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ABSTRACT

Title of Dissertation: CONTINUOUSLY GRADED EXTRUDED POLYMER 
COMPOSITES FOR ENERGETIC APPLICATIONS 
FABRICATED USING TWIN-SCREW EXTRUSION 
PROCESSING TECHNOLOGY

Frederick Mitchell Gallant, Doctor of Philosophy, 2003

Dissertation Directed by: Professor Hugh A. Bruck
Department of Mechanical Engineering

A novel method of fabricating functionally graded extruded composite materials is 

proposed for propellant applications using the technology of continuous processing with 

a Twin-Screw Extruder. The method is applied to the manufacturing of grains for solid 

rocket motors in an end-burning configuration with an axial gradient in ammonium 

perchlorate volume fraction and relative coarse/fine particle size distributions. The 

fabrication of functionally graded extruded polymer composites with either inert or 

energetic ingredients has yet to be investigated. The lack of knowledge concerning the 

processing of these novel materials has necessitated that a number of research issues be 

addressed. Of primary concern is characterizing and modeling the relationship between 

the extruder screw geometry, transient processing conditions, and the gradient 

architecture that evolves in the extruder. Recent interpretations of the Residence Time 

Distributions (RTDs) and Residence Volume Distributions (RVDs) for polymer 

composites in the TSE are used to develop new process models for predicting gradient 

architectures in the direction of extrusion.  An approach is developed for characterizing 
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the sections of the extrudate using optical, mechanical, and compositional analysis to 

determine the gradient architectures. The effects of processing on the burning rate 

properties of extruded energetic polymer composites are characterized for homogeneous 

formulations over a range of compositions to determine realistic gradient architectures 

for solid rocket motor applications. The new process models and burning rate properties 

that have been characterized in this research effort will be the basis for an inverse 

design procedure that is capable of determining gradient architectures for grains in solid 

rocket motors that possess tailored burning rate distributions that conform to user-

defined performance specifications. 
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1.0 Introduction
For a variety of applications, it desirable to determine material distributions 

meeting functional requirements that can vary spatially within a structure. One way to 

address this has been to join together different materials using techniques such as 

adhesion, diffusion bonding, and welding. This unfortunately gives rise to undesirably 

high stress concentrations at a weak interface when the structure that is susceptible to 

premature catastrophic failure during normal operating conditions. Another problem 

encountered is the concentration-directed migration of mobile ingredients during the 

operational life of the component that can alter the properties of the base materials to 

levels that are below those used during the design process. Attempts at controlling these 

issues have led to the concept of Functionally Graded Materials (FGMs), which are 

defined as materials that possess gradual variations in composition and/or 

microstructure (Suresh and Mortensen 1998).This thesis explores the application of 

functionally grading extruded polymer composites for propellant applications by 

varying the burning rate within the grain of a solid rocket motor.

FGMs represent one of the latest revolutions in materials science. They are being 

considered for employment in a wide variety of applications where conventional 

homogeneous composites are compromised against competing physical or chemical 

requirements. FGMS are microscopically inhomogeneous composites by design, in which 

the mechanical and other physical properties of the material are continuously or 

discretely graded from one surface to another. This is typically achieved in a single 

direction within a component by a continuously or gradually changing the composition 

of the materials. An often-cited examples are cutting tools and thermal barrier coating 

that possess gradients transitioning from a 100 percent ceramic surface to a 100 percent 

metallic interior to improve the wear or thermal resistance while maintaining the 

fracture toughness of the component [Suresh and Mortenson, 1998] To adequately 

design, study, and optimize FGMS, materials scientists must be able to understand the 

gradient architectures that can be created in manufacturing processes, as well as the 
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response of the gradient architecture to external stimuli, such as mechanical loadings 

and thermal shocks. Modern and future applications for these novel materials that are 

already under consideration include corrosion and radiation-resistant pipes for chemical 

plants and nuclear reactors, and thermally-resistant superstructures for transatmospheric 

vehicles.

The FGM concept requires the development of new material descriptions that can 

convey the variations in composition, microstructure, or their associated properties to a 

designer (Markworth et al, 1995) This description is known as the gradient 

architecture, Figure 1-1. Typical architectural parameters include layer thickness, t, and 

composition gradient, p. In designing FGMs, it will be desirable to determine the 

architectural parameters that optimize system performance for a component by 

modeling the relationship between the processing of a FGM, the gradient architectures 

that develop, their related properties, and the corresponding performance of the 

component. 

Figure 1-1. Illustration of Property Variation with Location and Microstructure (Reddy 
1997).

1.1 FGM Concepts for Next Generation of Energetic Systems 
FGMs are currently being applied to a variety of structural and nonstructural 

applications in non-military applications [Niino and Maeda, 1990; Suresh and 

Mortenson, 1998]. Recently, FGM concepts have become of interest to the military to 
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improve the performance of energetic systems such as propellants, by replacing 

geometrically complex features of the energetic portion of a gun or rocket motor, 

known as a grain, with simpler geometries that improve reliability while meeting the 

desired performance requirements,. In the case of a solid rocket propellant, the energetic 

portion is referred to also as a grain, it is hypothesized that the volume fraction of 30 

and 200-micron ammonium perchlorate (AP) particles, VAP, can be varied along the 

length of the grain to produce a corresponding variation in burning rate properties. It is 

important to realize that the burning rate is related not only to the volume fraction of AP

particles, but the particle size distribution as well. Both of these parameters, among 

others, are available to the motor designer/propellant formulator.

One of the technical challenges to develop functionally graded propellants is the 

lack of a design methodology and manufacturing technology for processing 

continuously graded architectures in polymer composites. Attempts at been made to 

disperse microballoons in epoxy and urethane using a gravity casting technique to 

create continuous gradients over volume fraction ranges of 0 to 0.45 (El-Hadek and 

Tippur, 2002; Butcher et al, 1998). Therefore, it is necessary to develop a novel 

continuous processing technology for FGMs using an inverse design procedure that can 

be applied to propellants. A novel continuous processing technology that has shown a 

great deal of promise for solid rocket propellants is known as twin-screw extrusion 

(TSE) (Muscato, Michienzi et al. 1999). TSE processing can be applied not only to the 

fabrication of continuously graded solid rocket propellants, but to the fabrication of 

continuously graded extruded polymer composites for non-energetic applications as 

well. 

1.1.1 The Inverse Design Procedure
For solid rocket propellants, it will be desirable to tailor the burning rate perform-

ance in a monolithic rocket motor utilizing new knowledge of the TSE process based on 

the gradient architectures that can be achieved by operating the extruder in a transient 

state. Because the conventional design of rocket motors utilizes homogeneous and not 

graded materials, the current focus of designers is on determining complex geometries 

that conform to the desired burn rate performance instead of varying the burn rate 

properties through the gradient architecture of the grain. The focus on gradient 
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architectures instead of complex geometries necessitates a new approach to designing 

energetic systems using continuously graded extruded polymer composites. The 

Japanese have proposed such an approach, and it has been termed the "Inverse Design 

Procedure” (IDP) [Niino and Maeda, 1990]. Thus, it is necessary to develop an IDP 

that will ultimately serve as a tool for the designers and manufacturers of solid rocket 

motors. Using the IDP, an entirely new methodology for designing energetic systems 

will be available for advanced energetics concepts, where the in-flight performance of a 

rocket motor (simply that part of a rocket consisting of the propellant grain, its case, and 

a nozzle) can be specified without having the constraint of geometrically complex 

designs that can not produce the desired performance either because of manufacturing 

or material limitations. Employing the IDP, the gradient architecture that achieves the 

specified performance can be easily predicted with or without geometric constraints, as 

well as the operating conditions that are necessary to create it using a given 

manufacturing process.

In the IDP, the specified performance is defined through an objective function, and 

the inverse problem is solved using mathematical optimization techniques to obtain the 

system parameters that satisfy the objective function. To design for manufacturing a 

component using the inverse design process, the designer must specify the choice of the 

objective function. Materials are then selected from a database of available materials 

that can potentially satisfy the requirements for a given application. These are then used 

to get the optimal material distribution that satisfies the target requirements. This is 

done for different selections of materials and the best design is picked from among 

these. The complexity and capability of the manufacturing process also influences the 

decision on the selection of the best design. In the case when the material selected is a 

FGM, the problem gets more complicated since there are an infinite number of gradient 

architectures that must be considered for every material combination. . 

These complications are simplified by choosing a single material combination and 

assuming that an optimal gradient architecture exists along one direction of the 

component. Determining the optimal gradient architecture for a given set of 

specifications require the use of optimization methods to solve for the gradient. Various 

optimization techniques are available to arrive at the solution that achieves the best 
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value for the defined objective. Given the inherent complexity in the architecture of 

FGMs, the Genetic Algorithm optimization method has been demonstrated to be a 

robust and efficient technique for determining the optimal gradient architecture 

[Surendranath et al, 2002] 

The inverse design procedure can be summarized as follows in Figure 1-2: 

1. Define the required target performance or the system objectives

2. Select the material components for the gradient architecture

3. Determine the gradient architectures that evolve in a manufacturing 
process, such as TSE, for a given set of operating conditions. 

4. Evaluate the relationship between the microstructures in the gradient 
architecture and their associated physical properties.

5. Evaluate the optimal gradient architecture using mathematical 
optimization techniques, such as Genetic Algorithms.

6. Fabricate the component with the optimal gradient architecture .

7. Test the performance of the component for desired performance

8. If the desired performance is not achieved, reassess 
processing/structure/property relationship for the gradient architecture or 
the performance modeling of the gradient architecture.

Critical to the IDP are appropriate processing models that describe the relationship 

between operating conditions and the gradient architectures that evolve in a specific 

manufacturing process, such as TSE. These models will define the limits that restrict the 

evolution of the microstructures, and therefore constrain the range for the architectural 

parameters over which a gradient architecture can be fabricated. Each manufacturing 

process will have its own set of constraints that must be determined experimentally in 

order to develop the appropriate processing models. 

1.2 Project Hierarchy
The research described herein primarily addresses the pieces of the inverse design 

highlighted by red in Figure 2. The research approach is multidisciplinary, and was 

primarily sponsored by an Office of Naval Research Young Investigator’s Program 

(ONR YIP) granted to Professor Hugh A. Bruck with additional in-house research 

funding and support from the Indian Head Division of the Naval Surface Warfare 

Center (NAVSEAIHMD) for the energetic materials portion of the program. This research 
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program was facilitated by a collaborative research agreement between UMD and 

NAVSEAIHMD that is administered through the Center of Energetic Concepts 

Development (CECD). The research was conducted at both the College Park campus of 

UMD and in the unique processing facilities of NAVSEAIHMD with the inert/energetic 

ingredients demarcating the two facilities. The research was conducted in three areas: 

processing science, materials characterization, and property/performance models. This 

thesis addresses makes contributions in the first two areas that also have an impact on 

the third. Contributions from all three areas provide the models and computational tools 

for the inverse design procedure. 

Figure 1-2. Flowchart illustrating the Inverse Design Procedure (Bruck et al, 2002).

1.2.1 Research Issues
This thesis addresses a number of fundamental questions relating to the operation 

of a twin-screw extruder in a transient state and to the microstructures of highly filled 

polymer composites that evolve during this process. These questions include: 

1. How does transience in the operating conditions during processing affect 
the gradient architecture of the extruded composite? 
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2. Can this evolution be predicted using a quantifiable process model based on 
concepts such as the Residence Time Distributions (RTD) or the Residence 
Volume Distributions (RVD)? 

3. What characterization techniques have to be developed to adequately 
describe and quantify the gradient architecture in the extruded material? 

4. How are these gradients related to performance as measured by the burning 
rate? 

1.3 Intellectual Contributions
Answers to the fundamental questions that are addressed by the research effort 

described in this thesis have resulted in the following scientific and technical 

knowledge:

• The relationship between the composition gradients that evolve in the TSE and 

the operating conditions for the extruder has been characterized through new 

process models

• The applicability of RTD and RVD characterization of the TSE process has been 

extended to polymer composites

• Techniques for quantifying the gradient architecture of extruded polymer 

composites have been developed

• The dependence of the burning rate performance on the microstructures in the 

gradient architecture have been characterized 

• The new process models and characterized properties provide the basis for 

establishing an IDP that provides the operating conditions to meet a desired 

performance objective for a given energetic formulation and TSE screw 

configuration

1.4 Impact on Industrial Practices
The research described in this thesis will also have a broader impact commercial and 

military applications for both energetic and non-energetic of FGMs as follows:

• Establishes a new technology area for producing tailored energetic systems for 

commercial, as well as military, applications

• Establishes new techniques for fabricating FGMs using the transient attributes of 

continuous processing technologies

• Describes mixture experiments with operating conditions that are of great 

interest to energetics manufacturing facilities such as NAVSEA-IHMD
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• Presents new characterization techniques for energetic and non-energetic 

extruded polymer composites

1.5 Organization of Dissertation 
The following sections will address these questions by presenting data from work 

in-progress and plans for work based on indications given in the literature. Chapter 2 

contains a description of the twin-screw process, associated processing equipment and 

instrumentation, and proposed methods for characterizing the process through the study 

of RTDs. Chapter 3 describes the TSE experiments conducted on inert and energetic 

formulations to characterize the RVDs and RTDs for the materials and process. Chapter 

4 describes experiments where variations in process conditions through step and ramp 

changes in feed conditions are characterized in order to develop a convolution process 

model for describing the gradient architecture that evolves. Chapter 5 describes the 

characterization of the gradient architecture for the inert formulations using optical, 

mechanical, and microscopy techniques. Chapter 6 will describe the characterization of 

combustion properties over a range of compositions for the homogeneous energetic 

formulations, and its relationship to the burning rate response for graded energetic 

formulations. The final section will summarize the accomplishments of the thesis and 

discuss research issues that have been uncovered during the course of the thesis that 

have potential for future investigation.



9

2.0 Continuous Processing Using a

Twin-Screw Extruder
Twin-screw extrusion processes are utilized to manufacture a number of consumer 

and industrial goods, from snack foods and medical tubing to plastic pellets and military 

propellants. The process is a continuous type in that the twin-screw extruder will 

produce a product as long as the ingredient supply is maintained. Because this type of 

process has so many advantages over batch type, it has found widespread utility across 

diverse industries. For most however the advantages are universal: economy, quality, 

environment, flexibility, and safety. In the case of energetic materials, all these 

advantages have been documented (Staub, Neuenschwander et al. 1989) (Muscato, 

Michienzi et al. 1999). Some of these advantages illustrate why the twin-screw extruder 

shows great promise for producing functionally graded materials.

2.1 The Twin-Screw Extruder
First a description of the equipment is necessary. The extruder consists of two 

screws, typically fully intermeshing, which run through temperature-controlled barrels. 

The barrels are modular in design and specialized for feeding solid and liquid 

ingredients, vacuum, or other functions. They are interchangeable allowing a 

configuration best suited to a particular process. Furthermore the screws consist of 

various segmented elements that slide onto the screw shafts allowing for customizable 

screw designs. Like the barrel sections, various screw geometries are available which 

are utilized for conveying ingredients, gentle and high shear mixing, devolatilization, 

and many others. Hence the mixer is highly configurable and thus very flexible 

allowing for the optimization of many types of processes. In less time than a typical 

work shift, the mixer and its auxiliary equipment can be reconfigured for a completely 

different product. 
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This flexibility lends itself to facility expenditure savings. As with the case of naval 

gun propellants, the discrete batch process required a number of individual process 

steps, each with its own facility, equipment and operators. The continuous process with 

a twin-screw extruder eliminates some steps and allows others to be combined. The 

result is a great reduction in the number of facilities required and a continuous 

operation; this is a savings of resources and operating costs. In that the mixing/extrusion

/cutting operation is remotely operated, the safety of the process is much greater by 

reduced operator exposure to hazards and reduced quantities in a mixing state at any 

point in time. 

Furthermore the continuous process yields a more consistent product thus 

improving overall quality. There is significantly less variation in material, and the 

efficiency of mixing is better than batch methods. The process lends itself to on-line 

analysis allowing for the quick detection of anomalous conditions or material 

automatically diverting it to waste. In the batch process this is impossible until later in 

the production after a large quantity of potentially bad product has been made.

The extruder is only the heart of the process as shown in Figure 2-1. Various 

ingredient feeders support the process. The quality of the extruded product is directly 

influenced by the accuracy of the ingredient addition. For this reason, only the most 

accurate feeding technologies are utilized. These commonly include loss-in-weight 

control for solid ingredients and flow metering control for liquids. 

Figure 2-1. Twin-screw extrusion process
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Other support equipment includes product collection. For the example in Figure 

2-1, the extruded strand is conveyed to a pelletizer where it is cut by a rotating blade 

into short pellets. Not shown are the temperature control units for the extruder barrels 

and the process control system for the facility. 

2.1.1 Modeling of TSE Process
There are a number of research issues related to TSE processing that must be 

addressed in order to develop a predictive model for continuously extruded polymer 

composites. These include: 

1. Developing techniques for quantitative characterization of the gradient 

architecture

2. Characterizing the effects of solid ingredients on conventional TSE process 

models that have been developed for polymers

3. Study of the coupling between the operating conditions and the gradient 

architecture that evolves in the TSE process. 

The physical basis for the TSE process is the transport of material through a fully 

intermeshing twin-screw extruder is accomplished by screw geometry and screw motion 

(Rauwendaal 1986). In other words, the material flow is due to a combination of drag 

flow and pressure flow. The actual breakdown between each is highly dependent upon 

material properties, screw elements’ geometry, and rotational speed. In the case of 

energetic processing, the TSE is used as a mixer (or compounder) of ingredients, 

deaerator, and extruder in the same process step as material travels through the barrels. 

This aspect alone can result in evolving material properties that are difficult to estimate 

and are dependent upon time and location in the process. Therefore, calculations of drag 

flow and degree of fill are subject to approximation. For these reasons, the quantitative 

residence time of the system becomes a convenient measurement of the cumulative 

effect of all process and material parameters on the transport and mixing of the material 

in the TSE process. This has lead to the concept of the Residence Time Distribution 

(RTD), and its volumetric equivalent, the Residence Volume Distribution (RVD), as 

common descriptors for the physics of the TSE process. These are typically expressed 

as normalized functions in the following forms:
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where f(t) is the normalized RTD, g(v) is the normalized RVD, Q is the throughput, t is 

time, v is volume, and c is the response function associated with the amount of material 

that is located at a designated position in the extruder at the time, t, or volume, v.

2.1.2 Screw Geometry and Degree of Fill
The effects of the TSE process on microstructural evolution is directing related to 

the nature of the screws themselves. The geometry used for the screws is highly flexible 

in that individual element pairs of different shapes can be added together to result in 

specialized combinations for different material formulations. Figure 4 is a photograph 

of screws that have been removed from the barrels immediately after a mid-operation

stop. Note the differences in geometry in regards to pitch, direction, and shape. 

The direction of flow through the barrels is from the left to the right as looking at 

the picture. This picture is a good illustration of the state, mixing and distribution of 

material in the process at any given time. In general, twin screw extruders are starved 

fed, i.e., the screw channels are not completely full in the locations where ingredients 

are added in order to promote mixing. However the degree of fill in the screws 

downstream of ingredient addition is variable depending upon the geometry, ingredient 

throughput rate, screw speed, and time, refer to Figure 2-2. Places of high fill, including 

100 percent, occur in sections where there are mixing and left-handed screw elements. 

There is material located on the conveying screws elements, though the degree of fill is 

significantly less. 
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Figure 2-2. Picture of unmixed and mixed material on twin screws after process has 
been halted and the screws extracted

2.2 Distributions & Process Modeling
Physically the RTD is a characteristic of the process that is studied to quantify the 

dampening as a result of backmixing that occurs in the extruder (Rauwendaal 1986). 

Under normal and steady operating conditions there is a continuous supply of material 

conveyed to the mixing zones, and an equal amount conveyed away. Much of the 

literature for the twin-screw process has focused on characterizing the process operating 

in steady-state. The basis for characterizing the steady-state transport of material within 

a twin-screw extruder has been the residence time distribution. The concept of 

distribution functions and age distributions is attributed to the classical work of 

Danckwerts (Danckwerts 1953), including the experimental method of tracer addition 

for determining the residence time distribution. In the following five decades RTD

studies have been performed on all varieties of extruders, and equally varied are the 

types of tracers and experimental techniques employed. Most literature has limited 

applicability and merely reports the material extruded or reacted, the screw 

configuration, and the resulting experimental data with little discussion in regards to the 

mechanisms or general relationships that advance the state of knowledge for the physics 

of the process. 

In an excellent review of this body of work, Gao reports that the basis for RTD

studies has been to characterize the ability of the process to dampen disturbances, such 

as ingredient variations, feeder upsets, etc (Gao, Walsh et al. 1999). The answer is 

dependent upon the time scale of the disturbance. The method of tracer introduction is 
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generally the impulse or spike by concentrated injection of solids introduced onto the 

rotating screws. However this FGM project will be specifically interested in step inputs 

as much as the impulse inputs. Step inputs of the ingredients will be the primary 

mechanism for generating the gradient in the extrudate, since they can produce the 

most abrupt change in material composition and can be easily superposed to create 

more complex feeding conditions, such as a ramp or higher order change in feed rate..

Previous studies that have focused on co-rotating twin-screw extruders are most 

germane to this investigation. There are significant differences in operation and 

transport among the various classifications of twin-screw extruders. However methods 

to experimentally determine the characteristics of material transport can be universally 

applied, but the interpretations and mechanisms will depend on the classification. 

Furthermore, most of the literature regarding transport has focused on time-based 

concepts. Gasner et al expressed the residence distribution in different domains beyond 

time in a corotating twin-screw extruder, i.e., as functions of screw revolutions and 

material volumes (Gasner, Bigio et al. 1999). Gasner used published data to illustrate 

these ideas. It has been these alternative domains that have yielded important insight 

into the similarities between processing conditions which are essentially to developing a 

unified model of the TSE process.

2.2.1 RTD Process Models
In a more complete study, Gao et al have developed more general domain 

transformations, and conducted experiments to illustrate their applicability (Gao, Walsh 

et al. 1999) (Gao, Walsh et al. 2000). The transient process models are based on the 

models describing the transport of a disturbance through a series of perfect mixers 

including a dead time. One mixer is a first order model; two mixers in series is a second 

order model etc. A third order model was used by Gao et al with the interpretation that 

the screw geometry could be described as a series of mixers in series. The two mixing 

zones and the combined metering zones attribute to the employment of a third order 

model.

In the Laplace domain, the first order model with a dead time is given by,
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Likewise, the third order model with a dead time is given by,
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It consists of two parameters, the delay time and a shape factor. Gao et al showed 

how these parameters can be estimated from knowledge of the screw geometry and a set 

of constants determined experimentally. In other words, a characterized RTD from one 

set of conditions can be used to predict the residence time at various other conditions 

given the same screw geometry profile. The power in this is that a certain desired 

microstructure in a FGM rocket grain could be directly related to a specific RTD. Then 

the conditions to achieve that RTD could be estimated using Gao’s set of relationships as 

defined in the following.

The delay time, td, is defined as the time from tracer introduction to detection by 

the probe. It can be determined from the mean residence time, tm, and the shape factor, 

a, by the this expression, 

a
tt md

3−= (6) 

Gasner reports that tm is the result of additive effects of feed rate (of ingredients to 

the process), expressed in the form of the volumetric throughput, Q, and extruder screw 

speed, N, as follows by calculating the coefficients, A and B, from experimental data. 

N

B

Q

A
tm += (7) 

However Gao shows that these are not coefficients but quantities that can be 

determined from screw geometry. In other words the mean residence time is the sum of 

flow through the filled and partially filled sections of the screw (Figure 4). The filled 

quantity, A, is based on the length of the mixing sections and conveying sections with 

100 percent screw fill as given by equation (8). (Note that mixing sections are typically 

assumed to be 100 percent filled, but this assumption should be tested.) 
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The quantity, B, is the unfilled parameter; it is calculated from the geometry of the 

unfilled screw flights as follows (Booy 1980) (Gasner, Bigio et al. 1999) (Gao, Walsh et 

al. 2000),
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The other parameter in (6) is a curve shape factor, a; and, it is based on the volumetric 

throughput rate, Q, and a coefficient, C, that must be experimentally derived.

CQa = (11) 

2.2.2 The RVD Process Model
In the volume domain, equation (12), the locations of the residence volume 

distributions are independent of mass throughputs and only dependent upon screw 

geometry and operating conditions such as extruder screw speed or temperatures. 

Furthermore, the shape of the RVD curve is independent of the extruder screw speed as 
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well. In this manner, Gao showed that a universal process model could be developed 

independent of the operating conditions, and that screw designs indeed would could 

uniquely determine the effect of processing on microstructural evolution, thereby 

resulting in a the possibility of utilizing shape factors to “fingerprint” the process. This 

being true, it is then possible to predict the RTD for different operating conditions once 

the RVD is established for a specific screw design. This transformation from the time 

domain to volume is important for two reasons. The first is the power of one function to 

predict the transient material response for any throughput. The second is the 

convenience of expressing the screw mixing function and the gradient characteristics in 

the same manner, as functions of volume.
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The delay volume, vd, is given by,
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and the RVD curve shape factor, av, shown below.

C
Q

a
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2.2.3 Different Order RD models
Although this investigation initially focused on Gao’s third order model, it was 

found to be incomplete in describing the residence response for the particular screw 

design used in this investigation for inert composite formulation. Exploring models of 

lower and higher orders provided a much better description of the residence responses. 

The nth-order model can be expressed as,
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The inverse Laplace transform for this expression given in terms of volume is,
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This is a function that describes the residence volume distribution for a nth-order ideal 

mixer with a dead time. The volume delay, vd, is a locating factor for the function, and 

the RVD shape factor, av, is a parameter that governs the shape of the distribution. 

Higher order models beyond the third were derived in a similar manner to describe 

the RVDs produced by the extruder at NAVSEAIHMD. The implementation of the models 

is discussed in Chapter 3 and implication on the structure of the gradient in Chapter 4. 

The fourth and fifth order models are respectively given by,
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The inverse Laplace transforms in the volume domain are,
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These are new representations for RVDs that are being proposed for describing the TSE 

process for the extruders configured in this research investigation. The application of 

these new higher order RVD models to continuous processing data is given in Chapters 

3 and 4, where comparisons are made with the third order model as well. There are 

useful extensions to these functions to describe the distribution in more convenient 

terms, as will become apparent in the development of a relationship between the RVD

and the gradient architecture that evolves in the TSE process. 

2.2.4 Convolution of the Residence Distribution Models
One of the most important research questions was if the description of the gradient 

could be related to some process characteristic. The best characterization method for a 

process is the residence distribution (RD) in time (Danckwerts 1953), (Levenspiel 1989), 

and (Fogler 1999) or volume (Gao, Walsh et al. 1999) and (Gasner, Bigio et al. 1999). 

The results of the functionally graded energetic material research effort have shown that 

a convolution of a RD model with a step input yields a good estimate of the gradient 

evolution. 
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The behavior of a linear, continuous, time-invariant system with input signal, u(t), 

and output signal, y(t), is described by the convolution integral (Nise 2000) and (Fogler 

1999). 
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The description of the second order RD model, where x can be volume or time, is given 

by, 
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d
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and the convoluted function, F(x), or cumulative distribution function, for a second 

order system is given as,
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Letting xdelay = 0 and solving the integral, (23) reduces to,
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This form is acceptable because F(x) has a value of 0 until the delay time or delay 

volume by the definition of the step function. The convolution functions for the first, 

second, and third order systems are shown in Table 2-1. These functions were used to 

describe the response of the process to a step input (Chapter 5). 

Table 2-1. Convolution functions for first, second, and third order ideal mixer systems.
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A general relationship between the convolution of the residence distribution 

function, f(x), and the measured response function, h(x), can also be developed using the 

following form of the convolution integral,

∫
∞
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0

')'()'()( dxxuxxgxh (25)
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For an impulse input, u(x) = H(x)-H(x-ε), where H(x) is the Heaviside Step Function 

and ε is a perturbation, the following response function is measured,
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But the perturbation can be assumed to be infinitesimal, yielding the following 

relationship between the residence distribution function and the measured response 

function,

ε)()( xgxh ≈ (27)

The normalized response, h(x), is therefore given by,
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which is identical to the definition of the normalized residence distribution function. 

Therefore, the normalized residence distribution function can be determined from a 

small perturbation to the input of the twin-screw extruder. However, it is important to 

note that if the perturbation is too small, it can not be detected, while a large 

perturbation will deviate significantly from the approximate relationship expressed in 

equation (27) and will require the use of the exact relationship expressed in equation 

(26). 

For a unit step response, u(x) = H(x), the following relationship is obtained,

∫∫
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−=−=
00

')'(')'()'()( dxxxgdxxHxxgxh (29)

using the transform, 'xxx −= , equation (29) can be rewritten as,
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For the TSE process, g(x)=0 for x<0, yielding,

∫=
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Therefore, the gradient architecture that is attributed to a step change in the input to the 

extruder can be easily predicted by integrating the measured response from a 

perturbation to the input.
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3.0 Residence Distribution Experiments

3.1 Residence Distribution Experiments of KCl/Elastomer 
Composite in UMD 28 mm Twin-Screw Extruder

3.1.1 Facility Description
For this research investigation, a special TSE facility was assembled in the Polymer 

Processing Laboratory at the University of Maryland that was capable of controlling the 

evolution of gradient architectures in polymer composites. A laboratory scale Werner & 

Pfleiderer model ZDSK-28 twin-screw extruder featuring co-rotating fully-intermeshing 

screws was the focal point of the experimental set-up. The extruder is shown in Figures 

3-1 through 3-3. A twin-screw extruder is classified by the degree of screw-to-screw 

Figure 3-1. The ZDSK-28 twin-screw extruder at the University of Maryland is a 
laboratory-sized extruder. 
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Figure 3-2. Screw Design, Barrel Configuration, and Feed Locations for the 
experiments conducted on the KCl-filled Elastomer. 
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intermesh and direction of rotation. The screws in this extruder have a nominal diameter 

of 28 mm with an overall length to diameter ratio greater than 26, which results in 

longer residence times and more options for screw element combinations to control the 

mixing and transport processes. The extruder also consists of six interchangeable sec-

tions, commonly referred to as barrels, with three for feeding solids or devolatilization 

and three with one instrumentation port each. The barrels were heated electrically and 

water-cooled. Five temperature zones are possible in the processing section, one barrel 

per zone. The temperature can be controlled from ambient to above 220 C (425° F). 

Figure 3-3. This diagram of the ZDSK-28 shows the feeding locations and the staged 
mixing zone layout of the barrels.

The ZDSK-28, prior to this project, had been on loan to a company. The extruder 

was installed in the Polymer Processing Laboratory in the University of Maryland’s 

Manufacturing Building as the first stage of this research. A suitable die for extruding 

filled composites was designed by Gallant and produced for this research. A view of the 

extruder’s exit before the die project is shown in Figure 3-4. Note how far the screws 

extend from the last section of the barrel; this plate is referred to as the diehead. The 

unusually high distance of the screw extension had to be considered in the new design. 
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Figure 3-4. This is a picture of the original thin diehead for the ZDSK-28 extruder before 
the design and fabrication of the new assembly. Note the presence of 
polymer melt on the screws and screwtips. 

The approach taken was to maximize the flexibility in future utility of the die 

hardware at a minimum cost. Three functional pieces comprised the new die. The first 

was a new diehead (Figure 3-5) that was significantly wider than the original so as to 

cover the extending screws leaving only the screwtips exposed. The new die was bored 

with two in-line instrumentation ports. One of the ports was used in this research for the 

fiber optic probe; the other was available for potential use with a pressure transducer. 

However, there was not a pressure transducer available for this project. 

The second piece is the adapter and is shown in Figure 3-6, commonly referred to 

as the eight-to-round because of its function. This piece houses the screwtips and directs 

the flow from the figure eight of the barrel to a round hole that comprises the die 

entrance. This piece was designed to accomodate an wide variety of dies—the hardware 

that forms the final shape of the extruded product. For this research, three dies (Figure 

3-7) with different shapes, round, square and rectangular, were designed and produced. 

A view of the assembled die hardware with the ceramic heating band for temperature 

control is shown in Figure 3-8.
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Figure 3-5. Design for the replacement diehead that is significantly wider than the 
original one shown in Figure 3-4.

Figure 3-6. Eight-to-Round Adapter for the New Die Assembly.
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Figure 3-7. Three Dies Used for this Research on the UMD Extruder.

Figure 3-8. This is a picture of the replacement die hardware fully assembled and 
attached to the ZDSK-28 twin-screw extruder.

3.1.2 Feeding Solid Ingredients
The solids feeding equipment was upgraded as part of this project. This project had 

a requirement for strict feeding rate control and verification of feeder stability that could 

be provided by loss-in-weight control. The laboratory consisted of three feeders, two 

volumetric and one loss-in-weight. Two of these were operational. Each of the three 
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feeders was a laboratory scale twin-screw type; a type that exhibited better accuracy 

than the single screw or vibrating tray varieties. A control system and weighing 

platform upgrade was purchased and installed to yield three loss-in-weight feeders with 

a modern integrated control system. A mobile feeder platform was designed and 

purchased that allows the feeders to be used with any of the extruders in the Polymer 

Processing Laboratory.

3.1.3 Polymer: Polyolefin Elastomer
The polymer chosen for this project is DuPont Dow Engage 8401, a high melt 

index polyolefin elastomer (POE). It is a copolymer of ethylene and octene with a melt 

index (at 190 C using 2.16kg) of 30 min
dg  (300 min

g ) and a density of 0.885 3cm

g . It is 

commercially available as free flowing pellets without the need for a partitioning agent. 

Some grades of Engage need a partioning agent to reduce surface tack; those grades 

were not suitable for this project due to that characteristic. Engage 8401 is clear in the 

melt state, which was a requirement, because there are more options with RTD tracer 

techniques for an optically clear matrix. The high melt index was desirable because it 

was felt that it would tolerate solids loading better than a higher viscosity grade. 

Figure 3-9. Two twin-screw loss-in-weight feeders were used to feed the polymer (left) 
and the KCl (right) at UMD.
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3.1.4 Solids Fill: Potassium Chloride
Potassium chloride is a useful substitute for ammonium perchlorate because of the 

similarity in density and its availability in a variety of sizes through purchase or captive 

grinding. For this project a drum of technical grade potassium chloride was obtained 

from NAVSEA-IHMD. This material was screened through a U.S. sieve size #60 

corresponding to screen openings of 250 µm. The material remaining on the screen was 

used in the extrusion studies. In other words, the material passing through a 250 µm 

screen was not desirable. Large particle size filler is advantageous for microstructural 

analysis using optical microscopy, because it can be readily identified without making 

assumptions associated with smaller particle sizes. 

3.1.5 ZDSK and Instrumentation Configuration
The sensor consists of a bifurcated fiber optic cable inserted into a probe that 

screws into a Dynisco-profiled barrel instrumentation port. One set of fibers was 

connected to a variable-output, unfiltered, white light source. The other set was 

connected to a photodiode (or similar). The voltage output from the photodiode was 

connected to a custom-built electronic signal conditioner that consolidates various 

sensor inputs and interfaces with a National Instruments eight-channel data acquisition 

PCMIA card, model DAQ-516. National Instruments LabView software was used to 

collect and display the data in real time. 

A new LabView virtual instrument (VI) was created by the author for this effort 

that allows the user to select acquisition rates up to 1,000 Hz, eliminates missed data 

reads, and is more flexible. For the experiments conducted to date, all data was acquired 

at 250 Hz. For an extruder rotating at 150 RPM with tri-lobed screws and a sensor 

located between them at the nip region, there is a lobe entering the region at a frequency 

of 15 Hz. It is prudent to collect data at a rate at least an order of magnitude higher. For 

this reason among others, the new LabView virtual instrument was created to allow 

collection at the full capability of the hardware. 

3.1.6 Screw Designs and Process Configuration for the 28 mm TSE
The screw designs were relatively uncomplicated, Figure 3-2 and Figure 3-10. The 

first design (not shown) consisted of a primitive melt zone after the polymer feed port 

and a generic mixing section after the second feed port. The second design, #310 in 

Figure 3-10, added a left-handed mixing element to increase retention and melt in the 
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first mixing zone; this is done out of prudence and convention more than any specific 

observation in this case. The second design further increased the retention in the second 

mixing section by adding neutrally-staggered elements, so called because there is no 

helical arrangement. 

Figure 3-2 is a diagram of the extruder barrel configuration for process experiments 

conducted to date. A screw configuration is shown in this figure as well. The direction 

of transport in the diagram is from the top to the bottom. The composite is compounded 

continuously in a two-stage system. The first stage is the polymer feed and mixing 

zones. The feeding barrel was keep at ambient temperature by cool water circulation to 

prevent premature melting and blockage of the feed port. The following three barrels 

were set at 450° F, and the screw geometry was arranged as to ensure complete melting 

and incorporation of a white color concentrate. 

The relatively high temperature was necessary to minimize accumulation of 

polymer in the open KCl feed port. The mechanism for the accumulation was attributed 

to the degree of fill in the screw channel and the melt viscosity mollified by screw speed 

and process temperature respectively. For these reasons the process temperature and 

screw speed were kept at high settings for the RTD and gradient experiments. Later it 

became apparent that a third cause may be a factor, i.e., the proximity of the third set of 

kneading element to the KCl feed port. However more experiments and pressure 

measurements would be necessary to verify this hypothesis. 

The negative effect of a high processing temperature was detrimental to strand 

integrity at the die. As it was necessary to collect extruded strands for gradient analysis, 

dimensional integrity was very important. The extruder barrels and die following the 

solids addition were set at lower temperatures to affect an increase in extrudate 

viscosity. Although extruders are poor heat exchangers, this did have the desired effect, 

and improved the quality of the extruded strands.

In the three screw designs evaluated for RVD characterization and production of 

gradient architectures (see Figure 3-10), the screw configuration for the polymer-

melting portion did not change. This section of the screw performed its function well, 

and was not used to control the evolution of the gradient architecture. The mass 

throughput of polymer was not changed either—only the mass throughput of the solids 
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filler. Only the screw configuration beyond the solids feed port was of analytical 

significance. The effects of these configurations are discussed in a later section.

3.1.7 Typical RTD Response
To measure the typical RTD response, the best results were obtained by premixing a 

while color concentrate with the colorless Engage POE. Pellets of black color 

concentrate were used as tracer, and a black-colored filled thermoplastic was used as the 

second component for the step response tests. A sample of white TiO2 concentrate #32-

701 was obtained last year for this type of study from Uniform Color Company, 

Holland, MI. The white titanium dioxide compounded with a proprietary polymer that a 

representative of the company assured was compatible with POE. Experimentation at 

UMD demonstrated this claim; no separation was detected and the concentrate was 

readily miscible with the POE in the melt state. A letdown ratio of 24:1 is recommended 

for this material; however, a ratio of 20:1 was used for these experiments for reasons of 

ensuring a saturated color. 

This ratio was quite adequate to provide complete saturation of the POE. One 

concern was that non-uniform blending of the white concentrate in the POE was 

affecting the stability of the baseline. The baseline was shown to be unaffected by 

additional white pellets in sensitivity tests. It was found that minor baseline drift was 

inherent to the electronics.

The residence time experiments were conducted against the white background 

using Reed black color concentrate as the tracer. The black color concentrate had been 

used in other studies in the UMD Polymer Processing Laboratory and was quite 

compatible with the POE. The physical form of the Reed black was a uniform round 

pellet. The mass of five pellets ranged consistently from 0.10 to 0.13 g.
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#310 #722 #814

Figure 3-10. Three ZDSK-28 Screw Designs Used with KCl-Filled Composite
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A typical RTD experimental response is shown in Figure 3-11. The absorbance was 

measured as a voltage signal and was plotted as a function of time. Initially there was 

no tracer in the process section except for the solids feed port. The tracer melted and 

dispersed with the white-colored POE and the KCl as it passed through the second 

mixing section. The reflectivity of compounded material was measured at the sensor. 

There was a corresponding decrease in the signal as expected as the color darkened. 

Then as the bulk of the tracer moved further down the process section, its strength 

began to wane until the entire amount of black tracer was clear of the mixing section. 

Note that time zero was the addition time, which is a normal convention for graphing 

and analyzing this type of data. 

Figure 3-11. This is a plot of the unfiltered experimental process response to impulse 
input of five pellets of black tracer. Extrusion conditions were 6 lbs/hr, 
95 rpm screw speed, and 40 percent by weight KCl. (Test 0725/1504)

3.1.8 Filtering of Experimental Data
The data was processed with a Butterworth filter to remove periodicities and screw 

noise. An example is shown in Figure 3-12. The filter introduces a transient that quickly 

damps out, which is apparent in the first 30 seconds or so. This was not a problem 

because each dataset contained a lead time to establish a baseline before the tracer was 

introduced. Note that this plot does not include the data beyond 330 sec, but the signal 
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eventually returns to the baseline at a later time. Figure 3-12 shows the translation of 

this data so that it represents a conventional RTD with a positive displacement in the 

signal, and the baseline shifted to zero. Whenever circumstances permitted, the general 

experimental procedure was to collect three RTDs for each condition of interest and 

average the filtered signals. This increased the precision of time measurements and 

smoothed the tails of the curves to some extent. 

Figure 3-12. The filter effectively smoothes the noise in the signal without sacrifice to 
details and idiosyncrasies. The signal was inverted for the plot, as this is 
the convention for RTD plots. (Test 0725/1504)

3.1.9 RTD Characterization and Sensitivity Analysis
The RTDs collected illustrate the classical response of a twin-screw extruder to an 

impulse input disturbance such as a one-time injection of tracer. There was one 

exception to typical RTD measurements. The tracer was added more than halfway down 

the processing section of the extruder. Typically RTDS are conducted for the full length 

of the processing section. This coupled with the low value of Q/n in the polymer 

composite studies at UMD resulted in a very small residence time. The following 

observations are based on these rather limiting conditions; however the RTD

experiments still exhibited conclusive data that was in agreement with conventionally 
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acknowledged process effects. These are illustrated in the following figures. For 

example it is well understood that an increase in mass throughput results in a decrease 

of the delay time, shown in Figure 3-13 as a comparison between 3 and 6 lb/hr. The 

trace for the 3 lb/hr RTD was significantly delayed with respect to the two 6 lb/hr 

measurements.

Although the fiber optic probe was located near the screw tips immediately 

preceding the eight-to-round die adapter, it was important to identify any die effect on 

the RTD measurements. Figure 3-13 includes two RTDs for the same composition, 50 

percent filler, and operating conditions, 6 lb/hr and 180 rpm screw spreed, with the die 

geometry as the only difference. There was no effects on the RTD due to the die 

geometries used in this project. Similarly, the composite process exhibited the expected 

screw speed effects on the RTDs. As the screw speed was reduced, the corresponding 

effect was an increase in the delay time. Of throughput and screw speed, throughput 

was generally the dominant factor. 

Figure 3-13. This figure compares the effects on the RTD for mass throughput and die 
geometry given the same solids concentration of 50 percent by weight.

To ensure that there was no effect of the die geometry at these operating 

conditions, an error analysis was conducted to determine if the tail of the RTD for the slit 

die was significantly different than that for the round die. The conditions for the RTD

measurements were: 6.00 lb/hr, 50 percent filler, and 180 rpm screw speed. Calculating 
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and plotting the confidence intervals for the round geometry was the method used for 

this. Since there were two observations for the round die (the green and red traces), a 

reasonable choice of a two-sided 100[1-(α = 0.10)] percent confidence interval for the 

mean was made for the type one error. The type one error occurs when a sample is 

rejected that is actually acceptable.

Figure 3-14 shows that the great majority of the signal for the slit die (the blue 

trace) lay within the 90 percent confidence interval for the round die. The two round-die 

data sets were averaged (the black trace). The short segment of the curve where the blue 

trace is significantly beyond the 90 percent confidence intervals would fail (or lie

within) if the analysis were conducted at 95 percent. (A higher the level of significance 

results in wider confidence intervals.) While the selection of confidence intervals after 

the data are collected is subject to bias, the important point is a quantitative judgment of 

an assignable cause. There either were not enough observations (two RTDs), or there 

was no die effect at these conditions. The hypothesis of too few measurements of the 

RTD can be eliminated by the next example of confidence interval analysis for a case 

where three observations of the RTD were available.

To eliminate the possibility of too few observations, confidence intervals for 

another set of conditions (but the same screw design) were calculated and plotted for a 

case where there were three observations of the RTD, see Figure 3-15. Note that the tail 

of the RTD typically has relatively wide confidence intervals. Therefore it can be 

determined by analogy that there was no die effect on the RTD for the given 

experimental configuration and conditions for Figure 3-15. Akin to no measurable 

effects of the die, the same conclusions can be made as to the repeatability of the RTD

measurements made on different days. 

The extruder screw speed has an effect on the residence time as well, but is much 

less significant than the mass throughput. An example of this effect is shown in Figure 

3-16 for the case of a difference of 95 and 180 RPM with all other operating conditions 

being identical. A higher extruder screw speed has the expected effect of decreasing the 

delay time. 
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Figure 3-14. The confidence intervals for the round die (green and red traces) were 
plotted with an RTD for the slit die (blue trace). At a 90% level of 
significance, the slit die RTD was within the confidence intervals for the 
round die at identical conditions.

Figure 3-15. The confidence intervals are shown for three RTDs collected at identical 
processing conditions. The configuration was: a round die, 6.00 lb/hr, and 
40 percent filler.
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Figure 3-16. This plot shows a comparison of the screw speed effect on the RTD for 
40 percent filled composite at a mass transport rate of 6.00 lbs/hr.

As a point of future study, the degree that screw speed can influence the evolution 

of the gradient architecture will be studied. This project documented for the first time 

some interesting effects of screw speed on the burning rate. These are discussed in 

Chapter 4. This effect was not amenable to study using the inert or the live formulation, 

because a change or disturbance in the screw speed affects the entire length of the screw 

immediately. In the case of a two-staged continuous process, an abrupt shift in screw 

speed would create a temporary transport disturbance upstream of the solids addition 

port. Depending upon the direction of the shift, the effect could be a temporary 

abundance or scarcity of polymer in the solids mixing portion of the screw. This could 

lead to a dangerous situation in the case of processing energetic material. However there 

could still be merit to future investigations in considering the effects of small or 

incremental changes to the screw speed given the right formulation and configuration. 

The RTDs for the inert thermoplastic composite were fitted to first and higher order 

models to determine fit parameters that could be used to estimate process and material 

property responses. The first order functions fit poorly. The second order RTD function 

(14) fit the data very well, and the third order was somewhere in between. For the 
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conditions that were later used as starting points for creating gradients, the best-fit 

parameters to these functions are given in Table 3-1.

Table 3-1. Best-fit parameters for models of RTDs used as starting conditions for 
constructing gradients with the thermoplastic inert composite. The second 
order shape factor was the best fit in each case. 

ID
Throughput

(lb/hr)

KCl 
Content

(% by wt.)

Delay 
Time,

Td (sec)
Model 
Order

Shape 
Factor,

at

0723/1612 3.60 0 20.756 1 0.0091

" " " " 2 0.0265

" " " " 3 0.0427

0729/Norm1515 6.00 40 17.180 1 0.0102

" " " " 2 0.0288

" " " " 3 0.0460

0725/Norm162237 9.00 60 18.900 1 0.0153

" " " " 2 0.0430

" " " " 3 0.0676

3.1.10 Conversion to RVDs
As discussed previously, the RVD is more significant in characterizing the process, 

mixing characteristics, and screw geometry. The data was always collected as RTDs, 

then filtered and averaged as discussed above. Conversion to RVD was accomplished by 

first converting the mass flow rate to volumetric units paying particular attention to the 

effect of KCl concentration on the theoretical maximum density of the composite. Some 

sample conditions are shown in Table 3-2. Note that the volumetric flow rate decreased 

with increasing KCl given no change to the weight throughput. After calculating the 

theoretical volumetric throughput, it was a trivial operation to transform time to volume. 

The voltage signals were then normalized with respect to volume. Note the RTD curves 

were not normalized. In this writing all the RVD curves are presented as normalized data 

in order to make direct comparisons to the material composition.
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Table 3-2. Volumetric feedrates for some combinations of throughput and filler 
concentration.

Engage 
Feedrate 

(#/hr)

KCl
Feedrate 

(#/hr)

Total 
Throughput 

(#/hr)
%KCl 
(by wt.)

TMD
(g/cm3)

Mass 
Flow 

(g/min)
Vol. Flow 
(ml/min)

Vol. Flow 
(liter/sec)

1.65 0.00 1.65 0.00% 0.885 12.5 14.1 2.35E-04

1.65 1.35 3.00 45.00% 1.179 22.7 19.2 3.21E-04

1.20 1.80 3.00 60.00% 1.326 22.7 17.1 2.85E-04

0.90 2.10 3.00 70.00% 1.447 22.7 15.7 2.61E-04

1.75 3.25 5.00 65.00% 1.384 37.8 27.3 4.55E-04

1.50 3.50 5.00 70.00% 1.447 37.8 26.1 4.36E-04

3.60 2.40 6.00 40.00% 1.137 45.4 39.9 6.64E-04

3.00 3.00 6.00 50.00% 1.225 45.4 37.0 6.17E-04

2.70 3.30 6.00 55.00% 1.273 45.4 35.6 5.94E-04

1.80 4.20 6.00 70.00% 1.447 45.4 31.4 5.23E-04

3.60 5.40 9.00 60.00% 1.326 68.0 51.3 8.55E-04

Note that in the time domain, the system response to an impulse is variable in 

location and shape depending upon mass throughput, screw speed, rheological 

properties, etc. In the volume domain the throughput effect is nullified (Gao, Walsh et 

al. 1999). This is highly significant for the determination of a process indicator that can 

serve as a predictor for characterizing the gradient architecture. A step change in the 

solids (KCl) feeding rate to produce a gradient will have two dynamic effects: one being 

a differential change in the mass and volumetric throughputs, and the second being a 

differential change in the filler concentration. The first changes the RTD but not the RVD

as discussed above. If the second caused a shift in the location of the RVD, then the RVD

would have proved difficult to use as a predictor for the gradient architecture. These 

effects are discussed in the following.

Figure 3-17 is the same data in Figure 3-13 but now plotted as a RVD. The location 

and shape of the volume distributions are now identical. This is attributed by the RVD’s 

independence from throughput. Note that no die or delay effect is apparent in the 

volume domain either. 
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Figure 3-17. The null effects on the RVD for mass throughput and die geometry.

Similarly, the effects of concentration on the RVD were investigated. The results are 

presented in Figure 3-18. The most important result that can be observed in this figure 

was the absence of a shift in the location of the curves. However, there was a slight 

increase in the delay volume for the highest throughput that also represented the highest 

filler concentration. The discrepancy in the height of the peaks was attributed to the 

noise in the tails. Since these data were not replicated for the most part, the usual noise 

in the tail more strongly affected the normalization and thus peak height. The 60 percent 

data was plotted as the average of two RVDs. The other two traces, the zero and 40 

percent data, consisted of only one observation, which likely contributed to some 

inaccuracy in determining the volume delay. 
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Figure 3-18. Comparison of effects on the RVD for filler concentration (by weight) and 
throughput.

The effect of screw speed can be detected in the volume domain at steady state. 

This was not unexpected. Furthermore this represents the first validation of the effect of 

screw speed on the RVD using a filled system, see Figure 3-19. There are many 

similarities of this figure with the corresponding RTD figure using the same dataset. The 

lower screw speed resulted in a longer volume delay and a decreased rate of peak 

development. The overall physical effect of lower screw speed on the microstructural 

evolution is a slower transport rate in mass and volume. 
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Figure 3-19. Comparison of the RVDs for two extruder screw speeds.

The power of the RVD is that while the RTD yields a unique fingerprint of the 

operating conditions, the RVD yields a unique fingerprint of the TSE process. The 

response of the system to an impulse (disturbance) over a range of conditions, such as 

mass throughput and filler concentration, can be predicted once the RVD is defined for 

one screw configuration. 

3.1.11 Fitting RVDs to Second Order Process Model
The experimental RVDs were fit to a second order process model, Equation (13), 

based on the inverse Laplace transform of a model for two perfect mixers in series with 

a dead time. The second order model was found to fit the data much better than a first or 

third order model. It is important to remember that this process model permited the 

process to be represented as an ideal abstraction of a physical process. However, the 

advantage of this representation is the capability of the process model to describe the 

behavior of a complex process with few parameters. 

The second order model fit the data for the KCl-based elastomeric composite very 

well. Two parameters were necessary for the model in Equation (13): the volume delay 

and a constant term. The values for some typical RVDs are given in Table 3-3. This data 



44

was from one screw design only. The terms for the constant, av, are similar and of the 

same order. The volume delays are also reasonable. 

The longest delay was for the lower screw speed. As anticipated, the RVD is not

independent of the screw speed but is relatively insensitive to throughput. A rigorously 

designed experiment would reveal any relationship to the process parameters. However 

the primary objective was to determine a model that best characterizes the data. 

Table 3-3. The second order model parameters for KCl/Engage RVDs at various process 
conditions were similar for a range of filler content, screw speed, and 
throughput.

Total 
Throughput 

(#/hr)
%KCl 
(by wt.)

Extruder 
Screw 
Speed 
(RPM)

Constant 
av

Error for
Constant 

av

Vol. Delay, 
vd (liters)

Probability 
Model Fits 

Data

3.60 0.00% 180 50.01 ±0.04 0.01102 >99.99%

6.00 40.00% 95 47.51 ±0.03 0.01836 >99.99%

6.00 40.00% 180 43.14 ±0.03 0.01142 >99.99%

9.00 60.00% 180 50.22 ±0.05 0.01616 >99.99%

The strengths of the second order mixing model with a dead time as a RVD process 

model can be seen in Figures 3-20 and 3-21. In fitting this type of data, it is difficult to 

fit both the peak and the tail simultaneously. The example in Figure 3-20 has excellent 

resolution of the curve’s tail but peaks slightly too late. Other model fits have excellent 

agreement with the curve maximum, but may fit the tail at a slightly steeper slope. The 

curves in Figure 3-21 are the fitted estimates for the experimental RVD data in Figure 

3-18. The agreement of the measured data with the model predictions is excellent, as 

can be seen in Table 3-3. 

Overall the second order model fits are excellent, especially compared to a third 

order model as shown in Figure 3-22. The fit for the third order does not model the 

RVD onset slope, the peak intensity, or the tail. The screw geometry is hypothesized to 

control the order of the model, but experiments with more mixing sections need to be 

conducted to affirm this.
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Figure 3-20. This is an example of the goodness of fit for the second order process 
model to describe a RVD. The thin line is a RVD for 9.00 lbs/hr, 40 Percent 
KCl, and 180 rpm extruder screw speed. The wider, smooth line is the 
second order model prediction.

Figure 3-21. A set of second order model fits for RVDs at various throughputs and filler 
concentrations. 
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Figure 3-22. The third order ideal mixer model was not the best representation as seen 
in this example comparison of the experimental response to the model.

3.2 Residence Distribution Experiments of Rocket Propellant 
Simulant in NAVSEAIHMD’s 40 mm Twin-Screw Extruder

The TSE facilities at UMD offered the opportunity to conduct processing research 

efficiently and inexpensively using inert formulations. The facility is more oriented 

toward process research on a laboratory scale: the controls are located adjacent to the 

processor, the manpower demand is much lower, etc. Furthermore, highly-filled 

composites, whether energetic or inert, are physically similar and the process 

approaches are the essentially the same. The Polymer Processing Laboratory at UMD

offered all these advantages. The only limitation of the facility was the inability to study 

the process science on energetic formulations. For these studies, a special facility had to 

be utilized that was configured for safely processing these materials.

The Navy is the by far the most progressive of the armed services in the research 

and technology of energetic materials and ordnance. The first U.S. experiments with 

energetic material in a TSE were conducted at NSWC facilities in Silver Spring, MD

Presently there are three world-class energetic continuous processing operations at 

NAVSEAIHMD. All project experiments with energetic materials were conducted in the 

pilot facility there. In addition, there were internal Navy requirements to conduct some 
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trials with an inert propellant simulant before the process experiments with am energetic 

propellant formulation could proceed. The results of the RTD experiments using this 

simulant follow. The RTD trials conducted with energetic material, as well as the details 

of other experiments, are described in later sections. 

3.2.1 Facility Description 
A unique facility has been assembled at NAVSEAIHMD to address the specific needs 

for processing energetic polymer composites in a TSE (Gallant 2000). The extruder 

employed in the facility was a Werner & Pfleiderer ZSK-40 (mm) featuring segmented 

and cantilevered screws. It has a process length to diameter (L/D) ratio of 28, which is 

similar to that employed at the UMD facility. The six barrels were temperature 

controlled by five temperature controllers. The extruder barrel featured open ports for 

introducing the two solids and an additional port for vacuum deaeration. Many of the 

barrels are bored to allow for the insertion of temperature and pressure sensors to 

measure the physical state of the propellant during processing. Five combined sensors 

were used in process-critical areas in the barrel and at the die. The 40-mm extruder 

features a hydraulically clamped die holder that operates similar to a door. This is a 

safety feature unique to this extruder, which causes the door to open should the die 

pressure exceed the clamping pressure, thus relieving the pressure instantly.

Four feed streams were required to process this simulant, one of the most complex 

feeding schemes used to date at NAVSEAIHMD. Two feed streams were solid ingredients, 

and the other two were blends of liquid ingredients. The solid ingredients were fed to 

the extruder using K-Tron models T-37 and T-20 loss-in-weight twin-screw and single-

screw feeders respectively. More details of the feeding arrangements that were not 

essential to this investigation can be found in NAVSEAIHMD technical documents 

(Gallant, Newton et al. 1999) (Newton, Gallant et al. 1999). 

3.2.2 Ingredient/Formulation Discussion
The nominal formulation of the inert composite is given in Table 3-4. It is very 

similar to the energetic formulation given in the subsequent section. In the processing 

experiments, the concentration of filler was varied over a range 79.3 to 87.2 percent by 

weight. The binder ingredients were adjusted proportionately. This formulation has an 

unusually high number of individual ingredients. In order to feed these to an extruder, it 

was first necessary to blend them to suit the number of feeders available as well as other 
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considerations such as process safety, chemical compatibility, storage stability, etc 

(Newton, Gallant et al. 1999). The ingredients were fed in four feed streams using two 

loss-in-weight solids feeders, one gear pump, and one triple-piston pump. 

Table 3-4. Formulation for the Inert Composite. The Functions of the Ingredients are 
Given as They Pertain to the Energetic Composition. 

Ingredient Weight Percentage Function

Potassium chloride (coarse) 57.59 Oxidizer

Potassium chloride (fine) 26.28 Oxidizer

Zeon Chemical HyTemp® 4404 10.20 Binder

Dioctyl adipate 2.78 Plasticizer

3M Dynamar®
HX-752 0.32 Bonding agent

Isophorone diisocyanate 0.33 Curative

Graphite 0.50 Extrusion aid

Zirconium carbide 0.50 Combustion modifier

Iron oxide 1.50 Ballistic modifier

3.2.3 Process Configuration and Screw Design for the 40 mm TSE
The extruder configuration, feeding locations, and screw design for the inert and 

energetic propellant are illustrated in Figure 3-23. Note the similarity with the barrel 

layout used for the KCl composite processing at UMD in Figure 3-2. The KCl 

composite process was configured to represent the propellant compounding strategy. 

The binder ingredients were compounded first, and then the fillers were added mid-

process to a homogeneous binder. Some major differences follow. The HyTemp 

elastomer was not thermoplastic, but rather a partially cross-linked polymer that was 

theromoset to increase the cross-link density. Thus barrel temperatures were much 

lower than the KCl composite. There were liquid ingredients in the Navy formulation. 

The Navy process included deaeration by vacuum over the barrel (see Figure 3-23); this 

improved the density and the performance of the product. 

Additionally, the screw designs were different between the two research sites. The 

Navy design was optimized for this particular propellant formulation. A different 
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formulation was used at UMD, thus requiring an appropriate design. Furthermore, the 

screw configuration for the KCl composite was varied as an experimental factor for 

investigating the effects of the filled material on the RVD process model.

3.2.4 Dye Tracer Technique and On-line Data Collection Method
In the early 1990s, a Navy continuous processing project used fiber optic probes 

mounted in the process section and die to detect the presence and concentration of a 

blue dye in the process stream. The calibrated microencapsulated sensor (CAMES) 

instrumentation, or CAMES probe as it has come to be known (Figure 3-24), was custom 

built by MACH I, King of Prussia, PA. It operates on the principal of absorbed and 

reflected light and consists of a bifurcated optical fiber with a tuned LED source and 

highly sensitive photomultiplier. Because the formulation is colored a deep red due to 

the concentration of highly absorbing iron oxide, a concentrated organic blue dye was 

used for the RTD studies. The dye was AutomateTM Blue 8A liquid dye from Rhom & 

Haas Co., Philadelphia, PA. It is a solution of mixed dyes in predominately xylene. One 

gram of the solution was added to a small mixture of the filler, a viscous polybutadiene 

resin, and fumed silica to form a semi-soft pill to drop into the solids feeding port of the 

extruder. 

For inert operations at UMD, the tracers were added manually. For energetic 

operations, it was essential that the addition be conducted remotely using an in-house 

designed rotating table. Before the device could be used with propellant, it had to be 

used once in a full operation with an inert formulation as required by NAVSEAIHMD

safety regulations. This provided the opportunity to collect RTD data on the inert 

formulation for comparison with the propellant. The data were acquired using a PLC-

based supervisory control system at the low frequency of one Hertz. There was no 

capability for higher acquisition rates without adding specialized equipment. The signal 

did not contain noise or oscillations in the signal. Therefore, post filtering of the signal 

was unnecessary. 
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Figure 3-23. Extruder barrel configuration, screw design, feeding locations, and 
instrumentation sites for the ZSK-40 TSE at NAVSEAIHMD are illustrated. 
The Numbers next to the screw are for geometry descriptions, and TPT is a 
temperature-pressure transducer. 
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Figure 3-24. A fiber optic probe, referred to as the CAMES probe, was used at 
NAVSEAIHMD to detect concentration of tracer in RTD and other processing 
experiments.

3.2.5 Typical RTD Response by Location
Since there were two CAMES probes available, one was positioned at the screw tips 

for the conventional response measurements. The second was positioned over the 

discharge location from the filler mixing zone, see Figure 3-23. At this time the data 

from the mid-process probe was not treated or analyzed; however, it bears mentioning 

for future reference. Figure 3-25 is a plot of the untreated RTD data for the process 

condition of 30.00 lbs/hr with the lower filler concentration. The barrel and die signals 

were acquired as two channels, and three drop-times are indicated. 

The response data was averaged for each condition; an example is given in Figure 

3-26. One exception was the high throughput data. Due to a low supply of KCl, there 

was only enough material for one reading. However, given the consistency of the 

replicates for the 30 lbs/hr data, the same would have been reasonable to expect from 

the 50 lbs/hr data.

3.2.6 Discussion of RTD Data
The conditions and measurements for the simulant RTD study are summarized in 

Table 3-5. The volume of filler was identified as low (L) or high (H) in the table and 

was based on equivalent volume loading of ammonium perchlorate in IH-AC3 with the 

lowest and highest burning rates. Representative responses for the RTDS are provided in 

Figure 3-27. The positive effect of throughput on the RTD is obvious in this system. The 

effect of filler concentration was more subtle and could be a point for future study.
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                      Time (H:M:S)

Figure 3-25. Untreated signals from both probes are plotted for a process condition of 
30 lbs/hr with a KCl volume concentration of 0.693. The vertical lines are 
the tracer insertion times. The lower signal is from the probe in the mixing 
section while the upper signal is from the probe at the die entrance. 

Figure 3-26. This plot illustrates the variation in shape of the RTD at two locations in the 
process. The curves are averages of three signals each from the barrel and 
die probe locations for the condition of 30 lbs/hr and KCl volume fraction 
of 0.693.
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3.2.7 Conversion to RVDs
The data used for the conversion of the RTDs to the RVDs is provided in Tables 3-5 and 

3-6. The response curves are shown in Figure 3-28. At the same mass throughput, the 

two 30 lbs/hr conditions have the same delay volume but the tail dissipation reflects a 

possible concentration effect. The 50 lbs/hr condition in the volume domain still was 

significantly different. Although q/n was higher for that condition, the data for that 

condition were not replicated due to that the KCl feeder was beginning to starve. This 

may account for the anomalous result in the RVD. 

Table 3-5. Process conditions and residence time distribution characteristics for 
40 mm experiments with inert ingredients.

ID
Probe 

Location 

Volume 

Solids

Through-

put 

(lbs/hr)

Number 

of Tests 

Averaged

Delay 

Time 

(sec)

Time 

End 

(sec)

DL30avg Die 0.693 30 3 91±1 257±1

DH30avg Die 0.800 30 4 102 201

DH501 Die 0.800 50 1 73 151

Key to ID:  L-low solids and H-high solids.

Figure 3-27. RTD responses were experimentally measured for the propellant simulant 
as functions of total throughput and filler concentration.
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Table 3-6. Residence volume distribution characteristics for the propellant simulant.

ID TMD 

Volumetric 
Throughput 

(liter/sec)
Volume 
Start (l)

Volume 
End (l)

DL30avg 1.73 0.00219 0.199 0.561

DH30avg 1.82 0.00208 0.212 0.418

DH501 1.82 0.00347 0.250 0.524

TMD – theoretical maximum density in g/cm3

Figure 3-28. The plot illustrates the RVD responses for the inert composite as functions 
of total throughput and filler concentration. The KCl feeder was beginning 
to starve during measurements for DH501.

3.2.8 Fitting Filtered Data to Higher Order Process models
The RVD data was fit to process models of various orders to determine the best 

description. Interestingly the data did not fit a two or three-order process model. Rather, 

higher order models of fourth and fifth order were used fit the data with the fit 

parameters given in Table 3-7. The estimates of the best-fit model for each curve 

indicate good correlation with the experimental data, as seen in Figure 3-29.

The normalized curves revealed the concentration effect on the backmixing, as 

shown by the longer tail dissipation for the 30 lbs/hr condition with a lower 
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concentration. The increased solids concentration decreased the visco-elasticity of the 

mixture resulting in more positive transport. The volume delays for the 30 lbs/hr were 

not significantly different. At the same mass throughput, the shape factor for the higher 

concentration curve was significantly higher than that for the lower concentration. This 

comparison was possible because the two models were of the same order.

Table 3-7. RVD parameters were determined from best fits to higher order process 
models used to describe the processing of inert composite (test #02I) in the 
ZSK-40 at NAVSEAIHMD.

ID

Delay 
Volume, 
vd (liters)

Order of 
Model

Shape 
Factor,

av

Error for 
Shape 
Factor

Sum Squares 
Residuals Best Fit?

DL30avg 0.198 2 17.26 ±1.55 498.7

DL30avg 0.198 3 28.18 1.12 188.0

DL30avg 0.198 4 39.04 0.67 54.28

DL30avg 0.198 5 49.86 0.39 15.57 YES

DH30avg 0.211 2 25.64 2.35 637.1

DH30avg 0.211 3 41.91 1.61 210.5

DH30avg 0.211 4 58.00 0.92 54.59

DH30avg 0.211 5 74.08 0.78 33.93 YES

DH501 0.249 2 23.04 1.64 161.2

DH501 0.249 3 37.31 0.81 27.74

DH501 0.249 4 51.25 0.84 23.90 YES

DH501 0.249 5 64.95 1.61 76.31
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Figure 3-29. RVD data were plotted for inert composite processed in the ZSK-40 TSE

with the best fits for higher order process models (02I).

The best-fitting model for the 50 lbs/hr measurement is fourth order. It is incorrect 

to assume that increasing the order automatically increased the degree of fit. While this 

is often true for polynomials, it cannot be applied in these analyses. A fifth order fit of 

the 50 lbs/hr data was worse than the fourth as shown in Table 3-7. 

These data were not expected to be similar to the data obtained from the 

measurements of the KCL-filled elastomeric composite at UMD. Furthermore, any 

differences can be attributed to a number of factors. Many of them are straightforward. 

The properties of the polymeric binders were not the same, and the filler particle size 

distributions were completely different. The screws for the ZDSK-28 were tri-lobed 

while the ZSK-40 has two-lobed. To identify the differences that are not immediately 

obvious would be the objective of a scaling analysis for the mixer. Scaling analysis is 

not appropriate for the systems under consideration due to the obvious differences in

formulations that have been described. 

3.3 Residence Distribution Experiments of IH-AC3 Rocket 
Propellant in NSWC 40 mm Twin-Screw Extruder

There were a number of TSE trials with propellant to support this research 

investigation. These were trials to determine a viable processing window given 
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numerous feeding performance constraints and processing expertise, and there was a 

trial to prepare functionally graded grains for characterization. Those trials are 

discussed in later chapters. There were additional trials to determine the residence 

distributions characteristics of the propellant with the same screw design and process 

configuration as conducted for the inert composite (or simulant). This is discussed in the 

following section.

3.3.1 Ingredient/Formulation Discussion
The nominal formulation for the extruded rocket propellant is given in Table 3-8. It 

was selected because it was an extruded product and one for which there was a great 

deal of familiarity with processing in a TSE. It is a material with the greatest number of 

feed streams that has been continuously processed at NAVSEAIHMD, which increased the 

complexity of the process but was offset by the advantage that no development time 

was required for qualifying the formulation in the extrusion facilities. The formulation 

in Table 3-8 is nominal. For this project the ammonium perchlorate concentration was 

varied through the range of 0.79 to 0.87 fraction by weight. The nominal coarse-to-fine 

ratio was 70/30 as shown in the table. However the ratio of the coarse particle fraction 

to the fine particle fraction ranged from 50/50 to 81/19. The effects of the varying the 

ratio on the burning rate properties of the energetic formulation are presented in a later 

chapter to show the relationship of the process to the properties of the continuously 

graded extruded polymer composite. 

Table 3-8. This is the nominal formulation for IH-AC3 rocket propellant.

Ingredient Weight Percentage Function

Ammonium perchlorate (90 µm) 58.8 Oxidizer

Ammonium perchlorate (10 µm) 27.2 Oxidizer

Zeon Chemical HyTemp® 4404 7.92 Binder

Dioctyl adipate 5.00 Plasticizer

3M Dynamar®
HX-752 0.32 Bonding agent

Isophorone diisocyanate 0.26 Curative

Graphite 0.50 Extrusion aid

Zirconium carbide 0.50 Combustion modifier

Iron oxide 1.50 Ballistic modifier
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3.3.2 Discussion of RTD Data
There are a number of research issues for processing energetic materials that have 

been addressed for the first time in this research project. One is the determination of the 

residence distribution using an on-line method for an energetic material processed in an 

extruder in the United States. Worldwide there has been no data published on residence 

distributions with energetic materials. NAVSEAIHMD has long had an interest in 

collecting residence time data on its continuous processes using on- and off-line 

methods (Bur and Gallant 1991). However, the studies have always been conducted 

with inert simulants, i.e., highly-filled composites with no energetic constituents. Up 

until now, the greatest constraint to evaluating the energetic process has always been the 

ability to insert tracers remotely. (When the screws are rotating, no personnel are 

permitted in the vicinity of the facility.) 

The objectives of the second series of energetic runs were to collect RTDs and test 

the response of the process and material to step changes in the feed rates for the 

ingredients. An attempt was made to gather data over a range of conditions. In one case 

the supply of AP was exhausted before collecting the final conditions. In another, the 

change in screw speed was too extreme and resulted in an aborted run. However, there 

were plenty of high quality RTD data for characterizing the screw geometry and making 

comparisons between solids content and coarse/fine ratio. 

The averaged residence distribution data from each tested condition are given in 

Table 3-9; the data were collected during two runs. The range of AP concentration and 

the particle size ratios were the parameters of interest for the study of ingredient effects 

on burning rates, which is discussed in Chapter 4. The theoretical maximum densities 

for 79 and 87 percent by weight AP are 1.710 and 1.791 3cm

g  respectively.



59

Table 3-9. These were the test conditions for characterizing the RTDs of IH-AC3
propellant. Note that the throughput was 30 lbs/hr. 

AP Content
(by Weight)

Coarse/Fine
Ratio

Extruder 
Screw 
Speed
(RPM)

Avg. Td

(sec)
Avg. Tend

(sec)
Avg. Vd

(liters)
Avg. Vend

(liters)

87.0 52.7/47.3 85 112 206 0.236 0.434

79.0 79/21 45 142 251 0.311 0.566

79.0 79/21 85 111 255 0.240 0.564

The experimental data were quite remarkable in consistency and repeatability. The 

delay times were quite consistent and appeared to be independent of solids fill and the 

coarse/fine ratio for the ranges that were tested. The screw speed effect demonstrated on 

the smaller extruder was also apparent in the data from the 40 mm, as was expected. 

There were some differences in the tail resolutions, but there was not enough data to 

observe a statistical difference. 

The data from one run (#FGM07-0048) is given in Figure 3-30. This plot shows the 

individual measurements. The data from this day were collected in duplicate to 

conserve material. (The data for 87 percent were collected in triplicate.) There was one 

dominant trace in Figure 3-30 resulting from a double dose of tracer. Note how it has 

the same delay time, but very different height and tail resolution. Normalizing the RTD

data yields the results in Figure 3-31. 

It is a significant observation that the dose size, even double the dose size, was 

small enough not to disturb the characteristics of this process. There was some concern 

that the impulse disturbance represented by the tracer addition disrupted the natural

dynamics of the RD at steady state. If this were true, the signals would not have scaled 

as shown in Figure 3-31. It is still possible in theory that a large enough magnitude 

impulse disturbance could interfere with the true characteristics of the process. 

However, this was not demonstrated, and was beyond the scope of the investigation. 
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Figure 3-30. These are plots of duplicated experimental RTD measurements for IH-AC3
propellant at 79% AP, 30 lbs/hr, and different extruder screw speeds of 45 
and 85 rpm. Note the difference in tracer dose for one case.

Figure 3-31. These plots are normalized individual RTD measurements for IH-AC3
propellant. Compare to Figure 3-30 and note no difference due to tracer 
dose.

The RTD data for all three conditions in Table 3-9 are plotted in Figure 3-32. The

results of the nonlinear model fitting are presented in Table 3-10. There was no 

difference in delay time due to the AP concentration or the coarse/fine ratio. There could 

be a difference in the tail resolution due to either the concentration and/or the ratio, but 

not enough data were obtained to distinguish which of these effects was responsible. 
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Figure 3-32. The RTDs for IH-AC3 propellant at various processing conditions were 
averaged, normalized, and plotted. 

Table 3-10. RTD parameters were determined from best fits to higher order process 
models for characterizing the propellant process response to an impulse 
input using the ZSK-40 at NAVSEAIHMD.

ID
rpm/AP

Delay 
Time, td

(sec)
Order of 

Model

Shape 
Factor,

at

Error for 
Shape Factor

85/87 112 2 0.0578 ±0.0019

" " 3 0.0924 0.0015

" " 4 0.1255 0.0040

85/79 108 2 0.0514 0.0045

" " 3 0.0847 0.0028

" " 4 0.1176 0.0017

" " 5 0.1503 0.0023

45/79 140 2 0.0452 0.0037

" " 3 0.0740 0.0022

" " 4 0.1023 0.0012

" " 5 0.1304 0.0019
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3.3.3 Conversion to RVDs
The RTDs were converted to RVDs using the methods presented in earlier sections. 

As expected the extruder screw speed effect was still apparent as seen in Figure 3-33. In 

the RVD there was more of a difference due to AP concentration with the lower AP

material exhibiting a slight lagging behind the 87 percent material. However they both 

exhibited the same delay volume.

Figure 3-33. The normalized RVDs for IH-AC3 are plotted.

3.3.4 Fitting RVD and RTD Data to Process models
The RVD data for the propellant were fit to process models of various orders. While 

it was certainly possible to exactly fit an ideal model, it was more likely that the process 

lies at a non-integer order that could be determined from a mathematical optimization 

approach to be pursued in a future research effort. Therefore the model fits in Table 3-9 

are approximate to the nearest whole order, but still have a high degree of correlation as 

is evident from the residuals sum squares (RSS). The curves defined by the parameters in 

Table 3-11 are plotted in Figure 3-34 with the experimental data for each condition. 

The shape factors for the 79 percent condition for both screw speeds are similar. In 

Figure 3-33, the similar shape to the two curves is quite apparent; they only differ by 

the delay volume that is due to the screw speed effect. Note the independence of the 

delay volume, vd, from the concentration. This is important because it implies that the 
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RVD is independent of the composition of the material—and therefore the gradient 

architecture. This makes it possible to use the RVD to determine the response at the die 

to a step change in the feed rates for the addition of an ingredient to the process. 

The similarity between the values of RSS in Table 3-11 with the best fits for the 

propellant simulant in Table 3-7 is evident. Furthermore, the model orders were similar 

to the simulant. In the case of 79 percent AP, the best model was between the orders of 

4th and 5th. The simulant models for 30 lbs/hr were approximately 5th order regardless of 

the volume loading. Figure 3-33 illustrates the RVDs for IH-AC3 propellant at conditions 

of two screw speeds (45 and 85 rpm) and two AP concentrations (79 and 87 percent by 

weight) with the fitted RVD models using parameters from Table 3-11.

Table 3-11. Ideal process model parameters were determined by fitting the RVDs of IH-
AC3 propellant collected at various processing conditions.

ID

(RPM/%AP)

Delay 
Volume, 
vd (liters)

Order of 
Model

Shape 
Factor,

av

95% C.I. 
for Shape 

Factor
Sum Squares 

Residuals

85/87.0 0.235 3 43.23 ±0.59 25.12

85/79.0 0.237 4 51.77 0.55 45.41

45/79.0 0.309 4 46.13 0.39 15.23

Figure 3-34. The plot illustrates the RVDs for IH-AC3 propellant at conditions of two 
screw speeds (45 and 85 rpm) and two AP concentrations (79 and 87
percent by weight) with the fitted RVD models using parameters from 
Table 3-9.
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With the RTD and RVD characterization now complete for the inert and energetic 

formulations, it was possible to proceed to the investigating the effects of transient 

processing conditions on the evolution of gradient architectures in the TSE process. As 

mentioned previously, the focus was placed on understanding the physics associated 

with a step input change to an ingredient in the formulation for the extruded polymer 

composite. Chapter 5 describes this investigation in relation to the steady-state RTD and 

RVD process models in this chapter.
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4.0 Range of Achievable Burning Rate in 

Extruded Composite Rocket Propellant IH-AC3
Many factors contribute to the burning rate of a propellant, for example, ingredient 

types, concentrations and particle sizes (Carvalheira, Campos et al. 1996) (Gocmez, 

Erisken et al. 1998), method of preparation (Dean 1993) (Muscato, Michienzi et al. 

1999), testing conditions (NOS 1968), etc. This project is concerned with the intentional 

design for the microstructure of a Navy experimental composite propellant, designated 

IH-AC3. However there was no experimental data to indicate the quantitative effects of 

the ingredients on the burning rate of twin screw processed material, effects such as 

oxidizer particle size distribution, filler concentration, rate modifiers, screw geometry, 

etc. 

Thompson & Michienzi had published a well-designed study for many of these 

effects in IH-AC3 using the batch process to support the development of a near infrared 

spectroscopy technique to predict burning rate (Thompson and Michienzi 1998). This 

data was important, but not relevant in light of the unaccounted differences in burning 

rate observed by Muscato (Muscato, Michienzi et al. 1999) between batch and 

continuously processed IH-AC3. However this important observation is very relevant to 

this discussion; its importance in this investigation will be revealed below.

The burning rate characterization testing was conducted at two points in this 

investigation. The first test set, discussed in this chapter, was to characterize the effects 

of the process capability space on the burning rate of homogeneous propellant made at 

various locations within that space. The second point was the characterization of 

functionally graded propellant using the acoustic strand burning rate test (Chapter 5).

4.1 Design of Mixture Experiments
It was necessary to ascertain the effects of the individual ingredients on the burning 

rates as produced over the range of feeding and extruding capability for the process. 

Designed mixture experiment methodology was recognized as the most efficient and 
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thorough method to achieve this goal. This family of methods can quantify the 

contribution of individual ingredients and more importantly the combined effects of two 

or more ingredients using response surface analytical methods. Most mixture designs 

are based on component proportions and not total quantity of a mixture. This is the 

situation for the composite propellant; the burning rate is a function of the relative 

amounts of ingredients and not propellant quantity. 

Manufacturing IH-AC3 using the continuous process is more efficient, more 

environmentally benign, and cost effective compared to the batch process. However, 

preparing a number of propellant samples remotely at a wide variety of compositions 

and process conditions is nevertheless an expensive and complex undertaking. While 

this is the usual route for any propellant development or characterization study, 

following a designed method will ensure the most viable (and defendable) data and 

results possible. These facts have been widely recognized, and these methods have been 

applied to continuous processing at Navy facilities for some years. 

4.1.1 Simplex Design
The classical design attributed to H. Scheffe is referred to as a simplex and is 

evaluated using polynomial models (Cornell 1990). Let q represent the number of 

individual constituents, where q is two or greater. Note that constituents and ingredients 

are not the same in this discussion. Then let Xi be the proportion of the ith ingredient that 

can range from zero to one hundred percent. This is generally represented 

mathematically as,

0.10,0.1
1

≤≤=∑
=

i

q

i
i XX (32) 

A graphical example is given in Figure 4-1 for a three constituent simplex-centroid 

design with seven test mixtures. A four constituent simplex-centroid would be a 

tetrahedron with 15 combinations. The design size has 12 −q  points. 
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Figure 4-1. Graphical example of three constituent simplex centroid design.

However there are many examples of cases where there are constraints on the 

combinations that can be allowed due to physical, chemical, economical, safety 

considerations, or expert knowledge of the system. Experiments with hazardous 

materials certainly meet these criteria, but most industrial processes can be included as 

well. For example testing a propellant with low oxidizer or none is a waste of time and 

money. Furthermore there are levels of oxidizer that are not allowable due to the 

physical limitations of the process, i.e., a significant safety hazard. Therefore it is 

desirable to constrain oxidizer to a lower and upper bound. This may hold true for some 

or all of the other ingredients. Constraining is also advisable in cases where one desires 

to study the response in a region of interest. 

4.1.2 Extreme Vertices Design
The contributions of McLean & Anderson (McLean and Anderson 1966) and Snee 

& Marquardt (Snee and Marquardt 1974) in the form of extreme vertices designs allow 

the use of lower and upper bounds on constituents where,

0.10,0.1
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q
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i bXaX (33) 

The sum of the constituents must still equal one, but there are upper and/or lower 

constraints on the proportions resulting in a design space that is an irregular 

hyperpolyhedron. However constraints introduce complexities in the mixture 

combinations to test and the appropriate forms of regression models that the designs can 

support. Because of physical and safety limitations for propellant mixtures, a 
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constrained mixture design is imperative. A rather involved formula is used to calculate 

the number of extreme vertices, edges and two-dimensional faces of the design space 

(Cornell 1990). The coordinates, which give the mixture proportions, are determined by 

an algorithm developed by Snee & Marquardt (Snee and Marquardt 1974) and refined 

further by Snee (Snee 1975) in light of certain complications. The response surface, 

( )ixη , of mixture experiments, regardless of constraints, can be modeled using a 

Scheffe second-degree polynomial as (Cornell 1990),
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4.2 How the Ingredients and the Twin-Screw Process Influences 
Burning Rate

One of the observations revealed by Muscato et al (Muscato, Michienzi et al. 1999)

was an interesting effect of extruder screw speed on the burning rate of IH-AC3. Muscato 

found that the burning rate decreased an average of 10.6 percent upon increasing the 

extruder screw speed from 50 to 85 rpm. This effect could not be explained and 

remained a curiosity ever since it was reported. Since ingredients and process effects 

influence the burning rate of IH-AC3, it was important to include all possible effects in 

an experiment design to explore the range of burning rates for the FGM application. 

4.2.1 Mixture Designs that Include Process Variables
Therefore it was necessary to use a design methodology for a mixture experiment 

that incorporated process variables also referred to as process factors. Cornell has 

contributed the most to the mixture design literature on the inclusion of process factors 

(Cornell 1990) (Naes, Faergestad et al. 1998) (Piepel and Cornell 1994) (Kowalski and 

Cornell 2000). The mixture-process design is constructed by combining two types of 

designs. First a mixture design with q constituents is identified, and next a factorial 

design of n process variables is crossed with each point of the mixture design. The 

result is a design capable of resolving all mixture effects and crossed process effects. It 

identifies mixture combinations that are more sensitive to process settings than others. 

4.2.1.1 Flour Blend Example
One example is the study to determine the effect of flour blends from different 

sources of flour and the dough preparation conditions to determine sets of conditions 



69

and appropriate blends where loaf volume is insensitive to variations in preparation 

(Naes, Faergestad et al. 1998). Naes evaluated 10 blends of flours from three sources as 

defined by a lightly constrained simplex lattice design shown in Figure 4-2(a). Note 

how the lower bound of the Tjalve flour source is set at 25 percent of the mixture. Two 

process factors were of interest at three levels resulting in a nine point factorial design 

as shown in Figure 4-2(b). One traditional model for the process variables is given by 

(Kowalski and Cornell 2000),
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and the combined model, which assumes that 1>n , is given as,
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(a) (b)

Figure 4-2.(a) Simplex-lattice mixture design for blending flour from three sources. 
(b) Two-factor three-level factorial design for the process variables 
(Naes, Faergestad et al. 1998).

Neas evaluated the complete process design using each of the ten blends in a 

90-point experiment. In other words the nine-point factorial design in the process 

conditions was conducted for each of the ten mixtures. This approach is extremely 
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thorough, resulting in the maximum amount of estimated effects. These so-called 

saturated designs are typical in the early literature on mixture-process designs. It is easy 

to determine that the costs for this type of design could become quite expensive—

possibly too expensive to consider for many situations. If one must perform only a 

limited number of treatment combinations, due to economic or other limited resources, 

there are various techniques for selecting an optimum fraction of the runs (Cornell 

1990). Computer programs can easily perform selections of optimal design matrices 

according to various mathematical definitions of optimality criteria, but the computer-

generated designs should not be used without some consideration given to design 

balance of the computer output (Cornell 1995) (Kowalski and Cornell 2000). 

In the case of producing and testing rocket propellant under a multitude of 

conditions and constituent combinations, the resource costs of both a batch process or a 

continuous approach are high. Therefore a reduced experimental design is quite 

attractive. Kowalski presents a solution that addressed the experiment design needs for 

this project (Kowalski and Cornell 2000). 

4.2.1.2 Kowalski’s Algorithm
Kowalski suggests a Taylor series approximation for the process variables which 

best suits response surface analyses,
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Combining (20) and (21) yields a combined second-degree model, 
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Kowalski asserts that this model includes “the mixture model, plus pure quadratic as 

well as two-factor interaction effects among the process variables, and two-factor 

interactions between the linear blending terms in the mixture (constituents) and the 

main effect terms in the process variables (Kowalski and Cornell 2000).” This model 

requires a design size of ( )( ) 21+++ nqnq  points. It requires less design points for 

fitting than (20), and the quadratic terms can be omitted if not necessary further 
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reducing the design points. Kowalski describes a process for constructing the new 

design. However a description of the factors for the IH-AC3 experiment is necessary. 

The goal of the experiment should dictate the design. To do otherwise is to limit one’s 

success and quite possibly introduce bias.

4.2.2 Mixture/Process Experiment for IH-AC3
There were a number of reasonable process constraints that were identified and 

incorporated in the design strategy. The ingredients for the propellant were fed to the 

extruder as blends and mixtures, so the blends were treated as the factors or constituents 

for the mixture matrix (not the individual ingredients). There were two other constraints 

to consider. The first was a consideration of the established process methodology for 

this formulation and the possible strategies for achieving gradient structures in the 

extrudate within those methods. The other consideration was the ingredient ranges 

imposed by any particular mixture design. For example some candidate experiment 

designs required combinations of feeding rates that could not be accommodated 

economically or safely. These issues were studied exhaustively by the author and 

concluded satisfactorily.  

Suffice to say that gradient control was confined to the two AP feedstreams. While 

this strategy unfortunately ignored the known influence of the modifiers, there was still 

enough flexibility with the AP feed streams to yield a significant effect in the burning 

rate. Given these constraints, the burning rate is influenced by overall concentration of 

AP as defined by its converse, the concentration of binder. Additionally, it is also 

influenced by the ratio of coarse to fine AP particles. This was expressed as the 

individual concentrations of AP grind fractions for the sake of the mixture experiment. 

Lastly this experiment represented the best opportunity to settle a longstanding 

uncertainty, i. e., experiment observations that suggested extruder screw rpm may 

influence the burning rate. Therefore the mixture and process experiment included three 

mixture factors and one process factor, the ranges and levels respectively are given in 

Table 4-1.
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Table 4-1. Factors (or Controls) for Burning Rate Experiment on IH-AC3 Propellant.

Ingredient Type Range/Levels

AP Coarse Particle Grind (APC) Mixture 40.3-70.4 % by weight

AP Fine Particle Grind (APF) Mixture 16.6-41.2

Binder (BIN) Mixture 13.0-21.0

Extruder Screw Speed (RPM) Process 45 and 85

An extreme vertice design is shown in Figure 4-3 as a trilinear plot. Each apex of 

the triangle represents 100 percent by weight of that feed stream. It consists of 5 

extreme points, 5 edge centroids and one overall centroid. To include screw speed as a 

design objective would require at least 22 combinations, i. e., the full eleven points at 

each rpm. The cost of producing and testing 22 samples of propellant was prohibitive to 

this project.

Figure 4-3. Extreme Vertice Design for Three Mixture Factors with Eleven 
Combinations.

Kowalski’s algorithm begins with the full extreme vertice design set of more than 

twenty-two runs and reduces it to fourteen runs in this particular case. Fourteen 
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combinations were much more affordable to produce and test. The design implemented 

for this study is illustrated in Figure 4-4 and listed in Table 4-2. The table of design 

points gives the proportions in terms of feed streams. Because one feed stream was a 

blend of fine and coarse particles, the effective amounts of each size fraction is given in 

Table 4-3 in two ways. The third and fourth columns of Table 4-3 is the weight fraction 

of coarse and fine particles; the fifth and sixth columns express the AP content as the 

ratio of each particle size where the total equals 100 percent. Note the nominal 

formulation for IH-AC3 was within the design space and was added as an additional test 

combination. 

The algorithm generated a balanced design with the five edge centroids and one 

overall centroid at one RPM, and this was added to the five vertices and one overall 

centroid at the second level of RPM. One of the overall centroids was repeated for an 

estimate of the error, and another centroid point was added at the midpoint RPM value. 

This sums to fifteen test points or runs.

(a) Combinations Made at 45 rpm (b) Combinations Made at 85 rpm

Figure 4-4. Mixture Combinations Extruded for Burning Rate Study:The Star in 4-4(b) 
Represent the Location of IH-AC3, the Nominal Combination.

4.2.2.1 Results of the Extrusion Trials and Strand Burning Rate Data
All combinations were produced using the 40 mm twin-screw extruder. Small strands

of propellant measuring ¼ x ¼ x 6 inches were cut for strand burning rate testing 

(Rampichini, Ruspa et al. 2000). Complete characterization of the burning rate dictates 



74

that the strand testing be conducted over a range of temperatures and operating 

pressures, since the burning rate is dependent upon the test conditions. However this 

was a technology program and not a propellant development program, so testing was 

conducted at one temperature—ambient. This is a typical approach by propellant 

formulators for screening large sets of strands. Since the graded motors were to be 

designed with a relatively low operating pressure, the strands were tested at 500, 1000, 

and 1500 psig chamber pressures. The average burning rate for each mixture and 

process combination is presented in Table 4-4. The design space yielded a satisfactory 

range of burning rates. The range approximately doubled at the higher test pressures 

despite the conservative processing and feeding constraints. 

Table 4-2. Mixing Design Points for Burning Rate Variability Study with a Process 
Variable.

ID Design Point
Coarse AP 
Feedstream

Fine/Coarse 
Blend AP 

Feedstream Binder
Extruder 

RPM
A Vertex 0.237 0.553 0.21 45

B Edge centroid 0.237 0.5705 0.1925 85

C Vertex 0.237 0.588 0.175 45

D Edge centroid 0.2595 0.588 0.1525 85

E Vertex 0.282 0.588 0.13 45

F Overall centroid 0.3884 0.4406 0.171 45 

G Overall centroid 0.3884 0.4406 0.171 85

H Overall centroid 0.3884 0.4406 0.171 85

I Overall centroid 0.3884 0.4406 0.171 65

J Edge centroid 0.395 0.395 0.21 85

K Edge centroid 0.4575 0.4125 0.13 85

L Vertex 0.553 0.237 0.21 45

P Test for Fitness 0.588 0.252 0.16 85

M Edge centroid 0.593 0.237 0.17 85

N Vertex 0.633 0.237 0.13 45
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Table 4-3. Actual Factions and Common Ratios of Coarse and Fine Ammonium 
Perchlorate Taking into Account Contribution of Fine/Coarse Blend Feed 
Stream.

Effective Yield
Coarse/Fine Ratio

(C + F = 1)
ID Design Point Coarse AP Fine AP Coarse AP Fine AP
A Vertex 0.4029 0.3871 0.5100 0.4900

B Edge centroid 0.4082 0.3994 0.5054 0.4946

C Vertex 0.4134 0.4116 0.5011 0.4989

D Edge centroid 0.4359 0.4116 0.5143 0.4857

E Vertex 0.4584 0.4116 0.5269 0.4731

F Overall centroid 0.5206 0.3084 0.6280 0.3720

G Overall centroid 0.5206 0.3084 0.6280 0.3720

H Overall centroid 0.5206 0.3084 0.6280 0.3720

I Overall centroid 0.5206 0.3084 0.6280 0.3720

J Edge centroid 0.5135 0.2765 0.6500 0.3500

K Edge centroid 0.5813 0.2888 0.6681 0.3319

L Vertex 0.6241 0.1659 0.7900 0.2100

P Test for Fitness 0.6636 0.1764 0.7900 0.2100

M Edge centroid 0.6641 0.1659 0.8001 0.1999

N Vertex 0.7041 0.1659 0.8093 0.1907

The data in Table 4-4 were plotted as independent functions of the experiment’s 

design parameters to determine any obvious trends. Figure 4-5 was typical for this type 

of plot. In the figure the average burning rate data were plotted as functions of the 

binder content and chamber test pressure. As expected, the average burning rates 

decreased with increasing inert binder. Also expected was the response of the average 

burning rates to test chamber pressure. There is a positive relationship between the 

average burning rate and test pressure. Note that there is also relationship between the 

slope of the burning rate response to the fraction of binder is different and the chamber 

pressure. This too was typical of the simple trend plots; the responses were less 

dramatic for the 500 psig than the 1,500 psig chamber pressure.
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Table 4-4. The Individual Test Combinations and Average Burning Rates (Sorted by 
Fines) of the Homogeneous Propellant Strands.

Effective 
Yields

Avg. Burning Rate for 
Test Pressure (psig)

ID Point Type RPM Coarse Fines Binder 500 1,000 1,500
L Vertex 45 0.624 0.166 0.210 0.443 0.580 0.625

N Vertex 45 0.704 0.166 0.130 0.630 1.085 1.460

P Test Fitness 85 0.664 0.176 0.160 0.536 0.802 0.975

J Edge centroid 85 0.514 0.277 0.210 0.526 0.735 0.773

K Edge centroid 85 0.581 0.289 0.130 0.620 1.061 1.276

M Edge centroid 85 0.664 0.289 0.170 0.513 0.731 0.834

F Overall centroid 45 0.521 0.308 0.171 0.604 0.943 1.145

G Overall centroid 85 0.521 0.308 0.171 0.546 0.799 0.915

H Overall centroid 85 0.521 0.308 0.171 0.550 0.784 0.939

I Overall centroid 65 0.521 0.308 0.171 0.601 0.899 1.072

A Vertex 45 0.403 0.387 0.210 0.571 0.884 0.988

B Edge centroid 85 0.408 0.399 0.193 0.609 0.854 1.001

C Vertex 45 0.413 0.412 0.175 0.664 0.997 1.156

D Edge centroid 85 0.436 0.412 0.153 0.666 1.006 1.272

E Vertex 45 0.458 0.412 0.130 0.701 1.116 1.528



77

Figure 4-5. The Relationships between Average Burning Rate, the Fraction of Binder, 
and the Chamber Test Pressure.

Likewise similar plots were prepared for the concentrations of the two particle size 

fractions of ammonium perchlorate in Figures 4-6(a) and 4-6(b). The data for 1,000 psig 

were omitted for clarity. Trends were present in the data and can be reasonably 

interpreted. Overall there is a downward effect on burning rate as the amount of coarse 

AP was increased. Conversely increasing the fraction of fine particle AP resulted in a 

corresponding increase in burning rate. 

These data could be two sides of the same coin. As the fraction of coarse increases, 

i.e., the fines were thus decreasing, the average burning rate decreases. The converse is 

true as shown in Figure 4-6(b). There is the appearance of scatter in the 1,500 psig data 

that is misleading. The data are scattered because there are other effects due to screw 

rpm, total solids loading, and the coarse/fine ratio. Furthermore there is a tendency for 

the effects to be more pronounced at the higher test pressures.
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(a) (b)

Figure 4-6. The Effects of Particle Size and Fraction Concentrations on the Average 
Burning Rate.

One of the powerful effects on average burning rate was the extruder screw rpm. 

This effect had been observed by Muscato (Muscato, Michienzi et al. 1999), but not 

systematically documented or studied in conjunction with the ingredient effects until 

this research. There indeed was an influence of the screw rpm on the burning rate as 

indicated in Figure 4-7. The possible explanations lie in the important effects of n
Q , i.e., 

the combined influence of throughput and rpm together on the degree of fill in the 

mixing zone. At the lower rpm the degree of fill is higher in the machine and vice versa. 

There is a difference in the mixing history between the extruder screw speeds. What is 

unknown is if the changes are due to different particle dispersion efficiencies or other 

changes on the microstructural scale. 

These results indicate some directions for future research into gradient manufactur-

ing. Instead of creating the gradient with the ingredients, one would study the dynamic 

influence of the screw rpm. It is possible to even consider deliberate and subtle changes 

in the screw rpm to impart particular nuances in the burning of the grains. 
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Figure 4-7. There was an observed overall decrease in burning rate at extruder screw 
speed was increased. 

4.2.2.2 Analysis and Interpretation of the Burning Rate Data
A rigorous response surface analysis was conducted for the burning rate data 

according to methods proposed by Kowalski & Cornell (Kowalski and Cornell 2000)

and Piepel & Cornell (Piepel and Cornell 1994). The mixture points were expressed in 

terms of the actual yields of coarse and fine particles as in Table 4-4 where,

x1 = fraction of coarse 90 µm Ammonium Perchlorate

x2 = fraction of fine 10 µm Ammonium Perchlorate

x3 = fraction of binder including modifiers

Because upper (and lower by implication) bounds were used to constrain the mixtures, 

the constituents were converted to u-pseudocomponents (Crosier 1986). Therefore the 

u-pseudo-components were,
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where,

Ui = the upper limit of the ith component

then, for the number of mixture components, q = 3, 
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The model (43) was tested against the u -pseudocomponents for each chamber 

pressure using step-wise regression and analysis of variance. Conditions I (the centroid 

point at 65 rpm ) and P (an extra point to check the fit of the model) were excluded 

from the model analysis. The analysis of variance was conducted step-wise using a 

significance of α = 0.10; however the results were down-selected to alpha values of 

much less. The results are summarized in Tables 4-5 through 4-7. The correlation 

coefficient, r2, is increasing as one moves down the table. This is because as each 

significant term is stepwise added into the probabilistic model, the correlation 

coefficient improves. The variables are listed in order of significance. 
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Table 4-5. Estimates for the Coefficients in the Regression Model where Chamber 
Pressure = 1,500 psig.  Level of Significance, α ≤ 0.025.

Model Term Variable (Effect) Estimate (ββββi)
Standard 

Error Model r2

z2 (rpm)2 0.989 0.043 0.9458

u3 Binder 3.046 0.277 0.9848

u2 10 µm AP -0.558 0.090 0.9913

z ● u3
rpm – Binder 
interaction

-0.360 0.127 0.9965

u1 ● u3
90 µm AP – Binder 
interaction

-1.689 0.557 0.9982
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Table 4-6. Estimates for the Coefficients in the Regression Model where Chamber 
Pressure = 1,000 psig.  Level of Significance, α ≤ 0.035.

Model Term Variable (Effect) Estimate (ββββi)
Standard 

Error Model r2

z2 (rpm)2 0.893 0.038 0.9706

u3 Binder 2.068 0.239 0.9888

u2 10 µm AP -0.453 0.078 0.9944

u1 ● u3
90 µm AP – Binder 
interaction

-1.729 0.485 0.9971

z ● u1
90 µm AP – rpm 
interaction

-0.052 0.020 0.9984

Table 4-7. Estimates for the Coefficients in the Regression Model where Chamber 
Pressure = 500 psig.  Level of Significance, α ≤ 0.011.

Model Term Variable (Effect) Estimate (ββββi)
Standard 

Error Model r2

z2 (rpm)2 0.591 0.024 0.9863

u1 ● u3
90 µm AP – Binder 
interaction

-1.729 0.485 0.9939

u1 ● u2
90 µm – 10 µm AP 
interaction

-0.052 0.020 0.9969

Across all test pressures, the quadratic term for the rpm was the dominant factor. 

Figure 4-8, comprising of experimental data, shows that this effect is indeed real and is 

nonlinear. The data were restricted to the centroid design points, i.e., conditions F, G, 

H, and I in Table 4-4. The compositions were identical at the centroid of the design; 

only the rpm was different. This is the reason that a midpoint rpm value was included in 

the design to check for this effect. Note in Figure 4-9 the excellent repeatability of 

average burning rate for the 85 rpm condition.
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Figure 4-8. Given the same filler concentration and ratio, there was a quadratic effect of 
extruder screw speed on the average burning rate. 

4.2.2.3 Response Surface Analysis Burning Rate Data
The corresponding models given by the parameters in Tables 4-5 through 4-7 were 

used to generate the response surface curves for 500, 1000 and 1500 test pressures 

illustrated in Figures 4-9 through 4-11. The predictions for an extruder speed of 85 rpm 

were of most interest because that speed was to be used to make the graded propellant. 

The contours indicate the predicted burning rate for that screw speed and many 

ingredient combinations. The plotted points are the experimental burning rates for that 

combination and screw speed. The comparisons for each test pressure are given in 

Tables 4-8 through 4-10. Considering the complex relationships between the mixture 

constraints and process factor, the agreement with the predicted and experimental was 

excellent. 

Because of the way that the three-axis triplot (Figure 4-4) was translated for 

plotting as two-axis contour plots, only the solids fraction is readily identifiable in the 

Figures 4-9 to 4-11. The top line in each diagram represents 13 percent binder or the 

highest level of AP tested. The AP fractions were best interpreted as the ratio of coarse to 

fine. As one moves from left to right across the figures the coarse to fine ratio is 

decreasing, i. e., the relative amount of fine particles is increasing. The dotted line in the 
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left hand side of each figure represents a coarse to fine ratio of 79/21. At the opposite 

side, the ratio is 50/50 for the rightmost vertex. The ratio passing through the centroid is 

approximately 63/37. 

Figure 4-9. The results of the response surface analysis were plotted as a two-
dimensional contour for a 500 psig condition and extruder speed of 85 
rpm. The numbers are the experimental results.

Table 4-8. A comparison between the experimental data and the predicted burning rate 
for test pressure of 500 psig and extruder screw speed of 85 rpm. The 
entries in the table start at the top of the diagram and precede clockwise 
ending in the center.

ID

Average Experimental 
Burning Rate (in/sec)

Standard 
Deviation, 
s, (in/sec)

90% C.I. for 
Experimental 

(in/sec)

Predicted 
Burning Rate 

(in/sec)

K 0.620 0.006 ±0.007 0.591

D 0.666 0.007 ±0.007 0.685

B 0.609 0.002 ±0.003 0.609

J 0.526 0.042 ±0.041 0.489

M 0.513 0.007 ±0.009 0.562

G 0.546 0.007 ±0.009 0.559



84

As one moves from bottom to top in each diagram the solids are increasing and the 

predicted burning rate increases. The magnitude of course is dependent upon the test 

chamber pressure. The particle size ratio effect was expected as well, but it has never 

been experimentally determined in this way. These results clearly define the 

possibilities for creating a gradient within the extruder’s process window as defined for 

this research. 

Table 4-9. A comparison between the experimental data and the predicted burning rate 
for test pressure of 1,000 psig and extruder screw speed of 85 rpm. The 
entries in the table start at the top of the diagram and precede clockwise 
ending in the center.

ID

Average Experimental 
Burning Rate (in/sec)

Standard 
Deviation, 
s, (in/sec)

90% C.I. for 
Experimental 

(in/sec)

Predicted 
Burning Rate 

(in/sec)

K2 1.061 0.024 ±0.023 1.050

D7 1.006 0.018 ±0.022 0.964

B8 0.854 0.027 ±0.025 0.855

J12 0.735 0.125 ±0.092 0.675

M10 0.731 0.008 ±0.008 0.773

G6 0.799 0.006 ±0.007 0.851

Figure 4-10. The results of the response surface analysis were plotted as a two-
dimensional contour for a 1,000 psig condition and extruder speed of 85 
rpm. The numbers are the experimental results.
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Table 4-10. A comparison between the experimental data and the predicted burning rate 
for test pressure of 1,500 psig and extruder screw speed of 85 rpm. The 
entries in the table start at the top of the diagram and precede clockwise 
ending in the center.

ID

Average Experimental 
Burning Rate (in/sec)

Standard 
Deviation, 
s, (in/sec)

90% C.I. for 
Experimental 

(in/sec)

Predicted 
Burning Rate 

(in/sec)

K2 1.276 0.005 ±0.006 1.245

D7 1.272 0.018 ±0.017 1.184

B8 1.00 0.019 ±0.016 1.019

J12 0.773 0.174 ±0.166 0.763

M10 0.834 0.006 ±0.007 0.864

G6 0.915 0.018 ±0.021 1.003

Figure 4-11. The results of the response surface analysis were plotted as a two-
dimensional contour for a 1,500 psig condition and extruder speed of 85 
rpm. The numbers are the experimental results.

4.3 Design of Functionally Graded Rocket Propellant
4.3.1 Selection of Gradient Architecture

The next step in the research was to prepare functionally graded propellant for 

characterizing in acoustic strand burning tests. (These burning rate data for graded 

propellant are described in a later section.) Aside from the obvious benefit of revealing 
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the full range of burning rates within the process and formulation constraints chosen, 

the response surface analysis provided invaluable insight in choosing directions in 

which to construct functional gradients. In that these propellants had never before been 

produced or tested, a strategy to select the proper gradient was followed. 

The most palpable choice was to maximize the magnitude of the gradient; this 

would have had the benefit of being the least ambiguous to characterize. Not too 

surprising was the fact that the predicted extremes in burning rate lie at the vertices. 

Referring to Figure 4-11, the maximum burning rate was predicted at the upper right-

hand vertex where the concentration of inert binder was lowest and the relative amount 

of fine particle AP was highest. Likewise the lowest predicted burning rate was located 

at the bottom left-hand vertex. At this location, the binder content was highest and the 

fine AP content was lowest. This strategy could have been achieved using the same 

process configuration used for producing the homogeneous samples—two AP solids 

feeders.

However there was an additional constraint added. It was necessary to be able to 

visually detect the onset of the gradient in an extruded grain; otherwise, there would 

have been no indication that the correct graded segment was chosen for characterization 

until the material was actually fired. That approach would have been unwise. 

The introduction of a dye into the extruder at the initial time of the solids step 

change was a method that had been developed and tested at UMD in the gradient 

research using the smaller extruder. The same material and hardware that was used to 

conduct studies at NAVSEAIHMD could be used to mark the start of the gradient. This 

came at the expense of one solids feeding port thus limiting the gradient production to 

one AP feeder. In other words, maximum gradient production and introduction of a 

tracer were incompatible goals.

Therefore being limited to one solids feeder dictated a limitation to a single coarse-

to-fine (C/F) ratio during the gradient manufacture. A blend AP particle sizes feeds well, 

and a sufficient supply of it was blended in advance and stored in a room-sized oven for 

preservation. The dotted line in Figures 4-9 through 4-11 indicates the direction of a 

constant ratio. Specifically that ratio was 79/21. This was chosen as the gradient for 

producing the first functionally graded rocket propellant for testing and characteriza-
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tion. The gradient strategy was to use a step change in the concentration input of AP to 

produce a gradient response in the extrudate.

4.3.2 Prediction of Burning Rates Along Gradient
Predictions of the burning rates for the extremes of the chosen gradient and some 

intermediate points were made possible using the response surface empirical models. 

From these an estimate of the burning rate exponent could be calculated. Three models 

were used—one for each of the test chamber pressures. The predictive expressions are 

as follow using the coefficient estimates from Tables 4-5 to 4-7. 
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2
1psig500 6451.04209.05911.0 zuzuzr +−=� r2 = 0.9969 (46) 

These new predictions use the exact same coarse/fine ratio (79/21) and an extruder 

screw speed of 85 rpm. Instead of only approximating the extremes, exponents for some 

intermediate binder concentrations were calculated. The ingredient parameters are given 

in Table 4-11 along with the transformations to u-pseudocomponents using (40) through 

(42). The models were retained in the pseudocomponent form for convenience. The 

effective yields can be interpreted as the resultant amounts of 90 µm and 10 µm AP in 

the target compositions. In other words, it takes into account that the AP was fed as a 

blend. The resulting burning rates predicted by (44) to (46) are given in Table 4-12.

Table 4-11. The ingredient combinations used to make the gradient in extruded rocket 
propellant and their transform to u-pseudocomponents. 

Effective 
Yields u-pseudocomponents

RPM Coarse Fines Binder u1 u2 u3

85 0.624 0.166 0.210 0.246 0.754 0.000

85 0.656 0.174 0.170 0.149 0.729 0.123

85 0.672 0.179 0.150 0.100 0.716 0.184

85 0.687 0.183 0.130 0.052 0.703 0.246
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Table 4-12. Predicted burning rates (inch/sec) for 85 rpm are given as a function of 
binder concentrations and chamber pressures.

Binder Fraction 0.21 0.19 0.17 0.15 0.13

For 1500 psig: 0.579 0.721 0.872 1.034 1.207

For 1000 psig: 0.538 0.653 0.778 0.913 1.058

For 500 psig: 0.513 0.537 0.557 0.573 0.584

The log of the predicted burning rates was plotted as a function of the log of test 

pressures to estimate the predicted burning rate exponents in Figure 4-12. The 

exponents calculated from the above predictions are given in Table 4-13 using the 

following relationship (ignoring the effects of temperature—a factor that was treated as 

a control). The relationship between burning rate and operating pressure can be 

modeled as a power law (47). The exponent is very significant to rocket motor 

designers and propellant formulators.

nAPr =� (47) 

As the exponent approaches one, the sensitivity of the burning rate to pressure 

disturbances increases. It is possible for the burning reaction to escalate to a 

deflagration resulting in a catastrophic failure of the rocket motor. Typically more 

pressures are tested to get a better estimate of the exponent. In this case, the minimum 

number of test pressures, three, was requested due to resource constraints. 

Table 4-13. The exponents in the table were estimated using burning rates predicted by 
the response surface models.

Binder A n

0.21 -2.06 0.107

0.17 -1.37 0.416

0.13 -0.578 0.682
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Figure 4-12. The log of the burning rates predicted by the response surface models were 
plotted as a function of the log of test pressures to estimate the burning rate 
estimates given by the linear slopes.

Some confidence can be given to these predictions. An extra test point was 

included in the homogeneous burning rate series (point P in Tables 4-2 to 4-4) to check 

the fit of the response surface model. It was intended to represent the nominal 

formulation for IH-AC3. However an error in translating the intended mixture setpoints 

to feed rates resulted in a unique combination of AP far from the nominal. In spite of the 

error, the point still served as a check of the response. 

The measured experimental burning rates for the model checkpoint were compared 

with the variance from the lack of fit test to validate the response surface model 

(Beauregard, Mikulak et al. 1992) in Table 4-14. For each pressure the fit test indicated 

a high level of significance in the predictive model (much better than α = 0.1). It can be 

argued that this significance only applies to the region in the vicinity of point P. In a 

circumstance of good fortune, the error in translating the feed rates resulted in placing 

the new point along the line that was chosen for the gradient. So the models do a good 

job of predicting the burning rate behavior in that region of the design space.
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Table 4-14. A lack of fit test of the variance indicated that the model is highly 
significant in predicting burning rates in the vicinity of point P.

Test Pressure
Predicted

(in/sec)
Measured

(in/sec)

1500 psig: 0.953 0.975

1000 psig: 0.845 0.802

500 psig: 0.566 0.536

A rigorous check of the response surface should involve more than one point 

strategically placed in centroids of subsets of the design region. The combination and 

loading of AP in the nominal formulation was close to one of these extra points. More is 

always better in conducting experiments of any nature, but this is especially true in 

statistical analysis. However, it was very important to keep the total of experiment 

combinations to a minimum, so more test points were not included. 

Later in the research during the functionally graded strands test series, strands 

made at the terminal homogeneous compositions were tested in the acoustic strand 

burner, 79 and 87 percent by weight with a coarse/fine ratio of 79/21. The data are 

presented in Table 4-15. Note that these test pressures are different than those used to 

model the response surface; however, an accurate prediction for the two homogeneous 

compositions were easily made by the following. 

The burning rates predicted from the three models for the pressures of 1,500, 1,000 

and 500 psi were fit to equation (48) compared with the experimental results in Table 

4-15. The linear least squares of the log transformation were conducted.

PnAr 101010 logloglog +=� (48) 

The burning rate exponent, n, and coefficient, A, were easily determined, and the 

following equations were used to predict the burning rate response for the pressures 

tested using the acoustic strand burner. The values used in (49) and (50) were given in 

Table 4-13.

106.0264.0:79%For Pr =� (49) 
682.000872.0:87%For Pr =� (50) 



91

These equations based on the response surface models predicted the experimental 

results quite accurately with only one exception. 

Table 4-15. The experimental burning rates were measured using the acoustic strand 
burner of the two homogeneous compositions representing the 
homogeneous beginning and ending conditions of the functional gradient. 
The predicted rates are presented for each composition and pressure. 

Test Pressure: 400 psi 800 psi 1,200 psi

Wt. Percent AP
Measured

(in/sec)
Predicted
(in/sec)

Measured
(in/sec))

Predicted
(in/sec)

Measured
(in/sec)

Predicted
(in/sec)

87.00 0.688 0.519 0.865 0.833 1.074 1.098

87.00 (replicate) NA 0.889 1.014

79.00 0.463 0.498 0.518 0.536 0.602 0.559

79.00 (replicate) 0.453 0.583 0.622

Another concern with producing a large gradient in the solids loading between 

fractions of 0.79 and 0.87 by weight was the relatively high burning rate exponent of 

the higher loaded composition—a predicted exponent of 0.68. A high exponent can 

amplify chamber pressure fluctuations into an upward cycle that can lead to catastrophic 

failure of the test motor. An upward pressure fluctuation increases the burning rate 

according to the exponent, the higher burning rate results in a higher pressure.
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5.0 Characterizing the Evolution of Gradient 

Architectures in Response to Step Inputs 
This project is concerned with the transient state for operating the extruder in order 

to understand how the response of the process can be used to control the evolution of 

gradient architectures. In this sense, a change in ingredient feeding is an intentional 

disturbance, and the flow through the various zones in the extruder is unbalanced. There 

has not been much research in quantifying and predicting the transient nature of the 

degree of fill/mass flow. An as yet unpublished work by Mudalamane & Bigio 

(Mudalamane 2002) at UMD has investigated applying the principles of conservation of 

mass to individual sections in the process and iteratively solving for a solution. The 

results of that research investigation can be used to provide first-order principles for 

modeling the effects of operating conditions investigated in this research effort, 

explaining the measured shape function factors and possible effects of transience on the 

response of the extruder. However, for this research, the steady state RTD and RVD

process models were sufficient to predict the evolution of the gradient architecture. 

The step response experiments were conducted at both UMD and NAVSEAIHMD

using inert and energetic material respectively. In either case, a steady state process was 

disturbed by a step change (positive or negative) in the feeding rate of the filler. In both 

machines the response of the material transport was measured at the entrance to the die 

using fiber optic probe sensors. In the UMD experiments a black colored concentrate was 

added concurrently with the KCl at the time that the step change was initiated. At 

NAVSEAIHMD, a one-time pulse of dye marked the beginning of the gradient. 

Furthermore the probe used at NAVSEAIHMD was sensitive enough to detect the shift in 

propellant color due to the change in solids loading without doping with a dye. 

Conducting various material property measurements on samples of the extrudate 

allowed further measurements of the responses. The techniques were different 

depending upon inert of energetic and efficacy of the test. Initially there was an 
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emphasis on nondestructive techniques such as Shore hardness and deformation due to 

ball indentation. As these methods proved to be insensitive or prone to scatter, 

destructive testing methods were employed with better success ranging from density 

and burning to cutting resistance and optical analysis of serially sectioned extrudate.

5.1 Inert Composite at UMD
5.1.1 Sample Quality Strategy

The development of a viable process to produce the KCl-filled inert composite 

using the ZDSK-28 twin-screw extruder was focused on finding a range of solids fill that 

would allow viable sampling over a range of conditions and die geometries. 

Experimentation with measurements and sample collection methods was being 

conducted concurrently. Sample collection alone was challenging because the 

composite had to be processed at a high temperature to minimize accumulation in the 

KCl feed port that in turn necessitated a higher degree of fill to increase the stiffness of 

the extrudate such that it maintained some physical integrity. Yet the minimum fill level 

had to be low enough to allow a reasonable jump for the ingredient step experiments. A 

step input of 40 to 60 percent solids by weight and vice versa was quickly determined as 

a reasonable parameter.

A low budget conveyor was built and refined over a period of weeks that would 

allow the collection of long strands of extrudate and yet minimizing kinking and 

stretching of the strand. The result was the establishment of a viable process window 

(throughput, filler concentration, temperature zone set-points, and screw rpm), tracer 

addition methods, and a suitable collection technique.

The selection of die geometry was progressive during this process, and the 

geometry needs were dictated by the optimization exercises and material 

characterization needs and results. The first choice was the round geometry. With a 

diameter of 12.4 mm, it had the largest diameter possible given the design of the 

adapter. It offered the largest cross-sectional area; and therefore, the least die pressure, 

the most simple die flow, and the slowest linear extrusion rate. However it was prone to 

losing its round geometry by slumping before cooling sufficiently that resulted in a non-

uniform surface and cross-sectional shape as seen at far right in Figure 15. Upon 

collection the strand would deform to a broad oval shape with a flattened bottom. Also 
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the quality of the collected strands suffered due to that fact that it was used with the 

earliest incarnation of the conveyor.

Figure 5-1. These are representatives of the best samples collected using the slit, square, 
and round-shaped dies.

Table 5-1. Die geometries and cross-sectional areas fabricated to use with UMD’s TSE.  

Die Shape Dimensions Cross-Sectional Area

Round 12.4 mm 153.8 mm2

Slit 10.9 x 4.1 mm 44.7 mm2

Square 8.4 mm 70.6 mm2

Initially it was thought that a more flat and thin geometry would be easier to 

characterize physical properties using methods such as Shore A hardness, the round die 

was dropped in favor of the rectangular or slit die. Given a height of 4.1 mm, the 10.9 

mm width of the slit was the maximum allowed by the design of the adapter. The slit 

die did have some of the same problems such as stretching and kinking as the round die; 

however, this was reduced as improvements to the conveyor were made. Furthermore, it 

had a higher linear velocity resulting in a strand with a much greater length compared to 

the round shape for the same volume extended. The bottom of the extrudate was 

relatively flat due to the conveyor collection method, and the top had a convex surface 

as seen in Figure 5-1 far left. The most serious detriment to using the slit die was the 

resulting complex three-dimensional die effects introduced into the evolving gradient. 

The complex flow field was attributed to die entrance effects resulting from the 

compromised design of that die. (There were machining demands in the original design 

that could not be met within the dimensional constraints.)
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The slit die was in turn dropped in favor of the 8.4 mm square die that had a higher 

cross-sectional area than the slit die. Because of the low aspect of the geometry, the 

EDM constraints did not compromise its design. Also it was used with the latest 

incarnation of conveyor design. The two combined to yield a high quality strand that 

did still have some necking problems if the operators were not completely steady in 

their collection. However it had the most consistent surface quality compared to the 

other two dies, and most importantly there were no three-dimensional die flow effects. 

It was expected that any die would have some measurable effect of material 

distribution within the evolving gradient structure due to shear-induced flow. This was 

seen with each die in that the gradient would first appear in the center of the extrudate 

and spread outward as a function of time until the transition was complete—a two 

dimensional gradient. The idea gradient would be one-dimensional. The slit die resulted 

in three-dimensional effects that likely contributed to difficulties in characterizing the 

physical properties of the graded slit-shaped specimens. 

The focus of the characterization methods gradually progressed from non-

destructive (NDE) to destructive methods. These are described below and in a 

subsequent chapter. It was desirable to have one or more NDE methods to fully 

characterize the development of the graded microstructure in an extruded material. 

Attempts were made with Shore A hardness and ball indentation methods without any 

conclusive and quantitative results. The methods of characterization progressed to 

techniques that required serially sectioning the strand. These were a force of cutting 

determination, grayscale image analysis of thin cross-sections, density measurements of 

short length (1-2 cm) sections, and microscopic analysis using scanning electron 

microscopy and energy dispersive x-ray (EDX or EDS) spectroscopy. A completely 

destructive test of pyrolosis was performed on selected sections to quantitatively 

determine the content of solids that proved to correlate well with the density.

5.1.2 Experimental Conditions and Responses for the Step Experiments
The graded strands of the KCl composite were produced by positive and negative 

step inputs of solids fill from 40 to 60 percent by weight and vice versa. Smaller steps 

of 50 to 60 percent filler were collected as well. Two screw designs using two dies were 
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evaluated though not independently. The screw designs were designated #0722 and 

#0814 as given in Figure 3-10. 

The step changes were affected by the KCl feeding rate alone. Recall that the twin-

screw compounding operating had two stages—polymer addition and melting in the 

first stage and solids addition and mixing in the second stage. The twin-screw extrusion 

operation for IH-AC3 propellant was a two-stage system; therefore, it was intended to 

reproduce the process similarity for the UMD studies. 

If a polymer feed rate change were to be made upstream of the KCl addition, the 

mean residence time of the upstream section would have to be taken into account. 

Furthermore the measured response to any solids step change would be inextricably 

coupled with the polymer change. To keep the research at a fundamental level of 

understanding, the step change was studied uncoupled from any changes in the polymer 

transport. In other words, the polymer feeding rates were not changed during the 

measurements. 

Simultaneous with the KCl step change, a step change in tracer was initiated. The 

tracer was Reed Omnicolor black color concentrate which was added at rate of one 

pellet every 4 seconds for at least three minutes and often much longer. The tracer was 

added to the top of the KCl feed chute. It represented a visible leading front of the 

gradient and was useful to determine when the gradient was approximately completely 

developed in the collected strands. 

At the same time at the KCl feeding rate change and the initiation of the tracer, an 

operator would cut the extrudate stream at the die and begin collecting the long strand 

of extrudate. The reason the strand was cut at that time is to give a point of reference on 

the collected strand as to when the change was made. In other words, it was a ready 

reference for t0 on the collected strand. At the end of sample collection, the strand was 

cut and the tracer addition was halted. The KCl was maintained at its current rate. As 

the tracer was flushed from the processing section, it more than allowed enough time 

for the process to reach a steady state at the new KCl feeding rate. The next step change 

was not initiated until the color of the extrudate had returned to a brilliant white.  
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5.1.3 Characterization of Gradient Architecture Evolution of the Inert 
Composite 
Two of the research objectives were: 

1.  How to characterize the gradient produced by 
disturbances to the twin-screw extrusion process? 

2.  Can the description of the gradient be related to some 
process characteristic?

A variety of methods were employed to ascertain the nature of the gradient induced 

by the step input. On-line real time measurements were made as well as off-line 

characterization techniques were investigated. The first objective was to determine a 

non-destructive method. On-line analysis of color using a light reflectance measurement 

was one technique that proved successful. Other non-destructive evaluation (NDE)

methods were Shore A hardness and force measurements by a ball indenter. These 

methods were not sensitive enough to detect the change in solids content in the POE. 

A number of off-line destructive techniques were employed to quantify the 

microstructure of the gradient. Several employed microscopic analysis to characterize 

the morphology of the filler, SEM, EDX, and optical for example, and image analysis 

techniques to quantify the development of the gradient. Samples were taken to 

NAVSEAIHMD for density analysis using a helium pycnometer. Two other techniques 

were force measurements during razor sectioning and gravimetric ash residue. These are 

discussed in the following. 

5.1.3.1 Gradient Characterization by On-line Light Probe
The on-line response of the extruder’s processing section to a step input was 

measured using the same instrumentation as for the residence time. The technique for 

delivering the tracer was described in the preceding section. Measurements were taken 

for both gradient directions—positive (solids increasing) and negative (solids 

decreasing) directions. The filtered, but otherwise untreated, data are plotted in Figures 

5-2 and 5-3. Note that as a matter of convention, the signal response data is plotted such 

that the final state is always high. This is consistent with the step input; the step is 

always from low to high regardless of actual solids concentration. (The convention does 

not carry over to the physical characterization measurements presented later in the 

chapter however.)
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Figure 5-2. The filtered, but otherwise untreated, online reflected light probe response 
to a step input of solids filler is shown for a positive step change in the 
concentration of KCl. The delay time, td, was dependent upon screw 
geometry. The differences in signal magnitude represent a day effect in 
instrument sensitivity. 

Figure 5-3. The filtered, but otherwise untreated, online response to a step input of 
solids filler is plotted for a positive change of 40 to 60 percent by weight 
KCl. The response was consistent and repeatable for a given screw design 
(#722).
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The signals were scaled such that the average maximum of F(t) = 1 and fitted to 

various convolution functions of different order. The first order was the best fit (Figure 

5-4a) for one sample, but the second order was the best fit (Figure 5-4b) for another 

sample run on a different day. The fit quality was determined by the values for mean of 

residuals squared (RMS) as given in Table 5-2. This suggests that one function can be 

used to approximate the other and that the order of the system is most likely between 

first and second order. 

(a)                                                          (b)

Figure 5-4. Step changes were scaled so that the average maximum signal was equal to 
one, and the signals were then fitted with first and second order convoluted 
functions.

Recall that the RTD and RVD responses were fit to models of one and multiple ideal 

mixers in series with a delay time (Tables 3-1 and 3-3 respectively). The issue was to 

determine if the shape factors of the RTD or RVD can be related to the response of the on

-line light intensity sensor as the gradients evolved. The shape factor for a second order 

fit of (14) to a normalized RTD was evaluated as a prediction term for the gradient 

evolution response at the diehead (where the light sensor was located). The 

experimental data for the UMD TSE were mixed for reasons due to how the tracer was 

introduced and the accumulation of material in the KCl feed port. There was a 

difference between filled and unfilled POE. For example, the step response for 

conditions of 180 rpm screw speed, 3.60 lb/hr total throughput of unfilled polymer, such 

as test 0723/1547 from Table 3-1. 
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Table 5-2. Shape factors for first and second order models fits to responses in on-line 
color analysis for step changes in KCl feeding rate. 

Step 
Direction

Screw 
Design

Sample 
ID

System 
Order

Shape 
Factor,

at

95% C.I. for 
Shape Factor

Sum Squares 
Residuals

Positive #722 1654 first 0.0829 ±0.0002 0.0011

“ “ “ second 0.1777 0.0005 0.0018

“ “ 1447 first 0.0991 0.0004 0.0022

“ “ “ second 0.2027 not available 0.0005

“ #826 1628 first 0.0823 0.0002 0.0013

“ “ “ second 0.1776 0.0004 0.0014

Negative #729 1400 first 0.0837 0.0002 0.0008

“ “ “ second 0.1847 0.0005 0.0017

“ “ 1501 first 0.1132 0.0004 0.0012

“ “ “ second 0.2442 0.0006 0.0015

“ “ 1529 first 0.1059 0.0007 0.0014

“ “ “ second 0.2168 0.0004 0.0007

“ “ 1423 first 0.0922 0.0003 0.0013

“ “ “ second 0.2035 0.0005 0.0015

In the unfilled case, the step response due to a change in filler concentration was 

simulated by a step change in color introduced at the second open feed port (where KCl 

was fed for filled conditions). Characterization of extruded graded strands show that the 

dispersed color concentrate was transported at the same rate as particles of KCl in the 

ZDSK-28 and AP in the ZSK-40 extruders. Data supporting that conclusion are 

presented later in this chapter. The method of effecting the step was to begin feeding 

pellets of Reed Omnicolor black concentrate at a rate of one pellet every four seconds. 

The filtered response of the light intensity sensor is shown in Figure 5-5 along with an 

RTD measurement at the same conditions.
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Figure 5-5. The responses for a step and impulse input of tracer are shown for 
processing conditions of 3.60 lb/hr POE (no filler), 180 rpm screw speed, 
and screw design #0723. 

The step response data were scaled such that they ranged from 0 to 1, and the RTD

data were scaled such that the mean residence time, tm = 75.3 sec, coincided with 0.5 on 

the ordinate. The mean residence time (for a second order RTD) was calculated using,

( ) ( ) dttettatt
end

d

dt
t

t

tta
dtmean ∫ −−−= 2)( (51) 

The scaled data were plotted as shown in Figure 5-6 along with predictions for the 

gradient response using the convolution functions for a first order mixer with a delay 

time. (The second order convolution model was not appropriate for any shape factor.) 

The simple convolution function for this type of system, Table 2-1, was given by,

( )dt ttaetF −−−= 1)( (52) 

The values for the parameters were based on the RTD for these conditions. The RTD

parameters, Table 3-1, were used instead of the RVD because the step response was 

measured in the time domain. Unsubstantiated assumptions regarding the instantaneous 

flow rate would be necessary for the step response to be translated to the volume 

domain. However with instrumentation to determine flow rate at the die (or elsewhere 

internal to the extruder); the more general and preferential treatment of the on-line 
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probe data in the volume domain could be performed. This approach will be pursued in 

future studies. 

RTD for 0% KCl and 3.60 lb/hr
Predictive Convolutions of f(t) to
Predict First Order Step Response

Best First Order Nonlinear Fit: Poorly Predicts Step Input Response

( )756.2000910.000910.0)( −−= tetf
( )tetF −−= 756.2000910.01)(

Best Second Order Nonlinear Fit: Accurately Predicts Step Input Response

( ) ( )756.200265.02 756.200265.0)( −−−= tettf ( )tetF −−= 756.200265.01)(

Figure 5-6. The optical probe data from Figure 5-5 were scaled for the unit response to 
impulse (RTD) and step inputs of tracer. The shape factor, at, from the first 
and second order RTD models were compared in their efficacy for predict-
ing the first order step response at the same set of processing conditions. 

A similar treatment of the response with the KCl-filled inert composite was not as 

fruitful for a number of possible reasons. The scaled data for an impulse and step 

response are plotted in Figure 5-7 with predictions for the step response. There were 

two apparent anomalies that were inconsistent with the unfilled case. The first was the 

longer delay in the light intensity probe response: td for the RTD was 17.180, and td

times for the positive step responses were 28.564 sec and 26.828 sec (data not shown in 
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Figure 5-7). Experimental error was unlikely because the response was approximately 

repeatable according to data from an experiment conducted on another day. Note also 

that the td (21.508 and 20.776 sec) for the negative step response was closer to the 

experimental RTD with only a slight delay. 

One explanation is that there was a rheological effect at the site of the probe tip. 

The tip was slightly recessed in the barrel nip creating at small pocket. At steady state 

conditions the refresh rates for material transport at the probe tip were very high and 

reproducible. A step disturbance in solids loading certainly affected the rheological 

properties, and the probe response data indicate that the recovery was dependent upon 

gradient direction. For a positive step the more viscous material (60 percent filler) was 

less efficient in clearing the less viscous material (40 percent) than the case for a 

negative step. The less viscous material in the nip pocket acted similarly to a slip layer, 

so the rate of removal was small. Once enough material had been exchanged, the 

gradient evolution was well developed. The probe was then exposed to a process stream 

in which the color change was advanced. This was evident in the rapid response rate 

shown in Figure 5-7. 

Figure 5-7. Experimental responses for the impulse addition (RTD) and step inputs were 
scaled and plotted for the case of KCl-filled thermoplastic elastomer. 
Shape factors for the first and second order RTD models poorly predicted 
the step response for the same set of processing conditions.
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5.1.3.2 Shore A Hardness Measurements
The hardness of a polymer matrix composite is a function of many factors, such as, 

polymer composition and degree of crosslinking, filler type and concentration, size 

distribution of the polymer, temperature, etc. The method for determining the surface 

hardness is empirically measured by the resistance of the surface to a penetrating 

spindle using a durometer (ASTM 2002). The Shore Instrument and Manufacturing 

Company makes the most common durometers. Their devices are referred to as a Shore 

A or Shore D durometer for soft or relatively firm materials respectively. The hardness 

is attributed to a complex combination of physical effects and is thus considered an 

empirical measurement only. However it is useful to track the progress of the 

crosslinking reaction for thermoset polymer matrix composites. It was hypothesized that 

the hardness of the KCl-filled composite would vary as a function of filler content. 

In addition to the composite properties, there are many other factors that influence 

the Shore A measurement. The sophistication of the durometer is important, e.g., 

damped release, electronic vs. mechanical gauge, surface characteristics of the sample, 

time of reading after penetration, etc.(ASTM 2002). Under the best of conditions, the 

readings are generally given as ± 5 according to the ASTM. Surface condition was a 

strong negative factor in this study.

For this project, the efficacy of the Shore A instrument was studied to determine its 

sensitivity to two-dimensional changes in filler concentration for the graded extruded 

strands. Two types were used. The first was manually operated with no damper and was 

obtained on loan from NAVSEAIHMD. It was no surprise that operator dependence 

strongly influenced the data especially the maximum reading. Furthermore, the 

mechanical gauge incorporated a second needle that would remain at the maximum 

reading; this feature had a tendency to retard the readings was well. It is the nature of 

elastomeric composites to relax after penetration, so a fixed arbitrary time was allowed 

before taking the second reading—thirty seconds in this case. Regardless of operator, 

the data from the manual device were highly variable and no objective trend was 

observed along the length of a graded sample. 

A second device was obtained from within the Mechanical Engineering 

Department at UMD. It was more modern than the manual device and featured an 
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automated descent and penetration measurement with an electronic display. Samples 

from a strand of graded composite were measured for surface hardness using a. The 

samples represented the best surface collected to date in terms of flatness and 

geometrical consistency, although there were instances of slight and severe kinking of 

the strand during collection. Measurements were taken from the top of the strand, 

characterized by a convex cross-sectional shape, and the bottom which had a flatter 

cross-section shown in Figure 5-8. Samples were chosen from the beginning of the 

strand with the higher KCl content of 60 percent by weight, the end with the lower 

concentration of 40 percent by weight, and many locations in the graded transition 

region. 

(a) (b)

Figure 5-8. Cross-sections of KCl-filled strands extruded through square (a) and slit (b) 
dies illustrating the flatness of the surfaces. Both samples were saturated 
with black-colored tracer. 

The results are presented graphically in Figures 5-9 and 5-10; only the rectangular 

shaped sample was hardness tested. In Figure 5-9, the hardness was tested at three 

locations each along the top and bottom external surfaces. Note that there is little or no 

apparent difference between the two filler concentrations. To eliminate the possibility 

that external surface imperfections were negatively influencing the accuracy of the 

results, further testing was conducted on strand cross-sections where the gradient was 

present. The results, plotted in Figure 5-10, show that the surface was having a adverse 

effect, but the hardness was not strongly influenced by the filler content over the range 

studied. Further statistical testing, such as Scheffe’s means testing (Hicks 1993) could 

be used to quantify or disqualify the data, but the insensitivity of the test seems to be 

graphically apparent. 
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5.1.3.3 Color Analysis of the Gradient Evolution in Extruded Strands
The extruded strands were labeled and sectioned into 5 cm segments as in Figure 

5-11. The die effects on material flow were quite apparent. While a one-dimensional 

gradient was expected in theory, the manifested gradient in the thin strands was more 

complex. The white material is the initial composition—60 percent KCl by weight. The 

dark material is the second phase—40 percent KCl. These effects were attributed to 

variations in the fluid velocity field within the eight-to-round transition piece and the 

die entrance especially. This was one of the reasons for abandoning the slit die in favor 

of the square die. A second strand made with the square die was subject to this method 

of analysis. Cross-sections of this strand are shown in Figure 5-12.

Figure 5-9. Shore A measurements after a 30 second relaxation period for graded strand 
using automated instrument on top and bottom surfaces of extruded strand. 
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Figure 5-10. Shore A measurements after a 30 second relaxation period measured on 
strand cross-sections. High KCl concentration is on the left hand side and 
low concentration is on the right hand side of the plot.

Figure 5-11. These sequentially dissected samples from an extruded strand representing 
the internal onset of the step change (set #1501) from an initial high 
concentration of KCl (white) to a lower concentration (dark).
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Figure 5-12. A strand extruded through a square die was dissected in the same manner 
as Figure 5-11. The strand was formed by a step change (set #1628) from 
an initial low concentration of KCl (white) to a higher concentration 
(dark).

A cross-sectional slice of approximately 2 mm thickness was taken from a free end 

of each segment, and characterized by image analysis at a magnification of 10x. Two 

typical cross sections are shown in Figure 5-13. Using Adobe PhotoShop software, each 

a rectangular selection box was drawn to maximize the internal area of each sample. A 

histogram of grayscale values for all the thousands of pixels within that selection area 

was computed. There was no significant difference in the mean and median values, so 

only the mean values were recorded and plotted as a function of location in Figure 5-14 

for the case of negative gradient and Figure 5-15 for the positive gradient example. 

As shown in the Figures, the RVD was a good predictor of gradient onset in the 

extruded strand. Note that it was more difficult to maintain dimensional integrity for the 

rectangular strand introducing more error in the volumetric estimation. Also note that 

once the gradient is apparent, the volumetric flow rate is also changing thus rendering 

the volumetric estimate less and less accurate as distance increases.
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(a) (b)

Figure 5-13. Cross-Section of Graded Strand at 10x Magnification for Gray Scale 
Analysis. (a) Sample at 50.3 cm Near Beginning of Gradient. (b) Sample at 
110.2 cm Showing Full Development.

5.1.3.4 Density of the KCl/Engage Composite
Samples of approximately 1 cm in length from the same extruded strands were 

taken to NAVSEAIHMD and were subjected to density analysis using a helium 

pycnometer. Only a limited number of strands were submitted due to the labor costs of 

the analysis. However density proved to be a reliable measure of the filler content and 

overall was a revealing and important property for gradient characterization. The test 

method consisted of one measurement per sample. Higher accuracy could have been 

achieved with measurements in triplicate but at higher costs also. The precision of the 

results was reported to four decimal places. Without multiple measurements, the 

accuracy can only be roughly estimated. In practice the density is reported to two 

decimal places. 
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Figure 5-14. The average grayscale values for the internal surface of cross-sections in 
sample #1501 were plotted as a function of position and volume. Volumes 
greater than Vd on the abcissa are not accurate. 

Figure 5-15. The average grayscale values for the internal surface of cross-sections in 
sample #1628 were plotted as a function of position and volume. Volumes 
greater than Vd on the abcissa are not accurate. 

The density data for the two graded strands is plotted in Figures 5-16 for the case 

of the negative gradient and Figure 5-17 for the positive step. The tests revealed that 

there was porosity in the samples. This was not unexpected because a vacuum was not 

applied to the extruder barrel after the KCl mixing zone. At the time of these studies, 

the ZDSK-28 at UMD was not equipped for vacuum processing. The degree of porosity 

was between 90 and 95 percent theoretical maximum density and was later witnessed 

by scanning electron microscopy (SEM) discussed in the next Chapter. 

In the case of the responses to the positive step change, the gradient is observed in 

the data where it would have been expected as predicted by the RVD. Also the density 

data reinforce the observed image response. This was not true in the case of the negative 

step. The image analysis indicated the start of the gradient approximately where it 

would have been expected. However the density data of the negatively graded samples 
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indicate the solids change is detectable approximately 0.1 liter after the color change is 

first detected. In that the microstructure of the rectangular sample was complex and far 

short of ideal, the ability to make predictions of the gradient characteristics was quite 

handicapped. The square extrudate was closer to ideal, and its microstructure was 

related to the RVD. 

Figure 5-16. The density values for approximately 1 cm length sections of sample 
#1515 were plotted as a function of position and volume. Volumes greater 
than Vd on the abcissa are not accurate. 
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Figure 5-17. The density values for approximately 1 cm length sections of sample 
#1628 were plotted as a function of position and volume. Volumes greater 
than Vd on the abcissa are not accurate. 

5.1.3.5 Pyrolysis of KCl/Engage Composite
The technique of pyrolysis for quantitative solids determination was pursued to 

validate the density measurements. It was especially important to validate the continued 

decrease in solids concentration for positions beyond 175 cm in the rectangular sample. 

The method was simple in that the mass of the sample was determined before and after 

consumption in a furnace set at 1250 F. The binder was completely consumed by the 

fire. Date for extruded samples was compared with a standard that consisted of an 

admixture of the starting ingredients. The accuracy of the measurements was better than 

0.7 percent. The results for the negative and positive gradients are plotted with the 

density values in Figures 5-18 and Figure 5-19 respectively.

Although the method was destructive, it did validate the density measurements and 

eliminated any uncertainty caused by the porosity. The long and unsteady decrease in 

solids concentration for the rectangular strand, #1501, was attributed to the effects of 

die geometry. However the pyrolysis does show that the solids content was approaching 

40 percent for that negative gradient. The results also show that the positive gradient 

begins at 50 percent and gradually increases to 60 percent in strand #1628. A review of 
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process notes for that test indicated that there were perturbation alarms for the KCl 

feeder that day. That would have contributed to the initial concentration being closer to 

52 percent rather than the setpoint of 50 percent by weight. 

5.1.3.6 Force Measurements for Sectioning KCl/Engage Composite
The force required to section the strands was measured as a function cutting time 

and position along the graded strands. An Instron load measuring test device was fitted 

with a razor blade and measurements of the force to cut the strands perpendicular to the 

direction of extrusion were made. The data were treated several ways such as maximum 

force and force divided by strand width (which was not a constant). There was wide 

variation in the measurements but it could not attributed to filler content or position. 

The technique was not pursued any further, but mechanical testing should be considered 

in future studies. It will likely be necessary to adapt methods and hardware to 

accommodate small samples although.

Figure 5-18. The KCl content as determined by pyrolysis and density values for strand 
#1501 were plotted as a function of position and volume. The two 
characterization techniques were equally sensitive in detecting the 
gradient.
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Figure 5-19. The KCl content as determined by pyrolysis and density values for strand 
#1628 were plotted as a function of position and volume. 

5.1.3.7 Prediction of Gradient Response in Inert Composite Physical Properties
The efficacy of RVD models to predict the architecture of the gradient in extruded 

material was explored in this research. Three material responses for the inert polymer

composite processed on the ZDSK-28 TSE were determined and found to exhibit similar 

characteristics. Figure 5-20 shows the physical properties, density, color, and filler 

content, of the graded composite as functions of position normalized to the unit step 

response. Note that they were similar in response rate indicating that a single predictive 

expression will suit all three.  
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Figure 5-20. The material property responses for a step change from 50 to 60 percent 
filler.

In this particular case several models were appropriate to describe the responses. 

Due to the relatively short gradient, higher values of the RVD shape parameter, av, were 

favored. With av = 80, there was not much distinction between a first or second order 

response. This suggests that the response may lie in between the two ideal cases and 

that more data within the area of the gradient would be warranted. Figure 5-21 shows 

the excellent fit of the first and second order responses. While RVD models were shown 

to describe the characteristics of gradient architecture, the next section discusses how 

RTD models were convenient to characterize process responses, e.g., on-line probes, die 

pressure, extrusion torque.

An important point regarding Figure 5-21 is that a shape factor from a third set of 

processing conditions was used to illustrate the robustness of the method to predict the 

material process responses for an extruded graded composite. The initial conditions in 

Figure 5-21 were 50 percent KCl and total throughput of 7.20 lb/hr, and the final 

conditions were 60 percent at 9.00 lb/hr throughput. The RVD shape factor was from a 

fit of a third order RD model at conditions of 40 percent filler at 6.00 lb/hr. This would 

not have been possible using the RTD parameter. 
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Figure 5-21. Using the RVD shape factor for processing conditions different from the 
initial or final states, a prediction in material property responses was still 
possible. The same shape factor predicted first and second order responses.

5.2 Processing and Characterization of Functionally Graded 
Rocket Propellant

5.2.1 Processing Functionally Graded Propellant in a Twin Screw 
Extruder and On-line Gradient Characterization
The justification for selecting a gradient of 79 to 87 percent solids at a constant 

79/21 coarse/fine particle ratio is given in great detail in Section 4.3. The process 

approach for gradient formation in the propellant was first studied at the UMD facility 

with inert material and discussed in the preceding section. The inert process at UMD was 

staged into zones because of the methods used at NAVSEAIHMD for the solid propellant. 

In the propellant continuous process, the first stage was the feeding, mixing, and 

plasticization of the binder ingredients. The throughput through the first stage was 

unchanged during the manufacture. The second stage was the feeding and mixing of the 

AP and a cross-linking compound. A step-change in the feeding rate of the AP intiated 

the formation of a gradient. The step change propagated through the second mixing 

section and continued through the die. There was a fiber optic probe at the diehead of 
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the extruder that could detect a color change in the propellant as the gradient developed; 

the probe was also used to detect a blue tracer that was dropped at the same time as the 

step change was made. This enabled a plainly visible demarcation of the beginning of 

the gradient in the extruded grain. 

The propellant was a deep red color with enough structural integrity to easily 

maintain its geometry during handling and a five-day cure in an oven at 55 C without 

slump. Because of die flow effects, traces of blue die on the outside surface of the 

extrudate are not accurately indicative of the beginning of the gradient. Being able to 

find the gradient in the extruded strands of propellant was of greatest concern during the 

planning for this stage of the research. Therefore significant planning and process 

estimation based on the UMD results were necessary before any process work was 

started. 

The objective was to make graded propellant for strand burning rate testing and 

small rocket motor testing. A meeting of the project’s participants and stakeholders was 

held to determine how much graded material to produce to adequately meet the test 

plan. A liberal number of nine rocket motors were determined as necessary for testing 

using slab motor testing hardware with certain significant modifications. 

Four of the motors were planned to consist of homogeneous propellant—two each 

at the low and high solids content. The remaining five were to consist of graded 

material, a mix of positively and negatively graded propellant with length and specific 

orientation to be determined after analysis of the strand burning rate results. 

Additionally enough material was needed to satisfy the requirements for strand burning 

rate testing at three pressures and only ambient temperature. 

5.2.1.1 Method of Manufacture and Remote Grain Collection
The following questions were addressed to plan a successful extrusion trial.

1. What length of extrudate to collect?

2. How to find the beginning of the gradient?

3. How long after the step disturbance would the gradient 
emerge?

4. How to distinguish composition and direction among 
various grains on the collection table?
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The throughput of 30 lb/hr and screw speed of 85 rpm were selected as the nominal 

conditions for this research. This formulation has been processed in excess of 50 lb/hr 

on the 40 mm TSE; however, the lower rate was chosen due to material conservation and 

especially die pressure minimization over a previously unexplored range of solid fills 

and coarse/fine ratios (details in Chapter 4). For the gradient condition selected, a 

change from 79 to 87 percent by only changing the AP feeding rate resulted in a 

throughput change from 30.00 to 48.48 lb/hr respectively. This influenced the dynamics 

of the volumetric throughput. The volumetric throughput and the linear extrusion rates 

are given in Table 5-3.

Table 5-3. The volumetric throughputs and linear extrusion rates for the steady state 
over the range of gradient starting conditions. 

Weight 
Throughput 

(lb/hr)

Percent 
AP

Theoretical 
Max. Density 

(g/cm3)

Volumetric 
Throughput 

(cm3/sec)

Linear Extrusion 
Rate (cm/sec)

30.00 87 1.794 2.107 0.27

30.00 79 1.710 2.211 0.28

48.48 87 1.794 3.405 0.43

48.48 79 1.710 3.572 0.45

The RDs in Figure 5-22 for the composite in the 40 mm TSE were used to estimate 

the length and time necessary to collect the extruded grains. It was straightforward to 

establish the length to collect for the homogeneous specimens. Since the maximum 

motor length was 19.7 cm (7 ¾ in.), a total of fifteen inches was collected of the two 

homogeneous compositions. 
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Figure 5-22. The plot shows the RVDs for IH-AC3 processed in the 40 mm TSE—the first 
for the probe in the AP mix zone and the other at the die entrance. 

The length of graded specimen was determined as follows. Using time as the 

metric, the lowest velocity extrudate was selected as the baseline. Let time zero 

represent the time of the step change. Therefore the gradient will be reaching the 

entrance to the die and the fiber optic probe at the delay time of 112 sec (29.8 cm 

extruded so far). The gradient will begin to emerge from the die exit at 112 sec plus the 

die residence time, tdie, which was unknown beforehand. Results from experiments at 

UMD suggested that the gradient was nearly fully developed at tmax. At that point more 

than 35 cm have been extruded. At tend the full gradient development is certainly 

complete (>55 cm total length extruded). 

The tdie was still unknown but assumed to be less than the time to extrude an 

additional 20 cm, the length of a motor. In other words, the gradient was thought to 

occur over a length between 6 to 25 cm (2.5 to 10 inches) based on reasonable and 

conservative interpretations of the RVD. Therefore a total grain length of 55 plus 20 cm 

(29.5 in. rounded up to 30 in.) was planned to be collected.
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The time to extrude and collect 75 cm was estimated using the following rationale 

based on the RVD in Figure 5-22. 

secondstotalt throughpuc volumetriFinal
motor test oneofVolume

t throughpuc volumetriFinal
gradientcomplete to volumeMax.

t throughpuc volumetriInitial
extrudedinitially Volume

=+

+
(53) 

For the positive gradient the total time was,
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and for the negative gradient,
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The volume extruded in each case was the same, 590 ml. Dividing by the cross-

sectional area of the die, 7.92 cm2, yields 74.5 cm (29.3 in.). Therefore extruded grain 

sizes of 30 in. were collected.

Knowing the number, kinds, and lengths of grains to collect, the execution of the 

extrusion trial was planned. A flawless execution of this plan with no process upsets 

enabled all the grains to be produced in one day’s work without having to conduct a 

refill of the AP hopper. This was the most complicated extrusion run performed to date 

at NAVSEAIHMD in the 13 plus years of the 40 mm facility because of the control room 

operations required to remotely execute the gradient formations and collections. It 

required four people at four stations in the control room: 

1. Someone to drop the dye and paint identification 
marks.

2. A lead operating engineer to monitor the overall 
process and keep track of time.

3. An AP feeder operator in change the feeding rate.

4. Someone to operate the guillotine cutter and collection 
conveyor. 

A chart with 24 run objectives was given to each operator. The chart included the 

number of spots to paint for identification, the AP feeder setpoint, percentage solids, and 

the estimated time required for the task. 
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A typical process stage was conducted as follows. 

1. During the ready stage, the feeder operator would 
enter the new setpoint but not the Send key. 

2. The timekeeper would announce go, and 
simultaneously, the painter would actuate the 
Newtomatic thus dropping a tracer pellet, the cutter 
would cut the extrudate at the die face with a 
guillotine cutter, and the AP feeder operator would 
press the send new rate button.

3. After several inches had extruded, the painter would 
paint a series of dots using black ink and an air brush. 
There were four varieties of grains corresponding to 
AP solids fill, thus each grain was painted with one to 
four dots. The ink was applied to the leading end of 
the extrudate so that the correct direction of extrusion 
would be preserved. 

4. The feeder operator would get ready with a new set 
point.

5. After the required length had been extruded, 15 or 30 
inches, the cutter would actuate the guillotine. Most 
instances this cut corresponded with the beginning of 
the next task and the procedure would be repeated. 

5.2.1.2 Process Response to Gradient Formation
Without going into great detail, a number of process responses were recorded using 

the facility’s data acquisition system. These included material temperature in the 

process section, fiber optic sensor response, extruder torque response, material pressure 

in the processing sections and the die, etc. The probe data is presented and analyzed in 

the next section. The pressure at the die and the extruder torque are of paramount 

concern in any extrusion process. There was a concern beforehand that the viscosity of 

the 79 percent fill was too low to clear the die of the higher viscosity 87 percent fill 

during a positive gradient step. If this happened, the die would have become blocked 

terminating the experiment for the day. This fortunately did not happen, nor was it close 

to happening. 

The pressure and torque were however quite responsive to the presence of the gra-

dient. Figure 5-23 is a plot of the motor speed of the AP feeder and the material pressure 

at the die entrance—the same location as the optic sensor. The abrupt jumps in the 

feeder’s motor speed on the right hand side mark the initiation of the positive and nega-
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tive step changes in AP feeding rates. How those changes affected the die pressure is 

shown in Figure 5-24. A close examination reveals that the pressure response due to the 

arrival of the gradient is consistent with the volume delay, vd, as shown in Figure 5-24.

Figure 5-23. The plot taken from data collected during the twin-screw extrusion of the 
rocket motors shows the response of the AP feeder to step changes of the 
setpoint and the delayed response of the die pressure. 

Figure 5-24. Interpretation of the volume delay accounts for the pressure increase at the 
die due to the arrival of the gradient. 
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Preceding the gradient pressure response was a slight (10 psi) increase in die 

pressure that was consistent with the volume delay in the AP mixing section, i.e., the 

volume processed from the point of step change until the tracer was detected at the left-

handed element in the AP mixing zone. The pressure increased at the die due to a likely 

torque increase due to the higher viscosity material in the mixing zone that was over 

compen-sated by a slight increase in the extruder screw speed.

The measured extrusion torque can be treated similarly. One difference from a 

pressure response is that the torque responds immediately to a disturbance. Material 

pressure did not respond until the disturbance had propagated to that particular location. 

Figure 5-25 illustrates the torque response.

Figure 5-25. Plot of the ZSK-40 extrusion torque in relation to step disturbances in the 
AP feeding rate. 

There are some measurements missing that would complete the understanding of 

the die pressure response. The first is an accurate and continuous measurement of the 

extrusion velocity. The second is more pressure transducers located slightly upstream of 

the die along the axis of the extruder screws to determine the degree of backfill at the 

die. Experience with other products has indicated that backfill is typically very low—

two or three flights at steady state. But that is the key term. The gradient formation 

process does not happen in the steady state rather the dynamic or disturbed state.  
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There was also a concern with making a relatively large change in the solids fill in 

one step due to perceived differences in viscosity. In conducting the reverse gradient 

from high solids, ergo high viscosity, to a lower viscosity flow, it was unknown if the 

pressure gradient generated by the screws would have been high enough to overcome 

the inertia due to a die full of high viscosity material. In other words, could the lower 

viscosity flow push out a die full of high viscosity propellant? It was shown 

experimentally that this was not a concern. In the pressure response data for the die 

pressure in Figure 5-24, there is not even a surge in the die pressure as the lower filled 

material enters the die. 

5.2.1.3 Optical Sensor Response to Step Inputs
The CAMES probe was used during the production of the graded grains to monitor 

the progress of the dye. A tracer containing a blue dye was inserted in the AP feed 

stream at the same time as the step changes; the dye served as a means to identify the 

gradients’ starting location. However upon analysis of the probe an important 

observation was made that had previously gone unrecognized. The color of the 

propellant changed in response to the gradient even in the absence of the blue tracer as 

shown in Figure 5-26. The optical probe had the sensitivity to detect the evolution of the 

gradient without tracer. 

The step changes between 79 and 87 percent solids in the feeding rate are quite 

apparent in Figure 5-26. Note that the feeder established a new feeding rate in 3 to 4 

seconds. The probe response showed shifts due to the alternating changes in the 

propellant’s color intensity and spikes resulting from tracer addition. 

5.2.1.4 Prediction of the Gradient Responses using RD Functions
The color change in response to a positive gradient, Figure 5-27, was subjected to 

further analysis to relate it to a residence distribution (RD) function. The shapes of the 

RDs for 79 and 87 percent AP were very similar as shown in Figures 3-25 through 3-28 

(live RTDs and RVDs). The coefficients of the RTD functions that best describe these data 

are given in Table 3-9 according to function order: first, second, third etc. At issue is if 

a RD function can be used to predict the gradient response as shown in Figure 5-27. The 

CAMES probe proved to be sensitive not only to blue colored tracer but also to changes 

in AP concentration. The concentration in Figure 5-27 is shown changing from 79 to 87 

percent by weight. 
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Figure 5-26. The trace of the AP feeder screw speed was plotted with the response of the 
CAMES probe. Step changes were readily apparent in both signals.

Figure 5-27. The response of the CAMES probe as a gradient evolves from 79 to 87
percent AP. 
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In Section 2.2.4, the convolutions of the RD functions were developed to predict the 

responses of the RD functions to a step input. These were applied to the measured 

responses from the extrusion studies conducted on inert composite at UMD as described 

in Section 5.1.3.1. The CAMES probe response was used to demonstrate that this was 

possible for a different material, i.e., IH-AC3 propellant, processed in a different TSE. 

The signal responses for the CAMES probe, extrsion torque, and die pressure 

transducer were isolated and unit normalized as shown in Figure 5-28. The die pressure 

and torque exhibited a slight over-shoot as the die was cleared of lower viscosity 

propellant during the gradient extrusion. The pressure transducers used at 

NAVSEAIHMD operated at 7 Hz; the signal was acquired at 1 Hz. The hardware was 

only capable of that one acquisition rate. Higher rates would have been desirable. 

The CAMES probe measured the light reflectivity of the propellant at a single fixed 

location, i.e., the die entrance or the screw tips. The torque and color response can be 

described using the model for a first order response. The model parameters were the 

shape factors from the second order RTD process models. Note the robustness in that the 

parameters for either 79 or 87 percent filler were satisfactory. The second order RTD

shape factors were powerful in that they were able to characterize color response, 

extrusion torque response, and die pressure. 

Although the die pressure transducer was located at the same position in the die 

entrance as the light reflectivity sensor, it measured an aggregated response representing 

effects of the die itself, the eight-to-round die approach, and the backfill on the rotating 

screws, in other words, a much larger volume than the sensor. The die pressure response 

was characterized by a second order response as shown in Figure 5-29. The response is 

not sensitive to using parameters from 79 or 87 percent AP systems.
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Figure 5-28. Plot illustrates how shape factors for RTDs can be used to predict the devel-
opment of the gradient in the TSE. Extrusion torque and probe response are 
first order responses and can be predicted using RTD shape factors for 
second order systems. 

Figure 5-29. Plot illustrates how the response in die pressure to the processing of a 
gradient in rocket propellant can be predicted using shape factors from 
second order process models for the RTDs. The pressure response was 
second order.



128

5.2.2 Combustion Rate Characteristics of Functionally Graded Propellant 
and Performance Profiles for Functionally Graded Rocket Motors
5.2.2.1 Acoustic Strand Burner Test Description
The best measure of a propellant’s combustion properties is of course to test it in a 

motor; however, this is costly and inefficient during development. Instead a good 

alternative is to conduct strand burning tests under a range of conditions, for example, 

chamber pressure and temperature. Testing at different pressures allows determination 

of the burning rate exponent. The common method of strand burning is to test six-inch 

long strands ¼-inch in thickness and report the average burning rate for approximately 

six strands. Two thin tin bridge wires are inserted through the strand after the ignition 

point and before the end. The distance and time between wire failure is used to estimate 

the burning rate. The accuracy of the method is >> 1 percent. 

The dynamic burning rate of functionally graded propellant was characterized 

using an acoustic strand burner (Rampichini, Ruspa et al. 2000). Employing a 

microphone in the combustion chamber, it is much more accurate, approximately 0.7 

percent, than using wires. The technique also allows a more local measurement of 

burning rate by putting a series of notches at regular intervals along the length. As the 

combustion front passing through a notched area, the acoustic signature will be affected. 

Post-processing the data through filters theoretically yields the time of occurrence for 

burning through each notch. Knowing the distance between them allows a local 

characterization of the burning rate. 

This technique is uncommon at NAVSEAIHMD, and there is not a lot of experience 

using it. Before the graded strands were tested, an excess of homogeneous samples were 

submitted to determine the efficacy of technique with IH-AC3. For reasons not 

completely understood, the acoustic signature from notched specimens was not yielding 

results that could be analyzed objectively. One reason may be due to the signal 

processing filters available in the analysis software for the unit. Another reason may be 

due to the fact that the notches excessively disturbed the combustion front affecting the 

burn through subsequent notches. 

Due to these reasons, it was necessary to reformulate a test plan for the graded 

strands. The test unit was still the most accurate way to measure the burning rate over 
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the terminal length of a sample using the acoustic signature. Furthermore the test unit 

accommodated one pair of bridge wires to measure the mechanical burning rate. A new 

technique and some modification of the test system were quickly implemented to allow 

testing of smaller lengths. Eventually it was found that strands as short as two and three-

inch segments could be tested. The distance required between bridge wires limited their 

use to the three-inch specimens. The general sectioning scheme and bridge wire 

placement strategy for a typical set of four graded strands is shown in Figure 5-30. The 

plan allowed for the fourth strand to be used in case of a misfire. A photograph of a set 

of test specimens with igniters and bridge wires in place is shown in Figure 5-31. 

5.2.2.2 Sample Preparation for Acoustic Strand Burning
One of the most important questions was the location of the gradient relative to 

some external reference. The external reference was the end of the grain that had been 

cut as the step change was implemented. Two of the grains, one for each step direction, 

were split axially to determine the starting location and internal structure of the 

gradients. Since the blade was approximately 6.5 inches wide, each of the two 30-inch 

grains was first cut into 6.5-inch lengths before being sectioned lengthwise. A 

photograph of the split grains is shown in Figure 5-31. 

Figure 5-30. This was the plan for burning rate tests in the acoustic strand burner.
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Figure 5-31. Typical 3-inch strand shown with igniter leads and bridge wires.

A number of important observations can be made from Figure 5-32. The deep red 

color is due to the iron oxide burning rate modifier present in the binder. However the 

intensity of the red appeared to be dependent upon the binder concentration. Looking at 

for example, the gradient within the topmost grain in Figure 5-32 was made by stepping 

down from 87 to 79 percent AP. The end with the higher solids loading, i.e., the left-

hand side, is lighter in color intensity. Contrast the left-hand side with the right hand 

side that consisted of 79 percent AP. 

The most interesting feature is the onset of the gradient as indicated by the blue 

dye. Recall that the dye was introduced simultaneously with the change in AP feeding 

rate. Since the dye was added as an impulse and not a step, only the onset of the grade 

can be readily seen. More definitive characterization using burning rate was conducted 

and described below. Judging by the contrast in red color to the left and right of the blue 

dye, there is a strong indication that the dye is transported at the same rate as solids in 

this process. 

The color in Figure 5-32 was falsified to enhance the contrast between the blue 

tracer and the red binder. The result of this process is shown in Figure 5-33. Another 

especially interesting observation was that the dye dispersion was a fascinating witness 

to the flow velocities and deformation rates during die flow. The onset location was 

expected to be different in that there were different volumetric flow rates in the initial 

states. For example in the topmost grain, the AP concentration was 87 percent by weight 

and weight throughput was 48.48 lb/hr. This explains why more material was extruded 

before the gradient formed. 
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Figure 5-32. A photograph of the axially split grains for each gradient direction shows 
the distinct difference in the die flow effects and internal structure of the 
grains. 

The onset location was estimated from the process RTD, but this estimate also relies 

upon the RTD of the die. The die RDs were not known a priori.  It was determined that 

the RD for the die was equal or greater than that of the processing section.  

Figure 5-33. The contrast between the blue tracer and red binder was enhanced in this 
false-color image of Figure 5-32. 
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Since the acoustic burning rate strand length was limited to a maximum of 6 

inches, it was necessary to take samples at two starting locations to achieve a longer 

range of measurements. Since the internal gradient was different depending upon the 

direction, a separate strategy was needed for each. Using the step down grain in Figure 

5-32 as an example, the first set of four strands was taken from a point two inches 

before the apparent beginning of the gradient. These points were based on the original 

knowledge that resolution of the local burning rate was possible to one half inch using 

notched samples. Two inches prior to the gradient would have been enough length to 

characterize the homogeneous material from the initial conditions. The first half-inch 

was reserved for the placement of the igniter leaving three measurements of the burning 

rate before the combustion front entered the gradient. Likewise the second sampling 

location was chosen based on the expectation of some measurements in the homo-

geneous region behind the gradient. To capture the full length, the second set was taken 

from a complete second extruded grain at point two inches downstream of the first set. 

A similar reasoning was followed for the step up grains except the second set was 

sampled further down from the first, because the gradient appeared more dispersed than 

the other direction. 

The strand cutting and sampling locations was quite complex. In a typical 

homogeneous propellant characterization study, the control over sampling location is 

not nearly as critical. This basic research effort had the goal of treating the graded 

propellant as a one-dimensional structure. For this reason only strands sharing the 

center axis were submitted for acoustic burning rate testing. These were identified as 

strands 1 through 4 as shown in Figure 5-35. The center strands are also shown to scale 

superimposed over a photo of the grains in Figure 5-34. A set of four strands 

representing the outer (closer to the external surface) were collected as well shown as 

strands 5 through 8. There was not a plan or adequate funding to test these outer strands. 

However they will be retained for a short time, because interest in characterizing the 

two dimension gradient effect may grow in the near future. 
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Figure 5-34. This is the plan for sampling the acoustic burning rate test strands. There 
was a different plan depending upon the direction of the step change. The 
grains were extruded from left to right. Only the internal strands that are 
closest to the central axis are outlined in yellow.

Figure 5-35. Eight strands were gleaned from each segment according to the above 
scheme. Numbers 1-4 were the internal strands along the axial center of 
the grain; these were of primary interest. Numbers 5-8 were taken 0.25 
inches away from the centers; these were not tested. 
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5.2.2.3 Acoustic Strand Burning Test Results and Interpretation
Once the capabilities of the acoustic test unit and the strand test strategy were 

settled, testing proceeded smoothly with minimal failures of the mechanical bridge wire 

measurements. The measured burning rate data for one set of four strands sectioned into 

six test specimens, as illustrated in Figure 5-30, are plotted in Figure 5-36. In that 

particular test series, there were two failures of the bridge wire measurement. Therefore 

only two mechanical points were plotted in Figure 5-36 instead of four. Because the test 

method of notching the strands at close intervals was changed after they had been cut, 

there was not enough length before the gradient to verify the initial homogeneous 

composition. These data will be sought in the future. For reference, the ranges of 

experimental burning rate measurements for the 87 and 79 percent homogenous 

compositions are shown in Figure 5-36.

Figure 5-36. The measured strand burning rates for the six short strands taken from the 
center of a single functionally graded rocket grain were plotted. Burning 
rates were determined acoustically and electrically. The reference burning 
rate ranges for 87 and 79 percent AP are shown. 

Figure 5-37 illustrates clearly how the sectioning strategy was used to characterize 

the gradient; only data from a single grain is shown for clarity. The best approach to 

interpret the data is to consider the measurements as moving averages. For example in 

Figure 5-37, the bars are not any uncertainty but rather represent the length over which 
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the average was taken. The mechanical burning rates (from the tin bridge wires) were 

treated as a moving average over a slightly shorter distance, though the technique not 

was as accurate as the acoustic measurements and were subject to higher variance. 

Figure 5-37. The bars on the plot represent the length over which the burning rate was 
determined—not uncertainty in location. The bars illustrate how testing of 
sequentially overlapping strands revealed the graded architecture. 

The negative gradient in AP content was characterized by taking center strands 

from two extruded grains (designations TDF, VDB, etc. were for identification purposes) 

at locations offset by two inches as indicated in the top half of Figure 5-34. There was 

good agreement between the two grains as shown in Figure 5-38, and offsetting the 

sampling extended the range of characterization providing verification where the two 

overlapped. In the future a longer offset distance will be employed. 

The grains that were processed with a positive gradient were sampled quite dif-

ferently. A grain identification error during cutting resulted in four positive gradient 

grains being sampled at each of the four patterns in Figure 5-34. All samples were sub-

mitted for testing to verify repeatability of gradient architecture. It was found that the 

repeatability was very satisfactory, but more tests would be necessary to quantify it. The 

acoustic burning rate data from the positive gradient strands are plotted in Figure 5-39. 
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The mechanical measurements of burning rate agreed well and complemented the 

acoustic measurements. These data are plotted together in Figure 5-40. 

Figure 5-38. Strand burning rate results from two grains for negatively graded 
propellant.

Figure 5-39. Strand specimens from four graded grains were subjected to acoustic 
burning rate strand testing to characterize the material response to a 
positive step change.
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Figure 5-40. Mechanical burning rate measurements during the acoustic strand burning 
tests agree well with the acoustic responses. 

The response in AP content of extruded propellant to a step change in AP feeding 

rate during twin-screw extrusion can be predicted using process models based on the 

RVD developed in Chapter 2. The zero inches reference point in Figures 5-37 and 5-38 

was actually 14.875 inches from the leading end of the extruded grain. Using this and a 

value of 7.92 cm2 for the cross-sectional area of the die, location was transformed into 

volume extruded. The burning rate responses for the positive step change were 

normalized to range from zero to one. The resulting transformation is plotted in Figure 

5-41. 

Evaluating the process models to describe the RVD for IH-AC3 propellant revealed 

that the shape factor from a fifth order description, av = 66.3, predicted the response in 

AP content due to a step change disturbance. A third order convolution model best 

described the gradient architecture using volume as the basis plotted in Figure 5-41. 
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Figure 5-41. After a volume delay of 0.375 liters, the third order convolution step 
response in gradient architecture could be predicted using the shape factor 
from the fifth order RVD TSE process model.

From Figure 5-34, there was some indication from the dye that the gradient 

architectures for a positive and negative gradient may not be the same. However, 

comparing the burning rate data from the strand burning tests by spatial reflection of the 

data for the negative gradient, seen in Figure 5-42, the combustion properties for each 

gradient architecture appear to have similar spatial gradients.  The correlation in these 

spatial gradients is a strong indication that the TSE process can create the same gradient 

architecture independent of the direction of the step change in the feed rate. This has 

important manufacturing implications, since it may not be necessary to go back to the 

original feed rate condition in order to generate the next gradient architecture. 

Therefore, in the production of graded composites using the TSE process, these results 

seem to indicate that gradient architectures can be simply and continuously reproduced 

with minimal accumulation of waste material. 
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Figure 5-42. Comparison of the burning rate data from the strand burning tests for 
positive and negative gradients indicating that gradient architectures are 
similar
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6.0 Microstructural Characterization 

of Energetic Materials
Equally important to quantifying the process in the transient state is to determine 

the effect on the microstructure of the extruded product as a function of position (or 

time). These process studies are currently underway concurrent with the development of 

techniques to quantify the microstructure. Generally homogeneity is highly desirable for 

any engineered product, and characterization methods have evolved to describe homo-

geneous products and deviations from homogeneity such as poor dispersion, voids, 

cracks, impurities, agglomerations, etc. FGMs by nature have designed microstructures 

that change with location, and therefore are non-homogeneous. Yet the inhomogeneity 

is still ordered. The characterization techniques must be quantitative, objective, and 

repeatable.

Furthermore energetic materials are an unusual class of composite to themselves. 

They are solid bodies consisting of a multimodal distribution of crystalline and some-

times metallic particles (referred to as filler) bonded to an elastomeric matrix. They are 

highly loaded with these particles, typically containing the highest amounts of filler 

physically possible. Often the bonding between the binder and filler is poor; although 

bonding agents are sometimes added to rocket propellants to improve mechanical 

properties under conditions of elastic loading. The additives are effective. But in 

response to mechanical damage such as sectioning with a razor or dry polishing, the 

larger particles are still easily displaced.

Quantitative techniques are most important to the research on FGMs. In the 

energetics literature and internal test reports, there is significant attention to quantitative 

characterization of powders as raw ingredients before compounding. However, 

characterization of photomicrographs of energetic materials tends to be qualitative and 

quite subject to bias. In the case of general composites, the methods of characterization 

described in the literature are common across material classes, such as, ceramics, 
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metals, and filled polymers. Common techniques include SEM (Nemati 1997) (Lee and 

Yee 2000) followed by optical stereological analysis (Russ 1986) (Kim, Mitomo et al. 

1998) as well as various physical property measurements (Lee and Yee 2000). For 

graded composites, techniques such as ultrasonics (Marur and Tippur, 1998) and 

microhardness testing have been employed to characterize the gradient in mechanical 

properties associated with the microstructure of the gradient architecture. 

As mentioned previously the functional gradient in rocket propellant will be 

achieved with degree of fill (volume loading) and/or coarse/fine ratio. In both cases, the 

result will be a change in the concentration of large particle size filler. This will be one 

approach to characterizing the gradient. A second technique that’s bears some attention 

is referred to as texture analysis (Ohser, Steinbach et al. 1998). The procedure is based 

on the application of an algorithm to compute global characteristics of binary structures 

with linear filtering as the basis for the analysis. This is germane to FGMs because they 

consist of a binary structure, filler and binder. Ohser demonstrates his technique using 

an image of the microstructure for rolled stainless steel with ferrite and austenite phases. 

This technique yields many useful modes for characterizing images including specific 

line length and specific integral of curvature as well as the simple area fraction. Since 

Ohser’s algorithm can be applied to any binary image, it should be applicable to SEM or 

optical microphotographs.

Consultation with microscopists in the enegetics industry will continue. The 

following photomicrograph appeared in an article (Bennett, Haberman et al. 1998) on 

non-shock ignition sensitivity of PBX-9501, a Department of Energy pressed explosive, 

Figure 6-1. While no reference to a specific method was given for the image’s 

preparation, an acknowledgement was made to C. Skidmore and D. Phillips of Los 

Alamos National Laboratory. Personal contact with these gentlemen is proposed and 

will be pursued in regards to sample preparation and methods of analysis. 



142

Figure 6-1. Photomicrograph of PBX-9501 as an Example of High Resolution and 
Excellent Constrast Between the Particles and the Matrix.

6.1 Sample and Surface Preparation
Preparation studies using inert propellant simulant in the FGM lab at UMD indicates 

that one promising method may be optical stereoscopy coupled with digital image 

analysis. Since the microstructure of an FGM varies with position, serial sectioning and 

sampling are necessary. The biggest challenge for highly filled polymer-bonded 

composites, i.e., solid rocket propellant, is particle loss (or pull-out) during cutting and 

polishing. The combination of hard and soft phases presents significant challenges. 

Improvement of the exposed surface is necessary to reveal the microstructure. However 

the more steps in the process and the longer the step, then the better the resolution and 

contrast of the filler at the expense of increasing filler loss. Figure 6-2 illustrates the 

effect of surface improvement. 

Consultation with NAVSEAIHMD microscopist, Dr. S. Caulder, revealed that there is 

some concern that the process of surface preparation via dry polishing is causing 

damage to the specimen and introducing bias in the particle size distribution. Secondary 

back-scattering SEM images of a prepared surface reveal a large presence of fine 

particles as shown in Figure 6-3. Given that this simulant consists of 26.28 percent by 

weight fine particles, there is no way to determine if the particles are from the feed 

stream, artifacts of the dry polishing process, or attrition due to the mixing process. An 

experimental approach to address this issue is presented below.
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(a)                                                                   (b)

Figure 6-2. Optical Photomicrographs of Inert Simulant for IH-AC3. (a) Unimproved 
Surface after Sectioning with Razor Blade. (b) Improved Surface after a 
Long Series of Polishing Steps.

Normally the sample should be cleaned with compressed air to remove any loose 

particles; this technique is quite effective with these types of samples as well. (Water is

used for most materials across all industries; however, propellant fillers are often quite 

soluble in water.) Unfortunately it was determined in the FGM lab that compressed air 

has a tendency to remove loosely bonded large particles from the matrix. Compressed 

air was replaced with gentle air removal of loose dusts and followed by micro-cloth 

polishing; this technique has greatly reduced large diameter particle loss while still 

being effective in removing accumulated dusts from the polishing process. 

(a)                                                                  (b)

Figure 6-3. SEM Photomicrographs of Inert Simulant for IH-AC3 with an Improved 
Surface under Relatively Low and Higher Magnifications. (a) Manification 
= 30x. (b) Magnification = 500x; Note the Very Small Interstitial Particles.

333 µµµµm 20 µµµµm

200 µµµµm
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Using image thresholding, it was possible to obtain quantitative data from the 

optical and SEM micrographs. Upper gray level thresholding of the optical micrograph 

in Figure 6-2(b), seen in Figure 6-4, yielded a volume fraction of 0.51 for the solids 

loading. This value is less than the actual loading of 0.578 that was expected for a 70% 

by weight solids fill. Upper gray level thresholding of the SEM image in Figure 

6-3(a), seen in Figure 6-5, yielded a value of 0.52, which was only 4% less. This 

indicates that the solids loading can be accurately determined using the sample 

preparation technique that was developed along with the thresholding image analysis of 

either optical or SEM micrographs.

Figure 6-4. Upper gray level threshold of Figure 6-2(b) indicating location of particles.
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Figure 6-5. Upper gray level threshold of Figure 6-3(a) indicating location of particles.

6.2 Characterization of KCl/Elastomer Composites
After developing a technique for preparing and imaging the microstructures that 

evolve during TSE process for the inert propellant simulant in the extruder that was 

used for processing the IH-AC3 propellant, the KCl/Elastomer composite was 

examined. SEM micrographs in compositional mode were obtained for the 60% and 

40% solids fill, as seen in Figures 6-6 and 6-7 respectively. The porosity measured 

using pycnometry and pyrolosis is readily observed in both micrographs. It is also clear 

that there are numerous small particles, as observed in the inert simulant. These 

particles were clearly identified as KCl by EDAXS analysis in the SEM. Unlike the 

inert stimulant for the IH-AC3, the presence of these particles is more of an indication 

that the KCl may be subject to attrition during the TSE process. As a consequence, there 

may be an effect of the TSE process on the particle size distribution in the graded 

composite. 

Quantitative analysis was also performed on the KCl/Elastomer composites using 

SEM micrographs, which were slightly more accurate than the optical micrographs. To 

relate the solids loading by weight, mp, to the volume fraction of particles, Vp, the 

following formula was used:
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where ρp is the density of the particle material and ρm is the density of the matrix 

material. The volume fraction of porosity, Vo, can then be predicted using the density 

obtained from pycnometry measurements, ρmeas, as follows:

)1(
1

pmpp

meas
o VV

V −+
−= ρρ

ρ
(57) 

This prediction can also be directly verified through pyrolysis measurements of mp. The 

actual solids loading, Vactual, can then be predicted as follows:

)1( opactual VVV −= (58) 

From thresholding the upper gray level of the SEM micrographs, as seen in Figure 

6-8, the 60% by weight had an actual solids loading of 0.29, as opposed to a 0.38 from 

pycnometry and pyrolysis. This result is approximately 24% less than was expected. 

The darker particles were obtained by thresholding the lower gray level, as seen in 

Figure 6-9, to obtain a porosity measurement of 0.14, as opposed to the 0.05 from 

pycnometry and pyrolysis, approximately 120% more. The combined porosity and 

solids loading was 0.43 from the SEM micrograph, and 0.43 from pycnometry and 

pyrolysis, which indicates that the extra porosity is probably due to the 0.06 fraction of 

particles that were most likely removed during the grinding process due to a weaker 

interfacial strength between the Engage elastomer and the KCl than for the inert 

energetic simulant. 

For the 40% by weight, which has a predicted solids loading of 0.22 from 

pycnometry and pyrolysis, the solids loading was 0.14 from a upper gray level threshold 

of the SEM micrograph, as seen in Figure 6-10. This value was approximately 36% less 

than the pycnometry and pyrolysis measurement. It was also somewhat consistent with 

the measurement from the 60% sample. The porosity was measured at 0.07 from the 

lower gray level threshold of the SEM micrograph, as seen in Figure 6-11. This value 

was approximately 17% more than the 0.06 measured from pycnometry and pyrolysis. 

Once again, the combined porosity and solids loading was 0.21 from the SEM 

micrograph and 0.28 from pycnometry and pyrolysis, where the removal of particles 

from the grinding process does not appear to be as severe. However, the image quality 

was not as sharp as the 60%, which made it more difficult to identify pores through 

thresholding. The image quality could also be responsible for the band of fine pores 
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seen near the top of the image, which was not observed in Figure 6-9. Therefore, the 

difference of 25% observed in the combined measurement may be attributed to the 

image quality. From these results, it can be concluded that the microstructural 

characterization can provide direct observation of the solids loading and porosity in the 

extruded composites. This demonstrates that the evolution of the gradient 

microstructure can be reliably ascertained from either microscopy or by pycnometry 

and pyrolysis.

Figure 6-6. SEM micrograph of KCl/Elastomer composite with 60% solids loading.

500 µµµµm
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Figure 6-7. SEM micrograph of KCl/Elastomer composite with 40% solids loading.

Figure 6-8. Upper gray level threshold of SEM Micrograph from Figure 6-6 indicating 
location of particles.

500 µµµµm
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Figure 6-9. Lower gray level threshold of SEM Micrograph from Figure 6-6 indicating 
location of pores.

Figure 6-10. Upper gray level threshold of SEM Micrograph from Figure 6-7 indicating 
location of particles.



150

Figure 6-11. Lower gray level threshold of SEM Micrograph from Figure 6-7 indicating 
location of pores.
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7.0 Fundamental Scientific and Technical 

Contributions
One of the technical challenges to developing functionally graded propellants has 

been the lack of a design methodology and manufacturing technology for processing 

continuously graded architectures in polymer composites. In this research effort, a novel 

continuous processing technology for fabricating functionally graded materials (FGMs) 

has been developed which was applied to both energetic and non-energetic materials. 

The continuous processing technology is known as Twin-Screw Extrusion (TSE), and 

was used in a transient operating condition to achieve gradient architectures. 

Through the course of this research investigation, many fundamental scientific and 

technical contributions were made that advanced the understanding of how gradient 

architectures evolve in the TSE process. This knowledge is essential to developing an IDP

that can ultimately serve as a tool for the designers and manufacturers of advanced 

polymer composites, in particular advanced energetics applications. Using the IDP, an 

entirely new methodology for designing energetic systems will be available for 

advanced energetics concepts, where the in-flight performance of a rocket motor 

(simply that part of a rocket consisting of the propellant grain, its case, and a nozzle) 

can be specified without having the constraint of geometrically complex designs that 

can not produce the desired performance either because of manufacturing or material 

limitations. Employing the process models that were developed in this research effort, 

the gradient architecture that achieves the specified performance can be easily predicted 

with or without geometric constraints in the IDP, as well as the operating conditions that 

are necessary to create it using a given manufacturing process.

Therefore, one of the most important contributions of this research effort has been 

the development of appropriate processing models that describe the relationship 

between operating conditions and the gradient architectures that evolve in the TSE

process. The models define the limits in the TSE process restricting the evolution of the 
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gradient architectures that are created by the screw geometry and operating conditions, 

and therefore constrain the range for the architectural parameters over which the 

gradient architecture can be fabricated. However, for each TSE configuration (i.e., screw 

geometry, extruder type) the shape factor and order of the RVD must be determined

experimentally in order to define these constraints using the process model developed in 

this research effort.

Through this research effort, fundamental questions relating to the operation of a 

twin-screw extruder in a transient state and to the microstructures of highly filled 

polymer composites that evolve during this process have been answered. These 

questions, originally posed in Chapter 1, have been answered as follows: 

1. The effect of transient operating conditions during 
processing on the evolving gradient architecture of the 
extruded composite has been characterized using in-situ
optical techniques and a posteriori physical property 
measurements. 

2. This evolution has been predicted using a convolution 
process model based on Residence Time Distributions 
(RTDs) and Residence Volume Distributions (RVDs) for 
both energetic and non-energetic materials. 

3. An approach for characterizing the gradient 
architecture in the extruded material has been developed 
based on pycnometry, pyrolosis, microscopy, and, for 
energetic materials, strand burning. 

4. The burning rate performance for the gradient 
architecture has been determined over a wide range of 
compositions using a design of experiments approach, and 
has been used in the a posteriori modeling of the gradient 
architecture using the RVD determined from the in-situ
optical measurements.   

These answers have resulted in the following scientific and technical knowledge:

• The relationship between the gradient 
architectures that evolve in the TSE and the 
operating conditions for the extruder has been 
characterized through new process models based 
on RVDs and RTDs

• The applicability of RTD and RVD characterization 
of the TSE process has been extended from 
polymers to highly-filled polymer composites



153

• An approach for characterizing the gradient 
architecture has been developed based on physical 
property and microstructural measurements. 

• The dependence of the burning rate performance 
on the compositions in the gradient architecture 
has been characterized 

The research described in this thesis will also have a broader impact on commercial and 

military applications for both energetic and non-energetic of FGMs as follows:

• The new process models and characterized 
properties provide the basis for establishing an IDP

for energetic materials that provides the operating 
conditions to meet a desired performance 
objective for a given energetic formulation and 
TSE configuration

• Establishes a new technology area for producing 
tailored energetic systems for commercial, as well 
as military, applications

• Establishes new techniques for fabricating FGMs 
using the transient attributes of continuous 
processing technologies

• Describes mixture experiments with operating 
conditions that are of great interest to energetics 
manufacturing facilities such as NAVSEAIHMD.

• Presents new characterization techniques for 
energetic and non-energetic extruded polymer 
composites

For these reasons, the quantitative residence time of the system becomes a 

convenient measurement of the cumulative effect of all process and material parameters 

on the transport and mixing of the material in the TSE process. In the volume domain, 

the residence distributions are independent of mass throughputs and degree of solids 

loading (over ranges tested) and only dependent upon screw geometry and operating 

conditions such as extruder screw speed or temperatures. Exploring models of lower 

and higher orders provided a much better description of the residence responses. The 

results of this research effort have shown that a convolution of a RD model with a step 

input yields a good prediction of the gradient architecture that evolves during the TSE

process. Therefore, the normalized residence distribution function can be determined 
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from a small perturbation to the input of a twin-screw extruder, and then be used to 

predict the gradient architecture that can be fabricated in that extruder. 

7.1 Processing of Inert Composites
Several research issues were addressed through the processing of inert composites 

in the UMD facilities. To model the TSE process for these materials, RTDs were fit to a 

second order process model based on the inverse Laplace transform of a model for two 

perfect mixers in series with a dead time. The second order model was found to fit the 

experimental data for inert composites much better than a first or third order model. It is 

important to remember that this process model permitted the process to be represented 

as an ideal abstraction of a physical process. However, the advantage of this 

representation was the capability of the process model to describe the behavior of a 

complex process with few parameters. Furthermore, the shape factors determined with 

the RTD fits were insensitive to composition being nearly the same for 40% or 60% 

solids fill. It is this insensitivity that makes it possible to predict the gradient 

architecture using the convolution model, and which indicates that the rheology of the 

material does not have a significant effect on the TSE process.

In-situ optical measurements tracked the evolution of the gradient architecture. 

Optical probes were placed near the end of the screws where the material entered the 

extrusion die. To predict the evolution of the gradient architecture using the RTD process 

model, shape factors from a second order RTD process model were used in a convolution 

with a first order response. While results for unfilled material exhibited good correlation 

between the measurements and predictions, the optical response for the filled material 

demonstrated a more significant variation. This was attributed to problems with 

transporting the tracer pellets in the TSE process when there is a large viscosity change 

associated with a step change in solids fill.  

Graded inert composites were extruded using both slit and square dies. The slit die 

proved to be the most challenging to work with, since it introduced complex three-

dimensional die effects into the evolving gradient architecture. The complex flow field 

was attributed to die entrance effects resulting from the compromised design of that die. 

It was expected that any die would have some measurable effect of material distribution 

within the evolving gradient structure due to shear-induced flow. This was seen with 
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each die in that the gradient would first appear in the center of the extrudate and spread 

outward as a function of time until the transition was complete—a two dimensional 

gradient. However, the gradient architectures produced using the square dies closely 

approached a one-dimensional gradient architecture, which was much less challenging 

to characterize using the approaches developed in this research effort. The three-

dimensional effects attributed to the slit die likely contributed to the difficulties in 

characterizing the physical properties of the graded slit-shaped specimens.

To characterize the gradient architecture of the extruded inert composites, an 

approach based on physical property measurements was developed. This approach 

required complete destruction of portions of the gradient architecture through pyrolosis 

to quantitatively determine the content of solids. In addition, pycnometer measurements 

were used to characterize the density and determine the porosity of the samples 

introduced during the extrusion portion of the process. The porosity was determined to 

be approximately 5%. The porosity and solids loading was also directly confirmed for 

the extreme compositions in the gradient architecture using microscopy techniques. The 

gradient architectures determined using these measurements also correlated well with 

the gradient architectures determined using a posteriori optical measurements.  These 

results indicated that the dispersed color concentrate was transported at the same rate as 

the KCl particles.

While RTD models were convenient to characterize process responses, e.g., on-line 

probes, die pressure, extrusion torque, RVD models necessary to describe the gradient 

architectures that were characterized in the extruded composite. The RVD models could 

be directly determined from the RTD models through a simple transformation using the 

volumetric throughput. To predict the gradient architecture, RVD shape factors were 

used from a single composition in the gradient architecture. Despite the variation in feed 

rates associated with each composition in the gradient architecture, the predicted 

gradient architectures correlated very well with the gradient architectures that were 

characterized. However, there was not a significant difference if either a first order or 

second order response was used in the convolution model. 
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7.2 Processing of Energetic Materials
There were a number of research issues for processing energetic materials that have 

been addressed for the first time in this research project. One is the determination of the 

residence distribution using an on-line method for an energetic material processed in an 

extruder in the United States. Worldwide there has been no data published on residence 

distributions with energetic materials. Additionally, it was also necessary to use a 

design methodology for a mixture experiment that incorporated process variables, also 

referred to as process factors, for determining the combustion properties of the material 

over the composition range spanned by the gradient architecture. These mixture 

experiments were confined to two AP feedstreams, which was more than sufficient for 

determining the appropriate composition for a single feed stream that was used in the 

fabrication of a gradient architecture for the strand burning tests. 

The mixture experiments also provided the opportunity to settle a longstanding 

uncertainty in regards to experimental observations that suggested extruder screw rpm 

may influence the burning rate. Therefore, three mixture factors (coarse composition, 

coarse-to-fine ratio, and total solids loading) and one process factor (screw speed) were 

varied in the experiments. Despite the complex relationships between the physical 

limitations that are imposed on practical energetic formulations and the constraints that 

are imposed on the operating conditions for processing these materials in the twin-screw 

extruder, it is now possible to simultaneously predict the effects of formulation and 

operating conditions on the combustion properties using a response surface analysis to 

construct a statistical model.

Aside from the obvious benefit of revealing the full range of burning rates within 

the process and formulation constraints chosen, the response surface analysis provided 

invaluable insight in choosing directions in which to design gradient architectures. In 

that the propellant formulations associated with the gradient architecture had never 

before been produced or tested, the response surface analysis was necessary for 

selecting the factors that could be used to produce an appropriate gradient architecture 

using positive and negative step changes in the feed rates for a single feeder. Predictions 

of the burning rates for the extremes of the desired gradient and some intermediate 

points were made possible using the response surface analysis. From these predictions, 
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an estimate of the burning rate exponent could be calculated in order to determine the 

extremes that would not result in an explosion or flame-out. These conditions were then 

used to produce the first functionally graded rocket propellants for testing and 

characterization. 

The results from the mixture experiments also indicated some alternatives for 

creating gradient architectures in energetic applications. Instead of varying the 

ingredients, it is possible to vary the screw rpm to control the variation in burn rate

within the gradient architecture. It is also possible to consider deliberate and subtle 

changes in the screw rpm to impart particular nuances in the burning of the grains to 

compensate for burning rate anomalies that are currently present in homogeneous 

composite propellants. 

The actual fabrication of the graded propellants represented the most complicated 

extrusion run performed to date at NAVSEAIHMD in the 13 plus years of the 40 mm 

facility because of the control room operations required to remotely execute the gradient 

formations and collections. The operations were so detailed that they required four 

people at four different stations in the control room. A flawless execution of the 

processing run with no upsets enabled all the grains to be produced in one day’s work 

without having to conduct a refill of the AP hopper. 

Measurements of the screw torque during the extrusion process correlated with in-

situ optical measurements, which were modeled using a first order response with a 

shaped factor determined from a second order RTD process model. The optical 

measurements were able to detect the evolution of the gradient without tracer, unlike in 

the inert composite experiments. Measurements of die pressure were modeled using a 

second order response, while the pressure response due to the arrival of the gradient was 

consistent with the volume delay, vd. Both the die pressure and torque exhibited a slight 

over-shoot as the die was cleared of lower viscosity propellant during the gradient 

extrusion. The second order RTD shape factors were powerful in that they were able to 

characterize color response, extrusion torque response, and die pressure. Furthermore, 

as with the inert composites, the RTD shape factor was insensitive to composition being 

nearly the same for either 79 or 87 percent solids loading.
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For the extruded energetic material, the gradient architecture was characterized a 

posteriori using mechanical and acoustic strand burning tests. The results from these 

tests spanned the range of burn rates that were anticipated from the homogeneous tests, 

and correlated well with each other. However, unlike the inert polymers and compos-

ites, RTD data was best fit using a fifth order RTD process model. The shape factor from 

the RTD process model was then used in third order response for the convolution model 

to predict the gradient architecture determined from the strand burning tests, unlike the 

first order response used for the inert polymers and composites. Furthermore, it was 

determined that the gradient architecture evolved independent of the direction of the 

step change for the feed rate. This has important implications on the manufacturing of 

graded composites, since it implies that there is no need to return to the original feed 

rate first before a gradient architecture can be continuously reproduced, simplifying the 

production of the graded composites and minimizing waste.
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8.0 Future Work
During the course of this research investigation, some interesting research issues 

have been uncovered that affect the TSE processing of continuously graded polymer 

composites. The results obtained using the inert polymer composite can be explored 

further using ideal simulants to determine processing effects on the composite micro-

structure and on bimodal particle distributions. There are some future plans to test 

functionally graded IH-AC3 in a modified slab motor test. Also, some additional process 

equipment and analytical instrumentation would enhance future investigations. This 

future work is now discussed further. 

8.1 Future Research Directions and Associated Areas of Research

The following are potential research directions and associate areas of research for 

future work: 

1. Characterize two and three-dimensional die effects on 
the evolution of the gradient architecture during TSE

processing.

2. Achieve a gradient architecture utilizing extruder screw 
speed alone or in conjunction with feeding rates.

3. Investigate microstructural characteristics that may be 
the mechanism responsible for the measured variations in 
burn rate due to changes in screw speed for a 
homogeneous formulation.  

4. Explore non-destructive test methods, such as scanning 
acoustic microscopy, ultrasonics, Low-angle X-ray 
Scattering, or Magnetic Resonance Imaging, to 
characterize three-dimensional particle distributions in the 
microstructure of the gradient architecture. 

5. Characterize the effects of larger variations in solids fill 
on the residence distributions, as well as variations due to 
changes in binder rheology. 
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8.2 Ideal Simulants for Determining Processing Effects on 
Composite Microstructures and on Bimodal Particle 
Distributions

The source of fine particles in the inert polymer composites will be investigated 

further in future studies that will consist of ideal simulants that consist of solids fill with 

a tightly controlled particle size. The filler would be screened through sieves to 

eliminate sizes below some nominal diameter such as 250 µm or a slim fraction 

between two screens. With this approach, it will be possible to differentiate the source 

of fine particles as either particle attrition during the TSE process or the sample 

preparation. 

The ideal simulants also provide an opportunity to evaluate methods of preparation 

and microstructure examination and characterization. By providing a sample with a 

known volume loading and particle size distribution, the efficacy of each method and 

approach can be quantitatively determined. A similar argument is true for graded 

samples. The starting and stopping compositions will be known and can be verified. 

The specific nature of the gradient will be unknown but can be determined more easily 

under these controlled conditions. This data can be further evaluated and correlated with 

predictions by the RVD or RTD convolutions for a given screw geometry. For the same 

reasons, an ideal material will make it easier to provide more accurate measurements of 

compositional variations in the gradient architecture.

An accurate representation of a rocket propellant is a highly filled composite 

consisting of a bimodal distribution of small and large particle sizes. This can be 

achieved with an ideal simulant that has similar particle sizes. To produce ideal 

simulants, a distribution of large diameter KCl particle sizes can be fed as one feed 

stream. Using a second feeder, a second distribution of much smaller particle sizes can 

be fed. The graded compositions can then be achieved using a combination of overall 

solids fill and various coarse-to-fine ratios, as was done for the homogeneous 

formulations fabricated for burning rate characterization at NAVSEAIHMD.

8.3 Future Plans for Small Rocket Motor Testing
At the same time grains were being processed using the ZSK-40 TSE at NAVSEAIHMD

for strand burning rate testing, additional functionally graded grains were produced for 
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future testing in small rocket motor hardware. Motor testing offers the most realistic 

measure of a propellant’s combustion properties. The test provides thrust-time and 

pressure-time measurements to evaluate the propellant’s performance in its intended 

operating environment, and verify new performance models being developed for the 

IDP. Once the performance model is verified, the IDP can be completed and the optimal 

gradient microstructure determined for future verification. 

There were eight grains produced for small motor testing—three each of the two 

gradient directions and one each of the high and low AP homogeneous compositions. 

The extruded grain samples for rocket motor testing had the same geometry as those 

grains that were extruded and sectioned for strand burning—1.25 in. diameter and 30 in. 

length. The small motor test grain length must be 7.75 in. or less in length. The results 

of the strand burning rate data will be used to define location of the beginning and end 

of the gradient in the 30 in. sample. 

8.4 Extension of Current Measurement Capabilities
For on-line sensors that operate in the time domain, it was necessary to fit the 

response using RTD parameters. With instrumentation to experimentally measure 

material flow rate at the die (or elsewhere internal to the extruder); one could transform 

the time-based responses to volume-based. Then the more general and preferential 

treatment of the on-line probe data in the volume domain (RVD) could be performed.

There are plans to continue to identify and evaluate instrumentation and analytical 

characterization methods to quantify local material properties. Two well established 

on-line techniques employed throughout industry are near-infrared (NIR) spectroscopy 

and densitometers. Micro-scale mechanical property test methods could be a general 

area of future investigation, although the data presented in this research effort is not 

encouraging. There may also be thermal methods that may be sensitive enough to 

characterize variations in thermal properties within the gradient architectures in polymer 

composites. 

There is a desire to increase the accuracy for characterizing the combustion 

properties in the gradient architecture by obtaining measurements over lengths shorter 

than 1.5 in.—the shortest reliable length tested in this research effort. It would 

significantly enhance the accuracy to have resolutions lower than 0.5 in. More tests 
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using the acoustic strand burner apparatus could enable fine-tuning of the measurement 

conditions to also enhance the measurement accuracy, perhaps including an upgrade in 

software and hardware as well. It has been suggested that new tests could be developed, 

such as multiple bridge wires in series regularly spaced in close proximity, to 

characterize the gradient architecture in a single test. Another type of apparatus that has 

been suggested is a window bomb that would allow real-time video analysis of the burn 

front advancement. This would permit continuous measurements of the location of the 

burn front as a function of time, from which the burn rate can also be determined 

continuously by taking first derivatives of the measurements.
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