mass ratio 0.99 and by∼ 0.1% for charge-to-mass ratio 0.5. For charge-

to-mass ratios larger than one, a naked singularity appears in the effective metric

in the Schwarzschild gauge; this is an unphysical feature arising from the choice

of gauge, and thus the EOB Hamiltonian should not be used for small separations

(high frequencies) approaching this singularity. Note that, if one is only interested

in the inspiral, then the comparison of the Hamiltonians via the binding energy can

be stopped already at the ISCO frequency instead of the LR frequency.

The ISCO marks the end of the inspiral phase of the binary coalescence and

the beginning of the plunge. To find the value of the ISCO, we set both the first and

second derivatives of the effective Hamiltonian to zero ∂Heff/∂R = 0 = ∂2Heff/∂R
2

and set PR = 0. Then, we solve the two equations numerically for the ISCO radius

and angular momentum. The orbital frequency at ISCO can then be calculated

from Eq. (2.118).

In Fig. 2.11, the location of the ISCO is indicated by the point on each curve.

In Fig. 2.12, we plot the orbital frequency at ISCO, scaled by the mass, i.e., MΩISCO,
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versus the charge-to-mass ratio q1/m1 with q2/m2 = q1/m1 in the left panel, and

q2/m2 = −q1/m1 in the right. From the left panel, we see that for high charge-to-

mass ratios, the two EOB Hamiltonians do not agree well at this high frequency.

For same-sign charges, the ISCO orbital frequency is lower than the uncharged case,

which means the ISCO radius is greater than the Schwarzschild value of 6M . This is

because the binding energy of charged BHs is higher (less bound) than the energy of

uncharged BHs, as can be seen from the binding energy in Fig. 2.11. For opposite-

sign charges, the ISCO orbital frequency is higher than the uncharged case because

the binding energy is lower than the energy of uncharged BHs.

2.5 Conclusions

In this work, we analytically modeled the dynamics of binary BHs in EMd

theory. In this theory, electrically charged BHs also carry a scalar charge, whereas

in GR (and many modified theories of gravity) the scalar charge is zero. Thus,

the identification of a BH with scalar charge through GW observations could point

to modifications of gravity in the strong-field regime and violations of the strong

equivalence principle. Observation of a large electric charge on BHs could be a trace

of minicharged dark matter and/or dark photons.

We began by considering the case of a test BH in the background of a more

massive companion in EMd theory, wherein the scalar charge of the test BH de-

creases as it moves radially inwards. Consistent with the results of Ref. [202], we

found that the dimensionless charge α(ϕ) exhibits a sharp transition [see Figs. 2.1
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and 2.2]. However, we showed that in a binary system, the scalar charge of the test

BH will change dramatically only very close to the horizon of the background BH

and only if both BHs are nearly-extremally charged. While BHs are not expected

to be able to achieve or maintain enough electric charge within the Standard Model

of particle physics for these features to be observed, but proposed alternatives like

minicharged dark matter and dark photons models may allow such features to be-

come observationally relevant. Our study also showed that binary BHs in EMd

theory will not exhibit non-perturbative phenomena akin to induced or dynamical

scalarization that are found in certain ST theories [see Fig. 2.3].

We then used the PN approximation in EMd theory to study the dynamics of

a two-body system with an arbitrary mass ratio. We derived the two-body 1PN La-

grangian and Hamiltonian, and investigated how the bodies’ scalar charges decrease

with their separation at next-to-leading PN order. As in the test-BH case, we expect

that dramatic changes could occur only for nearly-extremal charged BHs on very

compact orbits; this is a regime most easily probed by systems with extreme mass

ratios and/or rapidly spinning BHs. We derived the scalar, vector, and tensor energy

fluxes at next-to-leading PN order. From the energy flux and binding energy, we

calculated the Fourier-domain gravitational waveform for binaries on quasi-circular

orbits using the stationary-phase approximation.

Using our PN result, we discussed the possibility of constraining EMd theory

with GWs. Given current and projected constraints on dipole radiation, we exam-

ined how the degeneracies between electric and scalar charges limit the bounds that

can be set on the EMd parameter a — constraining this parameter requires one
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to measure the electric charges of each BH independently, and the strength of this

bound improves for larger total electric charge [see Fig. 2.8]. We also estimated the

observational deviations from GR predicted in EMd theory with two measures: the

dephasing between PN waveforms in the stationary-phase approximation [Fig. 2.9],

and the difference in the number of useful GW cycles [Fig. 2.10]. For ground-based

GW detectors, we found that the presence of electric and scalar charges contributes

. 1 radian to the phase provided the black holes have charge-to-mass ratios of

qi/mi . 0.01 for coupling constant a = 1. We showed that the relative difference in

useful cycles between EMd theory and GR provides an estimate of the fractional cor-

rection to SNR by non-GR corrections; for systems with qi/mi . 0.1, the deviations

from GR affect the total SNR by a few percent.

Finally, we constructed two EOB Hamiltonians for binary BHs in EMd theory:

an EOB Hamiltonian in the GHS gauge, which is based on the exact BH solution,

and an EOB Hamiltonian in the Schwarzschild gauge, which is based on an ap-

proximation to that solution. The EOB Hamiltonian in the GHS gauge is more

physical in the strong-gravity regime, since it exactly reproduces the dynamics of

a test body, and hence will be more accurate for systems with a very asymmetric

mass ratio. The EOB Hamiltonian in Schwarzschild gauge is easier to implement by

taking the existing EOB Hamiltonians in GR as a starting point and adding to it

corrections due to EMd theory. We compared the two Hamiltonians by calculating

the binding energy and the innermost stable circular orbit, and found that they

agree well, except for nearly-extremal charges at high frequencies [see Figs. 2.11 and

2.12]. The binding energy of the two Hamiltonians at the ISCO differs by ∼ 6% for
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charge-to-mass ratio 0.99 and by ∼ 0.1% for charge-to-mass ratio 0.5.

An important goal in future continuations of our work would be the construc-

tion of a full (inspiral-merger-ringdown) EOB waveform model in EMd theory. For

accurate predictions in the late inspiral, one likely needs PN results for the Hamil-

tonian, fluxes, and modes to the same order as they are available in GR, next to a

calibration of the model to NR simulations in EMd theory. Modeling the merger and

ringdown requires predictions for the parameters of the final black hole and its quasi-

normal modes as a function of the EMd coupling constant a (see, e.g., Refs. [227, 228]

for partial results). Since EOB waveform models in existing data-analysis infras-

tructure are formulated in the Schwarzschild gauge, this gauge is probably the best

compromise for the purpose of GW data analysis. This gauge is also better suited

for creating a single EOB waveform model covering various alternative theories; for

example, we demonstrated that our EOB Hamiltonian in the Schwarzschild gauge

can describe both ST and EMd theories. Ultimately, one could aim to construct a

generalized EOB framework that uses a physically motivated parameterization to

encode a range of possible deviations from GR.
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Chapter 3: Gravitational waveforms in scalar-tensor gravity at 2PN

relative order

Authors: Noah Sennett, Sylvain Marsat, and Alessandra Buonanno1

Abstract: We compute the gravitational waveform from a binary system in

scalar-tensor gravity at 2PN relative order. We restrict our calculation to non-

spinning binary systems on quasi-circular orbits and compute the spin-weighted

spherical modes of the radiation. The evolution of the phase of the waveform is

computed in the time and frequency domains. The emission of dipolar radiation

is the lowest-order dissipative process in scalar-tensor gravity. However, stringent

constraints set by current astrophysical observations indicate that this effect is sub-

dominant to quadrupolar radiation for most prospective gravitational-wave sources.

We compute the waveform for systems whose inspiral is driven by: (a) dipolar radia-

tion (e.g., binary pulsars or spontaneously scalarized systems) and (b) quadrupolar

radiation (e.g., typical sources for space-based and ground-based detectors). For

case (a), we provide compete results at 2PN, whereas for case (b), we must in-

troduce unknown terms in the 2PN flux; these unknown terms are suppressed by

constraints on scalar-tensor gravity.

1Originally published as Phys. Rev. D94, 084003 (2016).
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3.1 Introduction

The observation of gravitational-wave (GW) events GW150914 and GW151226

by Advanced LIGO marks the dawn of GW astronomy [182, 184]. We expect to

observe several such events per year [73, 213, 229, 230] with the upcoming network of

ground-based detectors comprised of Advanced LIGO [231], Advanced VIRGO [232],

KAGRA [233], and LIGO-India [234]. These ground-based detectors can observe

binary systems containing neutron stars and/or stellar-mass black holes (with a

total mass M∼ 1− 100M�); future space-based detectors like the proposed LISA

mission [235] will observe binary systems composed of intermediate-mass and/or

supermassive black holes (M ∼ 100 − 107M�). Gravitational-wave observations

allow us to not only measure the astrophysical properties of these systems but can

also be used to test general relativity (GR). Because the coalescence of a compact

binary system produces extreme gravitational fields that vary over short time scales,

observations of such events allow us to probe the highly-dynamical, strong-field

regime of gravity for the first time [73, 122].

The detection and analysis of GWs with ground-based detectors require banks

of very accurate template waveforms. The prospects of testing gravity with these

detectors hinge on our ability to model waveforms in both GR and alternative theo-

ries of gravity. Given a GW detection, one can adopt either a theory-independent or

theory-dependent approach to testing GR. A theory-independent test employs wave-

forms that deviate from a GR signal in some generic, parameterized manner (for

examples, see Refs. [117, 118, 213]). One compares an observed GW signal against
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these template waveforms to constrain the deviations from GR. A theory-dependent

test instead uses waveforms predicted in a particular alternative theory of gravity,

comparing them against the detected GW to estimate the underlying physical pa-

rameters of that theory. Each approach has its advantages: theory-independent

tests can constrain a wide range of alternative theories while theory-dependent tests

can directly constrain the fundamental physics of an alternative theory. Both types

of tests were performed for GW150914 and GW151226 by the LIGO and Virgo

collaborations in Refs. [73, 122]. For a comprehensive review of proposed theory-

independent and theory-dependent tests, see Refs. [79, 88] and references therein.

In this work, we present waveforms in scalar-tensor theories of gravity suit-

able for theory-dependent tests of GR. In particular, we construct ready-to-use

waveforms for the inspiral of non-spinning binary systems accurate up to second

post-Newtonian (2PN) order, i.e., O ((v/c)4) beyond leading order.2 We restrict

our attention to systems on quasi-circular orbits, as binaries formed in the field

are expected to radiate away any initial eccentricity at frequencies too low to be

observable by GW detectors.

Scalar-tensor theories are amongst the most natural alternatives to GR. Specif-

ically, we focus on theories where a single massless scalar φ non-minimally couples

to the metric gµν . Written in the Jordan frame, the action for such theories is given

2We describe post-Newtonian (PN) corrections of order O(c−2n) as “nPN,” which we also

abbreviate with the notation O(2n).
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by

S =

∫
d4x

√−g
2κ

[
φR− ω(φ)

φ
gµν∇µφ∇νφ

]
+ Sm[gµν ,Ξ], (3.1)

where κ = 8πG∗/c
3 depends on the bare gravitational coupling constant G∗. The

action for the matter in the theory Sm is a function of only the metric and mat-

ter degrees of freedom Ξ; the scalar field does not couple to matter directly, only

indirectly through its interactions with the metric.

The restricted class of scalar-tensor theories described by Eq. (3.1) has been

studied extensively in the literature because it is general enough to manifest many

different deviations from GR yet simple enough that its predictions can be worked

out completely. At 2PN order, the Fokker Lagrangian for a system of point particles

was first computed in Ref. [152] using an effective field-theory approach. The 2PN

metric and equations of motion were computed for bodies composed of perfect fluids

in Ref. [236]. The post-Minkowskian technique of direct integration of the relaxed

Einstein equations (DIRE) was used in a recent series of papers [149–151] to compute

the equations of motion for a system of compact objects at 2.5PN order, as well as

the gravitational waveform and energy flux at 2PN (relative) order for binaries on

generic orbits. For comparison, the entire waveform for non-spinning systems in GR

is known at 3PN order [237], and its quadrupolar and octupolar parts are known at

3.5PN order [238, 239] (see Ref. [30] for a review of existing results in GR).

In this work, we specialize the results of Refs. [149–151] to binary systems on

quasi-circular orbits and present the waveform in a form that can be easily used to

test GR with GWs. This calculation serves as an extension of Ref. [240], in which the
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leading-order behavior of the GW signal produced by binary systems was computed

in Brans-Dicke theory [178, 179, 241], where the scalar coupling ω(φ) = ωBD is

constant. This work extends those earlier findings to higher PN order in a larger

class of scalar-tensor theories.

The paper is organized as follows. In Sec. 3.2, we review some preliminary

information regarding the production and detection of GWs in scalar-tensor theories.

Section 3.3 presents the dynamics for binary systems on quasi-circular orbits. In

Sec. 3.4, we compute the hereditary contributions to the gravitational waveform

from such systems. We present the binding energy and energy flux in Sec. 3.5

and compute the associated orbital phase evolution. In Sec. 3.6, we decompose

the waveform into spin-weighted spherical modes, and in Sec. 3.7, we express these

modes in Fourier space using the stationary phase approximation. We provide some

concluding remarks in Sec. 3.8. Appendix C details the conversion of our notation

to that of Refs. [147, 152], which is commonly found in the literature. Appendix D

contains formulae omitted from the main text for the sake of compactness.

All calculations are done both for systems whose inspiral is driven by dipolar

radiation and for those driven by quadrupolar radiation; this distinction is discussed

in detail in Sec. 3.2.2. Note that the complete 2PN (relative) order results are given

for only the former case (dipolar-radiation driven systems). The results for the latter

case depend on higher-order corrections to the energy flux that have not yet been

computed, but we argue in Sec. 3.5.2 that the impact of these missing terms is very

small.

Henceforth, we work in units where G∗ = c = 1.
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3.2 Gravitational waves in scalar-tensor gravity

This section contains information concerning the generation of GWs in scalar-

tensor gravity that will prove useful throughout the rest of the paper despite not

directly contributing to the computation of the waveform. We begin by discussing

the behavior of binary systems, tracing new phenomena not found in GR to viola-

tions of the strong equivalence principle. We then review the current experimental

constraints set on these theories and show that, in most cases, sources for ground-

and space-based GW detectors evolve similarly to as in GR. Finally, we discuss the

response of a detector to a GW in scalar-tensor gravity and delineate the waveform

computed in the subsequent sections.

3.2.1 Binary systems of compact objects

Differences between the dynamics and GW emission of binary systems in

scalar-tensor gravity and those in GR ultimately stem from the non-minimal cou-

pling between the metric and scalar field. As a result, the gravitational “constant”

experienced by massive bodies depends on the value of the background scalar field

in which they are situated. For test bodies, this dependence can be deduced directly

from Eq. (3.1): the strength of their gravitational interaction scales as φ−1.

The gravitational interaction between compact, self-gravitating bodies is more

complex. Because the binding energy of a single self-gravitating body depends on

the interactions between all of its constituents, the body’s mass mA(φ) depends on

the local scalar field. This phenomenon is a manifestation of the violation of the

137



Table 3.1: Parameters that govern gravitational wave production in binary systems.
Quantities listed with the subscript 0 are evaluated at the value of the background
scalar field φ0.

Parameter Definition
Weak-field parameters

G G∗φ
−1
0 (4 + 2ω0)/(3 + 2ω0)

ζ 1/(4 + 2ω0)
λ1 (dω/dφ)0φ0ζ

2/(1− ζ)
λ2 (d2ω/dφ2)0φ

2
0ζ

3/(1− ζ)

Strong-field parameters
sA [d lnmA(φ)/d lnφ]0
s′A [d2 lnmA(φ)/d lnφ2]0
s′′A [d3 lnmA(φ)/d lnφ3]0

Binary parameters
Newtonian

α 1− ζ + ζ(1− 2s1)(1− 2s2)
post-Newtonian

γ −2α−1ζ(1− 2s1)(1− 2s2)
β1 α−2ζ(1− 2s2)2 (λ1(1− 2s1) + 2ζs′1)
β2 α−2ζ(1− 2s1)2 (λ1(1− 2s2) + 2ζs′2)

2nd post-Newtonian
δ1 α−2ζ(1− ζ)(1− 2s1)2

δ2 α−2ζ(1− ζ)(1− 2s2)2

χ1 α−3ζ(1− 2s2)3 [(λ2 − 4λ2
1 + ζλ1)(1− 2s1)− 6ζλ1s

′
1 + 2ζ2s′′1]

χ2 α−3ζ(1− 2s1)3 [(λ2 − 4λ2
1 + ζλ1)(1− 2s2)− 6ζλ1s

′
2 + 2ζ2s′′2]

strong equivalence principle, as the self-interaction of a massive body is dictated

by its composition. As is done in the literature, we adopt an approach proposed

by Eardley [242] to handle the interplay between microphysics and gravity that

determines the connection between the body’s composition and mA(φ). We treat

compact objects as point particles whose mass is given by mA(φ). Rather than solve

for this function outright, we parameterize it by its expansion about a background
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field φ0

mA(φ) =m
(0)
A

[
1 + sAΨ +

1

2

(
s2
A + s′A − sA

)
Ψ2 + · · ·

]
, (3.2)

where we’ve defined

m
(0)
A ≡mA(φ0), (3.3)

sA ≡
(

d lnmA

d lnφ

)
φ=φ0

, (3.4)

s′A ≡
(

d2 lnmA

d(lnφ)2

)
φ=φ0

, (3.5)

Ψ ≡φ− φ0

φ0

. (3.6)

The parameter sA is known as the sensitivity of the body. For test bodies, sA = 0,

while for stationary black holes, sA = 1/2 [23].3

The underlying parameters that govern the orbital dynamics and gravitational

emission of binary systems up to 2PN order are given on the left-hand side of

Table 3.1. These parameters are classified as either weak-field or strong-field : the

former class influence behavior in all gravitational contexts whereas the latter class

only enter in systems with strong gravitational fields, such as those found in self-

gravitating compact objects. The weak- and strong-field parameters appear in only

a small set of combinations, denoted as the binary parameters in Table 3.1. We

3The sensitivity of neutron stars is often estimated to be of the order ∼ 0.2. While true

in Brans-Dicke theory [242, 243] and some slight variations [146], this result does not hold for

generic choices of ω(φ). One of the most popular classes of scalar-tensor theories, those that

allow spontaneous [153] and dynamical scalarization [169, 171], are a striking counterexample. In

these theories, neutron-star sensitivities can be large and negative; the process of spontaneous

scalarization describes stars whose sensitivity diverges, i.e., sA → −∞.
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have adopted the notation introduced in Refs. [149]; the mapping between these

parameters and the notation used in Refs. [147, 152] is given in Appendix C.

Novel behavior in scalar-tensor gravity stems from violations of the strong

equivalence principle, and thus, is dictated by the strong-field parameters. For

example, dipolar emission, the most prominent new effect not found in GR, is tied

to (s1 − s2)2. Formally, dipolar radiation is generated at one PN order lower than

quadrupolar radiation (the dominant dissipative channel in GR); in keeping with

the conventions of Refs. [149–151], we demarcate dipolar emission as a −1PN order

effect.

3.2.2 Generic constraints on scalar-tensor gravity

A hundred years of tests have confirmed that gravity closely resembles GR [79].

Restricting our attention to only those theories that satisfy these constraints, we

must study the regime in which new scalar-tensor effects are small relative to those

also found in GR. In this limit, the structure of the PN expansion is modified; for

example, in the frequency band of interest, the dominant dissipative process is the

emission of Newtonian order quadrupolar radiation rather than the −1PN dipolar

energy flux. We investigate which systems fall within this regime by first mapping

the current constraints on scalar-tensor theories to the parameters given in Table 3.1.

The best constraints on weak- and strong-field parameters come from a combi-

nation of solar-system experiments and binary-pulsar observations. The weak-field

parameters G, ζ, λ1, λ2 are tied to the behavior of the scalar coupling ω(φ) near the
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background value of the scalar field φ0. These quantities can be expressed in terms

of the parametrized post-Newtonian (PPN) parameters γPPN and βPPN as well as

the 2PN parameter ε introduced in Ref. [152]

G =
2

(1 + γPPN)φ0

, (3.7)

ζ =
1− γPPN

2
, (3.8)

λ̄1 =
2
√

2(βPPN − 1)φ0√
1 + γPPN

, (3.9)

λ̄2 =
(ε(γPPN − 1) + 24(βPPN − 1)2)φ2

0

1 + γPPN

, (3.10)

where we have used the rescaled parameters λ̄1 ≡ λ1

√
ζ and λ̄2 ≡ λ2ζ because λ1,

λ2 are not well defined in the GR limit.

The current constraints on these parameters are given in Table 3.2. The

constant background field φ0 is undetectable with weak-field measurements — at

Newtonian order, a redefinition of the field φ → φ/φ0 can be compensated by

the rescaling of the bare gravitational constant G∗ → G∗/φ0 and the redefinition

ω → φ0ω. For simplicity, we set φ0 to unity in Table 3.2. Note that the constraint

on ε was estimated in Ref. [152] with only binary-pulsar measurements available at

the time; this constraint could be improved by including more recent observations.

The current experimental constraints on the strong-field parameters sA, s
′
A, s

′′
A

are not as restrictive. The best limits on neutron-star sensitivities come from timing

measurements of pulsar-white-dwarf binaries [245–248]; white dwarfs are expected to

have negligible sensitivity, so the magnitude of dipolar emission is dictated entirely

by the sensitivity of the neutron star. Constraints are typically given in terms of
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Table 3.2: Constraints on the weak-field parameters in Eqs. (3.7)–(3.10) set by solar-
system and binary-pulsar observations. As discussed in the text, we set φ0 = 1 for
simplicity.

Parameter Constraint Reference
γPPN − 1 2.3× 10−5 [180]
βPPN − 1 7.8× 10−5 [79, 244]

ε 7× 10−2 [152]
G− 1 1.2× 10−5

ζ 1.2× 10−5

λ̄1 1.6× 10−4

λ̄2 8.8× 10−7

the scalar charge αA, related to the sensitivity by

αA =
1− 2sA√
3 + 2ω0

. (3.11)

Amongst known pulsar-white-dwarf binaries used to constrain scalar-tensor

theories, PSR J0348+0432 hosts the most massive neutron star [248]. The con-

straints on the scalar dipole reported in Ref. [248] provide an estimate for the maxi-

mum scalar charge that this neutron star can have |αA| . 6×10−3. Extending these

data to an absolute bound on the charge of any neutron star requires the assump-

tion of a particular choice of ω(φ) and equation of state. Working within one of

the most popular classes of scalar-tensor theories [153] and selecting certain realistic

equations of state, one can produce a global constraint of |αA| . 10−2 [248, 249].

However, it is conceivable that other theories and/or equations of state allow neu-

tron stars to acquire large scalar charges of αA ∼ 1 via the process of spontaneous

scalarization [153] while satisfying all current experimental constraints.

Because the weak-field constraints leave ω0 ∼ 1/(2ζ) unbounded, no absolute

bound can be placed on sA. To our knowledge, no constraints have been placed
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on s′A and s′′A either; for neutron stars, these higher derivatives can be orders of

magnitude larger than sA (for example, see Fig. 3 of Ref. [3]).

Excluding the possibility of spontaneous scalarization, the constraints on weak-

field and strong-field parameters ensure that dipole radiation is suppressed in viable

scalar-tensor theories, as can be shown by comparing the relative size of the −1PN

and Newtonian order flux, given in Refs. [147, 149] and repeated in Eq. (3.48) below.

Despite entering at higher PN order, the next-to-leading order term overpowers the

leading-order term when

1 .

(
24

5ζS2
−

)
(GαMπf)2/3 , (3.12)

where, for simplicity, we have dropped all terms that are not of order O(ζ−1) and

introduced the scalar dipole

S− ≡− α−1/2 (s1 − s2) . (3.13)

Given the experimental constraints on ζ and S−, this threshold is reached at

frequencies f . 100µHz in binary neutron star or neutron-star stellar-mass-black-

hole systems, and at frequencies f . 5µHz in neutron-star intermediate-mass-black-

hole systems. Following this argument, ground- and space-based GW detectors

would only observe binary systems whose inspiral is driven by the next-to-leading

order flux.4 On the other hand, the evolution of binary pulsars could be dominated

4Unlike the class of scalar-tensor theories considered here, there are alternative theories in which

binary black holes can emit dipolar radiation (e.g., dilatonic Einstein-Gauss-Bonnet, dynamical

Chern-Simons, etc.). Given the relatively weak constraints on dipolar radiation in vacuum space-

times (compared to those from binary pulsars observations), we note that space-based detectors
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by dipolar emission. Binary systems that undergo dynamical scalarization may also

be exempt from this verdict, as these systems dynamically generate large scalar

charges that can substantially enhance dipolar emission [169, 171, 250].

Because non-perturbative scalarization phenomena have not been entirely ruled

out, we compute below the gravitational waveform both for systems in which dipo-

lar radiation is dominant and for those in which quadrupolar radiation is dominant.

For conciseness, we refer to the former class of systems as dipole driven (DD) and

the latter class as quadrupole driven (QD).

3.2.3 Detector response

We consider the response of a laser interferometer at spatial coordinates X

generated to an incident GW produced by a distant binary system of size d, where

R ≡ |X| � d. We assume that far from the binary, the metric and scalar field ap-

proach the Minkowski metric ηµν and a constant background value φ0, respectively,

at a rate ∼ R−1. Let φ̂ ≡ φ/φ0 be the normalized scalar field. We introduce the

conformally transformed metric

g̃µν ≡φ̂gµν , (3.14)

and the gravitational field5

hµν ≡ηµν −
√
−g̃g̃µν . (3.15)

or pulsar timing arrays could, in principle, observe binary black holes driven by dipolar flux. As

discussed below, the GW signal from such systems has a distinct structure from that in GR.
5Note that in Ref. [30] and the references therein, the metric perturbation is defined with an

overall minus sign relative to the definition given here.
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The metric at the detector takes the form

gµν =ηµν + hµν −
1

2
hηµν −Ψηµν +O

(
R−2

)
, (3.16)

where h ≡ ηµνh
µν is the trace of hµν and hµν ≡ ηµαηνβh

αβ is lowered using the

Minkowski metric. Gravitational-wave detectors use laser interferometry to measure

the separation between mirrors; we treat these mirrors as test masses. Assuming

that the distance between mirrors is smaller than the wavelength of the incident

GWs and that the mirrors move slowly, the separation between the mirrors obeys

ξ̈i = −R0i0jξ
j, (3.17)

where i, j = 1, 2, 3 are spatial indices. Working at leading order in hµν and Ψ, the

Riemann tensor is calculated from Eq. (3.16)

R0i0j = −1

2
ḧijTT −

1

2
Ψ̈
(
N̂ iN̂ j − δij

)
, (3.18)

where N̂ ≡ X/R and hijTT is the transverse-traceless component of the gravitational

field defined as

hijTT =

(
P ipP jq − 1

2
P ijP pq

)
hpq, (3.19)

where P pq = δpq − N̂pN̂ q is the transverse projection operator.

From Eq. (3.18), we see that the GW signal contains a transverse-traceless

mode (as in GR) characterized by the field hµν . In scalar-tensor gravity, there is

an additional transverse breathing mode produced by Ψ. Extracting this new GW

polarization requires a network of detectors; see Ref. [79] and references therein for

a discussion of the prospects of detecting GW polarizations absent in GR. We focus

exclusively on hµν for the remainder of this work.
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3.3 Dynamics for quasi-circular orbits

In this section, we specialize the results of Ref. [149] for the 2.5PN dynamics of

binary systems to the case of quasi-circular orbits. Before proceeding, we establish

some notation employed throughout this work. We denote the total mass of the

system by M = m1 + m2 and the symmetric and antisymmetric mass ratio by

η = m1m2/M
2 and ψ = (m1 −m2)/M , respectively. We signify the symmetric and

antisymmetric combinations of parameters given in Table 3.1 by

τ+ ≡
1

2
(τ1 + τ2) , (3.20a)

τ− ≡
1

2
(τ1 − τ2) , (3.20b)

and in addition to S− above, we also define

S+ ≡α−1/2 (1− s1 − s2) . (3.21a)

To describe the system’s dynamics, we denote the orbital separation by x = rn,

the relative velocity by v = ẋ, and the acceleration by a = v̇. We construct

an orthonormal moving frame (n,λ) and define the orbital frequency ω such that

v = ṙn + rωλ. To avoid confusion, we note that certain variables are used to

denote multiple quantities; for example, ω represents both the frequency and scalar

coupling, while φ,Ψ are used for the phase and scalar field. The usage of each can

be inferred from context.

Our analysis of binary systems on quasi-circular orbits begins with the 2.5PN

146



equation of motion, given in the center-of-mass frame by

a =− GMα

r2
n +

GMα

r2
[n (A1PN + A2PN) + ṙv (B1PN +B2PN)]

+
8η

5

(GMα)2

r3
[ṙn (A1.5PN + A2.5PN)− v (B1.5PN +B2.5PN)] . (3.22)

where the expressions for Ai, Bi can be found in Eqs. (1.4)–(1.5) and (6.12)–(6.13)

of Ref. [149]. It will prove useful also to write the equations of motion in the generic

form

a = (r̈ − rω2)n + (rω̇ + 2ṙω)λ . (3.23)

The restriction of the dynamics to quasi-circular orbits follows the same procedure

as in GR. For such orbits, the only departure from circular motion is induced by

radiation reaction, which enters at 1.5PN order in scalar-tensor theories rather than

the usual 2.5PN order in GR. Expressed symbolically, we have ṙ, ω̇ = O(3) [instead

of O(5)], while r̈ = O(6) [instead of O(10)].

The first term in Eq. (3.23) determines the conservative sector of the dynamics

at 1PN and 2PN order. The scalar product a ·n = −rω2 +O(6) produces a relation

between the orbital separation and frequency that generalizes Kepler’s law. We

introduce the PN parameters (recall that we work in units where c = 1)

γPN ≡
GMα

r
, (3.24a)

x ≡ (GMαω)2/3 , (3.24b)

which differ from their usual definition in GR by an additional factor α.

At leading order, one obtains r3ω2 = Gmα + O(2), or x = γPN(1 + O(2)).

From there, solving order by order yields
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x =γPN

[
1 + γPN

(
2β−ψ

3
− 2β+

3
− γ

3
+
η

3
− 1

)
+γ2

PN

(
8β2
−η

γ
+

16β2
−η

9
− 4β2

−

9
+

8β−β+ψ

9
− 2β−γψ

9
+

11β−ψη

9
− 4β−ψ

3

−8β2
+η

γ
− 4β2

+

9
+

2β+γ

9
+

7β+η

9
+

4β+

3
− γ2η

6
+

11γ2

36
+

17γη

9
+ γ +

ψδ−
3

+
2ψχ−

3
− 2δ+η

3
+
δ+

3
+

2η2

9
+

4ηχ+

3
+

49η

12
− 2χ+

3
+ 1

)
+O(6)

]
, (3.25a)

γPN =x

[
1 + x

(
−2β−ψ

3
+

2β+

3
+
γ

3
− η

3
+ 1

)
+x2

(
−8β2

−η

γ
− 16β2

−η

3
+

4β2
−

3
− 8β−β+ψ

3
− 2β−γψ

3
− β−ψη

3
− 4β−ψ

3

+
8β2

+η

γ
+

4β2
+

3
+

2β+γ

3
− 5β+η

3
+

4β+

3
+
γ2η

6
− γ2

12
− 7γη

3
+
γ

3
− ψδ−

3

−2ψχ−
3

+
2δ+η

3
− δ+

3
− 4ηχ+

3
− 65η

12
+

2χ+

3
+ 1

)
+O(6)

]
. (3.25b)

Having derived the reduction to quasi-circular orbits for the conservative dy-

namics up to 2PN order, we now turn our attention to the dissipative sector. Al-

though only the leading-order radiation-reaction terms are needed to compute the

2PN relative order dynamics, we provide results up to 2.5PN for the sake of com-

pleteness. Inserting Eq. (3.25) into the relation a ·λ = rω̇+ 2ṙω gives the following

expressions for ṙ and ω̇

ṙ =− 8

3
ζηS2

−x
2 − 8

3
ηδRRx

3 +O(7) , (3.26a)

ω̇ =
4ζηS2

−x
9/2

G2M2α2
+

4ηδRRx
11/2

G2M2α2
+O(7) , (3.26b)
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where we have introduced

δRR ≡
24

5
+ 2γ − 4ζβ−ψS2

−

γ
+

8ζβ−ψS2
−

3
− 7ζηS2

−

6
+

4ζβ+S2
−

γ

− 8ζβ+S2
−

3
+

2ζγS2
−

3
− ζS2

−

2
+

4ζβ−S+S−
γ

− 4ζβ+ψS+S−
γ

. (3.27)

For dipole-driven systems, the second term in Eq. (3.26) is much smaller than

the first. Integrating this equation at leading order gives the evolution of the orbital

separation and frequency

rDD(t) =
[
8ηζS2

−(GMα)2(tc − t)
]1/3

(1 +O(2)) , (3.28a)

ωDD(t) =
[
8ηζS2

−GMα(tc − t)
]−1/2

(1 +O(2)) , (3.28b)

where tc is the time of coalescence. In the quadrupole-driven regime, the first term

in Eq. (3.26) is overpowered by the second. We delay a precise formulation of this

limit until Sec. 3.5, but note that the evolution of the inspiraling orbit will take the

same form as in GR, given at leading order by

rGR(t) =

[
256(GM)3η

5
(tc − t)

]1/4

(1 +O(2)) , (3.29a)

ωGR(t) =

[
256(GM)5/3η

5
(tc − t)

]−3/8

(1 +O(2)) . (3.29b)

The difference in structure between Eqs. (3.28) and (3.29) stems from radiation

reaction entering at a different PN order in the two regimes.

3.4 Radiative coordinates and hereditary contributions

Equipped with the leading-order evolution of the inspiral, we begin our com-

putation of the 2PN order waveform. The waveform was derived for generic orbits

in Ref. [150]; schematically, these results are given by
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hijTT =
2G(1− ζ)Mη

R

[
Qij + P 1/2Qij + PQij + P 3/2Qij

N

+P 3/2Qij
C−N + P 2Qij

N + P 2Qij
C−N

]
TT

, (3.30)

where TT stands for the transverse-traceless projection given in Eq. (3.19), P de-

notes the PN order of each term, and N and C − N indicate contributions from the

near zone and radiation zone, respectively, as defined in Ref. [150]. The expressions

for P nQij are presented in Eq. (7.2) of Ref. [150]. These terms can be categorized

as either instantaneous or hereditary : instantaneous terms depend only on the state

of the system at the current retarded time, whereas hereditary terms take the form

of integrals extending over the binary’s entire history. In Eq. (3.30), P 3/2Qij
C−N and

P 2Qij
C−N are hereditary, while the remaining terms are all instantaneous.

This section details the computation of the hereditary terms for systems on

quasi-circular orbits. First, we re-express the waveform in a radiative coordinate

system, in which the metric perturbation falls off as ∼ R−1. We then compute

separately the contributions from so-called tail and memory terms.

3.4.1 Radiative coordinates

We begin by transforming the results of Ref. [150] into radiative coordinates.

This reference employed harmonic coordinates X = (t,X), defined by the gauge

condition ∂νh
µν = 0; however, these coordinates are known to give rise to unwanted

logarithms of R in the far-zone expansion. As shown in Ref. [251], it is possible to

build another set of coordinates X̄ = (t̄, X̄), called radiative coordinates, in which
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these logarithms are eliminated and the metric perturbation hij admits an expansion

in powers of R̄−1. Here, we will follow the presentation of Ref. [252], in which the

construction of this coordinate system is explicitly written at quadratic order in

the multipolar post-Minkowskian formalism [253]. Note that our definition hµν in

Eq. (3.14) introduces a sign difference with respect to Ref. [252].

Both hereditary pieces, P 3/2Qij
C−N and P 2Qij

C−N , contain integrals with a loga-

rithmic kernel, known as tail terms. The logarithmic terms can be expressed as the

second time derivative of the leading-order, linearized metric, as shown by Eq. (2.28)

of Ref. [252]. Written in terms of the retarded time u = t − R/c, these terms are

given by

(
P 3/2Qij

C−N (u)
)

ln
=2G(1− ζ)M

∫ +∞

0

ds
d2

dt2
Qij(u− s) ln

(
s

2R + s

)
, (3.31a)

(
P 2Qij

C−N (u)
)

ln
=2G(1− ζ)M

∫ +∞

0

ds
d2

dt2
P 1/2Qij(u− s) ln

(
s

2R + s

)
. (3.31b)

Because we are only interested in the R−1 piece of the waveform, we expand

the logarithms according to

ln

(
s

2R + s

)
= ln

( s

2R

)
+O

(
1

R

)
. (3.32)

We define the radiative coordinates as X̄α = Xα + ξα, with

ξα = 2G(1− ζ)Mδα0 ln

(
R

r0

)
, (3.33)

where we have introduced an arbitrary constant length scale r0. The metric pertur-

bation in these new coordinates takes the form

h̄αβ =
[
hαβ − ∂αξβ − ∂βξα + ηαβ∂ρξ

ρ + ξµ∂µh
αβ
]
X=X̄

, (3.34)
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where we have kept only the relevant terms in Eqs. (2.36) and (2.37) of Ref. [252].

The first three terms describe the usual effect of a first order gauge transformation

on the harmonic perturbation; their contribution will be eliminated by the TT

projection. The last term combines with the lower boundary term of the integrals

in Eq. (3.31) to replace R by the new constant r0:

(
P 3/2Qij

C−N (ū)
)

ln
=2G(1− ζ)M

∫ +∞

0

ds
d2

dt̄2
Qij(ū− s) ln

(
s

2r0

)
+O

(
1

R̄2

)
,

(3.35a)(
P 2Qij

C−N (ū)
)

ln
=2G(1− ζ)M

∫ +∞

0

ds
d2

dt̄2
P 1/2Qij(ū− s) ln

(
s

2r0

)
+O

(
1

R̄2

)
.

(3.35b)

Since the transformation to radiative coordinates affects only the logarithmic terms,

from here on, we drop the notation X̄, using instead the ordinary notation X to

signify these new coordinates.

3.4.2 Tail contributions

The tail terms in the waveform arise from back-scattering of the waves on

the curvature of spacetime. In the multipolar post-Minkowskian wave generation

formalism of Refs. [252, 253], they appear as interactions between each multipole

moment and the mass monopole of the system. In the DIRE formalism [254, 255]

used in Refs. [150, 151], tail terms arise from wave-zone contributions to the integrals

over the past light-cone of the observer. Recall that these terms take the form of an

integral with a logarithmic kernel over the past history of the source.

Since we are only interested in the R−1 part of the waveform, we can expand
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the logarithms as in Eq. (3.32). Using Eq. (3.25) to replace ω with r, the tail terms

then take the generic form

I =

∫ +∞

0

ds
einϕ(t−s)

rp(t− s) ln

(
s

2r0

)
(3.36)

where n, p are integers and ϕ is the orbital phase of the binary.

To evaluate Eq. (3.36), we make use of the fact that the radiation-reaction

timescale is much longer than the orbital period. It was shown in Ref. [256] that ig-

noring radiation reaction, i.e., approximating the binary orbit as circular (with con-

stant radius and frequency), introduces an error in these integrals of order O(ln c/c5)

in GR. The same argument holds in scalar-tensor gravity, with the only difference

being that the error is of order O(ln c/c3) for dipole-driven systems due to the dif-

ferent scaling of radiation reaction. Under this assumption that the frequency does

not evolve with s, we write ϕ(t − s) ' ϕ(t) − sω(t). One can then compute the

resulting integrals by making use of the formula [256]∫ +∞

0

dy eiλy ln y = −1

λ

[π
2

sgn(λ) + i (γE + ln |λ|)
]
, (3.37)

where γE is the Euler-Mascheroni constant.

3.4.3 Memory contributions

Memory terms arise in the waveform as integrals of the product of multipoles

without a logarithmic kernel over the history of the source [252, 257]. They can be

separated into so-called DC terms, which are non-oscillatory and accumulate over

the entire lifetime of the system, and AC, oscillatory terms that, by contrast, depend

only on the recent history of the source.
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The computation of oscillatory memory terms is identical in GR and in scalar-

tensor theories. On quasi-circular orbits, these terms have the structure

J =

∫ +∞

0

ds
einϕ(t−s)

rp(t− s) , (3.38)

with integers n, p. Thanks to the oscillatory factor einϕ in the integrand, it can

again be shown (see, e.g., Ref. [258]) that only the recent past contributes in the

integral, so that one can approximate r(t − s) ' r(t) and ϕ(t − s) ' ϕ(t) − sω(t)

with a negligible relative error of the same PN order as radiation reaction. For

dipole-driven inspirals, the result is

JDD =
1

in

(
r(t)3

GMα

)1/2
einϕ(t)

rp(t)
+O(3), (3.39)

whereas for quadrupole-driven inspirals, one obtains

JQD =
1

in

(
r(t)3

GMα

)1/2
einϕ(t)

rp(t)
+O(5). (3.40)

Note that the only difference between these two cases is the order of the remainders.

The non-oscillatory (DC) memory terms take the form

K =

∫ +∞

0

ds
1

rp(t− s) . (3.41)

Their computations in GR and scalar-tensor theory differ. Non-oscillatory terms

are enhanced by the accumulation of the integrand over the long radiation-reaction

timescale, an effect which formally decreases their PN order. The result depends

here on the rate of evolution of the quasi-circular inspiral under radiation reaction.

For dipole-driven systems, these DC memory terms formally appear at the 1.5PN

order in the expression of the multipole moments, but the integration over the
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radiation-reaction timescale (formally of −1.5PN order) pushes this contribution

back to Newtonian order. Using the leading-order evolution of the quasi-circular

inspiral given by Eq. (3.28), one obtains

KDD =
3r3−p(t)

8(p− 3)ζηS2
−(GMα)2

+O(−1), (3.42)

for p > 3.

The contribution from non-oscillatory memory terms in quadrupole-driven sys-

tems is more difficult to compute. Following Eq. (3.12), any system with non-zero

scalar dipole will have been dominated by dipolar radiation at some point during its

lifetime. The transition between the dipole-driven and quadrupole-driven regimes

needs to be accommodated in the integral in Eq. (3.41). Such a calculation goes

beyond the scope of this work.

3.5 Balance equation and phase evolution

Having computed all of the hereditary terms for quasi-circular orbits, one can

use Eqs. (3.25) to express the waveform entirely in terms of the instantaneous orbital

phase ϕ and frequency ω of the binary. We now need the evolution of these quantities

at 2PN order to finish our calculation of the waveform. This level of accuracy cannot

be achieved using only the dynamics of the binary presented in Sec. 3.3. In place

of the higher-order radiation-reaction force, we use the total energy flux F and the

balance equation

dE

dt
= −F , (3.43)
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which can be reformulated using ϕ̇ = ω as

dϕ

dx
= − 1

GMα
x3/2 dE/dx

F(x)
. (3.44)

We calculate the energy for systems restricted to quasi-circular orbits by ap-

plying the results of Sec. 3.3 to those of Ref. [149]. The energy measured in an

arbitrary frame is given by Eq. (6.4) of Ref. [149]. After shifting to the center-of-

mass frame with Eqs. (6.9) and (6.10) of Ref. [149], we reduce this expression to the

case of quasi-circular orbits using Eqs. (3.25) and (3.26) and obtain

Ecirc =− 1

2
Mηx

[
1 + x

(
−2β−ψ

3
+

2β+

3
− 2γ

3
− η

12
− 3

4

)
+x2

(
−16β2

−η

γ
− 16β2

−η

3
+

4β2
−

3
− 8β−β+ψ

3
− 4β−γψ

3
+
β−ψη

3
− β−ψ

+
16β2

+η

γ
+

4β2
+

3
+

4β+γ

3
− 19β+η

3
+ β+ +

γ2η

3
− 19γ2

12
+

11γη

3
− 14γ

3

+
ψδ−

3
− 4ψχ−

3
+

4δ+η

3
+
δ+

3
− η2

24
− 8ηχ+

3
+

19η

8
+

4χ+

3
− 27

8

)]
. (3.45)

The total emitted energy flux, including both tensor and scalar contributions,

was given for generic orbits in Ref. [151] with the structure

F = F−1 + F0 + F0.5,C + F0.5,C−N + F1 +O(3), (3.46)

where the number in the index indicates the PN order of each term. The −1PN

term comes from dipolar, scalar radiation and is responsible for the appearance of

radiation-reaction effects at 1.5PN order. Note that while the flux we consider is

given at 1PN (using the order-counting scheme from GR), it corresponds to 2PN

relative order.

The individual terms in Eq. (3.46) are given in the center-of-mass frame in

Eq. (6.8) of Ref. [151]. The term F0.5,C−N includes a logarithmic hereditary term
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coming from the product of the leading-order term and a tail term (at 1.5PN relative

order) in the scalar waveform. We calculate this tail contribution using the method

detailed in Sec. 3.4.2. Then, as before, we use the results of Sec. 3.3 to compute

the total energy flux for quasi-circular orbits F(x) that will be given in Eqs. (3.48)

and (3.55) below.

Equipped with expressions for the binding energy E(x) and the total energy

flux F(x) both at the 2PN relative order, we proceed to evaluate the orbital phasing

of the binary using Eq. (3.44). Different approaches have been proposed in the

literature to integrate the balance equation, differing by the choice of integration

variables (time or frequency) and by the choice of either numerical integration or

analytical integration of a re-expansion of Eq. (3.44) (see, e.g., Ref. [259] for a

definition and comparison of these so-called Taylor approximants). Our purpose here

is not to compare these different approaches, but to examine the new contributions in

the phasing that arise in scalar-tensor theories. We adopt a method (corresponding

to the TaylorT2 approximant) that provides a result in analytic form: the ratio

−(dE/dx)/F(x) is re-expanded in x, truncated at relative 2PN order, and then

integrated term by term. For this purpose, it will be convenient to introduce the

notation

ρ(x) ≡ − 1

GMα

1

F(x)

dE

dx
. (3.47)

Care must be taken before re-expanding this ratio in the PN parameter x: we

distinguish between the dipole-driven case in which the dipolar term F−1 [defined

in Eq. (3.46)] dominates the denominator and the quadrupole-driven case wherein

157



F0 dominates due to the smallness of scalar-tensor parameters.

3.5.1 The dipole-driven regime

We first consider systems whose inspiral is driven by dipolar radiation. As

discussed in Sec. 3.2.2, this regime is reached by binaries with large separations

(binary pulsars) or large scalar dipoles (spontaneously scalarized systems). Dynam-

ically scalarized systems begin in the quadrupole-driven regime but then abruptly

become dipole-driven at some point during their evolution; in principle, one must

account for both stages when modeling their inspiral, but we will not pursue such

a treatment here.6 Factoring out the leading order dipolar flux in Eq. (3.46), we

obtain

FDD(x) =
4S2
−ζη

2x4

3Gα

[
1 + fDD

2 x+ fDD
3 x3/2 + fDD

4 x2 +O(5)
]
, (3.48)

where explicit expressions for the coefficients fDD
n are given in Eq. (D.2). The leading

order of the flux carries a factor S2
− characteristic of dipolar radiation.

In this case, we simply re-expand the ratio ρ(x) in x at 2PN relative order and

obtain

ρDD(x) =
3

8S2
−ζηx

4

[
1 + ρDD

2 x + ρDD
3 x3/2 + ρDD

4 x2 +O(5)
]
, (3.49)

where the coefficients ρDD
n are given explicitly in Eq. (D.6). By integrating Eq. (3.44)

6Reference [3] (reproduced in Chapter 4) argues that the PN approximation breaks down as

dynamical scalarization occurs, but that a straightforward resummation of PN results can provide

an accurate waveform model valid in this regime.
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term-by-term, the phasing is then given by

ϕ(x) =− 1

4S2
−ζηx

3/2

[
1 + 3xρDD

2 − 3

2
x3/2 lnxρDD

3 − 3x2ρDD
4 +O(5)

]
, (3.50)

where we have dropped an arbitrary additive constant that can be fixed by specifying

the value of the phase at a given frequency.

3.5.2 The quadrupole-driven regime

For quadrupole-driven systems, the flux should be expanded about the Newton-

ian-order term F0 in Eq. (3.46) rather than the leading-order −1PN term. To ac-

complish this reordering of the PN approximation, we expand the flux in the PN

parameter x and an additional parameter that describes the smallness of non-GR

effects. There exists some flexibility in the choice of this second small parameter;

the weak-field parameters listed in Table 3.1 describe the smallness of scalar-tensor

corrections in complementary ways, and these quantities appear in the waveform in

several combinations (e.g., the binary parameters).

We adopt a prescription that generalizes the approach of Ref. [240] to more

generic scalar-tensor theories and to higher PN order. In the present quadrupole-

driven case, we split the flux into pieces independent and dependent on the scalar

dipole

FQD = Fnon-dip + Fdip, (3.51)
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where we have defined

Fnon-dip ≡ lim
S−→0

F , (3.52)

Fdip ≡F −Fnon-dip. (3.53)

We refer to Fdip and Fnon-dip as the “dipolar part” and “non-dipolar part” of the

flux, respectively. Note that these labels do not correspond precisely to the mul-

tipolar structure of the source; for example, Fdip contains contributions from time

derivatives of the scalar monopole and quadrupole. Instead, Fdip represents the part

of the flux that vanishes when s1 = s2

We compute the phasing at first order in the small quantity Fdip/Fnon-dip,

employing the approximation

− dE/dx

F(x)
' − dE/dx

Fnon-dip(x)

(
1− Fdip(x)

Fnon-dip(x)

)
(3.54)

in Eq. (3.47). Evaluating the right-hand side of this equation requires knowledge of

Fdip and Fnon-dip each at 2PN relative order.

We obtain for the dipolar and non-dipolar parts

Fnon-dip(x) =
32η2ξx5

5Gα

[
1 + fnd

2 x +O(3)
]
, (3.55a)

Fdip(x) =
4S2
−ζη

2x4

3Gα

[
1 + fd

2 x + fd
3 x

3/2 + fd
4 x

2 +O(5)
]
, (3.55b)

where the coefficients fnd
n and fd

n can be found in Eqs. (D.10) and (D.14) of Ap-

pendix D. The leading order dipolar part of the flux (3.55b) is the same as in

Eq. (3.48). The leading order non-dipolar part (3.55a) is simply the quadrupolar flux

in GR with an additional factor of ξ/α, where we have defined ξ ≡ 1+γ/2+ ζS2
+/6.
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Note that because it enters at Newtonian order (rather than −1PN), the non-

dipolar part of the flux is only known to 1PN relative order. A complete calculation

of the phasing at 2PN relative order requires the 1.5PN and 2PN corrections to the

non-dipolar flux. In place of these unknown terms, we use

Fnon-dip =F (GR)
2PN + F (ST)

non-dip, (3.56)

with

F (ST)
non-dip =F (ST)1PN

non-dip +
32η2x5

5Gα
ξ
[
fST

3 x3/2 + fST
4 x2 +O(5)

]
. (3.57)

In the above, F (GR)
2PN is the PN expanded flux in GR up to 2PN order, with the

natural replacement G∗ → Gα. The first term in Eq. (3.57) denotes the known con-

tributions to the non-dipolar flux that only arise in scalar-tensor theories, which can

be obtained by subtracting the GR terms from (3.55a). We introduce the unknown

coefficients fST
3 and fST

4 to represent our ignorance of the new scalar-tensor contri-

butions at 1.5PN and 2PN order. In the quadrupole-driven context, experimental

constraints on the weak-field parameters imply that these contributions should be

much smaller than the 2PN GR terms. Moreover, these terms are doubly suppressed

in the second term of Eq. (3.54) because Fdip is already of the first order in the small

scalar-tensor coefficients. We will keep these unknown coefficients throughout our

calculation for completeness.

We repeat the computation of the phasing from Sec. 3.5.1 but using the ap-

proximation (3.54). We write ρ(x) = ρnon-dip(x) + ρdip(x), where we have defined
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ρnon-dip(x) ≡− 1

GMα

1

Fnon-dip(x)

dE

dx
, (3.58a)

ρdip(x) ≡ 1

GMα

Fdip(x)

Fnon-dip(x)2

dE

dx
, (3.58b)

which can be expanded in the form

ρnon-dip(x) =
5

64x5ηξ

[
1 + ρnd

2 x+ ρnd
3 x

3/2 + ρnd
4 x

2 +O(5)
]
, (3.59a)

ρdip(x) =− 25S2
−ζ

1536x6ηξ2

[
1 + ρd

2x+ ρd
3x

3/2 + ρd
4x

2 +O(5)
]
. (3.59b)

The expressions for the coefficients ρnd
n , ρd

n are given in Eqs. (D.16) and (D.20) in

Appendix D. Using the decomposition in Eq. (3.58), we integrate Eq. (3.44) and

obtain the phase evolution

ϕ(x) = ϕnon-dip(x) + ϕdip(x), (3.60)

with

ϕnon-dip(x) =− 1

32x5/2ηξ

[
1 +

5

3
ρnd

2 x+
5

2
ρnd

3 x
3/2 + 5ρnd

4 x
2 +O(5)

]
, (3.61a)

ϕdip(x) =
25S2

−ζ

5376x7/2ηξ2

[
1 +

7

5
ρd

2x+
7

4
ρd

3x
3/2 +

7

3
ρd

4x
2 +O(5)

]
, (3.61b)

where we have ignored an arbitrary additive constant phase.

3.6 Spin-weighted spherical modes of the waveform

Combining the results of the previous sections, we present the gravitational

waveform in a convenient form for use with GW detectors. First, we decompose

the waveform hTT
ij as given in Eq. (3.30) into its plus and cross polarizations. We
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introduce the spherical coordinates (R,Θ,Φ) in the center-of-mass frame and define

the usual orthonormal triad {N̂, P̂, Q̂} where N̂ = eR, and P̂ and Q̂ lie along the

major and minor axes, respectively, of the projection of the orbital plane onto the

plane of the sky. The plus and cross polarizations of the waveform are defined as

the projections

h+ =
1

2

(
P̂iP̂j − Q̂iQ̂j

)
hTT
ij , (3.62a)

h× =
1

2

(
P̂iQ̂j + Q̂iP̂j

)
hTT
ij . (3.62b)

We then decompose the waveform into spin-weighted spherical harmonics according

to [260]

h+ − ih× =
∑
`≥2

∑̀
m=−`

−2Y`m(Θ,Φ)h`m, (3.63)

where the coefficients h`m are the spin-weighted spherical modes that we wish to

compute.

We introduce, as in GR, a convenient new orbital phase variable that allows

us to formally absorb the logarithms appearing in the polarizations h+, h×:

φ ≡ ϕ− 2(1− ζ)

α
x3/2

[
ln (4r0ω) + γE −

11

12

]
, (3.64)

where r0 is the length scale associated with the transformation to radiative coordi-

nates introduced in Sec. 3.4.1. This definition differs from its GR counterpart7 [261]

by only a factor of (1− ζ)/α. Note that the difference between φ and ϕ is of at least

3PN relative order because the leading-order term in the phase is formally O(−3)

7Note that in the notation of Ref. [30] and references therein, this redefined phase is denoted

by ψ. We instead use φ to avoid confusion with our ψ = (m1 −m2)/M .
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in dipole-driven systems and O(−5) in quadrupole-driven systems. Given that we

control the phasing of the binary only at 2PN relative order, we can ignore this

correction.

For the mode amplitudes, we adopt the notation

h`m ≡
2GM(1− ζ)ηx

R

√
16π

5
Ĥ`me

−imφ, (3.65)

where the appropriate phase factor is scaled out for each mode as well as the leading

order amplitude of the 22 mode, which differs from its value in GR by only a factor

of 1− ζ.

Because we consider only non-spinning binaries, and consequently, those on

planar orbits, the modes obey the symmetry relation

h`m = (−1)`h∗`,−m . (3.66)

Thus, one needs only the modes with m ≥ 0 to specify the waveform. Combining

the results of the previous sections, we obtain at 2PN order for the quantities Ĥ`m
8:

Ĥ2,2 =1 + x

(
4β−ψ

3
− 4β+

3
− 2γ

3
+

55η

42
− 107

42

)
+ x3/2

(
−2πζ

α
+

2π

α
− 3

2
iζηS2

− −
1

3
iζS2

− +
1

3
iζS2

+

)
+ x2

(
16β2

−η

γ
+

16β2
−η

3
− 4β2

−

3
+

8β−β+ψ

3
+

19β−ψη

7
− 113β−ψ

63
− 16β2

+η

γ

−16β2
+η

γ
− 4β2

+

3
+

23β+η

7
+

113β+

63
− γ2η

3
+

5γ2

12
− 74γη

21
− γ

21
+
ψδ−

3

8Recall that our definition for hµν (3.14) introduces a sign difference relative to the results

summarized in Ref. [30].
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+
4ψχ−

3
− 4δ+η

3
+
δ+

3
+

2047η2

1512
+

8ηχ+

3
− 1069η

216
− 4χ+

3
− 2173

1512

)
(3.67a)

Ĥ2,1 =
1

3
iψ
√
x

[
1 + x

(
2β−ψ − 2β+ +

γ

2
+

5η

7
− 17

28

)
+x3/2

(
−πζ
α

+
iζ

2α
+
iζ ln(16)

2α
+
π

α
− i

2α
− i ln(16)

2α
− 4

3
iζηS2

− −
4iζηS−S+

3ψ

)]
(3.67b)

Ĥ3,3 =− 3

4
i

√
15

14
ψ
√
x

[
1 + x (2β−ψ − 2β+ − γ + 2η − 4)

+x3/2

(
−3πζ

α
+

21iζ

5α
− 6iζ ln

(
3
2

)
α

+
3π

α
− 21i

5α
+

6i ln
(

3
2

)
α

− 8

9
iζηS2

−

− 3

10
iζS2

− +
8iζηS−S+

9ψ
+

3

10
iζS2

+

)]
(3.67c)

Ĥ3,2 =
x

54
√

35
[90− 270η + x (−720β−ψη + 240β−ψ + 720β+η − 240β+

−365η2 + 725η − 193
)]

(3.67d)

Ĥ3,1 =
iψ
√
x

12
√

14

[
1 + x

(
2β−ψ − 2β+ − γ −

2η

3
− 8

3

)
+x3/2

(
−πζ
α

+
7iζ

5α
+

2iζ ln(2)

α
+
π

α
− 7i

5α
− 2i ln(2)

α
− 40

3
iζηS2

−

− 1

10
iζS2

− +
8iζηS−S+

3ψ
+

1

10
iζS2

+

)]
(3.67e)

Ĥ4,4 =
4x

297
√

35
[990η − 330 + x (2640β−ψη − 880β−ψ − 2640β+η + 880β+

−1320γη + 440γ + 2625η2 − 6365η + 1779
)]

(3.67f)

Ĥ4,3 =
9iψ(2η − 1)x3/2

4
√

70
(3.67g)

Ĥ4,2 =− 1

63

√
5x

[
3η − 1 + x

(
8β−ψη −

8β−ψ

3
− 8β+η +

8β+

3
− 4γη +

4γ

3

+
19η2

22
− 805η

66
+

437

110

)]
(3.67h)

Ĥ4,1 =− iψ(2η − 1)x3/2

84
√

10
(3.67i)
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Ĥ5,5 =− 625iψ(2η − 1)x3/2

96
√

66
(3.67j)

Ĥ5,4 =− 32 (5η2 − 5η + 1)x2

9
√

165
(3.67k)

Ĥ5,3 =
9

32
i

√
3

110
ψ(2η − 1)x3/2 (3.67l)

Ĥ5,2 =
2 (5η2 − 5η + 1)x2

27
√

55
(3.67m)

Ĥ5,1 =− iψ(2η − 1)x3/2

288
√

385
(3.67n)

Ĥ6,6 =
54 (5η2 − 5η + 1)x2

5
√

143
(3.67o)

Ĥ6,5 =0 (3.67p)

Ĥ6,4 =− 128

495

√
2

39

(
5η2 − 5η + 1

)
x2 (3.67q)

Ĥ6,3 =0 (3.67r)

Ĥ6,2 =
2 (5η2 − 5η + 1)x2

297
√

65
(3.67s)

Ĥ6,1 =0, (3.67t)

where we omit the common remainder O(5) for all modes.

The h`m modes with m = 0 correspond to non-oscillatory memory terms. As

discussed in Sec. 3.4.3, even systems presently driven by quadrupolar radiation will

have undergone a dipole-driven phase in the distant past, which complicates the

calculation of these DC memory terms. Hence, we limit ourselves to the dipole-

driven case and use Eq. (3.42). Working at Newtonian order, the only non-zero

mode is h20, which reads

ĤDD
2,0 =

1

4
√

6
+O(2). (3.68)
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3.7 Stationary phase approximation

In this section, we compute the Fourier transform of the gravitational waveform

using the stationary phase approximation (SPA). This technique is only applicable

to oscillatory modes; we do not consider the m = 0 modes here.

We adopt the following convention for the Fourier transform of a function g:

g̃(f) ≡
∫ +∞

−∞
dt e+2iπftg(t). (3.69)

Note that this convention differs from the standard one, in which the argument of

the exponential has a minus sign. Our convention ensures that modes proportional

to e−imϕ with positive mode number m and increasing orbital phase ϕ have power

in positive frequencies in the Fourier domain. Our results can be converted to the

more common convention by taking f → −f .

Combining the terms in Eq. (3.65), the h`m modes can be written as

h`m(t) = A`m(t)e−imϕ(t), (3.70)

where A`m is the (complex) amplitude. Note that we use ϕ to describe the phase

rather than φ defined in Eq. (3.64) — we ignore the 3PN correction φ − ϕ, which

can be thought of as a small phase correction to the amplitude at higher order than

we work.

The h`m modes for m 6= 0 are rapidly oscillatory, slowly chirping signals. Put

more precisely, during the inspiral, the modes satisfy |Ȧ`m/A`m| � ω and |ω̇| � ω2,

which indicates that the SPA is applicable to the waveform [262]. Applying the
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Fourier transform (3.69) to Eq. (3.70) gives

hSPA
`m (f) =A`m(f)e−iΨ`m(f)−iπ/4 , (3.71a)

Ψ`m(f) =mϕ(t
(m)
f )− 2πft

(m)
f , (3.71b)

A`m(f) =A`m(t
(m)
f )

√
2π

mω̇(t
(m)
f )

, (3.71c)

where ω = ϕ̇ and t
(m)
f is defined implicitly as the time at which mω(t

(m)
f ) = 2πf .

Note the m-dependence of this time-to-frequency correspondence; at a given time,

the different harmonics in the signal correspond to gravitational wave emission at

different frequencies.

In keeping with the notation common in the literature, we introduce the new

PN tracking parameter v = x1/2 = (GMαω)1/3, tied to the orbital frequency ω. It is

customary to introduce a similar notation for the frequency f as vf = (πGMαf)1/3.

Since v(t
(m)
f ) = (2/m)1/3vf , Eq. (3.71b) can be rewritten as

Ψ`m(f) = m

(
ϕ(v)− 1

GMα
v3t(v)

)∣∣∣∣
v=(2/m)1/3vf

. (3.72)

We compute the functions ϕ(v) and t(v) using a similar method to the phasing

as in Eq. (3.44). From the balance equation (3.44) we deduce

ϕ(v) =ϕ(v0)− 1

GMα

∫ v

v0

dv v3 dE/dv

F(v)
, (3.73a)

t(v) =t(v0)−
∫ v

v0

dv
dE/dv

F(v)
, (3.73b)

where v0 is related to the orbital frequency at some reference point in the evolution.

Likewise, the factor entering the Fourier-domain amplitude (3.71c) is computed

using

1

ω̇
= −GMα

3v2

1

F(v)

dE

dv
. (3.74)
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We evaluate Eqs. (3.73) and (3.74) using a prescription akin to that in Sec. 3.5

(corresponding now to the TaylorF2 approximant [259]): the expressions are re-

expanded in v, truncated at relative 2PN order, and then integrated term by term.

For the sake of compactness, we write ϕ(v), t(v), and 1/ω̇ in terms of the expansion

of the dimensionless ratio ρ(x) introduced in Eq. (3.47), using

− 1

GMα

1

F(v)

dE

dv
= 2vρ(v2). (3.75)

3.7.1 The dipole-driven regime

For the dipole-driven regime, we insert Eq. (3.75) into Eq. (3.73) using the

expansion (3.49) and integrate, yielding

ϕDD(v) =
−1

4S2
−ζηv

3

[
1 + 3ρDD

2 v2 − 3ρDD
3 v3 ln v − 3ρDD

4 v4
]
, (3.76a)

tDD(v)

GMα
=

−1

8S2
−ζηv

6

[
1 +

3

2
ρDD

2 v2 + 2ρDD
3 v3 + 3ρDD

4 v4

]
, (3.76b)

where we have dropped the integration constants for now.

Combining these two expressions gives the SPA phase (3.72)

ΨDD
`m (f) =− m

8S2
−ζηv

3

[
1 +

9

2
ρDD

2 v2 − 2ρDD
3 v3(1 + 3 ln v)− 9ρDD

4 v4

]
+mϕ0 − 2πft0 ,

(3.77)

where v is evaluated at v = (2/m)1/3vf , and where we restored constants t0 and ϕ0

which are the sums of ϕ(v0), t(v0) with the terms from the lower boundary of the

integrals. The coefficients ρDD
n are given in Eq. (D.6).
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Similarly, the complex amplitude is given by

ADD
`m (f) =

2G2(1− ζ)M2απη1/2

Rζ1/2|S−|

√
4

5

√
2

m

Ĥ`m(v)

v5/2

[
1 +

1

2
v2ρDD

2 +
1

2
v3ρDD

3

+
1

2
v4

(
ρDD

4 − 1

4
(ρDD

2 )2

)]
, (3.78)

where Ĥ`m(v) is given by Eq. (3.67) with the replacement x = v2 and, as before, v

is evaluated at v = (2/m)1/3vf .

Note that because Ĥ`m are complex they can affect the phase of the waveform.

In particular, they can carry an overall minus sign or factor ±i, which should be

included in the phase of the mode. In addition, higher-order terms can have a factor

±i differing from the one entering at leading order, which induce corrective phases.

However, those phases turn out to be negligible, entering at higher PN order than

the 2PN relative order we consider.

3.7.2 The quadrupole-driven regime

We follow the same treatment for the quadrupole-driven systems as laid out

in Sec. 3.5.2: we split the flux into dipolar and non-dipolar parts, and expand ρ(v)

to first order in the ratio Fdip/Fnon-dip according to Eq. (3.54). The first and second

terms in Eq. (3.54) produce a non-dipolar and dipolar contribution, respectively, to

the phase and amplitude of the SPA waveform.

The non-dipolar contribution to the phasing is constructed by inserting

Eq. (3.75) into the integrals in Eq. (3.73) and using the expansion (3.59a). Ignoring
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the integration constants for now, we find

ϕnon-dip(v) =− 1

32v5ηξ

[
1 +

5

3
ρnd

2 v
2 +

5

2
ρnd

3 v
3 + 5ρnd

4 v
4 +O(5)

]
, (3.79a)

tnon-dip(v)

GMα
=− 5

256v8ηξ

[
1 +

4

3
ρnd

2 v
2 +

8

5
ρnd

3 v
3 + 2ρnd

4 v
4 +O(5)

]
, (3.79b)

and thus, the corresponding contribution to the Fourier-domain phase for the h`m

mode is given by

Ψnon-dip
`m (f) = m

[
− 3

256v5ηξ

(
1 +

20

9
ρnd

2 v
2 + 4ρnd

3 v
3 + 10ρnd

4 v
4

)]∣∣∣∣
v=(2/m)1/3vf

.

(3.80)

Similarly, we use Eq. (3.59b) to compute the contribution to the phasing from the

dipolar energy flux

ϕdip(v) =
25S2

−ζ

5376v7ηξ2

[
1 +

7

5
ρd

2v
2 +

7

4
ρd

3v
3 +

7

3
ρd

4v
4 +O(5)

]
, (3.81a)

tdip(v)

GMα
=

5S2
−ζ

1536v10ηξ2

[
1 +

5

4
ρd

2v
2 +

10

7
ρd

3v
3 +

5

3
ρd

4v
4 +O(5)

]
, (3.81b)

Ψdip
`m(f) =m

[
5S2
−ζ

3584v7ηξ2

(
1 +

7

4
ρd

2v
2 +

5

2
ρd

3v
3 +

35

9
ρd

4v
4

)]∣∣∣∣
v=(2/m)1/3vf

. (3.81c)

Combining these two pieces and restoring the constants ϕ0 and t0, the Fourier-

domain phase is then simply

ΨQD
`m (f) = Ψnon-dip

`m (f) + Ψdip
`m(f) +mϕ0 − 2πft0. (3.82)

The coefficients ρnd
n and ρd

n are given in Eqs. (D.16) and (D.20). When restricted

to Brans-Dicke theory, Eq. (3.82) reproduces the leading order deviation in the

phase from GR derived in Ref. [240] at order O(1/ωBD), which is equivalent to

first order in Fdip/Fnon-dip. For systems containing a very massive black hole, i.e.,
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s1 = 1/2, s′1 = s′′1 = 0 and m1 � m2, we recover the phase up to 2PN relative order

derived in Ref. [263].

The computation of the Fourier-domain amplitude closely follows that of the

dipole-driven regime. In place of
√
ρ(v), one instead uses

√
ρ(v) '

√
ρnon-dip(v)

[
1 +

1

2

ρdip(v)

ρnon-dip(v)

]
. (3.83)

Finally, one re-expands this expression using Eqs. (3.59a) and (3.59b) and inserts

the result in to Eq. (3.71c).

3.8 Conclusions

We have computed the gravitational waveform at 2PN relative order for a

compact binary system on quasi-circular orbits in scalar-tensor theories with a single

massless scalar. The phase and amplitude are presented in ready-to-use form for all

hlm modes. We used the stationary phase approximation to express the waveform in

Fourier space. We performed these calculations for systems whose inspiral is driven

by the emission of dipolar radiation and those driven by quadrupolar flux. Because

of the tight constraints on scalar-tensor gravity, only very low-frequency systems

(e.g., binary pulsars) or those that host non-perturbative scalarization phenomena

(e.g., spontaneous or dynamical scalarization) fall within this first regime — most

prospective GW sources will be quadrupolar-driven.

We conclude with a brief discussion of the potential utility of our results for

testing GR with GWs. The early inspiral offers the best prospects for detecting

the emission of dipolar radiation by compact binary systems, as radiation reac-
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tion enters at lower PN order in scalar-tensor theories than in GR. Thus, the best

constraints would come from observation of neutron star-black hole binaries with

space-based detectors.9 Current estimates on the detectability of scalar-tensor ef-

fects have predominantly been made using the leading-order correction to the GW

phase [240, 264–267] (although Ref. [263] used 3.5PN scalar-tensor waveforms in

studying extreme mass ratio inspirals).

Using Eq. (3.82), we estimate the upper bound on the contribution of each

PN correction to the phase. We consider the phase accumulated by a 100− 1.4M�

system during an observation period of one year, spanning the frequency range

f ∈ (0.065Hz, 1Hz), subject to the experimental constraints discussed in Sec. 3.2.2.

Relative to the 7.7 × 106 cycles produced by the Newtonian-order GR term, the

leading-order scalar-tensor correction decreases the phase by up to ∼ 600 GW cy-

cles.10 The 1PN relative order correction increases the total phase by another ∼ 2

cycles, although this piece would be difficult to detect, as it takes the same form as

the leading-order GR term. The 1.5PN relative order correction adds ∼ 3 GW cycles

to the inspiral, and the 2PN order effect is below the limit of eLISA detectability,

only contributing ∼ 0.1 cycles over the year. We emphasize that these values are

only an order-of-magnitude estimate of the possible impact of higher-order scalar-

tensor corrections; a more extensive parameter estimation study is needed to truly

9Up to 2PN order, the signal produced by binary black holes is known to be identical to that

in GR up to an undetectable rescaling of the gravitational constant G. [150]
10Note that this bound comes from assuming a neutron-star scalar charge of αA ∼ 6 × 10−3,

whereas Refs. [240, 264–267] considered the maximum charge found in Brans-Dicke gravity αA ∼

2× 10−3.
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determine the detectability of these effects.
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Chapter 4: Modeling dynamical scalarization with a resummed post-

Newtonian expansion

Authors: Noah Sennett and Alessandra Buonanno1

Abstract: Despite stringent constraints set by astrophysical observations,

there remain viable scalar-tensor theories that could be distinguished from general

relativity with gravitational-wave detectors. A promising signal predicted in these

alternative theories is dynamical scalarization, which can dramatically affect the

evolution of neutron-star binaries near merger. Motivated by the successful treat-

ment of spontaneous scalarization, we develop a formalism that partially resums

the post-Newtonian expansion to capture dynamical scalarization in a mathemati-

cally consistent manner. We calculate the post-Newtonian order corrections to the

equations of motion and scalar mass of a binary system. Through comparison with

quasi-equilibrium configuration calculations, we verify that this new approximation

scheme can accurately predict the onset and magnitude of dynamical scalarization.

1Originally published as Phys. Rev. D93, 124004 (2016).
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4.1 Introduction

The detection of gravitational-wave (GW) event GW150914 by Advanced

LIGO heralds a new era of experimental relativity [184]. Every test of the past

hundred years has indicated that gravity behaves as predicted by general rela-

tivity (GR). Until now, the best constraints have come from solar-system exper-

iments [79] and binary-pulsar observations [89, 249]. These measurements probe

the mildly-relativistic, strong-field regime of gravity generated by objects with ve-

locities v/c . 10−3 and gravitational fields ΦNewt/c
2 . 10−1 (see Table 4 of Ref. [79]

for a summary of model-independent constraints).

For the first time, these constraints can be extended through the direct ob-

servation of strong, dynamical gravitational fields. In particular, GW detectors

can track the coalescence of compact objects in binary systems, a process in which

the objects are highly-relativistic and strongly self-gravitating, with v/c ∼ 0.5 and

ΦNewt/c
2 ∼ 0.5. We expect to observe several GWs per year [229, 231] with the

upcoming global network of detectors comprised of Advanced LIGO [230], advanced

Virgo [64], and KAGRA [233].

These ground-based GW detectors will be able to observe binaries of solar-

mass objects for thousands of orbital cycles before merger. Significant effort has

gone into the development of techniques to test GR with these measurements; see

Refs. [88, 268] and references therein. During the first stage of a binary’s coalescence

(the early inspiral), the waveform measured by the detector is well described within

the stationary-phase approximation. The waveform generated in GR for the early

176



inspiral can be approximated by

hGR(θ; f) =
A(θ)

D
f−7/6eiψ(θ;f), (4.1)

where f is the observed frequency, D is the distance to the binary, and A and ψ

are the amplitude and phase of the GW, respectively, dependent on the intrinsic

(e.g. chirp mass, component spins, etc.) and extrinsic (e.g. sky position, time of

coalescence, etc.) parameters of the binary, represented collectively by θ.

Using this signal as a baseline, one can parameterize any non-GR waveform in

the early inspiral as

h(θ; f) = hGR(θ; f) (1 + δA(θ, ζ; f)) eiδψ(θ,ζ;f) (4.2)

where ζ represents the parameters that characterize the alternative theory [117, 118].

Then, given a GW detection, Bayesian inference can be used to estimate δA and δψ

[120, 213, 214, 269–271]. Typically one expands these functions in powers of the fre-

quency f (and its logarithm log f), then performs a hypothesis test to constrain the

corresponding expansion coefficients. This approach can be used either to search

for generic deviations from GR by treating these coefficients independently or to

test a specific alternative theory against GR by relating the coefficients to the un-

derlying physical parameters ζ. Using a parameterized waveform that also included

the merger and ringdown signal, both types of tests were done for GW150914 in

Ref. [122]: with the former, the authors constrained the higher-order expansion

coefficients in δψ, and with the latter, they placed a lower bound on the Compton

wavelength λg of the graviton in a hypothetical massive gravity theory [111] (λg is

signified by ζ in our notation).
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However, this type of analysis rests on the assumption that δA and δψ admit

expansions in powers of f . There exist certain alternative theories of gravity where

this assumption of analyticity breaks down due to phase transitions or resonant

effects [271]. Fortunately, several complementary tests were performed in Ref. [122]

to verify that GW150914 is indeed consistent with GR. Still, our ability to model

non-analytic features in waveforms is essential in case future events do not match

the predictions of GR as closely.

The task of modeling a non-analytic deviation δψ in a generic, theory-independ-

ent way is intractable. Instead, previous work has focused on modeling specific non-

GR phenomena predicted in particular alternative theories of gravity. We continue

this effort here, focusing on dynamical scalarization (DS), an effect that can arise

in neutron-star binaries in certain scalar-tensor (ST) theories of gravity [169, 171].

Previous efforts to model this effect have simply grafted models of DS onto inde-

pendently developed analytic approximations of the inspiral [170, 175, 271]. In this

work, we propose a new perturbative formalism that incorporates DS from first

principles. Our aim is to lay the groundwork for a model whose accuracy can be

improved iteratively in a way that is more straightforward and self-consistent than

previous methods.

The paper is organized as follows. In Sec. 4.2, we examine the relationship

between DS and the better understood phenomenon of spontaneous scalarization.

From this discussion, we motivate a resummation of the post-Newtonian formalism

to incorporate DS, which is then developed in Sec. 4.3. We derive the equations

of motion for a neutron-star binary up to next-to-leading order in Secs. 4.4 and
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4.5. In Secs. 4.6 and 4.7, we calculate its scalar mass (a measure of the system’s

scalarization) at the same order. As a test of its validity, in Sec. 4.8, we compare

our model with numerical quasi-equilibrium configurations of neutron stars [172] and

previous analytical models [170]. We provide a summary in Sec. 4.9 and outline the

future work needed to produce waveforms with our model.

4.2 Non-perturbative phenomena in scalar-tensor gravity

Scalar-tensor theories of gravity are amongst the most natural and well-motivated

alternatives to GR. We consider the class of theories detailed in Ref. [147], in which

a massless scalar field couples non-minimally to the metric, effectively allowing a

spin-0 polarization of the graviton. These theories are described by the action

S =

∫
d4x

c3
√−g

16πG

[
φR− ω(φ)

φ
gµν∇µφ∇νφ

]
+ Sm[gµν ,Ξ], (4.3)

where Ξ represents all of the matter degrees of freedom in the theory. Note that in

the limit that ω → ∞, the scalar field relaxes to a constant value, and the theory

reduces to GR with the modified gravitational constant Geff = G/φ; we refer to this

extreme as the GR limit.

The form of the action in Eq. (4.3) is known as the “Jordan frame” action.

Alternatively, the action can be cast into the “Einstein frame” by performing a

conformal transformation g̃µν ≡ φgµν as

S =

∫
d4x

c3
√−g̃

16πG

[
R̃− 2g̃µν∇µϕ̃∇νϕ̃

]
+ Sm

[
e−

∫
2dϕ̃/
√

3+2ω(ϕ̃)g̃µν ,Ξ
]
, (4.4)
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where we have introduced the scalar field

ϕ̃ ≡
∫
dφ

√
3 + 2ω(φ)

2φ
. (4.5)

From Eq. (4.4), we see that the coupling of the scalar field to matter (through the

metric g̃µν) is characterized by

a = (3 + 2ω)−1/2. (4.6)

Measurable phenomena absent in GR arise in theories whose coupling is linear

in ϕ̃

a =
Bϕ̃

2
. (4.7)

This coupling can be expressed in terms of Jordan frame variables as

1

ω(φ) + 3/2
=B log φ, (4.8)

and imposes the relation between φ and ϕ̃

φ = exp(Bϕ̃2/2). (4.9)

Damour and Esposito-Farèse discovered an instability in the scalar field trig-

gered by the presence of relativistic matter in theories with B > 0 [153].2 For

2Based off the work of Refs. [152, 272, 273], the authors of Ref. [175] recently discussed a

related instability in this theory that would cause the scalar field to grow rapidly over cosmological

timescales throughout the Universe. Consequently, the scalar field today would be so large that

its presence would have already been detected by solar-system experiments. The addition of a

potential V (φ) or slight modification of ω(φ) could ameliorate this issue while preserving the

neutron star phenomena discussed in this work (for example, see Ref. [161]). As is done in the

literature, we ignore here this cosmological problem.
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sufficiently large B, compact neutron stars were found to undergo a phase transi-

tion now known as spontaneous scalarization. Spontaneously scalarized stars are

expected to behave differently than their (un-scalarized) GR counterparts (see Refs.

[274–278] for examples of such deviations).

Observation of a scalarized star would be a smoking gun for modifying gravity;

in turn, our lack of evidence for such stars places constraints on this class of ST

theories [247]. Because scalarization arises from the non-linear interaction between

strong gravitational fields and matter, it is unconstrained by weak-field experiments

and GW150914. However, pulsar timing measurements have ruled out nearly all

theories that can sustain spontaneous scalarization [247].

Dynamical scalarization is a similar phenomenon revealed by recent numerical-

relativity simulations that is not ruled out by binary-pulsar observations [169, 171].

In a binary system, neutron stars too diffuse to spontaneously scalarize in isolation

were found to scalarize collectively. Despite the name, DS has also been found

in recent quasi-equilibrium calculations [172]; the phenomenon is caused by the

proximity of the neutron stars rather than their dynamical evolution. The onset of

DS produces an abrupt change in the stars’ motion, generating sharp features in the

GW signal produced by the binary.

Gravitational-wave detectors may be able to extend the current constraints

on ST theories by searching for DS [175]. This endeavor hinges on our ability to

accurately and efficiently model GWs from binaries that undergo DS. Such effects

have been modeled by using a Heaviside function for δψ in Eq. (4.2) [175, 271] or

augmenting the post-Newtonian (PN) evolution of the binary with a semi-analytic
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feedback model [170]. This work follows a general strategy similar to that of Ref.

[170]. However, we adopt a top-down approach to incorporate DS into the PN

formalism in hopes of creating a model that is more consistent and streamlined

conceptually (see Appendix G for a detailed analysis of the results of Ref. [170]).

The PN expansion is an effective tool for analytically approximating the evolu-

tion of binary systems of interest to ground-based GW detectors. In this approach,

one expands solutions to the Einstein equations about flat space in the small pa-

rameter ε ∼ GM/rc2 ∼ (v/c)2 < 1, where M, r, v represent the characteristic mass,

distance, and velocity scales in the problem, respectively. In ST theories, this ex-

pansion is done about the Minkowski metric ηµν and background field φ0 (assumed

to be constant and homogeneous over the time and distance scales of the evolution

of a binary system). We refer to the εn+1 corrections to these quantities as the

“nPN” fields. We define non-perturbative phenomena as behavior found in the full

gravitational theory that cannot be recovered at any finite PN order.

In the remainder of this section, we argue that DS is a non-perturbative phe-

nomenon. First, we review the analytic treatment of spontaneous scalarization, de-

scribing the way in which the phenomenon has been identified as non-perturbative

and then incorporated into the PN expansion in a rigorous manner. We then perform

a similar analysis for DS and present a quantitative argument that the phenomenon

is non-perturbative. Finally, we describe how the analytic treatment of spontaneous

scalarization could be adapted to incorporate DS into the PN formalism.
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4.2.1 Spontaneous scalarization: single neutron star

In ST theories, static, spherically symmetric spacetimes are characterized by

three parameters: the asymptotic field φ0, the Arnowitt-Deser-Misner (ADM) mass

m, and the scalar charge α [147, 279]. These parameters can be extracted from the

asymptotic behavior of the metric and scalar field

lim
|x|→∞

gij =

(
1 +

2Gm

|x|c2

)
δij +O

(
|x|−2

)
, (4.10)

lim
|x|→∞

φ =φ0 +
2Gµ0mα

|x|c2
+O

(
|x|−2

)
, (4.11)

where we have defined

µ0 ≡
1√

3 + 2ω(φ0)
=

√
B log φ0

2
. (4.12)

It was shown in Ref. [147] that the scalar charge of an isolated star can be

written in the PN expansion as

α = µ0

[
1 + A1

(
Gm

Rc2

)
+ A2

(
Gm

Rc2

)2

+ · · ·
]
, (4.13)

where R is the radius of the body, and the coefficients Ai are of order unity. Because

µ0 vanishes in the GR limit, one finds that the right hand side of Eq. (4.13),

truncated at any finite order, must vanish as well. However, as first discovered in Ref.

[153], exactly solving the geometry numerically shows that a sufficiently compact

body can sustain an appreciable scalar charge even when µ0 = 0 (corresponding

to the GR limit φ0 = 1).3 Thus, we would describe this scalarization as non-

perturbative (in the sense defined above). Figure 4.1 depicts the sharp growth in

3Because of the additional prefactor of µ0, the |x|−1 term in Eq. (4.11) vanishes even for
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Figure 4.1: The scalar charge of an isolated non-spinning neutron star
as a function of its compactness in the limit that µ0 approaches zero
(the GR limit). We use the theory parameter B = 9 with a piecewise
polytropic fit to the APR4 equation of state detailed in Ref. [206].

scalar charge in the limit µ0 → 0 as one increases the compactness of a neutron

star. For this figure and all that follow, we use a piecewise polytropic fit [206] to

the APR4 equation of state given in Ref. [280].

The tension between the analytic and numerical results suggests that the PN

expansion must break down beyond some compactness Gm/Rc2 for this class of ST

theories. The scalar charge is non-analytic at this critical compactness, at which

point the isolated body undergoes a phase transition. Analogous to ferromagnetism,

the derivative of the charge diverges when µ0 approaches zero, indicating that this

transition is of second order. Beyond the critical point, the vanishing of µ0 in the GR

limit is compensated by the divergence of the bracketed sum in Eq. (4.13). The only

spontaneously scalarized stars in the GR limit. The dramatic effect of spontaneous scalarization

is more easily seen through ϕ̃ [given in Eq. (4.9)], which can be approximated as ϕ̃ = ϕ̃0 + Gmα
|x|c2 +

O
(
|x|−2

)
, where φ0 = φ(ϕ̃0).
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astrophysical objects that could reach this critical compactness are neutron stars and

black holes. However, no-hair theorems protect isolated black holes from developing

a scalar charge [23]. We focus exclusively on neutron stars for the remainder of this

work.

In anticipation of our discussion of dynamical scalarization, we briefly review

how spontaneous scalarization is incorporated into analytic models of binary pulsars.

A binary system of non-spinning stars is characterized by two length scales: the

characteristic size of the bodies R and their separation r. As in the case of an

isolated body, the individual stars can spontaneously scalarize if they exceed some

critical compactness, at which point the PN expansion no longer accurately predicts

the evolution of the binary. Damour and Esposito-Farèse developed the “post-

Keplerian” (PK) expansion to accommodate such systems [147, 208] (not to be

confused with the “parameterized post-Keplerian” formalism for modeling binary

pulsars in generic alternative theories [281]). In the PK approach, one expands only

in Gm/rc2, leaving quantities dependent on R unexpanded (e.g the scalar charge

α). Equivalently, one can recombine the sum in powers of Gm/Rc2 in the PN

expansion to produce the PK expansion. The relationship between the PN and PK

expansions is summarized in the bottom two panels of Fig. 4.2 (the remaining panels

are discussed in Sec. 4.2.2). Spontaneous scalarization is captured by explicitly

including all of the terms in Eq. (4.13) at each order in the PK expansion.
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Full Theory (Unexpanded)

Post-Dickean (PD)
Small Parameters: Gm/rc2, v/c

Post-Keplerian (PK)
Small Parameters: Gm/rc2, v/c

Post-Newtonian (PN)
Small Parameters: Gm/Rc2, vinternal/c, Gm/rc

2, v/c

Resum Gm/Rc2, vinternal/c

Partially resum Gm/rc2, v/c

Figure 4.2: Analytic approximations of ST theories. Starting from the
PN expansion about the Minkowski metric ηµν and the background field
φ0, one resums all expansions in the compactness Gm/Rc2 and asso-
ciated internal velocity vInternal/c to capture spontaneous scalarization.
Recombining these expansions produces the PK approximation. To cap-
ture dynamical scalarization, one resums the PK expansion in Gm/rc2

and v/c. Fully recombining these expansions reproduces the original
(unexpanded) theory. Instead, one partially resums the PK expansions
to generate the PD approximation.

4.2.2 Dynamical scalarization: neutron-star binaries

Despite its successful application to binary pulsars, the PK approximation

does not predict dynamical scalarization. The asymptotic scalar field for a binary

system has been computed recently to 1.5PK order in Ref. [151].4 For a system

4In the literature, the distinction between the PN and PK expansions is often overlooked; the

PK expansion (i.e., the approximation in which power series in Gm/Rc2 have been resummed) is

often referred to as the “PN expansion,” (for example Refs. [79, 149, 151]). To avoid confusion,

we have taken care to distinguish the two in Sec. 4.2 when discussing spontaneous scalarization.

Because both the PN and PK expansions fail to capture dynamical scalarization, starting from

Sec. 4.3, we continue the popular conflation of these two approximation schemes, referring to the

expansions collectively as “PN.”
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containing neutron stars too diffuse to spontaneously scalarize individually, the PK

prediction of the total scalar charge remains small as the binary coalesces. However,

numerical-relativity calculations indicate that the scalar charge can greatly increase

beyond this estimate as the two neutron stars draw close [169, 171, 172]. We post-

pone a quantitative comparison between these analytic and numerical predictions

until Sec. 4.8 (see Fig. 4.6); we must first formulate a precise measure of the scalar-

ization of a binary system. Akin to spontaneous scalarization, we suspect that the

mismatch between analytic and numerical results stems from a breakdown of the

PK expansion. We posit that DS is a non-perturbative phenomenon, and hence the

PK expansion needs to be suitably modified to capture it.

To support this intuition, we carefully examine how the mass and scalar charge

of a star depend on the nearby scalar field. For an isolated body, these are the

relations m(φ0) and α(φ0) where φ0, m, and α are defined in Eqs. (4.10) and (4.11).

As shown in Appendix A of Ref. [147], the scalar charge is related to the mass by

αA(φ0) =µ0

(
1− 2

d logmA

d log φ0

)
. (4.14)

The dependence of the mass on φ0 can only be found by numerically solving the

Tolman-Oppenheimer-Volkoff (TOV) equations modified for ST gravity with a given

equation of state [153].

The mass and scalar charge of each neutron star in a binary system can be

similarly determined provided that the system is well-separated (R/r � 1). Working

at leading order in R/r, each star can be treated as an isolated body immersed in

the scalar field produced by its partner [147]. At a distance |x| = d ∼
√
Rr from
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each star (“far” from the star relative to R), the metric and scalar field will behave

as in Eqs. (4.10) and (4.11) with φ0 replaced by the background field produced

by the other star. As above, we numerically solve the modified TOV equations to

relate the mass m and scalar charge α to this background scalar field. Because we

work in the limit d/r =
√
R/r → 0, this matching occurs effectively at each star

relative to r, the smallest distance scale relevant to GW generation.5 In this limit,

the TOV equations provide us with the dependence on the mass and charge on the

local scalar field for each body in a binary system, i.e. the functions m(φ) and α(φ)

where φ is evaluated at the star.

To analytically model these relations using the PK approximation, one must

expand m and α about the background field φ0, where now φ0 is the value taken very

far from the binary system at |x| � r. Because the analytic form of the function

m(φ) is unknown, Eardley [242] proposed the agnostic expansion

mA(φ) = m
(0)
A

[
1 + sAΨ +

1

2

(
s2
A − sA + s′A

)
Ψ2 + · · ·

]
, (4.15)

where

m
(0)
A ≡ mA(φ0), (4.16)

sA ≡
(
d logmA

d log φ

)
φ=φ0

, (4.17)

s′A ≡
(
d2 logmA

d(log φ)2

)
φ=φ0

, (4.18)

Ψ ≡ φ− φ0

φ0

∝ Gm

rc2
. (4.19)

5In this work, we ignore all effects that arise from the finite size of the neutron stars. Such

effects could influence the dynamics of a binary system of scalarized stars at 1PK order [282].

188



We plot the magnitude of the coefficients in Eq. (4.15) in Fig. 4.3 across a

range of scalar field values reached during the coalescence of a binary neutron star

system [169, 171]. Using the model of Ref. [170], we estimate that DS occurs when

the field at each body reaches a value of

Ψ ∼ 10−4, (4.20)

depicted as the pink region in the figure.

For neutron stars with realistic, piecewise polytropic equations of states (e.g.

fits to APR4 and H4 defined in Ref. [206]), we find that for Ψ near this maximal

value, ∣∣∣∣Cn+1

Cn

∣∣∣∣ ∼ 103 − 105, (4.21)

for n = 1, 2, where Ci is the coefficient of the i-th PN correction in Eq. (4.15).

Comparing Eqs. (4.20) and (4.21), we see that the rapid growth of the ex-

pansion coefficients in Eq. (4.15) can overpower the “smallness” of our expansion

parameter Ψ. In particular, the relative contribution of each term on the right hand

side of Eq. (4.15) does not diminish as one moves to increasingly higher order.

These symptoms indicate that m(φ) may not be analytic in this regime, and thus,

the PK expansion would break down at this point in the binary’s evolution. Inspired

by the treatment of spontaneous scalarization, we posit that the best way to work

around this restriction is to resum the expansion in Eq. (4.15). The hierarchy of

these expansions is outlined in Fig. 4.2.

Unfortunately, such a prescription is not as straightforward as the case for

spontaneous scalarization. To capture spontaneous scalarization, one simply “un-
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Figure 4.3: Magnitude of the coefficients of the expansion m(φ) =
m(0) (1 + C1Ψ + C2Ψ2 + · · · ) across the typical scalar field values
achieved during the evolution of a compact binary. Values shown here
are for an isolated body with m(φ0) = 1.35M� and APR4 equation of
state with B = 9. Interpolation errors dominate the computation of C3

for small values of log φ0; we omit these regions of the curve.

expands” all expansions in Gm/Rc2 in the PN approximation [i.e. those of the

form as in Eq. (4.13)], leaving only expansions in Gm/rc2 and the corresponding

orbital velocity v/c. Completely resumming these expansions would reproduce the

full ST theory. Instead, we need to choose certain quantities dependent on Gm/rc2

to resum, and leave the rest expanded. Based on the discussion above, we suspect

that the best quantities to keep unexpanded are the mass m(φ) and its derivatives

(including the scalar charge α(φ)). However, a priori, there is no clear indication of

precisely “what to resum.” We need to incorporate the flexibility of this choice into

our model.
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4.3 The post-Dickean expansion

4.3.1 Action and field equations

We refer to our method of resumming the PN expansion as the “post-Dickean”

(PD) approach — named after Robert Dicke, one of several pioneers of ST gravity

[177–179, 283, 284] who made many important contributions to experimental rela-

tivity throughout his career. For notational convenience, we introduce an auxiliary

field ξ that is related to φ in a small neighborhood of each particle’s worldline.6 This

new field is used to demarcate the resummed variables (m and its derivatives). We

explicitly constrain ξ in the matter action via the Lagrange multipliers λA

Sm ≡ c2
∑
A

∫
d4x

∫
dτAδ

(4) (x− γA(τA))× (mA(φ, ξ) + λA(τA) (F (φ)− ξ)) ,

(4.22)

where the arbitrary functions m(φ, ξ) and F (φ) encode our choice of how to resum

the mass and scalar charge, respectively.

6Formally, the matching of ξ and φ is done at the boundary of the body zone, defined at a

distance d ∼
√
Rr from each body. As justified in Appendix A of Ref. [147], in the limit that

d/r → 0, we can represent each body as a point particle; in this limit, the matching of the two

field variables is done exactly on each body’s worldline.
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With this expression, the action in Eq. (4.3) gives rise to the field equations

F (φ(γA(τA))) =ξ(γA(τA)), (4.23)

uσA∇σ (m(φ, ξ)uαA) =− Dm

Dφ
∂αφ (4.24)

Rµν −
1

2
Rgµν =

ω(φ)

φ2

(
∇µφ∇νφ−

1

2
gµνg

αβ∇αφ∇βφ

)
+

1

φ
(∇µ∇νφ− gµν�φ) +

8πG

φc4
Tµν ,

(4.25)

�φ =
1

3 + 2ω(φ)

(
8πG

c4
T − 16πG

c4
φ
DT

Dφ
− dω

dφ
gαβ∇αφ∇βφ

)
, (4.26)

where we have defined

D

Dφ
≡ ∂

∂φ
+
dF

dφ

∂

∂ξ
, (4.27)

T µν ≡ 2c√−g
δSm
δgµν

=c3
√−g

∑
A

∫
dτAmA(φ, ξ)uµAu

ν
Aδ

(4)(x− γA(τA)),

(4.28)

where γA, τA, and uµA =
dγµA
dτA

are the worldline, proper time, and four velocity of

particle A, respectively.

In this work, we focus on only a few, natural choices form and F , given in Table

4.1. Physically, the choice of m(RJ) corresponds to resumming the mass measured

in the Jordan frame, while the choice and m(RE) corresponds to resumming the

Einstein-frame mass

m(E)(φ) =
m(φ)√
φ
. (4.29)

The choices of F (φ) and F (ϕ̃) respectively equate the auxiliary field ξ to φ and ϕ̃,

defined in Eq. (4.9). We refer to the joint selection of m and F as the resumma-

tion scheme. The PD parameterization also encompasses the (non-resummed) PN
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Table 4.1: Resummation schemes discussed in this work. We abbreviate m(φ, ξ)
with m and F (φ) with F .

F (φ) F (ϕ̃)

m(RJ) m = m(ξ) m = m(ξ)

F = φ F =
√

2 log φ/B

m(RE) m = (φ/ξ)1/2m(ξ) m = φ1/2e−Bξ
2/4m(ξ)

F = φ F =
√

2 log φ/B

m(PN) m = m(φ)

expansion; this limit is reached with the choice of m(PN) given in the table (recall

that here “PN” is used to refer collectively to the post-Newtonian and -Keplerian

approximations).

4.3.2 Relaxed field equations

To solve Eqs. (4.25) and (4.26), we employ a technique known as direction

integration of the relaxed Einstein equations, originally developed in GR in Refs.

[285–289] and then extended to ST gravity in Refs. [149–151]. The remainder of

this section closely follows the framework presented in Sec. II.B of Ref. [149]. We

define

gµν ≡√−ggµν , (4.30)

Hµανβ ≡gµνgαβ − gανgµβ. (4.31)

As in general relativity, the following identity holds:

Hµανβ
,αβ =(−g)(2Rµν −Rgµν +

16πG

c4
tµνLL), (4.32)
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where tµνLL is the Landau-Lifshitz pseudotensor.

We assume that far from any sources, the metric reduces to the Minkowski

metric ηµν and that the scalar field approaches a constant value φ0. Let ϕ ≡ φ/φ0

be the normalized scalar field. We introduce the conformally transformed metric

g̃µν ≡ ϕgµν , (4.33)

the gravitational field

h̃µν ≡ ηµν −
√
−g̃g̃µν , (4.34)

and the “conformal gothic metric”

g̃µν ≡
√
−g̃g̃µν . (4.35)

We impose the Lorentz gauge condition

∂ν h̃
µν =0. (4.36)

Substituting Eqs. (4.30)–(4.34) into the gauge condition (4.36), the field equa-

tion (4.25) is rewritten as

�ηh̃
µν =− 16πG

c2
τµν , (4.37)

where �η is the Minkowski space d’Alembertian and

τµν ≡(−g)
ϕ

φ0c2
T µν +

c2

16πG
(Λµν + Λµν

S ) , (4.38)

Λµν ≡16πG

c4
[(−g)tµνLL] (g̃µν) + ∂βh̃

µα∂αh̃
νβ − h̃αβ∂α∂βh̃µν , (4.39)

Λµν
S ≡

3 + 2ω

ϕ2
∂αϕ∂βϕ

(
g̃µαg̃νβ − 1

2
g̃µν g̃αβ

)
, (4.40)
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where the notation [(−g)tµνLL](g̃µν) indicates that the Landau-Lifshitz pseudotensor

should be calculated using g̃ rather than the physical metric g. Similarly, the scalar

field equation (4.26) can be recast into the form

�ηϕ =− 8πG

c2
τs, (4.41)

with

τs ≡−
1

3 + 2ω

√−g ϕ

φ0c2

(
T − 2φ

DT

Dφ

)
− c2

8πG
h̃αβ∂α∂βϕ

+
c2

16πG

d

dϕ

[
log

(
3 + 2ω

ϕ2

)]
∂αϕ∂βϕg̃

αβ.

(4.42)

The differential equations (4.37) and (4.41) can be solved formally using the standard

flat-space Green’s function; we only consider retarded solutions, i.e. those with no

incoming radiation

h̃µν(t,x) =
4G

c2

∫
d3x′

τµν(t− |x− x′|,x′)
|x− x′| , (4.43)

ϕ(t,x) =1 +
2G

c2

∫
d3x′

τs(t− |x− x′|,x′)
|x− x′| , (4.44)

where the integration constant is explicitly added to enforce the asymptotic bound-

ary condition on the scalar field. By construction, the constraint equation Eq. (4.23)

acts as an additional boundary condition on the scalar field along the worldline of

each body; this constraint distinguishes our work from the PN solutions found in

Refs. [149–151].

We approximate the formal solutions given in Eqs. (4.43) and (4.44) with an

expansion in terms of ε ∼ (v/c)2 ∼ Gm/rc2. However, to capture the strong-field

effects behind dynamical scalarization, we expand only the metric gµν and scalar

field φ, leaving ξ unexpanded. Note that ξ appears only in the function mA(φ, ξ) in
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Eqs. (4.37) and (4.41). Thus, by not expanding ξ, we effectively resum the variable

mass found in the PN treatment. This treatment also resums the scalar charge,

which is governed by the derivative of m [see Eq. (4.14) or (4.76)]. The constraint

equation Eq. (4.23) is used to solve ξ exactly on each worldline at a given order in

ε.

4.4 Structure of the near-zone fields

The resummation detailed above only enters through the sources, i.e. the

stress-energy tensor T µν and its derivatives. As such, we adopt the same techniques

used for the PN calculation of the metric and scalar field in Refs. [149–151]. We

summarize this approach below, leaving our results in terms of T µν and its deriva-

tives. For more detail, see Secs. III and IV of Ref. [149].

The integration in Eqs. (4.43) and (4.44) is done over the flat space past null

cone C emanating from the point (t,x). We divide this three-dimensional hypersur-

face into two regions. For matter sources of characteristic size S, we define the near

zone as the worldtube with |x| < R where R ∼ S/v is the characteristic wavelength

of the emitted gravitational radiation. The radiation zone is the region outside of

the near zone, that is, |x| > R. We demarcate the intersection of C with the near

zone as N and the intersection of C with the radiation zone as C − N .

We focus first on finding the metric and scalar field in the near zone, as these

determine the equations of motion of the binary system through Eq. (4.24). Fol-
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lowing Refs. [149, 288], we establish the following notation

N ≡ h̃00, Ki ≡ h̃0i,

Bij ≡ h̃ij, B ≡ h̃ii.

(4.45)

To post-Newtonian order, we express the metric in terms of these fields using Eqs.

(4.33) and (4.34)

g00 =− 1 +

(
1

2
N + Ψ

)
+

(
1

2
B − 3

8
N2 − 1

2
NΨ−Ψ2

)
+O

(
1

c6

)
, (4.46)

g0i =−Ki +O
(

1

c5

)
, (4.47)

gij =δij

[
1 +

(
1

2
N −Ψ

)]
+O

(
1

c4

)
, (4.48)

where Ψ was defined in Eq. (4.19).

At the point (t,x) in the near zone, the near-zone contribution to the integrals

in Eqs. (4.43) and (4.44) can be expanded in powers of |x− x′|

NN (t,x) =
4G

c2

∫
M

τ 00(t,x′)

|x− x′| d
3x′ +

2G

c4
∂2
t

∫
M
τ 00(t,x′)|x− x′|d3x′ +N∂M +O

(
1

c6

)
,

(4.49)

Ki
N (t,x) =

4G

c2

∫
M

τ 0i(t,x′)

|x− x′| d
3x′ +Ki

∂M +O
(

1

c5

)
, (4.50)

Bij
N (t,x) =

4G

c2

∫
M

τ ij(t,x′)

|x− x′| d
3x′ +Bij

∂M +O
(

1

c4

)
, (4.51)

ΨN (t,x) =
2G

c2

∫
M

τs(t,x
′)

|x− x′|d
3x′ − 2G

c3
∂t

∫
M
τs(t,x

′)d3x′

+
G

c4
∂2
t

∫
M
τs(t,x

′)|x− x′|d3x′ +O
(

1

c6

)
,

(4.52)

where M is a constant-time hypersurface which covers the near zone and we have

used Eq. (4.36) to eliminate the first order correction in Eq. (4.49). There will
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also be a contribution to the fields at (t,x) from the radiation zone, but these only

enter at higher order [149]. The boundary terms N∂M, K
i
∂M, B

ij
∂M depend on the

value of R. Because the left hand side of Eqs. (4.49)–(4.52) should not depend on

the arbitrarily chosen boundary between the near and radiation zones, we argue (as

in Ref. [149]) that these terms are exactly cancelled by the contributions from the

radiation zone. This cancellation was shown explicitly in GR in Refs. [287, 288].

All that remains is to expand the sources τµν and τs. We first define the

densities

σ ≡ (T 00 + T ii)c−2, (4.53)

σi ≡ T 0ic−2, (4.54)

σij ≡ T ijc−2, (4.55)

σs ≡ −
T

c2
+

2φ

c2

DT

Dφ
. (4.56)

We expand Eqs. (4.38) and (4.42) to post-Newtonian order

τ 00 =
1

φ0

[
σ − σii +

G

φ0c2

(
4σU − 7

8π
(∇U)2

)
− Gµ0

2

φ0c2

(
6σUs −

1

8π
(∇Us)2

)]
,

(4.57)

τ 0i =
σi

φ0

, (4.58)

τ ii =
1

φ0

[
σii − 1

8π

G

φ0c2
(∇U)2 − 1

8π

Gµ0
2

φ0c2
(∇Us)2

]
(4.59)

τs =
µ0

2

φ0

[
σs + 2

G

φ0c2
σsU +

G(B − 2µ0
2)

φ0c2
σsUs −

1

8π

G(B + 4µ0
2)

φ0c2
(∇Us)2

]
, (4.60)
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where we have introduced the potentials

U ≡
∫
M

σ(t,x′)

|x− x′|d
3x′, (4.61)

Us ≡
∫
M

σs(t,x
′)

|x− x′| d
3x′. (4.62)

Plugging these expressions back into Eqs. (4.46)–(4.52), the 1PD metric and scalar

field are given by

g00 =− 1 +
2G

φ0c2
U +

2Gµ0

φ0c2
Us −

2G

c3
Ṁs −

2G2

φ2
0c

4
U2 +

G2µ0(B − 4µ0)

2φ2
0c

4
U2
s −

G2µ0

φ2
0c

4
UUs

+
4G2µ0

φ2
0c

4
Φs

2 −
12G2µ0

φ2
0c

4
Φ2s +

G2µ0(B − 8µ0)

φ2
0c

4
Φs

2s +
G

φ0c4
Ẍ +

Gµ0

φ0c4
Ẍs +O

(
1

c6

)
,

(4.63)

g0i =− 4G

φ0c2
V i +O

(
1

c5

)
, (4.64)

gij =δij

[
1 +

2G

φ0c2
U − 2Gµ0

φ0c2
Us

]
+O

(
1

c4

)
, (4.65)

φ =φ0 +
2Gµ0Us
c2

− 2G

c3
Ṁs

+
Gµ0

c2

[
G(B + 4µ0)

2φ0c2
U2
s + 4

G

φ0c2
Φs

2 +
G(B − 8µ0)

φ0c2
Φs

2s + Ẍs

]
+O

(
1

c6

)
,

(4.66)
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with the additional potentials

Ms ≡
∫
σs(t,x

′)d3x′, (4.67)

V i ≡
∫
σi(t,x′)

|x− x′|d
3x′, (4.68)

Φs
2 ≡

∫
σs(t,x

′)U(t,x′)

|x− x′| d3x′, (4.69)

Φ2s ≡
∫
σ(t,x′)Us(t,x

′)

|x− x′| d3x′, (4.70)

Φs
2s ≡

∫
σs(t,x

′)Us(t,x
′)

|x− x′| d3x′, (4.71)

X ≡
∫
σ(t,x′)|x− x′|d3x′, (4.72)

Xs ≡
∫
σs(t,x

′)|x− x′|d3x′, (4.73)

4.5 Two-body Equations of motion

4.5.1 Newtonian order

We now apply these calculations to a binary system whose stress-energy ten-

sor is given by Eq. (4.28). To highlight the novel aspects of the PD approach, we

explicitly work out the leading-order equations of motion here before calculating

their higher-order corrections in the following section. In keeping with PN conven-

tions, we describe the leading order as Newtonian and the next-to-leading order as

post-Dickean or “1PD.”

At Newtonian order, the densities defined in Eqs. (4.53) and (4.54) are given
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by

σ =
∑
A

mA(φ, ξ)δ(3)(x− xA) +O
(

1

c2

)
, (4.74)

σs =
∑
A

mA(φ, ξ)
αA(φ, ξ)

µ0

δ(3)(x− xA) +O
(

1

c2

)
. (4.75)

where we have introduced the scalar charge of each body

αA(φ, ξ) ≡
(
B log φ

2

)1/2(
1− 2φ

D logmA

Dφ

)
. (4.76)

Our definition of the scalar charge is the natural generalization of the expression

used in Ref. [147]; with no resummation, i.e. m(φ, ξ) = m(φ), one recovers the

definition

αA = −d logm
(E)
A

dϕ̃
, (4.77)

where ϕ̃ is defined in Eq. (4.9).

Evaluating Eq. (4.66) at Newtonian order, the scalar field for a 2-body system

is given by

φ =φ0 + 2
Gµ0

2Us
c2

,

=φ0 +
2Gm1µ0α1

c2r1

+O
(

1

c3

)
+ (1
 2) ,

(4.78)

where we have adopted the shorthand

mA ≡mA(φ(xA), ξ(xA)), αA ≡ αA(φ(xA), ξ(xA)),

rA ≡ |x− xA|, nA ≡ (x− xA)/rA.

(4.79)

Because mA and αA depend on φ, these quantities must be expanded around the

background field φ0. We suppress these expansions (given in Appendix E) through-

out the remainder of this work for notational convenience, denoting with the short-
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hand in Eq. (4.79) that the mass and charge should be expanded and truncated at

the appropriate PD order.

On each worldline, we exactly solve (i.e. not perturbatively) Eq. (4.23), ig-

noring the divergent terms that arise from self-interactions of each body

ξ(x1) =


φ0 + 2Gm2µ0α2

c2r
, if F (φ) = φ

ϕ̃0 + Gm2α2

c2r
, if F (φ) =

√
2 log φ
B

(4.80)

ξ(x2) = (1� 2) , (4.81)

where r ≡ |x1 − x2| is the orbital separation of the binary and

ϕ̃0 ≡
2µ0

B
=

√
2 log φ0

B
. (4.82)

Note that this system of equations cannot be solved analytically, as mA and αA

depend on ξ along each worldline. This final step is analogous to the feedback

model proposed in Ref. [170]; with the choice of F (ϕ̃) given in Table 4.1, we exactly

reproduce this model.

Plugging in the expressions for the metric and scalar field into Eq. (4.24), we

find the Newtonian equations of motion

ai1 =− Gm2 (1 + α1α2)

φ0r2
ni, (4.83)

ai2 = (1
 2) , (4.84)

where n ≡ (x1 − x2)/r. The mass mA and scalar charge αA depend on the choice

of resummation scheme; their leading order piece is given in Appendix E.
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4.5.2 Post-Dickean order

To find the equations of motion of the binary to next order in c−2, we expand

the stress-energy tensor and evaluate the potentials introduced in Sec. 4.4 (see

Appendix F).

On each worldline, we plug the above potentials into Eq. (4.66) and numeri-

cally solve Eq. (4.23)

ξ(x1) =



φ0 +
2Gµ0m2α2

φ0rc2
+
Gm2α2

φ0rc4

[
−µ0(v2 · n)2

+α2

(
B

2
+ 2µ0

2

)
Gm2

φ0r

−
(
2µ0

2α1 + µ0 (3 + α1α2)
) Gm1

φ0r

]
,

if F (φ) = φ

ϕ̃0 +
Gm2α2

φ0rc2
+
Gm2α2

φ0rc4

[
−1

2
(v2 · n)2

−
(

3

2
+ µ0α1 +

1

2
α1α2

)
Gm1

φ0r

]
,

if F (φ) =
√

2 log φ
B

(4.85)

ξ(x2) = (1
 2) . (4.86)

Substituting Eqs. (4.63)-(4.66) into Eq. (4.24), we find the following equation

of motions for each particle

ai(1) =− Gm2 (1 + α1α2)

φ0r2
ni +

Gm2

φ0r2c2
ni
[
− (1− α1α2) v2

1 − 2(v2
2 − 2v1 · v2)

+
3

2
(1 + α1α2) (v2 · n)2 + (5 + µ0α1) (1 + α1α2)

Gm1

φ0r

+4 (1 + α1α2)
Gm2

φ0r

]
+

Gm2

φ0r2c2
(v1 − v2)i [4 (v1 · n)− (3− α1α2) (v2 · n)] ,

(4.87)

ai(2) = (1
 2) , (4.88)
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where m and α themselves receive post-Dickean corrections dependent on the re-

summation scheme used (see Appendix E).

For reference later, the 1PN equations of motion (with no resummation of the

mass) are recovered with the choice m(PN)

ai1 (PN) =− Gm̄2 (1 + ᾱ1ᾱ2)

φ0r2
ni +

Gm̄2

φ0r2c2
ni
[
− (1− ᾱ1ᾱ2) v2

1 − 2
(
v2

2 − 2v1 · v2

)
+

3

2
(1 + ᾱ1ᾱ2) (v2 · n)2 +

(
4 + 4ᾱ1ᾱ2 − ᾱ′1ᾱ2

2

) Gm̄2

φ0r

+
(
(5 + ᾱ1ᾱ2) (1 + ᾱ1ᾱ2)− ᾱ′2ᾱ2

1

) Gm̄1

φ0r

]
+

Gm̄2

φ0r2c2
(v1 − v2)i [4 (v1 · n)− (3− ᾱ1ᾱ2) (v2 · n)] ,

(4.89)

ai2 (PN) = (1
 2) , (4.90)

where we have introduced the shorthand

m̄i ≡ mi(φ0), (4.91)

ᾱi ≡ µ0

(
1− 2

d logmi

d log φ

)
φ=φ0

, (4.92)

ᾱ′i ≡
Bᾱi
2µ0

− 4µ2
0

(
d2 logmi

d(log φ)2

)
φ=φ0

. (4.93)

The apparent differences between Eqs. (4.87)–(4.88) and Eqs. (4.89)–(4.90)

are simply artifacts of the different notations. The disparities stem from the presence

in Eq. (4.89) of higher-order terms from expansions like Eq. (4.15). These terms are

absorbed into the definitions of mA and αA in the PD expansion [see Eq. (4.79)]. We

emphasize the differences between these two notations because the analytic model

proposed in Ref. [170] directly adapted the equations of motion written as in Eqs.
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(4.89) and (4.90). Beyond post-Newtonian order, we expect a greater proportion of

the corresponding terms in each notation to differ.

For a generic resummation scheme, the 1PD Eqs. (4.87) and (4.88) are not

solutions to the Euler-Lagrange equations for any Fokker Lagrangian (a Lagrangian

dependent solely on the the positions and velocities of the two bodies). A simple

calculation reveals that the equations of motion can be integrated back to such a

Lagrangian only when no resummation is performed, i.e. when m(PN) is used.7 The

absence of a PD Fokker Lagrangian suggests that our model of DS requires the

two-body phase space to be augmented with additional degrees of freedom besides

the bodies’ positions and velocities, such as the scalar field ξ. We conjecture that

any other extension to the PN formalism to incorporate DS will also require new,

dynamical degrees of freedom.

4.6 Structure of the far-zone fields

Having solved the dynamics of the binary, we now shift our attention to ob-

servables that can be extracted from the asymptotic geometry of the system. Our

interest in this type of quantity is twofold. First, such objects encode all information

needed to estimate GW signals (e.g. the waveform and its phase evolution estimated

from the Bondi mass and flux). Second, there are several gauge-invariant quantities

defined asymptotically that are easily computed in numerical relativity (e.g. the

ADM mass and angular momentum) and thus can be used to directly check the

7This result contradicts the assertion of Ref. [170] that such a Lagrangian can be constructed

by resumming (or not expanding) the scalar charge α in the PK Lagrangian of Ref. [208].
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validity of our model. For simplicity, in this work we restrict our attention to the

scalar mass, a coordinate independent measure of a spacetime’s scalarization. We

define the scalar mass at retarded time τ as

MS(τ) ≡− c2

8πG

∮
|x|→∞
t−|x|=τ

δij∂iφ dSj, (4.94)

=− φ0c
2

8πG

∮
|x|→∞
t−|x|=τ

δij∂iΨ dSj, (4.95)

where Sj is the surface-area element in flat space. We leave the other useful quan-

tities described above for future work.

Calculating the scalar mass requires knowledge of the scalar field at a distance

|x| = R� R (recall that R is the boundary of the near zone). As in the near zone,

we will recycle the tools used to determine the scalar field in the radiation zone from

previous PN calculations. We summarize this calculation for a generic stress-energy

tensor below; for more detail, see Refs. [150, 151]

At the order at which we work, the scalar field at null infinity receives contri-

butions from both the near and radiation zones, which we denote as ΨN and ΨC−N ,

respectively. We compute each piece separately, dropping any terms dependent on

R, which we assume will cancel when the pieces are combined (as was done in Sec.

4.4).

4.6.1 Near-zone contribution to the scalar field

The contribution to the scalar field at the point (t,x) in the radiation zone

from points (t′,x′) in the near zone is found by expanding the integral expression
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given in Eq. (4.44) in powers of |x′|/R

ΨN =
∞∑
m=0

2G

c2+m

1

m!

∂m

∂tm

∫
M′

τs(τ,x
′)

(N̂ · x′)
R

d3x′, (4.96)

=
2G

c2

∞∑
m=0

(−1)m

m!
∂k1 · · · ∂km

(
1

R
Ik1···kms (τ)

)
, (4.97)

where N̂ ≡ x/R, M′ is the intersection of the near zone with a hypersurface of

constant retarded time τ = t − R, and we have introduced the scalar multipole

moments

Ik1···kms (τ) ≡
∫
M′

τs(τ,x)xk1 · · ·xkmd3x. (4.98)

We note that the terms that fall off faster that R−1 in Eq. (4.97) will not contribute

to the scalar mass; dropping these terms, the remaining piece of the scalar field is

given by

ΨN =
∞∑
m=0

2G

Rc2+m

1

m!
N̂k1 · · · N̂km

dm

dtm
Ik1···kms (τ), (4.99)

We also note that only terms with even parity (with respect to inversions of x) will

contribute to the scalar mass. These are the terms in Eq. (4.99) with even m.

The source τs in the near zone is needed at higher order than what was given
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in Eq. (4.60) to calculate the 1PD scalar mass

τs =
µ0

2

φ0

[
σs + 2

G

φ0c2
σsU +

G(B − 2µ0
2)

φ0c2
σsUs −

1

8π

G(B + 4µ0
2)

φ0c2
(∇Us)2

]
+
Gµ2

0(1 + µ2
0)

φ2
0c

4
σs

{
G

φ0

[
2U2 − (2B − 4µ2

0)(UUs + Φs
2)− 12µ2

0Φ2s

]
− (4Φ1 − Ẍ)

+
G(B2 − 10Bµ2

0 + 8µ2
0)

4φ0

U2
s +

G(B − 8µ2
0)(B − 2µ2

0)

2φ0

Φs
2s +

B − 2µ2
0

2
Ẍs

}
− Gµ2

0

8πφ2
0c

4

{
8UÜs + 16V j∂jU̇s + 8Φij

1 ∂i∂jUs − (B + 4µ2
0)(U̇2

s −∇Us ·∇Ẍs)

+
Gµ2

0(6B + 8µ2
0)

φ0

Us (∇Us)2 +
G(B − 8µ2

0)(B + 4µ2
0)

φ0

∇Us ·∇Φs
2s

−G
φ0

[
−4(B + 4µ2

0)∇Us ·∇Φs
2 − 8P ij

2 ∂i∂jUs − 8µ2
0P

ij
2s∂i∂jUs

]}
,

(4.100)

where, in addition to the potentials introduced in Sec. 4.4, we define

Φ1 ≡
∫
σii(t,x′)

|x− x′| d
3x′, (4.101)

Φij
1 ≡

∫
σij(t,x′)

|x− x′| d
3x′, (4.102)

P ij
2 ≡

1

4π

∫
∂iU(t,x′)∂jU(t,x′)

|x− x′| d3x′, (4.103)

P ij
2s ≡

1

4π

∫
∂iUs(t, x

′)∂jUs(t, x
′)

|x− x′| d3x′. (4.104)

4.6.2 Radiation-zone contribution to the scalar field

We rewrite the integral in Eq. (4.44) in a more useful way when working far

from the system

Ψ =
2G

c2

∫
τs(R

′ + τ ′,x′)δ(t′ − t+ |x− x′| −R′)
|x− x′| d4x′, (4.105)
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where R′ = |x′| and τ ′ = t′−R′. Thus, the contribution to the scalar field from the

radiation zone (i.e. R′ > R) is given by

ΨC−N =
2G

c2

∫ τ

τ−2R
dτ ′
∫ 2π

0

dφ

∫ 1

1−υ

τs(τ
′ +R′,x′)

t− τ ′ − N̂′ · x
(R′)2d(cos θ′)

+
2G

c2

∫ τ−2R

−∞

∮
τs(τ

′ +R′,x′)

t− τ ′ − N̂′ · x
(R′)2d2Ω′

(4.106)

where υ = (τ − τ ′)(2R− 2R+ τ − τ ′)/(2RR) and N̂′ = x′/R′. The source τs takes

a different form in the radiation zone than in Eq. (4.100). To the order at which we

work, the source in the radiation zone is given by

τs =− B + 4µ2
0

32πGµ2
0

[
c2(∇Ψ)2 − Ψ̇2

]
− 1

8πG
NΨ̈. (4.107)

The stress-energy tensor does not appear in this expression (under the guise of σ

or σs) because the radiation zone does not contain any matter. In computing the

source τs, we can ignore the radiation-zone contribution to the scalar field, as the

corresponding contributions to the source will enter at beyond the order that we

work. Thus, we use the scalar field as given in Eq. (4.97); the metric field N can

be expanded in a similar way. At this order, only the monopole and dipole pieces

of these fields appear in τs.

N =
4G

c2

I
R

+ · · · , (4.108)

Ψ =
2G

c2

Is
R
− 2G

c2
∂i

(I is
R

)
+ · · · , (4.109)

where the mass monopole moment I is defined as in Eq. (4.98) with τ 00. Plugging

these expressions into Eq. (4.107), we find

τs =− G(B + 4µ2
0)

2πµ2
0c

2

(
Isİs
R3c

+
(Is)2

R4

)
− G

πc4

IÏs
R2
− G

πc4

(
I ...
I js
R2c

+
IÏjs
R3

)
N̂ j

− G(B + 4µ2
0)

πc2

(
IsÏjs
R3c2

+
2Isİjs
R4c

+
2IsIjs
R5

+
İsİjs
R3c2

+
İsIjs
R4c

)
N̂ j.

(4.110)
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where we’ve used the fact that the moments are functions of retarded time, so that

∂jIjs = −İjsN̂ j/c. The first line of Eq. (4.110) contains the lowest order terms,

which enter at c−3 order relative to the leading contribution to ΨN from the near

zone, while the second line contains terms that are suppressed by one additional

factor of c.

We note that all of the terms in τs in the radiation zone take the form

τs(l, n) =
1

4π

f(τ)

Rn
N̂k1 · · · N̂kl . (4.111)

With this information, each corresponding term in Eq. (4.106) can be rewritten as

ΨC−N (l, n) =
2G

Rc2
N̂k1 · · · N̂kl

[∫ R
0

f(τ − 2s)A(s, R)ds+

∫ ∞
R

f(τ − 2s)B(s, R)ds

]
,

(4.112)

with

A(s, R) ≡
∫ R+s

R

Pl(Λ)

pn−1
dp, (4.113)

B(s, R) ≡
∫ R+s

s

Pl(Λ)

pn−1
dp, (4.114)

Λ ≡R + 2s

R
− 2s(R + s)

Rp
, (4.115)

and where Pl(Λ) are Legendre polynomials.

Given Eq. (4.110), we see that l = 0, 1 and n = 2 − 5 integrals contribute

to the scalar field at this order. However, by inspection, the l = 1 terms have odd

parity, and thus will not contribute to the scalar mass. The l = 0 contributions [in

210



the notation of Eq. (4.112)] are given by

ΨC−N (0, 2) =− 4G2

Rc6

∫ τ

−∞
du
(

log
(
R +

τ

2
− u

2

) [
IÏs
]
u

− log
(
R+

τ

2
− u

2

) [
IÏs
]
u−2R

)
− logR

∫ τ

τ−2R
du
[
IÏs
]
u
,

(4.116)

ΨC−N (0, 3) =
2G2

Rc5

B + 4µ2
0

µ2
0

(I2
s (τ)

2R
− I

2
s (τ)

2R

−
∫ τ

−∞
du

(
[I2
s ]u

(2R + τ − u)2
− [I2

s ]u−2R

(2R+ τ − u)2

))
,

(4.117)

ΨC−N (0, 4) =
4G2

Rc4

B + 4µ2
0

µ2
0

(∫ τ

−∞
du

(
[I2
s ]u

(2R + τ − u)2
− [I2

s ]u−2R

(2R+ τ − u)2

)
− 1

(2R)2

∫ τ

τ−2R
du
[
I2
s

]
u

)
,

(4.118)

where we have used the shorthand [fg]x = f(x)g(x). Nearly all of these terms are

hereditary, i.e. depend on the full history of the system up to the retarded time τ .

The one exception is the first term in Eq. (4.117), but this term falls off too quickly

with R to contribute to the scalar mass.

4.7 Two-body Scalar mass

Having expressed the scalar field in the radiation zone entirely in terms of

the (even) scalar multipole moments, we now specialize to an inspiraling binary

system. Plugging the potentials for a two-body system (Appendix F) into Eq.

(4.100), we integrate to find the scalar moments. Integrals containing σs can be

evaluated directly as they contain delta functions at the worldlines of the bodies.

The remaining terms are integrated by parts, using techniques analogous to those

outlined in Sec. III of Ref. [150]. The multipoles needed to compute the scalar mass
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at 1PD order are given by

Is =
µ0m1α1

φ0

{
1− v2

1

2c2
− Gm2

φ0rc2
(1 + µ0α2)− v4

1

8c4
+
Gm2

φ0rc2

[
−3

2

(v2 · n)2

c2

+

(
2µ0(1− α2µ0)−Bα2

4µ0

)
v2

1

c2
+

(
Bα2 − 8µ0 + 6α2µ

2
0

4µ0

)
(v1 · n)2

c2

+

(
α2(B + 4µ2

0)

4µ0

)
(v1 · v2)

c2
−
(
Bα2 − 16µ0 + 4α2µ

2
0

4µ0

)
(v1 · n) (v2 · n)

c2

]
+
G2m1m2

φ2
0r

2c4

[
−1

2
+ µ0α1 −

(B − 6µ2
0)α2

4µ0

− (B + 6− 6µ2
0)α1α2

4

−(B + 2µ2
0)α1α

2
2

4µ0

]
+

G2m2
2

2φ2
0r

2c4
− Gm2

φ0c4

[
Bα2 − 4µ0(1− α2µ0)

2µ0

]
(a1 · n)

}
+ (1
 2) ,

(4.119)

I ijs =
µ0m1α1x

i
1x

j
1

φ0

[
1− v2

1

2c2
− Gm2

φ0rc2
(1 + µ0α2)

]
+
Gm1m2α1α2(B + 4µ2

0)r

4φ2
0µ0c2

δij

+ (1
 2) ,

(4.120)

I ijkls =
µ0m1α1x

i
1x

j
1x

k
1x

l
1

φ0

+ (1
 2) . (4.121)

We evaluate Eq. (4.99) with these moments to compute the near zone contribution

to the scalar field. Before proceeding, we briefly detail how time derivatives of the

masses mi and scalar charges αi are handled. Recall that the dependence of each

body’s mass (and scalar charge) on the local scalar field is decomposed into a re-

summed and expanded piece, represented by its dependence on ξ and φ, respectively.

Thus, the derivative of the mass would be given by

dmA

dt
=
∂mA

∂φ
vµA∂µφ+

∂mA

∂ξ
vµA∂µξ, (4.122)
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where vµA = uµA/u
0
A. To reinforce that the fields φ and ξ really represent the same

physical scalar, we relate the two through Eq. (4.23). Thus (assuming differentia-

bility), their gradients along each worldline are related as

uµA∂µξ =
dF

dφ
uµA∂µφ. (4.123)

In truth, because we expand only φ and not ξ, Eqs. (4.23) and (4.123) only hold in

an approximate sense [e.g. up to 1PD order when using Eq. (4.85)]. Nevertheless,

one finds that

dmA

dt
=
DmA

Dφ
vµ∂µφ+O

(
1

c4

)
. (4.124)

Because the time dependence of the mass enters only through the scalar field (whose

leading order term is constant), its derivative is suppressed by an additional factor

of c−2 more than dimensional analysis would suggest, i.e. ṁ/m ∼ c−2. This sup-

pression greatly simplifies our calculation of the scalar field.

Equipped with the scalar moments and a prescription for differentiating with

respect to time, we calculate the near-zone contribution to the scalar field of a binary

system

ΨN =Ψ
(−1)
N + Ψ

(0)
N + Ψ

(1)
N , (4.125)

with

Ψ
(−1)
N =

2Gµ0m1α1

φ0Rc2
+ (1
 2) (4.126)

Ψ
(0)
N =

2Gµ0m1α1

φ0Rc2

{
− v2

1

2c2
+

(N̂ · v1)2

c2
− Gm2

φ0rc2
(1 + µ0α2

+(1 + α1α2)
(N̂ · x1)2 − (N̂ · x1)(N̂ · x2)

r2

)}
+ (1
 2)

(4.127)
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Ψ
(1)
N =

2Gµ0m1α1

φ0Rc2

{
− v4

1

8c4
+
Gm2

φ0rc2

[(
1 + µ0α2

2

)
v2

1

c2
−
(

4− µ0α2

2

)
(v1 · n)2

c2

−3(v2 · n)2

2c2
+

4(v1 · n)(v2 · n)

c2

]
− G2m1m2

φ0r2c4

[
1

2
− µ0α1 −

5µ0α2

2

+
(6 +B − 6µ2

0)α1α2

4
+ 2α2

2 −
µ0α1α

2
2

2

]
− 3G2m2

2

2φ2
0r

2c4

−
(
v2

1

2c2
+
Gm2(1 + µ0α2)

φ0rc2

)
(v1 · N̂)2

c2

+
Gm2

φ0rc2
(−4(v1 · n) + (3− α1α2)(v2 · n))

(x1 · N̂)(v2 · N̂)

rc

+
Gm2

φ0rc2

[(
8−

(
2µ0 +

B

µ0

+ 4µ0φ0
D(logm1α1)

Dφ

)
α2 + 2α1α2

)
(v1 · n)

c

−
(

5−
(

2µ0 +
B

µ0

+ 4µ0φ0
D(logm1α1)

Dφ

)
α2 − α1α2

)
(v2 · n)

c

]
(x1 · N̂)(v1 · N̂)

rc

+
Gm2

φ0rc2

[
4µ2

0(v1 · n)

c
− 4µ2

0(v2 · n)

c

]
(x2 · N̂)(v2 · N̂)

rc
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Gm2

φ0rc2
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−(1− 3α1α2)v2

1

2c2
− 2v2

2

c2
+
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c2
+

3(1 + α1α2)(v2 · n)2

2c2
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Gm1(1 + α1α2)(5 + µ0α1)

φ0rc2
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φ0rc2
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(x1 · N̂)(n · N̂)

r

+
Gm2
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[
1

2

(
2−

(
µ0 +

B

2µ0

+ 2φ0µ0
D(logm1α1)

Dφ

)
α2 + α1α2

)
v2

1

c2

+
1

2

(
1−

(
µ0 +

B

2µ0

+ 2φ0µ0
D(logm1α1)

Dφ

)
α2

)
v2

2

c2

−1

2

(
3−

(
2µ0 +

B

µ0

+ 4φ0µ0
D(logm1α1)

Dφ

)
α2 + α1α2

)
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c2
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(
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(
µ0 +

B

2µ0

+ 2φ0µ0
D(logm1α1)

Dφ
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µ0 +

B

2µ0

+ 2φ0µ0
D(logm1α1)

Dφ
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(v2 · n)2

c2

+
3

2
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3−
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B
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+ 4φ0µ0
D(logm1α1)

Dφ

)
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−1
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(
2 + 3α1α2 + 2µ2

0α
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−
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2µ0

+ 2φ0µ0
D(logm1α1)
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)
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)
Gm2

φ0rc2

214



−1

2

(
1 + α1α2 + 2µ2

0α
2
2

−
(
µ0 +

B

2µ0

+ 2φ0µ0
D(logm1α1)

Dφ

)
(1 + α1α2)α2

)
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− 3µ2

0(v2 · n)2

c2

+
6µ2
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0m1
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(x2 · N̂)2

r2
+

(v1 · N̂)4
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−2Gm2(1 + α1α2)

φ0rc2

(x1 · N̂)2(v1 · N̂)2

r2c2
− 6Gm2(1 + α1α2)
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(x1 · N̂)(v1 · N̂)2(n · N̂)

rc2
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2Gm2(1 + α1α2)

φ0rc2
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6Gm2(1 + α1α2)

φ0rc2
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(v1 · n)
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− (v2 · n)

c

]
(x1 · N̂)2(v1 · N̂)(n · N̂)

r2c
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Gm2(1 + α1α2)

φ0rc2
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(v1 · n)

c
− (v2 · n)

c

]
(x1 · N̂)3(v1 · N̂)

r3c

−Gm2(1 + α1α2)

φ0rc2

[
(v1 · n)

c
− (v2 · n)

c

]
(x1 · N̂)3(v2 · N̂)

r3c

+
3G2m2

2(1 + α1α2)2

2φ2
0r

2c4

(x1 · N̂)2(n · N̂)2

r2

+
Gm2(1 + α1α2)

φ0rc2

[
v2

1

2c2
+

v2
2

2c2
− (v1 · v2)

c2
− 5(v1 · n)2

2c2
+

5(v1 · n)(v2 · n)

c2

−5(v2 · n)2

2c2
− Gm1(1 + α1α2)

3φ0rc2
− Gm2(1 + α1α2)

3φ0rc2

]
(x1 · N̂)3(n · N̂)

r3

}

+ (1
 2) , (4.128)

where we have dropped the pieces that do not contribute to the scalar mass and

have used Eqs. (4.83) and (4.84) to eliminate the bodies’ accelerations.

To the order at which we work, the radiation-zone contribution to scalar mass

is zero. The scalar monopole Is is the only multipole that enters in Eqs. (4.116)–

(4.118); as discussed above, at leading order, the monopole is constant in time.

This insight allows one to trivially evaluate these hereditary integrals. The non-zero
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terms either depend on the arbitrarily chosen boundary R (and thus are canceled by

near-zone contributions to the scalar field) or fall off too quickly with R to contribute

to the scalar mass.

Computing the scalar mass from the scalar field given in Eqs. (4.125)–(4.128)

is most easily done in the center of mass frame. However, we cannot compute the

exact transformation to this frame in the PD formalism without first calculating

the total momentum of the system.8 Instead, we consider frames in which the two

bodies’ positions are related by x1 ∝ −x2. Without dissipative effects, we expect

the center of mass frame to satisfy this criterion.

Furthermore, we restrict our attention to binary systems undergoing circular

motion. Neutron-star binaries are expected to radiate away any eccentricity rela-

tively early in their evolution, long before they would be detectable by ground-based

experiments like LIGO, thereby justifying this approximation.

We plug the expression for the scalar field in Eq. (4.125) into Eq. (4.95)

to obtain the scalar mass. This surface integral can be computed easily using the

standard angular coordinates (θ, φ) on the coordinate sphere of radius R. The

scalar mass takes the exact same form as the scalar field with the N̂-dependent

8In the PN formalism, the transformation to the center of mass frame is derived by forcing the

total momentum of the binary system to vanish. The momentum is difficult to calculate within

the PD approach because the equations of motion cannot be derived from a Lagrangian dependent

solely on the particles’ positions and velocities. Thus, the exact transformation to the center of

mass frame remains unknown.
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terms replaced by the geometric quantities derived below

−
∮
R→∞

∂i

(
f(θ, φ)

R

)
dSi =

∫
f(θ, φ)d(cos θ)dφ, (4.129)

and

∫
(N̂ · xA)(N̂ · xB)d(cos θ)dφ =

4π

3
γ̃ABxAxB, (4.130)∫

(N̂ · vA)(N̂ · vB)d(cos θ)dφ =
4π

3
γ̃ABvAvB, (4.131)∫

(N̂ · xA)(N̂ · xB)(N̂ · xC)(N̂ · xD)d(cos θ)dφ =
4π

5
γ̃ABγ̃CDxAxBxCxD, (4.132)∫

(N̂ · vA)(N̂ · vB)(N̂ · vC)(N̂ · vD)d(cos θ)dφ =
4π

5
γ̃ABγ̃CDvAvBvCvD, (4.133)∫

(N̂ · xA)(N̂ · xB)(N̂ · vC)(N̂ · vD)d(cos θ)dφ =
4π

15
γ̃ABγ̃CDxAxBvCvD, (4.134)

where we have defined

γ̃AB ≡


1, if A = B

−1, if A 6= B

. (4.135)

The scalar mass is given by

MS =
m1α1µ0

φ0

[
1− v2

1

6c2
− Gm2

φ0rc2

(
1 + µ0α2 +

(
1 + α1α2

3

)
r1

r

)]
+
[
1PD

]
+ (1
 2) ,

(4.136)

where the 1PD terms are represented only schematically for the sake of compactness.

4.8 Validity of the Post-Dickean expansion

The PD expansion was motivated through analogy: spontaneous and dynami-

cal scalarization are suspected to arise from similar mechanisms, and so the analytic
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Figure 4.4: Scalar mass of a (1.35+1.35)M� neutron-star binary system
on a circular orbit as a function of the orbital angular frequency and
gravitational wave frequency (fGW = Ω/π). The scalar mass is computed
at Newtonian (dashed) and 1PD (solid) order for resummation schemes
listed in Table 4.1. We also plot the quasi-equilibrium configuration
calculations (QE) reported in Ref. [172] (dotted). The bottom panels
depict the magnitude of the fractional error between the PD and quasi-
equilibrium results. We use the APR4 equation of state with (left) B =
9, ϕ̃0 = 3.33× 10−11 and (right) B = 8.4, ϕ̃0 = 3.45× 10−11.
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techniques applied to the former (resummation of expansions in Gm/Rc2) should

also be used with latter (partial resummation of expansions in Gm/rc2). While

such reasoning seems plausible, ultimately, the validity of our model can only be

checked via comparison with high-precision numerical calculations. In absence of

long numerical-relativity simulations of DS, we compare the PD approximation to

recent quasi-equilibrium configuration calculations. We also closely examine the

differences between the PD approximation and the analytic model proposed in Ref.

[170] for completeness

4.8.1 Quasi-equilibrium configurations

The scalar mass of an equal-mass binary system was calculated along sequences

of quasi-equilibrium configurations in Ref. [172]. Inherent to these calculations is the

assumption of a conformally flat and stationary spacetime; physically, each configu-

ration represents a binary system following a circular orbit. Despite neglecting the

loss of energy and angular momentum through the emission of gravitational radia-

tion, this setup is believed to closely resemble the adiabatic inspiral of a neutron-star

binary system. Systematic errors enter these quasi-equilibrium calculations through

the physical assumptions made above and imperfect numerical convergence, par-

ticularly at higher frequencies. At present, the magnitude of these errors is not

well-understood.

We compare the PD predictions of the scalar mass with these numerical results

to validate the accuracy of the model. Figure 4.4 depicts the scalar mass as a

219



function of orbital frequency Ω for a (1.35+1.35) M� binary system, where the

PD corrections to Kepler’s third law for an equal mass system (derived from the

equations of motion)

Ω2 =
GM(1 + α2)

r3φ0

− G2M2(1 + α2)(11 + 2µ0α + α2)

4r4φ2
0c

2
, (4.137)

are used to replace the r-dependence in Eq. (4.136), and where M = m1 +m2 and

α = α1 = α2. The scalar mass is computed at Newtonian (dashed) and 1PD (solid)

order; note that the former calculation is done consistently at Newtonian order

[e.g. only the first term in Eq. (4.137) is used]. We employ the APR4 equation of

state, for which the allowed range of theory parameters in which DS can occur is

spanned by B ∈ [8, 9] (see Ref. [171] for more detail). From this range, we focus

on the cases B = 9 and B = 8.4, corresponding to the choices ϕ̃0 = 3.33 × 10−11

and ϕ̃0 = 3.45 × 10−11 considered in Ref. [172]. For all PD calculations, we use a

Newton-Raphson method to numerically solve Eqs. (4.85) and (4.86) to within a

fractional error of 10−7.

Recall that the PD expansion encodes a flexibility in “what to resum” in the

choice of m(φ, ξ) and F (φ). We compare each combination of the choices in Table

4.1 in Fig. 4.4, denoting each resummation scheme by the pair (m,F ). The scalar

mass estimated with the (m(RJ), F (φ)) and (m(RE), F (φ)) resummation schemes differ

by only ∼ 0.01%; to improve legibility, we only plot the former (in red).

The two most important features depicted in Fig. 4.4 that we hope to recover

with our model are the frequency at which DS occurs ΩDS and the magnitude of the

scalar mass after scalarization. We extract the onset of DS from the figure using

220



the fitting procedure detailed in Ref. [172]; these values are given in Table 4.2. One

finds that the scalar mass MS can be well approximated by

(
1 +

(
MS

Mµ0

)2
)10/3

=


1, if Ω < ΩDS

a0 + a1x, if Ω > ΩDS

(4.138)

where x ≡ (GMΩ/c3)
2/3

. We determine the coefficients a0 and a1 by fitting the high

frequency part of the curves in Fig. 4.4 and then find ΩDS from the intersection of

this linear function with 1.

The 1PD predictions for both the location and magnitude of scalarization

match the results of Ref. [172] at the . 10% level for the choice F (ϕ̃). (Note that

the peaks in the relative error seen in the bottom panels of Fig. 4.4 stem from

the slight misalignment of the scalar mass predictions at the sharp onset of DS.)

Interestingly, for systems that scalarize later in the inspiral (i.e. smaller values of B),

the Newtonian order prediction in the (m(RE), F (ϕ̃)) scheme agrees more closely with

the numerical results. Without a more comprehensive study of various resummation

schemes or the PD expansion at higher order, it is difficult to say whether this

agreement is coincidental.

The choice of m(φ, ξ) seems to have little effect on the scalar mass predictions

of the PD model. The two resummation schemes with F (φ) are essentially indistin-

guishable, while the schemes with F (ϕ̃) appear to converge to within a few percent

at 1PD order.

On the other hand, the choice of F (φ) drastically alters the growth of the scalar

mass. Of the two options presented in Table 4.1, only F (ϕ̃) reproduces the sharp
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Table 4.2: Orbital angular frequency and gravitational wave frequency at which
dynamical scalarization occurs (fGW = Ω/π) for the systems considered in Fig. 4.4.
Only resummation schemes with the choice F (ϕ̃) produce DS. For comparison, we
list the results of the quasi-equilibrium configuration calculations (QE) of Ref. [172].

B Model Order GMΩDS/c
3 fGW

DS [Hz]

9.0 (m(RJ), F (ϕ̃)) Newtonian 0.0044 106
9.0 (m(RJ), F (ϕ̃)) 1PD 0.0047 112
9.0 (m(RE), F (ϕ̃)) Newtonian 0.0052 124
9.0 (m(RE), F (ϕ̃)) 1PD 0.0051 122
9.0 QE —— 0.0051 123

8.4 (m(RJ), F (ϕ̃)) Newtonian 0.0282 674
8.4 (m(RJ), F (ϕ̃)) 1PD 0.0212 508
8.4 (m(RE), F (ϕ̃)) Newtonian 0.0217 520
8.4 (m(RE), F (ϕ̃)) 1PD 0.0212 508
8.4 QE —— 0.0223 534

transition consistent with dynamical scalarization. The significance of the choice of

F can be seen by studying the behavior of the scalar charge α(φ, ξ). Because the

definition of ξ relies on the choice of resummation scheme [see Eq. (4.23)], we invert

this definition and instead consider the dependence of the charge on an auxiliary

field χ that is the same in all resummation schemes, defined as

χ ≡
√

2 log(F−1(ξ))

B
=


√

2 log ξ
B

, if F (φ) = φ

ξ, if F (φ) =
√

2 log φ
B

(4.139)

Figure 4.5 shows the leading order piece of the scalar charge α in the (m(RJ), F (φ))

and (m(RE), F (ϕ̃)) resummation schemes given in Eqs. (E.2) and (E.4). The re-

summed scalar charges in each scheme agree at χ = ϕ̃0, but they scale as

α(RJ,φ) ∼ d logm

dξ
∼ d logm

dχ

1

Bχ
e−Bχ

2/2 ∼ d logm

dχ

1

χ
, (4.140)

α(RE,ϕ̃) ∼ d logm(E)

dξ
∼ d logm

dχ
− Bχ

2
∼ d logm

dχ
, (4.141)

where we have used the fact that χ� 1.
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Figure 4.5: Newtonian order contribution to the scalar charge α of each
neutron star in a (1.35+1.35)M� binary system as a function of the aux-
iliary field χ in the (m(RJ), F (φ)) and (m(RE), F (ϕ̃)) resummation schemes.
We use the APR4 equation of state with B = 9, ϕ̃0 = 3.33× 10−11.

Without the additional factor of χ−1, the scalar charge in the (m(RE), F (ϕ̃))

scheme grows with the local scalar field (the red curve in Fig. 4.5). This trend

enables a positive feedback loop that ultimately emulates DS [170]. Intuitively, an

increase in the field χ at one body increases its charge α, which, in turn, increases

the field χ at the other body (and so on). No such feedback is possible within the

(m(RJ), F (φ)) resummation scheme because α does not increase with greater ξ.

4.8.2 Earlier analytic models

The first analytic model of DS was proposed in Ref. [170]. This model used

the 2.5PN equations of motion computed in Ref. [149], but altered the coefficients

using a feedback mechanism designed to mimic DS. To 1PN order, these modified

equations of motion are given in Eqs. (4.89)–(4.92) but with the important difference

that m̄i and ᾱi are evaluated at an enhanced field value ϕB instead of at φ0. To
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Figure 4.6: Scalar mass as a function of orbital frequency Ω and gravi-
tational wave frequency fGW of the binary system depicted in Fig. 4.4.
The post-Dickean curves are calculated at 1PD order with the resum-
mation schemes using F (ϕ̃). The model proposed in Ref. [170] is plotted
in black alongside the variations that we develop in Appendix G, which
are collectively depicted by the pink region. For comparison, we plot the
1PN scalar mass (red) computed using the results of Ref. [151] (we use
the 2PN equations of motion of Ref. [149] to restrict to circular orbits).
The bottom panels depict the magnitude of the fractional error between
the models and the quasi-equilibrium configurations (QE) of Ref. [172].

determine ϕB the authors numerically solved the Newtonian order relations

ϕ
(1)
B =ϕ̃0 +

Gm̄2(ϕ
(2)
B )ᾱ2(ϕ

(2)
B )

φ0rc2
, (4.142)

ϕ
(2)
B = (1
 2) . (4.143)

Additionally, the authors explicitly set the derivatives of the scalar charge ᾱ′, ᾱ′′ to

zero.

As reported in Ref. [170], this model captures dynamical scalarization and pro-

duces results (qualitatively) consistent with numerical-relativity simulations. The
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model is easily implemented because it directly augments the PN results of Ref.

[149] with Eqs. (4.142) and (4.143). However, mixing the Newtonian order feedback

mechanism with higher-order equations of motion produces technical ambiguities in

the model; we address these uncertainties in greater detail in Appendix G.

Comparing Eq. (4.80) with Eq. (4.142), we immediately see that our PD

approach recovers the feedback mechanism of Ref. [170] at Newtonian order with

the resummation schemes that use F (ϕ̃). Similarly, comparing Eq. (4.83) with Eq.

(4.89), we see that the equations of motion for the binary system agree at Newtonian

order with those of Ref. [170] provided we also use m(RJ).

Disparities arise between the two formalisms beyond Newtonian order. For the

same resummation scheme adopted above, the auxiliary field given in Eq. (4.85) is

the natural extension of the feedback model of Ref. [170] to higher order. Beyond

the difference between ξ and ϕB, the equations of motion of each approach [Eq.

(4.87) and Eq. (4.89)] differ only in the terms proportional to r−2 (recall that mi

and αi receive PD corrections as discussed in Appendix E). However, as discussed

at the end of Sec. 4.5, we expect a greater proportion of terms in the model of Ref.

[170] to disagree with the PD equations of motion beyond post-Newtonian order.

To provide some context of the PD expansion’s place relative to previous mod-

els, the scalar mass predicted by each of the analytic approximations discussed above

is plotted in Fig. 4.6. As discussed in Sec 4.2.2, the unaltered PN approximation

(denoted in red) does not reproduce DS, giving a scalar mass orders of magnitude

smaller than numerical predictions. In contrast, the PD approximation (blue and

green) agrees with the quasi-equilibrium calculations (dotted black) reported in Ref.
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[172] at the level of . 10% when equipped with the proper resummation scheme.

This level of accuracy is comparable to that achieved by the analytic model pro-

posed in Ref. [170] (solid black). In addition, the technical ambiguities found in

this earlier model (see Appendix G) generate some systematic uncertainty in its

predictions. As a rough estimate of this uncertainty, we denote with the pink region

the range of values spanned by all of the alternatives considered in Figs. G.1 and

G.2. The PD formalism alleviates this issue by resumming the PN approximation

in a mathematically consistent way, albeit with a freedom in the exact choice of

quantities to resum.

4.9 Conclusions

In this work, we proposed the post-Dickean expansion, a new model of dynam-

ical scalarization constructed by resumming the post-Newtonian expansion. The

motivation for this approach stems from the success of previous analytic treatments

of spontaneous scalarization, a phenomenon suspected to be closely related to DS.

By appropriating tools from recent PN calculations [149–151], we derived the equa-

tions of motion and the scalar mass (a measure of scalarization) of a binary system

at post-Newtonian order. Comparisons with recent numerical results [172] indicate

that our new formalism captures DS accurately. The PD model exactly coincides

with the analytic model introduced in Ref. [170] at leading order, but the ambigui-

ties that arise at higher order in that earlier work are avoided with the PD approach

because of its more rigorous and self-consistent formulation.
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While this work establishes a framework for modeling DS, several further steps

remain before it can be used to generate waveforms needed to test GR with GW

detectors. Fortunately, most of these remaining calculations are straightforward,

albeit lengthy. The waveform was recently computed to 2PN order in Ref. [2, 150].9

Similarly to what was done in Secs. 4.4 and 4.6, the PD waveform can be calculated

in precisely the same way as the PN result with a slightly modified stress-energy

tensor. To reach the 2PD accuracy, one would also need to derive the equations of

motion at that order. Again, all of the necessary steps have been completed for the

PN calculation [149], so one can simply recycle that work with a new stress-energy

tensor to produce the corresponding PD result.

The evolution of a binary system directly impacts the GW signal it produces.

Thus, in conjunction with the waveform calculation sketched above, one would need

to estimate the phase evolution of a binary in the PD formalism. One approach,

analogous to what was done in Refs. [170, 175], would be to directly integrate

the equations of motion. However, earlier surveys of PN models in GR indicate

that such a procedure can produce unreliable waveforms [290]. Instead, a better

approximation can be found by balancing the change in the (conservative) binding

energy and the radiated flux far from the system. The flux was computed to 1PN

order in Ref. [151]; this calculation could be redone in the PD expansion with a

9Advanced LIGO is most sensitive to a GW’s transverse-traceless polarizations, for which the

2PN calculation was done. An additional transverse “breathing” mode would accompany the

signal; this third polarization is determined by Ψ and has only been computed to 1.5PN order

[151].
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modified stress-energy tensor.

Unfortunately, the PD binding energy cannot be easily recomputed with ex-

isting PN work. To date, this energy has been calculated in the PN approach by

integrating the (conservative) equations of motion to produce a Lagrangian and per-

forming a Legendre transformation. However, as discussed at the end of Sec. 4.5,

no such Lagrangian exists for the PD equations of motion because of the presence

of the auxiliary field ξ. Without this shortcut, one would need to instead calcu-

late the ADM energy at spatial infinity. To our knowledge, the full asymptotic

metric has not been computed at spatial infinity to any PN order for the class of

ST theories we consider. In principle, the 1PD energy could be estimated at null

infinity because the system is fully conservative up to that order, but the results of

Ref. [150] would have to be considerably extended, as the author computed only

the traceless piece of the asymptotic metric. A more systematic approach should

mimic the PN calculation of the ADM Hamiltonian in GR [291], in which all of the

gravitational degrees are integrated out, leaving an energy dependent only on each

body’s position, momentum, and local scalar field ξ.

Besides the litany of PN results that need to be recomputed in the PD formal-

ism to produce waveforms, the model could offer a better physical understanding of

DS. Surprisingly, we found that the PD predictions were largely independent of the

choice m(φ, ξ) in the resummation scheme. While this result needs to be confirmed

with a more comprehensive survey of possible schemes, the dependence of our for-

malism on the sole function F (φ) suggests that DS could be modeled with a single

effective potential for the scalar charge at the level of the action. An analogous
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method was employed in Ref. [292], in which the quadrupole modes of a neutron

star were promoted to dynamical field variables governed by an effective potential

to model their response to the tidal fields produced by a companion black hole. This

procedure could be adopted for dynamical scalarization, where each body’s scalar

monopole (i.e. scalar charge) dynamically responds to the monopolar scalar field

sourced by the companion star [293]. This investigation could offer a more intuitive

view of DS as a non-linear phenomenon.
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Chapter 5: Effective action model of dynamically scalarizing binary

neutron stars

Authors: Noah Sennett, Lijing Shao, and Jan Steinhoff 1

Abstract: Gravitational waves can be used to test general relativity (GR)

in the highly dynamical strong-field regime. Scalar-tensor theories of gravity are

natural alternatives to GR that can manifest nonperturbative phenomena in neutron

stars (NSs). One such phenomenon, known as dynamical scalarization, occurs in

coalescing binary NS systems. Ground-based gravitational-wave detectors may be

sensitive to this effect, and thus could potentially further constrain scalar-tensor

theories. This type of analysis requires waveform models of dynamically scalarizing

systems; in this work we devise an analytic model of dynamical scalarization using

an effective action approach. For the first time, we compute the Newtonian-order

Hamiltonian describing the dynamics of a dynamically scalarizing binary in a self-

consistent manner. Despite only working to leading order, the model accurately

predicts the frequency at which dynamical scalarization occurs. In conjunction with

Landau theory, our model allows one to definitively establish dynamical scalarization

as a second-order phase transition. We also connect dynamical scalarization to the

1Originally published as Phys. Rev. D96, 084019 (2017).
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related phenomena of spontaneous scalarization and induced scalarization; these

phenomena are naturally encompassed into our effective action approach.

5.1 Introduction

Over a century of experiments have shown that general relativity (GR) very

accurately describes the behavior of gravity. The bulk of these tests have come from

measurements of gravitationally bound systems, either with electromagnetic obser-

vations of our Solar System [79] and binary pulsars [249, 294] or with gravitational-

wave (GW) observations of coalescing binary black holes [73, 122, 123, 184]. Com-

bined, these systems probe GR over a large phase space, with gravitational fields

whose relative strength and dynamism span many orders of magnitude [89, 187, 295,

296]. However, one corner of parameter space that has not yet been directly tested is

the highly-dynamical, strong-field regime of gravity coupled to matter, which would

be reached in the merger of a neutron star (NS) binary system.

GWs from coalescing binary neutron stars (BNSs) are expected to be detected

by Advanced LIGO in the near future [297]. Tests of GR are done using Bayesian

inference [122], comparing the relative probability that the measured data are consis-

tent with a GR waveform over a non-GR waveform to search for possible deviations

from GR. Waveforms in alternative theories of gravity can be written schematically

in the Fourier domain as

h(θ; f) = hGR(θ; f) [1 + δA(θ; f)] eiδψ(θ;f), (5.1)

where f is the observed GW frequency, θ represents the intrinsic (e.g., component
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masses, spins, etc.) and extrinsic (e.g., distance, sky position, etc.) parameters

of the binary. We have used hGR(θ; f) to represent the expected waveform in GR

while δA and δψ are the deviations in the amplitude and phase, respectively, from

GR [117, 118, 120, 176]. One makes an ansatz for δA as parameterized by a set of

coefficients {αi} and for δψ as parameterized by another set of coefficients {βj}. A

common choice—the so-called restricted waveforms—is for δA to be identically zero

while, for frequencies corresponding to the inspiral, δψ is expanded in powers of the

frequency f and its logarithm log f [118, 120, 176]. For this choice, the parameters

{βj} are simply the coefficients of the power series in f and log f—they measure the

deviations from GR that appear at each order in a post-Newtonian (PN) expansion

of the phase. Because this approach makes no reference to a particular alternative

theory of gravity, constraining the parameters {βj} can simultaneously constrain

many alternative theories using appropriate mappings.

However, this theory-agnostic approach does not capture all possible devia-

tions from GR because it relies on the assumption that δψ(θ; f) admits a series

expansion in f and log f during the early inspiral. In this paper, we study a par-

ticular class of scalar-tensor theories of gravity in which BNSs can undergo a phase

transition known as dynamical scalarization [169]; the GW signals from such sys-

tems cannot be expanded in a simple power series. Through this phenomenon,

BNSs abruptly transition from a configuration that closely resembles a BNS in GR

to a drastically different state. Previous efforts to model dynamically scalarizing

systems have relied on phenomonological waveform models or analytic approxima-

tions of the equations of motion [3, 170, 175, 271]. We continue these efforts in this
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work by reformulating the PN dynamics of BNSs with dynamical scalar charges in

a manner analogous to the treatment of dynamical tides in GR [298, 299]. Using

this approach, we explicitly construct a two-body Hamiltonian that incorporates dy-

namical scalarization; in contrast, in Refs. [3, 170], only the PN equations of motion

were calculated. Our results comprise an important step towards fully-consistent

waveform models of dynamical scalarization and offer a clear interpretation of the

phenomenon as a phase transition.

The paper is organized as follows. In Sec. 5.2, we provide an overview to

scalar-tensor theories and certain nonperturbative phenomena for NSs. In Sec. 5.3

we construct an effective action to model the dynamical scalarization of BNSs. In

Sec. 5.4 we compare results obtained from our model to previous analytic approaches

and numerical quasi-equilibrium (QE) configuration calculations. In Sec. 5.5, we

use our model to solidify the interpretation of dynamical scalarization as a phase

transition and then discuss possible extensions to the model. Finally, we present

some concluding remarks in Sec. 5.6.

Throughout the paper we use the conventions of Misner, Thorne, and Wheeler [15]

for the metric signature and Riemann tensor. We work in units in which the speed

of light and the bare gravitational constant in the Einstein frame are unity.

5.2 Nonperturbative phenomena in scalar-tensor gravity

Scalar-tensor theories of gravity are amongst the most natural and well-motiva-

ted alternatives to GR [79, 89]. We consider the class of theories detailed in
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Ref. [147], in which a massless scalar field couples nonminimally to the metric.

These theories are described in the Jordan frame by the action,

S =

∫
d4x

√−g̃
16πG̃

[
φR̃− ω(φ)

φ
g̃µν∇µφ∇νφ

]
+ Sm[g̃µν , χ], (5.2)

where χ represents all of the matter degrees of freedom in the theory and G̃ is the

bare gravitational coupling constant in the Jordan frame. Alternatively, the action

can be written in the Einstein frame by performing a conformal transformation,

gµν ≡ φg̃µν , as

S =

∫
d4x

√−g
16π

[R− 2gµν∇µϕ∇νϕ] + Sm
[
A2(ϕ)gµν , χ

]
, (5.3)

where we have introduced the scalar field,

ϕ ≡
∫
dφ

√
3 + 2ω(φ)

2φ
, (5.4)

and defined

A(ϕ) ≡ exp

(
−
∫

dϕ√
3 + 2ω(ϕ)

)
. (5.5)

Varying the Einstein-frame action yields the field equations

Rµν −
1

2
Rgµν = 8πTµν + 2∇µϕ∇νϕ− gµνgρσ∇ρϕ∇σϕ, (5.6)

�ϕ = 4πα(ϕ)T, (5.7)

where T µν ≡ 2(−g)−1/2δSm/δgµν is the stress-energy tensor of matter, T ≡ gµνT
µν

is its trace, and we have introduced the coupling,

α(ϕ) ≡ −d logA

dϕ
= (3 + 2ω)−1/2. (5.8)
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Much of the seminal research in scalar-tensor alternatives to GR considered the

simple choice of a constant coupling α, corresponding to Jordan-Fierz-Brans-Dicke

theory [178, 179, 300]. This theory is currently well-constrained by measurements

from the Cassini probe [180] and of binary pulsars [249, 294]; future observations

by Advanced LIGO are not expected to improve these constraints [301]. Instead, in

this work we consider theories whose coupling is linear in ϕ,

α(ϕ) = −βϕ. (5.9)

Such theories can give rise to phenomena that are potentially detectable by Ad-

vanced LIGO while evading the bounds set by the Cassini probe [153, 169].2 In

2Cosmological considerations can further constrain the class of theories with the coupling given

by Eq. (5.9). In particular, when β is negative, the theory evolves rapidly away from GR over

cosmological timescales [152, 175, 273]; this evolution cannot be reconciled with current Solar

System observations without fine-tuning the theory at some point in the distant past. One can

solve this cosmological issue by generalizing the coupling (5.9) to a higher-order polynomial in

ϕ, which causes the scalar field to evolve to a local minimum of A(ϕ) rather than diverge [302].

However, when expanded around this local minimum, the leading order term of the modified

coupling α(ϕ) will have the opposite sign as in Eq. (5.9), and thus such theories no longer manifest

the nonperturbative scalarization phenomena that we study here [302]. Alternatively, one can

add a mass term for the scalar field to Eq. (5.3) to evade the cosmological constraints on these

theories [152, 303]. Neutron stars can undergo nonperturbative phenomena analogous to those we

consider here when immersed in a constant background massive scalar field [95, 161]. However,

recent work has revealed that this background field should in fact oscillate over relatively short

timescales in massive scalar-tensor theories [303]. It remains to be seen whether NSs embedded in

an oscillatory background scalar field can also exhibit nonperturbative phenomena. As is commonly

done in the literature [3, 147, 152, 153, 169–172, 175], we ignore these cosmological concerns here.
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particular, for sufficiently negative β, such theories can manifest spontaneous scalar-

ization, dynamical scalarization, and induced scalarization.3

Before discussing these phenomena in detail, we briefly examine the structure

of NS solutions to Eqs. (5.6) and (5.7) to establish some useful notation. For simplic-

ity, we consider a static matter source. Working far from all matter, one can expand

the metric about a Minkowskian background in powers of ε ∼ mE/r � 1 where mE

is the total mass (measured in the Einstein frame) using the post-Minkowskian for-

malism (see Ref. [30] and references within). To leading order in ε, Eq. (5.7) reduces

to the Poisson equation on a flat background, whose solution in this region takes

the generic form,

ϕ(r) = ϕ0 +
Q

r
+O

(
1

r2

)
, (5.10)

where we have introduced a constant background field ϕ0 and defined the scalar

charge Q as the scalar monopole moment of the source.

5.2.1 Spontaneous scalarization

Damour and Esposito-Farèse discovered that the presence of relativistic mat-

ter in theories with negative β can trigger an instability in the scalar field [153]. In

such theories, a sufficiently compact NS can undergo a phase transition known as

spontaneous scalarization corresponding to the spontaneous breaking of the sym-

metry ϕ → −ϕ in Eq. (5.3). Given current constraints from binary pulsars (see

below) [6, 248, 249, 294, 305], numerical solutions to Eqs. (5.6) and (5.7) reveal that

3See Refs. [156, 157, 304] for a discussion of similar phenomena in theories with positive β.
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an isolated NS can develop a scalar charge of order

Q

mE

. 10−1, (5.11)

through spontaneous scalarization. This figure should be contrasted with a PN

prediction for this quantity,

Q

mE

= −βϕ0

(
1 + a1C + a2C

2 + · · ·
)

. 10−5
(
1 + a1C + a2C

2 + · · ·
)
,

(5.12)

where the coefficients ai are of order unity and C ≡ mE/R is the compactness of

the NS [147]. The drastic difference in magnitude between Eqs. (5.11) and (5.12)

indicates that the PN expansion does not predict spontaneous scalarization. In

this sense, we describe spontaneous scalarization as nonperturbative; loosely speak-

ing, one must include every term in the infinite sum in Eq. (5.12) to recover the

phenomenon.

The best constraints on spontaneous scalarization come from timing measure-

ments of white dwarf-NS binaries (see, e.g., Refs. [6, 152, 247–249, 305]). Unlike

NSs, white dwarfs (WDs) are too diffuse to develop any significant scalar charge

through spontaneous scalarization. Consequently, WD-NS binaries can emit sub-

stantial scalar dipole flux Fdip, which scales as

Fdip ∝
(
QNS

mE
NS

− QWD

mE
WD

)2

≈
(
QNS

mE
NS

)2

, (5.13)

where mE
WD and mE

NS are the masses, and QWD and QNS are the scalar charges

of the WD and NS, respectively. Pulsar timing experiments are sensitive to any

anomalous decrease in the orbital period of the binary, and thus can constrain Fdip

237



and consequently QNS/m
E
NS; we refer readers to Ref. [6] for the current best limits

on spontaneous scalarization from pulsar timing.

5.2.2 Dynamical and induced scalarization

More recently, a similar phenomenon, known as dynamical scalarization, was

uncovered in numerical-relativity (NR) simulations of BNSs in the same class of

scalar-tensor theories with negative β [169, 171, 172]. These simulations considered

binary systems composed of NSs too diffuse to undergo spontaneous scalarization

in isolation. As the binaries coalesced, it was found that the presence of a com-

panion allowed the NSs to scalarize abruptly, developing scalar charges of the same

order of magnitude as might occur through spontaneous scalarization. A related

phenomenon, known as induced scalarization, was also discovered [169], in which a

spontaneously scalarized star generates a scalar charge on a companion too diffuse

to scalarize in isolation. For simplicity, we primarily focus on dynamical scalariza-

tion in this work; however, the model we develop can be applied to systems that

undergo induced scalarization as well.

Numerical relativity simulations show that dynamical and induced scalar-

ization hasten the plunge and merger of BNSs relative to the same systems in

GR [169, 171]. Two factors dictate the difference in merger time for scalarized

versus unscalarized systems: (i) an enhancement in energy flux, and (ii) a modifica-

tion to the binding energy. A scalarized BNS system will emit energy more rapidly

than an unscalarized system; the dissipative channels available in GR (e.g., tensor
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quadrupole radiation) are enhanced for bodies with scalar charge and new chan-

nels become available (e.g., scalar dipole radiation). Modifications to the binding

energy of scalarized systems are not well understood. In Ref. [172], the binding

energy was argued to decrease (in magnitude) in scalarized systems, prompting an

earlier merger, whereas in this paper, we argue that it should instead increase (see

Sec. 5.4.2 for more detail).

Advanced LIGO will be able to distinguish between the coalescence of scalar-

ized and unscalarized NSs provided that their scalar charges: (i) are sufficiently

large and (ii) develop early enough in the inspiral (in the case of dynamical scalar-

ization) [6, 175, 271]. Observation of such scalarization would provide direct evidence

for modifications of GR in the strong-field regime; conversely, lack of evidence of

scalarization can further constrain the space of viable scalar-tensor theories. De-

pending on the NS masses and equation of state (EOS) observed in coalescing BNS

systems, Advanced LIGO could provide constraints competitive with current binary-

pulsar limits [6].

Searches for deviations from GR with GWs rely on accurate and faithful wave-

form models in modified gravity. Several models of dynamical scalarization have

been proposed in the literature, but none at the level of sophistication of waveforms

in GR. The simplest of these approaches phenomenologically model δψ(θ; f) to re-

produce features expected to arise in dynamically scalarized systems. For example,

one can model δψ(θ; f) by a polynomial in f to capture effects such as scalar dipole

radiation and/or use a Heaviside step function to mimic the abrupt growth of scalar

charge and hastened merger triggered by dynamical scalarization. Detectability
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studies reveal that such models may be sufficient to identify dynamical scalarization

with Advanced LIGO [175, 271]. However, the accuracy of phenomenological wave-

form models cannot be established a priori. Ultimately, one must validate and/or

calibrate these models using independent waveforms. In GR, this comparison is

made with both analytic and NR waveforms (e.g., the IMRPhenom waveform fam-

ily [306]). Because very few NR simulations of dynamical scalarization have been

produced to date, one must rely solely on more sophisticated analytic models of this

phenomenon to verify the accuracy of phenomenological models.

A more sophisticated approach towards waveform modeling, and one we shall

pursue in the present work, is to solve the field equations (5.6) and (5.7) in some

perturbative fashion (see Sec. 5.3). The PN approximation is an example of such

an approach; PN waveforms are useful inspiral models in their own right and also

serve as the foundation for more refined waveform models, such as the effective-

one-body (EOB) formalism [38, 39]. Dynamical scalarization can be modeled by

augmenting [170] or resumming [3] the PN dynamics in scalar-tensor gravity; such

modifications are necessary because dynamical scalarization is a nonperturbative

phenomenon in the same sense as spontaneous scalarization [3]. Both of these ana-

lytic approaches suffer from two shortcomings. First, simulating the dynamics with

these models requires one to solve a system of algebraic equations at each moment in

time involving the function mE(ϕ), which measures the complete (nonperturbative)

dependence of the NS mass on the scalar field in which it is immersed. Second,

these approaches only model the dynamics at the level of the equations of motion;

no rigorous formulation of the two-body Hamiltonian has been constructed.
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In the next section, we develop a new analytic model of dynamical scalariza-

tion that addresses these shortcomings using an effective-action approach. First,

the scalar charges Q are given by roots of a system of polynomial equations; for sys-

tems with no background scalar field ϕ0, the algebraic system reduces to a pair of

cubic equations that have a closed-form solution. These algebraic equations depend

on only two new parameters per NS [as opposed to the complete functions mE(ϕ)]

that can be directly interpreted as the separation at which dynamical scalarization

begins and the magnitude of scalar charge that develops. Second, the new model

allows one to construct a simple two-body Hamiltonian and thus also compute the

binding energy of a binary system. The Hamiltonian is a fundamental building block

in the construction of perturbative waveform models. For example, the binding en-

ergy, in conjunction with the energy flux, allows one to compute the phase evolution

through the balance equation [30], and the Hamiltonian is the natural starting point

in constructing an EOB description of the dynamics. Additionally, our new formula-

tion allows for a more nuanced interpretation of dynamical scalarization as a phase

transition than exists in the literature and more intimately connects dynamical and

spontaneous scalarization.

5.3 Effective action with a dynamical scalar charge

We construct a model for dynamical scalarization by explicitly re-parameterizing

the standard point-particle action for a BNS in terms of the scalar charges of its

components. This approach closely resembles the treatment of extended bodies in
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GR in terms of their multipolar structure; in fact, as can be seen from Eq. (5.10),

the scalar charge is simply the scalar monopole moment of an extended body. The

gravitational fields (tensor and scalar) produced by a system of compact bodies

can be represented completely in terms of the bodies’ multipoles through matched

asymptotic expansions [30, 147]. In turn, these external fields affect the multipolar

structure of the compact bodies. This response must be included into the point-

particle model in some way. For example, a constant external tidal field Gi1...i` will

induce a multipole Qi1...i` as determined by the tidal deformability λ`

Qi1...i` = −λ`Gi1...i` . (5.14)

(See Ref. [307] for more detail.) A more sophisticated model is needed to capture

dynamical tides, i.e., tidal fields that vary on periods comparable to the relaxation

timescale of the compact body (see Refs. [292, 299, 308, 309] and references therein).

As can be seen from the arguments of the matter action Sm in Eq. (5.3),

compact objects in scalar-tensor gravity interact with the scalar field in conjunction

with the Einstein frame metric. For non-self-gravitating objects (i.e., test particles),

this interaction is characterized simply by A(ϕ). However, the internal gravitational

interactions in self-gravitating objects can dramatically change the couplings to the

metric and scalar field; these differences represent violations of the strong equiva-

lence principle. As first proposed by Eardley [310], the response of a body’s mass

monopole mE to an external scalar field can be encoded into a generic function

mE(ϕ). As shown in Appendix A of Ref. [147], the scalar monopole Q induced by
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an external scalar field is given by

Q = −dmE

dϕ
. (5.15)

For bodies immersed in weak scalar fields, Eq. (5.15) reduces to a linear relation

analogous to Eq. (5.14). However dynamical scalarization occurs outside of this

linear regime: the complete expression mE(ϕ) is needed to accurately model this

phenomenon.

In this section, we develop a model inspired by the treatment of non-adiabatic

tides in GR [292, 299, 308, 309]. We rewrite the point-particle action using Q in

place of ϕ and promote the scalar charge Q to a dynamical degree of freedom. We

find that this action can be expressed as a simple effective action for a dynamical

scalar charge linearly coupled to an external scalar field. The complete function

mE(ϕ) is condensed into the coupling coefficients (or “form factors”) in the effective

action. Thus, the predictions of the model are parameterized by a small set of

coefficients and are easy to study without reference to any particular BNS system;

in contrast previous analytic models [3, 170] required the full form of m(ϕ) to be

predictive.

In Sec. 5.3.1, we develop the framework for our new effective point-particle

action for a single NS and discuss possible extensions for future work. Using this

approach, we compute the dynamics for a binary system of two point particles in

Sec. 5.3.2.
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5.3.1 The effective point-particle action

We begin with the standard model of the orbital dynamics of compact objects

in scalar-tensor gravity. If the orbital separation is much larger than the size of the

bodies, one can represent each star as a point particle governed by an action of the

form [147, 208, 276],

Sm = −
∫
dσ
√
−uµuµmE(ϕ), (5.16)

where zµ(σ) is the object’s worldline parametrized by a generic parameter σ, uµ ≡ dzµ/dσ

is its four-velocity, and mE(ϕ) is its Einstein-frame mass as a function of the scalar

field along the worldline ϕ(zµ). Inserting the source (5.16) into Eq. (5.7), one finds

that the compact object generates a scalar field given by

2ϕ =4π

∫
dσ

√−uνuν√−g
dmE

dϕ
δ(4)(xµ − zµ), (5.17)

where the derivative of the mass is evaluated at ϕ(zµ). Similarly, the influence of

the object on the metric can be found by inserting Eq. (5.16) into Eq. (5.6).

Next, we convert the action (5.16) from a function of the external field ϕ

imposed on the body to one of the scalar charge Q. These two quantities offer

complementary descriptions of the local geometry of the compact body; one can

convert between the two using Eq. (5.15). To rewrite the action as a function of Q,

we adopt a method first introduced in Ref. [152]; we define a new potential m(Q)

given by the Legendre transformation of the mass mE(ϕ),

m(Q) ≡ mE(ϕ) +Qϕ. (5.18)
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Inserting this definition into Eq. (5.16), the action reads

Sm = −
∫
dσ
√
−uµuµ [m(Q)−Qϕ] . (5.19)

Now we promote Q to an independent degree of freedom in the model; variation of

the action with respect to this variable gives an additional equation of motion in

the dynamics.

The notation in Eq. (5.18) is intentionally suggestive; as we will show in

Sec. 5.3.2, m(Q) assumes the role of the particle’s mass in the orbital dynamics

rather than mE(ϕ). A natural analogy can be drawn to thermodynamics: consider,

for example, an ideal gas composed of a fixed number of particles held at a constant

temperature. The state of the system can be described by either its pressure—an

intrinsic quantity, analogous to ϕ—or its volume—an extrinsic quantity, analogous

to Q. While the internal energy—analogous to mE(ϕ)—has a natural interpretation

as the thermal energy of the gas, it is often more convenient to use the free energy—

analogous to m(Q)—to describe certain physical processes. As was discussed in

Ref. [152] (and will be revisited in Sec. 5.5), the equilibrium state for an isolated NS

will minimize the function m(Q); again, this quantity plays the role of an effective

free energy of each NS in a binary system.

We expand the potential m(Q) in a power series to quartic order,

m(Q) = c(0) + c(1)Q+
c(2)

2!
Q2 +

c(3)

3!
Q3 +

c(4)

4!
Q4 +O

(
Q5
)
. (5.20)

Recall that the action (5.3) equipped with the coupling (5.9) is invariant under the

symmetry ϕ → −ϕ. Thus, we expect the mass of an isolated NS mE(ϕ) to also

respect this symmetry, even in the presence of spontaneous scalarization. From
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Eq. (5.15), we see that this parity transformation will also send Q→ −Q. Perform-

ing both of these transformations leaves the right hand side of Eq. (5.18) unchanged,

and thus we can conclude that m(Q) must be an even function of Q.

Some of the coefficients c(n) have an immediate interpretation. The leading

c(0) describes the body’s mass in absence of any scalar charge, i.e., the ADM mass

in GR, and so we also denote it as c(0) = m(0). Furthermore, a background scalar

field ϕ0 can be handled by working instead with the field,

ϕ̂ ≡ ϕ− ϕ0, (5.21)

leading to an additional coupling −Qϕ0 in the Lagrangian. This term can be ab-

sorbed into m(Q) by setting c(1) = −ϕ0, and thus we can interpret c(1) as a cos-

mologically imposed background scalar field. Note that the addition of a nonzero

scalar background weakly breaks the symmetry ϕ → −ϕ in the point-particle ac-

tion, prompting us to relax the conclusion that m(Q) is a strictly even function.

However, all other odd powers of Q will still vanish, i.e., c(3) = 0.

Given the discussion above, our model for m(Q) reduces to

m(Q) = m(0) − ϕ0Q+
c(2)

2
Q2 +

c(4)

24
Q4 +O(Q6). (5.22)

Potentials of this form are widely used to describe systems that exhibit spontaneous

symmetry breaking (see also Sec. 5.5); the Higgs mechanism is one notable exam-

ple [311]. Reference [152] employed a similar potential to model isolated NSs near

the critical point for spontaneous scalarization. In the present work, we show that

the ansatz (5.22) remains valid for NSs far from this critical point; we describe the
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procedure by which we numerically compute the various coefficients for a particular

NS in Sec. 5.4.1.

One ingredient conspicuously absent from our effective action (5.19) is the

dynamical response of the scalar charges to changes in the scalar field. In truth,

our model is only valid in the adiabatic limit, wherein the external fields evolve

over timescales much longer than the relaxation time of NSs. Given the abrupt

nature of dynamical scalarization, the validity of our assumption of adiabaticity

should be studied in greater detail; we reserve this analysis for future work. If one

rapidly changes the external scalar field, the NS’s scalar charge cannot respond in-

stantaneously. In general, physical systems undergo (harmonic) oscillations around

equilibrium configurations under small perturbations. Thus, one expects the scalar

charge to behave approximately like a harmonic oscillator driven by the external

fields, characterized by an action of the form (5.19) with

m(Q, Q̇) = m(0) − ϕ0Q+
c(2)

2

(
Q̇2

ω2
0u

µuµ
+Q2

)
, (5.23)

where Q̇ = dQ/dσ and ω0 is the resonant frequency of this scalar mode. This

action is analogous to the dynamical tidal model in Ref. [299]: Q corresponds to the

dynamical quadrupole, ϕ to the tidal field, 1/c(2) to the tidal deformability, and ω0

to the oscillation mode frequency. In general, one should add separate dynamical

degrees of freedom for every oscillation mode of the NS. Identifying all dynamical

degrees of freedom relevant for the scale of interest is very important in constructing

an effective action (see, e.g., Ref. [312]). Note that when the dynamics of the system

occur much more slowly than the resonant frequency, i.e. Q̇� ω0, and we restore the
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Q4 interaction, Eq. (5.23) reduces to the adiabatic model (5.22) considered earlier.

Viewed from an effective field theory perspective, our effective action model

of dynamical scalarization may appear too simplistic. In general, one should add to

the action all possible combinations of Q, uµ, the scalar field ϕ, and the curvature

(and derivatives of these variables) allowed by the symmetries of the theory, up to

terms negligible for the desired accuracy of the model. Not all of these interactions

are independent, since some might be related by redefinitions of the other dynamical

variables; the redundant terms should be dropped. In the present model, we consider

only couplings of the scalar charge to itself, as well as a linear coupling of the

charge to the scalar field. A broader class of interactions would allow our model

to reproduce other interesting phenomena. For example, the induction of scalar

charges on black holes from time-varying external fields can be modeled with an

effective action [313, 314]. We delay such an investigation for future work; for the

present work, the effective action model given by Eqs. (5.19) and (5.22) is sufficient

to reproduce dynamical scalarization.

5.3.2 Dynamics of a binary system

We now turn to the task of translating the action [which will contain a copy

of Eq. (5.19) for each NS] into a Hamiltonian describing the orbital dynamics of a

BNS. Using the PN approximation, we expand the metric and scalar field in powers

of v/c and solve the field equations (5.6) and (5.7) at each order. An efficient

method for solving the two-body dynamics is through a Fokker action4 together with

4This means to insert the perturbative solution to the field equations into the full action.
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a diagrammatic method to represent the perturbative expansion [208]. Similarly,

one can integrate out the fields perturbatively using techniques from quantum field

theory [315], i.e., Feynman integrals and diagrams.

We consider only the leading-order (Newtonian) approximation of the orbital

dynamics in the present work. Thus, the accuracy of our model will degrade towards

the end of the inspiral. However, because Advanced LIGO is only sensitive to

dynamical scalarization that occurs in the very early inspiral [175, 271], our model

can still be applied to the systems of scientific interest; we pursue extensions of our

model to higher PN order in future work.

The PN expansions of the metric gµν and the scalar field ϕ̂ are given by

gµν =ηµν + hµν +O
(
c−4
)
, (5.24)

ϕ̂ =ψ +O
(
c−4
)
, (5.25)

where ηµν is the Minkowski metric and ϕ̂ vanishes at infinity by construction. The

leading-order PN corrections enter with the following powers of c:

h00 ∼ O
(
c−2
)
, h0i ∼ O

(
c−3
)
,

hij ∼ O
(
c−4
)
, ψ ∼ O

(
c−2
)
. (5.26)

Inserting the expansions (5.24) and (5.25) into the field equations (5.6) and (5.7)

with the source (5.19), one finds the Newtonian-order solution to the metric and
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scalar field,

h00(x, t) =
mA(QA)

|x− zA(t)| +
mB(QB)

|x− zB(t)| +O
(
c−4
)
, (5.27a)

ψ(x, t) =
QA

|x− zA(t)| +
QB

|x− zB(t)| +O
(
c−4
)
, (5.27b)

h0i(x, t) ∼ O
(
c−3
)
, (5.27c)

hij(x, t) ∼ O
(
c−4
)
, (5.27d)

where the labels A and B distinguish the two NSs. Henceforth, we suppress the

explicit dependence of each body’s mass m on its corresponding scalar charge for

notational convenience.

Inserting these solutions into the action and dropping singular self-interactions,

we find the leading-order two-body action,

S ≈
∫
dt

[
−mA −mB +

mA

2
v2
A +

mB

2
v2
B +

mAmB

r
+
QAQB

r

]
, (5.28)

where vi ≡ dzi/dt is the Newtonian velocity and r ≡ |zA − zB| and we have cor-

rected for any double counting. Legendre transforming the Lagrangian yields the

Hamiltonian,

H = mA +mB +
p2
A

2mA

+
p2
B

2mB

− mAmB

r
− QAQB

r
, (5.29)

where the canonical momenta are pA,B = mA,BvA,B. The equation of motion for

QA reads

0 =
∂H

∂QA

= zA

(
−ϕ0 + c

(2)
A QA +

c
(4)
A

6
Q3
A

)
− QB

r
, (5.30)

with the redshift given by

zA =
∂H

∂mA

= 1− p2
A

2m2
A

− mB

r
, (5.31)

250



and the equation of motion for QB takes the same form but with the body labels

exchanged A ↔ B. The scalar charges are given by the roots of these two cubic

equations.5 Closed form solutions can be found using computer algebra for ϕ0 6= 0,

but the result is rather lengthy and not very illuminating; we do not provide them

here for space considerations.

While Eq. (5.30) may seem daunting, simple analytic solutions for the scalar

charge can be easily found in special, but very relevant cases. We restrict our

attention to the theories that exactly preserve the symmetry ϕ → −ϕ, i.e., we set

the background scalar field ϕ0 = 0. Next, for simplicity, we will neglect the O(c−2)

corrections to the redshift zA in Eq. (5.30); including these terms does not change

the qualitative behavior of the solutions discussed below. Finally, we specialize to

the case of equal-mass binaries and assume that the NSs have identical properties,

i.e. m
(0)
A = m

(0)
B and c

(i)
A = c

(i)
B . Under these assumptions, Eq. (5.30) reduces to

0 =
∂H

∂Q
= −2Q

[
1

r
− c(2) − c(4)

6
Q2

]
, (5.32)

where we have dropped the body labels. As expected, the trivial solution Q = 0

satisfies this equation. However, this is not necessarily the only solution; if the

trivial solution is unstable, the BNS system will transition to a state with nonzero

scalar charge. The requirement for stability,

0 ≤ ∂2H

∂Q2
= 2c(2) − 2

r
+ c(4)Q2, (5.33)

5For consistency, we truncate Eq. (5.30) at cubic order in the scalar charges, e.g. dropping the

term proportional to Q3
AQB that would arise from the product of mB and Q3

A.
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is violated for Q = 0 when 1/r > c(2). The stable solutions therefore read,

Q =


0 for 1/r ≤ c(2)

±
√

6

c(4)

√
1

r
− c(2) for 1/r ≥ c(2)

, (5.34)

which contains a phase transition at rDS = 1/c(2).

Equation (5.34) provides some intuition into the physical interpretation of the

coefficients c(2) and c(4). The parameter c(2) determines the orbital scale of the phase

transition to the scalarized regime, where the scalar-parity symmetry is broken and

the solution bifurcates. The parameter c(4) determines the size of the scalar charge

in this regime. Notice that for negative c(2) the NS is scalarized for all r. In fact,

this situation corresponds to spontaneous scalarization; we discuss the connection

between spontaneous and dynamical scalarization in greater detail in Sec. 5.5.

Finally, we compute the Newtonian-order equations of motion for each NS.

Working from the Hamiltonian (5.29), the equations of motion are given by,

z̈A = −mB (1 + αAαB)

r2
n, (5.35)

where αA,B ≡ QA,B/mA,B and n ≡ (zA − zB)/r. Note that αA differs from the

quantity found in Eqs. (5.11)– (5.13) because it uses m(Q) in place of mE(ϕ). We

also derive Kepler’s third law for circular orbits

Ω2 =
(mA +mB) (1 + αAαB)

r3
, (5.36)

where Ω is the orbital frequency.
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5.4 Results

The previous sections aimed to motivate and develop a novel analytic model

of dynamical scalarization; in this section, we test the accuracy of this approach

by comparing against previous models [3] and numerical QE configuration calcula-

tions [172]. The dynamics are determined entirely by the coefficients c(i), as can be

seen by inserting Eq. (5.22) and the solution of the cubic equations (5.30) for QA,B

into the Hamiltonian (5.29). These coefficients characterize the behavior of each

compact body in isolation, and thus can be computed straightforwardly.

To facilitate comparison with previous work, we restrict our attention to the

binary systems considered in Refs. [3, 172]. We consider (1.35 + 1.35)M� nonspin-

ning BNS systems with a piecewise polytropic fit to the APR4 EOS; see Ref. [206]

for more details on this EOS and its polytropic fit. We examine configurations with

β = −4.2 and β = −4.5, where β characterizes the strength of the scalar cou-

pling (5.9). Finally, we add the background scalar field ϕ0 = 10−5/
√−2β, which

satisfies binary-pulsar constraints for this EOS [171].

5.4.1 Computing c(i)

The coefficients c(i) describe how the energy of an isolated NS varies with its

scalar charge Q. Thus, to extract these coefficients, we study the behavior of the NS

under infinitesimal changes in Q. In practice, we compute sequences of NS solutions

with equal baryonic mass with incremental changes to the mass mE, scalar charge

Q, and asymptotic field ϕ. Spherically symmetric solutions for perfect fluid stars are
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Figure 5.1: Potential m as a function of scalar charge Q for a 1.35M�
NS with the APR4 EOS. Top: The numerical values and polynomial
fit are plotted with points and lines, respectively, for β = −4.2 (red)
and β = −4.5 (dashed black). We have subtracted the leading-order
term m(0) = 1.35M� from m to improve readability. Bottom: We plot
the fractional error in m(Q) − m(0) between the numerical data and
polynomial fits.

found by solving the Tolman-Oppenheimer-Volkoff (TOV) equations; the extensions

of these equations to scalar-tensor gravity were derived in Refs. [152, 153]. We solve

these equations using fourth order Runge-Kutta methods and use standard shooting

techniques to construct solutions with the same baryonic mass. The quantities mE,

Q, ϕ parameterize the asymptotic behavior of each numerical solution; we extract

mE, Q, ϕ using the relations detailed in Refs. [152, 153]. Equipped with these

quantities, we then compute m(Q) using Eq. (5.18).

We compute the coefficients c(i) by fitting the numerically computed m(Q)

with a polynomial of the form (5.22). The numerical values and polynomial fit
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of m(Q) are plotted with dots and solid lines, respectively, in the top panel of

Fig. 5.1 for the NS parameters discussed above. To improve readability, we have

subtracted the leading-order coefficient m(0) = 1.35M� from m. The values for c(i)

computed through the polynomial fit are also given in Fig. 5.1; the i-th coefficient

has dimension of [mass]i−1. The bottom panel of the figure shows the fractional error

between numerical values and polynomial fits of m −m(0). We see that deviations

are generally of the order . 0.01%, slightly worsening as the charge increases. The

range in Q plotted here covers the typical range achievable by this NS over an

entire inspiral in which dynamical scalarization occurs. As a check of our initial

ansatz (5.22), we also fit the data to polynomials including Q3, Q5 and Q6 terms;

we find that these additional powers of Q shift our estimates for c(i) by less than

∼ 0.1% and only marginally improve the overall agreement to data.

5.4.2 Comparison against previous models

As a first test of our model, we compute the scalar charge Q as a function of

frequency. Because we only consider equal-mass systems, this relation can be found

by solving the cubic equation (5.30) for Q = QA = QB as a function of separation

r. Then, by inserting this result into Eq. (5.36), we determine an exact relation

between r and the orbital frequency Ω. Finally, we invert this relation and insert it

into the solution to Eq. (5.32) to find an implicit expression for Q(Ω). We plot Q(Ω)

in Fig. 5.2 computed with our model in red. The lower axis gives the dimensionless
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Figure 5.2: Scalar charge of each star as a function of frequency for a
(1.35 + 1.35)M� BNS with the APR4 EOS. The lower axis indicates
the orbital frequency Ω; the upper axis shows the dominant GW fre-
quency fGW = Ω/π. The model developed here using an effective action
is shown in red. The analytic post-Dickean (PD) model of Ref. [3] is
shown in blue. The numerical calculations of quasi-equilibrium (QE)
configurations performed in Ref. [172] are shown in black. The curves
depicting earlier scalarization were computed with β = −4.5; the other
set of curves correspond to β = −4.2.

orbital frequency, normalized by the total rest mass M , which we define as,

M ≡ m
(0)
A +m

(0)
B , (5.37)

i.e. the sum of the component ADM masses in GR. The upper axis gives the

dominant frequency fGW = Ω/π of the GWs produced by the binary in hertz.

We plot in blue the predictions of the post-Dickean (PD) model constructed

in Ref. [3]. The PD approach resums the PN dynamics to reproduce dynamical

scalarization. To accomplish this resummation, one promotes the mass mE and its

derivatives to functions of two scalar fields mE(ϕ, ξ), Then, one field (ϕ) is integrated
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out of the point-particle action (5.16) through a standard PN expansion, while the

other (ξ) is treated as a new dynamical degree of freedom in the theory. In this way,

the PD approximation resembles the model presented here. Both methods introduce

new degrees of freedom at the level of the action, and extremizing the action with

respect to these quantities yields algebraic equations that relate the quantities to

the bodies’ positions and momenta. However, in the PD approach, these equations

involve the potentially complicated function mE(ϕ, ξ) and its derivatives, whereas in

the formalism presented here, one needs only the coefficients c(i). In the notation of

Ref. [3], we define the natural analog of the scalar charge as Q ≡ m(RE,ϕ)α(RE,ϕ)/
√
φ0

and plot this quantity in the figure; see Eqs. (A3) and (A4) in Ref. [3] for the explicit

definitions of these quantities. The blue curve shown in Fig. 5.2 corresponds to the

next-to-leading-order dynamics in an expansion in c−2.

Finally, we plot the results of the numerical QE configuration calculations

performed in Ref. [172] with black dots. These calculations were made under the

assumption of conformal flatness and stationarity; physically, each configuration

represents a binary on an exactly circular orbit emitting no GWs. This setup is

used to approximate a BNS during its adiabatic inspiral. The scalar mass MS of the

total system, defined in the Jordan frame, was computed in Ref. [172]. To convert

this quantity to the scalar charge of the full system, we use Qtot = MS/ (−βϕ0);

this conversion is discussed in detail in footnote 2 of Ref. [172]. For simplicity, we

assume that the component scalar charges are simply half of the total scalar charge,

Q = Qtot/2.

As evidenced by Fig. 5.2, we find very close agreement to previous predictions
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of the evolution of the scalar charge with our effective-action model. A key feature

is the frequency ΩDS at which dynamical scalarization occurs. As discussed above,

our model predicts the onset of dynamical scalarization when the binary separation

r = 1/c(2). Converting the separation into an orbital frequency using Eq. (5.36),

we find agreement to within . 10% compared to the values presented in Table

II of Ref. [3] for both the PD model and the QE configuration calculations.6 We

emphasize that our effective action model is in no way calibrated to fit the QE

results; the only numerical input to the model comes from isolated NS solutions of

the TOV equations.

Having computed Q(Ω), we now compute the energy of the binary system as

a function of frequency. We define the binding energy EB of the binary as,

EB ≡ H −M, (5.38)

and use Eq. (5.29) to evaluate the Hamiltonian. Using Eq. (5.36) to convert r to

Ω we plot the binding energy (normalized by the total mass M) as a function of

orbital frequency in Fig. 5.3. We also plot the binding energy computed from QE

configurations in Ref. [172] as dashed lines and the 4PN prediction for nonspinning

point particles in GR [316] as a green dashed-dotted line.7 To improve comparison,

we have added to the predictions of our effective-action model (computed at New-

6The agreement can be slightly improved by neglecting the O
(
c−2
)

contributions to the redshift

variables (5.31) that enter into Eq. (5.30)
7We use the 4PN binding energy in GR as our benchmark rather than more sophisticated

estimates for simplicity. For the frequency range we consider, the 4PN energy is visually indistin-

guishable from the predictions of the EOB formalism [45].
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Figure 5.3: Binding energy EB normalized by the total mass M = 2.7M�
as a function of orbital frequency for the same BNS system as in Fig. 5.2.
The predictions of the effective action model introduced here are shown
in solid lines; we add to our Newtonian-order result the 1PN, 2PN, 3PN,
and 4PN contributions found in GR. The QE configuration calculations
performed in Ref. [172] are shown with dashed lines. Red (black) curves
correspond to β = −4.2 (β = −4.5). For comparison, we have also
plotted in green the 4PN prediction for the point-particle binding energy
in GR.

259



tonian order), the 1PN, 2PN, 3PN, and 4PN corrections to the binding energy in

GR. These corrections raise the binding energy closer to the other curves in Fig. 5.3,

but do not influence the ordering of the various curves, and thus do not affect our

conclusions.

As expected, prior to the onset of dynamical scalarization, the binding en-

ergy closely resembles that of the corresponding system in GR. After dynamical

scalarization occurs, we find significant differences between our analytic model and

the QE results of Ref. [172]: the present model predicts an increase in the mag-

nitude of the binding energy |EB| relative to GR whereas the QE computations

indicate that the magnitude should decrease. Given the interpretation of dynamical

scalarization as a phase transition detailed in Sec. 5.5, one expects the scalarized

binary to be more tightly bound than the corresponding unscalarized binary, i.e.,

the GR prediction. If this were not the case, dynamical scalarization would be an

endothermic process (requiring energy input) and the ϕ → −ϕ symmetry would

not spontaneously break. Based on this intuition, the predictions of our model in

Fig. 5.3 appear qualitatively correct. The cause of the disagreement between our

model and Ref. [172] remains unclear. The discrepancy could stem from the as-

sumption of conformal flatness and/or the presence of tidal interactions absent in

our point-particle model of the dynamics. However, to explain the disagreement in

Fig. 5.3, these factors would need to play a more significant role in the presence of

scalar charges; analogous calculations done in GR agree with analytic point-particle

predictions of the binding energy much more closely than the deviations shown in

Fig. 5.3 (see, e.g., Ref. [317]).
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5.5 Dynamical scalarization as a phase transition

Having validated its accuracy in Sec. 5.4, in this section we explore an impor-

tant conceptual implication of our effective action model: we definitively establish

dynamical scalarization as a second-order phase transition. Using the Landau theory

of phase transitions [318], we discuss the scalarization of an isolated NS (spontaneous

scalarization), an equal-mass BNS (dynamical scalarization), and an unequal-mass

BNS (spontaneous, induced, and dynamical scalarization).

The approach by Landau [318] allows one to relate certain types of phase tran-

sitions to broken symmetries. We begin with a schematic review, closely following

Ref. [318]. Consider a system described by a set of state variables ζ and thermody-

namic potential Ξ(ζ) that undergoes a second-order transition between two phases

at some critical point ζ∗. The degree of symmetry in each phase can be described by

an order parameter η. We choose the order parameter such that it vanishes for the

phase with greater symmetry, but in the other phase, the breaking of some of these

symmetries causes η to be nonzero. To exhibit a second-order phase transition, the

thermodynamic potential must admit an expansion near the critical point of the

form

Ξ(ζ, η) = Ξ0(ζ) + Ξ2(ζ)η2 + Ξ4(ζ)η4 +O
(
η6
)
, (5.39)

where the coefficients obey the following conditions:

Ξ4(ζ) >0, (5.40)

Ξ2(ζ∗) =0. (5.41)
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The first condition guarantees that the system has an equilibrium solution (found

at the minimum of Ξ). We discuss the second condition below.

For states “above” ζ∗, i.e., those for which Ξ2(ζ) > 0, the potential (5.39)

is positive definite, and so the system reaches equilibrium in the more symmetric

state (the one in which η vanishes). However, as one passes through the point

ζ∗, the coefficient Ξ2(ζ) changes sign; now the potential (5.39) is minimized for

configurations with nonzero values of η.

In anticipation of later discussion, we generalize the treatment above to sys-

tems described by a vector order parameter η ∈ Rn, where Euclidean coordinates

are denoted with unitalicized Latin indices. In this generalization, the functions

Ξm(ζ) become rank-m tensors of dimension n such that Eq. (5.39) becomes

Ξ(ζ,η) =Ξ0(ζ) + [Ξ2(ζ)]ab η
aηb + [Ξ4(ζ)]abcd η

aηbηcηd +O
(
η6
)
. (5.42)

The conditions (5.40) and (5.41) must be appropriately extended, as well. To

ensure that the system has an equilibrium solution, we require that Ξ4 be positive

definite, in the sense that

[Ξ4(ζ)]abcd η
aηbηcηd > 0, ∀η ∈ Rn. (5.43)

The n-dimensional generalization of Eq. (5.41) is

det ([Ξ2(ζ∗)]ab) = 0. (5.44)

Note that in the phase with greater symmetry, our assumption that Ξ is minimized

when η vanishes ensures that all eigenvalues of the matrix [Ξ2(ζ∗)]ab must be posi-

tive. In the less symmetric phase, at least one of the eigenvalues must be negative;
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however, the determinant of the matrix remains positive if an even number of eigen-

vectors have negative eigenvalues.

5.5.1 Spontaneous scalarization of an isolated body

The classical illustration of a second-order phase transition is spontaneous

magnetization in a ferromagnet at the Curie temperature TC . In this example, Ξ

is the energy E of the system and ζ represents the temperature and external mag-

netic field B. The order parameter η is the total magnetization M ≡ −∂E/∂B,

which is thermodynamically conjugate to B. Inspired by this example, Damour and

Esposito-Farése [152] considered a phenomenological model of spontaneous scalariza-

tion following the Landau ansatz (5.39). Starting from the total energy of an isolated

NS mE(ϕ), the authors selected the potential m(Q), defined as in Eq. (5.18), to play

the role of Ξ. The bulk properties of the NS are its baryonic mass m̄ and external

scalar field ϕ. Analogous to spontaneous magnetization, the authors identified the

order parameter Q as the conjugate variable to the scalar field [c.f. Eq. (5.15)].8

The behavior of the potential m around the critical baryonic mass m̄cr was modeled

by [152]

m(Q) =
1

2
a (m̄cr − m̄)Q2 +

1

4
bQ4, (5.45)

where a and b are constant (positive) coefficients. Above the critical baryonic mass,

NSs equilibrate in configurations with nonzero scalar charge.

8The notation of Ref. [152] differs from that used here. The original notation can be recovered

with the following substitutions: ϕ→ ϕ0, Q→ ωA, mE(ϕ)→ mA(ωA, ϕ0), m(Q)→ µ(ωA).
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By design, our point-particle model (5.22) takes the same form as Eq. (5.45),

and thus can model spontaneous scalarization as well. Unlike Eq. (5.45), we do

not factor out any mass-dependence of the coefficients c(i). As demonstrated in

Section 5.4.1, our model remains valid for stars with m̄ 6≈ m̄cr—these stars were not

considered in Ref. [152]. The coefficient c(2) plays the role of Ξ2 in the Landau

ansatz (5.39); note that this coefficient depends on the properties of the NS (e.g.,

the mass and EOS) and on the scalar-tensor coupling (characterized by β). The

critical point at which a NS transitions from an unscalarized state (Q = 0) to a

spontaneously scalarized state (Q 6= 0) occurs when c(2) is zero. Neutron stars

with negative values of c(2) must spontaneously scalarize; the unscalarized state is

unstable.

5.5.2 Dynamical scalarization of equal-mass binaries

With our effective action model, we can now apply this analysis to a binary

system of NSs. For simplicity, we begin by studying equal-mass systems with zero

background scalar field ϕ0. We assume that NSs have the same properties as well,

i.e., c
(i)
A = c

(i)
B . For illustrative purposes, we drop the p2 and m/r terms in the

Hamiltonian (5.29); restoring these terms does not affect the qualitative behavior

we describe below.

Under these assumptions, the Hamiltonian is given by

H = 2m(0) +

(
c(2) − 1

r

)
Q2 +

c(4)

12
Q4, (5.46)

where we have dropped the body labels. This expression takes the same form
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Figure 5.4: Illustration of the Hamiltonian of an equal-mass BNS as
function of scalar charge and effective coefficient c

(2)
eff = c(2) − 1/r. Solu-

tions to the equations of motion are highlighted with solid lines. When
c

(2)
eff becomes negative, the trivial solutions Q = 0 become unstable. The

bottom lower plane shows the projection of the solutions.

as Eq. (5.39). Using the same analysis as in the previous subsection, we show

that dynamical scalarization is a second-order phase transition that occurs at a

separation rDS = 1/c(2); this conclusion agrees with our prediction in Eq. (5.34). By

comparing Eqs. (5.22) and (5.46) we see that an equal-mass dynamically scalarizing

system behaves like an isolated NS with an effective coefficient c
(2)
eff ≡ c(2)− 1/r that

decreases as the binary coalesces.

In Fig. 5.4, we plot the simplified Hamiltonian (5.46) as a function of charge

and effective coefficient c(2) − 1/r. For positive values of this effective coefficient,

the energy is minimized in the trivial configuration Q = 0. Below the critical
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Figure 5.5: Illustration of the binding energy as a function of scalar
charge for BNSs that undergo: (left) spontaneous scalarization, (middle)
induced scalarization, and (right) dynamical scalarization. Equilibrium
solutions are highlighted with dots. The solutions are projected onto the
(QA, QB) plane below; colored arrows indicate the flow of these solutions
as the binary coalesces.

point c
(2)
eff = 0, the unscalarized state becomes unstable; instead, the binary system

transitions into a scalarized state. The bottom plane shows the projection of the

equilibrium solutions in black. As predicted by Eq. (5.34), the stable solutions

bifurcate at the critical point, spontaneously breaking the scalar-parity symmetry

of the theory. Note that this entire discussion can be applied directly to isolated

NSs that undergo spontaneous scalarization by taking r →∞.

5.5.3 Scalarization of unequal-mass binaries

Finally, we turn our attention to the critical phenomena that can occur in

unequal-mass binaries. The (vector) order parameter η ∈ R2 is given by

(η1, η2) = (QA, QB) . (5.47)
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Again, we assume that the background scalar field ϕ0 vanishes and drop the p2

and m/r terms in the Hamiltonian (5.29); these simplifications do not affect the

qualitative behavior described below. Under these assumptions, the Hamiltonian

takes the same form as Eq. (5.42) with

Ξ0 =m
(0)
A +m

(0)
B , (5.48)

[Ξ2]ab =
1

2

 c
(2)
A −r−1

−r−1 c
(2)
B

 , (5.49)

[Ξ4]abcd =
1

24

(
c

(4)
A δ1

aδ
1
bδ

1
cδ

1
d + c

(4)
B δ2

aδ
2
bδ

2
cδ

2
d

)
. (5.50)

We examine the Hamiltonian (5.29) for systems that undergo:

1. Spontaneous scalarization: Both stars are initially scalarized (c
(2)
A < 0, c

(2)
B <

0),

2. Induced scalarization: Only one star is initially scalarized (c
(2)
A > 0, c

(2)
B < 0),

3. Dynamical scalarization: Neither star is initially scalarized (c
(2)
A > 0, c

(2)
B > 0).

For all three cases, we restrict our attention to binaries following circular orbits. The

binding energy is shown in Fig. 5.5 as a function of the NS charges. We show only

the slices of the full graph H(QA, QB) that pass through equilibrium solutions; for

comparison, these curves correspond to the thin black lines on the surface in Fig. 5.4.

Moving from left to right, the plots correspond to spontaneous, induced, and dy-

namical scalarization, respectively. Moving downwards in each plot, the green, red,

and blue curves depict the binding energy at progressively smaller separations. The

equilibrium solutions are denoted with dots on the curves and are projected onto the
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(QA, QB)-plane in the color corresponding to their separation. The colored arrows

depict the flow of equilibrium solutions as the separation decreases.

At large separations (green), there exist four stable configurations for sponta-

neously scalarized binaries (left panel): each NS can exhibit a positive or negative

scalar charge, and the choices for each are uncorrelated. However, as the separation

decreases (red and blue), configurations in which the two stars have opposite-parity

charges become energetically unfavorable. As indicated by the pink arrows, these so-

lutions flow towards the origin and transform into a saddle point, i.e., this branch of

solutions becomes unstable. Thus, at this critical separation (red) there exists a new

phase transition distinct from those discussed above. From Eqs. (5.44) and (5.49),

we find that this critical point occurs at a separation of r∗ = (c
(2)
A c

(2)
B )−1/2. Unlike

with dynamical scalarization, the more symmetric state phase occurs at separations

smaller than r∗. The equilibrium solutions with charges of the same sign flow away

from the origin as the binary coalesces. The charge of each spontaneously scalarized

star will continue to grow during the inspiral due to feedback from its companion.

Binaries that undergo induced scalarization (middle panel) begin with an un-

scalarized star QA = 0 and a scalarized star QB 6= 0 (green). As the stars are

brought closer together (red), the unscalarized star rapidly develops scalar charge,

whereas the initially scalarized star remains (approximately) unchanged. However,

as the separation decreases further (blue), the two charges become of the same or-

der of magnitude and continue to increase at roughly the same rate through the

remainder of the coalescence. Unlike for spontaneous and dynamical scalarization,

the branches of equilibrium solutions are disjoint throughout the entire coalescence,
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i.e. the colored arrows in Fig. 5.5 never meet. Because c
(2)
A and c

(2)
B have opposite

signs, the determinant of [Ξ2]ab [given in Eq. (5.49)] is negative for all separations.

Induced scalarization fails to meet condition (5.44) and therefore cannot be classified

as a phase transition.

Finally, initially unscalarized unequal-mass binaries (right panel) evolve simi-

larly as in Fig. 5.4. As seen in Fig. 5.5, the binary system begins in an unscalarized

state (green). At the critical transition point (red), the effective c(2) coefficient

vanishes; beyond that point (blue), scalarization becomes energetically favorable.

Again, Eqs. (5.44) and (5.49) reveal that dynamical scalarization occurs at a sepa-

ration of rDS = (c
(2)
A c

(2)
B )−1/2, which reduces to the result in Sec. 5.5.2 when c

(2)
A = c

(2)
B .

As before, the scalar charges continue to grow after the onset of dynamical scalar-

ization.

5.6 Conclusions

In the present paper, we developed a new point-particle model for NSs in

scalar-tensor gravity that can reproduce spontaneous, induced, and dynamical scalar-

ization. The model parametrizes the various scalarization phenomena by just two

coefficients c(2), c(4) for each NS. This approach should be contrasted with previous

analytic models of dynamical scalarization [3, 170], which relied upon numerically

solving equations containing the generic function mE(ϕ). For the first time, we have

computed a two-body Hamiltonian that incorporates dynamical scalarization in a

self-consistent manner (see Ref. [3] for a discussion of previous attempts). Observ-
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ables derived from the model at leading order in the PN expansion were shown to be

in good agreement with earlier analytic models and numerical QE calculations. The

identification of the relevant dynamical variables in the effective action is crucial to

our model.

Analogous to the analysis done in Ref. [152] concerning spontaneous scalariza-

tion, our model rigorously establishes dynamical scalarization as a phase transition

as per Landau theory [318]. Additionally, it demonstrates the intimate connec-

tion between spontaneous and dynamical scalarization. The mapping between an

equal-mass BNS undergoing dynamical scalarization and an effective spontaneously

scalarized NS is detailed in Sec. 5.5.2.

Our effective action stands as an important first step towards accurate ana-

lytic waveforms of dynamically scalarizing BNSs. The model benefits from its close

analogy to the effective action model of dynamical tides detailed in Refs. [292, 299]—

the dynamical scalar monopole Q here corresponds to the dynamical gravitational

quadrupole therein. References [292, 299] derived an accurate EOB [38, 39] wave-

form model incorporating dynamical tidal interactions. Using this model as a tem-

plate, one could construct an analogous model for dynamical scalar-tensor effects.

This construction will require calculations of dissipative effects and higher PN order

results for the conservative dynamics.

Another avenue for future work is the addition of kinetic-energy terms to the

effective action as in Eq. (5.23). Resonant effects play an important role in the

dynamical tides model of Refs. [292, 299]; it remains to be seen whether analogous

effects could be important with dynamical scalar charges. Formulating the effective
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action in this manner offers a conceptual advantage over the current model, as it

guarantees that all of the equations of motion are ordinary differential equations

(rather than a mix of nonlinear algebraic and differential equations).

Finally, an intriguing extension of this work is to theories with a massive

scalar field. Pulsar timing cannot constrain sufficiently short-range scalar fields, so a

much wider range of parameter space of massive scalar-tensor theories remains to be

constrained by GW observations than that of theories with a massless scalar [161].

The PN dynamics of a simple massive scalar-tensor theory were investigated in

Ref. [94], and spontaneous scalarization of isolated NSs was studied in Refs. [95,

161]; the framework we have presented above could synthesize these results with

appropriate modifications to the field equations (5.6) and (5.7).
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Chapter 6: Theory-agnostic modeling of dynamical scalarization in

compact binaries

Authors: Mohammed Khalil, Noah Sennett, Jan Steinhoff, and Alessandra

Buonanno1

Abstract: Gravitational wave observations can provide unprecedented insight

into the fundamental nature of gravity and allow for novel tests of modifications to

General Relativity. One proposed modification suggests that gravity may undergo a

phase transition in the strong-field regime; the detection of such a new phase would

comprise a smoking-gun for corrections to General Relativity at the classical level.

Several classes of modified gravity predict the existence of such a transition—known

as spontaneous scalarization—associated with the spontaneous symmetry breaking

of a scalar field near a compact object. Using a strong-field-agnostic effective-field-

theory approach, we show that all theories that exhibit spontaneous scalarization

can also manifest dynamical scalarization, a phase transition associated with sym-

metry breaking in a binary system. We derive an effective point-particle action that

provides a simple parametrization describing both phenomena, which establishes a

foundation for theory-agnostic searches for scalarization in gravitational-wave obser-

1Originally published as Phys. Rev. D100, 124013 (2019).
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vations. This parametrization can be mapped onto any theory in which scalarization

occurs; we demonstrate this point explicitly for binary black holes with a toy model

of modified electrodynamics.

6.1 Introduction

Classical gravity described by General Relativity (GR) has passed many exper-

imental tests, from the scale of the Solar System [79] and binary pulsars [249, 294] to

the coalescence of binary black holes (BHs) [10, 73, 122, 123, 184] and neutron stars

(NSs) [9]. Despite its observational success, certain theoretical aspects of GR (e.g.,

its nonrenormalizability and its prediction of singularities [319]) impede progress

toward a complete theory of quantum gravity; yet, strong-field modifications of the

theory may alleviate these issues [83].

Gravitational wave (GW) observations probe the nonlinear, strong-field be-

havior of gravity and thus can be used to search for (or constrain) deviations from

GR in this regime. Because detectors are typically dominated by experimental noise,

sophisticated methods are required to extract GW signals. The most sensitive of

these techniques rely on modeled predictions of signals (gravitational waveforms),

which are matched against the data. This same approach can be adopted to test

gravity with GWs; to do so requires accurate signal models that faithfully incorpo-

rate the effects from the strong-field deviations one hopes to constrain [79]. Ideally,

these models would be agnostic about details of the strong-field modifications to

GR, so that a single test could constrain a variety of alternative theories of gravity.
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This work establishes a framework for such tests given the hypothetical sce-

nario in which the gravitational sector manifests phase transitions, with only one

phase corresponding to classical GR. This proposal comprises an attractive target

for binary pulsar and GW tests of gravity; if the transition between phases arises

only in the strong-gravity regime (e.g., in the presence of large curvature, relativistic

matter, etc.), then such a theory could generate deviations from GR in compact bi-

nary systems while simultaneously evading stringent constraints set by weak-gravity

tests. We consider the case wherein the “new” phases arise via spontaneous sym-

metry breaking in the gravitational sector. Similar phase transitions occur in many

areas of contemporary physics—perhaps the most famous example is the electroweak

symmetry breaking through the Higgs field [320–322]—so it is sensible to consider

their appearance in gravity as well. As a first step, we focus on a simple set of

such gravitational theories, in which the transition from GR to a new phase most

closely resembles the spontaneous magnetization of a ferromagnet; however, these

theories can also be extended to instead replicate the standard Higgs mechanism in

the gravitational sector [323, 324].

Specifically, we investigate the nonlinear scalarization of nonrotating com-

pact objects (BHs and NSs), which arises from spontaneous symmetry breaking of

an additional scalar component of gravity [4, 152]. Spontaneous scalarization—the

scalarization of a single, isolated object—has been found in several scalar extensions

of GR, including massless [153–159] and massive [160–162] scalar-tensor (ST) theo-

ries and extended scalar-tensor-Gauss-Bonnet (ESTGB) theories [163–168]. Similar

phenomena can also occur for vector [325, 326], gauge [324], and spinor [327] fields.
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In contrast, dynamical scalarization—scalarization that occurs during the coales-

cence of a binary system—has been demonstrated and modeled only for NS binaries

in ST theories [3, 4, 169–172, 175, 328].

A scalarized compact object emits scalar radiation when accelerated, analo-

gous to an accelerated electric charge. In a binary system, the emission of scalar

waves augments the energy dissipation through the (tensor) GWs found in GR,

hastening the orbital decay. Radio observations of binary pulsars [6, 249, 294, 329]

and GW observations of coalescing BHs and NSs [9, 10] are sensitive to anomalous

energy fluxes, and thus can be used to constrain the presence of scalarization in

such binaries. In addition to the tensor radiation mentioned above, binaries con-

taining spontaneously scalarized components also emit scalar radiation throughout

their entire evolution. In contrast, dynamically scalarizing binaries transition from

an unscalarized (GR) state to a scalarized (non-GR) state at some critical orbital

separation, emitting scalar waves only after this point. Because this is a second-

order phase transition [4], the emitted GWs contain a sharp feature corresponding

to the onset of dynamical scalarization. This feature cannot be replicated within

typical theory-agnostic frameworks used to test gravity [117, 118, 120, 176], as these

only consider smooth deviations from GR predictions, e.g., modifications to the

coefficients of a power-series expansion of the phase evolution.

While one could attempt to model dynamical scalarization phenomenologically

by adding nonanalytic functions to such frameworks [175, 271], in this work, we

propose a complementary theory-agnostic approach. We focus on a specific non-

GR effect, here scalarization, but remain agnostic toward the particular alternative
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theory of gravity in which it occurs. The basis for our framework is effective field

theory. Scalarization arises from strong-field, nonlinear scalar interactions in the

vicinity of compact objects; the details of this short-distance physics depends on

the specific alternative to GR that one considers. By integrating out these short-

distance scales, we construct an effective point-particle action for scalarizing bodies

in which the relevant details of the modification to GR are encapsulated in a small

set of form factors. The coefficients of these couplings offer a concise parametrization

ideal for searches for scalarization with GWs. The essential step in constructing this

effective theory is identifying the fields and symmetries relevant to this phenomenon.

Starting from the perspective that scalarization coincides with the appearance of a

tachyonic scalar mode of the compact object, we derive the unique leading-order

effective action valid near the critical point of the phase transition. Though this

effective action matches that of Ref. [4]—which describes the scalarization of NSs in

ST theories2—the approach described here is valid for a broader range of non-GR

theories.

Our proposed parametrization of scalarization is directly analogous to the

standard treatment of tidal interactions in compact binary systems. Tidal effects

enter GW observables through a set of parameters that characterize the response of

each compact object to external tidal fields [308]. These parameters are determined

by the structure of the compact bodies—for example, the short-distance nuclear

interactions occurring in the interior of a NS. This description of tidal effects is

applicable to a broad range of nuclear models (i.e., NS equations of state) and offers

2Dynamical scalarization was also modeled at the level of equations of motion in Refs. [3, 170].
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a more convenient parametrization of unknown nuclear physics for GW measure-

ments [186, 330] than directly incorporating nuclear physics into GW models. From

the perspective of modeling compact binaries, the primary difference between tidal

effects and scalarization is that the latter is an inherently nonlinear phenomenon,

necessitating higher-order interactions in an effective action.

Beyond offering a convenient parametrization for GW tests of gravity, our ef-

fective action also elucidates certain generic properties of scalarization phenomena.

Using a simple analysis of energetics based on the effective theory, we argue that

any theory that admits spontaneous scalarization must also admit dynamical scalar-

ization. Additionally, this type of analysis can provide further insights regarding the

(nonperturbative) stability of scalarized configurations and the critical phenomena

close to the scalarization phase transition. We illustrate these points by applying our

energetics analysis to a simple Einstein-Maxwell-scalar (EMS) theory in which elec-

trically charged BHs can spontaneously scalarize, complementing previous results

for NSs in ST theories [4].

The paper is organized as follows. In Sec. 6.2, we first review the mechanism

of scalarization as the spontaneous breaking of the Z2 symmetry of a scalar field

driven by a linear scalar-mode instability. Then, we construct an effective worldline

action for a compact object interacting with a scalar field valid near the onset of

scalarization. In Sec. 6.3, we discuss how the relevant coefficients in the action can

be matched to the energetics of an isolated static compact object in an external

scalar field, demonstrating the procedure explicitly with BHs in the EMS theory of

Ref. [158]. In Sec. 6.4, we employ the effective action to further investigate scalar-
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ization in this EMS theory: we examine the stability of scalarized configurations,

compute the critical exponents of the scalarization phase transition, and predict the

frequency at which dynamical scalarization occurs for binary BHs. We also argue

that dynamical scalarization is as ubiquitous as spontaneous scalarization in modi-

fied theories of gravity. Finally, in Sec. 6.5, we summarize the main implications of

our findings, and discuss future applications of our framework. The appendixes pro-

vide a derivation of a more general effective action and details on the construction

of numerical solutions for isolated BHs in EMS theory.3

6.2 Linear mode instability and effective action close to critical point

In this section, we review the connection between the appearance of an unsta-

ble scalar mode in an unscalarized compact object and the existence of a scalarized

state for the same body. We then derive an effective action close to this critical

point at which this mode becomes unstable.

As an illustrative toy model for this discussion, we consider the modified theory

of electrodynamics introduced in Ref. [158] (hereafter referred to as EMS theory for

brevity), whose action is given by

Sfield =

∫
d4x

√−g
16π

[R− 2∂µφ∂
µφ− f(φ)F µνFµν ] , (6.1)

where R is the Ricci scalar, g is the determinant of the metric gµν , and Fµν =

3Throughout this work, we use the conventions of Misner, Thorne, and Wheeler [15] for the

metric signature and Riemann tensor and work in units in which the speed of light and bare

gravitational constant are unity.
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∂µAν − ∂νAµ is the electromagnetic field tensor. In this work, we consider two

choices of scalar couplings:

f1(φ) =e−αφ
2

, (6.2)

f2(φ) =

(
1 + αφ2 − 1

2
α2φ4

)−1

, (6.3)

where α is a dimensionless coupling constant. While the two couplings have the

same behavior near φ = 0, their behavior for large field value differs drastically.

The former choice was used in Ref. [158] to construct stable scalarized BH solutions,

whereas we introduce the latter in this work to demonstrate a theory in which no

stable scalarized BH configurations exist (see Sec. 6.4).

The absence of any linear coupling of φ to the Maxwell term implies that any

solution in Einstein-Maxwell (EM) theory, i.e., with φ = 0, also solves the field

equations of Eq. (6.1); however, stable solutions in EM theory may be unstable in

EMS theory. To see this, we write the scalar-field equation schematically as

2φ = m2
eff φ, m2

eff =
f ′(φ)

4φ
F µνFµν . (6.4)

We consider an electrically charged BH, for which F µνFµν < 0 and thus the effective-

mass squared m2
eff is negative for α < 0. One can decompose φ into Fourier modes

with frequency ω and wave vector k, which satisfy the dispersion relation ω2 ≈

k2 +m2
eff(k), where curvature corrections have been dropped for simplicity. We see

that if m2
eff(k) is sufficiently negative, then ω2 is also negative, leading to a tachyonic

instability. The critical point at which this tachyonic instability first appears can

be determined by identifying linearly unstable quasinormal scalar modes of the EM
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Figure 6.1: An illustration of the approach used in this work (read from
left to right). (Left) The fields describing an isolated compact object in
equilibrium are decomposed into short- (UV) and long- (IR) wavelength
modes, depicted in blue and red, respectively. (Center) We integrate out
the UV modes via an IR projection. (Right) By matching asymptotics,
we identify the coarse-grained compact object with an effective point-
particle model that describes the IR sector of the full theory. Section 6.3
contains a detailed description of this procedure and the definitions of
all quantities shown above.

solution [164, 331] or by constructing sequences of fully nonlinear, static scalarized

solutions (as we do here) [158, 331].

The tachyonic instability drives the body away from the unscalarized solution,

thereby breaking the symmetry φ → −φ in Eq. (6.1). For a stable scalarized equi-

librium configuration to exist, this instability must saturate in the nonlinear regime

[332]. These two conditions—the existence of a tachyonic instability and its eventual

saturation—are satisfied in all of the theories discussed previously [153–168, 324–

327]. The only difference between these theories is the form of m2
eff; for example, in

ST theories m2
eff depends on the stress-energy tensor, while in ESTGB it depends

on the Gauss-Bonnet invariant. Indeed, theories which meet these two criteria can

be straightforwardly constructed, which is the reason why scalarization is such a

ubiquitous phenomenon.
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An even simpler perspective on scalarization arises from a coarse-grained, or

effective, theory. Let us derive it explicitly. We start by splitting the fields into the

short- (or ultraviolet, UV) and long- (or infrared, IR) wavelength regimes separated

by the object’s size ∼ R, i.e., φ = φIR + φUV, and spatially average over (integrate

out) the UV parts. This effectively shrinks the compact object to a point and its

effective action is given by an integral over a worldline yµ(τ), where τ is the proper

time (see Fig. 6.1 for a schematic illustration). Dynamical short-length-scale pro-

cesses like oscillations of the object are represented by dynamical variables on the

worldline. For simplicity, we assume that we can also average over fast oscillation

modes and only retain the monopolar mode associated to a linear tachyonic insta-

bility, denoted by q(τ). This mode q(τ) can indeed be excited by IR fields, since its

frequency (or effective mass) vanishes at the critical point.

Effective actions are usually constructed by making an ansatz respecting cer-

tain symmetries and including only terms up to a given power in the cutoff between

IR and UV scales. The relevant symmetries here are diffeomorphism, U(1)-gauge,

worldline-reparametrization, time-reversal4, and scalar-inversion invariance. The

last reads φ → −φ in the full theory, so in the effective action it decomposes into

simultaneous IR φIR → −φIR and UV q → −q transformations. The IR fields are

of order φIR ∼ O(R/r) on the worldline, where r is the typical IR scale (e.g., the

separation of a binary). Now, the oscillator equation for the mode q(τ) driven by

4Time reversal is an approximate symmetry of compact objects in an adiabatic setup, like

the inspiral of a binary system. In this case, a compact object’s entropy remains approximately

constant.
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the IR field φIR can be schematically written as

cq̇2 q̈ + V ′(q) = φIR(y), V (q) =
c(2)

2
q2 +

c(4)

4!
q4 + . . . , (6.5)

where ˙ = d/dτ and the c... are constant coefficients determined by the UV physics.

(The singular self-field contribution to φIR(y) must be removed using some regu-

larization prescription.) The normalization of q is chosen to fix the coefficient of

φIR(y); for all that follows, we simply assume that cq̇2 > 0. Close to the critical

point, the quadratic term in V is negligible, and thus from Eq. (6.5), one finds that

for equilibrium configurations (q̇ = 0), q scales as q3 ∼ φIR. More generally, the

mode q oscillates around this equilibrium point provided that the IR field evolves

slowly relative to the frequency of the mode, i.e., φ̇IR = ẏµ∂µφ
IR � q̇/q; this con-

dition is satisfied for binary systems on quasicircular orbits (which we restrict our

attention to in this work), but could be violated for highly eccentric orbits. For

small perturbations around equilibrium, one finds that q̇ ∼ δ
√
φIR and q̈ ∼ δφIR

where δ ≡ (q− q0)/q0 � 1 is the fractional deviation from the equilibrium point q0.

Using the scaling relations derived above, we construct the most generic effec-

tive action for a nonrotating compact object with a dynamical mode q(τ) described

by Eq. (6.5) close to the critical point, up to order O(R2/r2)

Scrit
CO =

∫
dτ

[
cq̇2

2
q̇2 + φIR(y)q − c(0) −

c(2)

2
q2 − c(4)

4!
q4

+ cAA
IR
µ (y)ẏµ +O

(
R2

r2

)]
, (6.6)

=

∫
dτ

[
cq̇2

2
q̇2 + φIR(y)q −m(q)

+ cAA
IR
µ (y)ẏµ +O

(
R2

r2

)]
, (6.7)
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where CO stands for compact object and for later convenience we define

m(q) ≡ c(0) + V (q). (6.8)

Terms containing time derivatives of φIR all enter at higher order in R/r than we

work, e.g., φ̈IRq ∼ φ̇IRq̇ ∼ φIRq̈ ∼ O(R2/r2), and thus are absent in Eq. (6.7). A

reparametrization-invariant action is obtained by replacing dτ with

dτ = dσ

√
−gIR

µν(y)
dyµ

dσ

dyν

dσ
, (6.9)

where σ is an arbitrary affine parameter, and replacing derivatives d/dτ accordingly.

The complete effective action reads

Seff = SIR
field + Scrit

CO , (6.10)

where more copies of Scrit
CO can be added depending on the number of objects in the

system and SIR
field is given by Eq. (6.1) with IR labels on the fields. The equations of

motion and field equations are obtained by independent variations of yµ(σ), q(σ),

and φIR(x), gIR
µν(x), AIR

µ (x).

The simplicity of Scrit
CO is striking, but we recall that it is only valid close to the

critical point of a monopolar, tachyonic, linear instability of a scalar mode. (A more

generic effective action valid away from the critical point is discussed in Appendix

H.) Despite its simplicity, the effective action (6.10) is theory agnostic, in the sense

that it is constructed assuming only the scalar-inversion symmetry and that the

nonrotating compact object hosts such a mode; in particular, it should hold for the

cases studied in Refs. [153–168, 324–327] and similar work to come. We emphasize

that strong-field UV physics at the body scale is parametrized through the numerical
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coefficients c..., which can be matched to a specific theory and compact object, or

be constrained directly from observations (analogous to tidal parameters [9, 330]).

6.3 Matching strong-field physics into black-hole solutions

As an illustrative example of the effective-action framework derived above, we

now compute the sought-after coefficients c... for BHs in EMS theory.

For this purpose, we match a BH solution in the full theory (6.1) to a generic

solution of the coarse-grained effective theory (6.10) for an isolated body. Schemat-

ically, the former represents the full solution at all scales, while the latter only

represents its projection onto IR scales. We focus first on BH solutions of the full

theory (6.1), restricting our attention to equilibrium/static, electrically charged,

spherically symmetric solutions.

In EMS theory, this family of solutions is characterized by three independent

parameters, which we take to be the electric charge E , the BH entropy S, and the

asymptotic scalar field φ0, assuming a vanishing asymptotic electromagnetic field

and an asymptotically flat metric. The electric charge is globally conserved by

the U(1) symmetry of the theory and the entropy remains constant under reversible

processes, which we have implicitly restricted ourselves to by assuming time-reversal

symmetry in the effective action. Thus, we use a sequence of solutions with fixed E

and S to represent the response of a BH to a varying scalar background φ0. Since

EMS theory modifies electrodynamics, but not gravity or the coupling to gravity,

the entropy of a charged BH is the same as in GR, i.e., it is proportional to the
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Figure 6.2: The potential V (q) for α = −8 and different electric charges
E . The left and right panels correspond to BHs in EMS theory with cou-
pling f1(φ) [Eq. (6.2)] and f2(φ) [Eq. (6.3)], respectively. The numerical
solutions and polynomial fits are indicated with points and lines, respec-
tively.

horizon area. See also Ref. [158] for the first law of BH thermodynamics in EMS

theory.

The asymptotic behavior of the fields take the form
φ

A0

g00

 =


φ0

0

−1

+


Q(φ0)

−Eeαφ20

2M(φ0)


1

|X| +O(|X|−2), (6.11)

where Q(φ0) is the scalar charge of the BH andM(φ0) is its gravitational mass.5 We

construct these solutions numerically (see Appendix I for details), and then compute

φ0,M, and Q directly from their asymptotic behavior.

Next, we turn our attention to the description of these BH solutions in the

5The quantities Q(φ0) and M(φ0) describing the asymptotic behavior of the solution also

depend on the parameters E and S, but we suppress the dependence in our notation for brevity.

Derivatives of Q and M are taken holding E and S constant.
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effective theory (6.10). We set up the solution under the same boundary condi-

tions as the numerical sequence described above; in particular, we look at isolated

equilibrium configurations, yα∂αg
IR
µν ≈ yα∂αA

IR
0 ≈ yα∂αφ

IR ≈ q̇ ≈ 0. We construct

a coordinate system x in which the worldline has spatial components y = 0, so

that all fields are independent of time. Furthermore, relying on the fact that both

solutions are asymptotically flat, we choose the coordinates x such that they match

the numerical coordinates X in the asymptotic region, i.e., x = X + O(|X|−1).

Then working to linear order in the fields, we find
φIR

AIR
0

gIR
00

 =


φ0

0

−1

+


q

−cAeα[φIR(y)]2

2[m(q)− φIR(y)q]


1

|x| + . . . . (6.12)

These fields are singular when evaluated on the worldline, x = y = 0. This can

be cured by appropriately regularizing the solution; here, we simply keep the finite

part and drop the singular self-field part, e.g., φIR(y) = φ0. The situation is anal-

ogous to the singular fields that arise in electrostatics when an extended source is

approximated by a point charge.

In addition to a solution for the fields, a variation of q in the effective action

leads to

φ0 =
dm

dq
=
dV

dq
= c(2)q +

c(4)q
3

3!
+O

(
R2

r2

)
. (6.13)

The matching now consists of identifying the IR-scale fields in the solution of

the full theory (6.11) with the fields predicted in the IR effective theory (6.12). We

extract the IR-scale fields from the former solution using an appropriate IR projector

P IR[·], such that the matching conditions are given explicitly as P IR[φ] = φIR (and
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likewise for the other fields). Such a projector is most easily formulated in the Fourier

domain, so we first compute the (spatial) Fourier transform of the fields (6.11),

denoted by a tilde

φ̃(K) = φ0δ(K) +
4πQ(φ0)

K2
+O(|K|−1). (6.14)

We employ the simple projector P IR[φ̃] ≡ φ̃(K)Θ(KIR − |K|), where Θ is the

Heaviside function and KIR is the cutoff scale. Applying this projection to Eq. (6.14)

and taking the inverse Fourier transform, one finds that P IR[φ] takes the same form

as Eq. (6.11) on scales longer than the cutoff, i.e., for |X| � 1/KIR. Then, our

matching conditions P IR[φ] = φIR, P IR[A0] = AIR
0 , P

IR[g00] = gIR
00 reduce to

Q(φ0) = q, E = cA, M(φ0) = m(q)− φ0q, (6.15)

where we have used φIR(y) = φ0 as discussed above. Note that the last equation

and m′(q) = φ0 (6.13) reveal that the two measures of energyM and m are related

by a Legendre transformation of the conjugate variables (q, φ0). Hence, we find

that Q = q = −M′(φ0), in agreement with the first law of BH thermodynamics

[333, 334].

While M(φ0) is the gravitational mass of the system, m(q) represents the

“gravitational free energy” of the body (see also Sec. III.A of Ref. [4]). That is, m

is the mass/energy with the potential energy −φ0q (due to the external scalar field)

subtracted fromM. We find below that m—notM—serves as better representation

of “point-particle mass” found in the Lagrangian or Hamiltonian description of a

binary system; of course, both quantities reduce to the standard ADM mass in GR

in the absence of scalarization. Furthermore, away from the critical point, it is not
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necessary to treat the mode q as a dynamical variable. This means that we can set

q̇ = 0 and remove q from the action (6.7). The latter is achieved by virtue of the

Legendre transformation between m(q) in Eq. (6.7) and M(φIR(y)),

SCO =

∫
dτ

[
−M(φIR(y)) + EAIR

µ (y)ẏµ + . . .

]
. (6.16)

We see thatM plays the role of the Eardley mass [204] in the action now. We note

that since the Eardley mass and m(q) are related by a Legendre transformation,

they contain the same information.

To compute the values of the various c..., we numerically construct a sequence

of BH solutions as described above and extract the functions M(φ0) and Q(φ0).

From there we obtain m(q) and V (q) numerically from Eq. (6.15), as illustrated in

Fig. 6.2. Each curve indicates a BH sequence with a different electric charge-to-mass

ratio E/m(0), where m(0) ≡ c(0) is the mass of the isolated BH with no scalar charge.

The points indicate the numerically computed solutions, which are calculated by

solving the field equations with different boundary conditions for the scalar field

(see Appendix I). The solid lines are polynomial fits of the form (6.5), from which

we extract the values of the coefficients c(2) and c(4).

It is remarkable that from equilibrium solutions one can fix the potential of a

dynamical (nonequilibrium) mode to order q4. This connection is nontrivial, and it

breaks down when one relaxes the assumption of being close to the critical point. For

instance, if terms like (φIR)2 are included in Eq. (6.7), then Q 6= q; or consider the

case of a minimally coupled scalar field (α = 0), wherein no-hair theorems [23, 148]

guarantee that M(φ0) = const—the energy of an equilibrium BH obviously does
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not encode any information about dynamical modes.

Having described how to compute the coefficients c... in the effective action (6.7),

the following section illustrates how this action can be used to study spontaneous

and dynamical scalarization.

6.4 Modeling strong-gravity effects within the theory-agnostic frame-

work

In this section, we show how spontaneous and dynamical scalarization can be

understood from the effective theory (6.7), based on a simple analysis of energetics.

We use this effective action to investigate the properties of these critical phenomena,

namely their critical exponents. Though we use EMS theory to make quantitative

predictions throughout this section, we emphasize again that the qualitative behav-

ior we find should hold generically for all theories in which spontaneous scalarization

occurs. More specifically, theories in which scalarized configurations are stable are

analogous to EMS theory with scalar coupling f1(φ), whereas those where such

configurations are unstable correspond to the coupling f2(φ) (see the following sub-

section for details). Extending the predictions made below to other theories only

requires computation of the effective mode potential V (q), as described in the pre-

vious section, and the inclusion of any new long-range fields not present in EMS

theory that impact the motion of binary systems.
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6.4.1 Spontaneous scalarization

Recall that a spontaneously scalarized object is one that hosts a nonzero scalar

charge even in the absence of an external scalar field φ0 = 0. From Eq. (6.13) we

see that φ0 = 0 corresponds to extrema of V (q) for equilibrium configurations. Fur-

thermore, since V (q) is the oscillation-mode potential, q dynamically evolves into

a minimum of V (q) [see Eq. (6.5)]. Thus, the existence of spontaneously scalar-

ized configurations is indicated by nontrivial extrema of V (q), and the stability of

these configurations depends on whether such points are local minima (stable) or

maxima (unstable). For example, the left panel Fig. 6.2 depicts the appearance of

spontaneously scalarized BH solutions as one increases the charge-to-mass ratio in

EMS theory with coupling f1(φ). Without enough electric charge (e.g., the red and

orange curves, with c(2) > 0), the EM (unscalarized) solutions are the only stable

BH solutions, but by increasing the charge beyond a critical value (e.g., the green

and blue curves, with c(2) < 0), the EM solution becomes unstable and the stable

solutions instead occur at nonvanishing values of q.

Our approach allows one to determine the values of the coupling α and the

electric charge E at which spontaneous scalarization first occurs (c(2) = 0) using

only sequences of equilibrium BH solutions. A more direct approach employed in

the past was to search for instabilities of linear, dynamical scalar perturbations on a

(GR) Reissner-Nordström background [331]. We find that the two methods provide

the same predictions. For the choice of coupling f1(φ), we compute the critical

coupling as a function of the electric charge αcrit(E) where c(2) = 0 and find that our
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results agree with the predictions of Ref. [331] at the onset of the linear instability

of the ` = 0 scalar mode to within 1%. For theories in which scalarized solutions

are easy to construct, like the EMS theory considered here, our approach can more

efficiently compute this critical point than a perturbative stability analysis. We see

that the effective potential V (q) provides strong indications for a linear scalar-mode

instability and its nonlinear saturation.

The same energetics argument reveals drastically different behavior in the

EMS theory with coupling f2(φ), depicted in the right panel of Fig. 6.2. Recall that

f1(φ) ≈ f2(φ) for small field values, but the two choices differ in the nonlinear regime,

which will dramatically impact the stability of scalarized solutions. This distinction

is reflected in our effective action by the sign of c(4); this coefficient is positive for the

choice of coupling f1(φ) and negative for f2(φ). Our simple energetics arguments

reveal that above some critical electric charge (e.g., the green and blue curves with

c(2) < 0), no spontaneously scalarized solutions exist, whereas below this value (e.g.,

the red and orange curves with c(2) > 0) spontaneously scalarized solutions may

exist, but are unstable to scalar perturbations. In the former case (the green and

blue curves), there is no sign of a nonlinear saturation of the tachyonic instability

of the EM solution; no stable equilibrium solutions seem to exist. However, it is

impossible to infer how the unstable EM solutions would evolve using our effective

theory, since the assumption of time-reversal symmetry (or constant BH entropy)

will likely break down. Numerical-relativity simulations are needed to answer this

question (or the construction of a more generic effective theory).

The importance of nonlinear interactions in stabilizing spontaneously scalar-
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ized solutions has been studied extensively in the context of ESTGB theories [335–

337]. For those theories, exponential couplings (equivalent to our f1) or quartic cou-

plings (f ∼ −φ2 + φ4) provide stable scalarized solutions, whereas with quadratic

couplings (f ∼ −φ2), all scalarized solutions are unstable. Interestingly, quadratic

couplings predict stable scalarized solutions in EMS theories [338], but our analysis

suggests that stability is not guaranteed for generic couplings. The stability analy-

ses in these references involve studying linearized perturbations on scalarized back-

grounds. Though technically only valid near the critical point of the spontaneous

scalarization phase transition and for small q, our approach offers a much easier

alternative for estimating stability. We find that our approach correctly reproduces

the findings of these stability analyses for scalarized BHs in EMS theories [338, 339].

6.4.2 Critical exponents of phase transition in gravity

The point-particle action (6.7) also offers some insight into the critical behav-

ior that arises near the onset of spontaneous scalarization. For this discussion, we

restrict our attention to the scalar coupling f1(φ), for which spontaneously scalar-

ized configurations are stable. Considering the various coefficients c... as functions

of the electric charge E and entropy S of a BH and the overall coupling constant α,

the effective potential V (q) corresponds precisely to the standard Landau model of

second-order phase transitions [318, 340]. Compared to the archetypal example of

ferromagnetism, the role of temperature T is played by either E or α. This connec-

tion reveals that (i) spontaneous scalarization is a second-order phase transition and
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(ii) the critical exponents characterizing this phase transition match the universal

values predicted by the Landau model. Point (i) was already demonstrated for NSs

in ST theories in Ref. [4], but point (ii) is new to this work; we elaborate on (ii)

below.

Critical exponents dictate how a system behaves close to a critical point (e.g.,

the location of a second-order phase transition). Such phenomena have first been dis-

covered in GR in the context of critical collapse [341–344], but also appear in pertur-

bations of extremal BHs [345, 346]. Applied to the current example of spontaneous

scalarization, we study how the structure of the BH solutions varies as we approach

the critical point at which spontaneous scalarization first occurs, parametrized by

ξ → 0 where ξ could be either ξ = (α − αc)/αc at fixed E (identifying temperature

as T ∼ −1/α) or ξ = (E −Ec)/Ec at fixed α (identifying T ∼ 1/E). For example, the

critical exponent β of a Landau model is given by the scaling of the order parameter

q ∝ ξβ as ξ → 0+.

The effective potential V (q) in Eq. (6.5) depends on the properties of the

BH solution; this dependence is suppressed in the notation used in the previous

section, but here we explicitly restore it. In particular, close to the critical point,

the potential takes the form

V (q; ξ) =
c(2)(ξ)

2
q2 +

c(4)(ξ)

4!
q4. (6.17)

If c(2)(ξ) and c(4)(ξ) are analytic functions, they must take the following form near

ξ = 0,

c(2)(ξ) = a ξ +O
(
ξ2
)
, c(4)(ξ) = b+O (ξ) , (6.18)
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Figure 6.3: Scalar charge q as a function of ξ ≡ (α−αc)/αc for different
electric charges with coupling f1(φ) [Eq. (6.2)]. The numerical solutions
are indicated with points, while the solid lines are best fits with slope
1/2. We see that the solutions agree well with the expected scaling
q ∝ ξ1/2.

where a and b are positive constants. Then, the minima of V (q; ξ) occur at

q = ±
√
−6c(2)

c(4)

= ±
√
−6a

b
ξ1/2, (6.19)

thus, q ∝ ξ1/2 as ξ → 0+. For this system, q represents an order parameter, and

thus the critical exponent β is 1/2.

We numerically confirm this claim by computing the scalar charge q of elec-

trically charged BHs as a function of ξ near the critical point. Fixing the electric

charge E , we first determine the critical coupling αcrit at which c(2) vanishes. We

then compute q for couplings just below this value, i.e., for ξ = (α−αcrit)/αcrit & 0.

The dependence of q on ξ is depicted in Fig. 6.3; we find that q ∝ ξ1/2 agrees well

with our numerical results.

Similarly, we compute the other standard critical exponents describing the
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phase transition. In particular, both the analytic model (6.17) and our numerical

solutions indicate that γ = 1 where χ = dq/dφ0 ∝ |ξ|−γ for ξ → 0±, and δ = 3

where q ∝ φ
1/δ
0 at ξ = 0. These findings are consistent with the Landau model for

phase transitions. It would be interesting to find a correspondence to a correlation

length in the future, so that all standard critical exponents can be studied. The

introduction of a correlation length (becoming infinite as c(2) → 0) as another scale

next to the size of the compact object could also allow for a more formalized power

counting for the construction of the effective action close to the critical point.

6.4.3 Dynamical scalarization

We now employ our effective action to study the dynamical scalarization of

binary systems in EMS theory, only considering the scalar coupling f1(φ) except

where noted. For this purpose, we integrate out the remaining IR fields from the

complete action (i.e., the field part, suitable gauge-fixing parts, and a copy of Scrit
CO

for each body).6 We employ a weak-field and slow-motion (i.e., post-Newtonian,

PN) approximation. These approximations are not independent here, since a wide

separation of the binary (weak field) implies slow motion due to the third Kepler law

for bound binaries. The leading order in this approximation is just the Newtonian

limit of the relativistic theory we are considering. Therefore, the Lagrangian of the

6Strictly speaking, the IR fields are split again into body-scale and radiation-scale parts, and

we integrate out the body-scale fields [315]. This would be necessary for a treatment of radiation

from the binary using effective-field-theory methods [347].
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binary to leading order (LO) reads7

LLO = −mA

[
1− ẏ

2
A

2

]
−mB

[
1− ẏ

2
B

2

]
+
cq̇2,A

2
q̇2
A

+
cq̇2,B

2
q̇2
B +

mAmB

r
+
EAEB
r

+
qAqB
r

,

(6.20)

where A and B label the bodies, r = |yA−yB| is their separation, and in this section

the dot ˙ indicates a derivative with respect to coordinate time. We have suppressed

the dependence of mA on qA for brevity, but recall that the “free energy” of each

body takes the form

mA(qA) = m(0),A + V (qA)

= c(0),A +
c(2),A

2
q2
A +

c(4),A

4!
q4
A. (6.21)

Notice that mA(qA) plays the role of the body’s mass in the binary Lagrangian

because (i) it couples to gravity like a mass, see Eq. (6.7), and (ii) it is independent

of the fields, so that for the purpose of integrating out the fields it can be treated

as a constant. The Hamiltonian for the binary can be obtained via a Legendre

transformation

HLO = mA +mB +
p2
A

2mA

+
p2
B

2mB

+
p2
q,A

2cq̇2,A
+

p2
q,B

2cq̇2,B

− mAmB

r
+
EAEB
r
− qAqB

r
,

(6.22)

with the pairs of canonical variables (yA/B,pA/B) and (qA/B, pq,A/B).

Following Ref. [4], let us now consider a special case that allows simple analytic

solutions for the scalar charges of the bodies. We henceforth assume that the scalar

charges evolve adiabatically pq,A/B ≈ 0 and that the two bodies are identical, i.e.,

7We have also gauge-fixed the worldline parameters to the coordinate time σ = t as usual in

the PN approximation.
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q ≡ qA = qB, c(2) ≡ c(2),A = c(2),B, etc. The Hamiltonian in the center-of-mass

system p ≡ pA = −pB now reads

HLO,adiab. = 2m+
p2

m
− m2

r
+
E2

r
− q2

r
. (6.23)

Under these assumptions and recalling again that m = m(q), the equation of motion

for the scalar charge q is given by

0 ≈ ṗq =
∂HLO,adiab.

∂q
= 2z

(
c(2)q +

c(4)

6
q3
)
− 2q

r
, (6.24)

with the redshift

z ≡ 1− p2

2m2
− m

r
. (6.25)

For simplicity, we neglect relativistic corrections to the redshift from here onward,

i.e., z ≈ 1; restoring these corrections does not affect the qualitative behavior that

we describe. Equation (6.24) has three solutions: an unscalarized solution with

q = 0 and a two scalarized solutions with nonzero q of opposite signs. The condition

for stability of these solutions is that they are located at a minimum of the energy

of the binary,

0 ≤ ∂2HLO,adiab.

∂q2
≈ 2c(2) −

2

r
+ c(4)q

2, (6.26)

which is violated for q = 0 when 1/r > c(2). Hence, the stable solutions are given by

q =


0 for 1/r ≤ c(2)

±
√

6

c(4)

√
1

r
− c(2) for 1/r ≥ c(2)

, (6.27)

which contain a phase transition at r = 1/c(2) corresponding to the spontaneous

breaking of the q → −q symmetry of the effective action. Recall that c(2) < 0
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Figure 6.4: Scalar charge Qtot of an equal mass binary as a func-
tion of orbital frequency Ω or GW frequency fGW = Ω/π for coupling
f1(φ) [Eq. (6.2)] with α = −8.

corresponds to the case where each object is spontaneously scalarized, for which the

bottom condition in Eq. (6.27) always holds, and thus q 6= 0 over all separations.

Restricting our attention to circular orbits, we plot in Fig. 6.4 the total scalar

charge of the binary Qtot ≡ qA + qB as a function of orbital frequency, given by

Kepler’s law as

Ω2 =
1

r3
(mA +mB)

(
1 +

qAqB
mAmB

− EAEB
mAmB

)
. (6.28)

For simplicity, we only show the positive scalar charge branch of solutions. The

frequency is shown both as the dimensionless combination MΩ with M ≡ m
(0)
A +m

(0)
B

and as the equivalent GW frequency fGW = Ω/π for a (30M� + 30M�) binary

system. The plotted curves correspond to solutions with coupling constant α = −8,

and the colors correspond to different values of the electric charge. The scalar charge

vanishes below the onset of dynamical scalarization; the scalar charge grows abruptly
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at some critical frequency Ωscal (as evidenced by kinks in the plotted curves) because

dynamical scalarization is a second-order phase transition—see Ref. [4] for a more

detailed argument that dynamical scalarization is a phase transition.

In Fig. 6.5, we depict the scalarization of binary systems for various charge-to-

mass ratios and couplings α. The solid lines indicate the critical frequency Ωscal at

which dynamical scalarization begins; the heavily shaded regions above these lines

correspond to dynamically scalarized binaries after the onset of this transition. The

critical point c(2) = 0, corresponding to Ωscal → 0, represents the division between

binaries that dynamically scalarize and those whose component BHs (individually)

spontaneously scalarize; we depict all spontaneously scalarized configurations with a

lighter shading. Thus, we see that our effective action, which was matched to isolated

objects and models spontaneous scalarization, predicts dynamical scalarization as

well. Refined predictions can be obtained by perturbatively calculating the binary

Lagrangian to higher PN orders and also the emitted radiation; both are possible

using effective-field-theory techniques [315, 347, 348] or more traditional methods

where extended bodies are represented by point particles, e.g., Refs. [30, 210].

The same calculation can be repeated for binary systems with the choice

f(φ) = f2(φ). As before, the unscalarized q = 0 solution is stable for above

r = 1/c(2). However, because c(4) < 0, no stable dynamically scalarized branch

exists below that separation; instead, the system becomes “dynamically” unstable

after this critical point. The phase diagram for this choice of coupling takes the

same form as Fig. 6.5, but here the shaded regions correspond to scenarios in which

no stable configuration exists. At the onset of instability, the scalar radiation will
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Figure 6.5: Scalarization of binary systems with various electric charges
for scalar coupling f1(φ) [Eq. (6.2)] with different coupling strengths α.
Lightly and heavily shaded regions indicate spontaneously and dynam-
ically scalarized configurations, respectively. The solid lines depict the
onset of dynamical scalarization Ωscal as a function of electric charge.

likely grow rapidly and the GW frequency will decrease more rapidly compared to

the EM case. However, long-term predictions are not possible with our effective

theory since the assumption of time-reversal symmetry likely breaks down, as for

the unstable isolated BHs.

6.5 Conclusions

In this work, we developed a simple energetic analysis of spontaneous and

dynamical scalarization, based on a strong-field-agnostic effective-field-theory ap-

proach (extendable beyond the scalar-field case [324, 325, 327] in the future). We

demonstrated our analysis for BHs with modified electrodynamics here, comple-

menting the study of NS in ST gravity from Ref. [4]. The theory-agnostic nature
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of our approach allowed us to draw general conclusions about scalarization As an

example, we found that dynamical scalarization generically occurs in theories that

admit spontaneous scalarization. Specific examples of theories for which our findings

apply include those discussed in Refs. [154, 155, 161, 163–167, 324–327].

The recent discovery of spontaneous scalarization in ESTGB theories [163–

167] has sparked significant interest in this topic. Our work predicts that dynam-

ical scalarization can occur in binary systems in these theories and allows one to

straightforwardly estimate the orbital frequency at which it occurs using only in-

formation derivable from isolated BH solutions. Such information is valuable for

guiding numerical-relativity simulations in these theories, for which there has been

recent progress [349]. Eventually higher PN orders in specific theories could be

added to our model to derive more accurate predictions, and the framework could

be extended to massive scalars or other types of new fields.

We demonstrated how scalarization, as an exemplary strong-gravity modifica-

tion of GR, is parametrized by just a few constants in the effective action (which

vanish in GR). Hence, our effective action provides an ideal foundation for a strong-

field-agnostic framework for testing dynamical scalarization. Ultimately, one needs

to incorporate self-consistently such effects into gravitational waveform models. This

undertaking will require the computation of dissipative effects (analogous to the

standard PN treatment in GR) and the mode dynamics during scalarization, char-

acterized (in part) by cq̇2 . The effective action can also, in principle, be extended to

include other strong-field effects influencing the inspiral of a binary, e.g., phenomena

like floating orbits [350, 351] or induced hair growth [314, 352].
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Independent of GW tests of GR, further study of dynamical scalarization could

offer some insight into the nonlinear behavior of merging binary NSs in GR. As dis-

cussed in the Introduction, scalarization and tidal interactions enter models of the

inspiral dynamics in a similar manner; in fact, the effective action treatment of dy-

namical tides (in GR) [299] is completely analogous to the approach adopted here

for scalarization. Unlike the case with tides, our model of scalarization includes non-

linear interactions via the q4 term. Nonlinear tidal effects could be relevant for GW

observations of binary NSs [353, 354], but are difficult to handle in GR. Furthermore,

mode instabilities also occur for NSs in GR [355, 356]. Dynamical scalarization can

be used as a toy model for these types of effects, and further exploration of this

non-GR phenomenon could improve gravitational waveform modeling in GR.

Our effective action approach allowed us to study the critical phenomena at the

onset of scalarization; further study could also provide insight into critical phenom-

ena in GR. The critical exponents we obtained numerically agree with the analytic

predictions from Landau’s mean-field treatment of ferromagnetism [318, 340]. Only

missing here is a proper definition of correlation length, which we leave for future

work. In GR, the BH limit of compact objects has been suggested to play the role of

a critical point and lead to the quasiuniversal relations for NS properties [357, 358].

These quasiuniversal relations are invaluable for GW science because they reduce

the number of independent parameters needed to describe binary NSs, improving

the statistical uncertainty of measurements. In the BH limit (for nonrotating con-

figurations), the leading tidal parameter vanishes [307, 359, 360], like c(2) at the

critical point here. Better theoretical understanding of the origin of these universal
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relations could help improve their accuracy; utilizing information from the critical

phenomena at the BH limit is a compelling idea, and scalarization could serve as a

toy model in that regard.
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Chapter 7: Constraining nonperturbative strong-field effects in scalar-

tensor gravity by combining pulsar timing and laser-interferometer

gravitational-wave detectors

Authors: Lijing Shao, Noah Sennett, Alessandra Buonanno, Michael Kramer,

and Norbert Wex 1

Abstract: Pulsar timing and laser-interferometer gravitational-wave (GW)

detectors are superb laboratories to study gravity theories in the strong-field regime.

Here we combine those tools to test the mono-scalar-tensor theory of Damour and

Esposito-Farèse (DEF), which predicts nonperturbative scalarization phenomena for

neutron stars (NSs). First, applying Markov-chain Monte Carlo techniques, we use

the absence of dipolar radiation in the pulsar-timing observations of five binary

systems composed of a NS and a white dwarf, and eleven equations of state (EOSs)

for NSs, to derive the most stringent constraints on the two free parameters of the

DEF scalar-tensor theory. Since the binary-pulsar bounds depend on the NS mass

and the EOS, we find that current pulsar-timing observations leave scalarization

windows, i.e., regions of parameter space where scalarization can still be prominent.

Then, we investigate if these scalarization windows could be closed and if pulsar-

1Originally published as Phys. Rev. X7, 041025 (2017).
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timing constraints could be improved by laser-interferometer GW detectors, when

spontaneous (or dynamical) scalarization sets in during the early (or late) stages

of a binary NS (BNS) evolution. For the early inspiral of a BNS carrying constant

scalar charge, we employ a Fisher matrix analysis to show that Advanced LIGO can

improve pulsar-timing constraints for some EOSs, and next-generation detectors,

such as the Cosmic Explorer and Einstein Telescope, will be able to improve those

bounds for all eleven EOSs. Using the late inspiral of a BNS, we estimate that

for some of the EOSs under consideration the onset of dynamical scalarization can

happen early enough to improve the constraints on the DEF parameters obtained

by combining the five binary pulsars. Thus, in the near future the complementarity

of pulsar timing and direct observations of GWs on the ground will be extremely

valuable in probing gravity theories in the strong-field regime.

7.1 Introduction

In general relativity (GR), gravity is mediated solely by a rank-2 tensor,

namely the spacetime metric gµν . Scalar-tensor theories of gravity, which add a

scalar component to the gravitational interaction, are popular alternatives to GR.

Though first proposed in 1921 [361], contemporary interest in these theories has been

spurred by their potential connection to inflation and dark energy, as well as possi-

ble unified theories of quantum gravity [87]. A modern framework for the class of

scalar-tensor theories we consider was developed in Refs. [97, 147, 178, 179, 300, 362]

(see also more generic Horndeski scalar-tensor theories in Ref. [90]).
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Ultimately, the existence (or absence) of scalar degrees of freedom in grav-

ity will be decided by experiments. Most scalar-tensor theories are designed to

be metric theories of gravity, that is, they respect the Einstein equivalence princi-

ple [79, 97]. Therefore, precision tests of the weak-equivalence principle, the local

Lorentz invariance, and the local position invariance in flat spacetime are unable to

constrain them [79, 89, 97, 305]. However, such theories generally violate the strong-

equivalence principle. Tests of the strong-equivalence principle with self-gravitating

bodies provide an ideal window to experimentally search for (or rule out) the scalar

sector of gravity [79, 97, 363].

Particularly prominent violations of the strong-equivalence principle are known

to arise in the class of massless mono-scalar-tensor theories, studied by Damour

and Esposito-Farèse in the form of nonperturbative strong-field effects in neutron

stars (NSs) [152, 153, 276]. In this work, we investigate the extent to which pulsar

timing and ground-based gravitational-wave (GW) observations can constrain these

phenomena (space-based GW experiments [266, 364, 365] are beyond the scope of

this work). Our results demonstrate that, depending on the parameters of binary

systems and NS equations of state (EOSs), these two types of experiments can

provide complementary bounds on scalar-tensor theories [79, 89, 171, 187, 305].

These results are especially timely as new instruments come online in the upcoming

years in both fields [366, 367].

The paper is organized as follows. In the next section, we briefly review

two nonperturbative phenomena, notably spontaneous scalarization [152, 153] and

dynamical scalarization [3, 169–172], that arise in certain scalar-tensor theories of
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gravity. Then, in Sec. 7.3, we derive stringent constraints on these theories by com-

bining state-of-the-art pulsar observations of five NS-white dwarf (WD) systems. In

Sec. 7.4, we employ these constraints and investigate the potential detectability of

nonperturbative effects in binary NS (BNS) systems using the Advanced Laser Inter-

ferometer Gravitational-wave Observatory (LIGO) [63] and next-generation ground-

based detectors. Finally, in Sec. 7.5, we discuss the main results and implications

of our finding, and give perspectives for future observations.

7.2 Nonperturbative strong-field phenomena in scalar-tensor gravity

In this work, we focus on the class of mono-scalar-tensor theories that are

defined by the following action in the Einstein-frame [152, 153, 178, 362],

S =
c4

16πG∗

∫
d4x

c

√−g∗ [R∗ − 2gµν∗ ∂µϕ∂νϕ− V (ϕ)] + Sm
[
ψm;A2(ϕ)g∗µν

]
, (7.1)

where G∗ is the bare gravitational coupling constant, g∗µν is the Einstein metric

with its determinant g∗, R∗ ≡ gµν∗ R
∗
µν is the Ricci scalar, ψm collectively denotes

the matter content, and A(ϕ) is the (conformal) coupling function that depends on

the scalar field, ϕ. Henceforth, for simplicity, we assume that the potential, V (ϕ),

is a slowly varying function that changes on scales much larger than typical length

scales of the system that we consider, thus, we set V (ϕ) = 0 in our calculation.

The field equations are derived with the least-action principle [97, 147] for g∗µν
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and ϕ,

R∗µν =2∂µϕ∂νϕ+
8πG∗
c4

(
T ∗µν −

1

2
T ∗g∗µν

)
, (7.2)

�g∗ϕ =− 4πG∗
c4

α(ϕ)T∗ , (7.3)

with the energy-momentum tensor of matter fields, T µν∗ ≡ 2c (−g∗)−1/2 δSm/δg
∗
µν ,

and the field-dependent coupling strength between the scalar field and the trace of

the energy-momentum tensor of matter fields, α(ϕ) ≡ ∂ lnA(ϕ)/∂ϕ.

Following Damour and Esposito-Farèse [147, 152], we consider a polynomial

form for lnA(ϕ) up to quadratic order, that is A(ϕ) = exp (β0ϕ
2/2), and denote

α0 ≡ α(ϕ0) = β0ϕ0 with ϕ0 the asymptotic value of ϕ at infinity. This particular

scalar-tensor theory (henceforth, DEF theory) is completely characterized by two

parameters (α0, β0) and for systems dominated by strong-field gravity, such as NSs,

can give rise to potentially observable, nonperturbative physical phenomena [153,

169]. Weak-field Solar-system experiments, generally, only probe the α0-dimension

or the combination β0α
2
0 in the (α0, β0) parameter space (see Refs. [79, 368] and

references therein). In GR, α0 = β0 = 0.

Using a perfect-fluid description of the energy-momentum tensor for NSs in the

Jordan frame, in 1993 Damour and Esposito-Farèse derived the Tolman-Oppenheimer-

Volkoff (TOV) equations [153] for a NS in their scalar-tensor gravity theory. Inter-

estingly, they discovered a phase-transition phenomenon when β0 . −4, largely ir-

respective of the α0 value (a nonzero α0 tends to smooth the phase transition [152]).

The phenomenon was named spontaneous scalarization. With a suitable (α0, β0),

the “effective scalar coupling” that a NS develops, αA ≡ ∂ lnmA/∂ϕ0 (the baryonic
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Figure 7.1: Illustration of spontaneous scalarization in the DEF gravity,
in comparison to individual binary-pulsar limits, for a NS with EOS SLy4
and |α0| = 10−5. The blue curves correspond to (from top to bottom)
β0 = −4.5,−4.4,−4.3, and −4.2; the grey curves in between differ in β0

in steps of 0.01. We indicate with triangles the 90% CL upper limits
on the effective scalar coupling |αA| from the individual pulsars listed in
Table 7.1. We can clearly see a scalarization window at mA ∼ 1.7M�.

mass of NS is fixed while taking the derivative), could be O(1) when the NS mass,

mA, is within a certain EOS-dependent range 2. For masses below and above this

range, the effective scalar coupling is much smaller 3. In Fig. 7.1 we show an exam-

ple of spontaneous scalarization for a NS with the realistic EOS SLy4, and compare

it to existing individual binary-pulsar constraints.

In general, if two compact bodies in a binary have effective scalar couplings, αA

and αB, they produce gravitational dipolar radiation ∝ (∆α)2, with ∆α ≡ αA−αB,

2For black holes, the effective scalar coupling equals to zero. Therefore, the tests performed

with binary black holes [122] do not directly apply to the DEF theory.
3For sufficiently negative β0 (. −4.6), NSs do not de-scalarize before reaching their maximum

mass, i.e. spontaneous scalarization is found for all NSs above a certain critical mass, which depends

on the actual value of β0 and the EOS [152, 153].
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which is at a lower post-Newtonian (PN) order than the canonical quadrupolar ra-

diation in GR [152] 4. In Ref. [276], Damour and Esposito-Farèse for the first time

compared limits on the DEF gravity arising from Solar system and binary pulsar

experiments with expected limits from ground-based GW detectors like LIGO and

Virgo. The analysis in Ref. [276] is based on soft (by now excluded [248, 369]),

medium and stiff EOSs, and for the LIGO/Virgo experiment it assumes a BNS

merger with PSR B1913+16 like masses (1.44M� and 1.39M�), as well as a 1.4M�-

10M� NS-BH merger. Damour and Esposito-Farèse come to the conclusion that

binary-pulsar experiments would generally be expected to put more stringent con-

straints on the parameters (α0, β0) than ground-based detectors, such as LIGO and

Virgo. Since then, several analyses have followed [247–249, 370, 371], but typically

those studies did not probe a large set of NS masses and EOSs. Considering ad-

vances in our knowledge of NSs and more sensitive current and future ground-based

detectors, we revisit this study here. Quite interestingly, as pointed out in a first

study in Ref. [171], the constraints on the parameters (α0, β0) from binary pulsars

depend quite crucially on the EOSs and the masses of the NSs, in particular in the

parameter space that allows for spontaneous scalarization. By taking into account

this dependence when setting bounds from pulsar timing, we shall find that current

4In this work, generally we denote with nPN the O(v2n/c2n) corrections to the leading Newto-

nian dynamics (equations of motion). Therefore, the gravitational dipolar radiation reaction is at

1.5 PN, and the quadrupolar radiation is at 2.5 PN. In the GW phasing, when there is no potential

confusion we sometimes refer to the quadrupolar (dipolar) radiation as 0 PN (−1 PN), as typically

done in the literature.
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and future GW detectors on the Earth might still be able to exclude certain specific

regions of the parameter space (α0, β0) that are not probed by binary pulsars yet.

Twenty years after the discovery of spontaneous scalarization, Barausse et

al. [169] found another interesting nonperturbative phenomenon in a certain pa-

rameter space of the DEF theory. This time the scalarization does not take place

for a NS in isolation, but for NSs in a merging binary. Indeed, modeling the BNS

evolution in numerical relativity, Barausse et al. found that the two NSs can scalar-

ize even if initially, at large separation, they are not scalarized. This phenomenon

is called dynamical scalarization, and its onset is determined by the binary com-

pactness instead of the NS compactness. Reference [169] also demonstrated that a

spontaneously scalarized NS can generate scalar hair on its initially unscalarized NS

companion in a binary system through a process known as induced scalarization.

Dynamical and induced scalarization cause BNSs to merge earlier [169, 171, 172]

than in GR, resulting in a significant modification to the GW phasing that is po-

tentially detectable by ground-based GW interferometers [3, 169, 170, 175].

Finally, it is important to note that cosmological solutions in the strictly mass-

less limit of the DEF theory are known to evolve away from GR when β0 is neg-

ative [175, 272, 273, 302]; to be consistent with current Solar-system observations,

such cosmologies require significant fine tuning of initial conditions.5 Various mod-

ifications to the theory have been considered to cure this fine-tuning problem, for

example, by adding higher order polynomial terms to lnA(ϕ) [302] or including a

5For cosmologies in the scalar-tensor theories with a positive β0, we refer readers to Refs. [272,

273, 372].
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mass term V (ϕ) = 2mϕϕ
2 in the action [95, 152, 161, 303]. To date, none of these

proposals have produced scalar-tensor theories that: (i) satisfy cosmological and

weak-field gravity constraints, (ii) generate an asymptotic field ϕ0 that is stable

over timescales relevant to binary pulsars and GW sources, and (iii) give rise to the

nonperturbative phenomena present in DEF theory. As is commonly done in the

literature [3, 147, 152, 153, 169–172, 175], we will ignore these cosmological concerns

in this work and focus only on (massless) DEF theory.

7.3 Constraints from binary pulsars

Until now, binary pulsars have provided the most stringent limits to the DEF

theory [152, 247–249, 375]. These limits were usually obtained with individual pul-

sar systems and with representative EOSs [249] 6. Here, by contrast, we combine

observational results from multiple pulsar systems employing Markov-chain Monte

Carlo (MCMC) simulations [380]. In particular, we pick the five NS-WD bina-

ries that are the most constraining systems in testing spontaneous scalarization:

PSRs J0348+0432 [248], J1012+5307 [373], J1738+0333 [247], J1909−3744 [374],

and J2222−0137 [375]. We choose these five binaries basing on the binary nature

(namely, NS-WD binaries), the timing precision that has been achieved, and the NS

masses. These aspects are important to the study here, and see Refs. [89, 294, 305]

for more discussion. For convenience, we list the parameters of these binaries in

Table 7.1, and notice that it is the combination of their Ṗ int
b and the NS mass that

6An exception is Ref. [294], where, for individual binary pulsars, the most conservative limits

in the (α0, β0) parameter space across different EOSs are presented.
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Table 7.1: Binary parameters of the five NS-WD systems that we use to con-
strain the DEF theory [247, 248, 373–375]. The observed time derivatives of the
orbit period Pb are corrected using the latest Galactic potential of Ref. [376]. For
PSRs J0348+0432, J1012+5307 and J1738+0333, the mass ratios were obtained
combining radio timing and optical high-resolution spectroscopy, while the compan-
ion masses are determined from the Balmer lines of the WD spectra based on WD
models [248, 377–379]. For PSRs J1909−3744 and J2222−0137, the masses were
calculated from the Shapiro delay, where the range of the Shapiro delay gives di-
rectly the companion mass, and the pulsar mass is then being derived from the mass
function, using the shape of the observed Shapiro delay to determine the orbital in-
clination [374, 375]. The masses below are based on GR as the underlying gravity
theory. However, since the companion WD is a weakly self-gravitating body, they
are practically the same in the DEF theory (with a difference . 10−4). We give in
parentheses the standard 1-σ errors in units of the least significant digit(s).

Pulsar J0348+0432 [248] J1012+5307 [373] J1738+0333 [247]

Orbital period, Pb (d) 0.102424062722(7) 0.60467271355(3) 0.3547907398724(13)

Eccentricity, e 2.6(9)× 10−6 1.2(3)× 10−6 3.4(11)× 10−7

Observed Ṗb, Ṗ
obs
b (fs s−1) −273(45) −50(14) −17.0(31)

Intrinsic Ṗb, Ṗ
int
b (fs s−1) −274(45) −5(9) −27.72(64)

Mass ratio, q ≡ mp/mc 11.70(13) 10.5(5) 8.1(2)

Pulsar mass, mobs
p (M�) . . . . . . . . .

WD mass, mobs
c (M�) 0.1715+0.0045

−0.0030 0.174(7) 0.1817+0.0073
−0.0054

Pulsar J1909−3744 [374] J2222−0137 [375]

Orbital period, Pb (d) 1.533449474406(13) 2.44576454(18)

Eccentricity, e 1.14(10)× 10−7 0.00038096(4)

Observed Ṗb, Ṗ
obs
b (fs s−1) −503(6) 200(90)

Intrinsic Ṗb, Ṗ
int
b (fs s−1) −6(15) −60(90)

Mass ratio, q ≡ mp/mc . . . . . .

Pulsar mass, mobs
p (M�) 1.540(27) 1.76(6)

WD mass, mobs
c (M�) 0.2130(24) 1.293(25)
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Figure 7.2: The mass-radius relation of NSs (in GR) for the 11 EOSs that
are adopted in the study. The mass constraint (with 1-σ uncertainty)
from PSR J0348+0432 [248] is depicted in grey. The color coding for
different EOSs is kept consistent for all figures in this work.

makes them particularly suitable for the test of spontaneous scalarization. We ob-

tain the limits using 11 different EOSs that have the maximum NS mass above

2M� [381]. The names of these EOSs are AP3, AP4, ENG, H4, MPA1, MS0, MS2,

PAL1, SLy4, WFF1, and WFF2 (see Refs. [381, 382] for reviews). Figure 7.2 shows

the mass-radius relation of NSs in GR for these EOSs. As evidenced by the spread

of the curves in the figure, we believe that these EOSs are sufficient to cover the

different EOS-dependent properties of spontaneous scalarization, and at the same

time satisfy the two-solar-mass limit from pulsar-timing observations [248, 369].

Markov-chain Monte Carlo techniques allow us to preform parameter esti-

mation within the Bayesian framework. These methods provide the posterior dis-

tributions of the underlying parameters that are consistent with observations. In

Bayesian analysis, given data D and a hypothesis H (here, the DEF theory), the
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marginalized posterior distribution of (α0, β0) is given by [380],

P (α0, β0|D,H, I) =

∫
P (D|α0, β0,Ξ,H, I)P (α0, β0,Ξ|H, I)

P (D|H, I)
dΞ , (7.4)

where I is all other relevant prior background knowledge and Ξ collectively denotes

all other unknown parameters besides (α0, β0), which are marginalized over to obtain

the marginalized posterior distributions for just (α0, β0) [see below for more details].

In the above equation, given H and I, P (α0, β0,Ξ|H, I) is the prior on (α0, β0,Ξ),

P (D|α0, β0,Ξ,H, I) ≡ L is the likelihood, and P (D|H, I) is the model evidence.

As said, we use MCMC techniques to explore the posterior in Eq. (7.4). We discuss

below our choices for the priors and the likelihood function [see Eq. (7.9)]. We

assume that observations with different binary pulsars are independent.

We now explain how we employ the MCMC technique to get the posterior by

combining binary pulsar systems. Let us assume that N pulsars (N = 1, 2, 5, see

below) are used to constrain the (α0, β0) parameter space. To obtain a complete

description of the gravitational dipolar radiation of these systems in the DEF theory,

we need N + 2 free parameters in the MCMC runs, which are θ =
{
α0, β0, ρ̃

(i)
c

}
,

where ρ̃
(i)
c (i = 1, · · · , N) is the Jordan-frame central matter density of pulsar i 7.

As an initial value to the TOV solver, we also need the value of the scalar field in the

center of a NS, ϕ
(i)
c , but the latter is fixed iteratively by requiring that all pulsars

have a common asymptotic value of ϕ, ϕ0 ≡ α0/β0. Given ρ̃
(i)
c and ϕ

(i)
c for pulsar

7Actually, in the full calculation we need some other quantities, as well, for example, the orbital

period, Pb, and the orbital eccentricity, e. Those quantities are observationally very well determined

(see Table 7.1), thus we use their central values and find that our constraints on (α0, β0) do not

change on a relevant scale when we take into account the errors on those quantities.
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i, we integrate the modified TOV equations (see Eq. (7) in Ref. [153] or Eq. (3.6)

in Ref. [152]) with initial conditions given by Eq. (3.14) in Ref. [152]. During the

integration, we use tabulated data of EOSs, and linearly interpolate them in the

logarithmic space of the matter density, ρ̃, the pressure, p̃, and the number density,

ñ [381]. Note that only one quantity among {ρ̃, p̃, ñ} is free, while the others are

determined by the EOS. The end products of the integration provide us, for each

pulsar, the gravitational mass, m
(i)
A , the baryonic mass, m̄

(i)
A , the NS radius, R(i),

and the effective scalar coupling, α
(i)
A [152].

For the MCMC runs we use a uniform prior on log10 |α0| for |α0| ∈ [5 ×

10−6, 3.4 × 10−3], where 3.4 × 10−3 is the limit obtained from the Cassini space-

craft [180, 368]. We pick the parameter β0 uniformly in the range [−5,−4], which

corresponds to a sufficiently large parameter space where the scalarization phenom-

ena can take place [153, 169]. During the exploration of the parameter space, we

restrict the values of (α0, β0) to this rectangle region, as well, in order to avoid

overusing computational time in uninteresting regions. The initial central matter

densities,
{
ρ̃

(i)
c

}
, are picked around their GR values, but they are allowed to explore

a very large range in the simulations. As we discuss below, we perform convergence

tests and verify that when evolving the chains all parameters in θ quickly lose mem-

ory of their initial values.

During the MCMC runs, we evolve the N + 2 free parameters according to

an affine-invariant ensemble sampler, which was implemented in the emcee package

[383, 384] 8. At every step, we solve the N sets of modified TOV equations on

8http://dan.iel.fm/emcee
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the fly, using for the companion masses of the binary pulsars the values listed in

Table 7.1 9.

Then, for the decay of the binary’s orbital period, which enters the likelihood

function [see Eq. (7.9)], we use the dipolar contribution from the scalar field and

the quadrupolar contribution from the tensor field as given by the following, well

known, formulae [147, 385],

Ṗ dipole
b = −2πG∗

c3
g(e)

(
2π

Pb

)
mpmc

mp +mc

(αA − α0)2 , (7.5)

Ṗ quad
b = −192πG

5/3
∗

5c5
f(e)

(
2π

Pb

)5/3
mpmc

(mp +mc)
1/3

, (7.6)

with

g(e) ≡
(

1 +
e2

2

)(
1− e2

)−5/2
, (7.7)

f(e) ≡
(

1 +
73

24
e2 +

37

96
e4

)(
1− e2

)−7/2
. (7.8)

We find that higher order terms, as well as the subdominant scalar quadrupolar

radiation, give negligible contributions to this study. Notice that in Eq. (7.5), we

have replaced the effective scalar coupling of the WD companion with the linear

9The masses in PSRs J0348+0432, J1012+5307, and J1738+0333 are based on a combination of

radio timing of the pulsars and optical spectroscopic observation of the WDs. The derivation of the

masses only depends on the well-understood WD atmosphere model in combination with gravity

at Newtonian order, and the mass ratio q, which is free of any explicit strong-field effects [368].

Therefore, even within the DEF theory, these masses are valid [247, 248]. For PSRs J1909−3744

and J2222−0137, the masses are derived from the range and shape of the Shapiro delay [152, 249].

Since for the weakly self-gravitating WD companion |αB | ≈ |α0| � 1, these masses are practically

identical to the GR masses in Table 7.1.
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matter-scalar coupling constant, since for a weakly self-gravitating WD αA ' α0 in

the β0 range of interest.10 Furthermore, we can approximate the bare gravitational

constant G∗ in the above equations with the Newtonian gravitational constant GN =

G∗(1 + α2
0), since |α0| � 1 (e.g., from the Cassini spacecraft [180, 368]).

We construct the logarithmic likelihood for the MCMC runs as,

lnL ∝ −1

2

N∑
i=1

( Ṗ int
b − Ṗ th

b

σobs
Ṗb

)2

+

(
mp/mc − q

σobs
q

)2
 , (7.9)

where for PSRs J1909−3744 and J2222−0137 we replace the second term in the

squared brackets with
[(
mp −mobs

p

)
/σobs

mp

]2

. In Eq. (7.9), the predicted orbital decay

from the theory is Ṗ th
b ≡ Ṗ dipole

b +Ṗ quad
b , and σobs

X is the observational uncertainty for

X ∈
{
Ṗ int
b , q,mp

}
, as given in Table 7.1. Note that Ṗ th

b and mp implicitly depend

on (α0, β0,Ξ), through direct integration of TOV equations in the DEF theory.

For each EOS, we perform four separate MCMC runs:

(i) 1 pulsar: PSR J0348+0432 (J0348);

(ii) 1 pulsar: PSR J1738+0333 (J1738);

(iii) combining 2 pulsars: PSRs J0348+0432 and J1738+0333 (2PSRs);

(iv) combining 5 pulsars: PSRs J0348+0432, J1012+5307, J1738+0333, J1909−3744

and J2222−0137 (5PSRs).

We pick J0348 and J1738 due to their mass difference (2.01M� and 1.46M� respec-

tively), and their high timing precision (see Table 7.1), which leads to interesting

differences in the constraints on the DEF parameters, especially on β0. For each run,

10In this context, see footnote “d” in Ref. [370], concerning WDs and very large (positive) β0.

318



5.0 4.5 4.0 3.5 3.0 2.5
log10|α0|

4.0

4.2

4.4

4.6

4.8

5.0

−
β

0

EOS = SLy4

68% CL

90% CL

68% CL

90% CL

Figure 7.3: The marginalized 2-d distribution of (log10 |α0|,−β0) from
MCMC runs on the five pulsars listed in Table 7.1, for the EOS SLy4.
The marginalized 1-d distributions and the extraction of upper limits
are illustrated in upper and right panels.

we accumulate sufficient MCMC samples to guarantee the convergence of MCMC

runs. By using the Gelman-Rubin statistic [386], we find that, for each EOS, 200,000

samples for cases J0348 and J1738, and 400,000 samples for cases 2PSRs and 5PSRs,

are enough, respectively. We discard the first half chain points of these 44 runs

(4 cases × 11 EOSs) as the burn-in phase [384, 387], while we use the remaining

samples to do inference on the parameters (α0, β0).

As an example, we show in Fig. 7.3 the marginalized 2-d distribution in the

parameter space of (log10 |α0|,−β0) for the case 5PSRs and the EOS SLy4. As

mentioned above, we distribute the initial values of log10 |α0| and −β0 uniformly in

the rectangle region of Fig. 7.3. We see that after MCMC simulations, the region
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Table 7.2: Limits on the parameters of the massless mono-scalar-tensor DEF the-
ory for different EOSs when applying the MCMC analysis to the five pulsars
J0348+0432, J1012+5307, J1738+0333, J1909−3744, and J2222−0137. Results at
68% and 90% CLs are listed. |αA|max is the maximum effective scalar coupling that
a NS could still possess without violating the limits, and mmax

A is the corresponding
(gravitational) mass at this maximum effective scalar coupling (see Figure 7.5).

68% confidence level

EOS |α0| −β0 mmax
A /M� |αA|max

AP3 6.5× 10−5 4.21 1.83 1.1× 10−3

AP4 5.5× 10−5 4.24 1.71 1.2× 10−3

ENG 6.0× 10−5 4.21 1.80 1.0× 10−3

H4 5.7× 10−5 4.24 1.91 1.3× 10−3

MPA1 5.7× 10−5 4.22 1.92 1.1× 10−3

MS0 7.7× 10−5 4.28 2.26 2.7× 10−3

MS2 7.9× 10−5 4.26 2.24 2.1× 10−3

PAL1 7.3× 10−5 4.21 1.99 1.2× 10−3

SLy4 5.2× 10−5 4.23 1.71 1.1× 10−3

WFF1 5.3× 10−5 4.21 1.58 9.1× 10−4

WFF2 5.5× 10−5 4.24 1.68 1.2× 10−3

90% confidence level

EOS |α0| −β0 mmax
A /M� |αA|max

AP3 1.5× 10−4 4.29 1.85 6.9× 10−3

AP4 1.4× 10−4 4.31 1.73 1.0× 10−2

ENG 1.6× 10−4 4.30 1.81 8.2× 10−3

H4 1.7× 10−4 4.33 1.92 2.8× 10−2

MPA1 1.6× 10−4 4.30 1.93 8.4× 10−3

MS0 2.0× 10−4 4.38 2.26 1.0× 10−1

MS2 2.4× 10−4 4.36 2.26 8.0× 10−2

PAL1 2.0× 10−4 4.29 2.00 8.2× 10−3

SLy4 1.4× 10−4 4.33 1.72 2.2× 10−2

WFF1 1.3× 10−4 4.30 1.60 6.9× 10−3

WFF2 1.4× 10−4 4.32 1.70 1.4× 10−2
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Figure 7.4: Marginalized upper limits on |α0| (upper) and −β0 (lower)
at 90% CL. These limits are obtained from PSRs J0348+0432 (J0348),
J1738+0333 (J1738), a combination of them (2PSRs), and a combina-
tion of PSRs J0348+0432, J1012+5307, J1738+0333, J1909−3744 and
J2222−0137 (5PSRs).

with large |α0| or large (negative) β0 is no longer populated, and only a small corner

is consistent with the observational results of the five NS-WD binary pulsars.

Furthermore, we extract the upper limits of log10 |α0| and −β0 from their

marginalized 1-d distributions at 68% and 90% CLs. We summarize the upper limits

at 90% CL from all 44 runs in Fig. 7.4. It is interesting to observe the following

facts. First, for all EOSs, J1738 gives a more constraining limit on α0 than J0348.

This result might be due to the fact that the σobs
Ṗb

of J1738 is about two orders of

magnitude smaller than that of J0348, thus giving a tighter limit on α2
0 by roughly

the same order of magnitude. Second, the constraints on β0 from J0348 and J1738

are extremely EOS-dependent. This should be a consequence of the masses of the

NSs, which are (in GR) 1.46M� for J1738, and 2.01M� for J0348. For EOSs that

favour spontaneous scalarization at around 1.4–1.5M�, J1738 gives a better limit,
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Figure 7.5: The effective scalar coupling |αA| that an isolated NS could
still develop after taking into account the 95% CL constraints from the
five pulsars (see Table 7.2). The point of the maximum |αA| is marked
with a dot, and the values (and the corresponding masses) are listed in
Table 7.2.

while for EOSs that favour spontaneous scalarization at around 2M�, J0348 gives

a better limit. This trend is also consistent with Fig. 7.5 (to be introduced below).

Third, by combining two pulsars (2PSRs), NSs are limited to scalarize at neither

1.4–1.5M� nor ∼ 2M�. Therefore, almost for all EOSs, β0 is well constrained.

This result demonstrates the power of properly using multiple pulsars with different

NS masses to constrain the DEF parameter space for any EOS. Fourth, we obtain

the most stringent constraints with five pulsars (5PSRs). This is especially true for

β0, which is constrained at the level of ∼ −4.2 (68% CL) and ∼ −4.3 (90% CL)

for all EOSs. Finally, we list in Table 7.2 the marginalized 1-d limits for 5PSRs.

We shall use them in the next section when combining binary pulsars with laser-

interferometer GW observations.
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Considering the results that we have obtained when combining the five pulsars

(5PSRs), one could wonder whether isolated NSs can still be strongly scalarized. To

address this question, we use the limits on (α0, β0) and calculate the effective scalar

coupling that a NS can still develop as a function of the NS mass, for the 11 EOSs

used in this work. The results at 90% CL are summarized in Fig. 7.5, while in

Table 7.2 we list the maximally allowed effective scalar couplings at 68% and 90%

CLs, and their corresponding (gravitational) NS masses (marked as dots in Fig. 7.5).

Figure 7.5 clearly shows the nonperturbative nature of the scalarization phe-

nomenon. The (absolute values of the) maximally allowed effective scalar coupling

for NSs can be as large as O(10−2) and even 0.1 if the limits at 90% CL are used,

while those values are . 10−3 if one uses the limits at 68% CL (not shown in Fig. 7.5,

but listed in Table 7.2). Furthermore, quite remarkably Fig. 7.5 shows that there

are scalarization windows (this feature could also be seen in Fig. 7.1 for the EOS

SLy4). What we mean is the following. The NS masses for the five most constrain-

ing pulsars are 1.46M� (PSR J1738+0333) 1.54M� (PSR J1909−3744), 1.76M�

(PSR J2222−0137), 1.83M� (PSR 1012+5307), and 2.01M� (PSR J0348+0432).

For these specific masses, using the 11 EOSs that can give rise to spontaneous scalar-

ization, we have constrained stringently the DEF parameters. However, some EOSs

can still allow NS to scalarize strongly (i.e., acquire large effective scalar couplings)

for other values of the masses. As Fig. 7.5 shows, using limits at 90% CL, NSs with

EOSs AP4, SLy4, and WFF2 can still have |αA| & O(10−2) if the NS masses are

in the range mA = 1.70–1.73M�, and NSs with EOS H4 can still be scalarized to

|αA| ∼ 0.03 with mA ' 1.92M�, and NSs with EOSs MS0 and MS2 can still be
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strongly scalarized to |αA| ' 0.1 with mA ' 2.26M�. Those scalarization windows

could be closed in the future if binary pulsars with these masses are discovered and

their gravitational dipolar radiation is constrained by pulsar timing. As we shall

discuss in Sec. 7.4, the presence of scalarization windows also opens the interesting

possibility to close these gaps with future GW observations from BNSs, if the NS’s

masses lie in the scalarization window.

7.4 Projected sensitivities for laser-interferometer gravitational-wave

detectors

Having determined constraints on the DEF’s parameter space from binary

pulsars (see Table 7.2) and found scalarization windows, we now address the question

of whether present and future laser-interferometer GW observations on the ground

can still improve these limits and close the gaps. Two scenarios are considered:

(i) asymmetric BNS systems, equipped with separation-independent effective scalar

couplings, whose gravitational dipolar radiation during the inspiral can modify the

GW phasing [240, 276], and (ii) BNS systems that dynamically develop scalarization

during the late stage of the inspiral, leading to significant, nonperturbative changes

in the GW signal [3, 169, 171, 172]. A complete description of BNSs in the DEF

theory should include both effects. However, complete waveform models from the

theory are still not available, so here we investigate the two scenarios separately to

obtain some conservative understanding of the whole picture.
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7.4.1 Dipole radiation for binary neutron-star inspirals

The presence of a scalar field can significantly modify the inspiral of an asym-

metric BNS system, due to the additional energy radiated off by the scalar degree

of freedom. The most prominent effect is a modification of the phase evolution in

GW signals. For two NSs with effective scalar couplings αA and αB respectively, one

finds for the evolution of the orbital frequency, Ω, up to 2.5 PN order [2, 28, 240],

Ω̇

Ω2
=

η

1 + αAαB

[
(∆α)2V3 +

96

5
κV5 +O(V6)

]
, (7.10)

where ∆α ≡ αA − αB, η ≡ mAmB/M
2, and the (dimensionless) “characteristic”

velocity,

V ≡ [G∗ (1 + αAαB)MΩ]1/3 /c . (7.11)

The quantity κ is given in Refs. [147, 248]. In GR one has αA = αB = 0 and κ = 1.

Note that there is also a subdominant contribution from the scalar quadrupolar

waves at 2.5 PN order, which however can be absorbed by a . 1% change in the

mass parameters. Here we assume that αA and αB are constant during the inspiral,

and their values are obtained from isolated NSs. This assumption is valid as long

as the induced or dynamical scalarization mechanisms are not triggered.

For an asymmetric compact binary where αA 6= αB, the most prominent devi-

ation from the GR phase evolution is determined by the dipole term in Eq. (7.10),

i.e., the contribution ∝ V3. To leading order, the offset in the number of GW cycles

in band until merger due to the dipole term is given by

∆Ndipole ' −
25

21504π
η−1 V−7

in (∆α)2 , (7.12)
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Table 7.3: The number of GW cycles in GR, NGR, for a BNS merger with masses
(1.25M�, 1.7M�) for frequencies f > fin, and its change due to the dipole radiation
in the DEF’s theory, ∆Ndipole, assuming |∆α| ≡ |αA − αB| ' 0.0199, which comes
from the maximally allowed effective scalar couplings for the EOS SLy4 at 90% CL
(see Figure 7.5). The limits on the contributions from leading-order spin-orbit and
spin-spin terms, |∆Nβ| and |∆Nσ|, are listed where the (dimensionless) spins of the
double pulsar (when it merges in 86 Myr) are used. For |∆Nβ| and |∆Nσ|, we also
give in parentheses when both NSs are spinning at the maximal spin that we have
ever observed (in an eclipsing binary pulsar J1748−2446ad).

Detector fin (Hz) NGR ∆Ndipole |∆Nβ| |∆Nσ|
aLIGO 10 1.5× 104 −3.7× 101 < 0.76 (< 3.5× 101) < 1.8× 10−6 (< 0.43)

CE 5 4.8× 104 −1.9× 102 < 1.2 (< 5.6× 101) < 2.3× 10−6 (< 0.55)

ET 1 7.0× 105 −8.1× 103 < 3.5 (< 1.6× 102) < 3.9× 10−6 (< 0.93)

where Vin corresponds to V in Eq. (7.11) when the merging system enters the

band of the GW detector, i.e., when Ω = πfin (see Refs. [240, 276] for details).

In the above equation we have used the approximation κ ' 1 and the fact that

Vin is much smaller than V just before merger. Within the approximation of

Eq. (7.12) one can use Vin ' (GNMπfin)1/3/c, i.e., replacing the effective gravi-

tational constant G∗ (1 + αAαB) in Eq. (7.11) by the Newtonian gravitational con-

stant GN ≡ G∗ (1 + α2
0) [147, 152]. Again, we stress that Eq. (7.12) is based on the

assumption that the effective scalar couplings of the two NSs, αA and αB, remain

unchanged during the inspiral in the detector’s sensitive frequency band. It there-

fore neglects the phenomenon of induced scalarization, which can occur in a BNS

system, when the unscalarized NS is sufficiently exposed to the scalar field of the

scalarized companion [170]. This can reduce the dipolar radiation considerably on

short ranges if αA approaches αB, and lead to a characteristic change in the late

phase evolution of the merging BNSs. Studies on the dynamically changing effective

scalar couplings are performed in the next subsection.
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To obtain a rough understanding of the effects of dipolar radiation, let us

calculate the dephasing from GR by an asymmetric BNS inspiral withmA = 1.25M�

and mB = 1.7M�. According to Fig. 7.5, at present, binary-pulsar experiments

cannot exclude |αA| as large as 10−2–10−1 for NSs of a certain mass range, which

depends on the EOS. For the EOS SLy4 we find from the corresponding (dark green)

curve in Fig. 7.5 |αA| ' 0.0007 and |αB| ' 0.0206, hence |∆α| ≡ |αA−αB| ' 0.0199.

In our study we consider the Advanced LIGO (aLIGO) detectors at design

sensitivity [63], and future ground-based detectors, such as the Cosmic Explorer

(CE), and the Einstein Telescope (ET). We use the starting frequencies, fin = 10 Hz

for aLIGO, fin = 5 Hz for CE, and fin = 1 Hz for ET [367, 388, 389]. In Table 7.3

we list the number of GW cycles as predicted by GR, NGR, and the change in

the number of cycles caused by the existence of a dipole radiation for a BNS signal,

∆Ndipole. From Table 7.3 we can already see that, given the BNS parameters, current

bounds by pulsars still leave room for significant time-domain phasing modifications

in BNS mergers, in particular if one of the NSs falls into the scalarization window of

∼ 1.7M� (for EOSs AP4, SLy4, and WFF2) to ∼ 1.9M� (for the EOS H4), or if one

NS’s mass significantly exceeds 2M� (for EOSs MS0 and MS2). As reference points,

we list in Table 7.3 also the changes in the number of GW cycles from spin-orbit and

spin-spin effects. Indeed, from the leading-order spin-orbit (1.5 PN) and spin-spin

(2 PN) contributions to the GW phasing [259, 364], one has

∆Nβ '
5

64π
η−1V−2

in β , (7.13)

∆Nσ '−
5

32π
η−1V−1

in σ , (7.14)
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where

β =
1

12

∑
i=A,B

(
113

m2
i

M2
+ 75η

)
L̂ · χi , (7.15)

σ =
η

48

[
−247χA · χB + 721

(
L̂ · χA

)(
L̂ · χB

)]
. (7.16)

The (dimensionless) spins of a BNS system, χA and χB, are likely to be small in

magnitude. The parameters β and σ are maximized when two spins are aligned

with the direction of the orbital angular momentum, L̂. The limits on |∆Nβ| and

|∆Nσ| are listed in Table 7.3 where we have used the (dimensionless) spins of the

double pulsar system that is the only double NS system where two spins are precisely

measured. When the double pulsar evolves to the time of its merger in 86 Myr from

now, one has |χA| ' 0.014 and |χB| ' 0.00002 [390], assuming a canonical moment

of inertia 1038 kg m2 for NSs. As we can see from Table 7.3, if the spins of BNSs

to be discovered by GW detectors are comparable to that of the double pulsar, the

inclusion of spins only affects the number of GW cycles at percentage level at most.

In addition, because ground-based detectors could observe BNSs from a population

different from the one observed with pulsar timing, we also give |∆Nβ| and |∆Nσ| in

Table 7.3 when the (dimensionless) spin of the fastest rotating pulsar ever observed,

PSR J1748−2446ad (P = 1.4 ms) [391], is used for both NSs 11. Even in this extreme

case with |χA| = |χB| ' 0.26 (assuming a canonical mass 1.4M�), |∆Ndipole| is still

larger (or comparable in the case of the Advanced LIGO) than the upper limits of

|∆Nβ| and |∆Nσ|.
11Notice that PSR J1748−2446ad is not in a double NS binary. Its companion is probably a

bloated main-sequence star that recycles the pulsar to a large spin [391].
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The dephasing quantity, ∆Ndipole, is nevertheless a crude indicator for realis-

tic detectability. In reality, one has to consider various degeneracy between binary

parameters, the waveform templates that are used for detection and parameter es-

timation, the power spectral density (PSD) of noises in GW detectors, Sn(f), the

signal-to-noise ratio (SNR) of an event ρ, and so on. In order to obtain more

quantitative estimates of the constraints on dipolar radiation that can be expected

from GW detectors, one would need to compute Bayes factors between two alterna-

tives [392] or apply cutting-edge parameter-estimation techniques, for example the

MCMC or nested sampling [78]. However, given the limited scope of our analysis, for

simplicity, here, we adopt the Fisher-matrix approach [240, 266, 393, 394], although

we are aware of the fact that for events with mild SNR (ρ ∼ 10), the Fisher matrix

can have pitfalls [395]. In Appendix J we review the main Fisher-matrix tools that

we use.

We summarize in Fig. 7.6 their dimensionless noise spectral density
√
fSn(f)

[367, 388, 389], and show in the figure also an hypothetical BNS signal. For all the

studies, we fix the luminosity distance to DL = 200 Mpc for aLIGO, CE, and ET.

Indeed, within such a distance, aLIGO alone is supposed to observe 0.2–200 BNS

events annually at design sensitivity [229]. With the four-site network incorporating

LIGO-India at design sensitivity, the number of detectable BNS events will dou-

ble [229]. Therefore, it is a realistic setting to discuss BNS events for aLIGO; to

be conservative, we only consider a two-detector network for aLIGO in our study.

CE and ET have better sensitivities, thus will have larger SNRs for these events;

besides, they will be able to detect a larger number of BNSs, including those with
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Figure 7.6: Dimensionless noise spectral density
√
fSn(f) of aLIGO,

CE and ET GW detectors. The quantity Sn(f) is the one-side de-
sign PSD [367, 388, 389]. The dashed line describes the (dimensionless)

pattern-averaged characteristic strain hc(f) ≡ 2f
∣∣∣h̃(f)

∣∣∣ for a BNS with

rest-frame masses (1.25M�, 1.63M�) at 200 Mpc (z ' 0.0438), up to
the innermost-stable circular orbit given by Eq. (J.3).

unfavourable orientations. Using the standard cosmological model [396], the red-

shift associated to DL = 200 Mpc is z ' 0.0438, and we take it into account in our

Fisher-matrix calculation, even if it generates a small effect. Moreover, we always

report masses in the rest frame of a BNS system.

The Fisher matrix is constructed as usual from the Fourier-domain waveform

h̃(f) [240, 393, 394],

Γab ≡
(
∂ah̃(f)

∣∣∣∂bh̃(f)
)
, (7.17)

with ∂ah̃(f) being the partial derivative to the parameter labeled “a” (see Ap-

pendix J for definitions and notations). We use the waveform parameters{
lnA, ln η, lnM, tc,Φc, (∆α)2} to construct the 6 × 6 Fisher matrix, Γab. The in-

verse of the Fisher matrix is the correlation matrix for these parameters, from where
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331



ln
M ln
η

ln
A t c φ
c

| ∆
α
|2

lnM

lnη

lnA

tc

φc

|∆α|2

Advanced LIGO

ln
M ln
η

ln
A t c φ
c

| ∆
α
|2

Cosmic Explorer

ln
M ln
η

ln
A t c φ
c

| ∆
α
|2

Einstein Telescope

2.0

1.6

1.2

0.8

0.4

0.0

0.4

0.8

1.2

1.6

2.0

F
(ρ

co
r)

Figure 7.8: The correlations between six parameters, obtained
from the inverse Fisher matrix in the matched-filter analysis for
a BNS with rest-frame masses (1.25M�, 1.63M�). F (ρcor) ≡
log10 [(1 + ρcor) / (1− ρcor)]−ρcor log10 2 is a function defined in Ref. [363]
such that it counts 9’s in the limit of large correlations [e.g., F (0.99) '
+2, F (−0.9) ' −1, and F (0) = 0]. On diagonal, F (ρcor = 1) diverges
and is plotted in black.

we can read their uncertainties and correlations [240, 266, 393, 394].

In Fig. 7.7 we plot in dashed lines the uncertainties in |∆α| obtained with

three GW detectors (aLIGO, CE, and ET) for an asymmetric BNS with rest-frame

masses mA = 1.25M� and mB > 1.25M�, located at DL = 200 Mpc. For a BNS

of masses, for example, (1.25M�, 1.63M�) which are the most probable masses for

the newly discovered asymmetric double-NS binary pulsar PSR J1913+1102 [397],

we find that aLIGO, CE, and ET can detect its merger at 200 Mpc with ρ = 10.6,

450, and 153, respectively, after averaging over pattern functions and assuming two

detectors in each case. The characteristic strain of such a BNS is illustrated in the

frequency domain in Fig. 7.6. In the large SNR limit, the uncertainties in |∆α| scale

with the SNR as ρ−1/2. In Fig. 7.8, we give the correlations between parameters

obtained from the matched-filter analysis. We find that due to its low-frequency
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sensitivity ET can break some degeneracy between parameters better than aLIGO

and CE do.

In Fig. 7.7, we show with solid lines the maximum values of |∆α| at 90% CL

from pulsars for 11 EOSs (calculated from Fig. 7.5). If for some NS’s mass range a

solid line (which is associated to a certain EOS) is above a dashed line (associated

to a certain detector), then for NSs described by that EOS, the corresponding GW

detector has potential to further improve the DEF’s parameters with the observation

of a BNS within that mass range. From the figure we can see that, with the expected

design sensitivity curves of aLIGO, CE, and ET [367, 388, 389],

• aLIGO has potential to further improve the current limits from binary pulsars

with a discovery of a BNS of suitable masses, if the EOS of NSs is one of (or

similar to) H4, MS0, MS2, SLy4, and WFF2;

• CE and ET, due to their low-frequency sensitivity and better PSD curves, are

able to significantly improve current limits from binary pulsars on the DEF’s

parameters, no matter what the real EOS of NSs is.

We stress that those conclusions are obtained with a Fisher-matrix analysis, and

should be made more robust in the future using more sophisticated tools, notably

Bayesian analysis.

Constraints outside the spontaneous-scalarization regime

With the results above it is fairly straightforward to calculate the limits from

aLIGO, CE and ET on |α0| when β0 is outside the spontaneous scalarization regime,
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i.e., β0 & −4, and compare them to existing limits from the Solar system and

pulsars [276]. For completeness, we present the relevant results here. Shibata et al.

[171] have shown that for small α0 there exists a simple relation between αA, α0 and

mA as long as spontaneous scalarization does not set in (see Eq. (44) in Ref. [171]),

which in our notation reads 12

αA ' A(A)
β0

(mA, β0; EOS)α0 . (7.18)

With this equation at hand one can directly convert the limits from ground-based

GW detectors of Fig. 7.7, for any given β0 & −4, into limits for |α0| via

|α0| =
∣∣∣∣∣ ∆α

A(A)
β0
−A(B)

β0

∣∣∣∣∣ . (7.19)

Figure 7.9 gives the results for two different mass configurations and the EOS AP4.

A more stiff EOS would generally lead to less constraining limits for ground-based

GW detectors and binary pulsars. As one can see, in the range β0 & −4 current Solar

system and pulsar tests are already clearly more constraining than what aLIGO is

expected to obtain. For CE and ET, only inspirals with a very massive component

will provide constraints that are better than present limits, for a limited range of β0

(see also aLIGO [398] and ET [398, 399] limits from a NS-BH inspiral for the special

case of β0 = 0, i.e. the Jordan-Fierz-Brans-Dicke gravity). By the time CE or ET is

operational, however, the expected limits from GAIA [400] and SKA [89] will have

left little room for ground-based GW observatories in the regime. The space-based

12In principle, there is still a weak dependence on α0 in A(A)
β0

. However, this dependence becomes

very small for |α0| . 10−2, as it scales with α2
0. Therefore the α0-dependence is absolutely negligible

for the parameter space explored here.
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Figure 7.9: Upper limits on |α0| as a function of β0 for aLIGO (green),
CE (blue), and ET (orange) [276]. The dashed lines correspond to
a 1.25M�/1.6M� BNS merger, and the dotted lines correspond to a
1.25M�/2.0M� BNS merger. The chosen EOS is AP4. For compar-
ison we have plotted Solar system limits (grey) and the limits from
PSR J1738+0333 (magenta), which currently gives the best limit for
β0 & 3. The limit from Cassini [180] and the limit expected from
GAIA [400] are also shown.

GW observatories LISA [266, 364] and DECIGO/BBO [365] could in principle also

provide limits on the DEF theory from an inspiral of a NS into an intermediate mass

black hole, provided such BHs exist. However, the resulting limits on |α0| are not

expected to be better than limits from future ground-based GW observatories [266].

It is worthy to mention that for very large (positive) β0, say, β0 & 102–103, massive

NSs might develop instabilities [156, 304], which is beyond the scope of Fig. 7.9.
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7.4.2 Dynamical scalarization

In addition to the nonlinear gravitational self-interaction testable with binary

pulsars, GW detectors probe the nonlinear interactions between coalescing NSs. Dy-

namical scalarization stems from the interplay between these two regimes of strong

gravity and thus offers a promising means of complementing pulsar timing con-

straints on scalar-tensor theories.

Numerical relativity simulations have demonstrated that dynamical scalariza-

tion can significantly alter the late-time behavior of a BNS system. If this transition

occurs before merger, the sudden growth of effective scalar couplings impacts the

system’s gravitational binding energy and energy flux so as to shorten the time to

merger [169, 171, 172].

The prospective detectability of this effect was investigated in Refs. [175, 271]

using Bayesian model selection. The authors sought to recover injected inspiral

waveforms containing dynamical scalarization with template banks constructed from

similar waveforms. The injected signals and template banks used PN waveforms

augmented with various non-analytic models of dynamical scalarization. To mimic

the abrupt activation of the dipole emission at the onset of dynamical scalarization,

Ref. [271] added a −1 PN correction modulated by a Heaviside function to a GR

waveform, i.e., signals of the form

h̃(f) = h̃GR(f)eiΨ−1PN(f)Θ(f−f∗) , (7.20)

where Ψ−1 PN(f) = bf−7/3, and b and f∗ are parameters of the model. Injected
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Table 7.4: Frequency fDS at which dynamical scalarization occurs for various equal-
mass binaries, given in Hz. Results are given for theories that saturate the con-
straints given in Table 7.2 at 68% and 90% CLs. Binary systems are specified
by their component NS masses, given in units of M�. We highlight systems that
scalarize at frequencies below 50 Hz with boldface.

68% confidence level

EOS 1.3–1.3 1.5–1.5 1.7–1.7 1.9–1.9

AP3 838 354 123 84

AP4 577 183 57 199

ENG 858 358 118 102

H4 1301 650 235 51

MPA1 955 436 162 67

MS0 1503 854 422 165

MS2 1471 843 426 177

PAL1 1350 693 287 95

SLy4 674 217 66 356

WFF1 386 118 128 841

WFF2 519 154 57 302

90% confidence level

EOS 1.3–1.3 1.5–1.5 1.7–1.7 1.9–1.9

AP3 694 246 50 20

AP4 461 105 8 109

ENG 694 236 39 24

H4 1131 513 131 <1

MPA1 809 325 84 11

MS0 1320 700 302 81

MS2 1290 687 306 88

PAL1 1190 570 193 32

SLy4 508 106 <1 197

WFF1 251 33 35 608

WFF2 391 72 <1 181
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signals were recovered with a template bank of waveforms of the same form. In

Ref. [175], the authors injected waveforms constructed in Ref. [170] by integrating

the 2.5 PN equations of motion combined with a semi-analytic model of scalarization,

then performed parameter estimation using both templates that included−1 PN and

0 PN scalar-tensor effects throughout the entire inspiral and those that modeled their

sudden activation as in Ref. [271]

Combined, these analyses provide a loose criterion for whether a dynamically

scalarizing BNS system could be distinguished from the corresponding system in

GR by aLIGO. The key characteristic of such systems is the frequency fDS at which

dynamical scalarization occurs. To be distinguishable from a GR waveform, a sig-

nificant portion of the dynamically scalarized signal’s SNR must occur after fDS,

or equivalently, fDS must be sufficiently lower than the merger frequency. Using

waveforms of the form of Eq. (7.20), the authors found in Ref. [271] that dynamical

scalarization can only be observed with aLIGO if fDS . 50–100 Hz. In only one

injection considered in Ref. [175] was dynamical scalarization detectable, occurring

at fDS ≈ 80 Hz. Understandably, these analyses rely on some initial assumptions

that may bias these estimates away from the real detectability criteria, such as the

limited range of masses and EOS considered and ignoring any degeneracies intro-

duced by the merger and ringdown portions of the waveform or by the inclusion of

spins. Ignoring these subtleties for the moment, we investigate whether the pulsar-

timing constraints described in Sec. 7.3 can exclude the possibility of observing

dynamical scalarization with aLIGO using the conservative detectability criterion

from Refs. [175, 271] that scalarization must occur by fDS . 50 Hz.
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We consider binary systems composed of NSs with masses ranging from 1.3M�

to 1.9M�. We compute fDS within the “post-Dickean” (PD) framework, a resum-

mation of the PN expansion formulated in Ref. [3]. This model introduces new

dynamical degrees of freedom that capture the nonperturbative growth of the scalar

field using a semi-analytic feedback loop. This approach provides a mathematically

consistent backing to previous models of dynamical scalarization [170]. The model

incorporates a certain flexibility in the choice of resummed quantities; we adopt

the
(
m(RE), F (ϕ̃)

)
scheme outlined in Table I of Ref. [3] because it was found to

give the best agreement with numerical computations of quasi-equilibrium config-

urations [172]. For clarity, we dress quantities defined in the PD framework with

tildes and leave quantities defined in the PN framework unadorned; in the limit that

no resummation is performed, the PD quantities reduce to their PN analogs.

Within the PD framework, the effective scalar coupling of each NS is promoted

to a function of both the asymptotic scalar field ϕ0 and the local scalar field in

which the body is immersed, i.e. α̃A = α̃A(ϕ0, ϕA). Unlike in the PN treatment,

this coupling evolves as the BNS coalesces. Similarly, the inertial mass of each body

m̃A(ϕ0, ϕA) evolves in the PD framework. However this mass varies by no more

than 0.01%, so in practice, one can simply use the PN mass mA in place of m̃A.

We define the mass-averaged scalar coupling of the system as

ᾱ ≡ m̃Aα̃A + m̃Bα̃B
m̃A + m̃B

, (7.21)

where precise definitions of m̃A and α̃A are given in Eqs. (A3) and (A4) in Ref. [3].

Note that for equal-mass binaries, we have α̃A = α̃B = ᾱ.
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|ᾱ
|

(1.3M�, 1.3M�)

0 0.02 0.04 0.06

GMΩ/c3

(1.5M�, 1.5M�)

AP3

AP4

ENG

H4

MPA1

MS0

MS2

PAL1

SLy4

WFF1

WFF2

0 0.02 0.04 0.06

GMΩ/c3

10−3

10−2

10−1

100

|ᾱ
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Figure 7.10: Mass-averaged scalar coupling as a function of orbital angu-
lar frequency for equal-mass BNS systems with masses (1.3M�, 1.3M�),
(1.5M�, 1.5M�), (1.7M�, 1.7M�), and (1.9M�, 1.9M�). We use the
limits on (α0, β0) at 90% CLs, given in Table 7.2, for each EOS. The cor-
responding GW frequency is given along the top axis, with fGW = Ω/π.
Dashed vertical lines highlight the conservative detectability criterion for
aLIGO that fDS . 50 Hz, derived in Refs. [175, 271].
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Table 7.5: Frequency fDS (in Hz) at which dynamical scalarization occurs for various
unequal-mass binaries with the EOS MPA1. Results are given for theories that
saturate the constraints given in Table 7.2 at 68% and 90% CLs. Binary systems
are specified by their component NS masses, given in units of M�. We highlight
systems that scalarize at frequencies below 50 Hz with boldface.

68% confidence level

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

1.2 1340 1130 942 767 611 471 364 304

1.3 . . . 955 795 649 515 399 306 258

1.4 . . . . . . 661 538 427 329 253 212

1.5 . . . . . . . . . 436 347 268 206 172

1.6 . . . . . . . . . . . . 274 212 163 136

1.7 . . . . . . . . . . . . . . . 162 126 105

1.8 . . . . . . . . . . . . . . . . . . 96 80

1.9 . . . . . . . . . . . . . . . . . . . . . 67

90% confidence level

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

1.2 1160 973 788 618 458 315 194 119

1.3 . . . 809 653 511 380 262 158 99

1.4 . . . . . . 529 415 305 210 129 79

1.5 . . . . . . . . . 325 240 165 101 62

1.6 . . . . . . . . . . . . 178 120 73 46

1.7 . . . . . . . . . . . . . . . 84 51 31

1.8 . . . . . . . . . . . . . . . . . . 32 19

1.9 . . . . . . . . . . . . . . . . . . . . . 11
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Following the work of Ref. [3], we compute the mass-averaged scalar coupling

as a function of frequency for binaries on quasi-circular orbits to 1 PD order. The av-

erage scalar coupling is plotted in Fig. 7.10 for equal-mass binaries for theories that

saturate the pulsar-timing constraints at 90% CLs, as given in Table 7.2. Scalariza-

tion occurs earlier for larger mass systems, with an ordering (by EOS) determined

by the magnitude of

βA =

(
dαA
dϕ

)
ϕ=ϕ0

. (7.22)

To compute this quantity, one takes the difference in effective scalar couplings of

NSs (of equal baryonic mass) with infinitesimally different asymptotic scalar fields

ϕ0; however, for non-spontaneously scalarized stars, βA is given approximately by

βA ≈
β0|αA|
|α0|

, (7.23)

provided that |αA| is sufficiently small. Binaries with spontaneously scalarized stars

begin with an appreciable effective scalar coupling at large separations that continues

to grow as they coalesce. In light of this remark, we note that there is no obser-

vational distinction between spontaneous (or induced) scalarization and dynamical

scalarization that occurs at sufficiently low frequencies; for example, compare the

scalarization of (1.7M�, 1.7M�) systems composed of NSs with the EOSs SLy4,

AP4, and WFF1 (the dark green, red, and beige curves in the lower left panel of

Fig. 7.10, respectively).

The sharp feature for the WFF1 EOS in the (1.9M�, 1.9M�) system occurs

because of the relatively low mass at which spontaneous scalarization occurs for

this particular EOS. We provide a more detailed analysis of this phenomenon in
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Appendix K. Similarly abrupt transitions occur for other EOSs in more massive

binary systems with individual masses & 2M�.

We adopt the method introduced in Ref. [172] to extract fDS. The average

effective scalar coupling can be closely fit by the piecewise function

(
1 + ᾱ2

)10/3
= 1 + a1 (x− xDS) Θ (x− xDS) (7.24)

where Θ is the Heaviside function, a1 and xDS are fitting parameters, and x ≡

(G∗MΩ/c3)2/3. In practice, we identify xDS with the peak in the second derivative

of the lefthand side of Eq. (7.24) with respect to x. The gravitational wave frequency

at which dynamical scalarization occurs is then given by fDS = ΩDS/π. In Ref. [3],

the PD prediction was found to reproduce numerical-relativity results to within an

error of . 10% with this fitting procedure.

The dynamical scalarization frequencies for the configurations considered in

Fig. 7.10 are given in Table 7.4 for theories constrained at the 68% and 90% CLs.

Systems containing spontaneously scalarized stars (i.e., those with appreciable ef-

fective scalar coupling even in isolation) are demarcated as scalarizing below 1 Hz;

as noted above, these systems would be indistinguishable to GW detectors from

those that dynamically scalarize below 1 Hz. For clarity, we highlight the systems in

Table 7.4 that scalarize (dynamically or spontaneously) below 50 Hz. Recall that,

under our definition, induced scalarization occurs in binaries comprised of one ini-

tially scalarized star and one initially unscalarized star; this asymmetry cannot be

achieved in equal-mass systems like those discussed above.

We next consider the onset of dynamical scalarization in unequal-mass sys-
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tems. For the sake of compactness, we show in Table 7.5 the dynamical scalarization

frequencies for binaries with NS masses of 1.2M� to 1.9M� with just the MPA1

EOS. We find that the total mass plays a more important role in determining the

onset of dynamical scalarization than the mass ratio. Fixing the total mass, we find

that scalarization occurs earlier in more asymmetric binaries of lower mass (e.g.,

M . 3.2M� for the MPA1 EOS). None of the systems listed in Table 7.5 undergo

induced scalarization. As before, we highlight the systems in Table 7.5 that scalarize

below 50 Hz.

To summarize, Tables 7.4 and 7.5 demonstrate that binary-pulsar constraints

cannot entirely rule out the possibility of dynamical scalarization occurring at fre-

quencies fDS . 50 Hz at 90% CL. Initial detectability studies — Refs. [175, 271]

discussed above — suggest that this early scalarization should be observable with

aLIGO (although these conclusions should be confirmed with future work in light

of the limitations of these works; see above). Thus, failure to detect dynamical

scalarization in future GW observations could provide tighter constraints on the

parameters (α0, β0) in DEF theory than pulsar timing. However, as can be seen

from Table 7.4, the prospects of producing such complementary constraints depend

critically on the observed NS masses and the EOS of NSs.

7.5 Conclusions

In this work, we have studied the scalarization phenomena [153, 169] in the

massless mono-scalar-tensor theory of gravity of DEF with pulsar timing and laser-
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interferometer GW detectors on the Earth. We now summarize the key conclusions

of our analysis.

1. The spontaneous scalarization phenomenon [153] occurs at different NS mass

ranges for different EOSs [171]. Therefore, in a well-timed relativistic binary-

pulsar system with a specific NS mass, the scalar-tensor gravity might be

stringently constrained for some EOSs whose spontaneous-scalarization phe-

nomenon occurs near that specific NS mass. However, in general, strong scalar-

ization could still take place if NSs are described by an EOS whose scalarization

occurs at a mass different from the one observed.

2. Combining two well-timed binary-pulsar systems with quite different NS masses,

one could in principle constrain the scalar-tensor theory with whatever EOS

Nature provides us. Using MCMC simulations, we showed in Sec. 7.3 that,

combining five binary pulsars [247, 248, 373–375] that best constrain gravi-

tational dipolar radiation, we can already bound the scalarization parameter,

β0, to be & −4.28 at 68% CL and & −4.38 at 90% CL, for any of the eleven

EOSs that we have considered.

3. Nevertheless, because of the limited distribution of masses of the five chosen

binary pulsars, we found that if the EOS of NSs were similar to one of AP4,

SLy4, or WFF2, NSs with masses of mA ' 1.70–1.73M� could still develop an

effective scalar coupling & O(10−2). This is also true for the EOS H4 with

mA ' 1.92M�, and for the EOSs MS0 and MS2 with mA ' 2.26M� (see

Fig. 7.5).
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4. Using the upper limits on the effective scalar coupling of NSs from binary

pulsars, we found that for BNSs in the frequency bands of aLIGO, CE, and ET,

we could still have a large time-domain dephasing in the number of GW cycles,

on the orders of O(101), O(102), and O(103), respectively (see Table 7.3).

5. We performed a Fisher-matrix study of BNS inspiral signals using aLIGO,

CE, and ET. We found that for BNSs at a luminosity distance DL = 200 Mpc,

where we expect to observe those sources, aLIGO can still improve the limits

from binary pulsars for a couple of EOSs with BNSs of suitable masses. CE

(whose bandwith starts at 5 Hz) can improve the current limits for all EOSs,

while ET (whose bandwith starts at 1 Hz) will provide us with even more

significant improvements over current constraints for all EOSs. This is mainly

due its better low-frequency sensitivity. Our conclusions for aLIGO differ

from the one obtained in Refs. [276, 370, 371], where the authors concluded

that pulsar timing would do better than aLIGO in constraining scalar-tensor

theories. The main reason of this difference comes from a better understanding

and larger span of the NS masses and EOSs during the past two decades [248,

369], and the different PSD for aLIGO used in Refs. [240, 276]. If we restricted

the analysis to the same NS masses and the same EOS used in Ref. [276], we

would recover the same conclusions as in Ref. [276] (see Fig. 7.7).

6. We investigated dynamical scalarization in equal-mass and unequal-mass BNS

systems. With the criterion that the dynamical scalarization transition fre-

quency must fall below ∼ 50 Hz [175, 271] to be detectable, we found aLIGO
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could be able to observe this phenomenon given the constraints obtained from

binary-pulsar timing, even away from the scalarization windows. We found

that the prospects for observing dynamical scalarization with GW detectors

depends critically on the NS EOS—for example, dynamical scalarization of

NSs with the MS0 EOS could not be detected with aLIGO. Producing new

constraints on scalar-tensor theories from GW searches for dynamical scalar-

ization requires waveform models that can faithfully reproduce this nonper-

turbative phenomenon; ultimately, these conclusions should be revisited once

such models are developed.

Our comparisons between binary pulsars and GWs made use of the current

limits of the former and the expected limits of the latter. It shows that advanced and

next-generation ground-based GW detectors have potential to further improve the

current limits set by pulsar timing. Nevertheless, the binary-pulsar limits will also

improve over time, especially if suitable systems filling the scalarization windows

are discovered in future pulsar surveys. Better mass measurements of currently

known pulsars will also help in narrowing down the constraints, especially with

PSRs J1012+5307 [373] and J1913+1102 [397], whose observational uncertainties in

masses are still large, and they might have the right masses to close the windows

below 2M�. To reach this goal, the next generation of radio telescopes, such as

FAST and SKA will play a particularly important role [366, 401].
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Chapter 8: Distinguishing boson stars from black holes and neutron

stars from tidal interactions in inspiraling binary systems

Authors: Noah Sennett, Tanja Hinderer, Jan Steinhoff, Alessandra Buo-

nanno, and Serguei Ossokine1

Abstract: Binary systems containing boson stars—self-gravitating configura-

tions of a complex scalar field— can potentially mimic black holes or neutron stars

as gravitational-wave sources. We investigate the extent to which tidal effects in the

gravitational-wave signal can be used to discriminate between these standard sources

and boson stars. We consider spherically symmetric boson stars within two classes

of scalar self-interactions: an effective-field-theoretically motivated quartic potential

and a solitonic potential constructed to produce very compact stars. We compute

the tidal deformability parameter characterizing the dominant tidal imprint in the

gravitational-wave signals for a large span of the parameter space of each boson star

model, covering the entire space in the quartic case, and an extensive portion of

interest in the solitonic case. We find that the tidal deformability for boson stars

with a quartic self-interaction is bounded below by Λmin ≈ 280 and for those with

a solitonic interaction by Λmin ≈ 1.3. We summarize our results as ready-to-use

1Originally published as Phys. Rev. D96, 024002 (2017).
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fits for practical applications. Employing a Fisher matrix analysis, we estimate the

precision with which Advanced LIGO and third-generation detectors can measure

these tidal parameters using the inspiral portion of the signal. We discuss a novel

strategy to improve the distinguishability between black holes/neutrons stars and

boson stars by combining tidal deformability measurements of each compact ob-

ject in a binary system, thereby eliminating the scaling ambiguities in each boson

star model. Our analysis shows that current-generation detectors can potentially

distinguish boson stars with quartic potentials from black holes, as well as from

neutron-star binaries if they have either a large total mass or a large (asymmetric)

mass ratio. Discriminating solitonic boson stars from black holes using only tidal ef-

fects during the inspiral will be difficult with Advanced LIGO, but third-generation

detectors should be able to distinguish between binary black holes and these binary

boson stars.

8.1 Introduction

Observations of gravitational waves (GWs) by Advanced LIGO [63], soon to be

joined by Advanced Virgo [64], KAGRA [233], and LIGO-India [402], open a new

window to the strong-field regime of general relativity (GR). A major target for

these detectors are the GW signals produced by the coalescences of binary systems

of compact bodies. Within the standard astrophysical catalog, only black holes

(BHs) and neutron stars (NSs) are sufficiently compact to generate GWs detectable

by current-generation ground-based instruments. To test the dynamical, non-linear
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regime of gravity with GWs, one compares the relative likelihood that an observed

signal was produced by the coalescence of BHs or NSs as predicted by GR against

the possibility that it was produced by the merger of either: (a) BHs or NSs in

alternative theories of gravity or (b) exotic compact objects in GR. Here, we pursue

tests within the second class. Several possible exotic objects have been proposed

that could mimic BHs or NSs, such as: quark stars [403]—stars whose interiors

attain such high temperature and pressure that baryonic matter transitions to a

phase of ultra-dense quark matter; boson stars (BSs) [404, 405]—self-gravitating

configurations of a complex scalar field or fields; gravastars [406, 407]—localized

vacuum regions of non-zero cosmological constant contained within a finite radius;

and axion stars [408, 409]—self-gravitating configurations of a real scalar field whose

self-interaction takes the same form as the QCD axion.

The coalescence of a binary system can be classified into three phases— the

inspiral, merger, and ringdown— each of which can be modeled with different tools.

The inspiral describes the early evolution of the binary and can be studied within the

post-Newtonian (PN) approximation, a series expansion in powers of the relative ve-

locity v/c (see Ref. [30] and references within). As the binary shrinks and eventually

merges, strong, highly-dynamical gravitational fields are generated; the merger is

only directly computable using numerical relativity (NR). Finally, during ringdown,

the resultant object relaxes to an equilibrium state through the emission of GWs

whose (complex) frequencies are given by the object’s quasinormal modes (QNMs),

calculable through perturbation theory (see Ref. [410] and references within). Com-

plete GW signals are built by synthesizing results from these three regimes from
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first principles with the effective-one-body (EOB) formalism [38, 45] or phenomeno-

logically, through frequency-domain fits [411, 412] of inspiral, merger and ringdown

waveforms.

An understanding of how exotic objects behave during each of these phases is

necessary to determine whether GW detectors can distinguish them from conven-

tional sources (i.e., BHs or NSs). Significant work in this direction has already been

completed. The structure of spherically-symmetric compact objects is imprinted in

the PN inspiral through tidal interactions that arise at 5PN order (i.e., as a (v/c)10

order correction to the Newtonian dynamics). Tidal interactions are characterized

by the object’s tidal deformability, which has recently been computed for gravastars

[413, 414] and “mini” BSs [415]. During the completion of this work, an indepen-

dent investigation on the tidal deformability of several classes of exotic compact

objects, including examples of the BS models considered here, was performed in

Ref. [416]; details of the similarities and differences to this work are discussed in

Sec. 8.7 below. Additional signatures of exotic objects include the magnitude of the

spin-induced quadrupole moment and the absence of tidal heating. The possibility

of discriminating BHs from exotic objects with these two effects was discussed in

Refs. [417] and [418], respectively—we will not consider these effects in this work.

The merger of BSs has been studied using NR in head-on collisions [419, 420] and

following circular orbits [421]. The QNMs have been computed for BSs [422–424]

and gravastars [425–427].

In this work, we compute the tidal deformability of two models of BSs: “mas-

sive” BSs [428] characterized by a quartic self-interaction and non-topological soli-
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tonic BSs [429]. The self-interactions investigated here allow for the formation of

compact BSs, in contrast to the “mini” BSs considered in Ref. [415]. We perform

an extensive analysis of the BS parameter space within these models, thereby go-

ing beyond previous work in Ref. [416], which was limited to a specific choice of

parameter characterizing the self-interaction for each model. Special consideration

must be given to the choice of the numerical method because BSs are constructed

by solving stiff differential equations—we employ relaxation methods to overcome

this problem [430]. Our new findings show that for massive BSs, the tidal deforma-

bility Λ (defined below) is bounded below by Λmin ≈ 280 for stable configurations,

while for solitonic BSs the deformability can reach Λmin ≈ 1.3. For comparison, the

deformability of NSs is ΛNS & O(10) and for BHs ΛBH = 0. We compactly summa-

rize our results as fits for convenient use in future gravitational wave data analysis

studies. In addition, we employ the Fisher matrix formalism to study the prospects

for distinguishing BSs from NSs or BHs with current and future gravitational-wave

detectors based on tidal effects during the inspiral. Prospective constraints on the

combined tidal deformability parameters of both objects in a binary were also shown

for two fiducial cases in Ref. [416]. Our findings are consistent with the conclusions

drawn in Ref. [416]; we discuss a new type of analysis that can strengthen the claims

made therein on the distinguishability of BSs from BHs and NSs by combining in-

formation on each body in a binary system.

The paper is organized as follows. Section 8.2 introduces the BS models in-

vestigated herein. We provide the necessary formalism for computing the tidal de-

formability in Sec. 8.3, and describe the numerical methods we employ in Sec. 8.4.
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In Sec. 8.5, we compute the tidal deformability, providing results that range from

the weak-coupling limit to the strong-coupling limit as well as numerical fits for the

tidal deformability. Finally, in Sec. 8.6 we discuss the prospects of testing the exis-

tence of stellar-mass BSs using GW detectors and provide some concluding remarks

in Sec. 8.7.

We use the signature (−,+,+,+) for the metric and natural units ~ = G =

c = 1, but explicitly restore factors of the Planck mass mPlanck =
√

~c/G in

places to improve clarity. The convention for the curvature tensor is such that

∇β∇αaµ − ∇β∇βaµ = Rν
µαβaν , where ∇α is the covariant derivative and aµ is a

generic covector.

8.2 Boson star basics

Boson stars—self-gravitating configurations of a (classical) complex scalar

field—have been studied extensively in the literature, both as potential dark matter

candidates and as tractable toy models for testing generic properties of compact

objects in GR. Boson stars are described by the Einstein-Klein-Gordon action

S =

∫
d4x
√−g

[
R

16π
−∇αΦ∇αΦ∗ − V (|Φ|2)

]
, (8.1)

where ∗ denotes complex conjugation. The only experimentally confirmed elemen-

tary scalar field is the Higgs boson [431, 432], which is an unlikely candidate to

form a BS because it readily decays to W and Z bosons. However, other massive

scalar fields have been postulated in many theories beyond the Standard Model,

e.g., bosonic superpartners predicted by supersymmetric extensions [433].
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The Einstein equations derived from the action (8.1) are given by

Rαβ −
1

2
gαβR = 8πTΦ

αβ, (8.2)

with

TΦ
αβ =∇αΦ∗∇βΦ +∇βΦ∗∇αΦ− gαβ(∇γΦ∗∇γΦ + V (|Φ|2)). (8.3)

The accompanying Klein-Gordon equation is

∇α∇αΦ =
dV

d|Φ|2 Φ, (8.4)

along with its complex conjugate.

The earliest proposals for a BS contained a single non-interacting scalar field [434–

436], that is

V
(
|Φ|2

)
= µ2|Φ|2, (8.5)

where µ is the mass of the boson. The free Einstein-Klein-Gordon action also de-

scribes the second-quantized theory of a real scalar field; thus, this class of BS can

also be interpreted as a gravitationally bound Bose-Einstein condensate [436]. The

maximum mass for BSs with the potential given in Eq. (8.5) isMmax ≈ 0.633m2
Planck/µ,

or in units of solar mass, Mmax/M� ≈ 85peV/µ. The corresponding compactness

for this BS is Cmax ≈ 0.08 [434], where the compactness C of a body is given by

the ratio between its mass M and radius R.2 Because this maximum mass scales

2Formally, BSs have no surface, so the notion of a radius (and hence compactness) is inherently

ambiguous. One common convention is to define the radius as that of a shell containing a fixed

fraction of the total mass of the star (e.g., R99 where m(r = R99) = 0.99m(r =∞)). To avoid
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more slowly with µ than the Chandrasekhar limit for a degenerate fermionic star

MCH ∼ m3
Planck/m

2
Fermion, this class of BSs is referred to as mini BSs. The tidal

deformability was computed in this model in Ref. [415]

Since the seminal work of the 1960s [434–436], BSs with various scalar self-

interactions have been studied. We consider two such models in this work, both

which reduce to mini BSs in the weak-coupling limit. The first BS model we consider

is massive BSs [428], with a potential given by

Vmassive(|Φ|2) = µ2|Φ|2 +
λ

2
|Φ|4, (8.6)

which is repulsive for λ ≥ 0. In the strong-coupling limit λ� µ2/m2
Planck, spherically

symmetric BSs obtain a maximum mass of Mmax ≈ 0.044
√
λm3

Planck/µ
2 [428]. In

units of the solar mass M� this reads Mmax/M� ≈
√
λ(0.3GeV/µ)2. Such configura-

tions are roughly as compact as NSs, with an effective compactness of Cmax ≈ 0.158

[437, 438]. This BS model is a natural candidate from an effective-field-theoretical

perspective because the potential in Eq. (8.6) contains all renormalizable self-interactions

for a scalar field, i.e., other interactions that scale as higher powers of |Φ| are ex-

pected to be suppressed far from the Planck scale. The “natural” values of λ ∼ 1

and µ � mPlanck yield the strong-coupling limit of the potential (8.6). Because

it is the most theoretically plausible BS model, we investigate the strong-coupling

regime of this interaction in detail in Section 8.5.1.

The second class of BS that we consider is the solitonic BS model [429], char-

this ambiguity, our results are given in terms of quantities that can be extracted directly from the

asymptotic geometry of the BS: the total mass M and dimensionless tidal deformability Λ (defined

below).
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acterized by the potential

Vsolitonic(|Φ|2) = µ2|Φ|2
(

1− 2|Φ|2
σ2

0

)2

. (8.7)

This potential admits a false vacuum solution at |Φ| = σ0/
√

2. One can construct

spherically symmetric BSs whose interior closely resembles this false vacuum state

and whose exterior is nearly vacuum |Φ| ≈ 0; the transition between the false vac-

uum and true vacuum occurs over a surface of width ∆r ∼ µ−1. In the strong-

coupling limit σ0 � mPlanck, the maximum mass of non-rotating BSs is Mmax ≈

0.0198m4
Planck/(µσ

2
0), or Mmax/M� ≈ (µ/σ0)2(0.7PeV/µ)3 [429]. The corresponding

compactness Cmax ≈ 0.349 approaches that of a BH CBH = 1/2 [429].3 The main

motivation for considering the potential (8.7) is as a model of very compact objects

that could even possess a light-ring when C > 1/3. In this work, we will only con-

sider solitonic BSs as potential BH mimickers, as NSs could be mimicked by the

more natural massive BS model.

In this work, we restrict our attention to only non-rotating BSs. Axisymmetric

(rotating) BSs have been constructed for the models we consider [440–443], but these

solutions are significantly more complex than those that are spherically symmetric

(non-rotating). The energy density of a rotating BS forms a toroidal topology, van-

ishing at the star’s center. Because its angular momentum is quantized, a rotating

BS cannot be constructed in the slow-rotation limit, i.e. by adding infinitesimal

rotation to a spherically symmetric solution [444].

3This compactness is still lower than the theoretical Buchdahl limit of C ≤ 4/9 for isotropic

perfect fluid stars that respect the strong energy condition [439].
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8.3 Tidal perturbations of spherically-symmetric boson stars

We consider linear tidal perturbations of a non-rotating BSs. We work within

the adiabatic limit, that is we assume that the external tidal field varies on timescales

much longer than any oscillation period of the star or relaxation timescale to reach a

microphysical equilibrium. These conditions are typically satisfied during the inspi-

ral of compact binaries. Close to merger, the assumptions concerning the separation

of timescales can break down and the tides can become dynamical [292, 299, 445,

446]; we ignore these complications here. The computation of the tidal deformability

of NSs in general relativity was first addressed in Refs. [308, 447] and was extended

in Refs. [307, 359].

8.3.1 Background configuration

Here we review the equations describing a spherically symmetric BS [404,

428, 434], which is the background configuration that we use to compute the tidal

perturbations in the following subsection. We follow the presentation in Ref. [424].

The metric written in polar-areal coordinates reads

ds2
0 = −ev(r)dt2 + eu(r)dr2 + r2(dθ2 + sin2 θdϕ2). (8.8)

As an ansatz for the background scalar field, we use the decomposition

Φ0(t, r) = φ0(r)e−iωt. (8.9)
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Inserting Eqs. (8.8) and (8.9) into Eqs. (8.2)–(8.4) gives

e−u
(
−u

′

r
+

1

r2

)
− 1

r2
= −8πρ, (8.10a)

e−u
(
v′

r
+

1

r2

)
− 1

r2
= 8πprad, (8.10b)

φ′′0 +

(
2

r
+
v′ − u′

2

)
φ′0 = eu

(
U0 − ω2e−v

)
φ0, (8.10c)

where a prime denotes differentiation with respect to r, U0 = U(φ0), U(φ) =

dV/d|Φ|2. Because the coefficients in Eq. (8.10c) are real numbers, we can restrict

φ0(r) to be a real function without loss of generality. We have also defined the

effective density and pressures

ρ ≡− TΦt

t = ω2e−vφ2
0 + e−u(φ′0)2 + V0, (8.11)

prad ≡TΦr

r = ω2e−vφ2
0 + e−u(φ′0)2 − V0, (8.12)

ptan ≡TΦθ

θ = ω2e−vφ2
0 − e−u(φ′0)2 − V0, (8.13)

where V0 = V (φ0). Note that BSs behave as anisotropic fluid stars with pressure

anisotropy given by

Σ = prad − ptan = 2e−u(φ′0)2. (8.14)

An additional relation derived from Eqs. (8.2)–(8.9) that will be used to simplify

the perturbation equations discussed in the next subsection is

p′rad = −(prad + ρ)

2r

[
eu
(
1 + 8πr2prad

)
− 1
]
− 2Σ

r
. (8.15)

We restrict our attention to ground-state configurations of the BS, in which

φ0(r) has no nodes. The background fields exhibit the following asymptotic behavior
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lim
r→0

m(r) ∼ r3, lim
r→∞

m(r) ∼M, (8.16a)

lim
r→0

v(r) ∼ v(c), lim
r→∞

v(r) ∼ 0, (8.16b)

lim
r→0

φ0(r) ∼ φ
(c)
0 , lim

r→∞
φ0(r) ∼ 1

r
e−r
√
µ2−ω2

, (8.16c)

where M is the BS mass, v(c) and φ
(c)
0 are constants, and m(r) is defined such that

e−u(r) =

(
1− 2m(r)

r

)
. (8.17)

8.3.2 Tidal perturbations

We now consider small perturbations to the metric and scalar field defined

such that

gαβ = g
(0)
αβ + hαβ, (8.18)

Φ = Φ0 + δΦ. (8.19)

We restrict our attention to static perturbations in the polar sector, which describe

the effect of an external electric-type tidal field. Working in the Regge-Wheeler

gauge [448], the perturbations take the form

hαβdx
αdxβ =

∑
l≥|m|

Ylm(θ, ϕ)
[
evh0(r)dt2 +euh2(r)dr2 + r2k(r)(dθ2 + r sin2 θdϕ2)

]
,

(8.20a)

and

δΦ =
∑
l≥|m|

φ1(r)

r
Ylm(θ, ϕ)e−iωt, (8.20b)
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where Ylm are scalar spherical harmonics.

We insert the perturbed metric and scalar field from Eqs. (8.18)–(8.20) into

the Einstein and Klein-Gordon equations, Eqs. (8.2) and (8.4), and expand to first

order in the perturbations. For the metric functions, the (θ, φ)-component of the

Einstein equations gives h2 = h0, and the (r, r)- and (r, θ)-components can be used

to algebraically eliminate k and k′ in favor of h0 and its derivatives. Finally, the

(t, t)-component leads to the following second-order differential equation:

h′′0 +
euh′0
r

(
1 + e−u − 8πr2V0

)
− 32πeuφ1

r2

[
φ′0
(
−1 + e−u − 8πr2prad

)
+ rφ0

(
U0 − 2ω2e−v

)]
+
h0e

u

r2

[
−16πr2V0 − l(l + 1)− eu(1− e−u + 8πr2prad)2 + 64πr2ω2φ2

0e
−v] = 0,

(8.21)

where we have also used the background equations (8.10a), (8.10b), and (8.15). From

the linear perturbations to the Klein-Gordon equation, together with the results for

the metric perturbations and the background equations, we obtain

φ′′1 +
euφ′1
r

(
1− e−u − 8πr2V0

)
− euh0

[
φ′0
(
−1 + e−u − 8πr2prad

)
+ rφ0

(
U0 − 2ω2e−v

)]
+
euφ1

r2

[
8πr2V0 − 1 + e−u − l(l + 1)− r2

(
U0 + 2W0φ

2
0

)
+r2e−vω2 − 32πe−ur2 (φ′0)

2
]

= 0,

(8.22)

where W0 = W (φ0) with W (φ) = dU/d|Φ|2. These perturbation equations were

also independently derived in Ref. [416] and are a special case of generic linear

perturbations considered in the context of QNMs (see, e.g., Refs. [422–424]). As

a check, we combined the three first-order and one algebraic constraint for the
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spacetime perturbations from Ref. [424] into one second-order equation for h0, which

agrees with Eq. (8.21) in the limit of static perturbations. For the special case of

mini BSs, the tidal perturbation equations were also obtained in Ref. [415].

The perturbations exhibit the following asymptotic behavior [424]

lim
r→0

h0(r) ∼ rl, (8.23a)

lim
r→∞

h0(r) ∼ c1

( r
M

)−(l+1)

+ c2

( r
M

)l
, (8.23b)

lim
r→0

φ1(r) ∼ rl+1, (8.23c)

lim
r→∞

φ1(r) ∼ rMµ2/
√
µ2−ω2

e−r
√
µ2−ω2

. (8.23d)

8.3.3 Extracting the tidal deformability

The BS tidal deformability can be obtained in a similar manner as with NSs

[307, 359, 447]. Working in the (nearly) vacuum region far from the center of the

BS, the formalism developed for NSs remains (approximately) valid. For simplic-

ity, we consider only l = 2 perturbations for the remainder of this section. The

generalization of these results to arbitrary l is detailed in Ref. [307].

As shown in Eqs. (8.16) and (8.23), very far from the center of the BS, the

system approaches vacuum exponentially. Neglecting the vanishingly small contri-

butions from the scalar field, the metric perturbation reduces to the general form

hvac
0 = c1Q̂22(x) + c2P̂22(x) +O

[
(φ0)1 , (φ1)1] , (8.24)

where we have defined x ≡ r/M − 1, P̂22 and Q̂22 are the associated Legendre func-

tions of the first and second kind, respectively, normalized as in Ref. [307] such that
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P̂22 ∼ x2 and Q̂22 ∼ 1/x3 when x →∞. The coefficients c1 and c2 are the same as

in Eq. (8.23b).

In the BS’s local asymptotic rest frame, the metric far from the star’s center

takes the form [449]

ḡ00 =− 1 +
2M

r
+

3Qij
r3

(
ninj − 1

3
δij
)

+O
(

1

r4

)
− Eijxixj +O

(
r3
)

+O
[
(φ0)1 , (φ1)1] , (8.25)

where ni = xi/r, Eij is the external tidal field, and Qij is the induced quadrupole

moment. Working to linear order in Eij, the tidal deformability λTidal is defined such

that

Qij = −λTidalEij. (8.26)

For our purposes, it will be convenient to instead work with the dimensionless quan-

tity

Λ ≡ λTidal

M5
. (8.27)

Comparing Eqs. (8.24) and (8.25), one finds that the tidal deformability can be

extracted from the asymptotic behavior of h0 using

Λ =
c1

3c2

. (8.28)

From Eq. (8.24), the logarithmic derivative

y ≡ d log h0

d log r
=
rh′0
h0

, (8.29)

takes the form

y(x) = (1 + x)
3ΛQ̂′22(x) + P̂ ′22(x)

3ΛQ̂22(x) + P22(x)
, (8.30)
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or equivalently

Λ = −1

3

(
(1 + x)P̂ ′22(x)− y(x)P̂22(x)

(1 + x)Q̂′22(x)− y(x)Q̂22(x)

)
. (8.31)

Starting from a numerical solution to the perturbation equations (8.21) and (8.22),

one obtains the deformability Λ by first computing y from Eq. (8.29) and then

evaluating Eq. (8.31) at a particular extraction radius xExtract far from the center of

the BS. Details concerning the numerical extraction are described in Sec. 8.4 below.

8.4 Solving the background and perturbation equations

The background equations (8.10a)–(8.10c) and perturbation equations (8.21)–

(8.22) form systems of coupled ordinary differential equations. These equations can

be simplified by rescaling the coordinates and fields by µ (the mass of the boson

field). To ease the comparison with previous work, we extend the definitions given

in Ref. [424]: for massive BSs, we use

r →m2
Planckr̃

µ
, m(r)→ m2

Planckm̃(r̃)

µ
,

λ→ 8πµ2λ̃

m2
Planck

, ω → µω̃

m2
Planck

,

φ0(r)→mPlanckφ̃0(r̃)

(8π)1/2
, φ1(r)→ m2

Planckφ̃1(r̃)

µ(8π)1/2
,

(8.32)

while for solitonic BSs, we use

r →m2
Planckr̃

σ̃0µ
, m(r)→ m2

Planckm̃(r̃)

σ̃0µ
,

σ0 →
mPlanckσ̃0

(8π)1/2
, ω → σ̃0µω̃

m2
Planck

,

φ0(r)→σ0φ̃0(r̃)

(2)1/2
, φ1(r)→ m2

Planckφ̃1(r̃)

(16π)1/2µ
,

(8.33)
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where factors of the Planck mass have been restored for clarity.

Finding solutions with the proper asymptotic behavior [Eqs. (8.16) and (8.23)]

requires one to specify boundary conditions at both r̃ = 0 and r̃ = ∞. To impose

these boundary conditions precisely, we integrate over a compactified radial coordi-

nate

ζ =
r̃

N + r̃
, (8.34)

as is done in Ref. [450], where N is a parameter tuned so that exponential tails

in the variables φ̃0 and φ̃1 [see Eqs. (8.16) and (8.23)] begin near the center of the

domain ζ ∈ [0, 1]. For massive BSs, we use N ranging from 20 to 60 depending on

the body’s compactness; for solitonic BSs we use N between 1 and 10.

Ground-state solutions to the background equations (8.10a)–(8.10c) can be

completely parameterized by the central scalar field φ̃
(c)
0 and frequency ω̃. To deter-

mine the ground state frequency, we formally promote ω̃ to an unknown constant

function of r̃ and simultaneously solve both the background equations and

ω̃′(r̃) = 0. (8.35)

We impose the following boundary conditions on this combined system:

u(0) =0, φ̃0(0) = φ̃
(c)
0 , φ̃′0(0) = 0,

v(∞) =0, φ̃0(∞) = 0.

(8.36)

Here, the inner boundary conditions ensure regularity at the origin, and the outer

conditions guarantee asymptotic flatness.

The background and pertrubation equations are stiff, and therefore the shoot-

ing techniques usually used to solve two-point boundary value problems require
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signficant fine-tuning to converge to a solution [424]. To avoid these difficulties,

we use a standard relaxation algorithm that more easily finds a solution given a

reasonable initial guess [430]. Once a solution is found for a particular choice of the

central scalar field φ̃
(c)
0 and scalar coupling (i.e., λ for massive BSs or σ0 for solitonic

BSs), this solution can be used as an initial guess to obtain nearby solutions. By

iterating this process, one can efficiently generate many BS configurations.

After finding a background solution, we solve the perturbation equations (8.21)

and (8.22). To improve numerical behavior of the perturbation equations near the

boundaries, we factor out the dominant r̃ dependence and instead solve for

h̄0(r̃) ≡ h0r̃
−2, (8.37)

φ̄1(r̃) ≡ φ̃1r̃
−3. (8.38)

We employ the boundary conditions

h̄0(0) = h̄
(c)
0 , h̄′0(0) = 0,

φ̄′1(0) = 0, φ̄1(∞) = 0,

(8.39)

where the normalization h̄
(c)
0 is an arbitrary non-zero constant.

Finally, we compute the tidal deformability using Eq. (8.31) in the nearly

vacuum region x � 1. At very large distances, the exponential falloff of φ0 and

φ1 is difficult to resolve numerically. This numerical error propagates through the

computation of the tidal deformability in Eq. (8.31) for very large values of x. We

find that extracting Λ at smaller radii provides more numerically stable results, with

a typical variation of ∼ 0.1% for different choices of extraction radius xExtract. For

consistency, we extract Λ at the radius at which y attains its maximum.
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Figure 8.1: Perturbations of a massive BS as a function of rescaled
coordinate r̃ and compactified coordinate ζ for a star of mass
M = 3.78m2

Planck/µ with coupling λ̃ = 300. Top panel: The background
density ρ0 (dashed) and its first-order perturbation δρ (solid), rescaled to
fit on the same plot. Middle panel: Logarithmic derivative y of the metric
perturbation. The tidal deformability Λ is calculated using the numer-
ically computed solution (black) at the peak of y (dot-dashed vertical
line). Using this value for Λ, we plot corresponding expected behavior in
vacuum (red) as given by Eq. (8.30). Bottom panel: Tidal deformability
computed from Eq. (8.31) as a function of extraction radius xExtract.
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Figure 8.1 demonstrates our procedure for computing the tidal deformability.

The background and perturbation equations are solved for a massive BS with a

coupling of λ̃ = 300 using a compactified coordinate with N = 20. The profile

of the effective density ρ, decomposed into its background value ρ0 and first order

correction δρ, is shown in the top panel for a star of mass 3.78m2
Planck/µ. Note that

the magnitude of the perturbation is proportional to the strength of the external

tidal field; to improve readability, we have scaled δρ to match the size of ρ0.

The middle panel of Fig. 8.1 shows the computed logarithmic derivative y

across the entire spacetime (black). We calculate the deformability with Eq. (8.31)

using the peak value of y, located at the dot-dashed line. Comparing with the top

panel, one sees that the scalar field is negligible in this region, justifying our use

of formulae valid in vacuum. The bottom panel depicts the typical variation of

Λ computed at different locations xExtract—our procedure yields consistent results

provided one works reasonably close to the edge of the BS. As a check, we insert

the computed value of Λ back into the vacuum solution for y given in Eq. (8.30),

plotted in red in the middle panel. As expected, this curve closely matches the

numerically computed solution at large radii, but deviates upon entering a region

with non-negligible scalar field.
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Figure 8.2: Dimensionless tidal deformability of a massive BS as a func-
tion of mass in units of (left) m2

Planck/µ and (right) m2
Planckλ̃

1/2/µ. For
each value of λ̃, the most compact stable configuration is highlighted
with a colored dot. The arrows indicate the direction towards the strong-
coupling regime, i.e. of increasing λ̃.

8.5 Results

8.5.1 Massive Boson Stars

The dimensionless tidal deformability of massive BSs is given as a function of

the rescaled total mass M̃ [defined as in Eq. (8.32)] in the left panel of Fig. 8.2. The

deformability in the weak-coupling limit λ̃ = 0 is given by the dotted black curve;

this limit corresponds to the mini BS model considered in Ref. [415].4 One finds

that the tidal deformability of the most massive stable star (colored dots) decreases

from Λ ∼ 900 in the weak-coupling limit towards Λ ∼ 280 as λ̃ is increased. For

large values of λ̃, the deformability exhibits a universal relation when written in

terms of the rescaled mass M̃/λ̃1/2 in the sense that the results for large λ̃ rapidly

4In Ref. [415], the authors computed the quantity kBS, related to the quantity Λ presented here

by kBS = ΛM10. The quantity kE2 , computed in Ref. [416] for mini, massive, and solitonic BSs, is

related to Λ by kE2 = (4π/5)1/2Λ.
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approach a fixed curve as the coupling strength increases. This convergence towards

the λ̃ = ∞ relation is illustrated in the right panel of Fig. 8.2, in which the x-axis

is rescaled by an additional factor of λ̃1/2 relative to the left panel; in both panels,

we have added black arrows to indicate the direction of increasing λ̃. Employing

this rescaling of the mass, we compute the relation Λ(M̃, λ̃) in the strong-coupling

limit λ̃→∞ below. The tidal deformability in this limit is plotted in Fig. 8.2 with

a dashed black curve.

The gap in tidal deformability between BSs, for which the lowest values are

Λ & 280, and NSs, where for soft equations of state and large masses Λ & 10, can

be understood by comparing the relative size or compactness C = M/R of each

object. From the definitions (8.26) and (8.27), one expects the tidal deformability

to scale as Λ ∝ 1/C5. In the strong-coupling limit, stable massive BSs can attain a

compactness of Cmax ≈ 0.158; note that in the exact strong-coupling limit λ̃ = ∞,

BSs develop a surface, and thus their compactness can be defined unambiguously. A

NS of comparable compactness has a tidal deformability that is only ∼ 0–25% larger

than that of BSs. However, NS models predict stable stars with approximately twice

the compactness that can be attained by massive BSs, and thus, their minimum tidal

deformability is correspondingly much lower.

As argued in Sec. 8.2, the strong-coupling limit of massive BSs is the most

plausible model investigated in this paper from an effective field theory perspective.

We analyze the tidal deformability in this limit in greater detail. To study the

strong-coupling limit of λ̃→∞, we employ a different set of rescalings introduced,
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first in Ref. [428]:

r →m2
Planckλ̃

1/2r̂

µ
, m(r)→ m2

Planckλ̃
1/2m̂(r̂)

µ
,

λ→ 8πµ2λ̃

m2
Planck

, ω → µω̂

m2
Planck

,

φ0(r)→mPlanckφ̂0(r̂)

(8πλ̃)1/2
, φ1(r)→ m2

Planckφ̂1(r̂)

µ(8π)1/2
,

(8.40)

where we have kept the previous notation for λ̃ to emphasize that it is the same

quantity as defined in Eq. (8.32).

Keeping terms only at leading order in λ̃−1 � 1, Eqs. (8.10a)–(8.10c) become

e−u
(
−u

′

r̂
+

1

r̂2

)
− 1

r̂2
= −2φ̂2

0 −
3φ̂4

0

2
, (8.41)

e−u
(
v′

r̂
+

1

r̂2

)
− 1

r̂2
=
φ̂4

0

2
, (8.42)

φ̂0 =
(
ω̂2e−v − 1

)1/2
, (8.43)

where a prime denotes differentiation with respect to r̂. Note that in particular,

Eq. (8.10c) becomes an algebraic equation, reducing the system to a pair of first

order differential equations.

Turning now to the perturbation equations, we use these rescalings and find

that to leading order in λ̃−1, Eqs. (8.21) and (8.22) become

h′′0 +
euh′0
r̂

[
r̂2

2

(
1− e−2vω̂4

)
+ e−u + 1

]
− euh0

ˆ̂r2

[
+eu(1− e−u)2 + l(l + 1)

+
r̂4eu

4

(
1− e−vω̂2

)4
+ r̂2

(
eu(1− e−vω̂2)2 + 10e−vω̂2(1− e−vω̂2)− 2

)]
= 0,

(8.44)

φ̂1 =
h0r̂

(
1 + φ̂2

0

)
2φ̂0

. (8.45)

As with the background fields, the equation for the scalar field φ̂1 becomes algebraic

in this limit. Note that the scalar perturbation diverges as one approaches the
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Figure 8.3: Dimensionless tidal deformability as a function BS mass in
units of (left) m2

Planck/µ and (right) m2
Planck/(µσ̃

2
0). For each value of

σ̃0, the most compact stable BS is highlighted with a colored dot. The
inset plot in the left panel shows both stable and unstable configurations
over a larger range of Λ to illustrate the weak-coupling limit σ̃0 → ∞
(dotted black). The arrows indicate the direction towards the strong-
coupling regime, i.e. of decreasing σ̃0; while not plotted explicitly, the
strong-coupling limit σ̃0 → 0 corresponds the accumulation of curves in
the right panel in the direction of the arrow.

surface of the BS, defined as the shell on which φ̂0 vanishes. Nevertheless, the

metric perturbation h0 remains smooth over this surface.

We integrate the simplified background equations (8.41) and (8.42) and then

the perturbation equation (8.44) using Runge-Kutta methods. We compute the

tidal deformability using Eq. (8.31) evaluated at the surface of the BS, and plot the

results in the right panel of Fig. 8.2 (dashed black).

8.5.2 Solitonic boson stars

The dimensionless tidal deformability of solitonic BSs is given as a function

of the mass in Fig. 8.3. As in Fig. 8.2, the colored dots highlight the most massive

stable configuration for different choices of the scalar coupling σ̃0. To aid comparison
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with the massive BS model, in the left panel we rescale the mass by an additional

factor of σ̃0 relative to the definition of M̃ in Eq. (8.33).

When the coupling σ̃0 is strong, solitonic BSs can manifest two stable phases

that can be smoothly connected through a sequence of unstable configurations [451].

The large plot in the left panel only shows stable configurations on the more compact

branch of configurations. In the weak-coupling limit σ̃0 →∞, solitonic BSs reduce

to the free field model considered in Ref. [415]. To illustrate this limit, we show in the

smaller inset the tidal deformability for both phases of BSs as well as the unstable

configurations that bridge the two branches of solutions. The weak-coupling limit

is depicted with a dotted black curve. We find that the tidal deformability of the

less compact phase of BSs smoothly transitions from Λ→∞ in the strong-coupling

limit (σ̃0 → 0)5 to Λ ∼ 900 in the weak-coupling limit (σ̃0 → ∞). Because their

tidal deformability is so large, diffuse solitonic BSs of this kind would not serve as

effective BH mimickers, and we will not discuss them for the remainder of this work.

However, it should be noted that only this phase of stable configurations exists when

σ0 & 0.23mPlanck.

Focusing now on the more compact phase of solitonic BSs, one finds that the

tidal deformability of the most massive stable star (colored dots) decreases towards

Λ ∼ 1.3 as σ̃0 is decreased. As before, the relation between a rescaled mass and Λ

approaches a finite limit in the strong coupling limit. We illustrate this in the right

5In the exact strong-coupling limit σ̃0 = 0, this diffuse phase of solitonic BSs vanishes [429].

However, the tidal deformability of this branch of BS configurations can be made arbitrarily large

by choosing σ̃0 to be sufficiently small.
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panel of Fig. 8.3 by rescaling the mass by an additional factor of σ̃−1
0 relative to the

definition in Eq. (8.33). While we do not examine the exact strong-coupling limit

σ̃0 → 0 here, we find that the minimum deformability has converged to within a few

percent of Λ = 1.3 for 0.03mPlanck ≤ σ0 ≤ 0.05mPlanck.

8.5.3 Fits for the relation between M and Λ

In this section we provide fits to our results for practical use in data analysis

studies, focusing on the regime that is the most relevant region of the parameter

space for BH and NS mimickers.

For massive BS, it is convenient to express the fit in terms of the variable

w =
1

1 + λ̃/8
, (8.46)

which provides an estimate of the maximum mass in the weak-coupling limit M̃max ≈

2/(π
√
w) [452] and has a compact range 0 ≤ w ≤ 1. A fit for massive BSs that is

accurate6 to ∼ 1% for Λ ≤ 105 and up to the maximum mass is given by

√
wM̃ =

[
−0.529 +

22.39

log Λ
− 143.5

(log Λ)2
+

305.6

(log Λ)3

]
w

+

[
−0.828 +

20.99

log Λ
− 99.1

(log Λ)2
+

149.7

(log Λ)3

]
(1− w).

(8.47)

The maximum mass where the BSs become unstable can be obtained from the

extremum of this fit, which also determines the lower bound for Λ.

6The accuracy quoted here corresponds to the prediction for the mass at fixed Λ and coupling

constant. The error in Λ at a fixed mass can be much larger, because Λ has a large gradient when

varying the mass, which even diverges at the maximum mass. The applicability of our fits must

be judged by the accuracy with which the masses can be measured from a GW signal.
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In the solitonic case, a global fit for the tidal deformability for all possible

values of σ0 is difficult to obtain due to qualitative differences between the weak-

and strong-coupling regimes. However, small values of σ0 are most interesting, since

they allow for the widest range for the tidal deformability and compactness. A fit

for σ0 = 0.05mPlanck accurate to better than 1% and valid for Λ ≤ 104 (and again

up to the maximum mass) reads

log(σ0M̃) = −30.834 +
1079.8

log Λ + 19
− 10240

(log Λ + 19)2
. (8.48)

This fit is expected to be accurate for 0 ≤ σ0 . 0.05mPlanck, i.e., including the strong

coupling limit σ0 = 0, within a few percent. Notice that this fit remains valid through

tidal deformabilities of the same magnitude as that of NSs.

8.6 Prospective constraints

8.6.1 Estimating the precision of tidal deformability measurements

Gravitational-wave detectors will be able to probe the structure of compact

objects through their tidal interactions in binary systems, in addition to effects

seen in the merger and ringdown phases. In this section, we discuss the possibility

of distinguishing BSs from NSs and BHs using only tidal effects. We emphasize

that our results in this section are based on several approximations and should be

viewed only as estimates that provide lower bounds on the errors and can be used

to identify promising scenarios for future studies with Bayesian data analysis and

improved waveform models.
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The parameter estimation method based on the Fisher information matrix is

discussed in detail in Ref. [394]. This approximation yields only a lower bound

on the errors that would be obtained from a Bayesian analysis. We assume that a

detection criterion for a GW signal h(t;θ) has been met, where θ are the parameters

characterizing the signal: the distance D to the source, time of merger tc, five

positional angles on the sky, plane of the orbit, orbital phase at some given time φc,

as well as a set of intrinsic parameters such as orbital eccentricity, masses, spins, and

tidal parameters of the bodies. Given the detector output s = h(t) + n, where n is

the noise, the probability p(θ|s) that the signal is characterized by the parameters

θ is

p(θ|s) ∝ p(0)e−
1
2

(h(θ)−s|h(θ)−s), (8.49)

where p(0) represents a priori knowledge. Here, the inner product (·|·) is determined

by the statistical properties of the noise and is given by

(h1|h2) = 2

∫ ∞
0

h̃∗1(f)h̃2(f) + h̃∗2(f)h̃1(f)

Sn(f)
df, (8.50)

where Sn(f) is the spectral density describing the Gaussian part of the detector

noise. For a measurement, one determines the set of best-fit parameters θ̂ that

maximize the probability distribution function (8.49). In the regime of large signal-

to-noise ratio SNR =
√

(h|h), for a given incident GW in different realizations of

the noise, the probability distribution p(θ|s) is approximately given by

p(θ|s) ∝ p(0)e−
1
2

Γij∆θ
i∆θj , (8.51)

where

Γij =

(
∂h

∂θi

∣∣∣∣ ∂h∂θj
)
, (8.52)
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is the so-called Fisher information matrix. For a uniform prior p(0), the distribu-

tion (8.51) is a multivariate Gaussian with covariance matrix Σij = (Γ−1)ij and the

root-mean-square measurement errors in θi are given by

√
〈(∆θi)2〉 =

√
(Γ−1)ii, (8.53)

where angular brackets denote an average over the probability distribution func-

tion (8.51).

We next discuss the model h̃(f,θ) for the signal. For a binary inspiral, the

Fourier transform of the dominant mode of the signal has the form

h̃(f,θ) = A(f,θ)eiψ(f,θ). (8.54)

Using a PN expansion and the stationary-phase approximation (SPA), the phase ψ

is computed from the energy balance argument by solving

d2ψ

dΩ2
=

2

dΩ/dt
= 2

(dE/dΩ)

ĖGW

, (8.55)

where E is the energy of the binary system, ĖGW is the energy flux in GWs, and

Ω = πf is the orbital frequency. The result is of the form

ψ =
3

128(πMf)5/2

[
1 + α1PN(ν)x+ . . .+

(
αNewt

tidal + α5PN(ν)
)
x5 +O(x6)

]
, (8.56)

with x = (πMf)2/3, M = m1 +m2, ν = m1m2/M
2,M = ν3/5M , and the dominant

tidal contribution is

αNewt
tidal = −39

2
Λ̃. (8.57)

Here, Λ̃ is the weighted average of the individual tidal deformabilities, given by

Λ̃(m1,m2,Λ1,Λ2) =
16

13

[(
1 + 12

m2

m1

)
m5

1

M5
Λ1 + (1↔ 2)

]
. (8.58)
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The phasing in Eq. (8.56) is known as the “TaylorF2 approximant.” Specifically,

we use here the 3.5PN point-particle terms [30] and the 1PN tidal terms [453]. At

1PN order, a second combination of tidal deformability parameters enters into the

phasing in addition to Λ̃. This additional parameter vanishes for equal-mass binaries

and will be difficult to measure with Advanced LIGO [454, 455]. For simplicity, we

omit this term from our analysis.

The tidal correction terms in Eq. (8.56) enter with a high power of the fre-

quency, indicating that most of the information on these effects comes from the late

inspiral. This is also the regime where the PN approximation for the point-mass

dynamics becomes inaccurate. To estimate the size of the systematic errors intro-

duced by using the TaylorF2 waveform model in our analysis, we compare the model

against predictions from a tidal EOB (TEOB) model. The accuracy of the TEOB

waveform model has been verified for comparable-mass binaries through comparison

with NR simulations; see, for example, Ref. [292]. For our comparison, we use the

same TEOB model as in Ref. [292]. The point-mass part of this model—known

as “SEOBNRv2”—has been calibrated with binary black hole (BBH) results from

NR simulations. The added tidal effects are adiabatic quadrupolar tides including

tidal terms at relative 2PN order in the EOB Hamiltonian and 1PN order in the

fluxes and waveform amplitudes. The SPA phase for the TEOB model is computed

by solving the EOB evolution equations to obtain Ω(t), numerically inverting this

result for t(Ω), and solving Eq. (8.55) to arrive at ψ(Ω).

Figure 8.4 shows the difference in predicted phase from the TEOB model and

the TaylorF2 model (8.56) for two nearly equal mass binary NS (BNS) systems.
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Figure 8.4: Dephasing between the TEOB and tidal TaylorF2 models for
non-spinning BNS systems including adiabatic quadrupolar tidal effects.
The curves end at the prediction for the merger from NR simulations
described in Ref. [458]. The labels denote the masses (in units of M�)
and EoS of the NSs.

For our analysis, we consider two representative equations of state (EoS) for NSs:

the relatively soft SLy model [456] and the stiff MS1b EoS [457]. Figure 8.4 il-

lustrates that the dephasing between the TaylorF2 and TEOB waveforms remains

small compared to the size of tidal effects, which is on the order of & 20 rad for

MS1b (1.4 + 1.4)M�. Thus, we conclude that the TaylorF2 approximant is suffi-

ciently accurate for our purposes and leave an investigation of the measurability of

tidal parameters with more sophisticated waveform models for future work.

Besides the waveform model, the computation of the Fisher matrix also re-

quires a model of the detector noise. We consider here the Advanced LIGO Zero-

Detuned High Power configuration [389]. To assess the prospects for measurements

with third-generation detectors we also use the ET-D [388] and Cosmic Explorer
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[367] noise curves.

To compute the measurement errors we specialize to the restricted set of sig-

nal parameters θ = {φc, tc,M, ν, Λ̃}. The extrinsic parameters of the signal such as

orientation on the sky enter only into the waveform’s amplitude and can be treated

separately; they are irrelevant for our purposes. Spin parameters are omitted be-

cause the TaylorF2 approximant inadequately captures these effects and one would

instead need to use a more sophisticated model such as SEOBNR. We restrict our

analysis to systems with low masses M . 12M� [259] for which the merger occurs

at frequencies fmerger > 900Hz so that the information is dominated by the inspiral

signal. The termination conditions for the inspiral signal employed in our analysis

are the predicted merger frequencies from NR simulations: for BNSs the formula

from Ref. [458], and for BBH that from Ref. [459].

Ultimately, we need to convert our measurements of {M, ν, Λ̃} into estimates

of the individual masses and tidal deformabilities {m1,m2,Λ1,Λ2}. Comparing the

dimensions of these two parameter spaces, one can immediately see that this trans-

formation is underdetermined; any given measurement of {M, ν, Λ̃} corresponds to a

one-dimensional subspace of compatible choices for Λ1 and Λ2. However, this infinite

range of Λ1 and Λ2 can be constrained through physically motivated assumptions

on the relative size of Λ1 and Λ2. While we remain unable to estimate each body’s

tidal deformability precisely, we can at least place bounds on these quantities. The

details of this analysis are presented below.

We adopt the convention thatm1 ≥ m2. For any realistic, stable self-gravitating

body, we expect an increase in mass to also increase the body’s compactness. Be-
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cause the tidal deformability scales as Λ ∝ 1/C5, we assume that Λ1 ≤ Λ2 provided

that both bodies are the same type of compact object (e.g. NS, massive BS, solitonic

BS, etc.). Furthermore, we assume that both tidal deformabilities are non-negative,

as is the case for all compact objects we consider here.

Next, we consider the combinations of tidal deformabilities Λ1,Λ2 that are

consistent with a particular set of measurements {M∗, ν∗, Λ̃∗}, or equivalently, a

particular set of measurements {m∗1,m∗2, Λ̃∗}. Employing the assumption that Λ1 ≤

Λ2, one finds that the deformability of the more massive object Λ1 takes its maximal

value when it is exactly equal to Λ2, i.e. when Λ̃∗ = Λ̃(m∗1,m
∗
2,Λ1,Λ1). Conversely,

Λ2 takes its maximal value when Λ1 vanishes exactly so that Λ̃∗ = Λ̃(m∗1,m
∗
2, 0,Λ2).

Substituting the expression for Λ̃ from Eq. (8.58) and using that m1,2 = M(1 ±
√

1− 4ν)/2 leads to the following bounds on the individual deformabilities

Λ1 ≤ g1(ν)Λ̃, Λ2 ≤ g2(ν)Λ̃, (8.59)

where the functions gi are given by

g1(ν) ≡ 13

16(1 + 7ν − 31ν2)
, (8.60a)

g2(ν) ≡ 13

8
[
1 + 7ν − 31ν2 −

√
1− 4ν (1 + 9ν − 11ν2)

] , (8.60b)

and where we have dropped the asterisks for simplicity. Thus, the expected mea-

surement precision of ν and Λ̃ provide an estimate of the precision with which Λ1

and Λ2 can be measured through

∆Λ1 ≤
[(
g1(ν)∆Λ̃

)2

+
(
g′1(ν)Λ̃∆ν

)2
]1/2

, (8.61a)

∆Λ2 ≤
[(
g2(ν)∆Λ̃

)2

+
(
g′2(ν)Λ̃∆ν

)2
]1/2

, (8.61b)

381



For simplicity, we have assumed in Eq. (8.61) that the statistical uncertainty in ν

and Λ̃ is uncorrelated. Note that for BBH signals, this assumption is unnecessary

because Λ̃ = 0, and thus the second terms in Eqs. (8.61a) and (8.61b) vanish.

In the following subsections, we outline two tests to distinguish conventional

GW sources from BSs and discuss the prospects of successfully differentiating the

two with current- and third-generation detectors. First, we investigate whether

one could accurately identify each body in a binary as a BH/NS rather than a

BS. This test is only applicable to objects whose tidal deformability is significantly

smaller than that of a BS, e.g., BHs and very massive NSs. For bodies whose

tidal deformabilities are comparable to that of BSs, we introduce a novel analysis

designed to test the slightly weaker hypothesis: can the binary system of BHs or NSs

be distinguished from a binary BS (BBS) system? For both tests, we will assume

that the true waveforms we observe are produced by BBH or BNS systems and then

assess whether the resulting measurements are also consistent with the objects being

BSs. In our analyses we consider only a single detector and assume that the sources

are optimally oriented; to translate our results to a sky- and inclination-averaged

ensemble of signals, one should divide the expected SNR by a factor of
√

2 and thus

multiply the errors on ∆Λ̃ by the same factor.

We consider two fiducial sets of binary systems in our analysis. First, we

consider BBHs at a distance of 400 Mpc (similar to the distances at which GW150914

and GW151226 were observed [73, 184]) with total masses in the range 8M� ≤M ≤

12M�. This range is determined by the assumption that the lowest BH mass is 4M�

and the requirement that the merger occurs at frequencies above ∼ 900 Hz so the
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information in the signal is dominated by the inspiral. The SNRs for these systems

range from approximately 20 to 49 given the sensitivity of Advanced LIGO. The

second set of systems that we consider are BNSs at a distance of 200 Mpc and with

total masses 2M� ≤ M ≤ Mmax, where Mmax is twice the maximum NS mass for

each equation of state. The lower limit on this mass range comes from astrophysical

considerations on NS formation [460]. The BNS distance was chosen to describe

approximately one out of every ten events within the expected BNS range of ∼ 300

Mpc for Advanced LIGO and translates to SNR ∼ 12− 22 for the SLy equation of

state.

8.6.2 Distinguishability with a single deformability measurement

A key finding from Sec. 8.5 is that the tidal deformability is bounded below

by Λ & 280 for massive BSs and Λ & 1.3 for solitonic BSs. By comparison, the

deformability of BHs vanishes exactly, i.e. Λ = 0, whereas for nearly-maximal mass

NSs, the deformability can be of order Λ ≈ O(10). Thus, a BH or high-mass NS

could be distinguished from a massive BS provided that a measurement error of

∆Λ ≈ 200 can be reached with GW detectors. Similarly, to distinguish a BH from

a solitonic BS requires a measurement precision of ∆Λ ≈ 1.

The results for the measurement errors with Advanced LIGO for BBH systems

at 400 Mpc are shown in Fig. 8.5, for a starting frequency of 10 Hz. The left panel

shows the error in the combination Λ̃ that is directly computed from the Fisher

matrix as a function of total mass M and mass ratio q = m1/m2. As discussed above,
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the ranges of M and q we consider stem from our assumptions on the minimum BH

mass and a high merger frequency. The right panel of Fig. 8.5 shows the inferred

bound on the less well-measured individual deformability in the regime of unequal

masses. We omit the region where the objects have nearly equal masses q → 1

because in this regime, the 68% confidence interval ν + 2∆ν exceeds the physical

bound ν ≤ 1/4. Inferring the errors on the parameters of the individual objects

requires a more sophisticated analysis [394] than that considered here. The coloring

ranges from small errors in the blue shaded regions to large errors in the orange

shaded regions; the labeled black lines are representative contours of constant ∆Λ.

Note that the errors on the individual deformability Λ2 are always larger than those

on the combination Λ̃.

We find that the tidal deformability of our fiducial BBH systems can be mea-

sured to within ∆Λ . 100 by Advanced LIGO, which indicates that BHs can be

readily distinguished from massive BSs. However, even for ideal BBHs—high mass,

low mass-ratio binaries—the tidal deformability of each BH can only be measured

within ∆Λ & 15 by Advanced LIGO. Therefore one cannot distinguish BHs from

solitonic BSs using estimates of each bodies’ deformability alone. Given these find-

ings, we also estimate the precision with which the tidal deformability could be

measured with third-generation instruments. Compared to Advanced LIGO, the

measurement errors in the tidal deformability decrease by factors of ∼ 13.5 and

∼ 23.5 with Einstein telescope and Cosmic Explorer, respectively. Thus, the more

massive BH in the binary would be marginally distinguishable from a solitonic BS

with future GW detectors, as ∆Λ1 ≤ ∆Λ̃ . 1. These findings are consistent with
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Figure 8.5: Estimated measurement error with Advanced LIGO of
(left) the weighted average tidal parameter Λ̃ and (right) the less well-
constrained individual tidal parameter Λ2 for BBH systems at 400 Mpc.
The black lines are contours of constant ∆Λ̃ and ∆Λ2 in the left and
right plots, respectively.

the conclusions of Cardoso et al [416], although these authors considered only equal-

mass binaries at distances D = 100Mpc with total masses up to 50M�. However,

we find that in an unequal-mass BBH case, the less massive body could not be

differentiated from a solitonic BS even with third-generation detectors.

Next, we consider the measurements of a BNS system, shown in Fig. 8.6 as-

suming the SLy EoS. We restrict our analysis to systems with individual masses

1M� ≤ mNS ≤ mmax, where mmax ≈ 2.05M� is the maximum mass for this EoS.

Similar to Fig. 8.5, the left panel in Fig. 8.6 shows the results for the measurement

error in the combination Λ̃ directly computed from the Fisher matrix, and the right

panel shows the error for the larger of the individual deformabilities. The slight
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warpage of the contours of constant ∆Λ̃ compared to those in Fig. 8.5, best visible

for the ∆Λ̃ = 50 contour, is due to an additional dependence of the merger fre-

quency on Λ̃ for BNSs that is absent for BBHs, and a small difference in the Fisher

matrix elements when evaluated for Λ̃ 6= 0. We see that the deformability of NSs

of nearly maximal mass in BNS systems can be measured to within ∆Λ . 200, and

thus can be distinguished from massive BSs. However, the measurement precision

worsens as one decreases the NS mass, rendering lighter NSs indistinguishable from

massive BSs using only each bodies deformability alone. In the next subsection, we

discuss how combining the measurements of Λ for each object in a binary system

can improve distinguishability from BSs even when the criteria discussed above are

not met.

For completeness, we also computed how well third-generation detectors could

measure the tidal deformabilities in BNS systems. As in the BBH case, we find that

measurement errors in Λ decrease by factors of ∼ 13.5 and ∼ 23.5 with the Einstein

Telescope and Cosmic Explorer, respectively. However, the conclusions reached

above concerning the distinguishability of BHs or NSs and BSs remain unchanged.

8.6.3 Distinguishability with a pair of deformability measurements

In the previous subsection we determined that compact objects whose tidal

deformability is much smaller than that of BSs could be distinguished as such with

Advanced LIGO, e.g., BHs versus massive BSs. In this subsection, we present a more

refined analysis to distinguish compact objects from BSs when the deformabilities
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Figure 8.6: Estimated measurement error with Advanced LIGO of
(left) the weighted average tidal parameter Λ̃ and (right) the less well-
constrained individual tidal parameter Λ2 for BNS systems at 200 Mpc
with the SLy equation of state. The black lines are contours of constant
∆Λ̃ and ∆Λ2 in the left and right plots, respectively.
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of each are of approximately the same size. In particular, we focus on the prospects

of distinguishing NSs between one and two solar masses from massive BSs and

distinguishing BHs from solitonic BSs. Throughout this section, we only consider

the possibility that a single species of BS exists in nature; differentiation between

multiple, distinct complex scalar fields goes beyond the scope of this work. We

show that combining the tidal deformability measurements of each body in a binary

system can break the degeneracy in the BS model associated with choosing the

boson mass µ. Utilizing the mass and deformability measurements of both bodies

allows one to distinguish the binary system from a BBS system.

In Figs. 8.2 and 8.3, the tidal deformability of BSs was given as a function of

mass rescaled by the boson mass and self-interaction strength. By simultaneously

adjusting these two parameters of the BS model, one can produce stars with the same

(unrescaled) mass and deformability. This degeneracy presents a significant obstacle

in distinguishing BSs from other compact objects with comparable deformabilities.

For example, the boson mass can be tuned for any value of the coupling λ (σ0) so

that the massive (solitonic) BS model admits stars with the exact same mass and

tidal deformability as a solar mass NS. However, combining two tidal deformability

measurements can break this degeneracy and improve the distinguishability between

BSs and BHs or NSs. As an initial investigation into this type of analysis, we pose

the following question: given a measurement (m1,Λ1) of a compact object in a

binary, can the observation (m2,Λ2) of the companion exclude the possibility that

both are BSs? We stress that our analysis is preliminary and that only qualitative

conclusions should be drawn from it; a more thorough study goes beyond the scope
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of this work.

From the Fisher matrix estimates for the errors in (M, ν, Λ̃) we obtain bounds

on the uncertainty in the measurement (mi,Λi) for each body in a binary, which we

approximate as being characterized by a bivariate normal distribution with covari-

ance matrix Σ = diag(∆mi,∆Λi). Figure 8.7 depicts such potential measurements

by Advanced LIGO of (m1,Λ1) and (m2,Λ2), shown in black, for a (1.55 + 1.35)M�

BNS system at a distance of 200 Mpc with two representative equations of state

for the NSs: the SLy and MS1b models discussed above. The dashed black curves

in Figure 8.7 show the Λ(m) relation for these fiducial NSs. Figure 8.8 shows the

corresponding measurements in a 6.5–4.5M� BBH measured at 400 Mpc made by

Advanced LIGO, Einstein Telescope, and Cosmic Explorer in blue, red, and black,

respectively.

The strategy to determine if the objects could be BSs is the following. Consider

first the measurement (m2,Λ2) of the less massive body. For each point x = (m,Λ)

within the 1σ ellipse, we determine the combinations of theory parameters (µ, λ)[x]

or (µ, σ0)[x] that could give rise to such a BS, assuming the massive or solitonic BS

model, respectively. As discussed above, in general, λ or σ0 can take any value by

appropriately rescaling µ. Finally, we combine all mass-deformability curves from

Figs. 8.2 or 8.3 that pass through the 1σ ellipise, that is we consider the model

parameters (µ, λ) ∈ ⋃x(µ, λ)[x] or (µ, σ0) ∈ ⋃x(µ, σ0)[x] for massive and solitonic

BS, respectively. These portions of BS parameter space are shown as the shaded

regions in Figs. 8.7 and 8.8. If the tidal deformability measurements (m1,Λ1) of

the more massive body—indicated by the other set of crosses—lie outside of these
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Figure 8.7: Dimensionless tidal deformability as a function of mass.
Black points indicate hypothetical measurements of a (1.55 + 1.35)M�
binary NS system with the (left) MS1b and (right) SLy EoS; the er-
ror bars are estimated for a system observed at 200 Mpc. The shaded
regions depict all possible massive BSs (i.e., all possible values of the
boson mass µ and coupling λ) consistent with the measurement of the
smaller compact object. For the MS1b EoS, the tidal deformabilities of
the binary are Λ1.55 = 714 and Λ1.35 = 1516. For the SLy EoS, the tidal
deformabilites are Λ1.55 = 150 and Λ1.35 = 390.

shaded regions, one can conclude that the measurements are inconsistent with both

objects being BSs.

Figure 8.7 demonstrates that an asymmetric BNS with masses 1.55–1.35M�

can be distinguished from a BBS with Advanced LIGO by using this type of analysis.

When considered individually, either NS measurement shown here would be consis-

tent with a possible massive BS; by combining these measurements we improve our

ability to differentiate the binary systems. This type of test can better distinguish

BBSs from conventional GW sources than the analysis performed in the previous

section because it utilizes measurements of both the mass and tidal deformability
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rather than just using the deformability alone. However the power of this type of

test hinges on the asymmetric mass ratio in the system; with an equal-mass system,

this procedure provides no more information than that described in Section 8.6.2.

A similar comparison between a BBH with masses 6.5–4.5M� and a binary

solitonic BS system is illustrated in Fig. 8.8. For simplicity, the yellow shaded region

depicts all possible solitonic BSs for a particular choice of coupling σ0 = 0.05mPlanck

that are consistent with the measurement of the smaller mass by Advanced LIGO

(rather than all possible values of the coupling σ0). We see that in contrast to the

massive BS case, after fixing the boson mass µ with the measurement of one body,

the measurement of the companion remains within that shaded region. As with the

more simplistic analysis performed in Section 8.6.2, we again find that Advanced

LIGO will be unable to distinguish solitonic BSs from BHs.

In the previous section, we showed that third-generation GW detectors will be

able to distinguish marginally at least one object in a BBH system from a solitonic

BS and thus determine whether a GW signal was generated by a BBS system. Us-

ing the analysis introduced in this section, we can now strengthen this conclusion.

We repeat the procedure described above for a 6.5–4.5M� BBH at 400 Mpc but in-

stead use the 3σ error estimates in the measurements of the bodies’ mass and tidal

deformability. In Fig. 8.8, all possible solitonic BSs consistent with the measure-

ment of the smaller mass are shown in green and pink for Einstein Telescope and

Cosmic Explorer, respectively. We see that while the deformability measurements

of each BH considered individually are consistent with either being solitonic BSs,

they cannot both be BSs. Thus, we can conclude with much greater confidence
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that third-generation detectors will be able to distinguish BBH systems from binary

systems of solitonic BSs.

To summarize, the precision expected from Advanced LIGO is potentially

sufficient to differentiate between massive BSs and NSs or BHs, particularly in

systems with larger mass asymmetry. Advanced LIGO is not sensitive enough to

discriminate between solitonic BSs and BHs, but next-generation detectors like the

Einstein Telescope or Cosmic Explorer should be able to distinguish between BBS

and BBH systems. However, we emphasize again that our conclusions are based on

several approximations and further studies are needed to make these precise. We

also note that we have deliberately restricted our analysis to the parameter space

where waveforms are inspiral-dominated in Advanced LIGO. Tighter constraints on

BS parameters are expected for binaries where information can also be extracted

from the merger and ringdown portion, provided that waveform models that include

this regime are available.

8.7 Conclusions

Gravitational waves can be used to test whether the nature of BHs and NSs is

consistent with GR and to search for exotic compact objects outside of the standard

astrophysical catalog. A compact object’s structure is imprinted in the GW signal

produced by its coalescence with a companion in a binary system. A key target for

such tests is the characteristic ringdown signal of the final remnant. However, the

small SNR of that part of the GW signal complicates such efforts. Complementary
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Figure 8.8: Dimensionless tidal deformability as a function of mass. Hy-
pothetical measurements of a (6.5+4.5)M� binary BH system with error
bars estimated for a system observed at 400 Mpc by Advanced LIGO,
the Einstein Telescope, and Cosmic Explorer are given in blue, red, and
black, respectively. The shaded regions depict all possible solitonic BSs
with coupling σ0 = 0.05mPlanck that are consistent with the measure-
ments of the smaller compact object by each detector.

information can be obtained by measuring a small but cumulative signature due to

tidal effects in the inspiral that depend on the compact object’s structure through

its tidal deformability. This quantity may be measurable from the late inspiral and

could be used to distinguish BHs or NSs from exotic compact objects.

In this work, we computed the tidal deformability Λ for two models of BSs:

massive BSs, characterized by a quartic self-interaction, and solitonic BSs, whose

scalar self-interaction is designed to produce very compact objects. For the quartic

interaction, our results span the entire two-dimensional parameter space of such a

model in terms of the mass of the boson and the coupling constant in the potential.

For the solitonic case, our results span the portion of interest for BH mimickers.

We presented fits to our results for both cases that can be used in future data
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analysis studies. We find that the deformability of massive BSs is markedly larger

than that of BHs and very massive NSs; in particular, we showed that the tidal

deformability Λ & 280 irrespective of the boson mass and the strength of the quartic

self-interaction. The tidal deformability of solitonic BSs is bounded below by Λ &

1.3.

To determine whether ground-based GW detectors can distinguish NSs and

BHs from BSs, we first computed a lower bound on the expected measurement errors

in Λ using the Fisher matrix formalism. We considered BBH systems located at 400

Mpc and BNS systems at 200 Mpc with generic mass ratios that merge above 900

Hz. We found that, with Advanced LIGO, BBHs could be distinguished from binary

systems composed of massive BSs and that BNSs could be distinguished provided

that the NSs were of nearly-maximal mass or of sufficiently different masses (i.e. a

high mass ratio binary). We also demonstrated that the prospects for distinguishing

solitonic BSs from BHs based only on tidal effects are bleak using current-generation

detectors; however, third-generation detectors will be able to discriminate between

BBH and BBS systems. We presented two different analyses to determine whether

an observed GW was produced by BSs: the first relied on the minimum tidal de-

formability being larger than that of a NS or BH, while the second combined mass

and deformability measurements of each body in a binary system to break degen-

eracies arising from the (unknown) mass of the fundamental boson field.

Work by Cardoso et al. [416] also investigated the tidal deformabilities of BSs

and the prospects of distinguishing them from BHs and NSs. Despite the topic being

similar, the work in this chapter is complementary: Cardoso et al. [416] performed
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a broad survey of tidal effects for different classes of exotic objects and BHs in

modified theories of gravity, while our work focuses on an in-depth analysis of BSs.

Additionally, these authors computed the deformability of BSs to both axial and

polar tidal perturbations with l = 2, 3, whereas our results are restricted to the l = 2

polar case. The l = 2 effects are expected to leave the dominant tidal imprint in

the GW signal, with the l = 3 corrections being suppressed by a relative factor of

125Λ3/(351Λ2)(MΩ)4/3 ∼ 4(MΩ)4/3 [461] using the values from Table I of Ref. [416],

where Ω is the orbital frequency of the binary. For reference, MΩ ∼ 5× 10−3 for a

binary with M = 12M� at 900Hz.

We also cover several aspects that were not considered in Ref. [416], where

the study of BSs was limited to a single example for a particular choice of theory

parameters for each potential (quartic and solitonic). Here, we analyzed the entire

parameter space of self-interaction strengths for the quartic potential and the regime

of interest for BH mimickers in the solitonic case. Furthermore, we developed fitting

formulae for immediate use in future data analysis studies aimed at constraining

the BS parameters with GW measurements. Cardoso et al. [416] also discussed

prospective constraints obtained from the Fisher matrix formalism for a range of

future detectors, including the space-based detector LISA that we did not consider

here. However, their analysis was limited to equal-mass systems, to bounds on Λ̃,

and to the specific examples within each BS models. We went beyond this study

by delineating a strategy for obtaining constraints on the BS parameter space from

a pair of measurements and considering binaries with generic mass ratio. We also

restricted our results to the regime where the signals are dominated by the inspiral.
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Although this choice significantly reduces the parameter space of masses surveyed

compared to Cardoso et al., we imposed this restriction because full waveforms that

include the late inspiral, merger and ringdown are not currently available. Another

difference is that we took BBH or BNS signals to be the “true” signals around

which the errors were computed and used results from NR for the merger frequency

to terminate the inspiral signals, whereas the authors of Ref. [416] chose BS signals

for this purpose and terminated them at the Schwarzschild ISCO.

The purpose of this work was to compute the tidal properties of BSs that could

mimic BHs and NSs for GW detectors and to estimate the prospects of discriminat-

ing between such objects with these properties. Our analysis hinged on a number

of simplifying assumptions. For example, the Fisher matrix approximation that we

employed only yields lower bounds on estimates of statistical uncertainty. Addition-

ally, we considered only a restricted set of waveform parameters, whereas including

spins could also worsen the expected measurement accuracy. On the other hand, im-

proved measurement precision is expected if one uses full inspiral-merger-ringdown

waveforms or if one combines results from multiple GW events. Our conclusions

should be revisited using Bayesian data analysis tools and more sophisticated wave-

form models, such as the EOB model. Tidal effects are a robust feature for any

object, meaning that the only change needed in existing tidal waveform models is

to insert the appropriate value of the tidal deformability parameter for the object

under consideration. However, the merger and ringdown signals are more difficult

to predict, and further developments and NR simulations are needed to model them

for BSs or other exotic objects.
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Chapter 9: Parameterized tests of general relativity with generic fre-

quency-domain waveform models

Authors: Noah Sennett1

Abstract: Theory-agnostic and theory-specific gravitational-wave tests of

gravity rely on “generalized” waveform models that introduce parameterized de-

viations to pre-established waveform models in general relativity (GR). We develop

a new flexible theory-agnostic (FTA) framework that allows such deviations to be

added to the inspiral of any frequency-domain, non-precessing baseline waveform.

This infrastructure is well-adapted to testing GR with LIGO and Virgo observa-

tions and to investigating the systematic biases that may arise in such tests through

the particular construction of generalized waveforms. As part of the LIGO Scientific

Collaboration, we use this infrastructure to bound phenomenological deviations from

GR in the phase evolution of BBH and BNS events observed during the first two

observing runs of the Advanced LIGO and Virgo detectors; by comparing the results

of these tests with those conducted with other generalized waveforms, we verify that

1Contains results prepared separately in: Phys. Rev. D102, 044056 (2020) [8]; Phys. Rev.

Lett. 123, 011102 (2019) [9]; Phys. Rev. D100, 104036 (2019) [10]; Sennett, Buonanno, Gergely,

Isi, and Sathyaprakash, “Constraining Jordan-Fierz-Brans-Dicke gravity with GW170817,” (in

prep) [11].
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waveform systematics have not significantly affect these tests. We also employ the

FTA framework to design and carry out tests of specific alternative theories of gravity.

Using GW170817, the first observed BNS, we place the first GW bounds on Jordan-

Fierz-Brans-Dicke gravity, finding that the scalar-tensor coupling α0 . 4 × 10−1.

Additionally, using two low mass BBH events—GW151226 and GW170608—we

constrain a higher-order curvature corrections that arise naturally from a class of

effective-field-theory-inspired extensions of GR, ruling out new physics that enters

on distance scales between 70 and 200 km.

9.1 Introduction

Theory-agnostic tests of general relativity (GR) with gravitational-waves (GWs)

often utilize waveform models that have been “generalized” from an existing GR

template. The basic strategy for such tests is as follows. One first constructs a

generalized waveform model by introducing deviations to a GR waveform model

controlled by some set of parameters {δϕ̂n}. These deviations are defined such that

there exists some choice of parameters {δϕ̂(GR)
n } for which the generalized waveform

model exactly reproduces the underlying GR waveform, i.e. the generalized model

restricted to the hypersurface of parameter space δϕ̂n = δϕ̂
(GR)
n can be identified

with the GR model. Without loss of generality, one can reparameterize the devia-

tions such that that the GR prediction corresponds with zero, i.e. δϕ̂
(GR)
n = 0; we

adopt this convention throughout the remainder of this chapter.

Then, given a detected GW, one performs standard parameter estimation using
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this generalized waveform model to assess the consistency of the observed signal with

the predictions of GR. This consistency can be quantified in a number of ways. One

oft-used technique is to examine the posterior distribution of binary parameters and

measure the proximity of this distribution’s mode to the GR hypersurface of the

generalized model. As a specific example, the LIGO and Virgo collaborations adopt

this method for certain tests of GR performed on observed binary coalescences,

testing whether the GR predictions δϕ̂n = 0 fall within the 90% credible regions

of the marginalized posterior distributions for δϕ̂n [9, 10, 73, 122]. Another way

to quantify the consistency between observation and GR prediction is through the

relative odds between two competing hypotheses: the detected signal does (does

not) agree with the predictions of GR HGR (Hnon-GR) [120, 176, 462]. This approach

offers a more easily quantified p-value, but such estimates require proper context

for correct interpretation. Due to the different dimensionality of the hypotheses

(δϕ̂n = 0 vs. δϕ̂n 6= 0) and biases inherited from experimental design optimized for

GW detection in GR, one can only assess the significance of the aforementioned

odds ratio for a particular detection by comparing against a theoretical background

distribution estimated independently.

The overarching framework outlined above subsumes a large swath of tests

of GR that have been performed with GWs [9, 10, 73, 122, 187]. And yet, these

tests are not all exactly the same; they differ in either (i) the choice of generalized

waveform model and/or (ii) how this model is applied to data. In this work, we

develop a framework to examine how the details of the construction of generalized

waveform models systematically affect the tests of GR in which they are employed.
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This infrastructure allows one to add generic corrections to the inspiral portion of

any non-precessing, frequency-domain waveform, thereby allowing theory-agnostic

tests of GR to be performed with a broader range of generalized waveform models

than previously possible. Accordingly, this framework is denoted as the flexible

theory-agnostic (FTA) approach. In addition to this original use, the easily adaptable

design of the FTA framework also allows for easy construction of waveform models

for theory-specific tests.

This work is organized as follows. Section 9.2 details the construction of

the FTA infrastructure. Section 9.3 presents the results of theory-agnostic tests

conducted as part of the LIGO Scientific Collaboration employing the FTA framework

on binary black hole (BBH) and binary neutron star (BNS) events detected during

their first and second observing runs. In Sec. 9.4, we use the FTA construction

to test Jordan-Fierz-Brans-Dicke gravity (JFBD) with GW170817—the first GW

observation of a BNS. These results represent the first (albeit weak) GW constraints

on this very well-known alternative theory of gravity. Similarly, in Sec. 9.5, we test

the higher-order curvature extension of GR recently proposed in Ref. [351] with the

lowest-mass BBH observations during the first and second observing runs of LIGO

and Virgo. Using the FTA infrastructure, we rule out the appearance of new physics

in this theory entering at the scale of 70-200 km.
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9.2 The FTA construction of generalized waveform models

The construction of any generalized waveform model begins with a baseline

model in GR, which we express in the Fourier domain as hGR(f ;θ) for the binary

parameters θ (e.g. masses, spins, etc.). Restricting our attention to the dominant

` = m = 2 mode of signals from non-precessing systems, the complex phase ψGR of

the waveform can be well approximated during the early inspiral by [30, 259]

ψ(GR)(f ;θ) ∼ 3

128ηv5

[
7∑

n=0

ψ(GR)
n (θ)vn +

6∑
n=5

ψ
(GR)
n(l) (θ)vn log v

]
, (9.1)

where v ≡ (GMπf/c3)
1/3

is the standard post-Newtonian (PN) parameter, M is

the total mass of the binary, η is its symmetric mass ratio, and ψ
(GR)
n and ψ

(GR)
n(l) are

the (n/2)-PN coefficients, which depend on the binary parameters. Note that the

logarithmic terms in Eq. (9.1) arise from so-called “hereditary contribution” to the

inspiral, i.e. terms that depend on the full past history of the binary; see Chapter 3.4

for an detailed discussion of such terms.

To generalize this waveform model, one must add parameterized deviations to

the baseline waveform hGR(f). Though not the only possible option, a compelling

choice to test the inspiral behavior of the signal is to consider corrections to the

phase that take a similar PN form

δψ
(
f ;θ, {δϕ̂n, δϕ̂n(l)}

)
∼ 3

128ηv5

[
7∑

n=−2

δψn(θ, δϕ̂n)vn +
6∑

n=5

δψn(l)(θ, δϕ̂n(l))v
n log v

]
,

(9.2)

where δψn and δψn(l) are deviations to the (n/2)-PN phase coefficients that, in

addition to θ, each depend on the corresponding deviation parameter δϕ̂n or δϕ̂n(l),
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respectively. We include possible deviations at “pre-Newtonian” orders (n < 0) as

these are predicted in many alternative theories of gravity, e.g. through the emission

of dipole radiation. Parameterized deviations of this form can be mapped onto

the predictions of any hypothetical alternative theory provided that (i) the theory

admits a weak-field, slow-velocity PN expansion as in GR and (ii) the deviations

from GR are parametrically smaller than the PN expansion parameter v2/c2; note

that this excludes theories that admit non-perturbative phenomena like dynamical

scalarization, for which the PN expansion breaks down. 2

In the FTA framework, we adopt the following definitions for δψn and δψn(l)

δψn(θ, ϕ̂n) ≡ ϕ̂nψ
(GR)
n (θ), δψn(l)(θ, ϕ̂n(l)) ≡ ϕ̂n(l)ψ

(GR)
n(l) (θ), (9.3)

that is, each deviation parameter represents a fractional deviation to the correspond-

ing PN coefficient in GR. We handle PN orders for which the GR coefficient vanishes

slightly differently (e.g. at 0.5PN order); for those cases, we let ϕ̂n instead represent

2Despite the generality of Eq. (9.2), in most practical settings, the majority of the deviation

parameters are explicitly set to zero when performing tests of GR. Our null hypothesis for these

tests is that GR is correct, and accordingly that the deviation parameters recovered using a gen-

eralized waveform are consistent with zero. Under this assumption, each independent deviation

parameter allowed to vary freely would tend to worsen the statistical significance of the conclusions

that can be made. Fortunately, if this assumption is incorrect, many deviations from GR can still

be identified with a reduced number of deviation parameters; for example, Ref. [121] showed that

a signal containing deviations at several PN orders will lead to measurement of non-zero deviation

using a model with only single deviation parameter. Because of the scientific cost of introducing

new free parameters, deviations to the GW amplitude are neglected, as GW detectors are more

sensitive to the evolution of a signal’s phase than its amplitude.
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an absolute deviation at that order.

While Eq. (9.2) unambiguously details how to generalize GR waveforms con-

taining only the inspiral, additional care must be taken for waveforms that contain

later portions of the GW signal. For the FTA approach, we require that the param-

eterized deviation observe the following properties:

1. The early inspiral (low frequency) waveform has a phase ψ(f ;θ) = ψ(GR)(f ;θ)+

δψ(f ;θ), where δψ takes the form of Eq. (9.2).

2. The post-inspiral (high frequency) waveform has a phase ψ(f ;θ) = ψGR(f ;θ)+

∆ψ(θ) that exactly reproduces the underlying GR model up to some constant

shift (which represents the total dephasing from the GR model accumulated

over the complete inspiral).

3. The waveform is C2 smooth over all frequencies.

We construct δψ(f ;θ) starting from the total “PN-like” phase correction given

by {δϕ̂n, δϕ̂n(l)}

δψ(PN)(f ;θ) ≡ 3

128ηv5

[
7∑

n=−2

ψ(GR)
n (θ)δϕ̂nv

n +
6∑

n=5

ψ
(GR)
n(l) (θ)δϕ̂n(l)v

n log v

]
. (9.4)

To smoothly apply this correction over only the inspiral, we use a windowing function

W (f ; fwin,∆fwin) given by

W (f ; fwin,∆fwin) ≡
[
1 + exp

(
f − fwin

∆fwin

)]−1

, (9.5)

which smoothly transitions between one and zero at fwin over a frequency range

of ∼ ∆fwin. We construct the total phase correction by combining this windowing
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function with the second derivative of δψ(PN) and re-integrating with appropriate

integration constants to ensue C2 smoothness

δψ(f ; fwin,∆fwin) =

∫ f

fref

∫ f ′

fref

δψ(PN)(f ′′)W (f ′′; fwin,∆fwin), (9.6)

where fref is an arbitrarily chosen reference frequency at which the phase of the

original waveform model vanishes, i.e. ψGR(fref) = 0.

9.3 Theory-agnostic inspiral tests with LIGO/Virgo events

One of the primary scientific objectives of the LIGO Scientific and Virgo Col-

laborations is to test the accuracy of the predictions of GR in the highly dynam-

ical, strong-field regime of gravity reached during the coalescence of BHs and/or

NSs. Several types of theory-agnostic tests are performed on observed GW events;

amongst those are tests of the inspiral portion of those signals, for which the FTA

infrastructure has been employed. These tests provide a consistency check on the

inspiral dynamics of the sources that generated the observed GW signals. To date,

no statistically significant deviations from GR have been uncovered with these tests.

The overarching design of these tests closely follows the description laid out in

Sec. 9.1: using a generalized waveform model, one performs parameter estimation

to measure (or constrain) the parameterized deviations {ϕ̂n, ϕ̂n(l)} most consistent

with an observed GW event. Consistency with GR is indicated by measurements

of the parameterized deviations consistent with zero. Due to limitations in the

sensitivity of current detectors, we do not allow the full set of parameterized de-

viations {ϕ̂n, ϕ̂n(l)} to vary freely in our model; each additional free parameter in
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one’s model worsens the measurement errors on the deviation parameters (see, e.g.

Refs. [120, 122]). Instead, we allow only one deviation parameter to vary and set

the remainder to zero, repeating this test for each such deviation parameter.

During the first and second observing runs of the Advanced LIGO and Virgo

detectors, ten GW events from BBHs [463] and one GW event from a BNS [186]

were observed. However, not all of these events are amenable to tests of the in-

spiral dynamics of the corresponding sources. The inspiral ends at comparatively

lower frequencies for high-mass sources; because the detectors were only sensitive

above 20-30 Hz during the first two observing runs, the inspiral portion of these

signals was severely truncated. Following the criteria laid out in Ref. [10], we con-

sider only events for which the inspiral was recovered with SNR > 6, which are

the BBHs GW150914 [184], GW151226 [182], GW170104 [123], GW170608 [183],

GW170814 [185] and the BNS GW170817 [186].

The particular choice of generalized waveform used in each test is based off

of the type source observed. For the BBH events listed above, we performed the

aforementioned parameterized test of GR using the aligned-spin effective-one-body

(EOB) model SEOBNRv4 [45]. A fast, frequency-domain surrogate model is con-

structed from SEOBNRv4 using reduced-order modeling techniques [464], and then

finally, we apply the FTA procedure to construct a generalized waveform. For the

BNS, we instead use a baseline GR waveform model that includes additional phys-

ical effects absent in pure vacuum binaries, such as the tidal interactions between

the stars during the late inspiral. We employ the NRTidal model introduced in

Refs. [465–467], which allows one to convert a BBH waveform model to a BNS
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Figure 9.1: Marginalized posterior distributions of fractional deviations
to PN coefficients. (Top): Combined posterior distributions from all
BBHs observed during first and second observing run of LIGO and Virgo
with sufficiently measurable inspiral; adapted from Ref. [10]. (Bottom):
Posterior distribution from GW170817; adapted from Ref. [9].

waveform by adding an analytic tidal term to the frequency-domain phase evolution

fit from PN and NR results. This tidal correction is added prior to generalizing

the model using the FTA framework; this tidal model is denoted as SEOBNRT. Note

that SEOBNRT is parameterized by two additional quantities relative to the BBH

waveform SEOBNRv4: the tidal deformabilities of each NS. Because of this difference

in dimensionality of their respective parameter spaces, one must take care when

directly comparing constraints measured with BBH and BNS waveform models; for

example, degeneracies between the tidal deformabilities and deviation parameters

δϕ̂n produce features in the posterior distributions recovered for BNS signals that

are absent for BBH signals.

As part of the LIGO Scientific Collaboration, we performed theory-agnostic
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Figure 9.2: 90% upper bounds on |δϕ̂n| from individual BBH obser-
vations, combining these BBH observations, and the BNS observation
GW170817. Plot adapted from Refs. [9] and [10].
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tests of the inspiral dynamics for the restricted set of BBH and BNS observations

listed above with generalized SEOBNRv4 and SEOBNRT waveform models, respectively.

These tests were carried out using the LALInference software package [78], a com-

ponent of the LIGO Algorithm Library Suite (LALSuite) [468]. Figures 9.1 and 9.2

summarize the results of the tests; these figures have been adapted from analogous

plots in Refs. [9] and [10]. The top panel of Fig. 9.1 shows the marginalized posterior

distributions on δϕ̂n combined across all BBH events. Assuming all of the observed

signals are statistically independent, the combined posterior distribution is simply

given by the product of the posterior distributions across all events (suitably normal-

ized). The results using SEOBNRv4 in conjunction with the FTA framework are shown

in solid black lines; the 90% credible regions are demarcated with horizontal lines.

To compare, we also show the posteriors recovered using a different baseline GR

waveform—IMRPhenomPv2 [412, 469, 470]—generalized using a procedure other than

FTA [120, 176] in gray. Whereas the aforementioned EOB models are constructed by

resumming PN calculations and calibrating against NR, the IMRPhenomPv2 model

is a phenomenological fit to a combination of PN, EOB, and NR results; addition-

ally, this latter model includes precession, whereas the EOB models we consider

do not. Despite the different baseline waveform and generalization procedure, we

recover consistent measurements with both the EOB and phenomenological wave-

form models, indicating that waveform systematics do not significantly affect these

tests. Additionally, because the measured δϕ̂n are consistent with zero at a 90%

confidence level, our tests indicate that the BBH inspirals observed are consistent

with GR. We can convert this consistency check into a more quantitative measure
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in Fig. 9.2; here we plot the 90% upper bounds on |δϕ̂n| measured using SEOBNRv4

for each event

Similarly, the bottom panel of Fig. 9.1 shows the marginalized posterior dis-

tributions on the deviation parameters for GW170817. For comparison, we plot

the measurements recovered with SEOBNRT in blue and with an alternative model

PhenomPNRT—-constructed by applying the NRTidal model to IMRPhenomPv2 and

then generalizing using the procedure of Ref. [120, 176]—in orange. Again, we find

good agreement between the two waveform models, indicating that waveform sys-

tematics do not significantly bias the measurement of deviation parameters. Con-

sistency with GR at a 90% confidence level is found for all deviation parameters

except for at 3PN and 3.5PN, where the GR value falls at the 95th percentile of the

marginalized posterior. At present, we have no reason to believe that these offsets

have anything other than a statistical origin. The upper bounds on each deviation

parameter are also shown in Fig. 9.2. Note in particular the significant improve-

ment in the constraint on -1PN deviations made possible with GW10817. We use

this particularly strong constraint in the following section to place constraints on a

JFBD—a well-known alternative to GR.

9.4 Constraints on Jordan-Fierz-Brans-Dicke gravity from GW170817

Jordan-Fierz-Brans-Dicke gravity is one of the most well-known alternatives to

Einstein’s theory of general relativity [177–179]. Initially formulated in the mid-20th

century, JFBD was the very first ST theory—a theory in which gravity is mediated
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by both a tensor (the metric) and a scalar. Since then, significant work has been

done to extend this notion beyond JFBD to broader, more generic classes of ST

theories (e.g. Horndeski theories [90], Beyond Horndeski theories [93], Degenerate

Higher-Order Scalar-Tensor theories [471, 472], etc.). Yet, despite its simplicity,

JFBD remains relevant today, though more as a pedagogical archetype of modified

gravity than as a truly viable alternative to GR. In this vein, constraining JFBD

with a particular experiment offers an easily understood benchmark of its sensitivity

to deviations from GR. In this work, we present the first bounds on JFBD from the

measurement of gravitational waves by the Advanced LIGO [63] and Virgo [64]

detectors.

The action for JFBD written in the Jordan frame is given by

S =

∫
d4x

√−g̃
16π

(
φR̃− ωBD

φ
g̃µν∂µφ∂νφ

)
+ Sm[g̃µν , ψ], (9.7)

where φ is a massless scalar field, ωBD is a dimensionless coupling constant3, and

Sm represents the action for matter fields ψ minimally coupled to the metric g̃µν .

Alternatively, the action can be rewritten in the Einstein frame by performing the

conformal transformation gµν ≡ φg̃µν

S =

∫
d4x

√−g
16π

(R− 2gµν∂µϕ∂νϕ) + Sm[e−2α0ϕgµν , ψ], (9.8)

where we have defined the dimensionless parameter α0 ≡ (3 + 2ωBD)−1/2 and intro-

duced the scalar field ϕ ≡ log(φ)/(2α0); note that α0 is non-negative and that we

have implicitly assumed that ωBD > −3/2. In the limit that α0 → 0 (ωBD → ∞),

3JFBD is also commonly known as simply Brans-Dicke gravity (BD); following the standard

convention in the literature, we adopt this abbreviation when denoting the coupling constant ωBD.
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the scalar field decouples from the metric and matter, and JFBD reduces to GR

with an additional free, massless scalar. Doppler tracking of the Cassini space-

craft through the Solar System [180] provides the best current constraints on this

parameter: α0 < 4× 10−3 (ωBD > 4× 104).

The recent advent of GW astronomy offers a new avenue to test gravity in

the relativistic regime. The majority of GWs observed by LIGO and Virgo thus far

were generated by the coalescence of BBHs; several tests of GR have already been

conducted using these observations [10, 73, 122, 187]. However, Hawking famously

showed that stationary BHs in JFBD must have a trivial scalar profile, and thus are

indistinguishable from the analogous solutions in GR [23]. Although there are some

possible scenarios that evade this no-hair theorem (see Ref. [98] for details), binary

systems composed of BHs are generally expected to behave identically in JFBD and

GR, and thus GWs from such systems are unable to constrain this ST theory.

Unlike BHs, NSs source a non-trivial scalar field in JFBD, and thus BNS sys-

tems can be used to constrain α0. Using this fact, precise timing of binary pulsars

constrains α0 . 10−2 [329]. In this section, we use the first GW observation of a

coalescing BNS—GW170817 [186]—to constrain α0 . 4× 10−1 at a 68% confidence

level. Though the constraint from GW170817 is not as strong as those previously

quoted from other experiments, this result represents the first bound directly from

the highly dynamical (orbital velocities v ∼ 10−1) and strong-field (Newtonian po-

tential ΦNewt = M/R ∼ 10−1) regime of gravity.

This section is organized as follows. In Section 9.4.1, we detail the GW sig-

nature of JFBD in BNSs. Then, in Section 9.4.2, we present two Bayesian analyses
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to constrain α0 with GW170817: the first directly uses the theory-agnostic analyses

presented in Section 9.3, while the second is tailored specifically to test JFBD.

9.4.1 Gravitational-wave signature of Jordan-Fierz-Brans-Dicke grav-

ity

The predominant differences in GWs produced in JFBD as compared to GR

stem from the fact that only the latter respects the strong equivalence principle. This

principle extends the universality of free fall by test particles implied by the Einstein

equivalence principle introduced in Chapter 1 to also include self-gravitating bod-

ies; unlike in GR, the motion of a body through spacetime depends on its internal

gravitational interactions (i.e. its composition) in ST theories like JFBD. This sec-

tion details how this violation of the strong equivalence principle impacts the GWs

produced by binary systems in JFBD. This alternative theory of gravity falls within

the class of ST theories examined in Chapter 3, and thus we can employ PN predic-

tions computed there to the task at hand. Though those results were computed at

next-to-next-to-leading PN order (and even higher order PN calculations have been

completed recently [210, 473]), we will assume that α0 is sufficiently small that we

can neglect all but the leading-order PN effects when describing the signature of

JFBD in a gravitational waveform.

The dominant effect on the inspiral from the new scalar introduced in JFBD

is the emission of dipole radiation, which enters into the phase evolution at -1PN
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order. In the notation of the FTA framework, this contribution is given by

ϕ̂−2 = −5(α1 − α2)2

168
+O

(
α4

0

)
, (9.9)

where αA is the scalar charge of body A, defined as

αA ≡ −
d logmA(ϕ)

dϕ
, (9.10)

where mA(ϕ) is the gravitational mass of body A measured in the Einstein frame.

That a body’s mass depends on the local value of the scalar field is unsurprising

given the form of Eq. (9.8); a shift in ϕ modulates the physical metric e−2α0ϕgµν

that effects gravity upon the matter fields ψ, and thus also modulates any body’s

gravitational mass. This dependence is an explicit manifestation of violation of the

strong equivalence principle. Note that in the limit that a body has no self-gravity

(i.e. the test-body limit), the functional form of mA(ϕ) simplifies significantly to

m
(test body)
A (ϕ) = e−α0ϕm

(test body)
A (ϕ = 0), (9.11)

and thus its scalar charge reduces to

α
(test body)
A = α0. (9.12)

9.4.1.1 Isolated neutron star solutions in Jordan-Fierz-Brans-Dicke

gravity

As strongly self-gravitating bodies, violations of the strong equivalence princi-

ple are particularly pronounced in NSs. This violation manifests as a scalar charge

that differs significantly from the test-body charge α0. As the scalar charges of a
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binary’s constituents—or rather their difference, the scalar dipole—control the dom-

inant effect on the GW signal in JFBD, we devote the remainder of this subsection

to computing these quantities for various NSs.

We consider spherically symmetric, static solutions sourced by a perfect fluid

as a model for an isolated, non-rotating NS. Under these assumptions, the field

equations for Eq. (9.8) reduce to the Tolman-Oppenheimer-Volkoff (TOV) equations,

given in the Einstein frame in Ref. [153]. These solutions are parameterized by three

degrees of freedom; for our purposes, these are most clearly manifested as the (i)

background scalar field ϕ0, i.e. the scalar field far from the NS, (ii) the NS equation

of state (EOS), and (iii) the NS mass4. In fact, though, the asymptotic scalar field

ϕ0 can be set to zero without loss of generality by rescaling the Jordan-frame bare

gravitational constant G̃ accordingly, i.e. ϕ0 → 0 ⇒ G̃ → G̃e2α0ϕ0 . The remaining

degrees of freedom can be mapped to boundary conditions for the matter and scalar

field at the origin with a numerical shooting method [430]. These conditions are

parameterized by the central pressure Pc and scalar field ϕc, which serve as the

inputs for numerically integrating the TOV equations. The details for extracting

the mass and scalar charge from the numerical solutions of the NS interior are given

in Ref. [153].

4We define the NS mass as the tensor mass mT introduced in Ref. [474] because—as shown in

that reference—it obeys the same conservation laws as the ADM mass in GR
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Table 9.1: One-dimensional polynomial fits of the normalized NS coupling αA/α0

as a function of NS mass mA (in units of M�) for various equations of state.

EOS [αA/α0](mA)
sly[456] −0.726798− 0.749029mA + 1.270944m2

A − 0.72871m3
A + 0.161002m4

A

eng[475] −0.817884− 0.393375mA + 0.772615m2
A − 0.435306m3

A + 0.095059m4
A

H4[476] −0.613880− 1.210074mA + 1.836631m2
A − 1.056595m3

A + 0.228102m4
A

9.4.1.2 Polynomial fits of the neutron star scalar charge

Ultimately, we would like to combine the numerical calculations of NS scalar

charge outlined above with their anticipated effect on the GW signal (9.9) to con-

strain JFBD. However, evaluating the scalar charge directly for every point visited

by the stochastic sampling algorithms used for parameter estimation would require

an unreasonable amount of computational resources. Instead, in this subsection, we

compute polynomial fits for the scalar charge, which, after having been derived, can

be evaluated quickly and with little computational overhead.

We first construct solutions for various choices of EOS, NS mass, and ST

coupling α0. We interpolate tabulated EOS data for the sly [456], eng [475], and

H4 [476] EOSs; sly is a soft EOS (compact stars) whereas H4 is relatively stiff

(diffuse stars). Then, we numerically construct NSs with masses ranging between

mA ∈ [0.5M�, 2.0M�] and scalar coupling α0 ∈ [0.001, 1.0] and compute their scalar

charge.

We calculate two types of polynomial fits of the scalar charge for each EOS.

For the first, we factor out the dominant linear dependence of αA on α0, fitting

their quotient as a fourth-order polynomial in mA. We compute the polynomial fits
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Table 9.2: Two-dimensional polynomial fits of NS coupling αA as functions of of
Brans-Dicke parameter α0 and NS mass mA (in units of M�) for various equations
of state.

EOS αA(α0,mA)
sly[456] α0(−0.92569 + 0.22258α0mA + 0.13329m2

A − 0.15151α0m
2
A)

eng[475] α0(−0.97423 + 0.15584mA + 0.18527α0mA− 0.11739α0m
2
A + 0.024333m3

A)
H4[476] α0(−0.93341 + 0.19073α0mA + 0.10270m2

A − 0.11284α0m
2
A)

with least-squares regression; the fits are given in Table 9.1 for each EOS that we

consider. These fits match all of our data sets within 5% relative error, with the

greatest discrepancy arising for masses close to 2M�.

Although these (effectively) one-dimensional polynomial fits are crucial for

some of the analysis contained in this chapter, it is possible to construct two-

dimensional fits that are simpler (fewer terms) and more accurate using more so-

phisticated methods. We compute these fits using the greedy-multivariate-rational

regression method developed in Ref. [477]. This method relies on a greedy algorithm

to construct a multivariate fit: during each iteration, it adds a polynomial term to

the current fit (up to a pre-specified maximum degree) so as to best improve the

agreement with the inputted data. This process is repeated until sufficient accuracy

is achieved, and then terms are systematically removed from the polynomial until

the accuracy goal is saturated. Using this method, we construct fits that agree to

within 1% relative error for each EOS—these are listed in Table 9.2.
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9.4.2 Constraining α0 with GW170817

Next, we use the tools introduced in the previous subsections to place con-

straints on the ST coupling α0 in JFBD with GW170817—the first GW event from a

coalescing BNS. We present two complementary analyses based off of the FTA infras-

tructure to achieve this result. These two methods follow the same overall approach,

but adopt different statistical assumptions, utilize different waveform models, and

use different numerical fits for the NS scalar charge αA. In both approaches, we

employ a generalized waveform model that allows for additional contribution to the

phase evolution at -1PN order, so as to reproduce the behavior seen in Eq. (9.9);

however, the parameterization of this -1PN deviation from GR differs in each ap-

proach. Ultimately, both analyses provide a bound on α0 of the same order of

magnitude.

The first approach we adopt directly uses the theory-agnostic constraints on a

-1PN deviation discussed in Section 9.3 and originally published in Ref. [9]. Recall

that this analysis used a generalization of the SEOBNRT baseline waveform model

in which -1PN deviations were parameterized by the deviation parameter δϕ̂−2.

By assuming a particular NS EOS, we can use the polynomial fit in Table 9.1 in

conjunction with Eq. (9.9) to map a measured value of δϕ̂−2 to an inferred value

on α0; schematically, this mapping takes the form α0(δϕ̂−2,m1,m2; EOS). Note

that this mapping is infeasible using the multivariate fit in Table 9.2 because of the

nonlinear dependence of αA on α0. Though the exact NS EOS remains unknown,

we can repeat this analysis for the three candidate EOSs detailed earlier, and then
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use the variance in bounds on α0 recovered each time as an estimate of systematic

error arising from our ignorance of the true NS EOS.

In practice, one does not measure the masses and deviation parameter δϕ̂−2

with perfect accuracy, but instead uses Bayesian inference to reconstruct the poste-

rior distribution P (θ|d) on these parameters given some assumed prior distribution

P (θ). So, rather than map a single point from one parameterization to another,

one instead maps the appropriate distributions to their counterparts in the new

parameterization. These prior and posterior distributions transform respectively as

P (α0,m1,m2) =

∣∣∣∣ ∂α0

∂δϕ̂−2

∣∣∣∣−1

P (δϕ̂−2,m1,m2), (9.13)

and

P (α0,m1,m2|d) =

∣∣∣∣ ∂α0

∂δϕ̂−2

∣∣∣∣−1

P (δϕ̂−2,m1,m2|d), (9.14)

where the first term on the righthand side is the inverse of the Jacobian of the

aforementioned transformation.

In the analysis of Section 9.3 (and Ref. [9]), a flat prior (i.e. a uniform distri-

bution over a bounded region) was assumed on the component masses and deviation

parameter δϕ̂−2. These choices reflect the theory-agnostic nature of that test; with-

out a preferred alternative, this choice represents the simplest prior in terms of these

binary parameters. Figure 9.3 depicts with dashed lines how this choice of prior dis-

tribution maps to an assumed prior on α0 through Eq. (9.13); here the different

colors correspond to different assumed EOSs. Similarly, Fig. 9.4 shows the corre-

sponding marginalized posteriors on α0, transformed from the posterior on δϕ̂−2

and component masses (which, when marginalized, is shown in the bottom panel of
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Figure 9.3: Marginalized prior distributions on the JFBD parameter α0

used in the two analyses discussed in this chapter. The dashed colored
curves depict the prior distribution equivalent to the flat prior distri-
bution on component masses and deviation parameter δϕ̂−2 assumed in
the theory-agnostic analysis of Section 9.3. The solid black dashed curve
depicts the flat prior on α0 assumed in the second analysis presented in
this section.

Fig. 9.1) via Eq. (9.14). This analysis provides a bound of α0 . 2× 10−1 at a 68%

confidence level; note that the systematic error arising from our ignorance of the NS

EOS does not impact our estimate at this level of precision.

The second approach we employ to constrain α0 relies instead on a waveform

model design specifically to test JFBD. Using the FTA infrastructure, we construct

a generalized waveform model from SEOBNRT in which the deviation parameter is

precisely α0. The appropriate form of the -1PN correction to the phase evolution

is obtained by inserting the polynomial fit for αA(α0,mA) found in Table 9.2 for a

particular choice of EOS into Eq. (9.9). Additionally, unlike the previous theory-

agnostic analysis in which the tidal parameters were allowed to vary freely, for this

analysis, we express these parameters as functions of the respective NS masses and
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Figure 9.4: Marginalized posterior distributions on the JFBD parameter
α0 recovered from GW170817 from both analyses discussed in the text.
The dashed colored curves show the posterior recovered directly from
the theory-agnostic analysis of Section 9.3. The solid colored curves
depict the posterior using the theory-specific test of JFBD assuming
a flat prior for α0. For both analyses, different colors correspond to
different assumed EOSs. Colored ticks on the horizontal axes represent
the 68% upper bounds on α0 for each analysis.
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assumed EOS.5 This step reduces the dimensionality of the waveform model by

two parameters while ensuring that all matter effects are handled self consistently.

We assume a flat prior on α0 ∈ [0, 1] for this analysis; beyond this upper bound,

our assumption that JFBD effects, which scale as α2
0, are subdominant to the PN

effects in GR is no longer valid. This prior distribution is depicted in Fig. 9.3 with

a solid black curve. Using the generalized waveform described above, we perform

parameter estimation to construct the marginalized posterior distribution on α0,

shown in Fig. 9.4 with solid colored curves corresponding to the assumed EOS. We

obtain the upper bound of α0 . 4× 10−1 where, as before, the systematic error due

to ignorance of the true NS EOS does not contribute at this level of precision.

Comparing the bounds set by the two analyses, we see that the theory-agnostic

test provides a stronger bound on α0. At first glance, this result may appear coun-

terintuitive, as Fig. 9.3 shows that this test assumed a marginalized prior on α0

with greater support away from zero. The predominant cause for this discrepancy

stems from how the tidal parameters are handled by each waveform model. For the

theory-agnostic test, these parameters are allowed to vary freely, independent of the

masses of the NSs. However, in the theory-specific test, the tidal parameters are

linked directly to the component masses. This latter restriction significantly affects

the recovered posterior distribution on the component masses, placing much greater

5We use polynomial fits to the tidal parameters as a function of NS mass that are constructed

in GR, not in JFBD. However, the differences between these two relations scale as α2
0, and thus can

be neglected in favor of the simpler GR relation by the same reasoning that the other sub-dominant

PN effects (e.g. at 0PN order, 0.5PN order, etc.) can be ignored.
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weight near equal-mass configurations than in the previous case. As can be seen in

Eq. (9.9), in very symmetric configurations, the total deviation from the baseline

GR waveform remains small even when α0 is relatively large; as a result, the JFBD

parameter is more poorly measured when the tidal parameters cannot vary freely,

and thus we recover a weaker bound with this theory-specific test.

9.5 Constraints on higher-order curvature corrections from GW151226

and GW170608

The previous two sections demonstrate two very different ways in which the

FTA framework can be used to test GR with GW observations. These investigations

represent two opposite ends of the spectrum of theory-agnostic (Sec. 9.3) vs. theory-

specific (Sec. 9.4) tests. In this final section, we again use the FTA framework,

but this time to perform tests that fall between these two extremes. Using the

powerful tools of effective field theory (EFT), we place constraints on higher-order

curvature corrections expected to arise in many possible UV-completions of GR.

The assumptions made in constructing the extensions of GR are minimal; the most

conspicuous of them is that we restrict our attention to theories for which deviations

from GR are conceivably observable with ground-based GW detectors.

In the interest of brevity, we limit our discussion concerning the construction

of the EFT in this thesis and instead direct interested readers to Ref. [181]. We

consider the most general extension to GR under the following assumptions: (i)

locality, causality, Lorentz invariance, unitarity and diffeomorphism invariance are
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preserved by new physics; (ii) no new particle lighter than the cutoff scale of the

theory is introduced; (iii) the extension to GR impacts phenomena observable with

the LIGO and Virgo detectors. The resulting EFT takes the form

Seff = 2M2
pl

∫
d4x
√−g

(
−R +

C2

Λ6
+
C̃2

Λ̃6
+
C C̃
Λ6
−

)
+ . . . , (9.15)

where Mpl =
√
~c/G is the Planck mass,

C ≡ Rαβγδ R
αβγδ , C̃ ≡ Rαβγδ ε

αβ
µν R

µνγδ , (9.16)

Λ, Λ̃, Λ̃− ∼ O(km−1) are various cutoff scales of the EFT, the dots in Eq. (9.15)

denote terms with powers in the Riemann tensor beyond four, and the Levi-Civita

tensor εµνρσ is defined such that ε0123 = 1/
√−g. The cutoff scales are taken to be no

greater than km−1, as this is approximately the maximum mass scale (shortest dis-

tance scale) to which ground-based GW detectors would be sensitive; for reference,

the Schwarzschild radius of a one solar-mass BH is ∼ 3km.

Naively, one might expect corrections to gravity occurring on distance scales

of kilometers to be already strongly constrained by existing laboratory and Solar

System tests. However, the curvature scales involved in those experiments are much

smaller than those reached near solar-mass BHs, and thus the possibility remains

that new physics could remain at the km−1 scale that only emerges in the high-

curvature regime. This possibility can be formalized into an assumption of a “soft

UV completion” of the theory, which states that all EFT effects saturate at the

cutoff scale, i.e. they do not continue to grow as some power of E/Λc at energies E

above the cutoff Λc—see Ref. [181] for more detail.
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9.5.1 Gravitational-wave signature of higher-order curvature correc-

tions

Having established the assumptions and action (9.15) describing our EFT, we

next turn to the signature of this extension to GR in the inspiral signal of a BBH.

For simplicity, we restrict our attention to only the C2 term in (9.15), as this provides

the dominant (lowest PN order) effect in the waveform. Furthermore, we assume

that Λ . 1/M , where M is the total mass of the binary; other effects are known to

play an important role in the regime wherein Λ & 1/M (such as tidal effects) [478],

but we have checked that these are not observable for the BBH systems that we

consider.

During the early inspiral, the dynamics of a binary system of two objects with

mass m1 and m2 can be characterized by an effective action that in center-of-mass

frame takes the form [181]

S =

∫
dt

(
m1 +m2 +

1

2
µ(t)|v|2 − V (r(t)) +

1

2
Qij(t)R

i0j0 + . . .

)
, (9.17)

where µ is the reduced mass of the system, |v| is the relative velocity between the

inspiraling objects, V (r(t)) is the potential energy, Qij(t) is the mass quadrupole

moment of the system and the dots represent higher-order multipole moments.

As shown in Ref. [181], the leading-order PN corrections to the gravitational

potential of a non-spinning or slowly-spinning binary system take the form

V Λ =
2

π6

m1m2

r

(
2π

Λr

)6
4(m2

1 +m2
2)

r2
. (9.18)

The non-GR terms in the action (9.15) also modify the emission of GW radiation.
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The leading-order effect manifests as a correction to the Newtonian quadrupole

moment QNewt
ij of the binary system

QΛ
ij =

[
1 +

21

2π6

(
2π

Λr

)6(
2(m1 +m2)

r

)2
]
QNewt
ij . (9.19)

In the following subsections, we compute the effect of these corrections on the con-

servative and dissipative sectors independently. We then use the balance equation

to relate the two and to compute the leading-order correction to the GW phase.

9.5.1.1 Conservative dynamics

Working on the orbital timescale, the various time-dependent quantities in the

action (9.17) can be treated as constant and the radiative terms can be neglected.

Restricting to quasi-circular orbits and varying the action (9.17) with respect to

r(t), the equations of motion of the binary system can be written as:

µΩ2r =
dV

dr
=
dVNewt

dr
+
dVΛ

dr
+ . . . , (9.20)

where . . . denote higher PN corrections. This relation can be inverted to get a

relation between the orbital radius r and the orbital frequency Ω. To leading order

in 1/Λ one gets

r =
M

(MΩ)2/3

(
1− 1536 (m2

1 +m2
2)

M8Λ6
(MΩ)16/3

)
. (9.21)

Using the equations above one finds that the binding energy (per unit total

mass) is given by

E =
1

2
ν|v|2 + V (r)/M = −1

2
νv2 − 2560ν(1− 2ν)

(
dΛ

M

)6

v18, (9.22)
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where M = m1 + m2 is the total mass of the system, ν = m1m2/M
2 is the sym-

metric mass ratio and we have defined v ≡ (MΩ)1/3. For convenience we have also

introduced the parameter dΛ ≡ 1/Λ. Restoring the higher PN corrections in GR we

have

EΛ(v) = EGR − 2560ν (1− 2ν)

(
dΛ

M

)6

v18 . (9.23)

where EGR denotes the PN expression for the binding energy in GR.

9.5.1.2 Dissipative dynamics

The renormalized quadrupole moment (9.19) leads to corrections to the GW

flux. As in GR, Eq. (9.17) predicts a leading-order GW flux given by the quadrupole

formula

F =
1

5
<

...
Qij

...
Q
ij
> , (9.24)

where < · · · > indicates the average over an orbit. The resulting GW flux can be

written as

F(v) = FGR(v) + FΛ(v) , (9.25)

where FGR(v) is the PN expression for the flux in GR and the leading-order correc-

tion to the flux FΛ(v) reads

FΛ(v) =

(
393216

5
ν3 − 24576

5
ν2

)(
dΛ

M

)6

v26 . (9.26)
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9.5.1.3 Gravitational waveform in the stationary phase approxima-

tion

We are now in the position to compute the leading-order correction to the

gravitational-wave phase due to the non-GR corrections computed above. In the

PN regime one can compute the Fourier representation of the GW waveform using

the stationary phase approximation (see e.g. [259, 479]). In this approximation the

waveform in the frequency domain can be written as [259]

h̃(f) =
A(tf )√
Ḟ (tf )

ei[ψf (tf )−π/4] ,

ψf (t) ≡ 2πft− φ(t) , (9.27)

where A(t) is the amplitude of the time-domain waveform, φ(t) is the orbital phase

of the binary and πF (t) = dφ(t)/dt defines the instantaneous GW frequency F (t).

The quantity tf is the saddle point where dψf (t)/dt = 0, i.e. the time when F (t) is

equal to the Fourier variable f . In the adiabatic approximation ψf and tf are given

by

tf = tref +M

∫ vref

vf

E ′(v)

F(v)
dv , (9.28)

ψf (tf ) = 2πftref − φref + 2

∫ vref

vf

(v3
f − v3)

E ′(v)

F(v)
dv , (9.29)

where we defined vf ≡ (πMf)1/3, tref and φref are integration constants and vref

is and arbitrary reference velocity, commonly taken to be the velocity at the last

stable orbit.

Using the PN expansions of the energy and flux and expanding the ratio

E ′(v)/F(v) at consistent PN order, the integral in Eq. (9.29) can be solved explicitly.
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We find that the leading-order to the GW phase is given by

ψ(f) = ψGR(f) +
3

128νv5
f

(
234240

11
− 522240

11
ν

)(
dΛ

M

)6

v16
f , (9.30)

where ψGR(f) represents the GW phase in GR. An important conclusion of this cal-

culation is that although the non-GR corrections enter formally at 8PN order, when

dΛv
2/M ≡ (Λr)−1 ∼ 1 the corrections are numerically of 2PN order in magnitude.

9.5.1.4 On the validity of the post-Newtonian waveform model

By construction, the EFT action (9.15) is valid only for orbital separations

r & dΛ; below this separation, terms containing higher powers of Λ−1 can impact

the binary dynamics. Therefore, one must be careful to only employ this model in

this limited regime of validity. For the purposes of parameter estimation, this lower

limit on orbital separations r is more conveniently expressed as an upper limit on

the frequency content of the signal. However, the conversion between these limits in

not unique because r is not a gauge-invariant quantity. A natural choice is to first

relate r to the orbital frequency Ω through the relation r = (M/Ω2)1/3 +O(v2/c2).

Then, because the dominant contribution to the GW signal comes at twice the

orbital frequency during the adiabatic inspiral, we can define a cutoff frequency

fΛ ≡ 1/π
√
M/d3

Λ, such that the waveform model given by Eqs. (9.27) and (9.30)

is expected to be valid for GW frequencies f � fΛ.

Additionally, because we employ the PN approximation to compute our wave-

form, we must also impose that the typical velocity of the system v � 1. Again,

there is no single well-defined point at which the PN approximation is no longer
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valid, but a reasonable benchmark is the innermost stable circular orbit (ISCO) of an

equivalent BH with mass M . We use this point as a canonical cutoff point for the PN

approximation, restricting our waveforms to frequencies below fISCO = 1/(6
√

6πM).

Combining these two conditions, our model is only valid for frequencies f <

fcutoff ' min[fISCO, fΛ].

9.5.2 Constraining dΛ with GW151226 and GW170608

Having calculated the impact of higher-order curvature corrections on the

phase evolution of the inspiral, we now establish a statistical framework to con-

strain such deviations from GR with GW observations. As before, the first step

is to construct a generalized waveform that can represent these deviations. We

use the FTA framework to add deviations of the form given in Eq. (9.30) to a PN

waveform model in GR. As a baseline waveform model, we use the TaylorF2 wave-

form approximant, an inspiral-only PN model given in the frequency domain that

is valid for spinning, non-precessing systems up to 3.5PN order.6 However, unlike

the approach in Secs. 9.3 and 9.4, we use Bayesian model selection to constrain the

effective distance-scale of new physics dΛ.

As discussed in Chapter 1, the goal of Bayesian model selection is to calculate

the odds ratio between two competing (1.26) hypotheses by computing the Bayes

factor—the ratio of evidences—for either proposal. Here, the two hypotheses we

6As a check of consistency, we also repeat this analysis using the inspiral-merger-ringdown model

IMRPhenomPv2 (restricted to non-precessing systems) and find similar results. For this separate

analysis, we do not impose the frequency cutoff of fISCO required by the PN approximation.
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consider are: (i) Hnon-GR: higher-order curvature corrections enter at some fixed

scale dΛ = d∗Λ ∼ km ; and (ii) HGR: higher-order curvature corrections are not

present or (equivalently) appear at infinitesimal distance scales dΛ = 0. The odds

ratio between these hypotheses is given by

Onon-GR
GR =

p(Hnon-GR)

p(HGR)
BFnon-GR

GR , (9.31)

where the Bayes factor BF is determined by

BFnon-GR
GR ≡ p(d|Hnon-GR)

p(d|HGR)
(9.32)

given a particular GW observation d. Normally, one must be careful when using

Bayesian model selection to perform tests of GR because the null and alternative

hypothesis typically have parameter spaces of different dimensions. We avoid this

particular obstacle by fixing dΛ in Hnon-GR to some particular value; we perform this

test repeatedly for different values of dΛ to scan the full parameter space. To remain

agnostic, we always assume prior odds p(Hnon-GR)/p(HGR) of unity.

The evidence for each hypothesis is computed as the marginalization of the

likelihood over the space of binary parameters

P (d|H) =

∫
dθP (d|θ,H). (9.33)

The total likelihood is given by the (normalized) product of likelihoods for the signal

di observed at each detector i

P (d|θ,H) ∝
∏
i

Pi(di|θ,H), (9.34)
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where Pi(di|θ,H) takes the same form as introduced in Chapter 1:

Pi(di|θ,H) ∝ e(di−h(θ)|di−h(θ)), (9.35)

with the inner product weighted by the power spectral density Sin(f) of each detector

(a|b) ≡ 2

∫ fhigh

flow

a(f)b∗(f) + a∗(f)b(f)

Sin(f)
. (9.36)

The evidence for each hypothesis is evaluated using the nested sampling algorithm

implemented in the LALInference code package [78].

We consider the bounds that can be set by GW151226 [182] and GW170608 [183],

the two lowest mass (i.e. longest) BBH events detected by LIGO and Virgo during

the first two observing runs. Because of their low mass, the vast majority of the

SNR of these signals is concentrated in their inspiral phase, which minimizes the

measurement biases inherited from using a inspiral-only waveform model. For each

event, we use flow = 20 Hz, as this is the lowest frequency for which Sn(f) has been

released for these events.7 We choose fhigh so as to respect the range of validity of

the waveform, i.e. fhigh < fISCO and fhigh < fΛ. The first of these conditions re-

stricts the waveform to the PN regime; it is automatically imposed in the LALSuite

implementation of the TaylorF2 waveform mode, as the integrand of Eq. (9.36)

always evaluates to zero for frequencies above fISCO. The second condition restricts

the waveform to the regime in which the EFT is valid. However, because the fre-

quency at which this approximation breaks down is unknown a priori, there remains

7This research has made use of data, software and/or web tools obtained from the Gravitational

Wave Open Science Center (https://www.gw-openscience.org), a service of LIGO Laboratory, the

LIGO Scientific Collaboration and the Virgo Collaboration.
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Figure 9.5: The log Bayes factors of non-GR versus GR hypotheses with
(left) GW151226 and (right) GW170608 for different choices of dΛ (in
km). The corresponding fΛ ≡ 1/π

√
Mtot/d3

Λ shown on the top x-axis.
Different choices of cutoff criteria fhigh are shown in different colors.

some ambiguity in how to choose fhigh; this ambiguity comprises a source of system-

atic error in our analysis. To gauge the impact of this ambiguity, we perform our

analysis with the different choices of cutoff frequency fhigh ∈ [0.25fΛ, 0.35fΛ, 0.5fΛ].

Smaller choices for fhigh represent more conservative usage of our EFT, whereas

larger choices assume that it remains valid over a larger range of scales. For sim-

plicity, we compute fΛ ≡ 1/π
√
Mtot/d3

Λ by fixing the total BH mass to the median

value for the total BH mass obtained from parameter estimation with a full IMR

waveform model in GR as given in Refs. [182, 183].

Figure 9.5 depicts the logarithm of the Bayes factors in opposition of versus

in support of GR from GW151226 (left) and GW170608 (right) as a function of

dΛ. Results computed using different cutoff criteria are depicted with different

colors—red, green, and blue corresponding to the least to most conservative cutoff,

respectively. For each event, the value of fΛ corresponding to dΛ is shown on the top
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Figure 9.6: Same as Fig. 9.5 but computed by combining information
from both GW151226 and GW170608.

axis. We observe that log BFnon-GR
GR < 0 across a range of values of dΛ, indicating that

the non-GR hypothesis is disfavored in those regions. These regions largely overlap

across the two events due to their similar total mass; however, one obtains slightly

stronger evidence in support of GR from GW170608 due to the event’s larger SNR

relative to GW151226.

The qualitative features of our results can be understood in terms of two ef-

fects. First, the Bayes factor asymptotically approaches Bnon−GR
GR ∼ 1 as dΛ tends

to zero because the non-GR contribution to the waveform scales with d6
Λ. Second,

the Bayes factor also asymptotically approaches Bnon−GR
GR ∼ 1 for large dΛ because

this limit corresponds to a very small cutoff frequency fhigh. By restricting our-

selves to only the very low-frequency content of the observed GW, we no longer

have sufficient data to distinguish the signal from noise regardless of which model

(non-GR vs. GR) we assume, and thus neither hypothesis is preferred. Assuming
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statistical independence between the two observed events, we can compute Bayes

factor using both observations by simply multiplying the Bayes factors from each

event individually; this combined result is shown in Fig. 9.6.

The Bayes factors discussed above indicate the odds for/against higher-order

curvature corrections at a given scale dΛ. These can be translated into a constraint

on dΛ by setting some significance threshold beyond which one unequivocally accepts

either hypothesis. We adopt as our threshold | log BF| & 5, shown as a horizontal

gray line in Figs. 9.5 and 9.6. We note that this threshold is substantially larger

than standard choices suggested in the literature [480]. We adopt this conservative

threshold because we find that systematic effects—such as changing the choice of

prior distributions—can shift log BF by as much as ±3; we suspect that these sys-

tematic errors also cause the small fluctuations seen in Figs. 9.5 and 9.6. Imposing

this significance threshold, we rule out the existence of higher-order curvature con-

tributions on the distance scales of dΛ ∼ [70, 200] km using the most conservative

cutoff criteria we considered; relaxing this cutoff criteria increases the width of the

excluded region of parameter space.
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Chapter 10: Conclusions and future work

In this thesis, I have presented work directed towards extending and improving

tests of GR with GWs. This is an incredibly multi-faceted endeavor; even when

focusing on just one portion of only a single type of GW observation—the inspiral

of a coalescing compact binary system—I addressed this central objective from a

variety of directions, employing an assortment of different techniques. In this final

chapter, I wish to reiterate the common threads that connect the work described in

the previous chapters of this thesis. Then, inspired by this summary, I conclude by

addressing directions for future research.

One key theme of this thesis was modeling the behavior of binary inspirals

and the GW signals they produce in alternative theories of gravity. Not only are

these modeling efforts necessary for any theory-specific test of GR, they can also

provide a conceptual foundation for more theory-agnostic approaches as well. I

carried out work of this nature in great detail in Chapters 2 and 3 for two particular

scalar extensions of GR: Einstein-Maxwell-dilaton gravity (EMd) [1] and massless

scalar-tensor (ST) theories [2], respectively. These theories represent perturbative

deviations from GR, in the sense that there exists a limit in which the scalar degrees

of freedom smoothly decouple from gravity and matter, and binaries behave as
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in GR. By contrast, in Chapters 4 and 5, I examine a ST theory in which non-

perturbative deviations from GR manifest in the form of scalarization of NSs [3, 4].

In the strong-coupling regime, NSs (either in isolation or in binary systems) can

undergo a phase transition during which the scalar field is spontaneously excited;

I study in particular detail the behavior of binary systems during the onset of this

transition.

Another focus of this thesis was modeling specific phenomenology known to

occur across a range of alternatives to GR and then understanding how this can be

connected to specific examples of such theories. In contrast to the previous chap-

ters, this type of approach embodies a more bottom-up philosophy. Taking lessons

learned in these earlier chapters, Chapter 6 presented a theory-agnostic description

of scalarization and offered a simple yet robust parameterization suitable for GW

searches for such non-perturbative effects [5]. Chapter 7 described how the generic

signatures of spontaneous and dynamical scalarization could be translated to bounds

on a specific ST theory that manifests such phenomena [6]. Chapter 8 examined

a different type of signature for new strong-field physics: the tidal deformations of

compact objects close to the merger of a binary system [7]. This phenomenon is

known to occur for mundane sources (e.g. NSs) as well as exotic alternatives (e.g.

“BH mimickers”); here I estimated the extent to which such observations can be

used to distinguish boson stars from NSs and BHs.

Finally, in Chapter 9, I developed tools to test non-GR phenomenology in

observed GWs not linked to any particular alternative theory. The primary result

of this work was the introduction of the flexible theory-agnostic (FTA) framework
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that allowed one to adapt any frequency-domain waveform model for use in such

tests. As a member of the LIGO Scientific Collaboration, I used this framework to

perform theory-agnostic tests on BBH and BNS inspirals observed with Advanced

LIGO and Virgo [9, 10]. However, I then circled back to the efforts presented at the

start of the thesis by using the FTA infrastructure to perform theory-specific tests

for two specific alternatives to GR. [11, 138]

A crucial takeaway from the previous discussion is that many of the exact

same tools can be used for theory-specific and theory-agnostic (or top-down and

bottom-up) tests of GR. This fact has been used often to convert the bounds from

theory-agnostic tests (e.g. those produced by the LIGO and Virgo collaborations)

to constraints on particular modified theories of gravity; see, for example Refs. [187,

481]. However, theory-specific and theory-agnostic analyses test slightly different

statistical hypotheses, and within a fully Bayesian framework, converting results

from one to the other requires care. To my knowledge, this issue has not been studied

in detail in the context of GW tests of GR, and thus offers an interesting new avenue

for future work. The ultimate goal of such a study would be to understand how

to systematically translate results between theory-specific and theory-agnostic (as

well as top-down and bottom-up) tests. I provide some speculative starting points

for such an investigation below, using the theory-agnostic and theory-agnostic tests

presented in Chapter 9 as prototypical examples.

Recall that in Chapter 9 a theory-agnostic test of dipole radiation (or equiva-

lently, an anomalous -1PN contribution to the GW phase evolution) employed the

same type of generalized waveform model as a theory-specific test of Jordan-Fierz-
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Brans-Dicke gravity (JFBD). In fact, there exists an invertible map between the

-1PN deviation parameter δϕ̂−2 used in the former and the JFBD parameter α0

used in the latter that allows the two waveform models to be identified. Thus,

within a Bayesian context, the likelihood function P (d|θ) in either test would be

identical [see Eq. (1.23)]; the only difference between these two tests are the choice

of prior functions P (θ). Note that any choice of prior distribution can be identified

with a family of parameterizations in which that prior is uniform over its support,

i.e. one can always find a reparameterization θ → θ′ such that the Jacobian∣∣∣∣∂θ′a∂θb

∣∣∣∣ ∝ 1

P (θ)
(10.1)

over the support of P (θ), and thus

P (θ′) ∝
∣∣∣∣∂θ′a∂θb

∣∣∣∣P (θ) = constant. (10.2)

In the theory-agnostic test of dipole radiation presented in Chapter 9, the param-

eterization corresponding to a flat prior used δϕ̂−2, whereas in the (second) test of

JFBD, this parameterization used α0. So, an open question for future study is how

should one choose the prior—or equivalently, preferred parameterization—for tests

of GR?

One approach, in line with a top-down philosophy, would be to choose a pre-

ferred parameterization that leaves “physical” parameters unbiased by the prior.

For example, in a theory-specific test, these parameters could be the fundamen-

tal masses and couplings that enter at the level of the action. In contrast, a

more theory-agnostic approach could follow the principles of effective field theory

and include all relevant operators in an action up to some dimension. Then, the
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masses/couplings of each operator would serve as the natural parameters to test

GR. Similar approaches have been adopted for cosmological tests of modified grav-

ity for theories in which the current accelerated expansion of the Universe is caused

by a single scalar field [482–486]. However, these models have been used primarily

to study Friedmann-Lemâıtre-Robertson-Walker solutions and their linear pertur-

bations, whereas modeling the inspiral of compact objects could require greater

understanding of nonlinear interactions. In the most ambitious scenario, one could

hope to formulate GW tests of GR with an approach like the Standard Model Ex-

tension [487–489], which provides a complete effective-field-theoretical framework

for studying CPT and Lorentz violations on curved backgrounds.

Another approach, more in line with a bottom-up philosophy, would be to

choose a parameterization based off of our understanding of waveform models in GR

and the characteristics of our detectors. For example, adopting a Jeffreys prior [490]

would eliminate the parameterization-dependence of one’s statistical analysis; with

this prior, the likelihood function P (d|θ) takes the same form for any parameteri-

zation θ. This prior assigns greater weight to regions of parameter space in which

detectors are most sensitive, as determined by the determinant of the Fisher infor-

mation matrix Γij(θ). For the generalized waveforms conventionally used for GW

tests of GR—such as all of those used in Chapter 9—one can always reparameter-

ize the deviation parameters of the waveform such that Jeffreys prior appears flat

(i.e. is uniform over some finite bounded region of parameter space). Though not

tied directly to any underlying physical parameter, this new parameterization of-

fers more appealing statistical properties (e.g. parameterization-independence) than
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that currently used in standard theory-agnostic tests.
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Appendix A: The 1PN two-body Lagrangian in Einstein-Maxwell-

dilaton theory

In this appendix, we derive the 1PN two-body Lagrangian in EMd theory using

the Fokker action method [207] (see also Refs. [208–210]). To derive the Lagrangian,

we expand the EMd action in Eq. (2.2), together with the matter action for point

particles in Eq. (2.3) and the mass expansion from Eq. (2.7). After that, we obtain

the field equations for the potentials, solve them, and plug the solutions back into

the action to get the Lagrangian. Throughout, we work in the harmonic gauge

gµνΓλµν = 0 and the Lorenz gauge ∂µA
µ = 0. Also, in this appendix and the next,

we explicitly write c and G for bookkeeping.

A.1 Expanding the metric and connection coefficients

Before expanding the EMd action, we start by expanding the metric in powers

of v/c [491],

g00 = −1 + 2V − 2V 2 + . . . ,

g0i = −4Vi + . . . ,

gij = δij + 2V δij + . . . , (A.1)
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where the potentials V ∼ O(1/c2), and Vi ∼ O(1/c3). The inverse metric satisfies

gµλgλν = δµν .

The connection coefficients in terms of the metric are given by

Γµνλ =
1

2
gµρ (∂λgρν + ∂νgρλ − ∂ρgνλ) . (A.2)

Plugging the metric expansion in terms of the potentials yields the connection co-

efficients to O(1/c4)

Γ0
00 = −∂0V ,

Γ0
0i = −∂iV ,

Γi00 = −∂iV + 2∂iV
2 − 4∂0Vi ,

Γ0
ij = 2 (∂jVi − ∂iVj) + δij∂0V ,

Γi0j = 2 (∂iVj − ∂jVi) + δij∂0V ,

Γijk = −(1 + 2V ) (δij∂kV + δik∂jV − δjk∂iV ) . (A.3)

A.2 Expanding the action

The action of EMd theory is given by Eq. (2.2). We can divide that action

into four pieces

S = Sg + Sϕ + Sem + Sm , (A.4)

where Sg is the gravitational action, Sϕ is the dilaton action, Sem is the electromag-

netic action with the dilaton coupling, and Sm is the matter action.

In the Einstein frame, the gravitational action is the same as in GR. The
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Einstein-Hilbert gravitational action can be written in the Landau-Lifshitz form

Sg =
c4

16πG

∫
dtd3x

√−ggµν
(
ΓρµλΓ

λ
νρ − ΓρµνΓ

λ
ρλ

)
. (A.5)

Substituting the connection coefficients from Eq. (A.3) in terms of the potentials

leads to

Sg =
c4

16πG

∫
dtd3x

[
− 2∂iV ∂iV − 16∂iV ∂0Vi − 6∂0V ∂0V + 8∂iVj∂iVj − 8∂iVj∂jVi

]
.

(A.6)

Imposing the harmonic gauge condition gµνΓλµν = 0 gives ∂0V + ∂iVi = 0. Applying

that condition in the action and integrating by parts yields

Sg =
c4

16πG

∫
dtd3x

[
− 2∂iV ∂iV + 2∂0V ∂0V + 8∂iVj∂iVj

]
. (A.7)

The dilaton action is given by

Sϕ = − c4

8πG

∫
dtd3x

√−ggµν∂µϕ∂νϕ . (A.8)

Since ϕ is of order 1/c2, then to O(1/c2)

Sϕ = − c4

8πG

∫
dtd3x (−∂0ϕ∂0ϕ+ ∂iϕ∂iϕ) . (A.9)

The electromagnetic action including the dilaton coupling is given by

Sem =
−1

16π

∫
dtd3x

√−ge−2aϕFµνF
µν , (A.10)

with the electromagnetic field Fµν = ∇µAν −∇νAµ = ∂µAν − ∂νAµ and the vector

potential Aµ = (A0, Ai). The component A0 = O(1) + O(1/c2) + . . . , while the

components Ai = O(1/c) + . . . . Therefore, expanding FµνF
µν to O(1/c2) leads to

FµνF
µν =− 2∂iA0∂iA0 + 2∂jAi∂jAi + 4∂0Ai∂iA0 − 2∂iAj∂jAi . (A.11)
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Because the last two terms in Eq. (A.11) are of order 1/c2, we can use integration

by parts and the Lorentz gauge condition (∂µA
µ = 0) to replace these last two terms

by 2∂0A0∂0A0. Since
√−g = 1+2V , and e−2aϕ ' 1−2aϕ+ . . . , the action becomes

Sem =
1

8π

∫
dtd3x

[
(1 + 2V − 2aϕ)∂iA0∂iA0 − ∂jAi∂jAi − ∂0A0∂0A0

]
. (A.12)

The matter action Sm for point particles at monopolar order (dipole/spin and

higher multipoles neglected) is given by

Sm = −
∑
A

∫
dt

[
mA(ϕ)c2

√
−gµν vµAvνA/c2 − 1

c
qAAµ

dxµ

dt

]
, (A.13)

where the field-dependent mass of each body has the expansion given by Eq. (2.7)

m(ϕ) = m

[
1 + αϕ+

1

2
(α2 + β)ϕ2 +O

(
1/c6

)]
. (A.14)

Defining the mass density ρg in terms of the constant masses

ρg ≡
∑
A

mAδ
3(x− xA), (A.15)

and defining the electric charge density by

ρe ≡
∑
A

qAδ
3(x− xA), (A.16)

then the matter action to O(1/c2) can be written as

Sm =

∫
dtd3x

[
ρg

(
− c2 +

1

2
v2 + V c2 +

1

8

v4

c2
+

3

2
V v2 − 1

2
V 2c2 − 4Viv

ic

)
+ ρgαϕ

(
−c2 +

1

2
v2 + V c2

)
− 1

2
c2ρg(α

2 + β)ϕ2 + ρe

(
A0 +

1

c
Aiv

i

)]
.

(A.17)

The parameters α and β will be assigned a subscript when multiplied by the delta

functions in ρg.
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A.3 The field equations

Combining the expansion of the action from the previous subsection, the total

action at 1PN order is given by

S =

∫
dtd3x

{
c4

16πG
[−2∂iV ∂iV + 2∂0V ∂0V + 8∂iVj∂iVj]

+ ρg

[
−c2 +

1

2
v2 + V c2 +

1

8

v4

c2
+

3

2
V v2 − 1

2
V 2c2 − 4Viv

ic

]
− c4

8πG
(−∂0ϕ∂0ϕ+ ∂iϕ∂iϕ) + ρgαϕ

(
−c2 +

1

2
v2 + V c2

)
− 1

2
c2ρg(α

2 + β)ϕ2 + ρe

(
A0 +

1

c2
Aiv

i

)
+

1

8π
[(1 + 2V − 2aϕ)∂iA0∂iA0 − ∂jAi∂jAi − ∂0A0∂0A0]

}
. (A.18)

Varying the action with respect to the potentials Vi, Ai, V , ϕ, and A0 respec-

tively yields the field equations

∇2Vi = −4πG

c3
ρgv

i , (A.19)

∇2Ai = −4π

c
ρev

i , (A.20)

�V = −4πG

c2
ρg −

4πG

c4
ρg

(
3

2
v2 − V c2

)
− 4πG

c2
ρgαϕ−

G

c4
∂iA0∂iA0 , (A.21)

�ϕ = −4πG

c4
ρg

[
−α +

1

2
αv2 + αV − (α2 + β)ϕ

]
+
Ga

c4
∂iA0∂iA0 , (A.22)

�A0 = 4πρe − 2V∇2A0 − 2∂iV ∂iA0 + 2aϕ∇2A0 + 2a∂iϕ∂iA0 , (A.23)

where � = −∂2
0 +∇2 is the flat d’Alembertian.

The first two equations can be solved directly for Vi, and Ai

Vi =
G

c3

(
m1v

i
1

|x− x1|
+

m2v
i
2

|x− x2|

)
, (A.24)

Ai =
1

c

(
q1v

i
1

|x− x1|
+

q2v
i
2

|x− x2|

)
. (A.25)
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To solve the other three equations, we first rewrite the terms ∂iA0∂iA0, ∂iϕ∂iA0,

and ∂iV ∂iA0 using the identity

∇2(χξ) = χ∇2ξ + ξ∇2χ+ 2∂iχ∂iξ , (A.26)

where χ and ξ are any scalar functions. Using that identity, Eqs. (A.21), (A.22),

and (A.23) can be written as

�V = −4πG

c2
ρg −

4πG

c4
ρg

(
3

2
v2 − V c2

)
− 4πG

c2
ρgαϕ−

G

2c4
∇2(A0)2 +

G

c4
A0∇2A0 ,

(A.27)

�ϕ = −4πG

c4
ρg

[
−c2α +

1

2
αv2 + c2αV − c2(α2 + β)ϕ

]
− Ga

c4
A0∇2A0 +

Ga

2c4
∇2(A0)2 ,

(A.28)

�A0 = 4πρe −∇2(V A0)− V∇2A0 + A0∇2V + a∇2(ϕA0) + aϕ∇2A0 − aA0∇2ϕ .

(A.29)

At this point, one could split the fields into separate PN orders, followed by

further simplifications of the action through partial integrations and use of the field

equations. Eventually one would only need an explicit expression for the leading

order solution to the field equations here in order to obtain the 1PN Fokker action.

This is essentially the “n+2” method from Ref. [209]. However, at this order this

does overall not provide a big simplification, and we need a solution for the 1PN

scalar field for Figs. 2.4 and 2.5. We therefore proceed by solving the 1PN field

equations and straightforwardly insert the solution into the complete action.

To solve those three equations, we first solve for the leading order terms of

V , ϕ, and A0, and then insert that solution back into the right hand side of the
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equations. Equation (A.27) yields

V =
G

c2

(
m1

|x− x1|
+

m2

|x− x2|

)
+

G

2c4

(
m1

∂2

∂t2
|x− x1|+m2

∂2

∂t2
|x− x2|

)
+

3G

2c4

(
m1v

2
1

|x− x1|
+

m2v
2
2

|x− x2|

)
− G2

c4
m1m2

(
1

r|x− x1|
+

1

r|x− x2|

)
− G2

c4
α1α2m1m2

(
1

r|x− x1|
+

1

r|x− x2|

)
− G

2c4

(
q1

|x− x1|
+

q2

|x− x2|

)2

+
G

c4
q1q2

(
1

r|x− x1|
+

1

r|x− x2|

)
, (A.30)

where r ≡ |x1 − x2| and

∂2

∂t2
|x− x1| =

v2
1

|x− x1|
− n1 · a1 −

(n1 · v1)2

|x− x1|
, (A.31)

with n1 ≡ (x− x1)/|x− x1|, and a1 = dv1/dt is the acceleration.

Solving Eq. (A.28) and using Eq. (A.31), we get

ϕ =− G

c2

(
α1m1

|x− x1|
+

α2m2

|x− x2|

)
+

G

2c4
α1m1

(
n1 · a1 +

(n1 · v1)2

|x− x1|

)
+

G

2c4
α2m2

(
n2 · a2 +

(n2 · v2)2

|x− x2|

)
+
a

2

(
q1

|x− x1|
+

q2

|x− x2|

)2

+
G2

c4
m1m2

(
α1 + α2(α2

1 + β1)

r|x− x1|
+
α2 + α1(α2

2 + β2)

r|x− x2|

)
− Ga

c4
q1q2

(
1

r|x− x1|
+

1

r|x− x2|

)
. (A.32)

The solution of Eq. (A.29) for A0 is given by

A0 =−
(

q1

|x− x1|
+

q2

|x− x2|

)
− q1

2c2

(
v2

1

|x− x1|
− n1 · a1 −

(n1 · v1)2

|x− x1|

)
− q2

2c2

(
v2

2

|x− x2|
− n2 · a2 −

(n2 · v2)2

|x− x2|

)
+
G

c2

(
(1 + aα1)

m1

|x− x1|
+ (1 + aα2)

m2

|x− x2|

)(
q1

|x− x1|
+

q2

|x− x2|

)
+
G

c2

(
(1 + aα2)

q1m2

r|x− x1|
+ (1 + aα1)

q2m1

r|x− x2|

)
− G

c2

(
(1 + aα1)

m1q2

r|x− x1|
+ (1 + aα2)

m2q1

r|x− x2|

)
. (A.33)
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A.4 The 1PN Lagrangian

The total action, after using the field equations and integrating by parts, can

be written as

S =

∫
dtd3x

[
ρg

(
−c2 +

1

2
v2 +

v4

8c2
+

1

2
V c2 +

3

4
V v2 − 2Viv

ic

)
+ ρe

(
1

2
A0 +

1

2c
Aiv

i

)
+

1

2
ρgαϕ

(
−c2 +

1

2
v2

)
+

1

2
ρeA0V −

1

2
aρeA0ϕ+

G

4c2
ρg(1 + aα)A2

0

]
.

(A.34)

Substituting the potentials gives acceleration terms that can be eliminated using

integration by parts in the action∫
dt (n · a1) =

∫
dt

(
−v

2
1

r
+

(n · v1)2

r
− (n · v1)(n · v2)

r
+
v1 · v2

r

)
, (A.35)

where n ≡ (x1 − x2)/|x1 − x2|, and a1 = v̇1. Finally, integrating over space term

by term and simplifying leads to the 1PN Lagrangian

L = −m1c
2 −m2c

2 + L0 +
1

c2
L1 , (A.36)

with

L0 =
1

2
m1v

2
1 +

1

2
m2v

2
2 +G(1 + α1α2)

m1m2

r
− q1q2

r
,

L1 =
1

8
m1v

4
1 +

1

8
m2v

4
2 +

q1q2

2r
[v1 · v2 + (n · v1)(n · v2)]

+
Gm1m2

2r

[
(3− α1α2)(v2

1 + v2
2)− (7− α1α2)(v1 · v2)− (1 + α1α2)(n · v1)(n · v2)

]
− G2m1m2

2r2

[
(1 + 2α1α2)(m1 +m2) +m1α

2
1(α2

2 + β2) +m2α
2
2(α2

1 + β1)
]

+
Gq1q2

r2
[m1(1 + aα1) +m2(1 + aα2)]− G

2r2

[
m1q

2
2(1 + aα1) +m2q

2
1(1 + aα2)

]
.

(A.37)
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Appendix B: Energy flux to next-to-leading PN order in Einstein-

Maxwell-dilaton theory

In this appendix, we derive the next-to-leading order scalar, vector, and tensor

energy fluxes for general orbits. The derivation follows the one used in Ref. [147] in

the context of ST theory.

B.1 Scalar energy flux

The scalar field in a radiative coordinate system can be written as

ϕ(Xµ) = ϕ0 +
1

R
ψ(U,N ) +O

(
1

R2

)
, (B.1)

where R ≡ |X|, U ≡ T − R/c, N ≡ X/R, and the Einstein-frame radiative scalar

multipole moments are defined by

ψ(U,N ) = G
∑
`≥0

1

`!c`+2
NLΨ

(`)
L (U). (B.2)

In this notation, an uppercase index denotes a multi-index, such asNL = N i1N i2 . . . N i` .

A superscript in parentheses denotes derivative, such as Ψ(`)(U) = d`Ψ/dU `.

Next, to relate the radiative moments to the source moments, one defines

‘algorithmic’ moments that serve as functional parameters for a general external

metric. Based on the arguments in Refs. [147, 492], the radiative moments coincide
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with the algorithmic ones to O(1/c3), and the algorithmic moments agree with the

source moments KL to order O(1/c4)

ΨL = Ψ
(alg)
L +O(1/c3), (B.3)

Ψ
(alg)
L = KL +O(1/c4). (B.4)

The source moments are defined by

KL =

∫
d3x

[
x̂LS +

1

2(2`+ 3)c2
x2x̂L

∂2S

∂t2

]
, (B.5)

where the hat on xL denotes a symmetric trace-free projection on the ` indices. The

source function S is defined by the field equation for ϕ as

�ϕ = −4πG

c2
S. (B.6)

The scalar energy flux

FS = −cR2

∮
T S0iN

idΩ, (B.7)

where the scalar part of the stress-energy tensor is given by

T Sµν =
c4

4πG

[
∇µϕ∇νϕ−

1

2
gµν(∇ϕ)2

]
. (B.8)

In the far zone,

T S0i '
c4

4πG
∂0ϕ∂iϕ ' −

c4

4πG
Ni(∂0ϕ)2, (B.9)

where, in the last step, we used the relation

∂iϕ = −Ni∂0ϕ+O(r/R2). (B.10)
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The scalar flux becomes

FS =
c3

4πG

∫
dΩ

(
∂ψ

∂U

)2

= G
∑
`≥0

1

c2`+1(`!)2

∫
dΩ

4π
NLNPΨ

(`+1)
L (U)Ψ

(`+1)
P (U). (B.11)

To integrate over the solid angle, we use the integration formula given by Eq. (A

29a) in Ref. [493], which yields

FS = G
∑
`≥0

1

c2`+1`!(2`+ 1)!!
Ψ

(`+1)
L (U)Ψ

(`+1)
L (U)

= G

[
Ψ(1)Ψ(1)

c
+

Ψ
(2)
i Ψ

(2)
i

c3
+

Ψ
(3)
ij Ψ

(3)
ij

c5
+ . . .

]
, (B.12)

where the first term is the monopole flux, the second is the dipole flux, and the third

is the quadrupole flux. In terms of the source function S, those multipole moments

needed for the calculation of the next-to-leading order flux are given by

Ψ =

∫
d3x

[
S +

1

6c2

d

dt
(x2S)

]
, (B.13)

Ψi =

∫
d3x

[
xiS +

1

10c2

d

dt

(
x2xiS

)]
, (B.14)

Ψij =

∫
d3x

(
xixj − 1

3
x2δij

)
S. (B.15)

The 1PN field equation for ϕ is given by Eq. (A.28)

�ϕ =− 4πG

c2
ρg

[
−α +

1

2c2
αv2 + αV − (α2 + β)ϕ

]
− Ga

c4
A0∇2A0 +

Ga

2c4
∇2(A0)2 .

(B.16)

The last term in that equation can be moved to the left hand side by a redefinition

of the field, and since A2
0 ∼ 1/R2, we can neglect that term to O(1/R). The other

terms are expressed in terms of delta functions. Hence, we can write the source
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function S as

S(x, t) =
∑
A

σAδ
3(x− xA), (B.17)

with

σ1 =−m1α1

(
1− v2

1

2c2

)
+
m1m2

c2r

(
α1 + α2

1α2 + β1α2

)
− aq1q2

c2r
, (B.18)

and similarly for σ2, where r ≡ x1−x2. In the center-of-mass coordinates, we define

v ≡ dr

dt
, a ≡ dv

dt
,

x1 =
m2

M
r +O

(
1

c2

)
,

x2 = −m1

M
r +O

(
1

c2

)
. (B.19)

Thus, σ1 can be written as

σ1 =−m1α1 +
ν

2c2
m1α1v

2 +
M2ν

c2r

[
α1 + α2

1α2 + β1α2 −
aq1q2

Mµ

]
. (B.20)

The multipole moments can now be written in terms of σ after integrating the delta

functions

Ψ(1) =
dσ1

dt
− m1α1

6c2

d2

dt2
x2

1 + 1↔ 2, (B.21)

Ψ
(2)
i =

d2

dt2
(xi1σ1)− m1α1

10c2

d4

dt4
x2

1x
i
1 + 1↔ 2, (B.22)

Ψ
(3)
ij = −m1α1

d3

dt3

(
xi1x

j
1 −

1

3
x2

1δij

)
+ 1↔ 2, (B.23)

where, in the higher order terms, we used σ1 = −m1α1.

For the monopole and quadrupole fluxes, the multipole moments in the center-

of-mass coordinates can be written as

Ψ(1) =
d

dt
(σ1 + σ2)− ν

6c2
(m2α1 +m1α2)

d3r2

dt3
, (B.24)

Ψ
(3)
ij = −ν(m2α1 +m1α2)

d3

dt3

(
rirj − 1

3
r2δij

)
. (B.25)
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Differentiating, and using the relations

d2r

dt2
= −G12M

r2
n+O

(
1

c2

)
,

dn

dt
=
v − ṙn
r

, (B.26)

where

G12 ≡ G

(
1 + α1α2 −

q1q2

Mµ

)
, (B.27)

we get

Ψ(1) =− 2

3

G12Mµ

c2r2
ṙ (X2α1 +X1α2)

− Mµ

c2r2
ṙ

[
α1 + α2 + α2

1α2 + α2
2α1 + β1α2 + β2α1 −

2aq1q2

Mµ

]
,

Ψ
(3)
ij =− G12Mµ

r2
(X1α2 +X2α1)

[
6ṙninj − 4(nivj + njvi) +

2

3
ṙδij

]
. (B.28)

Squaring leads to the monopole and quadrupole scalar fluxes

FMon
S =G

Ψ(1)Ψ(1)

c

=
G

c5

(
G12Mµ

r2

)2

ṙ2

[
2

3
(X2α1 +X1α2)

+ 1
1+α1α2− q1q2Mµ

(
α1 + α2 + α2

1α2 + α2
2α1 + β1α2 + β2α1 −

2aq1q2

Mµ

)]2

.

(B.29)

FQuad
S =G

Ψ
(3)
ij Ψ

(3)
ij

c5

=
G

30c5

(
G12Mµ

r2

)2

(X1α2 +X2α1)2

(
32v2 − 88

3
ṙ2

)
. (B.30)

For the dipole flux, we need to write x1 and x2 in the center-of-mass coor-

dinates to 1PN order. From the boost invariance of the Lagrangian, we obtain
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[147]

x1 =
µ2

µ1 + µ2

r +O
(

1

c4

)
,

x2 = − µ1

µ1 + µ2

r +O
(

1

c4

)
, (B.31)

where

µ1 ≡ m1

(
1 +

v2
1

2c2
− G12m2

2c2r

)
+O

(
1

c4

)
= M

(
X1 +X2

νv2

2c2
− G12Mν

2c2r

)
+O

(
1

c4

)
, (B.32)

and similarly for µ2. This leads to the dipole moment Ψi in the center-of-mass

coordinates

Ψ
(2)
i =

d2

dt2

(
µ2

µ1 + µ2

riσ1

)
− d2

dt2

(
µ1

µ1 + µ2

riσ2

)
+

µ

10c2

(
X2

1α2 −X2
2α1

) d4

dt4
(r2ri).

(B.33)

To calculate the dipole flux, we also need the 1PN acceleration, which can be derived

from the 1PN Lagrangian, and we obtain

d2r

dt2
=− G12M

r2
n

{
1 +

v2

c2

[
3ν +

1− α1α2 + q1q2/2Mµ

1 + α1α2 − q1q2/Mµ

]
− 3

2c2
νṙ2 − 2ν

G12M

c2r

− G12M

c2r

1(
1 + α1α2 − q1q2

Mµ

)2

[
2ν

(
1 + α1α2 −

q1q2

Mµ

)2

+X2
q2

1

Mµ
(1 + aα2)

+X1
q2

2

Mµ
(1 + aα1)− 2a

q1q2

Mµ
(X1α1 +X2α2)− q1q2

Mµ
(5− α1α2)

+ 4(1 + α1α2) +X2β1α
2
2 +X1β2α

2
1

]}

− G12M

c2r2
ṙv

[
2ν − 4− q1q2/Mµ

1 + α1α2 − q1q2/Mµ

]
+O

(
1

c4

)
. (B.34)

Finally, we obtain the dipole scalar flux

Fdip
S =

G

3c3

(
G12Mµ

r2

)2
{

(α1 − α2)2 + fSṙ2
ṙ2

c2
+ fSv2

v2

c2
+ fS1/r

G12M

c2r

}
, (B.35)
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with the coefficients

fSṙ2 =
−1

1 + α1α2 − q1q2
Mµ

{
8(α1 − α2)2 − 2ν(α1 − α2)2(1 + α1α2)

+ (α1 − α2)(1 + α1α2) [X1(α1 + 3α2)−X2(α2 + 3α1)]

− q1q2

Mµ

[
2(1− ν)(α1 − α2)2 + (X1 −X2) (α1 − α2)(2a+ α1 + α2)

]
+ 2(α1 − α2) (X1α1β2 −X2α2β1)

}
, (B.36a)

fSv2 =
2

5
(

1 + α1α2 − q1q2
Mµ

){5(α1 − α2)2(1− α1α2) + 5(α1 − α2) (X1α1β2 −X2α2β1)

+ (α1 − α2)(1 + α1α2)

[
−25

2
(1− ν)(α1 − α2) +

11

2

(
X2

2α1 −X2
1α2

)
+

35

2
(X1α1 −X2α2)

]
+

q1q2

2Mµ
(α1 − α2)

[
5(1− 5ν)(α1 − α2)− 10a (X1 −X2)− 11

(
X2

2α1 −X2
1α2

)]
− 5q1q2

2Mµ
(α1 − α2) [2 (X1α1 −X2α2) + 3 (X1α2 −X2α1)]

}
, (B.36b)

fS1/r = −2

5

{
5ν(α1 − α2)2 + 5(α2

1 − α2
2) (X1 −X2) + 6(α1 − α2)

(
X2

2α1 −X2
1α2

)
+

5(α1 − α2)2(
1 + α1α2 − q1q2

Mµ

)2

[
−q1q2

Mµ
(5− α1α2 + 2aX1α1 + 2aX2α2)

+X2
q2

1

Mµ
(1 + aα2) +X1

q2
2

Mµ
(1 + aα1)

]
+

5(α1 − α2)2(
1 + α1α2 − q1q2

Mµ

)2

[
4(1 + α1α2) +X2α

2
2β1 +X1α

2
1β2

]}
. (B.36c)

This flux reduces to the ST dipole flux derived in Ref. [147] in the limit where the

electric charges are zero.
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B.2 Vector energy flux

The calculation of the vector flux is similar to that of the scalar flux. The

vector potential can be written in terms of radiative multipole moments as [494]

A0(X, T ) =
1

R

∑
`≥0

1

`!c`
NLQ

(`)
L (U),

Ai(X, T ) =
1

R

∑
`≥1

1

`!c`

[
NL−1Q

(`)
iL−1(U)− `

(`+ 1)c
εiabNaL−1M

(`)
bL−1

]
. (B.37)

As was done in the previous subsection, the radiative moments can be related to

the source moments using algorithmic moments. At leading order, the three agree,

and we can express the electric and magnetic multipole moments directly in terms

of the source moments

QL(U) =

∫
d3x

[
x̂Lρ+

1

2(2`+ 3)c2
x2x̂L

d2ρ

dt2
− 2`+ 1

(`+ 1)(2`+ 1)c2
x̂aL

dJa
dt

]
, ` ≥ 0 ,

(B.38)

ML(U) =

∫
d3x

[
x̂〈L−1mi`〉 +

1

2(2`+ 3)c2
x2x̂〈L−1

d

dt2
mi`〉

]
, ` ≥ 1 , (B.39)

where the magnetization density m = x × J . The source functions ρ and Ji are

defined by

�A0 = 4πρ , �Ai = −4π

c
Ji. (B.40)

The vector flux

FV = −cR2

∮
N iTEM

0i dΩ, (B.41)

where the electromagnetic part of the stress-energy tensor is given by

TEM
µν =

1

8π
e−2aϕ

(
2FµαFν

α − 1

2
gµνF

2

)
. (B.42)
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In the far zone,

TEM
0i =

1

4π
F0jFi

j

=
1

4π
(∂0Aj − ∂jA0) (∂iAj − ∂jAi) . (B.43)

The vector flux becomes

FV =
R2

4πc

∫
dΩ

[
∂Ai
∂U

∂Ai
∂U
−N iN j ∂Ai

∂U

∂Aj
∂U

]
. (B.44)

The vector potential Ai, to the required order, has the multipole expansion

Ai =
1

R

[
1

c
Q

(1)
i −

1

2c2
εijkN

jM
(1)
k +

1

2c2
N jQ

(2)
ij

]
, (B.45)

which leads to

R2

4πc

∫
dΩ

(
∂Ai
∂U

)2

=
Q

(2)
i Q

(2)
i

c3
+
M

(2)
i M

(2)
i

6c5
+
Q

(3)
ij Q

(3)
ij

12c5
+O

(
1

c7

)
=
∑
`≥1

1

c2`+1`!(2`+ 1)!!

[
2`+ 1

`
Q

(`+1)
L Q

(`+1)
L

+
`

c2(`+ 1)
M

(`+1)
L M

(`+1)
L

]
, (B.46)

and

R2

4πc

∫
dΩN iN j ∂Ai

∂U

∂Aj
∂U

=
Q

(2)
i Q

(2)
i

3c3
+
Q

(3)
ij Q

(3)
ij

30c5
+O

(
1

c7

)
=
∑
`≥1

1

c2`+1`!(2`+ 1)!!
Q

(`+1)
L Q

(`+1)
L . (B.47)

Hence, the vector flux

FV =
∑
`≥1

1

c2`+1`!(2`+ 1)!!

[
`+ 1

`
Q

(`+1)
L Q

(`+1)
L +

`

c2(`+ 1)
M

(`+1)
L M

(`+1)
L

]

=
2Q

(2)
i Q

(2)
i

3c3
+
M

(2)
i M

(2)
i

6c5
+
Q

(3)
ij Q

(3)
ij

20c5
+ . . . . (B.48)
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The first two terms give the dipole flux, and the third term is the quadrupole flux.

There is no monopole flux because of the conservation of the total electric charge.

The 1PN field equations are given by Eqs. (A.20) and (A.29), which are

�Ai = −4π

c
ρev

i , (B.49)

�A0 = 4πρe − V∇2A0 + A0∇2V + aϕ∇2A0

− aA0∇2ϕ−∇2(V A0) + a∇2(ϕA0). (B.50)

The last two terms in the above equation are of order 1/R2, and hence do not

contribute to the next-to-leading order flux. The source functions ρ and J i are then

given by

ρ = ρe = q1δ
3(x− x1) + q2δ

3(x− x2), (B.51)

J i = ρev
i = q1v

i
1δ

3(x− x1) + q2v
i
2δ

3(x− x2). (B.52)

The function ρ is simply the electric charge density because the higher order terms

from the field equation cancel when summed over the two bodies.

For the dipole flux, we need Qi and Mi to O(1/c2)

Qi =

∫
d3x

[
xiρe +

1

10c2
ρe
d2

dt2
(
x2xi

)
− 3

10c2

d

dt
(x̂ijJj)

]
=

(
q1

µ2

µ1 + µ2

− q2
µ1

µ1 + µ2

)
ri +

1

10c2

(
q1
m3

2

M3
− q2

m3
1

M3

)
d2

dt2
(
rir2

)
− 3

10c2

(
q1
m3

2

M3
− q2

m3
1

M3

)
d

dt

(
rirj − 1

3
r2δij

)
vj , (B.53)

Mi = q1εijkx
j
1v
k
1 + q2εijkx

j
2v
k
2

=

(
q1
m2

2

M2
+ q2

m2
1

M2

)
εijkr

jvk . (B.54)
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Differentiating and using the 1PN acceleration from Eq. (B.34), we obtain the next-

to-leading order vector dipole flux

FDip
V =

2

3c3

(
G12Mµ

r2

)2
[(

q1

m1

− q2

m2

)2

+ fVv2
v2

c2
+ fVṙ2

ṙ2

c2
+ fV1/r

G12M

c2r

]
, (B.55)

with the coefficients

fVv2 =
2

5

(
X2

2

q1

m1

−X2
1

q2

m2

)(
q1

m1

− q2

m2

)
+

2

M
(X1 −X2) (q1 + q2)

(
q1

m1

− q2

m2

)
+

1

1 + α1α2 − q1q2
Mµ

(
q1

m1

− q2

m2

)2(
2 + 6ν + 2α1α2(3ν − 1) +

q1q2

Mµ
(1− 6ν)

)
,

(B.56a)

fVṙ2 = −
(
q1

m1

− q2

m2

)2
3ν +

(X1 −X2)(q1 + q2)

M
(
q1
m1
− q2

m2

)
+

8− 4ν(1 + α1α2)− 2 q1q2
Mµ

(1− 2ν)

1 + α1α2 − q1q2
Mµ

]
, (B.56b)

fV1/r = −2

(
q1

m1

− q2

m2

)2
[

2ν +
2

5

X2
2q1/m1 −X2

1q2/m2

q1/m1 − q2/m2

− q1q2

Mµ

5− α1α2 + 2a (X1α1 +X2α2)(
1 + α1α2 − q1q2

Mµ

)2 +
(X1 −X2)(q1 + q2)

M
(
q1
m1
− q2

m2

)
+

4(1 + α1α2) +X2
q21
Mµ

(1 + aα2) +X1
q22
Mµ

(1 + aα1) +X2α
2
2β1 +X1α

2
1β2(

1 + α1α2 − q1q2
Mµ

)2

]
.

(B.56c)

For the quadrupole flux,

Q
(3)
ij =

∫
d3x

(
xixj −

1

3
x2δij

)
ρe =

(
X2

2q1 +X2
1q2

) d3

dt3

(
rirj − 1

3
r2δij

)
, (B.57)

which leads to

FQuad
V =

Q
(3)
ij Q

(3)
ij

30c5
=

1

30c5

(
G12Mµ

r2

)2(
X2

q1

M
+X1

q2

m2

)2(
32v2 − 88

3
ṙ2

)
. (B.58)
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B.3 Tensor energy flux

The metric in radiative coordinates

Gµν(X
µ) = ηµν +

1

R
Hµν(U,N ) +O

(
1

R2

)
, (B.59)

where the radiative multipole moments ML and SL are defined by

HTT
ij (U,N ) = 4G

∑
`≥2

1

`!c`+2

[
NL−2M

(`)
ijL−2(U)− 2`

(`+ 1)c
NhL−2εhk(iS

(`)
j)kL−2

]TT

.

(B.60)

The radiative multipoles agree with the source multipoles IL and JL up to order

ML = IL +O(1/c3), SL = JL +O(1/c2), (B.61)

where [147, 494]

IL(t) =

∫
d3x

[
x̂Lσ +

1

2(2`+ 3)c2
x2x̂L

∂2σ

∂t2
− 4(2`+ 1)

(`+ 1)(2`+ 3)c2
x̂Ls

∂σs

∂t

]
, (B.62)

JL(t) =

∫
d3x εhk〈i`x̂L−1〉hσ

k. (B.63)

In terms of the multipole moments, the tensor flux is given by

Fg =
c3

32πG

∫
dΩ

(
∂HTT

ij

∂U

)2

= G
∑
`≥2

1

c2`+1`!(2`+ 1)!!

[
(`+ 1)(`+ 2)

`(`− 1)
M

(`+1)
L (U)M

(`+1)
L (U)

+
4`(`+ 2)

c2(`− 1)(`+ 1)
S`+1
L (U)S

(`+1)
L (U)

]
=

G

5c5
M

(3)
ij M

(3)
ij +

G

189c7
M

(4)
ijkM

(4)
ijk +

16G

45c7
S

(3)
ij S

(3)
ij +O

(
1/c9

)
, (B.64)

where the first term is the mass quadrupole flux, the second is the mass octopole,

and the third is the current quadrupole.
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The source functions σ and σi are given by

σ ≡ T 00 + T ss

c2
, σi ≡ T 0i

c
, (B.65)

and from the 1PN field equations (A.27) and (A.19)

�V = −4πG

c2
σ, �V i = −4πG

c3
σi, (B.66)

with

σi = m1v
i
1δ

3(x− x1) +m2v
i
2δ

3(x− x2), (B.67)

σ =

[
m1 +

3

2c2
m1v

2
1 −

G12m1m2

c2r

]
δ(x− x1) + 1↔ 2. (B.68)

The multipole moments needed for the next-to-leading order flux are Mij,

Mijk, and Sij, which are given by

Mij =

(
m1 +

3

2c2
m1v

2
1 −

G12m1m2

c2r

)
x̂ij1 +

m1

14c2

d2

dt2
x2

1x̂
ij
1 −

20m1

21c2

d

dt
vk1 x̂

ijk
1 + 1↔ 2,

(B.69)

Mijk = m1x̂
ijk
1 +m2x̂

ijk
2 , (B.70)

Sij = m1ε
hk〈jx

i〉
1 x

h
1v

k
1 + 1↔ 2. (B.71)

In the center-of-mass coordinates, this becomes

Mij = µ

[
1 +

3

2c2
(1− 3ν)v2 − G12M

c2r
(1− 2ν)

]
+

µ

14c2
(1− 3ν)

d2

dt2
r2r̂ij − 20µ

21c2
(1− 3ν)

d

dt
vkr̂ijk, (B.72)

Mijk = µ

[
m2

2

M2
− m2

1

M2

]
r̂ijk, (B.73)

Sij = µ

[
m2

2

M2
− m2

1

M2

]
εhk〈jri〉rhvk, (B.74)
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where

r̂ij = rirj − 1

3
r2δij, (B.75)

r̂ijk = rirjrk − r2

5

(
riδjk + rjδik + rkδij

)
, (B.76)

εhk〈jri〉rhvk =

[
1

2
εhkjri +

1

2
εhkirj − 1

3
εhkmrm

]
rhvk. (B.77)

Taking the time derivatives of the multipole moments and squaring, we obtain the

tensor flux

FT =
8G

15c5

(
G12Mµ

r2

)2 [
12v2 − 11ṙ2

]
+

8G

420c7

(
G12Mµ

r2

)2 [
fTv4v

4 + fTv2ṙ2v
2ṙ2

+ fTṙ4 ṙ
4 + fTv2/r

G12Mv2

r
+ fTṙ2/r

G12Mṙ2

r
+ fT1/r2

G2
12M

2

r2

]
, (B.78)

with the coefficients

fTv4 =

[
785 + 113α1α2 − 281 q1q2

Mµ

1 + α1α2 − q1q2
Mµ

− 852ν

]
, (B.79a)

fTv2ṙ2 = −2

[
1487 + 255α1α2 − 563 q1q2

Mµ

1 + α1α2 − q1q2
Mµ

− 1392ν

]
, (B.79b)

fTṙ4 = 3

[
687 + 127α1α2 − 267 q1q2

Mµ

1 + α1α2 − q1q2
Mµ

− 620ν

]
, (B.79c)

fT1/r2 = 16(1− 4ν), (B.79d)

fTv2/r = − 8(
1 + α1α2 − q1q2

Mµ

)2

[
20(1 + α1α2)(17− ν) + 4α1α2(1 + α1α2)(22− 5ν)

+ 84
q2

1

Mµ
X2(1 + aα2) + 84

q2
2

Mµ
X1(1 + aα1) +

q2
1q

2
2

M2µ2
(67− 20ν)

− 168
aq1q2

Mµ
(X1α1 +X2α2)− q1q2

Mµ
(491− 40ν)

− α1α2
q1q2

Mµ
(71− 40ν) + 84

(
X1α

2
1β2 +X2α

2
2β1

) ]
, (B.79e)

fTṙ2/r =
8(

1 + α1α2 − q1q2
Mµ

)2

[
(1 + α1α2)(367− 15ν) + 3α1α2(1 + α1α2)(29− 5ν)
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+ 84
q2

1

Mµ
X2(1 + aα2) + 84

q2
2

Mµ
X1(1 + aα1) +

q2
1q

2
2

M2µ2
(73− 15ν)

− 168
aq1q2

Mµ
(X1α1 +X2α2)− 2q1q2

Mµ
(262− 15ν)

− 2
q1q2

Mµ
α1α2(38− 15ν) + 84

(
X1α

2
1β2 +X2α

2
2β1

) ]
. (B.79f)

This flux reduces to the one derived in Ref. [151], in the context of ST theory, when

the electric charges are zero and after converting the notation to the Jordan-Fierz

frame.

B.4 Energy flux for circular orbits

In this section, we express the energy flux for circular orbits in terms of the

gauge-independent parameter x, which is defined by

x ≡
(
G12MΩ

c3

)2/3

, (B.80)

where Ω is the orbital frequency. To do that, we need to find the relation between r

and Ω to 1PN order (Kepler’s third law). We start by writing the Lagrangian (2.31)

in the center-of-mass coordinates

L = −Mc2 +
1

2
µv2 +

G12Mµ

r

+
1

c2

{
1

8
(1− 3ν)µv4 +

G12Mµ

2r

[(
3− α1α2

1 + α1α2 − q1q2
Mµ

+ ν

)
v2 + νṙ2

]

− M2µ

2r2

[
(1 + α1α2)2 +X2α

2
2β1 +X1α

2
1β2 − 2

q1q2

Mµ
(1 + aα1X1 + aα2X2)

+
q2

2

Mµ
X1(1 + aα1) +

q2
1

Mµ
X2(1 + aα2)

]}
. (B.81)

Applying the Euler-Lagrange equation and using ṙ = 0 and v = rΩ leads to

Ω2 =
G12M

r3

[
1− 3fγγ +O

(
1

c4

)]
, (B.82)
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where the parameter γ is defined by

γ ≡ G12M

c2r
, (B.83)

and the the coefficient fγ is defined by

fγ ≡
1

6G2
12

[
G2

12(1− 2ν) +G12(3− α1α2) + 2(1 + α1α2)2 + 2X2α
2
2β1 + 2X1α

2
1β2

+ 2
q2

2

Mµ
X1(1 + aα1) + 2

q2
1

Mµ
X2(1 + aα2)− 4

q1q2

Mµ
(1 + aX1α1 + aX2α2)

]
.

(B.84)

Substituting x instead of Ω and inverting Eq. (B.82), we obtain

γ = x
[
1 + fγx+O

(
1/c4

)]
. (B.85)

To express the flux for circular orbits in terms of γ, we set ṙ = 0 and v = rΩ

and then use Eqs. (B.82) to obtain

FS =
Gc5

3G2
12

ν2γ4(α1 − α2)2 +
Gc5

3G2
12

ν2γ5

[
fSv2 + fS1/r +

16

5
(X1α2 +X2α1)2

]
,

(B.86a)

FV =
2Gc5

3G2
12

ν2γ4

(
q1

m1

− q2

m2

)2

+
2Gc5

3G2
12

ν2γ5

[
8

5

(
X2

q1

m1

+X1
q2

m2

)2

+ fVv2 + fV1/r

]
,

(B.86b)

FT =
32Gc5

5G2
12

ν2γ5 +
2Gc5

105G2
12

ν2γ6
(
fTv4 + fTv2/r + fT1/r2 + 1008fγ

)
. (B.86c)

Using Eq. (B.85) to express the energy flux in terms of x instead of γ leads to

Eq. (2.43a).
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Appendix C: Translating between scalar-tensor theory notations

This appendix contains the conversion between notation introduced in Table

3.1 and that employed by Damour and Esposito-Farèse [495, 496]. Note that these

authors defined αA with a relative minus sign compared to Eq. (3.11) and defined

G∗ as the bare gravitational constant in the Einstein frame.

Weak-field parameters :

G → G̃ = G∗A
2
0

(
1 + α2

0

)
, (C.1)

ζ → α2
0

1 + α2
0

, (C.2)

λ1 → − α0β0

(1 + α2
0)A2

0

, (C.3)

λ2 → −α
2
0 (α0β

′
0 − 3β2

0)

(1 + α2
0)

2
A4

0

. (C.4)

Strong-field parameters :

sA → 1

2
− αA

2α0

, (C.5)

s′A → β0αA
2α2

0A
2
0

+
βA
4α2

0

, (C.6)

s′′A → αAβ
′
0

2α2
0A

4
0

+
β′A
8α3

0

− β2
0αA
α3

0A
4
0

+
β0αA
2α2

0A
2
0

− 3β0βA
4α3

0A
2
0

. (C.7)
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Binary parameters :

α → 1 + α1α2

1 + α2
0

, (C.8)

γ → γ12 = − 2α1α2

1 + α1α2

, (C.9)

β1 → β1
22 =

β1α
2
2

2(1 + α1α2)2
, (C.10)

β2 → β2
11 =

β2α
2
1

2(1 + α1α2)2
, (C.11)

δ1 →
α2

1

(1 + α1α2)2
, (C.12)

δ2 →
α2

2

(1 + α1α2)2
, (C.13)

χ1 → −1

4
ε1222 = − β′1α

3
2

4(1 + α1α2)3
, (C.14)

χ2 → −1

4
ε2111 = − β′2α

3
1

4(1 + α1α2)3
. (C.15)

Our conversions agree with those presented in Table II of Ref. [497] with one

exception: we find Gα = G̃12 rather than Gα = G12.

467



Appendix D: Explicit formulas for the Fourier-domain phasing of

waveforms in scalar-tensor theories

This appendix gathers explicit formulae for the coefficients entering our results

that were too voluminous to be kept in the main text.

In the dipole-driven case of Section 3.5.1, we obtained for the flux

FDD(x) =
4S2
−ζη

2x4

3Gα

[
1 + fDD

2 x + fDD
3 x3/2 + fDD

4 x2 +O(5)
]

(D.1)

with the coefficients

fDD
2 =− 14

5
+

4S2
+

5S2
−
− 4

3
β+ +

4S+β−
S−γ

+
4β+

γ
− 2

3
γ +

24

5S2
−ζ

+
12γ

5S2
−ζ
− 4

3
η +

4

3
β−ψ −

4β−ψ

γ
− 4S+β+ψ

S−γ
, (D.2)

fDD
3 =2π + πγ, (D.3)

fDD
4 =− 29

28
− 97S2

+

28S2
−
− 4S+β−

3S−
− 4

3
β2
− +

2

15
β+ −

32S2
+β+

15S2
−
− 4

3
β2

+ +
4β2
−

γ2
+

4S2
+β

2
−

S2
−γ

2

+
16S+β−β+

S−γ2
+

4β2
+

γ2
+

4S2
+β

2
+

S2
−γ

2
− 4S+β−
S−γ

− 8β2
−

3γ
− 36β+

5γ
+

16S2
+β+

5S2
−γ

− 16S+β−β+

3S−γ

− 8β2
+

3γ
+

2

5
γ − 16S2

+γ

15S2
−

+
1

2
γ2 +

2

3
δ+ −

1247

70S2
−ζ
− 64β+

5S2
−ζ
− 2143γ

140S2
−ζ
− 32β+γ

5S2
−ζ

− 16γ2

5S2
−ζ

+
55

6
η − 7S2

+η

3S2
−

+
16

3
β2
−η +

40

3
β+η −

48β2
−η

γ2
− 32S+β−β+η

S−γ2
+

32β2
+η

γ2

− 16S2
+β

2
+η

S2
−γ

2
− 56S+β−η

3S−γ
+

80β2
−η

3γ
− 56β+η

3γ
+

32S+β−β+η

3S−γ
− 16β2

+η

γ
− 4

3
γη
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− 1

3
γ2η − 4

3
δ+η −

14η

S2
−ζ
− 7γη

S2
−ζ

+
2

3
η2 +

4S+χ−
S−γ

− 8S+ηχ−
S−γ

− 4

3
χ+ +

4χ+

γ
+

8

3
ηχ+

− 8ηχ+

γ
+

11S+ψ

2S−
− 2

15
β−ψ +

32S2
+β−ψ

15S2
−

+
4S+β+ψ

3S−
+

8

3
β−β+ψ −

8S+β
2
−ψ

S−γ2

− 8β−β+ψ

γ2
− 8S2

+β−β+ψ

S2
−γ

2
− 8S+β

2
+ψ

S−γ2
+

36β−ψ

5γ
− 16S2

+β−ψ

5S2
−γ

+
8S+β

2
−ψ

3S−γ

+
4S+β+ψ

S−γ
+

16β−β+ψ

3γ
+

8S+β
2
+ψ

3S−γ
+

3S+γψ

S−
+

2

3
δ−ψ +

64β−ψ

5S2
−ζ

+
32β−γψ

5S2
−ζ

− 16

3
β−ηψ +

20β−ηψ

3γ
+

20S+β+ηψ

3S−γ
+

4

3
χ−ψ −

4χ−ψ

γ
− 4S+χ+ψ

S−γ
.

(D.4)

Note that fd
3 is determined entirely by tail terms of the form of Eq. (3.36);

this is the only hereditary contribution to the flux.

For the ratio ρ(x), we obtained

ρDD(x) =
3

8S2
−ζηx

4

[
1 + ρDD

2 x + ρDD
3 x3/2 + ρDD

4 x2 +O(5)
]

(D.5)

with the coefficients

ρDD
2 =

13

10
− 4S2

+

5S2
−

+
8

3
β+ −

4S+β−
S−γ

− 4β+

γ
− 2

3
γ

− 24

5S2
−ζ
− 12γ

5S2
−ζ

+
7

6
η − 8

3
β−ψ +

4β−ψ

γ
+

4S+β+ψ

S−γ
, (D.6)

ρDD
3 =− 2π − πγ, (D.7)

ρDD
4 =− 7629

1400
+

129S2
+

700S2
−

+
16S4

+

25S4
−

+
4S+β−

3S−
+

80

9
β2
− +

181

15
β+ −

16S2
+β+

15S2
−

+
80

9
β2

+

+
12β2

−

γ2
+

12S2
+β

2
−

S2
−γ

2
+

48S+β−β+

S−γ2
+

12β2
+

γ2
+

12S2
+β

2
+

S2
−γ

2
− 62S+β−

5S−γ
+

32S3
+β−

5S3
−γ

− 40β2
−

3γ
− 46β+

5γ
+

16S2
+β+

5S2
−γ

− 80S+β−β+

3S−γ
− 40β2

+

3γ
− 77

5
γ +

16S2
+γ

15S2
−

+
44

9
β+γ

− 205

36
γ2 +

1

3
δ+ +

576

25S4
−ζ

2
+

576γ

25S4
−ζ

2
+

144γ2

25S4
−ζ

2
− 653

350S2
−ζ

+
192S2

+

25S4
−ζ

+
96S+β−

5S3
−ζ

+
64β+

5S2
−ζ

+
192S+β−
5S3
−γζ

+
192β+

5S2
−γζ

+
3827γ

700S2
−ζ

+
96S2

+γ

25S4
−ζ
− 16β+γ

5S2
−ζ

+
16γ2

5S2
−ζ

+
71

24
η
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+
S2

+η

3S2
−
− 320

9
β2
−η −

245

9
β+η −

16β2
−η

γ2
− 96S+β−β+η

S−γ2
− 32β2

+η

γ2
− 48S2

+β
2
+η

S2
−γ

2

+
26S+β−η

3S−γ
− 32β2

−η

3γ
+

26β+η

3γ
+

160S+β−β+η

3S−γ
+

64β2
+η

γ
+

110

9
γη +

4

3
γ2η

+
16

3
δ+η +

2η

S2
−ζ

+
γη

S2
−ζ

+
55

72
η2 − 4S+χ−

S−γ
+

8S+ηχ−
S−γ

+
16

3
χ+ −

4χ+

γ
− 32

3
ηχ+

+
8ηχ+

γ
− 11S+ψ

2S−
− 181

15
β−ψ +

16S2
+β−ψ

15S2
−
− 4S+β+ψ

3S−
− 160

9
β−β+ψ −

24S+β
2
−ψ

S−γ2

− 24β−β+ψ

γ2
− 24S2

+β−β+ψ

S2
−γ

2
− 24S+β

2
+ψ

S−γ2
+

46β−ψ

5γ
− 16S2

+β−ψ

5S2
−γ

+
40S+β

2
−ψ

3S−γ

+
62S+β+ψ

5S−γ
− 32S3

+β+ψ

5S3
−γ

+
80β−β+ψ

3γ
+

40S+β
2
+ψ

3S−γ
− 3S+γψ

S−
− 44

9
β−γψ +

1

3
δ−ψ

− 64β−ψ

5S2
−ζ
− 96S+β+ψ

5S3
−ζ

− 192β−ψ

5S2
−γζ

− 192S+β+ψ

5S3
−γζ

+
16β−γψ

5S2
−ζ

+
11

9
β−ηψ +

10β−ηψ

3γ

+
10S+β+ηψ

3S−γ
− 16

3
χ−ψ +

4χ−ψ

γ
+

4S+χ+ψ

S−γ
. (D.8)

In the quadrupole-driven case of Section 3.5.2, we obtained for the dipolar

part of the flux

Fdip(x) =
4S2
−ζη

2x4

3Gα

[
1 + fd

2 x + fd
3 x

3/2 + fd
4 x

2 +O(5)
]

(D.9)

with coefficients given by

fd
2 =− 14

5
− 4

3
β+ +

4S+β−
S−γ

+
4β+

γ
− 2

3
γ − 4

3
η +

4

3
β−ψ −

4β−ψ

γ
− 4S+β+ψ

S−γ
,

(D.10)

fd
3 =2π + πγ, (D.11)

fd
4 =− 29

28
− 4S+β−

3S−
− 4

3
β2
− +

2

15
β+ −

4

3
β2

+ +
4β2
−

γ2
+

16S+β−β+

S−γ2
+

4β2
+

γ2
− 4S+β−
S−γ

− 8β2
−

3γ
− 36β+

5γ
− 16S+β−β+

3S−γ
− 8β2

+

3γ
+

2

5
γ +

1

2
γ2 +

2

3
δ+ +

55

6
η +

16

3
β2
−η

+
40

3
β+η −

48β2
−η

γ2
− 32S+β−β+η

S−γ2
+

32β2
+η

γ2
− 56S+β−η

3S−γ
+

80β2
−η

3γ
− 56β+η

3γ

+
32S+β−β+η

3S−γ
− 16β2

+η

γ
− 4

3
γη − 1

3
γ2η − 4

3
δ+η +

2

3
η2 +

4S+χ−
S−γ

− 8S+ηχ−
S−γ

470



− 4

3
χ+ +

4χ+

γ
+

8

3
ηχ+ −

8ηχ+

γ
+

11S+ψ

2S−
− 2

15
β−ψ +

4S+β+ψ

3S−
+

8

3
β−β+ψ

− 8S+β
2
−ψ

S−γ2
− 8β−β+ψ

γ2
− 8S+β

2
+ψ

S−γ2
+

36β−ψ

5γ
+

8S+β
2
−ψ

3S−γ
+

4S+β+ψ

S−γ
+

16β−β+ψ

3γ

+
8S+β

2
+ψ

3S−γ
+

3S+γψ

S−
+

2

3
δ−ψ −

16

3
β−ηψ +

20β−ηψ

3γ
+

20S+β+ηψ

3S−γ
+

4

3
χ−ψ

− 4χ−ψ

γ
− 4S+χ+ψ

S−γ
. (D.12)

For the non-dipolar part, we obtained

Fnon-dip(x) =
32η2ξx5

5Gα

[
1 + fnd

2 x +O(3)
]

(D.13)

with the coefficient

fnd
2 =− 1247

336ξ
− 8β+

3ξ
− 2143γ

672ξ
− 4β+γ

3ξ
− 2γ2

3ξ
− 485S2

+ζ

672ξ
− 4S2

+β+ζ

9ξ
+

5S2
+β

2
−ζ

6γ2ξ

+
5S2

+β
2
+ζ

6γ2ξ
+

2S2
+β+ζ

3γξ
− 2S2

+γζ

9ξ
− 35η

12ξ
− 35γη

24ξ
− 35S2

+ζη

72ξ
− 10S2

+β
2
+ζη

3γ2ξ

+
8β−ψ

3ξ
+

4β−γψ

3ξ
+

4S2
+β−ζψ

9ξ
− 5S2

+β−β+ζψ

3γ2ξ
− 2S2

+β−ζψ

3γξ
. (D.14)

For the non-dipolar ratio ρnon-dip(x), we obtain

ρnon-dip(x) =
5

64ηξx5

[
1 + ρnd

2 x + ρnd
3 x

3/2 + ρnd
4 x

2 +O(5)
]

(D.15)

with the coefficients

ρnd
2 =

743

336ξ
+

4β+

ξ
+

743γ

672ξ
+

2β+γ

ξ
+

317S2
+ζ

672ξ
+

2S2
+β+ζ

3ξ
− 5S2

+β
2
−ζ

6γ2ξ
− 5S2

+β
2
+ζ

6γ2ξ

− 2S2
+β+ζ

3γξ
+

11η

4ξ
+

11γη

8ξ
+

11S2
+ζη

24ξ
+

10S2
+β

2
+ζη

3γ2ξ
− 4β−ψ

ξ
− 2β−γψ

ξ

− 2S2
+β−ζψ

3ξ
+

5S2
+β−β+ζψ

3γ2ξ
+

2S2
+β−ζψ

3γξ
, (D.16)

ρnd
3 =− fST

3 −
4π

ξ
, (D.17)

ρnd
4 =− 81

8
− fST

4 + 4β2
− + 3β+ + 4β2

+ − 14γ + 4β+γ −
19

4
γ2 + δ+ +

57

8
η − 16β2

−η
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− 19β+η −
48β2

−η

γ
+

48β2
+η

γ
+ 11γη + γ2η + 4δ+η −

1

8
η2 +

1555009

112896ξ2
+

64β2
−

9ξ2

+
1247β+

63ξ2
+

64β2
+

9ξ2
+

2672321γ

112896ξ2
+

64β2
−γ

9ξ2
+

565β+γ

21ξ2
+

64β2
+γ

9ξ2
+

2275691γ2

150528ξ2

+
16β2

−γ
2

9ξ2
+

1013β+γ
2

84ξ2
+

16β2
+γ

2

9ξ2
+

2143γ3

504ξ2
+

16β+γ
3

9ξ2
+

4γ4

9ξ2
+

604795S2
+ζ

112896ξ2

− 14S2
+β

2
−ζ

27ξ2
+

4379S2
+β+ζ

1512ξ2
− 14S2

+β
2
+ζ

27ξ2
− 6235S2

+β
2
−ζ

1008γ2ξ2
− 40S2

+β
2
−β+ζ

3γ2ξ2

− 6235S2
+β

2
+ζ

1008γ2ξ2
− 40S2

+β
3
+ζ

9γ2ξ2
− 1987S2

+β
2
−ζ

224γξ2
− 1247S2

+β+ζ

252γξ2
− 20S2

+β
2
−β+ζ

3γξ2

− 1987S2
+β

2
+ζ

224γξ2
− 20S2

+β
3
+ζ

9γξ2
+

4235377S2
+γζ

677376ξ2
+

32S2
+β

2
−γζ

27ξ2
+

91S2
+β+γζ

18ξ2

+
32S2

+β
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27ξ2
+
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+
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+
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+
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2
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+
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−ζ

2
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+
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2
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+
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2

36γ4ξ2
+

25S4
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2
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2

6γ4ξ2
+

25S4
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2

36γ4ξ2
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10S4
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2

3γ3ξ2
+

10S4
+β
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2

9γ3ξ2
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2
−ζ

2

2016γ2ξ2
− 20S4
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2
−β+ζ

2

9γ2ξ2
− 1529S4
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2
+ζ

2

2016γ2ξ2
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+β
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+ζ

2

27γ2ξ2
− 26S4

+β
2
−ζ

2

27γξ2
− 485S4

+β+ζ
2

504γξ2
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2
+ζ

2

27γξ2
+

485S4
+γζ

2

1512ξ2

+
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81ξ2
+

4S4
+γ
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81ξ2
+
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+

140β+η

9ξ2
+

2825γη
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9ξ2

+
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+

5065γ2η
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9ξ2
+
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9ξ2
+

35γ3η

18ξ2
+

6755S2
+ζη

864ξ2

− 64S2
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2
−ζη

27ξ2
+

175S2
+β+ζη

54ξ2
+

40S2
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2
+ζη

9ξ2
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+β
2
−ζη

36γ2ξ2
+

320S2
+β

2
−β+ζη

9γ2ξ2

+
835S2
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2
+ζη

42γ2ξ2
+

160S2
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3
+ζη

9γ2ξ2
+

283S2
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2
−ζη

24γξ2
− 35S2

+β+ζη

9γξ2
+

160S2
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2
−β+ζη

9γξ2

+
4745S2
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+ζη

252γξ2
+

80S2
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3
+ζη

9γξ2
+

3745S2
+γζη
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−γζη

27ξ2
+

70S2
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27ξ2
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35S2
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+

2425S4
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81ξ2
+
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3γ4ξ2

− 50S4
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+ζ

2η

9γ4ξ2
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2
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2η

9γ3ξ2
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+ζ

2η

9γ3ξ2
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−ζ
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+
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+
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+
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40S4

+β
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27γξ2
+

35S4
+γζ
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162ξ2
+

1225η2

144ξ2
+

1225γη2

144ξ2
+
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576ξ2
+

1225S2
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+
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+
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+
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+
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+

32β2
−

9ξ
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+
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+

9ξ
− 39239γ

4032ξ
+
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9ξ

− 73β+γ

56ξ
+

16β2
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9ξ
− 2647γ2

504ξ
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2

9ξ
− 8γ3

9ξ
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+ζ
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+

16S2
+β

2
−ζ

27ξ
+

199S2
+β+ζ
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+
16S2

+β
2
+ζ

27ξ
+

5S2
+β

2
−ζ

4γ2ξ
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2
−β+ζ

3γ2ξ
+

5S2
+β

2
+ζ

4γ2ξ
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3
+ζ

9γ2ξ
+

2S2
+β

2
−ζ

9γξ
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S2

+β+ζ

γξ
+

2S2
+β

2
+ζ

9γξ
− 653S2

+γζ

504ξ
− 8S2

+β+γζ

27ξ
− 8S2
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2ζ

27ξ
− 5239η

224ξ
− 128β2

−η

9ξ

+
31β+η

9ξ
− 8881γη

1344ξ
− 64β2

−γη

9ξ
+

31β+γη

18ξ
− 37γ2η
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+ζη

4032ξ
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+
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+

80S2
+β

2
−β+ζη

9γ2ξ
− 175S2

+β
2
+ζη

36γ2ξ
+
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72ξ
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+ζη
2

432ξ

− 5S2
+β

2
+ζη

2

9γ2ξ
+ 4χ+ − 8ηχ+ − 3β−ψ − 8β−β+ψ − 4β−γψ + δ−ψ + β−ηψ

− 1247β−ψ

63ξ2
− 128β−β+ψ

9ξ2
− 565β−γψ

21ξ2
− 128β−β+γψ

9ξ2
− 1013β−γ

2ψ

84ξ2

− 32β−β+γ
2ψ

9ξ2
− 16β−γ

3ψ

9ξ2
− 4379S2

+β−ζψ

1512ξ2
+

28S2
+β−β+ζψ

27ξ2
+

40S2
+β

3
−ζψ

9γ2ξ2

+
6235S2

+β−β+ζψ

504γ2ξ2
+

40S2
+β−β

2
+ζψ

3γ2ξ2
+

1247S2
+β−ζψ

252γξ2
+

20S2
+β

3
−ζψ

9γξ2

+
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+β−β+ζψ

112γξ2
+

20S2
+β−β

2
+ζψ

3γξ2
− 91S2

+β−γζψ

18ξ2
− 64S2

+β−β+γζψ

27ξ2

− 32S2
+β−γ

2ζψ

27ξ2
− 29S4

+β−ζ
2ψ

84ξ2
− 32S4

+β−β+ζ
2ψ

81ξ2
− 25S4

+β
3
−β+ζ

2ψ

9γ4ξ2

− 25S4
+β−β

3
+ζ

2ψ

9γ4ξ2
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+β
3
−ζ

2ψ

9γ3ξ2
− 10S4

+β−β
2
+ζ

2ψ

3γ3ξ2
+

20S4
+β

3
−ζ
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27γ2ξ2

+
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+β−β+ζ
2ψ

1008γ2ξ2
+

20S4
+β−β

2
+ζ

2ψ

9γ2ξ2
+

485S4
+β−ζ

2ψ

504γξ2
+

52S4
+β−β+ζ

2ψ

27γξ2

− 16S4
+β−γζ

2ψ

81ξ2
− 140β−ηψ

9ξ2
− 140β−γηψ

9ξ2
− 35β−γ

2ηψ

9ξ2
− 175S2

+β−ζηψ
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+
175S2

+β−β+ζηψ

18γ2ξ2
− 160S2

+β−β
2
+ζηψ

9γ2ξ2
+

35S2
+β−ζηψ

9γξ2
+

175S2
+β−β+ζηψ

36γξ2

− 80S2
+β−β

2
+ζηψ

9γξ2
− 70S2

+β−γζηψ

27ξ2
− 35S4

+β−ζ
2ηψ

81ξ2
+

100S4
+β−β

3
+ζ

2ηψ

9γ4ξ2

+
40S4

+β−β
2
+ζ

2ηψ

9γ3ξ2
+

175S4
+β−β+ζ

2ηψ

108γ2ξ2
− 80S4

+β−β
2
+ζ

2ηψ

27γ2ξ2
+

35S4
+β−ζ

2ηψ

54γξ2

− 239β−ψ

252ξ
− 64β−β+ψ

9ξ
+

73β−γψ

56ξ
− 32β−β+γψ

9ξ
+

8β−γ
2ψ

9ξ
− 199S2

+β−ζψ

168ξ

− 32S2
+β−β+ζψ

27ξ
+

10S2
+β

3
−ζψ

9γ2ξ
− 5S2

+β−β+ζψ

2γ2ξ
+

10S2
+β−β

2
+ζψ

3γ2ξ
− S

2
+β−ζψ

γξ

− 4S2
+β−β+ζψ

9γξ
+

8S2
+β−γζψ

27ξ
− 31β−ηψ

9ξ
− 31β−γηψ

18ξ
− 31S2

+β−ζηψ

54ξ

− 5S2
+β−β+ζηψ

18γ2ξ
− 40S2

+β−β
2
+ζηψ

9γ2ξ
− S

2
+β−ζηψ

9γξ
− 4χ−ψ. (D.18)

The result for the dipolar ratio ρdip(x) is

ρdip(x) = − 25S2
−ζ

1536ηξ2x6

[
1 + ρd

2x + ρd
3x

3/2 + ρd
4x

2 +O(5)
]

(D.19)

with the coefficients

ρd
2 =

2623

840ξ
+

2S+β−
S−ξ

+
22β+

3ξ
+

4S+β−
S−γξ

+
4β+

γξ
+

3743γ

1680ξ
+

8β+γ

3ξ
+
γ2

3ξ
+

407S2
+ζ

560ξ

+
8S2

+β+ζ

9ξ
− 5S2

+β
2
−ζ

3γ2ξ
− 5S2

+β
2
+ζ

3γ2ξ
+

2S3
+β−ζ

3S−γξ
− 2S2

+β+ζ

3γξ
+
S2

+γζ

9ξ
+

13η

3ξ

+
13γη

6ξ
+

13S2
+ζη

18ξ
+

20S2
+β

2
+ζη

3γ2ξ
− 22β−ψ

3ξ
− 2S+β+ψ

S−ξ
− 4β−ψ

γξ
− 4S+β+ψ

S−γξ

− 8β−γψ

3ξ
− 8S2

+β−ζψ

9ξ
+

10S2
+β−β+ζψ

3γ2ξ
+

2S2
+β−ζψ

3γξ
− 2S3

+β+ζψ

3S−γξ
, (D.20)

ρd
3 =− 2fST

3 + 2π + πγ − 8π

ξ
, (D.21)

ρd
4 =− 1949

280
− 2fST

4 −
20S+β−

3S−
+

8

9
β2
− −

59

15
β+ +

8

9
β2

+ +
4β2
−

γ2
+

16S+β−β+

S−γ2
+

4β2
+

γ2

− 10S+β−
S−γ

+
8β2
−

3γ
− 66β+

5γ
+

16S+β−β+

3S−γ
+

8β2
+

3γ
− 133

15
γ +

44

9
β+γ −

121

36
γ2

+
5

3
δ+ +

2251

120
η − 32

9
β2
−η −

65

9
β+η −

48β2
−η

γ2
− 32S+β−β+η

S−γ2
+

32β2
+η

γ2
− 58S+β−η

3S−γ
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− 128β2
−η

3γ
− 58β+η

3γ
− 32S+β−β+η

3S−γ
+

32β2
+η

γ
+

104

9
γη +

2

3
γ2η +

8

3
δ+η +

55

72
η2

+
1555009

37632ξ2
+

64β2
−

3ξ2
+

1247β+

21ξ2
+

64β2
+

3ξ2
+

2672321γ

37632ξ2
+

64β2
−γ

3ξ2
+

565β+γ

7ξ2

+
64β2

+γ

3ξ2
+

2275691γ2

50176ξ2
+

16β2
−γ

2

3ξ2
+

1013β+γ
2

28ξ2
+

16β2
+γ

2

3ξ2
+

2143γ3

168ξ2
+

16β+γ
3

3ξ2

+
4γ4

3ξ2
+

604795S2
+ζ

37632ξ2
− 14S2

+β
2
−ζ

9ξ2
+

4379S2
+β+ζ

504ξ2
− 14S2

+β
2
+ζ

9ξ2
− 6235S2

+β
2
−ζ

336γ2ξ2

− 40S2
+β

2
−β+ζ

γ2ξ2
− 6235S2

+β
2
+ζ

336γ2ξ2
− 40S2

+β
3
+ζ

3γ2ξ2
− 5961S2

+β
2
−ζ

224γξ2
− 1247S2

+β+ζ

84γξ2

− 20S2
+β

2
−β+ζ

γξ2
− 5961S2

+β
2
+ζ

224γξ2
− 20S2

+β
3
+ζ

3γξ2
+

4235377S2
+γζ

225792ξ2
+

32S2
+β

2
−γζ

9ξ2

+
91S2

+β+γζ

6ξ2
+

32S2
+β

2
+γζ

9ξ2
+

257S2
+γ

2ζ

36ξ2
+

32S2
+β+γ

2ζ

9ξ2
+

8S2
+γ

3ζ

9ξ2
+

235225S4
+ζ

2

150528ξ2

+
16S4

+β
2
−ζ

2

27ξ2
+

29S4
+β+ζ

2

28ξ2
+

16S4
+β

2
+ζ

2

27ξ2
+

25S4
+β

4
−ζ

2

12γ4ξ2
+

25S4
+β

2
−β

2
+ζ

2

2γ4ξ2
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25S4

+β
4
+ζ

2

12γ4ξ2
+

10S4
+β

2
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2

γ3ξ2
+

10S4
+β

3
+ζ

2

3γ3ξ2
− 1529S4

+β
2
−ζ

2

672γ2ξ2
− 20S4

+β
2
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2

3γ2ξ2

− 1529S4
+β

2
+ζ

2
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+β
3
+ζ

2

9γ2ξ2
− 26S4

+β
2
−ζ

2

9γξ2
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+β+ζ
2
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+β
2
+ζ

2

9γξ2

+
485S4

+γζ
2

504ξ2
+

16S4
+β+γζ

2

27ξ2
+

4S4
+γ

2ζ2

27ξ2
+

6235η

96ξ2
− 256β2

−η

3ξ2
+

140β+η

3ξ2
+

2825γη

32ξ2

− 256β2
−γη

3ξ2
+

140β+γη

3ξ2
+

5065γ2η

128ξ2
− 64β2

−γ
2η

3ξ2
+

35β+γ
2η

3ξ2
+

35γ3η

6ξ2

+
6755S2

+ζη

288ξ2
− 64S2

+β
2
−ζη

9ξ2
+

175S2
+β+ζη

18ξ2
+

40S2
+β

2
+ζη

3ξ2
− 175S2

+β
2
−ζη

12γ2ξ2

+
320S2

+β
2
−β+ζη

3γ2ξ2
+

835S2
+β

2
+ζη

14γ2ξ2
+

160S2
+β

3
+ζη

3γ2ξ2
+

283S2
+β

2
−ζη

8γξ2
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+β+ζη

3γξ2

+
160S2

+β
2
−β+ζη

3γξ2
+

4745S2
+β

2
+ζη

84γξ2
+

80S2
+β

3
+ζη

3γξ2
+

3745S2
+γζη

192ξ2
− 128S2

+β
2
−γζη

9ξ2

+
70S2

+β+γζη

9ξ2
+

35S2
+γ

2ζη

9ξ2
+

2425S4
+ζ

2η

1152ξ2
− 64S4

+β
2
−ζ

2η

27ξ2
+

35S4
+β+ζ

2η
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− 50S4
+β

2
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2
+ζ

2η

γ4ξ2
− 50S4

+β
4
+ζ

2η

3γ4ξ2
− 80S4

+β
2
−β+ζ

2η

3γ3ξ2
− 40S4

+β
3
+ζ

2η

3γ3ξ2
− 559S4

+β
2
−ζ

2η

72γ2ξ2

+
160S4

+β
2
−β+ζ

2η

9γ2ξ2
+

3025S4
+β
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+ζ

2η

252γ2ξ2
+

80S4
+β
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+ζ

2η

9γ2ξ2
+
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−ζ

2η

9γξ2
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+
40S4

+β
2
+ζ

2η

9γξ2
+

35S4
+γζ

2η

54ξ2
+

1225η2

48ξ2
+

1225γη2

48ξ2
+

1225γ2η2

192ξ2
+

1225S2
+ζη

2

144ξ2

+
175S2

+β
2
+ζη

2

3γ2ξ2
+

175S2
+β

2
+ζη

2

6γξ2
+

1225S2
+γζη

2

288ξ2
+

1225S4
+ζ

2η2

1728ξ2
+

100S4
+β

4
+ζ

2η2

3γ4ξ2

+
175S4

+β
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+ζ

2η2

18γ2ξ2
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6480ξ
+

2143S+β−
84S−ξ

+
32β2

−

3ξ
+
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140ξ
+

64S+β−β+

3S−ξ
+

32β2
+

3ξ

+
1247S+β−
42S−γξ

+
64β2

−

3γξ
+

1247β+

42γξ
+
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3S−γξ
+

64β2
+

3γξ
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+

16S+β−γ

3S−ξ

− 84β+γ

5ξ
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− 16β+γ

2

3ξ
− 8γ3

3ξ
− 4171S2

+ζ

672ξ
+

16S3
+β−ζ
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+

28S2
+β+ζ

45ξ

− 20S3
+β

3
−ζ

3S−γ3ξ
− 20S2

+β
2
−β+ζ

γ3ξ
− 20S3

+β−β
2
+ζ

S−γ3ξ
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+β
3
+ζ

3γ3ξ
+

11S2
+β

2
−ζ

6γ2ξ
− 32S3

+β−β+ζ

3S−γ2ξ

+
11S2

+β
2
+ζ

6γ2ξ
+

485S3
+β−ζ

84S−γξ
+

62S2
+β

2
−ζ

9γξ
+

1611S2
+β+ζ

140γξ
+

64S3
+β−β+ζ

9S−γξ
+

62S2
+β

2
+ζ

9γξ
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+γζ

2520ξ
− 16S2

+β+γζ

9ξ
− 8S2

+γ
2ζ

9ξ
− 10513η

144ξ
+

35S+β−η

3S−ξ
− 128β2

−η

3ξ
+

11β+η

3ξ
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3S−ξ
+

70S+β−η

3S−γξ
− 256β2

−η

3γξ
+

70β+η

3γξ
− 256S+β−β+η

3S−γξ
− 22697γη

672ξ

− 4β+γη

ξ
− 47γ2η

6ξ
− 12793S2

+ζη
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− 4S2

+β+ζη

3ξ
+

160S2
+β

2
−β+ζη

3γ3ξ
+

80S3
+β−β

2
+ζη

S−γ3ξ

+
80S2

+β
3
+ζη

3γ3ξ
+

143S2
+β

2
−ζη

6γ2ξ
+

64S3
+β−β+ζη

3S−γ2ξ
− 157S2

+β
2
+ζη

6γ2ξ
+

35S3
+β−ζη

9S−γξ

− 128S2
+β

2
−ζη

9γξ
+

53S2
+β+ζη

9γξ
− 128S3

+β−β+ζη

9S−γξ
− 40S2

+β
2
+ζη

3γξ
− 47S2

+γζη

18ξ
− 575η2

36ξ

− 35γη2

8ξ
− 35S2

+ζη
2

24ξ
− 10S2
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Appendix E: Post-Dickean expansion of mass and scalar charge

The exact form of the mass m and the scalar charge α defined in Eq. (4.79)

depend on how the mass is resummed, that is, on our choice of m(φ, ξ) and F (φ).

For example, using the expressions in m(RJ) and F (φ) given in Table 4.1, the mass

and scalar charge are given at 1PD order by

m
(RJ,φ)
A =mA(ξ), (E.1)

α
(RJ,φ)
A =µ0

(
1− 2φ0

d logmA

dξ

)
+
Bµ0

2

(
1− 2φ0

d logmA

dξ

)(
1− 2φ0

d logmB

dξ

)
GmB

φ0rc2

− 4µ0
3

(
d logmA

dξ

)(
1− 2φ0

d logmB

dξ

)
GmB

rc2
+O

(
1

c4

)
,

(E.2)

where A 6= B, while the choice of m(RE) and F (ϕ̃) gives

m
(RE,ϕ)
A =

√
φ0m

(E)
A (ξ)

(
1 +

Gm
(E)
B µ0αB√
φ0rc2

)
+O

(
1

c4

)
, (E.3)

α
(RE,ϕ)
A =− d logm

(E)
A (ξ)

dξ
. (E.4)

Note that the expressions in Eqs. (E.2) and (E.3) receive higher-order corrections,

while Eqs. (E.1) and (E.4) are exact. In general, whenever the function m(φ, ξ) can

be factored into

m(φ, ξ) = mφ(φ)mξ(ξ), (E.5)
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the quantities

m̃(ξ) ≡ mξ(ξ), (E.6)

q ≡ −d logmξ

dξ
=

(
d logmφ

dφ
− D logm(φ, ξ)

Dφ

)/
dF

dφ
, (E.7)

are exact at all orders in the PD expansion. These quantities represent the resummed

piece of the mass and scalar charge; for the resummation schemes defined in Table

4.1, these quantities are listed in Table E.1. When using a particular resummation

scheme, it is most convenient to work with these variables instead of m and α so

as to avoid the additional bookkeeping required to track the PD corrections to the

mass and scalar charge.

Table E.1: Resummed piece of the mass m and scalar charge α for the resumma-
tion schemes given in Table 4.1. We denote the differential operator D

Dφ
with the

abbreviation D.
Resummation Scheme m̃(ξ) q(ξ)
m( ) F ( )

RJ φ m −D logm

RJ ϕ̃ m −2φ
(
B log φ

2

)1/2
D logm

RE φ m(E) 1
2φ
−D logm

RE ϕ̃ m(E)
(
B log φ

2

)1/2
(1− 2φD logm)
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Appendix F: Two-body potentials at post-Dickean order

The sources defined in Eqs. (4.53)–(4.56) computed at 1PD order are

σ =m1

(
1 +

3v2
1

2c2
− Gm2(1− 5µ0α2)

φ0rc2

)
δ(3)(x− x1) +O

(
1

c4

)
+ (1
 2) , (F.1)

σs =
m1α1

µ0

(
1− v2

1

2c2
− Gm2(6µ0 +Bα2 − 6µ2

0α2)

2µ0φ0rc2

)
δ(3)(x− x1) +O

(
1

c4

)
+ (1
 2) ,

(F.2)

σi =
m1v

i
1

c
δ(3)(x− x1) +O

(
1

c3

)
+ (1
 2) , (F.3)

σii =
m1v

2
1

c2
δ(3)(x− x1) +O

(
1

c4

)
+ (1
 2) , (F.4)

where r = |x1 − x2| and we have suppressed the expansions in mi and αi using

the notation of Eq. (4.79). Hence, the two body potentials needed to compute the

equations of motion and scalar mass in Secs. 4.5 and 4.7 are given by

U ≡
∫

σ(t,x′)

|x− x′|d
3x′ =

m1

r1

(
1 +

3v2
1

2c2
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φ0rc2

)
+O

(
1

c4

)
+ (1
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(F.5)

Us ≡
∫
σs(t,x

′)

|x− x′| d
3x′ =

m1α1

µ0r1
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1− v2
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2c2
− Gm2(6µ0 +Bα2 − 6µ2
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2µ0φ0rc2

)
+O

(
1

c4

)
+ (1
 2) , (F.6)
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Ms ≡
∫
σs(t,x

′)d3x′ = µ0
−1m1α1 +O

(
1

c2

)
+ (1
 2) ,

Ṁs = O
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1
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)
,

(F.7)

V i ≡
∫
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|x− x′|d
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)
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 2) , (F.8)

V i
s ≡

∫
σs(t,x
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|x− x′| d
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1
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 2) , (F.9)
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|x− x′| d
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m1

r1
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1

c2
+O

(
1

c3

)
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Φij
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′)U(t,x′)

|x− x′| d3x′ =
m1m2α1
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X ≡
∫
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1
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1
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1
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Xs ≡
∫
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−1m1α1r1 +O
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1

c2

)
+ (1
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1
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)
+ (1
 2) ,

(F.16)

where the time derivatives of the masses and scalar charges are pushed to higher

PD order because

dmA

dt
=
DmA

Dφ
vµA∂µφ(xA) ∼ O

(
1

c3

)
, (F.17)

where vµA ≡ uµA/u
0
A.
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Appendix G: A closer look at the dynamical scalarization model of

Palenzuela et. al.

Another analytic model of dynamical scalarization was proposed in Ref. [173].

This model augments the PN equations of motion with a feedback mechanism that

simulates the non-perturbative growth of the scalar field around each body (see Sec.

4.8.2 for more detail). This prescription is uniquely defined when working at leading

order but becomes ambiguous when extended to higher PN orders. The construction

given in Ref. [173] uses the 2.5PN equations of motion (given in Ref. [497]) and

a Newtonian order feedback mechanism [Eqs. (4.142) and (4.143)]. The authors

also set to zero all derivatives of the scalar charge [the first of which is given in Eq.

(4.93)].

While this particular set of choices leads to predictions consistent with numerical-

relativity, we would like to explore other realizations of this model for two reasons.

First, we want to understand the impact of these algorithmic decisions; if a par-

ticular choice greatly impacts the model’s performance, understanding its physical

significance is important. Second, we would like to track the changes to the model

at each order so as to check the best way to improve the results of Ref. [173] with

future PN calculations. We address these two concerns by investigating the effects
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Figure G.1: Scalar mass predicted by the model of Ref. [173] for a
(1.35 + 1.35)M� neutron-star binary system on a circular orbit as a
function of the orbital frequency and gravitational wave frequency. The
scalar mass at Newtonian and 1PN order computed without (with) the
derivatives of scalar charge is plotted in red (blue) using the Newtonian,
1PN, and 2PN equations of motion (dashed, dot-dashed, and solid lines,
respectively) and the Newtonian order feedback mechanism given in Eq.
(4.142). We also plot the quasi-equilibrium configurations (QE) reported
in Ref. [174] (dotted). The bottom panels depict the magnitude of the
fractional error between the PD and quasi-equilibrium results. We use
the APR4 equation of state with (left) B = 9, ϕ̃0 = 3.33 × 10−11 and
(right) B = 8.4, ϕ̃0 = 3.45× 10−11.

of including derivatives of the scalar charge and using a higher-order feedback mech-

anism. The authors of Ref. [173] briefly mention these two modifications and argue

that they do not significantly impact the model; we expand on this discussion here,

offering a precise, quantitative description of their effects.

Including derivatives of the scalar charge: The derivatives of the scalar charge

enter this model through the equations of motion [see Eqs. (4.89) and (4.90)] and

the feedback mechanism [see Eqs. (G.2) and (G.3)] beginning at 1PN order. The
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decision to set these derivatives to zero was made in Ref. [173] to ensure that m̄(φ)

and ᾱ(φ) were evaluated at each star rather than expanded about the background

value φ0. However, this procedure is problematic, as simply setting the derivatives

of ᾱ to zero does not properly resum these expansions. For example, ᾱ itself appears

in every term of the Einstein-frame mass [analogous to Eq. (4.15)]

m̄(E)(ϕ̃) =m(E)(ϕ̃0)

[
1 + ᾱ∆− 1

2
(ᾱ2 − ᾱ′)∆2 + · · ·

]
, (G.1)

where ∆ ≡ (ϕ̃ − ϕ̃0). Removing the derivatives of ᾱ eliminates most of the terms

in the expansions of m̄(φ) and ᾱ(φ) but leaves certain higher-order terms propor-

tional to powers of the scalar charge. A fully consistent treatment should absorb

these extraneous terms into the definitions of m̄(φ) and ᾱ(φ); instead, this model’s

treatment of m̄ and ᾱ as unexpanded quantities ensures that the surviving terms in

the expansion are effectively double counted.

Even without a mathematically rigorous motivation, the choice to drop the

derivatives of the charge still yields predictions in qualitative agreement with nu-

merical relativity. However, there are many other equally valid ways to alter the

coefficients in expansions like that of Eq. (G.1) — for example, the coefficients con-

taining ᾱ′ could be halved rather than set to zero. To provide some bound on the

effect of these choices, in Fig. G.1 we compare the total scalar mass predicted by the

model of Ref. [173] when all derivatives of the scalar charge are dropped (red) and

when all are kept (blue). We restrict to circular orbits using the Newtonian, 1PN,

and 2PN equations of motion (dashed, dot-dashed, and solid lines, respectively) —

the exact prescription used in Ref. [173] is the solid, red curve.
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Figure G.2: Same as Fig. G.1 but also including the predictions of the
model of Ref. [173] computed using the 1PN extension of the feedback
model (green) given in Eq. (G.2). The derivatives of the scalar charge
were dropped in computing all of the plotted curves.

The inclusion of these terms increases the scalar mass by approximately 20−

50% both before and after scalarization. This result is consistent with our previ-

ous observation that higher-order terms left in the PN expansion should produce

extraneous contributions when the mass and charge are resummed. In addition, we

note that the model of Ref. [173] overestimates the scalar mass compared to the PD

approximation at the same order. Combining these two observations, we argue that

double counting can become a significant issue when using a simple feedback mech-

anism like that of Ref. [173], and that while simply dropping particular terms from

the PN expansion can help remedy these issues, it is not the ideal solution. Instead,

the corresponding resummation should be accounted for in a more systematic way,

as is done with the PD approach.
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Extending the feedback mechanism to 1PN order: The feedback mechanism

used in Ref. [173] contains only the leading order contributions to the scalar field

despite being paired with the 2.5PN equations of motion computed.1 The impact

of using approximants of such different order is unclear, but the mismatch may

lead to certain unintuitive predictions. We consider instead using the natural 1PN

extension of the feedback mechanism

ϕ
(1)
B =ϕ̃0 +

Gm̄2ᾱ2

φ0rc2
+
Gm̄2

φ0rc4

[
−1

2
ᾱ2(v2 · n)2 −

(
3

2
ᾱ2 +

3

2
ᾱ1ᾱ

2
2 − ᾱ1ᾱ

′
2

)
Gm̄1

φ0r

]
,

(G.2)

ϕ
(2)
B = (1
 2) , (G.3)

where m̄i, ᾱi, and ᾱ′i are evaluated at ϕ
(i)
B .

We compare the total scalar mass computed using the Newtonian (red) and

1PN feedback models (green) with equations of motion at Newtonian, 1PN, and

2PN order in Fig. G.2, making the additional choice to set all derivatives of the

scalar charge to zero, as was done in Ref. [173]. The inclusion of higher-order effects

in these two aspects of the model produces competing shifts in the predicted onset

of DS: the choice of 1PN feedback system over the Newtonian system pushes this

transition point to higher frequency, while the 1PN terms in the equations of motion

push the transition to lower frequency. These two effects nearly cancel each other in

1The authors of Ref. [173] considered the effect of adding to this feedback mechanism the order

O(1/r2) terms from the field felt by a static test mass far from an isolated body. These terms

were shown to have negligible impact on their model. Here, we consider the 1PN corrections to

the scalar field felt by each body in a comparable-mass binary system, which comprise a more

comprehensive set of O(1/r2) corrections.
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such a way that the predictions when working consistently at Newtonian order (i.e.

Newtonian order feedback and equations of motion) are very close to those when

working consistently at 1PN order. We observe that working consistently at one

order generally improves the agreement with the quasi-equilibrium configuration

calculations of Ref. [174]. The most accurate model depicted in Fig. G.2 uses

the 1PN feedback model in conjunction with the 2PN equations of motion, but in

line with the previous observation, we suspect that adding the 2PN corrections to

Eqs. (G.2) and (G.3) will improve these predictions; we leave the calculation and

implementation of these higher-order terms for future work.

To recap, some of the technical aspects in the construction of the model pro-

posed in Ref. [173] are ambiguous; the prescription for these options is only precisely

specified when working at Newtonian order. These choices arise because the model

splices a non-linear feedback mechanism on to independently computed PN equa-

tions of motion. We find that the model is most accurate when one uses a feedback

mechanism and equations of motion of the same order and when one drops some of

the higher-order terms in the PN expansions (e.g. the derivatives of the charge) to

minimize double counting.

The PD formalism avoids these issues by performing a resummation of the

post-Newtonian expansion at the level of the action. By carrying through this

resummation consistently, a non-linear feedback mechanism analogous to Eqs. (G.2)

and (G.3) organically arises alongside the equations of motion. Thus, the PD model

gives results at a consistent order while also avoiding double counting.
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Appendix H: Effective action for compact objects away from critical

point

A crucial assumption made in the construction of the effective action (6.7) is

the near-criticality of the scalar mode q. The power counting used in the main text to

formulate this relatively simple effective theory is not valid without this assumption.

For example, if c(2) > 0 (i.e., the object does not spontaneously scalarize), then away

from the critical point one finds q ∼ φIR(y) ∼ O(R/r) and must include terms like

[φIR(y)]2 to the action to work consistently at the given order in R/r. For scalarized

compact objects c(2) < 0 far from the critical point, the scalar field φIR(y) and

mode q reach values too large for our polynomial expansion around zero to be valid.

If one expands the fields around their true (nonzero) equilibrium values instead,

the effective action no longer respects the spontaneously broken scalar-inversion

symmetry of the underlying theory.

In this appendix, we relax this assumption that the scalar mode q is nearly

critical. We construct an effective action valid in this broader context, and then

show that the model (6.7) is recovered as one approaches the critical point. We

still ignore derivative couplings involving ∂µφ
IR(y) since they belong to multipoles

above the monopole (` > 0) and we are only interested in a monopolar mode q. The
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most generic effective action in the scalar-inversion-symmetric (unbroken) phase

then reads

Sunbroken
CO =

∫
dτ

[
cq̇2

2
q̇2 − c(0,0) − V − V φ − V qφ + cAA

IR
µ (y)ẏµ

]
, (H.1)

V =
c(0,2)

2
q2 +

c(0,4)

4!
q4 + . . . , (H.2)

V φ =
c(2,0)

2
[φIR(y)]2 +

c(4,0)

4!
[φIR(y)]4 + time derivatives + . . . , (H.3)

V qφ = −φIR(y)q +
c(1,3)

3!
φIR(y)q3 +

c(2,2)

4
[φIR(y)]2q2

+
c(3,1)

3!
[φIR(y)]3q + time derivatives + . . . ,

(H.4)

where the subscripts in c(i,j) indicate the powers of φIR and q, respectively; the

coefficients c(n) in the main text correspond to c(0,n) in this notation. All terms

must be even polynomials in φIR, q due to scalar-inversion symmetry and must

contain an even number of time derivatives due to time-reversal symmetry. Higher

time derivatives that would appear in V can always be removed by appropriate

redefinition of q [498]; we assume that such field redefinition has been done. This

allows for an interpretation of V as an ordinary potential for the mode q in the

absence of an external driving field φIR.

To fix all coefficients in the action, one needs to match against the exact

solution for an isolated body in a generic time-dependent external scalar field. In

general, this is a complicated endeavor, and we do not attempt it here.1 Instead, we

explore what information can be gleaned from the sequences of equilibrium solutions

1Note that our assumption of time-reversal symmetry needs to be imposed on the exact solution

as well, so, in the case of a BH, one must impose somewhat unphysical (reflecting) boundary

conditions at the horizon.
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considered in the main text. Using only this restricted class of solutions, we do not

expect to find a unique match for all coefficients in the effective action above, but

rather a series of relations relating them to the exact solutions.

Solutions for compact objects in equilibrium are manifestly time independent,

and thus cannot inform the terms containing time derivatives in the effective action;

we omit these terms from the action below for brevity. We perform the same pro-

cedure outlined in the main text to match the IR fields of the effective theory (H.1)

to the IR projection of the UV solutions (6.11) and find cA = E , φ0 = φIR(y), and

Q(φ0) = −∂V
qφ(q, φIR)

∂φIR
− dV φ(φIR)

dφIR
, (H.5)

M(φ0) = c(0,0) + V + V φ + V qφ. (H.6)

Together with the equation of motion for q,

0 =
dV (q)

dq
+
∂V qφ(q, φIR)

∂q
, (H.7)

we see that

dM =

[
dV (q)

dq
+
∂V qφ(q, φIR)

∂q

]
dq +

[
∂V qφ(q, φIR)

∂φIR
+
dV φ(φIR)

dφIR

]
dφIR (H.8)

= −Qdφ0, (H.9)

in agreement with the first law of BH thermodynamics [333, 334]. We see that φ0

and Q are conjugate variables, and therefore we can construct the “gravitational

free energy” M(Q) via a Legendre transformation of M(φ0),

M(Q) ≡M(φ0) + φ0Q, (H.10)
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such that φ0 = dM/dQ. As in the main text, from a sequence of exact compact-

object solutions in the full theory, one obtains M(φ0) and Q(φ0) and then can

compute M(Q) numerically from Eq. (H.10).

To aid comparison, we also define

V(Q) ≡M(Q)− c(0,0), (H.11)

which represents the component of the “free energy” due to the scalar charge Q. It

admits an expansion around Q = 0

V(Q) =
C(2)

2
Q2 +

C(4)

4!
Q4 + . . . , (H.12)

whose coefficients can be extracted numerically. Unlike V , this quantity does not

correspond to the potential of any dynamical variable, but instead simply represents

the energetics of a sequence of equilibrium solutions. While these two quantities are

not directly related in general, in the vicinity of the critical point it is possible to

reconstruct the potential V from the energetics V (as we found in the main text).

In the remainder of this appendix, we demonstrate this connection explicitly by

expressing the C(n) in terms of the coefficients in the effective action c(i,j), and then

take the limit that q becomes unstable c(0,2) → 0, i.e., approaches the critical point.

Working perturbatively in φ0 = φIR, we solve the equation of motion (H.7) for

q, relate this solution to Q and M via Eqs. (H.5) and (H.6), and then insert these

solutions into Eq. (H.11) and read off the coefficients C(n) from the expansion in
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Eq. (H.12). We find that

C(2) =
c(0,2)

1− c(0,2)c(2,0)

, (H.13)

C(4) =
1

(1− c(0,2)c(2,0))4

[
c(0,4) + 4c(0,2)c(1,3) + 6c2

(0,2)c(2,2) + 4c3
(0,2)c(3,1) + c4

(0,2)c(4,0)

]
.

We see that, in general, an instability in the mode q cannot be inferred directly from

V(Q), i.e., C(2) < 0 ; c(0,2) < 0 and c(0,2) < 0 ; C(2) < 0. However, close to the

critical point c(0,2) ≈ 0, we find

C(2) = c(0,2) +O(c2
(0,2)), (H.14)

C(4) = c(0,4) +O(c(0,2)), (H.15)

which confirms the link between the dynamical mode potential V (q) and the ener-

getics of equilibrium solutions V(Q), close to the critical point.

The relation between the mode q and the scalar charge Q along a sequence of

equilibrium solutions reads

q =
Q

1− c(0,2)c(2,0)

+
Q3

3!(1− c(0,2)c(2,0))4

[
c(1,3) + c(2,0)c(0,4) + 3c(0,2)(c(2,2) + c(2,0)c(1,3))

+ 3c2
(0,2)(c(3,1) + c(2,0)c(2,2)) + c3

(0,2)(c(4,0) + c(2,0)c(3,1))
]

+ . . . (H.16)

Note that Eq. (H.16) does not lead to Q = q as in the main text when c(0,2) = 0.

But full agreement with the main text (ignoring higher orders in c(0,2) throughout)

is achieved if we redefine

q → q +
q3

3!

[
c(1,3) + c(2,0)c(0,4)

]
+O(c(0,2), Q

5). (H.17)
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Appendix I: Numerical calculation of the effective point-particle ac-

tion V (q)

In this appendix, we detail the numerical calculation of equilibrium BH so-

lutions in EMS theory used to construct V (q) through the matching procedure

discussed in the main text. We consider the class of theories in Eq. (6.1) and re-

strict our attention to static, spherically symmetric configurations. Starting with

the ansatz for vector potential and metric

A = λ(r) dt, (I.1)

ds2 = −N(r)e−2δ(r)dt2 +
dr2

N(r)
+ r2(dθ2 + sin2 θdϕ2), (I.2)

where N(r) ≡ 1− 2m(r)/r and m(r) is the Misner-Sharp mass (not to be confused

with m(q) introduced in the main text), the field equations reduce to

λ′ = − e−δ

f(φ)

E
r2
, (I.3a)

m′ =
1

2
r2Nφ′2 +

E2

2f(φ)r2
, (I.3b)

δ′ + rφ′2 = 0, (I.3c)

(e−δr2Nφ′)′ = −e−δ f ′(φ)E2

2(f(φ))2r2
, (I.3d)

where ′ = d/dr and E is the electric charge of the BH. Here, the field equation for

the electric potential λ was already integrated once, introducing the electric charge
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E as an integration constant. We impose the following boundary conditions at the

horizon

m(rH) =
rH
2
, δ(rH) = δH , φ(rH) = φH ,

φ′(rH) =− f ′(φH)

2f(φH)rH

( E2

f(φH)r2
H − E2

)
. (I.4)

Note that δH represents a simple rescaling of the time coordinate, and thus can be

chosen arbitrarily; we ultimately rescale t such that δ(r = ∞) = 0. For computa-

tional simplicity, we rescale all dimensional quantities by the horizon radius rH , i.e.,

r̃ ≡ r/rH , m̃ ≡ m/rH , and Ẽ = E/rH , and then compactify the domain over which

they are solved using the variable

x ≡ r − rH
r + brH

=
r̃ − 1

r̃ + b
, (I.5)

where the constant b is chosen to adequately resolve the solution.

As discussed in the main text, we consider sequences of BH solutions with

fixed electric charge E and entropy S (or horizon area), which is equivalent to fixed

Ẽ and rH . Fixing these two parameters, we generate a sequence of solutions by

solving Eqs. (I.3) and (I.4) for several values of φH . We then extract the mass

M, asymptotic field φ0, and scalar charge Q from the asymptotic behavior of the

solution

m(r)→M+O
(

1

r

)
, φ(r)→ φ0 +

Q

r
+O

(
1

r2

)
, (I.6)

allowing us to implicitly construct the functionsM(φ0) and Q(φ0) used in the main

text to compute the effective potential V (q).

494



Appendix J: Ingredients for the Fisher matrix analysis

For a GW detector with the one-side PSD, Sn(f), the SNR of a Fourier-domain

waveform, h̃(f), is

ρ =
(
h̃(f)

∣∣∣ h̃(f)
)1/2

, (J.1)

where the inner product is defined to be [393, 394],

(
h̃1(f)

∣∣∣ h̃2(f)
)
≡ 2

∫ fmax

fmin

h̃∗1(f)h̃2(f) + h̃1(f)h̃∗2(f)

Sn(f)
df . (J.2)

For all calculations in Sec. 7.4.1, we use the design zero-detuned high-power noise

PSD, starting from 10 Hz for aLIGO [389], the target noise PSD, starting from 5 Hz

for CE [367], and the ET-D noise PSD, starting from 1 Hz for ET [388]. Thus,

in Eq. (J.2) we choose fmin = 10 Hz, 5 Hz, and 1 Hz for aLIGO, CE, and ET,

respectively. Somewhat arbitrarily, we choose for fmax twice the innermost stable

circle orbit (ISCO) frequency computed from the binary’s binding energy at 2 PN

order. It reads [499],

fmax =
c3

πGM

[
3

14η

(
1−

√
1− 14

9
η

)]3/2

. (J.3)

Because the three detectors do not have good sensitivity at high frequency, say

& kHz, the choice of fmax influences the result very marginally.

For the nonspinning BNS inspiraling waveform in the Fourier domain, we use a
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restricted waveform with the leading-order term in amplitude, A, and up to 3.5 PN

terms in the phase, Ψ(f) [240, 259, 266],

h̃(f) =Af−7/6eiΨ(f) , (J.4)

Ψ(f) =2πftc − Φc −
π

4
+

3

128η
u−5/3

{
1− 5

168
(∆α)2u−2/3 +

(
3715

756
+

55

9
η

)
u2/3

−16πu +

(
15293365

508032
+

27145

504
η +

3085

72
η2

)
u4/3

+π

(
38645

756
− 65

9
η

)
(1 + ln u) u5/3 +

[
11583231236531

4694215680
− 640

3
π2 − 6848

21
γE

−6848

63
ln (64u) +

(
−15737765635

3048192
+

2255

12
π2

)
η +

76055

1728
η2 − 127825

1296
η3

]
u2

+π

(
77096675

254016
+

378515

1512
η − 74045

756
η2

)
u7/3

}
, (J.5)

where u ≡ πGMf/c3, A ∝ M5/6/DL with the chirp mass M ≡ η3/5M and the

luminosity distance DL, tc and Φc are reference time and phase respectively, and

γE = 0.577216 . . . is the Euler constant. Note that in Eq. (J.5) the gothic u is equal

to η−3/5u where u ≡ πGMf/c3, as defined in Ref. [240]. We include in Eq. (J.5) only

the leading dipole term for the scalar contribution. Furthermore, since the spins of

BNS systems are supposed to be small, we do not include them in the analysis (see

Table 7.3 where we give a rough estimation of the spin terms in the GW phasing).

To calculate the Fisher matrix (7.17), we need to compute partial derivatives

of the frequency-domain waveform (J.4). They read (notice that, when calculating
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derivatives, u depends on both η and M),

∂h̃(f)

∂ lnA =h̃(f) , (J.6)

∂h̃(f)

∂ ln η
=
i

η
u−5/3

{
− 1

3584
∆α2u−2/3 +

(
− 743

16128
+

11

128
η

)
u2/3 +

9

40
πu

+

(
−3058673

5419008
+

5429

21504
η +

617

512
η2

)
u4/3

+π

(
−7729

4032
− 38645

32256
ln u +

13

128
η

)
u5/3 +

[
−11328104339891

166905446400
+

321

35
γE

+6π2 +
107

35
ln (64u) +

(
3147553127

130056192
− 451

512
π2

)
η +

15211

18432
η2 − 25565

6144
η3

]
u2

+π

(
−15419335

1548288
− 75703

32256
η − 14809

10752
η2

)
u7/3

}
h̃(f) , (J.7)

∂h̃(f)

∂ lnM =
i

η
u−5/3

{
− 5

128
+

5

3072
∆α2u−2/3 +

(
− 3715

32256
− 55

384
η

)
u2/3 +

π

4
u

+

(
−15293365

65028096
− 27145

64512
η − 3085

9216
η2

)
u4/3 + π

(
38645

32256
− 65

384
η

)
u5/3

+

[
10052469856691

600859607040
− 5

3
π2 − 107

42
γE +

(
−15737765635

390168576
+

2255

1536
π2

)
η

−107

126
ln (64u) +

76055

221184
η2 − 127825

165888
η3

]
u2

+π

(
77096675

16257024
+

378515

96768
η − 74045

48384
η2

)
u7/3

}
h̃(f) , (J.8)

∂h̃(f)

∂tc
=i2πfh̃(f) , (J.9)

∂h̃(f)

∂Φc

=− ih̃(f) , (J.10)

∂h̃(f)

∂(∆α)2
=− i 5

7168η
u−7/3h̃(f) . (J.11)

497



Appendix K: Dynamical scalarization in ultra-relativistic binary neu-

tron stars

In this appendix, we discuss the sharp feature observed in the averaged effective

scalar coupling of a very massive BNS that undergoes dynamical scalarization (see

the 1.9M�–1.9M� case in Fig. 7.10). We find that generically NSs of very high

mass can scalarize more abruptly than their less massive counterparts.

From Fig. 7.5, we observe that very massive NSs exhibit very small effective

scalar couplings αA. In these stars, the effective scalar coupling is nonperturbatively

suppressed below the non-relativistic (low-mass) limit αA ≈ α0. The cores of these

stars are ultra-relativistic, with a negative trace of the stress-energy tensor T∗ = ε∗−

3p∗ < 0. The mass at which NSs become ultra-relativistic in this sense depends on

the EOS and can be read off from Fig. 7.7 as the mass at which the best constraint on

|α| drops to zero. Recall that spontaneous scalarization stems from a large, positive

source on the righthand side of Eq. (7.3) that grows with ϕ. In ultra-relativistic

stars, this source term becomes negative, causing the star to spontaneously “de-

scalarize”.

When placed in a binary system, ultra-relativistic NSs can dynamically scalar-

ize, but the transition occurs very abruptly (e.g., the 1.9M�–1.9M� system with
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Figure K.1: (Top) Evolution of β̃A for NSs with (dashed) and without
(solid) ultra-relativistic cores as a function of the background scalar field.
The blue, red, and green annotations indicate the scalar field at each star
at frequencies before, during, and after dynamical scalarization in an
equal-mass binary system respectively. (Bottom) Profile of the trace of
the stress-energy tensor within each NS at each of the annotated points
in the top panel.

the EOS WFF1 shown in Fig. 7.10). As the system scalarizes, the massive NSs

transition to a state in which T∗ is everywhere positive. Figure K.1 depicts this

transition in comparison to dynamical scalarization in less massive systems. The

top panel shows β̃A—the PD equivalent of the quantity defined in Eq. (7.22)—for

1.8M� (solid) and 1.9M� (dashed) stars with the EOS WFF1 plotted as a function

of scalar field. The highlighted points indicate the field at each NS in an equal-mass

binary before (blue), during (red), and after (green) dynamical scalarization. The

bottom panels depict the profile of T∗ within each star at each of these points.
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The top panel of Fig. K.1 demonstrates why dynamical scalarization occurs

abruptly for ultra-relativistic NSs. Recall that βA (and consequently β̃A) quantifies

how easily a NS can scalarize, with larger values indicating that the star is more

susceptible to dynamical scalarization. As expected, when immersed in a weak scalar

field (i.e., during the early inspiral), β̃A is significantly smaller for ultra-relativistic

stars than less massive stars, indicating that the latter will dynamically scalarize

at a lower frequency. However, unlike for less massive stars, β̃A increases slightly

as the scalar field reaches larger values (ϕ ∼ 0.002 in Fig. K.1) for ultra-relativistic

NSs. This triggers a run-away process in a binary system as a small increase in

the scalar field produced by one star causes the other star to scalarize more easily,

which in turn allows the second star to produce a larger scalar field for the first.

For the ultra-relativistic BNS depicted in the top panel of Fig. K.1, this transition

is completed after an evolution of only 0.2 Hz.
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[91] M. Zumalacárregui and J. Garćıa-Bellido, “Transforming gravity: from deriva-
tive couplings to matter to second-order scalar-tensor theories beyond the
Horndeski Lagrangian,” Phys. Rev. D89, 064046 (2014), arXiv:1308.4685 .

[92] J. Gleyzes, D. Langlois, F. Piazza, and F. Vernizzi, “Exploring gravitational
theories beyond Horndeski,” JCAP 1502, 018 (2015), arXiv:1408.1952 .

[93] J. Gleyzes, D. Langlois, F. Piazza, and F. Vernizzi, “Healthy theories beyond
Horndeski,” Phys. Rev. Lett. 114, 211101 (2015), arXiv:1404.6495 .

[94] J. Alsing, E. Berti, C. M. Will, and H. Zaglauer, “Gravitational radiation
from compact binary systems in the massive Brans-Dicke theory of gravity,”
Phys. Rev. D85, 064041 (2012), arXiv:1112.4903 .

[95] S. S. Yazadjiev, D. D. Doneva, and D. Popchev, “Slowly rotating neutron
stars in scalar-tensor theories with a massive scalar field,” Phys. Rev. D93,
084038 (2016), arXiv:1602.04766 .

[96] S. S. Yazadjiev, D. D. Doneva, and K. D. Kokkotas, “Tidal Love num-
bers of neutron stars in f(R) gravity,” Eur. Phys. J. C78, 818 (2018),
arXiv:1803.09534 .

[97] C. M. Will, Theory and Experiment in Gravitational Physics (Cambridge Uni-
versity Press, Cambridge, 1993).

[98] T. P. Sotiriou, “Black Holes and Scalar Fields,” Class. Quant. Grav. 32, 214002
(2015), arXiv:1505.00248 .

[99] O. Sarbach, E. Barausse, and J. A. Preciado-López, “Well-posed Cauchy for-
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[221] F.-L. Julié and N. Deruelle, “Two-body problem in Scalar-Tensor theories as a
deformation of General Relativity : an Effective-One-Body approach,” Phys.
Rev. D95, 124054 (2017), arXiv:1703.05360 .

[222] T. Damour, P. Jaranowski, and G. Schäfer, “Fourth post-Newtonian effective
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