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 Magnetic nanocarriers have proven to be effective vehicles for transporting 

therapeutic and diagnostic agents in the body. Their main advantage is their ability to 

be manipulated by external magnets to direct them to specific targets in the body. In 

this dissertation, I study the transport, safety and efficacy of moving drug coated 

magnetic nanocarriers in different types of tissue. Movement of magnetic 

nanocarriers of sizes ranging from 100 nm to 1µm with different biocompatible 

coatings (Starch, PEG, Lipid and Chitosan) was quantified in different tissue types 

using an automated cryostat system. The safety of moving magnetic nanocarriers in 

live rodent brain tissue was assessed using electrophysiology, calcium imaging and 

immunohistochemistry. Moving magnetic nanocarriers in brain tissue did not 

significantly affect the firing ability of single neurons, synaptic connectivity and the 

overall functioning of the neuron network. As part of efficacy studies, steroid-eluting 

magnetic nanoparticles were targeted using external magnets to the inner ear of mice 



  

to counter hearing loss caused by cisplatin chemotherapeutics. This targeted steroid 

delivery to the cochlea significantly reduced the change in hearing threshold at 32 

KHz caused by cisplatin injections and protected the hair cells from significant 

damage. Finally, I explore the potential of spin-transfer torque nano-oscillators, 

which are multi-layered ferromagnetic nanocarriers, as high-resolution in vivo 

wireless biosensors. These nanocarriers have been shown to detect action potentials 

from crayfish lateral giant neurons and that the microwave magnetic signals from 

these devices can be detected wirelessly by near field induction.  
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Chapter 1: Introduction 

1.1   Targeted delivery systems                

Targeted delivery systems can be used to improve delivery of therapeutics or contrast 

agents to achieve a two-fold benefit: increased concentration of drugs in the disease 

locations and reduced release to non-specific locations, thereby reducing the 

associated side effects1. A typical targeted delivery system consists of an active 

carrier attached to or encapsulating the therapeutic or diagnostic payload. The carriers 

include liposomes2,3, nanoparticles4,5, micro-organisms6, polymer beads5,7,8, peptides9 

and other ligands10. The therapeutics delivered using these carriers includes steroids 

11–13, proteins14–17, chemotherapy18–20, stem cells21–23 and genes 24–26. The mechanism 

for delivery can be passive diffusion aided by the flow of body fluids 2,3,11,24,25 or 

through active methods involving electromagnetic27–31 or acoustic fields15,32–34. The 

combination of carrier, drug and delivery mechanism is chosen based on depth of 

targeting required, time profile of drug release, physiological factors, the therapeutic-

carrier binding chemistry and safety. This thesis focuses on different aspects of 

targeting and utilizing magnetic nanocarriers using external magnetic fields for drug 

delivery and biosensing applications in the brain and the inner ear. 
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1.2   Targeted delivery to the brain: current methods and challenges 

Conventional therapeutics in the brain is limited by two main anatomical barriers: 

blood brain barrier and the extracellular space35,36.  The blood brain barrier consists of 

a layer of endothelial cells forming tight junctions supported by interactions with 

brain pericytes, astrocytes and neurons37. It regulates the transport of substances 

between the blood stream and the central nervous system and helps in maintenance of 

neuronal microenvironment, tissue homeostasis, blood cell activation and migration 

and vascularization of normal neoplastic tissues36,38. These tight junctions physically 

restrict the movement of microbial, cellular or metabolic substances from the blood 

stream to the central nervous system. Many studies showed that more than 90% of 

small molecules and almost all large molecules are unable to cross the blood brain 

barrier without external force35,38–40. A detailed study of about 7000 common 

pharmaceuticals revealed that very few had the ability to cross the blood brain 

barrier39. In addition to the size restrictions imposed, there are active transporters in 

the blood brain barrier that increase or reduce the transport of permissible substances 

thereby adding an additional layer of complexity41. The barrier is altered during 

disease processes such as tumors, inflammation and infection which results in it 

allowing some substances to be transported through42–44. In spite of the blood brain 

barrier being compromised during such processes, the permeability of the blood brain 

barrier changes heterogeneously and makes it difficult for systemic injections of 

therapeutics to reach the required locations uniformly. 
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While the blood brain barrier is thought of one the most prominent barriers to targeted 

delivery, extracellular space where most of the therapeutic and diagnostic substances 

travel in brain tissue after extravasation, has posed similar challenges of poor 

distribution. The extracellular space in the brain consists of lipids, polysaccharides 

and proteins resulting in regions of different electrostatic and surface properties. The 

two main modes of transport of substances in the extracellular space are diffusion and 

convection. Diffusion is the random movement of substances due to a concentration 

gradient. Convection is a directional movement of substances caused due to pressure 

gradients induced by external or internal sources45,46. Similar to the blood brain 

barrier, the properties of the extracellular space such volume and tortuosity are also 

affected by diseases such as tumors in the brain 47. These physical changes result in 

anisotropies in their structure affecting the reachability of therapeutic substances in 

the brain. In addition, diseases such as tumors in the brain also alter the interstitial 

pressure gradients in the tissue and affect convectional transport 47. This adds specific 

constraints to the charge, hydrophobicity and size of the substances used for cell 

specific targeting in the brain. The complex properties of the extracellular space 

necessitate the use of active targeting methods to move therapeutic agents from one 

region to another. Therefore, an effective combination of therapeutic agents and 

targeting mechanism should aid penetration of the blood brain barrier and also 

produce a sufficient distribution in the brain tissue through the extracellular space. 

 

Nanoparticles of various sizes and coatings have proven effective for delivering 

therapeutic and diagnostic agents for local and system delivery in the brain 48–52. 
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Drugs or contrast agents can be either chemically bound or adsorbed to these 

nanoparticles. These nanoparticle based delivery systems provide sufficient flexibility 

in engineering appropriate physical and surface properties, drug loading and release 

kinetics to match the disease progress in the target locations36,48.These delivery 

systems also open up the possibility  of  combining  multiple  therapeutic  agents  or 

therapeutic  agents  with  imaging  agents to perform image guided therapeutics. 

Several  drug  delivery  systems  involving  lipid 48, chitosan 53,54,  and iron oxide 

nanoparticles 49,55,56 have  been  shown  effective  in  the  brain. The uptake of these 

nanoparticles is influenced by various physicochemical properties such as particle 

size, shape and surface charge. The main challenges faced by these nanoparticle 

based systems in the brain are rapid clearance by the reticuloendothelial system 

especially when used systemically. In spite of using surface coatings that improve 

endocytosis of these drug-nanoparticle combinations to the brain, they require high 

volume of injections to improve bioavailability.  This emphasizes the use of an 

effective targeting mechanism to improve the efficiency of these nanoparticle based 

delivery systems.  

 

Systemic delivery in the brain is commonly divided into two main categories: 

Intravenous and Intra-arterial delivery. Intravenous or Intra-arterial route of drug 

administration are used commonly and has the advantage of direct delivery to the 

circulation 57–59. In spite of good access to most parts of the brain, these delivery 

methods faces the challenges of low retention time due to rapid clearance, non-

specific binding to the plasma proteins and inability to cross the blood brain barrier. 
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New approaches to delivery have been investigated to directly deliver drugs or 

imaging agents into cerebrospinal fluid or the parenchymal space thereby reducing 

the drug concentration in regions unrelated to the target. These approaches include 

intracerebral delivery using catheters or intracerebral implants directly into 

parenchymal space 60, intraventricular or transcranial delivery into cerebral ventricle 

or intrathecal delivery 61 into cisterna magna of brain. In spite of their advantages 

they require an active targeting method to redistribute the concentration of carriers in 

the target tissue to avoid harmful effects such as astrogliatic reaction62 and ensure 

sustained drug release in the parenchyma. Intranasal delivery40,63,64 of drug loaded 

nanocarriers has been used to directly reach the central nervous system via olfactory 

neurons. Though this method is a viable alternative to crossing the blood brain 

barrier, it requires an external active targeting mechanism to translate it for larger 

regions in the brain.  

 

1.3   Targeted delivery to the inner ear: current methods and challenges 

Inner ear diseases such as sudden sensorineural hearing loss (SSNHL), tinnitus 

(ringing in the ears) and Ménière’s diseases affect 5000-20,000 65, 15 million 66 and 

615,000 67 patients annually. The conventional method of treating these inner ear 

disorders have been through oral or intravenous administration of drugs. For example, 

high dose oral and intravenous administrations of steroids have been used for SSNHL 

to reduce inflammation in the inner ear that is thought to be the cause of SSNHL68. 

These treatments have produced unreliable outcomes because of many challenges. 

Only 10-6  of general blood perfused passes through the inner ear because the cochlea, 
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similar to the brain, is behind a blood-labyrinth barrier characterized by the vessels 

that bring blood to the inner ear with walls that are largely impermeable to drugs 69. 

In addition, the high dose of oral or intravenous steroids is known to cause substantial 

side effects in patients70,71. Thus there is a need for a topical delivery mechanism to 

reach the inner ear (especially cochlea) from the middle ear to improve the treatment 

of diseases such as SSNHL.  

 

Among the topical delivery methods available for the inner ear diseases, there are no 

minimally invasive techniques. Although the middle ear is reachable by injections 

through the ear canal to topically target drugs to the cochlea, it requires facial-recess 

surgery under anesthesia72. To instead directly reach the inner ear via ear canal 

injections, it would require the injections to first cross the tympanic membrane and 

then the round window or oval window membranes. However, there is no line of sight 

from the ear canal to the window membranes for these injections in human patients. 

Moreover, the oval window membrane is covered by the third ossicle and reduces the 

access. These factors make any topical injections straight through the window 

membranes exposed to the risk of acoustic or vestibular traumas. 

 

The standard of care for sudden sensorineural hearing loss involves injecting s large 

dose of drugs into the middle ear and waiting for the drugs to passively diffuse into 

the cochlea through the window membranes, mainly the round window membrane. 

These trans-tympanic injections can be performed using a syringe, through a tube 

(tympanostomy) or via a microcatheter73 and the tympanic membrane heals after 
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these procedures 74. Subsequent diffusion of the drugs from the middle ear to the 

cochlea is limited by two factors: the size of the window membranes and the presence 

of the eustachian tube which drains out the drugs in the middle ear every time the 

patient swallows75,76. This results in a steep drug concentration gradient inside the 

cochlea with too high concentrations at the base of the cochlea and too-low 

concentrations in the other cochlear turns77. Anatomical variations caused due to 

extraneous or false membranes, fibrous tissues and fatty plugs alter the pathway of 

drugs from the delivery site to the round window membrane78. Despite the lack of 

consistent success in treating inner ear disorders, intratympanic drug administration is 

common. 

 

Many approaches have been used previously to prolong the exposure of the round 

window membrane to high drug concentrations, to increase delivery to the inner ear. 

These include use of microcatheters 73, gels 79,80 and nanoparticle formulations81. A 

1mm x 9 mm polyvinyl acetate wick was applied through a tube in the tympanic 

membrane, facing the round window membrane to treat sudden sensorineural hearing 

loss79. It was removed from the market due to potential long term hearing loss and 

technical administration difficulties82,83. Delivery of medications to the cochlea using 

a microcatheter placed on the round window membrane was used to treat tinnitus 

associated with Ménière’s disease 73. This method resulted in catheter dislocations, 

granuloma formation in the middle ear and permanent tympanic membrane 

perforations 84. A hydrogel system has been used for controlled release of drugs to the 

inner ear through the use of triggering mechanisms such as temperature, pressure or 
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pH 79,85,86 .This system is easy to formulate since it is a dissolvable matrix that can be 

combined with different drugs but requires an accurate placement on the round 

window niche to be effective and has the danger of overfilling the middle ear (which 

can lead to loss of hearing) 79.  Osmotic pumps have been used to treat hearing loss 

from noise trauma and cisplatin chemotherapy by delivering steroids, growth factors 

and compounds such as D-JNKI-1, a peptide inhibitor of the apoptotic pathway and 

BN82270, a peroxidation inhibitor to reduce free radicals in the cochlea. These 

pumps help in accurately control the dosage but require risky surgery to implant them 

in the cochlea 78.  

 

1.4  Magnetic targeted delivery systems  

Magnetic targeted delivery offers a minimally invasive potential solution to focus 

therapeutics and diagnostic agents in different regions in the body. In these delivery 

systems, magnetic nanocarriers (typically iron oxide nanoparticles) are attached to the 

therapeutic agents and can be directed using external magnetic fields. This physical 

focusing of nanocarriers loaded with therapeutics improves the efficacy of treatments 

by placing the drug precisely in disease locations with extended release, reducing the 

systemic concentration of drugs and limiting the associated side effects and 

preventing rapid clearance of therapeutics by the body before its protective action in 

the disease locations. 

 

Magnetic targeting systems are desirable when compared to ultrasound, optical or 

electrical fields because they can penetrate deep into the body without causing any 
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physiological side effects 87. In magnetic resonance imaging (MRI), which is very 

commonly used, very high magnetic fields are used in the body and have been shown 

to be safe. Magnetic core of the nanocarriers used in these targeting systems typically 

consists of either magnetite (Fe3O4) or maghemite (Fe2O3) embedded in a polymer 

and coated with a biocompatible coating such as chitosan, starch or polyethylene 

glycol (PEG). These nanocarriers can be controlled in size and are usually injected 

into an animal or a patient in the form of emulsions in water. Apart from drugs such 

as chemotherapy and steroids 88,89, these magnetic nanocarriers have been used to 

deliver immune cells 90, stem cells 91, peptides 92 and  genes 93 for different 

applications in various organ systems . An alternate mode of application with these 

magnetic nanocarriers which involves producing heat by exposing them to a time 

varying magnetic field has been proposed as a mechanism to destroy tumor cells 94.  

 The magnetic field gradients that have been typically used in drug delivery 

experiments vary from 0.03 T/m to 100 T/m based on ease of use and desired depth 

of targeting 95,96. Neodymium-iron-boron (Nd12Fe14B) permanent magnets can be 

commonly found up to field strengths of about 1.5 T compared to huge MRI 

electromagnets of field strengths 1-4.7 T 97,98. In one of the first human clinical trials, 

Lubbe et al injected ferrofluid containing 100 nm particles coated with doxorubicin 

and concentrated them in an inoperable shallow facial tumor using 0.2-0.8 T 

permanent magnets 99. Similar experiments in different animal models have produced 

a targeting depth of close to 12 cm using 500 nm – 5 μm nanoparticles and 0.5 T 

permanent magnets 100. Since the human body is a complex environment with various 

physical and chemical factors varying from person to person, the appropriate size of 
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magnetic nanocarriers to be used and the corresponding magnetic force required to 

direct them varies for different cases. Thus there is a need for controlled targeting of 

magnetic nanocarriers through dynamic shaping of magnetic field gradients as they 

move through the physiological barriers in the body. 

 

1.5  Controlled magnetic targeting : current approach and challenges 

Precise control of magnetic objects using external fields has been demonstrated in 

animals and humans 101,102. Magnetic control to guide catheters with magnetic tips has 

been used to treat cardiac arrhythmias and perform other cardiovascular procedures 

103. Systems to magnetically manipulate microrobots and other devices for eye, gut, 

cardiovascular and lung surgery have been tested in pigs and chicken embryos104–106. 

Conventional MRI machines have been thought of as actuation systems for precise 

manipulation of magnetic objects107 . But the MRI machines produce a uniform 

magnetic field and need to be substantially modified to produce a magnetic field 

gradient which is required to produce magnetic force. The control algorithms used in 

manipulating single magnetic objects include simple proportional-integral-differential 

(PID) control 108, point wise optimal control 109, least-squares inversion 110 and model 

predictive control 111. Manipulation of a fluid of nanoparticles is more difficult than 

controlling a single object due to additional constraints caused by fluid flow, particle-

particle interaction and surface tension. In order to implement a closed loop 

controlled targeting of magnetic nanocarriers in the body, there is a need for 

minimum models that can predict their motion in different physical regions in the 

body (blood vessels, soft tissues, connective tissue, muscles). These models can help 
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determine the right parameters that can be varied over a range of physiological 

conditions and in turn help in designing the optimal nanocarriers and magnet systems.  

Our group has previously studied the movement of ferromagnetic nanoparticles in 

and around the major blood vessels. This in-silico study has categorized the motion of 

magnetic nanoparticles after intravascular injections for all physiological conditions – 

from small to large blood vessels and across all particle sizes and magnet strengths 

112. These studies have to be extended to different tissues into which the nanocarriers 

extravasate and travel to reach disease targets. Another important challenge in closed 

loop implementation of magnetic targeted delivery is high resolution imaging to 

provide accurate feedback in complex environments. Many groups have investigated 

the use of fluorescent tags attached to the nanocarriers to track them optically. These 

cannot be visualized in-vivo due to absorption by various tissues in the body. Imaging 

iron oxide and gadolinium based nanoparticles have been shown using MRI systems 

50,113. Since these particles produce a negative contrast in MRI, these images are not 

of high resolution. Moreover the speed of MRI also poses a challenge to dynamically 

manipulate magnetic nanocarriers effectively in the body. This dissertation aims to 

address these challenges in high resolution imaging of magnetic nanoparticles and 

developing reliable and safe nanoparticle transport models in different tissue targets. 

 

1.6  Outline for rest of this dissertation 

The rest of this dissertation discusses the implementation and impact of targeting and 

sensing two different types of magnetic nanocarriers:  drug coated magnetic 

nanoparticles and spin transfer torque nano-oscillators for applications in drug 
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delivery in the brain and inner ear and sensing currents from a single neuron 

respectively. Chapter 2 details the implementation of a method to quantify the motion 

of magnetic nanoparticles in different tissues and determines the influence of 

physicochemical properties of the nanoparticles and the tissues in nanoparticle 

motion. Chapter 3 studies the mechanism of magnetic nanoparticle motion in brain 

tissue and assesses the safety of moving magnetic nanocarriers in the brain using 

electrophysiological recordings, calcium imaging and immunohistochemistry. 

Chapter 4 focuses on applying the magnetic drug delivery method to deliver steroids 

to the inner ear in mice models. This minimally invasive steroid delivery method has 

been shown to reduce cisplatin induced hearing loss in mice. The impact of the 

treatment has been analyzed using auditory brainstem response assays and post-

mortem cytocochleograms. Chapter 5 proposes the use of spin transfer nano-

oscillators, which are multilayered ferromagnetic nano-devices, to sense local 

currents in the brain and transmit them wirelessly with a potential for functional 

neuroimaging with a single cell resolution. The chapter covers the experimental 

details of wireless measurement from the nano-devices and triggering them using 

neuronal action potentials from crayfish lateral giant neurons. Chapter 6 summarizes 

the conclusions presented in this dissertation, discusses their importance, and 

proposes future scope of these projects. Finally, the intellectual contributions of the 

author are provided relative to the group of collaborators. 
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Chapter 2:  Quantifying magnetic nanoparticle motion in different tissues 

 
This work originally appeared in 114 

 

2.1  Background 

 
In the fields of magnetic drug targeting28, hyperthermia94, and magnetic resonance 

imaging 115,116 there is a need to be able to transport magnetic nanoparticles (MNPs) 

to desired tissue locations. How MNPs move in-vivo depends on their properties, the 

properties of the surrounding biological milieu, and on the strength of the applied 

magnetic field gradient. In prior work, we analyzed how the transport of MNPs in 

blood vessels depends on particle constitution, size, the velocity and profile of blood 

flow in vessels, and the strength of the applied magnetic field gradient112,117. In this 

article, we begin to address the second half of the question: how MNPs move through 

the tissue between blood vessels. By measuring how particle motion in freshly 

excised tissue depends on particle size, coating, tissue type, and the applied magnetic 

field gradient, we hope to provide researchers with tools for better understanding that 

motion in order to help select MNP designs to improve therapy27–29,87,118–121 and  

diagnosis27,116,122–125.  

 

Substantial evidence indicates that particle characteristics (size, surface chemistry, 

volume of magnetic content) influence their motion through biological media such as 

mucus126, liquids and gels127, and brain tissue10,11. In mucus126, modifying particle 

size and coating led to 10 fold and 10,000 fold changes in diffusion respectively. In 

liquids and gels127, among a set of particles (10 nm and 50 nm size, uncoated, 
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polystyrene coated and dextran coated), only 50 nm dextran coated particles moved, 

and movement in glycerol was 20 times faster than in collagen gel. In brain tissue, the 

width of extracellular spaces (30-64 nm) precludes liposomes above 100 nm from 

penetrating the brain during convection enhanced delivery128–130. Particle steric 

coating (e.g. polyethylene glycol or PEG) and charge also influence binding to cells 

and thereby limit or improve diffusion in brain tissue128,129,131.  

 

To our best knowledge, as yet there have been no experimental studies that have 

quantified the ability of magnetic forces to transport different types of MNPs through 

different tissue types. Prior research has included the study of MNP motion in 

liquids30,127and gels127 and indicated that MNP penetration depends strongly on the 

characteristics of the particles and the surrounding medium. Motion of magnetic 

beads within in vitro cultured cells (fibroblasts and actins) has been studied for 

measurement of cytoplasmic viscosity and motility 132; however, the focus was on 

rheology within cells rather than passage of MNPs through tissue. Motion of particles 

in cells was also studied in Zhang et al.133 to create rotation and apoptosis of cells. 

MNP penetration in ex-vivo human skin was studied qualitatively in Baroli et al.134 

but the study employed passive diffusion for transport.  

 

Several forces are thought to influence the motion of MNPs in tissue135. The magnetic 

force (FMAG) is the force applied by the external magnet on the particles. Inter-particle 

interaction forces136 act on magnetized particles and can lead to their 

agglomeration136–138. Tissue resistance (FTR) is likely composed of a viscous drag 
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force (FD) and the binding force (FS ) due to the adhesion between particle surface 

coatings and the tissue microenvironment139–144. The contribution of these component 

forces and the interplay between them is complex and has been a challenge to 

address. As far as we know, there are no accepted mathematical theories available for 

adequately capturing these complexities. Hence, in this article we focus on 

experimentally measuring particle movement in tissue samples.  

 

We present a simple experimental technique to quantify the motion of magnetic 

particles through tissue. To arrive at these first results to understand and quantify 

particle motion in tissue under the influence of magnetic fields, we used freshly 

excised tissue (ex-vivo experiments). Even though we took sensible precautions to 

ensure that our excised tissue samples remained as close in their properties to living 

tissue as possible (excision time was less than two hours, tissue was preserved in a 

cool environment and was stored in phosphate buffer solution), we note that our 

collected results may still differ from in-vivo particle behavior because even with optimal 

procedures excised tissue is known to differ from live tissue145–147. In our approach, 

fluorescent MNPs were placed on top of freshly excised tissue samples and a 

magnetic field was applied by placing a magnet under the tissue. After a set time, the 

tissue was fixed (flash-frozen), sliced, imaged using a fluorescent microscope and 

particle movement was then quantified by processing the three-dimensional volume 

of particles from stacked images using standardized quantitative metrics. Experiments 

conducted with and without a magnetic field distinguished the effect of diffusion 

versus magnetic drift. Our results indicate how particle properties and tissue types can 

affect particle motion, under what circumstances the magnetic field is most effective 
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at moving particles in tissue, and which particle types among those tested should be 

selected for efficient magnetic transport.  

 

2.2  Schematic of the overall experiment 

We developed and implemented a methodology to measure the rate of MNP 

movement in fresh tissue. To do so, we placed fluorescent MNPs on top of freshly 

excised rat tissue and applied a high magnetic field gradient by placing a permanent 

magnet at a precise distance underneath the MNPs below the tissue. This magnet 

moved the MNPs into and partway through the tissue. The tissue was then fixed and a 

3-dimensional cryostat imaging system similar to Shen et al148 sliced the tissues and 

imaged the distribution of particles in the tissue samples. The acquired imaged data 

was pruned and the images were stacked into a 3-dimensional volume. Standardized 

metrics representing the degree of particle penetration into tissue samples were used 

to quantitatively assess the depth of particle penetration into the tissue. Then 

penetration depth was tabulated to compare the effects of particle size (hydrodynamic 

diameter), surface coating, tissue type (brain, liver, kidney), and magnetic field 

gradient on MNP motion in tissue. A flow diagram of this process is shown in Figure 

1 below. 
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Figure 1: A schematic of the experimental procedure. A) Excision of an organ from a rat. B) Excised 
tissue. C) Magnetic nanoparticles (MNPs) were placed on top of the tissue sample in solution (as a 
ferrofluid). The permanent magnet was then applied at a prescribed distance below the tissue sample to 
create a calibrated magnetic force on the particles (see placement calibration illustrated in Figure 3). D) 
Resulting distribution of particles in tissue sample after 45 minutes. E) The tissue was fixed in OCT 
(optimal cutting temperature fluid) and then sliced and imaged using an automated cryostat and a 
fluorescence camera. The penetration depth of the ferrofluid was then measured and quantified by a 
standardized metric. 
 
 
 

2.3  Experimental methods 

2.3.1  Tissue preparation 

 
Long Evans Rats (obtained from Charles River) were used to obtain the tissue 

samples. The rats were anesthetized using Isofluorane gas and then sacrificed. All 

surgical and experimental procedures were approved by the University of Maryland 

Animal Care and Use Committee and were in accordance with NIH Guidelines on the 

care and use of laboratory animals.  
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Freshly excised organs were stored in phosphate buffer (PBS) at 4°C for about 1-2 

hours until the experiments. Tissue sections of 4-6 mm thickness were prepared, 

embedded in liquefied gelatin in a 10 mm petri dish, and then cooled at 4 degrees 

until the tissue was immobilized. 

 

2.3.2   Magnetic nanoparticles and external magnet 

A variety of fluorescent magnetic nanoparticles (MNPs) purchased from Chemicell 

GmbH were used for our experiments. In this first study, we elected to use particles 

from Chemicell because we have used Chemicell particles for many years, and are 

familiar with the handling, properties and behaviors of these particles. Four available 

sizes (100 nm, 300 nm, 500 nm and 1 μm) and four coatings (Chitosan, Starch, Lipid 

and PEG/P) were selected. Chemicell GmbH provided us with two types of particles. 

A) NanoscreenMag particles with hydrodynamic size < 300 nm and with the 

fluorescent dye outside the iron core beneath the external coating; B) ScreenMag (or 

SiMag) particles with hydrodynamic size between 500 nm - 1 μm where the 

fluorescent dye is incorporated in a silica shell around the core and the particle 

coating is around the silica shell. All particles contained a fluorescent red dye 

(lipophilic fluorescence dye Lumigen-Red for nanoscreenMAG and nil-blue for 

screenMAG) for easy visualization of the distribution of the particles in tissue. These 

two types of particles are illustrated in Figure 2. In our experiments, the dye was 

excited at 578 nm and emission was measured at 613 nm to quantify the distribution 

of particles in the tissue samples. Chemicell was unable to synthesize starch particles 

> 500 nm, lipid particles > 300 nm and PEG/P particles > 200 nm due to their higher 
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molecular weight (these particles did not remain stable at the larger sizes). Our tissue 

experiments were conducted for those fluorescent particles that were available from 

Chemicell. 

 

 

 (A) (B) 
                                                                                                                                                            
Figure 2: Illustration of the structure of the Chemicell particles employed in this study. A) 
NanoscreenMag particles contain two red fluorescent layers around the iron core but inside the particle 
coating. B) In the ScreenMag particles, the fluorescent dye is incorporated into a silica shell and the 
particle coating is outside this shell. In both cases, the fluorescent dye enabled visualization of the 
particle distribution inside tissue samples but is not in direct contact with the tissue.  
 
 
 

To keep the experimental setup simple and compact, we employed small NdFeB, 

grade N42, permanent bar magnets with Nickel-Copper-Nickel triple layer coated, 

size 1” x 1” x 2”, magnetized through the 2 inch length with poles on 1 x1 inch 

surfaces (from Applied Magnets Inc.). These magnets had a high field strength 

(surface field strength of ~0.4 T and core strength of 1.5 T), which created a strong 
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maximum magnetic field gradient (~ 30 T/m). The magnets were placed below the 

tissue blocks as shown in Figure 1 in order to effectively pull particles towards the 

magnet. We found that these magnets applied a sufficient magnetic field gradient to 

effectively move the different types of MNPs through the tissue samples. The 

magnets were small enough to permit a convenient experimental setup but big enough 

to enable careful calibration of the magnetic forces applied to the particles (discussed 

next).  

 

2.4  Magnetic field and force calculations 

The magnetic force we applied on the MNPs was calibrated by measuring the 

magnetic field and gradient around each permanent magnet. A single ferromagnetic 

particle will experience a magnetic force [ / ]F k M DH Dx k M H= = ∇
   



 
31,87,112,149,150 

where H
  is the applied magnetic field, M

  is the resulting magnetization of the 

particle, [ / ]DH Dx
 

 is the Jacobian spatial derivatives matrix, ∇ is the spatial gradient, 

and k is a constant that depends on particle properties. Here the first and second 

expressions are equivalent by the chain rule and it can be seen that the force on a 

MNP depends on both the particle magnetization M
   and the applied magnetic field 

gradient H∇


. In our experiments, the applied magnetic field was strong enough to 

saturate the particles hence || M
 || achieved its maximal strength of approximately 3.2 

emu/g. Each magnet was placed underneath the tissue samples at a location, which 

produced a roughly constant magnetic motive force on the particles as they moved 

through the tissue, samples (please see Figure 3). 
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First, the magnetic field surrounding the bar magnets was measured using a 

Lakeshore 460-3 Channel Gaussmeter with a measurement range from 0.03 mT to 30 

T. The device has a Hall probe (MMZ-2518-UH) encased in a protective brass sleeve 

attached to three orthogonal unislide components (from Velmex) forming a 3-D stage. 

The stepper motors controlling the stages have an internal step monitor for relaying 

signals via serial connection to a computer. The stepper motors have a resolution of 

400 steps per revolution, with a single step corresponding to a displacement of 6.34 

μm along any of the three axes (orthogonal directions). The 3-D stage can be 

controlled and sensed using a GPIB IEEE488 and RS232 connections to LabVIEW 

interface. The magnetic field around each permanent magnet was measured using this 

system. 

 

Second, the above measurements allowed accurate calculation of the H∇


 value at 

each location around the magnet, and hence a good estimate of the strength of M H∇




 

that would be applied to particles at that location. The magnetic saturation value || M
 || 

was measured by vibrating sample magnetometry (VSM) as detailed in Sec.2.5.1. The 

resulting calculated spatial variation of || M H∇




|| around the bar magnets is shown in 

Figure 3 below. Based on this data, in all experiments the top face of the bar magnet 

was placed ~ 6 mm below the MNPs to ensure that all particles experienced a starting 

motive force proportional to || M H∇




|| = 3.9 ± 2 × 108 A2/m3. As the MNPs moved 

through the ~ 6 mm width of the tissue samples, || M H∇




|| could potentially increase 

up to || M H∇




|| = 8 ± 4.1 x 108 A2/m3, thus the applied magnetic motive force varied 

by at most a factor of two as the MNPs moved through the tissue samples. In Table 1, 
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the coefficient k varies with particle sizes and was determined experimentally using 

the radius and susceptibility measurements as explained in the section below. 

Magnetic force can be calculated as product of k and || M H∇




||.  

 

Figure 3 : Measured and calculated variation of the magnetic motive force on the magnetic particles as 
they moved through the tissue samples. The strength of the magnetic motive force is proportional to             
|| HM∇ ||, which is plotted above versus particle distance from the magnet (in units A2/m3). The red line 
indicates the estimated maximum, the black is the estimated minimum, and the blue line is the average 
value. Based on this data, we chose the magnet size in order to, as much as possible, apply a fairly 
uniform motive force across the entire tissue sample. As shown, the motive force increases by at most 
a factor of two from the top of the tissue (6 mm away from the top of the magnet) to the bottom of the 
tissue (right above the magnet surface).  

 

 Particle Type (Size) 

100 nm 300 nm 500 nm 1000 nm 

k  

 

≈ 0.0007 x 10-24 

N/(A2/m3) 

≈ 0.0178 x 10-24 

N/(A2/m3) 

≈ 0.082 x 10-24 

N/(A2/m3) 

≈ 0.658 x 10-24 

N/(A2/m3) 

 
Table 1: Approximate k values, for particles of various size, listed in units of N/(A2/m3). The 
coefficient k relates the quantity || HM∇ || shown above in Figure 3 with the actual magnetic force on the 
particle by ||F| = k || HM∇ ||. 
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2.5  Properties of tested magnetic nanoparticles (MNPs) 

Motion of MNPs through tissue depends upon their properties, such as their 

saturation magnetization, size, and surface charge. Before measuring the motion of 

particles through tissue samples, we first characterized the properties of each particle 

type using available measurement techniques. We used vibrating sample 

magnetometry (VSM) to measure saturation magnetization of particles, dynamic light 

scattering (DLS) to measure the size of the particles, and we further classified 

particles based on zeta potential measurements from Chemicell GmbH.  

 

2.5.1  Magnetic properties of MNPs 

The magnetic force on particles is proportional to the saturation magnetization of the 

particles and the gradient of the applied magnetic field intensity31,87,112,135,149–153. We 

measured the saturation magnetization for each particle type using a vibrating sample 

magnetometer (VSM)154. Table 2 shows magnetization values for each particle type, 

for the entire volume used (4 μl) in milli-electromagnetic units (memu) and also 

estimated per particle (as in the specification sheets from Chemicell, we divided the 

sample volume by the number of particles per volume to arrive at a per particle 

value). As expected, the per particle magnetization increases with particle size.  
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Table 2: Measured saturation magnetization values for the particles tested. For each particle size, the 
top entries are the measured value for the entire 4 μl volume sample in memu ( milli-electromagnetic 
units), the bottom entries are the estimated per particle values. N/A (not available) is for particles types 
that could not be synthesized by Chemicell. 
 

2.5.2  Size measurements of MNPs 

The hydrodynamic diameter of the MNPs was measured by dynamic light scattering, 

as employed previously in Murdock et al 155–157. We used a dynamic light scattering 

system from Photocor Instruments and found that the measured mean hydrodynamic 

measurements closely matched the specification provided by Chemicell GMBH. In 

most cases, we found that the peak of size distributions were within ± 50 nm of the 

radius of values listed in the particle specification sheets. However, it was found that 

some particles were highly polydispersed, i.e. more than one peak for the particle size 

distribution (e.g. for 100 nm PEG/P particles). The poly-dispersity and agglomeration 

of 100 nm PEG/P and 300 nm lipid particles led to a higher measurement of 

hydrodynamic radius. Detailed size distribution plots are further provided in Figure 4. 
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The instrument was calibrated using the particle size distribution plots for two NIST 

standard polymer particles of 100 and 300 nm respectively. The distribution plots for 

these particles are shown in Figure 5. All other particles were tightly distributed 

around the specified values as can be seen from Table 3 below.  

 
 

Figure 4: Particle distribution plots showing intensity vs particle hydrodynamic radius, based on DLS 
measurements using Photocor Instruments are shown above.  The hydrodynamic radius of MNPs 
matches closely with the specified radius from Chemicell. Note that 300 nm Lipid and 100 nm PEG/P 
particles had larger size according to DLS measurements, possibly due to agglomeration. 
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NIST Standard: Polymer 

Particle 300 nm
NIST Standard: Polymer 

Particle 100 nm

 
 

Figure 5 : Particle distribution plots showing intensity vs particle hydrodynamic radius for NIST 
polymer particles of size 100 nm and 300 nm diameters, based on DLS measurements using Photocor 
Instruments are shown above. 
 

 

 

Table 3 : Measurements of the hydrodynamic radius of Chemicell MNPs using the DLS (dynamic 
light scattering) system from Photocor Instruments shows that most particles comply with the particle 
sizes specified by Chemicell. However, the PEG/P and lipid particles were found to have poly-
dispersity and agglomeration. 
 

2.5.3  Zeta Potential of MNP Coatings 

The ability of the MNPs to repel each other and remain dispersed in solvent is 

determined by their zeta potential158–160. Zeta potential is the charge on the outer 

liquid layer of the particle. Stronger charges (positive or negative) keep the particles 

more dispersed. Hence the zeta potential determines the initial state of the particles 

and can alter the rate of aggregation of particles and hence potentially their ability to 

move through tissue. For the experiments in this paper, we consider four types of 
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particle coatings: chitosan, polyethylene glycol (with a phosphate group that led to 

negative charge), lipid and starch. The stated zeta potential of each type of coating is 

provided in Table 4. These values were obtained from Chemicell GmbH. 

 

 Chitosan PEG Lipid Starch 

Charge Potential +34 -20 -19 -8 

 

Table 4:  Zeta potential values for each particle type and coating in mV. 

 

2.6  Experimental Procedure 

For each experiment, a known volume of fluorescent MNPs (a 4 microliter droplet 

that stayed within the profile area of the tissue) was placed on top of a tissue surface. 

The tissue had been immobilized using gelatin in a petri-dish. The petri dish was then 

immediately placed on top of a permanent magnet, for 45 minutes. The tissue was 

placed directly above the magnet so that the maximum magnetic field was acting on 

the particles. As described earlier, the magnet size had been selected so that this 

motive force would not change too greatly as the particles traversed the tissue 

samples. After magnet application, the tissue was immediately fixed by flash-freezing 

in liquid nitrogen. The frozen tissue was then stored at -80° C. The fixed tissue 

samples were then embedded in optimal cutting temperature (OCT) fluid from 

Tissue-Tek Inc., for simultaneous slicing and imaging using an automated cryostat 

imaging system previously described in Shen et al.148. The automated cryostat has a 

single fluorescent camera with a resolution of 35 μm per pixel that captures bright 

field and fluorescent images of each tissue slice and the fluorescence distribution of 
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particles within that slice. The complete stack of images of all tissue slices provided 

the entire three-dimensional distribution of fluorescent MNPs in that tissue sample. 

The slicing plane for the imaging was chosen to be parallel to the planes in which the 

particles moved from the top of the tissue towards the magnet at the bottom (see 

Figure 1). The collected images provided quantitative information on the depth of 

penetration of the MNPs, as discussed next. 

 

2.7  Post-Processing of Images 

In order to assess the depth of MNP penetration into tissues, we analyzed the images 

acquired by the automated cryostat. For each slice of tissue, the fluorescent camera 

captures two images: one bright field image showing tissue and background and one 

fluorescent image showing only particles. Each image captured by the camera is 

stored as a matrix of pixels in unsigned integer 16 format. In case of bright field 

images, a zero value of the pixel represents a black color and the maximum value of 

216 represents a white color. Similarly, in the case of fluorescent field images, a 

maximum pixel value represents bright fluorescence while 0 represents the absence of 

fluorescence and particles. The images acquired by the fluorescent camera of the 

automated cryostat required substantial processing in order to reliably extract a 

distance metric. The processing of images involved the following steps: 

A. Data Cleaning: The automated cryostat slicing generated some random 

images along with useful images, due to electrical noise and sometimes due to 

overlapping of a previous slice with the current slice. To remove all spurious 

images, we stacked all image data for all slices and formed a vector whose 
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every element was the total intensity of each slice/image. Since good images 

have tissue and OCT region, and since OCT is white (white represents high 

grayscale intensity values close to 2^16) while tissue is dark gray (black 

represents low grayscale intensity values close to zero), we could easily filter 

out bad images using a median filter. Example good and bad images are 

shown in Figure 6A.  

B. Image Alignment: The tissue-OCT sample was sometimes not exactly aligned 

in the desired top-to-bottom orientation due to error in placing the sample on 

the cryostat slicer. All tissue images were rotated until the top surface 

(indicated as a red line in Figure 6B) was horizontal to within ± 1 degree. 

C. Cropping for Image Processing: We then cropped the first image of each 

sample until only the dark gray tissue region and some surrounding white 

OCT regions were visible in the image. This cropped region was used for all 

slices of the corresponding sample. This enabled further image processing. 

D. Image Thresholding: Based on bright field images and their pixel intensities, 

an image intensity histogram was plotted and a threshold of intensity was 

selected such that the dark and bright regions could be clearly demarcated. 

Then, every region other than the tissue region was masked by assigning pixel 

values of zero. 

E. Assigning Regions of Interest: Since the fluorescent image and bright field 

image are spatially co-registered, we masked the same region in the 

fluorescent image that was outside the tissue region (as in step D above) by 
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assigning pixel values of zero. As a result, only regions inside tissue have 

non-zero pixel intensities. This was done for all slices to ensure that only the 

tissue region was considered for each particle depth measurement. 

F. Total Fluorescence Intensity Vector along Tissue Depth: Each vertical tissue 

image (slice) is represented by a matrix of pixel intensities with each pixel 

corresponding to a 35 μm x 35 μm area. The degree of fluorescence is 

correlated to the amount of particles in that pixel. To reduce computational 

burden, the intensities of particle concentrations along each horizontal row of 

this matrix were summed up. These sums were collected into a single vertical 

vector 1 2[ , ,..., ]ni i i i=
  each of whose elements is the net particle intensity at that 

tissue depth for this single vertical slice. Plotting this vector illustrates the 

profile of total fluorescence intensity with tissue depth, as shown in step E. 

Each single vector thus formed represents total fluorescence intensity 

distributed along the depth for a single slice. Summing all such vectors (so 

summing over all vertical slices) yields a total fluorescence intensity 

distributed along depth for the whole tissue block: 
all slices

I i
−

= ∑
  .  

G. Auto-Fluorescence Removal: In order to account for auto-fluorescence in 

tissue, steps A-E were performed on control samples without particles. The 

average of all pixel intensities from control samples was used as the auto-

fluorescence intensity in that tissue type e.g. in liver, kidney or brain. This 

average pixel intensity of auto-fluorescence was then subtracted from the 

fluorescence intensity computed in step F.  
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H. Depth Metric: In order to quantify the distance traveled by the particles in 

each tissue sample, we computed the centroid of the particle vertical 

distribution. Let Ii represent the total fluorescent intensity at a depth di 

(representing the ith element of the column vector in F above). That value was 

normalized with respect to the maximum intensity at depth di from the top of 

tissue, and then the centroidal distance that the particles moved was computed 

as ( ) ∑∑
==

⋅=
n

i
i

n

i
iic IIdd

11

. This distance metric was used for quantifying the 

movement of the tested particle types in the various tissues. 
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 Figure 6: Image processing steps: (A) A bad image resulting from random capture of an image due to 
noise or overlapping of a previous slice is removed. This was a rare event, but such images were 
removed to clean the database. On the right, a good image that is retained is shown. In the good image, 
the tissue region has pixel values close to zero (dark) and OCT region has pixel values up to 216 (close 
to white). (B) Tissue images were sometimes not correctly aligned. A typical misalignment was 20° 
and usually occurred due to tissue placement error (tissues had to be placed on the cryostat quickly in 
order to minimize temperature changes). All images were rotated until the top surface appeared 
horizontal. (C) Dark background was cropped until only white OCT background and dark tissue 
background was visible, this was done in order to facilitate image processing. (D) The image was 
thresholded and the bright OCT region was assigned a complete white intensity (255) so that only 
tissue region was considered for particle measurement. (E) In this coloring, fluorescent particles with 
high intensities can be seen (red corresponds to a pixel value of 216, blue corresponds to a pixel value 
of zero). The sum of all intensities across a single row represents the total number of particles at that 
depth. The resulting pink curve shows the distribution of particles with depth. The centroid of this pink 
curve quantifies the depth of penetration of particles into the tissue sample. 
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2.8  Results 

To begin to understand the effect of magnetic field, particle characteristics, and tissue 

environment on the motion of particles, we studied three types of tissue: liver, kidney 

and brain, and four types of particles: starch, chitosan, lipid and PEG/P. For each 

tissue-particle pair, we conducted two types of experiments: 1) we let the particles 

passively diffuse through the tissue and 2) we held a permanent magnet (0.4 T field 

strength at its surface) immediately below the tissue in order to exert a maximal 

magnetic force on the particles at the top of the tissue. After conducting the 

experiments as described in Sec. 2.6  , we measured the fluorescence distribution of 

particles in tissue samples for each case and computed the centroidal distance dc. In  

Figure 7 we show representative fluorescent images to illustrate penetration of three 

different particle types (100 nm chitosan, 100 nm PEG/P and 300 nm lipid) in three 

types of tissue slices (liver, kidney and brain) resulting from passive transport and 

magnetic drift. As can be seen from Figure 8, application of the magnet increased 

particle motion for 100 nm particles in liver and the brain. 
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Figure 7 : Magnetic transport of particles versus diffusion alone. The images show fluorescence 
distribution in three types of particle-tissue pairs for passive and magnetic transport. In each case, dc is 
centroidal distance that particles penetrate in tissue (dc is defined in Sec. 0, step H). Chitosan 100 nm 
particles (A) passively diffusing through liver tissue demonstrated limited movement (dc = 2.6 mm) 
versus (B) moved substantially when pulled with a magnet (dc = 5.3 mm). PEG/P 100 nm particles (C) 
passively diffused through a section of kidney showing some spreading and diffusion (dc= 2.6 mm) 
versus (D) showed some small additional movement when pulled with a magnet (dc = 3.0 mm). Lipid 
300 nm particles (E) showed limited diffusion in brain tissue (dc = 2.5 mm) versus (F) substantial 
magnetic drift (dc = 5 mm). 

 

The degree of particle penetration into tissue samples under an applied magnetic field 

was then quantified for each particle type and tissue type pair. Each experiment was 

repeated three times (N=3) and the averaged penetration depth and its standard 

deviation are shown below in Figure 8. Since our experiments were repeated only 

three times, we computed coefficient of variation for each experiment. The 

coefficient of variation was 0.25 on average with a maximum of 0.78 and a minimum 

of 0.038. We have tabulated the results for each experiment in Table 5, Table 6, Table 

7 and Table 8. 
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Table 5 : Tissue penetration after 45 minutes of pulling by a 0.4 Tesla magnet for various particle 
sizes (100 nm – 1 μm diameter), coating (chitosan, starch, lipid and PEG/P), and tissue types (rat brain, 
liver and kidney). Colors denote degree of penetration into the tissue, from red (low penetration) to 
green (high), as noted in the legend at the bottom. 
 

 
Table 6: Tissue penetration after 45 minutes of passive transport for various particle sizes (100 nm – 1 
μm diameter), coating (chitosan, starch, lipid and PEG/P), and tissue types (rat brain, liver and kidney) 
is shown above. Colors denote degree of penetration into the tissue, from red (low penetration) to 
green (high), as noted in the legend at the bottom. 
 

 
Table 7: Coefficient of variation for N=3 experiments showing dispersion in tissue penetration after 45 
minutes of pulling by a 0.4 Tesla magnet for various particle sizes (100 nm – 1 μm diameter), coating 
(chitosan, starch, lipid and PEG/P), and tissue types (rat brain, liver and kidney). Colors denote amount 
of coefficient of variation of penetration into the tissue, from red (low) to green (high), as noted in the 
legend at the bottom. On an average the coefficient of variation was 0.25 with a maximum of 0.78 and 
minimum of 0.038. 

Zeta (mV) 34 -8 -19 -20 34 -8 -19 -20 34 -8 -19 -20
          Coating  
Size Chitosan Starch Lipid PEG/P Chitosan Starch Lipid PEG/P Chitosan Starch Lipid PEG/P

100 nm 4.3±0.5 2.4±1.4 3.8±1.5 4.7±1 5.3±0.2 2.86±1 4±0.9 5.2±1.6 4.1±1.2 1.78±1.4 3.5±1 3.0±0.8
300 nm 3.9±1.0 3.5±1.3 5.0±0.9 3.6±0.2 3.9±1.2 2.8±1.4 3.1±0.5 2.9±1 5.1±1.8
500 nm 4.4±1.7 3.4±0.8 4.8±2.1 3.4±0.9 5.6±1.6 4.9±1.1
1 micron 4.7±0.6 3.4±0.2 5.6±0.6

<2.5 High 4.5-5.25 mean±std dev.
2.5--3.5 Very High >5.25
3.5--4.5 Not available from Chemicell

BRAIN LIVER KIDNEY
  p      (     )

Relatively low
Moderate

Relatively high

Zeta (mV) 34 -8 -19 -20 34 -8 -19 -20 34 -8 -19 -20
          Coating  
Size Chitosan Starch Lipid PEG/P Chitosan Starch Lipid PEG/P Chitosan Starch Lipid PEG/P

100 nm 0.116 0.583 0.395 0.213 0.038 0.350 0.225 0.308 0.293 0.787 0.286 0.267
300 nm 0.256 0.371 0.180 0.056 0.308 0.500 0.161 0.345 0.353
500 nm 0.386 0.235 0.438 0.265 0.286 0.224
1 micron 0.128 0.059 0.107

High <0.8 Coefficient of Variation
Very High Std.Dev/Mean
Unavailable from Chemicell

<0.4
<0.6

      p      (     )
BRAIN LIVER KIDNEY

<0.2
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Table 8: Coefficient of variation for N=3 experiments showing dispersion in tissue penetration after 45 
minutes of passive transport for various particle sizes (100 nm – 1 μm diameter), coating (chitosan, 
starch, lipid and PEG/P), and tissue types (rat brain, liver and kidney). Colors denote amount of 
coefficient of variation of penetration into the tissue, from red (low) to green (high), as noted in the 
legend at the bottom. On an average the coefficient of variation was 0.27 with a maximum of  0.5 and 
a minimum of 0.07. 

 

 

Figure 8 : Tissue penetration after 45 minutes of pulling by a 0.4 Tesla magnet for various particle 
sizes (100 nm to 1 μm diameter), with various coating (chitosan, starch, lipid and PEG/P), in different 
tissue types (rat brain, liver and kidney). Colors denote the type of coating, the shape of the prism 
denotes the tissue type, and the height of prisms shows the degree of penetration into that tissue. The 
vertical bar with black disk above it denotes the standard deviation of the measurement. Particles types 
that were not available from Chemicell are marked by the crossed-out symbols.  
  

After comparing all available fluorescent Chemicell particle types and their 

movement through brain, liver, and kidney tissue types, we found that the average 
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particle penetration depth in all three tissue types fell within a range of 1.78 mm and 

5.6 mm when exposed to a ~ 0.4 Tesla magnetic field for 45 minutes. Hence, the 

average velocity of particle motion in liver, kidney and brain tissue was found to lie 

between 0.66 and 2 μm/s. The particle motion was slowest for 100 nm starch particles 

through kidney and was fastest for 1 μm chitosan particles in kidney. 

 

We compared the effect of particle coatings on the magnetic drift of particles through 

tissue. Among all coating types, for available fluorescent particles from Chemicell, 

we found that chitosan particles (with +34 mV zeta potential) moved better through 

the liver, kidney and brain than starch particles (with -8 mV zeta potential) for 

particles of all sizes (100 nm to 1 μm). In Figure 8, the penetration of chitosan 

particles (green bars) is higher than the penetration of starch particles (blue bars), 

except for the 300 nm size where starch particles penetrated slightly deeper than 

chitosan in liver tissue. Starch particles with a 1 μm diameter were not available from 

Chemicell, as mentioned before, and are marked by a data-not-available symbol 

(crossed-out square, triangle or circle). 

 

Comparison of particle penetration due to magnetic drift versus passive diffusion in 

all tissue types for all particle sizes tested showed that penetration due to magnetic 

drift is more effective than passive diffusion for strongly positively charged particles 

such as chitosan (+34 mV) and strongly negatively charged particles such as PEG/P (-

20 mV). The computed mean and standard deviation of centroidal distance 
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penetration by chitosan and PEG/P particles, for magnetic drift versus diffusion, is 

shown by green and red prisms in Figure 9. 

 
 
Figure 9: Tissue penetration after 45 minutes of passive diffusion and pulling by a 0.4 T magnet for all 
tested particle sizes (100 nm, 300 nm, 500 nm and 1 μm) and all available coatings (starch represented 
as blue, chitosan as green, lipid as yellow and PEG/P as red prisms). Penetration depth is represented 
by the height of each prism. The shape of the prisms represents movement through specific tissue type: 
square prisms denote movement through liver, triangular prisms denote kidney and cylinders denote 
brain. The color of the substrate (the base on which the prisms lie) denotes the presence of a pulling 
magnet (dark gray substrate) versus the absence of a magnet (diffusion only, light substrate).  
 

 

Apart from the above clearly discernable trends, we observed some more nuanced 

effects of particle size on magnetic movement through tissue. Comparison of 

nanoscreenMag particles (up to 300 nm in size) showed that the smallest (100 nm) 

chitosan particles penetrated deeper than 300 nm size chitosan, in all tissue types. 

Among screenMag chitosan particles (500 nm size and above), the 500 nm sized 

particles penetrated deeper in the liver, penetrated to the same depth in the kidney, 

and penetrated less deep in the brain,  compared to their 1 μm sized counterparts. The 
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largest available 1 μm particles with chitosan coating penetrated the deepest through 

kidney and brain tissues, but this was not the case for motion in liver tissue. 

 

From Figure 8, we can also observe that penetration of particles due to magnetic drift 

increased with size for starch particles. This behavior was consistent for all starch 

particles (sizes 100 nm to 500 nm) in all tissue types. The blue triangular prisms for 

kidney tissue clearly show increasing penetration depth with starch particle size, 

although this increase is less pronounced when comparing 300 nm to 500 nm starch 

particles in liver and brain tissues. 

 

We can also compare particle penetration due to magnetic drift for the available 100 

nm and 300 nm lipid particles in liver, kidney and brain. As shown in Figure 8, the 

particle penetration was higher for 300 nm lipid particles compared to 100 nm lipid 

particles in kidney and brain tissue, as shown by the taller yellow triangular prisms 

and cylinders and their shorter counterparts for 100 nm particles. However, this 

behavior was reversed in the case of liver, as shown by the taller 100 nm yellow 

square bar compared to the shorter 300 nm yellow bar in the liver section in Figure 9. 

Lipid particles larger than 300 nm were unavailable and are marked by a cross-out 

diagonal within the square, triangle, or circle shapes. We made every effort to insure 

that our results in freshly excised tissue would match in-vivo behavior as closely as 

possible. The time between organ excision and experiment was less than two hours, 

and according to accepted tissue handling procedures the tissue was preserved in cool 

environment (4ºC), and stored in phosphate buffer solution. This procedure and time 
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interval is within the time interval studied in transplant research and research for 

studying the mechanical properties of tissue145,161–163. Further, the tissue organs we 

selected (liver, kidney, and brain) were significantly larger than the volume of MNPs 

used, and only the outer surface of the tissue was exposed to the liquefied gelatin used 

for immobilizing the tissue. This protected the particle penetration path from the 

external environment to some extent, and we believe it helped ensure that the 

collected data will be representative of magnetic particle motion in-vivo.  

 

2.9  Conclusions 

An experimental method was presented to quantitatively measure the penetration 

depth of magnetic nano-particles (MNPs) into tissue samples under the action of an 

applied magnetic field. In this method, MNPs were placed on top of freshly excised 

liver, kidney, and brain tissue samples and were then pulled into the samples by a 

magnet placed underneath the tissues. The tissue samples were sliced by an 

automated cryostat, fluorescence from the particles was imaged and processed, and 

the degree of MNP penetration was quantified by a centroid distance metric. Tests 

were conducted on available fluorescent particles from Chemicell in four sizes (100 

nm, 300 nm, 500 nm, and 1 𝜇𝜇m diameter) and with four different coatings (starch, 

chitosan, lipid, PEG/P). The average particle penetration depth in all three tissue 

types, after a 45 minute application of a 0.4 Tesla 1” x 1” x 2” magnet, was between 

1.78 mm and 5.6 mm, which corresponds to a transport velocity between 0.66 and 2 

μm/s. We found that chitosan particles moved most effectively through all three-

tissue types (compared to starch, lipid, and PEG/P coated particles). However, we 
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observed many additional dependencies on particle size, coating, and tissue type, 

which indicate that the motion of MNPs in tissue is complex and that additional 

studies will be required to elucidate transport mechanisms in tissue and to engineer 

MNPs for optimal transport in tissue. We also stress that our data was collected in 

freshly excised tissue, not in-vivo in live animals, and differences between excised 

and living tissue may affect MNP motion in ways that are not captured by this study. 
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Chapter 3: Movement of magnetic nanoparticles in brain tissue: 

mechanisms and safety 

This work originally appeared in 164 
 
 

3.1  Background 

Nanotechnology based solutions for the treatment of brain tumors have been used in 

recent years to address the challenges faced by conventional cancer therapeutics165 

such as surgery166,167, chemotherapy39,168,169 and radiation therapy170,171. Drugs such 

as doxyrubicin88 and oxantrazole172 can be combined with appropriate nanocarriers to 

penetrate the blood brain barrier (BBB) and increase the intracellular concentration of 

drugs in tumor cells173,40,174. Magnetic nanoparticles (MNPs) have been investigated 

as effective nanocarriers for targeted drug delivery in the brain175,49,55,176. Such MNPs, 

with attached drugs, proteins, or genes, could be imaged using MRI technology and 

guided towards brain tumor locations using external magnets.  

 

MNPs with an aminosilane coating have been investigated in human trials for 

targeting glioblastoma multiforme cells and have been shown not to cause any 

adverse effects in patients. In the presence of an alternating magnetic field, the MNPs 

were found to extend tumor necrosis with minor or no side effects in the patients176. 

Hassan and Gallo showed that after a systemic injection of magnetic chitosan 

microspheres coated with oxantrazole, while in the presence of a 6000 Gauss 

magnetic field, the guided microspheres accumulated in targeted rat brain tissue172. 
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Thus MNPs have been shown to cross the BBB and reach targets in brain tissue 

without disrupting the barrier in rat models49,177. 

 

Furthermore, endothelial progenitor cells (EPCs) from humans have been loaded with 

MNPs and guided to targets in mouse brains178. These EPCs loaded with MNPs have 

shown increase in secretion and migration of growth factors such as VEGF and FGF, 

in vitro, thereby promoting angiogenesis for neural regeneration. Various in vitro 

studies have shown that cancer cells can be made to internalize a higher level of 

nanoparticles with drugs by appropriate targeting of receptors179,180,181,182. The MNPs, 

therefore, can be used as a potential option to circumvent the challenges faced by 

conventional drug delivery techniques. 

 

Most of the work mentioned above has focused on the motion of MNPs through 

blood vessels and the observation of MNP presence in living tissue49,183,184. The 

motion of MNPs in brain tissue surrounding the blood vessels is expected to differ 

from its motion in the vessels. Hence there is a need for a better understanding of the 

motion of MNPs in brain tissue after extravasating from blood vessels. The MNP 

motion in tissue should be safe. It must not be cytotoxic, nor should it affect the 

normal function of the intricate neural networks in the brain so as to eliminate the 

possibility of permanent side effects in the brain following the delivery of drugs using 

MNPs. Addressing these needs will result in better nanotherapeutic schemes to target 

tumors in brain tissue. 
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In the current work, we have studied the movement of magnetic nanoparticles 

(MNPs) in brain tissue under an applied magnetic field. The movement of MNPs 

throughout this work includes the interactive motion of MNPs towards each other 

caused by the influence of an external magnetic field. The mechanisms of this MNP 

motion and the primary factors that impact this motion have been explored. We found 

that the motion of MNPs did not cause any detrimental effects on the functional 

health of the neurons or the circuit function in the main olfactory bulb, a well-studied 

region in the brain. We examined the functional safety aspects of MNP motion by 

using whole-cell patch recordings, imaging and immunohistochemistry in the main 

olfactory bulb. 

 

3.2  Experimental methods 

3.2.1  Characterization of magnetic nanoparticles 

The physical properties (mean hydrodynamic diameter, polydispersity index) of 

MNPs (nano-screenMag, Chemicell, listed as 300 nm diameter) used in our 

experiments were determined using dynamic light scattering. The MNPs were 

required to be monodispersed to avoid non-uniformity in their motion in the tissue 

caused by particle size variations. For the dynamic light scattering measurements, the 

stock concentration of MNPs (25 mg/mL in double distilled water) was diluted with 

de-ionized water to a concentration of 0.25 mg/mL. Three samples of 3 mL of the 

diluted solution were used for the measurement assays. The particle size distribution 

curve was plotted for these samples and used to calculate the polydispersity index ( 

Figure 10A). 
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The magnetic properties of the nanoparticles including magnetic susceptibility and 

saturation magnetization were measured using a vibrating sample magnetometer 

(Lake Shore Cryotronics Inc.). Sample volumes of 60 μL of MNPs in DI water were 

pipetted into the sample holder (Kel-F) and the holder was placed in the vibrating 

sample magnetometer setup. The experiments were performed at room temperature 

(298 K). The samples were exposed to a cycle of different magnetic field values in 

the range of -1.5 to +1.5 Tesla and the corresponding net magnetization produced in 

the samples were recorded. The magnetic properties (susceptibility and saturation 

magnetization) of the samples were then calculated from the magnetization versus 

magnetic field (M vs H) plot obtained from the vibrating sample magnetometer ( 

Figure 10B). 

 

3.2.2  Uniform magnetic field using a two magnet setup 

A system was created to apply a uniform magnetic field to magnetic particles inside 

brain tissue slices. A uniform magnetic field was desired so that all MNPs in the 

tissue would experience the same magnetic field irrespective of their location in the 

tissue. Two permanent magnets, appropriately sized and placed as shown in Figure 

1A, were sufficient to create a uniform magnetic field. The uniformity of the field 

was verified by a 3-channel Gaussmeter (Lake Shore Inc.) mounted on a piezo 

positioning stage (VXM Motor Inc.). The Gaussmeter measured the spatial 

distribution of the magnetic field intensity between the two magnets and it was found 

that the deviation from the mean magnetic field intensity in the tissue sample volume 

was less than 1%. This data is displayed in Figure 11.  
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3.2.3  Motion experiments of MNPs in the brain tissue 

The motion of MNPs towards each other under the influence of an applied uniform 

magnetic field was studied in rat brain tissue using a total of 12 rats (Sprague 

Dawley). Each different motion experiment was repeated three times using tissue 

from different rats to ensure that the data was independent of animal to animal 

variability. The rat brains were dissected out and immediately stored at 4°C in 1X 

Phosphate Buffer Saline (PBS) solution to increase their viability. After 15 minutes, 

the brains were injected in the prefrontal cortex with 4 μL of the MNPs, using a 10 

µL micro-syringe (Hamilton). Following this injection we obtained cortical slices 

using a razor blade. The slicing was facilitated by the low temperature storage of the 

brain samples. The slices containing the injected MNPs were then stabilized at room 

temperature in 1X PBS solution in a petri dish. The MNPs were visualized by 

fluorescence using a lipophilic dye coating (Texas Red, Chemicell) with excitation 

and emission wavelengths of 578 nm and 613 nm respectively. The petri dish 

containing the brain tissue, immersed in PBS, was placed in the uniform magnetic 

field region of the two magnet setup. The effect of the uniform magnetic field on the 

MNPs in the brain tissue was observed using a fluorescent microscope (Zeiss) with 

40X magnification and recorded using a video camera (Hamamatsu). The videos were 

post-processed in MATLAB (Mathworks) to quantify the movement of the MNPs in 

the uniform magnetic field. 
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3.2.4  Electrophysiological recordings 

All animal studies were conducted in accordance with the policies and 

recommendations of the National Institute of Health Guide for the Care and Use of 

Laboratory Animals, and under approval from the Institutional Animal Care and Use 

Committee of the University of Maryland. The electrophysiological recordings were 

performed in brain slices extracted from wild-type BL6/C57 mice (Jackson Labs), or 

4-6-week-old transgenic mice expressing green fluorescent protein (GFP) and 

subjected to MNP motion. Specifically, we used the ChAT-Tau-GFP line, generously 

provided by Dr. Sukumar Vijayaraghavan 185.  We performed these electrophysiology 

experiments in mice because of the feasibility of transgenic modification in a mouse 

model compared to a rat model. All the functional experiments involved whole-cell 

patching of neurons in an electrophysiology setup. The transgenic modification of 

mice enabled us to visualize the GFP expressing neurons in the presence of MNPs 

around them using a fluorescence microscope with multiple wavelength filters. 

Neurons from at least 5 different brains were used for the studies.  The animals were 

anesthetized with isofluorane and decapitated. The whole brain was removed and 

immediately placed in ice-cold oxygenated artificial cerebrospinal fluid (ACSF). The 

ACSF used for the experiments contained the following composition (in mM): 125 

NaCl, 25 NaHCO3, 1.25 NaH2PO4, 3 KCl, 2 CaCl2, 1 MgCl2, 3 myo-inositol, 0.3 

ascorbic acid, 2 Na-pyruvate, and 15 glucose. The solution was maintained at a 

constant pH of 7.4 and osmolarity of ~ 350 mOsm by continuous oxygenation (95% 

O2- 5% CO2). A block of the extracted tissue, containing the olfactory bulb, was 

glued to a stage with cyanoacrylate and bathed in ice-cold low Ca2 +, high 
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Mg2 +ACSF. Sagittal brain sections (250-300 μm), containing the olfactory bulb were 

sliced using a vibratome slicer (Leica). The slices were held at 34 °C for 30 minutes 

and then at room temperature to recuperate. 

 

The slices were then transferred to a Petri dish and the MNPs were injected into the 

slices using a glass micro-pipette (≈ 5 μm diameter) attached to a micro injection 

system (Toohey spritzer). The MNPs in the brain slice were visualized using a 

fluorescence microscope and the two magnet setup was introduced for 5 minutes to 

produce MNP motion and chaining. Then the two magnet system was rotated by 90° 

to produce motion of MNPs in a perpendicular direction to ensure that the functional 

safety of neurons did not depend on the direction of MNP movement. The slices were 

then placed in the electrophysiology recording chamber mounted on the stage of an 

upright fluorescence microscope (Zeiss) and the region of the tissue containing MNPs 

was identified using fluorescence. Then neurons in that region were patched for 

electrophysiology recordings. The recordings were carried out in current-clamp and 

voltage-clamp mode using standard patch pipettes (3-7 MΩ resistance) pulled on a 

horizontal puller (Sutter). To further assess neuronal integrity and viability in slices 

loaded with MNPs, after the application of a magnetic field, we included the 

fluorescent dye Alexa-Fluor 488 (10 μM, Life Technologies) in the recording pipette 

solution. Data were acquired using a dual EPC10 amplifier (HEKA) and analyzed 

offline using the IgorPro software (Wavemetrics). We conducted control experiments 

in slices obtained from the same brain but not injected with MNPs or injected with 

the MNPs but not subjected to the magnetic field. 
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3.2.5  Calcium imaging  

Following the post-slicing recuperation period, slices were transferred to a 30 mm 

Milicell culture dish insert (Millipore Corp, Billerica, Ma) containing 5 mL of normal 

oxygenated ACSF with 5 μM freshly prepared Fluo-4 AM Pluronic Acid F-127 20% 

solution in DMSO (Molecular Probes, Life Technologies). Slices were submerged in 

the dye for 20 minutes then transferred to a submerged recording chamber mounted 

on the stage of an Olympus BX51 microscope for acquisition. 

 

We visualized labeled slices using epifluorescence illumination and a × 40 water 

immersion objective. Illumination was achieved using an OPTOLED green LED 

(exciter 488 nm center wavelength, Chroma; Cairn Research LTD), emitted light was 

collected by an ORCA-Flash4.0 V2 sCMOS camera (Hamamatsu), and images were 

recorded using the HCimage software (Hamamatsu). Imaging analysis was performed 

offline using the ImageJ and IgorPro (Wavemetrics) softwares. (S)-1-Aminopropane-

1,3-dicarboxylic acid (Glutamate) was prepared from a stock solution and added to 

the bathing solution. The calcium indicator, Fluo-4 AM (Molecular Probes, Life 

Technologies), was excited at a wavelength of ~ 490 nm and the resulting emission 

detected at ~ 520 nm. The optical recording data are shown as the ratio of the change 

in fluorescence caused by glutamate in cells after 60 seconds to the baseline 

fluorescence (∆f/f0) for the indicated regions of interest. 

 

 

 



 

 50 
 

3.2.6  Immunohistochemistry  

The ex-vivo brain tissue slices from ChAT-tau-GFP mice were analyzed using 

immunohistochemistry after magnetic field induced MNP motion. The nerve fibers in 

the slices were visualized using anti-GFP immunostaining to assess any damage 

caused due to MNP movement. The slices were extracted as above, injected with 

MNPs in the main olfactory bulb, and exposed to a uniform magnetic field in two 

different directions as described in the previous section. The slices were then fixed in 

4% paraformaldehyde for 5 minutes, transferred to saline solution at 4º C, and then  

quickly washed with 1X PBS for 2 minutes. The slices were then incubated with the 

blocker (10% Donkey serum in PBS-T) for 1 hour, followed by incubation with the 

primary antibody in 2.5% Donkey serum in PBS-T overnight at room temperature. 

The slices were then washed once in PBS-T and then 7X for 5 minutes each in PBS-T 

and incubated in the secondary Alexa-488 antibody solution (1:750 concentration) for 

2 hours at room temperature. The slices were washed 3X for 5 minutes in PBS-T, 

then further rinsed 3X for 5 minutes each in PBS. At this point, immunostained slices 

were visualized using confocal microscopy with appropriate fluorescence filters for 

the MNPs and the GFP-stained fibers.  

 

3.3  Results  

The MNPs were analyzed using dynamic light scattering to calculate the particle size 

distribution and the extent of polydispersity. The mean hydrodynamic diameter of the 

samples was measured to be 274.6 ± 40 nm (n = 3 samples) with a polydispersity 

index of 2%. The distribution of hydrodynamic diameter in the samples is shown in  
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Figure 10A. The magnetization of the particles was measured using the vibrating 

sample magnetometer for different field intensities and the hysteresis curve for the 

MNPs is shown in Figure 10B. The saturation magnetization of the particles was 

calculated to be 0.06 emu at a saturating magnetic field of 0.5 T. The magnetic 

susceptibility of the nanoparticles was calculated from the M vs H plot and was found 

to be χm = 15.2. Based on these measurements, the MNPs exhibited 

superparamagnetic behavior and were confirmed to be monodispersed.  

 

 

 
Figure 10 : (A) The distribution of hydrodynamic diameter of the MNPs measured using dynamic 
light scattering. (B) The magnetization versus magnetic field intensity profile of MNPs measured using 
vibrating sample magnetometry. 
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Figure 11: The deviation of magnetic field intensity from the mean value in the region between the 
two magnets. The two magnet-system produces a uniform field with less than 1.0% variation in the 
region occupied by the tissue (represented by yellow dotted lines). 
 

 

The characterized MNPs were injected in rat brain tissue and exposed to a uniform 

magnetic field as shown in Figure 12A. These ex-vivo cortical slices were maintained 

at a low temperature in order to preserve structure and extend sample viability. Prior 

to applying a magnetic field, it was observed that the MNPs diffused in random 

directions in the tissue. However, when the uniform field was applied to the tissue 

using the two magnet system (Figure 12B), each magnetized MNP produced a 

magnetic field of influence around it. An MNP falling in the field of influence of any 

neighboring MNP experiences an attractive magnetic force towards its neighbor186. 

This attractive force between particles causes the motion of MNPs towards their 

neighbors. The interactive motion of MNPs in the presence of a uniform magnetic 

field resulted in the formation of MNP chains in the prepared rat brain tissue. Figure 



 

 53 
 

12C shows a representative image of this chaining of MNPs in a mouse brain tissue 

(GFP line) after the application of magnetic field. The MNP chains increased in size 

over time as new particles were recruited to the chain and as the corresponding region 

of the magnetic field of influence grew larger. The phenomena of movement and 

agglomeration of MNPs into chains in the brain tissue was observed in all the tissue 

slices from different rats (n=12).  

 

The motion of MNPs in brain tissue was further evaluated after varying two key 

parameters in the above experiment, namely, magnetic field intensity and MNP 

volume concentration. The experiments were performed in brain tissue slices 

combining either high (0.1 T) or low (0.02 T) uniform magnetic field intensity with 

either high (0.5 mg/mL) or low (0.05 mg/mL) MNP concentration. Each of these four 

experiments was repeated over three slices from different rats. In 3 out of the 4 

experiments, MNPs formed chains in the presence of a uniform magnetic field while 

in one case, at the combined low magnetic field and low magnetic concentration, the 

MNPs were too far apart and the magnetic field was too small to produce any 

chaining. Table 9 shows a comparison of the extent of chaining observed for each 

combination of parameters. The amount of chaining for each of the experiments was 

defined by the average MNP chain length observed in the tissue after 10 minutes of 

applying the uniform magnetic field. As anticipated, the largest MNP chaining was 

observed for a combination of high magnetic field and high magnetic concentration 

(12.51 ± 3.5 μm). In addition, the chain length observed in a high magnetic field and 

low MNP concentration (5.84 ± 1.1 μm ) was higher than observed for the case of a 
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low magnetic field and a high MNP concentration (2.76 ± 0.8 μm). This indicated a 

dominant effect of magnetic field intensity over the MNP concentration in the process 

of MNP movement and chaining. 

 

Figure 12:  (A) The diagram of two-magnet setup used to study movement of MNPs in brain tissue. 
The tissue loaded with MNPs was mounted and visualized under a fluorescent microscope after 
exposing it to the uniform magnetic field (B) An illustration of how MNPs behave in brain tissue with 
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and without an applied uniform magnetic field. The MNPs diffuse in different directions (blue arrows) 
in the absence of a uniform magnetic field (left, top). After the introduction of the magnetic field, the 
MNPs move towards each other due to an overlap of induced magnetic fields of influence (green 
circles). As a result, the MNPs form chains as they move towards each other and longer chains have a 
larger field of influence which recruits additional particles to the chain (bottom). (C) Chaining of 
MNPs experimentally observed in mouse brain tissue (pre-frontal cortex region) in the presence of a 
uniform magnetic field. The MNP chains (orange) and single MNPs are enclosed by white ovals and 
white dotted circles respectively. The dendrites (green) in the tissue are indicated by white arrows.   
 

 

Table 9 : Average chain length after 10 minutes for different applied magnetic field intensity and 
MNP concentration combinations in rat brain tissue. 
 

To determine the functionality of cells after moving MNPs through or near them, we 

performed standard electrophysiology recordings in the neurons of the olfactory 

bulb187,188. Mitral cells from the main olfactory bulb were targeted for whole-cell 

recordings, after moving MNPs through a region that contained those cells. In these 

experiments the recording pipette contained a fluorescent dye (see methods), which 

allowed us to visually verify the integrity of the recorded neuron. As shown in Figure 

13B,  following the movement of MNPs, mitral cells remain excitable as determined 

by current injections, indicating that basic processes such as influx and efflux of 

sodium and potassium ions 189 respectively were unaffected by the motion of MNPs. 

The motion of MNPs did not alter the dependence of neuron firing frequency for 

different constant currents injected into the cells (Figure 13C). Additionally, we 

tested synaptic functionality by examining the occurrence of spontaneous inhibitory 
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post-synaptic currents (sIPSCs) in mitral cells. Previously, it has been shown that 

noradrenaline, a neuromodulatory transmitter, enhances the release of gamma-

Aminobutyric acid (GABA) from granule cells in the main olfactory bulb, and greatly 

enhances the frequency of spontaneous inhibitory post-synaptic currents in mitral 

cells190. As shown in Figure 14B, slices exposed to noradrenaline (NA, 10 uM, for 3 

minutes) after MNP motion showed a significant increase in spontaneous inhibitory 

post-synaptic current frequency, suggesting that the synaptic connectivity between 

granule and mitral cells in the main olfactory bulb remained functional. 

 

Figure 13: Functional health of brain tissue after MNP motion. (A) Recording from a mitral cell in the 
olfactory bulb after the slices treated with MNPs were subjected to a magnetic field. The recording 
electrode contained the fluorescent dye Alexa-488 (green), which diffuses into the neuron during the 
recording. The MNPs contained a fluorophore Texas-Red (red). Note this is a total summed two 
wavelength images (B). Current-clamp recordings in mitral cells before (red) and after magnet induced 
MNP movement (blue). Increasing depolarizing current pulses (not shown) elicited action potentials in 
both control and treated neurons. (C) In the range of depolarizing current used, the frequency of 
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neuronal firing increased linearly and it was comparable for different constant current stimuli before 
(black) and after MNP motion (red). 

 

Figure 14: Synaptic connectivity in the olfactory bulb after MNP motion (A) Recording from a mitral 
cell showing the spontaneous occurrence of GABA IPSCs after MNP motion in brain slices. Top, 
application of noradrenaline (NA, 10 µM, 3 min) produced a long lasting increase in sIPSC frequency 
in this cell. Bottom, select traces from above, in an expanded time scale, showing sIPSC before (left) 
and after NA (right). (B) NA significantly increased the sIPSC frequency; baseline, 2.56 ± 0.82 Hz, 
NA, 7.39 ± 2.34 Hz (*, p<0.003; n = 5). The observed increase in sIPSC frequency caused by NA after 
MNP motion is similar to the trend observed previously by Zimnik et al. 190 

 

Next, we assessed whether the magnetically induced movement of MNPs disrupted 

the neural circuit function in the olfactory bulb. The olfactory bulb has a well-

characterized neural circuit in which sensory inputs excite principal neurons, 

specifically the mitral/tufted cells191. Activation of mitral cells then excites the 

surrounding granule cells at dendrodendritic synapses. Thus, by monitoring the 

granule cells after MNP movement, we studied the effect of MNP motion on the 

excitatory synapses in the olfactory bulb 191. To investigate olfactory bulb neural 

circuit function, we loaded olfactory bulb slices with a Ca2+ sensing dye (Fluo-4 AM 

dye, 5 μM, see Methods) to visualize and monitor the neural activity of the circuit, in 

particular granule cells (the most abundant neuron in the olfactory bulb) (Figure 
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15B).  Fluo-4 dye AM is a cell permeable dye that exhibits an increase in 

fluorescence upon binding to Ca2+ (indicating neural activation), and allows for the 

monitoring of a large number of neurons simultaneously.  MNPs were applied to the 

slice 30 minutes before the acquisition of images began and they were moved by 

exposure to a uniform magnetic field. We then assessed the responsiveness of granule 

cells to activation by the excitatory neurotransmitter glutamate after MNP movement 

in the region. As shown in Figure 15B, following the movement of MNPs in the slice, 

granule cells show normal fluorescence labeling suggesting that the overall 

morphology is maintained. In these slices, application of glutamate (100 µM) resulted 

in a robust increase in intracellular Ca2+ as evidenced by the changes in ∆F/F0 (45.25± 

8.2%, n= 6 cells). Hence the responses to excitatory stimuli in granule cells were not 

affected by the MNP movement in the region.  
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Figure 15: Calcium imaging recording in brain slices after MNP motion. (A) Experimental setup used 
for the calcium imaging experiments. After loading the calcium dye, MNPs are placed on the slice and 
subjected to a magnetic field. (B) Fluorescence image showing a network of functionally active 
neurons in a brain slice loaded with the calcium dye Fluo-4 AM (white) and MNPs (red), after 
exposing the slice loaded with MNPs to a uniform magnetic field. Dotted colored circles represent the 
neurons used for quantification of fluorescence changes shown on the right. (C) Optical fluorescence 
recordings of the selected cells shown in B. Images were taken at a rate of 1 Hz FPS. Application of 
the excitatory neurotransmitter, glutamate (100 μM, 45 seconds) resulted in a large, and reversible, 
increase in intracellular calcium levels. The color of each plot corresponds to cells indicated by the 
colored dotted circles in (B). 
 
 

To further determine whether the movement of MNPs disrupted neural connections, 

we used transgenic mice (ChAT Tau-GFP) that expressed GFP under the promoter of 

choline acetyl transferase (ChAT), an enzyme involved in the synthesis of 

acetylcholine. Since the main olfactory bulb receives a rich cholinergic projection 

from the basal forebrain192, we visualized the effect of MNPs on the fibers in this 
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particular region. The slices used in these experiments were divided into three main 

categories: treated, untreated, and control. The treated slices were injected with MNPs 

and were subjected to the applied uniform magnetic field for 5 minutes, followed by a 

rotation of the field for 5 minutes as explained in the Methods section. The untreated 

slices were just injected with MNPs and no magnetic field was applied. The control 

slices contained no MNPs and no magnetic field was applied. As shown in Figure 16, 

immunostaining of GFP in control mice samples (Figure 16, left) revealed abundant 

fibers throughout the different cellular layers of the main olfactory bulb. The 

untreated (Figure 16, middle) and treated slices (Figure 16, right) showed no 

difference in the pattern of distribution of GFP-positive fibers. Hence the motion or 

presence of MNPs did not disrupt the neural connections in the brain independent of 

the direction of MNP motion. 

 

 

Figure 16: Confocal microscopy images of the granular cell layer in the main olfactory bulb from 
ChAT-Tau-GFP mice, after immunostaining for GFP. In control conditions (left) the slices show 
abundant distribution of GFP labelled fibers, corresponding to the axonal processes of cholinergic 
neurons. The pattern of distribution of axonal fibers was not affected in slices treated with MNPs 
without application of the magnetic field (middle) or after the MNPs exhibited motion into chains 
under an applied uniform magnetic field (right). 
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3.4  Conclusions 

In previous works, MNPs of various sizes, shapes, and coatings have been 

successfully utilized in drug delivery, gene transfection, tumor imaging, and 

regenerative medicine 55,177,193,194,195,. In principle, such MNPs can be controlled in 

the human body using external magnet systems to direct drugs and other biological 

factors to specific targets. Here we examined the motion of MNPs in brain tissue, to 

investigate both the character of MNP motion in the brain and its safety. We showed 

that monodispersed starch-coated MNPs are able to move towards each other in brain 

tissue when exposed to a uniform magnetic field and, importantly, that this movement 

produced no apparent disruption of the neural circuit function in the main olfactory 

bulb. 

 

We observed that the MNPs agglomerated into chain like structures as they moved in 

the brain tissue under the influence of a uniform magnetic field. Such an 

agglomeration of MNPs in a uniform magnetic field has been previously studied in 

various media such as in water, bovine serum albumin and sodium dodecyl sulphate 

196,197,186. The dynamics of chain formation and the distribution of chain length have 

been modeled and compared with experiments197,198,199. Based on these prior studies, 

the mechanism of chain formation can be classified into two main cases: diffusion 

dominated and magnetic drift dominated agglomeration. In diffusion dominated 

agglomeration, the MNPs undergo diffusion in the media until they are close enough 

so that they bring each other together by the magnetic forces between them200,201,202. 

In the drift dominated agglomeration, the magnetic force has a sufficiently long range 
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that it drives the motion of MNPs together from the start 203,204,205. In our experiments 

in brain tissue, the average chain length of MNPs was higher in a high magnetic field 

and low MNP concentration than in a low magnetic field and high concentration 

condition. This indicates that a high magnetic field intensity can bring even sparsely 

distributed nanoparticles together. Thus for our experimental conditions, the MNPs 

exhibit a magnetic drift dominated mechanism of agglomeration as they moved in 

brain tissue. 

 

The MNPs used in this work have been shown to not produce cytotoxicity in various 

cell types and in-vivo studies174,206,207. However, it is equally important to study and 

ascertain that the motion of these nanoparticles in brain tissue does not affect the 

normal function of neurons or their connectivity. By taking electrophysiological 

recordings of neurons before and after MNP movement, we have shown that the MNP 

motion and chaining did not affect neural functionality. Current injections produced a 

robust depolarization in the neurons, and they exhibited a stimulus-dependent 

increase in firing when a constant current stimulus was provided to the cell. 

Importantly, the change in neural firing rate elicited by incremental current stimuli 

was not affected by the MNP motion. Therefore, we conclude that MNP presence, 

motion, or chaining did not affect the physiological properties of the neurons. 

 

In addition, we showed that the movement of MNPs did not affect the inhibitory 

neural circuit in the olfactory bulb; a critical component of olfactory processing in the 

bulb. The frequency and amplitude of the GABA sIPSCs after movement of the 
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MNPs was similar to the previously reported values 190. Further, since the sIPSCs 

recorded in the mitral cells are produced by the summation of multiple synapses from 

several interneuron types, these results suggest that circuit level basal release from 

interneurons and post synaptic mitral cells activation were not affected following 

MNP motion. Furthermore, noradrenaline caused a robust increase in the spontaneous 

inhibitory post-synaptic current frequency in mitral cells, suggesting that the overall 

functionality of interneurons was also not affected by the MNPs movement (see also 

190). This conclusion was further supported by the analysis of excitatory glutamatergic 

responses in a population of granule cells using a calcium indicator. In these optical 

recordings we found that a wide field of granule cells showed an increase in 

fluorescence after exposure to glutamate despite MNP motion in the same region. The 

increase in fluorescence corresponds to an increase in intracellular calcium ions in the 

granule cells, in response to the glutamate-induced excitation. Together, these results 

provide evidence that excitatory and inhibitory responses of the olfactory bulb neural 

network were not affected by the MNP movement. 

 

Apart from the functional health of the neurons, the immunohistochemistry 

experiments suggested that the MNPs did not disrupt the fibers as they moved and 

chained in the tissue. The slices containing MNPs (both with and without an applied 

uniform magnetic field) did not exhibit any noticeable difference in the density of 

cholinergic fibers in the granule cell layer, compared to the control slices with no 

MNPs and no applied magnetic field. These experiments ruled out the possibility that 
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the passive diffusion or magnetically induced movement of MNPs disrupted neural 

connections. 

 

In summary, we have shown that MNPs can move towards each other in brain tissue 

under an applied uniform magnetic field. This motion of MNPs results in the 

formation of chain like agglomerates in the tissue and for our experimental conditions 

this chaining was determined to be drift dominated (as opposed to diffusion 

dominated) behavior. We found that the chained MNP agglomerates did not affect the 

normal functioning of neurons in the main olfactory bulb. The MNP agglomerates 

also did not disrupt the dense connections between the neurons in this region. Since it 

is known that MNP chaining, and the resulting ability for magnetic fields to effective 

move MNP through tissue208,209,210 depends on particle properties (size, shape, 

concentration), in the future the studies above could be expanded to select optimal 

MNP properties to enable effective but safe MNP motion in the brain. Enabling safe 

and effective manipulation of MNPs in the brain would aid drug and gene delivery 

and other tissue engineering applications in the brain. 
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Chapter 4: Magnetic steroid targeting to the inner ear to reduce cisplatin 

induced ototoxicity 

 

4.1  Background  

Cisplatin (cis-diamminedichloroplatinum) and other platinum based drugs are the 

antineoplastic drugs of choice for various genitourinary cancers, certain forms of 

breast cancers, and as radiosensitizers for most head and neck cancers. However, 

these platinum-based drugs are very toxic to the kidneys 211, the inner ear 212, and 

sometimes the peripheral nervous system 213. While the nephrotoxicity may be 

mitigated by hyper-hydrating patients in the hours before and during cisplatin 

injections, addressing ototoxicity in cisplatin-treated patients remains an unmet 

medical need. 

 

Cisplatin induced hearing loss occurs in adults with an average incidence of 62% 214. 

Among pediatric patients, significant sensorineural hearing loss is observed in 90.5% 

of patients at 8 kHz 215. The ototoxic effect of cisplatin is noticeable, with hearing 

loss within hours or days after the first cisplatin injection 216. It is also cumulative, 

and the cumulative effect implies particular vulnerability in pediatric populations as 

repeated treatments, even separated by years, eventually lead to complete hearing 

loss, which may in turn lead to pervasive developmental delays including speech, 

cognitive and social developmental challenges.  
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The molecular mechanisms underlying the ototoxicity of cisplatin remain under 

debate. The various mechanisms include generation of reactive oxygen species and 

the depletion of antioxidant enzymes such as superoxide dismutase 217, catalase, 

glutathione peroxidase and glutathione reductase 216. Overall, cisplatin causes damage 

to the organ of Corti, the stria vascularis and spiral ganglion cells, possibly through 

different molecular mechanisms 218,219. 

 

Steroids have been shown to reduce cisplatin-induced hearing loss, presumably by 

counteracting the effect of the reactive oxygen species induced by cisplatin 

administration 214,220. Though commonly used, steroids interfere with cisplatin’s 

efficacy and prolonged use of systemic steroids is undesirable due to additive 

toxicities 221–224. Thus it has been proposed that local administration of steroids into 

the middle ear, subsequently diffusing into the cochlea via the round window 

membrane at the base of the cochlea, could be used to protect hearing. However, 

administration of a liquid steroid into the middle ear results in a rapid elimination of 

the drug from the cochlea as well as a very steep drug gradient from the base to the 

apex of the cochlea 77,225. The liquid formulation in the middle ear is also rapidly 

eliminated via the Eustachian tube as soon as the patient stands up and swallows. 

 

In prior animal studies we showed that application of our magnetic injection device 

could be used to direct drug-eluting bio-compatible nanoparticles from the middle ear 

to the inner ear. Once inside the inner ear, the drug payload is released from the 

nanoparticles, providing a significant therapeutic effect 226,227. In this paper, we show 
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that magnetic steroid delivery to the inner ear can be used to protect hearing in mice 

receiving systemic cisplatin regimens. Previously both dexamethasone and 

prednisolone had been used for their otoprotective effect against cisplatin 214,228. Due 

to an ability to more effectively load the magnetic particles with prednisolone than 

dexamethasone, we employed prednisolone-loaded magnetic nanoparticles deposited 

intra-tympanically into the middle ear, and then applied a magnetic field that 

transported the nanoparticles through the window membranes into the inner ear where 

they released the steroid in therapeutic amounts. In the mouse model employed in this 

study, this steroid delivery method effectively mitigated the cisplatin-induced rise in 

hearing threshold of the animals at high frequencies and protected the outer hair cells 

in the basal cochlear region from the ototoxic effect of cisplatin. 

 

4.2  Methods 

4.2.1  Animals 

The study was conducted on CBA/CAJ mice (10 weeks old) of both sexes (23-27 gm 

body weight) from the Jackson Laboratory (Bar Harbor, ME). All animal studies were 

conducted in accordance with the policies and recommendations of the National 

Institute of Health Guide for the Care and Use of Laboratory Animals, and under 

approval from the Institutional Animal Care and Use Committee of the University of 

Maryland. 
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4.2.2  Anesthesia 

The mice were anaesthetized via intraperitoneal injections of ketamine 100 mg/kg 

and xylazine 20 mg/kg supplemented as necessary and were placed on a warming pad 

(Deltaphase isothermal pad, Braintree Scientific, MA) to maintain body temperature 

at 37 °C. 

 

4.2.3  Study design 

The overall study design is shown in Table 10. We used the mouse cisplatin 

administration protocol 229, which involves multiple cisplatin cycles spread over time 

(as is the case for patients), which reliably elicits hearing loss but leads to less than 

10% animal mortality. Hearing of all mice was first tested by auditory brainstem 

response (ABR) measurements. Then, all mice were pre-hydrated with two 

subcutaneous doses of 1 mL of sterile normal saline separated by 8 hours (Hospira, 

IL), 24 hours before starting each cisplatin cycle, to protect their kidneys against 

nephrotoxicity. Cisplatin was administered intraperitoneally at 4 mg/kg daily for 4 

days on and 10 days off (14-day cycles for the first 2 cycles) plus a 16-day (3rd) cycle 

(2 days on and 14 days off) (Table 10). During the recovery periods, the animals were 

hydrated with 1 mL of normal saline twice per day for 5 days or more based on 

animal’s weight and health. After the third cycle, hearing was measured by post-

treatment ABR. Then the mice were sacrificed and prepared for cytocochleograms as 

described below. 
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Table 10 : Animal groups and schedule for our cisplatin and ear treatment study. 
 

 

The animals were divided into three different groups, with N = 6 mice per group. Six 

mice per group attained a statistically significant p value of < 0.05 for protection of 

high frequency hearing. For all groups, ear treatment was administered one day 

before the second and third cisplatin cycles respectively. Group A mice received 1.8 

μL of intra-tympanic saline into their left ears. Group B mice received 1.8 μL of intra-

tympanic methylprednisolone (Pharmacia&Upjohn, NJ) into their left ears. Group C 

mice received 1.8 μL of 300 nm diameter magnetic nanoparticles into their left ears. 

These particles were loaded with prednisolone sodium phosphate at a concentration 
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of 82 µg/mL, and labeled with Texas red fluorescent dye for easy visualization in 

tissue samples (Chemicell, Berlin, Germany). A 0.5 Tesla magnet (5 × 2.5 × 2.5 cm, 

K&J Magnetics, PA) was then placed contralateral near the right eye of each animal 

in group C for 20 minutes to pull the nanoparticles from the middle ear into the inner 

ear. For all animals in all groups, the right ears remained as untreated same-animal 

controls.  

 

4.2.4  Auditory brainstem response 

The hearing thresholds of the animals in all groups were measured by performing 

auditory brain stem response (ABR) assays before and after the cisplatin treatment 

and recovery periods. The mice were anesthetized and placed inside a sound booth 

(Industrial Acoustics, NY). Two recording electrodes (RLSND110-1.5, Rhythmlink 

International) were inserted postero-ventral to the auricular area of the left and right 

ears. A reference electrode was placed at the apex of the head. A ground reference 

electrode was placed subcutaneously in the lumbar area. Using our ABR recording 

system (Tucker Davis Technologies, FL), the animals were then presented in free 

field with 600 sweeps of 5 ms long bursts (shaped with 1 ms onset and offset 

sinusoidal ramps) at varying intensities beginning at a 94 dB sound pressure level 

(SPL) and proceeding in 5 dB decrements down to a 14 dB SPL. The 

electrophysiological signals were recorded for 10 milliseconds. These cycles of sound 

intensities were repeated for different sound frequencies (8 kHz, 16 kHz, and 32 

kHz). Hearing threshold at each frequency was determined as the lowest intensity at 

which a definite cochlear response could be identified (waves I&II). Figure 17B 
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shows sample traces at 16 KHz for various SPLs and the corresponding hearing 

threshold. The percentage hearing loss of each animal at a specific frequency was 

defined as the ratio of the change in thresholds after the treatment compared to pre-

treatment thresholds. Hence 0% represents no loss in hearing at that frequency (pre 

and post hearing thresholds were identical), while 100% represents no measurable 

response or a measurable response only at the highest sound pressure level of 94 dB.  

 

4.2.5  Cytocochleogram  

The cochleas from the different groups were dissected to study the pathophysiology 

of the cisplatin treatment on the organ of Corti, as well as any effect of the 

otoprotective treatments. The animals were euthanized using carbon dioxide and the 

cochleas rapidly isolated. The cochleas were continuously perfused with ice cold 4% 

paraformaldehyde into the round window membrane and out of a small hole pierced 

in the apex of the cochlea, and then placed in paraformaldehyde overnight at 4 ◦C. 

This was followed by 3X wash with 1X PBS at pH 7.4 and decalcification in 0.5M 

EDTA for 3-4 days. After washing the cochleas three times using 1X PBS, they were 

micro-dissected into three turns (Basal, Middle, Apical) using an ophthalmic knife 

(MANI Ophthalmics, Tochigi, Japan). The tectorial membrane was removed. 

Cochlear outer and inner hair cell layers were stained using Alexa Fluor 488 

Phalloidin (1:800 in 1X PBS + 0.5% Tween, Life Technologies) for 45 minutes. The 

turns were mounted on a glass slide using Fluoromount-G with DAPI (Electron 

Microscopy Sciences). Images of each cochlear turn were taken at 40X magnification 

using an LSM 710 confocal microscope (Zeiss) in z-stack mode. The outer hair cells 
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in these images were counted for the presence of nuclei and cell membranes over a 

200 µm distance of the different cochlear turns using Zen 2010 software (Zeiss).  

 

4.3  Results  

In our experiments, the hearing thresholds of the animals in the three different groups 

were determined after the completion of the cisplatin treatment by using ABR assays. 

The hearing loss experienced by the animal at a particular frequency was determined 

by the ratio of change in threshold post-treatment to the initial hearing threshold at the 

same frequency. After systemic cisplatin treatment, this threshold increase is known 

to occur first at high frequencies, progressing to the lower frequencies as treatment 

continues, eventually reaching speech frequencies  216,230. 

 

In our study, untreated (right) ears experienced significantly greater hearing loss at 

high frequency (at 32 kHz) compared to at 16 kHz and 8 kHz (Figure 17A). In 

contrast, in the treated (left) ears at 32 kHz, the magnetic delivery group C ears 

experienced substantially less hearing loss (53% ± 12%) compared to ears that 

received saline (group A, 93% ± 7%) or intra-tympanic methylprednisolone (group B, 

97% ± 3%). As evident in Figure 17A at 32 kHz, the difference in means between 

group C and the other groups was much larger than the variance within each group. 

Our approach therefore achieved a statistically significant reduction in high frequency 

hearing loss for the magnetically treated group C ears, compared to the untreated and 

group A and B ears which exhibited almost complete hearing loss at high frequencies 

(p** < 0.05). Overall, the steroid loaded nanoparticles mitigated cisplatin induced 
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ototoxicity at high frequencies, with 95% statistical significance. At 8 and 16 kHz, 

magnetic delivery also seemed to reduce the degree of hearing loss, but at these lower 

frequencies a statistical significance of 95% was not reached, in part because cisplatin 

caused less hearing loss at these lower frequencies (see 8 and 16 kHz bars in Figure 

17A).  
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Figure 17: Comparison of hearing loss between the three animal groups for the injected left ears and 
corresponding untreated right ears (N = 6 for each group). Percent hearing loss at each frequency, per 
group, is shown. A) Treated ears that received magnetic nanoparticles showed significantly less 
hearing loss (group A bars) compared to the intra-tympanic methyl-prednisolone group (group B bars, 
p** < 0.05) and the saline control group (group C bars, p** < 0.05), especially at high frequency of 32 
KHz. Hearing loss remained similar at high frequency across all groups for untreated ears. B) A 
sample ABR trace containing the waves I and II (dotted black box) at 16 KHz has been shown to 
demonstrate threshold measurement (note that positive voltage is up, the convention for animal ABRs). 
The threshold for this animal is at 34 dB beyond which the waves I and II are completely attenuated. 
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Cisplatin is known to induce apoptosis in the three rows of outer hair cells starting at 

the outer row and progressing to the inner row 231. There have also been reports of 

damage to the inner hair cells of the organ of Corti, cuticular plate and stria vascularis 

230. These ototoxic effects have been consistently shown to progress from the basal, 

high frequency region of the cochlea to the apical, low frequency region with 

continuing cisplatin treatment. We extracted cytocochleograms to evaluate the effect 

of magnetic delivery in protecting hair cells. The cochleas were micro-dissected post-

treatment and the organ of Corti examined in the different turns after staining the hair 

cells. Sample cytocochleograms are shown for the basal cochlear region in Figure 18. 

Hair cell preservation is evident in the magnetically treated cochlea (Figure 18D, 

group C) compared to group A (Figure 18B, saline) and group B (Figure 18C, intra-

tympanic steroid). Magnetically delivered nanoparticles can be seen among the hair 

cells in the cochlea (red fluorescence in Figure 18D). 
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Figure 18: Sample cytocochleograms of the basal cochlear region of different groups. The outer hair 
cells were stained for actin with Alexa Fluor 488 Phalloidin (green) and the various cell nuclei were 
stained using DAPI counterstain (blue). A) Left ear from a naïve animal that did not receive any 
cisplatin treatment or otoprotection. For animals that were administered cisplatin: B) Left ear that 
received saline; C) Left ear that received intra-tympanic methyl-prednisolone; and D) Left ear that 
received magnetic steroid delivery. The images of the DAPI stained nuclei for all the groups have been 
shown in the image insets of A), B), C) and D) correspondingly. 
 

The number of outer hair cells in each cochlear micro-sections was counted and 

compared between the three groups. The outer hair cell density observed for control 

animals (no cisplatin and no ear treatments) versus from ears of animals that received 

cisplatin plus one of the 3 types of ear treatments (group A saline, group B intra-

tympanic methylprednisolone, or group C magnetic delivery of prednisolone) is 

shown in Table 11. A significant decrease in hair cells was observed for the saline 

group A ears (72% decrease, p < 0.01) and intra-tympanic group B ears (33% 
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decrease, p < 0.01). In contrast, cochleas from treated ears in the magnetic delivery 

group C displayed a small loss of 9% of hair cells in the basal region compared to 

control (no cisplatin) animals. This indicates that in the magnetic prednisolone 

delivery group, the outer hair cells in the basal cochlear region were preserved by the 

magnetic delivery of steroid to the cochlea.  

 

 

Table 11: Comparison of outer hair cell density for cochleas in naïve mice (N = 6), versus in mice that 
received the 3 ear treatment types (N = 6 for each group). The second row lists the percent decrease in 
hair cell density compared to the no cisplatin naïve group. In the magnetically treated group C, hair 
cell density decreased by just 9% compared to substantially greater hair loss in all the other groups.  
 

4.4  Discussion 

Cisplatin administration is known to be ototoxic, likely by the production of reactive 

oxygen species in the inner ear and by depletion of the inherent antioxidant system of 

the cochlea, leading to apoptosis of hair cells in the organ of Corti, spiral ganglion 

cells, and marginal cells of the stria vascularis 230,231. Steroids such as dexamethasone 

and prednisolone are thought to reduce the production of free radicals in the inner ear 

and decrease the formation of inflammatory molecules and could protect hearing 
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from cisplatin 214,228,232. However, prolonged systemic administration of steroids 

reduces the anti-cancer efficacy of cisplatin and is also undesirable due to added 

toxicity 221–224,233,234, which has led to studies on local intra-tympanic administration 

of steroids to protect hearing 234. Compared to intra-tympanic administration, 

magnetic forces can better deliver therapy directly to the cochlea and confer a 

stronger therapeutic effect. In our animal study we observed that magnetic delivery of 

steroids protected hair cells more effectively and concomitantly reduced the degree of 

cisplatin-induced hearing loss, compared to no treatment or to intra-tympanic steroid 

administration. 
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Chapter 5:  Spintronic devices for potential single neuron sensing and 

activation 

A part of this work originally appeared in 235 
 

5.1  Wireless sensing of local currents  

The ability to detect small local currents with high spatial resolution plays an 

important role in a broad range of applications such as non-destructive testing, 

industrial electronics, and biosensing. For example, local currents identify the 

location of defects and malfunctioning circuits in current transformers and 

complementary metal oxide semiconductor (CMOS) circuits 236,237, detect mechanical 

defects238, and sense the concentration of polluting gas byproducts of combustion or 

automotive emission such as NO2 and  NH3
239. In biological systems such as the 

central nervous system, local currents provide information about nerve and cell 

activity240 .The ability to wirelessly detect local currents with high spatial precision is 

highly desirable for many of these applications. For example, detecting the amplitude 

and position of currents wirelessly provides information about the activity inside of 

an organism non-invasively and helps track regions of abnormality241,242. In electronic 

circuits, wireless inspection of defects enables diagnosis without dismantling the 

whole system236.  

 

A number of methods currently exist for detecting currents wirelessly. Magnetic field 

sensors can detect current flowing by measuring the static magnetic fields they 

generate243,244. Although these methods can detect very low current levels, they 
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generally cannot achieve high spatial resolution without placing the sensor very close 

to the current because magnetometers will detect the sum of the fields from all current 

sources within their detection range243. One way to circumvent this problem is place a 

small sensor near the source of the current that reports wirelessly to an external 

receiver.  Although this method requires a direct connection between the sensor and 

the current source, it can provide very high spatial resolutions while still providing 

wireless access to the sensor by an external receiver.  For example, magnetometers 

based on diamond nanocrystals can detect local magnetic fields and report them to an 

external detector via their fluorescence at optical frequencies 245,246.  But optical fields 

cannot penetrate opaque specimen such as biological tissue and electronic packaging. 

Methods based on voltage sensitive dyes can also report local current activity with 

high spatial resolution247.  But these methods also require optical access.  

 

5.2  Spin transfer torque nano-oscillators for wireless local current sensing 

Spin transfer torque nano-oscillators can provide an alternate approach for detecting 

local currents.  These devices take as their input small direct currents and convert 

them to microwave current oscillations 248–252 that can report wirelessly to a receiver 

by magnetic induction. The spin transfer torque nano-oscillator occupies a small 

device footprint, potentially in the nanoscale, and can operate with input currents as 

low as 50 µA 253 opening the possibility for detecting weak signals with high spatial 

precision.  Furthermore, the oscillation frequency of the device shifts in the presence 

of an external magnetic field and current magnitude250,254, enabling the precession 

frequency to encode spatial information in an analogous way to conventional 
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magnetic resonance imaging. These properties make spin transfer torque nano-

oscillators promising candidates for detecting small currents with high spatial 

precision.  For example, in biological sensing they could potentially report on 

electrical activity in vivo in areas with no optical access due to the presence of bone 

or thick tissue. 

 

Previous theoretical works investigated wireless broadcast with spin-transfer torque 

nano-oscillators for power transfer applications. Amin et al. 255 theoretically studied 

the radiation pattern of these devices and showed that the magnetic field oscillations 

in a spin-transfer torque nano-oscillator are detectable in the near field. Propenko et al 

256 evaluated the radiation of arrays of oscillators as efficient sources of microwave 

signals for telecommunication devices. Experimentally, previous studies 

demonstrated wireless transmission using a spin transfer torque nano-oscillator over 

distances from 10 mm to 1 m 257,258, with potential applications in wireless 

communication. However, these works used active amplifiers and large dipole 

antennas to broadcast the signal.  Such amplifiers and large antennas are appropriate 

for communication, but are difficult to integrate into small wireless sensors and 

require wireless power supplies which are challenging to fabricate.  Many sensing 

applications often require compact passive sensors without any power sources beyond 

the local currents.  To date, such wireless sensing of currents using a spin-transfer 

torque nano-oscillator has not been experimentally demonstrated. 

 



 

 82 
 

Here we report direct wireless sensing of local currents by magnetic induction using a 

spin-transfer torque nano-oscillator.  We use a micro-fabricated receiving coil to 

detect the microwave oscillations produced by the device, and detect currents in the 

range of 300-700 µA at distances of up to 6.5 mm.  These results show that spintronic 

devices could potentially serve as nanoscale sensors for applications in 

biotechnology, electronics and embedded systems. 

 
 

5.3  Materials and methods 

 
The devices studied in this work were fabricated by Professor. Ilya Krivorotov’s 

group at the University of California, Irvine under a grant from Weinberg Medical 

Physics Inc., Bethesda, Maryland. These devices are elliptical magnetic tunnel 

junction nanopillars with lateral dimensions 70 nm × 170 nm. Figure 19A shows the 

complete layer structure for the device, with thicknesses indicated in parentheses in 

units of nanometers. We deposited all layers using magnetron sputtering in a Singulus 

TIMARIS system, and patterned the magnetic tunnel junctions using electron beam 

lithography followed by ion milling. The synthetic antiferromagnet is PtMn(15)/ Co70 

Fe30(2.3)/ Ru(0.85)/ Co40 Fe40 B20(2.4) with the Co70Fe30 pinned layer and the Co40Fe40B20 

reference layer antiferromagnetically coupled by the tuned thickness of Ru. Prior to 

patterning, we anneal the multilayer for 2 hours at 300 °C in a 1 T in-plane field to set 

the pinned layer exchange bias direction parallel to the long axis of the nanopillars.  
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To perform wireless current sensing, we utilize the experimental configuration 

illustrated in Figure 19B.  We inject the small direct signal current into the device 

using a non-magnetic picoprobe (10-50/30-125-BeCu-2-R-200, GGB industries). 

This direct current flows from the free layer to the fixed layer of the device (Figure 

19C). We apply a magnetic field of 0.15 T using a permanent magnet (K&J 

Magnetics) at an out-of-plane angle of 60o with respect to the sample plane and an in-

plane component of 30o with respect to the major axis of the ellipse, which induces a 

free-layer precession 253 at a frequency of 𝑓𝑓 = 2.7 GHz. The fixed layer and free layer 

are oriented mostly anti-parallel in the applied field conditions259 and the observed 

oscillation mode is likely the lowest-frequency free layer mode in the anti-parallel 

state26.The free layer precession generates a microwave frequency electromagnetic 

signal  across the oscillator terminals via a tunneling magnetoresistance effect 260,261. 

The microwave signal inductively couples to a receiving micro-coil resulting in a 

microwave voltage detected across the terminals of the coil. We also use a bias tee 

(Pasternack, PE1604) to extract the microwave at the output of the device using the 

capacitive port, which we can compare to the wireless induction signal. The 

magnitude of this microwave signal depends on the amount of direct current injected 

to the spin transfer torque nano-oscillator, while the resonant frequency depends on 

the magnitude and direction of the external magnetic field applied to the device as 

well as on the direct current injected to the device. 

 

The receiving micro-coil, shown in Figure 19D, is composed of a metallic loop 

antenna with outer diameter of 46 µm and width of 6 µm.  We fabricated the 
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receiving coil on a SiO2 substrate using optical lithography followed by thermal vapor 

deposition of copper (thickness of 0.5 µm) and liftoff. We position the receiving coil 

directly above the device surface with the patterned coil facing the device. This is to 

ensure that the substrate thicknesses do not limit the distance between the device and 

the receiving coil. We collect the current from the coil using a microwave 

transmission strip line as a matching network to match the coil impedance to 50 

Ohms and a coaxial SMA connector directly soldered to the leads of the strip line.  A 

low noise amplifier (Pasternack PE15A1010, noise figure = 0.9 dB, gain = 40 dB and 

input impedance 𝑧𝑧0 = 50 Ω) amplifies the output from the coil. We analyze the 

amplified output using a spectrum analyzer (Agilent 8564 EC, 9 kHz-40 GHz). We 

used the same spectrum analyzer to measure the output of the device through the 

capacitive port of the bias tee, so that we can compare the signals under identical gain 
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conditions. 

 

Figure 19: A) Schematic of the nanopillar spin torque oscillator device. The numbers in parentheses 
are the layer thicknesses in units of nanometers. B) A schematic of the microwave circuit used for 
direct electrical measurement from the device and wireless measurement of the microwave signal 
emission from spin transfer torque nano-oscillator. C) The microprobe and the connection pads along 
with the spin torque nano-oscillator forming an effective inductive coupler. D) The micro-fabricated 
receiving coil patterned on SiO2 substrate.  
 

5.4  Wireless measurement of Spin transfer torque nano-oscillators 

Fig. 20A shows the power spectral density of the device output collected from the 

bias tee for several different values of the direct input current. The device begins to 

oscillate at an input current of approximately 100 µA with an oscillation frequency of 

2.75 GHz. The oscillation frequency decreases as we increase the input current, 

which is expected  because the nonlinear frequency shift for this device geometry is 

negative250,254. At 600 µA the device approaches the maximum output power spectral 
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density of 400 nW/GHz.  At even larger input current of 700 µA we observe a second 

oscillation mode at slightly lower frequency which results in a broadened spectrum 

with two peaks. We attribute the lower frequency mode to the onset of the spin-

torque-driven auto-oscillation mode 254,259while the higher frequency mode is likely 

due to thermally activated oscillations 262. Either of the signals can be used to perform 

sensing and the choice mainly depends on the amplitude of the input current. 

 

Figure 20B shows the power spectrum of the induction signal obtained from the 

receiving coil for the same input currents used in Figure 20A.  In these measurements, 

we position the receiving coil at a distance of 15 µm above the device.  The spectra 

through the coil match the electrical measurements directly from the device shown in 

Figure 20A.   We attribute the difference in the spectral shapes of the induced signal 

and the direct electrical signal to a mismatch between the frequency response of the 

device and the receiving coil.  We attain a peak signal power density of 1.7  nW/GHz, 

which is a factor of 300 smaller than the measurement from the capacitive port of the 

bias tee.  We note that the capacitive port of the bias tee shows microwave signal at 

input currents as low as 100 µA, but the wireless induction signal requires 300 µA to 

be detectable with our measurement setup. This disparity is caused by the reduced 

signal in the induction coil, which requires more driving current to generate a signal 

that exceeds the noise floor of the electrical circuit. We also note that the lower 

frequency mode (which appears at an input current 700 µA) induces signal more 

efficiently in the receiving coil, due to better spectral matching with the coil. We 

further confirmed this by measuring the transmission characteristics between the coil 
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and the device using a vector network analyzer as explained in later sections. As 

shown in Figure 20B inset, the transmission coefficient is higher for the lower 

frequency mode of 2.66 GHz compared to the higher frequency mode of 2.73 GHz.      

 

Figure 20C plots the total microwave power for both the electrical output of the bias 

tee and the wireless signal induced in the receiving coil.  Both signals exhibit the 

expected behavior where the microwave power increases with increased current 263.  

Furthermore, the input current dependence of the wireless signal shows an identical 

behavior to the electrical measurement from the bias tee, which confirms that the 

wireless signal originates from the current induced in the device. At maximum input 

current of 700 µA, the electrical power measured directly from the bias tee is 69 nW 

as shown in Figure 20C. However, due to the impedance mismatch between the 

device and the amplifier, the measured electrical power from the bias tee is not the 

total power produced in the device. The total power produced in the device, 𝑃𝑃𝑑𝑑, is 

given by 264 : 
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where 𝑃𝑃𝑒𝑒 is the electrical power measured in the spectrum analyzer, 𝑍𝑍𝑑𝑑 = 1 kΩ is the 

impedance of the device and 𝑍𝑍0 = 50 Ω is the input impedance of the amplifier 

connected to the device. From  Eq. (1) the total power produced in the device is 1470 

nW. The wireless signal power measured in the receiving coil at maximum input 

current of 700 µA, is 0.15 nW, as shown in Figure 20C.  The transmission efficiency 
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defined as the ratio between the wireless power received in the coil and the power 

generated by the device is 0.01%.  Figure 21 plots the total power in the receiving coil 

as a function of distance between the receiving coil and the surface of the device, 

where we fix the input current at 700 𝜇𝜇A.  We observe a clear induction signal at 

distances of up to 6.5 mm.   
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Figure 20: A) The power spectral density of the direct electrical signal measured from the spin transfer 
torque nano-oscillator at 0.15 T. B) The power spectral density of the wireless signal measured from 
the receiving coil at 0.15 T. The transmission coefficient measured between the device and coil using a 
network analyzer for the same frequency range (inset) C) The integrated power obtained in 
measurements versus bias current A) and B). 
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Figure 21: The wireless signal received from the spin transfer torque nano oscillator as a function of 
distance between the STNO and the receiving coil for a detection current IDC = 700μA  

 

 

The spin transfer torque nano-oscillator can induce current in the receiving micro-coil 

through two different mechanisms.  The first is by direct induction from precessing 

magnetization of the free layer, and the second is induction by the microwave current 

oscillation in the electrical wires that connect to the device.  We can estimate the 

contribution from the first mechanisms by treating the free layer as a magnetic point 

dipole and the receiving micro-coil as a single circular loop antenna. Since the 

receiving micro-coil impedance is matched to the amplifier impedance (50 Ω), the 

calculated  power transmitted to the spectrum analyzer depends only upon the coil 

resistance and can be expressed as  264 : 
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where 𝑅𝑅𝑐𝑐 is the micro-coil resistance and 𝜀𝜀 is the electromotive force amplitude 

induced in the receiving coil. We can estimate the resistance of the circular receiving 

micro-coil using the expression 
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where 𝜎𝜎 is the copper conductivity, 𝑟𝑟 is the mean radius of the micro-coil, 𝑤𝑤 is the 

strip width and 𝑡𝑡 is the copper thickness (𝑡𝑡 smaller than the skin depth).  The 

electromotive force induced by a magnetic dipole is 𝜀𝜀 = 2𝜋𝜋𝜋𝜋𝑚𝑚𝑓𝑓𝐵𝐵𝑐𝑐 265, where 𝑓𝑓 is the 

frequency of the magnetic dipole, 𝑚𝑚𝑓𝑓 is the amplitude of oscillations of the free layer 

magnetic moment and 𝐵𝐵𝑐𝑐 is the magnetic field per unit current created by the 

receiving micro-coil at the position of the magnetic dipole. We approximate the 

circular loop as a thin wire loop and assume that the device lies along the axis.  Under 

this approximation the magnetic field created by the circular receiving micro-coil per 

unit current is 
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where 𝜇𝜇0 is the magnetic permeability of vacuum, r is the coil radius and 𝑧𝑧0 is the 

distance between the receiving micro-coil and the device. To perform calculations, 

we use experimental values of 𝑟𝑟 = 45 𝜇𝜇m, 𝑤𝑤 = 6 𝜇𝜇m, 𝑡𝑡 = 0.5 𝜇𝜇m and a distance of 

15 µm between the spin transfer torque nano-oscillator and the receiving micro-coil.  

We use a free layer magnetic moment of 𝑚𝑚𝑓𝑓 = 10−17 J/T 266, and a resonant 

frequency 𝑓𝑓 = 2.7 GHz consistent with our measurements, and we use Eq. (4) to 
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determine Bc.  Using these values we estimate the induced power from Eq. (2) to be  

𝑃𝑃 = 2.76 ⋅ 10−6 pW. This value is 8 orders smaller than the actual signal we detect. 

 

The induced power due to the second mechanism depends upon the geometry of the 

connecting pads, wires surrounding the spin-transfer torque nano-oscillator, and the 

microwave probe that contacts the chip. These wires form an effective inductive 

coupler that can induce current in the receiver. We performed numerical simulations 

using CST Microwave Studio (Computer Simulation Technology Inc.) to determine 

the induced power in the receiving micro-coil by this effective inductive coupler. 

These simulations incorporate the receiving micro coil with its corresponding strips 

lines (see Figure 19D) connected to a port of impedance 50 Ω. We model the spin 

transfer torque nano-oscillator as a port of impedance 1 kΩ. We include the pads 

connected to the device along with the input probe (see Figure 19C), and add a series 

resistance of 50 Ω to the probe to account for the characteristic impedance of the 

amplifier connected to the probe. From the numerical simulations we calculate an 

induced power of 𝑃𝑃 = 0.05 nW in the receiving coil, which is close to our measured 

value of P = 0.15 nW, suggesting that the wireless power received is due to the 

microwave current oscillation in the electrical wires that connect to the device. The 

remaining discrepancy between the measured and numerically calculated values is 

likely due to the simplification of the complex probe geometry in our model.  

 

To further validate that the wireless induction signal originates from the microwave 

current oscillations in the device, we use a two port network analyzer (HP Hewlett 
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Packard 8722D, 50 MHz – 40 GHz) to estimate the transmission efficiency between 

the device and the receiver and we compare it with the value previously calculated 

from the measurements in the spectrum analyzer. We connect the port one of the 

network analyzer to the device and the port two to the receiving coil with the coil 

placed directly above the device as explained before. For simplicity we assume that 

the receiver is perfectly matched to 50 Ω (due to the matching network) and that the 

main power is dissipated in the device (which is a good assumption due to its high 

impedance). With these assumptions, the transmission efficiency, η, can be estimated 

from the scattering parameters as 264: 
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where 𝑍𝑍𝑑𝑑 = 1 kΩ is the impedance of the device, 𝑍𝑍0 = 50 Ω is the input impedance 

of the amplifier connected to the device, S11 is the reflection coefficient in the device 

and S21 is the transmission coefficient between the device and the receiving coil. We 

measured the scattering parameters at 2.7 GHz, to be  𝑆𝑆11 = −1.22 dB and 𝑆𝑆21 =

−39.95 dB. Introducing these values into Eq. (5) we estimate a transmission 

efficiency of 0.04%. This value approximates the transmission efficiency of 0.01% 

observed in our previous experiment of wireless detection from the device.  

 

In summary, we have demonstrated that spin transfer torque nano-oscillators can act 

as wireless sensors for small local currents.  We detected current and reported it 

wirelessly at distances exceeding 6 mm from the spin transfer torque nano-oscillators.  

We could improve the current sensitivity by using spin transfer torque nano-
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oscillators with lower threshold currents 253. Non-adiabatic stochastic resonance of 

magnetization267,268 could also improve the sensitivity of the measurement by 

enhancing the amplitude of magnetization precession for a small current input. In 

addition, the current device uses the contact wires on the chip as an effective 

inductive coupler, which has a small mutual inductance with the receiving coil.  We 

could increase the detection distance by patterning optimized inductors on the device 

itself that have higher mutual inductance with the receiver. Devices with large-

amplitude magnetization precession 269,270 or reduced phase noise271, arrays of phase 

locked oscillators 272–274, or oscillators with large volume of the free magnetic layer275 

could further extend the sensing range by emitting more power in a narrower 

bandwidth. Ultimately, our results present an approach for wireless current sensing 

that may play an important role in embedded systems, non-destructive testing of 

electronics, and in-vivo biological sensing and imaging. 

 

 

5.5 Powering the nano-oscillators using crayfish neurons 

Spin transfer torque nano-oscillators have been conventionally used to convert direct 

current to microwave whose frequency can be modulated using an external magnetic 

field. We investigated the possibility of using action potentials from crayfish lateral 

giant neurons as a direct current source for the spin transfer torque nano-oscillators. 

Such an ability to fire the nano-oscillators using bioelectric signals has a potential in 

in-vivo biosensing applications in the brain, heart and other electrophysiological 

systems.  
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Figure 22: The schematic diagram for powering the spin transfer torque nano-oscillators using the 
neuronal action potentials from a crayfish neuron. 
 

The lateral giant neurons from crayfish were extracted as explained by Herberholz et 

al 276. The lateral giant neurons were stimulated using voltage pulses of 10 V 

amplitude and 5 Hz frequency and the corresponding action potentials produced in 

the neurons were recorded. These action potentials were visualized and confirmed 

using a digital oscilloscope (Keysight). Both the stimulations and the recordings were 

performed using extracellular silver electrodes of 1 mm diameter placed on the 

surface of the neurons.  The operational frequency of the spin transfer torque nano-

oscillator for a given external magnetic field was characterized as explained in Sec. 

5.4  . In our measurements, an external in-plane magnetic field of 0.1 T was applied 

to the nano-oscillator using an electromagnet (GMW associates). The neuronal action 

potentials from the recording electrodes were input to the spin transfer torque nano-

oscillator using the DC port of the bias-tee as shown in the Figure 22. The microwave 
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output from the spin transfer torque nano-oscillator was sent to a spectrum analyzer 

through the RF port of the bias-tee to analyze the power spectral density of the nano-

oscillator response for its specific frequency of operation. The sweep time of the 

spectrum analyzer was synchronized with the crayfish stimulus frequency using the 

external trigger option in the spectrum analyzer. This was done to ensure that the 

nano-oscillator’s response matched in time with the onset of the action potentials. The 

spectrum analyzer was operated in the zero-span mode to receive the measurements 

for the spin transfer nano-oscillator working frequency as a function of time. The 

measurements were averaged over 50 readings to filter the signal from the noise in 

the data. The measurements were sent to a LabVIEW program using a GPIB port for 

data collection and analysis. 
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Figure 23: A) The recordings from the crayfish neurons with the application of a voltage stimulus 
(black) and without a stimulus (red). The neuronal action potential peaks can be observed in the 
recordings with stimulus. B) The response of the spin transfer torque nano-oscillators for the neuronal 
current input. The nano-oscillator responded to the action potential spikes with its corresponding 
power spikes at its working frequency.  
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The spin transfer torque nano-oscillator was characterized to oscillate at 0.85 GHz for 

an in-plane external magnetic field of 0.1 T.  The crayfish later giant neuron, when 

stimulated electrically at 5 Hz, produced action potential spikes as shown in Figure 

23A. These action potential spikes produced a current of ~ 0.8 μA when connected to 

the spin transfer torque nano-oscillator. The nano-oscillators responded with 

corresponding peak power spikes of 0.12 fW as shown in Figure 23B. These peaks 

were confirmed to be due to the neuronal currents by removing the stimulus electrode 

from the lateral giant neuron and observing no peaks in both the recording electrodes 

and the nano-oscillator.  

 

5.6  Nano-oscillators as wireless microwave rectifiers 

The rectifying effect of spin transfer torque nano-oscillators for an alternating current 

input has been demonstrated previously277. By using an appropriate external magnetic 

field, the nano-oscillators can be used to selectively rectify a specific frequency 

which is typically its operational frequency at that field. Such a mode of operation 

can be used for potential applications in wireless energy harvesting 278 and biomedical 

systems for wireless electrical stimulation of cells such as neurons279–281. In this 

section we have shown that the nano-oscillators can be used as wireless rectifiers 

where an alternating current is transmitted to it by near field induction to be rectified 

to a proportional DC voltage across the nano-oscillator. 
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Figure 24: The schematic diagram of the circuit used for wireless alternate current stimulation of the 
spin transfer torque nano-oscillator and measuring the rectified DC voltage produced in it.  
 

The spin transfer torque nano-oscillator was characterized for its working frequency 

for a particular external magnetic field as explained before. For these measurements, 

an magnetic field with an out of plane component of 0.06 T  was applied with its axis 

perpendicular to the major and minor axes of the elliptical nano-oscillator device 

using a permanent magnet. The in-plane component of this field was 0.04T at an 

angle of 35° to the major axis of the nano-oscillator. The magnetic field was 

measured using a 3D gaussmeter (Lakeshore). A transmission coil was fabricated 

using copper with a single turn and connected to a microwave signal generator 

(Agilent) for transmitting alternate currents through near field induction. The coil was 

placed above the spin transfer-torque nano-oscillator at different distances from it 

controlled by a micropositioner. The direct and alternating current (radio frequency) 

output produced in the spin transfer torque nano-oscillator were studied using a high 
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precision digital multimeter (Agilent 34401A) and a spectrum analyzer (Agilent 

8564EC 9kHz – 40 GHz) respectively after being routed through the corresponding 

ports in the bias tee as shown in Figure 24.  The transmission frequency was swept 

between 0.1-6 GHz in the signal generator to study the dependence of DC voltage on 

the frequency of alternating current transmitted to the nano-oscillator from the coil.  
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Figure 25: A) Dc voltage produced in the spin transfer torque nano-oscillator for different wirelessly 
transmitted input ac signals. The nano-oscillator produced DC voltage peaks for specific input 
frequencies (for e.g. 3.8 GHz) which can be modulated using the external magnetic field. B) The DC 
voltage produced for different distances between the transmission coil and the spin transfer torque 
nano-oscillator at an input AC frequency of 3.8 GHz.  
 

 

The peak rectified DC voltage produced in the spin transfer torque nano-oscillator 

was around 1.4 mV for ac power transmitted at 3.81 GHz as shown in Figure 25A. 

Another peak with the opposite polarity was observed at 5.4 GHz. This change in 

polarity can be explained due to the direction of phase difference between the input 

AC power and the microwave magnetoresistance initiated in the nano-oscillator. The 

rectified DC voltage decreased with increasing distances between the transmission 

coil and the nano-oscillator as shown in Figure 25B and a DC voltage was produced 

in the device at distances of upto 1.5 cm. 
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Chapter 6:  Conclusions 

In this dissertation, I studied the motion of magnetic nanocarriers in different tissues, 

determined the factors influencing their motion and analyzed the safety of their 

motion in a live brain tissue. Prednisolone coated magnetic nanocarriers were shown 

to reduce cisplatin induced ototoxicity in mice. Finally, spin transfer torque nano-

oscillators have been shown to respond to action potentials from a single neuron. The 

nano-oscillators have been wirelessly detected and activated with potential 

applications in wireless neuroimaging and neuromodulation. 

 
An automated cryostat system was designed and built to quantitatively measure the 

penetration depth of magnetic nanoparticles (MNPs) into tissue samples under the 

action of an applied magnetic field. Fluorescent MNPs of four different sizes (100 

nm, 300 nm, 500 nm, and 1 𝜇𝜇m diameter) and with four different coatings (starch, 

chitosan, lipid, PEG/P) were tested in liver, kidney and brain tissue samples using this 

system. The nanoparticle size, magnetic properties and surface coating influenced 

their motion in tissue samples. The automated cryostat system can be used in future 

applications to engineer, test and optimize nanoparticles for increasing their transport 

in tissue. 

 

The interactive motion of MNPs was studied in detail in brain tissue under the 

influence of a uniform magnetic field. MNPs agglomerated into MNP chains in tissue 

and this behavior was influenced by a combination of applied uniform magnetic field 

and the concentration of magnetic nanoparticles present in tissue. The mechanism of 
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MNP chaining was shown to be dominated by magnetic drift caused by overlapping 

regions of influence of each magnetized nanoparticle. At cellular level, the movement 

of MNPs did not cause a significant change in the firing rate of the neurons. 

Spontaneous inhibitory post-synaptic currents in the granule cells of the main 

olfactory bulb have been shown to increase in frequency by the addition of 

noradrenaline190. This behavior was not modified by the movement of MNPs in the 

region thereby maintaining the synaptic connectivity of the neurons.  This was further 

confirmed using calcium imaging of granule cells after moving MNPs in the region 

followed by adding glutamate. The increase in intracellular calcium due to glutamate 

stimuli remained consistent in the region even after the nanoparticle motion. Finally, 

the nanoparticle motion did not physically affect the connections between the neurons 

in the olfactory bulb. Therefore, magnetic nanocarriers attached to therapeutic agents 

can be safely transported in the brain using external magnets. In future, chaining of 

MNPs in brain tissue can be mathematically modeled based on the magnetic drift 

dominated mechanism. This can be used to predict the distribution of MNP chain 

lengths observed in brain tissue for specific external magnetic field configuration. 

During chaining, the magnetic force experienced by the group of MNPs in a chain is 

increased and the drag force is reduced. This is due to increase in magnetic volume 

but decrease in the effective surface area in contact with the tissue. Therefore, a 

predictive model that helps in determining and controlling MNP chain lengths can be 

used to increase the transportation efficiency of magnetic nanocarriers in tissue.  
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Cisplatin, a common chemotherapeutic drug, has been shown to cause severe 

ototoxicity by affecting outer and inner cochlear hair cells, stria vascularis and spiral 

ganglion216. The ototoxic effect of cisplatin has been reduced by intra-tympanic 

administration of steroids such as dexamethasone or prednisolone in various animal 

studies80,214,228. Such a method faces the dual challenge of low concentration of drugs 

in the cochlea due to ineffective passive diffusion from the middle ear through the 

window membranes and drainage of drugs in the middle ear through the eustachian 

tube. Magnetic delivery of prednisolone to the cochlea of cisplatin treated mice has 

been demonstrated. This method has been shown to reduce hearing loss significantly 

at high frequencies compared to intra-tympanic prednisolone application or saline 

control. Magnetic prednisolone delivery also significantly reduced the damage caused 

to the hair cells in the cochlea. This method can be improved in future through better 

designs of magnetic targeting systems to target magnetic nanocarriers uniformly 

across all turns of the cochlea. This will reduce cisplatin induced hearing loss 

throughout the audible frequency range and not just the high frequencies.  The entry 

of nanoparticles and mechanism of steroid action in preventing the ototoxic effects of 

cisplatin in cochlea, need to be studied. Apart from providing pharmacological 

insights, this study will also help design better nanocarriers with a controlled drug 

release synchronized to the onset of cisplatin induced ototoxicity. 

 

High resolution functional imaging has remained one of the major challenges in 

image guided delivery of therapeutics in the brain. Most conventional imaging 

modalities provide only structural information of different regions in the brain with 
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resolution in the order of millimeters. Even functional MRI (fMRI) only provides 

coarse information on which region in the brain received more oxygen. Therefore, 

there is an unmet medical need to sense currents from individual neurons in a region 

and supplement the conventional structural images. This will help in understanding 

various physiological processes in the brain paving way for a better diagnosis of 

neurodegenerative diseases. Spin transfer torque nano-oscillators have been 

hypothesized to sense currents from a single neuron and report the information 

wirelessly. First, such a wireless broadcast and reception of detected dc currents has 

been shown possible with a nano-oscillator using near field induction. These nano-

oscillators have been shown to respond to a single neuron action potential. The 

response magnitude depends upon the amount of current input to the device and the 

response frequency can be modulated using an external magnetic field. With the 

knowledge of the frequency dependence of the nano-oscillator signal with magnetic 

field and by applying a known magnetic field distribution in the brain, signals from 

the nano-oscillators can be precisely located in the brain, Therefore, neurons attached 

to such nano-oscillators can in turn be spatially located in the brain. The response of 

the nano-oscillator for a crayfish neuron signal was shown to be in the order of        

10-15 W. Due to a low signal to noise ratio of this measurement, it is difficult to detect 

this power wirelessly using the current configuration. In future, nano-oscillators need 

to be optimized to produce higher response for currents less than 1 µA. In order for 

this method to be applicable for mammalian neurons, the devices have to respond 

effectively to currents in the order of nanoamperes. This can be achieved through 

better device designs271,275, phase locking the response of multiple 
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devices272,282,improving the coupling efficiency of the wireless receiver coils and 

using signal conditioning systems such as lock-in amplifiers at the receiver end.  

 

The nano-oscillators have been shown to function as wireless rectifiers. They produce 

a DC voltage across them for a wireless AC current transmitted to them by magnetic 

induction. This rectifying property has been shown to be frequency selective and the 

external magnetic field determines this selectivity. The DC voltage produced can be 

used stimulate a neuron attached to the nano-oscillator. Similar to determining the 

precise location of firing neurons using the nano-oscillators, a combination of 

magnetic field and frequency of transmitted signal, neurons at specific locations can 

be activated without affecting other neurons in the region. In summary, spin transfer 

torque nano-oscillators can potentially sense or activate a single specific neuron 

wirelessly. This technique can supplement current imaging modalities such as MRI to 

provide more insights into inner workings of the brain during different physiological 

processes and improve our understanding of various neurological disorders. 
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Intellectual contributions 

Most of the work in this dissertation is a result of inter-disciplinary collaboration. In 

this section, I attribute key aspects of the work to the people most responsible for 

them. The table gives a summary of my contributions relative to other collaborators. 

The first column lists the different projects explained in detail in each chapter of this 

dissertation. The second column and third column explain my contribution and the 

collaborators’ contributions to each of the projects respectively. 

 

Project My contribution Collaborators’ contribution 

Movement of magnetic 
nanoparticles in brain 
tissue : mechanisms and 
safety (Chapter 3) 

I developed the concept, built the 
hardware and software platform 
for automated 3D magnetic field 
measurement.  
 
I characterized the properties of 
nanoparticles used in the 
experiments 
 
I designed and performed 
experiments for studying the 
mechanism of nanoparticle 
motion in brain tissue.  
 
I assisted Villar and Eberly with 
electrophysiology and 
immunohistochemistry 
experiments for safety study 
 
I analyzed electrophysiology 
recordings to assess the safety of 
nanoparticle motion in brain 
 
 

Villar:  Performed the patch 
clamp experiments to study 
action potentials and 
inhibitory post-synaptic 
currents in live brain tissue. 
 
Smith : Performed the calcium 
imaging experiments to study 
changes in neural circuitry in 
the main olfactory bulb after 
nanoparticle motion 
 
Eberly: Performed the 
immunohistochemistry 
experiments and confocal 
imaging to study the impact of 
nanoparticle motion on 
neuronal connections. 

Magnetic steroid 
targeting to the inner ear 
to reduce cisplatin 
induced ototoxicity 
(Chapter 4) 

I implemented the animal 
experiments to study cisplatin 
induced ototoxicity and 
performed magnetic targeting 
experiments in the mice model. 
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I performed ABR recordings and 
cytocochleograms to visualize the 
cochlear hair cells of animals 
from the different groups 
 
I analyzed ABR data for different 
animal groups and imaged 
cochlear hair cells from the 
different groups using confocal 
microscopy 

Spintronic devices for 
single neuron sensing 
and activation 
 (Chapter 5) 

I analytically modeled, simulated 
and fabricated the wireless 
receiver coil to obtain signals 
from the spin transfer torque 
nano-oscillator tuned to its 
working frequency 
 
With Algarin: I designed, 
implemented the circuit and 
developed the data acquisition 
software platform to characterize 
the nano-oscillators and perform 
wireless measurements.  
 
With Swierzbinski, Venuti and 
Algarin : I performed integration 
experiments for powering the 
nano-oscillators using crayfish 
neuronal currents 
 
With Algarin: I performed 
wireless AC stimulation 
experiments  

Swierzbinski and Venuti: 
Performed crayfish neuron 
dissections and implemented 
the extracellular recording 
setup.  
 
Algarin : Fabricated the 
solenoid coils for AC 
stimulation experiments 

Analyzing the movement 
of different magnetic 
nanoparticles in various 
tissues (Chapter 2) 

With Kulkarni and Nacev: I 
developed the hardware and 
software platform for building the 
automated cryostat system to slice 
tissue samples and perform 
fluorescence imaging. 
 
I characterized the size, surface 
charge and magnetic properties of 
different magnetic nanoparticles 
and performed the cryostat 
experiments.  
 
Assisted Kulkarni with data 
processing and analysis for 
conclusions. 

Nacev and Kulkarni : Initial 
hardware integration of 
cryostat hardware and 
software 
 
Kulkarni: Developed concept, 
designed and performed 
experiments. Developed the 
image processing software. 
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