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Whole coal contains significant amounts of iron 

pyrite which is oxidized ultimately to ferric acid sul­

fate. As a result, trace elements are released from the 

coal and other minerals in potentially hazardous concen­

trations. 

The purpose of this research was to: 1) study the 

release and mobility of selected trace elements during 

the weathering of coal; 2) seek to understand factors 

controlling solubility of trace elements in a synthetic, 

acidic leachate undergoing gradual neutralization; and 

3) develop a chemical thermodynamic computer model to 

predict the effects of dilution and neutralization of 

leachate on trace element mobility and speciation. 

samples collected periodically from a slurry of 

whole ground coal in water were filtered and analyzed for 

dissolved sulfate (by ion chromatrography), iron (by 

flame atomic absorption spectrophotometry), and Al, Zn, 

Cd, cu, Cr, Pb, As, and Se (by graphite furnace AAS). 

Iron, c opper, and probably arsenic tracked the production 



of sulfate, while aluminum, zinc, chromium, and cadmium 

concentrations were stable or rose slightly. 

A synthetic leachate of ferric sulfate and sulfuric 

acid was doped with trace levels of Al, Zn, Cu, Cd, Cr, 

Pb, As, and Se. Slow injection of sodium bicarbonate 

solution neutralized the stirred system, though hydroly­

sis of iron buffered the pH near 2.5. 

computer modeling of the sample analyses indicated 

that sulfate complexes dominated the speciation of iron 

and the trace elements. The other findings were used to 

develop a thermodynamic equilibrium model based on the 

aqueous geochemistry computer model PHREEQE. Iron and 

sulfate removal were best modeled by the precipitation of 

Fe
16

o
16

(0H)
12

(S04 ) 2 • Aluminum solubility was modeled by 

precipitation of jurbanite below pH 4, of bayerite and 

basaluminite for pH 4 - 5, and of gibbsite at pH above 5. 

Chromium, copper, and lead removal was modeled by solid 

solution formation with the ferric oxyhydroxysulfate 

precipitates. 

Program convergence failures above pH 5 precluded 

the modeling of zinc and cadmium, but it is hypothesized 

that their ions are adsorbed onto suspended particles of 

hydrous ferric oxyhydroxides. The model was tested with 

our laboratory data, and field data from a creek system 

contaminated with acid sulfate mine drainage. 
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CHAPTER 1 INTRODUCTION 

Whole coal, as obtained by modern mining methods, 

may be expected to include a significant amount of non­

combustible material. The refuse from the use of coal 

was estimated to exceed 108 tons/yr a decade ago 

(Schubert and Prodan 1981). Exposure of stored coal and 

these wastes to the weather often results in leachate and 

runoff that can seriously degrade the environment. 

1.1 COMPOSITION OF COALS 

Gluskoter et al. (1977), reported mineral matter 

associated with whole coal to range from 3.8 to 31.7 

percent with mean 15.3%. They also found sulfur to be 

present in coals in both organic and inorganic combina­

tion, with the inorganic sulfur concentrated in the 

mineral fractions. Iron pyrite (FeS2) comprises a sig­

nificant fraction of many coals, often 1 to 15 percent 

(Nordstrom 1982). 

Table 1.1, from Kuhn et al. 1980, identifies the 

mineral phases that are typically found in coal, and the 

major and minor constituents commonly associated with 

them. The trace elements may occur as isomorphic re­

placements in the minerals, or as exchangeable cations on 

clays. Kaolinite, illite and expandable clays commonly 

comprise the major portion of minerals in coal. These 
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Table 1.1* Elements commonly associated with the principal minerals in coal.+ 

Mineral Phases Major Constituents Trace Constituents 
Sulfides 

Pyrite, marcasite Fe, s As, Cd, Hg, Ag, Pb, 
Sphalerite Zn, s Fe, Zn, Cu, Co, Sn, 
Galena Pb, s Ni, Mo, Se, Ga 

Sulfates 
Barite Ba, s Sr, Pb, Ca 
Gypsum Ca, s 

Carbonates 
Calcite Ca Ba, Sr, Pb, Mn, Ca 
Siderite Fe Fe, Mg 
Ankerite Ca, Fe 
Dolomite Ca, Mg 

Phosphates Rare earths, and 
Apatite ca, P, F u, Ce, Mn, Cl, Mg 

Silicates 
Quartz Si 
Zircon Si, Zr Hf, Th, p 
Tourmaline Ca, Mg, Fe, B, Al, Si Li, F 
Plagioclase feldspar Ca, Na, Al, Si Ba, Sr, Mn, Ti, Fe, Mg 
Alkali feldspar K, Al, Si Rb, Ba, Sr, Fe, Mg, Ti, Li 
Muscovite K, Al, Si F, Rb, Cs, Ba, Mg, Fe 

Clay Minerals 
Kaolinite Al, Si Ti, Mg, Fe, and others 
Illite Al, Si, K Fe, Mg, Ca, Na, K, Ti, Li, 
Montmorillonite Al, Si, Mg, Fe v, B, Mn, Cr, cu, Ni, Rb, 
Mixed layer clays Al, Si, K, Mg, Fe Cs, Ga, Be, Zn, Se, F, La, 
Chlorite Al, Si, Fe, Mn, Mg Ba, Sr, Co, and others 

* From Kuhn et al. 1980 
+ This listing does not rule out the existence of additional associations. 



and calcite, pyrite, and quartz are almost ubiquitous in 

coals of the United States. Eastern coals are more 

likely to contain iron carbonates; and any iron sulfates 

are primarily due to the oxidation of pyritic material 

during storage, (Kuhn et al. 1980). 

Among coal solid wastes from Illinois and Montana, 

Griffin et al. (1980), identified quartz, calcite, 

kaolinite, and feldspar as common nonferro minerals. The 

principal iron containing mineral was pyrite, with illite 

and some ferrous sulfate found to a lesser extent. 

Heaton et al. (1982), did a factor analysis on high 

sulfur coal wastes from two Appalachian coal preparation 

plants to find what elements and minerals correlate well 

with each other. The most heavily weighted factor (43%) 

was a clay factor that included kaolinite, illite, 

quartz, and the elements: Na, Mg, Al, Si, K, Sc, Ti, V, 

cr, Zr, Cs, La, Ce, Eu, Dy, Lu, Hf, and Th. The second 

most important factor (15.9%) was also primarily a clay 

fraction representing kaolinite and (non-clay) marcasite 

and the elements: Al, Co, Ni, Rb, Cs, La, Ce, Eu, Dy, 

Pb, Th, and u. A third factor represented quartz, 

illite, and the elements: Mg, Si, K, Zr, Hf. A fourth 

calcite factor also represented Mg, Ca, Mn, Zr, and Sb. 

A mixed clay factor included the elements: Sc, V, Co, 

Ni, zn, cs, Ba, and Eu. A pyrite factor included Li, Fe, 

cu, As, and Cd. They found the gypsum factor to not 
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correlate with other elements. Three other factors did 

not correlate with any particular minerals but did group 

the elements as follows: Li s s b d v N Mg , e, r, s, an : a, , 

Mn, Fe, As, Cd, La, and Lu,· Zn H D d E , , Y, an u. 

The Illinois State Geological survey undertook a 

huge survey of coals from the United states, (Gluskoter 

et al. 1977). They analyzed 23 whole coal samples from 

the appalachian coal field of the eastern u.s., 114 

samples from the Illinois Basin, and 28 from the western 

u.s. for the presence of 58 elements. They also 

determined such parameters of each coal as: moisture 

content, fixed carbon, heat content (as a fuel), ash 

content, total sulfur, organic sulfur, pyritic sulfur, 

and sulfate sulfur. Table 1.2 summarizes their findings 

for the whole coal samples from the eastern United 

states. They conclude that As, Cd, Pb, and Zn are among 

the elements having relatively large concentration rang­

es; that elemental concentrations tend to be highest in 

coals from eastern United States and lowest in coals from 

the west; and that arsenic, chlorine, and selenium are 

enriched in eastern coals. 

Griffin et al. (1980), determined over 60 con­

stituents in coal solid wastes. They found the major 

elements (concentrations greater than 1000 mg/kg) 

were Al, ca, Fe, K, Mg, Na, s, Si, and Ti. The minor 

elements (concentrations generally between 100 mg/kg and 
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Table 1.2 Mean analytical values * for 23 whole coal samples from the 
eastern United States (Appalachian coal fields). 

Arithmetic Geometric Standard Number 
Element Mean Mean Minimum Maximum Deviation Samples I • 

' • Al 1.7 % 1.6 % 1.1 3.1 0.56 23 I 

C 72. % 72. % 63. 80. 5.3 22 t • 
Ca 0.47 % 0.34 % 0.09 2.6 0.51 23 C 

Cl 0.17 % 0.10 % 0.01 0.80 0.21 23 
Fe 1.5 % 1.3 % 0.50 2.6 0.69 23 
H 4.9 % 4.9 % 4.0 6.0 0.44 22 
K 0.25 % 0.21 % 0.06 0.68 0.14 23 
Mg 0.06 % 0.05 % 0.02 0.15 0.03 23 
N 1.3 % 1.3 % 0.94 1.8 0.27 22 
Na 0.04 % 0.03 % 0.01 0.08 0.02 23 
0 8.0 % 7.0 % 2.5 18. 4.3 22 
Si 2.8 % 2.6 ' 1.0 6.3 1.1 23 
Ti 0.09 % 0.09 % 0.05 0.16 0.04 23 

Or.S 0.92 % 0.82 % 0.35 2.5 0.48 23 
Py.S 1.3 % 0.81 % 0.04 2.6 0.91 23 
S04 0.10 % 0.06 % 0.01 0.42 0.10 22 
Tot.s 2.3 % 1.9 % 0.55 5.0 1.3 23 

* Notes: Data from Gluskoter et al. 1977. 
or.s is organic sulfur 
Py.S is pyritic sulfur 



Table 1.2 (continued) Mean Analytical values * for 23 whole coal samples 
from the eastern United States (Appalachian coal fields). 

Arithmetic Geometric Standard Number 
Element Mean Mean Minimum Maximum Deviation Samples 

Ag 0.02 0.02 0.01 0.06 0.01 13 
As 25. 15. 1.8 100 27. 23 
B 42. 28. 5.0 120 32. 23 
Ba 200 170 72. 420 110 14 
Be 1.3 1.1 0.23 2.6 0.56 23 
Br 12. 8.9 0.71 26 7.6 23 
Cd 0.24 0.19 0.10 0.60 0.18 23 
Ce 25. 23. 11. 42. 9.1 14 
Co 9.8 7.6 1.5 33. 7.8 23 
Cr 20. 18. 10. 90. 16. 23 
Cs 2.0 1.6 0.40 6.2 1.6 14 
cu 18. 16. 5.1 30. 7.3 23 
Dy 2.3 2.0 0.74 3.5 0.94 14 
Eu 0.52 0.47 0.16 0.92 0.22 14 
F 89. 84. 50. 150 31. 23 
Ga 5.7 5.2 2.9 11. 2.6 23 
Ge 1.6 0.87 0.10 6.0 1.7 23 
Hf 1.2 1.1 0.58 2.2 0.45 14 
Hg 0.20 0.17 0.05 0.47 0.12 23 
I 1.7 1.4 0.33 4.9 1.1 14 
In 0.23 0.22 0.13 0.37 0.08 14 
La 15. 14. 6.1 23. 5.3 14 

* Notes: Data from Gluskoter et al. 1977. 
All quantities are in ug/g. 



Table 1.2 (continued) Mean Analytical values * for 23 whole coal samples 
from the eastern United States (Appalachian coal fields). 

Arithmetic Geometric Standard Number 
Element Mean Mean Minimum Maximum Deviation Samples 

Lu 0.22 0.18 0.04 0.40 0.12 14 
Mn 18. 12. 2.4 61. 16. 23 
Mo 4.6 1.8 0.10 22. 6.3 23 
Ni 15. 14. 6.3 28. 5.7 23 
p 150 81. 15. 1500 300 23 
Pb 5.9 4.7 1.0 18. 4.0 23 
Rb 22. 19. 9.0 63. 15. 14 
Sb 1.6 1.1 0.25 7.7 1.7 23 
Sc 5.1 4.5 1.6 9.3 2.4 14 
Se 4.0 3.4 1.1 8.1 2.0 23 
Sm 2.6 2.4 0.87 4.3 1.0 14 
Sn 2.0 0.97 0.20 8.0 2.4 19 
Sr 130 100 28. 550 130 14 
Ta 0.33 0.26 0.12 1.1 0.28 14 
Tb 0.34 0.28 0.06 0.63 0.17 14 
Th 4.5 4.0 1.8 9.0 2.1 14 
u 1.5 1.3 0.40 2.9 0.73 14 
V 38. 35. 14. 73. 14. 23 
w 0.69 0.62 0.22 1.2 0.31 14 
Yb 0.83 0.73 0.18 1.4 0.35 14 
Zn 25. 19. 2.0 120 24. 23 
Zr 45. 41. 8.0 88. 18. 19 

* Notes: Data from Gluskoter et al. 1977. 
All quantities are in ug/g. 



1000 mg/kg) were B, Ba, Ce, Cl, er, F, Mn, Sr, Zn, and 

Zr. Twenty other elements were reported in concentra­

tions less than 100 mg/kg. 

Table 1.3 summarizes the data of Kuhn et al. (1980), 

for the mean concentrations of 45 elements found in raw 

coals of the eastern United States. 

Table 1.3 Mean Elemental Concentrations in Raw Coals 
from the Eastern United States • 

Element Concentration Element Concentration 

Al 1.94 ± 0.6% Mo 6 ± 5 
As 10 ± 8 Na 481 ± 248 
B 53 ± 42 Ni 12 ± 3 
Ba 146 ± 61 p 85 ± 57 
Be 0.70 ± 0.2 Pb 8.9 ± 9 
Br 11 ± 9 Rb 14 ± 4 
Ca 0.62 ± 0.5% s 2.0 ± 1.7% 
Cd -- Org.S 1.0 ± 0.74% 
Ce 21 ± 8 Sb 2.3 ± 2 
Co 6.8 ± 6 Sc 4.9 ± 2 
Cr 20 ± 7 Se 3.1 ± 2 
Cs 1.4 ± 0.6 Si 2.41 ± 0.4% 
cu 22 ± 8 Sm 2.2 ± 0.8 
Dy 1.7 ± 0.7 Sr 121 ± 53 
Eu 0.4 ± 0.2 Ta 0.37 ± 0.3 
Fe 1.0 ± 0.5% Tb 0.02 ± 0.09 
Ga 4.7 ± 2 Th 4.1 ± 2 
Hf 1. 3 ± 0.4 Ti 0.10 ± 0.04% 
K 0.19 ± 0.09% u 1.2 ± 1 
La 13 ± 6 V 48 ± 22 
LU 0.13 ± 0.08 w 0.57 ± 0.4 
Mg 0.06 ± 0.05% Yb 0.58 ± 0.2 
Mn 20 ± 10 Zn 29 ± 45 

• All values in µg/g unless otherwise noted; 
Less than values were not included in the 

calculation of mean values. 
Data from Kuhn et al. 1980. 
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1.2 WEATHERING OF PYRITE 

When exposed to oxygen and moisture, pyrite is 

oxidized ultimately to ferric iron and sulfuric acid, 

(Temple and Delchamps 1953, Garrels and Thompson 1960, 

Kuznetsov et al. 1962, Wangen and Jones 1984). Goldhaber 

(1983), found rapid oxidation of pyrite to sulfate at the 

pyrite/water interface, and predicted eventual complete 

oxidation to sulfate (the thermodynamically stable spe­

cies in acid solution in equilibrium with excess oxygen). 

Taylor et al. (1984), used the concentration of sulfate 

produced in mines as a measure of the amount of pyrite 

oxidized, commenting that this provides a minimum 

estimate. 

Singer and Stumm (1970), developed a model (Figure 

1.1) that summarizes the oxidation of pyrite under 

Figure 1. 1 

(a') 

Model for the natural weathering (oxidation) 
of pyrite (from Singer and Stumm, 1970). 

Fe (II) + s2· 1 
+ 02 

( a) 
_......,..,~ so,· + Fe (II) 

Slow 

Fast 

(C) + FeS2 (s) 

Fe(III) 

9 

~ ..,_ 
(d) 

Fe (OH)
3 

(s) 



natural weathering conditions. Reaction "a" is the 

oxidation of FeS2 to sulfate which releases dissolved 

Fe(II) and acidity according to the reaction: Eqn.1.1 

FeS2 + 3. 5 (02) + H20 = Fe2+ + 2SO/ + 2H+. 

Reaction "b" is the oxidation of dissolved Fe(II) to 

Fe(III) according to the reaction: Eqn.1.2 

Fe2+ + 0 • 2 5 ( 02 ) + H+ = Fe3+ + 0 • 5H20 

This step is very slow as a purely chemical process in 

sterile acidic solutions, (Singer and Stumm 1970). 

(Bacterial catalysis will be discussed below.) 

The resulting Fe(III) hydrolyses (reaction "d") re­

leasing more acidity according to the reaction: 

Fe3+ + JH20 = Fe (OH) 3<s> + JH+ Eqn.1.3 

The initial solid precipitate is usually amorphous, but 

with time is converted to stable FeOOH (goethite), or 

rFe
3

(S0
4

)
2

(0H)
6 

(jarosite) where sulfate concentration is 

high. 

Reaction "c" shows the attack on pyrite by Fe3
+ ions 

that oxidize the sulfide and release acidity (as the Fe3+ 

is itself reduced to Fe2+) according to the reaction: 

Eqn.1.4 

The balanced net reaction for the oxidation of pyrite is: 

= 2Fe3+ + 4SO/ + 2H+ Eqn.1.5 

Thus, each mole of pyrite that undergoes oxidation yields 

1 mole of Fe(III), 2 moles of sulfate, and 1 mole of H+. 
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Also, at pH greater than 2.5, where Fe(III) hydrolyzes, 

three more moles of hydrogen ions are produced, resulting 

in lowered solution pH. 

Goldhaber (1983) has elucidated a mechanism of 

pyrite oxidation (which covers steps a,b, and d of the 

singer and Stumm model just discussed). Lowson (1982) 

reviewed proposed mechanisms of ferrous iron oxidation by 

oxygen to ferric iron. 

At pH less than 4.5 the rate of chemical (abiotic) 

oxidation of Fe2
+ to Fe3

+ becomes insignificant, its half 

life being about 300 days for 5 ppm Fe(II) solution, 

(Kleinmann et al. 1981). Rather, it is biologically 

mediated by the bacterium Thiobacillus ferrooxidans. 

(There have been many studies of the role of T. 

ferrooxidans in the catalysis of the oxidation of Fe(II) 

and pyrite: e.g. Temple and Delchamps 1953, Kuznetsov et 

al. 1962, Silverman 1967, Kleinmann and Crerar 1979, 

Myerson 1981, Hoffmann et al. 1981, Paciorek et al. 1981, 

Lazaroff et al. 1982, Taylor et al. 1984). The presence 

of these microbes, whose optimum activity is between pH 4 

and 2 but ceases below pH 1.5, can increase the rate of 

oxidation of Fe2
+ by as much as 5 or 6 orders of magni­

tude. 

At pH less than 3.0, Fe3+ is the only important 

oxidizer of pyrite. Garrels and Thompson found that the 
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rate is limited by adsorption of Fe~ and Fe2• on the 

pyrite surface. 

Taylor et al. (1984) measured the stable isotope 

ratios for 180/160 and 34s;32s in acid mine drainage and 

estimated the percent contribution of chemical and 

microbial pathways to pyrite oxidation at pH 2. Their 

estimates indicate that in aerobic submerged systems, 65% 

of the pyrite is oxidized by Fe3• and 35% by T. ferro­

oxidans. However, in alternating wet and dry systems, 

(such as exist in coal piles exposed to the weather), 

only 23% of the oxidation of pyrite is by Fe3• while 77% 

is by the microbes. Since the bacteria that catalyze the 

acidity-producing reactions thrive under acid conditions, 

once acidity is initiated acid production becomes rapid, 

(Drever 1982). 

It should be recognized, however, that the iron­

oxidizing bacteria are aerobic, so that gaseous oxygen 

concentrations of less than 2% by volume are potentially 

limiting to pyrite oxidation, (Erickson et al. 1984). In 

mine tailings (and by extension other wastes from coal 

cleaning and use), the availability of gaseous oxygen and 

the rate of diffusion of oxygen are the critical factors 

controlling the rate of acid generation, (Nicholson et 

al. 1989). 

survey of the literature has revealed the following 

factors which may affect the rate of oxidation of pyrite: 
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Bacteria (population, growth factors, and activity) 

Catalysts (such as Ni2+, co2+, cu2+, Ce(IV), Mn04") 

Depletion of mineral phases 

Diffusion (of Fe3+, Oz, and reaction products) 

Ferrous and ferric ion concentrations 

Fe3+/Fe2+ ratio ( in solution and on active surfaces) 

Galvanic protection (by more active sulfides) 

Inorganic anion complexes (e.g. of Fe by so4 =) 

Media (dry, moist, submerged, alternating) 

Organic compounds (bactericidal and complexing) 

Other oxidizing agents (e.g. Ce ( so4 ) 2 ) 

Oxygen (exchange, partial pressure, and diffusion) 

pH (concentrations of both a+ and OH" ions) 

surface area (and particle size) 

Surface coatings (by organics or precipitates) 

Temperature 

Gottschlich et al. (1987) summarized the key variables in 

the rate of oxidation of pyrite to include temperature, 

particle size, speciation, and Oz/CO2 profile. 

1.3 LEACHING OF TRACE ELEMENTS 

There is quite a body of literature on leachates 

derived from coal, coal storage piles, coal mine tail­

ings, coal cleaning wastes, and end products from the use 

of coal as fuel (e.g. fly ash and slag). The reader is 

referred particularly to Anderson et al. 1976, Wachter 
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and Blackwood 1978, Davis and Boegly, Jr. 1978, 1981a, 

and 1981b; Griffin et al. 1980, and Heaton et al. 1982. 

As a result of the oxidative weathering of coal and 

the release of acidity, trace elements are released from: 

a) the pyrite during dissolution, b) the coal itself by 

leaching, and c) any associated minerals susceptible to 

acid dissolution or ion exchange, (Kuznetsov et al. 1962 , 

Nordstrom 1982, Heaton et al. 1982). Most trace and 

minor constituents are found in such minerals as 

sulfides, sulfates, carbonates, and clays; (see Table 

1.1). Some occur as isomorphic replacements or as 

exchangeable cations on clays, (Kuhn et al. 1980). 

Pyrite has been reported to serve as a reservoir of s, 

Fe, As, Se, Br, Cd, and Sb; while the very leachable co, 

Ni, cu, and Zn were associated with mixed-layer clays or 

dispersed throughout coal wastes, (Heaton et al. 1982). 

Griffin et al. (1980}, identified important factors 

controlling the solubility of mineral phases including: 

pH, redox environment, oxidation states, concentration 

and speciation of individual inorganic and organic ions 

and complexes in solution, and total ionic strength. 

Coward and Horton (1980), identified pH, particle size, 

flow rate, contact time, and o2/N2 as the important 

variables in the aqueous leaching of heavy metals from 

soft coal. Davis and Boegly, Jr. (1981a) investigated 

coal particle size, coal type (eastern or western), and 
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storage conditions (wet or wet and dry), and found them 

all to be significant in determining the drainage 

quality. Griffin et al. (1980), singled out pH as the 

most important factor affecting the solubility of 

accessory elements in coal solid wastes; and ranked redox 

potential as the second most important solubility factor. 

(See also Garrels and Christ 1965). 

Thermochemical solubility modeling has indicated 

that similar mineral phases control the aqueous solubil­

ity of many major, minor, and trace ionic species for 

solid wastes, (Griffin et al. 1980). Heaton et al. 

(1982), concluded that important determinants of coal 

waste leaching behavior are pyrite (which determines the 

acid generating potential of the waste), calcite (which 

determines the capacity of the waste to self-neutralize 

the acids released by oxidation of pyrite), and the clay 

minerals (which serve as reservoirs for many of the 

leachable trace elements). 

Generalizations regarding component concentrations 

in coal waste leachates include: a) the highest concen­

trations of metals are found in the most acidic solu­

tions, with Al, Fe, Mn, and Zn typically the most concen­

trated; b) sulfate is the dominant anion, and along with 

Cl, K, and Na, showed no pH dependency in their solubili­

ty; and d) Ca, Mn, Pb, and so4~ show up repeatedly at 

concentrations greater than water quality standards over 
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the entire pH range of 3 - 10; (Griffin et al. 1980). 

Summarizing the results of a major study of the Leviathan 

Mine Drainage Basin (California/Nevada), Ball and Nord­

strom (1985), stated that the water issuing from the mine 

area contained mg/L concentrations of As, Cr, Co, cu, Mn, 

Ni, Tl, V, and Zn; and from hundreds to thousands of mg/L 

concentrations of Al, Fe, and so4 , at pH values as low as 

1.8. 

Wewerka et al. (1982), tabulated 73 elements 

released during the continuous leaching of Illinois Basin 

coal refuse. Griffin et al. (1980) list the 

concentrations of 57 elements measured in the leachates 

from coal solid wastes. Their tables include samples 

collected in the general pH range of 2.5 to 11. Stahl, 

Jr. and Davis (1984) tested four coals from Illinois, 

Kentucky, Montana, and Texas in controlled laboratory 

reactors that simulated rainfall events over a 120 day 

period. They reported the following ranges for the 

average value of the runoffs: pH= 2.2 to 7.1, redox 

potential= -3 to 284 mv, conductivity= 200 to 5833 

umhos/cm, turbidity= 5 to 98 (no. of transfer units), 

ammonia= 0.2 to 1.0 mg/L, nitrate= 0.3 to 27.0 mg/L, 

organic nitrogen= 9 to 50 mg/L, sulfate= 65 to 7211 

mg/L, total organic carbon= 6 to 70 mg/L, inorganic 

carbon= 2.6 to 21 mg/L, biochemical oxygen demand <5 to 

20 mg/L, chemical oxygen demand= 65 to 744 mg/L, and 
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suspended solids (nonfilterable residue)= 54 to 596 

mg/L. 

Davis and Boegly, Jr. (1981a) published a table 

comparing the ranges of data reported in four different 

studies by other researchers. Table 1.4 (from Wachter 

and Blackwood 1978), shows the average effluent 

concentrations for water pollutants from coal storage 

areas for each major coal region of the United states. 

1.4 DRAINAGE DILUTION AND PRECIPITATION 

The first precipitates from acidic mine drainage and 

coal leachates are dominated by Fe(III). Both jarosite 

and ferric hydroxide have been observed as precipitates 

in acid mine drainage, forming in surface streams and 

ponds after discharge; but they are not stable for more 

than a season due to weathering which decomposes them to 

goethite, (Nordstrom 1982, Nordstrom et al. 1979, 

Karathanasis et al. 1988). Brady et al. (1986), found 

that laboratory precipitates of natrojarosite transformed 

to Fe-oxides upon aging for 30 days at pH 6.0; and that 

only ferrihydrite-like materials were produced in 

solutions with SOt)Fe ratios greater than 1.5. In the 

field, they noted that a stream receiving acid-sulfate 

mine drainage had precipitates consisting primarily of 

goethite and lesser amounts of ferrihydrite-like 

materials. 
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Table 1.4 Average effluent concentrations from coal storage * areas. 

Great Interior Interior South-
Effluent Qarameter AQQalach'n Plains Eastern Western Western western 
suspended solids 1,521 1,282 1,264 1,853 2,486 1,538 
Dissolved solids 259 430 1,136 5,539 1,900 356 
Sulfate 66 1,598 648 4,860 240 190 
Iron 3.1 1.5 9.1 1,131 8.2 5.5 
Manganese 0.03 0.14 0.44 17. 9 0.4 0.04 
Free silica 12.3 <DL 0.8 86.3 <DL <DL 
Cyanide <0.001 <DL 0.002 <DL <DL <DL 
BOD5 <5.0 <7.5 <DL <1.2 <2.5 <7.5 
COD 1,407 1,324 1,556 1,053 1,826 769 
Nitrate 0.12 0.14 0.33 0.09 1.8 0.16 
Phosphate <DL <DL <DL <DL <DL <DL 
Antimony 2.1 <DL 7.5 10.3 14.0 6.5 

~ Arsenic 23 1.8 4.1 10.1 5.6 4.1 
0) Beryllium <DL <DL <DL <DL <DL <DL 

Cadmium <DL <DL <DL 0.05 0.005 <DL 
Chromium <DL <DL <DL 0.03 0.04 <DL 
Copper 0.02 <DL <DL 2.2 <DL 0.02 
Lead 0.05 0.05 0.06 0.33 0.07 0.05 
Nickel 0.06 0.02 0.09 10.2 0.05 0.03 
Selenium 23.8 <DL 12.5 25.2 15.0 21.5 
Zinc 0.000 0.17 0.14 25.0 0.15 0.04 
Mercury <0.001 0.003 <DL 0.004 0.005 0.002 
Chloride 0.33 <DL <DL 2.3 <DL <DL 
organic carbon 251.7 373.2 380.1 90.5 318.4 158.7 
pH 6.28 6.93 7.62 2.81 7.24 6.60 

* from Wachter and Blackwood, 1978; concentrations are g/m3 • 



At pH greater than 5, the concentration of aluminum 

can be viewed as consistent with the solubility of kao­

linite or microcrystalline gibbsite. But in sulfate rich 

acid mine drainages at pH less than 5, aluminum concen­

tration is consistent with the solubility of a jurbanite­

like mineral, (Karathanasis et al. 1988). However, 

speciation calculations for aluminum in water samples 

from an acid mine water drainage basin demonstrated a 

distinct transition from conservative behavior for pH 

below 4.6 to nonconservative behavior for pH above 4.9. 

The nonconservative behavior correlated closely with the 

equilibrium solubility of microcrystalline gibbsite or 

amorphous aluminum hydroxide, (Nordstrom and Ball 1986). 

Chapman et al. (1983), made detailed analysis of the 

sediments and waters of two acid mine drainage streams. 

One stream bed had a thick crust of hydrous iron oxide 

along with substantial quantities of adsorbed silica, 

sulfate, and aluminum; lesser quantities of arsenic; and 

small amounts of jarosites. (rand Pb-jarosites and 

jurbanite were supersaturated for all sites.) Saturation 

index calculations for the second stream indicated that 

Fe(OH) 3 , Al(OH) 3 , and CU2 (0H) 2C03 should be precipitating; 

a prediction supported by the down stream loss of the 

elements. Changes in pH and the concentrations of Cu, 

zn, Cd, and Mn could usually be accounted for by dilution 

alone. 
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Adsorption and coprecipitation have long been 

thought to control the accumulation and distribution of 

many trace elements in natural waters and soils, (Jenne 

1977, Wangen et al. 1982, Wangen and Jones 1984). It has 

been observed that Fe2•, Mn2+, Mg2+, and zn2• are lost from 

solutions at pH values below their OH" solubility limits, 

indicating that they are being scavenged from solution by 

adsorption, (Jenke et al. 1983). Adsorption of metal 

ions on oxide surfaces is pH dependent. (See Davis and 

Leckie 1978, Benjamin and Leckie 1981, Buffle 1988, and 

ozombak and Morel 1990.) 

Griffin et al. {1980), hypothesized that removal of 

trace metals such as Cd, Co, Cr, cu, Ni, Pb, and Zn from 

slurry pond leachates may be controlled by adsorption on 

or coprecipitation with iron, manganese, and aluminum 

oxides and hydroxides. They commented that this could 

continue as long as the solid phase was continually 

replenished by formation of new metal oxides. The 

chemical nature and generally high specific surface area 

of iron oxides in particles and as coatings on other 

particles make them efficient sinks for anions such as 

phosphate, molybdate, and silicate, as well as trace 

elements like cu, Pb, V, Zn, Co, Cr, and Ni, (Schwertmann 

and Taylor 1977). Iron from mine waters was found to be 

transported predominantly in the particulate phase in 

carnon River waters (south west England), and virtually 
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all of the dissolved iron precipitated in estuarine 

waters. Dissolved concentrations of Cu, Zn, and As 

appeared to be regulated by sorptive processes 

particularly with Fe oxyhydroxides in both fresh and 

saline waters, (Johnson and Thornton 1987). 

Fillipek et al. (1987), investigated the interaction 

of acid mine drainage with creek waters and sediments. 

They found that acid mine drainage had acidified large 

volumes of water and added high concentrations of 

dissolved heavy metals to a creek draining rocks of low 

acid-neutralizing capacity. During mixing of the acid 

sulfate stream waters with an almost equal volume of 

dilute uncontaminated water, CU, Zn, Mn, and Al remained 

in solution rather than precipitating or adsorbing onto 

solid phases. They found that arsenic was almost com­

pletely scavenged from solution within a short distance 

from the sulfide sources; and that relative sorption of 

cations decreased with decreasing water pH. 

In a report on recent work investigating the neu­

tralization of synthetic acid leachates from coal using 

solutions of NaHco
3

, valette-Silver and Helz (1989) 

found: no losses of Al, cu, Cr, and Be below pH 2.5; 

filterable iron disappeared rapidly between pH 2.5 and 

3.5; filterable Al and cr were removed above pH 4; and 

Cu and Be were not quantitatively removed until higher pH 

values were reached. They concluded that the contamina-
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tion of surface water near coal piles would be confined 

to the near-field unless the leachate overcomes the 

neutralizing capacity of the receiving waters. In exper­

iments diluting the synthetic leachates with river water 

or estuarine water, they found dilutions of approximately 

500:1 necessary to reach pH's that brought about the 

removal of the toxic metals. They noted that precipita­

tion of the iron contained in the leachate facilitated 

removal of the metals by adsorption onto the oxyhydrox­

ide. Reduced acidity in solution affects surface charge, 

and thus trace element adsorption onto solid surfaces. 

(See Davis et al. 1978.) 

1.5 ENVIRONMENTAL HAZARDS OF COAL DRAINAGE 

The thermodynamic activity of the uncomplexed ion is 

probably the single most important factor affecting the 

biological availability of solute trace elements. The 

biological importance of solid forms of trace elements 

may be mainly due to their regulation of equilibrium 

solute concentrations in the water by sorption-desorption 

and dissolution-precipitation reactions, (Jenne and Luoma 

1977). certainly accumulation in the aquatic food chain 

of toxic substances from coal drainage can pose serious 

environmental hazards. Forstner and Wittmann (1979) 

summarized catastrophic episodes of metal poisonings by 

Hg Cd b d c Table 1.5, from their book, , , P, cu, an r. 
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shows a classification of elements according to toxicity 

and availability in the environment. 

Table 1.5 Toxicity and availability of elements. 

Toxic but v.in- Very toxic and Noncritical soluble or v.rare relativel~ accessible Na C F Ti Ga Be As Au 
K p Li Hf La Co Se Hg 
Mg Fe Rb Zr Os Ni Te Tl 
ca s Sr w Rh cu Pd Pb 
H Cl Al Nb Ir Zn Ag Sb 
0 Br Si Ta Ru Sn Cd Bi 
N Re Ba Pt 

Trace concentration of metals such as Pb, As, cu, or 

Al, when leached from coal and its associated mineral 

matter, may be toxic to plants, fish, wildlife, and 

aquatic insects, (Davis and Boegly, Jr. 1981b). Arsenic, 

cadmium, and selenium from coal pile and coal waste 

effluents could cause potential biological problems in 

the aquatic environment, (Hall, Jr. and Burton 1982). 

Wewerka, et al. (1982), identified Al, As, Be, Cd, Co, 

cu, Fe, Mn, Ni, Pb, Se, and Zn as trace elements being 

released from Illinois Basin coal cleaning wastes in 

potentially hazardous concentrations. Bioassay studies 

with leachates from Illinois coal solid wastes led to the 

conclusions: a) approximately one-half of the leachates 

were acutely toxic to young fathead minnow fry; b) the 

degree of a leachate•s toxicity and the amount of 

dilution necessary to ensure survival of the minnows 

23 



during a 96-hour bioassay was largely a function of the 

pH and total ion concentration of the leachate, (Griffin 

et al. 1980). 

Table 1.6, (from Wachter and Blackwood, 1978), 

compares runoff concentration from coal storage areas to 

hazardous concentration for twelve elements that have 

been considered inorganic pollutants. 

Table 1.6 Coal storage runoff concentrations 
compared to hazardous concentrations.* 

Effluent Runoff+. g/m3 Hazardous#. g/m3 ~LCH ratio 

Arsenic 0.001 0.05 0.02 
Beryllium <DL 0.011 ----
Cadmium 2x10-7 0.01 0.00002 
Chromium 4x10-7 0.05 0.000008 
Copper <7x10-6 1.0 0.000007 
Cyanides 1x10-7 0.005 0.00014 
Lead 6x10-6 0.05 0.00012 
Mercury 1x10-7 0.002 0.00005 
Nickel 4x10-5 0.0013 0.031 
Selenium 0.002 0.01 0.2 
silver <DL 0.05 
zinc 1x10-s 5.0 0.000014 

* From Wachter and Blackwood 1978. 
+ The runoff concentration was calculated from the source 

concentrations of their "representative" (105,000 ton) 
coal stockpile, diluted by the average runoff volume 
from the storage facility drainage basin (610 m3/hr) · 

# Also note that the hazardous concentrations were taken 
from the USEPA water quality criteria published July, 
1976. They were estimated from Lo50 oral/rat valu~s, 
and (supposedly) represent the maximum concentration 
that would have no effect on human health. 
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Torrey (1978) summarized the results of about 200 

bioassays on the toxicity of As, Ba, Cd, cl, er, cu, Fe, 

Pb, Mn, Hg, Ni, Se, and Zn to aquatic biota. Portions of 

that work are included in Table 1.7. 

An early article on stream quality in Appalachia 

reported that nearly 200 of 318 sites assessed did not 

meet drinking-water standards, due mainly to excessive 

concentrations of solutes commonly associated with coal 

mine waters, (Biesecker and George 1966). More recently, 

swift (1982), studied the effects of coal pile runoff on 

a stream in Allegany County, Maryland. Coal pile leach­

ate had high concentrations of Fe, so4 , Mn, Al, and Zn, 

and pH's from 1.4 to 3.1. The author cites dilution as 

the reason the creek waters had much lower concentrations 

of sulfate and metals, and a pH of about 7. He also 

found much lower macroinvertebrate population densities 

at all sites downstream from coal storage areas than were 

found upstream. 
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Table 1.7 Toxicity of selected trace elements 
to aquatic biota.* 

Organism 
Arsenic 

Gen'l Aquatic 
organisms 

Daphnia magna 

Oncorhynchus 
gorbuscha 

o. keta 
Trout 
Trout 
Alburnus 

alburnus 
Cyprinus 

carpio 
Minnows 

Lucioperca sp. 

Barium 
Daphnia magna 

Stickleback 
Cadmium 

Ephemerella 
subvaria 

Daphnia magna 

Eurypanopeus 
depressus 

Pimephales 
promelas 

Fish (general) 
Lepomis 

macrochirus 
L. cyanellus 
Carassius 

auratus 

* from Torrey 1978. 

Dosage. mg/L 

1.1 - 45 
2.85 
0.52 

5.0 
8.4 
7.6 
5.0 
2.2 
1.1 - 1. 6 
3.1 
2.2 

11. 6 
60 
29 
15 
1.1 - 2.2 
0.7 - 1.1 

14.5 
13.5 
5.8 

8.9 

400 

2.0 
0.005 
0.0017 

4.9 
11.0 

0.029 
0.029-73.5 

80 
1.94 
2.84 

2.34 
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Remarks 

Lethal, arsenite 
LC50 = 3 wk 
16% reproductive 
impairment 

Lethal, 10 days 
LC50 = 48 hr 
Tolerated 30 days 
Tolerated 24 hr 
Lethal, 72 hr 
Tolerated 11 days 
Lethal, 4 - 6 days 
Tolerated 13 days 
Lethal, 36 hr 
Lethal, 16 hr 
LC50 = 48 hr 
Tolerated 96 hr 
Lethal, 48 hr 
Tolerated 11 days 

LC50 = 48 hr 
LC50 = 3 wk 
LC50 , 50% reproduc­

tive impairment 
LC50 , 50% reproduc­

tive impairment 
Lethal concen. limit 

LC50 = 96 hr 
LC50 = 3 wk 
LC50 = 3 wk, 16% re-

product. impairmt. 
LC50 = 72 hr 
LC100 

LCso = 30 days 
LCso = 96 hr 
LCso = 11 mo, adults 
LCso = 96 hr, fry 
LCso = 96 hr, fry 

LCso = 96 hr, fry 



* 

Table 1.7 continued: Toxicity of selected trace elements 
to aquatic biota.* 

Organism Dosage. mg/L 
Cadmium, cont. 

Poecilia 
reticulata 

Lepomis gibbosus 
Cyprinus carpio 
Anguilla rostrata 
Roccus americanus 
R. saxatilis 
Fundulus diaphanus 

Chlorine 
White sucker 

1.27 
1.5 
0.24 
0.82 
8.4 
1.1 
0.11 

LO 

Rainbow trout 
Fathead minnow 
Brook trout 
Brown trout 
Daphnia magna 
Gammarus 

0.014-0.029 
0.05 - 0.16 

0.02 
0.02 
0.014 

pseudolimnaeus 
crayfish 
Snails 

Chromium 
Daphnia magna 

Acroneuria 
lycorias 

Ephemerella 
subvaria 

Hydropsyche 
betteri 

Hexagenia (nymphs) 
Lepomis 

macrochirus 
Fathead minnow 

Carassius auratus 
Lebistes 

reticulatus 
Brook trout 

from Torrey 1978. 

0.014 
0.78 
0.78 

<1.2 

0.33 

0.60 

32 

16 

32 
8.6 

71.9 
64.7 
2.0 

37.5 

30.0 
0.40 

50.0 
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Remarks 

LCso = 96 hr, fry 
LCso = 96 hr, fry 
LCso = 96 hr, fry 
LCso = 96 hr, fry 
LCso = 96 hr, fry 
LCso = 96 hr, fry 
LCso = 96 hr, fry 

Lethal 30 to 60 min . , 
residual chlorine 

TLs0 = 96 hr 
TLso = 96 hr 
Lethal 
Lethal 
Lethal 

Lethal 
TLs0 = 7 days 
TLso = 7 days 

Threshold immobil-
ization, 64 hr 

16% reproductive 
impairment, 3 wk 

50% reproductive 
impairment, 3 wk 

LC50 = 7 days 

LC50 = 96 hr 

LC50 = 7 days 
Mortality, 96 hr 

LC50 = 9 6 hr, er+++ 
LC50 = 9 6 hr, er+++ 
Reproductive im-

pairment, 10 mo. 
LC50 = 96 hr 

LC50 = 96 hr 
Reproductive im-

pairment, 2 yr 
TLm = 96 hr 



Table 1.7 continued: Toxicity of selected trace elements 
to aquatic biota.* 

Organism Dosage. rng/L 
Chromium, cont. 

Rainbow trout 0.40 

69.0 
Largemouth bass 195 

94 
copper 

Daphnia rnagna 0.022 

0.035 

Acroneuria lycorias 8.3 
Ephemerella 

subvaria 0.32 
Hydropsyche 

betteri 32 
Orconectes rusticus 3 
carnpeloma decisum 1.7 
Physa integra 0.039 
Gammarus 

pseudolimnaeus 0.020 
Pirnephales prornelas 0.023 

0.018 

0.075 
Lepornis macrochirus 0.66 
Carassium auratus 0.036 
Lebistes 

reticulatus 0.036 
Salvelinus 

fontinalis 0.10 
0.03 

Ictalurus nebulosus 0.18 
Sockeye and pink 

salmon 0.025 

Rainbow trout 0.037 

Steelhead 0.03 
Lake trout 0.111 

Brown trout 0.037 

* from Torrey 1978. 
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Remarks 

Reproductive im-
pairment, 2 yr 

TLm = 96 hr 
TLm = 48 hr 
TLm = 80 hr 

LC50 , 16% repro. im­
pairment, 3 wk 

LC50 • 50% repro. im-
pairment, 3 wk 

LC50 = 96 hr 

LC50 = 48 hr 

LCso = 14 days 
LCso = 96 hr 
LCso = 96 hr 
LCso = 96 hr 

LC50 = 96 hr 
LC50 = 96 hr 
Reproductive im-

pairment, 10 mo. 
LC50 = 96 hr 
LC50 = 96 hr 
LC50 = 96 hr 

LC50 = 96 hr 

LC50 = 96 hr 
43% survival of 

adults, 8 months 
LC50 = 96 hr 

Mortality, retard­
ed development 

Reduced egg and 
fry survival 

Fry mortality, 96 hr 
Reduced egg and 

f·ry survival 
Reduced egg and 

fry survival 



Table 1.7 continued: Toxicity of selected trace elements 
to aquatic biota.* 

Iron 

Lead 

Organism 

Daphnia magna 

Gammarids 

caddisflies 

Dosage. mg/L 

5.2 

5.9 

4.4 

3.0 

Acroneuria lycorias 
Ephemerella subvaria 
Hydropsyche betteri 
Fathead minnow 
Brook trout 

Daphnia magna 

Acroneuria lycorias 
Ephemerella 

subvaria 
Hydropsyche betteri 
Pimephales promelas 
Lepomis macrohirus 
carassius auratus 
Lebistes 

reticulatus 
Coho salmon 
Chinook salmon 
steelhead 
Brook trout 
Fathead minnow 

25.0 

16.0 
0.32 

16.0 
50.0 
12.0 

0.45 
1 - 0.3 
64.0 

16.0 
32.0 
5.6 

23.8 
31.4 

20.6 
0.3 
1.0 
0.6 
0.5 
5.58 

Manganese 
Daphnia magna 

Anguilla japonica 
Mercury 

Macrocystis 
pyrifera 

Phytoplankton 

* from Torrey 1978. 

5.20 

5.7 
4.1 

4.1 

50 

100 

29 

Remarks 

Reproductive im­
pairment, 3 wk 

LC50 = 3 wk 

16% reproductive im­
pairment, 3 wk 

Reproductive im­
pairment, 4 months 

Reduced emergence, 
2 months 

Lc50 = 9 days 
LC50 = 96 hr 
Lc50 = 9 days 
Mortality, 5 months 
Reduced growth 37 wk 

LC50 = 48 hr 
LC50 = 3 wk 
Lc50 = 14 days 

LCso = 7 days 
LCso = 7 days 
LCso = 96 hr 
LCso = 96 hr 
LCso = 96 hr 

LC50 = 96 hr 
Fry mortality, 96 hr 
Fry mortality, 96 hr 
Fry mortality, 96 hr 
Fry mortality, 3 wk 
Lc50 = 96 hr 

Reproductive im-
pairment, 3 wk 

LC50 = 3 wk , 
16% reproductive im­

pairment, 3 wk 
Lethal 

50% photosynthesis 
reduction, 4 days 

complete inactiva­
tion, 4 days 



Table 1.7 continued: Toxicity of selected trace elements 
to aquatic biota.* 

Organism Dosage, mg/L 
Mercury, cont. 

Nitzschia 
delicatissima 0.1 

Daphnia magna 0.13 
6.7 

3.4 

5.0 
Nickel 

Zinc 

Daphnia magna 

Acroneuria lycorias 
Ephemerella subvaria 
Hydropsyche betteri 
Pimephales promelas 
Lepomis macrochirus 
Carassius auratus 
Lebistes reticulatus 
Rainbow trout 

Daphnia magna 

Acroneuria lycorias 
Ephemerella 

subvaria 
Hydropsyche betteri 
Pimephales promelas 
Lepomis macrochirus 
Carassius 

reticulatus 
Coho salmon 
Chinook salmon 
Steelhead 
Rainbow trout 

0.51 
0.13 

0.03 

33.5 
4.0 

64.0 
4.58 
5.18 
9.82 
4.45 

32 

0.10 
0.158 
0.07 

0.102 

32 

16 
32 

0.96 
6.44 

1.27 
0.14 
0.30 
0.30 
4.6 

Remarks 

Reduced growth and 
photosynthesis 

LC50 = 3 wk 
50% reproductive im­

pairment, 3 wk 
10% reproductive im-

pairment, 3 wk 
LC50 = 48 hr 

LCso = 48 hr 
50% reproductive im­

pairment, 3 wk 
16% reproductive im-

pairment, 3 wk 
LC50 = 96 hr 
LC50 = 96 hr 
LC50 > 14 days 
LC50 = 96 hr 
LC50 = 96 hr 
LC50 = 96 hr 
LC50 = 96 hr 
LC50 = 48 hr 

LC50 = 48 hr 
LC50 = 3 wk 
16% reproductive im­

pairment, 3 wk 
50% reproductive im-

pairment, 3 wk 
LC50 = 14 days 

LCso = 10 days 
LCso = 11 days 
LCso = 96 hr 
LCso = 96 hr 

LC50 = 96 hr 
Fry mortality, 96 hr 
Fry mortality, 96 hr 
Fry mortality, 96 hr 
LC50 = 5 days 

Note: LC is the lethal concen. to 50% of a population. 
TT~o is the tolerance limit for 50% of population. 

* from 

"'"'50 1· 't TLm is the median tolerance 1m1 · 
Torrey 1978. 
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CHAPTER 2 METHODS 

2.1 BATCH OXIDATION OF SLURRY OF WHOLE COAL 

2.1.1 Introduction 

A study of the release of selected elements during 

the oxidation of whole coal was undertaken. A sample of 

whole coal was ground and slurried in water in contact 

with air. Samples were withdrawn periodically and fil­

tered. The pH of each filtrate was measured before its 

acidification and storage. The solids were washed with a 

magnesium chloride ion-exchange solution, which was also 

filtered and acidified and stored. Analyses for dissol­

ved sulfate, iron, aluminum, zinc, cadmium, copper, chro­

mium, lead, arsenic, and selenium were performed later. 

2.1.2 Coal Sample 

Several kilograms of coal from the Leslie Mine in 

Osceola Mills, Centre County, Pennsylvania, were obtained 

from the Potomac Electric Power Company, Chalk Point 

Generating Station, (Aguasco, Maryland) by N. J. Fen­

dinger, (then a University of Maryland graduate student 

engaged in research on coal at the Center for Environmen­

tal and Estuarine Studies, Chesapeake Biological Labora­

tory, Solomons, Md). After being mined, the coal was 

crushed, washed to reduce sulfur and ash content, and 
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shipped by coal train to PEPCO's Aquasco facility where 

it was stored outside; (Fendinger et al. 1989, and pri­

vate communication). Our sample was obtained approxi­

mately one month after the coal was mined. It was 

scooped from the coal pile into a large, heavy-duty, 

plastic bag. After transport back to the laboratory, it 

was refrigerated at 7 to 8 degrees Celsius for short-term 

storage. 

About five kilograms of the coal, in small batches, 

were ground to powder with a mortar and pestle and then 

dried for two hours at sixty degrees Celsius with occa­

sional stirring in a forced-air oven. The individual 

batches were thoroughly mixed before being placed in a 

large desiccator over Drierite, (anhydrous calcium sul­

fate), for long-term storage. 

2.1.3 Characterization of the Coal 

Chemical characterization of this coal is summarized 

in Table 2.1. The metals data have been published by 

Helz et al. 1987, and were obtained by DC plasma emission 

spectroscopy and atomic absorption spectroscopy. Specif­

ically, aluminum and beryllium were determined by DCP and 

the rest of the metals mainly by AAS. The rest of the 

data are from Fendinger et al. 1989. Total carbon, 

hydrogen, and nitrogen were determined using a Perkin­

Elmer model 240B elemental analyzer. Penniman and Brown 
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(Baltimore, Maryland), determined sulfur using ASTM 

method D-4239-C, and the ash content using ASTM method o-

3174-B2. The trace organic materials were operationally 

defined and determined in duplicate 2 g samples of the 

coal by extraction during sonication in dichloromethane, 

fractionation on silica gel, and characterization by gas 

chromatography and GC/MS. (See Fendinger et al. 1989). 

Table 2.1 Chemical characterization of coal sample.* 

Substance Concentration. (w/w) 

C 
H 
N 
s 
Ash 
Al 
Fe 

K 
Na 
Ca 
Mg 

Cu 
Zn 
Mn 
Cd 

Major Components, % 

Minor Components, mg/g 

Trace Components, ug/g 

Be 
organic Material, ug/g 

Total Aliphatic Hydrocarbons 
Total Aromatic Hydrocarbons 
Polynuclear Aromatic Hydrocarbons 

* Adapted from Helz et al. 19871 
and Fendinger et al. 1989 · 

69.0 
4.76 
1.16 
3.38 

14.8 
2.42 
1.87 

2.8 
2.3 
1.19 
1.09 

39.7 
35.3 
28.5 
4.2 
2.9 

29.85 
62.40 
3.34 

C · f Table 2 1 with Tables 1.2 and 1.3 ompar1son o · 

Concentrat1·on of most of the elements reveals that the 
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rmined in this coal are within a range of about+/-
dete .. 

standard deviation of averages previously reported 
one 

~nole coals from the eastern United states. The 
for 

e~ceptions include copper, beryllium, sodium, and cadmi-

The total sulfur content of this coal, 3 . 38%, is 
um• 

ximately one standard deviation above the means 
appro 

reported by Gluskoter et al. 1977, but well within the 

of values they reported, (0.55 through 5 .0%). 
range 

the other major components, aluminum ( 2 . 42 %) and iunong 

iron (1 . 81%) are also approximately one standard devia-

. bove the mean values for Eastern coals. For fur-t1.on a 

comparison, Table 2 .2 shows the mean concentrations tner 

Sulfur, aluminum, and iron reported for Illinois Basin of 

d western coals by Gluskoter et al. 1977, and Kuhn et 
an 

1 1980. a . 

~able 2.2 Means, Al, and Fe concentrations in 
·~ Illinois Basin and Western coals. 

Illinois Basin 

western 

Sulfur 

3.5 ± 1.1% 
3.9 ± 1.4% 

0.73±0.33% 
0.73±0.2 % 

* Gluskoter et al. 1977 
+ Kuhn et al. 1980 

Aluminum 

1.2 ± 0.4% 
1.3 ± 0.3% 

0.94±0.56% 
1.06±0.4 % 

Iron 

2. 0 ± 0. 6% * 
2.0 ± 0.9% + 

0.51±0.24% * 
0.43±0.l % + 

Note that this sample of an Eastern coal contains sulfur 

and iron concentrations only a little below the averages 
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for Illinois Basin coals, but its aluminum content is 

about twice their typical concentration. 

The copper concentration in this coal is about twice 

the reported averages, but could easily be attributed to 

a localized enrichment of CuFeS2, (chalcopyrite, a miner­

al commonly found in Eastern coals) in the sample of coal 

analyzed. The concentration of cadmium in this coal 

appears to be about seven times the average for 23 East­

ern coals reported by Gluskoter et al. 1977, (see Table 

1.2). This may also be due to a localized enrichment of 

sulfide minerals, since cadmium is typically found in 

association with zinc, and sphalerite (ZnS) is commonly 

found among the sulfide minerals associated with coal, 

(see Table 1.1). 

Beryllium is listed in Table 1.1 as a trace constit­

uent of the clay minerals. Its concentration in this 

coal is two to four times the average concentrations 

shown in Tables 1.2 and 1.3. However, Wachter and Black­

wood (1978) reported Be in Appalachian coals to average 

0.0025 percent, which is ten times the level found in 

this sample. 

The sodium concentration in this coal is five to six 

times the averages presented in Tables 1.2 and 1.3 for 

Eastern coals. Sodium is a major constituent of albite 

(NaA1Si30 8 ) and other minerals in the alkali feldspar 

series, (Phillips and Griffen 1981). The very high 
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concentration of sodium found in this coal could be 

attributed to a non-representative sample having a sig­

nificant amount of a sodium-substituted silicate mineral; 

or it could be due to contamination of the sample with 

sodium. 

X-ray diffraction was used to analyze a sample of 

the coal for mineral components that might be present in 

significant quantities. A few grams of the previously 

ground coal were ground again under acetone with an agate 

mortar and pestle. A few drops of the resultant slurry 

were applied to a clean glass slide and air dried. The 

slide was mounted in a Philips X-ray Diffractometer with 

XRG 3100 X-ray Generator and APD 3720 Diffractometer 

controller. A program was employed which used cuKa 

radiation (lambda= 1.5418 angstroms) and scanned the 

range 15° - 55° at 2° per minute. The uncertainty in the 

angle measurement is less than 0.5° and typically+/-

0.010. The instrument provided signal processing and a 

digital printout of the peak location (2 theta), the 

calculated interplanar distance (d), and peak intensity 

in arbitrary units. 

Table 2.3 shows the results obtained from the X-ray 

diffraction analysis and tentative peak assignments (as 

discussed below). The entries without values for peak 

intensity are additional peaks that were visually identi-

36 



fied as appearing to rise to approximately two times the 

average background noise or higher. 

Table 2.3 X-ray diffraction peaks of coal sample. * 

Interplanar Relative Tentative 
Distance Peak Peak 

(angstroms) Intensity Assignment 
5.89 
4.8853 84 
4.4759 107 Illite 
4.3500 116 
4.2535 122 Quartz 
3.7665 133 
3.5823 150 Kaolinite 
3.53 
3.3434 160 Quartz & Illite(?) 
3.18 
3.0680 121 
3.0009 130 Alunite 
2.8981 115 Alunite 
2.8628 86 
2.84 
2.69 Pyrite(?) 
2.68 
2.6497 93 
2.5852 84 
2.57 
2.50 Kaolinite(?) 
2.46 Quartz(?) 
2.42 Pyrite(?) & 

Illite(?) 
2.34 
2.30 Alunite 
1.96 
1.90 
1.7755 80 
1.76 Alunite 

* Entries with no listed Relative Peak Intensity 
were visually identified as rising about two 
times the average background noise or higher. 

It should be noted that components comprising less 

than 5% of a sample typically do not provide adequate 
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signal strength to produce definite peaks. In addition, 

components with reduced crystallinity give rise to peaks 

that are poorly resolved or indistinguishable from the 

background noise. 

Table 2.4 lists the five major X-ray diffraction 

peaks in the approximate range of the analysis (and in 

order of relative peak intensity) for minerals suspected 

of being present in the coal. Comparison of Table 2.3 

with Table 2.4 shows that the single strongest peak 

(d=3.3434) matches the principal peak used to identify 

quartz. The second most important quartz peak is also 

prominent in the analysis. The remaining major quartz 

peaks are relatively weak and were identifiable in our 

analysis barely if at all. The second strongest peak 

identified (d=3.5823) corresponds closely to the princi­

pal kaolinite peak within the range analyzed. However 

the second kaolinite peak is off scale, the third matches 

the experimental data poorly, and the remaining two peaks 

were weak or unidentifiable. The principal illite peak 

(d=4.48) can be paired with the fairly strong peak at 

d=4.4759. The second most important illite peak, if 

present, is probably masked by the principal quartz peak. 

The third illite peak was unidentifiable in these re­

sults, the fourth was off scale, and the fifth was very 

small, at best. 
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Table 2.4 X-ray diffraction peaks for selected minerals.* 

Quartz Alunite Kaolinite Illite Pyrite 

(#5-490)+ (#14-136) (#14-164) (#9-343) (#6-710) 

3.343 (100) 2.99 (100) 3.579 ( 80) 4.48 (90) 1.633 

4.26 ( 35) 2.89 (100) 1.620 (70) 3.33 (90) 2.71 

1.182 (17) 1.757 (88) 4.366 (60) 2.61 (60) 2.423 

2.458 (12) 2.293 (80) 4.186 ( 45) 1. 53 (60) 2.2118 

2.282 (12) 1.926 (70) 2.495 ( 45) 2.42 ( 40) 1.9155 

* Expressed as interplanar distance (d), in angstroms. 

+ American Society for Testing and Materials (ASTM) 
Powder Diffraction File reference number. 

(100) 

(85) 

(65) 

(50) 

(40) 

Note: Numbers in parentheses indicate relative peak intensity. 

Calcite 

(#24-27) 

3.030 (100) 

1.8726 (34) 

3.852 ( 2 9) 

2.094 (27) 

2.284 (18) 



Thus, among the major silicate minerals commonly 

found with eastern U.S. coals, quartz was rather strongly 

indicated by its two principal peaks, and kaolinite and 

illite were suggested, but their presence could not be 

confirmed in the whole coal. 

Comparison of the principal pyrite peaks with the 

data reveals that the most important peak was off scale, 

the next two were very weak, and the last two could not 

be recognized. 

identifiable. 

For calcite, none of the major peaks were 

These results are due in part to the coal 

being washed to reduce its mineral and ash content prior 

to being used as a fuel. Also, the bulk of the coal 

itself dilutes any mineral phases still present, and 

weakens the signals obtained by X-ray diffraction. 

The presence of alunite is strongly suggested by the 

occurrence of its four strongest peaks. It is considered 

likely that this phase is the result of the initial 

oxidation of pyritic sulfur to sulfate ions, which then 

crystallize with aluminum ions from any soluble alumino­

silicate phases. 

A careful and systematic Hanawalt search of the 

ASTM Powder Diffraction File data failed to reveal any 

other mineral phases as being present in the sample of 

whole coal analyzed. However, other researchers (Means 

et al. 1987) investigating another sample of coal from 
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Figure 2.1 X-ray diffraction pattern obtained from low* 
temperature ash of the coal by microwave-excited oxygen. 
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* Means et al. 1987, (inc luding peak assignments). 
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the same shipment, prepared a low temperature ash in 

microwave-excited oxygen. (Removal of the bulk carbon 

phase effectively concentrates the mineral phases and 

results in stronger signals.) The X-ray diffraction 

pattern they obtained is shown in Figure 2.1, along with 

the peak assignments that they made. The evidence for 

the presence of quartz, kaolinite, and pyrite is stron­

ger, and the presence of illite is again suggested. How­

ever, there is not support for the presence of alunite. 

2.1.4 Set-up for Batch oxidation 

A five liter boiling flask was cleaned and soaked in 

one percent nitric acid and thoroughly rinsed with dis­

tilled water that had been deionized by a Millipore 

Milli-Q water purification system, (subsequently referred 

to as Milli-Q water). A 4.00 liter volume of Milli-Q 

water was added to the flask and aerated with breathing 

grade compressed air while being stirred by a direct­

drive mechanical stirrer using a polyethylene-coated pro­

peller and shaft. 

Three hours later, the pH of the initial water sys­

tem was determined to be 5.66, using an Orion Research 

model 701A digital pH meter with glass combination elec­

trode calibrated with standard commercial buffer solu­

tions of pH 4.00 and 7.00. About 55 mL of water was 
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withdrawn for the first ("blank") sample and handled as 

described later under "sampling routine". 

Ground coal was removed from its desiccator in small 

quantities, and reground with mortar and pestle to obtain 

a fine fr~e-flowing consistency. A 1038 gram mass of 

this powdered, whole coal was added to the vigorously 

stirred reaction flask. A 205 mL volume of Milli-Q water 

was added to the system to bring the initial ratio of 

coal to water to be 1:4 (mass:volume). 

Aeration of the slurry was discontinued after the 

first night with the assumption that constant contact of 

the atmosphere with the vigorously stirred system would 

maintain air-saturation of the slurry. 

2.1.5 Sampling Routine 

Periodically, a 50-60 mL sample was withdrawn from 

the actively stirred slurry through a glass tube by a 

large plastic syringe, (Becton-Dickinson 60 cc Luer-Lok 

tip). To remove bulk solids, each sample was vacuum fil­

tered through an 11.0 cm disc of Whatman Qualitative Fil­

ter Paper #1, using a Buchner filtration apparatus. The 

filtrate was caught directly in a large test tube and 

transferred to a 50 mL beaker. 

In order to remove fine particles and colloids from 

the filtrate, a second large syringe was used to force 

the suspension through a Millipore Swinex 47 mm filter 
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having a 0.45 µm pore size filter disc. The final fil­

trate was caught in a clean, glass container that would 

be used for storage. 

The pH of each sample was determined using the orion 

pH system calibrated with commercial pH buffer solution 

standards (pH values 7.oo, 4.00, and 2.00) shortly before 

each sample solution was measured. 

An ion-exchange wash consisting of 50. mL of 1.00 

molar magnesium chloride was passed repeatedly through 

the solids retained in the Buchner funnel in order to 

facilitate equilibration of the solution with the solids 

and surfaces. This wash solution was passed through the 

same steps (using the same glassware, second syringe, and 

Millipore filter) as the original sample solution, in 

order that it might gather up any ions that may have been 

adsorbed onto the equipment surfaces. 

Both final solutions (sample and wash) were acidi­

fied to 0.2% (vol/vol) nitric acid using the concentrated 

reagent. They were each stored in a dry, acid-prewashed 

glass container that was sealed using a Parafilm mem­

brane. 
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2.2 NEUTRALIZATION TITRATION OF SYNTHETIC SOLUTION 

WITH SODIUM BICARBONATE 

2.2.1 Introduction 

In order to simulate the neutralization of acid­

drainage from weathering coal piles, a synthetic solution 

of ferric sulfate and sulfuric acid was formulated to 

approximate the composition found during the Batch Oxida-

tion experiment. This was doped with trace levels of Al 
I 

Zn, Cu, Cd, Cr, Pb, As, and Se. 

Neutralization was accomplished by titration in 

segments using a slow, steady injection of sodium bicar­

bonate solution into the stirred open system. Each base­

injection period was followed by an equilibration period 

before a sample was withdrawn and stored for later analy­

sis of iron and trace-element composition. 

2.2.2 synthetic Solution Composition 

The ratio of sulfate to iron in solution found 

during the last half of the Batch Oxidation experiment 

was approximately 1.55 to 1. In order to imitate that 

composition, a 3.5 liter volume of Milli-Q water was 

placed in a clean (acid-soaked, Milli-Q water rinsed, and 

dried) four liter beaker and acidified with 17 mL of 3.69 

molar sulfuric acid. To this was added 69.9 grams of 

powdered ferric sulphate hydrate (72.0% minimum iron(III) 
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sulfate), which dissolved with mechanical stirring within 

one hour. 

The solution was loosely covered and stirred over­

night in contact with air. The next day, aluminum and 

selected trace elements were added as follows: 0.315 

grams of aluminum sulfate eighteen hydrate; 7.0 mL of 

1000. ppm zinc (from reagent grade powdered metal) in 1% 

hydrochloric acid; 3.5 mL of 1000. ppm copper (from 

reagent grade powdered metal) in 5% nitric acid; 3.5 mL 

of 998.4 ppm cadmium (from reagent grade metal turnings) 

in 1% hydrochloric acid; 3.5 mL of 1000. ppm chromium 

(from reagent grade K2Cr04 ) in Milli-Q water; 3.5 mL of 

1000. ppm lead (from reagent grade anhydrous Pb(N03 ) 2 ) 

in 1% nitric acid; 3.5 mL of 1000. ppm arsenic (from 

reagent grade As
2
o3 that was dissolved in 20 w/v % KOH, 

neutralized with 20 v/v % H2so4 , and then with 0.1 M 

NaOH, and diluted with Milli-Q water); 3.5 mL of 1020 

ppm selenium (from reagent grade powdered selenium, 

dissolved in con HN0
3 

and slowly evaporated dry with 

heat, redissolved with water and heat evaporated dry 

three more times, and finally taken up in 10% hydrochlo­

ric acid). The final solution volume was approximately 

3.54 liters having the overall composition given in Table 

2.5. 
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Table 2.5 Composition of synthetic coal leachate 

0.05 molar iron(III) sulfate 
0.018 molar sulfuric acid 
0.0016 molar hydrochloric acid 
0.001 molar nitric acid 
7.2 ppm aluminum 
3.5 ppm potassium 
2.0 ppm zinc 
1.0 ppm in each of Cu, Cd, Cr, Pb, As, and Se. 
0.2 ppm sodium 

2.2.3 Base Titrant 

Sodium bicarbonate was chosen to be the base titrant 

for gradual neutralization, because a fairly concentrated 

solution could be used (to minimize dilution volume) and 

its pH would be nearly neutral (8.3). In contrast, a one 

molar solution of sodium hydroxide should have pH nearly 

14, and would be expected to precipitate amorphous ferric 

hydroxide when injected into the acidic solution of 

ferric iron. 

A 2.00 liter volume of 1.20 molar base titrant was 

prepared by dissolving 201.6 grams of sodium bicarbonate 

in Milli-Q water. 

2.2.4 Apparatus 

A Masterflex Peristaltic Pump with head number 

7013.20 was used to pump the base titrant through Tygon 

tubing at flow rates ranging from 1.86 mL/min down to 

o.65 mL/min. The flow rate was checked before and after 

each titration segment, and the volume dispensed was 
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estimated by the product of average flow rate and elapsed 

time. In addition, the volume of titrant removed from 

its reservoir during each titration interval was noted. 

The average of these two values was taken to be the total 

volume of sodium bicarbonate solution injected into the 

reaction vessel during each titration episode. The data 

is summarized in Table 2.6. 

Table 2.6 Estimated, observed, and average volumes 
of dispensed sodium bicarbonate titrant. 

Estimated* 
140.9 mL 
138.4 
81.1 

116.4 
100.3 
123.0 
104.0 

25.2 
18.3 
18.5 
19.5 
20.7 

Observed+ 

82.5 mL 
120. 

97. 
120. 
101.3 
23.5 
17.7 
18.0 
19.0 
20.0 

Average 
140.9 mL 
138.4 
81.8 

118.2 
98.7 

121.5 
102.7 

24.4 
18.0 
18.2 
19.3 
20.4 

* Product of average flow rate and elapsed time. 
+ Difference of initial and final reservoir volumes. 

The titrant was delivered into the region of appar­

ently maximum turbulence of the vigorously stirred syn­

thetic solution through a Teflon capillary tube jacketed 

in a glass tube (for structural rigidity). Highly turbu­

lent stirring was achieved by using two direct-drive 

mechanical stirrers with polyethylene-coated propellers 

and shafts, (see Figure 2.2). The solution was restrain-
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ed from "boiling" out of the four liter reaction vessel 

by a Plexiglas lid, (see Figure 2.3). Fixed vanes that 

extended approximately one quarter of the way down into 

the solution thwarted the creation of a central vortex 

and allowed much higher stirrer speeds to be used. 

The solution, though covered to minimize fall-in of 

contaminants and splash-out of contents, was always open 

to the air. During periods of titration the stirring 

speed was turned up so high that air was drawn into the 

solution by small vortexes, and instantly dispersed 

throughout the vessel. Thus the system was kept aerated 

and the carbon dioxide neutralization product was allowed 

to escape readily from solution. 
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Figure 2.2 Reaction vessel for neutralization titration. 
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2.2.5 pH Monitoring and System Equilibration 

The pH response of the system during and after each 

titration period was monitored as follows. An Orion 

Research model 701A digital pH meter with glass combina­

tion electrode was calibrated using commercial buffer 

solution standards of pH 7.00, 4.00, and 2.00. The 

electrode was rinsed, suspended in the stirred reaction 

solution, and the initial pH of the system recorded. 

In order to avoid pushing the neutralization reac­

tion too far during any one segment, the pH was noted 

every one to ten minutes throughout each injection peri­

od. The titration was stopped by removing the capillary 

injector if the pH of the system had risen more than one 

pH unit from its initial value. 

Following each titration segment, the pH was moni­

tored for an additional fifteen to thirty minutes while 

the system was still being vigorously stirred. This 

allowed the observation of pH drift or relaxation as the 

system began to equilibrate. 

Within an hour after each titration segment, the 

rate of stirring was reduced below the point where air 

was drawn into the mixture. The pH electrode was removed 

and the reaction vessel covered to minimize evaporation 

and contamination. 

At least twenty hours were allowed for the moderate-

ly stirred system to equilibrate internally and with the 
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atmosphere before being sampled, (with the exception of 

sample number 2 which was collected at pH 2 while the 

system still appeared to be a true solution). 

2.2.6 Sampling Routine and Storage 

Samples were withdrawn from deep within the continu­

ously well-stirred system using a glass tube and large 

plastic syringe, (Becton-Dickinson 60 cc Luer-Lok). The 

sample suspension was forced through a Millipore Swinex 

47 mm filter having a o.45 um pore size filter disc. The 

filtrate was caught in an acid prewashed, Milli-Q water 

rinsed, and dried, glass sample bottle that would be used 

for storage. 

The pH of each sample was determined using the same 

orion Research pH meter and glass combination electrode 

that would be used to monitor reaction pH during the 

subsequent titration period. The system was calibrated 

just before use with commercial pH buffer solution stan­

dards of pH 7.00, 4.00, and 2.00. 

Shortly after the pH of each filtered sample was 

measured, it was acidified to 0.2% (vol/vol) nitric acid 

using the concentrated reagent. The sample bottles were 

sealed using a Parafilm membrane. 
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2.3 ANALYSIS OF SAMPLES 

2.3.1 Introduction 

The sample solutions from the Batch oxidation exper­

iment were analyzed by flame atomic absorption spectros­

copy for iron, and by ion chromatography for sulfate. 

Graphite furnace atomic absorption spectroscopy was used 

to determine aluminum, cadmium, chromium, copper, lead, 

and zinc in the solution samples from both the Batch 

Oxidation and the Titration experiments. cation Exchange 

was used to remove interfering cations from these same 

sample solutions prior to determination of arsenic and 

selenium, also by graphite furnace atomic absorption 

spectroscopy. 

2.3.2 Ion Chromatography 

A Dionex QIC ion chromatograph was used for the 

separation, detection, and measurement of sulfate in 

diluted sample solutions from the Batch oxidation experi­

ment. our system was configured with adjustable pump­

stoke capacity, heavy-walled Teflon-tube pulse damper, 3-

passage injection valve with replaceable sample-loops of 

various capacity, guard and separator columns, ion sup­

pressor, and conductivity cell detector. 
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The pump stroke was set to provide a flow rate of 

about 2 mL/min and a 50 µL sample loop was used on the 

injection valve. The Dionex-recommended HPIC-AGl ION PAC 

column was used as guard column. It was found that a 

second, newer AGl column gave adequate separation of 

sulfate from the other anions in our samples, and halved 

the retention time of the usual DIONEX ION PAC HPIC-Sl 

Anion Separator analytical column. 

The fiber-type counter-flowing ion suppressor used 

o.25 normal sulfuric acid as suppressor regenerant. The 

conductivity cell output was internally amplified and 

transformed into a 0-1 volt signal which we used to drive 

the pen of a Bioanalytical Systems RYT strip chart re­

corder. 

The ion suppressor was bypassed and the system was 

flushed to rejuvenate the columns as follows: 

10-15 min with Milli-Q water, 

10-15 min with 0.1 molar sodium hydroxide, 

about 10 min with Milli-Q water, 

about 10 min with 0.1 molar sodium carbonate, 

finally, about 2 min with Milli-Q water. 

The ion suppressor column was hooked up again and the 

normal sodium bicarbonate/sodium carbonate eluent (mobile 

phase used to elute the analytes from a chromatographic 

column) was pumped through for over an hour to re-equili-
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brate the entire system and establish the baseline con­

ductivity. 

Short-term shutdown of the system, for up to a few 

days, was done simply by turning off the pump, recorder, 

and system electronics. For long-term shutdown, the 

guard and separator columns were flushed and stored with 

0.1 molar sodium hydroxide. The rest of the system was 

flushed thoroughly with Milli-Q water and turned off. 

Preparation of Solutions 

The eluent used for the determination of sulfate in 

our samples was a solution containing 0.003 molar sodium 

bicarbonate and 0.0024 molar sodium carbonate. We pre­

pared 4.0 liter batches of this buffer system using 1.01 

grams of reagent grade sodium bicarbonate and 1.02 grams 

of reagent grade sodium carbonate in Milli-Q water. 

The 0.025 normal sulfuric acid ion-suppressor column 

regenerant was prepared by diluting 2.45 mL of concen­

trated sulfuric acid to 3.5 liters with Milli-Q water. 

The diluent used for both standards and samples was 

0.2% (vol/vol) hydrochloric acid prepared by diluting 4.o 

mL of reagent grade concentrated hydrochloric acid to 

2000.mL with Milli-Q water. 

The 1000.ppm stock solution of sulfate standard was 

prepared by dissolving 1.4790 grams of reagent sodium 

sulfate in 1.000 liter of the 0.2% (vol/vol) hydrochloric 
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acid diluent. Working standards (0.10, 0.20, 0.50, 0.80, 

and 1.0 ppm) were prepared by serial dilution of the 

stock standard such that each final solution was 0.02% 

(vol/vol) hydrochloric acid (to avoid swamping the col­

umns and detector with chloride ions). 

The original samples (acidified to 0.2% HN03 for 

storage) were diluted 100-fold with 0.2% (vol/vol) hydro­

chloric acid, then 100-fold with 0.02% (vol/vol) hydro­

chloric acid, and if necessary, 2-5 fold with 0.02% 

(vol/vol) hydrochloric acid in order to avoid swamping 

the system with either chloride or nitrate anions. 

Injection Routine 

After the baseline stabilized, 4 mL of sample or 

standard were pushed through the sample loop using a 5 mL 

plastic syringe (Becton-Dickinson). Immediately the 

injection valve was used to load a reproducible volume 

onto the columns. Within a few seconds the water band 

reached the detector. When the recorder traced the con­

ductivity dip the injection valve was returned to the 

"load" position. The sample loop was then rinsed with 

2.5 mL of Milli-Q water, and again at the emergence of 

the sulfate peak (about 12 minutes) with 1.5 mL of 

Milli-Q water. The baseline was re-established in about 

two more minutes. 
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Analysis of Standards and Interpretation of Sample Data 

The standards were run before and after each set of 

ten to fifteen samples. Signal amplification and record­

er range were selected so as to use 1 - 95% of the chart 

paper width, and thus minimize the uncertainty of measur­

ing peak heights. 

The data for all the standards measured during a 

given session were plotted as peak height versus sulfate 

concentration (see Figure 2.4). The least-squares fit 

regression line was calculated and used to interpret the 

sample peak height data in terms of sulfate concentra-

tion. 
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Figure 2.4 Calibration curve for the determination 
of sulfate in the Batch Oxidation filtrates 
by ion chromatography. 
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Notes: The standards were run before, during, and after 
the analysis of samples. Each point represents 
the average of the 2 - 4 separate analyses of a 
given standard solution. The vertical bars in­
dicate the range of values obtained for that 
standard. The uncertainty of the concentration 
of each standard is not greater than the width 
of the symbols used to plot the data. 

The line is the least-squares regression line fit 
to all the data points. The equation of the 
line was used to interpret the peak height of 
each sample in terms of sulfate concentration. 
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2.3.3 Flame Atomic Absorption Spectroscopy 

Samples and diluted samples from the Batch Oxidation 

experiment (both filtrates and washes), and the Titration 

experiment, were analyzed by flame atomic absorption 

spectroscopy (FAAS). The instrument used was a Perkin­

Elmer model 360 Atomic Absorption Spectrophotometer 

equipped with a deuterium arc continuum source background 

corrector and electronic signal integration. 

I used the 372.0 nm iron line obtained from an iron 

single element hollow cathode source lamp driven usually 

with a filament current of 12 ma, (recommended range: 

9-14 ma). The monochromator slits were set at the normal 

0.2 nm. A four inch air-acetylene laminar flow burner 

head was used. The source and burner positions, as well 

as the nebulizer and monochromator settings, were all 

optimized after the instrument was warmed up for at least 

twenty minutes and before samples or standards were run. 

The sample and standard solutions all had a matrix 

of 0.2% (vol/vol) nitric acid. Generally, five replicate 

three-second integrations were made of each solution and 

averaged. Multiple (7-17, but typically about 8) stan­

dards were made up spanning the useful analytical range 

of 1 - 100 or 200 ppm iron. These were run before and 

after each set of samples being analyzed. 

The averaged data for the standards measured in a 

given session were plotted as absorbance seconds vs iron 
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concentration (see Figure 2.5). The least-squares fit 

regression line was calculated and used to interpret the 

sample absorbance data in terms of iron concentration. 

Figure 2.5 Calibration curve for iron by flame atomic 
absorption spectroscopy. 
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Notes: standard solutions were run before ("Early Stds") 
and after ("Late stds") the analysis of samples. 
Each point represents the average of four repli 
cate three-second integrations in the analysis 
of a standard. 

The line is the least-squares regression line fit 
to the points plotted. The equation of the line 
was used to interpret the averaged absorbance of 
each sample in terms of iron concentration. 
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2.3.4 Interference avoidance and minimization in GFAAS 

analysis of arsenic and selenium. 

Arsenic and selenium analyses by graphite furnace 

atomic absorption spectroscopy (GFAAS) suffer from severe 

background absorption and interferences by accompanying 

ions in solution. Welz and Schlemmer (1986) attributed 

the excessive background absorption to large amounts of 

matrix metals being volatilized during analyte atomiza­

tion. Riley (1982) noted spectral interferences of iron 

for selenium and of aluminum for arsenic. Bauslaugh et 

al. (1984) noted interferences due to molecular absorp­

tion by phosphorous dimers formed during the decomposi­

tion of phosphates. (See also Fernandez and Giddings 

1982.) 

Interferences with arsenic signals by many matrix 

' ' • + Tr+ M 2+ C 2+ F 3+ Cl- S 2- 3 species including Na , ~ , g , a , e , , 04 , P04 - , 

and Moo/- have been noted. At least thirty-eight metals 

have been found to interfere with selenium signals (Henn 

1975, 1977) as well as matrix acids including hydrochlo­

ric, sulfuric, and nitric (Tsalev 1984). Cation exchange 

has been used to remove metals from solutions of arsenic 

and selenium (Henn 1975). 

In acidic, oxygenated waters, arsenic exists as 

HzAso
4
-, and below pH 2 as H3As04 • Similarly, selenium 

should exist as seo
4 

2- at pH greater than 2, and as HSeo4 -

at pH less than 1.75. Thus, cation-exchange was used to 
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remove many interferents before graphite furnace atomic 

absorption spectroscopy of arsenic and selenium. Matrix 

modifiers and pre-coating the graphite tubes and L'Vov 

platforms were used to minimize anion effects, (see Henn 

1975, 1977). 

cation-exchange solution clean-up: 

BIO-RAD cation exchange resin AG50W-X16, H+ form, 

200-400 mesh, with resin capacity 2.4 meq/mL, was soaked 

overnight in Milli-Q water and used to pack small col­

umns. The slurried resin was poured into each Kontes 

Flex-Column a few milliliters at a time, and allowed to 

settle while the excess water drained down to the top of 

the resin bed. Subsequent additions of slurry were used 

to create a packed 7-8 cm resin bed in the 10 cm columns. 

Smaller 0.7 cm diameter columns had a dead volume of 

about one milliliter and a calculated capacity of about 

6.5 milliequivalents. The total cationic load in our 

filtrates was estimated to be 0.11 - 0.12 meq/mL; and 

that of our magnesium chloride wash solutions diluted 

ten-fold was estimated to be 0.18 - 0.20 meq/mL. Thus, a 

maximum of 54 mL of filtrate, or 32 mL of 1:10 diluted 

wash sample solutions could be cation exchanged. 

Larger 1.0 cm diameter columns had a dead volume of 

about two milliliters and a calculated capacity of about 

13 milliequivalents. Thus a maximum of 110 mL of fil-
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trate, or 65 mL of 1:10 diluted wash sample solution 

could be cation exchanged. 

Each sample solution (whether filtrate or wash) was 

diluted ten-fold with 0.2% (vol/vol) Ultrex nitric acid 

in Milli-Q water and placed in a 60 cc plastic (Becton­

Dickinson Luer-Lok) syringe barrel. This sample reser­

voir was gravity fed vertically through about three feet 

of Tygon tubing and a cation exchange resin packed col­

umn. 

Three successive 3-5 mL portions of effluent were 

collected as column washes and used to rinse the acid­

washed collection vials. The remaining effluent was 

collected directly in the vials, which were subsequently 

sealed for storage. 

The diluted filtrate solutions, having a high con­

centration of dissolved iron, produced a very dark band 

on the resin column, which only travelled 1/10 - 1/6 of 

the column length, even when two samples were passed 

through the column. 

The diluted magnesium chloride wash solutions, 

having lower dissolved iron, but very high (about 0.1 

molar) magnesium ion concentration, produced a slightly 

darkish band on the resin column, which travelled approx­

imately 1/5 of the column length with just one sample 

passing through the column. All of the collected efflu­

ents were clear and appeared colorless. 
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2.3.5 Graphite Furnace Atomic Absorption Spectroscopy 

Samples and diluted samples from the Batch Oxidation 

experiment (both filtrates and washes), and from the 

Titration experiment were analyzed by GFAAS for aluminum 
I 

cadmium, chromium, copper, iron, lead, zinc, arsenic, and 

selenium. The instrument used was a programmable Perkin­

Elmer HGA-300 Graphite Tube Furnace fitted to a Perkin­

Elmer model 2380 Atomic Absorption Spectrophotometer 

equipped with a deuterium arc source background corrector 

and electronic signal integration. A Perkin-Elmer model 

AS-40 programmable Autosampler was used to inject all 

blanks, standards, samples, and matrix modifiers into the 

graphite furnace tubes, which were pyrocoated and fitted 

with massive pyrographic carbon L'Vov platforms. 

Set-up and Program optimization 

For each analysis of each element a single-element 

hollow cathode lamp source was used and the spectropho­

tometer optimized for maximum sensitivity (in terms of: 

source and furnace positions, monochromator wavelength 

and slit settings, and electronic peak area integration 

of absorbance). 

Preliminary investigations of each element in the 

sample matrix were performed to determine the optimal 

matrix modification and temperature program to use to 

obtain maximum sensitivity, linearity, and reproducibil-
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ity while minimizing interferences. Parameters optimized 

for analysis of (usually) twenty microliter samples 

acidified to 0.2% (vol/vol) with Ultrex nitric acid 

included: 

type and amount of matrix modifier, 

drying temperature ramp and time, 

thermal pretreatment temperature ramp and time, 

atomization temperature and time, 

absorbance signal integration time, and 

graphite tube purging temperature and time. 

A series of typically 8-12 standards in 0.2% 

(vol/vol) Ultrex nitric acid was run for each element and 

Plotted as absorbance-seconds versus concentration to 

estimate the sensitivity and range of linearity for each 

element under the selected conditions of analysis. 

See Appendix A for specific conditions of the graph­

ite furnace AAS analyses. 

Analytical Scheme 

The general analytical scheme adopted for the graph­

ite furnace atomic absorption analysis for each element 

of interest was to: 

1) Analyze all samples (diluted with 0.2% Ultrex 

nitric acid if necessary) using the optimal instrument 

Parameters and matrix modification, as previously deter­

mined. 
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2) Interpret the data using a calibration curve 

based on 4-6 simple standards in 0.2% (vol/vol) Ultrex 

nitric acid and spread over the range of reasonable 

linearity obtained by our method. This revealed the 

range, trends, and approximate concentration of each 

analyte in our samples. 

3) Re-analyze approximately every third sample by 

the method of standard additions of known analyte to four 

or five aliquots of each sample. These data were inter­

preted by extrapolation back to zero absorbance (baseline 

corrected) to establish the concentration of each analyte 

in a subset of our samples which spanned the ranges of 

sample collection time and analyte concentration in our 

experiments. 

Analysis Routine 

The typical routine followed for the analysis of a 

set of samples started with instrument warm-up while 

working-standard solutions were made by serial dilution 

with 0.2% (vol/vol) Ultrex nitric acid of a 1000. ppm 

stock standard solution of the appropriate element. 

Final tune-up of the instrument for optimal performance 

was followed by "analyzing" the diluent (0.2% Ultrex 

nitric acid) plus matrix modifier solution to establish 

the baseline absorbance level. 
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For small sample-sets, the standards were run first, 

followed by the samples, and often ending with one or two 

check-standards. For the average set of samples, the 

standards were run before and after, in order to estab­

lish instrument response over the duration of the analy­

ses. For large sample sets, the standards were run about 

mid-day, as well as before and after the samples, for the 

same reason. 

During each set of analyses, the reagent blank (0.2% 

Ultrex nitric acid plus matrix modifier solution) was run 

after every few samples or standards, in order to monitor 

the baseline absorbance signal. 

calibration Curves. Uncertainty. Limits of Detection. and 

Limits of Quantitation 

On the following pages are presented the calibration 

curves of the elements analyzed by atomic absorption 

methods. The absolute uncertainty associated with each 

point is plotted using error bars. The uncertainty of 

the concentrations of the calibration standards (abscis­

sa) was derived using propagation of errors analysis, as 

follows. 

The uncertainty of each weighing and dilution proce­

dure used in the preparation of one of the higher concen­

tration working standards, and the uncertainty of its 

introduction into the graphite furnace, were estimated 
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and included in the calculation of overall uncertainty 

for that standard solution. For example, to estimate the 

uncertainty of concentration of a 100 ppm working stan­

dard: 

Weighing and dissolving 1.0000 g 
of pure, dry metal: ±0.02% 

Diluting to 1000.0 mL 
for the stock standard: ±0.06% 

Diluting 5.00 mL to 500.0 mL 
to reach 10 ppm solution: ±0.5% 

Diluting 5.oo mL to 500.0 mL 
to obtain 100 ppb standard: ±0.5% 

Autopipetting 20 µL into the 
graphite furnace: ±1.0% 

The overall relative uncertainty of these combined opera­

tions is the square root of the sum of the squares of the 

individual relative uncertainties, (Harris 1991), which 

is ±1.23% in this case. 

The absolute uncertainty associated with a given 

standard is the product of its nominal concentration 

times its relative uncertainty. For the above example 

this gives ±1.23 ppb, and results in the expression 100.0 

± 1.2 ppb for the concentration of that standard. The 

calculated uncertainty was applied to each standard and 

plotted using horizontal error bars. 

The uncertainty of the magnitude of the signal for 

each standard is indicated by the vertical error bars. 

They show the range of values obtained from the same 

standard as measured at different times. The central 

Point plotted is the average of the separate measure­

ments, and was used in the least squares fit of a regres-
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sion line to the standards. The equation of the line and 

its goodness of fit (R2) are included near the top of 

each plot. (Note that the error bars will not be visible 

in those cases where the range of uncertainty is smaller 

than the space covered by the graph symbol.) 

Table 2.7 (which is presented just before the set of 

calibration curves) lists limits of detection (LOO) and 

limits of quantitation (LOQ) from the literature and from 

this work for the trace elements included in this study. 

Also listed are the dilution factors from each analysis, 

and the resulting LOO and LOQ of each element in the 

original undiluted samples. The limit of detection in 

each case was operationally defined to be that concentra­

tion of analyte which produced a signal at least two 

times the (locally) averaged baseline signal. The limit 

of quantitation in each case was obtained by multiplying 

the LOO by a factor of five, thus estimating the LOQ to 

be approximately 10 times the average baseline signal. 

The LOO for zinc exceeds the published range by a 

factor of at least 10. It is believed that the high 

baseline zinc signals obtained were due to contamination. 

Also, the relatively noisy individual readings presented 

by the GFAAS instrument exacerbated the problem. These 

factors account in large part for the poor detection 

limits obtained for this element. 

69 



Table 2.7 Limits of detection and quantitation for the analyses of 
trace elements by Flame AAS and Graphite Furnace AAS. 

Slavin ASTM Dilute Solutions2 Original Sam12les1 

(1984) (1985) Dilution 
Element LOO {gM} LOO {gM) LOO (gM} LOQ {gM} Factors LOO (gM} LOQ (gM} 
Al 0.0074 0.11 

BO/F3 0.04 0.2 1000 40 200 
BO/W- 0.04 0.2 1000 40 200 
Titn5 0.04 0.2 100 4 20 

As 0.0134 0.013 
BO/F 0.1 0.5 10 1 5 
BO/W 0.1 0.6 10 1 6 
Titn 0.06 0.3 10 0.6 3 

Cd 0.00013 0.0009 
BO/F 0.0005 0.0025 10 0.005 0.025 

...J BO/W 0.0005 0.0025 10 0.005 0.025 
0 Titn 0.001 0.005 10 0.01 0.05 

Cr 0.00096 0.019 
BO/F 0.04 0.2 10 0.4 2 
BO/W 0.08 0.4 10 a.a 4 
Titn 0.06 0.3 10 0.6 3 

Notes: 
1. original Samples were undiluted, but too concentrated for analysis. 
2. Dilute Solutions were analyzed after serial dilution from 

the Original Samples by the Dilution Factor tabulated. 
3. BO/F represents the Batch oxidation filtrate samples. 
4. BO/W represents the Batch oxidation MgC~ wash samples. 
5. Titn represents the neutralization Titration samples. 

(continued on next page) 



Table 2.7 (continued) Limits of detection and quantitation. 

Slavin 
(1984) 

Element LOD (µM) 

ASTM 
(1985) 

LOD (µM) 
0.016 

Dilute Solutions2 original Samples1 

Dilution 
LOD (µM) LOO (µM) Factors LOD (µM) LOO (µM) 

Cu 0.0008 
BO/ F3 

BO/w4 
Titn5 

Fe (FAAS) 2 
BO/ F 
BO/W 

Pb 

Se 

Zn 

(GFAAS) 0.0018 
Titn 

BO/F 
BO/W 
Titn 

BO/ F 
BO/W 
Titn 

BO/F 
BO/W 
Titn 

0.0012 

0.019 

0.00008 

Notes: 

0.018 

0.0048 

0.025 

0.0008 

0.016 
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1. Original Samples were undiluted, but too concentrated for analysis. 
2. Dilute Solutions were analyzed after serial dilution from 

the Original Samples by the Dilution Factor tabulated. 
3. BO/F represents the Batch Oxidation filtrate samples. 
4. BO/W represents the Batch oxidation MgCLz wash samples. 
5. Titn represents the neutralization Titration samples. 



Figure 2.6 Calibration curve for the determination of 
aluminum in the batch oxidation filtrates 
by graphite furnace AAS. 
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Figure 2,7 Calibration curve for the determination of 
aluminum in the batch oxidation washes 
by graphite furnace AAS. 
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Figure 2.8 
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Figure 2.10 
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Figure 2.11 Calibration curve for the determination of 
arsenic in the neutralization titration 
by graphite furnace AAS, 
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Figure 2.12 Calibration curve for the determination of 
cadmium in the batch oxidation filtrates 
by graphite furnace AAS. 
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Figure 2.13 Calibration curve for the determination of 
cadmium in the batch oxidation washes 
by graphite furnace AAS. 
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Figure 2.14 Calibration curve for the determination of 
cadmium in the neutralization titration 
by graphite furnace AAS. 
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Figure 2.15 Calibration curve for the determination of 
chromium in the batch oxidation filtrates 
by graphite furnace AAS. 
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Figure 2.16 Calibration curve for the determination of 
chromium in the batch oxidation washes 
by graphite furnace AAS. 

1.0 -----------------------, 

rn o.8 
"C 
C 
0 
(.) 
Q) 

en o.6 

Q) 
(.) 

C 
(U .c 0.4 ,_ 
0 
rn 
.c 
<( 

0.2 

y = - 4.8206e-3 + 0.95833x R"2 = 1.000 

0.0 ---~-......__......_ _ __. __ ....__,.i...._.....i..._ ........ ____ _ 

0.0 0.2 0.4 0.6 0.8 1.0 

Cr, micromolar 

82 



Figure 2.17 
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Figure 2.18 Calibration curve for the determination of 
copper in the batch oxidation filtrates 
by graphite furnace AAS, 
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Figure 2.19 Calibration curve for the determination of 
copper in the batch oxidation washes 
by graphite furnace AAS. 
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Figure 2.20 Calibration curve for the determination of 
copper in the neutralization titration 
by graphite furnace AAS. 
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Figure 2.21 Calibration curve for the determination of 
iron in the batch oxidation filtrates 
by graphite furnace AAS. 
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Figure 2.22 Calibration curve for the determination of 
iron in the batch oxidation washes 
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Figure 2.23 
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Figure 2.24 calibration curve for the determination of 
lead in the batch oxidation filtrates 
by graphite furnace AAS. 
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Figure 2.25 Calibration curve for the determination of 
lead in the batch oxidation washes 
by graphite furnace AAS. 
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Figure 2.26 Calibration curve for the determination of 
lead in the neutralization titration 
by graphite furnace AAS. 
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Figure 2.27 Calibration curve for the determination of 
selenium in the batch oxidation filtrates 
by graphite furnace AAS. 
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Figure 2.28 Calibration curve for the determination of 
selenium in the batch oxidation washes 
by graphite furnace AAS. 
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Figure 2.29 Calibration curve for the determination of 
selenium in the neutralization titration 
by graphite furnace AAS. 
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Figure 2.30 Calibration curve for the determination of 
zinc in the batch oxidation filtrates 
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Note: The regression line was fit to only the 
first three points to avoid the curvature 
apparent at the higher concentrations. 
The sample concentrations fell within the 
apparently linear range. 
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Figure 2.31 Calibration curve for the determination of 
zinc in the batch oxidation washes 
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Figure 2.32 Calibration curve for the determination of 
zinc in the neutralization titration 
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CHAPTER 3 RESULTS 

3.1 RESULTS OF BATCH OXIDATION OF SLURRY OF WHOLE COAL 

During this experiment, samples were withdrawn from 

the slurry every day during the first week, then every 

two or three days through the second month, and then 

every three or four days during the third month. The 

final sample was taken seventy days after the slurry 

oxidation was initiated. 

Table 3.1 lists the data obtained from the filtrate 

samples for the major dissolved inorganic constituents 

measured: hydrogen ions as pH, sulfate, iron, and alumi­

num. 

Table 3.2 lists the data obtained from the magnesium 

chloride wash samples for the major dissolved inorganic 

constituents measured: sulfate, iron, and aluminum. The 

pH of each wash sample was not determined; however, the 

pH of the 1.0 molar wash solution measured 4.56 after 

being processed through the sampling routine. 

Table 3.3 lists the data obtained from the filtrate 

samples analyzed for the dissolved minor and trace inor­

ganic constituents: arsenic, cadmium, chromium, copper, 

lead, selenium, and zinc. All these data are reported in 

micromolar units, which show zinc and copper to be nota­

bly more abundant in these slurry filtrate samples than 

are the other trace elements. 
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Table 3.1 Major dissolved inorganics measured 
in Batch oxidation filtrates. 

Date Day pH Tot. S04 Tot.Fe Tot.Al 
(mM) (mM) (mM) 

Jan 20 0 *5.66 <0.001 0.01±.01 <0.004 
#4.26 

Jan 21 1 2.50 12. 9. 3.5 
Jan 22 2 2.56 15. 10. 
Jan 23 3 2.48 18.5 11. 
Jan 24 4 2.57 16.5 11. 3.3 
Jan 27 7 2.54 18.5 12. 4.1 
Jan 29 9 2.595 19. 11. 
Jan 31 11 2.535 20. 12. 2.6 
Feb 3 14 2.32 22.5 12. 2.7 
Feb 5 16 2.195 30. 16. 2.8 
Feb 7 18 2.20 36. 21. 2.5 
Feb 10 21 2.13 44. 26. 2.5 
Feb 12 23 2.11 47. 29. 
Feb 14 25 2.12 51. 5 31. 
Feb 17 28 2.095 58.5 34. 2.5 
Feb 20 31 2.04 71. 39. 
Feb 24 35 2.04 73. 44. 2.9 
Feb 28 39 2.04 73.5 45. 
Mar 3 42 1.99 79. 51. 3.1 
Mar 7 46 2.00 85. 54. 
Mar 10 49 1.975 91. 58. 4.7 
Mar 14 53 1.96 93.5 62. 
Mar 17 56 1.93 98. 63. 3.4 
Mar 21 60 1.94 100±2 68. 
Mar 31 70 1.89±.02 115±5 75±1 3.6 

* pH of milli-Q water measured in reaction vessel. 
# pH of water after processing through sampling routine. 
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Table 3.2 Majo: dissolved,inorganics measured 
in Batch Oxidation washes. 

Date Day Tot.Fe Tot.Al CmMl (mM) 
Jan 20 0 0.06±.03 
Jan 21 1 1.6 0.61 Jan 22 2 1.9 
Jan 23 3 1.7 
Jan 24 4 2.2 
Jan 27 7 1.8 0.67 Jan 29 9 1.9 
Jan 31 11 2.0 
Feb 3 14 2.3 0.68 Feb 5 16 2.7 

~ 
Feb 7 18 3.5 0.68 

' ~ 
Feb 10 21 4.1 0.57 ' ~ 

,,.~ 1 Feb 12 23 5.0 
jl ., Feb 14 25 5.6 :~~ ' ,. J ,. Feb 17 28 5.9 0.61 •' .. Feb 20 31 6.3 ., Feb 24 35 7.2 0.70 ... ~ I 

Feb 28 39 6.4 0.70 Mar 3 42 8.9 0.71 Mar 7 46 9.8 
Mar 10 49 9.65 
Mar 14 53 8.9 
Mar 17 56 11.4 0.71 Mar 21 60 12.3 
Mar 31 70 13.1 0.78 

Note: The concentrations are millimoles of 
analyte per liter of 1.0 M MgC12 wash solution; 
but, by experimental design, they also repre-
sent millimoles of analyte per liter of slurry. 
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Table 3.3 Minor and trace dissolved inorganics 
in Batch Oxidation filtrates. 

Day 

0 
1 
2 
3 
4 
7 
9 

As 
(µM) 

0.6 
1. 5+ 

1.* 
1.* 

1.* 
2.+ 
3.+ 
3.+ 
4. 5+ 

7.7 

7.0 

5.9 

Cd 
(µM) 

<0.002 
0.18 

0.19 
0.20 

0.22 
0.22 
0.23 
0.24 
0.24 

er 
(µM) 

<0.4 
1.1+ 

1. 2+ 
1. 2+ 
1. 2+ 
1. 7+ 
1. 8+ 

cu 
(µM) 

<0.07 
19.8 

20.5 
20.7 

23.2 
28.1 
31.9 
36.1 
36.9 

Pb 
(µM) 

<0.03 
0. 1+ 

0.19 
<0.03 

0. 03* 
0. 03* 
o. 08+ 
0. 04* 
0. 04* 

0. 03* 

0. 03* 

Se 
(µM) 

<1.7 
<l. 7 

<1.7 
<1.7 

<l. 7 
<1.7 
<1.7 
<1.7 
<1.7 

Zn 
(µM) 

<0.8 
80. 

68. 
81. 

71. 
20 
82. 
82. 
85. 

88. 

92. 

89. 

86. 

91. 

11 
14 
16 
18 
21 
23 
25 
28 
31 
35 
39 
42 
46 
49 
53 
56 
60 
70 

0.26 

0.28 

0.28 

0.30 

0.32 

0.36 

2.0 

2.1 

2.1 

2.7 

2.3 

2.6 

43.9 

55.5 

50.6 

55.2 

57.7 

63.0 

0.14 

0.17 

<1.7 

<1.7 

<1.7 

<1.7 

<1.7 

<1.7 101. 

* Approximately equal to the limit of detection for this 
analysis. (See Table 2.7 for LOD and LOQ.) 

+ Less than the limit of quantitation, but greater than 
the limit of detection for this analysis. 

Table 3.4 lists the data obtained from the magnesium 

chloride wash samples analyzed for the same dissolved 

minor and trace inorganic constituents: arsenic, cadmi­

um, chromium, copper, lead, selenium, and zinc. All 

these data are also reported in micromolar units. Again, 
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zinc and to a lesser extent copper, are seen to be nota­

bly more abundant in these magnesium chloride wash sam­

ples than are the other trace elements. 

Table 3.4 Minor and trace dissolved inorganics 
in Batch Oxidation washes. 

Day As 
(µM) 

Cd 
(µM) 

0 
1 

7 
9 

11 
14 
16 
18 
21 
23 
25 
28 
31 
35 
39 
42 

56 
60 
70 

14-15 <0.001 
1.* 0.03 

<1. 0.01+ 

< 1. 
1.* 0.01+ 

7.2 0.02+ 

8.8 0.02+ 

Cr 
(µM) 

Cu 
(µM) 

1.1 
3.+ 

Pb 
(µM) 

Se# 
(µM) 

<0.01 0.7 
0.2 <0.76 

Zn 
(µM) 

3. 
19. 

1. 9+ 3. 5+ o. 1 • <O. 16 19. 

<0.76 
2.6+ 5.4 0.1+ <0.76* 22. 

6.3 0.1+ <0.76 21. 
2.4+ 7.3 0.1+ 24. 

<0.76 

2.2+ 8.3 0.1+ <0.76 21. 

2.5+ 8.6 <0.03 <0.76 21. 

2.5+ 10.5 0.9 1.0• 24. 

2.4+ 12.9 1.8 1.0+ 26. 

2.3+ 14.o 1.8 o.s* 26. 

# Not corrected by standard additions since the signals 
were near the detection limit. 

* Approximately equal to the limit of detection for this 
analysis. (See Table 2.7 for LOO and LOQ.) 

+ Less than the limit of quantitation, but greater than 
the limit of detection for this analysis. 

Note: The concentrations are micromoles of analyte per 
liter of 1.0 M Mgcl2 wash solution; but, by exper­
imental design, they also represent micromoles of 
analyte per liter of slurry. 

103 

I ' . 



- - --- --

3.2 RESULTS OF NaHC03 TITRATION OF SYNTHETIC SOLUTIONS 

During the titration of the synthetic acid - sulfate 

- ferric iron solution doped with selected trace ele­

ments, samples were withdrawn only after an equilibration 

period of approximately twenty hours or longer following 

each titration segment. Table 3.5 lists the data ob­

tained from these samples for the major dissolved con­

stituents measured: hydrogen ions as pH, iron, and 

aluminum. 

Table 3.5 

Sample 
Number 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

Major dissolved constituents measured 
in Titration experiment filtrates. 

pH 

1.575 
1.97 
2.44 
2.295 
2.36 
2.305 
2.475 
2.875 
3.515 
3.90 
4.83 
5.745 
5.55 

Tot.Fe 
(mM) 

100. 
99. 
96. 
71. 
55. 
37. 
13. 
1.1 * 

<0.1 
<0.01 
<0.01 
<0.01 
<0.01 

Tot.Al 
(mM) 

0.56 
0.39 
0.37 
0.38 
0.38 
0.40 
0.48 
0.59 
o.24 
0.14 
0.13 
0.12 
0.13 

* . 't of detection for 
Ap~roximately equal to the limif LOO and LOQ.) 
this analysis. (See Table 2. 7 or 
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Table 3.6 lists the data obtained from the titration 

samples for the dissolved minor and trace constituents: 

arsenic, cadmium, chromium, copper, lead, selenium, and 

zinc. All these data are reported in micromolar units. 

Table 3.6 Minor and trace dissolved constituents 
in Titration filtrates. 

As Cd Cr cu Pb Se Zn 
.!.mil 1MMl 1Mfil 1Mfil 1Mfil 1100. .!MMl 

1 1.2 9.2 22. 15.1 4.7 2.7 28. 
2 1. + 14.6 2.6 2. + 24. 8.5 21. 3 1. + 7.9 21. 14.1 3.9 2.6 24. 
4 1. + 7.8 17. 13.5 4.0 1. + 26. 
5 0. 9+ 8.0 18. 14.0 3.6 o. 8+ 31. 
6 0. 9+ 8.3 17. 15.0 0.5 <0.5 36. 
7 0. 7* 7.7 14. 13.7 0. 1• <0.5 32. 
8 0. 9+ 7.5 10. 13.7 0. 1• <0.5 33. 
9 * o. 8+ 8.4 2. 9+ 9.7 <0.06 <0.5 28. 

10 o. 7* 8.5 1.4+ 2. 9+ <0.06 <0.5 25. 
11 0. 6* <0. 6* * 0. 1• <0.5 17. 8.5 <0.8 
12 0. 7* <0.8 0. 1 + <0.5 4. + 
13 6.3 <0.6 * + 0. 7* 5.0 <0.6 <0.8 0.07 <0.5 3. 

* Approximately equal to the limit of detection for this 
+ analysis. (See Table 2.7 for LOO and LOQ.) 

than Less than the limit of quantitation, b~t greater 
the limit of detection for this analysis. 
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CHAPTER 4 DISCUSSION 

4.1 OXIDATION OF WHOLE COAL 

The primary objective of this first experiment was 

reconnaissance of a natural oxidation of a slurry of 

ground whole Eastern (U.S.A.) coal in water saturated 

with air. We wanted to observe the time of release and 

build-up of selected inorganic components in the fil­

trates, as well as determine their total concentration in 

this most mobile fraction of the system. 

4.1.1 Reaction Progress 

The filtrates from this experiment were found to be 

oxidized and acidic from the beginning. The first sam­

ple, taken one day after the coal was slurried, had a pH 

of 2.50 and iron and sulfate concentrations of 9 and 12 

mM, respectively. The immediate release of these oxida­

tion products indicates that the coal had weathered to 

some extent before being used in this experiment. 

Figure 4.1 shows that the system pH hovered around 

2.5 for at least the first 11 days. comparison with 

Figure 4.2 shows that during this same period the filter­

able iron concentration plateaued, but the sulfate con­

centration rose gradually. This indicates that oxidation 

of presumably pyritic material was proceeding slowly and 

releasing sulfate. The cogenerated acidity must have 
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Figure 4.1 pH of the batch oxidation samples as a 
function of time. 

5.0 

4.5 

4.0 

3.5 

::c 
3.0 CL 

25 

20 

1.5 

10 
0 10 20 JO 40 50 60 70 80 

Elapsed nme (days) 

107 



-------- - -

Figure 4.2 Accumulation of total filterable sulfate and 
iron in the batch filtrates, and of iron in 
the magnesium chloride wash solutions. 
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been neutralized by alkaline substances present initially 

in the coal. The presence of alkalinity in general, and 

0 id carbonates in particular, has been cited as impor-s 1· 

the buildup and re ease o acidity in tant in controlli'ng · 1 f · 

ma erials associated with pyrite (Kleinmann et al. mine t 

1981 , Olem 1982, wangen & Jones 1984). Carbonate miner­

als such as calcite and siderite are found associated 

with coals from the Eastern United states, (Kuhn et al. 

1980) · The extreme dependence of iron solubility on pH 

accounts for the constant concentration of iron in solu-

tion duri'ng thi's · ff d H period of bu ere p. 

After day 11 the pH of the samples dropped rapidly 

signalling the exhaustion of the alkaline components of 

the system. Highly insoluble ferric hydroxides become 

soluble below pH 3 (Langmuir and Whittemore 1971, McAn­

drew et al. 1975, Dousma and de Bruyn 1976, Kleinmann 

1981). Further, the resultant aqueous ferric iron oxi­

d' izes iron pyrite directly according to the overall 
Eqn. 4.1 

reaction: 

15Fez+ + 2so4= + 16H+ 
FeSz + 14Fe3+ + 8H20 = 

This catalytic cycle of pyrite oxidation is completed by 

the regeneration of Fe3+ from Fez+ by the autotrophic 

bacteria Thiobacillus ferrooxidans. ThUS, 
th

e rate of 

oxidation is greatly accelerated by the fall of pH below 

2.5 in the presence of T. ferrooxidans. (See Temple and 

Delchamps 1953, Garrels and Thompson 1960, Kuznetsov et 
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al. 1962 
I Silverman 1967, Kleinman et al. 1981, and 

Nordstrom 1982.) 

On day 14 a slight jump in sulfate concentration was 

seen, and by day 16 both sulfate and iron concentrations 

had increased significantly. Thereafter, they built up 

rapidly in the filtrates in a ratio that approaches the 

st0ichiometry of Fe2 (so4) 3 • The molar ratio of sulfate to 

iron · in the filtrates is shown in Figure 4.3. From early 

in the experiment the ratio was less than 2, the theoret­

ical ratio of so4 to Fe(III) that should result from the 

oxidation of pyrite according to equation 1.5. 

Weathering of the coal would have commenced as soon 

as 't i was mined and exposed to air and moisture. The 

initi'al t d oxidation products would be sulfa e an, at pH's 

greater than J, highly insoluble ferric hydroxides; (see 

Figure 1.1). Prior to our receipt of the coal, it had 

been processed to reduce sulfur and ash content, then 

Shipp d ' t 'd e in open coal cars and stored ou si e. Thus, it 

is Probable that a reservoir of insoluble iron accumulat­

ed While the soluble sulfate and cogenerated acidity were 

flushed from the system. 

During our experiment, the oxidation of pyrite would 

have generated S04 and Fe(III) in a 2:1 ratio; but as 

Soon as the pH fell to 2.5 and below, the gradual disso­

lution of the reservoir of ferric hydroxides apparently 
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Figure 4.3 Ratio of the molar concentrations of sulfate 
to iron in the batch oxidation filtrates. 
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reduced the ratio at which sulfate and iron accumulated 

in solution. 

The causes for the "hump" in the sulfate plot (Fig­

ure 4.2) and the dips in the plot of iron in the magne­

sium chloride washes are unknown. The relatively low 

concentrations found in the sample from day 39 are due to 

a procedural error in which the filtrate was diluted by a 

small but unknown amount. Apparently the error also 

affected the wash sample. 

The iron in the magnesium chloride wash samples 

appears to follow the iron levels in the filtrates but at 

a fraction of their concentration. The ratio of iron in 

the washes to iron in the filtrates averaged very close 

to 0.17 throughout the experiment. An estimate of the 

volume of filtrate retained by the captured solids and by 

the filter systems themselves and its subsequent inclu­

sion in the wash solution accounts for a roughly 17 

percent carryover. This is assumed to be the source of 

the iron in the wash samples, rather than adsorbed iron 

that was desorbed by the ion exchange wash solution. 

Figure 4.4 is a logarithmic plot of the total micro­

molar concentration of each analyte measured in the 

filtrates versus the elapsed time in days between when 

the coal was slurried and when the sample was taken. It 

shows the relative concentrations of each analyte and 

allows for comparison between analytes of their respec-

112 

• ;;1 ... :, .. .. ., 
' • J 
' 

' I 

... 



Figure 4.4 Logarithmic plot of the total micromolar 
concentration of each analyte in the batch 
oxidation filtrates as a function of elapsed 
time in days. 
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tive time of release and rate of build-up in the filter­

able portion of the samples. Figure 4.5 is a similar 

logarithmic plot of the total micromolar concentration of 

each analyte measured in the 1.0 molar magnesium chloride 

wash of the filter cake of each sample. (Recall that 

each wash solution was poured repeatedly through the 

still-wet solids and otherwise undisturbed apparatus that 

had just been used to handle the filtrate, in an effort 

to collect species that may have sorbed onto surfaces of 

the apparatus.) 

Clearly sulfate and iron are dominant in the fil­

trates, with iron closely tracking the release and build­

up of sulfate. Iron is presented as being the major 

dissolved inorganic substance in the washes; though the 

wash solution was 1.0 molar magnesium chloride, and 

sulfate was not measured in the washes because the high 

concentration of chloride swamped the ion chromatograph. 

In both media aluminum is a minor constituent whose 

concentration is from 0.5 to 1.5 orders of magnitude 

below that of iron. The concentrations of the trace 

elements are orders of magnitude lower, but their rela­

tive order is substantially the same in both media. 

Although the arsenic and chromium curves cross, in both 

plots arsenic is dominant in most of the samples. Cadmi­

um and lead clearly exchange positions as the analyte of 

lowest concentration measured. (However, in both the 
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Figure 4.S 
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analysis of the filtrates and the analysis of the wash­

es, most of the lead values were below the limit of 

quantitation: see Tables 3.3 and 3.4.) 

4.1.2 Trace Elements 

Figures 4.6 through 4.12 are individual plots for 

each analyte of their total concentration as found in 

both filtrate and wash samples. These minor and trace 

constituents will be discussed in the order of their 

average concentration in the filtrates. 

The results for aluminum are plotted in Figure 4.6. 

Aluminum in the filtrates ranged from 2.5 to 3.6 mM and 

averaged about 3 mM, ignoring the values from days 7 and 

49 which appear to be erroneous. Significant aluminum 

contamination can be introduced into the samples as dust. 

(This is particularly likely here since the sample tray 

of the AS-40 autosampler was of aluminum that had oxi­

dized to some extent.) The apparently lower concentra­

tions in the samples collected between days 10 and 30 are 

unexplained except as perhaps experimental, sampling, 

handling, and analytical variation; although they appear 

to be systematic rather than random. Aluminum in the 

washes ranged from 0.61 through 0.78 mM and averaged 

almost 0.70 mM. The value from day 21 is too low because 
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Figure 4.6 Aluminum in filtr t 
'd t· a es and washes of the batch 
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of a procedural error that resulted in little or no 

carryover of the filtrate liquid into the wash sample. 

Neither aluminum in the filtrates or the washes 

tracked iron; but rather in both cases aluminum concen­

trations were relatively constant throughout the experi-

ment. The ratio of aluminum in the washes to that in the 

iltrates was 0.17 for days 1 through 6, which matches f' 

the average ratio of iron in the washes to that found in 

the filtrates. f th · t Throughout the rest o e experimen, 

a uminum ratio varies from o.26 to 0.21, which is the 1 

caused by the systematic variation of the filtrate val-

These observations suggest that the solubility of ues. 

aluminum in coal leachates is not controlled significant­

ly by the extent of oxidation of the coal, by pH changes 

in the range 
2

. 6 to 1 •9 , or by ion-exchange with rela-

tively hi'gh · d chlori'de concentrations of magnesium an 

ions. · · th The most likely source of the aluminum is e 

kaolinite and illite and any alunite in 
th

e coal. 

Silicate and clay minerals are commonly found asso-

ciated . with coals. 
Aluminum is a major constituent of 

Heaton et al. 1982, reported a 
many f 0 these minerals. 

strong positive correlation between aluminum in EaS
t
ern 

coal waste samples and kaolinite, illite, a
nd 

quartz 

components of those wastes. Helz et al. 1987, postulated 

a tra was hi'ghlY soluble in acid 
ce aluminum phase that 

and quickly depleted, with the remainder of the aluminum 
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in the system relatively resistant to acid leaching. A 

system including some alunite as well as kaolinite and 

illite could account for observations like those. 

zinc does not appear to track iron build-up in the 

filtrates, (Compare Figure 4.7 with Figure 4.2). The 

range of zinc concentration in the filtrates was from 68 

to 101 micromolar, with an average of about 84 µM. Its 

range in the washes was from 19 to 26 µM with an average 

of about 22 µM. In both sets of data the variation is 

rather random. The ratio of zinc in the washes to that 

in the filtrates varies rather systematically from 0.235 

to o.27, which shows the magnesium chloride washes to be 

slightly enriched in zinc compared to the filtrates 

(relative to the 0.17 ratio of iron in the washes to that 

in the filtrates). An important source of zinc could be 

sphalerite, ZnS. Also, zinc may be rather steadily 

leaching from some clay mineral. Kuhn et al. 1980, 

reported zinc to be a trace constituent of mixed layer 

clays. 
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Figure 4.7 Zinc in filtrates and washes of the batch 
oxidation as a function of elapsed time. 
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Figure 4.8 shows the plots of copper in the fil-

trates and washes. The shape of the upper curve strongly 

suggests that copper tracks the release of iron in this 
system. 

The initial plateau before day 10, the steep 

rise in concentration after day 10, and the gradual 

decline in slope as the oxidation progresses, all closely 

resemble those of iron and sulfate in these samples. The 

range of copper concentrations in the filtrates was from 

about 20 to 63 micromolar, with an average of almost 39 

The unusually high value for day 35 is thought to be 

erroneous. Copper concentrations in the washes also 

track the iron concentrations in the washes. The range 

of copper in these samples was from 1 to 14 micromolar, 
w· 
ith an average of almost 7.5 µM. The ratio of copper in 

th
e Washes to that in the filtrates varies rather steadi­

ly from 0.164 to o. 223 , which is not significantly dif­

ferent from the average of 0.17 found for iron. These 

Observations strongly suggest that copper is found as a 

sulfide such as chalcopyrite associated with the pyritic 

material of the coal, and that it is released as the 

SUlfidic material is oxidized. This relationship has 

also b 1987 een proposed by Helz et al. • 
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Figure 4.8 
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Figure 4.9 is a plot of the arsenic data for both 

f'l i trates and washes. In both cases, the values below 

micromolar were below the limit of detection for one · 

these analyses. The appearance of trends in the data are 

attributed to averaging the results of repetitive mea­

surements of the samples and to the reproducibility of 

aliquots injected by the AS-40 Autosampler into the 

graphite furnace. The range of values obtained for 

arsenic i'n the . filtrates was from about 1 to 8 micro-

molar, with an average of about 3 µM. The data for the 

first half of the experiment vaguely resembles that of 

iron, which started with a low plateau, then rose quickly 

ncentration after day 10, and tended toward leveling in co . 

off after the first half of the experiment. The plot of 

arseni'c i'n :mbl that of the washes also vaguely rese es 

iron, which didn't start to rise until after day lO, a
nd 

then rose rather steadily throughout the reS
t 

of 
th

e 

experiment. The range of arsenic concentrations in these 

Solutions was from 1 to almost 9 micromolar, and averaged 

just over 3 µM. 

that in the filtrates is near o.5 through day 
281 

after 

Which it , . reachi'ng a value of almost 6 as 
rises rapidly 

the fi'ltrate , d cli'ne A comparison of 
levels of arsenic e · 

these ratios to the average ratio of o.17 for iron in 

these samples indicates that arsenic is always relatively 

enriched in the washes, and that it is concentrated 

The ratio of arsenic in the washes to 
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Figure 4.9 Arsenic in filtrates and washes of the batch 
oxidation as a function of elapsed time. 
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rather strongly into the washes when the 1 1 
f . 

eve o arsenic 

in the filtrates falls off. This suggests that later in 

the process of this batch oxidation of whole coal 
' arsen-

ic tends to be adsorbed onto non-filterable particles 

when in the acidic leachates, and exchangeable and solu­

ble when the filter cake is washed by the neutral magne­

sium chloride solution. 

These observations may be explained by assuming that 

arsenic is a trace constituent of the sulfide minerals 

commonly found with coal (see Kuhn et al. 1980), and that 

its release is controlled by the oxidation of pyrite and 

these minerals. Heaton et al. 1982, reported a very 

strong correlation between arsenic and the pyrite-con­

taining component of Eastern coal waste samples. The 

later decline of arsenic in the filtrates and concen­

tration into the washes occurred after day 28 in this 

experiment, which was when the pH fell to 2.1 and below. 

This coincides with the calculated pH at which arsenate 

ions in solution shift from H~so4• to the neutral species 

H3As04 • It is possible that this neutral species is ad­

sorbed from solution onto particles that are largely 

retained during filtration, and that they are subject to 

ion exchange back into solution by neutral, 1.0 molar 

magnesium chloride. (Note, the speciation of arsenic and 

iron will be discussed further in the later section on 

computer modelling of synthetic acidic leachates.) 
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The chromium data are plotted in Figure 4.10. Both 

curves are second order polynomial least-squares fits to 

the data points. Chromium in the filtrates ranged from 

average 1.7 µ, w i e chromium l.o to 2.6 mi'cromolar and d M h'l 

in the washes ranged from 1.6 to 2.6 µMand averaged 

almost 2.3 1tM. Th t f th 1 h · ~ roughout mos o e samp es, c romium 

was found to be more concentrated in the washes. But the 

curves cross when the pH was measured to be 1.93, and at 

the lower pH of the last sample the concentration of 

chromium in the filtrates was higher. The ratio of 

chromium in the washes to that in the filtrates declined 

from about 1.7 to 0 . 9 over the course of the experiment. 

Compared to the average value of o.17 for iron, chromium 

is relatively enriched in the wash solutions, although 

less so d es as the pH of the system ecreas · 

In this system with large amounts of iron and organ-

ic material available, it is assumed that all of 
th

e 

mob'l Bartlett and 
i e chromium exists as chromium(III)· 

James 1988, compared the speciation and mobility of 

chromium(III) in soils and found its behavior best de­

scribed by analogy with aluminum- Kuhn et al. 1980, list 

chromium as being a trace constituent of clay minerals 

among the principal minerals found in coals. Heaton et 
al. 1

982 
. . E tern coal waste samples 

, reported chromium in as 
to cor l 'th i'llite, followed by 

relate most strong y wi 
quartz and to lesser extent with mixed 

and kaolinite, 
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Figure 4.10 Chromium in filtrates and washes 
batch oxidation as a function of ~fm;~e 
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clay and gypsum. The results of this experiment do not 

Show chrom1.'um t k' · rac 1.ng aluminum closely; however, like 
aluminum 

I the chromium concentrations in the first sam-

Ples were not much different from the highest concentra­

tions found, nor did they change much over the course of 
the experiment. Therefore it seems likely that the 

source of chromium in this system was silicate and clay 

minerals with chromium as a trace constituent that was 

leachable and exchangeable to a limited extent. 

Figure 4.11 is a plot of the cadmium data. Its 

concentration in the filtrates increased steadily from 

about 0.1a to 0.36 micromolar, and averaged 0.2 5 µM. 

Cad · mium concentrations in the washes were very close to 

the average o. 02 µM throughout, though it should be noted 

that in all these samples the signals obtained were 

between the limit of detection and the limit of guantita­

tion for the analyses. The ratio of cadmium in the 

Washes to that in the filtrates varied from 0.04 to 0.06, 

With the exception of day 2 when the questionable value 

Of 0 
•15 was found. Thus cadmium is found significantly 

enriched in the filtrates, compared to the average ratio 

Of ' 
iron in these samples. 

Kuhn et al. 1980, listed cadmium as a trace con-

stit . 1 phase and Heaton et al. uent of the sulfide minera ' 

l9a2 1 t1.'ons for cadmium with , reported positive corre a 
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Figure 4.11 Cadmium in filtrates and washes of the batch 
oxidation as a function of elapsed time. 
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yrite and carbon among the components of Eastern only p , 

~s e samples. In our samples, the cadmium levels coal w t 

are at least five orders of magnitude below those of iron 

and sulfate , and don't reflect the features of their 

Plots. 

The data for lead are plotted in Figure 4.12. Only 

the highest 2 or 3 concentrations found in each set of 

samples were at or above the limit of quantitation for 

Lead in the filtrates range rom he the analyses. d f t 

lim't 1 of detection (about o.03 µM) to almost o.2 µM. 

he washes also ranged from the 11m1t of detec-Lead int .. 

tion to 1 approximately 1.s µM. Because of the arge 

uncerta1.'nty . t of the data, distribution ratios are no 

n1.ngful, though inspection of the plot suggests that mea · 

toward the end of the experiment lead was highly enriched 
However, 

in th e washes as compared to the filtrates. 

lead · l.s listed as 

reagent magnesium 

tion. 

one of the trace impurities of the 

chloride used to make the wash solu-

Calculation of the maximum 1ead impurity concen­

tration in the washes, based on the lot analysis reported 

on the reagent bottle, indicates that this source may 

account for all the lead in the wash samples. 

num 

L 'th iron or alumi-
ead does not appear to track el er 

in this system. A!)out all that can be noted that may 

be significant, is the increase of 1ead measured in the 
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Figure 4.12 Lead in filtrates and washes of the batch 
oxidation as a function of elapsed time. 
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filtrates of pH less than 2, (which is observed in the 

washes as well, despite the doubt as to its source). 

Kuhn et al. 1980, listed lead as being a trace constitu­

ent of sulfides, sulfates, and carbonate minerals found 

in coals. Heaton et al. 1982, reported lead in Eastern 

coal wastes to correlate best with kaolinite and marca­

site, less well with illite, quartz, and gypsum, and 

weakly with mixed clay. 
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4.2 COMPUTER MODEL DEVELOPMENT 

4.2.l PHREEQE Aqueous Geochemical Model 

Computer modeling is an important tool for obtaining 

a thorough picture of the chemistry of this system and 

the interaction of its components. Among the more impor­

tant computer models of aqueous systems that have seen 

continued development and use, WATEQ was first developed 

in the early seventies by Truesdell and Jones, (1973). 

rt is designed for modeling major and trace element 

species activities in natural waters (rain, ground, 

river, lake, and even ocean and low temperature hydro­

thermal waters). It uses temperature, pH, total concen­

trations of analytes, alkalinity, and redox potential 

(Eh). It calculates chemical speciation and reports 

individual ion activities, equilibrium pressures of 

certain gases, and the degree of saturation of the solu­

tion with respect to many solid phases. 

The ion-interaction models have been developed 

principally by Pitzer, Harvie, and Reardon to model 

brines and electrolytes at high concentrations. They use 

empirical data to account for complexing and ion-pair 

formation, but they have not been designed to model redox 

reactions. 

Plummer and Parkhurst first developed PHREEQE about 

1980. It models geochemical reactions based on an ion-
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pairing aqueous model which is external to the computer 

code and completely user-definable. It can calculate the 

chemical speciation of solutions in equilibrium with 

multiple phases. It can simulate the mixing of solutions 

or the addition of reactants. It can also calculate pH, 

redox pot ential , and mass trans fe r as a function of 

reaction pr ogr ess . It has oeen found to work well for 

s olution ionic strengths up through that of s eawat er. 

The most important single factor in obtaining reli­

able results from a computer model is the mathematical 

model which is used to describe the system being studied. 

D. K. Nordstrom , J . w. Ball, and E. A. Jenne have done 

major work on the collection , evaluation, selection, and 

gener ation of sel f -consistent, best-available thermody­

namic data and/or equilibrium constants for use in the 

data bases of these and other geochemical modeling pro­

grams. Starting from their recent publications (Nord­

strom e t al. 198
9

, Parkhurst 1989, and PHREEQE documen-

tat · d · ion that accompanies the program, (Plummer an Tisa-

ran · n1 1990), the database that pertains to the elements, 

dissolved species and complexes, gases, and solids has 

been carefully checked. other major sources used to 

database and to obtain thermodynami c 

constants for additional species to be 
check th . . e existing 

and/or · 1 · . equi 1.br1.um 

incorporated into the model include: smith a
nd 

Martell , 
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1989 and 1982 
I Bard, et al. (IUPAC, 1985), Wagman et al. 

(NBS, 1982), Turner et al. 1981. Some individual species 

Were found in the literature and incorporated into the 

database (see Appendix B). Woods and Garrels 1985, was 

found useful for cross-checking that thermodynamic data 

Used in a calculation in the literature was in reasonable 

agreement with the major compilations of selected values. 

The only major additions to the PHREEQE database 

Were the elements arsenic and chromium and their redox, 

speciation, and mineral phase equilibria. The sources of 

the data for these and other individual additions and 

modifications to the database are given in Appendix B. 

Input that was required by PHREEQE in order to model 

a given sample, and the source of the values used, in­

cluded: 

pH= as measured in each filtered sample. 

Temperature= 25°C 

pE = an estimate of solution redox potential, 

we used the equation used by the program: 

pE = {log(P~) - 4pH + 83.1}/4 Eqn. 4.2 

Density of solution= 1.0175 for first sample, 

1.01825 as the average density of the 

partially titrated samples. 

Dissolved elements= total millimolar concen­

tration of each one added or measured. 
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Gases (identity and partial pressure of each 

gas with which the solution was equili­

brated) : air o2 = 0 • 21 atm. 

air CO2 = 3. Jx10·4 atm. 

Solids (identity of each solid phase with which 

the solution was to be equilibrated) 

Charge-balance method and species if desired, 

(see later discussion). 

Also included as part of the database was a list of 

selected non-aqueous phases to be monitored by the calcu­

lation of saturation indices. 

The computer outputs included: reiteration of the 

input data and parameters, mass transfer to or from non­

aqueous phases during the equilibration step, total 

molality of each element being modeled, a summary of 

solution descriptors (including pH, pE, activity of 

water, ionic strength, temperature, net electrical imbal­

ance, and total alkalinity), a table of the calculated 

distribution of the major and important species of each 

element modeled (listing their molality, activity, and 

activity coefficient), and a list of saturation indices 

for non-aqueous phases being modeled. 

136 

: 
I 

I ,, 



4 · 2 • 2 General Problems 

The PHREEQE chemical model discussed above ignores 

kinetic factors. It assumes that there are no kinetic 

i ndrances to achieving equilibrium, and calculates h' 

complete systemic equilibration at each step of a simula-

is assumption works acceptably well for many tion. Th' 

applications of the program, but can result in profound 

errors when the system being modeled is not in fact at 

equilibrium. 

Iron in unoxidized coal exists primarily in the form 

of pyri'te · d · and marcasite. Exposure to air an moisture 

brings about oxidation of the FeS2 and release of ferric 

iron and sulfate. The complete oxidation of the pyritic 

material may take months or years, depending on environ­

mental and chemical factors. Helz et al. 1987, noted 

that the production of sulfate in laboratory experiments 

with coal did not approach completion in a 60 - 90 day 

Period. Thus, a natural system of whole coal exposed to 

weathering is expected to have significant concentrations 

of both ferrous and ferric iron, limited of course by the 

Solubility of each at the pH of their microenvironment. 

PHREEQE calculates the redoX distribution of iron in 

equilibrium with the redox potential of solution, which 

is determined by pH and the partial pressure of dissolved 

oxygen. In air-saturated aqueous solutions of low pH, 

the calculated pE is high (ranging from 15 to 19 in our 

137 

I 
~ 



simulations)· The resultant ratio of ferric to ferrous 

iron was predicted to be on the order of 106 at pH 1 . 6 , 

105 at pH 2 · 5 , l0
4 

at PH 3.9, and 102 at pH 5.6. Thus, 

pHREEQE would not be expected to accurately model the 

iron redox state in a coal suspension undergoing oxida-

tion. (However, it should still give a reasonable pie-

ture of the species distribution within a specific oxida­

tion state. That is, even though the Fe(II)/Fe(III) 

ratio is unreliable, the Fe3• /FeOH2+ ratio should be 

realistic. ) 

our synthetic coal leachate was intended to repre­

sent a fully oxidized effluent from some well-exposed and 

weathered coal. Sulfuric acid and iron(III) sulfate were 

the sources for the iron and sulfur in the synthetic 

solution; and it was left exposed to air and kept well 

stirred throughout the experiment so that air saturation 

would be maintained. Thus, PHREEQE is expected to pres­

ent a good model of the iron redox state and speciation 

in samples from this neutralization reaction. 

Net imbalance between total positive and total 

negative charges in solution can be used as a gross 

indicator of the adequacy of the solution analysis. That 

is, a charge imbalance of greater than 20% should be 

investigated as to its source(s). It may indicate omis­

sion of some important substance in the analysis, or 
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si · · gnificant errors in the analysis, or large systematic 

error · sin the concentrations of components that are 

estimated. It could also arise from typographical errors 

during data entry, or from inclusion of non-charge bal­

anced reaction equations in the chemical model. 

PHREEQE has options that allow the user to: 

l) calculate and report the charge imbalance and hold it 

constant throughout the calculations; 2) adjust solution 

PH to obtain electroneutrality (which allows the program 

to calculate pH changes of solution due to hydrolysis or 

0ther proton producing/consuming processes); and 3) 

adjust the total concentration of some specified anion 

and/or cation to balance the net charge, and then hold 

that balance throughout subsequent calculations (e.g. 

adjust Na• or c1 · in a seawater simulation). 

Most of the samples from the neutralization experi­

ment exhibited significant charge imbalance. The early 

samples had excessive positive charge, and the amount in 

excess tended to decrease as the neutralization progres­

sed and iron was removed from solution by hydrolysis and 

Precipi tation. This can be explained by the incomplete 

removal of fully hydrolyzed iron from solution during 

f'l 3+ ' ' l d 1 tration. During hydrolysis, each Fe ion is rep ace 

by three H+ ions according to the net reaction: 

Eqn. 4. 3 
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Thus, the total positive charge in solution is conserved, 

product, being neutral, has a net charge and the other · 

per iron atom of zero. Removal of this neutral entity 

from solution by precipitation and filtration does not 

affect the charge balance. 

Spiro et al. 1966, reported that hydrolysis of 

ferric nitrate with bicarbonate produces solutions that 

contain a discrete high polymeric component having an 

average molecular weight of approximately l.4xl0
5

• 

Polymer size and composition were found to be nearly 

i ndependent of degree of hydrolysis between 1.0 and 2.0 

base equivalents per mole of iron(III). Electron micros­

copy revealed isolated spheres mostly of about 70 ang­

stroms diameter and ranging up to about 90 angstroms. 

The authors further reported that formation of these 

particles was rapid, but dissolution was very slow. In 

fact, they were stable indefinitely if isolated, 
0th

er­

wise ferric hydroxide precipitated in a few days. Brady 

et al. 1968, also reported formation of 70 angS
t

rom 

spheres during the hydrolysis of iron(III). oousma and 

deBruyn 1976, outlined four steps in the hydrolysis-

Precipitation of iron(III): 

1) Hydrolysis to monomers and dimers; 

2) Reversible rapid growth to small polymers 

(approximately 40 angSt roms); 
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3) Formation of slowly reacting large polymers 

(200 to 500 angstroms); 

4) Precipitation of a solid phase. 

Nominally 0.45 µm millipore filters should catch 

most parti'cles that h 50 b t th are greater tan o nm; u at is 

at least ten times the size of even the largest particles 

cited above. Thus, significant amounts of fully hydro­

lyzed, uncharged, precipitated iron can be collected in 

filtrates as colloidal particles. These filtrates are 

Physically constrained to be charge balanced. In our 

experiments, the pH of each filtrate was measured at this 

Point, before the sample was acidified and stored. But 
th

e added acid would be expected to dissolve any colloi-

dal iron d . . uring the storage period. Thus, at the time of 

analysis there could be significantly more dissolved iron 

in Solution than there was when the sample was collected. 

(Even colloidal iron reaching the atomic absorption 

atomizer could be decomposed and contribute positive 

error to the analysis.) This excess iron is believed to 

be the source of the excess positive charge in acidic 

filtrates containing appreciable iron. 

Later samples, collected after the bulk of iron had 

been removed from solution by precipitation, tended to 

exhibit small excesses of negative charge. This was 

th0Ught to be due to the assumption, built into the 
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original PHREEQE chemical model by default, that sulfate 

was conserved in solution during the precipitation of 

iron, Which left solution as pure Fe(OH) 3 • Lazaroff et -

al. 1982 , in a study of amorphous sediments produced by 

bacterial oxidation of ferrous ions in acid solution, 

obtained infrared spectral evidence for outer-sphere 

coordination of Fe(III) by sulfate ions. Khoe and Robins 

1989 , investigated the hydrolysis and polymerization of 

iron(III) in the presence of sulfate. They suggested 

that sulfate is incorporated in the structure of the 

Polymer formed; and they gave the empirical formula for 

the polymer as Fe(OH)z.4'S04) 0_3 • Bigham et al. 1990, 

identified a poorly crystallized oxyhydroxysulfate of 

iron · ·t t f 1 as the primary component of prec1p1 a es rom su -

fate-rich mine waters having pH values in the range of 

2 -5 to 4.0. They determined it to have sulfate occupying 

both surface and tunnel sites; and they gave the formula 

as Fe,6016 (0H) 12 (so4)2 but ranging to Fe16°16(0H)1o(S04'3• 

The data for three of the samples were examined to 

est1·m t th aJ'or substances to a e the contribution of em 

Charge uncertainty. Sample 2 was collected at pH 1.97 

bet ore . . . . t had formed in solution. The visible prec1p1ta es 

Inajor contributors of charge in solution were iron, 

SUlfate, hydrogen, and sodium ions (in that order of 

im t ·nty of each component 
Portance). The estimated uncer ai 
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concentration in terms of equivalents per liter, summed 

over the above major components, totaled about ?xlo-2 

equivalents per liter. PHREEQE calculated the net charge 

imbalance of the sample to be +5x10-2 Eq/L. sample 7 was 

the middle one collected: its pH was 2.47, and only about 

14 percent of the original iron remained in solution. 

The major contributors of charge in this solution were 

sulfate, sodium, iron, and hydrogen ions (in that order). 

The sum of their estimated uncertainties was approximate­

ly ax10-2 equivalents per liter: and PHREEQE calculated 

the net charge imbalance to be +3.6xlo-3 Eq/L. 

Sample 12 was collected at pH 5.74, after the iron 

concentration in the filtrate had dropped below the limit 

of quantitation. The major contributors of charge in 

this solution were sulfate and sodium ions (in that 

order) with iron and hydrogen ions about five orders of 

magnitude lower. The total estimated uncertainty was not 

more than 12x10-2 Eq/L: and PHREEQE calculated the net 

charge imbalance to be approximately +2x10-2 Eq/L. Thus 

the computer calculated charge imbalance of the solutions 

was less than the estimated limit of uncertainty in the 

data being used by the program. 

An effort was made to adjust the input data for each 

sample to compensate for the systematic errors discussed 
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above and render the data a more realistic description of 

the true solution conditions. 

It was assumed that all the precipitated iron had 

taken some sulfate out of solution with it, either incor­

porated into the structure or adsorbed onto the surface 

of the solid. Estimation of the amount of sulfate re­

moved by formation of an iron precipitate having the 

formula Fe(OH) 2.dS04 ) 0•3 , given by Khoe and Robins 1989, 

resulted in overcorrection of the excess negative charge 

in the later samples by a factor of about 2. But use of 

Fe16016 (0H) 12 (S0d 2 , the first formula given (and preferred) 

by Bigham et al. 1990, brought the later solution compo­

sitions nearly into charge balance. 

Final charge balance in samples 8 through 13 was 

achieved by slight adjustments in total sodium and total 

sulfate simultaneously. These components had been intro­

duced into solution separately (sulfate at the outset as 

ferric sulfate and sulfuric acid, sodium in the sodium 

bicarbonate titrant), and their tot~l concentration in 

each sample had been estimated separately. No indication 

was found that either sodium or sulfate concentrations 

were more likely to be in error. It was realized that 

adjustment of just one or the other would affect the 

total dissolved solids and the ionic strength of solu­

tion, as well as impact on the speciation of all compo­

nents involving that ion. 
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Thus, equal equivalents of sodium and sulfate were 

added and removed simultaneously in a series of succes-
s· 

ive approximations that led to essential charge balance 

for each of the samples. The resulting average change of 

sodium was 0.4% of total Na, and the average change of 

sulfate was 0.4% of total so
4

• These were well within 
the uncertainty of the estimated total concentrations of 

thes e components; and the small changes involved produced 

negl' · igible effects on the calculated speciation of the 

Solutions affected. 

In the early samples where excess positive charge 

Was judged to stem from colloidal iron in the filtrates 

being redissolved during storage, the total iron input 

Was reduced manually until charge balance was obtained at 

the measured pH. (See Figures 4.30 and 4.31). The 

redu t' 7 25% t 26 7% f c ions necessary ranged from about • 0 • o 
the measured filterable iron. The larger adjustments 

Were required for samples 3 through 6. Presumably the 

first two samples had not hydrolyzed sufficiently to form 

significant amounts of larger iron polycations and col­

loidal polymers. By the time sample 7 was collected, 

most of the iron had been removed from solution by hydro­

lysis-precipitation and flocculation to particles large 

enough to be caught by the filters. Thus it is supposed 
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that little colloidal iron existed to pass into the 

filtrate. 

An average iron reduction of 19.7% was necessary to 

achieve charge balance in samples 1 through 7. This can 

be interpreted to mean that approximately one fifth of 

the filterable iron had in effect a net charge per iron 

atom of zero. 

The Saturation Index of each non-aqueous phase being 

monitored by PHREEQE is calculated using the formula: 

SI= log(Ion Activity Product/ K) Eqn. 4.4 

Thus, the Saturation Index for a mineral expresses the 

extent to which the solution is over- or under-saturated 

with respect to the equilibrium constant for the solubil­

ity of that mineral. 

Some fluctuation was noted in the SI values reported 

by PHREEQE. A correlation analysis was made between SI 

and the variables involved in its calculation for miner­

als of interest which appeared to be near saturation in 

multiple solutions. Of the iron(III) hydroxides, only 

Fe(OH) 3 (soil) was ever reported within one log unit of 

saturation; and its SI fluctuated about zero by as much 

as one log unit. The correlation analysis revealed that 

the variations of pH from sample to sample were the major 

cause of variation in the Ion Activity Product, and 

therefore accounted for the fluctuations in SI. Similar-
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ly for jurbanite, Al(OH)S04 , correlation analysis reveal­

ed tha~ variations of pH from sample to sample were the 
ma· 

Jor cause of variation in the Ion Activity Product. 
The second most important contributor to fluctuation in 
the Saturation Index for jurbanite was changes in the 

activity of Al3+; and of least impact were changes in the 

activity of SO/ • 

.!,.2. 3 Relatively Inert Components 

The components of solution during the neutralization 

reaction that were present in concentrations well above 

th0se of the trace elements being analyzed were: 

sulfate from ferric sulfate and sulfuric acid, 

initially 0.170 molar; 

sodium from the sodium bicarbonate titrant, 

increased from o.o to 0.326 molar; 

chloride and nitrate that were matrix ions of 

the trace element spikes, averaged 1.5 mM 

and 0.9 mM, respectively. 

These were judged to be relatively inert, as compared to 

the chemistry of iron during neutralization reactions. 

The matrix composition of the first sample was estimated 

from the initial formulation of the system. For the rest 

of the samples, running total concentrations of the ma­

trix components were estimated assuming their conserva­

tion in solution, and taking into account sample removal, 
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titrant addition, and evaporative losses from the system 

during the three weeks duration of this experiment. Of 

course, the total sulfate and total sodium concentrations 

were eventually adjusted slightly to obtain charge bal­

ance, as has been discussed. 

4.2.4 Specific Problems 

Because of the results indicating a large imbalance 

of positive and negative charge in the modeled solutions, 

thermodynamic data was sought for larger iron polycat-

ions. (These have been assumed or postulated in numerous 

articles; i.e. Schneider and Schwyn 1987, Hong-Xiao and 

Stumm 1987, Dousma et al. 1979, Dousma and de Bruyn 1976, 

1978, and 1979, Buffle and Nembrini 1977, and Rengasamy 

and Oades 1977.) Computer assisted search of the litera­

ture enabled me to find only one iron polycation beyond 

Fe3 (OH) 4
5+ that had been characterized to the extent of an 

equilibrium value. Ciavatta and Grimaldi (1975) reported 

log(B) = -46.l for: 

12Fe3+ + 34H20 = Fe (OH) 2+ + 34H+ 12 34 Eqn. 4.5 

In the absence of a literature value for Fe4 (0H) 6~, 

the (log K) vs (No. of iron atoms) for the series: Fe3+ 

' 
Fe2 (0H)/+, Fe3 (0H)/+ was extrapolated (Figure 4.13) to 

obtain an estimate for the log(K) of formation for the 

next member of the series, Fe4 (0H) 6~. The value obtained 
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Figure 4.13 Extrapolation of Fe(III)-hydroxy species 
log K's to obtain an estimate of the log(K) 
for Fe4 (OH)/+. 
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was -61.46 for the reaction: 

4Fe2+ + 6H
2
0 = Fe

4 
(OH) 66+ + 6H+ + 4e- Eqn. 4.6 

which was incorporated into the PHREEQE database. Further 

extrapolation of the series led to an asymptotic approach 

to a value of -16.17 for the (log K)/(Fe atom) of forma­

tion of a polycation having one million Fe atoms. This 

value lies between the corresponding log(K) of formation 

for goethite (-14.02) and amorphous ferric hydroxide (-

17.91) according to the following reactions: 

Fe2+ + 2H20 = FeO (OH) Cgoethite> + 3H+ + le- Eqn • 4 • 7 

Fe2+ + 3H2o = Fe (OHhcam> + 3W + le- Eqn. 4. 8 

Subsequent computer modeling of samples from the 

neutralization titration never revealed either Fe4 (0H)/+ 

or Fe12 (OH) 34
2+ to be of importance among the iron species 

considered in our calculations. 

Jarosites 

Special attention was given to the selection of 

equilibrium constants to be used to model the jarosites. 

Numerous authors have commented on the apparent contra­

dictions that jarosite forms readily in the environment, 

yet many solutions are found to be supersaturated with 

respect to jarosite by orders of magnitude, which implies 

failure to equilibrate. (See for example: Nordstrom et . 

al. 1979, Bladh 1982, Chapman et al. 1983, Helz et al. 

1987, Karathanasis et al. 1988, and Alpers and Brimhall 
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1989.) In addition, there is a wide range of data re­

ported for the Gibbs free energy of formation and/or 

solubility of jarosite. Brown 1970, determined the Gibbs 

free energy of K-jarosite to lie between -3276 +/- 84 

kJ/mol and -3192 +/- 25 kJ/mol. Zotov et al. 1973, 

reported -790.1 +/- 1.0 kcal/mole, which corresponds to -

3306 kJ/mole. Vlek et al. 1974, determined a value of -

791.2 kcal/mole, which corresponds to -3310 kJ/mole. 

Kashkay et al. 1975, determined a value of -788.64 +/-

1.0 kcal/mole, which corresponds to -3300. kJ/mole. 

Bladh 1982, reported ambiguities in earlier calcula­

tions as a result of the wide range of published values 

of thermodynamic data, and recalculated the log(K) for 

jarosite to be -7.12 for the reaction: Eqn. 4.9 

KFe3 (0H) 6 (S04 ) 2 + 6H+ = r + 3Fe3+ + 2SO/ + 6H20 

which corresponds to a Gibbs free energy value for K­

jarosite of -3275 kJ/mole (Alpers et al. 1989). This 

value would make jarosite more than five orders of magni­

tude more soluble than the widely used log(K) value of -

12.5 (as in Lindsay 1979). However, Alpers et al. 1989, 

found Bladh's value to be inconsistent with their re­

sults, and recommended the use of the values of Kashkay 

et al. 1975, as the best available internally consistent 

set of data for the three end-member jarosites (r, H30+, 

and Na+ - jarosites). 
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Thus, the values used in PHREEQE for the log(K) of 

the pure jarosites (for reactions of the type of equation 

4.9) were: jarosite, -9.21; carphosiderite (hydronium­

jarosite), -5.39; and natrojarosite, -5.28. In addition, 

the work of Alpers et al. 1989, recommended a Gibbs free 

energy of -3293.5 +/- 2.1 kJ/mol for a jarosite solid 

solution of composition K.nNa. 03 (H30) _20Fe3 (OH) 6 (S04) 2 • This 

value was not used because of the absence of potassium in 

the solutions to be modeled. However, their work did 

allow the estimation of a Gibbs free energy value of 

-3239 kJ/mole for a pseudo-binary H3o+-Na+-jarosite with 

formula (H30)_75Na. 25Fe3 (0H) 6 (S04) 2 , and this value was 

incorporated into the PHREEQE database. 

Soil-Iron 

Lindsay 1979, noted that soils generally maintain an 

iron(III) activity slightly below that of amorphous 

ferric hydroxide. He defined Fe (OHh<soil> or soil-Fe to 

be an amorphous phase having a greater degree of struc­

tural order than freshly precipitated am-Fe(OH) 3 • Log(K) 

= 2.70 was assigned to the reaction: 

Fe (OH) 3csoil> + 3H+ = Fe3
+ + 3H20 Eqn. 4.10 

This value was incorporated into the PHREEQE database and 

will be seen to be of significance in the modeling of our 

solutions. 
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Silica 

similarly, the Pyrex glass of the reaction vessel is 

intermediate in solubility between amorphous and crystal­

line sio2 • Equilibrium with silica glass was defined by 

adding the following reaction: 

sio2·H20cglass> + H20 = H4Si04° Eqn. 4.11 

for which log(K) = -3.018, (based on summer, 1990 data­

base supplied with PHREEQE, and Nordstrom, 1989). 

Aluminum 

Baes and Mesmer 1976, summarized the aluminum hydro­

lysis products and recommended that a value of -98.73 be 

used for the log (K) of formation of Al 13o4 (OH) 2/+. Based 

on work by Brown with Sylva, Batley, and Ellis, 1985, 

log(B) = -107.41 for the reaction: 

Eqn. 4.12 

This was also incorporated into the database for PHREEQE, 

and was shown to be of importance in the speciation of 

aluminum in the two least acidic samples modeled, those 

of pH 5.55 and 5.75. 

Jurbanite proves to be of some importance in the 

calculations. Its log(K) of -3.8 was obtained from 

Karathanasis et al. 1988 for the reaction: 

AlOHS04ourbanite> + H+ = Al 3+ + so/- + HzO Eqn. 4.13 
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Nordstrom 1982b, listed several possible solid 

phases that might control aluminum solubility in natural 

waters, including alunogen (Al
2 

(S04) 
3
·17H

2
0), jurbanite 

(AlOHS04·5H20), basaluminite (Al4'0H) 
10

so4·sH
2
0), alunite 

(I<A13 (0H)6(S04)z), and gibbsite (y-Al(OH) 3). He concluded 

that jurbanite is stable at low pH up to at least pH 4 in 

the presence of 10·2 molar sulfate, that alunite is sta­

ble between jurbanite and gibbsite (pH 3.3 through 5.7 

depending on sulfate concentration), and that gibbsite is 

the most stable phase at higher pH. He noted that bas­

aluminite shows a solubility pattern similar to gibbsite 

and alunite, and that it forms most readily, but is 

metastable over the entire pH range. Later, studying 

water from acid mine water drainage basins, Nordstrom and 

Ball 1986, found aluminum to be conserved in samples at 

pH less than 4.6, and non-conserved at pH greater than 

4.9. The loss of aluminum correlated most closely to the 

formation of amorphous or microcrystalline Al(OH) 3 • 

Karathanasis et al. 1988, in a study of surface 

waters of acid mine watersheds, concluded that high 

levels of dissolved aluminum (in solutions with pH up to 

4.2 or even 5) were limited by the solubility of a jurba­

nite-like mineral. They interpreted the absence of 

jurbanite X-ray diffraction peaks to suggest the presence 

of an amorphous form, or of a mineral stoichiometrically 

similar to jurbanite. Aluminum in samples with pH 5 or 
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more c 1 . 
ou d be interpreted as obeying the solubility of 

m· 
icrocrystalline gibbsite. 

The best fit to our data was obtained using the 

following reactions to model aluminum concentrations as 
be' 

ing controlled by jurbanite (log(K) = -3.8) up to pH 
3

·
9

, then by bayerite (log(K) = +8.41) up to pH 4.8, then 

by basa1uminite (log(K) = +22.4) up to pH 5.0, and there-

after b . 
Y micro-crystalline gibbsite (log(K) = +9.35). 

A10HS04Ccr> + lH+ = lAl 3+ + 1S04 = + lHzO 

Q-Al (OH) 3 + 3H+ = lAl 3+ + JH20 

Al4 (OH) 10S04<cr> + 10W = 

Eqn. 4.14 

Eqn. 4.15 

Eqn. 4.16 

4Al3+ + 1SO/ + lOHzO 

Y-Al (OH) 3CBcr> + JH+ = lAl 3+ + 3Hz0 Eqn. 4.17 

(The f • ) it may be seen in section 4.3, Figure 4 • 19 • 

~ 
K2Cro4 was used in the formulation of the fully 

oxidized synthetic leachate, as well as fully oxidized 

forms of all the other components; and the system was 

kept we11 oxygenated throughout the experiment. Assuming 

equilibrium of dissolved chromium with dissolved oxygen 

in an acid-sulfate system, PHREEQE predicts that Cr(III) 

species predominate below pH 2.5, and that Cr(VI) species 

predomi nate above pH 2.5. 

H . . of this work is to 
owever, a principal obJective 

deve1 0 be used to predict the 
Pe a computer model that can 
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mobility of trace elements in a leachate that is undergo­

ing dilution and/or neutralization. In a coal leachate, 

especially if in contact with reduced mineral and organic 

material, chromium would be expected to exist only as 

Cr (III) • 

The work of Rai et al. 1987, and of Sass and Rai 

1987, was used to model the removal of chromium from 

solution by coprecipitation with iron. They derived the 

following composition-dependent solubility equation which 

can be used to model aqueous chromium concentrations in 

equilibrium with CrxFe1_x(OHh for X less than or equal to 

0.69 and for pH between 2 and 6. 

log(CrOH2+) = Eqn. 4 .18 

-2pH + 4.18 + 0.28(1-X) 2 - 1.79(1-X) 3 + log(X) 

This equation was imbedded in the PHREEQE program code 

and solved at each iteration of the program for X. The 

resulting mole fraction was used to calculate the amount 

of chromium coprecipitating with each mass transfer of 

iron out of solution, as well as the amount of Fe(III) 

replaced in the precipitating solid and therefore re­

tained in solution. This approach was used because it 

linked the coprecipitation of chromium with iron after 

Sass and Rai 1987, as well as preserving the coprecipita­

tion of sulfate with iron after Bigham et al. 1990. 

The model thus developed was first used to simulate 

the removal of chromium from our synthetic leachate 
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solution during neutralization by sodium bicarbonate. 

The calculated results roughly approximated our experi­

mental data. Adjustment of the constant in the sass and 

Rai equation corresponded to adjustment of the log(K) of 

the solubility of amorphous Cr(OH) 3 used in their deriva­

tion. The best simulation of our chromium data was 

obtained using +3.64 for the constant in their equation, 

which corresponds to a pure chromium(III) hydroxide phase 

that would be 0.54 log units more stable than the amor­

phous form assumed in the Sass and Rai derivation. Rai 

et al. (1987) obtained log(K) < 9.35 for the reaction: 

Cr(OHhcs) + 3H+ = cr3+ + 3H20 Eqn. 4.19 

This differs by almost three orders of magnitude from the 

value of 12.0 adopted by Baes and Mesmer 1976, and sup­

ported by the thermodynamic values published in the NBS 

and IUPAC compilations (Wagman et al. 1982, and Bard et 

al. 1985, respectively). Thus, we consider our adjust­

ment of the equilibrium constant to be within the range 

of uncertainty of the appropriate stability constant for 

the pure solid phase. 
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Copper 

The results from both the batch oxidation of coal 

and the neutralization titration of synthetic coal leach­

ate suggest that the chemistry of copper is related to 

that of iron in these systems. The work of Frimmel and 

Geywitz 1987, suggest the removal of 3 micromolar copper 

by coprecipitation with ferric hydroxide (from solutions 

containing 0.1 millimolar total iron) to occur in the pH 

range 5 to 7. It was decided to model the removal of 

copper from solution during neutralization as the copre­

cipitation of copper with iron, similar to the above 

model for chromium. The derivation that follows is 

patterned after Sass and Rai 1987. 

cu2• is a major species of copper in solution over 

the pH range of interest (1.6 to 5.6), (see Baes and 

Mesmer 197 6) . cu (OH) 2<c> is the most soluble of the solid 

phases likely to control copper solubility in this sys­

tem, (see Lindsay 1979). According to Bard et al. 1985, 

log(K) = +8.6 for the reaction: 

Eqn. 4.20 

For this reaction the equilibrium constant expression may 

be written, (using { } to denote the activity of the 

enclosed substance) as: Eqn. 4.21 

log(K) = log{Cu2•} + 2log{H20} - 2log(H+} - log(Cu(OH) 2 } 
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which may be rewritten as: Eqn. 4.22 

log(K) + log{Cu(OH) 2} = log{cu2+} + 21og{H2o} + 2pH 

where {Cu(OH)2} represents the activity of cu(OH) 2 in the 

solid solution that precipitates, and for which: 

log{Cu(OH) 2} = log(l<x) - log(K) Eqn. 4.23 

where Kx is composition dependent and related to the mole 

fraction, X, of Cu(OH) 2 in the precipitate. (Note that 

when Cu(OH) 2 is pure, its standard state, its mole frac­

tion is 1.0 and its activity is 1.0, by definition for 

pure solids. Thus, log{Cu(OH) 2} = o.o and the above 

equation becomes: log(Kx) = log(K). Also note that as 

the mole fraction of Cu(OH) 2 becomes less than 1.0, its 

activity in the solid solution becomes less than 1.0; and 

thus log{Cu(OH) 2} becomes less than zero. But since 

log(K) is fixed, then log(Kx) must also decrease.) Thus: 

log(Kx) = log(K) + log{Cu(OH) 2} 

combining equations 4.22 and 4.24 gives: 

log(Kx) = log{Cu2+} + 2log{H20} + 2pH 

Eqn. 4.24 

Eqn. 4.25 

Now, to evaluate log(Kx) I used the values for each of 

the other variables in equation 4.25 that were calculated 

by PHREEQE in the original processing of sample solutions 

of the neutralization titration in the pH range where 

copper was thought to be coprecipitating with iron. The 

results are listed in column 2 of Table 4.1. Column 3 of 

the same table lists the values for log{Cu(OH) 2} calcu­

lated using equation 4.23. 
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Table 4.1 Estimated and derived quantities in the devel-
opment of a relation for the coprecipitation of copper 
with iron during neutralization of acid solution. 

pH log(Kx.l. log{ Cu (OH) 21. ~u(OH)2- log CYcucoH>2.l. 

2.8743 -0.1564 -8.7564 0.000063 -4.5548 
3.145 0.324 -8.276 0.000285 -4.7310 
3.400 0.764 -7.836 0.04552 -6.4942 
3.5146 0.9632 -7.6368 0.088706 -6.5848 
3.650 1.044 -7.556 0.21846 -6.8954 
3.750 1.094 -7.506 0.25085 -6.9054 
3.8984 1.1848 -7.4152 0.3072 -6.9026 
4.400 1.849 -6.751 0.44764 -6.4019 
5.643 3.54 -5.06 0.6713 -4.8869 
pure 

Cu (OH) 2 8.6 0.0000 1.0000 0.0000 

The mole fraction of Cu(OH) 2 precipitating with iron 

at each selected point in the neutralization titration 

was estimated to be the increment of copper removed from 

solution within+/- 0.005 pH units of that point, divided 

by the sum of the increments of copper and iron removed 

from solution over the same pH range. These estimates 

are listed in column 4 of Table 4.1. Column 5 lists the 

activity coefficient of Cu(OH) 2 in the solid solution at 

each selected point. These were based on: 

{CU(OH)z} = X·YcucoH)2 

and were calculated by: 

log (Ycu(OH)2) = log{ cu (OH)z} - log (X) 
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Figure 4.14 is a plot of the calculated log activity 

coefficients of Cu(OH) 2 in the solid solution precipi­

tates versus one minus the mole fraction of cu(OH)z in 

the precipitates. The least squares fit of a second 

order polynomial to the data produced the relation given 

below, for which R2 = 0.954. Eqn. 4.28 

log(YcucoH>2) = 0.1310 - 20.99(1-X) + 15.61(1-X) 2 

Combining equations 4.20 and 4.25 we obtain: 

log (K) + log (YcucoH>Z) + log (X) = Eqn. 4. 29 

log{Cu2+} + 2log{H
2
0} + 2pH 

And combining equations 4.28 and 4.29 we obtain: 

log(K) + 0.1310 - 20.99(1-X) + 15.61(1-X) 2 + log(X) 

= log{Cu2+} + 2log{H20} + 2pH Eqn. 4. 30 

which can be rearranged to the form given below: 

o = log{Cu2
•} + 2log{H20} + 2pH - log(K) - 0.1310 

+ 20.99(1-X) -15.61(1-X) 2 - log(X) Eqn. 4. 31 

All except the last three terms in this equation are con­

stants, or are available from the calculations after each 

iteration of the PHREEQE equation solving subroutines. 

These values were summed within the program, so that 

equation 4.31 collapsed into the form: Eqn. 4. 32 

O =CONSTANTS+ 20.99(1-X) - 15.61(1-X) 2 - log(X) 

This was solved at the end of each PHREEQE iteration by a 

method of successive bisections between o.o and 1.0 that 
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Figure 4.14 Logarithmic plot of the activity coefficient 
of Cu(OH) 2 in solid solution with Fe(OH) 3 as 
a function of the mole fraction of Cu(OH) 2 
in the solid solution. 
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Note: Both second and third order l e ast-squares 
polynomial fits to the data were calculated 
(after Sass and Rai 1987), and are shown. 
The curve plotted is from the second order 
fit, which gave the best computational re­
sults, and was used in the derivation. 
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approached the value of x which would make equation 4.29 

true (neither 't' . pos1 1ve nor negative). 
Thus we obtained 

the mole fraction of copper that should be coprecipitated 

with iron at each 
adjustment made by PHREEQE of the total 

iron in 1 so ution. 
This allowed the modelling of a frac-

tional coprecipitation of copper with iron such that each 

increment of iron precipitated from solution resulted in 

the removal of an amount of copper appropriate to the 

immediate solution conditions, (including pH, total 

elemental concentrations and state of complexation/spe-
' 

ciation). 

Specifically, for each mole of Fe16016(0H),2 (S04) 2 
th

at 

PHREEQE calculated should be precipitated from solution, 

16X/(l-X/3) moles of copper were coprecipitated a
nd 

<2! 3 )*lGX/(1-X/3) moles of iron were redissolved. The 

included adjustments were necessary in order to achieve 

the desired composition of the precipitate and preserve 

charge balance within the system (without disturbing the 

amount of each anion removed and/or the calculated pH of 

the sySt em during the simulated precipitation). 
U 1 t the removal of 

se of the above model to simu a e 

copper from the synthetic leachate solution during neu-

tralization by sodium bicarbonate gave calculated 

that roughly approximated the experimental data. 

results 

(The 

goodness of fit may be seen in Figure 4.21, in section 

4.3) Adjustment of the value used for the 1og(K) of the 
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solubility of solid Cu(OH) 2 from +8.6 to +9 • 2 produced 

the best simulation of my copper data. This corresponds 

to a pure copper(!!) hydroxide Phase that would be 0.6 

log units more soluble than the crystalline form used in 

the above derivation, which suggests a microcrystalline 

form of the solid. 

Lead 
~ 

Comparison of the lead data from the neutraliza­

tion titration experiment with the literature (see later 

discussion in section 4.4.2) revealed no satisfactory 

mechanism by which to model the possible controls and 

removal mechanisms for lead. In view of the above suc­

cesses in modeling the removal of chromium and copper 

from solution as coprecipitation with a ferric oxyhy­

droxysulfate, it was decided to try the same approach to 

model the lead chemistry, (after the method of Sass and 

Rai 1987). The derivation of a function for lead and its 

implementation in PHREEQE were the same as described 

above for copper. Key assumptions, relations, and calcu­

lated data are summarized below. 

Pb2
+ is a major species of lead in solution over the 

pH range of interest, (see Baes and Mesmer 1976). Pb-

(OH) is more soluble than anglesite, (PbS04), in this 2Ccr) 

pH range, (see Lindsay 1979). The hydroxide was chosen 
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as the most likely of the solid phases to control lead 

solubility during coprecipitation with iron oxyhydroxy­

sulfate. For the reaction below, log(K) = +8.15, (based 

on Lindsay 1979, and the NBS tables, Wagman et al. 1982). 

Eqn. 4.33 

For this reaction the equilibrium constant expression may 

be written (using { } to denote the activity of the 

enclosed substance) as: Eqn. 4.34 

log(K) = log{Pb2+} + 2log{H20} - 2log{W} - log{Pb(OH)z} 

where {Pb(OH) 2 } represents the activity of Pb(OH) 2 in the 

solid solution that precipitates, and for which: 

log{Pb(OH) 2 } = log(K,c) - log(K) Eqn. 4.35 

where Kx is composition dependent and related to the mole 

fraction, X, of Pb(OH) 2 in the precipitate. Combining 

equations 4.34 and 4.35 gives: 

log(Kx) = log{Pb2+} + 2log{H20} +2pH Eqn. 4.36 

Log(Kx) was evaluated using this equation and results 

calculated by PHREEQE in the original processing of 

sample solutions of the neutralization titration in the 

pH range where lead was thought to be coprecipitating 

with iron. The results are listed in column 2 of Table 

4.2. Column 3 of the same table lists the values for 

log{Pb(OH) 2 } calculated using equation 4.35. 

The mole fraction of Pb(OH) 2 precipitating with iron 

at each selected point in the neutralization titration 
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Table 4.2 Estimated and derived quantities in the devel-
opment of a relation for the coprecipitation of lead with 
iron during neutralization of acid solution. 

pH log (Kxl. log{ Pb (OH) 2.l _x,,b(OH)2- log) yPbCOH)2l_ 

1.575 -3.178 -11.328 0.0002596 -7.7422 
1.973 -2.483 -10.633 0.0001974 -6.9283 
2.3505 -3.283 -11.433 0.0000135 -6.5632 
2.4005 -3.2655 -11.4155 0.0000455 -7.0733 
3.5146 -1.4468 -9.5968 0.0000983 -5.5894 
3.8984 -0.7142 -8.8642 0.0008047 -5.7699 
4.400 0.268 -7.8820 0.0057096 -5.6386 
4.8275 1.1065 -7.0435 0.005625 -4.7936 
5.6483 2.7439 -5.4061 0.06732 -4.2342 
pure 

Pb (OH) 2 8.15 0.0000 1. 0000 0.0000 

was estimated to be the increment of lead removed from 

solution within+/- 0.005 pH units of that point, divided 

by the sum of the increments of lead and iron removed 

over the same pH range. These estimates are listed in 

column 4 of Table 4.2. Column 5 lists the activity 

coefficient of Pb(OH) 2 in the solid solution at each 

selected point. These were calculated by the relation: 

log(YPb(OH)2) = log{Pb(OH)2} - log(X) Eqn. 4.37 

Figure 4.15 is a plot of the calculated log activity 

coefficients of Pb(OH) 2 in the solid solution precipi­

tates versus the log of the mole fraction of Pb(OH) 2 in 

the precipitates. The least squares fit of a third order 

polynomial to the data produced the relation: 

log (YPb(OH)2) = -0. 13927 + Eqn. 4.38 

3.8129[log(X)] + 0.73110[log(X)J 2 + 0.046105[log(X)J 3 

for which R2 = 0.906. 
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Figure 4.15 Logarithmic plot of the activity coefficient 
of Pb(OH)z in solid solution with Fe(OH) 3 as 
~ function of the mole fraction of Pb(OH) 2 
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Combining equations 4.35, 4.36, 4.37, and substi­

tuting the pH function gives: Eqn. 4.39 

log(K) + log(YPb(OH)2) = log{Pb2+} + 2log{H20} + 2pH - log(X) 

And combining equations 4.38 and 4.39 gives: Eqn. 4.40 

log(K) -0.13927 + 3.8129[log(X)] + 0.73110[log(X)] 2 + 

0.046105[log(X)] 3 = log{Pb~} + 2log{H20} + 2pH - log(X) 

which can be rearranged to equation 4.41, below: 

0 = log{Pb2+} + 2log{H20} + 2pH Eqn.4.41 

- log(K) + 0.13927 - 4.8129[log(X)] 

- 0.73110[log(X)] 2 - 0.046105[log(X)] 3 

All except the last three terms in this equation are con­

stants, or are available from the calculations after each 

iteration of PHREEQE. These values were summed within 

the program, so that equation 4.41 collapsed to the form: 

0 = CONSTANTS - 4.8129[log(X)] Eqn. 4.42 

- 0.73110[log(X)] 2 - o.046105[log(X)] 3 

The last equation was solved for X at the end of 

each PHREEQE iteration by a method of successive bisec­

tions between zero and one. Thus I obtained the mole 

fraction of lead that should be coprecipitated with iron 

at each adjustment made by PHREEQE of the total iron in 

solution. This was used to model the fractional copre­

cipitation of lead with iron. Specifically, for each 

mole of Fe16o16 {OH) 12 (S04) 2 that PHREEQE calculated should 

be precipitated from solution, 16X/(1-X/3) moles of lead 

were coprecipitated and (2/3)*16X/{l-X/3) moles of iron 
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were redissolved. This achieved the desired composition 

of the precipitate and preserved charge balance within 

the system. 

Use of this model to simulate the removal of lead 

from the synthetic leachate during neutralization gave 

calculated results that roughly approximated the experi-

mental data. (The goodness of fit may be seen in Figure 

4.22 in section 4.3) Adjustment of the value used for 

the log(K) of the solubility of solid Pb(OH) 2 from +8.15 

to +9.08 produced the best simulation of my lead data. 

This corresponds to a pure lead(II) hydroxide phase that 

would be 0.93 log units more soluble than the crystalline 

form assumed in the above derivation, which suggests a 

microcrystalline form of the solid. 

4.2.5 Trace Elements Not Modeled 

Zinc 

The data of Kinniburgh and Jackson 1982, indicate 

that at pH about 5.1, hydrous ferric oxide will adsorb 

50% of zinc. Frimmel and Geywitz 1987, evaluated differ­

ential pulse polarography for recording the coprecipita­

tion with ferric hydroxide of 3 micromolar metal ions 

from solutions 0.1 millimolar in total iron. Their data 

suggest the removal of zinc in the pH range 5.5 through 

9.5. The failure of the PHREEQE equation solving sub-
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routines to converge beyond pH 5 precluded useful model­

ing of the zinc data. 

Cadmium 

Inspection of the cadmium data in the neutralization 

titration (Table 3.6) shows that cadmium was largely 

conserved in solution until after pH 4.8. This agrees 

with adsorption on hydrous ferric oxide in the pH range 

of 4.5 or 5 through 7 or 7.5 , as in Dzombak and Morel 

1990. The data of Frimmel and Geywitz suggest the remov­

al of 3 micromolar cadmium by coprecipitation with ferric 

hydroxide to occur in the pH range of 6 to 9.5. As with 

zinc, this also could not be modeled due to convergence 

problems of the computer program PHREEQE beyond pH 5. 

Arsenic 

The arsenic data from the leachate neutralization 

are plotted and discussed in section 4.4.2. No suitable 

basis was found with which to model the removal of arsen­

ic from acidic leachates containing high levels of total 

iron and sulfate during neutralization. 

Selenium 

The selenium data are unreliable, (as is clear from 

Table 3.6), and no attempt was made to model selenium. 
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4.3 TEST AND EVALUATION OF THE MODEL 

4.3.1 Simulation of Synthetic Leachate Neutralization 

The PHREEQE geochemical program, as adapted and 

developed to model the loss of iron, sulfate, aluminum, 

chromium, copper, and lead during the neutralization of 

acidic leachates, was tested first as to its ability to 

simulate the results of our neutralization titration 

experiment. The initial input for the simulation was: 

an option card specifying the type of problem to be 

solved, (model an initial solution and simulate equili­

bration with other phases and reaction with an added 

reagent); the data describing the first sample of the 

titration experiment, (which was taken before any base 

titrant was added); specifications for other phases with 

which the system was to be equilibrated, (02 and CO2 from 

the air, the silica glass of the reaction vessel, and 

eventually solid precipitates that should form); special 

phases to be monitored with respect to saturation index, 

(such as soil-Fe(OH) 3 as defined by Lindsay 1979); and 

specification of the neutralization reaction to be used, 

(addition of sodium bicarbonate). The simulation was set 

up to proceed in steps that would predict the concen­

trations of all elements defined to be in the system at 

the pH of s a mples taken during the laboratory neutraliza­

tion. 
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Table 4.3 summarizes the experimental data and the 

results of the computer simulation as the common loga­

rithm of the total molal concentration of each element of 

interest. An overview of the results of the entire 

simulation is given in Figure 4.16, which is a plot of 

the log total molal concentration of each element versus 

pH. This plot allows comparison of the relative concen­

trations of the elements, the timing of their respective 

removal processes in terms of pH, and the relative shape, 

steepness, and extent of their concentration changes. 

The calculations were terminated just beyond pH 5 due to 

the failure of the PHREEQE equation solving subroutines 

to achieve convergence to a set of simultaneous solutions 

for all the equilibria involved in the expanded model 

that has been developed based on the PHREEQE program 

code. 

Figure 4.17 shows both the observed and simulated 

iron data versus pH. The fluctuations of the experimen­

tal pH data between pH 2.25 and 2.5 are due to incomplete 

equilibration of the system between titration and sam­

pling events, as will be discussed in section 4.4.1 The 

divergence of the data sets after pH 4.83 is thought to 

be due to the use of an erroneous iron concentration for 

the last point plotted, (a value was assumed because the 

actual solution concentration was below the detection 
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Table 4.3 Neutralization Titration: Data and Simulation Results * 

Sodium Sulfate Iron Aluminum 
J2H est sim est sim obs sim obs sim 

1.575 0.000 0.000 -0.769 -0.769 -1.059 -1.059 -3.253 -3.396 
1.973 -1.321 -1.355 -0.787 -0.769 -1.088 -1.059 -3.413 -3.396 
2.077 -1.288 -0.769 -1.059 -3.396 

2.300 -0.820 -0.687 -0.824 -0.786 -1.400 -1.468 -3.400 -3.396 
2.361 -0.807 -0.633 -0.832 -0.789 -1.388 -1.605 -3.422 -3.396 
2.440 -1.034 -0.586 -0.802 -0.792 -1.149 -1.795 -3.430 -3.396 

2.474 -0.639 -0.571 -0.854 -0.793 -1.909 -1.880 -3.317 -3.396 
2.874 -0.582 -0.508 -0.869 -0.797 -2.963 -2.932 -3.226 -3.396 
3.019 -0.503 -0.798 -3.320 -3.396 

I-' 3.290 -0.499 -0.798 -4.039 -3.396 
...J 

3.515 -0.566 -0.497 -0.867 -0.798 -4.428 -4.611 -3.627 -3.619 w 
3.750 -0.496 -0.798 -5.143 -3.851 

3.898 -0.539 -0.495 -0.842 -0.798 -5.431 -5.413 -3.846 -3.997 
4.828 -0.533 -0.495 -0.837 -0.798 -6.087 -6.089 -3.885 -3.870 
5.000 -0.494 -0.799 -6.168 

* Notes: All concentrations are log(molality) 
est= estimated concentrations 
sim = simulation results 
obs= observed concentrations 



Table 4.3 (continued) Neutralization Titration: 
Data and Simulation Results * 

Chromium Copper Lead 
pH obs sim obs sim obs sim 

1.575 -4.654 -4.654 -4.819 -4.819 -5.326 -5.375 
1.973 -4.680 -4.654 -4.834 -4.819 -5.576 -5.375 
2.077 -4.654 -4.819 -5.375 

2.300 -4.770 -4.704 -4.845 -4.833 -5.740 -5.643 
2.361 -4.749 -4.714 -4.853 -4.835 -5.445 -5.687 
2.440 -4.672 -4.850 -5.413 

2.474 -4.856 -4.737 -4.861 -4.840 -7.082 -5.785 
2.874 -5.016 -4.970 -4.862 -4.867 -6.875 -6.653 
3.019 -5.030 -4.871 -6.733 

.... 
...J 3.290 -5.299 -4.882 -6.920 .;,. 

3.515 -5.539 -5.454 -5.011 -4.887 -7.267 -6.983 
11 3.750 

3.898 -5.852 -5.761 -5.542 -5.343 -7.404 -7.052 
4.828 -6.295 -6.690 -6.168 -6.357 -7.004 -7.150 
5.000 -7.101 -6. 751 -7.169 

* Notes: All concentrations are log(molality) 
est= estimated concentrations 
sim = simulation results 
obs= observed concentrations 



Figure 4.16 Logarithmic plot of sulfate and trace 
element concentrations from the neutral­
ization titration simulation versus pH. 
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Figure 4.17 Logarithmic plot of observed and simulated 
iron concentrations in the neutralization 
titration as a function of pH. 
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limit). The simulation results past pH 5 are thought to 

be a better estimate of the actual iron concentration 

remaining in solution. 

Sodium and sulfate data, both observed and simulat­

ed, are superimposed on the iron data in Figure 4.18. No 

sodium or titrant had been added to the first sample, so 

its concentration was assumed to be zero and not plotted. 

Thereafter, the experimental sodium was calculated based 

on the added sodium bicarbonate titrant. In the pH 2.25 

to 2.5 range, the sodium fluctuations mirror those of the 

iron data: when less sodium has been added, more iron is 

still in solution. This indicates that the pH measured 

in these solutions was inappropriate (due to incomplete 

equilibration of the system) rather than that the iron 

data are erroneous. 

Sodium bicarbonate neutralizes acidic solutions 

according to the reaction: 

1NaHC03 + lH+ = lNa+ + 1C02 + 1H20 Eqn. 4.43 

PHREEQE does not keep a mass balance for hydrogen, and so 

does not accept hydrogen as a reagent input. Throughout 

the simulation, the addition of base was modeled as 

Na ( C03 ) 0 _5 reacting with hydrogen ions as follows: 

lNa ( C03 ) 0 _5 + lH+ = lNa+ + 0. 5C02 + 0. 5H20 Eqn. 4. 44 
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Figure 4.18 Logarithmic plot of observed and simulation 
concentrations of sodium, sulfate, and iron 
in the neutralization titration versus pH. 
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Thus, each molecule of added base neutralized one hydro­

gen ion, which was replaced in solution by one sodium 

ion, just as in equation 4.43. The carbon dioxide pro­

duced in each case was equilibrated with the atmosphere, 

so that the solution concentrations were not a function 

of the CO2 produced by the reactions. The greater amount 

of water produced in the laboratory reaction was offset 

by evaporation from the system, so that the production of 

less water in the simulation was deemed to be acceptable. 

Throughout the simulation, the total sodium concentration 

was just that accumulated in the system during the neu­

tralization (according to equation 4.44) as necessary to 

reach each target pH. 

No simulation was attempted for the effects of 

sample removal and dilution by added titrant, which 

explains those instances where the simulation results run 

slightly higher than the laboratory results, such as for 

sodium and sulfate. The removal of sulfate from solution 

during the precipitation of Fe16o16 (OH) 12 (S04 ) 2 is theoreti­

cally less than 10 percent of the initial total sulfate, 

and the effects are barely noticeable. 

The aluminum data, both observed and simulated, are 

superimposed on that of iron in Figure 4.19. The fluctu­

ations in the simulation points for aluminum relative to 
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Figure 4.19 Logarithmic plot of observed and simulation 
concentrations of aluminum and iron in the 
neutralization titration versus pH. 
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the observed concentrations are due to the series of 

different pure stable phases used to model the removal of 

aluminum between pH 3.5 and 5. (See section 4.2.4). 

Small adjustments of the log(K) of each compound could be 

made such that the curve would be smoothed and approxi­

mate the laboratory data better. 

Figure 4.20 presents the observed and simulated data 

for chromium superimposed on that of iron. The smooth­

ness of the curve and the goodness of fit are due largely 

to the excellent work of Sass and Rai 1987, developing 

their mathematical model for the coprecipitation of 

chromium with ferric iron. The middle portion of the 

curve accounts for the removal of chromium from solution 

before saturation with respect to pure crystalline 

Cr(OH) 3 • The downward turn about pH 5 corresponds to a 

shift from formation of the chromium-and-iron hydroxide 

solid solution to the precipitation of pure chromium(!!!) 

hydroxide. Decreasing log(K) for solid Cr(OH) 3 improves 

the fit at lower pH, but accentuates the divergence of 

the simulation from the experimental above pH 4. Con­

versely, increasing log(K) improves the fit above pH 4, 

but worsens the fit at lower pH. 
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Figure 4.20 Logarithmic plot of observed and simulation 
concentrations of chromium and iron in the 
neutralization titration versus pH. 

-1 

-2 

- -3 
>--
ca 

Fe, obs ~ 
0 -4 Fe. sim E - • Cr, obs 

Cr, sim. 
Cl 
0 -5 

-6 

-7 

-8 ,___...___~ ___ .......... _ __. __ ....___...__...._ ___ ~ 

1 2 3 4 5 6 

pH 

182 



The laboratory and simulation data for copper are 

plotted in Figure 4.21 with the iron data. The simula­

tion data run higher than the experimental data for 

copper due partly to the omission of modeling the effects 

of sample withdrawal and dilution by titrant. Smaller 

log(K) for the pure copper(II) hydroxide solubility 

improved the earlier fit, and also increased the diver­

gence of the two data sets after about pH 4.5; while­

larger log(K) improved the later fit but worsened the fit 

between pH 2.5 and 4.5. The middle portion of the curve 

describes the removal of copper from solution by copre­

cipitation with iron before saturation is reached with 

respect to pure, solid copper(II) hydroxide. Of course, 

early removal of some copper delays the system from 

reaching saturation until a higher pH. Eventually, at 

higher pH, the unprecipitated iron concentration is so 

depleted that it ceases to be an important removal mecha­

nism for copper by coprecipitation. But saturation with 

respect to pure copper(II) hydroxide results in a shift 

to formation of the pure solid, and the simulation curve 

turns noticeably downward to adopt the slope of copper 

removal as Cu(OH) 2 with rising pH. Saturation with 

respect to crystalline copper ferrite was indicated by 

the PHREEQE saturation index calculations at about pH 3, 
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Figure 4.21 Logarithmic plot of observed and simulation 
concentrations of copper and iron in the 
neutralization titration versus pH. 
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well before significant removal of copper by coprecipita­

tion with iron. However, CuFe20 4ccr> is not expected to 

form quickly in an aqueous system at room temperature. 

The lead data, both observed and simulated, are 

presented in Figure 4.22, superimposed on the iron data. 

The simulation data only roughly approximates that of the 

experimental work, due to the noise and uncertainty of 

the latter. The simulation did approximate the highest 

lead concentrations of the early samples, the pH range of 

significant removal of lead, and the average concentra­

tions found in the last few samples. 

It should be noted that the pH range found in this 

study of lead removal from synthetic coal leachate during 

neutralization with sodium bicarbonate contrasts with 

results obtained with lead in other systems. Baes and 

Mesmer 1976, show 10-s molal lead(II) to be soluble up to 

pH 9.5 in a simple aqueous system with solubility limited 

by PbO. The hydrous ferric oxide surface complexation 

model of Dzombak and Morel 1990, predicts the removal of 

lead in the pH range of 4 to 5. However, Buffle 1988, 

summarizing data on the adsorption edges of metal ions on 

oxide surfaces, indicates the removal of 1.2sx10-4 molar 

lead by Fe(III) oxyhydroxide gel (where total iron was 

0.093 molar) to occur between pH 2 and 4. 
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Figure 4.22 Logarithmic plot of observed and simula­
tion concentrations of lead and iron in 
the neutralization titration versus pH. 
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Compared to the experimental data from the neutral­

ization, the plot of data from this simulation gives a 

smoother curve that better fits the expected sigmoid 

shape for removal of metal ions from solution by sorp­

tion/coprecipitation processes. 

4.3.2 Application of the model to West Squaw Creek data 

Filipek, Nordstrom, and Ficklin 1987, reported a 

study of the interaction of acid mine drainage with West 

squaw Creek in northern California. The North Fork is 

largely uncontaminated. The South Fork receives drainage 

from several mines containing massive sulfide deposits. 

The site of greatest contamination of the entire West 

Squaw Creek was found just upstream of the junction of 

these forks. Below this junction were found two more 

small, uncontaminated tributaries that joined West Squaw 

Creek before it emptied into Shasta Lake. This system 

was selected as a good test for the application of our 

computer model to field data where acid mine drainage 

contaminated with trace metals and containing high con­

centrations of iron and sulfur was being diluted and 

neutralized by tributary waters of pH 5.5 to 6. Table 

4.4 summarizes data from Filipek et al. 1987, that are 

the basis for this simulation/test. 
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Table 4.4 West Squaw Creek: Field Data, * after Filipek et al. 1987. 

Site: 24 25 26 27 28 29 30 31 
pH 2.70 5.55 2.70 5.25 2.75 2.95 6.10 3.00 
Ca -3.40 -3.60 -3.46 -3.90 -3.49 -3.52 -3.17 -3.49 
Mg -3.31 -4.02 -3.48 -4.18 -3.47 -3.49 -3.92 -3.52 
Na -3.70 -3.70 -3.69 -4.08 -3.70 -3.68 -3.51 -3.67 
K -5.14 -5.69 -5.31 -5.42 -5.29 -5.07 -5.99 -5.23 
Fe -2.89 -7.0 -3.13 -6.8 -3.24 -3.67 -6.47 -3.71 

..... Mn -4.78 <-6.7 -5.00 <-6.7 -5.00 -5.06 <-6.7 -5.09 
00 Al -3.25 -6.5 -3.48 -5.97 -3.48 -3.43 -6.25 -3.47 00 

Si -3.16 -3.50 -3.35 -3.70 -3.33 -3.33 -3.40 -3.32 
Cl -4.19 -4.8 -4.47 -5.1 -4.9 -4.8 -4.32 -4.9 
C <-4.8 -3.53 <-4.8 <-4.8 <-4.8 <-4.8 -3.11 <-4.8 
S04 -2.40 -3.87 -2.52 -3.94 -2.608 -2.731 -3.25 -2.673 
F -4.51 -5.4 -4.88 -5.8 -5.00 -4.96 -4.96 -5.13 
Zn -3.725 -7.2 -3.96 -6.81 -3.96 -4 . 04 -7.3 -4.08 
Cu -3.742 <-6.8 -4.00 <-6.8 -3.99 -4.10 <-6.8 -4.12 

*Note: All concentrations are log(molality). 



The water analysis for site 24, about one-half mile 

below the site of greatest contamination, and just above 

the junction of the South Fork with the North Fork, was 

chosen as the starting data for a computer simulation 

that would test our model's ability to predict the compo­

sition of the stream water below each confluence. Site 

25 provided the data for the North Fork waters just above 

the junction, and site 26 provided data on the composi­

tion soon after the waters mixed. About one-half mile 

downstream, the first small, uncontaminated tributary 

empties into Squaw Creek. Its composition was determined 

by samples from site 27; while site 28 data described the 

system just after these two had mixed. 

There followed an 0.8 mile stretch of Squaw Creek 

having no known tributaries before its junction with 

Mary's Fork, the second known source of dilution by 

uncontaminated water. site 29 data described Squaw Creek 

just above this junction, site 30 data described Mary's 

Fork water, and site 31 data describes the composition of 

the creek water about one-tenth of a mile below the 

junction. The observed data (from Table 4.4) for pH and 

the elements to be studied in this simulation are plotted 

in Figure 4.23; and the results of the simulation (from 

Table 4.5) are plotted in Figure 4.24. (Note that both 

plots only show data for sites along the flow path of the 

contaminated stream, and not for the tributaries.) As 
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Table 4.5 West Squaw Creek: Simulation results* 

Site: 26 28 29 31 
pH 2.85 2.77 2.85 2.98 
Ca -3.47 -3.47 -3.50 -3.49 
Mg -3.48 -3.48 -3.55 -3.51 
Na -3.70 -3.70 -3.70 -3.67 
K -5.29 -5.29 -5.35 -5.10 
Fe -3.13 -3.25 -3.35 -3.70 
Mn -5.00 -5.00 -5.10 -5.09 
Al -3.48 -3.49 -3.58 -3.46 
Si -3.26 -3.27 -3.31 -3.34 
Cl -4.35 -4.36 -4.42 -4.72 
C -4.95 -4.95 -4.95 -4.95 
S04 -2.61 -2.62 -2.71 -2.75 
F -4.69 -4.70 -4.77 -4.96 
Zn -3.95 -3.96 -4.05 -4.08 
cu -3.96 -3.97 -4.07 -4.13 

*Note: All concentrations are log(molality). 

will be seen in subsequent figures, the model closely 

approximates the field data through site 28, but the 

predictions for site 29 diverge from the observed data. 

During the 0.8 mile stretch between sites 28 and 29, 

the investigators did not find identifiable sources of 

dilution or neutralization. However, they did note among 

the elements thought to be conserved in the system, a 

change of stream composition that could be accounted for 

by a 20% dilution of the main stream by undetected base 

flow or seeps of uncontaminated water (such as reported 

for sites 27 and 30 that were immediately above and below 

this section). 
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Figure 4.23 Logarithmic plot of observed pH and con­
centrations of selected elements in West 
Squaw Creek, West Shasta, California. 
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Figure 4.24 Logarithmic plot of simulation pH and con­
centrations of selected elements for West 
Squaw Creek, West Shasta, California 
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Without quantitative data, it was impossible to 

obtain a good prediction of the stream composition at 

site 29, (and therefore of site 31 as well). Thus, the 

simulation results for site 31 were calculated from input 

of observed data from sites 29 and JO. 

Figure 4.25 shows both the observed and simulation 

data for pH and filterable sulfur and iron. The authors 

of the study calculate that the South Fork:North Fork 

mixing ratio was approximately 60:40 of waters that were 

pH 2.70 and 5.55 respectively. They explained the ab­

sence of pH increase just below the confluence (site 26 

also had pH 2.70) to be the result of continued oxidation 

of Fe2• to Fe3• and hydrolysis, and ( or) the oxidation of 

any remaining sulfide. In the simulation, 5.1% of the 

total iron was precipitated as Fe(OH) 3 in order to obtain 

reasonably good fits of both pH and iron to the observed 

data. However, the system was still supersaturated with 

respect to Fe16o16 (0H) 12 (S04 ) 2 , for which a saturation index 

of +16.0710 was calculated, (which corresponds to +1.0044 

per iron atom) . 

Again after the first tributary (site 27) diluted 

Squaw Creek slightly, (approximately 2%), both the pre­

dicted pH and iron concentrations were significantly 

higher than observed at site 28, suggesting that some 

precipitation of iron had continued after site 26. 
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Figure 4.25 Logarithmic plot of observed and simulation 
pH, sulphate, and iron for W. Squaw creek . 
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This time 22.5% of the iron calculated to be still in the 

system was precipitated as Fe(OH) 3 , yet the system was 

still supersaturated with respect to soil-Fe(OH) 3 by one 

order of magnitude, (and Fe16o16 (0H) 12 (S04 ) 2 by +0.6888 log 

units per iron atom). 

To approximate the prediction of the creek compos­

ition at site 29, the stream was diluted by 20% with 

"base flow" like that of site 25 (chosen because these 

North Fork waters were of intermediate composition be­

tween those of the other uncontaminated waters in the 

region, analyzed for sites 27 and 30). The pH was pre­

dicted to be 2.85 (2.95 was observed) and the predicted 

total iron was double the observed concentration of 

2.15xlo-4 molal. The authors estimated that from 53% to 

62% of the dissolved iron of site 28 precipitated before 

site 29, citing evidence of iron precipitation on the 

stream boulders and all along its banks in this stretch. 

since precipitation of more iron would have increased the 

error in the predicted pH and thrown off subsequent 

calculations for the other metals in the system, the 

simulation was interrupted at this point and restarted 

using the observed site 29 data as input, as mentioned 

above. The resulting concentrations calculated for site 

31 were in very good agreement with those observed. 
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The filterable sulfur observed at site 26 was higher 

that the model predicted based on simple dilution of the 

site 24 sulfur concentration. The stream, with its 

burden of leachates from sulfidic mines, almost certainly 

was not yet in equilibrium with atmospheric oxygen by the 

time the water reached site 26. Continued oxidation of 

suspended sulfidic material rendering it water soluble 

could explain the excess sulfur and iron found in the 

filtered samples at site 26. 

The sulfur concentrations predicted for subsequent 

sites fit the observations quite well, except for site 31 

which is 9.5% below the measured value. The authors did 

not discuss this stream junction and minerals and evi­

dence for reaction, although they did flag the data for 

sodium, sulfur, and Si02 as being higher for site 31 than 

for either of the contributing streams. Their data also 

indicates higher ferrous iron concentration at site 31 

than at site 29, despite a slight decrease in total iron. 

This suggests the possibility that there was an undetect­

ed source of sulfide that was being oxidized to soluble 

sulfate by ferric iron in solution, which in turn was 

reduced to ferrous iron. The counter ion for the sulfide 

is unknown, as it is assumed that the excess sodium was 

associated with a silicate being dissolved. 
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Figure 4.26 shows both the observed and simulation 

data for aluminum and zinc: (pH is included for refer­

ence). The predicted concentrations show excellent 

agreement with those observed, except for aluminum at 

site 29. In their discussion of the data, the authors 

suggest that dissolution of Al minerals, possibly clays, 

may occur along this stretch. This would tend to mini­

mize the lowering of pH with the precipitation of iron, 

and could produce the observed increase of aluminum 

concentration even in the face of the estimated dilution 

by base flow. Without quantitative data, these effects 

of the suggested dissolving of Al minerals could not be 

modeled, so the site 29 observed aluminum was input for 

the last part of the simulation, as previously mentioned. 

The simulation results for zinc concentrations all 

along West Squaw Creek show excellent agreement with the 

observed concentrations, as do the simulation results for 

sodium and copper, (shown in Figure 4.27). Since no zinc 

removal mechanisms were incorporated in the model (which 

performs simulations of dilution and neutralization of 

aqueous systems between pH 1.5 and 5.0): since sodium is 

generally expected to be conserved in solution (unless 

significantly involved in precipitation/dissolution of 
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Figure 4.26 Logarithmic plot of observed and simulation 
pH, aluminum, and zinc for w. Squaw Creek. 
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Figure 4.27 Logarithmic plot of observed and si . 
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sodium silicates, alunite, and/or jarosites); and since 

the system pH never exceeded pH 3.00 (above which the 

model would be expected to simulate the coprecipitation 

of copper with iron oxyhydroxysulfate): then the excel­

lent agreement of the simulation results with the ob­

served data may be understood to indicate that the creek 

system is essentially undergoing dilution without signif­

icant chemical interactions of these trace elements with 

pure precipitates or other solid phases. 

4.3.3 Strengths and Weaknesses of the Model 

The major strength of the model lies in its adapt­

ability to different chemical systems and environments. 

The data base for the PHREEQE program is completely user­

defined, which allows for updating the equilibrium con­

stants for each reaction, for adding or deleting elements 

and adding/modifying/deleting the reactions that define 

the interactions of any element with the chemical system 

being investigated. Thus, one may begin with a very 

simple system and develop a geochemical model piece-meal. 

or one may investigate the effects of varying equilibrium 

constants, the reactions included in the model, or even 

the addition of more components each of which may include 

a set (small or large) of defining equilibria. 

The versatility of PHREEQE is greatly enhanced by 

its acceptance of segmented input. One may define a 
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relatively simple initial problem, obtain the results, 

and then redefine the problem, elaborate on the system, 

add equilibration with additional phases, add reagents, 

mix solutions, initiate reactions, define segmented 

additions and temperature changes, or even combinations 

of these factors. Furthermore, the output from each 

program segment may be retained for use in the next step 

of the simulation, or ignored while altering the treat­

ment given the previous output. Thus, a multistep pro­

cess combining various streams of reactants and processes 

and conditions can be modeled, and adjustments of even 

individual factors can be followed as to their predicted 

effects on the immediate solution and the ultimate prod­

ucts. 

PHREEQE solves even large sets of interactive equi­

libria within a few minutes and to a high degree of 

reproducibility by invoking two methods of successive 

approximations which seek to maximize convergence to an 

internally consistent set of solutions for all the equi­

libria involved. However, such a large, complex, vari­

able, and interactive program has weaknesses that affect 

its performance in some cases, and/or limit is applica­

tion to some problems. There follows a summary of the 

assumptions, weaknesses, and limitations found to affect 

the application of PHREEQE to modeling trace element 

behaviour in acidic leachates from coal and sulfidic ore 
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mines that undergo neutralization with bicarbonate and/or 

dilution and neutralization with carbonate-bearing 

streams. 

Convergence problems that result in failure of the 

program have sometimes been encountered: when attempting 

to achieve electroneutrality within a solution by having 

the program adjust the concentration of a highly interac­

tive element, (e.g. when PHREEQE attempts to adjust total 

iron to obtain charge balance in 0.1 molar iron solu­

tions); when simulating the mixing of very different 

solutions, (e.g. near neutral, low ionic strength, and 

saturated with carbon dioxide mixed with acidic, high 

ionic strength, and unequilibrated with gases); when 

combining program options, (e.g. mixing solutions while 

requiring equilibration of the entire system with gases 

and solid phases); when polynuclear species were includ­

ed which led to large factors in their equilibrium ex­

pression, (e.g. Fe12 (0H) 34
2+); when attempting to model 

solutions with high concentrations of elements with large 

numbers of equilibria of interacting species, (e.g. 0.05 

molar ferric sulfate solution with several trace elements 

that each form 1 to 3 complexes with sulfate and bisul­

fate ions); and, when higher order and/or composite 

functions which have multiple local minima and maxima are 

incorporated into the PHREEQE program code, (e.g. the 
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copper coprecipitation function derived using a third 

0rder polynomial fit to obtain a relation from estimated 

copper data). 

The most obvious impact of these convergence prob­

lems has been to limit the application of the model to 

the PH range 1.5 to 5. Convergence of systems including 

the trace elements and the coprecipitation functions 

rarely could be obtained above pH 5. An important factor 

in that occurrence seemed to be the low concentrations of 

hydrogen and hydroxide ions in near-neutral solutions, 

such that small oscillations in the successive approxima­

tions to solving the equilibrium system caused unmanage­

able gyrations of the H+ and/or OH- concentrations. 

Assumptions built into the model and/or program code 

may limit its applicability in some cases and/or may 

introduce systematic error into the calculated results. 

By design PHREEQE assumes simultaneous equilibrium be­

tween all the components defined for a system. Phreeqe 

also lacks any provision to include kinetic information, 

including rates of reactions and rate limiting steps. 

But equilibration of real systems requires time, and 

sometimes great lengths of time, so that use of the model 

to simulate a real environment may be unrealistic. (e.g. 

Simulation of natural drainage and ground waters which 

flow through different assemblages of minerals, sands, 

clays, and muds, and may well not have enough surface 
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or time to reach equilibrium.) Furthermore, any contact . 

0 
interacting equilibria is affected by the solution f. 

rium constant for every reaction, so that the equilib · 

Solution of every particular equation is critically 

dependent on the quality of each and every other reaction 

and constant. Obviously, natural systems are not fully 

known as to chemical inputs, minerals, clays, solubili­

t' ies, and kinetics, let alone the effects of the living 

nisms that interact with the system. orga . 

Facto rs that are recognized as important to the 

control of trace element mobility, but were not incorpo-

into the model developed in this study include rated . 

size and surface area of the precipitates, as Particle . . . 

as surface adsorption and colloidal effects. Nor ~e11 

~ere any organic species investigated or modeled, al-

g organic complexation and chelation are important thou h 

a
nd 

are surely significant in manY if not moS
t 

natural 

factors 

aqueous systems. 

Comparison with other computer Model.3 

The computer program GEOCHEM (Mattigod and Sposito 

1979) was adapted from REDEQL2 for application to soil 

solut· ions 
In addition to including thermodynamic data 

for several hundred soluble complexes and solids of 

l:'e1 evance to trace metal equilibria in soil, it contained 
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a subroutine for cation exchange on constant charge 

surf aces and a subroutine for the estimation of single­

coefficients at ionic strengths up to 3 ion act' . 1v1ty 

molar. 

PHREEQE 

It also 

complex 

ter . 

In comparison, the pc-executable version of 

can include up to 220 complexes and 200 solids. 

calculates activity coefficients for each ion or 

at ionic strengths at 1east up to that of seawa-

PHREEQE does not include adsorption equilibria, 

defining equations of an adsorption model 

could ea . 

though the 

sily be added to its data base. Programs that do 

take ad sorption processes into account include REDEQL2, 

(McDuff and Morel 1973), and MINEQL, (Westall et al. 

1976). They can model the adsorption of major and trace 

metals by solid oxides and hydroxides such as silica, 

alumina • Mno
2

, and goethite. The BASIC computer program 

ADSORP • (Alain Bourg 
1982

), introduces the adsorption of 

trace element complexes. 
chemical equilibrium is assumed by PHREEQE. 

Chapman 1982, modified MINEQL to include a physi-

cal t ransport submodel to model one-dimensional movement 

Of solutes undergoing adsorption and precipitation as 

~e11 as dissociation and redissolution in a 
st

ream. 

Jenke et al. 1983, report the modification of the 

ague 11 ous chemical equilibrium program iu:oEQL·EPAK to a ow 
~

0
de1· ss for three influents 

ing a high volume mixing proce 

Complete 

Bernard 
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with the simultaneous 
addition of chemical reagents. 

PHREEQE allows the mixing of two influent streams, or the 

addition of a chemical, but not simultaneously. 

vis and Runnels 1987, used the MINTEQ computer Da ' 

lnodel (Felmy et al, 1983) to simulate reactions between 

1.ngs fluid and bedrock. They modeled aluminum ac'd' l. l.C tail' 

or usi.ng AlOHS0
4 

in acid conditions, and assumed an behavi . 

alUlll' 1.num hydroxide solubility limit above pH 5.7. our 

uses jurbanite and microcrystalline gibbsite for ltlodel 

ac· l.dic and near neutral conditions; but it incorporates a 

l.ef series of stable, pure solid phases to control the br' 

of aluminum in the pH range 4 to ; see Solubility 5 ( 

discuss· 1.on in section 4.2.4)· 

Davis and Runnels modeled iron behavior by 
th

e 

Precip't . 'd f h' h l. ati.on of an amorphous ferric hydroxi e, or w ic 

ey found the log(K) to be in the range +s.s to +4.4. th 

We found the iron compound Fe
16

o16 ( OH) 12 ( 504) 2 to simulate 

our n 1 f eutralization data better, and we used a va ue or 

log(K) that approximated the stability of soil-Fe(OH)3, 

as defined by Lindsay 1979. oavis and Runnels (1987) 

~ere also able to use the MINTEQ triple-layer sorption 

algorithm for zinc, assuming the amorphous ferric hydrox-

Phase to be the sorbent• we were foiled in our ide 

attempts to model zinc bY the failure of pHREEQE to 
converg . itati' on models for ch ro-

e past pH 5 once coprecip 
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mium ' copper, and lead had been incorporated in the 

Program code. 
ensively revised computer program soLMINEQ.-The ext . 

aa' {Perki ns et al. 1989), includes 80 organic aqueous 

ies as well as 214 minerals and over 270 inorganic spec· 

species. Organic species and equilibria could easily be 

added t 0 
the PHREEQE data base, although none are provid-

program package. soLMINEQ.88 can also calcu-ed With the 

effects of boiling and partitioning of gases 

between w 

late the 

ater, oil, and a vapor phase. It also includes 

an option for . . f . ion exchange and another option or ion 

ion, both of which can be added to PHREEQE by adsorpt· 

modifying 't ... is data base of species and equilibria. 

even includes the option of using the Pitzer SOLMINEQ.88 

coefficient model, which is not available in 

but is the basis for the related program PHRQ-

activity 

l>HREEQE 
I 

l>ITz . 
An additional important area of computer model 

deve1 0
Pment · the incorpo-

for aqueous chemical systems is 

ion of k · · · t to handle rat· inetic factors and the ab11
1 

Y 

O~idat' ion-reduct1'on pffREEQE accepts redox processes. 

a
nd 

reactions, but includes no provision for couples 

kinet· ic 
factor simulated the oxida-

s. K. W. Bladh 1978, 

tion 
of t · n Liddell 

sulfide minerals in aqueous solU 
10 

· 
~d . Bautista k1'netic equation for 
di 1981, incorporated a 

ssoiut· t 1 1984 ion of chalcopyrite bY o,. Jaynes e a· ' 

201 



e long term oxidation of pyrite and subsequent simulat d 

ing of reaction products with a model featuring leach· 

inetic factors, including: gas diffusion of several k. 

oxygen · ' independent rates for direct oxidation of pyrite 

by oxygen and by Fe3•, calculation of bacterial activity, 

and the effects of f th E 3/ particle size. EQ6, o e Q 6 

Softw are package (Wolery et al. 1989), computes reaction 

Path mod 1 . es of both equilibrium step processes and kinet-

ic reaction processes, for closed as well as relatively 

Si mple open 

F' inally, Dzombak and Morel have published (1
99

o) a 

ma· ]or effort to compile, evaluate, and select data on 

comp1 exation on the hydrous ferric oxide surface. They 

have appl~ed . t. sic ~ computer programs to extract in rin 

surfac t d t e complexation constants from each data se an ° 
estimate the best overall sorption constants. They 

Present t f mplex he equations used to model the sur ace co -

ation r . of equations to model 
eactions, including a system 

systems. 

surf ace precipitation (or dissolution)• 
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NEUTRALIZATION OF SYNTHETIC ACIDIC COAL LEACHATE 

!,. 4. 1 R eaction Progress 

The plot of pH vs percent neutralized (Figure 4.28) 

reveals th ' is to be the neutralization of a buffered acid. 

Initially the pH rises steadily as excess acid in the 

system· is neutralized by added base. The plateau repre-

sents that porti'on . of the reaction during which the 

system H. P is buffered by the hydrolysis of iron which 

regenerates H+ . ions. The slightly elevated pH measured 

at 29% neutralized is indicative of supersaturation with 

respect to hydrolysis of iron. csee oousma et al. 1978.) 

I<hoe a nd Robins 1989, obtained similar results in 
th

eir 

study of the f . (III) . hydrolysis and polymerization o iron 

in th e presence of sulfate. past this point they ob-

served a pH relaxation to occur after each injection of 

titrant as the iron underwent hydrolysis. They noted 
th

e 

same i 1 t' and ncreasing deep red-brown color of sou ion 

Subsequent increased turbidity that were observed in this 

expe. . r1ment. These were cited as evidence of polymeriza-

tion and precipitation. For this sample, p!!REEQE calcu-

lated ) and a saturation index of +o.9181 for Fe(OH 3(soil>' 

+l3.35 f ds to +o.835 
f or Fe,.a,. (OH) 12 (504) z (which correspon 
or the formula and which can be com-

FeO(OH) _75 (S04) .12s 
Pared to each Fe (OH) 3 compound) . 

the saturation index of 
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Figure 4.28 pH of the neutralization titration as a 
function of reaction progress expressed 

i 

as percent neutralized. 
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indicating supersaturation with respect to this phase by 

almost one order of magnitude. The saturation index for 

amorph ous ferric hydroxide was -1.2729, indicating under-

ion. The SI calculated for goethite was +4.6198, saturat' 

Which indicates a very high degree of supersaturation 

With respect to this most stable form of iron oxyhydrox-

ide. However, goethite forms very slowly at room temper-

ature ' often taking weeks or months. (See Atkinson et al. 

1968 ' Flynn Jr. 1984, Schneider 1984, and Bryson 198
6

.) 

Throughout the rest of the experiment, the calculated SI 

for th e "FeO(OH) 
75

cso) " ranged from -0.06 to +o.45 
. 4 .125 

and av . . eraged +0.13, suggesting that the solution was in 

contact . h (if not equilibrium) with a solid iron oxy y-

droxys 1 ·1·t f u fate phase that controlled the solubi i Y 
0 

iron(III). 

As noted before, the source of the fluctuations in 

81 for the 1 t the solid hydroxy-compounds is traceab e 
0 

Var· iations in the pH measured in each sample filtrate. 

'!'he variation in the pH of samples 3 through 7 (along the 

PH Plat d ot J' ust due to 
eau) are thought to be real, an n 

analyt · 1972 stated 
ical error and uncertainty. Sylva ' 

that . . t precipitation of hydrolysed iron(III) does no 
inh 

1 
· g vo ve . · ts upon a growin 

only the deposition of ionic uni 

crystal nucleus. 

· g a reac­
As a result of work done usin 

tor not unlike the 

and deBruyn 

d 
·n thi's evneriment, oousma 

one use i .,.r-

stages (p
reviouslY 1isted) in 

proposed four 
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iron(III) hydrolysis process. Schneider 1984, also the· 

used neutralization with sodium bicarbonate to study the 

hydrolysis of iron(III). He concluded that nucleation 

occurs at the inlet of base solution within the time of 

ixing with the bulk solution. interni· . 

Taken together, these ideas support the explanation 

injection of base resulted in the hydrolysis of 
that each. 

iron(III) to monomers, dimers, and the nucle-
dissolved 

ion of small polymers, rather than significant growth at· 

Of th 
e more mature, but slowlY reacting large polymers. 

' he extent of pH relaxation observed after each 
Thus t 

inJection depends to a degree on the number (concen-
base · , 

on) of new nuclei formed, their initial extent of 
trati 

hydrol · · 
ys1s, and the ability of the bulk solution to fuel 

furth · er hydrolysis and growth of these new particles. 

The hydrolysis stalls and the pH appears to stabilize 

When the solution reaches equilibriWD with these metasta-

ble particles. 
Given sufficient time, the higher ener9Y ions a

nd 

Part' t or dissolve and 
icles will undergo rearrangemen' 

reprecipitate forming the structure of the thermodynami-

cally s table end products appropriate to the system (e.g. 

goethite or one of the jarosites)• Then a tr11lY stable 

Pff would be observed. rn this experiment however, often 

less than 24 hours elapsed between base injection and pH 
measu i believed to have been 

rement: thus the pH value s 
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relativel 
Y accurate for the time of sampling; but the 

variation from sample to sample indicates significant 

variation in the relative stability of the system as a 

Whole. 

The above explanation of the formation of fresh 

Polymeric material with each base injection also accounts 

for the passage of excess iron into each filtrate. If 
the hydrolyzing iron only built up existing particles, 
then they would grow in size and soon be removed effi­

ciently by the filters. 

By the time sample a was collected, the neutraliza­

tion was over 87% complete, and about 99% of the original 

dissolved iron had precipitated. Thus the buffer capaci­

ty Of the system was nearly exhausted, and the pH rose 

dramatically with each new addition of base. To the end, 

each titration episode was followed by pH relaxation with 

time, and the next to the last sample was apparently 

taken when the system was not yet equilibrated. 

Figure 4.29 shows the adjusted (for charge balance) 

concentration of iron in solution as a function of pH. 

It clearly shows the dramatic removal of iron from solu­

tion by pH 2 . 5 • It also indicates that the third sample 

Was supersatured with iron for the pH that was observed. 
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F' igure 4.29 e neutralization titration. o pH during Iron ins 1 t' th o u ion as a fUDCtion f 

e -
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concentrations are molal and are for total 
iron in solution after adjust111ent to obtain 
charge balance. The smootb curve is an 
"eyeball" fit to the data points. It was 
drawn ignoring tbe value for sample 3, which 
is believed to represent supersaturation of 
the solution with iron at tbat pH· 
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Both Figures 4.30 and 4.31 are plots of the total 

measured and adjusted iron concentrations throughout the 

neutralization. Figure 4.30 uses a linear concentration 

scale and shows the relative adjustment of iron necessary 

in the data for each sample to achieve charge balance. 

This plot also gives indication that sample 3 was super­

saturated with iron. Figure 4.31 uses a logarithmic 

concentration scale to show the rapid decline of iron 

concentration after the system was 87% neutralized (sam­

Ple B with pH 2.87). This plot also indicates that the 

Values obtained for iron in the last two samples were 

erroneous. The computer program aborted with each effort 

to model that data until the iron inputs were reduced to 

the levels shown. 
Figure 4.

32 
shows total iron and all of the major 

iron species as modeled by PHREEQE. 
The logarithmic plot 

sacrifices detail for the individual species, but it 

shows th . db havi'or of each one 
e overall importance an e 

Plotted. Only a few points were plotted for FeH,Aso/• 

because it was not reported to be of significance in the 

1n1ng solutions as modeled. rema· , 
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Figure 4.30 
Iron in solution (as measured and as adjust­
ed to obtain charge balance) as a function 
of reaction progress (expressed as percent 

-E -.. 
1 -! 

neutralized). 
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F' igure 4.31 
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Notes: 

Logarithmic pl t f · , measured d o o, iron in solution (as 
balance) an as adJU~ted to obtain charge 
gress 'as a function of reaction pro-

(expressed as percent neutralized). 

Adjusild 

Concentrations are 1og(molal), Both curves 
were smoothed by interpolation, The last 
two "measured" values are considered errone-
ously high for their samples (pH> 5,5), 
The last two "adjusted" values were arbi­
trarily reduced until the computer program 
PHREEQE would process the data. 
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F' igure 4.32 Logarithmic 1 t f trat· . Po o total molal iron . ion in solution and all . . concen 
cies (as modeled maJor iron spe-
PHREEQE) f by the computer program 
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ion t1trat1on. 

o--=----------
Talalfe 
F.SO I+ 

-2 F.(so 11-
F.HSO\. 
fel>. 

- 4 

-6 

-8 

- 10 

-1 2 

-1 4 

- 16 

&f.oH» 

F.c:P­
FeJOH~· 

F.(QH~I+ 
FwVuO , • 

• f.H/uO.» 

F.AsO • 

Talal Fe 
FeAsO. 
Fe(OH~ i. 

.,, ..p<~· 
-l;-----t;o--~--~--_.._-__._:~:z=~_j 

J 

15 
18 

6 
9 

12 

Notes: 

Sample Nurnben 
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(adjusted to obtain charge balance) and the 
major iron species in solution- The curves 
are all smoothed bY interpolation between 
data points- The iron in the 1ast two sam­
ples are arbitrarY concentrations used be­
cause they did not cause the computer pro-

gram (PHREEQE) to crash• 



The next two figures show subsets of related iron 

species and their relative importance during the period 

that s, .. ignificant concentrations of iron remained in 

solution. Note that the scale of the vertical axis 

changes wi' th each plot. Figure 4.33 shows the sulfate 

complexes f . . . . 0 
iron. comparison with Figure 4.32 indicates 

that th e double-sulfate complex becomes much more impor-

tant than the mono-sulfate at higher pH. Also note that 

the bisulfate complex is always of minor importance among 

the SUlf ate complexes of iron, at 1east as modeled in 

this system. 

F' igure 4.34 shows the simple iron(III) ion and the 

hydro · XJ.de species. Note that Fe3+ is the most important 

Of th' l.s group of species while the system is less than 

80% neutralized (pH approximately 2.6 or 2.7)• Also note 

that the dimer was never of much significance according 

to th' is model, and that the higher po1ycations were never 

reported by PHREEQE as being of significance. 

Figure 4.35 shows the "colloidal Fe" (taken to be 

the adjustment of the iron concentration necessary to 

Obta' % t 1 in charge balance in each sample) versus neu ra -

ized. Note that the peak of this assumed colloidal iron 

Corre f F (OH) 
2
• and 

sponds to the peak concentrations 
O 

e 

the d. ) imer Fe
2 

( OH )z 4+ ( shown in Figure 
4 

· 
3 4 

• 
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F' igure 4.33 Concentrations of sulfate complexes of iron 
(as modeled by the computer program PHREEQE) 
in the neutra lization titration solution, as 
a function of reaction progress (expressed 
as percent neutralized). 
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Figure 4. 34 Concentrations of Fe3+ and its hydroxy com­
plexes (as modeled by the computer program 
PHREEQE) in the neutralization titration 
solution, as a function of reaction progress 
(expressed as percent neutralized). 
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F' igure 4.35 Colloidal Iron in the neutralization titra­
tion solution as a function of reaction 
progress (expressed as percent neutralized). 
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Figure 4.36 shows the arsenate complexes of iron. 

Comparison with Figure 4.32 indicates that although the 

concentration of the arsenate complexes was low in these 

, ey became important in the last three sam-solutions th 

ples as the pH was pushed above 4.5. 

Figure 4.37 is a plot of just the most important 

iron species as calculated by PHREEQE for these samples 

from th e neutralization of a synthetic acidic inorganic 

coal leachate. This plot shows the percent of adjusted 

iron(III) in solution that is bound up in each of total . 

moSt important complexes as a function of pH. The the 

jumble of data points between pH 2.25 and 2.5 are from 

samples on the buffered pH plateau of the reaction. the 

The d' iscontinuity of those points is a function of the 

fluctuation of the pH values as measured, rather than 
being · · · d 1 peci' es 

caused by fluctuations of the 1ndiv
1 

ua s · 

Compare the smoothness of the individual plots in Figures 

4.33, 4.34, and 4.36. Note that, according to this model 

for this system, below pH 4 the mono-sulfate complex is 

of greatest importance, followed bY the di-sulfate com­

Plex. However, above pH 4.25 the neutral arsenate com-
Plex b wi'th the dihydroxy 

ecomes of greatest importance 

comp1e x of secondary importance. 
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Figure 4.36 Concentrations of arsenate complexes of iron 
~as modeled by the computer program PHREEQE) 
in the neutralization titration solution, as 
a function of reaction progress (expressed 
as percent neutralized). 
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The curves are smoothed bY 
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Figure 4.37 
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Notes: 

Relative abundance of the most important 
iron(III) complexes (as modeled by the 
computer program pHREEQE) in the neutral­
ization titration solution, as a function 

of pH. 
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Trace Elements 

In this section the chemical behavior of the trace 

elements included in the neutralization will be discus­

sed. Recall that aluminum, zinc, chromium, copper, 

cadmium ' lead, arsenic, and selenium were doped into an 

acidic f . erric sulfate solution to make a synthetic inor-

ganic leachate (see Table 2.5). This solution was ti-

trat d e stepwise with the slow addition of sodium bicar-

bonate • Samples were filtered and analyzed for the 

cone entrati'on of . 
each trace element. They will be con-

sidered . in order from highest to 1owest concentration in 

the filtrates. 
Tables 4.6 through 4 •11 contain representative data 

summari th zed from the computer output of PHREEQE for ree 

Of th e neutralization samples: #2 was selected because 

the t· itration had just begun and no precipitates were 

Obse rved yeti #7 was a "middle" sample, and the last one 

for Wh' ' t' ich charge balance could be obtained bY adJUS ing 

the total . #11 was a "late" sample, 
iron concentration; 

and the last one for which the experimental iron data 

COUld b e processed by pffREEQE. 
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Table 4.6 Summary of concentration data from the computer program 
analysis of neutralization titration sample #2. 

Ionic Strength= 0.1894 pH= 1.973 14.5% Neutralized 

Element log(rnolal} Principal Species (log molality} 

Al (-3.4126) Al(S04 ) 2- (-3.776) A1S04+ (-3.807) Al3+ (-4.209) 

As (-5.9700) FeHAsO/ (-6.052) FeH~so4
2+ (-6.767) FeAs04° (-7.887) 

C (-4.9679) HzC030 (-4.968) HCO -
3 (-9.204) co 2-

3 (-17.183) 

Cd (-5.0715) CdS04° (-5.464) cd2+ (-5.532) Cd (S04 ) /· (-5. 771) 

Cl. (-2.8161) c1.· (-2.825) Fec12• (-4.522) CdCl+ (-6.900) 

Cr (-4.6796) CrS04+ (-4.689) cr3• (-6.423) 

cu (-4.8345) cu2• (-5.165) CuS04° (-5.222) Cu(S04)/·(-5.748) 

Fe (-1.0877) Fesot (-1.239) Fe(S04) 2 (-1.768) FeHSO Z+ 4 (-2.406) 

N (-3.0249) N0-3 (-3.025) 

Na (-1.3207) Na+ (-1.349) Naso4• (-2.520) 

Pb (-5.5757) PbS04° (-5.802) Pb2+ (-6.160) Pb (S04 ) z2· (-6. 429) 

s (-0.7866) Fesot (-1.239) so z-
4 (-1.343) HSo4• (-1.728) 

Si (-3.0385) H4Si04° (-3.038) 

Zn (-4.6102) zn2• (-4.964) ZnS04° (-5.000) Zn(S04 ) /· ( - 5. 437) 



Table 4.7 Summary of Saturation Index data from the computer program 
(PHREEQE) analysis of neutralization titration sample #2. 

Element Solid Phase (Saturation Index) 

Aluminum 
Basaluminite(-24.8885) Bayerite (-7.5791) 
Gib~site(microcrystalline) (-8. 5191) 

Arsenic 
Ferric arsensate<am> (-6.4098) 

Carbon 
cuc~(cr) 

Cadmium 
CdC03(cr) 

Chromium. 
Chromite 

Copper 

(-11.8289) 

(-9.9812) 

(-28.3865) 

Copper ferrite(-2.836) 
Iron 

Fe(OH) 3 (81\1) (-2.5119) 
W-Jarosite (+0.9031) 

Lead 
Pb ( OH) Z(cr) (-10. 8711) 

Sil.icon 
Kaolinite (-11.8046) 

Zinc 
Zinc ferrite(-4. 0251) 

PbC03(cr) 

CdS04<anhy> 

(-11. 2192) 

(-7. 8051) 

Cr(OH) 3(cr) (-6.2399) 

Cu ( OH) Z(cr) ( -10. 3 008) 

Fe (OH) 3 (soH)(-O. 3209) 
HNa-Jarosit(+1.1046) 

Pb-Jarosite(+4.5852) 

Quartz (+0.9640) 

E-Zn(OH)z(-13.0694) 

Jurbanite (-1.1811) 

Scorodite (-3.5680) 

Malachite (-19.7297) 

CUz(OH)zS04 (-6.9938) 

Goethite (+3.3806) 
Na-Jarosite(+l.2883) 

PbS04 )cr) (-0. 7431) 

Silica glass(0.0000) 

ZnSi03(cr) (-11.7543) 
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Table 4.8 Summary of concentration data from the computer program 
analysis of neutralization titration sample #7. 

Ionic Strength= 0.3126 pH = 2.475 75% Neutralized 

Element log(molal) Principal Species (log molality) 

Al (-3.3166) Al ( SOd 2- (-3. 554) A1S04+ (-3.804) Al3+ 

As (-6.1725) FeHAs04+ (-6.218) FeHzAsO/+ (-7. 406) FeAso4° 
C (-4.9801) H2C030 (-4.980) HC03- (-8.686) co 2-

3 

Cd (-5.1107) CdS04° (-5.566) Cd(S04)z2-(-5.604) cd2+ 

Cl. (-2.8508) er (-2.852) Fec12+ (-5.627) 

Cr (-4.8555) crso/ (-4.897) HCro4- (-5.985) cr3+ 

(-4.340) 

(-7.573) 

(-16.110) 

(-5.803) 

(-6.774) 

cu (-4.8614) CuS04° (-5.237) cu2+ (-5.322) Cu(S04)z2-(-5.495) 

Fe (-1.9089) FeSO/ (-2.103) Fe(S04) 2- (-2.413) Fe3+ (-3.659) 

N (-3.0597) No3- (-3.060) 

Na (-0. 6390) Na+ (-0.685) NaS04- (-1.641) 

Pb (-7.0815) PbS04° (-7.322) Pb(S04)z2- (-7 .680) Pb2+ (-7.850) 

s (-0.8536) so 2-4 (-1.042) NaS04- (-1.641) HS04- (-2.002) 

Si (-3.0519) H . o 4Sl.04 (-3.052) 

Zn (-4.4881) Znso4° (-4.884) zn2+ (-4.977) Zn(S04)/-(-5.052) 
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Table 4.9 Summary of Saturation Index data from the computer program 
(PHREEQE) analysis of neutralization titration sample #7. 

Element Solid Phase (Saturation Index) 

Aluminum 
Basaluminite(-20.5685) Bayerite (-6.3036) 
Gib?si te(microcrystelline) (-7 • 24 36) 

Arsenic 
Ferric arsensate<em) (-6.0836) 

Carbon 
cuco3(cr) (-11.0490) PbC03(cr) (-11.9442) 

cadmium 
CdC03(cr) (-9.2877) CdS04<enhy) (-7.8946) 

Chromium 
Chromite (-25.8445) Cr (OH) 3(cr) (-5.1408) 

Copper 
Copper ferrite(-1.237) Cu ( OH) Z(cr) (-9.5220) 

Iron 
Fe ( OH) 3 <fllll) (-2.1035) Fe (OH) 3<soH) ( +O. 0875) 
W-J aros1. te (+0.5646) HNa-Jarosit(+1.0522) 

Lead 
Pb ( OH) zccr) (-11. 5971) Pb-Jarosite(+3.1821) 

Sil.icon 
Kaol.inite (-9. 2505) Quartz (+0.9650) 

Zinc 
Zinc ferrite(-2. 2933) E-Zn(OH)z(-12.1587) 

Jurbanite (-0.6876) 

Scorodite (-3.2438) 

Malachite (-18.1710) 

Cuz(OH)zS04 (-6.4105) 

Goethite (+3.7901) 
Na-Jarosite(+2.1007) 

PbS04)cr) (-2.2511) 

Silica glass(0.0000) 

znsio3(cr) (-10.8415) 
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Table 4.10 Summary of concentration data from the computer program 
analysis of neutralization titration sample #11. 

Ionic Strength= 0.3726 pH = 4.83 92% neutralized 

Element log(molal) Principal Speci es ( l og molality) 

Al (-3.8854) Al (S04) 2- (-4. 168) AlSO/ ( -4.480) AlOHS04° (-4.753) 

As (-6.2165) FeAs0 4° (-6.356) HzAs04- ( -6.928) FeHAsO/ (-7.347) 

C ( -4.9655) HzC030 (-4.986) HC0 3- ( -6.327) co 2-3 (-11.379) 

Cd ( -5.0695) Cd (S04) z2- (-5. 524) CdSO/ ( -5.560) Cd2+ (-5.850) 

Cl (-2.8317) c1- (-2.832) 

Cr (-6.2948) HCr04- (-6.336) cr0/- (-7.579) NaCro4- (-7.718) 

Cu (-6.1676) CuS04° (-6.551) cuz+ (-6.670) Cu(S04)z2- (-6. 734) 

Fe (-6.0870) FeAs04° ( -6. 356) Fe ( OH) t (-6.551) FeHAsO/ (-7.347) 

N (-3.0405) N0
3

- ( -3.041) 

Na (-0.5328) Na+ ( -0.585) Naso4- (-1.480) 

Pb (-7. 0042) PbS04° (-7.257) Pb (S04) l- (-7. 540) Pb2+ (-7.836) 

s (-0. 8366) so 2-4 (-0.950) Naso4- (-1.480) Al(S04)i(-4.168) 

Si (-3.0583) H4Si04° (-3.058) 

Zn (-4.7786) ZnS04° (-5.187 ) Zn ( so 4 ) z2- ( - 5 • 2 81) Zn2+ (-5.310) 
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Table 4.11 Summary of Saturation Index data from the computer program 
(PHREEQE) analysis of neutralization titration sample #11. 

Element Solid Phase (Saturation Index) 

Aluminum 
Basaluminite(+0.0584) Bayerite (+0.0136) 
G ib}:>s i te (microcrystal line) ( -O • 9 2 6 4) 

Arsenic 
Ferric arsensatecam> (-4.8606) 

Carbon 
cuco3(cr) (-7.7140) PbC03 (cr) (-7.2300) 

Cadmium 
CdC03 (cr) (-4.6336) CdS04canhy) (-7.8830) 

Chromium 
Chromite (-30. 2331) Cr (OH) l(cr) (+0.4094) 

Copper 
Copper ferrit(+4.1395) Cu (OH) 2ccr> (-6 .1874) 

Iron 
Fe ( OH) '3(81\1> (-1.0836) Fe (OHhcso,nC+1.1074) 
W-Jarosite (-5.6600) HNa-Jarosit(-4.5609) 

Lead 
Pb (OH) 2<cr) (-6.8834) Pb-Jarosite(-4.5533) 

Silicon 
Kaolinite (+3.3853) Quartz (+0.9654) 

Zinc 
Zinc ferrite(+4.0933) €-Zn(OH) 2 (-7.8136) 

Jurbanite (+0.9876) 

Scorodite (-2.0217) 

Malachite (-11.5014) 

Cu2 (0H) 2S04 (-4.2364) 

Goethite (+4.8104) 
Na-Jarosite(-1.6754) 

PbS04)cr) (-2.1794) 

Silica glass(0.0000) 

ZnSi03<cr> (-6.4955) 



Aluminum 
concentrations varied from 590 µM down to 

130 . µM. Figure 4.38 shows the 1og of the aluminum and 

ncentrations plotted against reaction progress ex-iron co 

pressed as percent neutralized. Total aluminum appears 

in solution through sample 8 when the pH to b e conserved. 
· and the system was 87% neutralized. About 81% Was 2 87 

e filterable aluminum was removed from solution by Of th • 

ime the system pH was driven up to 3.90, (91% neu-the t' 

tralized). 
However, the change in iron concentration 

period was 2,4 times larger, saturation 
overt he same 

index calculations indicated that amorphous aluminum 

hydroxide 
was undersaturated by 5 to 7 order of magni­

tude, and that gibbsite was undersaturated by 2 to 5 

orders 
of magnitude in these solutions, The SI calculat-

ed for 
crystalline jurbanite (AlOHSO,) in sample 8 was 

-o.2166 
, for sample 

9 
it was +o.ol40, and for sample 10 

it was +0.1642. The calculated speciation for the dis-

solved . aluminum indicates that the neutral species 

Aloaso o r· 
, ises rapidly after this point to become the 

dominant form of aluminum in solution, Taken together, 

these · 't l'k ideas suggest the formation of a jurbani e- i e 

soi· 
1d as the likely sink for aluminum being removed from 

Solut · · · b 't ion. It is not likelY that cnrsta111ne JUr ani e 
Would f d't' ns and x-ray 

orm in solution under these con 
1 10 

' 
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Figure 4.38 Logarithmic plot of aluminum and iron in 
the neutralization titration solution, as 
a function of reaction progress (expressed 
as percent neutralized). 
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d' if fraction of the solids filtered out of sample 13 did 

not· indicate t he presence of crystalline jurbanite. 

Zinc concentrations 
in the filtrates ranged from 36 

/.LM d own to 3 µM. 
Figure 4.39 shows the log concentra-

zinc in these samples versus percent tions of iron and 

neutralizat' ion in the titration. The zinc appears to be 

( in solution at least through 90% neutralization conserved . 

PH 3.51). 

iron h ad b 
een removed from solution. But the zinc con-

e 1 rapidly as the pH was pushed above J.9, 

By this time more than 99.9% of the original 

centrat· ion f 1 

resuit· ing in the loss of over 90% of the original dis-

inc before the last sample (pH 5.55)• From solved z' 

sample 9 (
9

0% neutralized) onward, sI calculations for 

8
203 ' h' 

1nd
icate supersaturation with respect tot is Zno·p 

Solid. The crystalline form is not expected to form in 

ion · t u
nd

er the conditions of this experimen • espe-solut· 

cially . . b given the trace amount of zinc available. Kinni-

Urgh and . b . n hY 

d 

Jackson 1982 showed the adsorption Y iro -

s O>cide gel of 10·' M zinc to run from about pH 4 to rou ' ThUS, the 
6 •.•. .. ith 50% 

l:'elilova1 Of 

tion onto 

of the zinc sorbed bY about pH 
5

·
1

· 
zi' i's thought to be bY adsorp-

nc from solution 
the suspended particles of precipitated hydrous 

fer .... · 
4. ic oxyhydroxides. 
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Figure 4.39 
Logarithmi c plot of zinc and iron in the 
neutralizati on titrati on solution , as a 
function of reaction progress (expressed 
as percent neutral ized) . 
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Chromium concentrations in the filtrates ranged 
from 15

•
1 µM down to the detection limit. Figure 4.40 

Sholtis the log 
concentration of iron and chromium versus 

Percent 
neutralization. They appear to be removed from 

solut· 
.ion together. 

trat· .ion of · iron and chromium versus pH. It shows that 
the C 

oncentrations of iron and chromium converged as the 

Figure 4.41 is a plot of log concen-

neutralizat.1· on 
proceeded. This suggests that as iron 

Pl:."ecip·t 
i ated from solution, the solid had a higher Fe/Cr 

l:."at· 
lo than did the bulk solution. In this way, iron 

ltlou1d b 
e removed from solution faster than chromium and 

theil:." 
concentrations would converge. 

Sass and Rai (1987) investigated the solubility of 
alllorph 

ous chromium(III)-iron(III) hydroxide solid solu­
t· 

l.ons and 
developed a general relationship that can be 

Used t 
o Calculate the mole fractions of chromium and iron 

in the Solid solution. Their work suggests that the 
Fe;cr . · h t 

ratio in precipitates from our synthetic leac a e 
lllay b . 

e enriched in iron relative to the solution composi-
tion 

by factors greater than 10+5 • 

PttREEQ the redox distribu-E was used to calculate 
tion Of h . . · 1 'brium with the c romium(III) and (VI) in equi .1 
a· 

l.l:." satu . hate for each l:."ated solution of synthetic leac 
salllp1 · t' 

e Collected during the neutralization titra ion. 
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Figure 4 -40 Logarithmic plot of chromium and iron in 
the neutralization titration solution, as a 
function of reaction progress (expressed as 

-~ = a 

J -
1 

percent neutralized). 
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F' l.gure 4.41 Logarithmic plot of chromium and iron in 
the neutralization titration solution, as 
a function of pH. 
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The 
speciation indicated that got or more of 

resultant · 

the ch . 
romium in solution should eidst as crso.'' at least 

2
•475 (75t neutralized), and thereafter shift 

through pH 
) species, primarilY Hero.'". (However, note that 

to Cr(VI . 
ci ic conditions, the oxidation of cr(III) to 

under a 'd' 

Cr (VI) . is extremely slow.) 
mium (VI) is adsorbed onto hydrous ferric oxide 

Chro · 

surfac 
es, but solution sulfate competes for the sorPtion 

' and cosorption of sulfate reduces chromate adsorp-
sites 

tion b 
Y as much as sot, (zachara et al• 1987)• Thus, it 

is thought that chromium is removed from solution with 

ferric . . . iron solids; and that the substance is enriched 

in iron th t relative to the solution compasition, so a 

iron is removed from solution faster than chromium, 

resulting in convergence of their concentrations, 

copper concentrations in the filtrates ranged from 
15.l . 

4 42 shows the 10g con-

µ.M down to o. 21 µM. Figure · 
centr t. . these 6ampleS versus 

a ions of iron and copper in 
percent neutralization• Total filterable copper appears 
to b , tion (pH 2.87) • 

e conserved through a7t neutraliza But . ·n the system is 

over 98t of the copper initiallY 

1 

re . • neutralized (a pH 

moved by the time the system is 94• of ·ndeX ca1cu1ations 

5
•
75 

was measured)• saturation 
1 



Figure 4.42 Logarithmic plot of copper and iron in the 
neutralization titration solution, as a 
function of reaction progress (expressed 

~ 

i -.r 

as percent neutralized). 
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indicat e nea r saturat' 
ferrit ion 
r e (CuFe,04) in 

sample 8 and supersaturation in the 

samples. Al crystall' though it is doubtful that the 

(SI= -0.2769) with copper 

est of the 

sugg i formed in these samples this does ine sol'd 

est that ' a precipitation of copper · ccounts for with ferric iron 

solut' the removal of copper from these sample 

ions 

~admium 

Cadmium 
9,

2 

concentrations in the filtrates ranged from 

µM dew 
tr n to 

5
.0 !'M· Figure 4.43 shoWS the log concen-

tion. iron and cadmium versus percent neutraliza-
ations of · 

F'l s i terable cadmium 

amples u t' n 11 
ten cadmium was 1ost from solution, None of the 

appears to be conserved in the 

the last two samples, where almost half of 

the · , initial 

cadmium 
tion solids monitored bY saturation index ca1cu1a-

s ever 
1

990 

approached saturation, ozoml>a~ and Morel 

of a a on the surface comp1exation reactions 
'present d t 

sarpt. with hydrous ferric oxide• The pll range of 
cadmium 

ion 
for 2x10·• M Cd commences about pl! 6, is almost 

6.

75 

Y pl! 7.5, and sot adsorPtion oecurs about pl! 
comp1 ete b 

• At h' f cad . igher concentrations the sorption edge or 

a1 runs from about pl! 4.5 through 7, (iinniburgh et 
mium 

. 1976). 

cadmi 
um in the last two samples was due to adsorPtion on 

It is tentativelY proposed that the 1oss of 
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Figure 4.43 Logarithmic plot of cadmium and iron in the 
neutralization titration solution, as a 
function of reaction progress (expressed 
as percent neutralized). 
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the 0 
suspended hydrous ferric oxyhydroxide 

surfaces f 

particles. Though it should be noted that some doubt 

how to interpret any observations limited to ex· ists as to 
two samples whose iron data was clearly errone-

the last 
for which at least one of the pH values seems ous, and 

CJUestionabl e. 

Lead concentrations in the filtrate ranged from 
4

•
7 

µMd own to the detection limit. Figure 4.
44 

shows 
th

e 

concentration of iron and lead versus percent neu-log 

tralizat' ion. 
through 50% neutralization (pH 2.36)· sut bY 75% neu-

Lead appears to be conserved in solution 

tralizat' · ·t· 1 1 ad ion (pH 2.47) almost 98% of the 
1
n

1 

ia e 

concentrat' ion had been removed from solution-

Li
nd

say 1979, indicates that in soils below pH 

6

' 

anglesite (PbS04) is more likely to be stable• The 

saturat · nd o 600 ion index for ang1esite hovered arou - · 

through the first five samples, bUt as 1ead disappeared 
from th 21 indicating 

e filtrates the SI plunged to -
2

· ' 

t ' hat lead mechanism other than 
was being removed bY a 

Preci . ation index for 
pitation with sulfate. The satur 

lead , bY orders of 
Jarosite indicated supersaturation 

lllagn· 11·zation (pH 2.47)• 

itude at least through 75% neutra 
~t 90% SI was -o.2829, and 

neutralization (pH J.51} the 



Figure 4.44 
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Logarithmic plot of lead and iron in the 
neutralization titration solution, as a 
function of reaction progress (expressed 
as percent neutralized). 
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thereafter the solutions are undersaturated by orders of 

magnitude. Thus, the model indicates that lead is not 

forming a pure lead jarosite phase. 

Dzombak and Morel 1990, present data gathered from 

Benjamin 1978, and Leckie et al. 1980, for the adsorption 

of 5x10-6 M Pb onto hydrous ferric oxide. The process 

commences by pH 3.5 and is not complete until about pH 

G.s; 50% adsorption is achieved about pH 4.5. Frimmel 

and Geywitz 1987, evaluated differential pulse polarogra­

phy for recording the coprecipitation of metal ions wi
th 

ferric hydroxide from solutions o.l millimolar in total 

iron. Their data suggest the removal of 3 micromolar 

lead b Thi's does not explain the 
etween pH 4.2 and 7.3. 

observed loss of lead from our solutions by pH 
2

"
5

' nor 
· the litera­

has a satisfactory explanation been fou
nd 

in 
f modeling lead 

ture. However, the relative success 
0 

. with precipitating 
removal by forming a solid solution 

. m may account for 
ferric iron suggests that this mechanis 

my lead data. 

Arsenic 
i
·n the filtrates were all 

Arsenic c oncentrations d from near 1.2 
and range 

near the limit of quantitation 

"M · re 4. 45 
~ down to about o.7 µM. Figu 

1 con­
shows the og 

t neutraliza­
percen 

centration of iron and arsenic versus 
t conserved 

ion. Arsenic was rather well 

in the solution 

246 



Figure 4.45 
Logarithmic plot of arsenic and iron in 
the neutralization titration solution, as 
a function of reaction progress (expressed 
as percent neutralized)· 
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throughout the experiment, though there appears to have 

been some loss after about 90% neutralization (pH 3.5). 

The samples were all found to be undersaturated by 

2 to 4 orders of magnitude with respect to scorodite, 

FeAso4· 2H20, which is the most stable arsenate in acidic 

iron solutions, (Davis and Ashenberg, 1989). The pH 

dependence of arsenate concentration in contact with 

solid ferric hydroxide is indicated by the equation: 

HxAso/·3 + Fe(OHlJcs> = Eqn. 4.45 

FeAs04<s> + XH20 + (3-X)Off 

According to this reaction, one would expect the concen­

tration of dissolved arsenate to increase as pH increas­

es. But the opposite was observed during our neutraliza­

tion titration. 

Figure 4.46, a plot of the log molal concentrations 

of arsenic and iron vs pH, does not indicate that arsenic 

coprecipitated significantly with iron over the pH range 

studied. The arsenic plots do not track those of iron, 

nor do they exhibit the shape characteristics of chromi­

um, copper, and lead, which were successfully modeled as 

coprecipitationg with iron. 

Pierce and Moore 1982, investigated the adsorption 

of arsenate and arsenite on amorphous iron hydroxide. 

They found the adsorption capacity for arsenic to be 

extremely high, with arsenate adsorbing to a greater 
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Figure 4.46 Logarithmic plot of arsen· 
the neutralization titrat~c and iron in 
as a function of pH. ion solution 
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extent than arsenite, and at optimum pH of 4 and 7 re-

However, desorption occurred with increasing spectively. 

PH; and th ey also found a significant decrease of adsorp-

0 
arsenic at low concentrations in the presence of tion f 

sulfate. 

mo el for surface complexation on hydrous fer-
The d 

ric O • xide developed by ozombak and Morel 1990, is not 

with our arsenic data. Their model predicts consistent 
ion of 1x10·6 molar arsenate clear up through 100% sorpt ' 

in a system with 1x10·3 molar total iron. Desorp-PH 9 , 

is predicted to reach about 50% at pH 11· EVen if tion . 

were adapted to account for the significant de-
the model 

in adsorption of arsenic at 1ow concentrations in crease. 

presence of sulfate observed bY pierce and Moore (19-the 

' it still would not predict the ggcreaSJI of arsenic 82) . 

cone entrati'ons . in solution. 
The possibility was investigated that 

th
is gradual, 

rath er steady decline of concentration was the result of 

removal of some arsenic with each sample and dilution of 

th
e rest The total sul-

with each addition of titrant. 
fate d f the 

concentration of each sample was estimate rom 

init· ia1 sulfate in the system as adjusted for sample 
Withdra . The same concen-

wal, dilution, and evaporation• 
tration proportionatelY to the 

adjustments were applied 
arsen · in order to 

ic concentration of the first sample, 
estimate i'n the rest of the 

the arsenic concentrations 



samples assuming it was being conserved in solution. The 

results are plotted with the observed arsenic concentra-

n Figure 4.47, which indicates that this scheme tions i . 

does not account for all of the lost arsenic. It is 

the uncertainties of the data and resulting assumed that 

estimates are not greater than ten percent; neverthe-

calculations were repeated with a 20% increase less, the 

eSt imated loss of arsenic from sample to sample in the 

due to sampling and dilution. Figure 4.48 allows 
th

e 

compa . rison of the observed arsenic concentrations wi
th 

a 

constant . concentration, the estimated conserved arsenic 

conce t n rations, and the 20% extra 1oss estimates. clear-
. , d · g this experiment 

ly th e observed decline of arsenic urin 
of 

'Was m Uch more than can be explained bY the factors 

samp1 e removal and dilution by added titrant. 

no suitable basis was found wi
th 

which to Thus 
' · from acidic 

model the removal of arsenic 

leachates containing high levels of total iron and sul-

fate d . r the speciation 

exp1 . ain or 

uring neutralization. Howeve' 

~Odel calculations for these samples indicate that 

FeAso o 
4 becomes an important 

·es for arsenic as pH 
speci 

most important species 

rises above J, and it becomes the 
) 

ThUS, some 

after 92% neutralization (pH 
4

•
8 

• for . iron 

surface 

suspended hydrous 

complexation of arsenate on 
th

e . . the suspected cause 
ferr· le oxyhydroxysulfate 

particles is 
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Figure 4.47 Logarithmic plot of arsenic and sulfate in 
the neutralization titration solution 
versus sample number. 
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Figure 4.48 Molal concentration of arsenic (as measured 
and estimated) in the neutralization titra­
tion solution versus sample number. 
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ts the initial con-
. 

1
, represen t The 

The straight ine . held constan · . 
centration of arsenic 1 ulated assuming 
estimated arsenic was.ca end accountin~ for · 1ution a d'lution. 
conservation in so tion and i d a 

1 
evapora ' . suppose 

sample remova ! . of arsenic . removed 
The second estimation nt of arsenic 
20% increase in the amou 
with each sample. 
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for removal of a fraction of the arsenic from solution. 

This hypothesis is supported by work done in both fresh 

and saline waters, (see Johnson and Thornton 1987). 

254 



CHAPTER 5 SUMMARY AND SYNTHESIS 

BATCH OXIDATION EXPERIMENT 

During th' istics is firSt experiment we observed character-

of the oxidation of ing: submerged whole coal, includ-

e

. immediate initial 
Xld acidity due to very soluble prior 

ation h' products; sulfate concentrations are much 

lgher th an iron as 2.

5

. long as system pH is greater than 

' there · Product· is a dramatic increase in the rate of sulfate 

ion foll iron owed by a dramatic increase in the rate of 

release tion when the pH drops below 2.s; the concentra-

s off' sui ilterable sulfate and iron rise rapidly and the 

fate to belo iron ratio approaches J:2 as the pH is driven 

w 2 

The relat' the b ive concentrations of selected solutes in 

Ulk & Cr solution were: so, > Fe » Al » zn > cu » As 

>Cd> Pb tr • Iron, copper, and probablY arsenic 

acked the p Ch reduction of sulfate while aluminum, zinc, 

l:'omium s1· ' and cadmium concentrations were stable to 

lghtly . ris· Ch ing during the experiment• Arsenic and 

:rom· lUm W 
ride ere enriched in the 1.0 molar magnesium chlo-

Washes . . re

1 

'but cadmium was enriched 1n the filtrate 

ativ s e to 
th

e distribution of iron between 
th

e two 

Oluti ons. 
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NEUTRA LIZATION OF SYNTHETIC LEACHATE 

The reaction syst proceeded as a pH 2.s buffered acidi'c 

em while tion filterable iron was removed by precipita-

. Each ne . . ati w inJection of NaHC°' stimulated new nucle-

of iron from solution, with the 

resulting in pH relaxation. system pH rose 

on and hyd precipitation 

rolysis 

rapidly after th 
e relative exhaustion of dissolved iron. 

the of the solution samples aided in Comp t 
. 

u er modeling 

inte rpretation f 
and 

O 
the analytical data for the major 

trace elements studied. Excess positive charge in the 

solut· Of osit1ons was deemed to be due to the passage ion comp .. 

colloidal SUbs iron particles through the filters and 

equent negat· dissolution in the acidified samples, Excess 

ive ch th arge was deemed to be due to the asswnption 

at iron cont precipitated as a pure phase, without any 

t 

ion by sulfate. · f ' d th aminat· race The speciat1on o iron an e 

metals lron was dominated by complexes with sulfate, 

d~ precipitated from solution as a ferric oxyhy-Was 

,o:xy -sulfate 
of approximate composition Fe,.o,.coH) ,,-

and hold ' t ing iron solubility intermediate be ween (So ) 
4 2 

ished by amorphous and crYstalline Fe(OH)3• those establ' 

It wash d f soi ypothesized that: a1wninWR was remove rom 

P:t as an Al(OH)S04 phase like J'urbanite; zinc (and Ution 

Y cadm' d d Part· ium as well) was adsorbed onto suspen e Obabl 

of hydrous ferric o,cyhydroxYsulfatel chromiwn 

:temoved 

lcles 
~as by formation of a solid solution wi

th th

e 
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Precipitating ferric iron that was enriched in iron rela-

t· ive to the solution composition; copper precipitates 

With ferric iron and its solubility is similar to that of 

' and, arsenic was removed at pH> 5 perhaps by ferrite· 

surface complexation of arsenate on suspended hydrous 

ferric oxyhydroxysulfate particles. No literature-based 

ion was found that satisfactorily accounted for explanat· 

the lead data. 
However, its removal from a synthetic 

was rather successfully modeled bY formation of leachate 

a so1· l.d soluti'on · · with the precipitating ferric iron. 

~COMPUTER - MODELING 

ilibrium model for inor anic acidic leachates 

~ thermodynamic equilibrium model has been developed 

based on the aqueous chemical equilibrium computer pro-

The model simulates the dilution a
nd

/or gl:'altJ. PHREEQE. 

neut ralization of oxygenated inorganic acidic 1eachates 

coal or . d . age when interacting 
fl:'oltl. , related acid mine rain 

W1th 
d bicarbonates. 

or slightly basic waters an neutral 'th air deter-
that equilibration w1 

nd carbon dioxide 
pressures of oxygen a 

The . model assumes 
ltl.1ne 
. s the partial 
ln solut· d ion. The concentration of dissolve 

silica is 

sodium, 
control led by . . . . th . 11· ca glass. 
Wh equ1.l1br1um w1 s1 ther source, is 

bicarbonate or ano en • 
lntroduced with 

ass U.ltl.ed to be conserved in solution• 
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oxidize d leachate 

SUlf ate and 

or drainage is assumed to exist as 

is largely conserved in solution. However, 

removed wh .. sa

458 

en prec1p1tates of jurbanite (Al(OH)-

20) or jar . extent osites (MFe,(OH) 6 (S04>,) form, and to some 

it may be 

as a ferr' dence ic oxyhydroxysulfate. There was no evi-

detected the 

2 

that any of the jarosites formed during 

1/2 week d The uration of the neutralization experiment. 

only ev· jurb . idence from this study for the formation of a 

anite zero phase is that its saturation index was near 

throughout the pH 2.87 - J.90 range. 

Iron . l.S the 
tellls. 

major hydrolyzing cation in these sys­

Its fol'ln removal during neutralization is modeled by 

rem of the compound Fe,
6
016 ( off) 12 ( so,) 2 which also ation 

OVed th ilnb e apparent 

alance) 

f'err· ic ox bet yhydroxysulfate was defined to be intermediate 

¥Teen goeth't 1 
e (a-FeOOH), and amorphous ferric hydrox-

excess (based on solution charge 

of d' 
issolved sulfate. The solubility of this 

ide. 

Although control physical evidence is 1acting to confirm 

th

e 

s of al . neut uminum solubility the results of 

th

e 

ra1· ' 
lZat' 

Of ion titration were best modeled using a series 

Pure 
h so1 id Al on this basis it is 
YPot -containing phases. 

hesized , bani 
th

at aluminum solubility is limited bY Jur-

te b Pas. elow pH 4, and by microcrysta11ine gibbsite above 

So . Bayeri te ( a-Al (OH) ) and basa1uminite (Al4 (OIi) ,.-

4 SH20) , 3 ' limit the solubility of aluminum between pl! 4 - 5. 
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Chromium 1 format' ass from solution was modeled by the 

ion of O><yh a solid solution with precipitating ferric 

ydroxysulf ate. 
The removal of copper and lead from 

solut· ion were in the same way. modeled· 

The f , ailure of th Bolvin e PHREEQE simultaneous-equation 

g subrout' mod , ines to converge past pH 5 precluded the 

elin g of zinc a . no su· nd cadmium losses from solution. And 

itable th th eoretical model was found on which to base 

e removal of arsenic from these solutions. 

thes predicted very well the concentrations of The model 

e elements episodi in an acidic synthetic leachate undergoing 

c neut 1· . dr ra ization with sodium bicarbonate that 

model pH of the system from below 2 up to 5. The ave the 

wast acid eSt ed on field data from a creek system where 

sulfate With mine drainage contaminated streams mixed 

siJn aminated tributaries of pH 5 to 6. The model uncont . 

Ulated inf 
th

e natural system quite well, considering the 

ormation . 8awe available (and that which wasn't available), 

Ch simulation indicated that the iron solution Ver , the · 

equ · over the course of at 1east a mile was not in elnistry 

the with iron solids observed as precipitates in llibrium 

bed. It also indicated that the trace ele­

the 
st

udy and included in the model (Al, Zn, a

nd stream 

lllent S Of 

Cti) \tier aff e largely conserved in solution with onlY dilution 

ecting th · t 1 l~ d eir concentrations, This was no doub arge-

ue t o the limited range of pH observed in the contam-
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inated 

the 

stream over 

uncont aminated 
6 -10 . 

, · Oto 3.00, even though 
its course 2 7 

tributaries ranged in pH from 5.25 to 

of reactions and fates of 

. eachates and acid mine draina e 

D1lut' acid" neutralization occur when contaminated 

lC dr • ' 
ion and 

. ainage f -lXed w· rom coal storage areas and mines is 

1th nat cone ural waters of near neutral pH· A Hco,· 

y st approximately 0.002 molar maY be carried entrat· 

b 
ion of 

ream and r' 
iver waters principallY due to contact 

limest ' rat· one and other mineral carbonates. A dilution ~ith 

l.Q Of 10 t 
Of 

O 1 
may be sufficient to initiate hydrolysis 

the major metal contaminant, ferric iron. 

The s l tion ° ution chemistry, including speciation, dilu-

' neutral. . Cipit . izat1on, hydrolysis, precipitation, copre-

9eo h ' and pH, may be predicted using the modified atian 

c emical . fro equilibrium model that has been developed 

lll the PH 
e REEQE computer d data base aowev-
r, the program an . 

Pr . coagulation and actual removal of the priman' 

ltate · · ta , iron oxyhydroxysulfate, will not be instan-ec1p· 

flo may require some distance in the turbulent neou sand 

~ Of 
t 

a stream 
0~ • 

shave ti- not been included in the model.) l)Uring 

th

is 

e, there · f th soi is ample opportunitY for interaction o o er 

with the colloidal particles resulting in adsorp-

(These kinetic and hydrodynamic fac-

Utes 
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tion t o the h d 
Th' Y rous 

rric oxyhydroxysulfate surfaces. fe · 

also be. appropr ' included in the model by adding the 

J.ate e , . floccul . quilibria to the data base. ]lVentuallY, 

ls may 

ation and . Wit!,. settling will remove the precipitate 

its co precipitate(s) and adsorbate(s). 

Durin g the period of. Will b iron hydrolysis, the system 

near pH 2.5, and the precipitation of 
e buffered 

Othe r pure phases is not l'k 1 , 
1 e y. continued dilution 

con ion will reduce the dissolved iron and/or neutralizat' 

centrat' ion b 1 cap . e ow O • 001 molar and exhaust the buffer 

ac1ty cipit of the system. Thereafter, aluminum will pre-

trace 1th rising pH, as will other slightly soluble ate w· 

elements cadmi' • These reactions for aluminum, arsenic, 

um 'chromium includ • copper, lead, and zinc, nave also been 
code, although its practical 

ed · l' in the computer 
lmit Of application so far has been up to pH 5. 

acid' Y, close to the acid drainage source where Spatiall 

lty . , iron 
the • aluminum, and sulfate concentrations are 

highest . (Nor ' Jarosite precipitates nave been reported 

sat al. 1979, Chapman et al• 1983), as well as 
dstrom et 

urat· ion w't 
sui 

1 
h respect to J'urbanite or a basic a1uminum 

fat e Of Oa~· composition Al(OH)SO, (Chapman et al• 

1983

• 

do Runnells 1987 Filipek et al• 1987)· Far

th

er ls and 

\r/nst ' 
ream 

by h are found the hydrous ferric oxides followed 

aluminum oxides. The other contaminants are 

to be present in trace amounts, and will inter-
Ydrous 

8>cp ected 

261 



by surface complexation and 

processes encount · Even farther downstream will be 

ered t 
ates 

O 
her exposed minerals and solids. carbon-

ions xpected to dissolve and release their cat-

act with these p .. ad recipitates 

sorpt ' ion 

may bee 

while f 
Oth ur

th
er neutralizing the stream. Goethite and 

er oxides will p 'd .. complexat' rovi e additional sites for surface 

Will an adsorption. c1ays and claY minerals 
ion d 

provide 
exch a reservoir of silica and manY sites for ion 

ange . ' which 
ln may alter the profile of trace elements 

in th • All of these features maY be incorPorated 
solution 

therm Y adding the appropriate equilibria and 
e model b . 

constants to the p!IREEQE database, 
odynamic 

stre epwise evolution of a contaminated effluent or 
The st 

. am may 
be simulated in segments bY using the pJ!REEOE 

build a sequence of geochemical prob­

In th' 

input program to 

lems. 
is ap 1' ' 't 

II 

th output P ication, each segment "inberi s e 

danc e previous segment and alters it in accor-
from th 

e with flow· a new set of conditions encountered bY 

th

e 

ing 

test 

In this manner, one can independentlY 
stream. 

individ 
tur ual changes in the system, such as tempera-

e, 
alkalinit aters cont y and/or composition of tributarY w ' 

act 
at· with different minerals and solid phases cone at 

lllle or · 
diff in combinations), or even test the effects of 

erent 
equilibrium constants for the same reaction, 
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.2.,,. 3 .3 Predictive modeling of the generation of coal 

.leachates and acid mine drainage 

The acid generating capacity of a coal is largely 

determined by its iron pyrite content, and may be moder­

ated by the presence of carbonates such as limestone. In 

Order to predict the composition of coal leachates or 

acid mine drainage, a great deal must be known about the 

system. Important factors would include its mineralogy 

(qualitative, quantitative, and degree of subdivision), 

its chemical composition (of soluble organic complexing 

agents as well as inorganic compounds and trace element­

s), and its system dynamics (including flushing water 

composition, frequency, and amounts, as well as particle 

sizes and porosity). 

Careful construction of the chemical model would be 

necessary to obtain all of the important equilibria and 

applicable thermodynamic equilibrium constants. Kinetic 

factors would also have to be incorporated into the 

model, including: diffusion coefficients, reaction 

rates, the dynamics of microbial colony growth and activ­

ity, and the effects of temperature on all physical, 

chemical, and biological aspects of the system. 

Taken together, these appear to be more than can be 

adequately managed within one program. For the near 

future it is expected that technicians will analyze and 

monitor the drainage from coal piles and mines, and then 

263 



Use computer models to anticipate the fate of dissolved 

Solids in the effluents. They could investigate the 

effects of various neutralization and clean-up treat­

ments, predict the concentrations of dissolved solutes 

a
nd 

trace contaminants in the treated effluents, and then 

Predict the ultimate fate of these substances after 

release into a stream or river. 
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APPENDIX A 

Graphit e Furnace Atomic Absorption spectrophotometry 

Used ~i~strument parameters and analytical conditions 
spectre~ the Perkin-Elmer model 2380 Atomic Absorption 
As-4

0 
Aptotometer with HGA-300 Graphite Furnace and the 

a~senicu osam~ler for the analyses of iron, al"'!'inum, 
zinc in' cadmium, chromium, copper, lead, selenium, and 
and ne t the,filtered samples from the batch oxidation 

u ral1zation titration experiments.) 

lR_ON · --- in the 

Instrument: 

neutralization samples. 

Fe hollow cathode lamp 
248.3 nm line 
0.2 nm slits 
D

2
-arc background correction 

Absorbance mode 

Ato , m1.zer: 

10 sec peak area integration 

PyrolyticallY coated graphite tube 
Massive pyrolytic L'VOV platform 
Argon purge gas 

Program: Drying _char_ Atomize 51r@ -
Temp, oc 80 120 1400 

2500 
2100 

Ramp, sec 
13 

0 1 

1 50 
5 

Hold, sec 0 0 30 
10 

stop 
Gas flow 

Solut· l.ons: Mat · /L Mg in 1% HN03 
r1x Mod: 20 µL of 2 · 5 g 01trex HN03 

stock Std: 1000. ppm Fe in 2 •
5

% 0 40, 60, 80, 
Working Stds: 20 µL of 1, 5, lO, 

2 
' 

and 100 ppb in 0.2% u1trex HN03 
Best range: 5 - 60 ppb . % Ul trex HN03 
Samples: diluted 1:100,ooo wi~ ~t! 

autopipette 20 JJL aliqu 
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ALllMINIJM 

Instru~ent: Al hollow cathode lamp 
309.3 nm line (or 308.2 is less sensitive) 

0.7 nm slits 
D2-arc background correction 
Absorbance mode 
10 sec peak area integration 

Atomizer: Pyrolytically coated graphite tube 
Massive pyrolytic L'VOV platform 
Argon purge gas 

Program:* Drying _charring_ 
A,_tomize Purge 

Temp, oc 90 130 400 1750 2550 2700 

Ramp, sec 1 50 26 14 0 1 

Hold, sec 8 10 9 20 10 5 

stop 
Gas flow 

Solut· ions: Matrix Mod: 20 µ.L of 2. 5 g/L Mg in 1% HN03 
Stock Std: 

1002
• ppm Fe in 3% u1trex HN0

3 

Working stds: 20 µL of 1, 9, 25, 40, 60, 80, 

* 

and 100 ppb in 0.2% u1trex HN03 
Best range: 5 _ 40 ppb (or 5 - 80 at 308°2 nm) 
Samples: diluted 1:1000 ~itb 0.2% u1trex HNO, 

autopipette 20 µL aliquots (or 10 µL 
if signal is beyond linear range). 

Differ · t' samples: 
ences for analysis of the Neutraliza ion 

Program: Drying gpa.I: ~ 
J:_ur@ 

Temp, oc 80 130 1750 
2550 

2100 

Ramp, sec 1 75 17 
0 

1 

Hold, sec 0 0 25 
10 

5 

stop 
Gas flow 

Sampl % HNO es were diluted 1:100 with 0.
2 

3 



ARSENIC 

Instrument: As hollow cathode lamp 
l93.7 nm line 
0.7 nm slits 
Dz-arc background correction 
Absorbance mode 
10 sec peak area integration 

Ato · mizer: Pyrolytically coated graphite tube 
Massive pyrolytic L'VOV platform 
(both pre-coated with Mo: 

10 X 100 µL of 1 g/L Mo) 
Argon purge gas 

Program:* 

Temp, oc 
Ramp, sec 
Hold, sec 
Gas flow 

Drying 

90 140 
1 50 
9 0 

_charring_ 

JOO 1400 
1 1 
0 JO 

A,_tomize 

2100 
0 

10 
stop 

purge 

2650 
1 
5 

Solut· ions: Matrix Mod: 20 µL of 1 g/L Ni as the nitrate, 
& 100 mg/L Mo & O, 24% Ft, & 1 g/L ll2S04, 

• 

in 1,3% chloride and 2.2% nitrate solution, 
Stock Std: 1000. ppm As in 1% u1treX !11!03· 
Working Stds: 20 µL of 5, 10, 20, 40, 60, so, 

and 1 o o ppb in o . 2 % Ul trex HN03 • 

Best range: 10 - so ppb Samples: diluted 1:10 ~ith 0,2% Ultrex JIN03 
autopipette 20 µL aliquots 

Differ 1 D ,ences for analysis of the Neutralization samp es: 

c::'1n? step: 30 sec, ramP to 130 'C, arr1ng step: 1 sec, to 1400 'C and hold 20 sec, 
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CADMIUM 

Instrument: 

Atomizer: 

Cd hollow cathode lamp 
228.8 nm line 
0.7 nm slits 
D

2
-arc background correction 

Absorbance mode 
5 sec peak area integration 

Pyrolytically coated graphite tube 
Massive pyrolytic L'Vov platform 
Argon purge gas 

Drying Charring Atomize Purge 
Program:* 

Temp, oc 90 140 400 700 1400 2650 

Ramp, sec 1 50 26 7 0 1 

Hold, sec 5 10 9 20 5 5 
stop 

Gas flow 

Solutions: Matrix Mod: 20 µL of 10. g/L NH4H2P04 and 
o.so g/L Mg in 0.2% u1trex HN03· 

Stock Std: 998. ppm Cd in 1% HCl. 
Working stds: 20 µL of 1, 3, 6, 10, 15, 

and 20 ppb in o. 2% u1trex ffN03• 
Best range: 1 - 10 ppb Samples: diluted 1:10 with o.~% Ultrex HN03 

autopipette 20 µL aliquots 

* Differences for analysis of the Neutralization samples: 

Program: oryinq_ ~ax ~ 
Purge 

Temp, oc 130 100 
1400 2650 

80 0 1 

Ramp, sec 1 75 7 5 

Hold, 
25 

5 

sec 0 0 stop 
Gas flow 

Used 10 µL of all samples 
and standard5 • 



Instrument: Cr hollow cathode lamp 
357.9 nm line 
0.7 nm slits 
Absorbance mode 
5 sec peak area integration 

Atomizer: Pyrolytically coated graphite tube 
Massive pyrolytic L'VOV platform 
Argon purge gas 

Program: * Drying Charrinq_ Atomize purge 

Temp, oc 80 140 400 1600 2550 2700 

Ramp, sec 1 60 26 12 0 1 

Hold, sec 0 0 9 25 5 5 

stop 
Gas flow 

Solut · ions: Matrix Modifiers (also for matrix matching): 
For Standards: 20 µL of std. plus 20 µL 

~f 0.03 M MgClz ·& 110. ppm Fe & 5.0 ppm Al 
in o.5% HN0

3 
& 0.015% ac1. 

For Filtrates: 20 µL of sample plus 20 µL 
~f 0.03 M MgClz & 100 ppm Fe 
1n 0.32% HN03 • For washes: 10 µL of sample plus JO µL 
of 100 ppm Fe & 3.0 ppm Al 
in 0.28% HN03 & 0.01% HCl

0 

st
ock Std: 1000. ppm er in Milli-Q water. 

Working stds: 20 µL of 1, 9, 20, and 40 ppb 

B in O • 2 % Ul treX HN03. 
eSt range: 5 - 40 ppb Samples: diluted 1:10 with o.2t u1trex HN01 

autopipette aliquots as above. 

1t Diff 
ere 1 · t · n samples· 

nces for analysis of the Neutra iza 
10 

• 

Use 2 . d'f' 
Mat ,o µLeach standards samples and matrix mo 

1 

ier, 
u

8

/ 1 x modifier = 2 • 5 g;L Mg in l t HNOi • , 
slower drying step: 75 sec ramP to 

130 
c. 
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.C.OPPER 

Instrument: 

Atomizer: 

Cu hollow cathode lamp 
324.8 nm line 
0.7 nm slits 
Dz-arc background correction 
Absorbance mode 
10 sec peak area integration 

PyrolyticallY coated graphite tube 
Massive pyrolytic L'VOV platform 
Argon purge gas 

Charrinq_ 
A,_tomize £urge 

Program:* 

Temp, oc 
Ramp, sec 
Hold, sec 
Gas flow 

Drying 
2200 2650 

Solut· ions: 

90 
1 
5 

140 400 
50 26 
10 9 

1200 
10 0 1 

20 10 5 
stop 

:atrix Mod: 20 µL of 2.5 g/L Mg in l% HNO,. 
toe~ Std: 1000. ppm cu in 1% HN03· 

Working Stds: 20 µL of 1, 5, 10, 15, 20, 25, JO, 
40, and 50 ppb in 0.2% u1trex HN03• 

BeSt range: 5 - 40 ppb Samples: diluted 1:100 with 0.2% Ultrex HN03 
autopipette 20 µL aliquots 

* Differ · t' samples: 
ences for analysis of the Neutraliza ion 

Program: Drying gpa_x ~ 
£9.r® 

Temp, oc 80 120 1200 
2200 2650 

Ramp, sec 
12 

0 
1 

l 60 
5 

Hold, sec 0 0 25 
10 

stop 
Gas flow 

llnd us d for wash samples 
(h. e slower drying step ramP to 130 oc. 

l.gh salts): 75 second 
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Inst rument: 

Atom· lzer· . 

Pb hollow cathode 1amp 
283 ·3 nm line 
o. 7 nm slits 
02-arc background correction 
Absorbance mode 
5 sec peak area integration 

PyrolyticallY coated graphite tube 
Massive pyrolytic L'VOV platform 
Argon purge gas 

AJ:omiz~ FJJr®. 
Program:* Drying cnarring_ 

Temp, oc 90 140 400 900 1750 
2650 

Ramp H , sec 1 50 26 10 
0 1 

old, sec 5 10 9 20 
5 

5 

stop 
Gas flow 

Soluti ons: 
rix Mod: 20 µL of 10.0 g/L J114HzF04 a

nd 

Mat · 
Stec~· 5 0 g/ L Mg in O . 2 % Ul treX JIIIO) • 
Work. std: 1000. ppm Pb in 1% Jlll<l]• 

ing Stds: 20 µL of 1, 3, 9, 2
5

, so, 
Best a nd 8 O ppb in o • 2 % Ul treX JIIIO) • 

Sa range: 5 - 40 ppb mples: diluted 1: 10 .,ith o. 2% uitrex JIII0
3 

autopipette 20 µL aliquots 

... 
Diff erences for analysis of the Neutralization sa,nple•• 

Program:* QX:YiDg ~ 
~ 
~ 

Temp oc 
900 

1750 
2650 

Ramp' 
90 140 400 0 

1 

H , sec 1 55 26 
5 5 

5 

Gold, sec 0 7 9 25 

as flow 

stoP 
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Instrument: 

Atomizer: 

Se hollow cathode lamp 
196.0 nm line 
0.7 nm slits 
Dz-arc background correction 
Absorbance mode 
5 sec peak area integration 

Pyrolytically coated graphite tube 
Massive pyrolytic L'VOV platform 
(both pre-coated with Mo: 

10 X 100 µL of 1 g/L Mo) 
Argon purge gas 

Charrinq_ .atomize FUrge 
Program:* Drying 

Temp, oc 90 140 JOO 1000 2100 2650 

Ramp, sec 1 50 1 1 0 1 

Hold, sec 9 10 10 30 5 5 

stop 
Gas flow 

Solut1' ans: Matrix Mod: 20 µL of Q.5 g/L CU, & o.2 g/L Mg, 
~ 100 mg/L Mo, & 0.24% Ft, & 1 g/L a,so, 
in 1.3% chloride solution. 

stock std: 1020. ppm se in 10% HCl. 
Working stds: 20 µL of 5, 10, 20, 40, 60, 

and 80 ppb in 0.2% u1trex HN03· 
Best range: 20 - 80 ppb Samples: diluted 1:10 ~ith o.2% Ultrex HN03 

autopipette 20 µL aliquots 

* Dif ferences for analysis of the Neutralization samples: 
b.,_tomiz~ £._ur@ 

Drying _charring_ 

JOO 1000 
90 130 

1 1 
1 30 
9 0 5 20 

Program:* 

Temp, oc 
Ramp, sec 
Hold, sec 
Gas flow 

Used 1o µL d'fi'er aliquots of matrix mo 
1 
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2100 2650 

0 1 
5 5 

stop 



Instrument: Zn hollow cathode lamp 
213.9 nm line 
0.7 nm slits 
D

2
-arc background correction 

Absorbance mode 
5 sec peak area integration 

Atomizer: PyrolyticallY coated graphite tube 
Massive pyrolytic L'Vov platform 
Argon purge gas 

Program:* Drying Charring_ A,_tomize Purcm 

Temp, oc 90 140 400 700 1800 2650 

Ramp, sec 1 50 26 3 0 1 

Hold, sec 9 0 9 25 5 5 

stop 
Gas flow 

Solut· ions: Matrix Mod: 24 µL of o.25 g/L Mg in 0.2% HN03• 

stock Std: 1000 ppm Zn in 1% HCl. 
Working stds: 20 µL of 0.2, 1, 3, 

6
, 

9
, 

12
• 

and 15 ppb in o. 2 % Ul trex HN03 · 
Best range: 1 - a ppb . 
Samples: diluted 1:100 or 1:1000 w

1th 0
·
2

% 
Ultrex HN03• . autopipette 20 µL aliquots 

1fferences for analysis of the Neutralization samples: * D' 

Program: Drying_ gpax ~ 
gyrgg 

Temp, oc 80 130 700 
1aoo 

2650 

Ramp, sec 
7 

0 
1 

1 75 
5 

Hold, sec 0 0 25 
5 

stop 
Gas flow 

And used 10 µL aliquots 
of samples and 

standards. 
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APPENDIX B 

Chemical Equilibria and Constants 

u ~he following pages list the chemical equilibria 
sect in the data file for the geochemical computer 

irogram PHREEQE (Parkhurst et al. 1980, revised August, 

t
99 0), which was used for the computer modeling in this 

S Udy. 
Also listed is the logarithm of the equilibrium 

con~tant corresponding to each reaction, and a number 
~es1gnating the reference(s) upon which the information 
ls.based. Below is the key to these references, for 
Which complete literature citations may be found in the 
References section that follows this appendix. 

Notes: 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 
11. 
12. 
13. 
14. 
15. 
16. 
11. 
18. 
19. 
20. 
21. 
22. 
23-
24. 
25. 
26. 
21. 
28. 
29. 
30. 

(*) 

Plummer and Tisaranni 1990 
Alpers and Brimhall 1989 
Alpers et al. 1989 
oavis and Ashenberg 1989 
Hem and Roberson 1989 
Nordstrom et al. 1989 
Parkhurst 1989 
smith and Martell 1989 
Karathanasis et al. 1988 
Khoe and Robins 1988 
Krause and Ettel 1987 
Rai et al. 1987 
Bard et al. 1985 
Brown et al. 1985 
Driscoll et al. 19

84 

plummer et al. 1984 
Chapman et al. 1983 
Nordstrom 1982b 
smith and Martell 19

82 

wagman et al. 1982 
Turner et al. 1981 

Leckie and oavis 1979 
Lindsay 1979 
MaY et al. 1979 
sunda and Hanson 1979 
sy1va and oavidson 1979 
Baes and Mesmer 1976 
smith and Martell 1976 
Naumov et al. 1974 
zirino and Yamamoto 1972 

(+) == "Adapted 
:::: "Based on"' 

274 

from" 
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Eguations for species,J.. 

= HF· 2 

4W + 6F- = SiF 2· 6 

Ir = HCO · 
co 2- 3 

3 + 2W = co 
co 2(aq) 

2<aq> = co 
so 2- Z(g ) 

4 + H+ = 
Al 3+ HS041 · 

+ H20 = Al~ AlOH~ + H+ 

+ 2H20 All+ = Al (OH) 2+ + 2H• 

+ 3H20 1.13+ = Al (OH),o + 3H' 

+ 4H20 2l\l :i. = Al (OH) 4 + 4ff' 

+ 2H o l).13+ 2 = Alz ( OH) ,4• + 2H' 

+ 4H 0 131,13+ 2 = Al, (OH).'' + 4ff' 

+ 32H 0 2l\ll+ 2 = Al13(0Hht + 32H' 

+2a20 +co z-ll.l" 3 = Al, (OH) ,co/' + 2H' 

+4H20 +co 2-1.1:i. 3 = Al (OH) HCO 
4
• +3H' 

+ II 3 , 3 

20 + so 2-1.1:i. 4 = AlOHSO 
O 

+ H' 
+ a• 4 + so 2-1\13+ 4 = AlHS0 

2
• 

+ so 2- 4 

Al3+ 4 = A1So4• 

+ 2So 2-

21\l 3+ 4 
+ 

= Al (SO ) • 4 2 

3SO 2-4 = Al (SO ) o 2 4 3 

215 

_Log<Kl Ref's 

-14.000 6 

+3.18 6 

+3.76 6 

+30.18 6 

-22. 11* 

-9.83 6 

-2J.O 6 

+10.329 6 

+16.681 6 

+1.468 6 

+1.988 6,8 

_5.00 6,9,23 

-10.l 5,6,9 

-16. 9 6 

-22.1 5,6 

-8.2 6*,14+,21• 

-15.6 6\14•,21· 

8* 
+2.46 

+o.13 8* 

-1.903 13 

+2.448 6 

+3.02 6 

+4.92 6 

_
1

_88 23 



Al3+ + F- = AlF2+ 

Al3+ + 2F- = AlF/ 

Al3+ + 3F- = AlF3° 

Al3+ + 4F- = AlF4-

Al3+ + 5F- = A1Fs2-

Al3+ + 6F- = AlF/-

Al3+ + 3No3- = Al (N03}J0 

Asol- +2e- + 4H+ = HzAS03- + HzO 

Asol- +2e- + SH+ = H3AS03° + HzO 

Aso4
3- + H+ = HAso/-

Aso 3-4 + 2H+ = HzAS04-

Aso 3-4 + 3H+ = H3As04° 

ca2• + HzO = CaOH+ + w 
cah +co;-= caco/ 

Ca2+ + co 2- + H+ = caHC03 
3 

+ 

ca2• + F- = caF• 

ca2• + so/- = caso/ 

2 + H+ Cd + + H2o = CdOH + 

2H+ Cd2+ + 2Hz0 = Cd (OH)/ + 

Cd2+ + 3H20 = Cd(OH}J- + 3H+ 

Cd2+ 2- + 4H+ + 4H20 = Cd (OH) 4 

2Cd2+ + H20 = Cd20H3+ + w 
4Cd2+ + 4H20 = Cd4 (OH) 4 4+ + 4H+ 

Cd2+ + H20 + er == Cd0HC1° 

Cd2+ + c1- = CdCl+ 

276 

+7.0 6,15,23 

+12.7 6,15,23 

+16.8 6,15,23 

+19.4 6 

+20.6 6 

+20.6 6 

+0.12 23 

+30.805 4,20 

+40.03 4,20 

+11.595 4,20 

+10.35 4,11,20 

+20.60 4,11,20 

-12.78 6 

+3.224 6 

+11.435 6 

+o.94 6 

+2.30 6 

-10.08 
7,21,27 

-20.35 
7,21,27 

_33.3 
1,21,27 

_47.35 7,21,27 

-9.39 
7,27 

_32.85 
27 

_7.40 
7,20 

+1.98 
7,21,23 

+2.6 
1,21,23 



Cd2+ + 3Cr = CdCl3-

Cd2+ + co/- = CdC03 ° 

Cd2+ + H+ + co3 
2- = CdHC03 

2-Cd2+ + 2co/- = Cd (C03) 2 

Cd2+ + N03 - = CdN03 + 

Cd2+ + 2N03 - = Cd (N03) 2 ° 

Cd2+ + so/- = CdSO/ 

Cd2+ + 2SO 2- = Cd ( S04) /-
4 

Cd2+ + 3SO 2-
4-

= Cd (S04) 3 4 

cr3+ + H20 = CrOH2+ + H+ 

+ 

cr3+ + 2H20 = Cr(OH)/ + 2H+ 

cr3+ + 3H20 = Cr(OH'3° + 3H+ 

cr3+ + 4H20 = Cr(OH)/ + 4H+ 

2cr3+ + 2H20 = Cr2 (OH) 2 
4+ + 2H+ 

3cr3+ + 4H20 = Cr3 (OH) 4 5+ + 4H+ 

4cr3+ + 6H20 = cr4 (OH)/+ + 6H+ 

cr3+ + S04 2- = CrS04 + 

cr3+ + H20 + S04 2- = croHS04 
0 

cr3+ + c1- = crcl 2+ 

cu2+ + H20 = CuOH+ + H+ 

2H+ Cu
2
+ + 2H

2
o = Cu (OH) 2° + 

2 ) ~ + 2Cu + + 2H2o = cu2 (OH 2 

) 2+ + = Cu3 (0H 4 

cu
2
+ + co/- = cuco3 ° 

Cu
2
+ + H+ + C03 2- = cuHC03 

+ 

2 2-
Cu + + 2co/- = cu (C03) 2 

2H+ 

4H
+ 

211 

+2.4 7,21,23 

+4.09 23 

+12.42 23 

+7. 8 

+0.31 23 

+o.oo 23 

+2.46 7,19,21 

+3.50 7 

+3.09 21 

* 
-3.2 12 

* 
-9.5 12 

* 
-16.0 12 

* 
-27.3 12 

* 
-4.3 12 

* 
-9.7 12 

-15.2 
12 * 

+2.2 
12 * 

* 
-2.45 12 

+o.62 
21 

-s.OO 1,21,22 

-13.68 
7,22 

-10.36 
7,27 

26+ 
-18° 

+6.77 
8 

+12.13 
8 

+10.2 
8 ,25 



I 

~ 

cu2• + c1· = cuc1• 

cu2• + 2cr = cuclz° 

cu2• + Jc1 • = cuc13• 

cu2• + N03" = CuNO/ 

cu2• + 2No3· = cu(N03)z° 

cu2• + so/· = cuso4° 

cu2
• + 2so/· = Cu(S04)/· 

Fe2+ + H2o = FeOH+ + W 

Fe~+ 2H2o = Fe(OH)z° 

Fe
2
+ + C032- = FeC03° 

Fe2• + 8 + + co/· = FeHC03 
+ 

Fe2+ + so 2-4 = FeS04° 

Fe2+ + a++ so/· = FeHS04 
+ 

Fe2+ + F" = FeF+ 

Fe2+ + Cl - = FeCl + 

Fe
2
+ + 2Cl" = FeClz° 

Fe2+ = Fe3• + e· 

Fe2+ + H2o = FeOH2+ + H+ + e 

Fe2+ + 2H20 = Fe (OH)/ + 2H+ 

Fe2+ + 3H2o = Fe(OH}J0 + 3H+ 

Fe2+ + 4H2o = Fe (OH) 4- + 4H+ 

+ e 

+ e 

+ e 

2Fe2+ + 2H20 Fez (OH) 2 
4+ + 2H+ + 

= 
3Fe2+ + 4H20 = Fe3 (OH)4 

4Fe2+ + 6H2o = Fe4 (OH) 6 

Fe2+ + p· = FeF2+ + e· 

Fe
2
• + 2F" = FeF/ + e· 

5+ + 4H+ + 

6+ + 6H+ + 

278 

+0.43 7,20 

+0.16 7,20 

-2.29 7,20 

+o.5 19,23 

-o.4 19,23 

+2.31 1,20,22 

+3.13 7 

-9.5 6 

-18.8 29 

+4.38 6 

+12.329 6 

+2.25 6 

+3.068 6 

+1.0 
6 

+o.14 
6 

-10.93 
20 

-13.02 
6 

-15.21 
6,9 

-18.69 
6 

-25.58 
6 

_34.62 
6 

. -28.99 
6 

2e 
_45.36 

6 

3e 
-61.46 

6+ 

4e 6 
-6.82 

-2.22 
6 



Fe2• FeF3° + -+ 3F- = e 

Fe2• FeCl 2• + -+ c1- = e 

Fe2• + 2cr = FeC12+ + e 

Fe2• + 3Cl- = FeC13° + e 

Fe2• + so 2- = Fe S04+ + e 4 

2+ + -Fe2• + tt· so 2- e + = FeHS04 4 

Fe
2
• + Aso/- = FeAsO/ + e 

Fe2+ + tt• + AsO 3- = FeHAS04 + + e 
4 -

+2 + e 
Fe2+ + 2H+ + Aso/- = FeHzAS04 

r + H20 = KOH0 + w 
r + so/- = Kso4-

Mg2• + F- = MgF• 

Mg
2
• + H2o = MgOH+ + H+ 

Mg2+ + C03 2- = MgC03 o 

Mg2+ + tt• + co/- = MgHCO/ 

b g2+ + 2 0 ,., S0
4 

- = MgS0
4 

Mn2• + + H+ H20 = MnOH + 

Mn2+ + C03 2- = MnC03 0 

J,tn2+ + H+ + CO 2- = MnHC03 + 
3 

i.n2• + 
,., so/- = Mnso/ 

Mn
2
• + 2No3- = Mn (N03)z0 

?in2• + 
F- = MnF+ 

+0.98 

-11.54 

-10.89 

-11.89 

-s.98 

-s.552 

-1.64 

+10.75 

+11.63 

-14.46 

+o.s5 

+1.82 

-11.44 

+2.98 

+11.399 

+2.37 

-10.59 

+4.90 

+12.279 

+2.25 

+o.6 

+o.84 

6 

6 

6 

6 

6,8 

6 

6 

10 

4 

4 

4 

4 

4 

6 

.,, 

6,8 

6 

6 

6 

6 

6 

6 

6 

6 

6 

1 

6 



Mn2• + c1· = Mnc1• 

Mn2• + 2Cl" = MnC12° 

Mn2
• + 3Cl. = MnCl3" 

Mn2• = Mn3• + e· 

Na+ + o + H+ H20 = NaOH 

Na• + co/· = Naco3· 

Na· + H+ + co/· = NaHC03° 

Na• + so/· = Naso4 

Na• + F" = NaF0 

Pb2+ + H2o = PbOH+ + H+ 

Pb2+ + 2H20 

Pb2+ + 3H20 

Pb2+ + 4H20 

2H+ = Pb(OH'2° + 

3H+ = Pb (OH) 3. + 

2 + 4H+ = Pb(OH)4. 

2 Pb2+ + H20 = Pb20H3+ + H+ 

3Pb2+ + 4H20 = Pb3 (OH)/+ + 

4Pb2+ + 4H20 = Pb4 (OH)/+ + 

6Pb
2
• + 8H

2
o = Pb

6 
(OH)/+ + 

Pb
2
• + Cl. = Pb Cl+ 

Pb
2
• + 2Cl. = PbClz 0 

Pb
2
• + 3Cl. = PbCl3. 

Pb
2
+ + 4Cl. = PbCl/· 

Pb
2
+ + C0

3 
2· = PbC03 ° 

Pb
2
• + 2co/· = Pb (C03) z2· 

Pb2+ + H+ +co/· = PbHC03+ 

PbZ+ + S0
4 
z. = PbS04 ° 

PbZ+ + 2So/· = Pb (S04) /· 

+0.61 

+o. 25 

-o.31 

-25.51 

-14.18 

+1.27 

+10.079 

+o.10 

-o.24 

-1.11 

-11.12 

-28.06 

_39.7 

-6.36 

-23.88 

-20.88 

_43.6 

+1.6 

+1.8 

+1.7 

+1.38 

+1.24 

+10.64 

+13.2 

+2.75 

+3.47 

6 

6 

6 

6 

6 

6 

6 

6,8 

6 

1,21,23 

1,21,27 

1,20,21 

7 

1,21 

7,23,27 

23,27 

23,27 

1,20,23 

1,20 

1,21,23 

7,23 

21,30 

7 

30 

21 



Pb2+ + N03. = PbN03 + 

Pb2+ + 2No3· = Pb(N03h 0 

Zn2• + H20 = ZnOH+ + H+ 

Zn2+ + 2H2o = Zn(OH)/ + 2w 

Zn2+ + 3H2o = Zn{OH)3- + 3H+ 

Zn2+ + 4H2o 2- + 4H+ = Zn{OH)4 

2Zn2+ + H2o = Zn20H3+ + H+ 

2Zn2+ + 6H2o = Zn2 (OH) 6 2- + 6H+ 

Zn2+ + H2o + c1· = ZnOHCl 0 

Zn2+ + Cl. = znc1• 

Zn
2
• + 2Cl - = ZnCl2 ° 

Zn
2
• + 3Cl" = ZnCl3" 

Zn
2
• + 4Cl · = znc1/· 

Zn2
+ + 2 o C03 . = ZnC0

3 

Zn2• + a• + co/· = znHco/ 

Zn2+ + 2 o S04 - = ZnS04 

Zn
2
• + 2so/· = zn(S04)/· 

Zn2
+ + + 

No3• = Zn N0
3 

k;ft _ _ 'libria.l ~l Dissociation Egui 
s· 

l.02<am> + 2H2o = H4Si04° 

S iofH O + H20 = H4SiO/ 2 (g l ass ) 

Sio2<quartz> + 2Hz0 = H4SiO/ 

281 

+1.17 23 

1.40 23 

-9.6 1,20 

-16.9 7,21,27 

-28.4 7,21,27 

-41.2 
7,21,27 

-9.0 
27 

_57 .8 
27 

-7.48 
1,20 

+o.43 
7 

+o.45 
7 

+o.50 
7,21,23 

+o.20 
1,21,23 

+5.1 
8 

+11.03 
8 

+2.37 
7,21 

+3.28 
7 

+o. 40 
23 

-2.71 
6 

_3 . 0183 
6 

_3.98 
6 



Mineral Dissociation Equilibria {continued): 

Al (OH) 3Cgibbsite) + 3H+ = Al 3+ + 3H20 

Al (OH) 3cs-gibbsite) + 3W = Al 3+ + JH20 

Al (OH'3<bayerite) + JW = Al 3+ + 3H20 

Al (OH} lCam) + 3H+ = Al3+ + 3H20 

AlOHS04(jurbanite> + H+ = Al 3+ + so/- + H20 

Al4SOdOH),ocbasaluninite) + 10H+ = 4Al3+ + so/- + 10H20 

NaAl3(S04) 2 (0H) 6csodiun alunite) +6H+ = Na+ + 3Al3+ + 2SO/- +6H20 

~ Al2Si20 5 (0H) 4ck.aolinite) + 6H+ = 2Al3+ + 2H4Si04 + H20 
N 

Na (Al.Si3) 0 8calb1te) + SH20 = Na+ + Al. (OH) 4- + 3H4Si04 

NaAl.Si2o 6·H20canalcime) + 5H20 = Na+ + Al. (OH) 4- + 2H4Si04 

Al.2Si20 5 (OH) 4challoysite) + 7H20 = 2H+ + 2Al. (OH) 4- + 2H4Si04 

Al.2Si40 10 (0H) 2 cpyrophylUte) + 12H20 = 2H+ + 2Al.(OH) 4- + 4H4Si04 

NaAl.~i,,o30 (0H) 6cbeidellite) +22H+ +SH20 = Na+ +7Al.3+ + 11H4Si04 

CdC03 ccn = Cd'+ + col-

CdS04ccr) = Cd2+ + sol-

CdSi03ccr) + 2W + H20 = Cd2+ + H4Si04 

Log(K) 

+8.11 

+9.35 

+8.41 

+10.8 

-3.8 

+22.4 

+0.02 

+7.435 

-18.000 

-12.7 

-32.82 

-42.43 

+21. 

-13.74 

-0.10 

+9.06 

Ref's 

6,9,15 

6,9,15 

5 

6,15 

9,15,17 

9,18 

17 

6,9,20 

1 

16 

16 

16 

16 

1 

20 

20 



Cr2o3 ·FeO<chromite) + Bir' = Fe2
+ + 2cr3• + 4H20 

Cr(OH)3cprecipitate> + 3H+ = cr3• + 3Hz0 

Cu(S04) 0_25 (0H)1.sccr> + 1.sn• = cu2• + 0.25(S04 ) 2· + 1.5H20 

CuO·FezOlCci.,,ric ferrite> + SH+ = Cu2+ + 2Fe3+ + 4H20 

Fe (OHhcam> + 3~ = Fe3+ + 3H20 

Fe (OHhcsoil> + 3H+ = Fe3+ + 3H20 

FeO (OH) <soethitel + 3H+ = Fe3
• + 2H20 

FeAs04·2H20<scorodite) = Fe3+ + As04
3 - + 2H20 

Fe3 (S04) 2 (0H) 5<carphoshieritel + 5H+ = 3Fe3+ + 2SO/- + 5H20 

NaFe3 (S04) 2 (0H) 6(natrojarosite) + 6H: = Na+ + 3Fe3+ + 2SO/- + 6H20 

+19.89 

+9. 

+3.84 

+5.90 

+4.891 

+2.70 

-1.0 

-24.41 

-5.39 

-5.28 

12,13,20 

12* 

28 

20 

6 

23 

6 

11 

17 

17 

l(H30)_.75Na.25)Fe3 (S04) 2 (0H) 6( 11Ma-jaros'ite) + 5.25H+ = 0.25Na+ + 3Fe3+ + 2SO/- + 6.75H20 

PbFe6 (S04) 4(0H) '2(pt1..1,t>ojaros'ite) +12H+ = Pb2+ + 6Fe3+ + 4Sol- +12H20 

PbS04(angles'ite) = Pb2+ + S042-

PbS04·PbO(cr) + 2H: = 2Pb2+ + S04
2- + H20 

ZnO·Fe2o 3 <cr) + SH+ = Zn2• + 2Fe3• + 4H20 

ZnSi03 <crl + 2H+ + H20 = Zn2+ + H4Si04 

-5.47 

-16.28 

-7.79 

-0.277 

+7.25 

+7.2 

3+, 17• 

17 

8,23 

20 

20 

17* 20* , 



GLOSSARY OF MINERALS 

Mineral Chemical Formula Mineral Chemical Formula 

Albite NaA1Si30s Chromite Feo·cr2o3 

Alkali feldspar (Na, K) A1Si30s Copper ferrite a-CuFe2o 4 

Alunite KA13 (OH) 6 (S04) 2 Dolomite CaMg(C03) 2 

Alunogen Alz (S04) 3"17Hz0 Ferrihydrite Fe(OHh 

Ankerite CaFe(C03) 2 Gal.ena PbS 

N Apatite Ca5 (OH, F, Cl) (P04h Gibbsite y-Al. (OH>J 
0:) 
~ 

Barite BaS04 Goethite cx-FeO(OH) 

Basal.uminite Al.4 ( OH) 10so4• 5H20 Gypsum CaS04·2H20 

Bayerite a-A1(0HlJ Hydronium jarosite (see Carphosiderite) 

Cal.cite CaC03 Il.l.ite l<o.6Mgo.25Al.2. 5S i3_5010 ( OH) 2 

Carphosiderite H3o•Fe3 (OH) 6 (S04) 2 Jarosite KFe3 (0H) 6 (S04) 2 

Chal.copyrite CuFeS2 Jurbanite Al.OHS04• 5H20 

Chl.orite (Mg5Al) Si3Al010 (0H) 8 Kaolinite Al2Si20 5 (OH) 4 



Mineral Chemical Formula 

Lead jarosite (see Plumbojarosite) 

Malachite cu2 (0H) 2co3 

Marcasite FeS2 

Mixed layer clays 

Montmorillonite 

Mg,Al silicates 

Muscovite 

Natrojarosite 

Ca0.165Al2.33Si3.6f>1o (OH) 2 

KAlzSi3AlO,o (OH) 2 

NaFe3(0H) 6(S04) 2 

Plagioclase feldspar 

Plumbojarosite 

(NaSi,CaAl)SizAl08 

PbFe6 (OH) 12 (S04) 4 

Mineral Chemical Formula 

Potassium jarosite (see Jarosite) 

Pyrite FeS2 

Quartz sio2 

Scorodite FeAso4 · 2H2o 

Siderite FeC03 

Sodium jarosite (see Natrojarosite) 

Sphalerite 

Tourmaline 

Zircon 

ZnS 

Na (Mg, Fe, Li) 3Al6 (0H) 4~09Si60 18 

ZrSi04 



REFERENCES 

Alpers C . N. and B 'mh Evolution andri all G. H. (1989) Paleohydrologic 
Supergene Met ~eoch~ical Dynamics of cumulative 
Desert, North a Enr;chment at La Escondida, Atacama 
pp. 22

9

_

253

_ ern Chile. Economic Geology. a,,(
2
), 

Alpers C . N N d Solubiiit or strom D. K. and Ball J. w. (1989) 
From AcidYM?f Jarosite solid Solutions Precipitated 
U.S.A. Sci ine Waters,,Iron Mountain, California, 
281-

298

• ences Geologiq!!eS, Bulletin• 42,(4), PP· 

Amer' ic~n Societ . . Diffract' Y for Testing and Materials (1986) Powder 
Hanawalti~n File Inor anic phases search Manual 
Diffract' ethod. International centre for 

Ame, ion Data, Swarthmore, Pennsylvania. 

Standa iety for Testing and Materials (1985) rican Soc· Book 

0

~dAMethod of sieve Analysis of coal. In Af!nual 
Design t'STM standards, vol. 05.05, standard 
Organi'a i?n E 11. International standards 

zation. 

Ame· rican Soc· Stand iety for Testing and Materials (1985) 
Refus:~d T!st Methods for Analysis of.Metals in 
Spect Derived Fuel bY Atomic Absorption 
Vol ~ophotometry. annual aook of ASTM standard§, 

Jin • l:04, standard E 885, PP· 410-444° 

derson W Pil • c., ASCE M. and youngstrom M· p. (1976) coal 
Joue Leachate--Quantity and oualitY characteristics. 
10

2

rnal of the Environmental En ineerin Division. 

At . 'pp. 1239-1253. 
Cr s • J., Posner A. M. and Quirk J. p. (1968) kinson R 
Hy~r~a~ Nucleation in Fe(III) solutions and 
Chem'xide Gels. Jo na Inor anic and Nuclear 
- 18try. 30, pp. 2311-2381· 

Baes 
C. P ' f Ct' 
John. ~nd Mesmer R. E. (1976) H drol sis o a ions. 

B Wiley & sons. 

a11 J Eie:· and Nordstrom D. K. (1985) ~ 
Lev'ent Anal ses of Acid Mine waters in 

th
e 

Octiathan Mine Draina e Basin california ~evada--
Su ober 1981 to October 1982- u. s. Geological 

~e ~ y. WRI Report 85-4169 · 

286 



Bard A. J P ., Parsons R otential , · and Jordan J. (1985) standard 
of sin Aaueou s 1 · Pure and Ap !' s o,ut1on, International union 

Bartl Pied Chemistry. 

ett R J B · · and J ioavail~bil' ames B. R. (1988) Mobility and 
the Natural it~ of Chromium in soils. In Chromium in 

2
67-301. Wil:~ Human Environments, chap.-10, pp, 

B • 
assett R f . L. and Mel h ' 

0 

Aqueous s c ior D. c. (1989) chemical Modeling 
Modeling of YSt ems, An overview. In ~emica~ 
and R.L. B Agµeous systems, II (eds- o.c. Melchior 
Chemical s~s~ett) Chap. 1, pp. 1-14. American 

B c1ety. 

auslaugh J (1984) "Re~adz~uk B., Saeed K., and Thomassen Y, 
specific uction,of Effects of structured Non-
and Selen~sorption in the oetermination of Arsenic 
Spectrome~um by Electrothermal Atomic Absorption 

Bies ry. Analytica Chimica Act:A, 165, 149-157, 

ecker J Appala~h~· and George J. R. (1966) stream Quality in 
USGS, Gei~ a~ Related to coal-Mine orainage, 1965-

Bi O ogical surv-eY circular Sti· 

(199of·• schwertmann u., car1son L· and Murand E, ghaxn J 
Iron FA poorly crystallized oxyhydroxysulfate of 
Mine wored by Bacterial oxidation of Fe(II) in Acid 
2743_

2

;

5

ers. Geochimica et cosmochimica Ac\;;!· 54, 

B 8. 
ladh a~d !i <~

98
2) The Formation of Goethite, Jarosite, 

Felsicunite During weathering of the sulfide-searing 
Bl Rocks. Economic Geolo!JY• 77, 116-184, 

Ro~kw. <
19

78) The weathering of sulfide-bearing adh K Ph.Os A~sociated with porphyry-type copper oeposits. 
Bo • dissertation, univ. of Arizona• 

urg Alain c . . . Comput • M. (1982) ADSORP, A Chemical ~qu1l1br

1

a 
in A er.Program Accounting for Adsorption processes 
Lett~atic systems. Envi onmental Technol

0 

B rs, 3, Jos-J10. 

G. W. Ku k'' E F 

x., Robin M0 B., 
(1968) The 
ferritin• rady Saltm ' r J1an c. R., Lyden • • 

Struc~n P., Spiro T. and TerziS A· 
filQch u:e of An Iron core Analog of 

emistry. 7,(6), 2185-2192· 

287 



Brady K • S B' (1 •, 1gham J c 986) Influence· M., Jaynes w. F. and Lagan T J 
om~arisons wi of sulfate on.Fe-oxide Formation; 

Drainage. Clayth a stream ~eceiving Acid Mine 
Brown J sand Clay Minerals, 34,(3), 266-274, 

p . B. (1970) A M~tassium-Hydr ~hemical study of some synthetic 
ineralogi t onium Jarosites. ~nadian 

Bro s · lO, 696-703. 

wn p L (19asi'T~~l~a R. N., Batley G. E., and Ellis J, 
Alumini ydrolysis of Metal Ions. part 8: 
Dalton ~;(III)· ,Journal of the Chemical societ 

Br ansactions. 1967-1970-

ucleatio Factors That Effect the Kinetics of Yson A N " W. (1986) 
Precipita~ and Growth and the pUritY of Goethite 
Iron contre~ ~reduced From sulphate solutions. In 
a~d A. J ~ in ~ydrometallurqy (eds- J. E- outrizac 
Wiley. • onhemius), Chap. 18, PP· 377-389· John 

Syste~;9aa) Complexation Reactions in Aguati~ Buffle J 
B · John Wiley & sons 

Uffle J • of th:
nd 

Nembrini G. (1977) study of the Mechanism 
Iron(II~~ectrochemical Reduction of Hydrolysed 
Colloid Species, in connection with Their 
i;)lemistal Properties. Journal of Ele t oanal ical 

Cha ry. 7 6, 101-119• 
Transrna

rd 
M. (1982) Numerical simulation of the Pman Be React~ort ~nd speciation of Nonconserirative chemical 

155_

16

~ts in Rivers. j!gter Resources Researcil, 18,1, 

C • 
Proc~s:· • Jones D. R., and Jun9 R. F· (1~83). hapman B 
Mine De~ Controlling Metal Ion Attenuation in 
47, 

19

~;inage streams. Geochimica osmoch'mic 

Ci -1973. 

avatta 
the 

~- and Grimaldi M. (1975) on the HydrO~ysis of 
ron(III) Ion Fe'' In perchlorate Media. 
a of I r ' . c N~C ear cheroist • 37' 163-169 · 

0 

Co\tlard -c~~m~· and Horton J. w. c198o) static coal stora e-
60/J-~~~~ Effects on the A atic Environroent. USEPA 

Da , 83A. 
Vls A Ge~~~ea~d Ashenberg oaniel (1989) The Aqueous U.s A mistry of the aerkeleY pit, autte, Montana, 

· • Applied GeochemistrY• vol 4, PP· 
23

-

36

· 

2sa 



Davis E. c. and Boegly w. J., Jr. (1981a) Coal Pile 
Leachate Quality. Journal of the Environmental 
Engineering Division. Proceedings of the American 
Society of Civil Engineers. ASCE. 107,(EE2), April 
399-417. ' 

Davis E. c. and Boegly w. J., Jr. (1981b) A Review of 
Water Quality Issues Associated with Coal storage. 
Journal of Environ. Qual. 10,(2), 127-132. 

Davis E. c. and Boegly w. J., Jr. (1978) A Review of the 
Literature on Leachates From Coal Storage Piles. Oak 
Ridge National Laboratory. 

Davis A. and Runnells D. D. (1987) Geochemical 
Interactions Between Acidic Tailings Fluid and 
Bedrock: Use of the Computer Model MINTEQ. Applied 
Geochemistry. 2, 231-241. 

Dousma J.and de Bruyn P. L. (1979) Hydrolysis­
Precipitation studies of Iron Solutions--III. 
Application of Growth Models to the Formation of 
Colloidal aFeOOH from Acid Solutions. Journal of 
Colloid and Interface Science. 72,(2), 314-320. 

Dousma J.and de Bruyn P. L. (1978) Hydrolysis­
Precipitation studies of Iron Solutions--!!. Aging 
Studies and the Model for Precipitation from Fe(III) 
Nitrate Solutions. Journal of Colloid and Interface 
Science. 64,(1), 154-171. 

Dousma J.and de Bruyn P. L. (1976) Hydrolysis­
Precipitation Studies of Iron Solutions--!. Model 
for Hydrolysis and Precipitation From Fe(III) 
Nitrate Solutions. Journal Colloid Interface 
Science. 56, 527. 

Dousma J., den ottelander D. and de Bruyn P. L. (1979) 
The Influence of Sulfate Ions on the Formation of 
Iron(III) Oxides. Journal of Inorganic and Nuclear 
Chemistry. 41, 1565-1568. 

Drever J. I. (1982) The Geochemistry of Natural Waters. 
Prentice Hall. 

Driscoll c. T., Baker J. P., Bisogni J. J., and Schofield 
c. L. (1984) Aluminum Speciation and Equilibria in 
Dilute Acidic Surface Waters of the Adirondack 
Region of New York State. In Geological Aspects of 
Acid Deposition (ed. Owen P. Bricker) Acid 
Precipitation Series, Vol. 7, Chap. 4, pp. 55-75. 
Ann Arbor Science. 

289 



Dzombak D. A. and Morel F. M. M. (1990) Surface 
Complexation Modeling. Hydrous Ferric Oxide. Wiley. 

Erickson P. M., Ladwig K. J., and Kleinmann R. L. P. 
(1984) Acid Mine Drainage From Inactive Eastern coal 
Operations. Symposium on the Reclamation of Lands 
Disturbed by surface Mining (ed. w. T. Plass), 
American Society for Surface Mining and Reclamation. 

Felmy A. R., Girvin D. c., and Jenne E. A. (1983) 
MINTEO--A Computer Program for Calculating Aqueous 
Geochemical Equilibria. Final Project Report. EPA 
Contract 68-03-3089. U.S. Environmental Protection 
Agency. 

Fendinger N. J., Radway J. c., Tuttle J. H. and Means, J. 
c. (1989) Characterization of Organic Material 
Leached From coal by Simulated Rainfall. Environ. 
Sci. Technol. 23,(2), 170-177. 

Fernandez F. J. and Giddings R., (1982) Elimination of 
Spectral Interferences Using Zeeman Effect 
Background Correction. Atomic Spectroscopy, 3,(3), 
61-65. 

Filipek L. H., Nordstrom D. K. and Ficklin w. H. (1987) 
Interaction of Acid Mine Drainage with Waters and 
Sediments of west Squaw Creek in the West Shasta 
Mining District, California. Environmental Science 
and Technology. April, 388-396. 

Florence T. M. and Batley G. E. (1980) Chemical 
Speciation in Natural Waters. In Critical Reviews in 
Analytical Chemistry. 9, 219-296. Chemical Rubber 
Co, Cleveland. 

Flynn c. M., Jr. (1984) Hydrolysis of Inorganic Iron(III) 
Salts. Chem. Rev. 84, 31-41. 

Forstner u. and Wittmann G. T. w. (1979) Metal Pollution 
in the Aquatic Environment. Springer-Verlag. 

Frimmel F. H. and Geywitz J. (1987) Direct Polarographic 
Recording of Metal Elimination From Aquatic Samples 
by Coprecipitation with Ferric Hydroxide. The 
Science of the Total Environment. 60, 57-65. 

Garrels R. M. and Christ c. L. (1965) Solution, Minerals, 
and Equilibria. Harper & Row, N.Y. 

290 



Garrels~- M. and Thompson M. E. (1960) oxidation of 
Pyrite by Iron Sulfate Solutions. American Journal 
of Science, Bradley Volume, 258A, 57-67. 

Gluskoter H. J., Ruch R. R., Miller w. G., Cahill R. A., 
Dreher G. B. and Kuhn J. K. (1977) Trace Elements in 
Coal: Occurrence and Distribution. Illinois state 
Geological survey (Circular 499). 

Goldhaber M. B. (1983) Experimental study of Metastable 
Sulfur Oxyanion Formation During Pyrite oxidation at 
pH 6-9 and 30°c. American Journal of science. 283, 

March, 193-217. 

Gottschlich D. E., Greenfield P. F. and Bell P .. R. F. 
(1987) Treatment Requirements for Acid Drainage From 
Coal Storage Heaps. Journal of Environmental 
Engineering. 113,(2), April, 260-277. 

Griffin R. A., Schuller R. M., suloway J. J., Sh~~~m~~al 
F., Childers W. F. and Shiley R.H. (

198
0) F 

and Biolo ical Characterization of Leach~ter S~~ey 
Coal Solid wastes. Illinois state Geologica 

Division. 
) Effects of Power 

Hall L. w., Jr. and Burton D. T. (1982 ff and Leachate 
Plant Coal Pile and coal waste Runo h , with Researc 
on Aquatic Biota: An overview. ·n Toxicolo 
Recommendations. c itical Reviews i 
10, (4) 287-301. 

h mical Analysis, 
Harris Daniel c. (1991) .Q!lantitative Ce y 

3rd Edition. w. H. Freeman & co., N. · 
. p wangen L. 

Heaton R. c., Williams J.M., Bertinow~~ek·P. L. and 
E., Nyitray A. M., Jones M. M.,viors of Hi h-Sulfur 
Wagner P. (1982) Leachin Be~an coal pre aration 
Coal Wastes From TWO A a1achia N DE82 0194

88
)· 

Plants. Report LA-9356-MS (Order o. N J and 
Fendinger · · 

Helz G. R., Dai J. H., Kijak p. J., controlling the 
Radway, J. c. (1987) Processe~1utions Evolved From 
Composition of Acid sulfate 

5 
421-436. 

Coal. Applied Geochemistt:Y, 21 PP· . ·num }{ydrolysis 
Hem J (1989) Alurni , Aqueous 

· D. and Roberson C • E · . ildlY Acidic stems II. 
Reactions and Products in~ of A eous S 
Systems. In chemical ModelinL. Basset), AC~_44 6. 
(eds. D. C. Melchior a nd RchaP• 33, PP· 

42 

Symposium series No. 41 6 · 
American Chemical society 

291 



Henn E M. L., (1977) 

I

atrix Interfeuse of Molybdenum in eliminating 
n F rences in Fl 1 · AS ameless At . ame ess Atomic Absorption 

TM STP 618 omic Absor t'on Anal sis: An u date. 
and Material~-pp 54-64, American society for Testing 

Henn E I. L. I (1975) 0 t . . Andustrial Effle erm1nation of Selenium in water and 
nalytical Ch ~ents by Flameless Atomic Absorption. 

Hoffm emiSt ry, 47,(3), 428-432, 

Tsuchiy!'H FauSt B. c., Panda F, A,, Koo H. H, and ann M 
Iron Pyrit. ~- (1981) Kinetics of the Removal of 
--~·ed a~ Ero~ Coal by Microbial catalysis. 

Hon nvironmenta Microbiolo • 

g-Xiao T B • and st ehaviors umm W. (1987) The coagulating 
Resear£h ~f Fe(III) Polymeric species--!. !!llte_i: 

Jay · l, ( 1) , 115-12 i. 

nes D • B p' M~ne D~~i ionke H.B. and Rogowski A, s. (1984) Acid 
S1mulati nage From Reclaimed coal strip Mines, 2. 
Research on Results of Model, water Resourc<U! 

Jenk ' 20 ,(2), 243-250, -
Chemi~~

1

Pagenkopf G. K,, and oiebold F, E, (1983) e D. R 
bearing Wchanges in concentrated, Acidic, Metal­

v· on aSt ewaters when treated with Lime, 
Jen mental Science and Technolo • 17,4, 217-223, 

ne E. A Eleme~tan~ Luoma s. N. (1977) Forms of Trace An ov s. in soils, sediments and Associated waters: 
erv1 ' · ' 1 Availab' !w of Their oetermination and siologica, 

the E ~lity. Biolo ical Im lications of Metals in 
~YIIIPo~~ironment 15th Annual Hanford Life sciences 

J ium. 110-124. 

Ohns on c Chemic A. and Thornton I, (1987) aydro1ogica~ and 
Fe, cual Factors controlling the concentrat~ons of 
Acid Mi Zn, and As in a River system contaminated by 

ICara ine Drainage. ~at. Re:;.,. 21,(3), 359-365· 

(198B) A. ~-, EvangeloU v. p. and T~omps~n Y, L, thanasis 
Solut· Aluminum and rron Equilibria in soil 
Water!~ns and surface waters of Acid Mine. 
534_

43

.eds. Journal of Environmental ualit • 

17

(

4

), 

l<ashk ~~t;· '.'·, Borovskaya y. a. and sabazade M,. A, (

1975

> 
its rm1nation of Go of synthetic Jarosit! and Sul f t f298 . International. 
12, ( a e Analogues. gGgegogchhgem!!l!J1S[t!;.lr~J.!.!.!::-S~~:.:=,;:a,=----

3), 115-121. 

292 



I<hoe G . H. and Rob' Reactions in ins R. G. (1989) Polymerization 

0

t Colloid an~y~rolyzed Iro~(III) Solutions. Journal 
!Choe G nterface science. 133,(1), 244-

252 
. 

. H. and Rob' ~ron (III) w·~~s R. G. (1988) The complexation of 
in Sodium N"~ Sulphate, Phosphate, or Arsenate Ion 
.Qal ton Tra i rate Medium at 25'C. iI, chem· soc. 

kin . ns., PP· 2015-2021. 
and pHDD G. and Jackson M. L. (1982) concentration n1.burgh 
Iron H dependence of calcium and zinc Adsorption by 
56-Gl.y rous Oxide Gel. soil sci• soc. llll!· J~ 46, 

Kinnib urgh D Adsorpti.o G., Jackson M. L., and syers J. K. (1976) 
Metal cat~ of Alkaline Earth, Transition, and Heavy 
Aluminum ion~ by ~ydrous oxide Gels of Iron and 

klei • soil sci. soc. Am• J... 40, 796-799. 

ferroo~·~· P. and crerar o. A. (1979) ThiobacillUS nmann R 
Simulati ans and the Formation of Acidity in 
Journaled coal Mine Environments. ~omicrobiolo!!Y 

kle' 0 l,(4), 373-388. 
(198l) • ~- P., crerar o. A. and pacellil R· R· inmann R Method Biogeochemistr}' of Acid Mine Drainage and a 
Engine t~ Control Acid Formation- !!J.nil!S 

kr ering. March, 300-J05· 

Stabif~d.Ettel V. A. (1987) solubilities and 
and prit7es of Ferric Arsenates. In msta11tzati

0

Jl 
ause E 

klein ecipitation. (eds- G. L• stratbdee, M· o. 
Inter~ a~d L.A. Melis) proceedings of the 
Canad ational symposium, saskatoon, saskatche~an, 

kuh a, 5-1 Oct. 1987. pp. 195-210. 

n J K a~d S, . Fiene F. L., cahill R· A·, Gluskoter ff. J: 
Elem himp, N. F. (1980) Abundance of Trace and Minor 
Illien~s in Or anic and Mineral Fractions of coal. 
Geo1no7s Institute of Natural Resources, state 

ku ogical survey oivision, Urbana• 
znetsov (1962) 

The ~- I., Ivanov M. v. and Lyalikova ~- N• 
IntrBiogenic oxidation of sulfide oepositS• In 
Int eduction to Geolo ical Microbiolo. ' Ch 

8, ernational series in the Earth sciences ap. 
pp. l24-164. McGraw-Hill, 19

63
· 



Langmuir Donald L. and Whittemore Donald o. (1971) 
Variations in the Stability of Precipitated Ferric 
Oxyhydroxides. Noneguilibrium Systems in Natural 
Water Chemistry. (Advances in Chemistry Series, No. 
106), American Chemical Society. pp. 209-234. 

Lazaroff N., Sigal w. and Wasserman A. (1982) Iron 
Oxidation and Precipitation of Ferric 
Hydroxysulfates by Resting Thiobacillus ferrooxidans 
Cells. Applied Environmental Microbiology. 43, 924-
938. 

Leckie J. o. and Davis (III) J. A. (1979) Aqueous 
Environmental Chemistry of Copper. In Copper in the 
Environment. Part I. (ed. Jerome o. Nriagu) Chap. 5, 
pp. 89-121. John Wiley and Sons, Inc. 

Liddell K. c. and Bautista R. G. (1983) A Partial 
Equilibrium Model to Characterize the Precipitation 
of Ferric Ion During the Leaching of Chalcopyrite 
with Ferric Sulfate. Metallurgical Transactions B. 
14B, 5-15. 

Liddell K. c. and Bautista R. G. (1981) A Partial 
Equilibrium Chemical Model for the Dump Leaching of 
Chalcopyrite. Metallurgical Transactions B. 12B, 
627-637. 

Lindsay w. L. (1979) Chemical Equilibria In Soils. John 
Wiley & Sons. 

Lowson, R. T. (1982) Aqueous oxidation of Pyrite by 
Molecular oxygen. Chemical Reviews 82,(5), 461-497. 

Mance G. (1987) Pollution Threat of Heavy Metals in 
Aquatic Environments. Elsevier Applied Science. 

Mattigod s. v. and Sposito G. (1979) Chemical Modeling of 
Trace Metal Equilibria in Contaminated Soil 
Solutions using the Computer Program GEOCHEM. In 
Chemical Modeling in Aqueous Systems (ed. E. A. 
Jenne) Chap. 37, 837-856. American Chemical Society. 

May H. M., Helmke P.A., and Jackson M. L. (1979) 
Gibbsite solubility and Thermodynamic Properties of 
Hydroxy-aluminum Ions in Aqueous Solution at 25°C. 
Geochim. et cosmochim. Acta 43, 861-868. 

McAndrew R. T., Wong s. s. and Brown W.R. (1975) 
Precipitation of Iron Compounds from Sulphuric Acid 
Leach Solutions. Hydrometallurgy, (CIM Bulletin). 
January, 1975, pp. 101-110. 

294 



McDuff R. E. and Morel F. M. M. (1973) Description and 
Use of the Chemical Equilibrium Program REDEQL2. 
Kee~ Laboratory Technical Report E0-73-02. 
California Institute of Technology, Pasadena, CA. 
(Cited in Nordstrom et al, 1979b). 

Means J • c., Tuttle J. H. Helz G. R., Radway J. c., and 
Fendinger N. J. (1987) chemical and Microbiological 
Factors Influencing the Leaching of Trace Metals and 
Trace Organics From coal. Report to: Power Plant 
Research Program, Maryland Department of Natural 
Resources, Annapolis, Maryland. 

Myerson A. s. (1981) oxygen Mass Transfer Requ~rements 
During the Growth of Thiobacillus ferrooxidans on 
Iron Pyrite. Biotech. Bioeng. 23,(6), 

1413
-

1416
· 

Naumov G. B., Ryzhenko B. N. and KhodakovskYD:74~0oif974) 
Handbook of Thermodynamic Data (USGS-WR . , , n 
U.S. Geological survey, water Resources oivisio' 

Menlo Park, CA. 
. J A and Reardon 

Nicholson R. v., Gillham R. W., c~errY · at.ion in Mine 
E •. J. (1989) Reduction of Acid.Gener-Retaining cover 
Tailings Through the Use of MoiSt urte h J 26. 
La 

. c@n~~G~e~o~e~c~-~-~· 
yers as oxygen Barriers.~· 

. oxidation and 
Nordstrom o. K. c1982a) Aqueous pyrite rron Minerals. 

the Consequent Formatio~ of seco
nd

:~~saer, Ket~rick, 
In Acid Sulfate weathering, (eds. 1982 soil science 
and Faming), Chap. 3, PP· 37-

56
• 

Society of America. S lfate on Aluminum 
Nordstrom o. K. c1982b) The Effect 

0
;. ~ome stability 

Concentrations in Natural water so -Ho at 29sK. 
Relations in the system Alz03 - 3

4 6 
2 

681-692 · , · Acta. ' 
Geochimica et. cosmochimica ~ . 1 The Geochemica 

Nordstrom D. K. and Ball J. w. ~li:!~d surface waters. 
Behavior of Aluminum in Acid 
Science. 232, 54-56. 1979) RedOX 

Ball J. w. ( ~ 
Nordstrom o K Jenne E. A. a nd . T,,aters · In ti' on . . · · , . · d Mine " . · sor Equilibria of Iron in Aci s eciation S rieS 93) 

Madelin in A eous S stems. symposium e·cal 
Solubility. · and Kinetic-3 (ACS .Anlerican chemi 
(ed. E. A. Jenne) PP· 51-

79
· 

Society. 



Nordstrom D. K., Plummer L. N., Langmuir D., Busenberg 
E., May H. M., Jones B. F. and Parkhurst, D. L. 
(1989) Revised Chemical Equilibrium Data for Major 
Water-Mineral Reactions and Their Limitations. In 
Chemical Modeling of Aqueous systems, II (eds. 
Melc1:1ior and Bassett), Chap. 31, pp. 398-413. 
American Chemical Society. 

Nordstrom o. K., Plummer L. N., wigleyT. M. L., Wolery 
T. J., Ball J. w., Jenne E. A., Bassett R. L., 
Crerar o. A., Florence T. M., Fritz B., Hoffman M., 
Holdren G. R. Jr., LaFon G. M., Mattigod ~ · V ·, 
McDuff R. E., Morel F., Reddy M. M., Sposito G:, a

nd 

Thrailkill J. (1979b} A comparison of Co~pute:ized 
Chemical Models for Equilibrium Calculations in · · Aaueous 
Aqueous Systems. In Chemical Modeling in 
Systems (ed. E. A. Jenne). Chap. 38, PP· 

857
-

892
· 

American Chemical society. 

Nriagu J. o. (1980) cadmium in the Environment Part I. 
Wiley. 

Journal of 
Olem H., (1982) coal and Coal Mine oraitm~g~- 54 , (6), 717-

the Water Pollution control Federa 
10 

• 

723. 
. P F Toben w. 

Paciorek K. J. L., Kratzer R.H., Ki:inb;:datio~'of Massive 
A. and Vatasescu A. L. (198l) oeg terial Effects. 
Pyrite: Physical, chemical, and ~:~_375. 
Geomicrobiology Journal. 2,( 4 ), 

M dels and Mean 
· tion ° · 1 Parkhurst, o. L. c1989) Ion-Assoc~a salts. In gpemici'L 

Activity Coefficients of vario~s(eds. Melchi~r a
nd 

Modeling of Aqueous systems, I_ erican chemical 
Bassett), Chap. 3, PP· 30-43 . .Alll 
Society. 

d p1ununer L. N. ·cal 
Parkhurst D. L. Thorstenson o. c. a~ ram for Geochemi 

(1980) PHREE E - A com uter.Prl surveY (Water-
Calculations. u. s .. Geolog:~:). 
Resources Investigations so 1 J o. 

. ter w. o., oearaa . 
Perkins E. H., Kharaka Y. K.,. Gun of water-R0 7~-l Mo~ 

(1989) Geochemical Modeling 88 . In~ R. 
~nteractions using soLMINEO· 0 • c. Mel~hi~rc~emical 
in Aqueous systems, 1I (eds7_127 . America 
L. Bassett) Chap. 9, PP· 11 

Society 1 · t'ca (1981) ~Freeman & 
Phillips w. R. and Griffen o. TM. eralS· w. a. 

Mineralogy. The Nonopague~ 
Co. 

296 



Pierce M. L. and Moore c. B. (1982) Adsorption of 
Arsenite and Arsenate on Amorphous Iron Hydroxide. 
Water Res. 16, 1247-1253. 

Plummer L.N. and Tisaranni J. V. (1990) Personal 
Communication (Disc Documentation that Accompanied 
Summer 1 90 Version of PHREEQE). U.S. Geological 
Survey. National Center. Reston Virginia. 

Plummer L. N., Jones B. F. and Truesdell A.H. (1984) 
WATEQF - A FORTRAN IV Version of WATEQ. A Computer 
Program for Calculating Chemical Eguilibrim of 
Natural Waters. (Report WRI-76-13, 1984 revision) 
U.S. Geological Survey, Water Resources Division, 
Reston, VA. 

Rai Dhanpat, Sass Bruce M. and Moore Dean A. (1987) 
Chromium (III) Hydrolysis Constants and Solubility 
of Chromium (III) Hydroxide. Inorganic Chemistry, 
23,3, 345-349. 

Reardon E. J. and Beckie R. D. (1987) Modeling Chemical 
Equilibria of Acid Mine-drainage: The FeS04-H2S04-H20 
System. Geochimica et Cosmochimica Acta. 51 2355-
2368. 

Rengasamy P. and Oades J.M. (1977) Interaction of 
Monomeric and Polymeric Species of Metal Ions with 
Clay Surfaces. I. Adsorption of Iron(III) Species. 
Australian Journal of Soil Research.15, 221-233. 

Riley K. w., (1982) Spectral Interference by Aluminum in 
the Determination of Arsenic Using the Graphite 
Furnace: Choice of Resonance Lines. Atomic 
Spectroscopy. 3,(4), 120-121. 

Sass B. M. and Rai D. (1987) Solubility of Amorphous 
Chromium(III)--Iron(III) Hydroxide Solid Solutions. 
Inorganic Chemistry. 26, 2228-2232. 

Schneider w. (1984) Hydrolysis of Iron(III)--Chaotic 
Olation Versus Nucleation. Comments Inorganic 
Chemistry. 3,(4), 205-223. 

Schneider w. and Schwyn B. (1987) The Hydrolysis of Iron 
in Synthetic, Biological, and Aquatic Media. In 
Aquatic Surface Chemistry (ed. W. Stumm), Chap. 7, 
pp. 167-197. 

297 



Schubert J. P. and Prodan P. F. (1981) Groundwater 
Pollution Resulting From Disposal of Pyritic coal 
Wastes. In quality of groundwater (Studies in 
Environmental Science, No. 17) (eds. w. von 
Duijvenbooden,.P. Glasbergen, H. von Lelyveld), 
Chap. 1. Elsevier. 

Schwertmann u. and Taylor R. M. (1977) Minerals in Soil 
Environments. Soil Sci. Soc. of Amer. 

Silverman M. P. (1967) Mechanism of Bacterial Pyrite 
Oxidation. Journal of Bacteriology, Oct 1967, 1046-
1051. 

Singer P. c. and Stumm W. (1970) Acid Mine Drainage: The 
Rate Determining Step. Science 167, 1121-1123. 

Slavin Walter (1984) Graphite Furnace AAS, A Source Book. 
Perkin-Elmer Corporation, Norwalk, CT. 

Smith R. M. and Martell A. E. (1989) Critical stability 
Constants. Vol. 6 (2nd Supplement). Plenum Press. 

Smith R. M. and Martell A. E. (1982) Critical Stability 
Constants. Vol. 5 (1st Supplement). Plenum Press. 

Smith R. M. and Martell A. E. (1976) Critical stability 
Constants. Vol. 4. Plenum Press. 

Spiro T. G., Allerton s. E., Renner J., Terzis A., Bils 
R. and Saltman P. (1966) The Hydrolytic 
Polymerization of Iron(III). Journal of American 
Chemical Society. 88,(12), 2721-2726. 

Stahl R. G., Jr. and Davis E. M. (1984) The Quality of 
Runoff from Model Coal Piles. American Society for 
Testing and Materials. 163-170. 

Stumm, W. and Morgan J. (1981) Aquatic Chemistry. 2nd 
Edition. Wiley. 

Stumm, W. and Singer P. c. (1970) Acid Mine Drainage: The 
rate Determining Step. Science. 167, 1121-1123. 

Sunda W. G. and Hanson P. J. (1979) Chemical Speciation 
of Copper in River Water, Effect of Total Copper, 
pH, Carbonate, and Dissolved Organic Matter. In 
Chemical Modeling in Aqueous Systems (ed. E. A. 
Jenne) Chap. 8. 

298 



Swift M. ~- (1982) Effects of coal Pile Runoff on Stream 
Quality and Macro Invertebrate Communities. Water 
Resources Research Center. 

Sylva R. N. and Davidson M. R. (1979) The Hydrolysis of 
Metal Ions, Part 1. Copper (II). J. Chem. Soc. 
Dalton Trans. 232-235. 

Sylva R. N. (1972) The Hydrolysis of Iron(III). Rev. Pure 
and Appl. Chem. 22, 115-132. 

Taylor B. E., Wheeler M. c., and Nordstrom D. K. (1984) 
Stable Isotope Geochemistry of Acid Mine ~rainage: 
Experimental oxidation of Pyrite. Geochimica et 
Cosmochimica Acta. 48, 2669-2678. 

Temple K. L. and Delchamps E. w. (195~) ~uto~rop~ic 
Bacteria and the Formation of Acid in Bituminous 
Coal Mines. Applied Microbiology:, 1, 255- 258 · 

Torrey s. (1978) Trace contaminants From coal. ~N~; corp. 
Pollution Technology Review No. 50) Noyes a 

T d (1973) WATEO, A computer 
rues ell A. H., and Jones B. F. . quilibria of 

Program for calculating Chemical E_ 
Natural Waters. NTIS PBZ-20464. 

. soectrometry in 
Tsalev D. L. (1984) Atomic Absorption lth Practice. Vol 

Occupational and Environ~e~tal H~~ements, pp. 167-
II: Determination of Individual t FL 

B ca Ra on, • 180. C.R.c. Press, Inc., 0 

A G (1981) The 
Turner D. R., Whitfield M. and o~cks~n,d components in 

Equilibrium speciation of 01.s:o :;d 1 atm pressure. 
Freshwater and seawater at 25tc 45 955-881 
Geochimica et cosmochimica Ac .A· ' 

. Agency (1976, 
United States Environmental Protec~i~nReport EPA-4 40/

9
-

July) Quality criteria for wa f;ction Agency, 
76-023, u.s. Environmental pro 
Washington, D.C. 989) Jlehavior of_ 

Valette-Silver N. J. and HelZ G. RDU~tn simulat~~ne 
Dissolved Al cu Be and crhates with Alka ~ 
Dilution of Acidic coal Leac r plant Researc 
Surface Waters. Maryland powe 
Program. 

299 



Vlek P. L. G., Blo~ T .. J. M., Beek J. and Lindsay w. L. 
(19?4) Determinatio~ of the Solubility Product of 
Variou~ Iron Hydroxides and Jarosite by the 
Chelati~n Method. Soil Science Society of America 
Proceedings. 38, 429-432. ' 

Wachter R. A. and Blackwood T. R. (1978) source 
Assessment: Wat7r Pollutants From Coal storage 
Areas. U.S. Environmental Protection Agency. Report 
No. EPA-600/2-78-004M. 

Wagman D. D., Eva~s W. H., Parker V. B., Schumm R.H., 
Halow I., Baileys. M., Churney K. L. and Nuttall R. 
L. (198~) The NBS Tables of.Chemical Thermodynamic 
Properties. Journal of Physical and Chemical 
Reference Data, 11, (2). 

Wangen L. E. and Jones M. M. (1984) The Attenuation of 
Chemical Elements in Acidic Leachates from Coal 
Mineral Wastes by Soils. Environ. Geol. Water Sci., 
6, (3), 161-170. 

Welz B. and Schlemmer G., (1986) Determination of 
Arsenic, Selenium and Cadmium in Marine Biological 
Tissue Samples Using a Stabilised Temperature 
Platform Furnace and Comparing Deuterium Arc with 
Zeeman-effect Background Correction Atomic 
Absorption Spectrometry. Journal of Analytical 
Atomic Spectrometry. 1, 119-124. 

Westall J. c., Zachary J. L., and Morel F. M. M. (1976) 
MINEQL, A Computer Program for the Calculation of 
Chemical Equilibrium Composition of Aqueous Systems. 
Technical Note 18, Department of civil Engineering, 
Massachusetts Institute of Technology, Cambridge, 
MA. (Cited in Nordstrom et al, 1979b). 

Wewerka E. M., Williams J.M. and Wagner P. (1982) The 
Use Of Multimedia Environmental Goals to Evaluate 
Potentially Hazardous Trace Elements in the Drainage 
From High Sulfur Coal Preparation Wastes. Report No. 
LA-9189-MS, NTIS No. DE82 014115. 

Wolery T. J, Jackson K. J., Bourcier W. L., Bruton C. J., 
Viani B. E., Knauss K. G., and Delany J.M. (1989) 
current Status of the EQJ/6 Software Package for 
Geochemical Modeling. In Chemical Modeling in 
Aqueous Systems, II (eds. o. c. Melchior and R. L. 
Bassett) Chap. 8, pp. 104-116. American Chemical 
society. 

300 



Woods T 
at· L. and Garrels R. M. (1987) Thermo~ynamic ya1ues 
A Low ~e~perature For Natural Inorgan1c Materials: 
_n Uncritical Summary. oxford University Press. 

Zachara J 
T • M., Girvin D. c., Schmidt R. L. and Resch C. 
0 • (l9a7) Chromate Adsorption on Amorphous Iron 
1 X}'hydroxide in the Presence of Major Groundwater 
ens. Environ. Sci. Technol. 21, 589-594. 

Zirino A 
, and Yamamoto s. (1972) A pH-Dependent Model for the Chemical Speciation of Copper, Zinc, Cadmium, 

and Lead in Seawater. Lirnnology and Oceanography. 17 ,s, 661-671. 

Zotov A ) 
• V., Mironova G. o. and Rusinov V. L. (;973 

Determination of the Gibbs Free Energy G,29s of 
Jarosite Synthesized From a Natural Solution. 
Q.eokhimiya. (5), 739-745. 

301 


	1163051
	part2



