
The Static Polytope and its applications to a Scheduling ProblemK. Subramani � Ashok Agrawala yAbstractIn the design of real-time systems, it is often the case that certain process parameters ( such as executiontime ) are not known precisely. The challenge in real-time system design is to develop techniques that e�cientlymeet the requirements of impreciseness. Traditional models tend to simplify the issue of impreciseness byassuming worst-case times. This assumption is unrealistic and at the same time, may cause certain constraintsto be violated at run-time. In this paper, we shall study the problem of scheduling a set of ordered, non-preemptive processes under non-constant execution times. Typical applications for variable execution timescheduling include process scheduling in Real-time Operating Systems such as Maruti, compiler scheduling,database transaction scheduling and automated machine control. An important feature of application areassuch as robotics is the interaction between execution times of various processes. We explicitly model thisinteraction through the representation of execution time vectors as points in convex sets. We present bothsequential and parallel algorithms for determining the existence of a static schedule.1 IntroductionScheduling in real-time systems has received considerable attention in system design research [Sak94, SB94, HG93,Gel76]. In real-time system design, the challenge is two-fold: (a) Modeling the underlying system ( a non-trivialtask if we wish to preserve properties of interest ), and (b) Proposing solutions for problems arising in the chosenmodel. In this paper, we are concerned with the following problems:1. Modeling constraint systems of tasks with relationships between their execution times. To the best of ourknowledge, this represents the �rst attempt to explicitly include the inter-execution time dependency in ascheduling model.2. Scheduling an ordered set of non-preemptive tasks, subject to a set of linear constraints, with non-constantexecution times.We approach the modeling and the scheduling problems from a Convex Programming perspective [HuL93] andwe techniques from Convex Analysis [Roc70] almost exclusively to prove our results. We present both sequentialand parallel algorithms for determining the existence of a feasible schedule.In section x2 we present the static scheduling model and pose the static schedulability query. Interprocessexecution time relationships are explicitly modeled through convex domains. The succeeding section, x3 discussthe motivation for our work as well as related approaches to this problem. In particular, we show that schedulingconcerns in diverse areas such as robotics and real-time operating systems can be addressed through our model.x4 commences the process of answering the static scheduling query posed in x2 through the application ofconvex minimization algorithms. We present our algorithm for the case when the execution times belong togeneral convex domains and analyze its correctness and complexity. A straightforward parallelization of thealgorithm is provided as part of the complexity analysis. x5 specializes the algorithm in x4 to the case in whichthe execution time domain is an axis-parallel hyper-rectangle. We conclude in x6 with a summary of our resultsand some open problems in this area.�Department of Computer Science, University of Maryland, College Park, ksmani@cs.umd.eduyDepartment of Computer Science, University of Maryland, College Park, agrawala@cs.umd.edu1



2 The Static Scheduling ModelWe are a given a set of ordered non-preemptive tasks fJ1; J2; : : :Jng, with linear constraints imposed on theirrespective start times fs1; s2; : : : ; sng and execution times fe1; e2; : : : ; eng. The constraint system is expressed inmatrix form as : A:[~s;~e] � ~b; (1)where,� ~s = [s1; s2; : : : ; sn] is an n�vector of the start times of the tasks,� ~e 2 E = [e1; e2; : : : ; en] is an n�vector of the execution time of the tasks, E is a convex domain.� A is a m � 2:n matrix of rational numbers,� ~b = [b1; b2; : : : ; bm] is an m�vector of rational numbers.Note that we can also use the �nish times fi of tasks in relationships. Since the tasks are non-preemptive,the relation: si+ ei = fi holds for all tasks Ji and hence our expressiveness is not enhanced by the inclusion.System (1) is a convex polyhedron in the 2:n dimensional space, spanned by the start time axes f~s1; ~s2; : : : ; ~sngand the execution time axes f ~e1; ~e2; : : : ; ~eng. The execution time of the ith task ei is not constant, but belongsto the set Ei where Ei is the projection of the convex set E on axis ~ei. The execution times ei are independentof the start times of the tasks; however they may have complex interdependencies among themselves. Thisinterdependency is captured by the set E. We regard the execution times as n�vectors belonging to the set E.Before we develop the scheduling query, a few de�nition are in order.De�nition 2.1 Static Schedule - A schedule for a set of tasks speci�ed by assigning rational numbers to theirstart times.De�nition 2.2 Dispatch Calendar - A data structure indicating the time of dispatch for each task in the schedule.In static scheduling, we are interested in a rational vector ~s that holds for all execution times vectors belongingto the set E.The following predicate captures our model:9~s = [s1; s2 : : : sn]8~e = e1; e2; : : : en 2 E A:[s; e] � b ? (2)We note that the tasks are ordered and this ordering on the tasks is obtained by imposing the constraints:si + ei � si+1; 8i = 1; : : : ; n� 1:The ordering constraints are included in the A matrix in (2).Predicate (2) will henceforth be referred to as the static scheduling query.Our model is distinct from traditional models in the following ways:1. Non-constant execution times- These account for more realistic abstractions. In some cases, the interactionbetween execution times is explicitly given through a convex set ( refer x3 ); in other cases a number of runsof the task sets allow us to determine lower and upper bounds of tasks ( refer x5 );2. Generalized linear constraints - Typical models are concerned with sequencing in the presence of ready-timesand deadlines [GJ79, Cof76]; our models attempt to capture broader settings where linear relationshipsconstrain task execution. 2



3 Motivation and Related WorkOur investigations have been motivated by two orthogonal concerns, viz. real-time operating systems and real-time applications.One of the fundamental aspects of real-time scheduling is the recognition of interdependencies between tasks[DMP91, Sak94] and the conversion of event-based speci�cations into temporal distance constraints between tasks[Das85, JM86]. For example, the event-based requirement Wait 50 ms before sending the next message wouldspawn the following temporal distance constraint: si + 50 � si+1, where si and si+1 denote the start times ofsuccessive invocations of the message generating task.Real-Time Operating Systems such as Maruti [LTCA89, MAT90, MKAT92] and MARS [DRSK89], permitinteraction of processes through linear relationships, between their start and execution times. The Real-timespeci�cation Language MPL ( Maruti Programming Language ) [SdSA94] explicitly includes programmer con-structs such as:� within 10 ms; doPerform Task 1 od� Perform Task 1;Delay at most 17 ms;Perform Task 2These constructs are easily transformed into linear constraints between the start and execution times of thetasks. For instance, the �rst construct can be expressed as: s1 � 10, while the second construct is capturedthrough: s2 � f1 + 17. Note that f1 is the �nish time of task 1 and since we are dealing with non-preemptivetasks, we can write fi = si + ei; 8i, where fi denotes the �nish time of task i.The automation of machining operations [Y.K80, Kor83, SE87, SK90] provides a rich source of problems inwhich execution time vectors belong to convex domains. Consider the contouring system described in [TSYT97],where the task is to machine a workpiece through cutting axes. In general, there are multiple axes of motion thatmove with di�erent velocities. In a two axis system, a typical requirement is to constrain the sum of the velocitiesof the axes. This is captured through:e1 + e2 � a.Real-time database applications involve the scheduling of transactions and the execution of these transactionsis constrained through linear relationships [BFW97]. In database transactions, we have an ordered set of processesthat interact under certain conditions e.g. When the account balance exceeds $7k, change interest rate to 8%.Consider a real-time system used for ight control in the aviation industry. Typically, there is a process ( task )in charge of controlling the altitude and another process in charge of controlling the speed of the airplane. Supposethat it is determined that the speed of the plane should exceed 300mph, when the altitude exceeds 50ft: Such acondition can be captured through a constraint on the execution of these two processes; i.e. If altitude exceeds50, increase speed to 300.Deterministic sequencing ( the problem of determining a feasible sequence ) and scheduling have a long historyof research [BS74, DL78, Cof76]. Mere ready-time and deadline constraints make the sequencing problem NP-complete [GJ79]. Thus the problem of scheduling under general relative constraints ( called generalized scheduling ),in the absence of ordering information between the tasks is clearly NP-complete, as it subsumes the sequencingproblem. In [Sak94] it is shown that the problem of generalized scheduling is also NP-complete for the preemp-tive case, which is surprising since [HL89b] gives a polynomial time algorithm for the problem of deterministicsequencing, when preemption is allowed.In this paper, we focus on the problem of scheduling a set of tasks, when the ordering sequence is known (and supplied as part of the input ), but there exist complex inter-task dependencies, captured through linearrelationships between their start and execution times. Although we restrict ourselves to addressing the feasibilityof the task system, the judicious use of objective functions can be used to improve the quality of our solution.The determination of a feasible schedule coincides with the generation of a static dispatch-calendar that containsthe dispatching information for each task: e.g. s1 = 2; s2 = 15; s3 = 24, is a dispatch-calendar for a 3-task system.Variations of the problem that we are studying have been dealt with in [Sak94], [HL89a], [HL92b] and [HL92a].This problem is briey mentioned in [Sak94] as part of a di�erent problem i.e. parametric scheduling, howeverno algorithm is presented for the general case. The strategy suggested there is variable elimination, which works3



for restricted domains only. In [HL89a, HL92b], the problem of scheduling real-time tasks under distance andseparation constraints is considered, but the execution times are regarded as constant.4 Algorithm for convex domains of execution timesWe �rst establish that using worst-case values for execution times will not provide a valid solution in general.Consider the following constraint system imposed on a 3 task set:fJ1; J2; J3g.1. J1 �nishes before J2 commences: s1 + e1 � s22. J2 commences within 2 unit of J1 �nishing: s2 � s1 + e1 + 23. e1 2 [3; 9].Substituting the worst-case time for e1 i.e. 9 in the constraints, we obtain: s1+9 � s2, s2 � s1+11. One possiblesolution to this system is [s1; s2] = [0; 9]. However, during actual execution, suppose e1 takes on the value 3, thens2 > s1 + e1 + 2, thereby violating the second constraint.We can interpret the static scheduling query (2) as asking whether there exists a set of start times in purenumber form, without any dependencies i.e. the only accepted solutions are of the form:si = ai, where the ai 2 Qare rational numbers. The static approach is to work individually with each constraint and �nd the executiontimes that make the constraint tight ( or binding ). We then argue in x4.2 that the strategy is correct inasmuchas the goal is to produce a single start time vector ~s that holds for all execution time vectors ~e 2 E.Function Static Scheduler ( Arbitrary Convex Domains ) (E;A; ~b)1: fE is the convex domain and A[~s;~e] � ~b is the constraint systemg2: Using the techniques discussed in Appendix xC,1. Rewrite the constraint matrix as: G:~s � ~b�B:~e.2. Set ~r = [r1; r2; : : : ; rm]T = ~b�B:~e f each ri is an a�ne function of ~e = [e1; e2; : : : ; en]g3: for ( i=1 to m ) do4: Let �i = minS ri f �i is a rational numberg5: end for6: if ( ~s : G:~s � ~� 6= � ) then7: return(System is feasible) f G:~s � ~� is the Static Polytopeg8: else9: return(System has no static schedule)10: end if Algorithm 4.1: Static Scheduling Algorithm4.1 ExampleBefore proceeding with proving the correctness of the Static Scheduler algorithm, we present an example todemonstrate our approach. Consider the two task set � = f�1; �2g, with execution times fe1; e2g, constrainedthrough the following convex domain:� e1 2 [0; 6]; e2 2 [0; 6]� e1 + e2 � 4Figure 1 describes the domain.Let the system have the following constraints: 4
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e1+e2=4Figure 1: Convex constrained execution times1. �1 �nishes execution at or before task �2 commences: s1 + e1 � s2.2. �2 �nishes at or before 12 units. s2 + e2 � 12.Expressing the constraints in matrix form, we get :� 1 �1 1 00 1 0 1 � :2664 s1s2e1e2 3775 � � 012 �We �rst rewrite this system to separate the s and the e vectors:� 1 �10 1 �� s1s2 �+ � 1 00 1 � � e1e2 � � � 012 �Moving the e�variables to the RHS, we get� 1 �10 1 �� s1s2 � � � 012 �� � 1 00 1 � � e1e2 �which is equivalent to: � 1 �10 1 � � s1s2 � � � �e112� e2 �Minimizing �e1 over the constraint domain in Figure 1, we get �1 = �4. Likewise, minimizing 12 � e2 overthe constraint domain, we get �2 = 8. Thus, the static polytope is determined by:� 1 �10 1 � : � s1s2 � � � �48 �as shown in Figure 2.Applying a linear programming solver like [Ber95] to the above system, we get the following solution:� s1s2 � = � 06 �5
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The Static Polytope
(0,6)

Figure 2: The Static Polytope4.2 CorrectnessLemma 4.1 If the �nal polytope 1 in algorithm (4.1) is non-empty, then any point on it serves as a suitablevector of start times [s1; s2; : : : ; sn].We use ai to denote the ith row of A and gi to denote the ith row of G.Proof 4.1 Given a point p = [p1; p2; : : : ; pn] of the �nal non-empty static polytope G:~s � ~m, let us assume thecontrary and that indeed one or more of the input constraints of the input constraint matrix has been violated ata particular execution time vector ~e0 = [e01; e02; : : : ; e0n] 2 E. Pick one such violated constraint, say ~ai:[~s;~e � bi.The violation of this constraint at (~p; ~e0 implies that ~ai:[~p; ~e0] > bi or after rewriting and separating the variables~gi:~p > (~b�B:~e)i But from the construction of the static polytope ( refer Algorithm (4.1) ), we know that�i = minE (~b�B:~e)iand ~gi:~p � �iwhich provides the desired constradiction.Hence no constraint can be violated by choosing a point on the Static polytope.4.3 ComplexityWe observe that the elimination of each vector ri and its replacement by a rational number �i involves a call toa Convex minimization Algorithm. m such calls are required to eliminate all the ri from the constraint systemgiving a time of O(m:C), where C is the running time of the fastest Convex minimization algorithm ( referAppendix B for details ). Finally, one call has to be made to a linear programming algorithm to verify thefeasibility of the resultant static polytope. Thus, the total running time of the algorithm is O(m:C + L), whereL is the running time of the fastest linear programming algorithm. ( Refer Appendix A for details. ) Finally,since linear programming is a special case of convex minimization, we have L � C and hence the complexity ofour algorithm is O(m:C).1The resultant polyhedron will always be bounded because the jobs are ordered i.e. s1 < s2 < : : : sn and the last job has adeadline i.e. sn + en � D 6



4.4 Parallelization of the Static SchedulerObserve that the �i are created independently for each constraint. Thus the steps involving determination of the�i can indeed be carried out in parallel. That suggests the following parallel2 algorithm implementation of thefor loop in Algorithm (4.1): This algorithm has a parallel running time of O(C) with a total work of O(m:C).Function Parallel Static Scheduler( Arbitrary Convex Domains ) (E;A; ~b)1: Carry out the initialization steps as in Sequential Algorithm2: for ( i = 1 to m pardo) do3: Let �i = minS ri4: end for5: Perform feasibility check as in Sequential AlgorithmAlgorithm 4.2: Parallel version of Static Scheduling Algorithm5 Specialization to axis-parallel hyper-rectangle
(l1,l2,l3)

e2 e3

e1

(u1,u2,u3)

Figure 3: An axis-parallel hyper-rectangleWe now consider an interesting domain of the execution time vectors viz. the class of axis-parallel hyper-rectangles. The Maruti Operating System [LTCA89, MAT90, MKAT92] estimates running times of tasks byperforming repeated runs so as to determine upper and lower bounds on their execution time. Accordingly, therunning time of a task Ji i.e. ei belongs to the interval [li; ui], where li and ui denote the lower and upper boundon the execution time as determined by the empirical observation. These independent range variations are theonly constraints on the execution times. Observe that during actual execution, ei can take any value in the range.Essentially, the convex domain E in x2 is now the axis-parallel hyper-rectangle represented by: R = [l1; u1]�[l2; u2]� : : :� [ln; un]. The static scheduling query (2) for this case is:9~s = [s1; s2 : : : sn]8~e = [e1; e2; : : :en] 2 R A:[s; e] � b ? (3)We can apply the same algorithm as in section x4, in which case we solve (m + 1) linear programs to give atotal running time of O(m:L), where L is the running time of the fastest linear programming algorithm.However, we can do much better as we shall show shortly.2We are using the PRAM Model, see [Ja'92] 7



Lemma 5.1 The minimum of an a�ne function on an axis-parallel hyper-rectangle ( aph ) is reached at a vertexof the aph.Proof 5.1 From [Sch87], the lemma is true over all polyhedral domains and axis-parallel hyper-rectangles arerestricted polyhedral domains.Lemma 5.2 When the domain is an aph, an a�ne function can be minimized by minimizing over each dimensionindividually.Proof 5.2 Refer [Sch87].Lemma (5.2) gives us the following strategy to minimize an a�ne function a1:e1 + a2:e2+ : : :+ an:en+ c overan aph R = [l1; u1]� [l2; u2]� : : :� [ln; un]:� 8i, if ai > 0, set ei = li� 8i, if ai < 0, set ei = uiThe resulting function can then be evaluated to yield a rational minimum.Using this strategy it is clear that the Static Scheduler algorithm runs in O(mn+L) sequential time, wherem is the number of constraints.6 Conclusions and Future ResearchThe chief contributions of this paper have been:1. A model to capture the interdependency of process execution times.2. A systematic procedure to handle transaction scheduling when the execution times are constrained throughconvex domains.We also presented a fast algorithm when the domain was an axis-parallel hyper rectangle. The latter case is beingcurrently implemented in Maruti and will be available in [STA00]. Finally, the problem of static scheduling inthe absence of ordering information can be decomposed as follows:� Eliminate the execution time variables from the constraint system, using the algorithm in x4, which resultsin a generalized scheduling problem ( refer x3 ).� Use the existing technique ( exact or approximate ) to solve the resulting generalized scheduling problemAn open area of research is to extend the applicability of our techniques to problems in other domains.7 AcknowledgementsWe thank David Mount for helpful discussions.A Linear Programming - Complexity IssuesConsider the following linear program in standard form:max~c:~x; s:t:A:~x = ~b; ~x � 0 (4)where ~c is a n�vector, ~b is a m�vector, A is m � n rational matrix and ~x is a n�vector.The �rst algorithm for this problem was proposed in [Dan63]. This algorithm has exponential time worst-casecomplexity [PS82, KM72]. Since then a number of polynomial time algorithms have been developed for thisproblem [Kha79, Vai87, Kar84]. 8



B Convex Programming - Complexity IssuesConsider the standard nonlinear program, expressed as:minf(x); s:t:gi(x) � 0; 8i = 1; : : :m (5)(6)where the gi(x) are convex functions and the constraint set formed by their intersection is a convex space in then�dimensional Euclidean space Rn. If f is a convex funtion [HuL93, Roc70], then the problem is called a convexminimization or convex programming problem.This problem is known to be solvable in polynomial time [HuL93, PS82]. A fast algorithm for this problem isprovided in [KV86].C Matrix ReorganizationIn this section, we focus on manipulating a system of linear inequalities, through the reorganization of its repre-sentative matrix.Consider a linear system of inequalities in two variables ~x and ~y:A:[~x; ~y] � ~b, where,1. ~x = [x1; x2; : : : ; xn]T ,2. ~y = [y1; y2; : : : ; yn]T ,3. A is a m � 2:n matrix of rational numbers, and4. ~b = [b1; b2; : : : ; bm]T is a rational vector.Observe that this system can be rewritten in the form:G:~x+H:~y � ~b;) G:~x � ~b�H:~y;separating the ~x and ~y systems, where G and H are rationalm�n matrices. Further, we can set vecg = ~b�H:~y.The purpose of this reorganization is to show that a linear system in two variables ~x and ~y can be written inthe form: G:~x � ~g, where, gi as de�ned above is an a�ne function of ~y.References[Ber95] M. Berkelaar. Linear programming solver. Software Library for Operations Research, University ofKarlsruhe, 1995.[BFW97] Azer Bestavros and Victor Fay-Wolfe, editors. Real-Time Database and Information Systems, Re-search Advances. Kluwer Academic Publishers, 1997.[BS74] K. R. Baker and Z. Su. Sequencing with Due-Date and Early Start Times to Minimize MaximumTardiness. Naval Res. Log. Quart., 21:171{176, 1974.[Cof76] E. G. Co�man. Computer and Job-Shop Scheduling Theory, Ed. Wiley, New York, 1976.[Dan63] G. B. Dantzig. Linear Programming and Extensions. Princeton University Press, Princeton, NJ, 1963.[Das85] B. Dasarathy. Timing Constraints of Real-Time Systems: Constructs for Expressing Them, Methodsof Validating Them. IEEE Transactions on Software Engineering, SE-11(1):80{86, January 1985.9
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