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Over the last 35 years, researchers have proposed many different forms of security

policies to control how information is managed by software, e.g., multi-level information

flow policies, role-based or history-based access control, data provenance management

etc. A large body of work in programming language design and analysis has aimed to

ensure that particular kinds of security policies are properly enforced by an application.

However, these approaches typically fix the style of security policy and overall secu-

rity goal, e.g., information flow policies with a goal of noninterference. This limits the

programmer’s ability to combine policy styles and to apply customized enforcement tech-

niques while still being assured the system is secure.

This dissertation presents a series of programming-language calculi each intended

to verify the enforcement of a range of user-defined security policies. Rather than “bake

in” the semantics of a particular model of security policy, our languages are parameter-

ized by a programmer-provided specification of the policy and enforcement mechanism

(in the form of code). Our approach relies on a novel combination of dependent types

to correctly associate security policies with the objects they govern, and affine types to



account for policy or program operations that include side effects. We have shown that

our type systems are expressive enough to verify the enforcement of various forms of

access control, provenance, information flow, and automata-based policies. Additionally,

our approach facilitates straightforward proofs that programs implementing a particular

policy achieve their high-level security goals. We have proved our languages sound and

we have proved relevant security properties for each of the policies we have explored. To

our knowledge, no prior framework enables the enforcement of such a wide variety of

security policies with an equally high level of assurance.

To evaluate the practicality of our solution, we have implemented one of our type

systems as part of the LINKS web-programming language; we call the resulting language

SELINKS. We report on our experience using SELINKS to build two substantial appli-

cations, a wiki and an on-line store, equipped with a combination of access control and

provenance policies. In general, we have found the mechanisms SELINKS provides to be

both sufficient and relatively easy to use for many common policies, and that the modular

separation of user-defined policy code permitted some reuse between the two applications.
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1. Introduction

The 9/11 Commission Report, in an attempt to explain the failure of the United

States government to prevent the September 11, 2001, terrorist attacks, included the fol-

lowing statement among its general findings:

Action officers should have been able to draw on all available knowledge

about al Qaeda in the government. Management should have ensured that

information was shared and duties were clearly assigned across agencies, and

across the foreign-domestic divide. [. . .] The U.S. government did not find a

way of pooling intelligence and using it to guide the planning and assignment

of responsibilities for joint operations . . . [92]

In response to these findings, and driven in part by the success of web sites like

Wikipedia, YouTube, Flickr, Facebook, and MySpace,1 the U.S. government has begun

using web applications to disseminate critical information in a timely manner across its

various divisions. Examples include SKIWEB [20], used for “strategic knowledge inte-

gration” in the U.S. military, and Intellipedia [108], a set of web-based document man-

agement systems used throughout the sixteen agencies that comprise the U.S. intelligence

community. While many of the details about these applications are classified, a recent

press release by the Central Intelligence Agency (CIA) about Intellipedia includes the
1wikipedia.org, youtube.com, flickr.com, facebook.com, myspace.com
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following statement:

. . . the CIA now has users on its top secret, secret and sensitive unclassi-

fied networks reading and editing a central wiki that has been enhanced with

a YouTube-like video channel, a Flickr-like photo-sharing feature, content

tagging, blogs and RSS feeds. [34]

Of course, sharing sensitive information via the web is not limited to the U.S. gov-

ernment. For example, in the United Kingdom, the National Health Service’s Spine is a

web-based application intended to provide health-care providers with convenient access

to a patient’s records [93]. Even within smaller organizations, web-based information

sharing is common, e.g., web applications like Continue [74] and EasyChair [134] are

frequently used to manage academic conferences.

While there are substantial efficiencies to be had from information sharing, clearly,

there can also be significant consequences—loss of life, health-based discrimination,

identity theft, etc.—should sensitive information not be properly protected. Networked

information-sharing applications must therefore balance two competing ends: to maxi-

mize the sharing of information while mitigating, to the greatest extent possible, the risk

due to unauthorized release of, or tampering with, sensitive information.

Take the case of Intellipedia: to protect against improper usage of sensitive intel-

ligence documents, it should address a number of security concerns. At the most basic

level, it should control which users can access content by enforcing forms of multi-level

security policies. Intellipedia may also need to track provenance information [22], such

as revision history and data sourcing, on documents to reason about information integrity
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and to support auditing. To improve information availability, a policy may release content

to a certain user with some particularly sensitive information withheld, either by redaction

or by some other form of downgrading. Computations over the document databases, like

PageRank-style algorithms [98], should be careful to respect these security concerns so

as not to inadvertently leak sensitive data in response to search queries.

Without recourse to formal verification to ensure that all these security needs have

been met, Intellipedia currently heads off the threat of information misuse by placing

sharp limits on the sharing of information. For example, confidentiality is achieved by

falling back on the security of the underlying computer networks of the U.S. Department

of Defense. The DoD manages several computer networks each cleared to handle data at

specific classification levels—NIPRNet may only handle sensitive but unclassified data,

SIPRNet is cleared for secret data, and JWICS for top-secret data [129]. Versions of

Intellipedia that are accessible on each of these networks are kept physically separate,

and all access controls are applied at the network level. But, by resorting to an “air

gap” to secure sensitive data, Intellipedia surrenders much of the benefit that may be had

from sharing information at a fine granularity.2 For example, a document that contains

a fragment of top-secret information must be placed in JWICS, even though much of

its content may be of relevance to users with a lower clearance. To work around these

limitations, such a document may have to be downgraded and copied into one of the

other networks. But, if the downgrading is not performed properly, top-secret data may

have been leaked inadvertently. Additionally, as documents are edited, it is easy for the

2Admittedly, the enforcement of data confidentiality on U.S. DoD systems is strongly influenced by
well-entrenched institutional practices. As for other concerns, like reliable tracking of data provenance, it
appears highly unlikely that Intellipedia provides any formal guarantees about these.
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original document and the downgraded version to become inconsistent, compromising

information integrity.

Instead, we would like to allow Intellipedia to share information at a fine granular-

ity while verifying that the software meets all the security requirements. In pursuit of this

goal, one must, of course, begin by formalizing the security requirements. Policy lan-

guages that can articulate such requirements have been the focus of a number of research

efforts—e.g., UNIX-style access control lists, RBAC [107], XACML [143], Ponder [38],

and trust management frameworks like RT [76]. Evidently, the raison d’être of each of

these languages is to express enforceable specifications of the permissible behaviors of a

system. This latter point is the focus of our work: given one of these security policies,

how do we assure that a software system enforces it properly?

A simple way to think about this question is as complete mediation—are all security-

sensitive operations properly mediated by queries to the security policy? Researchers

have proposed using static analysis of software source code to check this condition. For

example, Zhang et al. [148] used CQual to check that SELinux operations on sensitive

objects are always preceded by policy checks; Fraser [53] did the same for Minix. How-

ever, these systems only ensure that some policy function is called before data is accessed.

Calls to the wrong policy function or incorrect calls to the right one (e.g., with incorrect

arguments) are not prevented.

Security-typed programming languages, like Jif [31] or FlowCaml [104], aim to

allay this weakness. Through the use of novel type systems, these languages are able to

show that well-typed programs enjoy useful extensional security properties as a conse-

quence of complete mediation. These security properties are typically based on forms
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of noninterference for lattice-based information flow policies [42], and roughly means

that high-security data cannot be inferred via a low-security channel. But, security-typed

languages have problems of their own. First, noninterference is often too strong—some

protected information inevitably must be released, either via downgrading or even accord-

ing to simpler access control policies. Moreover, security-typed languages usually fix the

mechanisms by which a policy is specified. For example, policies in Jif are specified

using the decentralized label model [88], which may not always be suitable for certain

applications. We have observed, for instance, that a role-based label model may be better

when policies are expected to change at runtime [125]. Finally, information flow policies

provide no clear way to express and provably enforce data provenance or other styles of

policy, such as security automata [113] and history- or stack-based access control [1, 51].

All told, despite their promise, security-typed programming languages are not yet flexible

enough to guarantee the enforcement of the variety of security policies that often must be

applied to real-world applications.

This dissertation sets out to demonstrate that security typing can be made flexible

enough to be applied to a broad range of policies. In particular, our thesis is the following:

A language-based framework, while being practical enough to construct real

applications, can be used to verify that a range of user-defined security poli-

cies are correctly enforced, and that, as a consequence, programs enjoy use-

ful extensional security properties.
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1.1 Overview of our Approach

The main contribution of this dissertation is a generalization of security typing that

does not “bake in” a particular model of security as primitive. Instead, using a novel

combination of several standard (but advanced) type-theoretic constructs, we are able to

enforce various forms of access control, provenance, information flow, and automata-

based policies. While our encodings make specific design choices, our solution is flexible

enough that programmers can control all the low-level details of policy specification and

enforcement. For example, programmers are free to develop custom label models when

enforcing an information flow policy; or, they may implement an access control policy

using capabilities, access control lists, or some combination of the two. Nevertheless,

we retain the benefit of traditional security-typed languages by being able to show that

type-correct programs enjoy useful security properties. We have implemented our ideas

in a programming language that we call SELINKS and have validated its practicality by

building SEWIKI, a web-based document management system inspired by Intellipedia.

In this section, we present a summary of the main elements of our approach.

1.1.1 A Brief Primer on Security Typing

Volpano et al. [132] were the first to propose using a type system to certify the en-

forcement of a security policy. In particular, they address the enforcement of information

flow security policies specified in Denning’s lattice model [42]. In this model, a policy is

specified as a lattice (L ,v), where L is a finite set of security labels partially ordered

by the relation v. For example, L may identify secrecy classes like High and Low, with
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Lowv High, where these classes are used to categorize the secrecy of objects in a system.

Informally, the intention of such a policy is to ensure that no information about an object

of the High security class flows to an object of the Low security class.

The key insight of Volpano et al. was to refine the types of a programming language

to include a security label. For example, the type intHigh represents the set of all High

security integers. Volpano et al. define a type system that tracks the flow of information

through the various constructs of a programming language. For instance, for a program

statement h := l, where h has the type intHigh and l has the type intLow, the typing judg-

ment records a flow from the Low security class to the High class. Such a flow is accepted

as secure for the lattice Low v High. However, an assignment in the opposite direction

(l := h) is judged by the type rules to cause a flow from High to Low and is deemed

insecure for the example lattice. A program containing such an insecure assignment is

rejected as type-incorrect.

A large body of work [111] has extended these basic ideas of security typing to

accommodate variations on the lattice model and to incorporate information flow analyses

of the programming constructs of real languages (e.g., exceptions, higher-order functions,

objects etc.). Jif [31], an extension of Java, and FlowCaml [104], an extension of Caml,

are two noteworthy language implementations that utilize security typing to guarantee the

correct enforcement of information flow policies.
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1.1.2 Enforcing User-defined Security Policies

Our work begins with the observation that the many security policies are enforce-

able by associating labels with data in the types (as in Jif and FlowCaml), where the label

expresses the security policy for that data. What varies among policies is the specification

and interpretation of labels, in terms of the actions that are permitted or denied. By al-

lowing the syntax and semantics of labels to be user-defined, we stand to benefit from the

high degree of assurance provided by security typing while still retaining the flexibility

we desire to enforce a range of policies.

In subsequent chapters, we develop FABLE, λAIR, and FLAIR, a succession of

programming-language calculi, each building upon the previous, which embody this ob-

servation in two respects. First, a policy designer can define custom security labels

and associate them with the data they protect using dependent types [4]. Next, rather

than “hard-code” their semantics, policy enforcement is parameterized by a programmer-

provided interpretation of labels, specified in a privileged part of the program. The type

system forbids application programs from manipulating data with a labeled type directly.

Instead, in order to use labeled data, the application must call the appropriate privileged

functions that interpret the labels. By verifying the interpretation of labels, and relying

on the soundness of the type system, policy implementers can prove that type-correct

programs enjoy relevant security properties.

In our first language, FABLE, a programmer could define a label High, and give a

high-security integer value a type that mentions this label, int{High}. As another example,

the programmer could define a label ACL(Alice, Bob) to stand for an access control list
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and give an integer a type such as int{ACL(Alice, Bob)}. Programmers define the interpre-

tation of labels in an enforcement policy, a set of privileged functions distinguished from

the rest of the program. Thus, in order to capture the intuition that an integer with the type

int{ACL(Alice, Bob)} is only to be accessed by Alice or Bob, one writes an enforcement

policy function like the following:

policy access simple (acl:lab, x:int{acl}) = if (member user acl) then {◦}x else −1

Here, access simple takes a label acl as its first argument (like ACL(Alice, Bob)), and an

integer protected by that label as its second argument. If the current user (represented by

the variable user) is a member of x’s access control list acl (according to some function

member, not shown), then x is returned with its label removed, expressed by the syntax

{◦}x, which coerces x’s type to int so that it can be accessed by the main program. If

the membership test fails, it returns −1, and x’s value is not released. By preventing the

main program (i.e., the non-policy part) from directly examining data with a labeled type,

we can ensure that all its operations on data with a type like int{ACL(Alice, Bob)} are

preceded by a call to the access simple policy function, which performs the necessary

access control check.

In Chapter 2, we show that FABLE is powerful enough to encode the enforcement of

various styles of access control, data provenance, and information flow policies. In each

case, we state and prove useful security properties for well-typed programs. However,

FABLE is limited in that it applies only to purely functional programs. While the purely

functional setting is both useful and illustrative, complex real-world policies often rely

on some mutable state to make authorization decisions. In Chapter 3, we define λAIR, a
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calculus that can enforce stateful policies in addition to the policies enforceable in FABLE.

We present λAIR by first picking a specific model for stateful policies. In particular,

we propose AIR, a novel model for specifying high-level information release protocols

(a kind of declassification policy [112]) in terms of security automata [113]. AIR is of

independent interest in that, to our knowledge, it is the first time security automata have

been used to specify information release protocols. To enforce AIR policies, sensitive

data in λAIR are labeled with states from an AIR security automaton. Prior to using

labeled data, a λAIR program must call functions (analogous to enforcement policy func-

tions in FABLE) that consult the state of the automaton mentioned in the label and the

usage is permitted only if it authorized by the automaton. Since the state of the automa-

ton changes as the program executes, the type system of λAIR has to be careful to ensure

that stale automaton states are never used in authorization decisions. The technical ma-

chinery that accomplishes this is the use of affine types [140]. We prove that an AIR

policy is correctly enforced in λAIR by showing that type correct λAIR programs (that use

type signatures corresponding to specific AIR policy) produce execution traces that are

strings in the language accepted by the AIR automaton.

Of course, useful real-world programs include side effects, e.g., some output is

printed to the terminal, or a message is sent over the network. In λAIR, we model state

updates in a purely functional way. While this is sufficient if programs are always written

in a monadic style, we show in Chapter 4 that the combination of affine and dependent

types in λAIR is powerful enough to enforce policies for programs that may cause side

effects directly. The main contribution of Chapter 4 is our final calculus FLAIR, which

extends λAIR with mutable references to memory. We develop an encoding of a canonical

10



information flow policy in FLAIR and show that type correct FLAIR programs using this

encoding enjoy a standard noninterference property.

The FLAIR calculus is our main evidence in support of the claim that a language-

based framework can be expressive enough to support the enforcement of broad range

of policies. Chapter 3 shows that FLAIR can be used to enforce security automata poli-

cies. As a consequence of prior work on the expressiveness of security automata [113, 59,

13, 79], we get a useful lower bound on the class of properties enforceable in FLAIR—

informally, a broad class of safety properties. Additionally, FLAIR can enforce noninter-

ference, which has been categorized variously as a 2-safety property [126] and, more

recently, as a kind of hyperproperty [33]. We make no attempt to enforce liveness prop-

erties in FLAIR.

Unlike traditional security type systems which guarantee that type-correct programs

enjoy strong security properties like noninterference, our method does not, in and of itself,

guarantee any such property. Clearly, by allowing the semantics of policy enforcement

to be user-defined we open the possibility of a programmer constructing policies that are

patently insecure—we make no attempt to prevent this. However, the design of each of

our type systems facilitates (and, indeed, greatly simplifies) proofs that the enforcement

of a specific policy entails a corresponding security property of type-correct programs—

we have conducted these proofs for each of the policies explored in this dissertation. This

stands as evidence for the claim that our approach admits proofs of extensional security

properties for programs.
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1.1.3 Building Secure Web Applications

Given the increasing demand for web-based information availability, the construc-

tion of secure web applications is a useful point of reference when evaluating the practi-

cality of a new approach to security. As such, we have used FABLE in the design of a new

programming language called SELINKS. The final claim of our thesis is that SELINKS

is practical enough to be used in the construction of realistic secure web applications.

Web applications are often distributed over several tiers. In a typical configuration,

such an application is comprised of a client tier, where much of user-interface logic runs

in a web browser (as JavaScript); a server tier, where the bulk of the application logic

is executed (in a language like Java or PHP); and finally, a database tier (executing SQL

code) that serves as a high-efficiency persistent store. Our effort to construct secure web

applications begins with the LINKS programming language [35]. LINKS is designed to

make web programming easier. Rather than programming each tier in a separate language,

in LINKS, a programmer writes an entire multi-tier web application as a single program.

The compiler splits that program into components to run on the client (as JavaScript),

server (as a local fragment of LINKS code), and database (as SQL). From our perspective

LINKS is also useful in that it makes it easier to reason about the security behavior of all

three tiers of an application by analyzing a single source program.

In Chapter 5, we describe our extension to LINKS called Security-Enhanced LINKS,

or SELINKS. Our extensions consist of two main components. The first is a new type

system for LINKS based on FABLE-style security typing. Next, in order to efficiently en-

force security policies in data-access code, we have designed and implemented a novel
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compilation procedure that translates SELINKS enforcement policy code to user-defined

functions that can be run in the database. Our experiments show that this compilation

strategy can improve the throughput of a database query by as much as an order of mag-

nitude.

To evaluate the practicality of SELINKS (and, by extension, FABLE), we have con-

structed two medium-sized web applications that enforce custom security policies using

SELINKS. Describing these applications is the main focus of Chapter 6. The larger

of these two applications is SEWIKI, a web-based document management system in-

spired by Intellipedia, that enforces a custom combination of a fine-grained access con-

trol policy and a provenance-tracking policy on HTML documents. The second appli-

cation, SEWINESTORE, is an e-commerce application distributed with LINKS that we

have extended with an access control policy. In general, we have found that SELINKS’

label-based security policies are sufficient to enforce many interesting policies and are

relatively easy to use. Additionally, the modular specification of the enforcement policy

permits some reuse of policy code between the two applications.

A limitation of our evaluation is that we have only implemented the FABLE system

for SELINKS. We have yet to evaluate the practicality of the full-generality of FLAIR

for enforcing user-defined policies. As it stands, we conjecture that FLAIR may be more

suitable as the basis of an intermediate language, rather than as a type system for a source

level language like SELINKS. A detailed discussion of this and other limitations, along

with steps we might take to overcome them, can be found in Chapter 8.
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1.2 Summary of Contributions

In summary, this dissertation makes the following contributions.

1. We define FABLE, a core calculus for the enforcement of purely functional user-

defined policies. We have proved FABLE sound. We provide encodings in FABLE

of the following security policies and prove each of them correct:

• Two styles of access control, one based on inlined policy checks and another

based on capabilities. We formulate an extensional correctness property for

access control called non-observability and prove that our encoding satisfies

this property.

• A data provenance tracking policy augmented with an access control policy

to protect the provenance metadata itself. We prove that our encodings satisfy

dependency correctness, a standard property for data provenance [26].

• Two versions of a lattice-based information flow policy, one with static labels

and fully static enforcement, and another with dynamic labels. We prove a

standard noninterference property for the static information flow policy.

2. We propose AIR, a novel policy language for expressing high-level information

release protocols based on security automata. AIR is intended to promote reasoning

about the declassification behavior of a system independently from the system’s

implementation.

3. We define λAIR, a calculus that extends dependent typing in FABLE with support

for affine types. We have proved λAIR sound. We show that λAIR can be used
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to enforce stateful security policies by developing an enforcement mechanism for

automata-based policies expressed in the AIR language. We prove that type-correct

λAIR programs enjoy a trace-based correctness property (standard for automata-

based policies [139]).

4. We extend λAIR with mutable references to produce the calculus FLAIR. We have

proved FLAIR sound. We show how FLAIR can be used to enforce a static infor-

mation flow policy while accounting for information leaks due to side effects on

memory. We prove that type-correct FLAIR programs that use our encoding enjoy

a standard noninterference property. Additionally, we show how the basic FABLE

type system can be embedded in FLAIR and argue, as a consequence, that all the

security policies explored in this dissertation can be enforced using FLAIR.

5. We implement SELINKS, an extension of the LINKS web-programming language

with support for enforcing user-defined security policies, in the style of FABLE.

SELINKS also includes a novel compilation strategy for enforcement policy func-

tions that enables security policies to be seamlessly and efficiently enforced for

code spanning the server and database tiers.

6. We demonstrate the practicality of SELINKS by building two substantial multi-

tier web applications. The first, SEWIKI, is a web-based document management

system that enforces a combination of fine-grained access controls and provenance

tracking on HTML documents. The second, SEWINESTORE, is an e-commerce

application retrofitted with an access control policy.
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2. Enforcing Purely Functional Policies

This chapter presents FABLE, a core formalism for a programming language in

which programmers may specify security policies and reason that these policies are prop-

erly enforced. We focus here on purely functional policies applied to purely functional

programs. To illustrate FABLE’s flexibility we show how to use it to encode a range of

policies, including access control, static [111] and dynamic information flow [149], and

provenance tracking [26].

In our experience, the soundness of FABLE makes proofs of security properties no

more difficult—and arguably simpler—than proofs of similar properties in specialized

languages [104, 127, 132]. To demonstrate this fact we present proofs of correctness

for our access control, provenance, and static information flow policies (Appendix A),

using three substantially different proof techniques. While precisely stating correctness

properties for each of these policies required some careful construction, we found it rela-

tively easy to discharge proofs of these properties by relying on various lemmas from the

metatheory of FABLE. This experience indicates that with the accumulation of a set of

broadly applicable lemmas about FABLE, many of our security proofs could be partially

automated; however, we leave exploration of this issue to future work.
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Expressions e ::= n | x | λ x:t.e | e1 e2 | fix x:t.v |Λα.e | e [t]
(Fable-specific) | C(~e) |match e with pi⇒ ei | ([e]) | {◦}e | {e′}e

Types t ::= int | α | ∀α.t2 | (x:t1)→ t2
(Fable-specific) | lab | lab∼e | t{e}

Patterns p ::= x |C(~p)
Pre-values u ::= n |C(~u) | λ x:t.e |Λα.e

App. values vapp ::= u | ([{e}vpol])
Policy values vpol ::= u | {e}vpol

Figure 2.1: Syntax of FABLE

2.1 FABLE: System F with Labels

This section presents the syntax, static semantics, and operational semantics of

FABLE. The next section illustrates FABLE’s flexibility by presenting example policies

along with proofs of their attendant security properties.

2.1.1 Syntax

Figure 2.1 defines FABLE’s syntax. Throughout, we use the notation ~a to stand for

a list of elements of the form a1, . . . ,an. Where the context is clear, we will also treat~a as

the set of elements {a1, . . . ,an}.

Expressions e extend a standard polymorphic λ -calculus, System F [55]. Standard

forms include integer values n, variables x, abstractions λx:t.e, term application e1 e2, the

fixpoint combinator fix x:t.v, type abstraction Λα.e, and type application e [t]. We exclude

mutable references from the language to simplify the presentation. Subsequent chapters

extend the language with references and considers their effect on various policies, e.g.,

information flows through side effects.

The syntactic constructs specific to FABLE are distinguished in Figure 2.1. The
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expression C(~e) is a label, where C represents an arbitrary constructor and each ei ∈~e

must itself be a label. For example, in ACL(Alice, Bob), ACL is 2-ary label constructor and

Alice and Bob are 0-ary label constructors. Labels can be examined by pattern matching.

For example, the expression match z with ACL(x,y)⇒x would evaluate to Alice if z’s run-

time value were ACL(Alice, Bob).

As explained earlier, FABLE introduces the notion of an enforcement policy that

is a separate part of the program authorized to manipulate the labels on a type. Fol-

lowing Grossman et al. [58] we use bracketed expressions ([e]) to delimit policy code e

from the main program. In practice, one could use code signing as in Java [56] to en-

sure that untrusted policy code cannot be injected into a program. As mentioned earlier,

the expression {◦}e removes a label from e’s type, while {e′}e adds one. Labeling and

unlabeling operations may only occur within policy code; we discuss these operations in

detail below.

Standard types t include int, type variables α , and universally quantified types ∀α.t.

Functions have dependent type (x:t1)→ t2 where x names the argument and may be used

in t2. We illustrate the usage of these types shortly. Labels can be given either type lab or

the singleton type lab∼e, which describes label expressions equivalent to e. For example,

the label constructor High can be given the type lab and the type lab∼High. Singleton

types are useful for constraining the form of label arguments to enforcement policy func-

tions. For example, we could write a specialized form of our previous access simple

function:

policy access pub (acl:lab∼ACL(World), x:int{acl}) = {◦}x
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The FABLE type checker ensures this function is called only with expressions that evaluate

to the label ACL(World), i.e., the call access pub(ACL(Alice,Bob),e) will be rejected. In

effect, the type checker is performing access control at compile time according to the

constraint embodied in the type. We will show in Section 2.2.3 that these constraints are

powerful enough to encode an information flow policy that can be checked entirely at

compile time.

The dependent type t{e} describes a term of type t that is associated with a label

e. Such an association is made using the syntax {e}e′. For example, {High}1 is an ex-

pression of type int{High}. Conversely, this association can be broken using the syntax

{◦}e. For example, {◦}({High}1) has type int. Now we illustrate how dependent func-

tion types (x:t1)→ t2 can be used. The function access simple can be given the type

(acl:lab)→ (x:int{acl})→ int which indicates that the first argument acl serves as the label

for the second argument x. Instead of writing (x:t1)→ t2 when x does not appear in t2, we

simply omit it. Thus access simple’s type could be written (acl:lab)→ int{acl} → int.

The operational semantics of Section 2.1.4 must distinguish between application

and policy values to ensure that policy code does not inadvertently grant undue privilege

to application functions. Application values vapp consist of either “pre-values” u—integers

n, labels containing values, type and term abstractions—or labeled policy values wrapped

with ([·]) brackets. Values within policy code are pre-values preceded by zero or more

relabeling operations.

Encodings. To make our examples more readable, we use the syntactic shorthands shown

in Figure 2.2. The first three shorthands are mostly standard. We use the policy keyword to
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type abbreviation

typename N α = t in e2 ≡ (N t ′ 7→ ((α 7→ t ′)t))e2

let binding, for some t

let x = e1 in e2 ≡ (λx:t.e2) e1

polymorphic function definition, for some t ′

let f〈α〉(x:t) = e1 in e2 ≡ let f = fix f:t ′.Λα.λx:t.e1 in e2

policy function def, for some t ′

policy f〈α〉(x:t) = e1 in e2 ≡ let f = fix f:t ′.Λα.λx:t.([e1]) in e2

dependent tuple type

x:t× t ′ ≡ ∀α.((x:t)→ t ′→ α)→ α

dependent tuple introduction, for some t, t ′

(e,e′) ≡ Λα.λ f:((x:t)→ t ′→ α). f e e′

dependent tuple projection, for some t, t ′, and te

let x,y = f in e ≡ f [te](λx:t.λy:t ′.e)

Figure 2.2: Syntactic shorthands

designate policy code instead of using brackets ([·]). A dependent pair (e,e′) of type x:t×t ′

allows x, the name for the first element, to be bound in t ′, the type of the second element.

For example, the first two arguments to the access pub function above could be pack-

aged into a dependent pair of type (acl:lab∼ACL(World) × int{acl}), which is inhabited

by terms such as (ACL(World),{ACL(World)}1). Dependent pairs can be encoded using

dependently typed functions. We extend the shorthand for function application, policy

function definitions, type abbreviations, and tuples to multiple type and term arguments

in the obvious way. We also write as a wildcard (“don’t care”) pattern variable.

Phantom label variables. We extend the notation for polymorphic functions in a way that

permits quantification over the expressions that appear in a type. Consider the example

below:

policy add〈l〉(x:int{l}, y:int{l}) = {l}({◦}x + {◦}y)
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This policy function takes two like-labeled integers x and y as arguments, unlabels them

and adds them together, and finally relabels the result, having type int{l}. This function is

unusual because the label l is not a normal term argument, but is being quantified—any

label l would do.

The reason this makes sense is that in FABLE, (un)labeling operations are merely

hints to the type checker to (dis)associate a label term and a type. These operations, along

with all types, can be erased at runtime without affecting the result of a computation. After

erasing types, our example would become policy add (x, y) = x + y, which is clearly only a

function of x and y, with no mention of l. For this reason, we can treat add as polymorphic

in the labels of x and y—it can be called with any pair of integers that have the same label,

irrespective of what label that might be. We express this kind of polymorphism by writing

the phantom label variable l, together with any other normal type variables like α,β , . . .,

in a list that follows the function name. In the example above, the phantom variable of

add are listed as 〈l〉. Of course, not all label arguments are phantom. For instance, in

the access simple function of Section 1.1.2, the acl is a label argument that is passed

at runtime. For simplicity, we do not formalize phantom variable polymorphism here.

Chapter 5 shows the key judgments related to phantom variable polymorphism; a related

technical report [123] contains a proof of soundness.

2.1.2 Example: A Simple Access Control Policy

Figure 2.3 illustrates a simple but complete enforcement policy for access control.

Protected data is given a label listing those users authorized to access the data. In partic-
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policy login(user:string, pw:string) =
let token = match checkpw user pw with

USER(k)⇒USER(k)
⇒FAILED in

(token, {token}0)

let member(u:lab, a:lab) =
match a with

ACL(u, i)⇒TRUE
ACL(j, tl)⇒member u tl
⇒FALSE

policy access〈k,α〉(u:lab∼USER(k), cap:int{u}, acl:lab, data:α{acl}) =
match member u acl with

TRUE⇒{◦}data
⇒halt

Figure 2.3: Enforcing a simple access control policy

ular, such data has type t{acl}, where acl encodes the ACL as a label.

The policy’s login function calls an external function checkpw to authenticate a user

by checking a password. If authentication succeeds (the first pattern), checkpw returns a

label USER(k) where k is some unique identifier for the user. The login function returns

a pair consisting of this label and a integer labeled with it; this pair serves as our runtime

representation of a principal. The access function takes the two elements of this pair as its

first two arguments. Since FABLE enforces that only policies can produce labeled values,

we are assured that the term with type int{USER(k)} can only have been produced by

login. The access function’s last two arguments consist of the protected data’s label, acl,

and the data itself, data. The access function calls the member function to see whether

the user token u is present in the ACL. If successful, the label TRUE is returned, in which

case access returns the data with its acl label removed.
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2.1.3 Typing

Figure 2.4 defines the typing rules for FABLE. The main judgment Γ c̀ e : t types

expressions. The index c indicates whether e is part of the policy or the application. Only

policy terms are permitted to use the unlabeling and relabeling operators. Γ records three

kinds of information: x:t maps variables to types, α records a bound type variable, and

e� p records the assumption that e matches pattern p, used when checking the branches

of a pattern match.

The rules (T-INT), (T-VAR), (T-FIX), (T-TAB) and (T-TAP) are standard for poly-

morphic lambda calculi. (T-ABS) and (T-APP) are standard for a dependently typed

language. (T-ABS) introduces a dependent function type of the form (x:t1)→ t2. (T-APP)

types an application of a (dependently typed) function. As usual, we require the type t1 of

the argument to match the type of the formal parameter to the function. However, since

x may occur in the return type t2, the type of the application must substitute the actual

argument e2 for x in t2. As an example, consider an application of the access simple

function, having type (acl:lab)→ int{acl} → int, to the term ACL(Alice,Bob). According

to (T-APP) the resulting expression is a function with type int{ACL(Alice,Bob)} → int,

which indicates that the function can be applied only to an integer labeled with precisely

ACL(Alice,Bob). This is the key feature of dependent typing—the type system ensures

that associations between labels and the terms they protect cannot be forged or broken.

Rule (T-LAB) gives a label term C(~e) a singleton label type lab∼C(~e) as long as

each component ei ∈~e has type lab. According to this rule ACL(Alice,Bob) can be given

the type lab∼ACL(Alice,Bob). For that matter, the expression ((λx:lab.x) High) can be
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Γ c̀ e : t Expression e has type t in environment Γ under color c

Environments Γ ::= · | x:t | α | e� p | Γ1,Γ2
Substitutions σ ::= · | (x 7→ e) | (α 7→ t) | σ1,σ2

Colors c ::= pol | app

Γ c̀ e : t Γ ` t ∼= t ′

Γ c̀ e : t ′
(T-CONV)

Γ c̀ n : int (T-INT)
x:t ∈ Γ

Γ c̀ x : t
(T-VAR)

Γ ` t Γ, f :t c̀ v : t
Γ c̀ fix f :t.v : t

(T-FIX)

Γ,α c̀ e : t
Γ c̀ Λα.e : ∀α.t

(T-TAB)
Γ ` t Γ c̀ e : ∀α.t ′

Γ c̀ e [t] : (α 7→ t)t ′
(T-TAP)

Γ ` t Γ,x:t c̀ e : t ′

Γ c̀ λ x:t.e : (x:t)→ t ′
(T-ABS)

Γ c̀ e1 : (x:t1)→ t2 Γ c̀ e2 : t1
Γ c̀ e1 e2 : (x 7→ e2)t2

(T-APP)

Γ c̀ ei : lab
Γ c̀ C(~e) : lab∼C(~e)

(T-LAB)
Γ c̀ e : lab∼e′

Γ c̀ e : lab
(T-HIDE)

Γ c̀ e : lab
Γ c̀ e : lab∼e

(T-SHOW)

Γ c̀ e : lab Γ ` t pn = x where x 6∈ dom(Γ)
~xi = FV (pi)\dom(Γ) Γ,~xi:lab c̀ pi : lab Γ,~xi:lab,e� pi c̀ ei : t

Γ c̀ match e with p1⇒ e1 . . . pn⇒ en : t
(T-MATCH)

Γ p̀ol e : t{e′}
Γ p̀ol {◦}e : t

(T-UNLAB)
Γ p̀ol e : t Γ p̀ol e′ : lab

Γ p̀ol {e′}e : t{e′}
(T-RELAB)

Γ p̀ol e : t
Γ c̀ ([e]) : t

(T-POL)

Γ ` t ∼= t ′ Types t and t ′ are convertible

Type contexts T ::= • | •{e} | x:• → t | x:t→• | ∀α.•
Term label contexts L ::= lab∼• | t{•} Γ ` t ∼= t (TE-ID)

Γ ` t ∼= t ′

Γ ` t ′ ∼= t
(TE-SYM)

Γ ` t ∼= t ′

Γ ` T · t ∼= T · t ′
(TE-CTX)

e� p ∈ Γ

Γ ` L · e∼= L · p (TE-REFINE)

∀σ .(dom(σ) = FV (e1) ∧ Γ ` σ(e1) : lab) ⇒ σ(e1)
c
 σ(e2) ∧ Γ ` σ(e2) : lab

Γ ` L · e1 ∼= L · e2
(TE-REDUCE)

Γ ` t Type t is well-formed in environment Γ

Γ ` int (K-INT)
α ∈ Γ

Γ ` α
(K-TVAR) Γ ` lab (K-LAB)

Γ p̀ol e : lab

Γ ` lab∼e
(K-SLAB)

Γ ` t Γ p̀ol e : lab

Γ ` t{e}
(K-LABT)

Γ ` t1 Γ,x:t1 ` t2
Γ ` (x:t1)→ t2

(K-FUN)
Γ,α ` t

Γ ` ∀α.t
(K-ALL)

Figure 2.4: Static semantics of FABLE
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given the type lab∼ ((λx:lab.x) High); there is no requirement that e be a value. The rule

(T-HIDE) allows a singleton label type like this one to be subsumed to the type of all

labels, lab. Rule (T-SHOW) does the converse, allowing the type of a label to be made

more precise.

Rule (T-MATCH) checks pattern matching. The first premise confirms that expres-

sion e being matched is a label. The second line of premises describes how to check each

branch of the match. Our patterns differ from patterns in ML in two respects. First, the

second premise on the second line requires Γ,~xi : lab c̀ pi : lab, indicating that patterns in

FABLE are allowed to contain variables that are defined in the context Γ. Second, pattern

variables may occur more than once in a pattern. Both of these features make it conve-

nient to use pattern matching to check for term equality. For example, in the expression

let y = Alice in match x with ACL(y,y)⇒e, the branch e is evaluated only if the runtime

value for the label variable x is ACL(Alice, Alice).

A key feature of (T-MATCH) is the final premise on the second line, which states

that the body of each branch expression ei should be checked in a context including the

assumption e � pi, which states that e matches pattern pi. This assumption can be used

to refine type information during checking (similar to typecase [60]) using the rule (T-

CONV), which we illustrate shortly. (T-MATCH) also requires that variables bound by

patterns do not escape their scope by appearing in the final type of the match; this is

ensured by the second premise, Γ ` t, which confirms t is well formed in the top-level

environment (i.e., one not including pattern-bound variables). For simplicity we require

a default case in pattern-matching expressions: the third premise requires the last pattern

to be a single variable x that does not occur in Γ.

25



Rule (T-UNLAB) types an unlabeling operation. Given an expression e with type

t{e′}, the unlabeling of e strips off the label on the type to produce an expression with

type t. Conversely, (T-RELAB) adds a label e′ to the type of e. The pol-index on these

rules indicates that both operations are only admissible in policy terms. This index is

introduced by (T-POL) when checking the body of a bracketed term ([e]). For example,

given expression e≡ λx:int{Public}.([{◦}x]), we have · àpp e : int{Public}→ int since {◦}x

will be typed with index pol by (T-POL).

Rule (T-CONV) allows e to be given type t ′ assuming it can given type t where t and

t ′ are convertible, written Γ ` t ∼= t ′. Rules (TE-ID) and (TE-SYM) define convertibility to

be reflexive and symmetric. Rule (TE-CTX) structurally extends convertibility using type

contexts T . The syntax T · t denotes the application of context T to a type t which defines

the type that results from replacing the occurrence of the hole • in T with t. For example,

if T is the context •{C}, then T · int is the type int{C}. (Of course, rule (TE-CTX) can be

applied several times to relate larger types.)

The most interesting rules are (TE-REFINE) and (TE-REDUCE), which consider

types that contain labels (constructed by applying context L to an expression e). Rule (TE-

REFINE) allows two structurally similar types to be considered equal if their embedded

expressions e and p have been equated by pattern matching, recorded as the constraint

e� p by (T-MATCH). To see how this would be used, consider the following example:

let tok,cap = login "Joe" "xyz" in
match tok with USER(k)⇒access tok cap

⇒halt

We give the login function the type string→string→ (l:lab × int{l}). The type of
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access (defined in Figure 2.3) is (u:lab∼USER(k))→ int{u} → t. We type check access tok

using rule (T-APP), which requires that the function’s parameter and its formal argu-

ment have the same type t. However, here tok has type lab while access expects type

lab∼USER(k). Since the call to access occurs in the first branch of the match, the context

includes the refinement tok�USER(k) due to (T-MATCH). From (T-SHOW) we can give

tok type lab∼ tok, and by applying (TE-REFINE) we have lab∼ tok∼= lab∼USER(k) and

so tok can be given type lab∼USER(k) as required. Similarly, for access tok cap, we can

check that the type int{tok} of cap is convertible with int{USER(k)} in the presence of the

same assumption.

Rule (TE-REDUCE) allows FABLE types to be considered convertible if the expres-

sion component of one is reducible to the expression component of the other [4]; reduction

e c
 e′ is defined shortly in Figure 2.4. For example, we have · ` int{(λx:lab.x) Low} ∼=

int{Low} since (λx:lab.x) Low c
 Low. One complication is that type-level expressions

may contain free variables. For example, suppose we wanted to show

y : lab ` int{(λx:lab.x) y} ∼= int{y}

It seems intuitive that these types should be considered convertible, but we do not have

that (λx:lab.x) y c
 y because y is not a value. To handle this case, the rule permits two

types to be convertible if, for every well-typed substitution σ of the free variables of

e1, σ(e1)
c
 σ(e2). This captures the idea that the precise value of y is immaterial—all

reductions on well-typed substitutions of y would reduce to the value that was substituted

for y.
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Satisfying this obligation by exhaustively considering all possible substitutions is

obviously intractable. Additionally, we have no guarantee that an expression appearing

in a type will converge to a value. Thus, type checking in FABLE, as presented here, is

undecidable. This is not uncommon in a dependent type system; e.g., type checking in

Cayenne is undecidable [6]. However, other dependently typed systems impose restric-

tions on the usage of recursion in type-level expressions to ensure that type-level terms

always terminate [17]. Additionally, there are several possible decision procedures that

can be used to partially decide type convertibility. One simplification would be to attempt

to show convertibility for closed types only, i.e., no free variables. In SELINKS, our im-

plementation of FABLE, we use a combination of three techniques. First, we use type

information. If l is free in a type, and the declared type of l is lab∼e, then we can use

this information to substitute e for l. Similarly, if the type context includes an assumption

of the form l � e (when checking the branch of a pattern), we can substitute l with e.

Finally, since type-level expressions typically manipulate labels by pattern matching, we

use a simple heuristic to determine which branch to take when pattern matching expres-

sions with free variables. These techniques suffice for all the examples in this chapter

and both our SEWIKI and SEWINESTORE applications. A related technical report [123]

discusses these decision procedures in greater detail and proves them sound.

Finally, the judgment Γ ` t states that t is well-formed in Γ. Rules (K-INT), (K-

TVAR), and (K-LAB) are standard, (K-FUN) defines the standard scoping rules for names

in dependent function types, and (K-ALL) defines the standard scoping rule for univer-

sally quantified type variables. (K-SLAB) and (K-LABT) ensure that all expressions e

that appear in types can be given lab-type. Notice that type-level expressions are typed in
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e c
 e′ Small-step chromatic reduction rules

Evaluation contexts Ec ::= •e | vc• | • [t] |C(~vc,• ,~e)
| match• with pi⇒ ei | {e}• | {◦}•

e c
 e′

Ec · e
c
 Ec · e′

(E-CTX)
e

pol
 e′

([e]) app
 ([e′])

(E-POL) (λ x:t.e) vc
c
 (x 7→ vc)e (E-APP)

(Λα.e) [t] c
 (α 7→ t)e (E-TAP) fix f :t.v c

 ( f 7→ fix f :t.v)v (E-FIX)

∀i < j. vc 6� pi : σi vc � p j : σ j

match vc with p1⇒ e1 . . . pn⇒ en
c
 σ j(e j)

(E-MATCH)

([C(~u)]) app
 C(~u) (E-BLAB) ([n]) app

 n (E-BINT) ([λ x:t.e]) app
 λ x:t.([e]) (E-BABS)

([Λα.e]) app
 Λα.([e]) (E-BTAB) ([e]) pol

 e (E-NEST) {◦}{e}vpol
pol
 vpol (E-UNLAB)

e� p : σ Expression e matches pattern p under substitution σ

p� p : · (U-PATID) v� x : x 7→ v (U-VAR)
∀i.σ∗i = (σ0, . . . ,σi−1) ei � σ∗i pi : σi

C(~e)�C(~p) : ~σ
(U-CON)

Figure 2.5: Dynamic semantics of FABLE

pol-context. Because FABLE enjoys a type-erasure property, any (un)labeling operations

appearing in types pose no security risk. We use this feature to good effect in Section 2.2.2

to protect sensitive information that may appear in labels.

2.1.4 Operational Semantics

Figure 2.5 defines FABLE’s operational semantics. We define a pair of small-step

reduction relations e app
 e′ and e pol

 e′ for application and policy expressions, respectively.

Rules of the form e c
 e′ are polychromatic—they apply both to policy and application

expressions. Since the values for each kind of expression are different, we also parameter-

ize the evaluation contexts Ec by the color of the expression, i.e., the context, either app
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or pol, in which the expression is to be reduced. Rule (E-CTX) uses these evaluation con-

texts Ec , similar to the type contexts used above, to enforce a left-to-right evaluation order

for a call-by-value semantics. (In the context of FABLE, which is purely functional, the

call-by-value restriction is unnecessary. However, in subsequent chapters, a call-by-value

semantics is important.) Policy expression reduction e pol
 e′ takes place within brackets

according to (E-POL). The rules (E-APP), (E-TAP), and (E-FIX) define function applica-

tion, type application, and fixed-point expansion, respectively, in terms of substitutions;

all of these are standard. Rule (E-MATCH) relies on a standard pattern-matching judg-

ment v � p : σ , also defined in Figure 2.5, which is true when the label value matches

the pattern such that v = σ(p). (E-MATCH) determines the first pattern p j that matches

the expression v and reduces the match expression to the matched branch’s body after ap-

plying the substitution. The (U-CON) rule in the pattern-matching judgment v� p : σ is

the only non-trivial rule. As explained in Section 2.1.3, since pattern variables may occur

more than once in a pattern, (U-CON) must propagate the result of matching earlier sub-

expressions when matching subsequent sub-expressions. For example, pattern matching

should fail when attempting to match ACL(Alice,Bob) with ACL(x,x). This is achieved

in (U-CON) because, after matching (Alice� x : x 7→ Alice) using (U-VAR), we must try

to match Bob with (x 7→ Alice)x, which is impossible.

An applied policy function will eventually reduce to a bracketed policy value vpol.

When vpol has the form ([u]), the brackets may be removed so that the value u can be used by

application code. (E-BLAB) and (E-BINT) handle label expressions ([C(~u)]) and integers

n, respectively. To maintain the invariant that (un)labeling operators only appear in policy

code, rules (E-BABS) and (E-TABS) extrude only the λ and Λ binders, respectively, from
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bracketed abstractions, allowing them to be reduced according to (E-APP) or (E-TAP).

Brackets cannot be removed from labeled values ([{e}u]) by application code, to preserve

the labeling invariant. On the other hand, brackets can be removed from any expression

by policy code, according to (E-NEST). This is useful when reducing expressions such

as ([λx:t.x])([v]), which produces ([([v])]) after two steps; (E-NEST) (in combination with

(E-POL)) can then remove the inner brackets. Finally, (E-UNLAB) allows an unlabeling

operation to annihilate the top-most relabeling operation. Notice that the expressions

within a relabeling operation are never evaluated at runtime—relabelings only affect the

types and are purely compile time entities. The types that appear elsewhere, such as

(E-TAP), are also erasable, as is usual for System F.

2.1.5 Soundness

We state the standard type soundness theorems for FABLE here. In addition to en-

suring that well-typed programs never go wrong or get stuck, we have put this soundness

result to good use in proving that security policies encoded in FABLE satisfy desirable

security properties. We discuss this further in the next section. Appendix A contains a

full statement and proof of this theorem.

Theorem 1 (Type soundness). If · c̀ e : t; then either ∃e′.e c
 e′ or ∃vc.e = vc. Further-

more, if e c
 e′; then, · c̀ e′ : t.
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2.2 Example Policies in FABLE

This section uses FABLE to encode several security policies. We prove that any

well-typed program using one of these policies enjoys relevant security properties—i.e.,

the program is sure to enforce the policy correctly. We focus on four kinds of policies:

access control, provenance, static information flow, and dynamic information flow.

As mentioned in the introduction, FABLE does not, in and of itself, guarantee that

well-typed programs implement a particular security policy’s semantics correctly. That

said, FABLE has been designed to facilitate proof of such theorems. To illustrate how, we

chose to use three very different techniques for each of the correctness results reported

here. We conclude from our experience that the metatheory of FABLE provides a useful

repository of lemmas that can naturally be applied in showing the correctness of various

policy encodings. As such, we believe the task of constructing a correctness proof for a

FABLE policy to be no more onerous, and possibly considerably simpler, than the corre-

sponding task for a special-purpose calculus that “bakes in” the enforcement of a single

security policy.

2.2.1 Access Control Policies

Access control policies govern how programs release information but, once the

information is released, do not control how it is used. To prove that an access control

policy is implemented correctly, we must show that programs not authorized to access

some information cannot learn the information in any way, e.g., by bypassing a policy

check (something not uncommon in production systems [114]) or by exploiting leaks due

32



to control-flow or timing channels. We call this security condition non-observability.

Intuitively, we can state non-observability as follows. If some program P is not

allowed to access a resource v1 having a label l, then a program P′ that is identical to

P except that v1 has been replaced with some other resource v2 (having the same type

and label as v1) should evaluate in the same way as P—it should produce the same result

and take the same steps along the way toward producing that result. If this were not true

then, assuming P’s reduction is deterministic, P must be inferring information about the

protected resource.

To make this intuition formal, we will show that the evaluations of programs P and

P′ are bisimilar, where the only difference between them is the value of the protected

resource. To express this, first we define an equivalence relation called similarity up to l

(analogous to definitions of low equivalence [111, 26]) which holds for two terms e and

e′ if they only differ in sub-terms that are labeled with l, with the intention that l is the

label of restricted resources.

Definition 2 (Similarity up to l). Expressions e and e′, identified up to α-renaming, are

similar up to label l according to the relation e1 ∼l e2 shown in Figure 2.6.

The most important rule in Figure 2.6 is (SIM-L), which states that arbitrary expres-

sions e and e′ are considered similar at label l when both are labeled with l. Other parts of

the program must be structurally identical, as stated by the remaining congruence rules.

We extend similarity to a bisimulation as follows: two similar terms are bisimilar if they

always reduce to similar subterms, and do so indefinitely or until no further reduction is

possible. This notion of bisimulation is the basis of our access control security theorem;
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e∼l e (SIM-ID) {l}e∼l {l}e′ (SIM-L)
e∼l e′ l′ 6= l
{l′}e∼l {l′}e′

(SIM-L2)

e∼l e′

λx:t.e∼l λx:t.e′
(SIM-ABS)

e1 ∼l e′1 e2 ∼l e′2
e1 e2 ∼l e′1 e′2

(SIM-APP)

v∼l v′

fix f :t.v∼l fix f :t.v′
(SIM-FIX)

e∼l e′

Λα.e∼l Λα.e′
(SIM-TAB)

e∼l e′ t ∼l t ′

e[t]∼l e[t ′]
(SIM-TAP)

∀i.ei ∼l e′i
C(~e)∼l C(~e′)

(SIM-LAB)

e∼l e′ ei ∼l fi pi ∼l qi

match e with pi→ ei ∼l match e′ with qi→ fi
(SIM-MATCH)

e∼l e′

([e])∼l ([e′])
(SIM-POL)

Figure 2.6: Similarity of expressions under the access control policy

it is both timing and termination sensitive.

Definition 3 (Bisimulation). Expressions e1 and e2 are bisimilar at label l, written e1 ≈l

e2, if and only if e1 ∼l e2 and for {i, j}= {1,2}, ei
c
 e′i⇒ e j

c
 e′j and e′1 ≈l e′2.

Theorem (Non-observability). Given all of the following:

1. A ([·])-free expression e.

2. (a:ta,m:tm,cap:int{user},x:t{acl} àpp e : te) where acl and user are label constants.

3. A type-respecting substitution σ = (a 7→ access,m 7→ member,cap 7→ ([{user}0])).

4. Type-respecting substitutions σi = σ ,x 7→ vi where · àpp vi : t{acl} for i = 1,2.

Then, we have (member user acl c∗ False)⇒ σ1(e)≈acl σ2(e).

This theorem is concerned with a program e that contains no policy-bracketed terms

(it is just application code) but, via the substitution σ , may refer to our access control func-
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tions access and member (defined in Figure 2.3) through the free variables a and m. Ad-

ditionally, the program is granted a single user capability ([{user}0]) through the free vari-

able cap, which gives the program the authority of user user. The program may also refer

to some protected resource x whose label is acl, but the authority of user is insufficient

to access x according to the access control policy because (member user acl c∗ False).

Under these conditions, we can show that for any two (well-typed) vi we substitute for

x according to substitution σi, the resulting programs are bisimilar—their reduction is

independent of the choice of vi.

In all our proofs, two key features of FABLE play a central role. First, dependent

typing in FABLE allows a policy analyst to assume that all policy checks are performed

correctly. For instance, when calling the access function to access a value v of type t{acl},

the label expressing v’s security policy must be acl, and no other. The type system en-

sures that the application program cannot construct a label, say ACL(Public), and trick the

policy into believing that this label, and not acl, protects v, i.e., dependent typing rules

out confused deputies [18]. Second, the restriction that application code cannot directly

inspect labeled resources ensures that a policy function must mediate every access of a

protected resource. Assuring complete mediation is not unique to FABLE— Zhang et

al. [148] used CQual to check that SELinux operations on sensitive objects are always

preceded by policy checks and Fraser [53] did the same for Minix. However, the analysis

in both these instances only ensures that some policy check has taken place, not neces-

sarily the correct one. As such, these other techniques are vulnerable to flaws due to

confused deputies.

When combined with these two insights, our proof of non-observability for the ac-

35



cess control policy is particularly simple. In essence, the FABLE system ensures that

a value with labeled type must be treated abstractly by the application program. With

this observation, the proof proceeds in a manner very similar to a proof of value abstrac-

tion [58]. This is a general semantic property for languages like FABLE that support

parametric polymorphism or abstract types. Indeed, the policy as presented in Figure 2.3

could have been implemented in a language like ML, which also has these features. For

instance, an integer labeled with an access control list could be represented in ML as a

pair consisting of an access control list and an integer with type (string list × int). A policy

module could export this pair as an abstract type, preventing application code from ever

inspecting the value directly, and provide a function to expose the concrete type only after

a successful policy check.

While such an encoding using ML’s module system would suffice for the simple

policy of Figure 2.3, it would not work for more sophisticated models of access control.

For example, a form of access control using capabilities can be easily encoded in FABLE.

Such a model could provide access to more than one resource with a single membership

test, as in the following code

policy access cap〈k〉(u:lab∼USER(k), cred:int{u}, acl:lab) =
match member u acl with True⇒Λα .λx:α{acl}.{◦}x

⇒#fail

Here the caller presents a user credential and an access control label acl but no re-

source labeled with that label. If the membership check succeeds, a function with type

∀α .α{acl} →α is returned. This function can be used to immediately unlabel any re-

source with the authorized label, i.e., the function is a kind of key that can be used to gain

access to a protected resource. This is useful when policy queries are expensive. It is
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also useful for encoding a form of delegation; rather than releasing his user credential, a

user could release a function that uses that credential to a limited effect. Of course, this

may be undesirable if the policy is known to change frequently, but even this could be

accommodated. Variations that combine static and dynamic checks are also possible.

Finally, notice that this theorem is indifferent to the actual implementation of the

acl label and the member function. Thus, while our example policy is fairly simplistic, a

far more sophisticated model could be used. For instance, we could have chosen labels to

stand for RBAC- or RT-style roles [76], and member could invoke a decision procedure

for determining role membership. Likewise, the theorem is not concerned with the origin

of the user authentication token—a function more sophisticated than login (e.g., that re-

lied on cryptography) could have been used. The important point is that FABLE ensures

the second component of the user credential (l:lab∼USER(k) × int{l}) is unforgeable by

application code.

2.2.2 Dynamic Provenance Tracking

Provenance is “information recording the source, derivation, or history of some in-

formation” [26]. Provenance is relevant to computer security for at least two reasons.

First, provenance is useful for auditing, e.g., to discover whether some data was inappro-

priately released or modified. Second, provenance can be used to establish data integrity,

e.g., by carefully accounting for a document’s sources. This section describes a label-

based provenance tracking policy we constructed in FABLE. To prove that this policy is

implemented correctly we show that all programs that use it will accurately capture the
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dependences (in the sense of information flow) on a value produced by a computation.

Figure 2.7 presents the provenance policy. We define the type Prov α to describe

a pair in which the first component is a label l that records the provenance of the second

component. The policy is agnostic to the actual form of l. Provenance labels could rep-

resent things like authorship, ownership, the channel on which information was received,

etc. An interesting aspect of Prov α is that the provenance label is itself labeled with

the 0-ary label constant Auditors. This represents the fact that provenance information is

subject to security concerns like confidentiality and integrity. Intuitively, one can think

of data labeled with the Auditors label as only accessible to members of a group called

Auditors, e.g., as mediated by the access control policy of Figure 2.3; of course, a more

complex policy could be used. Finally, note that because the provenance label l is itself

labeled (having type lab{Auditors}), it would be incorrect to write α{l} as the second

component of the type since this requires that l have type lab. Therefore we unlabel l

when it appears in the type of the second component. As explained in Section 2.1.3,

unlabeling operations in types pose no security risk since the types are erased at runtime.

The policy function apply is a wrapper for tracking dependences through function

applications. In an idealized language like FABLE it is sufficient to limit our attention

to function application, but a policy for a full language would define wrappers for other

constructs as well. The first argument of apply is a provenance-labeled function lf to be

called on the second argument mx. The body of apply first decomposes the pair lf into

its label l and the function f itself and does likewise for the argument mx. Then it applies

the function, stripping the label from both it and its argument first. The provenance of the

result is a combination of the provenance of the function and its argument. We write this
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typename Prov α= (l:lab{Auditors} ×α{{◦}l})

policy apply〈α ,β 〉 (lf:Prov (α →β ), mx:Prov α) =
let l,f = lf in
let m,x = mx in
let y = ({◦}f) ({◦}x) in
let lm = Union({◦}l, {◦}m) in

({Auditors}lm, {lm}y)

policy flatten〈α〉 (x:Prov (Prov α)) =
let l,inner = x in
let m,a = inner in
let lm = Union({◦}l, {◦}m) in

({Auditors}lm, {lm}a)

Figure 2.7: Enforcing a dynamic provenance-tracking policy

as the label pair Union(l,m) which is then associated with the final result. Notice that we

strip the Auditors labels from labels l and m before combining them, and then relabel the

combined result.

The policy also defines a function flatten to convert a value of type Prov (Prov α) to

one of type Prov α by extracting the nested labels (the first two lines) and then collapsing

them into a Union (third line) that is associated with the inner pair’s labeled component

(fourth line).

An example client program that uses this provenance policy is the following:

let client〈α ,β ,γ〉 (f : Prov(α →β→γ), x : Prov α , y : Prov β ) =
apply [β ][γ] (apply [α][β →γ] f x) y

This function takes a labeled two-argument function f as its argument and the two argu-

ments x and y. It calls apply twice to get a result of type Prov γ . This will be a tuple in

which the first component is a labeled provenance label of the form Union(Union(lf,lx), ly)

and the second component is a value labeled with that provenance label. In the label, we

will have that lf is the provenance label of the function argument f and lx and ly are the
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[[e]] Interpretation of labels as sets

[[C]] def= {C} [[Union(l1, l2)]]
def= [[l1]]∪ [[l2]]

t ≤ t ′ Prefixing relation on types

t ≤ t
t ≤ t ′

t ≤ t ′{e}

e≈l e′ : t, t ′ e and e′ are related by provenance p at types t and t ′

i ∈ {1,2} · c̀ vi : ti t ′i{ei} ≤ ti t ≤ ti ei
pol∗ vlab

i
l ∈ [[vlab

1 ]]∩ [[vlab
2 ]] ∨ Auditors ∈ [[vlab

1 ]]∩ [[vlab
2 ]]

v1 ≈l v2 : t1, t2
(R-EQUIVP)

n≈l n : int, int (R-INT)

i ∈ {1,2} · c̀ ei : ti
ei

c∗ vi ⇒ v1 ≈[l v2 : t1, t2
e1 ≈l e2 : t1, t2

(R-EXPR)

· c̀ v : (x:t1)→ t2 · c̀ v′ : (x:t ′1)→ t ′2
∀v1,v′1. v1 ≈l v′1 : t1, t ′1 ⇒ vv1 ≈l v′v′1 : (x 7→ v1)t2,(x 7→ v′1)t

′
2

v≈l v′ : (x:t1)→ t2,(x:t ′1)→ t ′2
(R-ABS) . . .

Figure 2.8: A logical relation that relates terms of similar provenance (selected rules)

provenance of the arguments x and y, respectively. Note that a caller of client can instan-

tiate the type variable γ to be a type like Prov int. In this case, the type of the returned

value will be Prov (Prov int), which can be flattened if necessary.

We can prove that provenance information is tracked correctly following Cheney et

al. [26]. The intention is that if a value x of type Prov α influences the computation of

some other value y, then y must have type Prov β (for some β ) and its provenance label

must mention the provenance label of x. If provenance is tracked correctly, a change to x

will only affect values like y; other values in the program will be unchanged.

The essence of this correctness condition is much like the similarity relation v1∼l v2
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defined for the non-observability property in Section 2.2.1. However, there is a difference

between provenance tracking and access control that complicates the statement of the

correctness condition for provenance. When a computation e that depends on the value

of some variable x is reduced in two different contexts for x, the intermediate terms that

are produced in one context can be entirely different from the terms that are produced in

the other context. That is, if we have e(x 7→ v1)
c
 e1

c
 . . . and e(x 7→ v2)

c
 e′1

c
 . . .;

then the terms e′1 and e′2 may not even have the same shape, which makes it difficult to

state a purely syntactic similarity condition between the terms. However, the provenance

tracking policy ensures that if both reduction sequences terminate with a value, then the

corresponding values are labeled with the appropriate provenance label. In contrast, al-

though non-observability for access control also applies to programs e that are reduced in

different contexts, we can assure that at each step the terms that are produced are identical,

except for holes in the terms that contain the access-protected values of x.

Our formulation of dependency correctness follows technique that is due to Tse and

Zdancewic [127] (although Tse and Zdancewic use this technique to show noninterference

in the presence of a form of dynamic labeling). This approach involves defining a logical

relation [85] that relates terms whose set of provenance labels include the same label l.

Figure 2.8 shows a selection of rules in this relation. (The full relation can be found in

Section A.3.)

The top of the figure begins by giving a semantics for label values in terms of

sets, [[e]]. The relation t ≤ t ′ is a prefixing relation on types, which is convenient for

constraining the shape of types in the main relation e1 ≈l e2 : t1, t2. This latter relation,

states that expressions e1 and e2 are related by provenance label l, and can be given types
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t1 and t2, respectively.

The key rule in the relation is (R-EQUIVP). It states that two arbitrary values v1 and

v2 are related at the label l, if they both have labeled types t1 and t2 (the third premise)

and if these types share a common prefix t (the fourth premise). The constraints on the

labels on these types require that related values be labeled with the provenance label l. In

the fifth premise, we require that some label ei on each type reduce to a label value vlab
i —

since we are only concerned with terminating computations, we can safely ignore the case

where the label expression diverges. The last premise is a disjunct in which the first clause

requires the provenance label l to be mentioned in the labels of both expressions—notice

that the labels do not have to be identical; the sets represented by each label just have

to contain l. The second clause in the disjunct handles an important corner case. Since

our encoding uses dynamic provenance labels that are themselves always protected with

an access control policy, and because the way in which these labels are constructed can

depend on the other values in the program, we treat all provenance labels (those terms

that are protected by the label Auditors) as being related.

The remaining rules in Figure 2.8 are standard and give a flavor of the elided rules.

(R-INT) states that identical integers are related. (R-EXPR) states that expressions e1 and

e2 are related if their normal forms v1 and v2 (if these exist) are related. (R-ABS) relates

function-typed values if these functions reduce to related values when they are applied to

related arguments.

Theorem (Dependency correctness). Given all of the following:

(A1) A ([·])-free expression e such that a:ta, f :t f ,x:Prov t àpp e : t ′,
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(A2) A type-respecting substitution σ = (a 7→ apply, f 7→ flatten).

(A3) àpp vi : Prov t, for i = 1,2 and v1 ≈l v2 : Prov t,Prov t

(A4) For i ∈ {1,2}, σi = σ ,x 7→ vi

Then, (σ1(e)
app∗ v′1 ∧ σ2(e)

app∗ v′2)⇒ v′1 ≈l v′2 : σ1t ′,σ2t ′.

Intuitively, this theorem states that an application program e that is compiled with

the policy of Figure 2.7 and is executed in contexts that differ only in the choice of a

tracked value of label l will compute results that differ only in sub-terms that are also

colored using l. The crux of this proof involves showing that the logical relation is pre-

served under substitution, i.e., a form of substitution lemma for the logical relation. While

constructing the infrastructure to define the logical relation requires some work, strategic

applications of standard substitution lemma for FABLE can be used to discharge the proof

without much difficulty.

2.2.3 Static Information Flow

Both policies discussed so far rely on runtime checks. This section illustrates how

FABLE can be used to encode static lattice-based information flow policies that require

no runtime checks. In a static information flow type system (as found in FlowCaml [111])

labels l have no run-time witness; they only appear in types t{l}. Labels are ordered by

a relation v that typically forms a lattice. This ordering is lifted to a subtyping relation

on labeled types such that l1 v l2⇒ t{l1}<: t{l2}. Assuming the lattice ordering is fixed

during execution, well-typed programs can be proven to adhere to the policy defined by

the initial label assignment appearing in the types.
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policy lub(x:lab, y:lab) = match x,y with
, HIGH | HIGH, ⇒HIGH
| , ⇒LOW

policy join〈α ,l,m〉 (x:α{l}{m}) = ({lub l m}{◦}{◦}x)
policy sub〈α ,l〉 (x:α{l}, m:lab) = ({lub l m}{◦}x)
policy apply〈α ,β ,l,m〉 (f:(α →β ){l}, x:α) = {l}(({◦}f) x)

let client (f:(int{HIGH} → int{HIGH}){LOW}, x:int{LOW}) =
let x = (sub [int] x HIGH) in

join [int] (apply [int{HIGH}][int{HIGH}] f x)

Figure 2.9: Enforcing an information flow policy

Figure 2.9 illustrates the policy functions, along with a small sample program. In

our encoding we define a two-point security lattice with atomic labels HIGH and LOW and

protected expressions will have labeled types like t{HIGH}. The ordering LOW < HIGH

is exemplified by the lub (least upper bound) operation for the lattice. The join function

(similar to the flatten function from Figure 2.7) combines multiple labels on a type into

a single label. The interesting thing here is the label attached to x is a label expression

lub l m, rather than an label value like HIGH. The type rule (T-CONV) presented in

Figure 2.4 can be used to show that a term with type int{lub HIGH LOW} can be given

type int{HIGH} (since lub HIGH LOW c
 HIGH). This is critical to being able to type

programs that use this policy.

The policy includes a subsumption function sub, which takes as arguments a term

x with type α{l} and a label m and allows x to be used at the type α{lub l m}. This is

a restatement of the subsumption rule above, as l v m implies l tm = m. (Once types

are erased, join and sub are both essentially the identity function and could be optimized

away.) Finally, the policy function apply unlabels the function f in order to call it, and

then adds f ’s label on the computed result.
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Consider the client program at the bottom of Figure 2.9 as an example usage of the

static information flow policy. The function client calls the function f with x, where f

expects a parameter of type int{HIGH} while x has type int{LOW}. For the call to type

check, the program uses sub to coerce x’s type to int{lub LOW HIGH} which is convert-

ible to int{HIGH}. The call to apply returns a value of type int{HIGH}{LOW}. The call to

join collapses the pair of labels so that client’s return type is int{lub HIGH LOW}, which

converts to int{HIGH}.

We have proved that FABLE programs using this policy enjoy the standard non-

interference property—a statement of this theorem appears below. We have also shown

that a FABLE static information flow policy is at least as permissive as the information

flow policy implemented by the functional subset of Core-ML, the formal language of

FlowCaml [104]. Both proofs may be found in Appendix A.

Theorem (Noninterference). Given ~p :~t,x : t{HIGH} c̀ e : t ′{LOW}, where e is ([])-

free and t ′ is not a labeled type; and, for i = 1,2, · c̀ vi : t{HIGH}. Then, for type-

respecting substitutions σi = (~p 7→ π,x 7→ vi), where π is the policy of Figure 2.9, σ1(e)
c∗ 

v′1 ∧ σ2(e)
c∗ v′2 ⇒ v′1 = v′2.

While it would be possible to reuse our infrastructure for the dependency correct-

ness proof to show the noninterference result for the static information flow policy (as

in Tse and Zdancewic), we choose instead to use another technique, due to Pottier and

Simonet [104]. This technique involves representing a pair of executions of a FABLE

program within the syntax of a single program and showing a subject reduction property

holds true. As with the logical relations proof, once we had constructed the infrastruc-
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ture to use this technique, the proof was an easy consequence of FABLE’s preservation

theorem.

2.2.4 Dynamic Information Flow

Realistic information flow policies are rarely as simple as that of Section 2.2.3.

For example, the security label of some data may not be known until run-time, and the

label itself may be more complex than a simple atom, e.g., it might be drawn from the

DLM [89] or some other higher-level policy language, such as RT [125]. Figure 2.10

shows how dynamic security labels can be associated with the data and an information

flow policy enforced using a combination of static and dynamic checks [149].

The label lattice is defined by the external oracle function. The enforcement policy

interfaces with the oracle through the function flow, which expects two labels src and

dest as arguments and determines whether the oracle permits information to flow from

src to dest. The representation of these labels is abstract in the policy and depends on the

implementation of the oracle. The flow function is given the type

(src:lab)→ (dest:lab)→ (l:lab ×unit{l})

If the oracle permits the flow, the flow function returns a capability similar to that

provided by the login function of Figure 2.3. The sub function takes this capability as

its first argument as proof that type α{src} may be coerced to type α{dest}. The low

function must appeal to the oracle to acquire the bottom label in the lattice. The app

function is analogous to the apply function in the static information flow policy. It takes a
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policy flow(src:lab, dest:lab) =
let f = if oracle src dest then

FLOW(src,dest)
else NOFLOW in

(f, {f}()〉

policy low〈α〉 (x:α) = let l = oracle low() in (l, {l}x)

policy sub〈α ,src,dest〉(cap:unit{FLOW(src,dest)}, x:α{src}) = {dest}x

policy app〈α ,β ,l,m〉(f:(α →β ){l}, x:α{m}) = {JOIN(l, m)} ({◦}f) ({◦}x)

let client〈α〉(lb:lab, b:bool{lb}, lx:lab, x:α{lx}, ly:lab, y:α{ly}) =
let lxy = JOIN(lx,ly) in
let fx,capx = flow lx lxy in
let fy,capy= flow ly lxy in

match fx,fy with
FLOW(lx,lxy), FLOW(ly,lxy)→

let x’ = sub [α] capx x in
let y’ = sub [α] capy y in
let tmp = app [α] [α →α] ( b[α] ) x’ in

app [α] [α] tmp y’
, → ... #flow must be allowed if oracle is a lattice

Figure 2.10: A dynamic information flow policy and a client that uses it

labeled function f and its argument x as parameters. In the body, it unlabels f and applies

it to x (after unlabeling x also). Since the returned value depends both on the function and

the argument, we label it with the labels of both f and x.

The bottom part of Figure 2.10 shows a client program that illustrates a usage of this

policy. This client program has the same high-level behavior as the example program we

showed for the static information flow policy—it branches on a boolean and returns either

x or y—but here the security labels of the arguments are not statically known. Instead, the

argument lb is a label term that specifies the security level of b, and similarly lx for x and

ly for y. As previously, our encoding of booleans requires each branch to have the same
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type, including the security label. In this case, the program arranges the branches to have

the type JOIN(lx,ly). The first three lines of the main expression use the flow function

to attempt to obtain capabilities that witness the flow from lx and ly to JOIN(lx,ly). The

match inspects the labels that are returned by flow and in case where they are actually

FLOW(...) the final premise of (T-MATCH) permits the type of fx to be refined from

lab∼ fx to lab∼FLOW(lx,lxy) and the type of capx to be refined to unit{FLOW(lx,lxy)},

and similarly for capy. The remainder of the program is similar to the static case, but

requires more uses of subsumption since less is known statically about the labels. The

type of this program is:

∀α . (lb:lab)→βbool{lb} → (lx:lab)→α{lx} → (ly:lab)→β{ly} →α{JOIN(JOIN(lx,ly), lb)}

We have not explicitly proved a noninterference property for this policy. However, a

proof would essentially combine the proof of dependency correctness for the provenance

tracking policy and the proof of noninterference for the static information flow policy.

2.3 Composition of Security Policies

All our correctness theorems impose the condition that an application program be

“([])-free”. That is, these theorems apply only to situations where a single policy is in effect

within a program. However, in practice, multiple policies may be used in conjunction and

we would like to reason that interactions between the policies do not result in violations of

the intended security properties. To characterize the conditions under which a policy can

definitely be composed with another, we define a simple type-based criterion, which when

satisfied by two (or more) policies πP and πQ, implies that neither policy will interfere
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Composes(P, t) A type t is wrapped within the label namespace P

· ` t{e} ∼= t{P(~e)}
Composes(P, t{e})

Composes(P, t)
Composes(P,∀α::κ.t)

∀i.Composes(P, ti)
Composes(P,(x:t1)→ t2)

Figure 2.11: A type-based composability criterion

with the functioning of the other policy when applied in tandem to the same program.

Figure 2.11 defines a predicate Composes(P, t), which states that all the labels that

appear in the type t of a policy term are enclosed within a top-level constructor P, i.e., the

constructor P serves as a namespace within which all the labels are enclosed. Intuitively, a

policy can be made composable by enclosing all its labels within a unique top-level label

constructor that fulfills the role of a namespace. A policy that only manipulates labels

and labeled terms that belong to its own namespace can be safely composed with another

policy. The main benefit of compositionality is modularity; when multiple composable

policies are applied to a program, one can reason about the security of the entire system

by considering each policy in isolation. Policy designers that are able to encapsulate their

policies within a namespace can package their policies as libraries to be reused along with

other policy libraries.

Our notion of composition is a noninterference-like property—a policy is deemed

composable if it can be shown not to depend on, or influence the functioning of another

policy. The statement of this property appears below.

Theorem (Noninterference for policy composition). Given

(A1) ~x :~t,~y :~s àpp e : t{P(~l)}, such that e is ([·])-free

(A2) {e1, ...,en} such that ∀i.· p̀ol ei : ti ∧ Composes(P, ti)
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(A3) { f1, ..., fm} {g1, ...,gm} such that ∀i.· p̀ol fi : si ∧ · p̀ol gi : si ∧ Composes(Q,si)

with P 6= Q

(A4)
σ f = (~x 7→ (([e1]), ...,([en])),~y 7→ (([ f1]), ...,([ fm]))) , and

σg = (~x 7→ (([e1]), ...,([en])),~y 7→ (([g1]), ...,([gm])))

(A5) σ f (e)
c
 
∗

v f ∧ σg(e)
c
 
∗

vg

Then, v f = vg

Assumption (A1) in the statement of the theorem above posits a well-typed ap-

plication program e that refers to two sets of policy terms ~x and ~y. Additionally, (A1)

requires e to have a labeled type, where the label P(~l) is drawn from the namespace P.

Assumption (A2) posits the existence of well-typed terms ~e that inhabit the types~t of ~x,

where each type ti is drawn from the P-namespace. Similarly, assumption (A3) posits

two sets of terms ~f and ~g, both of which inhabit the types ~s of ~y, where each type si is

drawn from a different namespace Q. The remaining hypotheses and conclusion of this

theorem state that if e is linked with ~e and, in one case, with ~f and in another case with

~g, then the values v f and vg produced by an evaluation of e in each case are identical.

That is, when the type of e indicates that it should produce a value protected by the policy

in the P-namespace, then the specific implementation of the policy in the Q-namespace

is insignificant. Or, somewhat more intuitively, this theorem states that the choice of the

Q-policy cannot influence the behavior of the P-policy.

The proof of this theorem is a corollary of the noninterference result for the static

information flow policy using a degenerate lattice where P and Q are incomparable.

This notion of security policy composition generalizes the results of all the security
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theorems shown here. The Composes(P, t) predicate provides a recipe by which each of

our policy encodings can be adapted so that they compose well with all other policies

that have also be so adapted. However, the model of composition proposed here is fairly

simple—it essentially allows no interaction between policies. As with noninterference

properties in other contexts, this is often too restrictive for many realistic examples in

which policies, by design, must interact with each other. We find that policies that do not

compose according to this definition perform a kind of declassification (or endorsement)

by allowing labeled terms to exit (or unlabeled terms to enter) the policy’s namespace.

We conjecture that the vast body of research into declassification [112] can be brought to

bear here in order to recover a degree of modularity for interacting policies.

Aside from generalization via composition, we could also imagine generalizing our

security theorems in more ad hoc ways. For example, one could try to prove that non-

observability holds in the presence of multiple user credentials, or with multiple protected

objects. In the case of access control, it appears straightforward to prove that such a

generalization holds. However, it seems unlikely that such extensions could be proved

secure without a policy-specific analysis. For example, in the case of access control with

multiple user credentials, one would need to show that a policy implementation does not

mistakenly confuse credentials and grant improper access to an unauthorized user. The

idea of an enforcement policy in FABLE speaks directly to this concern—it allows all the

details of policy enforcement to be defined precisely so that a security analysis can be

conducted.
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2.4 Concluding Remarks

This chapter has presented FABLE, a core formalism for a programming language

in which programmers may specify security policies and reason that these policies are

properly enforced. We have shown that FABLE is flexible enough to implement a wide

variety of security policies, including access control, provenance, and static information

flow, among other policies. We have defined extensional correctness properties for each

of our policies and proved that type-correct programs using our policy encodings exhibit

these properties. In discussing the structure of the proofs of each of our security theo-

rems, we have argued that FABLE’s design greatly simplifies these proofs. In particular,

FABLE’s metatheory provides a useful repository of lemmas that can be used to discharge

many important proof obligations. Finally, we have proposed a method by which com-

posite policies can be applied to a program while still preserving the security properties

of each component.

Our focus here has been on enforcing security policies in a purely functional setting.

While this has helped keep the presentation simple, in practice, security policies are often

stateful and must be applied to programs that may themselves manipulate mutable state.

In the following chapters, we show the basic approach of FABLE can be extended to

enforce policies that account for state modification.
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3. Enforcing Stateful Policies for Functional Programs

Security policies frequently make authorization decisions based on events that may

have occurred during a program’s execution. For example, various models of stack- and

history-based access control have been proposed to modulate the privileges of a piece of

code depending on what code has already been executed in a program [51, 1]. The access

rights of principals can also change during a program’s execution. For instance, with

long-running operating systems, network servers, and database systems, new principals

may enter the system, while existing principals may leave or change duties. Changes to

a principal’s privileges may also be transient. In a role-based policy [107], in adherence

to the principle of least privilege, users are required to activate a role before requesting

access to a resource. Once the access is complete, the user deactivates the role. Such

a policy can be implemented in terms of a security automaton [113], where each state

records a set of valid facts (e.g, the rights of principals) and security-sensitive events

(e.g., role-activations) trigger state transitions.

Even when not concerned with the dynamic changes to access rights, many common

policies are naturally phrased in terms of mutable state (in contrast to the purely functional

policies of the previous chapter). For example, in an effort to ensure separation of duties,

a company’s policy may permit a payment to be released only after it has been authorized

by two different managers [15]. One could implement this policy using an automaton
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which is in the initial state when a payment is requested. Each time an authorization is

submitted by a manager, the automaton transitions to a new state. An accepting state

is reached when two different authorizations have been received, and only then is the

permission to make the payment granted.

Security automata policies have been studied extensively, and are particularly im-

portant because they are known to precisely characterize the set of safety properties that

can be enforced by an execution monitor. Prior work on enforcing automata-based poli-

cies has, for the most part, relied on transforming programs to insert inlined reference

monitors [45]. However, this approach has a large trusted computing base in that the

compiler that does the transformation has to be trusted to correctly insert code to inter-

cept all security relevant program actions. We would prefer to have a way of verifying that

the code produced by one of these transformations correctly implemented the automaton

policy—this would remove the complicated compiler from the trusted computing base.

In this context, a type-based approach to verifying the correct enforcement of an

automaton-based policy can be particularly useful. Type checking is generally a fairly

lightweight syntactic procedure, likely to scale to large programs. In this chapter, we

describe an extension to FABLE that, in addition to all the policies explored in Chapter 2,

can be used to verify the enforcement of automata-based policies.

3.1 Overview

Our approach has two parts. We begin by introducing a concrete instance of a

stateful policy intended to control the terms under which information in the possession of
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one principal can be released to another, i.e., an information release policy. Our model

is based on AIR (Automata for Information Release), a formal language we developed

for defining information release policies. AIR’s design follows from the observation

that information release policies can be naturally expressed as automata. As obligations

mentioned in the policy are fulfilled by the program, the state of the automaton advances

towards an accepting state—a release is authorized only in the accepting state. AIR

policies are able to address a number of concerns, including, to varying degrees, each of

the four dimensions of declassification [112]. As such, AIR is of independent interest

insofar as, to our knowledge, no other language allows a high-level information release

policy (of comparable expressiveness) to be specified separately from the program that is

to be secured.

Second, we define λAIR (pronounced “lair”), a language related to FABLE in which

type-correct programs can be shown to correctly enforce an AIR policy. Although λAIR

extends FABLE with singleton and affine types [121, 140] and uses a more general lan-

guage of type constructors, the means by which a policy is enforced in λAIR follows the

same pattern as in FABLE. The first step is to protect sensitive data in the program using a

security labeling. For example, an object x representing the state of a security automaton

is given the affine type ¡InstanceN , where N is a type-level name unique to x. (Affine

types in λAIR are written ¡t, to contrast with the “of course” modality in linear logic,

which is typically denoted using “!”.) Then, an integer i protected by x would be given

type Protected Int N, which is analogous to a labeled type in FABLE. When the automa-

ton transitions to a new state y, because x has an affine type, we are able to consume the

old state x and ensure that the new state y is used in subsequent authorization decisions.
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Operations in the AIR policy that correspond to policy state transitions are repre-

sented by privileged policy functions in λAIR. In order to manipulate data with a Protected

type, a λAIR program is required to call these policy functions—i.e., just as with enforce-

ment policy functions in FABLE. Policy functions in λAIR take arguments that express

release obligations. These obligations are given dependent types, where an object having

that type serves as a proof that the obligation has been fulfilled. For example, data could

be released to a principal p only if p acts for some principal q (where p and q are program

variables that store public keys). A proof of this fact could be represented by an object

with type ActsFor p q, where ActsFor is a programmer-defined dependent type construc-

tor. Generally speaking, proof objects represent certificates which are used to produce a

certified evaluation of stateful policy logic—every authorization decision is accompanied

by a proof that all obligations mandated by the high-level policy have been met.

To focus on the new elements of the type system, our presentation of λAIR takes

a more abstract view (relative to FABLE) of the policy functions. Rather than include

concrete enforcement policy functions, in λAIR, we allow the policy designer to pro-

vide just a type signature for these functions. For example, to interpret access con-

trol lists in λAIR, we might include a type signature that gives access simple the type

(acl:Lab)→ (Protected Int acl)→ Int. This type states that access simple is a function

that takes a label acl as its first argument; an integer protected by this label as the sec-

ond argument; and returns an unlabeled integer. The runtime behavior of access simple,

in FABLE is implemented in the language itself (in bracketed code) to include specific

membership test and an unlabeling operation. Here, the semantics of this function is

specified outside of λAIR, using an abstract model. Additionally, λAIR’s more general
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language of type constructors allows us to give more convenient types to capabilities and

certificates. For example, instead of representing a flow capability using a value of type

unit{FLOW(src, dst)}, as we did with FABLE in Section 2.2.4, we can simply define a de-

pendent type constructor Flow, and give the capability a type Flow src dst. In Section 3.6

we show how the FABLE type system can be embedded in λAIR.

3.2 AIR: Automata for Information Release

Many organizations, including financial institutions, health-care providers, the mil-

itary, and even the organizers of academic conferences, wish to specify the terms under

which sensitive information in their possession can be released to their partners, clients, or

the public. Such a specification constitutes an information release policy. These policies

are often quite complex. For example, consider the policy that regulates the disclosure of

military information to foreign governments as defined by the United States Department

of Defense [128]. This policy includes the following provisions: a release must be autho-

rized by an official with disclosure authority who represents the “DoD Component that

originated the information”; the system must “edit or rewrite data packages to exclude

information that is beyond that which has been authorized for disclosure”; a disclosure

shall not occur until the foreign government has submitted “a security assurance [. . .] on

the individuals who are to receive the information”; and, that the release must take place

in the Foreign Disclosure and Technical Information System in which both approvals and

denials of a release request must be logged.

We would like to ensure that software systems that handle sensitive data—including
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military systems, but also programs like medical-record databases, online auction soft-

ware, and network appliances—correctly enforce such a high-level policy. As a concrete

example, consider a specific kind of application called a cross-domain guard. These are

programs, like network firewalls, that mediate the transfer of information between orga-

nizations at different trust levels. Commercial guards, e.g., the Data Sync guard produced

by BAE [48], do not enforce high-level policies but rather implement low-level “dirty

keyword” filters.

The research community has only recently begun to consider the verified enforce-

ment of release policies. For instance, FlowWall [62] is arguably the research counterpart

of a system like DataSync guard. By virtue of its being built with the Jif programming

language [31], FlowWall is sure to enforce a low-level filtering policy, but it does not

appeal to high-level information release criteria. Augmenting information flow policies

with high-level conditions that control information release has been proposed by Chong

and Myers [30] and, more recently, by Banerjee and Naumann [9]. However, in both these

cases, reasoning separately about high-level release decisions is difficult since the release

policy is embedded within the program.

To fill this gap, we define AIR, a formal language for defining information release

policies separately from the program that is to be secured. AIR’s design follows from the

observation that an information release policy is a kind of stateful authorization policy

naturally expressed as an automaton. Satisfaction of a release obligation advances the

state of the automation, and once all obligations have been fulfilled, the automaton reaches

the accepting state and the protected information can be released. AIR allows one to

express such automata in a natural way.

58



In subsequent sections, we show how an AIR policy can be compiled to an API in

λAIR, where each API function corresponds to an automaton transition such that the type

of that function precisely expresses the evidence necessary for a transition to succeed—

these API functions represent the enforcement policy that ties an AIR policy to a λAIR

program. The type system of λAIR ensures that programs use the compiled AIR API

correctly and, as a consequence, meet the specifications of the high-level policy. More

precisely, we prove that the sequence of events produced by a program’s execution is a

word in the language accepted by the AIR automaton.

Using our techniques, one could build a cross-domain guard that adheres to high-

level policy prescriptions; e.g., it would release information only after confirming that ap-

propriate security assurances have been received, that to-be-released data packages have

been rewritten appropriately, and that audit logs have been updated.

Our use of AIR policies for information release departs from prior work on declas-

sification policies in that we do not focus on establishing a noninterference-like property

for programs. However, our work complements noninterference-oriented interpretations

of information release. In particular, by showing how to embed FABLE in λAIR(Section 3.6),

we argue that high-level AIR policies can be enforced in conjunction with information

flow in λAIR. For example, we could ensure that an adversary can never influence a pro-

gram to cause information to be released, and furthermore, when it is released, it always

follows the prescription of the high-level AIR policy.

59



3.2.1 Syntax of AIR, by Example

An AIR policy consists of one or more class declarations. A program will contain

instances of a class, where each instance protects some sensitive data via a labeling. Pro-

tected data can be accessed in two ways. First, each class C has an owning principal P

such that P and all who act for P may access data protected by an instance of C. Sec-

ond, each class defines a release policy by which its protected data can be released to an

instance of a different class.

The release policy is expressed using rules that define a security automaton, which

is a potentially infinite state machine in which states represent security-relevant config-

urations. In the case of AIR, the security automaton defines conditions that must hold

before data can be released. Each class instance consists of its current state, and each

condition that is satisfied transitions the automaton to the next state. These transitions

ultimately end in a release rule that allows data to be released to a different class instance,

potentially in a modified form. Because sensitive data is associated with instances rather

than classes, multiple resources may be governed by the same policy template (i.e., the

automaton defined by the class) but release decisions are made independently for each re-

source. Dually, related resources can be protected by the same instance, thereby allowing

release decisions made with respect to one resource to affect the others.

The formal syntax of AIR policies is presented in Figure 3.1. We explain the syntax

of AIR while stepping through a running example, shown in Figure 3.2. A class declara-

tion consists of a class identifier, an identifier for the owning principal, a list of automaton

states, and a sequence of rules that define the automaton transitions. Our example de-
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Metavariables
id class and rule ids P principals
C state constructors n, i, j integers
x,y,z variables

Core language
Declarations D ::= class id = (principal:P; states:

−→
S ;
−→
R )

States S ::= C | C of −→t
Rules R ::= id : R | id : T
Release R ::= When G release e with next state A
Transition T ::= When G do e with next state A
Guards G ::= x requested for use at y and

−−−→
∃x:t.C

Conditions C ::= A1 IsClass A2 | A1 InState A2
| A1 ActsFor A2 | A1 ≤ A2

Atoms A ::= n | x | id | P | C (
−→
A ) | A1 +A2

| Self | Class(A) | Principal(A)

e is an expression and t is a type in λAIR. (cf. Figure 3.4)

Figure 3.1: Syntax of AIR

clares a single class US Army Confidential, owned by the principal US Army, that defines

the policy for confidential data owned by the U.S. Army. For simplicity, our examples

use a flat namespace for class identifiers, and abstract names for principals.

Automaton states are represented by terms constructed from an algebraic datatype.

The example has two kinds of states. The nullary constructor Init represents the initial

state of the automaton; all classes must have this state. The other kind of state is an

application of the unary constructor Debt to an argument of type Int. Constructors of the

form C of −→t may carry data as indicated by the types −→t . Types t (such as Int) are drawn

from the programming language λAIR in which programs using AIR policies are written;

λAIR is discussed in the next section.

Each rule in an AIR class is given a name, and is either a release rule or a transition

rule. Each rule begins with a clause “When x requested for use at d,” which serves to bind
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variables x and d in the remainder of the rule. Here, x names the information protected by

an instance of this class, requested for release to some other instance d (usually of another

class). This clause is followed by a conjunction of conditions that restrict the applicability

of a rule; we discuss these in more detail below. Following these conditions, the rule spec-

ifies a λAIR expression e that can either release information (perhaps after downgrading it

by filtering or encryption) or do some other action (like logging), depending on whether

the rule is a release rule or a transition rule. A rule concludes with the next state of the

automaton.

The first rule in the US Army Confidential class is a release rule called Conf secret.

This rule is qualified by a condition expression Class(d) IsClass US Army Secret stating

that the rule applies when releasing x to an instance d of a class named US Army Secret. If

applicable, this rule allows x to be released without modification—the release expression

is simply x, and not, some function that downgrades x. After the release, the automaton

remains in its current state; i.e. the state Self.

We use a small ontology for conditions based on integers, principals, classes and

their instances—IsClass mentioned above, is one such condition. We expect this ontology

to be extended, as needed. Generally speaking, condition expressions C are typed binary

predicates over atoms A. For example, A1 ActsFor A2 is defined for Principal-typed atoms

A1 and A2, and asserts that A1 acts for A2 according to some acts-for hierarchy among prin-

cipals (not explicitly modeled here). Atoms include integers n, variables x, identifiers id,

principal constants P, state literals constructed from an application of a state constructor

C to a list of atoms, addition of integers and the implicit variable Self. We also include

two operators: Class(z) is the class of the argument z, a class instance; and, Principal(z),
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class US Army Confidential =
principal : US Army; states : Init, Debt of Int;

Conf secret :
When x requested for use at d and

Class(d) IsClass US Army Secret
release x with next state Self

Conf init :
When x requested for use at d and

Self InState Init
do with next state Debt(0)

Conf coalition :
When x requested for use at d and

Principal(Class(d)) ActsFor Coalition,
∃count:Int.Self InState Debt(count),
count ≤ 10

release
(log(...x...d);encrypt (pubkey (principal (class d))) x)

with next state Debt(count +1)

Figure 3.2: A stateful information release policy in AIR

which is the principal that owns the class z. Finally, we permit a condition C to be prefixed

by one or more existentially quantified variables—i.e., in ∃x1:t1.C1, . . . ,∃xn:tn.Cn, each xi

is a variable of type ti and is in scope as far to the right as possible, until the end of the

rule. We omit the quantifier prefix when no such variables exist.

3.2.2 A Simple Stateful Policy in AIR

Taken as a whole, the class US Army Confidential can be thought of as implement-

ing a simple kind of risk-adaptive access control [27], in which information is released

according to a risk budget, with the intention of quantifying the risks vs. the benefits of

releasing sensitive information. This class maintains a current risk debt, as reflected in

the state Debt of Int. Each time the class authorizes an information release we add an
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estimate of the risk associated with that release to the debt. When the accumulated risk

debt exceeds a threshold then releases outside the U.S. Army are no longer permitted.

The other two rules in the policy, Conf init and Conf coalition, implement this behavior.

The Conf init transition rule applies when processing a release to an instance d and

when the automaton is in the Init state. The “do” expression initializes the risk debt to 0 by

transitioning the automaton to the Debt(0) state. The Conf coalition rule allows information

to be released to a coalition partner. In particular, if the release target class is owned by a

principal that acts for the Coalition (expressed by Principal(Class(d)) ActsFor Coalition),

then information can be released only if the current risk debt has not exceeded the budget,

as expressed in the latter two conditions. The first of these requires the current state of

the automaton to be Debt(count), where count is variable with type Int which holds the

current risk debt. The last condition requires that count is not above the preallocated risk

budget of 10. With these conditions satisfied, Conf coalition logs the fact that a release has

been authorized and permits release of the data after it has been downgraded using an en-

cryption function. In this case, the downgrading expression encrypts x with the public key

of the principal that owns the class of the instance d. Unlike releases to US Army Secret

which do not alter the risk debt, Conf coalition increments the risk debt by transitioning

to the Debt(count + 1) state, indicating that releases to the Coalition are more risky than

upgrading to a higher classification level of the same organization (via rule Conf secret).

AIR as presented here is particularly simple. We anticipate extending AIR with

support for more expressive condition ontologies and release rules. For instance, instead

of a fixed set of ontologies, we could embed a stateful authorization logic (say, in the

style of SMP [15]) to allow custom ontologies and release rules to be programmed within
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an AIR class. We could also introduce a set of downgrading and logging primitives

to completely separate AIR from λAIR. Additionally, AIR’s object-oriented design is

intended to support extensions like inheritance and overloading that are likely to help

with the modular construction and management of large policies.

3.3 A Programming Model for AIR

Given a particular AIR policy, we would like to do two things. First, we must

have a way of reflecting an AIR policy in a program by protecting sensitive resources

with instances of an AIR class. Second, we must ensure that all uses of protected data

adhere to the prescriptions of the AIR policy. Taken together, we can then claim that an

AIR policy is correctly enforced by a program. To achieve these goals, we have defined

a formal model for a language called λAIR in which one writes programs that use AIR

policies. λAIR’s type system ensures that these policies are used correctly. The rest of this

section defines the programming model for this language and the next two sections flesh

out its syntax and semantics. Section 3.5.4 proves that type-correct programs act only in

accordance with their AIR policies.

The programming model for using AIR policies has two elements. First, program-

mers tie an AIR policy to data in the program by constructing instances of AIR classes

and labeling one or more pieces of data with these instances. This association defines

(1) the set of principals that may view the data (in particular, the principal P that owns

the class, and any principals that may act for P), and (2) the rules that allow the data to

be released. As in other security-typed languages, the labeling specification (expressed
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using type annotations) is part of the trusted computing base.

Second, programmers manipulate data protected by an AIR class instance through

a class-specific API that is generated by compiling each AIR class definition to a series

of program-level definitions. For example, each AIR class’s release and transition rules

are compiled to functions that can be used to release protected data. The types given to

these functions ensure that a caller of the function must always provide evidence that the

necessary conditions to release protected data have been met.

Figure 3.3 illustrates a program using the AIR policy of Figure 3.2, written using

a ML-like notation. (Significantly, our examples omit type annotations where they do

not help clarify the exposition. λAIR does not support type inference at all.) At a high

level, this program processes requests to release information from a secret file. The files

are stored on the file system together with a policy label that represents a particular AIR

class instance. Before disclosing the information, the program must make sure that the

automaton that protects the data is in a state that permits the release. The first two lines

set up the scenario. At line 1, we read the contents of a secret file into the variable x a1

and the automaton that protects this file into the variable a1. Initially, only the principals

that act for the owner of the class of a1 can view these secrets. At line 2, the program

blocks until a request is received. The request consists of an output channel and another

automaton instance a2 that represents the policy under which the requested information

will be protected after the release. In effect, the information, once released, will be under

the protection of the principal that owns the class of a2.

Prior to responding to the request, on lines 4-7 we must establish that a1 is in a

state that permits the release. At line 4, we extract the class of the instance a2. At line
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1 let x a1, a1 = get secret file and policy () in
2 let a2, channel = get request () in
3 (∗ generating evidence of policy compliance ∗)
4 let a2, a2 class = get class a2 in
5 let ev1 = acts for (principal a2 class) Coalition in
6 let a1, Debt(debt), ev2 = get current state a1 in
7 let ev3 = leq debt 10 in
8 (∗ supplying evidence to policy API and releasing data ∗)
9 let a1’, a2, x a2 = Conf coalition a1 x a1 a2 ev1 debt ev2 ev3 in

10 send channel x a2

Figure 3.3: Programming with an AIR policy

5, we check that the owner of a2’s class acts for the Coalition principal and, if this check

succeeds, we obtain a certificate ev1 as evidence of this fact. At line 6, we extract the

current state of the automaton a1, use pattern matching to check that it is of the form

Debt(debt) (for some value of debt) and receive an evidence object ev2 that attests to the

fact that a1 is currently in this state. At line 7, we check that the total debt associated with

the current state of the automaton is not greater than 10 and obtain ev3 as evidence if the

check succeeds.

At line 9 we call Conf coalition, a function produced by compiling the AIR policy.

We pass in the automaton a1 and the secret data x a1; the automaton a2 to which x a1

is to be released; and the certificates that serve as evidence for the release conditions.

Conf coalition returns a1’ which represents the next state of the automaton (presumably in

the Debt(debt+1) state); a2 the unchanged destination automaton; and finally, x a2, which

contains the suitably downgraded secret value. On the last line, we send the released

information on the channel received with the request.

For programs like our example, we would like to verify that all releases of infor-

mation are mediated by calls to the appropriate transition and release rules as defined
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by the AIR policy (functions like Conf coalition). Additionally, we would like to verify

that a program satisfies the mandates of an AIR policy rule by presenting evidence that

justifies the appropriate release conditions. This evidence-passing style supports our goal

of certifying the evaluation of all authorization decisions, while being flexible about the

mechanism by which an obligation is fulfilled. To return to the DoD example from the

introduction, this design gives us the flexibility to allow release authorizations to be ob-

tained in one part of the system and security assurances from the recipient to be handled

in another; the cross-domain guard must simply collect evidence from the other compo-

nents rather than performing these operations itself. λAIR’s type system is designed so

that type correctness ensures these goals are satisfied, i.e., a type-correct program uses its

AIR policy correctly. The type system has three key elements:

Singleton types. First, in order to ensure complete mediation, we must be able to cor-

rectly associate data with the class instance that protects it. For example, Conf coalition

expects its first argument to be an automaton and its second argument to be data protected

by that automaton. In an ML-like type system, this function’s type might have the form

∀α.Instance→α→ t But such a type is not sufficiently precise since it does not prescribe

any relationship between the first and second argument, e.g., allowing the programmer to

erroneously pass in a2 as the first argument, rather than a1. To remedy this problem, we

can give Conf coalition a type like the following (as a first approximation):

∀N,α.InstanceN → Protected α N→ . . .

Here, N is a unique type-level name for the class instance provided in the first argument.
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The second argument’s type Protected α N indicates it is an α value protected by the

instance N, making clear the association between policy and data. We can ensure that

values of type Protected α N may only be accessed by principals P that act for the owner

of the class instantiated by the instance named N. This approach is more flexible than

implicitly pairing each protected object with its own (hidden) automaton. For example,

with our approach one can encode policies like secret sharing, in which a set of related

documents are all protected by the same automaton instance. Each document’s type would

refer to the same automaton, e.g., Protected Doc N. Information released about one

document updates the state of the automaton named N and can limit releases of the other

documents.

Dependent types. Arguments 4-7 of Conf coalition represent evidence (proof certificates)

that the owner of class instance a2 acts for Coalition, and that a1 is in a state authorized

to release the given data. The types we give to these arguments reflect the propositions

that the arguments are supposed to witness. For example, we give the seventh argument

(ev3) to Conf coalition the type LEQ debt 10 where LEQ is a dependent type constructor

applied to two expressions, debt and 10, which themselves have type Int. Data with type

LEQ n m represents a certificate that proves n ≤ m. If we allow such certificate values

to only be constructed by trusted functions that are known to correctly implement the

semantics of integer inequality, then we can be sure that functions like Conf coalition are

only called with valid certificates, i.e., type correctness guarantees that all certificates are

valid proofs of the propositions represented by their types, and there is no need to inspect

these certificates at run time. If we interface with other programs, we can check the
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validity of proof certificates at run time before allowing a call to proceed. Either way, the

type system supports an architecture that enables certified evaluation of an AIR policy.

Affine types. The final piece of our type system is designed to cope with the stateful

nature of an AIR policy. The main problem caused by a state change is illustrated by the

value returned by the Conf coalition function. In our example, a1’ represents the state of

the policy automaton that protects x a1 after a release has been authorized. Thus, we need

a way to break the association between x a1 and the old, stale automaton state a1. We

achieve this in two steps. First, even though our type system supports dependent types,

as shown earlier, we use singleton types to give x a1 the type Protected α N, where N

is a unique type name for a1 (rather than giving x a1 a more-direct dependent type of

the form Protected α a1). The second step is to use affine types (values with an affine

type can never be used more than once) to consume stale automaton values, so that at

any program point, there is only one usable automaton value that has the type-name N.

Thus, we give both a1 and a1’ the type ¡InstanceN , where ¡t denotes an affinely qualified

type t. Once a1 is passed as an argument to Conf coalition (constituting a use) it can no

longer be used in the rest of the program; a1’ is the only automaton that can be used in

subsequent authorization checks for x a1. Thus, a combination of singleton and affine

types transparently takes care of relabeling data with new automaton instances. (One

might also wonder how we deal with proof certificates that can become stale because of

the changing automaton state; we discuss this issue in detail in Section 3.5.1.)

To illustrate how singleton, dependent, and affine types interact, we show the (slightly

simplified) type of Conf coalition below. The full type is discussed in Section 3.5.2.
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∀N,M,α. ¡InstanceN → Protected α N→ ¡InstanceM→
. . .→ (debt : Int)→ . . .→ (LEQ debt 10)→
(¡InstanceN× ¡InstanceM×Protected α M)

The first three arguments are the affine source automaton (a1), the data it protects

(x a1), and the affine destination automaton (a2). On the next line, we show the de-

pendent type given to the evidence that the current debt of the automaton is not greater

than 10. Finally, consider the return type of Conf coalition. The first component of this

three-tuple is a class instance with the same name N as the first argument. This returned

value is the new state of the automaton named N—it protects all existing data of type

Protected α N (such as x a1). The second component of the three-tuple is the unchanged

target automaton. The third component contains the data ready to be released—its type,

Protected α M, indicates that it is now protected by the target automaton instance M. In

effect, λAIR models state modifications by requiring automata states to be manipulated in

a store-passing style, reminiscent of a monadic treatment of side effects in a purely func-

tional language [69]. However, by imposing the additional discipline of affine types, we

are able to ensure that the program always has a consistent view of an automaton’s state,

while still retaining the benefits of a well-understood and relatively simple functional

semantics.

The reader may be concerned about the difficulty of programming with affine types

in λAIR. We put forth an argument in two parts in order to quell this concern. First,

when enforcing purely functional FABLE-style policies in λAIR, affine types need not be

used at all. More subtly, even when affine types are used to enforce stateful policies, we

conjecture that λAIR’s type system may actually simplify the programming task rather
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than complicate it. Admittedly, prior work on adding affine types to a programming

language flies in the face of this conjecture. For example, affine types have been used in

Cyclone to prevent the creation of pointer aliases [124]. When the referent of an alias-

free pointer is deallocated, it is easy to show that no dangling pointers remain. In our

experience, using affine types to control pointer aliasing makes programming in Cyclone

considerably harder. A main difficulty is that non-affine aliasing is not always a symptom

of a programming error, e.g., pointers may be freely aliased so long as no pointer in an

alias set is dereferenced after the referent is deallocated. In contrast, affine types in λAIR

are used to restrict the use of stale policy states rather than to control pointer aliasing. We

are optimistic about the usability of affine types in λAIR because these types appear to

very naturally capture the only correct usage mode of a stateful policy—any use of a stale

policy state in an authorization decision violates the consistency of the policy. Thus, we

conjecture that any correct implementation of a stateful policy must adhere to an affine

discipline on policy states. λAIR’s type system may actually simplify this task, since it

can detect common programming errors that cause the required affine discipline to be

violated.

Nevertheless, we acknowledge that adhering to the constraints of λAIR’s type sys-

tem is surely more burdensome than when using a more traditional programming lan-

guage. Thus λAIR may be most appropriate for the security-critical kernel of an appli-

cation, or even as the (certifiable) target language of a program transformation for inline

reference monitoring. We leave to future work support for improving λAIR’s usability,

such as type inference.
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Metavariables
B Base terms functions T Type constructors
D Data constructors α,β ,γ Type variables

Core language
Terms e ::= x | λx:t.e | e e | Λα::k.e | e [t] | B | D

| case e of
−→x:t.e : e else e | ⊥ | new e

Types t ::= (x:t)→ t | α | ∀α::k ε→ t | T
| t⇒ t | q t | t t | t e | tη

Type names η ::= α | ◦
Affinity q ::= ¡ | ·
Simple kinds k ::= U | A | N
Kinds K ::= k | k→ K | t→ K
Name constraints ε ::= · | α | ε ] ε | ε ∪ ε

Signatures and typing environments
Phase index ϕ ::= term | type
Signatures S ::= (B:t) | (D:t) | (T::K) | S,S
Type env. Γ ::= Γ,x:t | Γ,α::k | S
Affine env. A ::= x | A,A

Figure 3.4: Syntax of λAIR

3.4 Syntax and Semantics of λAIR

λAIR extends a core System Fω [85] with support for singleton, dependent, and

affine types. λAIR is parameterized by a signature S that defines base term functions B,

data constructors D, and type constructors T —each AIR class declaration D is compiled

to a signature SD that acts as the API for programs that use D. All AIR classes share

some elements in common, like integers, which appear in a prelude signature S0. We

explain the core of λAIR using examples from the prelude. The next section describes the

remainder of the prelude and shows how our example AIR policy is compiled.
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3.4.1 Syntax

Figure 3.4 shows the syntax of λAIR. The core language expressions e are mostly

standard, including variables x, lambda abstractions λx:t.e, application e e′, type abstrac-

tion Λα::k.e, and type application e [t]. Functions have dependent type (x:t)→ t ′ where

x names the argument and may be bound in t ′. Type variables are α . A type t universally

quantified over all types α of kind k is denoted ∀α::k ε→ t. Here, ε is a name constraint

that records the type names α given to automaton instances in the body of the abstrac-

tion; we discuss these in detail later. When the constraint is empty we write a universally

quantified type as ∀α::k.t. The signature S defines the legal base terms, B and D, and type

constructors T , mapping them to their types t and kinds K, respectively. (We distinguish

between base terms functions and data constructors syntactically since, as illustrated in

Section 3.4.3, they have different operational semantics.) The prelude S0 defines several

standard terms and types which we use to illustrate some of λAIR’s main features.

The type constructor Int represents the type of integers, and is given U kind in the

prelude (written Int::U). Kind U is one of three simple kinds k. A type t with simple kind

A is affine in that the typing rules permit terms of type t to be used at most once. ¡t is

an instance of the form q t where q = ¡. Terms whose types have kind U are unrestricted

in their use (explaining the choice of U as the name of this kind). We explain kind N, the

kind of type names, shortly.

The prelude also defines two base data constructors for constructing integers: Zero :

Int represents the integer 0, while Succ : Int⇒ Int is a unary data constructor that produces

an Int given an Int. Data constructor application is written e (e); thus the integer 1 is
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represented Succ (Zero) (but we write 0,1,2 etc. for brevity). Programs can pattern

match data constructors applications using the expression form case e of
−→x:t.e : e else e.

This is mostly standard; details are in Appendix B.

In addition to simple kinds k, kinds K more generally can classify functional type

constructors, using the forms k→ K and t → K. A type constructor t1 having the first

form can be applied to another type (as t1 t2) to produce a (standard) type, while one of

the second form can be applied to a term (as t e) to produce a dependent type. As an

example of the first case, the prelude defines a type constructor ×::U→ U→ U to model

pairs; × Int Int is the type of a pair of integers (for clarity, from here on we will use infix

notation and write a pair type as t× t ′). The prelude also defines a base-term constructor

Pair which has a polymorphic type ∀α,β ::U.α⇒ β ⇒ α×β for constructing pair values.

Evidence for condition expressions in an AIR policy are given dependent types.

For example, the prelude provides means to test inequalities A1 ≤ A2 that appear in a

policy and generate certificates that witness an inequality:

(LEQ::Int→ Int→ U),

(leq:(x:Int)→ (y:Int)→ LEQ x y)

LEQ is a dependent-type constructor that takes two expressions of type Int as arguments

and produces a type having kind U. This type is used to classify certificates that witness

the inequality between the term arguments. These certificates are generated by leq which

is a base term function with a dependent type: the labels x and y on the first two arguments

appear in the returned type. Thus the call leq 3 4 would return a certificate of type LEQ 3 4

75



because 3 is indeed less than 4. An attempt to construct a certificate LEQ 4 3 by calling

leq 4 3 would fail at run time, returning ⊥ (an unrecoverable failure) in our semantics—

we could use option types to handle failures more gracefully. The signature does not

include a data constructor for the LEQ type, so its values cannot be constructed directly

by programs—the only way is by calling the leq function.

We discuss the remaining constructs—including name constraints ε , named types

tη , and the new e construct—in conjunction with the type rules next.

3.4.2 Static Semantics

Figure 3.5 shows the main rules from the static semantics of λAIR, which consists

of two judgments. The full semantics can be found in Appendix B. The typing judgment

is parameterized by a phase index ϕ , which indicates whether the judgment applies to a

term- or type-level expression. (Note that, though seemingly related, the phase index is

not to be confused with the color index in FABLE. Colors distinguish application from

enforcement policy code. The phase index distinguishes expressions that appear at the

type-level from those that appear within term.) The judgment giving an expression e a

type t is written Γ;A `ϕ e : t;ε where Γ is the standard typing environment augmented

with the signature S (used to type base terms and type constructors), A is a list of affine

assumptions, and ε is a name constraint that records the set of fresh type names assigned

to automata instances in e. The second judgment, Γ ` t :: K states that a type t has kind K

in the environment Γ.

Recall that the type system must address three main concerns. First, we must cor-
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Γ;A `ϕ e : t;ε A ϕ-level expression e has type t and uses names ε

Γ ` Γ(x) :: U
Γ; · `ϕ x : Γ(x); ·

(T-X)
Γ;x `ϕ x : Γ(x); ·

(T-XA)
Γ; · `type x : Γ(x); ·

(T-X-type)

Γ;A `type e : t;ε1] ε

Γ;A `type e : t;ε
(T-NC-type)

Γ;A `ϕ e : t;ε ε ′ ⊆ dom(Γ)

Γ;A,A′ `ϕ e : t;ε ] ε ′
(T-WKN)

Γ;A `ϕ e : t;ε Γ ` t :: U Γ(α) = N

Γ;A `ϕ new e : ¡tα ;α ] ε
(T-NEW)

Γ;A `ϕ e : tα ;ε

Γ;A `ϕ e : t◦;ε
(T-DROP)

Γ,α::k;A `ϕ e : t;ε ] ε ′ α 6∈ ε ε ′ ∈ {·,α} q = p(A,ε)

Γ;A `ϕ Λα::k.e : q(∀α::k ε ′→ t);ε

(T-TAB)

Γ ` tx :: k q = p(A,ε) Γ,x : tx;A,a(x,k) `ϕ e : te;ε

Γ;A `ϕ λx:tx.e : q((x:tx)→ te);ε
(T-ABS)

Γ;A `ϕ e : q(∀α::k ε ′→ t ′);ε Γ ` t :: k

Γ;A `ϕ e [t] : [α 7→ t]t ′;ε ] ([α 7→ t]ε ′)
(T-TAP)

Γ;A `ϕ e : q((x:t ′)→ t);ε1 Γ;A′ `ϕ e′ : t ′;ε2

Γ;A,A′ `ϕ e e′ : [x 7→ e′]t;ε1] ε2
(T-APP)

where a(x,A) = x a(x,U) = ·
p(A,ε) = ¡ p(·, ·) = ·

Γ ` t :: K A type t has kind K in environment Γ

Γ(α) = k
Γ ` α :: k

(K-A)
Γ ` t :: A Γ(η) = N ∨ η = ◦

Γ ` tη :: A
(K-N)

Γ ` t :: U
Γ ` ¡t :: A

(K-AFN)

Γ ` t :: k Γ,x : t ` t ′ :: k′

Γ ` (x:t)→ t ′ :: U
(K-FUN)

Γ ` t :: t ′→ K Γ; · `S,type e : t ′; ·
Γ ` t e :: K

(K-DEP)

Γ′ = Γ,α::k Γ′ ` t :: k α ′ ∈ ε ⇒ Γ′(α ′) = N

Γ ` ∀α::k ε→ t :: U
(K-UNIV)

Figure 3.5: Static semantics of λAIR (Selected rules)
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rectly assign unique type names to automata instances and then associate these names

with protected data. Next, for certified evaluation, we must be able to accurately type

evidence using dependent types. Finally, to cope with automaton state changes, we must

(via affine types) prevent stale automaton instances from being reused. We consider each

of these aspects of the system in turn, first in the typing judgment and then in the kinding

judgment.

Assigning unique names to automata. We construct new automata using new e. (T-

NEW) assigns the name α to the type in the conclusion, ensuring (via α ] ε) that α is

distinct from all other names ε that have been assigned to other automata. We require α to

be in the initial environment Γ, or to be introduced into the context by a type abstraction.

Recall from Section 3.3 that protected values will refer to this name α in their types (e.g.,

Protected Int α). The resulting type ¡tα is also affinely qualified; we discuss this shortly.

(T-DROP) allows the unique name associated with a type to be replaced with the

distinguished constant name ◦. This is sound because although the name α of a type ¡tα

can be hidden, α cannot be reused as the type-level name of any other automaton (i.e., ε

is unaffected). This form of subtyping is convenient for giving types to proof objects that

witness properties of the state of an automaton, while keeping our language of kinds for

type constructors relatively simple. Section 3.5.1 illustrates an example use of (T-DROP).

(T-TAB) is used to check type abstractions. The first premise checks the body of

the abstraction e in a context that includes the abstracted type variable α . Since we treat

type names and types uniformly, functions polymorphic in a type name can be written

by quantifying over α::N—the interesting elements of this rule have to do with managing
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these names. If the body of the abstraction e constructs a new automaton assigned the

name α in (T-NEW), then α will be recorded in ε ] ε ′, the name constraints of e. In

this case ε ′ = α and ε contains all the other names used in the typing derivation of e;

otherwise ε ′ is empty. In the conclusion, we decorate the universally quantified type with

ε ′ to signify that the abstracted name α is used in e. Type abstractions are destructed

according to (T-TAP). In the premises we require the kind of the argument to match the

kind of the formal type parameter. In the conclusion, we must instantiate all the abstracted

names ε ′ used in the body e′ and ensure that these are disjoint from all other names ε used

in the body.

Two additional points are worth noting. First, universally quantified types can be

decorated with arbitrary name constraints ε (rather than just singleton names α). We

expect this to be useful when enforcing composite policies. The name instantiation con-

straint ε can ensure that a function always constructs automata that belong to a specific set

of classes in a large policy. Second, we could support recursion by following an approach

taken by Pratikakis et al [105]. This requires using existential quantification to abstract

names in recursive data structures and including a means to forget names assigned to

automata that go out of scope (e.g., in each iteration of a loop).

Dependently typed functions and evidence. (T-ABS) gives functions a dependent type,

(x:t)→ t ′. Here, x names the formal parameter and is bound in t ′. When a function is

applied, (T-APP) substitutes the actual argument e′ for x in the return type. Thus, given a

function f that has type (debt : Int)→ (LEQ debt 10)→ t, the application ( f 11) is given

the type (LEQ 11 10)→ t. That is, the type of the second argument of f depends on the
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term passed as the first argument. Note that although λAIR permits arbitrary expressions

to appear in types, type checking the enforcement of an AIR policy is decidable because

we never have to reduce expressions that appear in types. However, in order to enforce

policies like the static information flow policy of Chapter 4, reduction of type-level ex-

pressions is, as in FABLE, critical.

Affine types for consistent state updates. Finally, we consider how the type system

enforces the “use at most once” property of affine types. First, (T-NEW) introduces

affine types by giving new automaton instances the type ¡tα . Values of affine type can

be destructed in the same way as values of unrestricted type. For example, (T-APP) and

(T-TAP) allow e to be applied irrespective of the affinity qualifier on e’s type. However,

we must make sure that variables that can be bound to affinely typed values are not used

more than once. This is prevented by the type rules through the use of affine assumptions

A, which lists the subset of variables with affine type in Γ which have not already been

used. The use of an affine variable is expressed in the rule (T-XA), which types a variable

x in the context of the single affine assumption x. To prevent variables from being used

more than once, other rules, such as (T-APP), are forced to split the affine assumptions

between their subexpressions. Affine assumptions are added to A by (T-ABS) using the

function a(x,k), where x is the argument to the function and k is the kind of its type. If the

argument x’s type has kind A then it is added to the assumptions, otherwise it is not. We

include a weakening rule (T-WKN) that allows affine assumptions to be forgotten (and for

additional names ε ′ to be consumed). Finally, the function p(A,ε) is used to determine

the affinity qualifier of an abstraction. If no affine assumptions from the environment are
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used in the body of the abstraction (A = ·) and if no new automata are constructed in the

body (ε = ·), then it is unrestricted. Otherwise, it has captured an assumption from the

environment or encloses an affinely tracked automaton and should be called at most once.

Kinding judgment. In Γ ` t :: K, the rule (K-A) is standard. (K-N) allows a name to

be associated with any affine type t. (K-AFN) checks an affinely-qualified type: types

such as ¡¡t are not well-formed. (K-FUN) is standard for a dependent type system—it

illustrates that x is bound in the return type t ′. (K-UNIV) is mostly standard, except that

we must also check that the constraint ε only contain names that are in scope. (K-DEP)

checks the application of a dependent-type constructor. Here, we have to ensure that the

type of the argument e matches the type of the formal. However, since e is a type-level

expression, we check it in a context with the phase index ϕ = type. Since types are

erased at run time, type-level expressions are permitted, via (T-X-type), to treat affine

assumptions intuitionistically. Erasure of types also allows us to lift the name constraints

for type-level expressions e—(T-NC-type) allows any subset ε1 of the names used in e to

be forgotten.

3.4.3 Dynamic Semantics

Figure 3.6 defines the dynamic semantics of λAIR as a call-by-value, small-step

reduction relation, using a left-to-right evaluation order. The form of the relation is :

M ` e l−→e′
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Equations, models, and certificates

equation E ::= D ; e
eqn. domain D ::= v | t |D ,D | ·

model M ::= B :
−→
E |M,M

certificates e ::= . . . | [[B]]D

Values and evalutation contexts

values v ::= D | v (v′) | [[B]]D | λx:t.e | Λα::k.e | new v
eval ctxt E ::= • | • e | v • | • [t] | • (e) | v (•) | case • of . . . | new •

M ` e l−→e′ An expression e reduces to e′ recording l in the trace.

M ` e l−→e′ e′ 6=⊥

M ` E · e l−→E · e′
(E-CTX)

M ` e l−→⊥
M ` E · e l−→⊥

(E-BOT)
M ` ⊥−→⊥ (E-INF)

e′ = (x 7→ v) e
M ` λx:t.e v−→e′

(E-APP)
e′ = (α 7→ t)e

M ` Λα::k.e [t]−→e′
(E-TAP)

if (v� epat : σ) then e = σ(e′) else e = e′′

M ` case v of
−→x:t.epat : e′ else e′′−→e

(E-CASE)
B:
−→
E ∈M

M ` B−→[[B]]·
(E-DELTA)

B:
−→
E ∈M D ,v ; e ∈ −→E l = B : D ,v

M ` [[B]]D v l−→e
(E-B1)

B:
−→
E ∈M D ,v ; e 6∈ −→E
M ` [[B]]D v−→[[B]]D ,v

(E-B2)

B:
−→
E ∈M D , t ; e ∈ −→E l = B : D , t

M ` [[B]]D [t] l−→e
(E-B3)

B:
−→
E ∈M D , t ; e 6∈ −→E

M ` [[B]]D [t]−→[[B]]D ,t
(E-B4)

v� ep : σ Pattern matching data constructors.

v� v : · (U-ID) v� x : x 7→ v (U-VAR)
v� e :: σ v′ � σ e′ : σ ′

v (v′)� e (e′) : σ ,σ ′
(U-CON)

Figure 3.6: Dynamic semantics of λAIR

This judgment claims that a term e reduces in a single step to e′ in the presence of a model

M that interprets the base terms in a signature. The security-relevant reduction steps are

annotated with a trace element l, which is useful for stating our security theorem.

Following a standard approach for interpreting constants in a signature [85], we

define a model M by axiomatizing the reductions of base-term function applications. The

syntax of the model is shown M is shown at the top of Figure 3.6. A model M contains
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equations B : D ; e, where D is a sequence of types and values. A simple example of an

equation is plus 1 2 ; 3, indicating that an application (plus 1 2) reduces to 3 at runtime.

Base term functions in λAIR are also used to perform runtime checks that provide

evidence for the release conditions in an AIR policy. For example, a λAIR program can

perform a test (leq x y) to attempt to construct evidence of type LEQ x y. The model

equations for leq need to generate valid proof certificates for tests that succeed and throw

runtime errors for those tests that fail. Handling failures is relatively straightforward—

we simply include equations of the form leq : 4, 3 ; ⊥ indicating that the expression

(leq 4 3) reduces to ⊥, i.e., a runtime error. However, we also need a way to construct

proof certificate values that inhabit types like LEQ 3 4. Our solution is to introduce

special values [[B]]D to represent these certificates. For example, [[LEQ]]3,4 will be the

representation of a value that inhabits the type LEQ 3 4, and model equations of the form

leq : 3 4 ; [[LEQ]]3,4 will serve to indicate that the application (leq 3 4) reduces at runtime

to a valid proof certificate. In practice, if we are in a purely type-safe setting, we could

choose an arbitrary value (like unit) to represent a proof certificates. However, a concrete

runtime representation for proof certificates can be of practical use if proofs need to be

checked at run time, e.g., when interfacing with type-unsafe code.

The values and evaluation contexts in λAIR are also defined in Figure 3.6. Note that

the base-term data constructors D are treated as values; e.g., constructors Succ and Zero

are both treated as values. Constructor applications like Succ (Zero) are also values. The

other values include certificates, abstractions, and new automaton instances.

The rules in the reduction relation M ` e l−→e′ from (E-CTX) to (E-CASE) are

entirely standard. The pattern matching judgment v� ep : σ follows a similar judgment in
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FABLE. The remaining rules manipulate base-term functions. In (E-DELTA), we reduce

a base term B to a certificate [[B]] that serves a proof that a term inhabits the type given to

B in the signature.

In (E-B1), we show how the application of a base term B to a sequence of types and

terms D ,v is reduced using an equation that appears in the model. The security-relevant

actions in a program execution are the reduction steps that correspond to automaton state

changes. As indicated earlier, each transition and release rule in a policy will be trans-

lated to a function-typed base term like Conf coalition. Thus, every time we reduce an

expression e using a base-term equation B : D ; e′, we record l = B : D in the trace: i.e.,

M ` e B:D−→e′.

(E-B3) handles the application of a type to a polymorphic base-term function and

is identical in structure to (E-B1). One point to note about (E-B3): although we allow

an equation in M to depend on the type argument t (i.e., it is free to perform an inten-

sional analysis on t, potentially violating parametricity), our soundness theorem places

constraints on the form of the model equations to ensure type safety.

Finally, the rules (E-B2) and (E-B4) handle partial applications of base terms. For

example, the partial application reduces in several steps as shown below:

M ` leq 3−→[[leq]]−→[[leq]]3

An implementation of λAIR would, of course, take a less abstract approach to the

semantics of base terms. For example, we could use enforcement policy functions in

FABLE to produce unforgeable certificates for runtime tests (using FABLE’s labeling and
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unlabeling constructs). However, the abstract presentation here both keeps the presenta-

tion simple and allows us to prove a standard type-soundness theorem.

Theorem (Type soundness). Given an environment Γ = S,α1::N, ...,αn::N that only binds

type names, such that Γ; · `term e : t;ε , and an interpretation M such that M and S are type-

consistent, then ∃e′.M ` e l−→e′ or e is a value. Moreover, if M ` e l−→e′ then Γ; · `term

e′ : t;ε .

Notice that the statement of this theorem relies on a hypothesis that the model M

and the signature S are type-consistent. That is, patently type-unsafe model equations

like leq : 3 4 ; 17 are ruled out. Furthermore, in order to prove this theorem, we need

a way to type certificates. That is, we need additional type rules that allow certificates

like [[LEQ]]3,4 to be typed as LEQ 3 4—this is easily done. Appendix B defines these

additional rules and contains a detailed proof sketch of this type-soundness theorem.

We have also mechanized the proof of soundness for λAIR using the Coq proof as-

sistant [17]. Our formalization adapts a proof technique recently proposed by Aydemir et

al [7]. In particular, we use a locally nameless approach for representing both term- and

type-level bindings and rely on cofinite quantification to introduce fresh names. We rely

on a set of libraries distributed by Aydemir et al. that provide basic support for working

with environments and finite sets. Our Coq proof is complete, modulo a collection of

identities about finite sets and context splitting. The proofs of these identities are beyond

the capabilities of the decision procedures in the finite set libraries that we use and, with-

out automation, we have found proofs of these identities in Coq to be tedious and time

consuming. However, we expect it will be possible to devise specialized decision proce-
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dures to automatically discharge the proofs of these identities. Our development of λAIR

in Coq can be obtained from http://www.cs.umd.edu/projects/PL/selinks.

3.5 Translating AIR to λAIR

In this section, we show how we translate an AIR class to a λAIR API, describe

how that API is to be used, and state our main security theorem.

3.5.1 Representing AIR Primitives

In order to enforce an AIR policy we must first provide a way to tie the policy to

the program by protecting data with AIR automata. We must also provide a concrete

representation for automata instances and a means to generate certificates that attest to

the various release conditions that appear in the policy. These constructs are common to

all λAIR programs and appear in the standard prelude S0, along with the integers and pairs

discussed in Section 3.4.1.

Protecting data. As indicated in Section 3.3, we include the following type constructor

to associate an automaton with some data: (Protected::U→ N→ U). A term with type

Protected t α is governed by the policy defined by an automaton instance with type-level

name α . We would like to ensure that all operations on protected data are mediated by

functions that correspond to AIR policy rules. For this reason, we do not provide an

explicit data constructor for values of this type, ensuring that they cannot be destructed

directly, say, via pattern matching. Values of this type are introduced only by assigning the

appropriate types to functions that retrieve sensitive data. For instance, library functions
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that read secret files from the disk can be annotated so that they return values with a

protected type.

In addition to functions corresponding to AIR class rules, we can provide functions

that allow a program to perform computations over protected values while respecting

their security policies. We have explored such functions in Chapter 2 and showed that

computations that respect a variety of policies (ranging from access control to information

flow) can be encoded; we do not consider these further here.

Next, we discuss our representation of an AIR automaton—these include represen-

tations of the class that the automaton instantiates and the principal that owns the class.

Principals. The nullary constructor Prin is used to type principal constants P, i.e.,

(Prin::U),(P:Prin). As with integers, we need a way to test and generate evidence for

acts-for relationships between principals. We include the dependent-type constructor and

run-time check shown below.

(ActsFor::Prin→ Prin→ U)

(acts for:(x:Prin)→ (y:Prin)→ ActsFor x y)

AIR classes. A class consists of a class identifier id and a principal P that owns the

class. The type constructors (Id::U),(Class::U) are used to type identifiers and classes.

Classes are constructed using the data constructor (Class:Id⇒ Prin⇒ Class). The trans-

lation of an AIR class introduces nullary data constructors like US Army Confidential:Id
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and US Army:Prin, from which we can construct the class

USAC = Class (US Army Confidential) (US Army)

Finally, we use a dependent-type constructor and run-time check to generate evi-

dence that two classes are equal.

(IsClass::Class→ Class→ U),

(is class:(x:Class)→ (y:Class)→ IsClass x y)

Class instances. Instances are typed using the Instance::U type constructor. Each instance

must identify the class it instantiates and the current state of its automaton. For each state

in a class declaration, we generate a data constructor in the signature that constructs an

Instance from a Class and any state-specific arguments. For example, we have:

Init:Class⇒ Instance,Debt:Class⇒ Int⇒ Instance

Thus the expression new Init (USAC) constructs a new instance of a class. According

to (T-NEW), this expression has the affine type ¡Instanceα , where the unique type-level

name α allows us to protect some data with this automaton. Since we wish to allow data

to be protected by automata that instantiate arbitrary AIR classes, we give all instances,

regardless of their class, a type like ¡Instanceα , for some α . This has the benefit of

flexibility—we can easily give types to library functions that can return data (like file

system objects) protected by automata of different classes. However, we must rely on a
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run-time check to examine the class of an instance since it is not evident from the type.

The prelude includes the the following two elements to construct and type evidence

about the class of an automaton instance:

ClassOf ::N→ Class→ U

class of inst:∀α::N.(x:¡Instanceα)→ (¡Instanceα ∗ c:Class∗ClassOf α c)

The function class of inst extracts a Class value c from an instance named α and pro-

duces evidence (of type ClassOf α c) that α is an instance of c. The return type of this

function is interesting for two reasons. First, because the returned value relates the class

object in the second component of the tuple to the evidence object in the third component,

we give the returned value the type of a dependently typed tuple, designated by the sym-

bol ∗. Although we do not directly support these tuples, they can be easily encoded using

dependently typed functions, as shown in Figure 2.2. Second, notice that even though

class of inst does not cause a state transition, the first component of the tuple it returns

contains an automaton instance with the same type as the argument x. This is a common

idiom when programming with affine types; since the automaton instance is affine and

can only be used once, functions like class of inst simply return the affine argument x to

the caller for further use.

The following constructs in the prelude allow a program to inspect the current state

of an automaton instance.

InState::¡Instance◦→ Instance→ U

state of inst:∀α::N.(x:¡Instanceα)→ (z:¡Instanceα ∗ y:Instance∗ InState z y)
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These constructs are similar to the forms shown for examining the class of an instance, but

with one important difference. Since the state of an automaton is transient (it can change

as transition rules are applied), we must be careful when producing evidence about the

current state. This is in contrast to the class of an automaton which never changes despite

changes to the current state. Thus, we must ensure that stale evidence about an old state

of the automaton can never be presented as valid evidence about the current state.

The distinction between evidence about the class of an automaton and evidence

about its current state is highlighted by the first argument to the type constructor InState.

Unlike the first argument of the ClassOf constructor (which can be some type-level name

α::N), the first argument of InState is an expression with an affine type ¡Instance◦ (in-

troduced via subsumption in (T-DROP)) that stands for an automaton instance that has

been assigned some name. Using this form of subtyping allows us to use InState to type

evidence about the current state of any automaton. An alternative would be to enhance

the kind language by allowing type constructors to be have polymorphic kinds—we chose

this form of subtyping to keep the presentation simpler.

As described further in the next subsection, functions that correspond to AIR rules

take an automaton instance a1 (say, in state Init) as an argument, and produce a new

instance a′1 as a result (say, in state Debt(0)). Importantly, both a1 and a′1 are given the

type ¡Instanceα , i.e., the association between the type-level name α and the automaton

instance is fixed and is invariant with respect to state transitions. Since the class of an

automaton never changes (both a1 and a′1 are instances of USAC) it is safe to give evidence

about the class of an instance the type ClassOf α USAC, i.e., evidence about the class of

an automaton can never become stale. On the other hand, evidence about the current
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src;dst;Γ |=ρ

−−−→
∃x:t.C;e : t ′ Translation of an AIR rule

Γ ` t :: k src;dst;S;Γ,x:t |= C : t ′ src;dst;S;Γ,x:t |=ρ

−−−→
∃x:t.C;e : t ′′

src;dst;S;Γ |=ρ ∃x:t.C,
−−−→
∃x:t.C;e : (x:t)→ t ′→ t ′′

(TR-COND)

Γ,s′::N; · ` e : Protected α s;ε

s;d;S;Γ |=r ·;e : (¡Instances× ¡Instanced×Protected α d)
(R-BODY)

Γ,s′::N; · ` e : t;ε

s;d;S;Γ |=t ·;e : (!Instances× !Instanced)
(T-BODY)

Figure 3.7: Translating an AIR rule to a base-term function in a λAIR signature

state of the automaton can become stale. If we were to type this evidence using types of

the form InStateBad α Init, then this evidence may be true of a1 but it is not true of a′1.

Therefore, we make InState a dependent-type constructor to be applied to an automaton

instance rather than a type-level name.

3.5.2 Translating Rules in an AIR Class

Appendix B defines a translation procedure from an AIR class to a λAIR signature.

The key judgment in this translation is shown in Figure 3.7. In this section, we discuss

the form of this judgment and describe its behavior by focusing on the translation of the

rules in the example policy of Figure 3.2.

Each rule r in an AIR class is translated to a function-typed constant fr in the

signature. Each condition in a rule is represented as an argument to the function fr—the

translation of these conditions is the same for both release and transition rules. Where the

translation of release and transition rules differs is in the construction of the final return

type of the function fr.
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The translation judgment shown in Figure 3.7 uses a more compact notation for

an AIR policy than the syntax of Figure 3.1. In particular, we treat both release and

transition rules as a λAIR expression e prefixed by a list of binders and conditions
−−−→
∃x:t.C.

The judgment src;dst;Γ |=ρ

−−−→
∃x:t.C;e : t ′, states that in a context where src and dst are the

type-level names of the source and destination automata, and where Γ is a standard λAIR

typing environment, the rule
−−−→
∃x:t.C;e is translated to a base-term function with the type

t ′. The index ρ that appears on the turnstile differentiates transition rules (ρ = t) from

release rules (ρ = r).

The rule (TR-COND) shows how a condition is translated. Its index ρ indicates that

it applies to both release and transition rules. (TR-COND) peels off a single condition

∃x:t.C from the list of conditions associated with a rule. The first premise checks that

the type is well-formed. The second premise translates the condition C to the type t ′ that

stands for the evidence of the condition. The third premise recurses through the rest of

the release conditions. In the conclusion, we have the type t of the bound variable and

the evidence type t ′ shown as arguments to a function whose return type t ′′ is the type

produced by the recursive call.

The rules (R-BODY) and (T-BODY) translate release and transition rules respec-

tively. We turn to the concrete example of the policy of Figure 3.2 to illustrate the behavior

of these rules in detail.

Release rules. At a high-level, release rules have the following form. In response to

a request to release data x, protected by instance a1, to an instance a2, the programmer

must provide evidence for each of the conditions in the rule r. If such evidence can be
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produced, then fr returns a new automaton state a′1, downgrades x as specified in the

policy, and returns x under the protection of a2. As an example, consider the full type of

the Conf coalition rule shown below.

Conf coalition :
1 ∀src::N,dst::N,α::U.
2 (a1:¡Instancesrc)→ ¡(x:Protected α src)→ ¡(a2:¡Instancedst)→
3 ¡(e1:ClassOf src USAC)→ ¡(cd:Class)→ ¡(e2:ClassOf dst cd)→
4 ¡(e3:ActsFor (principal cd) Coalition)→ ¡(debt:Int)→
5 ¡(e4:InState a1 (Debt (USAC) (debt)))→ ¡(e5:LEQ debt 10)→
6 (¡Instancesrc× ¡Instancedst×Protected α dst)

The first two lines of this type were shown previously—x is the data to be released

from the protection of automaton a1 (with type-level name src) to the automaton a2 (with

type-level name dst). Since the argument a1 is affine, we require every function type

to the right of a1 to also be affine, since they represent closures that capture the affine

value a1. At line 3, the argument e1 is evidence that shows that the source automaton

is an instance of the USAC class; cd is another class object, and e2 is evidence that the

class of the destination automaton is indeed cd. At line 4, e3 stands for evidence of

the first condition expression, which requires that the owning principal of the destination

automaton acts for the Coalition principal. Line 5 contains evidence e4 that a1 is in

some state Debt(debt), where, from e5, debt ≤ 10. The return type, as discussed before,

contains the new state of the source automaton, the destination automaton a2 threaded

through from the argument, and the data value x, downgraded according to the policy and

with a type showing that it is protected by the dst automaton.

Transition rules. Each transition rule r in a class declaration is also translated to a

function-typed constant fr in the signature. However, instead of downgrading and co-
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ercing the type of some datum x, a transition function only returns the new state of

the source automaton and an unchanged destination automaton. That is, instead of re-

turning a three-tuple like Conf coalition, a transition rule like Conf init returns a pair

(¡Instancesrc× ¡Instancedst), where the first component is the new state of the source

automaton and the second component is the unchanged destination automaton threaded

through from the argument. The full type of Conf init is shown below.

Conf init :
1 ∀src::N,dst::N,α::U.
2 (a1:¡Instancesrc)→ ¡(x:Protected α src)→ ¡(a2:¡Instancedst)→
3 ¡(e1:ClassOf src USAC)→ ¡(cd:Class)→ ¡(e2:ClassOf dst cd)→
4 ¡(e4:InState a1 Init)→ (¡Instancesrc× ¡Instancedst)

A final point about the translation of an AIR class: It is also possible to translate an

AIR class D to a model that captures the runtime behavior of each rule in the class. We

focus on the signature SD alone as this suffices for type checking. However, in order to

state our security theorem, we require constraining possible models MD of SD, so that MD

is consistent with the AIR rules. For example, equations in MD that represent transition

rules must return automaton states that correspond to the next states specified in the AIR

rules. Appendix B defines the consistency of a model MD with an AIR policy precisely.

3.5.3 Programming with the AIR API

The program in Figure 3.8, a revision of the program in Figure 3.3, illustrates how

a client program interacts with the API generated for an AIR policy.

As previously, the first two lines represent boilerplate code, where we read a file and

its automaton policy and then block waiting for a release request. At line 3, we generate
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1 let x a1, a1:¡Instancesrc = get usac file and policy () in
2 let a2:¡Instancedst , channel = get request () in
3 let a1,USAC,ca1 ev = class of inst [src] a1 in
4 let a2,ca2,ca2 ev = class of inst [dst] a2 in
5 let actsfor ev = acts for (principal ca2) Coalition in
6 let a1, Debt{USAC}{debt}, a1 state ev = state of inst [src] a1 in
7 let debt ev = leq debt 10 in
8 let a1’,a2,x a2 = Conf coalition [src][dst][Int] a1 x a1 a2
9 ca1 ev ca2 ca2 ev actsfor ev

10 debt a1 state ev debt ev in
11 send [Int] [dst] channel x a2

Figure 3.8: A λAIR program that performs a secure information release

evidence a1 class ev that a1 is an instance of the USAC class and at line 4 we retrieve a2’s

class ca2 and evidence ca2 ev that witnesses the relationship between ca2 and a2. At line

5, we check that the destination automaton is owned by a principal acting for the Coalition.

At lines 6 and 7 we check that a1 is in the state Debt{USAC}{debt}, for some value of

debt ≤ 10. If all the run-time checks (i.e., calls to functions like leq) succeed, then we

call Conf coalition, instantiating the type variables, passing in the automata, the data to

be downgraded and evidence for all the release conditions. We get back the new state of

the src automaton a1’, a2 is unchanged, and x a2 which has type Protected Int dst. We

can give the channel a type such as Channel Int dst, indicating that it can be used to send

integers to the principal that owns the automaton dst. The send function can be given the

type shown below:

send:∀α::U,β ::N.Channel α β → Protected α β → Unit

This ensures that x a1 cannot be sent on the channel. If the call to Conf coalition succeeds,

then the downgraded x a2 has type Protected Int dst, which allows it to be sent.
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3.5.4 Correctness of Policy Enforcement

In this section, we present a condensed version of our main security theorem and

discuss its implications. The full statement and proof can be found in Appendix B.

Theorem (Security). Given all of the following: (1) an AIR declaration D of a class with

identifier C owned by principal P, and its translation to a signature SD; (2) a model MD

consistent with SD; (3) Γ = SD,src::N,dst::N,s:¡Instancesrc; (4) Γ;s `term e : t;ε where

src 6∈ ε; and (5) M ` ((s 7→ v)e) l1−→e1 . . .
ln−→en where v = new Init (Class (C) (P)). Then

the string l1, . . . , ln is accepted by the automaton defined by D.

The first condition relies on our translation judgment (discussed in Section 3.5.2)

that produces a signature SD from a class declaration D. The second condition is necessary

for type soundness. Conditions (3) and (4) state that e is a well-typed expression in a

context with a single free automaton s : ¡Instancesrc and two type name constants src and

dst. By requiring that src 6∈ ε we ensure that e does not give the name src to any other

automaton instance. This theorem asserts that when e is reduced in a context where s is

bound to an instance of the C class in the Init state, then the trace l1, . . . , ln of the reduction

sequence is a word in the language accepted by the automaton of D.

The trace acceptance judgment has the form A;D |= l1, . . . , ln;A′, which informally

states that an automaton defined by the class D, in initial state A, accepts the trace l1, . . . , ln

and transitions to the state A′. Recall that the trace elements li record base terms B that

stand for security-relevant actions and sets of values that certify that the action is per-

missible. The trace acceptance judgment allows a transition from A to A′ only if each

transition is justified by all the evidence required by the rules in the class. This condition
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is similar to the one used by Walker [139].

3.6 Encoding FABLE in λAIR

The power of dependent types to express a kind of customized type system is

well known [144, 17, 49]. The dependent typing features of λAIR and FABLE are no

exception—they can also be used to customize a type system. In fact, one view of the

policy functions in FABLE (as proposed in Chapter 2) is that they provide a means of

introducing axioms into the type system to which an application program can appeal in

order to prove the validity of certain type-level invariants. For example, the sub function

in the policy of Figure 2.9 effectively introduces a subsumption rule into the type system.

By calling this function, an application program can prove that a term that inhabits the

type t{l} also inhabits the type t{lub l m}.

λAIR provides a similar ability, while using a slightly different mechanism. Instead

of using explicit policy functions, λAIR programs are checked in the presence of a signa-

ture S that asserts the existence of terms of a particular type; i.e., S includes elements of

the form B:t for some base term B and type t. Whereas in FABLE we chose to pay atten-

tion to the particular implementation of these terms, in λAIR we take a more abstract view

in that the semantics of these base terms is simply axiomatized in terms of some model.

For instance, the same sub policy function in FABLE can be represented in λAIR as base

term with the appropriate type. λAIR programs can appeal to this base term (or axiom)

in order to prove the same subsumption relation that can be proved using FABLE. The

operational behavior of sub is not specified within the language; instead we just model
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sub at runtime using a model that axiomatizes the set of possible reductions that result

from an application of the sub function.

By directly modeling the implementation of these policy functions, FABLE provided

us with a way to reason concretely about the correctness of specific policies. In this

respect, FABLE is more expressive than λAIR. However, for situations in which we do

not necessarily care about specific policy implementations, the more abstract approach in

λAIR suffices.

Additionally, λAIR exceeds the expressiveness of FABLE in two important ways.

First, the signature in a λAIR program is not limited to defining base terms only. This

makes the type language used in a λAIR program customizable via the signature. In

particular, the signature S also includes elements of the form T::K, which binds the type

constructor T to a kind K. Thus, while FABLE “bakes in” specific type constructors like

int, lab, and the labeling construct t{e}, such constructs can be introduced into λAIR by

simply plugging in the appropriate bindings in the signature. The second way in which

λAIR exceeds FABLE is in its use of affine types (and type-level names).

In the remainder of this section, we develop a λAIR signature, SFABLE, that will allow

us to embed FABLE in λAIR. We will argue informally that this embedding is faithful in

the sense that all programs typeable in FABLE can be translated to equivalent programs

in λAIR. However, this translation does not come for free. In particular, several of the

typing rules in FABLE will be translated to base terms in SFABLE. For instance, the rule

that allows a term with type lab∼e to be subsumed to the type lab will be represented

by the base term thide in SFABLE. Whereas the FABLE type system is able to apply this

subsumption nondeterministically, in λAIR, we will expect programs to include explicit
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Type constructors
(Int::U),
(Lab::U),
(SLab::Lab→U),
(Labeled::U → Lab→U)

Base terms
(0:Int),(S:Int⇒ Int),
(Low:Lab),(High:Lab),
(Tuple:Lab⇒ Lab⇒ Lab), . . .
(tshow : (e:Lab)→ (SLab e),
(thide : (e′:Lab)→ (e:SLab e′)→ Lab

Figure 3.9: SFABLE: An embedding of FABLE in λAIR

invocations of the thide base term whenever subsumption is necessary. Thus, much as

our encoding of an information flow type system in FABLE places a greater burden on

the application programmer compared to programming in a special purpose system (they

must insert the appropriate calls to policy functions), emulating FABLE within λAIR is

also somewhat more burdensome than programming in FABLE directly.

3.6.1 SFABLE: A λAIR Signature for FABLE

Figure 3.9 shows SFABLE, the signature that embeds FABLE in λAIR. The standard

base types in FABLE include the type int of integers. This is easily mapped to λAIR by

including the corresponding nullary type constructor Int with the kind U—i.e., integer

variables can be used an arbitrary number of times. The term representation of integers

follow the standard Peano construction, i.e., a nullary constructor 0 to represent zero and

a constructor S, which when applied as S n will denote the successor of its Int-typed

argument n.

The type of labels in FABLE is represented next. The nullary constructor Lab stands

for the FABLE type lab. In FABLE we represented label terms by arbitrary applications

of constructors C, where C is a meta-variable ranging over all possible constructors. In

λAIR our approach is to define a set of constructors for the Lab type, i.e., an approach that
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closely resembles the definition of variant types in a language like ML. Thus, we include

the nullary term constructors like Low and High to represent the labels from a standard

two-point lattice. We can also represent more complex label constructors using variant

types in λAIR. For instance, we include the Tuple constructor, which can be applied to

two Lab-typed values to produce a label e.g., Tuple Low High can be given the type Lab.

FABLE also includes the type lab∼e, a singleton type inhabited only by the value v

which is a normal form of e. This type is represented in λAIR using the dependent-type

constructor SLab. This constructor can be applied to any term argument that has the type

Lab and produces a type of unrestricted kind. For example, the type lab∼High in FABLE

is represented by the type-constructor application SLab High.

We also need a way to represent the three typing rules in FABLE that handle labels.

These rules are reproduced below.

Γ c̀ ei : lab

Γ c̀ C(−→e ) : lab∼C(−→e )
(T-LAB)

Γ c̀ e : lab
Γ c̀ e : lab∼e

(T-SHOW)
Γ c̀ e : lab∼e′

Γ c̀ e : lab
(T-HIDE)

The (T-LAB) rule, the introduction form for labels, is handled in λAIR via each of

the type constructors for labels. That is, the kind given to constructors like Low, High

and Tuple directly encode the (T-LAB) rule in its kind, e.g., Tuple requires that each of its

arguments is itself a Lab-typed value. However, one difference is that whereas (T-LAB)

introduces a term with a singleton type lab∼e, the type constructors in SFABLE introduce

terms with a less precise type Lab. However, this precision is easily recovered via an
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application of the base terms that correspond to the (T-SHOW) and (T-HIDE) rules.

The (T-SHOW) rule is represented by the base term tshow, a dependently typed

function. This function represents a subsumption rule that allows any term e of type Lab

to be used at the type SLab e, which is identical to the form of the (T-SHOW) rule. The

thide dependently typed function models the (T-HIDE) type rule. Given a term e of type

SLab e′ (for any e′ specified in the first argument), thide allows e to be used at the type

Lab. One point to note here is that the thide expects e′ as its first term argument, even

though the runtime behavior of thide is independent of e′. It is exactly in this kind of

situation that phantom variables (introduced in Chapter 2) are useful. An extension of

λAIR with phantoms would permit us to express that thide is parametric in the type index

e′.

Finally, we use the Labeled constructor to represent FABLE types of the form t{e}.

This constructor is analogous to the Protected constructor from Chapter 3, except the

here, sensitive resources will be protected by labels e rather than the type-level name N

of some AIR automaton. For example, the FABLE type int{High} is represented in λAIR

using the type-constructor application Labeled Int High.

The remaining type rules in FABLE can be represented by the built-in type rules

of λAIR. For instance, the (T-CONV) rule in FABLE that allows type-level terms to be

reduced corresponds to the (T-CONV) rule that also appears in λAIR. (See the full static

semantics of λAIR in Figures B.1 and B.2 for a definition of the (T-CONV) rule in λAIR.)

Similarly, the rules for abstractions, applications, and pattern matching are subsumed by

the corresponding rules in λAIR.

The FABLE constructs that we do not model are the unlabeling and relabeling op-
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erators. Recall that these operators can only be used within FABLE policy functions.

In λAIR we will represent policy functions using base terms in the signature, for which

we only give an abstract specification in terms of types—we simply axiomatize the opera-

tional behavior of these base terms in the language, which eliminates the need for labeling

operators.

3.7 Concluding Remarks

This chapter has presented AIR, a simple policy language for expressing stateful

information release policies. We have defined a core formalism for a programming lan-

guage called λAIR, in which stateful authorization policies like AIR can be certifiably

enforced. Additionally, we have shown how the type system of FABLE can be embedded

within λAIR. As a result, λAIR can also be used to enforce the access control, provenance

and information flow policies that were developed in Chapter 2.

A limitation of λAIR is that its programming model is still purely functional. Al-

though we show how to model purely functional state updates in λAIR using affine types,

we would also like to be able to work with a richer programming model that allows the

direct manipulation of mutable state. In the next chapter, we extend λAIR with mutable

references and show how the resulting calculus, FLAIR, can be used to enforce informa-

tion flow policies while accounting for side effects.
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4. Enforcing Policies for Stateful Programs

The preceding chapters have demonstrated that a simple, lightweight form of depen-

dent typing can be used to specify and implement the enforcement of a range of security

policies. We have illustrated the expressiveness of our approach by showing that sev-

eral special-purpose security type systems can be encoded within FABLE and its relative,

λAIR. We have argued that our approach has several benefits, prominent among which are

flexibility and customizability. In particular, FABLE makes it possible to enforce a range

of security policies in a manner best suited to the specific requirements at hand. However,

our results so far apply only to purely functional programs, undermining the claim that

our approach promises to be widely applicable to realistic programs.

Our focus on purely functional programs reveals a fundamental conflict. As func-

tions, a purely functional program is not permitted to have any side effect. But, to write

programs that are useful, one needs to cause some form of side effect, e.g., some output

has to be printed to the screen. To omit side effects from our model of security is to ignore

the obvious—clearly we wish to control what messages a program is permitted to send

over the network.

In this chapter, we seek to redress this deficiency by demonstrating how a version

of the λAIR language can be used to track and secure a canonical form side effects. In

particular, we focus on equipping a core functional calculus with references to a mutable
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store and enforcing an information flow policy for programs in this language. Such a

policy partitions the set of memory locations into public and secret locations. Intuitively,

the correct enforcement of this policy must ensure that no information about secret values

is leaked into public locations.

Whereas the FABLE approach can easily be adapted to ensure that secret infor-

mation is not leaked into a public memory location via direct assignment, this is not

sufficient to establish correct enforcement of an information flow policy. Unfortunately,

dependences on secret data can be revealed without requiring a direct assignment of se-

crets to a public location—the leak can take place via a so-called implicit or indirect flow.

The classic example of such a leak is illustrated by the example program below, where h

is a high-security boolean and a lloc is a low-security location.

if (h) then lloc := true
else lloc := false

Although the secret value h is never directly assigned to the public location lloc,

clearly this program successfully copies h to lloc. Plugging this form of leak will be the

main challenge faced by our enforcement mechanism. The key idea will be to use affine

types in λAIR to provide evidence that the set of implicit dependences at an assignment to

a location l is not more secret than the location itself.

This chapter makes the following contributions:

• Section 4.1 defines FLAIR, a straightforward extension of λAIR with references and

the final formal calculus of this dissertation. We state a type-soundness theorem

for FLAIR. The proof of this theorem, an extension of the corresponding proof for

λAIR, is in Appendix C.
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• Accounting for side effects when enforcing an information flow policy involves a

number of subtle issues. In Section 4.2, we present Core-ML, a simplification of a

calculus of the same name proposed by Pottier and Simonet [104], as a model for

the purely static enforcement of information flow controls in an ML-like, mostly

functional language. Core-ML serves as a high-level specification of correct en-

forcement of information flow, in the familiar language of natural deduction.

• The main result of this chapter (Section 4.4) is an encoding of the Core-ML type

system in FLAIR. Our security theorem asserts that every type correct FLAIR pro-

gram using our encoding enjoys a noninterference property analogous to the corre-

sponding property for Core-ML programs. Although this result demonstrates that

FLAIR is expressive enough to enforce policies for stateful programs, our encoding

is relatively complex. The difficulty of programming at the source level in FLAIR

while enforcing such a complex policy is substantial. Thus, our contention in Chap-

ter 3 that λAIR is likely to be more useful as an intermediate language is only more

pronounced with the static enforcement of information flow in FLAIR.

4.1 FLAIR: Extending λAIR with References

In this section, we define FLAIR, an extension of λAIR with references. The exten-

sion is mostly standard and is shown in Figure 4.1.

The extensions to the syntax of λAIR include a Unit type and the corresponding

value (); a value form ` which stands for a memory reference literal; a dereferencing

operation !e; and an assignment operation e 1 := e 2. References to a value of type t are
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Syntax extensions

Terms e ::= . . . | () | ` | !e | e1 := e2
Types t ::= . . . | Unit | ref t
Typing environment Γ ::= . . . | Γ, `:t
Store Σ ::= (`,v) | Σ,Σ | ·
Values v ::= . . . | () | `
Eval ctxt E ::= . . . | !• | • := e | v := •

Γ;A `ϕ e : t;ε Extensions to typing judgment

Γ(`) = t
Γ; · `term ` : t; · (T-LOC)

Γ;A `term e : ref t;ε

Γ;A `term !e : t;ε
(T-DREF)

Γ;A `term e1 : ref t;ε1 Γ;A `term e2 : t;ε2

Γ;A `term e1 := e2 : Unit;ε1] ε2
(T-ASN)

Γ ` t :: K Extensions to kinding judgment

Γ ` Unit :: U
(K-UNIT)

Γ ` t :: U
Γ ` ref t :: U

(K-REF)

M ` (Σ,e) l−→(Σ′,e′) Dynamic semantics in the presence of a model M

M ` e l−→e′ e′ 6=⊥

M ` (Σ,E · e) l−→(Σ,E · e′)
(E-PURE-CTX)

M ` e l−→⊥
M ` (Σ,E · e) l−→(Σ,⊥)

(E-PURE-BOT)

M ` (Σ,e) l−→(Σ′,e′) e′ 6=⊥

M ` (Σ,E · e) l−→(Σ′,E · e′)
(E-CTX)

M ` (Σ,e) l−→⊥

M ` (Σ,E · e) l−→(Σ,⊥)
(E-BOT)

(`,v) ∈ Σ

M ` (Σ, !`)−→(Σ,v)
(E-DEREF)

Σ = Σ1,(`,v′),Σ2

M ` (Σ, ` := v)−→(Σ1,(`,v),Σ2,())
(E-ASN)

Figure 4.1: Syntax and semantics of FLAIR (Extends λAIR with references)

given the type ref t.

For simplicity we do not include a dynamic allocation construct. While adding

dynamic allocation to FLAIR is straightforward, developing a policy to control allocation

effects is somewhat tedious (although it is still possible). Rather than further complicate
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the information flow policy of Figure 4.5, we just omit dynamic allocation.

The typing judgment Γ;A `ϕ e : t;ε extends the judgment of the same form found

in Figure 3.5. In this case, the environment Γ is extended to include bindings of mem-

ory locations ` to their reference types. Since we do not support dynamic allocation, we

expect all memory locations to be bound to their types in the initial typing environment.

Recall that the phase index ϕ distinguishes the typing of term-level from type-level ex-

pressions and that ε is a constraint that manages the usage of type-level names—ε plays

no significant role in this extension to λAIR.

The typing judgments are mostly standard. Our one concern is to ensure that ef-

fectful expressions (i.e., expressions that use references to manipulate the store) do not

appear in type-level expressions. This is standard in a dependent type system. (Hoare

type theory [91], a dependent type system with stateful higher-order functions, is a no-

table exception.)

To enforce the effect-free restriction on type-level expressions, (T-LOC), (T-DREF)

and (T-ASN) are all applicable only when typing a term-level expression. (T-LOC) simply

looks up the type of the location in the environment. (T-DREF) gives !e the type of

the referent of e. (T-ASN) requires the value being written to have the same type as

the contents of the location and gives the result of an assignment the Unit type. It also

propagates the constraints on names ε1 and ε2 as enforced in the other rules of the system.

The extensions to the kinding judgment are next. (K-UNIT) is straightforward. In

(K-REF) we impose a restriction that values in the store be given an unrestricted type. Al-

lowing affine values to escape into the store is common (e.g., affine types in Cyclone [124]

are used primarily to track the usage of the heap-directed pointers). Although standard,
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the machinery required to support this feature is somewhat cumbersome, e.g., we would

need to ensure that it there are no unrestricted references to affine values in the store. To

keep the formalism simple, we exclude this feature. We would expect a practical imple-

mentation of FLAIR to allow affine values to be stored in the heap.

Figure 4.1 concludes with an extension to the dynamic semantics of λAIR. In Chap-

ter 3, we defined the operational semantics of (purely functional) λAIR as a relation of the

form M ` e l−→e′, where M is a model defining the reduction of base-term applications.

Here, we extend the relation to define a reduction of a configurations (Σ,e), consisting of

a store Σ and an expression e.

The rules (E-PURE-CTX) and (E-PURE-BOT) are congruences that reduce the

stateful reduction relation to the purely functional relation for sub-terms that do not re-

quire the store Σ. (E-CTX) and (E-BOT) are the stateful versions of the first two congru-

ences. The only new base rules in the dynamic semantics are (E-DEREF), which simply

looks up the value v stored at a location ` when ` is dereferenced, and (E-ASN), which

updates the store at ` with the new value v and reduces the expression to the unit value.

Appendix C extends the soundness result of λAIR to include the store manipulation

constructs of FLAIR. The statement of the theorem appears below.

Theorem (Type soundness). Given all of the following:

1. A well-formed environment Γ of type names and memory locations, with signature

S, Γ = S,α1::N, . . . ,αn::N, `1:t1, . . . , `m:tm

2. A type correct expression e such that Γ; · `term e : t;ε , for some t and ε .

3. An interpretation M such that M and S are type consistent.
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4. A store Σ such that Γ |= Σ.

Then, ∃e′,Σ′.M ` (Σ,e) l−→(Σ′,e′) or e is a value.

Moreover, if M ` (Σ,e) l−→(Σ′,e′) then Γ; · `term e′ : t;ε and Γ |= Σ′.

This theorem is nearly identical to the soundness theorem of λAIR. The only differ-

ence is that in FLAIR, we guarantee that the store remains well-typed as a term evaluates.

4.2 A Reference Specification of Information Flow

With the ability to write programs with mutable state in FLAIR, we can begin to

address the problem of constructing policies that control information flows that can occur

via side effects. But first, we make precise the semantics of static information flow by

presenting a simple information flow type system for Core-ML, a core subset of an ML-

like language proposed by Pottier and Simonet [104].

4.2.1 Information Flow for Core-ML

Figure 4.2 defines the syntax and static semantics of Core-ML, a minimal core of

an ML-like language that enforces static information flow controls. This system (the

purely functional fragment of which appears in Appendix A) is a simplification of a type

system proposed by Pottier and Simonet [104], and is established as correctly enforcing

a standard noninterference property for mostly functional programs that can manipulate a

mutable store.

The syntax of Core-ML appears at the top of Figure 4.2. Expressions include vari-

ables x and the value forms for units, booleans, memory locations `, and abstractions.
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Core-ML syntax

Expressions e ::= x | () | true | false | ` | λx.e
| if (e) then e else e | e1e2 | e1 := e2 | !e

Types t ::= unit | booll | (t1
pc→ t2)l | refl t

Labels l, pc ::= L | H
Environment Γ ::= x:t | `:t | Γ,Γ | ·

l/ t Guards

l/ unit lv l′

l/ booll
′

lv l′

l/ (t
pc→ t′)l

′

lv l′

l/ refl
′

t
where Lv H

t ok Well-formed types

unit ok booll ok t ok t′ ok
(t

pc→ t′)l ok

t ok ∀l′.l′ / t⇒ l′ v l

refl t ok

Γ; pc `ML e : t Core-ML typing

Γ; pc `ML () : unit (ML-UNIT) Γ; pc `ML x : Γ(x) (ML-VAR) Γ; pc `ML ` : Γ(`) (ML-LOC)

Γ; pc `ML true : booll (ML-T) Γ; pc `ML false : booll (ML-F)

Γ; pc `ML e : booll Γ; pctl `ML e1 : t Γ; pctl `ML e2 : t l/ t

Γ; pc `ML if (e) then e1 else e2 : t
(ML-IF)

Γ; pc `ML e1 : refl t Γ; pc `ML e2 : t pcv l

Γ; pc `ML e1 := e2 : unit
(ML-UPD)

Γ; pc `ML e1 : refl t

Γ; pc `ML !e1 : t
(ML-DREF)

Γ,x:t; pc′ `ML e : t′

Γ; pc `ML λx.e : (t
pc′→ t′)l

(ML-ABS)

Γ; pc `ML e1 : (t
pc′→ t′)l Γ; pc `ML e2 : t l/ t′ pctlv pc′

Γ; pc `ML e1e2 : t′
(ML-APP)

Subtyping

bool⊕ (� �→ �)⊕ ref� �

Figure 4.2: Core-ML syntax and typing

Notice that we do not decorate bound variables with their types; the static semantics of

Core-ML “guesses” these types. The non-value forms include a conditional statement,
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function application, assignment, and dereference. Although not strictly necessary, we

include booleans and conditionals since they are convenient for illustrating indirect flows.

For simplicity, as in FLAIR, we do not support dynamic allocation of memory and assume

instead that all memory locations are statically known.

Core-ML types may be decorated with labels l drawn from the two-point lattice,

L v H. Unit values carry no sensitive information and so these types are unlabeled. The

type boolH classifies high-confidentiality boolean values. Function types are (t
pc→ t′)l.

The outer-most label l represents the confidentiality of the function, e.g., if a function

literal is constructed in each branch of a conditional expression, then each literal must be

at least as confidential as the guard expression. The annotation pc that appears above the

function arrow represents a lower bound on the confidentiality of the memory locations

that this function may update when it is applied. For example, (boolL H→ boolH)H is

the type of a high-confidentiality function from low- to high-confidentiality booleans.

Additionally, the pc annotation H indicates that this function does not mutate any memory

locations that are public, i.e., have confidentiality level L. The type given to a memory

location is of the form refl t. (Note that although the typical notation for reference in the

ML family of languages is t ref, we adopt the ref t for consistency with our notation in

FLAIR.)

The static semantics begins by defining the security semantics of each type. The

relation l/ t (read: l guards t ) requires t to have security level l or greater. It is used to

record a potential information flow, e.g., we will use this relation to ensure that the values

returned by the branches of a conditional have a security level no less than the level of the

guard.
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Since unit values carry no information, they are guarded by all labels. Booleans and

function types are standard—their security level is just defined by the outer-most security

label. Reference types are somewhat more subtle. In a language with dynamic allocation,

both the address and the contents of the location can carry sensitive information. For

instance, if allocation occurs conditional on a high-security boolean value, the address

chosen by the allocator can reveal information about the boolean. But, in our setting,

since we make the simplifying assumption that all memory locations are known statically,

we can adopt a simpler security model for reference types. We will interpret a reference

type like refH boolH as the type of a memory location only visible to a principal with

privilege to view high-security values. Under this interpretation, a type like refL boolH

stands for a public memory location that holds a secret boolean value. We will treat such

a type as ill-formed, where well-formedness of types is defined by the predicate t ok. The

interesting case is the last one, which rules out a type like refL boolH , since H / boolH

and H 6v L. (One might wonder why we even require a top-level label for a reference

type, i.e., why not just have types like ref boolH? The reason, which will become clear in

the next section, is that this model illustrates a particularly close correspondence with the

type of labeled references in our FLAIR encoding.)

In the typing judgment Γ; pc `ML e : t, the environment Γ binds variables and mem-

ory locations to their types, as usual. The pc element is a label representing the confiden-

tiality of the context in which e occurs. The judgment states that an expression e has the

type t in an environment Γ, and that it does not effect memory at a confidentiality level

lower than pc.

The first five rules in the judgment (ML-UNIT), (ML-VAR), (ML-LOC), (ML-T)
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and (ML-F) are standard. The first interesting rule is (ML-IF), which type checks a con-

ditional expression. When the guard e has confidentiality level l, the branches e1 and e2

execute in a context that carries information about the guard e. Thus, the (T-IF) checks

each of these in a context where where the program counter is elevated to pctl (where

t is the least upper bound operator on the L v H lattice), i.e., the program counter is at

least as secret as the guard. The other rules will ensure that the side effects of e1 and e2

are only to locations at least as secret as l. Since the value returned from the branches

also depends on the guard expression, the final premise l/ t requires that the type of the

entire expression also be at least as secure as the guard.

(ML-UPD) type checks assignments through a reference. The first two premises

ensure that the type of e2 matches the type of the values that can be stored in the location

e1. The third premise pcv l enforces the program counter constraint; it ensures that the

location being written to is at least as confidential as the context. (ML-DREF) allows

any location to be dereferenced, irrespective of the value of the confidentiality of the

context—the well-formedness of reference types ensures that the dereferenced value is at

least as secret as l.

Finally, we turn to the rules for functions. (ML-ABS) guesses a type t for the ab-

stracted variable x and type checks the body of the abstraction, e, in a context that includes

an assumption for x. Additionally, a label pc′ is chosen for the confidentiality of the pro-

gram counter. This label serves as the lower bound for the memory effects of the body

when the abstraction is applied and this bound is recorded above the arrow in the result-

ing type. Finally, we pick a confidentiality label l for the function itself. As an example,

consider the program below, typed in a context Γ = secret:boolH ,hloc:refH boolH .
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if (secret) then λx. hloc := true
else λx. hloc := false

One legal type for this program is (unit H→ unit)H . Since, each branch of the function

carries information about the secret boolean, we must ensure that the values returned from

the branches are at least as secure as secret. This explains the outermost label H reflecting

the confidentiality of the function itself. The pc annotation on the function arrow is H,

indicating that it writes only to high-confidentiality memory locations. This is desirable

since when the function returned by this program is applied, the value of secret is written

into the memory location hloc. Thus, when secret:boolH , this program is secure only when

hloc is also a high-confidentiality location.

The final typing rule (ML-APP) handles function application. The first two premises

are straightforward—they simply require the type of the formal parameter to match the

type of the actual argument. Since the value returned from the application carries infor-

mation about the identity of the function that was applied, the third premise requires the

returned value to be at least as secure as the function itself. Finally, the last premise en-

sures that the memory effects that occur in the function’s body do not leak information

about the program context (pcv pc′) or about the identity of the function itself (lv pc′).

To illustrate how function applications are typed, we revisit our example program,

this time typed in a context Γ = secret:boolH , lloc:refL boolL.

if (secret) then λx. lloc := true
else λx. lloc := false

Since the function bodies in the branches update low-security locations, the type of

this program must be of the form (unit L→ unit)H , i.e., the pc annotation on the function

arrow is L, reflecting that this function (call it f ), when applied, can effect a low-security
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location. However, if we try to apply this function as f (), we find that if fails to type

check. The final premise of (ML-APP) requires the pc annotation on f ’s type to be at

least high as the confidentiality of f itself. This is a good thing—we expect to reject an

application of f as insecure because, when f is applied, the value of the secret boolean is

copied into the low-security location lloc.

The last section of Figure 4.2 shows a simple subtyping relation which extends the

partial order over labels L v H to types. The notation, due to Pottier and Simonet, is a

compact form for defining covariance (⊕) and invariance (�). For instance, we have that

boolL is a subtype of boolH . For simplicity, we do not permit contravariance of func-

tion arguments and covariance of function return types. Contravariance of the program

counter annotation is also customary. Handling each of these features poses no significant

challenge; Appendix A shows how to handle these constructs in the context of FABLE.

Finally, one might have expected covariant subtyping on the label associated with a refer-

ence type. However, since our attacker model interprets a location of type t1 = refL boolL

to be readable by the attacker, it is not safe to treat this as a subtype of t2 = refH boolL.

Again, for simplicity, we limit ourselves to invariance on the labels of reference types.

4.3 Tracking Indirect Flows in FLAIR using Program Counter Tokens

In this section, we describe an encoding of a policy in FLAIR that attempts to pre-

vent illegal information flows through side effects. We present a signature S0
Flow which

illustrates the basic idea behind our encoding, i.e., we use a special runtime value to rep-

resent the confidentiality of the program counter. Policy functions receive these program
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Type constructors
Bool :: U
LabeledRef :: U→ Lab→ U
PC :: Lab→ U

Base terms
True : Bool
False : Bool

lub : (x:Lab)→ (y:Lab)→ Lab

update : ∀α::U.(l:Lab)→ PC l→ (x:LabeledRef (ref α) l)→ (y:α)→ Unit

branch : ∀α::U.(l:Lab)→ PC l→ (m:Lab)→ (b:Labeled Bool m)→
(t:PC (lub l m)→ α)→ ( f :PC (lub l m)→ α)→ (Labeled α m)

Figure 4.3: S0
Flow: An attempt to statically enforce information flow in FLAIR

counter values in their arguments, and, by giving these arguments appropriate types, we

are able to place constraints on the indirect flows that occur in the program. In Section 4.4,

we elaborate upon this basic idea to develop a complete signature SFlow, which we then

prove to successfully enforce a noninterference property for FLAIR programs.

4.3.1 S0
Flow: A Sketch of a Solution

Figure 4.3 shows S0
Flow, to be read as an extension of SFABLE, which appears in Fig-

ure 3.9. The signature begins with a type constructor for booleans and the corresponding

term constructors. We also include a lub function that computes the least upper bound

of two labels. We then include a type constructor LabeledRef —we use this constructor

to protect references by giving them types like LabeledRef (ref t) High. As usual, ap-

plication programs cannot manipulate labeled references directly. Instead, they must call

base-term functions that mediate all operations on these references.
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The update function controls assignments through references. To prevent illegal

direct flows, we simply require that the type α of the referent of x is the same as the

type of the new value y to be stored in that location—this corresponds to the constraints

specified in the first two premises of (ML-UPD) in Figure 4.2. The constraints of the third

premise of (ML-UPD) (in order to protect against indirect flows) are captured by the first

two arguments of update. We require the application to pass in a label l and a program

counter token of type PC l. This token is a runtime value that is to be used as a proof

that the program counter (at the point where update is called) is only as confidential as l.

If we can ensure that such proofs are always constructed properly, we can be sure that a

low-security reference is never updated in a high-security context.

The branch function mediates all conditional expressions where the guard is a la-

beled boolean value. The first two arguments of branch show a program counter token

of type PC l, indicating that the program counter just before the conditional is executed

is only as confidential as l. The next two arguments show the boolean guard b, which is

labeled m—this much captures the first premise of (ML-IF). The arguments t and f rep-

resent the true and false branches, respectively. Since FLAIR is a call-by-value language,

we need to suspend the execution of t and f when passing them as arguments to branch—

this explains why both t and f are given function types. To ensure that the effects of the

branches do not leak information about the guard, the third premise of (ML-IF) checks

each branch in a context where the program counter is at least as secure as the guard. The

constraint is captured in branch by the arguments of t and f , i.e., a program counter token

of type PC (lub l m). The idea is that given a token of type PC (lub l m), t and f can never

modify a location that is less secret than b since they cannot pass in the appropriate token
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Γ = S0
Flow, initpc:PC Low, h:Labeled Bool High, l:Labeled Bool Low,

hloc:LabeledRef (ref Bool) High, lloc:(LabeledRef (ref Bool) Low),

if (h) then hloc := true
else hloc := false

let tbranch (pc:PC High) = update pc hloc true

let fbranch (pc:PC High) = update pc hloc false

branch initpc h tbranch fbranch

if (h) then lloc := true
else lloc := false

let tbranch (pc:PC High) = update initpc lloc true

let fbranch (pc:PC High) = update initpc lloc false

branch initpc h tbranch fbranch

if (l) then lloc := true
else hloc := false

let tbranch (pc:PC Low) = update pc lloc true

let fbranch (pc:PC Low) = update pc hloc false

branch initpc l tbranch fbranch

Figure 4.4: Attempting to track effects in some simple example programs

as an argument to update. Finally, the value returned by branch is the value of type α

returned by either branch. This value is labeled m to reflect the dependence on the guard

b, i.e., the return type captures the last premise of (ML-IF).

4.3.2 Example Programs that use S0
Flow

To illustrate how S0
Flow works, we consider three example programs in Figure 4.4.

These programs are checked in the context Γ where initpc is an initial program counter

token of type PC Low, h is a High boolean value, l is a Low boolean value, hloc and lloc

are High and Low locations respectively. To the left, we show (in pseudo-code resembling

Core-ML) programs that manipulate these variables, and at the right, we show equivalent
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programs in FLAIR. Throughout the remainder of this chapter, our examples will use a

more readable ML-like syntax rather than the primitive notation of FLAIR.

In the top-most section of the figure we have a secure program that examines the

h value and, based on the result, writes to the secret location. The FLAIR program at

the right, starting from the bottom, calls the branch function, passing in initpc as a token

representing the initial program counter. Next, we pass in the boolean guard h, and two

functions, tbranch and fbranch, representing each branch of the conditional. Both tbranch

and fbranch expect program counter arguments of type PC High, indicating that they

execute in a context control dependent on a High confidentiality value. In the bodies of

these functions, we pass the High program counter, the location to be updated hloc, and

the value to be stored to the update function. The entire program can be given the type

Labeled Unit High, which reflects that the value computed by this program depends on

the boolean expression h, which is labeled High.

Although S0
Flow illustrates our basic strategy of tracking indirect flows by passing

program counter tokens between the policy and application, it is flawed in two important

ways. First, an application program can spoof the policy by re-using a stale program

counter token, making information flow tracking unsound. Second, in some contexts,

S0
Flow prevents a program from causing side effects to high-security locations, even though

such effects are always secure, i.e., in this respect, the policy enforced by S0
Flow is more

restrictive than a system like Core-ML. The next two examples in Figure 4.4 illustrate

these two problems and hint at possible solutions.

The program in the middle part of Figure 4.4 is insecure because it updates lloc, a

public location, in a context depending on the value of h, thereby exhibiting an indirect
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flow from High to Low. However, the types in S0
Flow are not precise enough to reject a

transcription of this program to FLAIR (at the right) as type-incorrect. The trouble is that

in tbranch (and fbranch) the application presents initpc as a program counter token to

update. The initpc token represents the confidentiality of the program counter only at the

start of the program. In the context of tbranch, the initpc token is no longer valid. We

need a way to ensure that functions like tbranch only use the program counter tokens they

receive as arguments, rather than re-using stale tokens. In Section 4.4 we show how affine

types in FLAIR can be used to accomplish exactly this.

The final program in Figure 4.4 illustrates the second problem. At the left, we have

a secure program that updates either lloc or hloc based on the value of l. However, using

S0
Flow, it is not possible to translate this to a type-correct FLAIR program. In fbranch, we

have a function that expects a PC Low token as an argument, reflecting that it is control

dependent only on the Low-security boolean value b. In the body of fbranch, we need to

update hloc; but, the call to update fails to type check because the label of the program

counter does not exactly match the label of hloc. To solve this problem, in Section 4.4,

we will develop an encoding that allows an application program to use a program counter

token of type PC l to produce capabilities that allow it to update any location that is

labeled l or higher.

4.4 Enforcing Static Information Flow in FLAIR

In this section, we develop SFlow, a signature that incorporates affine types and ca-

pabilities into S0
Flow to accurately enforce an information flow policy in the presence of
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side effects. We begin by providing a brief overview of our solution, which consists of

the following main elements.

Representing a program counter with an affinely typed value. The main problem with

our attempt to track indirect flows in S0
Flow was that the program counter token could be

freely duplicated by the application program. This meant that the policy could not cor-

rectly ensure that the program always presented a program counter token that represented

the sensitivity of the context in which the update policy function was called. This problem

can be overcome by using affine types. Our encoding will give the PC type constructor

the kind Lab→ A (rather than Lab→ U, as was the case in S0
Flow). So, a value of the affine

type PC e will represent a proof that the program counter is no more secret than the label

e. Since this value is affine, the type system will ensure that any given program point,

there is only a single value that represents the current state of the program counter.

Generating capabilities from program counter tokens. In order to modify a location

with label l, an application program must present a capability that demonstrates that the

program counter at that point is not greater than l. We will use a value of the type Cap l m

as this capability—a Cap l m value represents a proof that the label l is not less than m,

the program counter label at that program point. In order to construct such capabilities,

we provide a function pc2cap which, when given a PC m value, produces a capability of

type Cap (lub l m) m, for some label l, while consuming the PC m value. Conversely, the

program can call cap2pc to consume a capability Cap l m and retrieve a program counter

token of type PC m.

Representing the pc bound on function types with an extra parameter. In a Core-ML
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function type (boolL H→ boolH)L, the H pc-annotation over the arrow is a static guarantee

that the function’s effects are limited to the fragment of memory with security level at

least H. So, our representation in SFlow of this Core-ML function type will be a function

with a formal parameter (PC High× Labeled Bool Low). That is, the argument of the

function is a pair that includes the PC High value, from which it can generate capabilities

that authorize it to update only High-confidentiality memory locations. However, since

PC e is an affine type, when a value of type PC High is passed as an argument to a

function, the caller can no longer use this value to generate capabilities to modify some

other memory location (or even to call some other function). The solution to this problem

is a standard idiom for programming with affine types—every function that receives a

PC e value as an argument also returns this value back to the caller for further use. (This

style of “threading” affine values through a function was introduced in Chapter 3.) Thus,

the FLAIR representation of our example Core-ML function type is therefore

Labeled ((PC High×Labeled Bool Low)→ (PC High×Labeled Bool High)) Low

4.4.1 SFlow: A Signature for Static Information Flow

Figure 4.5 defines the signature for a policy that can statically control information

flows in a FLAIR program. It is intended to be read as an extension of the SFABLE signature

(which encodes some FABLE primitives) presented in Figure 3.9. This signature, in effect,

defines an interface that any correct implementation of a policy must satisfy. However,

many possible implementations exist, of which only some are correct. In Section 4.4.4 we
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Type abbreviation
Boxed l α ≡ (PC l×α)

Type constructors
Bool :: U
LabeledRef :: U→ Lab→ U
× :: A→ U→ A
PC :: Lab→ A
Cap :: Lab→ Lab→ A

Base terms
True : Bool
False : Bool

Low : Lab
High : Lab
lub : (x:Lab)→ (y:Lab)→ Lab

Pair : ∀α::A,β ::U.α ⇒ β ⇒ α×β

join : ∀α::U.(l:Lab)→ (m:Lab)→
(x:Labeled (Labeled α l) m)→ Labeled α (lub l m)

sub : ∀α::U.(l:Lab)→ (m:Lab)→ (x:Labeled α l)→ Labeled α (lub l m)

initpc : ¡((l:Lab)→ PC l)
pc2cap : (l:Lab)→ (m:Lab)→ PC l→ Cap (lub l m) l
cap2pc : (l:Lab)→ (m:Lab)→ Cap l m→ PC m

update : ∀α::U.(l:Lab)→ (m:Lab)→ (cap:Cap l m)→
¡(x:LabeledRef (ref α) l)→ ¡(y:α)→ Boxed m Unit

deref : ∀α::U.(l:Lab)→ (x:LabeledRef (ref α) l)→ (Labeled α l)

branch : ∀α::U.(l:Lab)→ (pc:PC l)→ ¡(m:Lab)→ ¡(b:Labeled Bool m)→
¡(t:Boxed (lub l m) Unit)→ Boxed (lub l m) α)→
¡( f :Boxed (lub l m) Unit)→ Boxed (lub l m) α)→
Boxed l (Labeled α m)

apply : ∀α::U,β ::U.(l:Lab)→ (pc:PC l)→ ¡(m:Lab)→
¡( f :Labeled ((Boxed (lub l m) α)→ Boxed (lub l m) β ) m)→
¡(x:α)→ Boxed l (Labeled β m)

Figure 4.5: SFlow: A FLAIR signature to statically enforce an information flow policy

discuss the form of specific policy implementations (in terms of a model M for a FLAIR

program) that satisfies this signature. This is in contrast to the approach in FABLE, where

we focused directly on providing a concrete semantics for an enforcement policy.
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Our encoding will make repeated use of packaging a value of type t along with

a program counter value that, in the case of function’s argument, will represent a lower

bound on the function’s side effects. Functions will also package their result with a pro-

gram counter and return the pair to the caller. Throughout the remainder of this chapter,

we will use the type abbreviation Boxed e t to stand for the tuple type (PC e× t). Since

our policy encoding provides a purely static guarantee, an optimizing compiler can chose

to erase the program counters and choose a runtime representation for values of type

Boxed e t that is the same as the representation chosen for values of type t.

The binary type constructor × is used to give a type to a tuple consisting of a affine

value and an unrestricted value and will be used to package a program counter with some

other value. The corresponding term constructor is Pair. (However, we will use the more

intuitive notation of (e1,e2) to construct pairs, and functions like fst and snd to destruct

pairs.) Notice that Pair is polymorphic in α and β , the types given to each component

of the tuple that it constructs. Since the first component of the tuple is affine, we require

the tuple itself to be affine to ensure that the first component is not projected from it

repeatedly.

The type constructor LabeledRef is used to protect memory locations; Labeled is

used to protect all other values. The kinds of both constructors are identical. By dis-

tinguishing protected locations from other protected values, we will be able to define

subsumption rules that apply only to labeled values, not to labeled references. (Recall

that in Core-ML, labeled reference types were invariant in their labels, whereas covariant

subtyping on the labels were permissible on other labeled values.) The terms join and sub

define these subsumption rules. The join functions allows a type with multiple labels l
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and m to be coerced to a type with a single label lub l m. As previously, sub is intended to

encode a subsumption relation which takes as arguments a term x with type Labeled α l

and a label m and allows x to be used at the type Labeled α (lub l m). This is a restatement

of the covariant subsumption rule, as l vm implies ltm = m. (Of course, as in Chapter 2,

to simplify the construction of source programs we could use phantom label variables in

the types of functions like join and sub. We omit phantom variables here for simplicity.)

Unlike S0
Flow, in SFlow we type the program counter token using the dependent-type

constructor PC that constructs an affine type (a type with kind A) from a label. Rather than

provide data constructors for the program counter token, the signature includes a function

initpc that an application program can call to construct an initial program counter token.

The type of initpc is affinely qualified (prefixed by ’¡’). This ensures that the application

program can construct an initial program counter token only once. For example, the

application can call initpc Low to create a token of type PC Low. Recall that the program

counter serves as a lower bound on the memory effects of a program. Thus, the application

is free to initialize the program counter as initpc High as this only further restricts the set

of permissible memory effects of the program.

The type of a capability that authorizes a program to update a memory location will

be formed from the binary dependent-type constructor, Cap. Specifically, Cap High Low

is a capability that states that the current program counter is Low and the program is

authorized to modify a location with the label High. A program can trade in a program

counter value PC l for a capability Cap (lub l m) l using the pc2cap function. Notice that

lub l m is always greater than l, ensuring that the only capabilities that can be generated

at a program point are to modify memory at least as high as the current program counter.
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Γ = SFlow,hloc:LabeledRef Bool High, lloc:LabeledRef Bool Low

hloc := true;
lloc := false

let pc = initpc Low in
let hcap = pc2cap Low High pc in
let pc1,() = update High Low hcap hloc True in
let lcap = pc2cap Low Low pc1 in

update Low Low lcap lloc False

Boxed Low Unit

Figure 4.6: Translating a simple Core-ML program to FLAIR

Importantly, the Cap m l type is also affine, ensuring that a program cannot duplicate

capabilities and use them when they are no longer consistent with the program counter.

In order to retrieve a program counter from a capability, the program can call the function

cap2pc.

The update base term corresponds refines the function of the same name in S0
Flow to

account for the affine tokens and capabilities. As before, the arguments x and y represent

the reference and the value to be stored therein, respectively. However, instead of pre-

venting indirect flows by requiring an argument of type PC l, the first three arguments of

update show a capability Cap l m. This capability proves that the label l of the reference

is not less than the confidentiality m of the current program counter. Since the program

counter token and capability cap are affine, update must return a token to the caller to

allow it to make subsequent calls to the policy. So, the return type of update includes a

value of type PC m (packaged as a Boxed m Unit). One remaining point to note about

the type of update: as with our translation of AIR release rules in Chapter 3, since the

argument cap is affine, we require every function type to the right of cap to also be affine,

since they represent closures that capture an affine value.

Figure 4.6 contains a simple example program that illustrates how program coun-
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ters, capabilities, and the update policy term interact. The top of the figure shows the

environment Γ that records the types of the hloc and lloc as High and Low locations,

respectively. Next, we show a Core-ML program (at left) and its corresponding FLAIR

program (at right). In FLAIR, we obtain the initial program counter token of type PC Low

by calling the initpc function. Since this function is affine, it can never be called again

in the rest of the program. In order to update hloc, we must construct a capability of

type Cap High m (for some m). So, we call pc2cap to produce a value hcap of type

Cap High Low from the initial program counter. We then pass hcap to the update function,

along with the reference hloc and the value to be stored. The update function updates the

location hloc, consumes the capability hloc, and returns a program counter value pc1 of

type PC Low back to the caller, along with the unit value that results from the assignment.

Finally, in order to update lloc, we must present a capability of type Cap Low Low to

update. We construct such a value by applying pc2cap to pc1 and then passing the result

to update as before. The type of the entire program is shown in the box at the bottom, i.e.,

a pair consisting of a PC Low token and a Unit value.

Returning to the signature SFlow of Figure 4.5, we have the term deref, which medi-

ates access to the dereferencing operation. A location can be dereferenced at any point in

the program, irrespective of the program counter. However, we must be careful to ensure

that we do not allow the program to read out of a secret (High) location and write the

contents to a public (Low) location. The deref function ensures this by labeling the value

read out of the location with the same label as the location itself. The result is that the

value is at least as secret as the location in which it was stored.

We turn now to the branch function, which corresponds to the (ML-IF) rule in the
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Core-ML semantics. As in S0
Flow, the arguments show a program counter token at level l,

the boolean guard labeled m, and the “thunkified” branches t and f . The branches receive

as arguments program counter tokens at level lub l m. Since the tokens are now affine,

the types guarantee that the branches only use this token of type PC lub l m in their bodies

(and not some other stale token in scope, like initpc). As with all other functions, the

branches thread the tokens back to their callers along with the value of type α that they

compute. Finally, as before, the return type of branch labels the result of type α with the

label m of the guard. In addition, branch includes the program counter token in the boxed

type that it returns.

The apply function corresponds to the type rule (ML-APP) in Core-ML and is simi-

lar in structure to branch. It allows a labeled function f to be applied to an argument x. The

type of f ensures that its body executes in a context where the program counter is labeled

with the confidentiality of f itself (which corresponds to the final premise of (ML-APP),

pctlv pc′). Additionally, the return type of apply ensures that the value returned from

the function is also as secret as the function itself (corresponding to the third premise of

(ML-APP)).

4.4.2 Simple Examples using SFlow

In this section, we revisit the example programs of Figure 4.4 and show how they

can be checked in FLAIR using SFlow. The top-most part of Figure 4.7 shows a secure

Core-ML program that updates a High-location based on a High guard. In the FLAIR

program at the right, as before, we have a call to the branch function, passing in the
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Γ = SFlow, h:Labeled Bool High, l:Labeled Bool Low,
hloc:LabeledRef (ref Bool) High, lloc:(LabeledRef (ref Bool) Low),

if (h) then hloc := true
else hloc := false

let tbranch (x:Boxed High Unit) =
let hcap = pc2cap High High (fst x) in

update High High hcap hloc True

let fbranch (x:Boxed High Unit) =
let hcap = pc2cap High High (fst x) in

update High High hcap hloc False

branch Low (initpc Low) High h tbranch fbranch

if (h) then lloc := true
else lloc := false

let tbranch (x:Boxed High Unit) =
let cap = pc2cap High Low (fst x) in

update Low High cap lloc True
#require cap:Cap Low Low

let fbranch (x:Boxed Low Unit) =
let lcap = pc2cap Low Low (fst x) in

update Low Low lcap lloc False

branch Low (initpc Low) High secret tbranch fbranch
#1st arg of fbranch must be Boxed High Unit

if (l) then lloc := true
else hloc := false

let tbranch (x:Boxed Low Unit) =
let cap = pc2cap Low Low (fst x) in

update Low Low cap lloc True

let fbranch (x:Boxed Low Unit) =
let hcap = pc2cap Low High (fst x) in

update High Low hcap hloc False

branch Low (initpc Low) Low l tbranch fbranch

Figure 4.7: Tracking effects using SFlow

guard h and the branches. However, this time we call the initpc function to construct

an initial program counter—since initpc is affine in SFlow, it cannot be called elsewhere

in the program. In tbranch (and in fbranch) we receive a token of type PC High as an

argument (reflecting the dependence on the guard h). Before updating hloc, we construct
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a capability hcap of type Cap High High by calling pc2cap. We then pass this capability

to update along with hloc and the value to be stored. Both branches return values of type

Boxed High Unit, and the branch itself returns Boxed Low Unit.

In the middle part of Figure 4.7 we have a Core-ML program that is insecure (and

untypable) because it has an indirect flow from High to Low. We might try to write a

similar program in FLAIR—the right of the figure shows one such attempt with two typing

errors. For instance, if we were to were to try to update the location lloc in the body of

tbranch, we must pass in evidence that the program counter is not more secret than the

contents of lloc. We try to construct such a capability by calling pc2cap High Low, but we

get back a value of type Cap (lub High Low) High, which is equivalent to Cap High High.

Thus the type checker rejects the call to update as incorrect, since in order to update lloc,

update requires a Cap Low Low capability. In fbranch, the argument pc is given a type

that allows the body of the function to type check. However, fbranch cannot be passed to

branch as an argument, because the type of branch dictates that the first argument of both

branches include program counters that are at least as secret as the guard secret—in this

case, at least PC High.

The final program in Figure 4.7 shows how capabilities can be used to modify all

locations more secret than the current program counter. At the left, in the else-branch,

we update hloc in a context that is dependent on l. At the right, fbranch receives a token

of type PC Low as an argument. To update hloc, we can construct a capability of type

Cap High Low and pass this to update. In contrast, when using S0
Flow in Figure 4.4, we

could only update Low locations in contexts that were dependent on Low-security values.
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4.4.3 Examples with Higher-order Programs

We now turn to some examples of higher-order functions and show how they can be

checked in FLAIR using SFlow. The top-most part of Figure 4.8 shows a Core-ML program

to the left, where, instead of modifying a location in each branch depending on the value

of a boolean, we construct closures that modify the locations when they are applied. In

FLAIR, the top level is as in Figure 4.7—we call branch passing in the true and false

branches, tbranch and fbranch respectively. Each branch returns a pair where the first

component is just the program counter token received in the argument and the second

component is the closure. In each case, the closure itself takes an argument that includes

a program counter token of type PC High, indicating statically that this function’s effects

are only to the High fragment of memory. In the body of the closure, we project out

the program counter token from the argument y, generate a capability hcap, and call the

update function. We call the whole program on the right p2 and can give it the type:

Boxed Low (Labeled (Boxed High Unit→ Boxed High Unit) Low)

That is, a pair consisting of a Low program counter, and a Low-security function from

Unit to Unit which is guaranteed to only have an effect (if at all) on the High fragment of

memory.

The next part of Figure 4.8 shows how the function p2 can be applied. Since this

is a boxed value, we first project out each component—the program counter token pc and

the labeled function f. We then call the apply function, passing in the program counter,

the function f and the argument (). However, our construction of p2 requires that the

function be called with a program counter that has the type PC High. But, at the call
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Γ = SFlow, l:Labeled Bool Low,hloc:LabeledRef Bool High

let p2 =
if (l) then λx. hloc := true
else λx. hloc := false

let tbranch (x:Boxed Low Unit) =
(fst x, λy:Boxed High Unit.

let hcap = pc2cap High High (fst y) in
update High High hcap hloc True)

let fbranch (x:Boxed Low Unit) = ...

branch Low (initpc Low) Low l tbranch fbranch

Γ = . . . , p2:Boxed Low (Labeled (Boxed High Unit→ Boxed High Unit) Low)

let p3 =
p2 ()

let pc, f = p2 in
apply Low pc High (sub Low High f) ()

Γ = . . . , p3:Boxed Low (Labeled Unit High)

let p2 =
if (l) then

λx. hloc := true; true
else

λx. hloc := false; false in
p2 ()

let tbranch (x:Boxed Low Unit) =
(fst x, λy:Boxed Low Unit.

let hcap = pc2cap Low High (fst y) in
let pc, () = update High High hcap hloc True in

(pc, true)

let fbranch (x:Boxed Low Unit) = ..

let pc = initpc Low in
let pc1, f = branch Low pc Low l tbranch fbranch in

apply Low Low pc f ()

Γ = . . . , p4:Boxed Low (Labeled Bool Low)

Figure 4.8: Higher-order programs that contain secure indirect flows

site, the program counter pc has type PC Low and the function f is labeled Low. In this

context, the type of apply requires f to be a function from Boxed (lub Low Low) α →

Boxed (lub Low Low) β , whereas, our function f has the underlying type

Boxed High Unit→ Boxed High Unit,

and so cannot be passed as is to apply.

One way allow this application to proceed is to use subtyping to coerce the outer-
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most label of f from Low to High—which is what that call to sub Low High f achieves.

Now, the type that apply requires for the underlying function matches the type we have

for f—the arguments of both are Boxed (lub Low High) α . This approach illustrates a way

in which subsumption can be used. But, this approach has the unfortunate consequence

that the returned value is also labeled High confidentiality (since it must be as confidential

as the function itself). In this case, since the returned value is just (), the fact that it is

High confidentiality is insignificant. However, if the value is, say, a boolean, spuriously

treating the result is High security is undesirable.

The final part of Figure 4.8 shows an alternative translation that fixes this problem.

Here the closure in tbranch is a function that takes a PC Low token as an argument, which

statically only guarantees that its memory effects are to the Low (or higher) fragment of

memory. In the body of the function, we use pc2cap to generate a capability to modify

the High security location hloc and then package the boolean to be returned along with

return the program counter of type PC Low. This time, the function p2 has the type

Boxed Low (Labeled (Boxed Low Unit→ Boxed Low Bool) Low)

In order to call this function, we just have to unbox it and pass the components to the apply

function. The resulting value has the type Boxed Low (Labeled Bool Low), as desired.

We turn next to the programs in Figure 4.9 which display insecure indirect flows.

In the first section of the figure, we have a program fragment that type checks in both

Core-ML and in FLAIR. This is a program that based on a secret value h, constructs a

closure that, only when applied leaks the value of h into the public location lloc. This

program p2 has the type shown in the box, reproduced below:
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Γ = h:Labeled Bool High, lloc:LabeledRef Bool Low

let p2 =
if (h) then λx. lloc := true
else λx. lloc := false

let tbranch (x:Boxed High Unit) =
(fst x, λy:Boxed Low Unit.

let lcap = pc2cap Low Low (fst y) in
update Low Low lcap lloc True

let fbranch (x:Boxed High Unit) =
(fst x, λy:Boxed Low Unit.

let lcap = pc2cap Low Low (fst y) in
update Low Low lcap lloc False

branch Low (initpc Low) High h tbranch fbranch

Γ = . . . , p2:Boxed Low (Labeled (Boxed Low Unit→ Boxed Low Unit) High)

p2 () let pc, f = p2 in
apply Low pc High f ()
#f’s argument must be (Boxed High Unit)

Figure 4.9: Higher-order programs with insecure indirect flows

p2:Boxed Low (Labeled (Boxed Low Unit→ Boxed Low Unit) High)

This is the type of a boxed function, where importantly, the function itself is labeled High.

This reflects that fact that the value of p2 depends on a High security value h. If we try

to apply this function (in the final section of the figure), we find that the application fails

to type check. The reason is that apply requires the first argument of the function f to

include a program counter token that proves that f ’s effects are only to locations that are

at least as secure as f itself. In this case, f is High security, but the program counter

argument of f is PC Low.
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4.4.4 Security Theorem

The main security result of this chapter is a proof that FLAIR programs that are type

correct with respect to SFlow, the signature of Figure 4.5, enjoy a noninterference property.

However, before we can proceed, we must define a model for the base terms in SFlow.

This model axiomatizes the reductions of base-term applications by associating a set of

equations with each base term. (In FLAIR, each equation is optionally parameterized

by a store Σ.) For instance, the desired semantics of the lub function is defined by the

following set of equations Elub, where the equation v1,v2 ; e3 axiomatizes the reduction

of application lub v1 v2 to the expression e3.

Elub : Low, Low ; Low

Low, High ; High

High, Low ; High

High, High ; High

Our security theorem will be parameterized by a model for FLAIR programs M, where

M(lub) = Elub, i.e., all applications of lub are defined by the above set of equations. Our

proof in Appendix C provides a complete model for SFlow. However, for all the base terms

other than lub, the types in FLAIR are precise enough that any set of equations that are

consistent with the types in the signature are sufficient for noninterference.

To illustrate the sufficiency of type-consistency, we point out first that several of the

function-typed base terms in SFlow are just type coercions—operationally, these coercions

are the identity function (on one of its arguments). For example, the join function has the
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following type:

∀α::U.(l:Lab)→ (m:Lab)→ (x:Labeled (Labeled α l) m)→ Labeled α (lub l m)

The only possible implementation of join that respects this type is the identity function

on the argument x. The same is true of the other coercions like sub.

The insight that these coercions must be identity functions on one of their arguments

is a particular instance of a parametricity theorem [136]. A reading of the types in SFlow

with parametricity in mind indicates that a similar theorem applies to most of the base

terms. In the case of deref, any set of type consistent equations must simply read a value

out of the location received as an argument and return the result. The apply base term

also has only one possible type-correct implementation—it must apply f to x and return

the result.

In the case of branch and update, the types in the signature admit more than one

possible definition. For branch, while parametricity guarantees that an implementation

must apply one of the branches, our types are not precise enough to guarantee that the

branch executed correctly reflects the value of the guard b. For update, since the returned

type is Unit, one possible type correct implementation is to simply return (). However, any

implementation that mutates the store must do so as intended. That is, it must assign the

value y to the location x (and not to any other). Clearly, the choice we make for defining

the operational behavior branch and update has a profound impact on the semantics of

the FLAIR program that uses these terms. However, purely from a security perspective,

the specific implementation that is chosen does not matter. For instance, an ill-chosen
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(but type-correct) definition of branch may cause the else-branch to be executed instead

of the then-branch; but, the types guarantee that even in this case, no high-confidentiality

information is leaked to low-confidentiality outputs.

While we do not formalize these parametricity arguments, an interesting direction

of future work would be to investigate the validation of a policy specification (in the form

of a signature) with respect to the theorems that can be deduced from the types in the spec-

ification. Rather than prove a security result (as we did in FABLE) by considering specific

implementations (in the source language) of a policy, reasoning with parametricity at the

meta-level may lead to simpler and more abstract proofs.

Definition 4 (Low-equivalence of stores). Two stores Σ1 and Σ2 are low-equivalent with

respect to an environment Γ if and only dom(Σ1) = dom(Σ2) and ∀`.Σ1(`) 6= Σ2(`)⇒

Γ(`) = LabeledRef t High

Theorem (Noninterference for FLAIR, with SFlow). Suppose, for well-formed Γ, the sig-

nature SFlow, a model M type-consistent with SFlow, such that M(lub) = Elub, we have

Γ; initpc `term e : t; ·. Then, for any two low-equivalent stores Σ and Σ′, such that Γ |= Σ

and Γ |= Σ′, if we have

M ` (Σ,e)−→(Σ1,e1)−→ . . .−→(Σn,en)

M ` (Σ′,e)−→(Σ′1,e
′
1)−→ . . .−→(Σ′m,e′m)

Then, the sequences Σ,Σ1, . . .Σn and Σ′,Σ′1, . . . ,Σ
′
m are low-equivalent up to stuttering.

This timing- and termination-insensitive noninterference property is similar to an

analogous property for Core-ML programs. Our proof is based on a technique due to
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Pottier and Simonet that allows two program executions to be embedded in the syntax

of an extended calculus. Since SFlow embeds Core-ML in FLAIR, the terms structure

of a FLAIR program essentially mirrors the structure of a Core-ML typing derivation,

e.g., each application of the sub function in FLAIR corresponds to an application of a

subtyping judgment in the Core-ML derivation. However, FLAIR programs can make

use of (first-class) polymorphism, but the Core-ML subset that we have defined is strictly

monomorphic. Rather than extend Core-ML with polymorphism, we simply assume that

all the polymorphism in FLAIR is removed via code replication. The blow-up in code

size is quadratic—for n FLAIR functions at m call sites, we can produce n ·m Core-ML

function definitions.

4.5 Concluding Remarks

This chapter concludes a development in which we have shown how a general pur-

pose type system, as embodied by FLAIR, has an expressive power with regard to security

policy enforcement that, to our knowledge, is matched by no other single programming

formalism. In this chapter, we have demonstrated how an information flow policy can be

enforced with purely static controls for programs that manipulate mutable references to

memory. Although we have focused on memory effects, our encoding of information flow

in SFlow can easily be generalized to account for other kinds of side effects, e.g., sending

messages over the network, or printing output to terminal.

We have focused so far on the expressive power of our type-based approach. We

have repeatedly dismissed concerns of usability by positioning FLAIR as the kernel of
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an intermediate representation rather than a source-level language for use by a human

programmer—particularly for the more complex policies that we have explored. In sub-

sequent chapters make the claim that for many simple policies of interest, the basic idea

of a customizable security label model that is interpreted by a user-defined enforcement

policy is in fact practical for real-world programs. The main evidence for this claim:

SELINKS, a new programming language for building secure web applications.
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5. Enhancing LINKS with Security Typing

Multi-tier web applications are becoming the de facto standard for programs that

need to share sensitive information across a wide community of users. To recapitu-

late the discussion from the Chapter 1, we would like verify that such applications cor-

rectly enforce fine-grained security policies. For a program like Intellipedia for instance,

which makes classified documents available to the U.S. intelligence community using a

Wikipedia-like interface, we would like to protect fragments of documents with access

control and provenance tracking policies. On-line stores, web portals, e-voting systems,

and online medical record databases have similar needs. This chapter and the next set

out to show that by applying FABLE to the design of a new programming language,

user-defined security policies can be reliably and efficiently enforced in multi-tier web

applications.

There are two main approaches to enforcing fine-grained policies in a multi-tier

web application. A database-centric approach relies on native security support provided

by the DBMS. For example, Oracle 10g [97] supports a simple form of row-level security

in which security labels can be stored with individual rows, and the security semantics

of these labels is enforced by the DBMS during database accesses. A similar approach

is possible with views backed by user-defined functions [97]. A customized row-level

security label is hidden by the view, and the label’s semantics is transparently enforced
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by the DBMS via invocations to user-defined functions as part of query processing.

Alternatively, a server-centric approach is to enforce application-specific policies

in the server. For our example, the programmer could define a custom format for access-

control labels, store these with rows as above, and then perform access control checks

explicitly in the server prior to security-sensitive operations. This is the basic approach

taken by J2EE [56] and other application frameworks.

Neither approach is ideal. The database-centric approach is attractive because

highly-optimized policy enforcement code is written once for the database for all ap-

plications, rather than once per application, improving efficiency and trustworthiness. On

the other hand, DBMS support tends to be coarse-grained and/or too specialized. For

example, most DBMSs provide only simple access control policies at the table level, and

Oracle’s relatively sophisticated per-row labels only apply to totally-ordered multi-level

security policies [42]. Even customized support based on views, or further native security

extensions, will only go so far: some policies simply cannot be enforced entirely within

the database. For example, an end-to-end information flow policy [111] requires track-

ing data flows through the server to ensure, for instance, that the server does not write

confidential data to a publicly-viewable web server log.

The server-centric approach has the opposite characteristics: it can enforce highly-

expressive application-specific policies, but is potentially far less efficient and less trust-

worthy. In the worst case the server must load entire database tables into server memory to

access and interpret the custom security labels associated with each row. And because the

application performs security checks explicitly, programming errors can create security

vulnerabilities.
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As a remedy to this state of affairs, this chapter proposes an extension to the LINKS

web-programming language [35] that can be used to build secure, multi-tier applications

by combining the best features of the server-centric and database-centric enforcement

strategies. Our extension is called Security-Enhanced LINKS, or SELINKS, and employs

a server-centric programming model for maximum policy expressiveness, and uses com-

pilation and verification techniques to make performance and trustworthiness competitive

with the database-centric approach.

We have used SELINKS to implement two applications that enforce interesting se-

curity policies. However, this chapter focuses on the features of the SELINKS language.

Chapter 6 discusses our example applications as well as some aspects of the implementa-

tion of SELINKS in detail.

5.1 Overview

We begin in Section 5.2 by illustrating several of the features of LINKS via a simple

multi-tier example program. We then consider the security issues that arise for such multi-

tier programs and indicate how these issues might be addressed through the use of label-

based security policies.

Our extensions to LINKS consist of two main components. The first is an implemen-

tation of a FABLE-like type system for LINKS, which can be used to verify that application

programs correctly enforce their policies. The second component of SELINKS is a novel

compilation procedure that aims to make the enforcement of policies in database code

more efficient. This chapter focuses on a description of the main feature of the SELINKS
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type system. The next chapter motivates and describes our cross-tier policy compilation

strategy.

Policy enforcement in SELINKS works much as it does in FABLE. The SELINKS

programmer specifies a policy by associating customizable security labels with sensitive

data in the program. The usage modes of labeled data are defined via specially privileged

enforcement policy functions. The type checker ensures that application programs include

the appropriate calls to the enforcement policy to ensure that all usages of sensitive data

is mediated by the policy. Section 5.3 sketches the main elements of how this works.

Although the basic concepts of FABLE translate directly to SELINKS, program-

ming with label-based security policies at the source level requires several additional

constructs. Many of these constructs are standard extensions, but their inclusion in SE-

LINKS required addressing some subtle details. For example, we include built-in support

for dependently typed records, rather then encoding them with higher-order functions, as

we did in Chapter 2. However, adding this constructs to LINKS required adapting tech-

niques from the theory of existential types to manage names bound within the scope of a

record. Other constructs involve small theoretical advances. Notable among these is our

use of of phantom variable polymorphism. When coupled with inference, we have found

this feature to significantly reduce the annotation burden of programming with dependent

types.

Sections 5.4, 5.5 and 5.6 catalog each of our SELINKS-specific constructs in detail.

Where the theory is novel, as with phantom variable polymorphism, we sketch formal

definitions of the semantics. However, for the most part, we rely on informal descriptions

of the implementation of these features in the current version of the SELINKS compiler.
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As such, one purpose of this chapter is to serve as a reference manual for the intrepid

programmer intent on experimenting with the research prototype that is SELINKS.

We should note that the current version of SELINKS does not support the enforce-

ment of policies in the style of λAIR or FLAIR. As we have already observed, we expect

working with FLAIR’s combination of affine and dependent types at the source level to

require too much effort on the part of the programmer. In Chapter 8 we suggest directions

for future work that aim to address this limitation.

5.2 An Introduction to LINKS

Modern web applications are typically designed around a three-tier architecture.

The part of the application related to the user interface runs in a client’s web browser. The

bulk of the application logic typically runs on a web server. The server, in turn, interacts

with a relational database that serves as a high-efficiency persistent store. Oftentimes,

this architecture is generalized to n-tiers. For instance, one might split the web server into

a tier that processes HTTP requests and handles the presentation logic, and a so-called

application server that runs the core application logic. Multiple web and application

servers are also possible, for better load distribution.

Programming such an application can be challenging for a number of reasons. First,

the programmer typically must be proficient in a number of different languages—for ex-

ample, client code may be written as JavaScript; server code in a language like Java, C#,

or PHP; and data-access code in SQL. Furthermore, the interfaces between the tiers are

cumbersome—the data submitted by the client tier (via AJAX [54], or from an HTML
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Figure 5.1: An overview of the execution model of LINKS

form) is not always in a form most suitable for processing at the server or database. These

factors are elements of the so-called impedance mismatch in web programming.

LINKS aims to reduce this impedance mismatch by making it easier to synchronize

the interaction between the tiers of a web application. LINKS is a strict, typed, mostly-

functional language, with syntax resembling that of JavaScript and employing ideas from

other languages, including XQuery [146], Erlang [44], Kleisli [142], Scheme [71], and

others. The principal novelty of LINKS is that it brings together a diverse set of propos-

als in single language in a manner that enables a unique execution model. Rather than

construct the multiple tiers of a web application in separate languages (and glue them

together via non-standard interfaces), a LINKS programmer writes a single program that

expresses the entirety of a multi-tier web application, from client to server to database.

Figure 5.1 illustrates the execution model of a LINKS program graphically.

A LINKS program consists of a series of function definitions followed by some ini-
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tialization code to start the application. Each function is annotated with qualifiers, either

client or server, to indicate where it is supposed to run. LINKS provides a code genera-

tor that translates client-side functions to JavaScript to run in the browser; additionally,

an interpreter runs server functions at the web server. Function calls may traverse the

client/server gap—LINKS automatically translates such calls into synchronous remote

procedure calls (RPCs) using AJAX [54]. LINKS also allows data access code to be

integrated with server-side functions by representing database operations as list compre-

hensions in the style of Kleisli [142] and LINQ [83]. The server-side interpreter translates

list comprehensions to SQL expressions and dispatches these to be run at the database.

Thus programs are expressed at a fairly high-level while the low-level details are handled

transparently by the compiler.

The original LINKS paper [35] provides a comprehensive discussion of the various

features of the language. Here, we just attempt to provide the reader with a feel for LINKS

programming, with an eye towards the issues that arise when attempting to enforce fine-

grained custom security policies.

5.2.1 Programming in LINKS

Figure 5.2 shows a simple, but fairly typical, LINKS program. At a high level, this

program provides a web-based interface to a database of employee records. The database

contains a table that associates an employee’s name with her salary. The program allows

the user to enter a minimum salary and the program selects all records in the database for

which the salary exceeds the minimum and renders the result in the browser as HTML.
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1 var employeeTab = table ‘‘Employee’’ with
2 (name : String, salary : Int)
3 from (database ‘‘EmpDB’’);
4
5 fun getRecords(minSalary) server {
6 for (var row← employeeTab)
7 where (row.salary > minSalary)
8 [row]
9 }

10
11 fun showRecords(minSalary) client {
12 var recs = getRecords(minSalary);
13 var tableBody = for (var r← recs)
14 <tr>
15 <td>{stringToXml(r.name)}</td>
16 <td>{intToXml(r.salary)}</td>
17 </tr>;
18 <html>
19 <body>
20 <table>{tableBody}</table>
21 </body>
22 <html>
23 }
24
25 fun main() client {
26 <html>
27 <body>
28 <form method=’’POST’’
29 l:action=’’{showRecords(minSalary)}’’>
30 Enter minimum salary:
31 <input type=’’text’’ l:name=’’minSalary’’/>
32 <input type=’’submit’’ value=’’Get records!’’/>
33 </form>
34 </body>
35 </html>
36 }
37
38 main()

Figure 5.2: A LINKS program that renders the contents of an employee database in a web
browser
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The program begins by defining a schema for the database table that stores the

employee records (lines 1-3). The remainder of the programmer shows the functions

getRecords, showRecords, and main. Notice that each of these are annotated with a location

qualifier (client or server), indicating on which tier they are intended to run. Finally, (line

38) we have a call to the main function—this is code that will be run on the client in order

to start the program.

The database table in this case is called “Employee” and is defined as a relation in

the database called “EmpDB.” Each row in this table has two fields (columns). The first,

name, stores the employee’s name as a String, and the salary field is an Int (the type of

integers). A handle to this table is bound to the variable employeeTab which is in scope

for the remainder of the programmer. All operations on this table (such as querying or

updating) will be performed using this handle.

LINKS does not currently allow database operations (like queries) to be performed

directly from client code. Instead, an interface to these tables are exposed to client func-

tions by server functions that encapsulate the application logic. In this case, we have a

single server-side function getRecords that allows the Employee table to be queried for all

records where the salary exceeds the argument minSalary.

The LINKS view of a database table is simply a list of records. Under this model,

a database query is a list comprehension [135]. The body of getRecords is a single list

comprehension that selects data from the Employee table. In particular, for each row in

the table (the syntax for(var row← employeeTab)) for which the where clause is true, the

row is included in the final list to which the comprehension evaluates (the syntax [row]).

Since the LINKS view of each row is a record, the where-clause projects out the salary
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field and checks if it is greater than the argument minSalary. The list computed by this

comprehension is returned by the function. (LINKS functions simply return the value

computed by their last expression—as in most functional languages, there is no explicit

return keyword.)

A database list comprehension is checked against the type signature provided as

the table schema. In this case, both String and Int are primitive types in LINKS. There-

fore, comparing the Int-typed salary field against a String constant in the where-clause of

the query would be flagged by LINKS as a type error. Additionally, as far as the pro-

grammer is concerned, the types given to the columns of the table are independent of the

underlying representation of these types in the database—the translation between the da-

tabase representation of these types and the LINKS representation is taken care of by the

LINKS runtime. However, if no such translation is possible, the current implementation

of LINKS will signal a runtime error. However, it should be straightforward to parameter-

ize the LINKS type checker with a database schema and statically check that the LINKS

types given to a table’s columns can always be translated to corresponding types in the

database.

We now turn to the client functionality, beginning with the main function. This

function constructs the initial web page of the application. Its body is an HTML page

(LINKS allows XML literals to be embedded within the source) which contains a form

to collect the user’s input. The two input fields in the form are, first, a text field named

minSalary (the name minSalary is in scope throughout the enclosing form element), and a

form submission button. When the user enters an integer value in the text field and presses

the submit button, the l:action handler specified in the enclosing form element is called. In
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this case the handler is a local call to the client function showRecords where the argument

is the contents of the text field named minSalary. The LINKS runtime takes care of input

validation—in case the user enters a non-integer value in the text field, the runtime will

fail to parse the value and refuse to dispatch the function call. (A more graceful failure

mode that, say, prompts the user to enter a different value is not yet provided.)

The showRecords function makes a remote call to the server for the function getRecords

passing in the user input minSalary as input. There is no distinction at the source level be-

tween a local and a remote call. The LINKS runtime, running in the web browser as a

JavaScript library, dispatches this call to the server via a synchronous AJAX call. The re-

turned value is a list recs of database rows that matched the query. The name rec is bound

in the remainder of the function (i.e., the notation var x = e1; e2 is LINKS notation for the

more familiar let x = e1 in e2). The function showRecords then iterates through these rows

(using the same list comprehension syntax), but this time constructing an HTML repre-

sentation of the matched rows—each is an HTML table row (the <tr>) element with two

columns (the <td> element) containing the name and salary fields coerced to their XML

(equivalently, HTML) representations. Finally, showRecords returns a new HTML page

that contains a <table> element, where the body of the table is the list of XML rows

constructed by the list comprehension and bound to the tableBody variable.

Finally, in order to explain the examples that appear in the rest of this chapter it

is important to note that, by default, functions are not curried in LINKS. The type of

the showRecords function, for instance, is (Int) −→Xml, indicating that it is a function that

takes a tuple containing a single Int-typed field as an argument and returns an Xml value.

Functions that take multiple arguments usually do so by accepting multiple fields in the
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argument record. For example, a version of showRecords that took both a minSalary and

a maxSalary as arguments is typically defined as fun showRecords(min, max) { ... } and is a

given the type (Int, Int) −→Xml. It is possible to explicitly define a function as being curried,

by using the notation fun showRecords (min) (max) { ... }. This function would be given the

type (Int) −→ (Int) −→Xml, the type of a function that expects a tuple with a single integer

as an argument and returning a function that expects a tuple with a single integer which

in turn returns some Xml.

5.2.2 Fine-grained Security with Links

It is natural to want to enforce application-specific security policies for programs

like the example of Figure 5.2. For instance, we might want to limit access to an em-

ployee’s salary information only to certain principals—for instance, the employee herself,

her managers, and maybe certain other privileged actors like members of an organization’s

human-resources team.

One way to apply such a security policy would be to partition the table into multiple

tables where all rows in a given table have identical access control requirements. The

database can enforce access protection at the level of the table itself preventing a user

from accessing a table when she does not have the right set of privileges. But, for a

large organization with a complex managerial hierarchy, such an approach can lead to a

proliferation of tables. Managing a large number of tables can easily become unwieldy.

Furthermore, the privilege of creating tables and setting access controls is often restricted

to users with administrative rights. This makes it difficult for ordinary users to apply
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var employeeTab = table ‘‘Employee’’ with
(acl : String, name : String, salary : Int)
from (database ‘‘EmpDB’’);

fun getRecords(credential, minSalary) server {
for (var row← employeeTab)

where (accessAllowed(credential, row.acl) &&
(row.salary > minSalary))

[row]
}

fun selectAll() server {
for (var row← employeeTab)

[row]
}

Figure 5.3: Enforcing a fine-grained access control policy in LINKS

discretionary controls to their data with table-level protection. Additionally, indexing

data in multiple tables can be difficult or impossible, which can degrade the performance

of query execution.

An alternative approach is to associate some metadata with each row in the em-

ployee table that identifies the set of users that can access the record. Queries of the table

can be expected to examine this metadata against the credentials of the user issuing the

query and return the result only if the access check succeeds.

For instance, one might define the “Employee” table as shown in Figure 5.3. Each

row now contains three columns; name and salary are as before, and the new acl field

holds some string metadata that represents an access control list. We can then revise our

function getRecords to take two arguments, credential and minSalary. The new argument

credential is some token that represents the identity of the user on whose behalf the query

is to be executed. The query itself is similar to what we had before, except now, in the

where-clause, we include an access control check. This check is a call to the function
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accessAllowed, passing in the user’s credential and the access control list on the row be-

ing examined. We only include the row in the list of results if the access control check

succeeds.

Of course, we would like to ensure that LINKS programs are always correct with

respect to their security policies. For instance, we would like to ensure that access control

checks like accessAllowed are always present at the right places in the program. One

definition of correctness might be that the program examines the salary field of a row in

the database only after it has performed an access check of the corresponding acl field in

the same row. Under this definition, using the getRecords function of Figure 5.2 with the

table declaration of Figure 5.3 is deemed insecure, since it does an integer comparison on

the salary field (thereby examining it) without checking the acl field of the row.

On the other hand, consider the function selectAll shown at the bottom of Figure 5.3.

The query in this function simply selects every row in the Employee table and returns it. On

its own, we might consider this program to be secure since it certainly does not inspect the

salary field of any row in the table. However, clearly the list of rows returned by selectAll

contains sensitive data. So, we would also like to ensure that such sensitive data does not

flow to a location where it can be inspected by an unprivileged user.

These examples illustrate the two main concerns that our extensions to LINKS must

address.

• First, we aim to ensure complete mediation of the security policy. By augmenting

the type language of LINKS with security labels in the style of FABLE, and modeling

functions like accessAllowed as FABLE enforcement policy functions, we can check
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that the appropriate policy checks are always present in an SELINKS program.

• Second, we seek to ensure that all cross-tier data flows in the program are consistent

with the level of trust we have in those tiers. In particular, our trust model considers

code that runs in the client tier to be untrusted, since we cannot easily assure that

the client runs code sent by the LINKS compiler to the web browser. In the context

of the example of Figure 5.3, this trust model means that the list of rows returned by

selectAll are not allowed to flow directly to a client function—a policy check must

intervene to authorize the release of this data to the client.

Additionally, we would like to ensure that database queries that contain calls to po-

tentially complex enforcement policy functions (like accessAllowed) can still be executed

efficiently within the database. We defer addressing this concern to Chapter 6, where we

show how enforcement policy functions and database list comprehensions can be com-

piled for good performance.

5.3 SELINKS Basics: Enforcing Policies with Static Security Labels

We begin our presentation of SELINKS by considering how to enforce particularly

simple security policies. For pedagogical reasons, we will begin with simple policies

specified using static security labels. Subsequent sections will illustrate how to specify

and enforce policies using dynamic labels in SELINKS.

Whether static or dynamic, specifying and enforcing a security policy in SELINKS

typically proceeds in three steps.
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• First, the policy designer chooses a language of security labels. For example, for

the simplest form of information flow policy, we might use the labels Low and High.

• Next, we identify the sensitive resources in our program and label their types with

security labels that protect them from unrestricted usage by the application pro-

gram. For instance, we might give sensitive values in the program, such as pass-

words, types such as String{High}, indicating that these will be treated as High con-

fidentiality. Additionally, library functions that are significant from a security per-

spective are also given types to reflect their intended usage. For instance, a library

function print that prints strings to a user’s terminal might be given a type such as

(String{Low}) −→ (), indicating that only Low-security strings can be printed to the

terminal.

• Finally, we write enforcement policy functions that give an interpretation to the

security labels. Without the enforcement policy, the labels that decorate types are

entirely uninterpreted in the program. There is no way, for instance, to allow a Low-

security integer to be treated as a High-security one. As in FABLE, the enforcement

policy is granted special privileges to interpret label types by defining the conditions

under which labeled data can be used, or how type of labeled data can be coerced

from one type to another.

Under the assumption that the enforcement policy is correct, and given that we have

assigned proper types to protected data and sensitive library functions, the SELINKS type

checker can be used to ensure that an application program meets a set of high-level secu-

rity goals. As with FABLE, the type system ensures that an application program always
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relies on the enforcement policy to construct and destruct protected data. Additionally, as

we will see in Section 5.5, the SELINKS type system also ensures that protected data is

never sent directly to the untrustworthy client tier.

In the remainder of this section, we illustrate each of these three basic steps towards

security enforcement in SELINKS.

5.3.1 Defining a Language of Security Labels

Specifying a security policy in SELINKS begins by choosing a language of security

labels. In FABLE, we restricted terms in this language to be applications of constructors

from an algebraic datatype. While this was adequate in the formal setting, for practical

policies, we would like to be able to construct labels that include values other than just

the data constructors of an algebraic datatype. For instance, it would be much more con-

venient to represent an access control list as a list of tuples, where each tuple contains a

user’s integer UID and the user’s name (say, for pretty printing). This would allow us to

manipulate access control lists using all the standard list library functions like searching

through the list for an element, folding over it etc. For this reason, SELINKS general-

izes the language of security labels to include arbitrary data values (with some caveats,

discussed shortly). An example label type in SELINKS is shown below.

typename UserRec = (username: String, uid: Int);
typename Acl = List (UserRec) is lab ;

This declaration defines a type alias called Acl, intended to represent an access control

policy. This is an alias for the type of a List, where each element of the list is a record with

two fields—the first, a String-typed field called username and the second an Int-typed field
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called uid. Here, List is a type constructor defined in the standard library, and the notation

List(t) represents the application of this type constructor to the type t.

Notice that this type declaration concludes with an assertion “is lab”. This assertion

serves as a type annotation which signals the programmer’s intention to use values of

the Acl type as security labels—we call such types label types. One way to the think

of the “is lab” annotation is that it asserts that the type Acl is a member of the lab type

class [137]. In our current implementation, the semantics of this type class is utterly

trivial. We permit any type declared with the is lab assertion to be treated as a member

of the lab type class—i.e., membership in this type class does not demand any particular

constraint of the underlying datatype. However, we expect this to change in the near

future to accommodate the two features discussed below. In the meantime, we allow the

“is lab” annotation to be elided for convenience. We expect future versions of SELINKS

to be more strict with this requirement, in order to satisfy the following two properties.

1. Ensuring the purity of type-level expressions. First, since expressions of label

type can appear at the type level, we should to ensure that these expressions are

pure—i.e., that they have no side effect. Although LINKS is primarily a functional

language (unlike a language like ML, LINKS programs cannot manipulate memory

via references), programs can have side effects by altering the database. Our current

prototype permits type-level expressions to include database operations although

attempting to give a reasonable semantics to such expressions at the type-level ap-

pears to be unwise. One enhancement that we anticipate is to enrich the LINKS type

system so that we can lock all side-effecting computation within a monad [87]. We
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could then ensure that the only members of the lab type class are types whose values

are computed by purely functional code. Recall that we adopted a similar restric-

tion with FLAIR in Chapter 4, where we tracked memory effects in the type system

and forbade effectful expressions from appearing at the type level.

2. Ensuring the serializability of label values. Since LINKS targets multi-tier ap-

plications, data values are required to be communicated across tiers. For instance,

in Section 5.4.2 (and in greater depth in Chapter 6), we will argue that reliable

enforcement of security policies requires label-typed values to be stored in the da-

tabase. With this in mind, we envisage limiting membership in the lab type class

to types whose values can be readily serialized for storage in the database. This

would, for instance, exclude function types since serializing code to the database is

unlikely to be efficient.

typename LatticeLab = [| Low | Med | High|];

sig foobar: (LatticeLab is lab .High) −→ ()
fun foobar (h) { () }

Figure 5.4: An example illustrating the syntax of singleton label types in SELINKS

In addition to the lab type, FABLE provides a precise singleton type of labels lab∼e.

The latter type is only inhabited by the value to which e evaluates (if one exists). An SE-

LINKS version of this construct is shown in Figure 5.4. The type alias LatticeLab that stands

for a variant type consisting of three constructors, Low, Med or High. We then define a type

for the function named foobar, using the sig construct from standard LINKS. The type we

give to this function shows that it expects a single argument a value of the type LatticeLab,
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but the label type assertion “is lab .High” asserts that not only is the argument to be used as

a label, but additionally that it must be the value High. That is, the is lab .High refines the

variant type LatticeLab to just the single data constructor High. The type checker ensure that

the foobar function is only ever called with the argument High. In this case, the body of

foobar is trivial (it just returns the unit value), but if foobar were to perform some security

sensitive operation, we would be able to assume that its argument h is High throughout

the body of the function. We permit arbitrary label-typed expressions e to be used in the

lab .e construction.

5.3.2 Protecting Resources with Labels

Security labels are only useful insofar as they can be used to protect sensitive re-

sources with a policy. This kind of security labeling is a central feature of FABLE, and

it translates naturally to SELINKS. The SELINKS type t{e} is the type of some data of

underlying type t, protected by the security label in the expression e.

sig sock send : (Socket) −→ (String) −→ ()

sig sock send Low : (Socket{Low}) −→ (String{Low}) −→ ()
fun sock send Low (sock) (data) { ... }

Figure 5.5: Protecting a socket interface with simple security labels

The code in Figure 5.5 illustrates a particularly simple usage of labeled types in

SELINKS. This snippet begins with a type signature for the function sock send, a curried

function that represents a function from an API that allows data to be sent on a network

socket. This is a function that takes two arguments, the socket and the string data to be

sent on the socket, and returns a unit.
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In the event that we wish to control what data is sent on which socket, we can

protect sockets with security labels indicating the security level of data which they are

allowed to carry. An instance of such a protection policy is defined in the types of the

next function in the snippet, sock send low. In this case, the first argument is a Socket value

that is protected by the static label Low, indicating that it is only cleared to carry data that

is marked as being Low security. The next argument is a String, but one that is labeled

Low security. These types ensure that the security requirements of the socket interface

are observed. An application program cannot call the sock send function with a protected

socket since the types do not match, and must call the sock send low function with a socket

and data that are both tagged with the label Low.

5.3.3 Interpreting Labels via the Enforcement Policy

Enforcement policy functions in FABLE translate directly to SELINKS in that cer-

tain functions can be tagged with the policy keyword, indicating that they are privileged.

These policy functions then have access to two special built-in operators, unlabel and

relabel , that permit them to manipulate labeled data. The type checker ensures that ap-

plication programs (i.e., code that does not have the privilege conferred by the policy

keyword) treat labeled data abstractly.

The example program in Figure 5.6, adapted from our previous example, illustrates

a usage of enforcement policy functions. As before, the sock send function is from the

socket API and does not pay any particular attention to the security level of sockets or

the data that is allowed to be sent on a socket. The new socket function is also a library
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sig sock send : (Socket) −→ (String) −→ ()

sig new socket : (String) −→Socket{Low}

sig sock send Low : (Socket{Low}) −→ (String{Low}) −→ ()
fun sock send Low (sock) (data) policy {

sock send (unlabel (sock)) (unlabel (data))
}

sig concat LH : (String{Low}) −→ (String{High}) −→ Int{High}
fun concat LH (l) (h) policy {

relabel ((unlabel (l) ++ unlabel (h)), High)
}

Figure 5.6: An enforcement policy to restrict data sent on a socket

function which provides the only way to construct a new socket. Its type ensures that, by

default, new sockets are tagged with the Low label, indicating that they are cleared only to

carry Low-security data. (If we were implementing a lattice-based policy, a complete im-

plementation would presumably also provide some way to also construct sockets labeled

High.)

Since the sock send function cannot be called directly by an application program

with a new socket, it is forced to use the sock send low function. This time, we show how

to implement this as an enforcement policy function. The policy keyword that is associated

with the function definition gives the sock send low function the privilege to use the unlabel

operation in its body. In this case, it simply unlabels the sock and data arguments (coercing

their types to Socket and String, respectively) and calls the library function, sock send.

To illustrate a usage of the relabel operator, the program in Figure 5.6 concludes

with a policy function that defines how labeled strings can be concatenated. The function

concat LH is specialized to the concatenation of a Low string with a High string, although, as

subsequent examples will show, polymorphism in SELINKS can be used to avoid having
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to specialize policy functions in this manner. In the body of the function, we first unlabel

each argument before adding them—the type of the ++ operator ensures that we cannot

use it with labeled integers. Then, we use the relabel operator to return a value of the

Int{High}.

Finally, a note about the policy keyword: The attentive reader will have noticed from

Section 5.2 that LINKS functions are usually tagged with qualifiers (like client or server)

that indicate the tier on which they are to be executed. In SELINKS, the policy qualifier is

overloaded—all policy functions are pinned to the server.

5.4 Enforcing Policies with Dynamic Labels

In this section, we show how SELINKS can be used to specify an enforce policies

specified using dynamic labels [149]. We provide two mechanisms to express dynamic

label relationships. First, as in FABLE, SELINKS contains dependently typed functions.

Second, SELINKS provides built in support for dependently typed tuples, rather than

requiring the programmer to encode them using functions.

5.4.1 Dependently Typed Functions

Figure 5.7 shows an example of dynamic labels using a dependently typed function.

The policy function sock send dyn is an elaboration of the simpler sock send low function

from Figure 5.6. The sock send low function was specialized to controlling data sent over

sockets, where both the data and the sockets were statically known to be labeled as Low.

Here, we want to enforce a policy where the labels of the socket and data are represented

162



by some program value at runtime. Prior to sending the data over the socket, we must

check that the label of the data is not more secure than the label of the socket.

We want to give sock send dyn a type that captures the labeling relationships among

its arguments. In this case, we want to write a type for a function of four arguments,

where the first argument l is a label that labels the second argument sock, and where the

third argument m labels the fourth argument data. In FABLE, we would write such a

type as (x:lab)→ Sock{x} → (y:lab)→ String{y} → unit. However, parsing conflicts

with existing LINKS notation prevents us from reusing the FABLE notation in SELINKS

source programs. Instead, we use the notation Pix:t−→t ′. Here, the term variable x is

bound to the formal parameter of type t and is in scope all the way to the right of the

arrow, in the type t ′. That is, this is the SELINKS version of the FABLE type (x:t)→ t ′.

To understand the type of sock send dyn shown on line 3, recall (from Section 5.2)

that every argument of a function in LINKS is a tuple, i.e., a record where the field names

are “1”, “2”, etc. So, in Pi x:(LatticeLab) −→ (Socket{x.1}) −→ ... we have the name x is bound

to the type of the first formal parameter, a tuple that contains a single element of type

LatticeLab. The name x is in scope all the way to the right. So, the second argument

is a tuple containing a Socket labeled by the LatticeLab provided in the first argument—

x.1 projects out the first component of the first formal parameter. Similarly, the third

and fourth arguments show a tuple y containing a LatticeLab and a string labeled with the

contents of y.

In the body of sock send dyn, we check that label of the data is not greater than the

label of the socket. If the check succeeds, we unlabel the socket and the data and call the

sock send library function. Otherwise, we simply return a unit.
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1 sig sock send : (Socket) −→ (String) −→ ()
2
3 sig sock send dyn: Pi x:(Lab) −→ (Socket{x.1}) −→Pi y:(Lab) −→ (String{y.1}) −→ ()
4 fun sock send dyn (l) (sock) (m) (data) policy {
5 if (less than eq (l, m) ) {
6 sock send (unlabel (sock)) (unlabel (data))
7 } else {
8 ()
9 }

10 }

Figure 5.7: An enforcement policy for sockets using dependently typed functions

As another example of a dependently typed function, consider the type of the relabel

operation as given in the SELINKS standard library.

Pi x:(α , β ) −→α{x.2}

This type states that relabel is a function (polymorphic in the type variables α and β )

that takes a tuple of an α and β as an argument, where α is the type of the data to be

labeled and β is the type of the label to be used. In this case, we bind x to the formal

parameter, a record containing the data in its first component and the label in its second

component. So, the return type of this function, α{x.2} shows that it returns a value of the

same underlying type as the α argument passed in, but now, the value is protected by a

label. In particular, the label that is used is the second component of the argument x that

was passed in, i.e., x.2 projects out the second component of the input argument.

When type checking a function application, as in FABLE, we substitute the ac-

tual argument for the formal parameter in the return type. For instance, the function

call, relabel (uid, Grant) from our previous example, in fact has the type sInt{(uid, Grant).2}.

Clearly, a record projection like (uid, Grant).2 is not a value. We would like this function

call to have the type Int{Grant}. Happily, the type reduction relation as defined in FABLE,
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sig sock send dyn : (l←LatticeLab, Socket{l}) −→ (m←LatticeLab, String{m}) −→ ()
fun sock send dyn (l, sock l) (m, data m) policy {

if (leq (m, l)) {
sock send (unlabel (sock)) (unlabel (data))
} else {

()
}

}

sig sock send bad : (l←LatticeLab, Socket{l}) −→ (l←LatticeLab, String{l}) −→ ()
fun sock send bad (l, sock l) (l, data l) policy { ... }

Figure 5.8: An enforcement policy for sockets using dependently typed records

translates naturally to SELINKS. We are able to reduce the expression (uid, Grant).2 to the

value Grant, as desired. Section 5.6 describes this type reduction process in further detail.

5.4.2 Dependently Typed Records

SELINKS provides special constructs to declare and directly manipulate depen-

dently typed records, rather than encoding them in terms of functions. In our experience,

dependently typed records have been the most common way of specifying dynamic label-

ings in SELINKS.

Figure 5.8 shows a program that uses dependently typed records. The function

sock send dyn is a revision of the function of the same name from Figure 5.7. Instead of

requiring the label and data to be passed to the policy as separate arguments, here, we can

package the label and data as a record and pass them together as a single argument.

The signature declares sock send dyn to be a curried policy function whose first

argument is dependently typed tuple, containing a lattice label l and a socket sock l that

is protected by that label. The notation l←LatticeLab is a binding construct—it binds the
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name l to the value stored in the first field of the tuple, and the name l is in scope for the

remainder of the record declaration. To indicate that the socket is protected by the label l,

we give it a dependent type Socket{l}, which makes clear the relationship between the fields

of the tuple. Similarly, the next argument of sock send dyn is another pair, containing a

label m and data m, some data protected by m.

The function definition begins on line 2 where we define patterns (l, sock l) and

(m, data m) that match the tuples provided to the function as arguments. In the body of

the policy function, we can inspect the labels and only permit the data to be sent after

checking that m is less than, or equal to, l.

Figure 5.8 concludes with a variation on sock send dyn that illustrates a tricky issue

when programming with dependent types: shadowing of names can be problematic. The

type signature of sock send bad shows its first argument as a dependently typed pair in

which the first field is bound to the name l. As we’ve pointed out before, the scope of this

name is for the remainder of the record—i.e., it is not in scope in the second argument of

the function. In the second argument, we have another dependently typed pair, where we

bind the first field to the name l. This much is fine, it is clear from the scoping rules that

the string in the second argument is protected by the label that it is tupled with—there is

no name l that is being hidden by the name binding in the second dependently typed pair.

The situation in the function definition is different. Here, the arguments (l, sock l)

and (l, data l) pattern match the tuples, and in the second pattern, the name l shadows the

name in the previous pattern. If we give sock l the type Socket{l} in the body of the function,

and allow l to be shadowed, then we have inadvertently severed the association between

the socket and its label and mistakenly associated it with the label of the string.
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There are many possible solutions to this problem. For instance, we could explic-

itly α-convert all terms using fresh names before type checking them. Or, we could use a

nameless representation such as de Bruijn indices to represent variable bindings [21]. Or

some combination of the two, like the recently proposed locally nameless approach [7].

However, the easiest solution, in terms of compatibility with the implementation of LINKS,

is to forbid shadowing of variables that may appear in type-level expressions. In effect,

this no-shadowing approach rules out programs such as our example, while complaining

that the second binding of l shadows the first.

Dependently typed records in table types. Dependently typed records are not limited

to function arguments. We can also use them to give types to database tables that store

secret data (among other things). Returning to the employee database example from

Section 5.2.2, we would like to make explicit the relationship between the access control

list and the data that it protects in each row. Given that LINKS models a database row as

a record, a natural model for this relationship is in terms of dependently typed record.

Figure 5.9 shows a small policy to protect salary data stored in our example em-

ployee database. Line 1 reproduces the type declaration for access control lists shown

previously. At line 3, we use a dependently typed record to type each row in the “Employee

table. The first field, acl, stores data of type Acl. The notation l←Acl (as in Figure 5.8) binds

the name l to the value stored in the acl field of the record, and the name l is in scope for

the remainder of the record declaration. The next field is the name field—we chose not

to protect the name with a label. The sensitive data in each row is the salary of the em-

ployee. So, we give the salary field a dependent type Int{l}, indicating that it is protected
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1 typename Acl = List((username:String, uid:Int)) is lab ;
2 var employeeTab = table ‘‘Employee’’ with
3 (acl : l←Acl, name : String, salary : Int{l})
4 from (database ‘‘EmpDB’’);
5
6 typename EmployeeRec=(acl:l←Acl, name:String, salary:Int{l});
7 typename Maybe (α) = [|Nothing | Just:α|];
8
9 sig releaseSalary: (Credential, EmployeeRec) −→Maybe(Int)

10 fun releaseSalary (u:Credential, x:EmployeeRec) policy {
11 unpack x as (acl=m, name= , salary=s m);
12 if (member(u, m)) {
13 Just(unlabel (s m))
14 } else { #Authorization failure
15 Nothing
16 }
17 }

Figure 5.9: A policy to protecting salary data in an employee database

by the label l; i.e., the contents of the acl field. The rest of the example uses the type alias

EmployeeRec to stand for this record.

Explicit scopes for names using existential packages. Before proceeding to the rest

of this example, we need to clarify a subtle issue in working with dependently typed

records—we need to ensure that names bound within a record never escape their scope.

For instance, consider the following (incorrect) program.

fun foo(x:EmployeeRec) { x.salary }

Here, we have a function that accepts an EmployeeRec, x, as an argument. This type is a

dependently typed record, where the salary field is protected by the contents of the acl

field. Now, since x is a record, in the body of the function, we could try to project out

the salary field from the record. While attempting to do so is certainly reasonable, giving

a type to the expression x.salary is problematic. The salary is field is protected by the

168



acl field, but there is no valid name in the current scope that can be given to this label

expression. Clearly, giving this program the type (EmployeeRec) −→ Int{l} is nonsensical—

the label variable l is free. We could try to give x.salary the type Int{x.acl} (which would

be accurate), but does not solve the problem of giving a type to the return type of the

function because the pattern variable x is not in scope in the return type.

Our solution to this problem is standard. We view dependently typed records as a

kind of existential package [149, 85, 101]. Under this view, we read the EmployeeRec type

as follows:

EmployeeRec is the type of a record of three fields, acl, name and salary, where

there exists a constant l of type Acl in the acl field, a value of type String in the

name field, and an integer labeled with l in the salary field.

As is standard when working with existential types, we expect these records to be manipu-

lated using special pack and unpack operations, that control the scoping of the existentially

bound names.

Unpacking a dependently typed record. To illustrate the usage of the unpack construct

we return to Figure 5.9. At line 9-17, we have a policy function releaseSalary that controls

access to the salary field of an employee record. This function takes a record with two

fields as an argument. The first, u, is some representation of a user credential (say, some

unforgeable representation of the UID of the user currently logged in to a system). The

next argument, x is our dependently typed employee record. The goal of this policy func-

tion is to release the salary field to the caller, but only after checking that the credential

u presented is mentioned in the access control list that protects the salary. However, as
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illustrated before, projecting the salary field out of the record x is not permissible, since

the existentially bound name l escapes its scope. The solution here is to “unpack” the

record x to introduce the name l into the scope, before using the salary field.

At line 11, we use the syntax unpack x as p;e, for some record pattern p and expres-

sion e. We check that the names bound by pattern variables in p are distinct, and that they

do not shadow any other names that can appear with a type-level expression. The names

bound by the pattern are in scope for the expression e, and we check that no name bound

in the pattern p escapes e. In this particular case, we bind the acl field to the name m,

which allows us to give s m, the salary field, the type Int{m}. In the remainder of the body,

we check that the credential u is mentioned in the acl, and if it is, we unlabel the salary

and expose it to the user. We package the result as an option type (Maybe(Int)), returning

Nothing if the authorization check fails. Thus, the body of the unpack operation (and, as a

consequence, the value returned by the function) can be given the type Maybe(Int), which

does not leak the existentially bound variable m.

The SELINKS type checker ensures that fields in records whose types include ex-

istentially bound names can never be projected out of the record. They must always be

accessed by unpacking the record. However, fields that do not include such names, like

name, or even acl in our example, can both be projected out using the standard dot nota-

tion.

Constructing a dependently typed record with pack. The counterpart of the unpack

operation (the destructor for a dependently typed record) is the pack operation (the intro-

duction form). The example in Figure 5.10 illustrates its use. Here, we have a trusted login
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1 typename Auth = [| Grant | Deny |];
2 typename Credential = (tag:l←Auth, userid:Int{l});
3
4 typename Maybe (a) = [|Nothing | Just:a|];
5 sig checkpw : (String, String) −→Maybe(Int)
6
7 fun login (uname, password) policy {
8 switch(checkpw(uname, password)) {
9 case Nothing→error(‘‘Failed login’’)

10 case Just(uid)→
11 var cred =
12 pack
13 (tag=Grant, userid=relabel (uid, Grant))
14 as Credential;
15 cred
16 }
17 }

Figure 5.10: A policy to construct unforgeable user credentials

function that produces an unforgeable user credential for a user after checking a username

and password against some password database. Our representation of a credential is the

type Credential, a dependently typed pair consisting of a tag of type Auth and a userid field

that is an integer labeled by the value stored in the tag field. Since only policy functions

can construct values with a labeled type, we can ensure that application programs cannot

forge Credential values.

In the body of the login function, we check the supplied username and password by

calling some library function checkpw and returns an option type Maybe(Int), containing

the user id of the user if the password check succeeds. We pattern match the result using

LINKS’ switch construct, and if the check succeeds, we have to return a Credential value.

Lines 11-15 show a use of the pack construct. The syntax in general is of the form

var x = pack e as t;e′, where x is some variable, e and e′ are expressions and t is a type.

The semantics is for e to be a record expression, that is to be packed into the existential
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package (equivalently, the dependently typed record) described by the type t. In our case,

we have e as (tag=Grant, userid=relabel (uid, Grant)). On its own, this expression can be given

the type (tag=Auth is lab .Grant, userid=Int{Grant}), which although a valid (and extremely

precise) type, fails to capture the relationship between the tag and userid fields. The type

annotation t in the pack construct is a hint to the type checker to generalize the type given

to e so as to introduce the relationship between the fields as prescribed by the Credential

type. In this case the generalization succeeds and e is bound to the variable cred (of type

Credential) in the remainder e′—in this case, cred is just returned.

Ad hoc inference for dependently typed records. The last example illustrates that the

pack construct is simply an annotation that indicates how the type checker should gener-

alize the type of a record expression. Fortunately, such a hint is only very rarely needed.

Usually, the type checker is able to infer enough information from the context to decide

how to generalize the type appropriately. For instance, if the programmer provided a sig-

nature for the login function (String, String) −→Credential, then there is sufficient information

for the type checker to choose the right type without the need for the pack construct. Al-

ternatively, if the record was to be passed as an argument to a function that expected a

Credential argument the type checker would again generalize the type appropriately.

Similarly, the way in which we type check a function’s arguments often allows the

programmer to avoid writing explicit unpack operations. For example, in sock send dyn,

the tuple patterns that appear in the function’s declaration are type checked exactly as

if they were the patterns that unpack a dependently typed record, with the scope of the

unpack being the entire function body. This syntactic sugar for a function’s arguments
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1 sig getRecords: (Credential, Int) −→List(String, Maybe(Int))
2 fun getRecords(cred, minSalary) server {
3 for (var row← employeeTab)
4 where (switch (releaseSalary(cred, row)) {
5 case Just(salary) −→salary > minSalary
6 case Nothing −→ false
7 })
8 [(row.name, releaseSalary(cred, row))]
9 }

Figure 5.11: An example program that enforces a policy in a database query

has proved to be very helpful in keeping the notation of our larger example programs

relatively lightweight.

Securing a database query in SELINKS. We conclude this section by combining the

programs of Figures 5.9 and 5.10 to apply access controls to our employee database.

Figure 5.11 revises the getRecords server function first shown as a LINKS program in

Section 5.2.1. Our goal remains to select only the records in the database for which the

salary field exceeds the minSalary threshold. The SELINKS type checker ensures that we

do the appropriate policy check before examining the salary field. In this case, the check

amounts to a call to the releaseSalary function in the where-clause, passing in the user

credential and a relevant row in the table. If the check succeeds, the option value returned

contains the exposed salary field which we can then test.

This function returns a list of tuples, where each tuple contains the name and the

salary from the rows that matched the query. Notice that on line 8, (the expression that

computes the value returned by the comprehension) we have to perform an additional au-

thorization check by calling releaseSalary again. Clearly, this is less than optimal. How-

ever, the scoping rules of list comprehensions in LINKS prevent us from simply re-using
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the result of the authorization query performed in the where-clause. Another source of

concern is the efficiency of the query. If as we have said before, policy functions like

releaseSalary are pinned to the server, is it possible to compile this list comprehension

to SQL in a manner that it can still be executed efficiently (and securely) within the da-

tabase? The next chapter speaks primarily to the issue of efficiently enforcing security

policies that span the server and the database.

5.5 Refining Polymorphism in SELINKS

Like most strongly typed functional languages, the type system of LINKS pro-

vides for ML-style let-polymorphism. In extending LINKS with security typing, this

kind of polymorphism presents us with a useful opportunity. The parametricity results

of Reynolds [81] and Wadler [136] guarantee that code that is polymorphic in the type of

some data must view that data abstractly. This allows us to safely pass protected data to

well-typed polymorphic code and rest assured that the data remains protected.

In Section 5.5.1 we show how the power of type polymorphism can be extended

to polymorphism over terms that appear at the type level. The result, phantom variable

polymorphism, confers two main benefits on SELINKS programs. First, as with stan-

dard polymorphism, we can derive useful parametricity results about programs that use

phantom variable polymorphism. Additionally, we show how source programs can be

simplified substantially through the use of phantom variables, both through the re-use of

code (by avoiding over-specialization) as well as enabling a simple and tractable form of

type inference.
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1 sig add : (l←LatticeLab, Int{l}) −→ (m←LatticeLab, Int{m}) −→ Int{lub l m}
2 fun add (l, x l) (m, y m) policy {
3 relabel ((unlabel (x l) + unlabel (y m)), lub l m)
4 }
5
6 fun addcaller (x:Int{High}, y:Int{Low}) {
7 add(High, x)(Low, y)
8 }

Figure 5.12: A lattice-based policy for integer addition

However, enhancing polymorphism in SELINKS by unleashing phantom variables

is only half the story. We must also rein in the power of standard type polymorphism to

cope with the cross-tier execution model of LINKS. Since we have no way of guaran-

teeing that code that runs at the client respects the abstractions specified in its types, we

need a way to control the degree of polymorphism that can be used in client code. In

Section 5.5.2, we show how to refine polymorphism in SELINKS by stratifying the lan-

guage of types into a family of kinds. This allows us to ensure that abstraction violations

in client code do not compromise the security of protected data.

5.5.1 Phantom Variables: Polymorphism over Type-level Terms

To illustrate the need for phantom variables, consider the sample program in Fig-

ure 5.12. This is a policy function that defines the semantics of integer addition under a

lattice-based information flow policy. As in our other examples, this policy function takes

two dependently typed pairs of a label and a protected integer as arguments. In the body,

we unlabel each integer, add them together, and then relabel the result with a label that is

the least upper bound of the two labels.

Even though this function receives the labels l and m as arguments, the runtime
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1 sig add : phantom l.(Int{l}) −→phantom m.(Int{m}) −→ Int{lub l m}
2 fun add (x l) (y m) policy {
3 relabel ((unlabel (x l) + unlabel (y m)), lub l m)
4 }
5
6 fun addcaller (x:Int{High}, y:Int{Low}) {
7 add(x)(y)
8 }

Figure 5.13: A lattice-based policy for integer addition, with phantoms

behavior of this function is entirely independent of the concrete values chosen for the

labels. To see why, recall that both unlabel and relabel operations are erased at runtime—

they serve only as type coercions. After erasing these operations, we see that the body of

the function is simply x l + y m. The only reason l and m are mentioned in the arguments is

because we need to provide names for the labels of the integer arguments. Unfortunately,

just because we need place-holders for the names of the labels, we force a caller of this

function to pass in concrete label terms as arguments. In the function addcaller, these

labels are particularly simple, but in practice, constructing these label terms often be

cumbersome. We would much prefer a way of providing some constructs that allows the

label names in the arguments of add to be bound, without requiring that the exact label

terms be passed in as arguments.

The revised version of add in Figure 5.13 makes use of phantom label polymor-

phism and solves exactly this problem. The type signature of add states that the first

argument is an integer labeled with a label l, for some label l. The notation phantom l.

serves as a binder for l and the name is in scope all the way to the right. Similarly, the

next argument is an integer labeled m, for some label m. The return type is the same as

before. In the definition of add, notice there are no explicit term arguments for the label
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Extensions to syntactic forms of FABLE

Expression e ::= . . . | phantom−→y .λx:t.e | . . . abstraction with phantom variables −→y
Types t ::= . . . | −→y .x:t1→ t2 function type
Environment Γ ::= . . . | x :̂ t | . . . phantom variables bindings
Phase index ϕ ::= term | type phase distinction

Γ `ϕ e : t Extensions to static semantics of FABLE

−→y = FV (t)\dom(Γ) Γ,−→y :̂ lab ` t Γ,−→y :̂ lab ,x:t `ϕ e : t ′

Γ `ϕ phantom−→y .λx:t.e :−→y .x:t→ t ′
(T-ABS)

Γ `ϕ e1 :−→y .x:t1→ t2 Γ `ϕ e2 : t ′1 σ(t1)
.= t ′1 σ ′ = (σ ,x 7→ e2)

Γ `ϕ e1 e2 : σ ′(t2)
(T-APP)

x:t ∈ Γ

Γ `ϕ x : t
(T-VAR)

x :̂ t ∈ Γ

Γ `type x : t
(T-PHANTOM)

Figure 5.14: Extending FABLE with phantom variables

variables l and m—which explains why we call them phantom variables. Since add does

not receive the labels as concrete arguments, a result that concludes that the runtime be-

havior of add is parametric with regard to label values l and m is trivial—a result that is

useful when reasoning about the correctness of the policy implementation.

Not having to pass in explicit term witnesses for these labels simplifies the code

of the caller. For example, in the snippet below, we call the add policy function with a

High and Low integer respectively. Notice that the caller does not even have to explicitly

instantiate the phantom variables l and m—the type checker is able to infer the instan-

tiations as High and Low, respectively, and compute the return type of this function as

Int{lub High Low}. In the remainder of this section, we sketch an extension to the static

semantics of FABLE that supports this form of phantom variable polymorphism.
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Static semantics of phantom variables in SELINKS. Figure 5.14 begins with an ex-

tension to the syntax of FABLE (which mirrors the concrete syntax for phantoms in SE-

LINKS). Term abstraction, phantom
−→y .λx:t.e now binds two kinds of variables: the λ -bound

variable x is standard, while the phantom-prefixed list −→y binds phantom label variables.

These represent label terms that require no run-time witness, and will be used to express

the just-described flavor of polymorphism over the label expressions that appear in the

first argument’s type. Whereas previously the type of a function was simply (x:t)→ t ′,

we now record the list of phantom variables that can appear in the argument. In the type

−→y .x:t1 → t2, the list −→y represents the free (phantom) variables in the formal parameter

t1. As before, x names the formal parameter. Both x and −→y are bound in t2.

Next, we extend the typing environment Γ to include an additional form of binding

for phantom variables: x :̂ t. Since all phantom variables are implicit parameters that have

no runtime witness, we must ensure that these variables are never used in code that may

be executed at runtime. Maintaining a separate binding construct in Γ will allow us to

enforce this invariant. However, in order to so, we must also parameterize our static

semantics with a phase index ϕ that indicates whether we are type checking a type- or

a term-level expression. (We used a similar mechanism in the semantics of FLAIR to

rule out side effects for type-level expressions.) Thus, our typing judgment has the form

Γ `ϕ e : t.

The new rules in the system pertain mainly to the typing of abstractions and their

applications. (The original semantics of FABLE are in Figure 2.4.) In (T-ABS), the first
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premise ensures that the phantom variables −→y precisely record the free variables of the

formal parameter’s type, t. When a function is applied we will attempt to infer instanti-

ations for all these free variables by unification. Ensuring that exactly the free variables

are mentioned in −→y allows us to guarantee that such an instantiation, if one exists, can

always be computed. The next premise ensures that the ascribed type of the formal is well

formed. In particular, since the phantom variables are bound in t, we check t in a context

extended with the phantoms. Importantly, the types of the phantoms show that they can

only be instantiated with label-typed terms. Finally, the last premise, checks the body of

the abstraction e as usual, in a context extended with the formal parameter x, and with the

phantom variables. The rest of the type rules will ensure that the phantoms never appear

in with a subterm of e that has operational significance.

In (T-APP), the rule for applications, the first two premises are standard. In the third

premise, σ(t1)
.= t ′1 we compute a substitution σ of the phantom variables in the formal

parameter t1 that allows it to be unified with the type t ′1 of the actual argument. A separate

technical report [123] shows that computing such a substitution is decidable, given the

constraints of the first premise of (T-ABS). Finally, in the conclusion, we substitute the

actual argument e2 for the formal parameter x in the return type, as is standard. However,

we also instantiate all the phantom variables in t ′ with their substitutions σ .

Finally, we show the rules that ensure that phantom variables are never used in

runtime computations. (T-VAR) asserts that variables in the context that are bound using

normal bindings can be used in both the term and the type phase. However, according to

(T-PHANTOM), phantom bound variables can only be used in the type phase. Ensuring

that these variables are only used in the type-phase ensures that a policy function like add
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1 fun leak() server {
2 var x:String{High} = read password ();
3 consume(x)
4 }
5
6 sig consume : (α) −→ ()
7 fun consume(x) client { () }

Figure 5.15: Example illustrating how client code can violate its abstractions

is parametric in its phantom labels l and m.

5.5.2 Restricting Polymorphism by Stratifying Types into Kinds

While we can ensure that both the server and the database run type-correct LINKS

code, such an assurance is not easy to provide for the client tier. This means that we must

ensure that protected data (i.e., data that is given a labeled type) is never sent directly to

the client. However, a naı̈ve use of type polymorphism, as in the example of Figure 5.15,

can cause this invariant to be violated.

The example shows a program with a server function leak and a client function

consume. In the body of leak, we read a High-security string x out of a secret password

file and then pass x to the client function consume. The type of consume shows that it is

parametric in the type of its argument. This ensures that it consume treats its argument ab-

stractly in its body, and indeed it does; it simply returns unit. However, the call to consume

in leak is dispatched across tiers to the client’s web browser. Nothing prevents the client

from directly examining the secret argument x. In other words, untrusted client code (or

type-incorrect code) can freely mount abstraction violating attacks that can compromise

the security of protected data.
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Our solution to this problem is to stratify SELINKS types into two kinds: U-kind

and M-kind. A type t that inhabits the kind U is assured to contain no labeled types—U

is the unlabeled kind. In contrast, a type t the inhabits the kind M may contain a labeled

type—M is the maybe-labeled kind. We restrict client code to only manipulate data of

types that reside in U-kind.

Examples of types that inhabit U-kind are Int, String, (Int, String), etc. Types that reside

in M-kind include Int{Low}, String{High}, (Int{Low}, String), etc. The last of these types is

interesting in that although it is itself unlabeled, since it contains an labeled component, it

is considered to be in M-kind. We could also permit function types that have labeled types

only in a negative position to reside in U-kind. For instance, the type (Int{High}) −→ () can

be defined as residing in U-kind since it expects a protected data as an argument, rather

than producing protected data as a result. However, such a function is useless at the client,

since the client has no way to manufacture such an argument. For simplicity, our current

implementation deems such a function type as being in M-kind.

We also include a sub-kinding relation—every type that resides in U-kind also re-

sides in M. Additionally, by default, every type variable is considered to be instantiable

only with types residing in U-kind. An explicit annotation is required in order to introduce

a type variable at M-kind (using the syntax α ::M).

Revisiting our example program, the type checker deems it insecure because the

type variable in consume is treated as being a U-kinded variable; i.e., α ::U. Since the

variable x has an M-kinded type, the call to consume in the server function leak is type

incorrect since an M-kinded type cannot be used to instantiate a U-kinded variable.

An attempt to circumvent this check by explicitly declaring α to be of M-kind is
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shown below:

sig consume : (α::M) −→ ()
fun consume(x) client { () }

However, this program is also flagged by SELINKS because M-kinded types are not per-

mitted in client code.

5.6 Expressiveness of Policy Enforcement in SELINKS

A central argument in favor of the FABLE-style of policy enforcement is the degree

of expressiveness that it affords. This flexibility in FABLE is derived from two main

insights. First, by proposing the notion of an enforcement policy in order to interpret a

language of security labels, FABLE can enforce highly customized security policies. We

have already seen that this basic idea translates directly to SELINKS.

The second key to the expressiveness of FABLE is its use of a simple but power-

ful combination of refinement types within a dependent type system. A FABLE policy

designer willing to write complex type-level expressions can leverage the power of type-

level computation to statically enforce a policy. Where such types become unwieldy, a

policy designer can discharge the burden of proof to runtime—type refinements in FA-

BLE allow the result of runtime checks to be incorporated in a flow-sensitive manner in

the types of a program.

In this section, we discuss the implementation in SELINKS of these latter two fea-

tures. Our bias in SELINKS is towards policies that are specified via dynamic label-

ings. In such a setting, the possibility of purely static enforcement of a security policy is

severely limited. With this in mind, our implementation focuses mainly on flow-sensitive
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type refinements based on runtime checks, leaving the implementation of type-level com-

putation fairly rudimentary. We speculate that future implementations might benefit from

type-level computation via powerful technologies like automated theorem provers.

5.6.1 Type-level Computation

The reduction of type-level expressions in a dependent type system is something of

a double-edged sword. Importantly, performing computation at the type level increases

the expressiveness on the type system. For example, our ability to enforce purely static

information flow controls in FABLE and in FLAIR hinges crucially on the reduction of

type-level expressions. But, in a language like SELINKS (or FABLE) which includes gen-

eral recursion in the form of fixed points, performing computation at the type level leads

directly to the undecidability of type checking. What is more, type-level computations

may involve open terms and it is not always clear how such terms are to be reduced.

In light of the difficulties due to type-level computation, one might consider for-

going the expressiveness that it offers and settling for a more tractable system in which

type-level expressions never need to be reduced. However, for a dependent typing system

like FABLE, such an option is not viable. We turn to Altenkirch et al. [2] for a particularly

pithy explanation of why this is so:

Let us examine the facts, beginning with the type rule for application:

Γ ` e1 : (x:t)→ t ′ Γ ` e2 : t
Γ ` e1e2 : t ′[e2/x]

It’s clear from the premises that, as ever, to check an application we need
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to compare the function domain and the argument type. It’s also clear from

the rule’s conclusion that these types may contain expressions. If computa-

tion is to preserve typings, then f (2 + 2) should have the same type as f 4,

so t ′[(2+2)/x] must be the same type as t ′[4/x]. To decide typechecking, we

therefore need to decide some kind of equivalence up to computation.

This argument makes it clear that in order to show that a calculus like FABLE is

sound via subject reduction, we must include a type equivalence relation based on the re-

duction of expressions that appear in types (which is exactly the purpose of the (T-CONV)

rule in the semantics of Figure 2.4). However, from the perspective of an implementation

like SELINKS, ensuring that computation preserves typing is, at best, pedantic. After

type checking a program and allowing it to run, we never actually re-check it after it has

taken a step of reduction. Besides, given that we have proved that FABLE is sound, we

can rest in the knowledge that if we were to include type-level computations in SELINKS,

we would always be able to check that the type of a program is invariant under reduction.

Our current implementation of SELINKS takes a conservative (and practical) view

of type-level reduction—we only include as much as is necessary to ensure that our exam-

ple applications can be type checked. In particular, we concede the full expressive power

of FABLE in that we are unable to statically enforce policies like information flow (we

must rely on some runtime checks). In return, we profit from the simplicity of our current

implementation.

In practice, conceding the expressiveness of static enforcement is not severe hand-

icap. Enforcing a policy without runtime checks demands complete static knowledge of
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the policy. For real applications, policies are typically not discovered until runtime. For

instance, in our scenario which attempts to protect salary information in an employee

database, static information about the labels stored in each row is scant. Even a special-

purpose security type system like Jif [31] must rely on runtime checks to enforce this

policy.

Our implementation currently supports only the following forms of type-level re-

duction:

1. Reducing projections of fields from a record. This allows us to type examples

that use the relabel operator (among others). For instance, we are able to prove

Int{(uid, Grant).2} is equivalent to Int{Grant}. We also support reductions that result

from pattern matching a record—a variation on projecting a field from a record.

2. Refinement due to type information. In a computation where a variable l is free in

a context where we have a precise type for l (such as the singleton type lab .High), we

permit reduction to proceed by substituting for l with an expression derived from l’s

type.

Notably, our type equivalence relation does not extend to β -equivalence. If the

additional power of type-level computations should become necessary, extending our ex-

isting techniques to include β -equivalence is feasible. In a related technical report [123],

we discuss a simple (partial) decision procedure that can prove the equivalence of type-

level expressions even in the presence of free variables and proves the procedure sound

(including β -equivalence). However, if the main motivation for type-level reduction is

expressive power, it is unclear that a purely syntactic equivalence algorithm, with ad hoc
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1 sig print : (String{Low}) −→ ()
2
3 sig dynprint: (l←LatticeLab, String{l}) −→ ()
4 fun dynprint (l, x) {
5 switch (l) {
6 case Low −→print (x)
7 case −→ ()
8 }
9 }

Figure 5.16: Refining a type based on the result of a runtime check

techniques to cope with free variables, is the way forward. A more promising approach

might be to interface with a more powerful formal tools (such as a automated first-order

SMT solver like Z3 [40]) in order to prove βη-equivalence of expressions.

5.6.2 Refining Types with Runtime Checks

In the absence of a complete type-reduction relation, the need to trade off static

enforcement in favor of dynamic enforcement is critical in SELINKS. In FABLE, we

supported a form of type refinement based on the results of pattern matching operations

performed at runtime. The SELINKS type checker reproduces this behavior by accumu-

lating equality constraints in each branch of a pattern matching statement. In deciding the

equivalence of types, SELINKS can appeal to the set of equality constraints to show that

two type-level expressions are equivalent (without needing to reduce them).

An example of this behavior is shown in Figure 5.16. At line 1 of this example,

we define an interface for a library function print which states that only strings labeled

Low are allowed to be printed to the terminal. Next, we have a function dynprint, whose

argument is dependently typed pair consisting of some label l and a string x labeled with
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l. Statically, we only know that l inhabits the LatticeLab type, and thus x could be a High-

security string. So, before we can print x, we must establish that l is Low. The body of

dynprint does exactly this: it pattern matches l and in the case where it is Low, we call the

print function.

The typechecker checks the print(x) function call in a context that includes the equal-

ity constraint l
.= Low. Given that the declared type of x is String{l}, in the presence of the

equality constraint, the type checker is able to prove that String{l} is in fact equivalent to

String{Low}—which is sufficient to type check the call to print.

5.7 Concluding Remarks

This chapter has described our efforts in adapting the core formalism of FABLE to

a full-fledged programming language like LINKS. The result, SELINKS, offers a variety

of constructs that aim to make programming with a dependently typed security-oriented

programming language practical. However, as ever, the proof of the pudding remains in

the eating. We defer a verdict on the practicality of SELINKS to the next chapter, wherein

we describe our experience putting SELINKS to use in the construction of two secure web

applications.
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6. Building Secure Multi-tier Applications in SELINKS

We have used SELINKS to implement two applications. The first is SEWIKI, an on-

line document management system that allows sensitive documents to be shared securely

across a community of users. SEWIKI implements a combination of a fine-grained access

control policy and a data provenance policy [22]. We have also implemented SEWINE-

STORE, an e-commerce application that implements a fine-grained access control policy.

We were able to reuse much of the policy code across the applications, suggesting that

SELINKS promotes the modular enforcement of security policies.

Critical to ensuring reasonable performance for these applications is a novel com-

pilation strategy for SELINKS code. Recall that a security policy in SELINKS is enforced

by requiring application programs to include calls to privileged enforcement policy func-

tions that guard access to protected resources. The naı̈ve approach to compiling data

access code that includes calls to these policy functions results in performance that is

comparable to the server-centric approach to policy enforcement. Rather than insisting

that policy functions execute only in the web server, our approach is to translate enforce-

ment code to user-defined functions (UDFs) stored in the database. These functions can

be called directly from queries running within the database. Performance experiments

(Section 6.4) show that this cross-tier enforcement mechanism in SELINKS substantially

improves application throughput when compared to server-only enforcement.
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This gain in performance does not come at the expense of expressiveness. Enforce-

ment functions can also be called as necessary within the server to enforce more expres-

sive, end-to-end policies, e.g., for tracking information flow. Nor must we compromise on

the benefit of protecting multiple applications with a common database-level policy. By

associating the policy UDFs with views on database tables, multiple applications can be

protected by a uniform policy. As such, cross-tier enforcement in SELINKS retains many

of the best features of both the database and server-centric approaches while minimizing

the drawbacks of each.

Furthermore, SELINKS makes secure applications more portable. Security policy

enforcement relies only on common DBMS support for user-defined functions, and not on

particular security features of the DBMS. Because programmers write enforcement func-

tions in SELINKS’ high-level language, they need not write variants of their application

for different UDF languages. At the moment our implementation (Section 6.3) targets

only PostgreSQL, but we believe other DBMSs could be easily supported.

In summary, the core contribution of this chapter is a demonstration that SELINKS

is well-suited to building multi-tier applications that enforce expressive security policies

in an efficient, reliable, and portable manner.

6.1 Application Experience with SELINKS

This section illustrates that SELINKS can support applications that enforce of fine-

grained, custom security policies. We present two examples we have developed, a blog/wiki

SEWIKI, and an on-line store SEWINESTORE. Demos of both applications can be found
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at the SELINKS web-site, http://www.cs.umd.edu/projects/PL/selinks.

6.1.1 SEWiki

Our design for SEWIKI was motivated by Intellipedia, discussed in Chapter 1. As such,

we aim to satisfy two main requirements:

Requirement 1: Fine-grained secure sharing. SEWIKI aims to maximize the

sharing of critical information across a broad community without compromising its

security. To do this, SEWIKI enforces security policies on fragments of a document,

not just on entire documents. This allows certain sections of a document to be

accessible to some principals but not others. For example, the source of sensitive

information may be considered to be high-security, visible to only a few, but the

information itself may be made more broadly available.

Requirement 2: Information integrity assurance. More liberal and rapid infor-

mation sharing increases the risk of harm. To mitigate that harm, SEWIKI aims to

ensure the integrity of information, and also to track its history, from the original

sources through various revisions. This permits assessments of the quality of infor-

mation and audits that can assign blame when information is leaked or degraded.

As discussed in the introduction, these requirements are germane to a wide variety

of information systems, such as on-line medical information systems, e-voting applica-

tions, and on-line stores.

The implementation of SEWIKI consists of approximately 3500 lines of SELINKS

code. It enforces a combined group-based access control policy and provenance policy.
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typename Group = [| Principal: Int | Auditors | Admins |];
typename Acl = (read:List(Group), write:List(Group));
typename Op = Create | Edit | Del | Restore | Copy | Relab
typename Prov = List(oper:Op, user:String, time:String)
typename DocLabel = (acl: Acl, prov: Prov)

Figure 6.1: The representation of security labels in SEWIKI

As discussed in Chapter 5, implementing a security policy in SELINKS proceeds in three

steps. First, we must define the form of security labels which are used to denote policies

for the application’s security-sensitive objects. Second, we must define the enforcement

policy functions that implement the enforcement semantics for these labels. Finally, we

must modify the application so that security-sensitive operations are prefaced with calls to

the enforcement policy code. We elaborate on these three steps in the context of SEWIKI.

Security labels. Policies are expressed as security labels having type DocLabel, the record

type shown in Figure 6.1. Documents are protected with security labels with the type

DocLabel, which is a record type with two fields, acl and prov, representing labels from the

access control and provenance tracking policies, respectively.

The access control part is defined by the type Acl, which is itself a record containing

two fields, read and write, that maintain the list of groups authorized to read and modify

a document, respectively. At the moment, we have three kinds of groups: Principal(uid),

stands for the group that contains a single user uid; Auditors, is the group of users that are

authorized to audit a document; and Admins, which include only the system administra-

tors.

We also address information integrity by maintaining a precise revision history in

the labels of each document node—this is a form of data provenance tracking [22]. This
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part of a label, having type Prov, is also shown in Figure 6.1. A provenance label of a

document node consists of a list of operations performed on that node together with the

identity of the user that authorized that operation and a time stamp. Tracked operations are

of type Op and include document creation, modification, deletion and restoration (docu-

ments are never completely deleted in SEWIKI), copy-pasting from other documents, and

document relabeling. For the last, authorized users are presented with an interface to alter

the access control labels that protect a document.

This provenance model exploits SELINKS’ support for custom label formats. This

policy does not directly attempt to protect the provenance data itself from insecure usage.

We have shown in Chapter 2 that protecting provenance data is an important concern and

is achievable in SELINKS without too much difficulty.

SEWIKI label-based policies can be applied at a fine granularity. In what follows

we discuss SEWIKI’s document model and the three policy elements of a DocLabel.

Document structure. An SEWIKI document is represented as a tree, where each node

represents a security-relevant section of a document at an arbitrary granularity—a para-

graph, a sentence, or even a word. Security labels are associated with each node in the

tree. When manipulating documents within the server, the document data structure is

implemented as a variant type. To store these trees in a relational database, we define a

database table ’’documents’’ as shown in Figure 6.2.

The first column in this table, docid, is the primary key. The second column stores

the row’s security label, having type DocLabel. The third column’s data has labeled type

String{l}, i.e., it is protected by the label in the doclab field.
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var doc table handle = table ‘‘documents’’ with
(docid : Int, doclab : l←DocLabel,
text : String{l}, ischild: Boolean
parentid: Int, sibling: Int,

) from database ‘‘docDB’’;

fun access text (cred, row) policy {
unpack row as (doclab=dl, text=x | );
if (member(cred, dl.acl.read)) { Just(unlabel (x)) }
else { Nothing }
}

Figure 6.2: A document model and enforcement policy for SEWIKI

The parentid field is a foreign key to the docid of the node’s parent, the sibling field

is an index used to display the sub-documents in sequential order, and the ischild field is

used to indicate whether this node is a leaf (containing text) or a structural node (con-

taining sub nodes). To retrieve an entire document, we fetch the parent, look up all the

immediate children (by searching for nodes with a parentid of the parent), then recursively

look up all the children’s children, until we retrieve all the leaf nodes. (Although other

representations of n-ary trees are possible, our choice is a fairly typical choice when trees

have to stored in a relational database.)

Enforcement Policy. Authorization checks in SEWIKI are implemented with an en-

forcement policy similar to the function access text shown at the bottom of Figure 6.2.

The first argument cred is the user’s login credential, and has type Group; the second ar-

gument, row is a record representing a row in the documents table. (LINKS type inference

infers the types of the first two arguments.) The function returns a value of the option

type Maybe(String). This function is marked with the policy qualifier to indicate that it is a

part of the enforcement policy.
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1 fun getSearchResults(cred, keyword) server {
2 for(var row← doc table handle)
3 where (var txtOpt = access text(cred, row);
4 switch(txtOpt) {
5 case Just(data)→data ∼ /.∗{keyword}.∗/
6 case Nothing→ false
7 })
8 [row]
9 }

Figure 6.3: A function that performs a keyword search on the document database

In the body of the function, we first unpack the dependently typed record that rep-

resents the row (Section 5.4.2 explains this construct), binding the doclab field to dl and

the text field to variable x (the syntax | allows the rest of the fields to be ignored). Since

x has a labeled type String{dl}, prior to releasing x, access text checks whether the user’s

credential is a member of dl’s read access control list (using the standard member func-

tion, not shown). If access is granted, the released text is wrapped within the option-type

constructor Just; otherwise, Nothing is returned.

Mediate actions. Figure 6.3 shows a function that performs text search on the document

database. The getSearchResults function runs at the server (as evinced by the server anno-

tation on the first line), and takes as arguments the user’s credential cred and the search

phrase keyword. The body of the function is a single list comprehension that selects data

from the documents table. In particular, for each row in the table for which the where-

clause is true, the row is included in the final list to which the comprehension evaluates.

The where-clause is not permitted to examine the contents of row.text directly because it

has a labeled type String{row.doclab}. Therefore, at line 3, we call the access text policy

function, passing in the user’s credential and the row containing the security label and the

protected text data. If the user is authorized to access the labeled text field of the row, then
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access str reveals the data and returns it within a Maybe(String). Lines 4-7 check the form

of txtOpt. If the user has been granted access (the first case), then we check if the revealed

data matches the regular expression. If the user is not granted access, the keyword search

fails and the row is not included.

6.1.2 SEWineStore

We also extended the “wine store” e-commerce application, distributed with LINKS,

with security features. We defined labels to represent users and associate these labels with

orders, in the shopping cart and in the order history. This helps ensure that an order is

only accessed by the customer who created it.

Order information in SEWINESTORE is represented with the following type:

typename Order = (acl:Acl, items:List(CartItem){acl})

An order is represented by a record with two fields. The acl field stores a security label

while the items field contains the items in the shopping cart. The Acl type is the same as

that used in SEWIKI, and many of the enforcement policy functions are shared between

the two applications. In general, we found that access control policies were easy to define

and to use, with policy code consisting of roughly 200 lines of code total (including

helper functions). Our experience also indicates that it is possible for security experts

to carefully program policy code once, and for several applications to benefit from high-

reliability security enforcement through policy-code reuse.
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6.2 Efficient Cross-tier Enforcement of Policies

LINKS compiles list comprehensions to SQL queries. Unfortunately, for queries

like getSearchResults that contain a call to a LINKS function, the compiler brings all of the

relevant table rows into the server so that each can be passed to a call to the local function.

(The compiler essentially translates the query to SELECT * FROM documents.) This is

one of the two main drawbacks of the server-centric approach: enforcing a custom policy

may require moving excessive amounts of data to the server to perform the security check

there. In this section, we present an overview of our cross-tier enforcement technique that

seeks to remedy this shortcoming.

In order to remedy the inefficiency of pure server-side enforcement of a security

policy, SELINKS compiles enforcement policy functions that appear in queries (like

access text) to user-defined functions (UDFs) that reside in the database. Queries run-

ning at the database can call out to UDFs during query processing, thus avoiding the need

to bring all the data to the server. Our implementation currently uses PostgreSQL but

should just as well with other DBMSs.

We implement this approach with three extensions to the LINKS compiler (in ad-

dition to the type system changes described in Chapter 5). First, we extend it to support

storing complex LINKS values (most notably, security labels like those of type DocLabel)

in the database. Prior to this modification, LINKS only supported storing base types (e.g.,

integers, floating point numbers, strings, etc.) in database tables. Second, we extend the

LINKS code generator so that enforcement policy functions can be compiled to UDFs and

stored in the database. Finally, we extend the LINKS query compiler to include calls to
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DBMSServer

app.links

getSearchResults(cred,kw) {
  for (var <- ...)
    where (...access_str(...))
}

policy.links

typename Group = ...
access_str(cred,lab,x) {
...
}

...

{ acl: read: Auditors,
         write: ...;
  prov: ...; declass: ... }

 doclab:    text:                docid:

user-defined functions

CREATE OR REPLACE
FUNCTION access_str ...

query query proc. engine

1

2

3

policy
compilation

Figure 6.4: Cross-tier Policy Enforcement in SELINKS

UDF versions of enforcement policy functions in generated SQL. Each respective step is

labeled (1), (2), and (3) in Figure 6.4.

Representing complex SELINKS data in the database. The simplest way to encode a

LINKS value of complex type into a database-friendly form would be to convert it to a

string. The drawback of doing so is that UDFs would have to either directly manipulate

the string encoding or else convert the string to something more usable each time the

UDF was called. Therefore, we extend the LINKS compiler to construct a PostgreSQL

user-defined type (UDT) for each complex LINKS type possibly referenced or stored in

a UDF or table [102]. To define a UDT, the user provides C-style struct declaration

to represent the UDT’s native representation, a pair of functions for converting to/from

this representation and a string, and a series of utility functions for extracting components

from a UDT, and for comparing UDT values. UDT values are communicated between

the server and the database as strings, but stored and manipulated on the database in the

native format. In SELINKS, UDTs are produced automatically by the compiler.
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At the top of the DBMS tier in Figure 6.4, we show the three columns that store

SEWIKI documents. The doclab column depicts storage of a complex DocLabel record.

This value is compiled to a C struct that represents this label. Section 6.3.1 discusses our

custom datatype support in detail.

Compiling policy code to UDFs. So that enforcement policy functions like access text

can be called during query processing on the database, SELINKS compiles them to da-

tabase-resident UDFs written in PL/pgSQL, a C-like procedural language. (Similar UDF

languages are available for other DBMSs.) SELINKS extends the LINKS compiler with

a code generator for PL/pgSQL that supports a fairly large subset of the SELINKS lan-

guage; notably, we do not currently support higher-order functions. The generated code

uses the UDT definitions produced by the compiler in the first step when producing code

to access complex types. For example, LINKS operations for extracting components of

a variant type by pattern matching are translated into the corresponding operations for

projecting out fields from C structs. Section 6.3.2 describes the compilation process.

Figure 6.4 illustrates that UDFs are compiled from LINKS policy code in the file

policy.links. We note that policy code can, if necessary, be called directly by the applica-

tion program, in file app.links, running at the server.

Compiling LINKS queries to SQL. The final step is to extend the LINKS list compre-

hension compiler so that queries like that in getSearchResults can call policy UDFs in

the database. This is fairly straightforward. Calls to UDFs that occur in comprehensions

are included in the generated SQL, and any LINKS values of complex type are converted

to their string representation; these representations will be converted to the native UDT
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typedef struct Value {
int32 vl len ;
int32 type;
union {

Variant variant;
Record record;
int32 integer;
textstring;
...
} value;
} Value;

typedef struct Variant {
int32 vl len ;
char∗ label ;
Value value;
} Variant;

typedef struct Record {
int32 vl len ;
int32 num args;
Value value;
Record rest;
} Record;

Variant∗ variant in(cstring);
cstring variant out(Variant∗);
boolean variant eq(Variant∗, Variant∗);

Variant∗ variant init(text , anyelement);
textvariant get label (Variant∗);
Record∗ variant get record(Variant∗);
Variant∗ variant get variant(Variant∗);
int32 variant get integer(Variant∗);
textvariant get string(Variant∗);

Record∗ record in(cstring);
cstring record out(Record∗);

Record∗ record init(anyelement);
Record∗ record set(Record∗, int32, anyelement);
text record get string(Record∗, int32);

Figure 6.5: PostgreSQL User-Defined Types

representation in the DBMS. Section 6.3.3 shows the precise form of the SQL queries

produced by our compiler.

6.3 Implementation of Cross-tier Enforcement in SELINKS

In this section, we present the details of the cross-tier policy-enforcement features

of the compiler, overviewed in Section 6.2. We describe our data model for storing

SELINKS values in PostgreSQL using user-defined types, illustrate how we compile

SELINKS functions to user-defined functions, and explain how we compile SELINKS

queries to make use of these functions and manipulate complex SELINKS data.
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6.3.1 User-defined Type Extensions in PostgreSQL

User-defined types (UDTs) in PostgreSQL are created by writing a shared library

in C and dynamically linking it with the database. For each UDT, the library must define

three things: an in-memory representation of the type, conversion routines to and from

a textual representation of the type, and functions for examining UDT values. Our in-

memory representation for SELINKS values is centered around the Value, Variant, and

Record structures, shown in Fig. 6.5.

The Value type defines a variable-length data structure that represents all SELINKS

values. The first field vl len (used by all the structures) is used to store the size (in memory

words) of the represented SELINKS value. The remainder of the structure defines a tagged

union: the field type is a tag denoting the specific variant of the value field that follows. All

the possible forms of SELINKS values are recorded in the value union, including variants

(like Group), records (like Acl), integers, and strings.

The Variant type represents an SELINKS value that inhabits a variant type. Every

instance of a Variant type consists of a single constructor applied to a Value (stored in the

value field of the Variant structure). For example, a SELINKS value like Principal(‘‘Alice’’)

is represented in the database as an object of type Variant where the label field contains the

zero-terminated string ‘‘Principal’’, and the value field is a Value whose type field indicates

it is a string, with the string’s value stored in the string field of the value union.

The Record type represents a record that can hold an arbitrary number of SELINKS

values of different types. In particular, it is used to store the values of multi-argument la-

bels; for example, ActsFor(‘‘Alice’’,‘‘Bob’’) is a Variant whose value field contains a Record-
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typed value, (“Alice”, “Bob”). A record’s field names are omitted (the name is implied

by position).

Some of the functions which work on these data types are listed in Fig. 6.5. The

string conversion functions end with the suffixes in and out. These are used internally

by PostgreSQL to translate between a UDT’s in-memory and string representation. Since

our composite types allow embedded values, the ∗ in functions must be able to recur-

sively parse subexpressions (e.g., in “Principal("Alice")”, the "Alice" subexpression must

be parsed as a string).

The variant eq function compares two Variant types for equality; in PostgreSQL, it

is called by overloading the “=” operator. The variant eq function implements a special

pattern matching syntax, where the value “ ” is treated a wild card, and will match any

subexpression. For example,

Acl("Alice") = Acl( ) is true.

The variant get label function returns the text label of a Variant, while the variant get ∗

functions get the value of the Variant; if the type does not match, a run-time error occurs.

We require a different accessor function for each type because PostgreSQL requires return

variables to have a type. On the other hand, the variant init function, which creates a new

Variant type, takes an argument of type anyelement. This is a PostgreSQL “pseudo-type”

that accepts any type of argument; the actual type can be determined dynamically. This

allows us to create user-defined functions that take a polymorphic type (such as access,

described in the next section).

The Record functions are similar to the Variant functions. The record get ∗ func-

tions take a record x and a (zero-based) integer index i as arguments and returns the ith
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component of the record x, if such a component exists and is of the proper type. If ei-

ther condition is unsatisfied, then a run-time error results. record init creates a new single

record with the given value, while record set sets a record’s value, possibly extending the

record by one element as a result.

In the remainder of this section we show how these types are used both within our

compiled UDFs as well as in the body of SQL queries.

6.3.2 Compilation of SELinks to PL/pgSQL

To compile SELINKS functions to UDFs, we built a new LINKS code generator

that produces PL/pgSQL code, one of PostgreSQL’s various UDF languages. Prior to our

extension the LINKS code generator could only generate JavaScript code for running on

the client. PostgreSQL supports several different UDF languages, but PL/pgSQL is the

most-widely used. It has has a C-like syntax and is fairly close to Oracle’s PL/SQL.(Note

that, unlike most database systems, PostgreSQL makes no distinction between stored

procedures and user-defined functions.)

Code generation is straightforward, so we simply show an example. Figure 6.6

shows the (slightly simplified) code generated for an enforcement policy function called

access, a generalization of the function access text shown in Figure 6.2, that can take

any type of argument (which is useful when labels annotate values of many different

types, since we can write a single access function rather than one per type). A function

definition in PL/pgSQL begins with a declaration of the function’s name and the types

of its arguments. Thus, line 1 of Figure 6.6 defines a UDF called access that takes three
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1. CREATE FUNCTION access(text,record,anyelement)
2. RETURNS variant AS $$
3. DECLARE
4. cred ALIAS FOR $1;
5. doclab ALIAS FOR $2;
6. x ALIAS FOR $3;
7. BEGIN
8. IF member(cred,record_get_rec(

record_get_rec(doclab, 0),0)) THEN
9. RETURN variant_init(’Just’, x);
10. ELSE
11. RETURN ’Nothing’;
12. END IF;
13. END;
14 $$ language ’plpgsql’

Figure 6.6: Generated PL/pgSQL code for access

arguments of built-in type text, a custom type record, and the special built-in “pseudo-

type” anyelement. The anyelement type allows us to (relatively faithfully) translate usages

of polymorphic types (as in the argument of our generalized access function) in SE-

LINKS to PL/pgSQL. At line 2, we define the return type of access to be variant, since it

is supposed to return an option type.

At lines 4, 5, and 6, we give names to the positional parameters of the function

by using the ALIAS command (a peculiarity of PostgreSQL). That is, the first argument

is named cred to represent the credential; the second argument is doclab to represent the

security label of DocLabel type; the final argument x, is protected data of any type.

In the body of the function, lines 8-12, we check if the user’s credential cred is

mentioned in the doclab .acl.read field. Accessing this field requires first projecting out the

record doclab .read, using record get rec(doclab , 0) and then the read field using a similar

construction. The authorization check at line 8 relies on another UDF (member) whose

definition is not shown here.
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1. SELECT docid, doclab, text FROM
2. (SELECT
3. S.doclab as doclab, S.docid as docid,
4. S.text as text,
5. access(’Alice’, S.doclab, S.text) AS tmp1,
6. FROM documents AS S
7. ) as T
8. WHERE
9. CASE
10. WHEN ((T.tmp1 = ’Just((_))’))
11. THEN (variant_get_str(T.tmp1)

LIKE ’%keyword%’)
12. WHEN (true)
13. THEN false
14. END

Figure 6.7: SQL query generated for getSearchResults

If this authorization check succeeds, at line 9 we return a value corresponding to

the SELINKS value Just(x). Notice that the unlabel operator that appears in SELINKS is

simply erased in PL/pgSQL—it has no run-time significance. If the check fails, at line 10

we return the nullary constructor Nothing.

6.3.3 Invoking UDFs in Queries

The last element of our cross-tier enforcement strategy is to compile SELINKS

comprehension queries to SQL queries that can include calls to the appropriate policy

UDFs. This is built on infrastructure provided by Dubochet [43] (based on work in

Kleisli [142]). Prior to our extensions, the LINKS compiler was only capable of handling

relatively simple queries. For instance, queries like our keyword search with function

calls and case-analysis constructs were not supported.

Figure 6.7 shows the SQL generated by our compiler for the keyword search query

in the body of getSearchResults. This query uses a sub-query to invoke the access policy
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UDF and filters the result based on the value returned by the authorization check. We start

by describing the sub-query on lines 2–5. Lines 3 and 4 select the relevant columns from

the documents table; line 5 calls the policy function access, passing in as arguments the

user credential (here, just the username ’Alice’, but, in practice, an unforgeable authentica-

tion token); the document label field S.doclab ; and the protected text S.text, respectively.

The result of the authorization check is named tmp1 in the sub-query.

Next, we describe the structure of the where-clause in the main query, at lines 8–

14. We examine the the value returned by the authorization check; if we have obtained

a Some(x) value, then we search x to see if it contains the keyword, otherwise the where-

clause fails. Thus, at line 10, we check that T.tmp1, the result of the authorization check

for this row, matches the special variant pattern Some(( )). In this case, the test on line 10

is satisfied if the value T.tmp1 is the variant constructor Some applied to any argument. If

this pattern matching succeeds, at line 11, we project out the string argument of variant

constructor using the function variant get str. Once we have projected out the text of the

document, we can test to see if it contains the keyword using SQL’s LIKE operator. Lines

12–13 handle the case where the authorization check fails.

Finally, we turn to line 1 of this query which selects only a subset of the columns

produced by the sub-query. The reason is efficiency: we do not wish to pass the temporary

results of the authorization checks (the T.tmp1 field) when returning a result set to the

server.

Although our code generators are fairly powerful, there are some features that are

not currently supported. First, our current label model requires storing a security label

within the same row as the data that it protects. Next, our support for complex join queries
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as well as table updates is still primitive. We anticipate improving our implementations

to handle these features in the near future. Finally, as mentioned earlier, we do not allow

function closures to be passed from server to the database; however, we do not foresee

this being a severe restriction in the short term.

6.4 Experimental Results

In this section, we present the results of an experiment conducted to compare the

efficiency of server-side versus database-side policy enforcement. We also examine other

factors that come into play when running database applications, such as the number of

rows being processed by the query, and the location of the database (local host or net-

work). We also benchmark SELINKS against a simple access control program written

in C. We show that, in the case of SELINKS, running a policy on the database greatly

reduces the total running time compared to running the same policy on the server when

tables are large (up to a 15× speed-up). In addition, our C implementation highlights

the high current overhead of SELINKS programs, while at the same time showing that

our PostgreSQL implementation is comparable in speed (and shows a slight improvement

when network latency is considered).

6.4.1 Configuration

Our system configuration is shown in Figure 6.8. We ran two different system con-

figurations: a single-server mode (local) where the server and database reside on Machine

A, and a networked version where the server runs on Machine B.
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Machine A Machine B
CPU: Intel Quad Core Xeon 2.66 GHz Intel Quad Core Xeon 2.0 GHz
RAM: 4.0 GB 2.0 GB
HDD: 7,200 RPM SATA 7,200 RPM EIDE
Network: 100 Mbit/s Ethernet 100 Mbit/s Ethernet
OS Kernel Linux 2.6.9 Linux 2.6.9
OS Distribution: Red Hat Enterprise Linux AS 4 Red Hat Enterprise Linux AS 4
DBMS: PostgreSQL 8.2.1 N/A

Figure 6.8: Test platform summary

For our test, we used the getSearchResults query presented in Fig. 6.7, which checks

if a user has access to a record and, if so, returns the record if it contains a particular key-

word. We generated two tables of random records (1,000 and 100,000 records), each

comprised of 5–20 words selected from a standard corpus. Each record has a 10% prob-

ability of containing our keyword, and each record is labeled by a random access control

label, which grants access 50% of the time. Thus, the query should return approximately

50 results and 5,000 results for the 1,000-record and 100,000-record tables, respectively.

In running our tests on SELINKS, we varied the number of records in the table

(1,000 or 100,000), whether the policy was enforced on the server or the database, and the

locality of the server (e.g., same or networked machine). We also created a C program that

queries the database, manually performs the access control check, and searches for the

keyword. The C program operates in one of three modes; no access control, server-side

access control, or database-side access control, using the same SQL query as generated

SELINKS program, including the database-level UDF function.We compare this program

against our SELINKS implementation for all the tests above. All running times are the

mean of five runs.
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Figure 6.9: Throughput of SELINKS queries under various configurations

6.4.2 Results

The results of our experiment are summarized in Figure 6.9, which illustrate the

time required to run the query on 1,000 and 100,000 records, on the left and right respec-

208



tively. The horizontal axis illustrates the language (C or SELINKS) and policy enforce-

ment location (None, Database, or Server) used. For each language/policy pair, we show

two bars representing the local or networked database configurations, respectively.

The highlight of both figures is the significant improvement shown in running an

SELINKS policy on the database rather than the server. For the 100K-record example

running over the network we see a 16× improvement; for the 100K-record case with

a local database the improvement is 7.5×; and for local and network queries on 1,000

records the improvement is 4×.

The current incarnation of SELINKS, however, is an interpreter language with few

optimizations. Our C program results illustrate some more general results with regard to

this technique. Consider the 100K-record results in Figure 6.9. First, running our C pro-

gram with no policy enforcement takes a little over one second; this gives us a baseline

for how long it takes to retrieve the full data set; this illustrates time that could possibly

be saved by reducing the result set at the database. Our C implementation of server ac-

cess control is much faster than our SELINKS implementation (≈ 12.5×); this illustrates

the lack of optimization in SELINKS. That said, the SELINKS database policy imple-

mentation is comparable to the C version on a single machine, (only 27% slower) and is

marginally faster when network transmission is taken into account. It is interesting to note

that, when running the database-policy versions, the SELINKS implementation actually

slightly out-performs the C implementation; this indicates that the C implementation may

not be as optimized as possible.

In summary, running SELINKS policies on the database instead of the server greatly

improves performance, particularly for large queries. Based on the comparison with C, we

209



note that the SELINKS server component could benefit greatly from more optimization,

while database-side enforcement is quite efficient.

6.5 Concluding Remarks

This chapter has demonstrated that feasibility of constructing realistic multi-tier

web applications in SELINKS. We have implemented a wiki application that demon-

strates multiple security properties, and have extended an existing LINKS e-commerce

application with simple security protection. In general, we have found that SELINKS’s

label-based security policies are neither lacking nor burdensome, and the modular sep-

aration of the enforcement policy permitted some reuse of policy code between the two

applications.

We have also argued that a multi-tier approach to security is necessary for express-

ing rich application policies while maintaining efficiency and trustworthiness. We have

shown how SELINKS can model and enforce a variety of secure application policies, and

have described how SELINKS implements such policies in the database by compiling the

enforcement policy to user-defined functions in the database. Finally, we have shown that

enforcing policies in the database, versus in the server, improves throughput in SELINKS

by as much as an order of magnitude.
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7. Related Work

This chapter describes various threads of related work. We begin with a discussion

of security-typed languages. FLAIR is distinct from existing languages primarily in that it

is intended to be extensible with custom policy enforcement mechanisms. In that respect,

our work follows a long tradition of extensible programming languages, and we discuss

these next. More recently, researchers have noted that dependent types are useful for ex-

tensibility; so, we discuss a variety of languages that include dependent types, whether

for extensibility, program verification, or for security. We then turn to a discussion of the

various kinds of security policies that we have explored. These include stateful autho-

rization policies, policies for declassification, and data provenance policies. As far as the

practical aspects of this work are concerned, the main related works are other projects

that target multi-tier web applications—we discuss these next. The final section of this

chapter ties together some loose ends and mainly places miscellaneous technical aspects

of our work in context.

7.1 Security-typed Languages

Broadly speaking, security-typed programming languages augment the types of

program variables and expressions with annotations that specify policies on the use of

the typed data. These policies are typically enforced at compile-time by a type checker,
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although some reliance on runtime checks is not uncommon. As such, FABLE, λAIR and

FLAIR all fit this description. The basic idea of security typing is usually attributed to Vol-

pano, Smith and Irvine [132]. Sabelfeld and Myers [111] provide comprehensive survey

of a large body of work in this field.

Much of the work on security typing has focused primarily on information flow

policies. We have sought to extend security typing beyond information flow. This appears

to be a trend—a number of works concurrent with ours have also begun exploring security

typing for other kinds of policies, and we discuss these elsewhere.

7.1.1 FlowCaml

Pottier and Simonet’s FlowCaml language [104, 118] statically enforces an infor-

mation flow policy for ML programs. Our encoding of information flow in Chapter 4

closely follows their type system—in fact, our correctness proof is via a translation to

a subset of Core-ML, the underlying formal system of Core-ML. We also give a direct

proof of correctness for the purely functional information flow policy of Chapter 2—this

proof relies heavily on a syntactic proof technique also due to Pottier and Simonet.

Aside, of course, from extensibility, our work is distinct from FlowCaml in two

main respects. First, FlowCaml extends Hindley-Milner-style type inference to include

security types. We make no attempt to infer security-type annotations. However, Flow-

Caml makes the simplifying assumption that security labels are always known statically.

Although static labelings are permissible in our formal languages (and in SELINKS), our

main focus is dynamically specified policies.
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7.1.2 Jif

Jif [31], an extension of Java, is probably the most full-featured implementation of a

security typed language. Unlike FlowCaml, Jif does not support full inference of security-

type annotations. However, Jif does include dynamic labels (more on this below) and is

thus more expressive that FlowCaml. Despite the lack of type inference, programming

with an information flow policy in Jif is significantly easier than programming with a

similar policy in SELINKS. In SELINKS, we require programmers to explicitly insert

calls to enforcement policy functions to construct evidence that no illegal information

leaks occur. This is the price of generality in SELINKS—Jif effectively “bakes in” these

policy checks in its type system, so programmers need not insert these checks manually.

Zheng and Myers [149] formalize the use of dynamic security labels in Jif and show

how data values can be used as security labels to express information flow policies. The

technical machinery for associating labels to terms in their system is similar to ours—we

both use forms of dependent types. There are two main differences. First, the security

policy in Jif—an information flow policy in the decentralized label model [88]—is ex-

pressed directly in the type system whereas in λAIR both the security policy and the label

model are customizable. As discussed in Section 2.2.4, dynamic labels for information

flow policies can be encoded in FABLE. Second, we allow non-values to appear in types,

e.g., lub l m in Figure 2.9. This is a more powerful form of dependent typing and allows

us to encode a combination of static and dynamic policy checking. However, we need to

take special care to ensure that type checking remains decidable—Section 7.3 contains a

more detailed discussion of dependent types in FLAIR and SELINKS.
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7.2 Extensible Programming Languages

Loosely, extensible languages aim to allow the user to modify the features of a

language to suit his changing needs and purposes. This fits the description of FABLE and

FLAIR, at least as far as security enforcement goes. In FABLE, extensions are defined

using the enforcement policy and, in FLAIR using the type signature.

7.2.1 Classic Work on Extensible Programming Languages

Research in extensible programming languages dates back nearly 50 years. Stan-

dish surveys some of the early results [120] and provides a useful taxonomy of extensions.

In his terminology, an extension is a paraphrase when a new construct is exchanged for

an existing definition; e.g., by macro expansion. An enforcement policy function, like the

apply function of Section 2.2.3, can be thought of as a paraphrase, in that it defines the

application of labeled functions (which is not possible directly in the base language) in

terms of existing constructs in the language (i.e., those used in the body of apply). Exten-

sions can also be orthophrases where, an entirely new construct is added to a language.

An example of an orthophrase in our context is the inclusion of a base term constant in

a FLAIR signature. The third and final class of extensions are metaphrases, where new

interpretations are given to existing constructs in the language. These are perhaps the

most interesting aspect of our extensions. For example, the sub function in the policy of

Figure 2.9 effectively introduces a subsumption rule into the type system. By using this

function, an application program can give a new type-level interpretation to a term—i.e.,

a term of type t can be used at its sub-type t ′, where the subtype relation is defined by the
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sub extension.

7.2.2 Extensible Type Systems

Researchers have explored how user-defined type systems can be supported directly

via customizable type qualifiers. For example, CQual [50] is a framework that allows

qualifiers to be added to the C programming languages. Qualifiers in CQual are arranged

in a lattice and CQual uses various dataflow analyses to enforce properties like tainted-

ness. Unlike a language like FlowCaml, which also tracks lattice-based qualifiers, CQual

only tracks direct data flows and not implicit flows of the form described in Chapter 4.

By focusing on direct data flows (among other reasons), CQual has seen broad practical

applicability. For example, Shankar et al. [116] have used taint tracking in CQual to de-

tect format string vulnerabilities and buffer overruns in C programs. Zhang et al. [148]

and Fraser et al. [53] have used qualifiers to check complete mediation in access control

systems.

Millstein et al [28, 3] have developed a qualifier-based approach in which program-

mers can indicate data invariants that custom type qualifiers are intended to signify. This

is contrast to CQual, where one does not generally attempt to prove that the user-defined

qualifiers correctly establish some property of interest. In some cases, Millstein et al. are

able to automatically verify that these invariants are correctly enforced by the custom type

rules. While their invariants are relatively simple, we ultimately would like to develop a

framework in a similar vein, in which correctness properties for FABLE’s enforcement

policies can be at least partially automated. Marino et al. [82] have proposed using proof
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assistants for this purpose, and we have begun exploring this idea in the context of FABLE

policies.

While our security labels and type qualifiers share many similarities, our approach

to type extensions is substantially different. In FABLE and FLAIR, the qualifier language

is the same as the term language, i.e., qualifiers are specified using dynamic labels, where

the labels themselves are program expressions. In FABLE, the semantics of labels are

also given using constructs that are directly in the language. In contrast, Millstein et al’s

JavaCop includes a separate domain-specific language for introducing new type rules in

the system. Because dependent types in FABLE and FLAIR essentially conflate the term

language and the type language, we are able to describe typing constructs directly in

the types of enforcement policy terms. But, the power of dependent types is not always

necessary for extensibility—we discuss some alternatives next.

7.2.3 Extensions Based on Haskell’s Type System

It has been said that the Haskell programming language is a “laboratory and play-

ground for advanced type hackery” [70]. On occasion, Haskell’s type system has been

put to use to encode interesting security-related constructs.

Li and Zdancewic show how to encode information flow policies in Haskell [78].

They use type classes [137] in Haskell to define a meta-language of arrows [63] that makes

the control-flow structure of a program available for inspection within the program itself.

Their enforcement mechanism relies on the lazy evaluation strategy of Haskell that allows

the control flow graph to be inspected for information leaks prior to evaluation. While
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their encoding permits the use of custom label models, they only show an encoding of an

information flow policy. It is not clear their system could be used to encode the range of

policies discussed here. Besides, the reliance on a call-by-name evaluation scheme, with

all the attendant challenges of handling side-effects and sequential computation, appears

to be a considerable handicap of this approach.

Kiselyov and Shan [73] use type classes and higher-rank polymorphism in Haskell

to encode a form of dynamic labeling. While their focus is on easily propagating run-

time configuration parameters through a program, it appears as though their techniques

could also be applied to labeling data with security policies. However, in the absence of

true dependent types in Haskell, purely static enforcement of security policies using their

method is not possible. Furthermore, by including security labeling as a primitive (rather

than a derived construct), SELINKS makes it easier to manipulate labels and labeled data.

In the same work, Kiselyov and Shan provide a mechanism for configuration data

to be passed as implicit parameters to functions. This resembles our use of phantom vari-

able polymorphism in Section 5.5.1, but with an important distinction. Phantom label

variables have no term level representation (i.e., they are phantom) and so the runtime

behavior of a function is parametric with respect to its implicit phantom arguments. In

contrast, Kiselyov and Shan’s implicit parameters are concrete term-level arguments and

can influence the runtime behavior of a function. Adding this to our SELINKS implemen-

tation might help reduce the annotation burden further.
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7.3 Dependent Typing

Despite being more powerful than Zheng and Myers’ dynamic labeling [149], se-

curity labels in FABLE and FLAIR still employ only a fairly weak and lightweight form

of dependent typing. Traditionally, full-blown dependent types have been used as the ba-

sis for theorem provers like Coq [17], Isabelle/HOL [94] etc; for program verification,

as in DML [145] and other dependently typed programming languages. In this section,

we briefly survey these works. Aspinall and Hoffmann provide a useful introduction to

dependent types [4].

7.3.1 Dependently Typed Proof Systems

Dependently typed formalisms like Pure Type Systems [10] and the Calculus of

Constructions [36] have been used both as the basis of frameworks to design and formalize

type systems as well as to build theorem provers [17, 11]. In these languages, the type and

term languages overlap, allowing extremely expressive types to be used as specification.

In comparison, dependent typing in FABLE and FLAIR is much simpler. Rather than

conflate the language of types and terms, our approach only uses dependent types to

express security labelings.

ATS is a programming language and a proof assistant based on a form of dependent

types that has extensibility as one of its primary goals [144]. ATS (and its predecessor

DML [145]) differs from Pure Type Systems and FLAIR in that the language of types

and terms are completely separate. However, types can be indexed by so called static

terms, essentially a purely functional lambda calculus at the type level. This separation
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simplifies a number of issues in ATS—e.g., ATS by definitions rules out side effects

and nontermination in type-level terms; in FLAIR, we require a (simple) effect analysis

to achieve the same property. But, this separation means that indices in ATS have no

runtime representation as they are drawn from a language intentionally kept separate from

program expressions. Thus, while some of the statically enforceable policies we explore

can be encoded in ATS, enforcing policies based on dynamic labels appears to be difficult

since this requires indexing types with expressions drawn from the term language. (It may

be possible to encode an indirect form of dynamic labels in ATS using singleton types.)

FLAIR, in contrast, is specifically designed to make it easy to express and enforce policies

using dynamic labels. ATS also includes linear types, a relative of the affine types we use

in FLAIR [140].

Coq, Isabelle, ATS, and similar systems certainly outstrip FABLE in generality and

power of static checking. Whereas these other systems target program verification, we

have focused on showing that the simple form of dependent typing in FABLE and FLAIR

can be used to provide useful assurances about the enforcement of security policies. Thus,

while the generality of, say, Coq allows it to be used to define one of our type systems

and to construct proofs that the type system is sound (e.g., we proved λAIR sound in

Coq), the Calculus of Constructions does not intrinsically facilitate proving that well-

typed terms enjoy relevant security properties (since it has no notion of security labels,

complete mediation, etc.).
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7.3.2 Dependently Typed Programming Languages

Cayenne [6] is a pure language in which the type and term languages coincide, and

is possibly the first programming language to include the full power of dependent types.

The resulting system is extremely powerful, though type-checking can be undecidable (as

it is for the formulation of FABLE in Chapter 2). Cayenne focuses on static verification,

while in our languages policies are enforced using a mixture of static and dynamic checks.

Cayenne also does not support side effects, as we do in FLAIR.

Epigram [2] is another pure language with dependent types. Unlike Cayenne, Epi-

gram ensures that type level expressions are always total functions, thereby ensuring de-

cidability of type checking (and soundness of the underlying logic). Unlike our extremely

simple proposal of ruling out recursion at the type level [123], Epigram employs much

more sophisticated reasoning about structural recursion to ensure that functions are total.

As with AIR policies in Chapter 3, Epigram also makes extensive use of dependently

typed evidence—types like LEQ x y can be used as propositions that stand for integer in-

equality. In λAIR, certificates that witness these propositions were simply constructed at

runtime using trusted function-typed base-terms in the signature. In contrast, the Epi-

gram programmer specifies proof rules to interpret dependently-typed evidence and the

compiler checks that these rules are always satisfied when certificates are constructed.

Concurrent with our own work, Nystrom et al. have developed a dependently typed

extension to the X10 programming language [96]. They provide a way to associate a

“constraint expression” (drawn from the term language) with the type of an X10 object.

Although their focus is not security, it appears possible to use this feature to encode a
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dynamic security labeling, much like in SELINKS. However, they provide no means

of being able to define constraints that control the side effects of a program, or for that

matter, to allow constraints themselves to be stateful (as we do in Chapters 3 and 4).

7.3.3 Dependent Types for Security

We are also not the first to use dependent types for security. Walker’s “type system

for expressive security policies” [139] is also dependently typed. Labels in Walker’s

language are uninterpreted predicates rather than arbitrary expressions—we are not aware

of an earlier use of dependent types for security. Walker’s system can enforce policies

expressed as security automata—as we shows in Chapter 3, this kind of policy is also

enforceable in λAIR. However, in Walker’s system, the policy is always enforced by

means of a runtime check. In order to recover some amount of static checking, Walker

suggests that a user might add additional rules to the type system, though he is not specific

about how this would be done. These additional rules would have to be proved correct

with respect to a desired security property.

Aura is a programming language that incorporates an authorization logic in its type

system using dependent types [64]. Statements from the authorization logic can refer to

program values and specify constraints that must be satisfied in order for those values to

be manipulated. Aura differs from FABLE and FLAIR in a number of ways. First, Aura

focuses on authorization policies and on auditing. Although policies in Aura are user-

defined to the extent that the authorization logic is general-purpose, the customizability

does not extend to security automata, provenance, information flow and downgrading
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policies as they do in FLAIR. Aura also uses dependently typed evidence [130], as we

do in the enforcement of AIR policies. However, as with Epigram, Aura uses sound

type rules to ensure that evidence objects are constructed properly, where we rely on ad

hoc approaches like trusted runtime checks. However, unlike Epigram where the rules

for constructing evidence are user-defined, Aura uses a fixed set of rules that capture the

requirements of the underlying authorization logic. On a technical note, unlike in FLAIR,

dependent types in Aura not quotiented by β -equivalence of type-level expressions, i.e.,

Aura never reduces type-level expressions using a rule like (T-CONV) in Figure 2.4.

Vaughan et al. point out that this is unnecessary for authorization policies; however, we

have found this to be useful for statically enforcing information flow policies. Aura is

also purely functional and does not account for stateful policies.

Bengston et al’s RCF [16] is a language equipped with dependent and refinement

type which the authors have used to ensure the proper implementation of cryptographic

protocols. Unlike dependent types in FABLE, which are just security policies, refinement

types in RCF reflect underlying properties of the values that inhabit them—e.g., the type

of access control lists that contain the username “Alice”. These extremely precise types

are useful in statically enforcing security policies, but in order to type check programs

RCF must rely on an SMT solver [40]. (In Chapter 5, we speculated that using SMT

solvers in order to prove type equivalences may be of use in SELINKS too.) But, because

they always reflect structural properties of the underlying data, refinements in RCF make

it difficult to enforce security properties that are not necessarily structural. For example,

two strings in the program can be identical, yet have different provenance. In FABLE, it

is possible to give these strings different types by associating different provenance labels
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with each. In RCF, identical data values always inhabit the same types, so distinguishing

between the provenance of these items purely in the types is impossible.

7.4 Security Policies

Here we survey work related to each of the security policy models explored in this

dissertation. Information flow policies were discussed in Section 7.1; Bishop is a good

reference for various models of access control [18]—we do not discuss these two kinds

of policies further.

7.4.1 Security Automata

Schneider proposed using security automata to characterize the class of security

policies that are enforceable by execution monitors [113]. In Chapter 3, we defined AIR,

a language for specifying information release policies using security automata. AIR poli-

cies are actually a more general form of security automata called edit automata [79], i.e.,

automata that in the process of deciding whether an input word w is in a language L, may

also transform w to some other word w′. AIR classes fit this description, since they may

modify data before releasing it. To our knowledge, no prior work has used automata to

specify the protection level and release conditions of sensitive data.

The canonical means of enforcing of security automata policies is through the use

of reference monitors. Erlingsson and Schneider developed SASI [46] and its successor,

PSLang/PoET [45], both inlined reference monitors to enforce security automata policies.

Our approach is in contrast with SASI in that we support local policy state—i.e., bits of

223



automata state are maintained in proximity to the data that it protects and the association

between the policy and data is reflected in the types. SASI, however, maintained global

automata state and this was identified by Erlingsson as a main obstacle towards mak-

ing it practical—specifying global policies required cumbersome state management and

the runtime overhead of lookup up the relevant part of the global state was prohibitive.

PSLang/PoET does support local policy state, but unlike λAIR, PSLang/PoET augments

the run-time representation of protected data to include the policy. Dynamic labels in

λAIR are more expressive—as discussed in Section 3.3, we can easily enforce secret shar-

ing policies on related data. Local automaton state in λAIR is also likely to be useful when

applying policies to concurrent programs—enforcement code does not need to synchro-

nize on some global policy state, thereby allowing greater parallelism. Additionally, by

reflecting the association between policy and data in the types, λAIR provides a way to

verify that automata and protected data are always correctly manipulated. In the concur-

rent setting, dynamic labels in λAIR also clearly identify the synchronization requirements

on policy state—thus λAIR’s type system can improve reliability by helping prevent race

conditions. As such, one could imagine putting λAIR to use to certify that IRMs correctly

enforce their policies.

Security automata enforcement in λAIR essentially works by tracking the state of

objects in types. As such, this is a form of typestate, a construct that dates back to Strom

and Yemini [122]. The calculus of capabilities [37] provides a way of tracking typestate,

using singleton and linear types (a variant of affine types) to account for aliasing. The

Vault [41] and Cyclone [67] programming languages implement typestate checkers in a

practical setting to enforce proper API usage and correct manual memory management,
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respectively. λAIR’s use of singleton and affine types is quite close to these systems.

However, in these systems the state of a resource is a static type annotation, while in λAIR

a policy automaton is first-class, allowing its state to be unknown until run time. Walker’s

type system [139] (discussed in Section 7.3.3) also supports first-class automaton pol-

icy state. But, in his system, there can only be a single policy automaton the definition

of which is embedded into the type system. In contrast, our approach allows multiple

automata policies to be easily defined separately.

As a consequence of dynamically defined policy state, full static verification of a

security automaton policy is not possible in λAIR. Instead, we propose certifying the eval-

uation of policy logic by statically ensuring that proofs that support every authorization

decision are constructed at runtime. This form of certified evaluation of authorization

decisions has been explored in a number of contexts. For instance, certified evaluation is

a feature of the SD3 trust-management system proposed by Jim [65]. Jia et al’s Aura lan-

guage [64] also maintains audit logs to record evidence to justify authorization decisions

made at runtime. The architecture we propose for certified evaluation in λAIR is closely

related to both these approaches. While more investigation is required, λAIR’s ability to

accurately track evidence in the presence of state modifications opens the possibility of

certified evaluation of a wider class of stateful authorization policies, like those express-

ible in SMP, a stateful authorization logic recently proposed by Becker and Nanz [15].
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7.4.2 Declassification Policies

The specification and enforcement of policies that control information release has

received much recent attention. Sabelfeld and Sands [112] survey many of these efforts

and provide a useful way of organizing the various approaches. AIR policies address, to

varying degrees, the what, who, where and when of declassification, the four dimensions

identified by Sabelfeld and Sands. Most of this work approaches information release from

the perspective of information flow policies. As such, the security properties typically

used with declassification are variants of noninterference or related forms of bisimula-

tion. By contrast, the security theorem we show for the enforcement of AIR policies

states that the program’s actions are in accord with a high-level policy, not that these ac-

tions enforce an extensional security property (like noninterference). We believe that the

two approaches are complementary. As Chapter 4 shows, λAIR is expressive enough to

enforce noninterference-like properties too. By applying an AIR policy in combination

with our information flow encoding, we could show a noninterference-like security the-

orem (e.g., noninterference until conditions [30], or robust declassification [147]) while

being able to reason that a high-level protocol for releasing information is correctly fol-

lowed.

AIR policies are defined separately from programs that use them, allowing them to

be reasoned about in isolation. Most related work on declassification embeds the policy

within program that uses it, obscuring high-level intent. One exception is work on trusted

declassifiers [61]. Here, all possible information flows are specified as part of a graph

in which nodes consist of either downgrading functions or principals, and edges consists
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of trust relationships. Paths through the graph indicate how data may be released. AIR

classes generalize this approach in restricting which paths may occur in the graph, and in

specifying release conditions in addition to downgrading functions.

Chong and Myers [30] propose declassification policies as labels consisting of se-

quences of atomic labels separated by conditions c. Initially, labeled data may be viewed

with the privileges granted by the first atomic label, but when a condition c is satisfied,

the data may be relabeled to the next label in the sequence, and viewed at its privileges.

Declassification labels are thus similar to AIR classes, with the main difference that our

approach is more geared toward run-time checking: we support dynamically-checked

conditions (theirs must be provable statically) and run-time labels (theirs are static anno-

tations).

7.4.3 Data Provenance Tracking

Simmhan et al. [117] define data provenance to be “information that helps deter-

mine the derivation history of a data product, starting from its original sources”. They

also provide a useful survey of various models of provenance and techniques used to

track provenance. Their survey proposes a taxonomy based on potential uses of prove-

nance data. Our formal encodings of provenance in Chapter 2 show how to track prove-

nance accurately, but are somewhat agnostic as to how this data is to be used. In the

implementation of SEWIKI, (according to their taxonomy) we use provenance primarily

for data quality, attribution, and to construct audit trails.

Buneman et al. [22, 23] discuss various approaches to provenance, specifically
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in the context of database systems. They propose an alternative means of categorizing

provenance in terms of the information it reflects, rather than potential usages of that

information. In their terminology, where-provenance is information about the location

(such as a specific database record) from which some data was retrieved. Alternatively,

why-provenance refers to the source data that may have influenced the result of a compu-

tation. In these terms, we have focused primarily on why-provenance, although tracking

where-provenance does not appear to pose serious difficulties.

Our approach to provenance tracking is closely related to computing dynamic pro-

gram slices [141]. Cheney has also observed this connection and discusses ways in which

ideas from slicing can be used to improve provenance tracking in databases [25]. Depen-

dency correctness, the security property we prove for provenance policies, is also due to

Cheney et al [26].

7.5 Web Programming

SELINKS expands on the original goal of LINKS [35], which is to reduce the

impedance mismatch in programming multi-tier web applications. Our work aims to re-

duce the impedance mismatch faced when synchronizing the security mechanisms avail-

able in the various tiers of a web application. Several other languages also aim to sim-

plify web programming by providing a unified view of the client and server tiers, e.g.,

Hop [115], the Google Web Toolkit (GWT) [57] and Volta [84]—we could have applied

FABLE to any of these instead of LINKS. However, we found LINKS’ three-tier solution

(spanning client, server, and database) particularly attractive.
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SIF [32] and Swift [29] are two Jif-based projects that aim to make web applications

secure by construction. The former is a framework in which to build secure Java servlets.

The latter, Swift, is a technique that permits a web application to be automatically split

according to a policy into JavaScript code that runs on the client and Java code on the

server. Being based on Jif, both these projects focus primarily on enforcing information

flow policies; SELINKS aims to be more flexible by enforcing user-defined policies. An-

other distinction is that Swift and SIF target interactions between the client and server,

while server-database interactions is the focus of our work with SELINKS. Despite these

distinctions, there appear to be a number of ways in which Swift and SIF can complement

SELINKS—we discuss some examples below.

In SELINKS, we expect programmers to insert annotations that partition the pro-

gram into client and server components. The resulting partition is often fairly coarse

grained, with more code running at the server than is strictly necessary for security. As

such, the basic ideas of Swift could be applied to SELINKS to direct the partitioning of

code into client and server components. A Swift-partitioned SELINKS program could

have more code running at the client, potentially improving the responsiveness of the

application and reducing load at the server.

In designing SIF, Chong et al. have worked out several useful idioms for enforcing

information flow policies in web applications. For example, to provide a degree of pro-

tection against attacks like script injection, SIF places restrictions on the use of cascading

style sheets and dynamically generated JavaScript. (Section 8.4 describes measures in

SELINKS to defend against similar threats.) One could implement these behaviors in an

SELINKS policy module and the type system could ensure that developers adhere to a
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programming discipline that has been found to be effective with SIF.

7.5.1 Label-based Database Security

To understand the benefits of our approach with SELINKS, we consider some alter-

native approaches to securing a document-management application.

Database-side enforcement. Some DBMSs aim to enforce a fine-grained policies di-

rectly, with little or no application assistance. For example, Oracle 10g [97] has native

support for schemas in which each row includes a security label that protects access to

that row. In this case, the label model and the enforcement policy are provided directly

by the DBMS. As a result, the application code does not need to be trusted to perform the

security checks correctly since the DBMS will perform them transparently. Application

programmers need only focus on the functional requirements; i.e., they can write queries

like (using LINKS syntax):
for(var row← doc table handle)

where (row.text ∼ /.∗{keyword}.∗/)
[row]

}

Native support for authorization checks in the DBMS can be optimized.

There are two downsides to a database-only enforcement model. The first problem

is the lack of customizability. Each DBMS has different security mechanisms, and these

may not easily map to application concerns. For instance, Oracle’s row-level security

is geared primarily to a hierarchical model of security labels, in which security labels

are represented by integers that denote privilege levels. A user with privilege at level

l1 may access a row labeled l2 assuming l1 ≥ l2. While useful, this native support is not
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sufficient to implement the label model we described above. For one, a typical encoding of

access control lists in a hierarchical model requires a lattice model of security [42], rather

than the total-order approach used in Oracle. Encoding principal sets in a hierarchical

model is also not robust with respect to dynamic policy changes [125]. Furthermore,

Oracle 10g is atypical—most DBMSs provide a far more impoverished security model.

For instance, PostgreSQL [103], SQLServer [119], and MySQL [90] all provide roughly

the same security model, based on discretionary role-based access control [95]. Object

privileges are coarse-grained (read, write, execute etc.) and apply at the level of tables,

columns, views, or stored procedures. By contrast, SELINKS labels can be defined using

LINKS’ rich datatype specification facility, labels can be associated with data at varying

granularity (table, row, or even within a row), and these labels can be given user-defined

semantics via the enforcement policy.

The second problem is that database-only enforcement does not solve the end-to-

end security problem—while we may be confident that no data moves from the database

to the server without proper access, the DBMS cannot ensure the server does not (inad-

vertently or maliciously) release the data inappropriately, e.g., by writing it to a publicly-

visible web log. By contrast, SELINKS ensures that sensitive data, whether accessed via a

database query or a server action, is always mediated by a call to the enforcement policy.

This provides a level of trustworthiness similar to application-transparent enforcement

within the DBMS, but with greater scope. Indeed, it opens up the possibility for enforc-

ing policies that combine information available in the database and the server.

Server-side enforcement. Another common approach is to enforce fine-grained security
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policies primarily in the server. This is the approach taken in the web application frame-

works, like J2EE and ASP.NET. In J2EE [56], Entity Enterprise Java Beans (EJBs) are

used to represent database rows at the server where row data is made available via user-

defined methods. For our example we could define a method findByKeyword to search a

document’s text. Access to this method (and other operations) is controlled using the Java

Authentication and Authorization Service (JAAS) to invoke user-defined functions under

relevant circumstances. ASP.NET is similar to J2EE except it integrates more cleanly with

authentication services provided by the Windows operating system [5]. Other lightweight

approaches to web programming, like PHP [100] or Ruby On Rails [110], take a more

ad hoc approach to security—a set of best practices is recommended to protect applica-

tions from common vulnerabilities like code injection attacks. All these approaches are

extremely flexible. As with SELINKS, the developer can customize the label model and

its semantics. Because policies are enforced at the server, they can consider server and

database context, providing broader scope.

The main drawback of the server-side approach is the performance hit that comes

with moving data from the database to the server, potentially unnecessarily. As illustra-

tion of this, Cecchet et al [24] report that J2EE implementations based on entity beans

can be up to an order of magnitude slower than those that do not. That said, Spacco and

Pugh [106] report that for the same application much of the performance can be restored

with some additional design and tuning, but this can be a frustrating and brittle process.

The other problem with server-side enforcement is trustworthiness: the application pro-

grammer is responsible for correctly invoking security policy functions manually, so that

mistakes can lead to security vulnerabilities.
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Hybrid enforcement. SELINKS essentially represents a kind of hybrid enforcement

strategy: it presents a server-side programming model but compiles server functions to

UDFs to allow them to run on the database and thus optimize performance. This same

basic strategy could also be encoded “by hand.” One could define a custom notion of

security label (e.g., as a certain format of strings), and then write a series of user-defined

functions akin to the SELINKS enforcement policy for interpreting these strings. The

application writer would then be responsible for calling these functions during database

accesses to enforce security. To avoid changing the application, a popular alternative is

to have the DBMS perform UDF calls transparently when accessing the database via a

view [97]. For example, we could define a view of our document table as containing only

the docid and text fields; when querying these fields, calls to UDFs would be made by the

DBMS transparently to filter results according to the hidden doclab field.

This by-hand approach has three main drawbacks, compared to what is provided

by SELINKS. First, database-resident functions are painfully low-level, operating on ap-

plication object encodings rather than, as in SELINKS, the objects themselves. Second,

different DBMSs have different UDF languages, and thus a manual approach requires

possibly many implementations; by contrast the SELINKS compiler can be used to tar-

get many possible UDF languages. Finally, if application programmers must construct

queries with the appropriate calls to security enforcement functions there is the danger

that coding errors could result in a policy being circumvented. While using views re-

duces the likelihood of this problem, there are still parts of the application that manage

the policy, e.g., by updating the doclab portions of the objects, and these bits of code

are subject to mistakes. The SELINKS type checker ensures that operations on sensitive
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data (whether in queries like our keyword search example or in operations such as server

logging functions) respect the security policy.

Finally, an important benefit of our approach is that it enables an application to

make design choices that are pertinent to security, and have them reliably enforced in

the server using the abstractions that are available there, if necessary. For example, in

the case of SEWIKI, the policy label of a parent node indirectly and uniformly restricts

access to all its children; labels that appear at child nodes may add to this restriction.

To implement this tree-based semantics literally would require recursive policy checks.

Doing this in the database would be both cumbersome and inefficient because SQL is not

particularly well suited to handling recursive relations. Instead, we use code running in

the web server to enforce the invariant that a node’s label always reflects the policies of its

ancestors’ labels. Thus, even in situations where end-to-end tracking of information flow

is not essential (as in our access control policy here), the flexibility afforded by server-side

security enforcement in SELINKS is crucial both to reasonable efficiency and ease of use.

As a final note, a form of hybrid policy enforcement has also been recently proposed

outside the context of web applications. SEPostgreSQL is an extension of PostgreSQL

that aims to achieve end-to-end security through integration with the SELinux secure op-

erating system [80]. SEPostgreSQL allows SELinux policy metadata to be associated

with tables, columns, and rows in the database. Access to protected objects in SEPost-

greSQL is mediated by the SELinux operating system’s underlying reference monitor.

This opens the possibility of enforcing a uniform policy throughout the operating system

and database. However, it is unclear if the ideas behind SEPostgreSQL translate well

to other DBMSs. In contrast, a key benefit of our work is portability. We rely only on
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widely-used features of PostgreSQL (user-defined types and functions) which are also

available in most other mainstream DBMSs. The assurance using FABLE types to avoid

security bypasses is also unique to our approach.

7.6 Other Technical Machinery

Our technique of separating the enforcement policy from the rest of the program (in

FABLE) is based on Grossman et al’s colored brackets [58]. They use these brackets to

model type abstraction, whereas we use them to ensure that the privilege of unlabeling and

relabeling terms is not mistakenly granted to application code. As a result, we do not need

to specially designate application code that may arise within policy terms, keeping things

a bit simpler. We plan to investigate the use of different colored brackets to distinguish

different enforcement policies, following Grossman et al.’s support for multiple agents.
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8. Looking Ahead

This dissertation was motivated by a long-term vision of a modular, composable,

and formally verifiable approach to the enforcement of security policies. In its idealized

form, we conceive of a framework flexible enough to capture the idiosyncrasies of en-

forcement mechanisms used by real software implementations, yet precise enough to ad-

mit formal verification of high-level security goals. The enforcement mechanisms would

be modular so that, once verified, they could be reused with a variety of applications

with high assurance. For applications that needed to address a range of concerns, policies

would be enforceable in combination. For example, some critical components of an ap-

plication could be protected by strong, highly restrictive policies, while other parts could

be secured by permissive, low-overhead policies. Source-level programmers would be

able use this framework to ensure that new software was secure by construction. Legacy

applications could also be retrofitted with security policies customized to match specific

deployment scenarios.

While this vision remains a distant (perhaps even unattainable) goal, the work in

this dissertation has made significant strides towards its fulfillment. We have shown, at

least in theory, that a language-based framework can be expressive enough to verify the

enforcement of many interesting security policies. We have also shown that the kernel

of our approach is practical, and that programming with simple user-defined policies in
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SELINKS is possible today.

But, there is much left to do. In this chapter we acknowledge some limitations of

our work and identify a number of directions in which our work might be advanced.

8.1 Assessment of Limitations

This dissertation aimed to defend the thesis that language-based enforcement of

user-defined policies can be both expressive and practical. By developing encodings of

many kinds security policies, we have demonstrated that FLAIR is more expressive than

any previously known security-typed language. Additionally, by proving that programs

enjoy useful extensional properties as a consequence of type correctness, we have shown

that our approach can provide a level of assurance that is competitive with more tradi-

tional, specialized security-typed languages. By developing SELINKS and using it to

construct realistic applications, we have also showed that our approach can be applied in

practice. Nevertheless, our work suffers from a number of limitations.

First, we are unable to precisely characterize the class of security properties en-

forceable in FLAIR. Many of the security policies we have explored here aim to establish

safety properties for programs; i.e., they proscribe certain “bad events” from occurring

during a program execution [75]. The security automata policies of Chapter 3 are a

canonical example of such safety-oriented policies. A succession of results about the

expressiveness of security automata have attempted to characterize the precise class of

safety properties that they are able to enforce [113, 59, 13, 79]. By virtue of our ability to

enforce automata-based policies, these prior results establish a useful lower bound on the
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class of safety properties that can be enforced in FLAIR. But, this lower bound is not very

precise. We have also demonstrated that FLAIR is powerful enough to enforce proper-

ties like noninterference, which are not safety properties. Noninterference-like properties

have been variously categorized as 2-safety properties [126] and, more recently, as hy-

perproperties [33]. But, only a small subset of hyperproperties are within reach of our

enforcement techniques. For example, hyperproperties include liveness properties—i.e.,

properties that ensure that a program eventually does “something good”. We have made

no attempt to enforce liveness properties.

A more practical concern is that the generality of policy enforcement in FLAIR/SE-

LINKS comes at a price. We require programmers to insert explicit calls to enforcement

policy functions, rather than inferring the placement of the calls automatically. While

the annotation burden is small for simple policies like access control, for more complex

policies like information flow, as programs grow larger, the number of policy checks that

must be inserted quickly becomes unacceptable. Specialized systems like Jif or FlowCaml

do not suffer from this problem. Automatic insertion of policy checks is essential if SE-

LINKS is to compete with these systems in the enforcement of information flow policies.

Another concern is the usability of our advanced typing constructs in a source lan-

guage. Our experience with SELINKS is limited to FABLE-style purely functional poli-

cies. We have found that using dependent types to express a security labeling is fairly

lightweight. However, the combination of dependent and affine types that we propose in

FLAIR is much more burdensome for the programmer. As such, we conjecture that FLAIR

may be more useful as the common intermediate language for a variety of systems that

enforce special-purpose policies.
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Finally, our theory of policy composition is fairly primitive. For example, although

SEWIKI, our main example program, enforces a combined access control and provenance

policy, our proofs of correctness apply only to each of these policies in isolation. We do

propose some syntactic techniques to ensure that policies compose well, but this applies

only to relatively simple modes of composition. Despite this weakness, our work is the

first to provide a platform on which further work on modular proofs of correctness for

composite policies may be explored.

8.2 Automated Enforcement of Policies

While SELINKS makes it easy to to enforce simple policies, the difficulty of enforc-

ing more complex policies is often unacceptable. This has been one of the main factors in

limiting our example applications to access control and simple provenance—information

flow policies are too hard to enforce for large programs. The main thrust of the work

proposed in this section is to make it easier to reason about and enforce some of the more

complex policies.

The difficulty of enforcing a policy in FLAIR/SELINKS is due to three main con-

cerns. We consider each of these and, in turn, propose ways in which these concerns may

be addressed.

The first source of difficulty is that we require application programs to include ex-

plicit calls to enforcement policy functions. For security policies like information flow,

complete mediation demands that enforcement policies mediate all operations on sensi-

tive data; e.g., function calls must be performed indirectly by calling policy functions like
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apply. So, we propose transforming programs to insert policy checks automatically,

Second, even for programs that include all the required enforcement policy calls,

type checking relies on annotations that make explicit the connection between security

labels and data. So, we propose using novel forms of type inference, suitable for use with

dependent types.

Finally, even if a program can be shown to be type correct with respect to an en-

forcement policy, the security of the system relies crucially on a proof that the policy

encoding correctly establishes some high-level goals. To reduce this burden, our proposal

is to leverage automated theorem provers or proof assistants to mechanize much of the

reasoning about policy correctness.

8.2.1 Transforming Programs to Insert Policy Checks

Currently, in order to enforce a policy, we expect a programmer to provide type an-

notations that protect sensitive data with their security labels. Programs that manipulate

labeled data are required to include calls to policy functions—these calls must also be

inserted manually into the program text. Instead of requiring the programmer to insert

checks manually, we would prefer, given a manual security labeling, to insert the appro-

priate policy checks automatically. This section outlines a line of research that aims to

achieve this goal. We begin with an abstract statement of the problem.

Given a program e and an enforcement policy P, where e is not type-correct

with respect to P, compute a program e′ (if one exists), where e is related to

e′ by the relation R, such that e′ is type-correct with respect to P.
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An enforcement policy P in FABLE (or, equivalently, a signature in FLAIR) is a

purely declarative specification of the mechanism by which a policy is to be enforced. In

order to automatically insert policy checks into a program, we could require the policy

designer to additionally provide an algorithmic specification of P. Essentially, we could

augment P with a set of rewriting rules that describe a program transformation. The

general form of a rewriting rule could be “rewrite p1 as p2”, where p1 and p2 are program

patterns. The intention is to apply a collection of these rules to the source program e,

rewriting sub-expressions of e that match the pattern p1 according to the pattern p2.

An example rule is shown below:

rewrite (e1 : (α → β ){l} e2 : α)
as (apply e1 e2)

In this case, the pattern (e1 : (α → β ){l} e2 : α) is matched by any sub-expression of

e that is an application of a function e1 to some argument e2. The type annotations that

appear in the pattern restrict e1 to be typeable as a function with type α → β , labeled

with the label l. Since labeled functions are not directly applicable, we need to wrap the

application in a call to the apply enforcement policy function. The pattern p2 does exactly

this: it calls the apply function, passing in e1 and e2 as arguments.

This approach has a number of benefits. First, we aim to guarantee that the target

program e′ is type-correct with respect to the policy. This means that verifying the secu-

rity of e′ only requires reasoning about the declarative policy P, and not the (potentially

complicated) rewriting rules, i.e., despite the added complexity of the program transfor-

mation algorithm, the trusted computing base is unchanged. Furthermore, if successful,

this work would not only ease the construction of new secure programs, but would also
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open the possibility of retrofitting existing programs with policy checks. However, mak-

ing this idea work in practice will require addressing a number of concerns.

First, it may be possible to apply multiple rules to a single sub-expression. This

could be either because we are attempting to enforce multiple policies simultaneously,

or due to inherent ambiguities or non-determinism in the way in which a single policy is

to be enforced. Thus, we would require some mechanism by which conflicts among the

rules are to be resolved.

A related issue is the termination of the rewriting process. Can program fragments

be re-written multiple times, and if so, can we provide any assurances that the rewriting

process converges ultimately? Or, perhaps, non-termination (or, pragmatically, simply

a long-running rewriting process) can be treated as a failure mode. If so, what are the

ways in which this failure can be explained? That is, is the non-termination due to an

ambiguity in the rewriting rules, or is it due to a badly formed source program? What

about explaining other failure modes? For instance, in the simple example above, if the

sub-program contains an application e1 e2, where the type of e2 does not match the type of

the formal parameter of e1, then, it seems reasonable that the rewriting process should fail.

Is there a way in which these so-called “reasonable” failure modes can be characterized?

Finally, the abstract statement of the problem intentionally left the notion of cor-

rectness unspecified—this is potentially the most challenging issue to address. What are

reasonable ways of constraining the behavior of the rewritten program e′ so that it accu-

rately reflects the intended semantics of the source program e, i.e., what is an appropriate

definition for the relation R? Clearly, we would like to ensure that the programmer-

specified labeling relationships in e are left unchanged in e′. But, we might also like to go
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further and ensure that e′ preserves the semantics of e in some non-trivial way, e.g., that

the runtime behaviors of e (under a suitable operational semantics) and e′ are identical,

except for possibly failed policy checks in e′.

There are a number of related works that might provide suitable answers to each

of these questions. First, work on aspect-oriented programming [72] is based on similar

ideas. An aspect consists of a point-cut—a pattern that defines a set of program points

of interest—and some associated advice, which defines an action to be performed at the

points of interest. However, our notion of rewriting departs from aspects in two respects.

First, we seek to transform a type-incorrect program by inserting “advice”, in the form of

the appropriate policy checks. Aspects have traditionally been used to alter the runtime

behavior of type-correct programs, rather than to fix type-incorrect programs. Addition-

ally, since policy checks in our framework can often be erased entirely, rewriting may

not alter the runtime behavior of a transformed program at all. Nevertheless, it seems

likely that the close connection to aspect-oriented programming can be used profitably;

e.g., notions of correctness associated with aspects (like harmlessness [39]) may also be

applicable in our setting.

Other ideas that may also be useful include work on blame assignment for use

with software contracts [47] or hybrid programming languages [138]. It might be useful

to show that if it is impossible to transform a program, or if a policy check in a trans-

formed program fails at runtime, that the blame for the failure resides with the application

program and is not some undesired artifact of the policy or rewriting rules. Finally, in

this context, recent work on explaining failures of program analyses may also be rele-

vant [133].
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8.2.2 Inferring and Propagating Label Annotations

As a means of documenting security assumptions, security label type annotations

appear to be far from optimal. Type annotations are buried within and are interspersed

throughout the program text, causing the high-level intent of the connection between pol-

icy and data to be obscured. We would prefer to have a way of specifying a mapping

between protected data and their policies separate from the program. From such a high-

level specification, we would like to automatically derive the labeling annotations needed

to type check a program.

Our vision for this element of proposed work is to complement the enforcement pol-

icy with a notion of a labeling policy, a high-level specification of the security constraints

on the data sources and sinks in the program. Ideally, this arrangement would further

simplify reasoning about the security of an application—given that the type checker can

ensure that an application is consistent with its policies, a security analyst can ignore the

program text altogether and focus only on the enforcement and labeling policies.

A labeling policy might include constraints of the following flavors. For instance,

it might state that all resources accessible on the file system via a certain path are to be

considered high-security. Or, for example, that the label of every network packet can

be found at a specific offset from the start of the packet. Or, even that the label of a

database element can be retrieved by following a succession of foreign-key/primary-key

associations between multiple relations in a database. The labeling policy might also

place constraints on data sinks like network ports or terminals, limiting the types of data

that can be sent out on them.
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Given a labeling policy, we would have to infer labels for objects manipulated by

the program. For example, if the program opens a file by passing a string constructed by

the concatenation of various constants, we would like to be able to discover the security

label for that file by examining the labeling policy. Of course, this would require precise

reasoning about the string constants in the program; but, it may be possible to leverage

the power of dependent types in SELINKS to reason in this manner (as is done, say, in a

language like Cayenne [6]). Alternatively, we could automatically give network packets

the type of a dependent record, with the security label stored at the appropriate offset. We

would have to develop similar methods to ensure that database queries always retrieved

the appropriate labels along with the protected data.

Associating labels with the data sources and sinks is only one half of the problem.

Given such an association, we would also like to use type inference to propagate label/data

dependences throughout a program. As discussed in Chapter 7, this form of inference for

security-type systems has been explored in context of FlowCaml. However, the static

label model of FlowCaml is a simplifying assumption that is not applicable to our setting.

Extending type inference to support dynamic labels would be a useful contribution in its

own right—such a procedure could also simplify programming in Jif, for example. But,

the generality of dependent types in SELINKS poses an additional challenge. Recent

proposals like liquid types [109] may provide the basis of an inference mechanism for

SELINKS.
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8.2.3 Semi-Automated Proofs of Policy Correctness

A key benefit of our approach to policy enforcement is the ability to prove that

programs satisfy end-to-end properties as a result of complete mediation. As such, con-

ducting proofs of these properties is an integral part of our conception of the process of

policy enforcement. That is, policy enforcement is not complete until all the policy code

has been verified to correctly establish a desired security property of a program. However,

at present, our proofs that a policy correctly enforces some high-level security property

are entirely manual. Whereas our proposals for program rewriting and type inference

sought to ease the process of constructing application programs, in this section we focus

on simplifying the task of the policy designer and analyst.

In Chapter 7, we observed that our user-defined policies are a form of type-system

extension. In this context, Millstein et al’s work on semantic type qualifiers is rele-

vant [28]—these are custom type qualifiers that a programmer can use to indicate data

invariants to be enforced by the type system. Much like our policies, the specification of

these qualifier extensions have to be proved to correctly describe the high-level invariants

that they are intended to establish. Marino et al. have proposed using have proposed using

proof assistants to partially automate these proofs of correctness [82].

Adapting this proposal to our setting is an interesting direction of future work.

Whereas Marino et al. attempt to prove relatively simple syntactic properties, proving

semantic properties (like noninterference) of our policy encodings would require a sub-

stantially larger effort. However, as discussed in Chapter 2, we have noticed that although

non-trivial, our proofs of correctness are simplified considerably by the type-soundness

246



results of the underlying calculi, whether FABLE or FLAIR. Based on this experience,

we conjecture that given a mechanized formalization of the metatheory of, say, FLAIR, a

policy analyst could rely on several key lemmas in soundness proof to discharge a proof

of the desired security property.

At the time of this writing, we have formalized a significant subset of the soundness

proof of the λAIR calculus in the Coq proof assistant [17]. But, we have yet to apply this

formalization to proofs of security properties.

8.3 Enhancements to Support Large-scale Policies

In the future, we would like to extend our evaluation of SELINKS by attempting to

enforce large policies that address diverse security concerns. In this section, we consider

how SELINKS might be scaled up to bring this goal within reach.

8.3.1 Interfacing with Trust Management Frameworks

Trust management frameworks were introduced by Blaze et al. as a means of spec-

ifying the authorization requirements of large distributed systems [19]. One basic design

goal of trust management is to separate the specification of the policy from the means of

its enforcement. Another goal is to formalize policy languages to the extent that a precise

semantics can be given to a policy specification—both, to enable the construction of in-

terpreters that can answer policy queries, as well as to make policies amenable to formal

analysis so as to check compliance with high-level security goals [77].

Our approach to policy enforcement has hinged on the premise that reasoning end
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to end about the security of a system depends crucially on a precise specification of the

enforcement mechanism that ties a high-level policy to a program. In FABLE, the glue

that ties a high-level policy to the program is the enforcement policy. We believe that the

notion of an enforcement policy is particularly applicable in the context of trust manage-

ment, in that it bridges the gap between specification and mechanism intentionally kept

separate by trust management systems. By using an enforcement policy, our work admits

proofs of end-to-end operational properties of programs. This complements prior work

on policy analysis in trust management, which aims to guarantee that policy specifications

themselves are consistent with high-level system objectives. Given a trust management

policy, we could write enforcement policy glue code to ensure that application programs

always include the appropriate calls to the policy interpreter. If successful, not only could

we prove end-to-end properties of program executions, we could also check that these

low-level security properties are consistent with the high-level objectives deduced from

an analysis of the policy alone. Of course, this effort would begin with a study of exist-

ing policies formalized in trust management systems. For example, health-care policies

formalized in Cassandra may be one starting point [14].

However, scaling SELINKS to be able to interface with trust management languages

poses a number of interesting problems. For example, finding a reliable and transparent

way to tie resources manipulated by the program to the policy elements that govern the

usage of those resources. Throughout this dissertation, we have achieved this by asso-

ciating a security label with each sensitive resource. However, interfacing with a trust

management policy would be greatly simplified (and, indeed, enhanced) if the research

proposed in Section 8.2.2 is successful. That is, given a specification of resources in a
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language like SPKI/SDSI, we could automatically reconstruct the type-level labelings of

objects in the program and propagate these throughout the program.

Interpreters for trust management languages are often stateful. For example, Becker

and Nanz [15] describe the semantics of trust management policy language using a variant

of Datalog extended with state modification effects. We conjecture that the techniques we

have developed with FLAIR will be useful in this context. Extending SELINKS with

FLAIR, and enhancing FLAIR with some of the ideas of the previous section to make it

more usable at the source level, will also be an interesting line of research.

There are will also be some interesting engineering issues. Trust management was

designed with distributed systems in mind. SELINKS also targets distributed systems,

but is currently limited to the three-tier topology. Extending SELINKS to handle more

general topologies of distribution would take a substantial effort. This would include a

more sophisticated model of trust in the various nodes/tiers of a system. Our current

model trusts the server and the database implicitly, but places no trust whatsoever in the

client. An extension to more general topologies would requiring refining this model so

that finer degrees of trust can be placed in each node.

8.3.2 Administrative Models for Policy Updates

Most existing security-typed languages assume that a program’s security policy

does not change once the program begins its execution. This is an unrealistic assumption

for realistic long-running programs. For operating systems, network servers, and database

systems, the privileges of principals are likely to change. New principals may enter the
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system, while existing principals may leave or change duties.

On the other hand, it would be unwise to simply allow the policy to change at

arbitrary program points. For example, if the program is unaware of a revocation in the

security lattice it could allow a principal to view data illegally. More subtly, a combination

of policy changes could violate separation of duty, inadvertently allowing flows permitted

by neither the old nor the new policy.

In prior work, we proposed a security-typed language RX that permits security poli-

cies to change during program execution [125]. We equipped RX with an administrative

model based on the RT role-based trust management framework [76]. In effect, elements

of the policy define roles with designated owners who are responsible for administering

the role’s contents. Thus, only when the program is acting in a way trusted by that owner

may the role be changed. We defined a type system to enforce this administrative model

and, additionally, to ensure that updates do not cause undesirable information flows.

We propose adapting the ideas of RX for use in SELINKS. Since RX policies

clearly rely on mutable state, once again, the ideas we developed for the enforcement of

stateful policies in Chapter 3 are relevant. By including support of λAIR-style tracking

of policy state in SELINKS, it should become possible to enforce RX’s administrative

models for policy updates. However, the flexibility of λAIR will allow us to easily ex-

plore other administrative models as well; e.g., a recent variant of RX proposes a more

flexible administrative model [8]. Additionally, we would be able to investigate questions

regarding the suitability of administrative models for policies other than information flow.

For example, what is a suitable administrative model for information release policies like

AIR? How would those models be combined with the administration of information flow
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policies? This effort would also mesh well with a broader initiative that aims to integrate

SELINKS with trust management.

8.3.3 Administrative Models for Policy Composition

In Chapter 2, we pointed out that our security theorems apply primarily in situations

where only a single policy is in effect within a program. However, in practice, multiple

policies may be used in conjunction and we would like to reason that interactions between

the policies do not result in violations of the intended security properties.

In its simplest form, policies can be composed in a way such that different security

policies govern different parts of the same application. For example, we may wish to track

information flows on some data and just enforce access control on other data—and ensure

that the two kinds of data never mix. The policy composition criteria that we defined in

Chapter 2 (and Appendix A) apply to exactly this case. We show that by adhering to this

simple form of compositionality, one can reason about the security of the entire system

by considering each policy in isolation.

However, more interesting compositions of policies are also natural. For instance,

a policy might state that data governed by Alice’s access control policy is subject to a

lattice-based information flow policy once it is released to Bob. While the enforcement

of Alice’s access control policy and the lattice-based policy may have been proved correct

in isolation, it is not immediately clear that the composed policy does not violate the

invariants of its components, much less that it meets some desirable composed semantics.

In the future, we could devise models to control how policies are allowed to be
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composed. One might attempt to wrap enforcement policy code within a module, where

the module interfaces, defined by the administrator of a policy, would specify all the

invariants that must be preserved for a policy to be composed with other policies. A

particularly simple example would be to limit a policy to be composed only with other

policies that were administered by a trusted principal. However, more complex forms of

composition may be possible as well. For example, policies could be combined using

boolean formulas. We could also borrow ideas like inheritance and overloading from

object-oriented languages (our design of AIR already hints at some of these directions),

or have support for ML-style functors, to have better support for managing large policies.

8.4 Defending Against Emerging Threats to Web Security

In this dissertation, we have mainly considered threats due to insider attacks. How-

ever, several recent trends, particularly with respect to the world wide web, have made it

possible for outsiders to subvert application-level security controls by mounting abstrac-

tion violating attacks. The line of research proposed in this section aims to address these

web-based threats, either by extending SELINKS or by using SELINKS in conjunction

with other kinds of defenses.

A classic example of a web-based threat is a cross-site scripting (XSS) attack. This

can occur when a web page contains script content from a third party, such as an advertiser

or other users. This script executes in the web browser with the same level of privilege

as scripts that originated from the server and can steal steal private information from the

client’s web browser and possibly co-opt the client’s web browser into attacking other
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web sites. XSS attacks were identified as the most common security vulnerability in

2007 [86].

Without specific defenses, an application like SEWIKI is also susceptible to XSS

attacks. Figure 8.1 illustrates a possible attack. The upper frame depicts a wiki document

stored at the server, that contains a top-secret (at the left) and a secret component (at the

right). When this document is requested by a client with clearance to view only the secret

component, SEWIKI prunes the top-secret component of the document tree and serves

only the secret component to the client. However, the malicious client inserts a script

into the secret component. This script, designed to run in the web browser of a user with

top-secret clearance, fetches the top-secret component of the document and redirects the

web browser to the attacker’s web site, evilsite.com, passing in the top-secret data as

part of the query string. The lower frame shows the altered document stored at the server

along with the attack script. At some point, a top-secret user requests the document and

SEWIKI serves the entire document to the user (without pruning the top-secret part). The

attack script then runs in the top-secret user’s web browser and forwards the top-secret

data to evilsite.com.

In designing SELINKS, we were careful to incorporate the trust assumptions of

each tier in our model. However, our model only goes so far—attacks like XSS, or more

recently, cross-site request forgery [12], fall outside the scope of our abstractions. Clearly,

a comprehensive approach to web security demands that we pay attention to these very

real threats.

In prior work, we have proposed addressing XSS attacks by relying on coopera-

tion between the server and client [68]. In our approach (called BEEP), users (like the
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<script>
  var ts = doc.getElement(“topsecret”);
  doc.location=“http://evilsite.com/?data=“+ts
</script>

A document with a 
top-secret component and 
a secret component 

server
client

 

A malicious user with 
only secret clearance 

server
client

saves changes

  
evilsite.com

The victim is a user with
top-secret clearance 

Figure 8.1: A cross-site scripting attack on SEWIKI
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top-secret user in our example) can run specially modified browsers that are trusted to

enforce a policy that is included in each web page by the server. In this case, the trusted

web browser can enforce policies that prevent potentially malicious scripts in the secret

component of the document from running, or from reloading the browser etc. Thus, like

SELINKS, BEEP relies on coordination across the tiers of an application (in this case,

the client and server) to reliably enforce a security policy. (In fact, our implementation

of SELINKS includes BEEP policies in every web page it serves. Thus, SEWIKI users

running BEEP-enabled browsers are protected from the attack described here.)

We conjecture that as Web 2.0 applications with very rich client side features con-

tinue to gain prominence, enriching a browser’s JavaScript runtime environment with the

ability to enforce complex policies will become increasingly important. Java applets,

which were once the main vehicle of interactive content on web pages, have been sup-

planted by AJAX-enabled JavaScript. Following the example of Java, where expressive

security policies ranging from sand-boxing to stack inspection were found to be neces-

sary, one might expect that it will be useful to enforce non-trivial JavaScript security

policies within the browser.

As with BEEP and SELINKS, we conjecture that approaching these problems from

an application-wide cross-tier perspective is likely to pay dividends. For example, servers

can specify policies to be enforced at the client; or, clients can request content that match

their security needs. Providing each application component with the ability to attest to

its security claims and verify claims of other untrusted components will be challenging.

However, recent adaptations of information flow policies to a cryptographic setting may

help provide some of the answers [52, 131].
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While BEEP protects clients from malicious code that might be served with a web

page, a server also needs to be protected from a malicious client. For instance, web ap-

plications have complex control-flow properties that govern a client’s workflow through

the application. Violations of this workflow can cause the web application to enter an

inconsistent state. One approach to solving this problem is to use a FABLE-style security

automaton policy to ensure that each client request is consistent with the current state in

the workflow of an application. We have experimented with this enforcement technique

in SEWINESTORE, our e-commerce application. However, other techniques may also be

applicable. For instance, ideas from system-call monitoring [66], originally developed to

ensure that an operating system’s integrity is not compromised when an application is at-

tacked, can also be applied to web applications. A server side monitor could intercept all

client requests and ensure that they conform to some specification of the client’s expected

behavior. Additionally, one might be able to adapt ideas from kernel-based control-flow

integrity monitors to suit web applications [99]. By analyzing the source of a web applica-

tion, one could automatically extract a model of the client’s behavior which could then be

enforced by a server-side monitor, on a per-session basis. Such an approach could be par-

ticularly effective for a multi-tier language like SELINKS, where the entire application’s

source could be analyzed at once to extract a precise model of its expected control-flow

behavior.
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8.5 Concluding Remarks

This chapter has acknowledged a number of limitations to the work described in

this dissertation. In seeking to address these limitations, we have also described a number

of directions in which our work might be advanced.
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9. Conclusions

This dissertation has made a number of contributions in support of the contention

that the enforcement of expressive user-defined security policies can be wide-ranging,

reliable, and practical. Our evidence includes the following main elements:

• A succession of programming-language calculi—FABLE, λAIR, and FLAIR—which

we have shown to be expressive enough to verify the enforcement of access control,

provenance, information flow, downgrading, and automata-based policies, for both

functional and effectful programs.

• The statement and proof of several useful end-to-end properties for programs that

enforce each kind of security policy, demonstrating that our approach retains a key

benefit of traditional security-typed languages, while exceeding prior approaches

by being applicable to a broader class of security policies.

• An implementation of security typing in SELINKS, and the subsequent use of SE-

LINKS in the construction of two realistic web applications, corroborating our claim

of practicality.

In conducting the work described in this dissertation we have gained a number of

insights. Our work arose from the observation (entirely obvious in hindsight) that to

reason about the correct enforcement of a security policy in software, one has to make
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the enforcement mechanism precise. A lot of the prior work on security policy design

(e.g., the work on trust management described in Section 8.3.1) starts from the premise

that policy specification and mechanism need to be separated. While this is useful for

evaluating the high-level security objectives by reasoning about the policy in isolation,

it does not allow reasoning about programs that enforce a policy, because the details

of enforcement matter. For example, our proof of non-observability relies on a precise

definition of how membership checks on access control lists are performed. Variations on

the forms of checks can have significant consequences on the kinds of properties that can

be proved. For example, in Chapter 2 we showed alternative encodings of access control

in which an authorization check was performed using capabilities instead of interposing

a check at each request. We noted that the capability approach can more easily be used

support idioms like the delegation of access rights, but it may not be very robust against

time-of-check/time-of-use bugs. By developing the concept of an enforcement policy,

we were able to show that all the relevant details of the enforcement mechanism can be

factored into a small set of verifiable functions.

We also find our basic approach (as exemplified by FABLE) attractive because it

brings the benefits of security typing to common programming tasks. For example, the

most common form of access control policy is extremely simple—a successful authoriza-

tion check releases the protected data without any further constraints. However, despite its

simplicity, access control is frequently implemented incorrectly; e.g., Security Focus reg-

ularly reports vulnerabilities where access control checks are bypassed due to a software

error [114]. To prevent these errors, we developed a simple encoding of access control in

FABLE. Happily, we found that programming with this encoding in SELINKS was also
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easy. Nevertheless, the little assistance that the programmer provides in the form of label

annotations was enough to prove a useful end-to-end property—i.e., non-observability.

Giving the programmer the freedom to chose the format of security labels is also

extremely useful. We have argued that the specific choice of label model can have a

profound impact on the kinds of security properties that can be enforced—e.g., role-based

label models can be better for controlling policies that change at runtime [125]. But, on a

still more practical level, this flexibility allows SELINKS to easily interface with existing

systems that already use specific formats of security policies. Furthermore, allowing

labels to be formed from arbitrary data (like our use of time-stamps in the provenance

labels of SEWIKI), lets the programmer use types to help manage tasks that would not

traditionally be within the purview of a security type system.

Dependent types have recently become a fairly popular approach to program ver-

ification. But, rather than unleash the full power of dependent types we have taken a

lightweight, pragmatic approach that we hope hits a sweet spot. We use dependent types

to express a security labeling and for giving precise types to evidence, but not to do

full program verification (as in Epigram [2], Coq [17], Cayenne [6], etc.). Our experi-

ence with SELINKS indicates that this kind of dependent typing is relatively easy to use.

Additionally, rather than focusing on static enforcement of policies (which is usually im-

possible, because most interesting policies are dynamic) we permit runtime checks to be

used to discharge typing obligations. By using a kind of intensional type analysis we can

ensure that all the necessary runtime checks are present. This means that programmer

can quickly develop secure applications by inserting runtime checks wherever necessary

to convince the type system of complete mediation. But, as an application matures, one
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could write down more expressive types to get stronger static guarantees and remove some

runtime checks, or at least move checks outside of certain interface boundaries.

Despite being so lightweight, we found that the combination of dependent types

with a little bit of verifiable enforcement policy code can be extremely expressive. Even

in its simplest form (FABLE), we were able to show encodings of many interesting purely

functional (or flow-insensitive) policies. But, in order to encode flow-sensitive analyses,

or to account for side effects, we needed more. By adding affine types (another relatively

standard, off-the-shelf construct) to the mix were able to overcome this restriction. It ap-

pears as though our particular combination of a small amount of trusted code, dependent

types, and affine types may be of fairly broad interest. Although we set out to design a

framework for enforcing security policies, as we discussed in Section 7.2, it appears as

though a language resembling FLAIR could be the basis of a more general-purpose type

system that supports flow-sensitive user-defined extensions.

In conclusion, by developing FLAIR, this dissertation has contributed a new, more

flexible approach to language-based security. To our knowledge, no prior framework has

been able to enforce such a wide range of policies with an equally high level of assurance.

261



A. Proofs of Theorems Related to FABLE

A.1 Soundness of FABLE

Definition 5 (Well-formed environment). Γ is well-formed if and only if

(i.) All names bound in Γ are distinct
(ii.) Γ = Γ1,x : t,Γ2 ⇒ FV (t)⊆ dom(Γ1)
(iii.) e1 � e2 ∈ Γ ⇒ Γ c̀ e1 : lab ∧ Γ c̀ e2 : lab

Lemma 6 (Canonical forms). For Γ well-formed, all of the following are true.

1. Γ c̀ vc : (∀α.t) ⇒ vc = Λα.e

2. Γ c̀ vc : (x:t1)→ t2 ⇒ vc = λx:t.e

3. Γ àpp vapp : t{l} ⇒ vapp = ([{l}v′])

4. Γ p̀ol vpol : t{l} ⇒ vpol = {l}v′

Proof. Straightforward from induction on the structure of the typing derivation. Observe
that in app-context, terms such as ([Λα.e]) and ([λx:t.e]) are not values.

Theorem 7 (Progress). Given (A1) · c̀ e : t. Then either ∃e′.e c
 e′ or ∃v.e = v.

Proof. By induction on the structure of (A1).

Case (T-INT): n is a value.

Case (T-VAR): Inapplicable, since by assumption, dom(Γ) = /0 and e is a closed term.

Case (T-FIX): e takes a step via (E-FIX).

Case (T-ABS), (T-TAB): e is a value.

Case (T-TAP): We either have e = e [t] or vc[t]. In the first case, we use the induction
hypothesis and apply (E-CTX) to show that e [t] c

 e′ [t]. In the second case, by the second
premise of (T-TAP) we have (A1.2) Γ c̀ vc : ∀α.t. By canonical forms Proposition 6 on
(A1.2), we get that vc must be of the form /\α.e or ([/\α.e]) (since the types of both 〈t〉u
and ([〈t〉u]) are of the form t ′{e}) and (E-TAP) is applicable.

Case (T-APP): If e is either e1e2 or vce2, then, by applying the induction hypothesis to
the third and fourth premises respectively, we get our result using (E-CTX). If e is vcv′c
then, if c = pol, by canonical forms on third premise of (T-APP), vc = λx:t.e and (E-APP)
is applicable.

Case (T-LAB): C(−→vc ,e,−→e ) is an evaluation context of the form Ec · e. So, via the
induction hypothesis e c

 e′ and by (E-CTX) the goal is established.
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Case (T-HIDE), (T-SHOW): Application of the induction hypothesis to the first premise.

Case (T-MATCH): If e is match e′ with . . . then we just use the induction hypothesis on
the fifth premise of (T-MATCH) and we have our result via (E-CTX). If, however, e is
match vc with xi.pi⇒ ei, then we must show that reduction via (E-MATCH) is applicable.
To establish this, note that the third premise of (T-MATCH) requires pn = xde f . Thus, it
suffices to show that vc � xde f : σ for all label-typed values vc. But, all lab-typed values
are of the form C(−→u ) where each sub-term is also a lab-typed value. So, matching via
(U-VAR) must succeed.

Case (T-UNLAB): In this case, c = pol. If e = {◦}e′ then by using the induction
hypothesis on the second premise we have our result via (E-CTX). If e = {◦}vpol, by
the premise we have that Γ p̀ol vpol : t{e}. Thus, from Lemma 6, vpol must be of the form
{e′′}v′pol and reduction can proceed using (E-UNLAB).

Case (T-RELAB): In this case, c = pol. If e = {e′′}e′ then by using the induction
hypothesis on the second premise we have our result via (E-CTX). If e = {e′′}vpol, then,
by definition, e is a value.

Case (T-POL): If we have e = ([e]) we can use (E-BRAC) with the induction hypothesis
in the premise. If c = pol we can reduce by (E-NEST). Otherwise, if e = ([vpol]), then
vpol must be one of the following:

Sub-case v = n: In which case, a reduction via (E-BINT) is possible.

Sub-case v = C(−→u ): In which case, a reduction via (E-BLAB) is possible.

Sub-case v = λx:t.e: In which case, ([v]) is reducible using (E-BABS) to a value.

Sub-case v = Λα.e: In which case, a reduction via (E-BTAB) is possible.

Sub-case v = {e}u: In which case, ([v]) is an application value.

Case (T-CONV): Straightforward from the induction hypothesis applied to the first
premise.

Proposition 8 (Well-formed sub-derivations). If Γ is well-formed, and (A1) Γ c̀ e : t con-
tains a premise of the form Γ′ c̀ e′ : t ′ then Γ′ is well-formed and Γ′ c̀ t ′. Similarly, if (A1)
contains a sub-derivation of the form Γ′ c̀ t ′ then Γ′ is well-formed.

Proposition 9 (Sub-coloring of derivations). If, for well-formed Γ, Γ àpp e : t, then Γ p̀ol

e : t.

Proposition 10 (Weakening). Given Γ c̀ e : t and Γ,Γ′ well-formed. Then, Γ,Γ′ c̀ e : t.

Lemma 11 (Substitution). Given Γ1,x:tx,Γ2 well-formed and

(A1) Γ1,x:tx,Γ2 c̀ e : t

(A2) Γ1 c̀ v : tx

Then, for σ = x 7→ v,

Γ1,σ(Γ2) c̀ σe : σt
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Proof. Proved by mutual induction along with Lemma 12 on the structure of assumption
(A1). We assume a standard definition of capture-avoiding substitution in σ(e) and σ(t).
Throughout, we are free to assume σΓ1 = Γ1, since x 6∈ dom(Γ)
Case (T-INT): Trivial.

Case (T-VAR): Here we have two sub-cases, depending on whether or not x ∈ dom(σ).
Sub-case (a): (A1) is of the form Γ1,x : tx,Γ2 c̀ y : t2; y 6= x and thus, σ(y) = y.

We have two further sub-cases:

Sub-case (a.i): y:t2 ∈ Γ2. In this case, FV (t2)∩ dom(σ) 6= /0; thus our conclusion is of
the form Γ1,σ(Γ2) c̀ y : σ(t2)
Sub-case (a.ii): y:t2 ∈ Γ1. From our initial remark, we know that σΓ1 = Γ1; thus, σt2 =
t2. Our conclusion has the required form Γ1,σ(Γ2) c̀ y : σ(t2).
Sub-case (b): (A1) is of the form Γ1,x:tx,Γ2 c̀ x : tx. But, σ(x) = v and, so, from (A2),
Γ1 c̀ σ(x) : tx is trivial. Furthermore, σ(tx) = tx, since Γ1 ` tx and, by Proposition 8,
x 6∈ dom(Γ1). Finally, we have our conclusion from weakening, i.e., Proposition 10.

Case (T-FIX): From α-renaming, we have f 6∈ dom(σ). Thus, σ(fix f .v) = fix f .σ(v).
Now, we can use the induction hypothesis on the second premise to derive Γ1,σ(Γ2) c̀

σ(v) : σ(t). The first premise follows from the mutual induction hypothesis of Lemma 12.

Case (T-TAB): The first premise of (A1) gives us Γ1,x:tx,Γ2,α c̀ e : t. Now, since
α 6∈ dom(σ), we can use the induction hypothesis to get Γ1,σ(Γ2),α c̀ σ(e) : σ(t). The
conclusion follows immediately.

Case (T-TAP): We use the mutual induction hypothesis of Lemma 12 to establish that
Γ1,σΓ2 ` σt. Now, we use the induction hypothesis on the second premise, and in the
conclusion we have the type (α 7→ σ(t))σt ′. Since α 6∈ dom(σ) we can rewrite this type
as σ((α 7→ t)t ′), as required.

Case (T-ABS): Our goal is to show, via (T-ABS), Γ1,σΓ2 c̀ λy : σ(ty).σ(e) : σ(t), since
by α-conversion, dom(σ) cannot mention y.

From inversion of (A1), we can obtain from the first premise

Γ1,x:tx,Γ2,y:ty c̀ e : t

From the induction hypothesis applied to this judgment we can obtain

(T1) Γ1,σ(Γ2),y:σ(ty) c̀ σ(e) : σ(t)

Thus, to reach our goal, we use this last judgment (T1) in the second premise of
(T-ABS). The first premise follows from the mutual induction hypothesis.

Case (T-APP): The induction hypothesis applied to the first premise gives

Γ1,σ(Γ2) c̀ σ(e1) : (x:σ(t1))→ σ(t2)

and to the second premise gives

Γ1,σ(Γ2) c̀ σ(e2) : σ(t1)
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Thus, in the conclusion, we get (x 7→ σ(t1))σ(t2). Again, as with (T-TAP), via α-
conversion, we can ensure x 6∈ dom(σ) and we can rewrite this type as required to σ([x 7→
t1]t2).
Case (T-LAB): We use the induction hypothesis on each of the n-premises, obtaining
Γ1,σΓ2 c̀ σ(ei) : lab for the ith premise. For the conclusion, we note that σ(C(−→e )) =
C(σ(−→e )) and obtain Γ1,σΓ2 c̀ σ(C(−→e )) : σ(lab∼C(−→e )), the desired result.

Case (T-HIDE), (T-SHOW): Straightforward use of induction hypothesis on the premise.

Case (T-MATCH): Premise 1 follows from the induction hypothesis. The second
premise applied to σ(t) follows from mutual induction. Premises 3 and 4 are trivial,
since v is a closed term and dom(σ) does not include any of −→xi . For the fifth premise for
each pi we use the induction hypothesis again and similarly for each ei. The sixth and
seventh premises are also established by the induction hypothesis.

Case (T-UNLAB), (T-RELAB): Induction hypothesis on the first premise.

Case (T-POL): We have Γ1,x:tx,Γ2 c̀ ([e]) : t with Γ1,x:tx,Γ2 p̀ol e : t in the premise. Now,
if (A2) is Γ1 p̀ol v : tx, then we can use the induction hypothesis to establish Γ1,σΓ2 p̀ol

σ(e) : σ(t) and conclude with (T-POL). However, if (A4) is Γ1 àpp v : t1, then we must
first use Proposition 9 before proceeding as before.

Case (T-CONV): Applying the induction hypothesis to the first premise, we obtain
Γ1,σΓ2 c̀ σe : σt. We proceed by induction on the structure of the second premise of
(A1) Γ ` t ∼= t ′, to show that σΓ ` σt ∼= σt ′.

Sub-case (TE-ID): Trivial.

Sub-case (TE-SYM), (TE-CTX): Induction hypothesis.

Sub-case (TE-REFINE): e� e′ ∈ Γ⇒ σe� σe′ ∈ σΓ.

Sub-case (TE-REDUCE): By construction, we have that ∀σ ′.σ ′e c
 σ ′e′.

Lemma 12 (Substitution for type well-formedness judgment). Given well-formed Γ1,x:tx,Γ2.
If the following conditions are true:

(A1) Γ1,x:tx,Γ2 ` t

(A4) Γ1 c̀ v : tx

Then, for σ = x 7→ v,

Γ1,σΓ2 ` σ(t)

Proof. By mutual induction with Lemma 11 on the structure of assumption (A1).

Case (K-INT): Trivial.

Case (K-TVAR): σ = (x 7→ v); Thus, α ∈ Γ1,σΓ2.

Case (K-LAB): Trivial.

Case (K-SLAB): We use the mutual induction hypothesis to show Γ1,σΓ2 p̀ol σe : lab .
If (A2) is of the form Γ1 àpp v : tx, then we first use Proposition 9 before proceeding.

265



Case (K-LABT): Induction hypothesis on the first premise, and then similar to (K-
SLAB) on the second premise.

Case (K-FUN): Induction hypothesis on each premise, using Proposition 8 to satisfy the
well-formedness requirements.

Case (K-ALL): Induction hypothesis.

Corollary 13 (Contraction of assumptions). For well-formed Γ1 and Γ1,e1 � e2, if all of
the following are true

(A1) Γ1,
−→x : lab ,e1 � e2,Γ2 c̀ e : t

(A2) e1 � e2 : σ

(A3) dom(σ) =−→x

Then, Γ1,σΓ2 c̀ σe : σ ′t, where σ ′ ∈ { /0,σ}.

Proof. If (A1) does not contain a sub-derivation with an application of (T-CONV) using
(TE-REFINE), then the assumption e1 � e2 is redundant and we conclude with σ ′ = /0.

If (A1) does contain an application of (TE-REFINE) then, we can use the substitu-
tion lemma to establish our result. By Lemma 11, we have that (T1) Γ1,σe1�σe2,σΓ2 c̀

σe : σt. However, by construction of pattern matching and by assumption (A2), we have
σe1 = σe2. Thus, every relevant application of (TE-REFINE) in (T1) that concludes
with T · σ(e1) ∼= T · σ(e2) can be replaced by an application of (TE-ID) in the result
Γ1,σΓ2 c̀ σe : σt.

Lemma 14 (Type substitution). Given well-formed Γ1,α,Γ2 well-formed. If all of the
following conditions are true:

(A1) Γ1,α,Γ2 c̀ e : t

(A2) Γ1 ` t ′

(A3) σ = α 7→ t ′

Then,

Γ1,σΓ2 c̀ σe : σt

or

Γ1,σΓ2 c̀ σt

Proof. By mutual induction, with the proposition Γ1,α,Γ2 ` t ⇒ Γ1,σΓ2 c̀ σt, on the
structure of (A1).

Case (T-INT): Trivial.

Case (T-VAR): If x:t ∈ Γ1, then by well-formedness, α is not free in t and σ(t) = t. If
x:t ∈ Γ2, then x : σ(t) ∈ σ(Γ2) and we have the conclusion using (T-VAR).
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Case (T-FIX): The second premise is of the form

Γ1,α,Γ2, f :t c̀ v : t

Applying the induction hypothesis to this premise, we have

Γ1,σ(Γ2), f : σ(t) c̀ σ(v) : σ(t)

Which suffices for the conclusion.

Case (T-TAB): We have

Γ1,α,Γ2,β c̀ e : t
Γ1,α,Γ2 c̀ /\β .e : ∀β .t

with α 6= β from α-renaming. Thus, by the induction hypothesis we have

Γ1,σ(Γ2),β c̀ σ(e) : σ(t)

Case (T-TAP):
Γ1,α,Γ2 ` t Γ1,α,Γ2 c̀ e : ∀β .t ′

Γ1,α,Γ2 c̀ e [t] : (β 7→ t)t ′

By the mutual induction hypothesis, we have

Γ1,σ(Γ2) ` σ(t)

and,

Γ1,σ(Γ2) c̀ σ(e) : ∀β .σ(t ′)

Together, this is sufficient to establish the goal.

Case (T-ABS):
Using the induction hypothesis (with the right side of the disjunct) on the first

premise of (A1) we have

Γ1,σ(Γ2) ` σ(t1)

and using IH on the second premise, we have

Γ1,σ(Γ2) c̀ σ(e) : σ(t2)

Which is sufficient to conclude

Γ1,σ(Γ2) c̀ \x : σ(t1).σ(e) : σ((x:t1)→ t2)

Case (T-APP): Induction hypothesis to each premise.

Case (T-LAB), (T-HIDE), (T-SHOW): Induction hypothesis.

Case (T-MATCH): Induction hypothesis to each premise.

Case (T-UNLAB), (T-RELAB): Induction hypothesis.
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Case (T-POL): Induction hypothesis. (Note, the statement of the Lemma does not im-
pose any restrictions on the color of the derivation.)

Case (T-CONV): Induction hypothesis on the first premise. We must establish

Γ1,α,Γ2 ` t ∼= t ′⇒ Γ1,σ(Γ2) ` σ(t)∼= σ(t ′)

For (TE-REDUCE), we can establish
Γ1,σ(Γ2) c̀ σ ′(σ(e)) : lab by the induction hypothesis and σ ′(σ(e)) c

 
∗

σ ′(σ(e′))
since, by erasure, type substitution does not affect reduction.

For (TE-REFINE), we proceed similarly to (T-VAR) by cases on whether e � e′

appears in Γ1 or Γ2.
We now proceed to the cases of Γ1,α,Γ2 ` t, the mutual induction proposition.

Case (K-INT): Trivial.

Case (K-TVAR): By assumption (A2) if σ(α) = t; otherwise β ∈ Γ1,σ(Γ2).
Case (K-LAB): Trivial.

Case (K-SLAB): Mutual induction hypothesis.

Case (K-LABT): Mutual induction hypothesis for the second premise.

Case (K-FUN): Induction hypothesis.

Case (K-UNIV): Induction hypothesis, with α-renaming as needed.

Proposition 15 (Inversion of type abstractions). Given Γ well formed, and Γ c̀ /\α.e :
∀α.te. Then, Γ,α c̀ e : te

Proposition 16 (Inversion of abstractions). Given Γ well formed, and Γ c̀ λx:t.e : (x:t)→
te. Then, Γ,x:t c̀ e : te.

Theorem 17 (Preservation). Given

(A1) · c̀ e : t and (A2) e c
 e′

Then, Γ c̀ e′ : t.

Proof. By induction on the structure of the derivation (A1).

Case (T-INT): n is a value.

Case (T-VAR): x is not a closed term.

Case (T-FIX): Inversion of (A2) gives an application of (E-FIX). By applying the sub-
stitution Lemma 11 to the second premise of (T-FIX), using (A1) as an assumption, and
taking σ = ( f 7→ fix f .v). From the first premise of (T-FIX) we have that f 6∈FV (t). Thus,
σ(t) = t and we have the desired result.

Case (T-TAB): /\α.e is a value.

Case (T-TAP): We have e = e1[t]. Inversion of (A2) gives either an application of
(E-CTX) and e′ = e′1[t]. Then, by the induction hypothesis, we are done. If e = v[t],
then (A2) is an application of (E-TAP) with conclusion (α 7→ t)t ′ and v = /\α .e’. From
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Proposition 15 we get Γ,α c̀ e′ : t ′ to which we can apply the type substitution lemma,
Lemma 14 for the conclusion.

Case (T-ABS): λx:t.e is a value.

Case (T-APP): We have e = e1 e2. By inversion of (A2) we get either (E-CTX) if either
ei is an expression, and we can conclude with the induction hypothesis. Otherwise, both
are values and we have an application of (E-APP), with e1 = λx:t.e with type (x:t)→ t ′.
From Proposition 16, we have Γ,x:t c̀ e : t ′. From the substitution lemma, Lemma 11, we
can establish Γ c̀ (x 7→ e2)e : (x 7→ e2)t ′, as required.

Case (T-LAB), (T-HIDE): Immediate, from the induction hypothesis.

Case (T-SHOW): Using the induction hypothesis in the premise, it is easy to establish
(T1) Γ c̀ e′ : lab∼e′, but we are required to conclude with the type lab∼e. However, by
(A2) we have e c

 e′, and FV (e) = /0. Thus, to establish the result, we conclude with
(T-CONV), with (T-1) in the first premise, and (TE-SYM), followed by (TE-REDUCE)
and (A2) for the second premise.

Case (T-MATCH): By inversion, we get (A2) an instance of (E-CTX) or (E-MATCH).
The former is straightforward from the induction hypothesis. In the latter case, the third
premise of (A2) gives us (A2.1) v � p j : σ j and from the first premise of (A1) we get
(A1.1) Γ c̀ v : lab ; by (T-LAB) all sub-terms of v must also be values of type lab . Thus,
for each x ∈ FV (p j), Γ c̀ σ j(x) : lab and from the last premise of (A1) we have (T1)
Γ,−→x :lab ,v� p j c̀ e j : t. From the contraction of assumptions, Corollary 13,taking Γ2 = ·,
we get Γ c̀ σ j(e j) : σ j(t j).

Finally, by the second premise of (A1) Γ c̀ t and noting that−→x j 6∈ dom(Γ), and since
dom(σ j) =−→x j , we have that σ j(t) = t. Thus, from (T2), we have Γ c̀ σ j(e j) : t, which is
our goal.

Case (T-UNLAB): Induction hypothesis.

Case (T-RELAB): Induction hypothesis on the first premise. The second premise is
unchanged since the label expression e′ is not reduced at runtime.

Case (T-POL): e = ([e′]). Inversion of (A2) gives one of several cases

Sub-case (E-POL): e′ is not a value and we apply the induction hypothesis to the premise
of (A1) and the premise of (E-POL), which is sufficient to apply (T-POL) for the result.

Sub-case (E-BLAB): (A1) is (T-POL) with (T-LAB), (T-HIDE) or (T-SHOW) in the
premise. In each case, we must show that Γ p̀ol C(−→u ) : lab ⇒ Γ àpp C(−→u ) : lab , which is
straightforward by induction since each sub-term is a pre-value of the form C′(

−→
u′ ), with

the base case being Γ àpp C : lab .

Sub-case (E-BABS): We have

(A1)
Γ p̀ol λx : t1.e : (x:t1)→ t2
Γ c̀ ([λx : t1.e]) : (x:t1)→ t2

To conclude, we must show
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policy login(user:string, pw:string) =
let token = match checkpw user pw with

USER(k) => USER(k)
=> FAILED in

(token, {token}0)

let member(u:lab , a:lab ) =
match a with

ACL(u, i) => TRUE
ACL(j, tl) => member u tl

=> FALSE

policy access<k,α>(u:lab∼USER(k), cap:int{u}, acl:lab , data:α{acl}) =
match member u acl with

TRUE => {◦}data
=> halt #access denied

Figure A.1: Enforcing a simple access control policy

(G)
Γ,x:t1 c̀ ([e]) : t2

Γ c̀ λx:t1.([e]) : (x:t1)→ t2
From the inversion lemma, Proposition 16, applied to the first premise of (A1), we

get (A1.1.1) Γ,x:t1 p̀ol e : t2. For the conclusion, for the first premise of (G) we apply
(T-POL) with (A1.1.1) in the premise.

Sub-case (E-BTAB): Similar to the previous case, using Proposition 15.

Sub-case (E-BINT): Apply (T-INT).

Sub-case (E-NEST): (A1) is of the form Γ p̀ol ([e]) : t with (A1.1) Γ p̀ol e : t in the premise.
(A1.1) is exactly the desired conclusion.

Case (T-CONV): Induction hypothesis on the first premise; second premise is un-
changed.

A.2 Correctness of the Access Control Policy

Figure A.1 reproduces the access control policy from Section 2.1.1. In this section
we prove the correctness of this policy with respect to the non-observability condition.

Definition 18 (Similarity up to l). Expressions e and e′, identified up to α-renaming, are
similar up to label l according to the relation e∼l e′, defined in Figure A.2.

Definition 19 (Bisimulation). Expressions e1 and e2 are bisimilar at label l, written e1 ≈l
e2, if, and only if, e1 ∼l e2 and for {i, j}= {1,2}, ei

c
 e′i⇒ e j

c
 e′j and e′1 ≈l e′2.
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e∼l e {l}e∼l {l}e′
e∼l e′

{l′}e∼l {l′}e′
e∼l e′

\x:t.e∼l \x:t.e′

i = 1,2 ei ∼l e′i
e1e2 ∼l e′1e′2

v∼l v′

fix f :t.v∼l fix f :t.v′
e∼l e′

/\α.e∼l /\α.e′

e∼l e′ t ∼l t ′

e[t]∼l e[t ′]
∀i.ei ∼l e′i

C(−→e )∼l C(
−→
e′ )

e∼l e′ ei ∼l fi pi ∼l qi

match e with pi→ ei ∼l match e′ with qi→ fi

e∼l e′

([e])∼l ([e′])
e∼l e′

T · e∼l T · e′
dom(σ1) = dom(σ2) ∀x.σ1(x)∼l σ2(x)

σ1 ∼l σ2

Figure A.2: Similarity of expressions under the access control policy

Lemma 20 (Similarity under substitution). Given substitutions σ1 ∼l σ2, then σ1(e) ∼l
σ2(e).

Proof. By construction of e∼l e′ and definition of substitution.

Theorem 21 (Non-observability). Given two label constants acl and user, and for

(A1) i = 1,2, · àpp vi : t{acl}

(A2) A ([·])-free expression e such a : ta,m : tm,cap : unit{user},x : t{acl} àpp e : te

(A3) Type-respecting substitutions

σi = (a 7→ access,m 7→ member,cap 7→ ([{user}()]),x 7→ vi)

(A4) member user acl
c∗ False

Then, σ1(e)∼acl σ2(e); and

σ1(e)
c
 σ1(e′) ⇐⇒ σ2(e)

c
 σ2(e′) ∧ σ1(e′)≈acl σ2(e′)

Proof. By induction on the structure of the typing derivation (A2).

Case (T-UNIT): Trivial, since ()∼acl () and () is a value.

Case (T-VAR): The interesting case is when (A1) is of the form Γ àpp x : t{acl}. In
this case, we have σ1(x) = v1 and σ2(x) = v2. By inverting assumption (A2), we have
vi = {acl}v′i, which, by definition, gives us v1 ∼acl v2. Since vi is irreducible, we get
v1 ≈acl v2. In any other case, we get σ1(x) = σ2(x).
Case (T-FIX): We have

fix f :σ1(t).σ1(v)
c
 ( f 7→ fix f :σ1(t).σ1(v))σ1(v) = σ1( f 7→ fix f :t.v)v
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and

fix f :σ2(t).σ2(v)
c
 ( f 7→ fix f :σ2u(t).σ2(v))σ2(v) = σ2( f 7→ fix f :t.v)v

and since σi( f 7→ fix f :t.v)v is a value, we have

σ1(e)∼acl σ2(e)⇒ σ1(e)≈acl σ2(e)

Case T-TAB: We have, from (A1)

σ1(Λα.e) = v′1 ∼acl v′2 = σ2(Λα.e)

, and since both are values bisimilarity is as in (T-FIX).

Case (T-TAP): We have Γ c̀ e[t] and σi(/α.e[t]) c
 σi((α 7→ t)e) We have σ1((α 7→

t)e)∼acl σ2((α 7→ t)e) from Lemma 20. But, from the type-substitution lemma (Lemma 14)
we have

a : ta,m : tm,cap : unit{user},x : t{acl} àpp (α 7→ t)e : te

Thus, for bisimilarity, we use the induction hypothesis applied to this last judgment.

Case (T-ABS): Similar to (T-TAB).

Case (T-APP): The interesting case is when σi(e) = viv′i. In other cases, we use the
induction hypothesis and (E-CTX).

Sub-case (vi = λx : t.e) and e is ([·])-free:
From Proposition 16, we have (A2.1.1) Γ,x : t àpp e : t ′. To conclude, we must show,

(σ1,(x 7→ σ1(v′)))e≈acl (σ2,(x 7→ σ2(v′)))e

But, by hypothesis, we have σ1 ∼acl σ2 and by the induction hypothesis we have
σ1(v′)∼acl σ2(v′). Thus, we have

(σ1,(x 7→ σ1(v′)))e∼acl (σ2,(x 7→ σ2(v′)))e

immediately, from Lemma 20. To conclude with bisimilarity, we use

(σi,(x 7→ σi(v′)))e = σi((x 7→ v′)e)

and we use (A2.1.1) and the substitution lemma, Lemma 11 to establish

a : ta,m : tm,cap : unit{user},x : t{acl} àpp (x 7→ v′)e : (x 7→ v′)te

Finally, we apply the induction hypothesis to this last judgment to get bisimilarity.

Sub-case (vi = λx : t.([e])) and e is ([·])-free:
In this case, we are unable to use the induction hypothesis to establish bisimilarity

since,
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(A2.1.1)Γ,x : t p̀ol e : t ′
. . .

Γ àpp (λx:t.([e]))v′

and the hypothesis only applies to app-context judgments. However, our assump-
tion was that e is ([])-free. Thus, since we are assuming that σi(e) is of the form λx:t.([e′])v′,
([e′]) must result from an application of access : ta, where (a 7→ access) ∈ σi. We proceed
by cases on the syntactic form of λx:t.([e′])v′

Sub-case (λu : lab∼user).([λcap:t.e])): After a step of reduction, we get (u 7→ v′i)([λcap:t.e])
and since access is a closed term σi([λcap:t.e]) = ([λcap:t.e]). Thus, by Lemma 20, we
have

(u 7→ v′1)([λcap:t.e])∼acl (u 7→ v′2)([λcap:t.e])

To establish bisimilarity, each side reduces in one step to a value using (E-BABS)

λcap:t.([(u 7→ v′1)e])∼acl λcap:t.([(u 7→ v′2)e])

Sub-case (λcap:unit{u}.([e])): We must have that u = user since, we have an application

e = (λx : unit{u}.([e]))σi(v′)

and, by assumption v′ is ([])-free. Thus, we have an application in which ei = λx :
unit{user}.([e])([{user}()]) reduces, as in the previous subcase, to similar values.

Sub-case (λacl : lab.([e])): Similar to previous sub-case.

Sub-case (λx : t{l}.([e])): We must have l = acl, since we have an application

e = (λx : t{l}.σi(([e]))σi(v′)

and, by assumption v′ is ([])-free. Thus, we have an application in which ei = λx :
t{acl}.([e])vi which reduces in one step to

match member user acl with
TRUE => {◦}data

=> halt

But, by assumption we have member user acl
c∗ FALSE. Thus, in both cases the

program halts, maintaining bisimilarity.

Case (T-LAB): If we have Γ àpp C(−→u ,e′,−→e ) : lab C(−→u ,e′,−→e ), then we can reduce
the ith sub-term using (E-CTX) and establish the result using the induction hypothesis.
Otherwise, we have σ1(e) = C(−→u ) = σ2(e), because, if x ∈ FV (e)⇒ vi is a sub-term
of σ(e) which is lab-typed. This is impossible since by (A1) vi has a labeled type and
unlabelings are not permitted in app-context, and e is ([])-free.

Case (T-HIDE), (T-SHOW): Induction hypothesis.

Case (T-MATCH): The interesting case is when the matched expression is in fact a value
v; in all other cases we conclude using (E-CTX) and the induction hypothesis. However,
by the first premise, we have Γ ` σi(v) : lab and σ1(v) ∼acl σ2(v), which at type lab
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typename Prov α= (l:lab{Auditors} ∗ α{{◦}l})

policy flatten<α> (x:Prov (Prov α)) =
let l,inner = x in
let m,a = inner in
let lm = Union({◦}l, {◦}m) in

({Auditors}lm, {lm}a)

policy apply<α ,β> (lf:Prov (α −→β ), mx:Prov α) =
let l,f = lf in
let m,x = mx in
let y = ({◦}f) ({◦}x) in
let lm = Union({◦}l, {◦}m) in

({Auditors}lm, {lm}y)

Figure A.3: Enforcing a dynamic provenance-tracking policy

implies σ1(v)≡ σ2(v). Thus, both σ1(e) and σ2(e) reduce to the same pattern branch and
we conclude with the induction hypothesis.

Case (T-UNLAB), (T-RELAB): Inapplicable, since by assumption (A2) is in app-
context.

Case (T-POL): Inapplicable, since by assumption e is ([])-free.

Case (T-CONV): Induction hypothesis.

A.3 Dynamic Provenance Tracking

Figure A.3 reproduces the provenance policy from Section 2.2.2. Figures A.4
and A.5 define a logical relation parameterized by a label l in order to relate terms with
similar provenance.

Lemma 22 (Substitution for type-shape relation). Given a well-formed Γ such that

(A1) Γ ` t

(A2) σ1 ≈p σ2 : Γ,Γ

Then, σ1t ≈ σ2t

Proof. Straightforward induction on the structure of (A1)—a substitution of free variables
in t does not change the shape of t.

Lemma 23 (Substitution for logical relation). Given a well-formed Γ such that

(A1) Γ àpp e : t

(A2) e is ([·])-free
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[[e]] Interpretation of labels as sets

[[C]] def= {C} [[Union(l1, l2)]]
def= [[l1]]∪ [[l2]]

t ≤ t ′ Prefixing relation on types

t ≤ t
t ≤ t ′

t ≤ t ′{e}

e≈p e′ : t, t ′ e and e′ are related at types t and t ′, parameterized by a provenance color p

i ∈ {1,2} · c̀ vi : ti t ′i{ei} ≤ ti t ≤ ti ei
pol∗ vlab

i
p ∈ [[vlab

1 ]]∩ [[vlab
2 ]] ∨ Auditors ∈ [[vlab

1 ]]∩ [[vlab
2 ]]

v1 ≈p v2 : t1, t2
(R-EQUIVC)

n≈p n : int, int (R-INT)

i ∈ {1,2} · c̀ ei : ti
ei

c∗ vi ⇒ v1 ≈p v2 : t1, t2
e1 ≈p e2 : t1, t2

(R-EXPR)

· c̀ v : (x:t1)→ t2 · c̀ v′ : (x:t ′1)→ t ′2
∀v1,v′1. v1 ≈p v′1 : t1, t ′1 ⇒ vv1 ≈p v′v′1 : (x 7→ v1)t2,(x 7→ v′1)t

′
2

v≈p v′ : (x:t1)→ t2,(x:t ′1)→ t ′2
(R-ABS)

i ∈ {1,2} · c̀ vi : ∀α.ti
∀t ′1, t ′2. t ′1 ≈ t ′2 ⇒ v1[t ′1]≈p v2[t ′2] : (α 7→ t ′1)t1,(α 7→ t ′2)t2

v1 ≈p v2 : ∀α.t1,∀α.t2
(R-UNIV)

i ∈ {1,2} · c̀ C(
−→
ei ) : lab ∀ j.e1

j ≈p e2
j : lab , lab

C(
−→
e1 )≈p C(

−→
e2 ) : lab , lab

(R-LAB)

e1 ≈p e2 : lab , lab

e1 ≈p e2 : lab∼e1, lab∼e2
(R-LAB2)

e1 ≈p e2 : t1, t2 i ∈ {1,2} · ` ti ∼= t ′i
e1 ≈p e2 : t ′1, t

′
2

(R-CONV)

i ∈ {1,2} · c̀ ([vi]) : ti v1 ≈p v2 : t1, t2
([v1])≈p ([v2]) : t1, t2

(R-BRAC)
v≈p v′ : t, t ′

{e}v≈p {e′}v′ : t{e}, t ′{e′}
(R-RELAB)

dom(σ) = dom(σ ′) ∀α ∈ dom(σ).σ(α)≈ σ ′(α)
∀x ∈ dom(σ).σ(x)≈p σ ′(x) : Γ(x),Γ′(x)

σ ≈p σ ′ : Γ,Γ′
(R-SUBST)

Figure A.4: A logical relation for dynamic provenance tracking (Part 1)
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t ≈ t ′ Types t and t ′ are related (have the same shape)

· ` t
t ≈ t (RT-ID)

i ∈ {1,2} · ` lab∼ei

lab∼e1 ≈ lab∼e2
(RT-LAB)

i ∈ {1,2} · ` ti{ei} t1 ≈ t2
t1{e1} ≈ t2{e2}

(RT-LABELED)

i ∈ {1,2} · ` (x:ti)→ t ′i t1 ≈ t2
∀v1,v2.· c̀ vi : ti ⇒ (x 7→ v1)t ′1 ≈ (x 7→ v2)t ′2

(x:t1)→ t ′1 ≈ (x:t2)→ t ′2
(RT-FUN)

i ∈ {1,2} · ` ∀α.ti
∀t, t ′.t ≈ t ′ ⇒ (α 7→ t)t1 ≈ (α 7→ t ′)t2

∀α.t1 ≈ ∀α.t2
(RT-UNIV)

Figure A.5: A logical relation for dynamic provenance tracking (Part 2)

(A3) σ1 ≈p σ2 : Γ,Γ

(A4) e1 � e2 6∈ Γ

Then, σ1e≈p σ2e : σ1t,σ2t

Proof. By induction on the structure of (A1).

Case (T-INT): Trivial, with (R-INT) and σi(t) = t.

Case (T-VAR): By assumption (A3) σ1 ≈p σ2 : Γ,Γ by (R-SUBST) with σ1(x) ≈p
σ2(x) : Γ(x),Γ(x) in the premise, where Γ(x) = t = σi(t).
Case (T-FIX): Fix can be handled using a standard labeled reduction as in Mitchell [85],
section 8.3.4. Note that according to (R-EXPR), we are only concerned with terminating
computations.

Case (T-TAB):
Γ,α ` e : t

Γ àpp /\α.e : ∀α.t
(T-TAB)

We use the induction hypothesis on the premise to show that

σ
′
1e≈p σ

′
2e : σ

′
1t,σ ′2t

where σ ′i = σi,α 7→ t ′i and t ′1 ≈ t ′2. Thus, by (A3) we have σ ′1 ≈p σ ′2 : (Γ,α),(Γ,α).
This suffices to establish the conclusion via (R-UNIV).

Case (T-TAP):
Γ ` t Γ àpp e : ∀α.t ′

Γ àpp e [t] : t ′′
(T-TAP)
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From the second premise we can use the induction hypothesis to establish that

σ1(e)≈p σ2(e) : σ1(∀α.t),σ2(∀α.t)

via (R-UNIV). I.e.

∀t1, t2.t1 ≈ t2 ⇒ σ1(e)[t1]≈p σ2(e)[t2] : (σ1,α 7→ t1)t ′,(σ2,α 7→ t2)t ′

But, from the first premise (T-TAP) and from Lemma 22 we have that σ1(t)≈σ2(t).
Thus, we can conclude

σ1(e)[σ1t]≈p σ2(e)[σ2t] : σ1t ′′,σ2t ′′

as required.

Case (T-ABS):
Γ ` t1 Γ,x : t1 c̀ e : t2
Γ àpp \x : t1.e : x : t1→ t2

(T-ABS)

Our goal is to establish σ1(λx:t1.e)≈p σ2(λx:t1.e) : σ1((x:t1)→ t2),σ2((x:t1)→ t2)
via (R-ABS).

To use (R-ABS), we must first show for i ∈ {1,2},

(T1) · àpp σi(λx:t1.e) : σi((x:t1)→ t2)

But this follows directly from the substitution lemma, Lemma 11.
Next, we must show

(R3)
∀v1,v2.v1 ≈p v2 : σ1t1,σ2t1 ⇒
σ1(λx:t1.e)v1 ≈p σ2(λx:t1.e)v2 : (σ1,x 7→ v1)t2,(σ2,x 7→ v2)t2

But, from the induction hypothesis applied to (T1) we have σ1(λx:t1.e) ≈p σ2(λx:t1.e),
via (R-ABS). (R3) follows from the premise of (R-ABS).

Case (T-APP):
Γ c̀ e1 : (x:t1)→ t2 Γ c̀ e2 : t1

Γ c̀ e1 e2 : t ′2
(T-APP)

Our goal is to show, via (R-EXPR),

σ1(e1e2)≈p σ2(e1e2) : σ1t ′2,σ2t ′2

By the induction hypothesis applied to the premises of (A1) we have

(R1) σ1(e1)≈p σ2(e1) : σ1((x:t1)→ t2),σ2((x:t1)→ t2)

(R2) σ1(e2)≈p σ2(e2) : σ1t1,σ2t1

If e1 is not a value, then by inversion (R1) is an instance of (R-EXPR) and we have
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σ1e1
c∗ v1 ∧ σ2e1

c∗ v2 ⇒ v1 ≈p v2 : σ1((x:t1)→ t2),σ2((x:t1)→ t2)

If e1 is a value we have the conclusion of the previous implication directly. Inverting
this relation, an instance of (R-ABS), we can derive

(R1.1) ∀v,v′,v ≈p v′ : σ1t1,σ2t1 ⇒ (σ1(e1)v
c
 
∗

v1 ∧ σ2(e1)v′
c
 
∗

v2) ⇒ v1 ≈p v2 :
(σ1,x 7→ v)t2,(σ2,x 7→ v′)t2

Similarly, inverting (R2) we can conclude

(R2.1) σ1(e2)
c∗ v1∧σ2(e2)

c∗ v2⇒ v1 ≈p v2 : σ1t1,σ2t1

If either, σie1 or σie2 diverge then we can establish the result trivially using (R-
EXPR) since the guard in the implication of the last premise is false.

If neither diverges, we use (R1.1) instantiating v and v′ to v1 and v2, respectively,
from (R2.1).

Case (T-LAB), (T-HIDE), (T-SHOW): Induction hypothesis on the premise and con-
cluding with either (R-LAB2) or reusing the premise of (R-LAB2) to conclude with (R-
LAB).

Case (T-MATCH):

Γ c̀ e : lab Γ ` t pn = x where x 6∈ dom(Γ)
−→xi = FV (pi)\dom(Γ) Γ,−→xi : lab c̀ pi : lab Γ,−→xi : lab ,e� pi c̀ ei : t

Γ c̀ match e with p1⇒ e1 . . . pn⇒ en : t
(T-MATCH)

Applying the IH to the first premise we get that

• (R1) σ1(e)≈p σ2(e) : lab , lab

However, by inverting (R1), we find that it must be an instance of (R-EXPR) or
(R-LAB). We are only concerned with the case in which both σ1(e) and σ2(e) reduce to
a values v1 and v2 respectively, since otherwise σ1match... ≈p σ2match... : t, t vacuously,
using (R-EXPR) and the substitution lemma. In this case (where they both converge),
we can consider the last premise of (R-EXPR) to be an instance of (R-LAB). However,
v1 ≈p v2 : lab , via (R-LAB) only if v1 = v2 = v.

Thus, if match v1...
c
 σ∗σ1(e j), iff match v2...

c
 σ∗σ2(e j), where σ∗ is the pattern-

matching substitution.
But, from (A1) we have

Γ,−→xi : lab ,v� p j c̀ e j : t

By Corollary 13 we have Γ,−→xi : lab c̀ σ j(e j) : t. Furthermore, since v1 = v2, we
have

σ
∗ ≈p σ

∗ :−→xi : lab ,−→xi : lab
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using (R-LAB) repeatedly, as necessary. Therefore,

σ1,σ
∗ ≈p σ2,σ

∗ : Γ,−→xi : lab ,Γ,−→xi : lab

.
Finally, using the induction hypothesis on e j, σ1,σ

∗, σ2,σ
∗ we have our conclusion.

Case (T-UNLAB), (T-RELAB): Impossible; the statement only applies to Γ àpp e : t.

Case (T-POL): Impossible; the statement only applies to ([·])-free terms.

Case (T-CONV):
Γ c̀ e : t Γ ` t ∼= t ′

Γ c̀ e : t ′
(T-CONV)

By the induction hypothesis applied to

Γ àpp e : t

we have

σ1(e)≈p σ2(e) : σ1t,σ2t

By the second premise of (A1), we have that t ∼= t ′. But, by definition of (TE-
REDUCE), t ∼= t ′ iff ∀σ .σ(t) c

 
∗

σ(t ′). Thus, we establish the conclusion using (R-
CONV).

Theorem 24 (Dependency correctness). Given all of the following:

(A1) a ([·])-free expression e such that a : ta, f : t f ,x : Prov t àpp e : t ′,

(A2) a type-respecting substitution σ = (a 7→ apply, f 7→ flatten).

(A3) àpp vi : Prov t for i = 1,2 and v1 ≈p v2 : Prov t,Prov t

(A4) for i ∈ {1,2}, σi = σ ,x 7→ vi

Then, (σ1(e)
app∗ v′1 ∧ σ2(e)

app∗ v′2)⇒ v′1 ≈p v′2 : σ1t ′,σ2t ′.

Proof. It suffices to show that apply ≈p apply : ta, ta and flatten ≈p flatten : t f , t f . Then,
using (A3) to establish σ1 ≈p σ2 : a : ta, f : t f ,x : Prov t we can use Lemma 23 for the
conclusion.

Case (APPLY): The interesting case of apply≈p apply : ta amounts to showing

apply[t1, t2]v1 ≈p apply[t1, t2]v2 : ta, ta

where (A5) v1 ≈p v2 : Prov t1 → t2,Prov t1 → t2. We write (A5) using the more
convenient notation of dependent tuples.

(A5)

([{Auditors}l])≈p ([{Auditors}l′]) : lab{Auditors}, lab{Auditors}
([{l} f ])≈p ([{l′}g]) : (t1→ t2){l},(t1→ t2){l′}

(([{Auditors}l]),([{l} f ]))≈p (([{Auditors}l′]),([{l′}g])) : Prov (t1→ t2),Prov (t1→ t2)
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The first premise is an instance of (R-BRAC) followed by (R-EQUIVC) since we
have a labeling with Auditors. We now proceed by cases on the structure of the second
premise of (A5), (A5.2).

Inverting (A5.2), we find that it must be an instance of (R-EQUIVC) or (R-BRAC).

Sub-case (R-EQUIVC): In this case, we have from the last premise, that c ∈ [[l1]]∩ [[l2]].
Since apply[t1, t2]v1 and apply[t1, t2]v2 are expressions with type Prov t1→ Prov t2, we must
establish the relation using (R-ABS). However, from inspection of apply, we find that
whenever apply[t1, t2]vix terminates, it does so with a value of the form (li,v∗i ) : Prov t2, i.e.
v∗i : t2{li}. Since we have already established that c ∈ [[l1]]∩ [[l2]], we can establish that
(l1,v∗1)≈p (l2,v∗2) : Prov t2,Prov t2 using the same form as (A5).

Sub-case (R-BRAC):

· àpp ([{l} f ]) : t · àpp ([{l′}g]) : t ′ {l} f ≈p {l′}g : t, t ′

([{l} f ])≈p ([{l′}g]) : t, t ′
(R-BRAC)

Inverting the third premise, we find that it must be an instance of (R-RELAB), with
(R-ABS) in the premise. That is, we have

(A6) ∀v′1,v′2.v′1 ≈p v′2 : t1, t1⇒ f v′1 ≈p gv′2 : (x 7→ v′1)t2,(x 7→ v′2)t2

To establish the conclusion

apply[t1, t2]v1v′1 ≈p apply[t1, t2]v2v′2 : t ′2, t
′′
2

we notice that if both expressions do not diverge, the left and right side reduce to

(l1,([{Union(l1, l′1)} f v′1])) , (l2,([{Union(l2, l′2)}gv′2]))

respectively. To establish the goal, we use reuse (A5) with (R-BRAC), (R-RELAB) and
the conclusion of (A6) for the second premise.

Case (FLATTEN): Following an argument similar to apply and concluding with (R-EQUIVC),
since Auditor-labeled terms are always considered equivalent in the relation.

A.4 Correctness of the Static Information-flow Policy

Figure A.6 reproduces the policy of Figure 2.9. To assist with the proof, we have
annotated each relabeling operator with a unique index corresponding to its location in
the source program.

Figure A.7 gives the semantics of FABLE2, an extension of FABLE in the spirit
of Core-ML2 [104], Pottier and Simonet’s technique for representing multiple program
execution within the syntax of a single program. Appendix C elaborates upon the proof
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policy lub(x:lab , y:lab ) = match x,y with
, HIGH | HIGH, => HIGH
| , => LOW

policy join<α ,l,m> (x:α{l}{m}) = ({lub l m} 1 {◦} 2 {◦} 3 x)
policy sub<α ,l> (x:α{l}, m:lab ) = ({lub l m} 4 {◦} 5 x)
policy apply<α ,β ,l,m> (f:(α −→β ){l}, x:α) = {l} 6 (({◦} 7 f) x)
policy default<α> (l:lab , x:α) = {l} 8 x

let client (f:(int{HIGH} −→ int{HIGH}){LOW}, x:int{LOW}) =
let x = (sub [int] x HIGH) in

join [int] (apply [int{HIGH}][int{HIGH}] f x)

Figure A.6: Enforcing a static information flow policy

shown here, generalizing it to the FLAIR language, and applying it to the enforcement of
static information flow in the presence of side effects.

Lemma 25 (Subject reduction for FABLE2). Given well-formed Γ =−→x :−→t , where−→t are
the types of the policy π in Figure A.6, and a ([])-free FABLE2 program e such that (A1)
Γ c̀ e : t, and (A2) e c

 e′. Then, Γ c̀ e′ : t.

Proof. By induction on the structure of the typing derivation (A1). Most cases are iden-
tical to the proof of Theorem 17. We have to only pay special attention to the new lifting
rules, (E-JOIN), (E-SUB), and (E-BAPP).

Case (T-RELAB): Inverting the reduction relation (A2), we now get (E-JOIN), (E-
SUB), and (E-BAPP) in addition to all the previous cases.

Sub-case (E-JOIN): On the LHS we have {lub l m}{◦}{◦}{{v1 ‖ v2}}, where the type of
vi is t

−→
{e}{l}{m}. From the third premise of (T-BRACKET), we have that lub −→e l m c

 
∗

High. This suffices to show on the RHS that lub −→e (lub l m) c
 
∗

High, since lub is associa-
tive.

Sub-case (E-SUB): On the LHS we have {lub l m}{◦}{{v1 ‖ v2}}, where the type of vi is
t
−→
{e}{l}. From the third premise of (T-BRACKET), we have that lub −→e l c

 
∗

High. This
suffices to show on the RHS that lub −→e (lub l m) c

 
∗

High, since lub is monotonic.

Sub-case (E-BAPP):

Case (E-BAPP1): The left-side of the reduction is typed using :

Γ c̀ {◦}7{{v f ‖ v′f }} : (x:t ′)→ t (A1.1.1) . . .

Γ c̀ ({◦}7{{v f ‖ v′f }}) vx : t (A1.1)

Γ c̀ {l}6({◦}7{{v f ‖ v′f }})vx : t{l}

where the type of v f and v′f is (t → t ′){l}. From the third premise of (A1.1.1), we can
conclude that l = High.

To type the RHS we use (T-BRACKET). We must show both the left and right
sides of the bracket have the same type t{l} and that the label l is High. To show that
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Additional syntactic forms

e ::= . . . | {{e1 ‖ e2}} Bracketed expressions represent multiple executions
vc ::= . . . | {{vc ‖ vc}} | {◦}{{vc ‖ vc}} Extensions to values
Ec ::= . . . | {{• ‖ e}} | {{e ‖ •}} Evaluation contexts

Γ c̀ e : t Additional type rules

t = t ′
−−→
{el} t ′ 6= t ′′{e} lub −→el

c∗ HIGH
Γ c̀ e1 : t Γ c̀ e2 : t ∀i.ei 6= {{e′i ‖ e′′i }}

Γ c̀ {{e1 ‖ e2}} : t
(T-BRACKET)

e c
 e′ Additional reduction rules

i ∈ {1,2}
b{{v1 ‖ v2}}ci ≡ vi

(PROJ-1)
i ∈ {1,2}

b{e}{{v1 ‖ v2}}ci ≡ {e}vi
(PROJ-2)

i ∈ {1,2} v 6∈ {{{v1 ‖ v2}},{e}{{v1 ‖ v2}}}
bvci ≡ v

(PROJ-3)

{e}1{◦}2{◦}3{{v1 ‖ v2}}
c
 {{{e}1{◦}2{◦}3v1 ‖ {e}1{◦}2{◦}3v2}} (E-JOIN)

{e}4{◦}5{{v1 ‖ v2}}
c
 {{{e}4{◦}5v1 ‖ {e}4{◦}5v2}} (E-SUB)

{e}6(({◦}7{{v f ‖ v′f }})vx)
c
 {{{e}6(({◦}7v f )bvx c1) ‖ {e}6(({◦}7v′f )bvx c2)}} (E-BAPP)

Figure A.7: Semantics of FABLE2
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({◦}v f )bvx c1 and ({◦}v′f )bvx c2 have the same type, observe that both v f and v′f have
the same type (from the fourth and fifth premises of (A1.1.1)). Similarly, both bvx c1 and
bvx c2 have the same type. So, in the conclusion, we can construct an application of (T-
APP) with the same type as in (A1.1) on each side of the bracket. Finally, the leading
relabeling operation with l = High ensures that the RHS has a type of the form t ′{High},
which satisfies the crucial third premise of (T-BRACKET).

Theorem 26 (Noninterference). Given −→p : −→t ,x : t{HIGH} c̀ e : t ′{LOW}, where e is
([])-free and t ′ is not a labeled type; and, for i = 1,2, · c̀ vi : t{HIGH}. Then, for
type-respecting substitutions σi = (−→p 7→ π,x 7→ vi), where π is the policy of Figure A.6,
σ1(e)

c∗ v′1 ∧ σ2(e)
c∗ v′2 ⇒ v′1 = v′2.

Proof. Straightforward from the substitution lemma, Lemma 11, Lemma 25, and from
construction, Γ c̀ v : t where t not guarded at HIGH, implies bvc1 = bvc2.

A.5 Completeness of the Static Information-flow Policy

In this section, we show that the information flow policy of Figure A.6 is complete
with respect to to the purely functional fragment of Pottier and Simonet’s Core-ML [104].
Figure A.8 reproduces the syntax and the static semantics of a minimal functional frag-
ment of Core-ML.

Definition 27 (Non-degeneracy of Core-ML typing). A Core-ML type (t1→ t2)l is non-
degenerate if, and only if, l / t2 and both t1 and t2 are non-degenerate; unit is non-
degenerate. A typing derivation D = Γ `ML e : t is non-degenerate if, and only if, for
every sub-derivation D ′ with conclusion t′, t′ is non-degenerate.

The non-degeneracy condition above assures that all function-typed expressions e
are given types that permit the application of e. Note the third premise of (ML-APP) that
requires the type of the function to be non-degenerate. So, while in programs such as
(λx.0)e1, e1 may be given a degenerate type since it is never applied. It is straightforward
to transform a typing derivation for such programs into a non-degenerate derivation.

Figure A.9 shows a translation from Core-ML typing derivations D to FABLE pro-
grams e.

Theorem 28 (Completeness of static information flow). Given e such that, D = Γ`ML e : t
is non-degenerate; then −→y : −→tπ , [[Γ]] ·̀ [[D ]] : [[t]], where −→tπ are the types of π , the policy
of Figure A.6.

Proof. By induction on the structure of the translation [[D ]].
Case (X-U): Trivial.

Case (X-V): Trivial.

Case (X-ABS): By the induction hypothesis we have

−→y :−→tπ , [[Γ, f : (t1→ t2)l,x : t1]] c̀ [[D ]] : [[t2]]
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e ::= () | x | f ix f .λx.e | e1e2 expressions
t ::= unit | (t1→ t2)l types

(	→⊕)⊕ (Subtyping) Guards l / unit L ` l v l′

l / (t→ t′)l′

Γ `ML () : unit (ML-UNIT) Γ `ML x : Γ(x) (ML-VAR)

Γ[x : t][ f : (t→ t′)l] `ML e : (t→ t′)l

Γ `ML f ix f .λx.e : (t→ t′)l
(ML-ABS)

Γ `ML e1 : (t→ t′)l Γ `ML e2 : t l / t′

Γ `ML e1e2 : t′
(ML-APP)

Γ `ML e : t′ t′ ≤ t

Γ `ML e : t
(ML-SUB) t ≤ t (SUB-ID)

t ′1 ≤ t1 t2 ≤ t ′2 l v l′

(t1→ t2)l ≤ (t ′1→ t ′2)
l′

(SUB-FN)

Figure A.8: Core-ML syntax and typing (Functional fragment)

To establish the conclusion we use, (T-FIX) with (T-POL) and (T-RELAB) followed by
(T-ABS), with the induction hypothesis and Lemma 9 (sub-coloring of derivations) appli-
cable in the premises of (T-ABS).

Case (X-APP1, X-APP2): By the induction hypothesis we have both

i.−→y :−→tπ , [[Γ]] ·̀ [[D1]] : [[(t1→ t2)l]], and,

ii.−→y :−→tπ , [[Γ]] ·̀ [[D2]] : [[t1]]

The type of apply is ∀α,β .phantom l.( f :(α → β ){l})→ (x:α)→ β{l}
Thus, we have the type of apply . . . [[D1]][[D2]] to be [[tl

2]]. In the case of (X-APP2) this is
specifically (){[[l]]lab} which is an acceptable translation of the Core-ML type unit. In the
case of (X-APP1), this type is specifically [[t]]{[[l′]]lab}{[[l]]lab} which is not yet an acceptable
translation of t2. Thus, we apply join . . . which has type ∀α.phantom l,m.x:α{l}{m} →
α{lublm} to obtain [[t]]{lub[[l′]]lab[[l]]lab}. To conclude, we use the final premise of (ML-APP)
which asserts that l / t2, which requires l v l′. Thus, lub[[l′]]lab[[l]]lab = [[l′]].
Case (CASE X-SUB): We proceed by induction on the structure of the subtyping deriva-
tion using the induction hypothesis to establish that −→y :−→tπ , [[Γ]] ·̀ [[D ]] : [[t]]. That is, we
wish to establish that given

−→y :−→tπ , [[Γ]] ·̀ e : [[t]], then
−→y :−→tπ , [[Γ]] ·̀ [[t≤ t′]](e) : [[t′]]

The (SUB-ID) case is trivial. We examine first the type of e′ in (SUB-FN). By assumption
we have that the type of e is (t1→ t2){el}. We have that x : t ′1 by ascription in the lambda
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[[t]], [[Γ]] Translation of Core-ML types and environment

[[unit]] ≡ unit
el ∈ {LOW,HIGH}
[[unit]] ≡ unit{el}

[[(t1→ t2)l]] ≡ ([[t1]]→ [[t2]]){[[l]]
lab} [[x : t,Γ]]

env ≡ x : [[t]], [[Γ]]
env

[[l]]
lab

Translation of Core-ML labels to FABLE terms

[[L]]
lab ≡ LOW [[H]]

lab ≡ HIGH

[[D ]] Translation of derivations D to FABLE expressions

[[Γ `ML () : unit]] ≡ () (X-U) [[Γ `ML x : Γ(x)]] ≡ x (X-V)

[[ D

Γ `ML f ix f .λx.e : (t1→ t2)l
]] ≡ fix f .([{[[l]]lab}λx:[[t1]].[[D ]]]) (X-ABS)

[[
D1 = Γ `ML e1 : (t1→ t2)l D2 l / t2

Γ `ML e1e2 : t2
]][(t2 = tl′)]≡

join [t2] (apply [[[t1]]][[[t2]]][[D1]][[D2]]) (X-APP1)

[[
D1 = Γ `ML e1 : (t1→ t2)l D2 l / t2

Γ `ML e1e2 : t2
]][(t2 = unit)]≡

apply [[[t1]]][[[t2]]][[D1]][[D2]] (X-APP2)

[[ D t≤ t′

Γ `ML e : t′
]] ≡ [[t≤ t′]]([[D ]]) (X-SUB)

[[t≤ t′]](e) ≡ e′ Subtyping a [[t]]-typed FABLE expression, e

[[t≤ t]](e) ≡ e (SUB-ID)

[[
D1 = t′1 ≤ t1 D2 = t2 ≤ t′2 l v l′

(t1→ t2)l ≤ (t′1→ t′2)
l′

]](e) ≡ default [t ′1→ t ′2] el′ (λx:t ′1.[[D2]](e
′)) (SUB-FN)

where t1 = [[t1]], t ′1 = [[t′1]]
t2 = tl2 ,el2 = [[l2]]

lab

t2 = [[t2]] = t{el2}, t ′2 = [[t′2]]
el = [[l]]

lab

,el′ = [[l′]]
lab

, and,

e′ = join[t](apply [t1] [t2] e [[D1]](x))

Figure A.9: Translation from a Core-ML derivation D to FABLE
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binding. Thus, by the inductive hypothesis we have that −→y :−→tπ , [[Γ]],x : t ′1 ·̀ [[D1]]x : t1.
Now, using the type for apply given in (Case X-APP1), we conclude that apply . . . [[D1]]x

has type t2{el}. After the application of join we conclude that e′ has type t{lub el2 el}.
However, from the non-degeneracy assumption, we have l / t2 or l2 v l; thus, the type of
e′ is t{el2} = [[t2]]. To type \x : t ′1.[[D2]](e

′) we use the induction hypothesis to establish
that [[D2]](e

′) has type t ′2, to arrive at the type t ′1 → t ′2 using (T-ABS). Finally, the type
of default is ∀α.(l:lab)→ α → α{l}, which is sufficient to establish the type of (t ′1 →
t ′2){el′} ≡ [[(t′1→ t′2)

l′]] for the translation, which is our goal.
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B. Proofs of Theorems Related to λAIR

B.1 Soundness of λAIR

Definition 29 (Well-formed environment). Γ;A is well-formed if and only if

(i.) All names bound in Γ are distinct
(ii.) Γ = Γ1,x : t,Γ2 ⇒ FV (t)⊆ dom(Γ1)
(iii.) A = A1,x,A2 ⇒ Γ = Γ1,x : t,Γ2

Definition 30 (Type consistency of a signature). A signature S and its model M are
type consistent if and only if for each D ; e ∈ −→E , where B :

−→
E ∈ M, we have for

Γ = α1::N, . . . ,αn::N:

1. Γ; · ` [[B]]D : t;ε ⇐⇒ Γ; · ` e : t;ε

2. For every B ∈ dom(S), B :
−→
E ∈M.

3. For every (T :: K) ∈ S, ` K ok where

` k ok
` K ok
` k→ K ok

· ` t :: k ` K ok
` t→ K ok

4. For every (B : t) ∈ S, · ` t :: k.

5. Γ; · `ϕ [[B]]D : t;ε ∧ ε 6= · ⇒ (Γ ` t :: A ∨ Γ; · `ϕ [[B]]D : t; ·)

Theorem 31 (Progress). Given Γ = α1::N, . . . ,αn::N such that (A1) Γ; · `term e : t;ε;
and (A2) given an interpretation M such that M and S are type consistent, then either
∃e′.M ` e l−→e′ or ∃v.e = v.

Proof. By induction on the structure of (A1).

Case (T-BD): If e is a data constructor D, then it is a value and we are done. Otherwise
e = B, and from Definition 30, we can satisfy the premise of (E-DELTA) and take a step
to [[B]].
Case (T-X), (T-XA): By assumption, Γ only contains type names αi; i.e., e is a closed
term. So, these cases are impossible.

Case (T-NEW): If in new e, e is an expression, then by the induction hypothesis on the
first premise we have M ` e l−→e′. Then, by the syntactic form of the evaluation contexts
E and by the congruence rule (E-CTX) we have the result. On the other hand, if e is a
value v then new v is also a value.

Case (T-TAB): Λα::k.e is a value.
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Equations, models, and certificates

equation E ::= D ; e
eqn. domain D ::= v | t |D ,D | ·

model M ::= B :
−→
E |M,M

certificates e ::= . . . | [[B]]D

Γ;A `ϕ e : t;ε A ϕ-level expression e has type t and uses names ε

S ∈ Γ e ∈ {B,D} S(e) = t
Γ; · `ϕ e : t; · (T-BD)

Γ ` Γ(x) :: U
Γ; · `ϕ x : Γ(x); ·

(T-X)
Γ;x `ϕ x : Γ(x); ·

(T-XA)

Γ; · `type x : Γ(x); ·
(T-X-type)

Γ;A `type e : t;ε1] ε

Γ;A `type e : t;ε
(T-NC-type)

Γ ` t :: k k 6= N
Γ; · `ϕ ⊥ : t; · (T-BOT)

Γ;A `ϕ e : t;ε

Γ ` t :: U Γ(α) = N

Γ;A `ϕ new e : ¡tα ;α ] ε
(T-NEW)

Γ;A `ϕ e : tα ;ε

Γ;A `ϕ e : t◦;ε
(T-DROP)

Γ;A `ϕ e : t;ε

ε ′ ⊆ dom(Γ)
Γ;A,A′ `ϕ e : t;ε ] ε ′

(T-WKN)

Γ,α::k;A `ϕ e : t;ε ] ε ′

α 6∈ ε ε ′ ∈ {·,α} q = p(A,ε)

Γ;A `ϕ Λα::k.e : q(∀α::k ε ′→ t);ε

(T-TAB)
Γ;A `ϕ e : q(∀α::k ε ′→ t ′);ε Γ ` t :: k

Γ;A `ϕ e [t] : [α 7→ t]t ′;ε ] ([α 7→ t]ε ′)
(T-TAP)

Γ ` tx :: k q = p(A,ε)
Γ,x : tx;A,a(x,k) `ϕ e : te;ε

Γ;A `ϕ λx:tx.e : q((x:tx)→ te);ε
(T-ABS)

Γ;A `ϕ e : q((x:t ′)→ t);ε1
Γ;A′ `ϕ e′ : t ′;ε2

Γ;A,A′ `ϕ e e′ : [x 7→ e′]t;ε1] ε2
(T-APP)

Γ;A `ϕ e : te;ε ·; · ` ti :: ki ∀i.a(xi,ki) ∈ A′′
−→x : t;A′′ ` epat : te; · Γ,

−→x : t;A′,A′′ `ϕ e′ : t;ε ′ Γ;A′ `ϕ e′′ : t;ε ′′

Γ;A,A′ `ϕ case e of
−→x:t.epat : e′ else e′′ : t;ε ] (ε ′∪ ε ′′)

(T-CASE)

Γ;A `ϕ e : q(t ′⇒ t);ε Γ;A′ `ϕ e′ : t ′;ε ′

Γ;A,A′ `ϕ e (e′) : t;ε ] ε ′
(T-CAP)

Γ;A `ϕ [[B]]D v : t;ε

Γ;A `ϕ [[B]]D ,v : t;ε
(T-B1)

Γ;A `ϕ [[B]]D [t] : t ′;ε

Γ;A `ϕ [[B]]D ,t : t ′;ε
(T-B2)

Γ;A `ϕ B : t;ε

Γ;A `ϕ [[B]] : t;ε
(T-B3)

Γ;A `ϕ e : t;ε t ∼= t ′

Γ;A `ϕ e : t ′;ε
(T-CONV)

where
a(x,A) = x a(x,U) = ·
p(A,ε) = ¡ p(·, ·) = ·

Figure B.1: Static semantics of λAIR (Typing judgment)
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t ∼= t ′ Congruence of types t and t ′ under reduction of type-level expressions.

Type contexts T ::= • | x:• → t | x:t ε→• | ∀α::k→• | • ⇒ t | t⇒• | q • | • t | t • | •η

t ∼= t (TE-ID)
t ∼= t ′

t ′ ∼= t
(TE-SYM)

t ∼= t ′

T · t ∼= T · t ′
(TE-CTX)

·; · `type e : t,ε M ` e l−→e′ ·; · `type e′ : t,ε

T · e∼= T · e′
(TE-RED)

Γ ` t :: K A type t has kind K in environment Γ

Γ(α) = k
Γ ` α :: k

(K-A)
Γ ` t :: A Γ(η) = N ∨ η = ◦

Γ ` tη :: A
(K-N)

S(T) = K
Γ ` T :: K

(K-TC)

Γ ` t :: U
Γ ` ¡t :: A

(K-AFN)
Γ ` t :: k Γ,x : t ` t ′ :: k′

Γ ` (x:t)→ t ′ :: U
(K-FUN)

Γ ` t :: t ′→ K
Γ; · `type e : t ′; ·

Γ ` t e :: K
(K-DEP)

Γ′ = Γ,α::k Γ′ ` t :: k α ′ ∈ ε ⇒ Γ′(α ′) = N

Γ ` ∀α::k ε→ t :: U
(K-UNIV)

Γ ` t :: k→ K Γ ` t ′ :: k
Γ ` t t ′ :: K

(K-TAP)
Γ ` t1 :: U Γ ` t2 :: U t2 ∈ {t⇒ t ′,T}

Γ ` t1⇒ t2 :: U
(K-CON)

Figure B.2: Static semantics of λAIR (Type equivalence and kinding judgment)
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Values and evalutation contexts

values v ::= D | [[B]]D | λx:t.e | Λα::k.e | v (v′) | new v
eval ctxt E ::= • | • e | v • | • [t] | • (e) | v (•) | case • of . . . | new •

M ` e l−→e′ An expression e reduces to e′ recording l in the trace.

M ` e l−→e′ e′ 6=⊥

M ` E · e l−→E · e′
(E-CTX)

M ` e l−→⊥
M ` E · e l−→⊥

(E-BOT)
M ` ⊥−→⊥ (E-INF)

e′ = (x 7→ v) e
M ` λx:t.e v−→e′

(E-APP)
e′ = (α 7→ t)e

M ` Λα::k.e [t]−→e′
(E-TAP)

if (v� epat : σ) then e = σ(e′) else e = e′′

M ` case v of
−→x:t.epat : e′ else e′′−→e

(E-CASE)
B :
−→
E ∈M

M ` B−→[[B]]
(E-DELTA)

D ,v ; e ∈ −→E l = B : D ,v

M,B :
−→
E ,M′ ` [[B]]D v l−→e

(E-B1)
D ,v ; e 6∈ −→E

M,B :
−→
E ,M′ ` [[B]]D v−→[[B]]D ,v

(E-B2)

D , t ; e ∈ −→E l = B : D , t

M,B :
−→
E ,M′ ` [[B]]D [t] l−→e

(E-B3)
D , t ; e 6∈ −→E

M,B :
−→
E ,M′ ` [[B]]D [t]−→[[B]]D ,t

(E-B4)

v� ep : σ Pattern matching data constructors.

v� v : · (U-ID) v� x : x 7→ v (U-VAR)
v� e :: σ v′ � σ e′ : σ ′

v (v′)� e (e′) : σ ,σ ′
(U-CON)

Figure B.3: Dynamic semantics of λAIR
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Case (T-TAP):

Γ;A `ϕ e : q(∀α::k ε ′→ t ′);ε Γ ` t :: k

Γ;A `ϕ e [t] : [α 7→ t]t ′;ε ] ([α 7→ t]ε ′)
(T-TAP)

If e is not a value, then by the induction hypothesis on the first premise, we have
M ` e l−→e′, and so, by (E-CTX) we have M ` e [t] l−→e′ [t].

If e is a value, then by canonical forms of values of universally quantified types
(applied to the first premise), we have two sub-cases:

Sub-case e = Λα::k.e: In this case, (E-TAP) is applicable and we step to (α 7→ t)e.

Sub-case e = [[B]]D : In this case, either (E-B3) or (E-B4) is applicable. We first need to
show that B :

−→
E ∈M. But, this follows from (A1) which requires [[B]]V to be well-typed.

Thus, we have that B ∈ dom(S) and by the assumption of type-consistency of M and S,
(A2), we have that B :

−→
E ∈M. The premises of (E-B3) and (E-B4) are mutually exclusive

and total. So, a step using one or the other must be possible.

Case (T-BOT): Step using (E-INF).

Case (T-CAP):

Γ;A `ϕ e : q(t ′⇒ t);ε

Γ;A′ `ϕ e′ : t ′;ε ′

Γ;A,A′ `ϕ e (e′) : t;ε ] ε ′
(T-CAP)

If e is not a value, by the induction hypothesis in the first premise we have, M `
e1 (e2)−→e′1 (e2), using (E-CTX). Similarly, if e2 is not a value. If both are values, then
v1 (v2) is a value too.

Case (T-CASE): We have case e of
−→x:t.epat : e′ else e′′. If e is not a value, then by the

penultimate form of E and the congruence (E-CTX) we can take a step. Otherwise, if e is
a value, then we can always take a step using (E-CASE), since its premise is a tautology.

Case (T-ABS): λx:t.e is a value.

Case (T-APP):

Γ;A `ϕ e : q((x:t ′)→ t);ε1 Γ;A′ `ϕ e′ : t ′;ε2

Γ;A,A′ `ϕ e e′ : [x 7→ e′]t;ε1] ε2
(T-APP)

If either e1 or e2 are not values, then we can reduce using the (E-CTX) congru-
ence rule. Otherwise, by canonical forms of function-typed values (applied to the first
premise), we get that e = λx:t.e or e = [[B]]D . In both cases the reasoning proceeds simi-
larly to the (T-TAP) case, except using (E-APP) and (E-B1) or (E-B2).

Case (T-B1), (T-B2), (T-B3): [[B]]D is a value.

Case (T-DROP), (T-WKN), (T-CONV): Induction hypothesis applied to the hypothe-
sis.

Case (T-X-type), (T-NC-type): Inapplicable.
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Proposition 32 (Well-formedness of environments). If Γ;A is well-formed, and (A1)
Γ;A ` e : t;ε contains a premise of the form Γ′;A′ ` e′ : t ′;ε ′ then Γ′;A′ is well-formed
and ∃k.Γ′ ` t ′ :: k. Similarly, if (A1) contains a premise of the form Γ′′ ` t ′′ :: K, then Γ′′

is well-formed and ` K ok.

Proposition 33 (Weakening). If Γ;A is well-formed, and Γ;A ` e : t;ε . Then, for all Γ′,A′

such that Γ,Γ′;A,A′ is well-formed, Γ,Γ′;A,A′ ` e : t;ε . Similarly, if Γ ` t :: K, then
Γ,Γ′ ` t :: K.

Proposition 34 (Inversion of empty name constraints). If Γ; · is well-formed, and Γ; · `ϕ

v : t; ·. Then, Γ ` t::U.

Proposition 35 (Inversion of non-empty name constraints). If Γ; · is well-formed, and
Γ; · `ϕ v : t;ε and ε 6= ·. Then, either Γ ` t::A or Γ; · `ϕ v : t; ·.

Proposition 36 (Uniqueness of kinding). If Γ ` t::k and Γ ` t::k′. Then k = k′.

Lemma 37 (Substitution). Given Γ; · well-formed, and Γ′;A such that:

(A1) Γ,Γ′;A is well-formed.

(A2) Γ,x : tx,Γ′;Ax,A, well-formed, where Γ ` tx::k, and Ax = ·∨Ax = a(x,k).

(A3) Γ,x : tx,Γ′;Ax,A `ϕ e : t;ε

(A4) Γ; · ` v : tx;ε ′

(A5) ε ] ε ′

Then, for σ = x 7→ v,

Γ,σ(Γ′);A ` σ(e) : σ(t);ε ] ε
′

Proof. By mutual induction on the structure of (A3), together with Lemma 38.
Throughout, we will use σ(Γ) = Γ, since x 6∈ dom(Γ)

Case (T-B): Base terms B are closed; so using (T-B) we can get

Γ,σ(Γ′) ` σ(B) : σ(t); ·

To ensure that the name constraint is still ε ] ε ′ = ε ′ we conclude with (T-AFN) that
allows bound names ε ′ to be added at will.

Case (T-X):

Γ,x : tx,Γ′(y) = t Γ,x : tx,Γ′ ` t :: U
Γ,x : tx,Γ′; · `ϕ y : t; ·

(T-X)

We consider two sub-cases, depending on whether or not y = x.

Sub-case y 6= x: Thus, σ(y) = y. We have two sub-cases depending on whether y appears
in Γ or in Γ′.
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Sub-case (i): y : t ∈ Γ′. In this case, FV (t)∩dom(σ) 6= /0; thus our conclusion is of the
form Γ,σ(Γ′); · ` y : σ(t); ·, since we have y : σ(t) ∈ Γ′, to satisfy the first premise, and
from Lemma 38, we have Γ,σ(Γ′) ` σ(t) :: U for the second premise. Finally, if ε ′ 6= ·,
we conclude with (T-AFN) and introduce the additional name effects ε ′.

Sub-case (ii): y : t ∈ Γ. From our initial remark, we know that σΓ = Γ; thus, σ(t) = t.
Our conclusion is of the form Γ,σ(Γ′); · ` y : t, ·, with the first premise satisfied trivially.
The second premise follows from the mutual induction hypothesis of Lemma 8 to estab-
lish that Γ,σΓ′ ` σt :: U. Finally, as previously, we conclude with (T-AFN) for the effects,
if necessary.

Sub-case y = x: Thus, σ(y) = v. From (A4) we have Γ; · ` v : tx;ε ′ and, from weakening,
we can establish Γ,σ(Γ′); · ` v : tx;ε ′. Finally, since x 6∈ dom(Γ) we can conclude from
Proposition 32 that x 6∈ FV (tx), and thus σ(tx) = tx.

Case (T-XA):

Γ,x : tx,Γ′(y) = t
Γ,x : tx,Γ′;y `ϕ y : t; ·

(T-XA)

Again, we proceed by cases on whether x = y.

Sub-case y 6= x: Identical to the same sub-case of (T-X).

Sub-case y = x: By weakening, we have Γ,σ(Γ′); · ` v : t;ε ′, which is sufficient since
Ax = y and A = ·.
Case (T-NEW):

Γ,x : tx,Γ′;Ax,A ` e : t;ε

Γ,x : tx,Γ′ ` t :: U Γ,x : tx,Γ′(α) = N

Γ,x : tx,Γ′;Ax,A ` new e : ¡tα ;α ] ε
(T-NEW)

By the induction hypothesis we have Γ,σ(Γ′);A ` e : σ(t);ε ] ε ′, since, by as-
sumption, ε ′ is disjoint from α ] ε . From mutual induction with Lemma 38 we have
Γ,σ(Γ′) ` σ(t) :: U, and since α 6∈ dom(σ) the third premise is also satisified. This suf-
fices to establish the conclusion.

Γ,σ(Γ′);A ` σ(new e) : σ(!tα);α ] ε ] ε
′

Case (T-ABS):

Γ,x:tx,Γ′ ` ty :: k q = p((Ax,A),ε)
Γ,x:tx,Γ′,y:ty;Ax,A,a(y,k) ` e : te;ε

Γ,x:tx,Γ′;Ax,A `ϕ λy:ty.e : q((y:ty)→ te);ε
(T-ABS)

Using Lemma 38 on the first premise we get

(P1′) Γ,σ(Γ′) ` σ(ty) :: k

We proceed on depending on whether or not ε ′ is empty.

Sub-case ε ′ = ·:
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Using the induction hypothesis on the third premise we can get

(P3′) Γ,σ(Γ′,y:ty);A,a(y,k) ` σ(e) : σ(te);ε

From Proposition 34 and ε ′ = · we can establish Γ ` tx::U. From the uniqueness
of kinding, Proposition 36, we can establish that k = U and thus (Ax,A) = A. Thus
q((Ax,A),ε ] ε ′) = q(A,ε) and we can conclude with the appropriate affinity qualifier
on the function type.

Sub-case ε ′ 6= ·: We further divide this into sub-cases.

Sub-sub-case x ∈ Ax: Using the induction hypothesis on the third premise we can get

(P3′) Γ,σ(Γ′,y:ty);A,a(y,k) ` σ(e) : σ(te);ε ] ε
′

Now, to get the right affinity qualifier on the result, we must show p((Ax,A),ε) =
p(A,ε ] ε ′). But, notice that (Ax,A) 6= · ∧ f x] f x′ 6= ·. Thus, we have p((Ax,A),ε) =
p(A,ε ] ε ′) = ¡

Sub-sub-case x /∈ Ax: In this case, we apply Proposition 35 to get either (i) Γ ` tx::A or
(ii) Γ; · `ϕ v : tx, ·.

In case (i), since k = A and x /∈ Ax,A, we must have x /∈ FV (e). Thus, σ(e) = e and
we can use the induction hypothesis to construct

(P3′) Γ,σ(Γ′,y:ty);A,a(y,k) ` e : σ(te);ε

Now, the affinity qualifier on the result is p(A,ε) = p((Ax,A),ε), as required.
In case (ii), we can use Γ; · `ϕ v : tx, · to reduce to the first subcase with ε ′ = ·.

Case (T-APP): We have two possible ways of inverting (T-APP), depending on whether
Ax is used in the first or the second premise. Let Ax,A = A′,A′′.

Γ,x:tx,Γ′;A′ ` e : ¡((y:t ′)→ t);ε1
Γ,x:tx,Γ′;A′′ ` e′ : t ′;ε2

Γ,x:tx,Γ′;Ax,A ` e e′ : [y 7→ e′]t;ε1] ε2
(T-APP)

We can apply the induction hypothesis to each of the two premises and obtain

Γ,σ(Γ′);A′ \Ax ` σ(e) : ¡(y:σ(t ′))→ σ(t);ε1] ε
′
1

and

Γ,σ(Γ′);A′′ \Ax ` σ(e′) : σ(t ′);ε2] ε
′
2

Sub-case ε ′ = ·: In this case we have ε ′1 = ε ′2 and the conclusion is straightforward.

Sub-case ε ′ 6= ·: Here, we proceed as in (T-ABS) and apply Proposition 35 to split into
two subcases.

Sub-sub-case Γ ` tx::A: In this case, since x is in only either A′ or A′′ (not both), we can
conclude that x is free in either e or in e′ only (not both). Thus, either ε ′1 = · ∨ ε ′2 = · and
ε1] ε2] ε ′1] ε ′2.
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Sub-sub-case Γ; · ` v : tx, ·: In this case, we can reduce to the first subcase and contruct
the premises appropriately to derive Γ,σ(Γ′) `ϕ σ(e e′) : σ(t),ε1 ] ε2. Finally, we can
conclude with (T-AFN) to introduce ε ′ and establish the name constraint ε1] ε2] ε ′.

Case (T-TAB):

Γ,x:tx,Γ′,α::k;Ax,A ` e : te;ε0] ε1
α 6∈ ε0 ε1 ∈ {·,α} q = p((Ax,A),ε0)

Γ,x:tx,Γ′;Ax,A ` Λα::k.e : q(∀α::k
ε1→ te);ε0

Applying the induction hypothesis to the first premise, we get

Γ,σ(Γ′,α::k);A ` σ(e) : σ(te);ε0] ε1] ε
′

where we get ε ′ disjoint from ε1 by α-renaming.
Since α 6∈ dom(σ) we can rewrite this as

Γ,σ(Γ′),α::k;A ` σ(e) : σ(te);ε0] ε
′] ε1

This allows us to conclude with

Γ,σ(Γ′);A ` σ(e) : q′(σ(∀α::k
ε1→ te));ε0] ε

′

where q′ = p(A,ε0]ε ′). In order to show that q = q′ = p((Ax,A),ε0) we follow the same
argument as in (T-ABS).

Case (T-TAP):

Γ,x:tx,Γ′;Ax,A `ϕ e : q(∀α::k
ε1→ t ′);ε0 Γ,x:tx,Γ′ ` t :: k

Γ,x:tx,Γ′;Ax,A `ϕ e [t] : [α 7→ t]t ′;ε0] ([α 7→ t]ε1)
(T-TAP)

From the induction hypothesis on the first premise we get

Γ,σ(Γ′);A ` σ(e) : ∀α::k
ε1→ σ(t ′);ε0] ε

′

For the second premise, from the mutual induction hypothesis of Lemma 38 we get

Γ,σ(Γ′) ` σ(t) :: k

This is sufficient to establish the conclusion

Γ,σ(Γ′);A ` σ(e) [σ(t)] : [α 7→ σ(t)]σ(t ′);ε0] ([α 7→ t]ε1)] ε
′

Case (T-CAP): Similar to (T-APP), we have two cases depending on whether Ax is used
in the first or second premise. As previously, we establish that if Ax = x then ε ′ = ε ′1] ε ′2
and in the conclusion we get ε1] ε2] ε ′1] ε ′2.

Case (T-CASE): Induction hypothesis on the first, third, fourth and fifth premise. For
the second premise, use Lemma 38. As with (T-CAP) and (T-APP), we use affinity to
ensure that if tx::A, then x is free only in e or in e′ and e′′. If it is the latter, then since the
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effects ε ′ and ε ′′ are allowed to overlap, we can establish the conclusion.

Case (T-AFN), (T-DROP), (T-B1), (T-B2), (T-B3): All follow from the induction
hypothesis.

Case (T-CONV): Here, we must show that type equivalence is preserved under substi-
tution. The only interesting case here is (TE-RED). Here, we restrict reduction to closed
type-level expressions e and e′. Thus σ(e) = e and σ(e′) = e′ and so M ` e−→e′ ⇐⇒
M ` σ(e)−→σ(e′). By axiomatizing that the type of e is preserved under reduction to
e′, we can use the induction hypothesis on the first and third premises to establish the
conclusion.

Lemma 38 (Substitution for kinding judgment). Given well-formed Γ; · well-formed, and
Γ′ such that:

(A1) Γ,Γ′ is well-formed.

(A2) Γ,x : tx,Γ′ also well-formed.

(A3) Γ,x : tx,Γ′ ` t :: k

(A4) Γ; · ` v : tx

Then, for σ = x 7→ v,

Γ,σ(Γ′) ` σ(t) :: k

Proof. By mutual induction on the structure of (A3), together with Lemma 37.

Case (K-A): α ∈ Γ,Γ′ and FV (k) = /0.

Case (K-N): Induction hypothesis on the first premise gives us Γ,σ(Γ′) ` σ(t) :: A. The
second premise is trivial since α ∈ Γ,Γ′ and α 6∈ dom(σ).
Case (K-TC): S is unchanged, and FV (K) = /0.

Case (K-AFN): Induction hypothesis.

Case (K-ALL): Induction hypothesis gives us Γ,σΓ′,α::k ` σ(t) :: k′.

Case (K-FUN): Induction hypothesis on the first premise gives us Γ,σ(Γ′) ` σ(t) ::
k, and on the second premise Γ,σ(Γ′,x:t) ` σ(t ′) :: k′. Finally, for the third premise,
ε ∩dom(σ) = /0.

Case (K-TAP): Induction hypothesis on each premise.

Case (K-DEP): This is the interesting case, where we must rely on mutual induction
with Lemma 37 for the second premise to establish Γ,σ(Γ′); · `type σ(e) : σ(t ′);ε ′. We
can conclude with (T-NC-type) and use the phase distinction to establish Γ,σ(Γ′); · `type

σ(e) : σ(t ′); · as required. For the first premise, we use the induction hypothesis to get
Γ,σ(Γ′) ` t::t ′→ K, and from well-formedness of kinds we have that FV (t ′) = /0. Thus,
σ(t ′) = t ′ and we have the conclusion Γ,σ(Γ′) ` t e :: K.

Case (K-CON): Induction hypothesis on each premise.
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Lemma 39 (Type substitution). Given well-formed Γ well-formed, and Γ′ such that:

(A1) Γ,α :: k,Γ′ well-formed.

(A2) Γ,α :: k,Γ′; · `ϕ e : t;ε

(A3) Γ ` t ′ :: k

(A5) σ = α 7→ t ′

Then,

Γ,σ(Γ′) `ϕ σe : σt;σε

Proof. By mutual induction with the proposition Γ,α :: k,Γ′ ` t :: K ⇒ Γ,σ(Γ′)` σt :: k,
on the structure of (A2). Similar to the proof of Lemma 14.

Proposition 40 (Unification respects types). If all of the following are true

(A1) ·; · ` v : t

(A2) −→x : t;A ` ep : t, where ·; · ` ti :: A ⇒ x ∈ A

(A3) v� ep : σ

Then, dom(σ) =−→x , and ·; · ` σ(xi) : ti.

Proposition 41 (Inversion of type abstractions). Given Γ; ·well formed, and Γ; · `ϕ Λα::ke :
∀α::k

ε1→ te;ε0. Then, Γ,α::k; · `ϕ e : te : ε0] ε1.

Proposition 42 (Inversion of abstractions). Given Γ; · well formed, and Γ; · `ϕ λx:t.e :
(x:t)→ te;ε . Then, for some k, Γ,x:t;a(x,k) `ϕ e : te;ε .

Theorem 43 (Preservation). Given Γ = α1::N, . . . ,αn::N and (A1)Γ; · `term e : t;ε and

the interpretation M and S are type-consistent, then if (A2)M ` e l−→e′, Γ; · `term e′ : t;ε .

Proof. By induction on the structure of the derivation (A1).

Case (T-X), (T-XA), (T-X-type), (T-NC-type): Inapplicable.

Case (T-B): Inversion on (A2) gives (E-DELTA). Establish the conclusion by using (T-
B3) with (A1) in the premise.

Case (T-BOT): Inversion on (A2) gives (E-INF). Conclusion is trivial from (A1).

Case (T-NEW): Inversion on (A2) gives (E-CTX) or (E-BOT). In the first case, the
induction hypothesis applied to the first premise suffices. In the second case, (T-BOT)
suffices.

Case (T-DROP): Apply (T-DROP) with the induction hypothesis in the premise.

Case (T-WKN): Apply (T-WKN) with the induction hypothesis in the premise.

Case (T-TAB), (T-ABS): In both cases, e is value.

297



Case (T-TAP): If e is not a value, inversion of (A2) gives (E-CTX) of (E-BOT) and
apply the induction hypothesis or (T-BOT) to conclude.

If e is a value, the inversion of (A2) gives (E-TAP), (E-B3) or (E-B4).

Sub-case (E-TAP): From the inversion lemma, Proposition 41, applied to the first premise,
we get

(A1.1) Γ,α::k; · `term e : te;ε0] ε1

Applying the type substitution lemma, Lemma 39, to (A1.1) using the second
premise of (A1) we get the desired result:

Γ; · `term (α 7→ t)e : (α 7→ t)t ′;(α 7→ t)ε0] ε1

Sub-case (E-B3): The result follows from type consistency of M and S.

Sub-case (E-B4): Apply (T-B4) using (A1) in the premise.

Case (T-APP): If either e or e′ are not values, inversion of (A2) gives (E-CTX) or (E-
BOT) and we apply the induction hypothesis of (T-BOT) to conclude.

If both are values, then inversion of (A2) gives (E-APP), (E-B1) or (E-B2).

Sub-case (E-APP): From the inversion lemma, Proposition 42, applied to the first premise,
we get

(A1.1) Γ,x::t ′;a(x,k) `term e : t;ε

Applying the substitution lemma, Lemma 37, to (A1.1) using the second premise
of (A1) we get the desired result:

Γ; · `term (x 7→ v)e : (x 7→ v)t ′;ε0] ε1

Sub-case (E-B1): The result follows from type consistency of M and S.

Sub-case (E-B2): Apply (T-B1) using (A1) in the premise.

Case (T-CAP): Inversion of (A1) gives (E-CTX) or (E-BOT). Result follows from in-
duction hypothesis or (T-BOT).

Case (T-CASE): If the discriminant e is not a value, inversion of (A2) gives (E-CTX) or
(E-BOT) which we handle as in the other cases.

If e is a value, then inversion of (A2) gives (E-CASE). There are two sub-cases,
depending on which branch is taken.

Sub-case (else-branch): The final premise of (T-CASE) gives:

Γ; · ` e′′ : t;ε
′′

where ε ′′ ⊆ ε . However, we can always use (T-WKN) to introduce additional effects in
the conclusion.

Sub-case (case-branch): From the premises of (A1) we have

Γ; · `ϕ v : tv;εv
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and

Γ,
−→x : t;A′′ `ϕ e′ : t

From Lemma 40 we can show that in v� ep : σ , ∀xi ∈ dom(σ).Γ; · ` σ(xi) : ti, then
by repeated application of Lemma 37, we can conclude

Γ; · `ϕ σ(e′) : t;ε
′

Finally, as in the else case, we can always expand the effects ε ′ using (T-AFN), if
necessary.

Case (T-B1), (T-B2), (T-B3): All of these are values.

Case (T-CONV): Induction hypothesis on the premise.
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A concise syntax for AIR

policy π ::= (id,P,−→σ ,
−→
Rr,
−→
Rt )

rule R ::= (id,x,d,
−−−→
∃x:t.C,e,A)

judgment index ρ ::= r | t

π |= S Translation from a policy π to a signature S

S = id:Id,B:Class,S0 S |=−→σ : Sσ

S,Sσ |=r
−→
Rr : Sr S,Sσ ,Sr |=t

−→
Rt : St

(id,P,−→σ ,
−→
Rr,
−→
Rt ) |= S,Sσ ,Sr,St

S |=ρ R0 : S0 S,S0 |=ρ

−→
R : S′

S |=ρ R0,
−→
R : S0,S′

S |=−→σ : S′ Translation from states −→σ to signature S′

S |= σ0 : S0 S,S0 |=−→σ : S′

S |= σ0,
−→
σ : S0,S′

C 6∈ dom(S) t = Class⇒ Instance
S |= C : (C:t)

i ∈ 1 . . .n · `S0 ti :: U C 6∈ dom(S)

S |= C of −→t : (C:Class⇒ t1⇒ . . .⇒ tn⇒ Instance)

S |=ρ

−→
R : S′ Translation of a rule.

Γ = src::N,dst::N,α::U,s:¡Instancesrc,x:Protected α src,d:¡Instancedst ,d′:Class
src;dst;S;Γ |=ρ

−−−→
∃x:t.C;e : t ′ id 6∈ dom(S) B:Class ∈ S

tr = ∀src::N,dst::N,α::U.(s:¡Instancesrc)→ (ClassOf src B)→ (x:Protected α src)→
(d:¡Instancedst)→ (d′:Class)→ (ClassOf dst d′)→ t ′

S |=ρ (id,x,d,
−−−→
∃x:t.C,e,A) : (id:tr)

(S-RULE)

Figure B.4: Translating an AIR policy to a λAIR signature (Part 1)
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src;dst;S;Γ |=ρ

−−−→
∃x:t.C;e : t ′ Translation of a rule body.

Γ ` t :: k src;dst;S;Γ,x:t |= C : t ′ src;dst;S;Γ,x:t |=ρ

−−−→
∃x:t.C;e : t ′′

src;dst;S;Γ |=ρ ∃x:t.C,
−−−→
∃x:t.C;e : (x:t)→ t ′→ t ′′

(TR-COND)

Γ,s′::N; · ` e : t;ε

s;d;S;Γ |=t ·;e : (¡Instances× ¡Instanced)
(T-BODY)

Γ,s′::N; · ` e : Protected α s;ε

s;d;S;Γ |=r ·;e : (¡Instances× ¡Instanced×Protected α d)
(R-BODY)

src;dst;S;Γ |= C : t Translation of a condition expression to a witness type.

s;d;S;Γ |= A1 : (e1,Class) s;d;S;Γ |= A2 : (e2,Class)
s;d;S;Γ |= A1 IsClass A2 : IsClass e1 e2

(C-CLS)

s;d;S;Γ |= A1 : (e1,Prin) s;d;S;Γ |= A2 : (e2,Prin)
s;d;S;Γ |= A1 ActsFor A2 : ActsFor e1 e2

(C-ACTS)

s;d;S;Γ |= A1 : (e1, ¡Instance) s;d;S;Γ |= A2 : (e2, Instance)
s;d;S;Γ |= A1 InState A2 : InState e1 e2

(C-STATE)

s;d;S;Γ |= A1 : (e1, Int) s;d;S;Γ |= A2 : (e2, Int)
s;d;S;Γ |= A1 LessThan A2 : LEQ e1 e2

(C-LEQ)

src;dst;S;Γ |= A : (e, t) Translation of an atom A to an expression e of type t

Γ; · ` x : t; ·
s;d;S;Γ |= x : (x, t)

(A-X)
Γ; · ` B : t; ·

s;d;S;Γ |= B : (B, t)
(A-B)

Γ; · ` x : ¡Instances; ·
s;d;S;Γ |= Self : (x, ¡Instances)

(A-SELF)

s;d;S;Γ |= A : (e,Class)
s;d;S;Γ |= Principal(A) : (principal e,Prin)

(A-PRIN)

(B:Class) ∈ S s;d;S;Γ |= Ai : (ei, ti)

s;d;S;Γ |= C(
−→
A ) : (C (B) (e1) (. . .) (en), Instanceα)

(A-ST)

s;d;S;Γ |= A : (e, ¡Instancesrc) (B : Class) ∈ S
s;d;S;Γ |= Class(A) : (B,Class)

(A-SCLS)

s;d;S;Γ |= A : (e, ¡Instancedst) (d : Class) ∈ Γ

s;d;S;Γ |= Class(A) : (d,Class)
(A-DCLS)

Figure B.5: Translating an AIR policy to a λAIR signature (Part 2)
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A;π |= T ;A′ An automaton in state A, accepts T and transitions to A′

A;π |= T ;A′

A;π |= ·,T ;A′
(L-DOT)

A;π |= l;A′ A′;π |= T ;A′′

A;π |= l,T ;A′′
(L-TR)

(B, . . .) 6∈ π.
−→
R

A;π |= (B : D);A
(L-NOTX)

A;π |= (B : D);A′

A;π |= (B : t,D);A′
(L-SKIP-t)

src::N; · ` vinst : ¡Instancesrc

src::N; · ` vev : ClassOf src (Class (π.id) (vprin)) vinst ;A;π
D⇒ A′;B

A;π |= (B : vinst ,vev,D);A′
(L-ENTER)

vsrc;A;π
D⇒ A′;B Given trace event D , A transitions to A′ using rule B

(B,x,d,
−→
RC,e,A′) ∈ π.

−→
R vsrc = new v′src π |= S s;d;S; · |= A : (v′src, t)

σc = ((Class d) 7→ vcd) σ = (Self 7→ vsrc,x 7→ vx,d 7→ vdst) σ(σc(
−→
RC)) |= D

vsrc;A;π
vx,vdst ,vcd ,vev,D⇒ A′;B

(TX)

−→
RC |= D Trace event D justifies release conditions

−→
RC

·; · ` vev : T (R) e1 e2 σ0 = (x 7→ vx) σ0A1 � e1 : σ1

σ1σ0A2 � e2 : σ2 σ = σ0,σ1,σ2 σ(
−→
RC) |= D

∃x:t.A1 R A2,
−→
RC |= vx,vev,D

(CERT)

where T (ActsFor) = ActsFor T (InState) = InState T (IsClass) = IsClass T (≤) = LEQ

A� e : σ Unification of atom A with expression e

x� e : x 7→ e e� e :
A� e : σ

Principal A� principal e : σ

A� e : σ

Class A� class of inst e : σ

Figure B.6: Trace acceptance condition defined by an AIR class.
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B.2 Proof of Correct API Usage

In this section, we first define a translation that produces a λAIR signature from an
AIR policy. We then define a semantics for an AIR policy as a regular language—i.e., an
automaton that accepts strings. Finally, we show that the execution trace generated by a
λAIR program is a member of the language accepted by the AIR automaton.

Definition 44 (Consistency of a model). A model M and a policy π are consistent if, and
only if,

π |= S ⇒ S and M are type consistent

And, the state transitions specified by M are in accordance with the policy π . I.e., if all of
the following are true

1. (B,x,d,
−−−→
∃x:t.C,e,A) ∈ π

2.
Γ = src::N,dst::N,α::U,s:¡Instancesrc,

x:Protected α src,d:¡Instancedst ,d′:Class,−→x:t

3. src;dst;S;Γ |= A : (eA, t)

4. B : D ; v ∈M

5. σ = (src 7→D1,dst 7→D2, . . . ,xn 7→Dm)

Then, v = Pair (vsrc) (v′), and vsrc = σ(eA).

Theorem 45 (Security). Given all of the following:

(A1) An AIR declaration π of a class with identifier C owned by principal P.

(A2) A signature S such that π |= S.

(A3) M and π are consistent.

(A4) Γ = src::N,dst::N,s : ¡Instancesrc.

(A5) Γ;s ` e : t;dst, and e is π-free.

(A6) v = new Init (Class (C) (P)).

(A7) M ` ((s 7→ v)e) l1−→e1 . . .
ln−→en.

Then
Init;π |= (l1, . . . , ln);A′
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Proof. By induction on the length of the string l1, . . . , ln. We strengthen the induction
hypothesis to actually prove A;π |= (l1, . . . , ln);A′, where

(A6’) s;d;S; · |= A : (v′,(Instancesrc)) and v = new v′, such that src::N; · ` v : ¡Instancesrc.

Case (l1 = ·): Apply (L-DOT) and use the induction hypothesis in the premise, since the
length of the trace is reduced by one.

Case (l1 = B : D) AND B 6∈ π.
−→
R : Apply (L-TR) with (L-NOT-X) in the first premise,

and the induction hypothesis in the second premise.

Case (l1 = B : D) AND (B, . . .) ∈ π.
−→
R : This is the interesting case. We will use (L-TR)

with the induction hypothesis in the second premise. Our first goal is to show that the first
premise can be satisfied.

By premise (A2), and since we have (B, . . .) ∈ π.
−→
R , we have (B : tB) ∈ S, where

S′ |=ρ (B, . . .) : (B : tB) from (S-RULE). Additionally,

tB = ∀src,dst::N,α::U.(s:¡Instancesrc)→ (ClassOf src CB)→
(x:Protected α src)→ (d:¡Instancedst)→
(d′:Class)→ (ClassOf dst d′)→ t ′B

where, CB = Class (π.id) (P), is the representation of the class of π . Next, from type
consistency of M and S we have

D = tsrc, tdst , tα ,vsrc,vev,vx,vdst ,vcd,vevD
′

Thus, for the first premise, we apply (L-SKIP-t) three times to skip past the first three
types in D . We must now show

A;π |= B : vsrc,vev,vx,vdst ,vcd,vev,D
′ : A′

Again, from type consistency, we can satisfy the first two premises of (L-ENTER). We
now must show

vsrc;A;π
vx,vdst ,D

′
⇒ A′;B

The first premise of this judgment (TX) is satisfied by the assumptions of this case. For
the second premise, we use inversion on the first premise of (L-ENTER) to establish that
vsrc = new vsrc′ . The third premise is given by (A2). The fourth premise is interesting.
We have to show that the current state of the automaton instance vsrc in the program is the
same as the current state A in the trace-acceptance relation. However, from our strength-
ened induction hypothesis, we have that s;d;S; · |= A : (v′, Instancesrc). Additionally, from
the second premise of (L-ENTER) we have that vsrc is an instance of the π class and from
(A5) we have that e is π-free. Thus, we can conclude that vsrc = v = new v′. The fifth
and sixth premises are constructed to enable showing that the final premise of (TX) can
be satisfied. In particular, a straightforward induction on the length of D ′, and by relying
on type consistency, we can easily show that (TX) is satisfiable.

The more interesting goal is to show to re-establish the premises of this theorem so
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as to be able to apply the induction hypothesis for the second premise of (L-TR). This
will follow from the type-soundness result for λAIR.
From inversion of the reduction relation, we have :

B : D ,v ; v′ ∈M l1 = B : D ,v

M ` E · [[B]]D v
l1−→E · v′

(E-B1)

From type consistency of M and S, we have that the type of e is determined by either
(T-BODY) or (R-BODY). I.e., e has type

(¡Instancesrc× ¡Instancedst)

or

(¡Instancesrc× ¡Instancedst×Protected tx dst).

I.e., v′ = Pair (v′src) (v′′). From (A5) we have

src::N,dst::N,s : ¡Instancesrc ` e : t;dst

We can use the substitution lemma, relying on the fact that s is an affine assumption, to
establish

src::N,dst::N ` (s 7→ v)e : t;dst ] src

.
Now, from subject reduction, we have

src::N,dst::N ` E · v′ : t;dst ] src

where

src::N ` v′src : ¡Instancesrc;src

Now, applying the converse of the substitution lemma, we can also establish

Γ;s ` E ·Pair (s) (v′′) : t;dst

which is the form of (A5) necessary to apply the induction hypothesis. To conclude, we
must also establish that assumption (A6’)—i.e., that v′src = new v′′src where s;d;S; · |= A′ :
(v′′src, t

′
A). However, this follows from the semantic consistency of M with respect to π , as

established by (A3).
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C. Proofs of Theorems Related to FLAIR

C.1 Soundness of FLAIR

Before proceeding to the proof of soundness of FLAIR, we need to address one
technicality that we glossed over in Chapter 4. Our formulation of models M and domain
equations E for λAIR (in Appendix B) was in a purely functional setting. That is, the
model for base terms restrict the operational behavior of these base terms to be free of
side effects. Given that FLAIR is not purely functional, and given that we have require
base terms like update (Figure 4.5) to mediate the mutation of secure memory locations,
we need to lift this restriction on models.

The top of Figure C.1 revises the syntax of models to include side effects. Equations
E now relate a pair consisting of an input store Σ and a sequence of values and types D ,
to an output store Σ′ and an expression e. As before, models M are a potentially infinite
list of these equations. Certificates are unchanged.

Figure C.1 shows a revision to the four rules pertaining to the reduction of base
terms. In the premises of (E-B1) and (E-B3), we now ensure that when reducing a base
term application, both the store Σ and domain D of the equation E match the context
in the conclusion. We then thread the store, Σ′, and the result of the equation, e, to the
conclusion. (E-B2) and (E-B4) are as before, except that the premises now refer to the
modified syntax of equations.

Definition 46 (Store typing). An environment Γ models a store Σ (written Γ |= Σ) if and
only if all of the following are true.

1. ` ∈ dom(Γ)⇐⇒ ` ∈ dom(Σ)

2. ∀` ∈ dom(Γ).∃t, l.Γ(`) ∈ {LabeledRef (ref t) l,ref t}

3. ∀` ∈ dom(Γ).∃t, l.Γ(`) ∈ {LabeledRef (ref t) l,ref t}⇒ Γ `term Σ(`) : t; ·

We extend type consistency of a model an signature to incorporate store typing in
the obvious way; namely, the output store in every equation in the model must be typeable
in the initial typing context Γ.

Theorem 47 (Progress). Given all of the following:

(A1) A well-formed environment Γ, consisting of a signature S, type names, and memory
locations

Γ = S,α1::N, . . . ,αn::N, `1:t1, . . . , `m:tm
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Equations, models, and certificates

equation E ::= (Σ,D) ; (Σ′,e)
eqn. domain D ::= v | t |D ,D | ·

model M ::= B :
−→
E |M,M

certificates e ::= . . . | [[B]]D

M ` (Σ,e) l−→(Σ′,e′) Dynamic semantics

(Σ,D ,v) ; (Σ′,e) ∈ −→E l = B : D ,v

M,B :
−→
E ,M′ ` (Σ, [[B]]D v) l−→(Σ′,e)

(E-B1)

(Σ,D ,v) ; (Σ′,e) 6∈ −→E
M,B :

−→
E ,M′ ` (Σ, [[B]]D v)−→(Σ, [[B]]D ,v)

(E-B2)

(Σ,D , t) ; (Σ′,e) ∈ −→E l = B : D , t

M,B :
−→
E ,M′ ` (Σ, [[B]]D [t]) l−→(Σ′,e)

(E-B3)

(Σ,D , t) ; (Σ′,e) 6∈ −→E
M,B :

−→
E ,M′ ` (Σ, [[B]]D [t])−→(Σ, [[B]]D ,t)

(E-B4)

Figure C.1: Dynamic semantics of FLAIR, revises semantics of λAIR in Figure B.3

A2 A type correct expression e such that Γ; · `term e : t;ε , for some t and ε .

A3 An interpretation M such that M and S are type consistent.

A4 A store Σ such that Γ |= Σ.

Then, ∃e′,Σ′.M ` (Σ,e) l−→(Σ′,e′) or e is a value.

Proof. By induction on the structure of (A2), as in the proof of Theorem 31. We only need
to consider the new cases of the typing judgment, i.e., those that appear in Figure 4.1.

Case (T-LOC): Locations ` are values.

Case (T-DREF): If we have !e, where e is not a value, then reduction can proceed by
the congruence (E-CTX) since !• is valid context. If we have !v, by canonical forms, we
have that ∃`.v = `. Thus, evaluation can proceed via (E-DEREF), the premise of which is
satisfied from the first clause of the definition of store typing.

Case (T-ASN): Evaluation contexts include • := e and v := • and in both cases reduc-
tion can proceed using (E-CTX). So, we are only concerned with the case v1 := v2. By
inversion of (A2), we have that v1 has a reference type and, again, from canonical forms,
we have that v1 is a location `. This is sufficient to show that reduction can proceed via
(E-ASN), where the premise follows from the first clause of store typing.

As for base term applications, (E-B1) through (E-B4) remain a complete set of
reduction rules, as before.
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Theorem 48 (Preservation). Given all of the following:

1. A well-formed environment Γ, consisting of a signature S, type names, and memory
locations

Γ = S,α1::N, . . . ,αn::N, `1:t1, . . . , `m:tm

2. A type correct expression e such that Γ; · `term e : t;ε , for some t and ε .

3. A model M such that M and S are type consistent.

4. A store Σ such that Γ |= Σ.

If M ` (Σ,e) l−→(Σ′,e′) then Γ; · `term e′ : t;ε and Γ |= Σ′.

Proof. By induction on the structure of (A2), as in the proof of Theorem 43. We only need
to consider the new cases of the typing judgment, i.e., those that appear in Figure 4.1.

(Note that in order for the substitution lemma to still hold true, we crucially need
to preserve the invariant of Proposition 34, namely that effect-free typings always result
in U-kinded types. This follows from our requirement that all locations are given U-kind
according to the rule (K-REF).)

Case (T-LOC): Locations ` are values; so this case is vacuously true.

Case (T-DEREF): The interesting case is when we have M ` (Σ, !`)−→(Σ,v), using
(E-DEREF), where σ(`) = v. The result is immediate from the second and third clauses
of the definition of store typing.

Case (T-ASN): The interesting case is when we have M ` (Σ, ` := v)−→(Σ′,()) using
(E-ASN). Preservation of types is trivial since we have that (A2) concludes with the type
Unit. Showing that Γ |= Σ′ is also straightforward, since from the premise of (E-ASN)
we have that Σ′ differs from Σ only in the location `. And, from the second premise of
(A2), we have that Γ; · ` v : t;ε2, where t is the type of the referent of `. But, to show that
the third clause of store typing is satisfied, we need to show that ε2 = ·. From (K-REF)
we have that Γ ` t::U; thus, from the converse of Proposition 35 (Inversion of non-empty
name constraints), we find that ε2 must be empty.

As previously, the preservation of types by (E-B1) through (E-B4) follows directly
from the type consistency of the model M and signature S.

C.2 Correctness of Static Information Flow

We give a direct proof of noninterference for the encoding of Figure 4.5. The proof
uses Pottier and Simonet’s “bracket” technique to represent a pair of program executions.
Additionally, we use an instrumented operational semantics to prove that the affine pro-
gram counter capabilities are never duplicated.
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Syntax of FLAIR¡

expressions e ::= pop; e | . . .
pc stack pc ::= High | Low | pc1tpc2
tracked locations ˆ̀ ::= `PC | `cap

assumptions A ::= x | ˆ̀ | A1,A2

environment Γ ::= `:t,Γ | x:t,Γ | ˆ̀:t,Γ
store Σ ::= (`,v),Σ | (`PC:pc) | (`cap,(v,pc))

Signature extensions

label : ∀α::U.α → (l:Lab)→ (Labeled α l)
lref : ∀α::U.refα → (l:Lab)→ (LabeledRef (ref α) l)

Extensions to typing judgment

Γ; ˆ̀`ϕ
ˆ̀ : Γ( ˆ̀); ·

(T-PCAP)
Γpc;A `ϕ e : t; ·

Γpctv;A `ϕ pop; e : t; · (T-POP)

where Γpc defined by (Γ, `PC:PC l,Γ′)pc ≡ Γ, `PC:PC [[pc]],Γ′

(Γ, `cap:Cap l m,Γ′)pc ≡ Γ, `cap:Cap l [[pc]],Γ′

and [[pc]] defined by [[v]] ≡ v
[[pct v1]] ≡ v where (M ` lub [[pc]] v1−→∗v)

M ` (Σ,e)−→(Σ,e′) Instrumented operational semantics

Σ = Σ′′,(`PC,pct v) Σ′ = Σ′′,(`PC,pc)
M ` (Σ,pop; e)−→(Σ′,e)

(E-POP)

Model MFlow Base term reductions

pc2cap : (Σ,(`pc,pc); l,m, `pc)−→(Σ,(`cap,([[ltm]],pc));`cap)
cap2pc : (Σ,(`cap,(l,pc)); l,m, `cap)−→(Σ,(`PC,pc);`PC)
update : (Σ,(`,v); t, l,m, `cap, [[lref ]]`,l,v′)−→(Σ,(`,v′);(cap2pc l m `cap,()))
deref : (Σ,(`,v); t, l, [[lref ]]`,l)−→(Σ,(`,v); [[label]]v,l)

branch :
bi ∈ {t, f} e = (λx: .( f st x, [[label]](snd x),m))(bi (`PC,()))

(Σ,(`PC,pc); tα , l, `PC,m,b, t, f )−→(Σ,(`PC,pct l);(λx: .pop; x)e)

apply :
e = (λx: .( f st x, [[label]](snd x),m))(g (`PC,x))

(Σ,(`PC,pc); tα , tβ , l, `PC,m, [[label]]g,m,x)−→(Σ,(`PC,pct l);(λx : .pop; x)e)

Figure C.2: Instrumenting FLAIR to track affine capabilities and program counter tokens
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C.2.1 Affinity of Program Counters and Capabilities

Figure C.2 defines an instrumented semantics for FLAIR, in order to show that affine
program counter tokens and capabilities are never duplicated by the program. The gen-
eral strategy is to represent these affine values using special “tracked locations”, ˆ̀, in the
store. `PC is a location that stores the current value of the program counter label; `cap
stores the current capability of the program to update a normal labeled ref-cell. The dy-
namic semantics of the program include specific equations for base terms in the model to
update the contents of these locations. For example, the pc2cap function de-allocates the
`PC location and allocates `cap location; cap2pc does the reverse. If the type system of
FLAIR properly tracks affine assumptions, then after the program calls the pc2cap func-
tion, the `PC value must have been consumed, and therefore, must not appear anywhere
in the program text. To show that this is in fact the case, we prove a subject reduction
property for the instrumented calculus. The consequence is that affine program counter
assumptions are never duplicated by the program.

Our runtime semantics are also designed to track the program counter label accu-
rately. For example, consider the equation of the branch base term. The domain contains
a store in which the program counter `PC contains a program counter label pc. The argu-
ment tα is the type used to instantiate the quantified variable in the type of branch. The
label arguments are l and m. The program counter value passed in by the program is `PC.
Then we have the boolean value in the guard b, and the true and false branches t and f .
In the range of the equation, notice that the `PC location has been updated to contain the
label pct l, where l is the label of the boolean b. This reflects the fact that the branch e
that is evaluated is control-dependent on the boolean; so, the program counter location is
“bumped up” to be at least as secret as b.

However, when the branch e has evaluated, the continuation is no longer control
dependent on b. So, we need to lower the program counter before returning a value from
the branch expression. To model this, we introduce a new syntactic construct (pop; e).
The operational semantics of this construct is defined by (E-POP)—it simply pops the
top-most label from the stack of program counter labels stored in `PC and then evaluates
e. The equation for branch carefully uses this construct to lower the program counter
only after the branch e has completed evaluating. After the program counter stack has
been popped, branch returns value returned by the branch. The apply function is similar
to branch.

Strictly speaking, updating the program counter values to reflect the control depen-
dences of the expression being evaluated is unnecessary to show that affine values are
tracked properly in FLAIR. However, in the next subsection, when we prove noninter-
ference by modeling a pair of executions in the syntax of a single FLAIR2 program, this
dependence tracking will become important. So, we introduce the dependence tracking
in this simpler setting to make the extension to the FLAIR2 easier.

Finally, in order to give a term representation for labeled values and labeled ref-
erences we extend the signature with two functions label and lref . These facilitate the
formal proof, but are not otherwise required at the source level.

Definition 49 (Extended store typing). Γ = Γ1, ˆ̀:t,Γ2 models a store Σ = Σ1,( ˆ̀,b),Σ2, if
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and only if, Γ1,Γ2 |= Σ1,Σ2, and

• If ˆ̀= `PC and b = pc, then t = PC [[pc]].

• If ˆ̀= `cap and b = (v,pc), then t = Cap v [[pc]].

We overload notation so that Γ |= Σ can stand for extended store typing according
to the context.

Proposition 50 (Guarded strengthening). For well-formed Γ = Γ1, ˆ̀:t,Γ2, if Γ; · `ϕ e : t;ε ,
then Γ1,Γ2; · `ϕ e : t;ε

Proposition 51 (Insignificant affine assumptions are unused). Given Γ ` tx::U and Γ `
ty::U and tx 6∼= ty, such that Γ,x:tx and Γ,x:ty are both well-formed. Suppose, Γ,x:tx;A,x `ϕ

e : t; · and Γ,x:ty;A,x `ϕ e : t; ·. Then, Γ,x:tx;A `ϕ e : t; ·.

Lemma 52 (Witnesses for changes to tracked locations). For well-formed Γ,A such that
Γ |= Σ, Γ;A `ϕ e : t;ε , and M ` (Σ,e)−→(Σ′,e′) and Γ 6|= Σ′. Then, A = ˆ̀.

Proof. By induction on the structure of the reduction relation. The interesting base cases
are the base-term reductions due to pc2cap, cap2pc, branch, and apply, since these are the
only ones that change tracked locations. However, in each of these cases, from inspection,
it is clear that ˆ̀∈ FV (e) and, thus, A = ˆ̀.

Lemma 53 (Accuracy of program counter tracking). If, for Γ well-formed, the signature
SFlow and model MFlow, we have each of the following:

(A1) ˆ̀∈ dom(Γ)⇒ A(Γ)⊆ ˆ̀

(A2) Γ;A(Γ) `ϕ e : t; ·

(A3) Γ |= Σ, and dom(Γ) = dom(Σ)∪ ˆ̀

(A4) MFlow ` (Σ,e)−→(Σ′,e′)

(A5) Γ′ |= Σ′

Then, Γ′;A(Γ′) `ϕ e′ : t; ·

Proof. We proceed by induction on (A2).

Case (T-PCAP): ˆ̀ is a value.

Case (T-POP): By inversion, we have that (A4) is an application of (E-POP), where
Σ(`PC) = pct v. We have to show that Γ′;A `ϕ e : t; ·, where Γ′ |= Σ′, where Σ′(`PC) =
pc. That is, Γ′(`PC) = PC [[pc]] = Γpc(`PC), and since the dom(Σ) = dom(Σ′), we have
A(Γ′) = A(Γ). But, we have exactly this from the premise of (A2).

Case (T-LOC): ` is a value.

Case (T-DEREF), (T-ASN), (T-B): Follows from the corresponding case of subject
reduction of FLAIR.

311



Case (T-X), (T-XA): From (A3), open terms are not permissible.

Case (T-ABS): Abstractions are values.

Case (T-APP):

Sub-case e = e1e2: Then, from inversion, we have (A4) is an instance of (E-CTX) with
M ` (Σ,e1e2)−→(Σ′,e′1e2), and M ` (Σ,e1)−→(Σ′,e′1) in the premise (A4.1).

From the premise of (T-APP) we have (A2.1) Γ;A `ϕ e1 : t1; · and (A2.2) Γ;A′ `ϕ

e2 : t2; ·, where A,A′ = A(Γ). Now, from the induction hypothesis applied to (A2.1) and
(A4.1), we have Γ′;A(Γ′) `ϕ e′1 : t1; ·, where Γ′ |= Σ′.

If Γ′ = Γ then we are done with an application of (T-APP), using the induction hy-
pothesis for the first premise and an unchanged (A2.2) for the second premise. However, if
Γ′ 6= Γ, we need to be more careful. In this case, notice that Γ and Γ′ can only differ in as-
sumptions about the affine locations ˆ̀. That is, either `PC ∈ dom(Γ) and `cap ∈ dom(Γ′),
or vice-versa; or, dom(Γ) = dom(Γ′) but, Γ′( ˆ̀) 6= Γ( ˆ̀). In either event, since we have
A,A′ = ˆ̀, we aim to use Proposition 50 (below) to reconstruct the typing derivation.

Sub-sub-case A = ˆ̀, A′ = ·: In this case, we have (A2.2) Γ; · `ϕ e2 : t2; ·, where Γ =
Γ1, ˆ̀:t,Γ2. From guarded strengthening, we can conclude Γ1,Γ2;`ϕ e2 : t2; ·. But, Γ′ =
Γ1, ˆ̀′:t ′,Γ2. So, from weakening, we get Γ′; · `ϕ e2 : t2; ·. We can therefore construct the
derivation using (T-APP) with the induction hypothesis for the first premise and this latter
derivation as the second premise.

Sub-sub-case A = ·, A′ = ˆ̀: Since A = ·, we can conclude that ˆ̀ 6∈ FV (e1). However, we
still have Γ′ 6= Γ. From Lemma 52, this is impossible.

Sub-case e = v e2: Similar to the previous sub-case.

Sub-case e = v1v2: Soundness of β -reduction via (E-APP) follows from the soundness
proof of FLAIR. The interesting case here is when reduction proceeds using a base term
reduction via (E-B2). Usually, we argue for the soundness of these cases from the type-
consistency of the model and signature. However, in this case, with the instrumented
semantics, the well-typedness of the reduction relies on the updates to the tracked loca-
tions in the store. So, we enumerate each case of the base-term reductions here.

Sub-sub-case pc2cap: On the LHS, we have e = [[pc2cap]]l,m `PC, typeable in Γpc |=
Σ,(`PC,pc) as Cap (lub l m) [[pc]], (where [[pc]] = m). On the RHS, we have `cap typeable
in Γ′ |= Σ,(`cap,([[ltm]],pc)) as Cap (lub l m) [[pc]], according the definition of extended
store typing and the definition of [[pc]].
Sub-sub-case cap2pc: Similar to the previous case.

Sub-sub-case update: On the LHS, we have e = [[update]]t,l,m,`cap,[[lre f ]]`,l v′, which, from
SFlow, is typeable as Boxed m Unit. The type correctness of the RHS is immediate from
inspection, and store typing follows from the well-formedness of Γ.

Sub-sub-case deref : Like, update, this is straightforward from inspection.

Sub-sub-case branch: In the LHS, we have each branch

e:(Boxed lub l m Unit→ Boxed lub l m tα)

with [[pc]] = l, following from the signature of branch and the well-typedness of `PC. We
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have to prove the type-correctness of the RHS in a context Γ′ |= Σ,(`PC,pctm). In the
RHS, we have first an application of e to (`PC,()), which, since [[pctm]] = (lub l m), we
have the application typeable in Γ′ using (T-APP) as Boxed lub l m tα . For the lambda
term, the body pop; e′, where e′ = ( f st x, [[label]](snd x),m), we can apply (T-POP), and
type e′ as Boxed l (Labeled tα m), as required by the signature.

Sub-sub-case apply: Identical to the branch sub-sub-case, except using tβ instead of Unit.

Case (T-CAP): Identical to the first sub-case of (T-APP), noting that affine assumptions
are split between e and e′. The conclusion follows, as before, from a use of Proposition 50
and weakening, or Lemma 52.

Case (T-CASE): Similar to the first sub-case of (T-APP), noting that the affine assump-
tions are split between the guard and between each of the mutually exclusive branches.
The conclusion follows, as before, from a use of Proposition 50 and weakening, or
Lemma 52.

Case (T-B1), ... (T-B3), (T-CONV): All follow from the soundness of FLAIR.

C.2.2 Proving Noninterference using FLAIR2

Definition 54 (Well-formed for information flow). A well-formed environment Γ is well
formed for information flow if and only if ∀` ∈ dom(Γ).∃t, l.Γ(`) ∈ LabeledRef (ref t) l

Definition 55 (Typing for bracketed stores). A well-formed environment Γ models a brack-
eted store Σ, if and only if, ∀i ∈ {1,2}, bΓci |= bΣci. Additionally, Σ(`) = 〈v1 ‖ v2〉 ⇒
High/ Γ(`). We write Γ |= Σ for typing of bracketed stores.

Definition 56 (Closure of projections). We write bec∗i to denote the largest closure of the
relation beci over the structure of e, with the restriction that

bsplitpc t l ec∗i ≡ (λx:t.pop; x)(bec∗i )

Proposition 57 (Equivalence of sub-reductions). If MFlow ` (Σ,e)−→i(Σ′,e′), then MFlow `
(bΣci,e)−→(bΣ′ ci,e′), and vice versa.

Lemma 58 (Adequacy of FLAIR2). Given an environment Γ well-formed for information
flow, such that each of the following are true:

(A1) ˆ̀∈ dom(bΓci)⇒ bA(Γ)ci ⊆ ˆ̀

(A2) Γ;A(Γ) `term,ι e : t; ·

(A3) A store Σ such that Γ |= Σ

(A4) ∃i.MFlow ` (bΣc∗i ,bec∗i )−→(Σi,ei)

Then, MFlow ` (Σ,e)−→∗(Σ′,e′) and bΣ′ c∗i = Σi and be′ c∗i = ei.

313



Syntax of FLAIR2, as an extension of FLAIR¡

expr. e ::= 〈e1 ‖ e2〉 | . . . assumpt. A ::= 〈 ˆ̀1 ‖ ˆ̀2〉 | . . .
values v ::= 〈v1 ‖ v2〉 env. Γ ::= 〈 ˆ̀1:t1 ‖ ˆ̀2:t2〉 | . . .
index ι ::= · | 1 | 2 store Σ ::= 〈( ˆ̀,b) ‖ ( ˆ̀,b)〉 | . . .

Signature extension

splitpc : ∀α::U.(l:Lab)→ (m:Lab)→ Boxed (lub l m) α → Boxed l α

Extensions to typing judgment

∀i ∈ {1,2} bΓci ; bAci `ϕ,i ei : t; · (bΓci)High ; bAci `ϕ,i ei : t; · High/ t

Γ;A `ϕ,· 〈e1 ‖ e2〉 : t; ·
(T-BRAC)

∀i.bΓci(`PC) = PC [[pct v]] Γ′ = Γ[`PC:PC [[pc]]] Γ′;A `ϕ,· e : t; ·
Γ;A `ϕ,· pop; e : t; · (T-POP)

High/ Labeled t High High/ LabeledRef (ref t) High

High/ t
High/ Labeled t l

High/ t
High/ Boxed l t

i ∈ {1,2}
b〈e1 ‖ e2〉ci ≡ ei

i ∈ {1,2}
b〈 ˆ̀1:b1 ‖ ˆ̀2:b2〉ci ≡ ˆ̀i:bi

bxc· ≡ x

MFlow ` (Σ,e)−→ι(Σ′,e′) Instrumented operational semantics

{i, j}= {1,2} M ` (Σ,ei)−→i(Σ′,e′i) e j = e′j
MFlow ` (Σ,〈e1 ‖ e2〉)−→(Σ′,〈e′1 ‖ e′2〉)

(E-BRAC)

∀i.bΣci(`PC) = pct v ∀`.Σ(`) = Σ′(`) Σ′(`PC) = pc

MFlow ` (Σ,pop; e)−→(Σ′,e)
(E-POP)

Figure C.3: Semantics of FLAIR2

Proof. Without loss of generality, we assume i = 1. Proof by induction on the structure
of (A2).

Case (T-BRAC): From (A4), we have MFlow ` (bΣc∗1,e1)−→(Σ,e1). For the conclu-
sion, we want to show that (E-BRAC) is applicable. But, the premise of (E-BRAC) is
immediate from (A4) and Proposition 57.

Case (T-POP): Here, from inversion, we have (A4) is an application of (E-POP), of the
form

Σ = Σ′′,(`PC,pct v) Σ′ = Σ′′,(`PC,pc)
MFlow ` (Σ,pop; e)−→(Σ′,e)
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MFlow Model equations

pc2cap : (Σ,(`pc,pc); l,m, `pc)−→(Σ,(`cap,([[ltm]],pc));`cap)
(Σ,(`pc,pc); l,m, `pc)−→1(Σ,〈(`cap,([[ltm]],pc)) ‖ (`pc,pc)〉;`cap)
(Σ,〈(`pc,pc) ‖ c〉; l,m, `pc)−→1(Σ,〈`cap,(l,pc) ‖ c〉;`cap)

cap2pc : (Σ,(`cap,(l,pc)); l,m, `cap)−→(Σ,(`PC,pc);`PC)
(Σ,(`cap,(l,pc)); l,m, `cap)−→1(Σ,〈(`PC,pc) ‖ (`cap,(l,pc))〉;`PC)
(Σ,〈(`cap,(l,pc)) ‖ c〉; l,m, `pc)−→1(Σ,〈`pc,pc ‖ c〉;`PC)

update : (Σ,(`,v); t, l,m, `cap, [[lref ]]`,l,v′)−→(Σ,(`,v′);(cap2pc l m `cap,()))
(Σ,(`,v); t, l,m, `cap, [[lref ]]`,l,v′)−→1(Σ,(`,〈v′ ‖ bvc2〉);(cap2pc l m `cap,()))

Σ(`i) = v′i Σ′ = Σ[`1 = 〈bvci ‖ bv′2 c2〉][`2 = 〈bv′1 c1 ‖ bv′2 c2〉]
(Σ; t, l,m, `cap,〈[[lref ]]`1,l ‖ [[lref ]]`2,l〉,v)−→(Σ′,(cap2pc l m `cap,()))

deref : (Σ,(`,v); t, l, [[lref ]]`,l)−→ι(Σ,(`,v); [[label]]bvcι ,l)

(Σ,(`1,v1),(`2,v2); t, l,〈[[lref ]]`1,l ‖ [[lref ]]`2,l〉)−→
(Σ,(`1,v1),(`2,v2);〈[[label]]bv1 c1,l ‖ [[label]]bv2 c2,l〉)

branch :
b 6= 〈v1 ‖ v2〉 e = (λx: .( f st x, [[label]](snd x),m))(g(`PC,())) g ∈ {t, f}

(Σ,(`PC,pc); tα , l, `PC,m,b, t, f )−→(Σ,(`PC,pct l);splitpc [tα ] l m e)

ei = (λx: .( f st x, [[label]](snd x),m))(bi(`PC,())) bi ∈ {t, f}
(Σ,(`PC,pc); tα , l, `PC,m,〈v1 ‖ v2〉, t, f )−→

(Σ,(`PC,pctm);splitpc [tα ] l m 〈e1 ‖ e2〉)

apply :
g 6= 〈g1 ‖ g2〉 e = (λx: .( f st x, [[label]](snd x),m))(g(`PC,x))

(Σ,(`PC,pc); tα , tβ , l, `PC,m, [[label]]g,m,x)−→(Σ,(`PC,pct l);splitpc [tβ ] l m e)

ei = (λx: .( f st x, [[label]](snd x),m))( fi(`PC,bxci))
(Σ,(`PC,pc); tα , tβ , l, `PC,m,〈[[label]] f1,m ‖ [[label]] f2,m〉,x)−→

(Σ,(`PC,pct l);splitpc [tβ ] l m 〈e1 ‖ e2〉)

splitpc : (Σ; t, l,m,(`PC,v))−→(Σ;pop; (`PC,v))
(Σ; t, l,m,〈(`PC,v1) ‖ (`PC,v2)〉)−→(Σ;pop; (`PC,〈v1 ‖ v2〉))

Figure C.4: Dynamic semantics of FLAIR2
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where pop; e = pop; bec∗1
For the conclusion, we apply (E-POP) in FLAIR2. From the premise of (A2) and

from (A3), we have that the store Σ satisfies the premise of (E-POP). That Σ′ = bΣ′ c1
and e = bec∗1 follows from construction.

Case (T-LOC): Is a value in both FLAIR¡ and in FLAIR2.

Case (T-DREF), (T-ASN), (T-B): All follow from the induction hypothesis.

Case (T-X), (T-XA): Only close terms can step in FLAIR¡.

Case (T-ABS): Irreducible.

Case (T-APP): If we have e1 e2, and reduction in (A4) via (E-CTX), the the result fol-
lows from the induction hypothesis. If we have, v1 v2, we can be sure that v1 6= 〈v′1 ‖ v′′1〉,
since, from the last premise of (T-BRAC), the latter term has a type like Labeled t High,
which doesn’t match the first premise of (T-APP). Of course, v2 can be a bracketed term
〈v′2 ‖ v′′2〉. If, reduction in (A4) is via (E-APP), then since 〈v′2 ‖ v′′2〉 is a value the conclu-
sion follows from (E-APP) in FLAIR2. The equivalence of the stores and an expressions
after substitution straightforward.

The interesting cases are when (A4) in FLAIR¡ is an instance of (E-B2) and relies
on an equation in MFlow. We enumerate the cases.

Sub-case pc2cap: If ι = ·, then the first reduction rule in MFlow is identical to the corre-
sponding rule in MFlow. If ι = 1, then from (A4) we have bΣci(`PC) = pc, which can be
fulfilled in one of two ways—i.e., either Σ(`PC) = pc or 〈(`PC,pc) ‖ c〉 ∈ Σ(`PC). These
cases are covered by each of the next two rules in MFlow.

Sub-case cap2pc: Similar to the previous sub-case.

Sub-case update: If in (A2), we are typing an application of the form

e = update . . . [[lre f ]]`,l

then bec1 = e, and the reduction (A4) in FLAIR¡ is matched by the first rule for update in
MFlow. If, however, we have e = update . . . 〈v1 ‖ v2〉, then bec1 = update . . . v1. In this
case, the reduction of (A4) is mimicked in FLAIR2 by the second (lifting) rule of update,
which allows reduction to proceed in both sub-executions.

Sub-case deref : Similar to the previous sub-case.

Sub-case branch: If we have in (A2) branch . . . b . . ., where bbc1 = b, then in (A4), we
have a reduction to (λx: .pop; x)(λx : .( f st x, . . .))(g(`PC,())). The first rule of branch
in MFlow handles exactly this case, with splitpc . . . in the RHS. From the definition of b ·c∗i ,
we have the desired equivalence.

If, we have in (A2) branch . . . 〈v1 ‖ v2〉 . . ., then in (A4), we have on the RHS
(λx: .pop; x)e1. The second rule of branch in MFlow handles this case. On the RHS,
we have e′ = splitpc . . . 〈e1 ‖ e2〉, and from the definition of b ·c∗i , we get the desired
equivalence.

Sub-case apply: Similar to branch.

Sub-case splitpc: If we have splitpc . . . v1 in (A2), then, by the definition of projection,
in (A4) we have (λx: .pop; x) v1 which reduces by (E-APP) to pop; v. In FLAIR2, we
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have a reduction from the second rule of splitpc to the same term. In the case where in
(A2) we have splitpc . . . 〈v1 ‖ v2〉, the result in (A4) is the same. In this case, the second
rule of splitpc produces an RHS with an equivalent projection.

Case (T-CASE): As in (T-APP), the expression in the guard cannot be bracketed, since
that would require it to have a labeled type.

Case (T-CAP): Similar.

Case (T-B1), ..., (T-B4), (T-CONV): Trivial.

Lemma 59 (Subject reduction for FLAIR2). If, for Γ well-formed for information flow we
have each of the following:

(A1) ˆ̀∈ dom(bΓci)⇒ bA(Γ)ci ⊆ ˆ̀

(A2) bΓcι ;bA(Γ)cι `term,ι e : t; ·

(A3) bΓcι |= bΣcι

(A4) MFlow ` (Σ,e)−→ι(Σ′,e′)

(A5) bΓ′ cι |= bΣ′ cι

Then, bΓ′ cι ;bA(Γ′)cι `term,ι e′ : t; ·

Proof. By induction on the structure of (A2). In the cases where (ι = ·) we omit projec-
tions for convenience.

Case (T-BRAC): By inversion, we have (A4) is an applicaton of (E-BRAC), and from
the premise, we get MFlow ` (Σ,ei)−→i(Σ′,e′i). Our goal is to show, for Γ′ |= Σ′, that,
without loss of generality, Γ′;A(Γ′) `term,· ([e′j]) : t; ·.

We apply (T-BRAC), and for the e j, since from Lemma 58 the bΣc j = bΣ′ c j, we
have bΓc j = bΓ′ c j and can simply reuse the corresponding premises of (A2).

For ei, we begin by observing that bΓci |= bΣci, from (A3). So, we apply Lemma 53,
to obtain(A2.i’) bΓ′ ci;bA(Γ′)ci `ϕ,i e′i : t; ·, where Γ′ |= Σ′. This is sufficient for the first
typing derivation for ei.

To conclude, we still need to show (bΓ′ ci)High;bA(Γ′)ci `term,i e′ : t; ·. If bΓci =
(bΓci)High, then, clearly, we are done—both derivations are identical. However, if they
are not the same we first use the typing derivation of ei from the premises of (A2) with
Lemma 51 to conclude that ˆ̀ 6∈ FV (ei). We then use guarded strengthening, Lemma 50
to conclude bΓci \ ˆ̀;A \ ˆ̀` e′i : t; · from (A2.i’). Finally, we use weakening to conclude
(bΓci)High;A ` e′i : t; ·, as needed.

Note that we need two typing derivations for ei and e j for the following reason. In
order to apply the induction hypothesis to the premise of (E-BRAC), (both in this lemma
and in adequacy), we need to show that the context used to type ei models the store in
which ei is reduced. From the conclusion of (T-BRAC), we have that Γ |= Σ; so, we
need a derivation of ei in the context bΓci to satisfy the requirements of the induction
hypothesis. However, the purpose of FLAIR2 is to prove noninterference. This means
that we have to show that the memory effects of all bracketed terms (since they can differ
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in each sub-execution) must be limited to the fragment of memory with types t, where
High/ t. The second typing derivation types ei in a context (bΓci)High, meaning that the
program counter/capability tokens in ei must only be valid for mutating High-memory.
(Similarly for e j.) Note that it is possible for bΓci 6= (bΓci)High—however, we will show
that if this is the case, then ˆ̀ 6∈ FV (ei).
Case (T-POP): By inversion, we have that (A4) is an application of (E-POP). We have
to show that Γ′;A `ϕ,· e : t; ·, where Γ′ |= Σ′. That is, Γ′(`PC) = PC [[pc]]. But, we have
exactly this from the premise of (A2).

Case (T-APP): Here, the interesting cases are each of the reduction rules for the base
terms. In all other cases, we can either appeal to the induction hypothesis or the soundness
result of Lemma 53.

Sub-case pc2cap: When ι ∈ {1,2}, the result follows from Lemma 53. When ι = ·
follows a similar reasoning.

Sub-case cap2pc: Same as previous case.

Sub-case update: When ι = ·, in the first rule, store typing on the RHS follows from
type-correctness of the LHS. When ι ∈ {1,2}, from the second premise of (T-BRAC), we
know that the LHS is typeable in a context with ΓHigh. Thus, we have that m = High = l.
So, in the second rule, on the LHS, we have that the reference term has a reference type
t where High / t. Thus, store typing on the RHS follows, since it is permissible to have
bracketed values in High location in the store. In the third rule, when ι = ·, from well-
typedness of the LHS, we have that the reference argument 〈v`1 ‖ v`2〉 has a type t, where,
from (T-BRAC), High/ t. In each case, the term on the RHS, (cap2pc l m,()) is obviously
correct wrt the signature of update.

Sub-case deref : The first case is trivial. In the second case, on the LHS, the reference
value has a type t, where High / t. That means that the label of the location l = High.
On the RHS, we produce a bracketed term, where each side of the bracket is labeled with
l = [T], which suffices to satisfy the last premise of (T-BRAC). The first premise follows
from store typing of the RHS. The second premise follows because affine values are not
allowed to escape into the heap; so bvi ci 6= ˆ̀.

Sub-case branch: The first rule isomorphic to the corresponding rule in FLAIR¡—the
reasoning is similar, except we use the type of splitpc in the conclusion, rather than rea-
soning about pop; e direction.

The second rule, each ei (following reasoning similar to Lemma 53), has the type
Boxed (lub l m) (Labeled m tβ ), where, we know that m = High, since it is the label of
the bracketed term on the LHS. Furthermore, since on the RHS, we have `PC,pctHigh
in the store, satisfying the constraint of the second premise of (T-BRAC) is trivial.

Sub-case apply: Identical to branch, except using tβ instead of Unit.

Sub-case splitpc: In the first rule, type correctness of the LHS requries Σ = Σ, `PC:(ltm)
or 〈`PC:ltm ‖ `PC:ltm〉—in either case, the constraints of (T-POP) are satisfied to type
the RHS.

In the second rule, since both sides of the bracket are required to have the same type,
once again type correctness of the LHS requires Σ = Σ, `PC:(ltm) or 〈`PC:ltm ‖ `PC:lt
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m〉. To type the RHS, we apply (T-POP) as before, but then we must type (`PC,〈v1 ‖ v2〉 in
a context Γ′, with Γ′(`PC) = PC l, where, it is possible that l 6= High. However, in typing
the pair, we split the affine assumptions between the `PC and 〈v1 ‖ v2〉 sub-terms, giving
the former the type PC l as required using (T-PCAP).

This means that from the LHS, we have bΓci; · `term,i vi : t; ·. From guarded strength-
ening, Proposition 50, we have bΓci \ ˆ̀; · `term,i vi : t; ·. This latter derivation is the same
as bΓ′ ci \ ˆ̀; · `term,i vi : t; ·, for each i. Thus, we can use this to construct Γ′ \ ˆ̀; · `ϕ,ι

〈v1 ‖ v2〉 : t; ·. Finally, we conclude with weakening to establish Γ′; · `ϕ,ι 〈v1 ‖ v2〉 : t; ·, as
needed.

Case (T-CASE), (T-CAP): Induction hypothesis.

Case (T-B1), (T-B2), (T-B3), (T-CONV): As with FLAIR¡.

Theorem 60 (Noninterference for FLAIR, with SFlow). If, for well-formed Γ, the signature
SFlow, model M type-consistent with SFlow, such that M(lub) = Elub, we have Γ; initpc `term

e : t; ·, where Low/ t. Then, for any two stores Σ and Σ′, such that Γ |= Σ and Γ |= Σ′, and
∀` ∈ dom(Σ).Low/ Γ(`)⇒ Σ(`) = Σ′(`), if we have

M ` (Σ,e)−→(Σ1,e1)−→ . . .−→(Σn,en)
M ` (Σ′,e)−→(Σ′1,e

′
1)−→ . . .−→(Σ′m,e′m)

Then, the sequences Σ,Σ1, . . .Σn and Σ′,Σ′1, . . . ,Σ
′
m are equivalent up to stuttering.

Proof. As a corollary of Lemma 59, following a standard argument [104]. In particular,
for Σ, such that bΣci = Σi, MFlow ` (Σ,e)−→∗(Σ′,e′), from Lemma 59 we have that Σ′ is
well-formed, i.e., the Low-fragment of Σ′ is bracket free.
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