
The Center for Satellite and Hybrid Communication Networks is a NASA-sponsored Commercial Space
Center also supported by the Department of Defense (DOD), industry, the State of Maryland, the

University of Maryland and the Institute for Systems Research. This document is a technical report in
the CSHCN series originating at the University of Maryland.

Web site http://www.isr.umd.edu/CSHCN/

TECHNICAL RESEARCH REPORT

Consistency and Performance of Concurrent Interactive
Database Applications

by K. Stathatos, S. Kelley, N. Roussopoulos, J.S. Baras

CSHCN T.R. 95-11
(ISR T.R. 95-79)

Consistency and Performance of

Concurrent Interactive Database Applications�

Konstantinos Stathatos, Stephen Kelley, Nick Roussopoulos and John S. Baras

Institute for Systems Research

University of Maryland

College Park, MD, 20742

fkostas,skelley,nickg@cs.umd.edu, baras@isr.umd.edu

September 11, 1995

Abstract

In many modern database applications, there is an emerging need for interactive environ-
ments where users directly manipulate the contents of the database. Graphical user interfaces
(GUIs) display images of the database which must re
ect a consistent up-to-date state of the
data with minimum perceivable delay to the user. Moreover, the possibility of several applica-
tions concurrently displaying di�erent views of the same database increases the overall system
complexity. In this paper, we show how design, performance and concurrency issues can be
addressed by adapting existing database techniques. We propose the use of suitable display
schemas whose instances compose active views of the database, an extended client caching
scheme which is expected to yield signi�cant performance bene�ts and a locking mechanism
that maintains consistency between the GUIs and the database.

�This material is based upon work supported by the National Science Foundation under Grants No. EEC 9402384
and No. ASC 9318183, by NASA under Grants No. NAGW-277S and No. USRA 5555-09, and by the Maryland
Industrial Partnership, University of Maryland under Grant No. MIPS 1122.11

1

1 Introduction

Fast networks and CPU abundance coupled with large main and secondary memories have been the
primary reason for the nearly universal adoption of the client-server computing model. Virtually
every DBMS employs this approach to o�oad processing from the server to client machines in order
to increase the overall performance and scalability of the system.

This distribution of tasks has made possible a new generation of database applications. Very
often these applications o�er to the user a highly interactive environment through sophisticated
Graphical User Interfaces (GUIs). GUIs compose complex displays where database objects are
graphically rendered in one or more ways, based on the desired representation of the objects (e.g.
a graph versus a tabular format) and the choice of interface drawing components used to realize it
within each application. Users access or update database objects by interacting with (e.g. pointing
and clicking on) their graphical representations. This increasing use of graphical user interfaces in
database applications has posed several challenges to database system as well as applications design.

An example of such an application, which was the motivation for this work, is an advanced
network management system (NMS) that relies on an object oriented DBMS for storing and man-
aging all the necessary data [HRB+93]. This application builds graphical displays that represent
the current state of part of the managed network. Through this display, the network operator can
perform a number of management functions (e.g., monitor network activity, change con�guration
parameters) in order to ensure the expected network operation. To a great extent, the decisions
of the operator depend on the display which must agree as much as possible with the real network
state.

Designers and developers of interactive applications put a lot of e�ort in building user interfaces
appealing to the users both in terms of appearance and functionality. The speci�c goals they set
include a system that [Shn92]:

� accurately re
ects the database contents on the screen, and

� responds to user actions without lengthy and unpredictable delays.

The importance of the �rst goal lies on the fact that users take decisions and act based on the
perception of the database o�ered by the interface. Therefore, it is imperative that the graphical
elements composing the GUI are consistent with the objects stored in the database at all times. This
requirement is not trivial, especially in a multi-user database environment where more than one user
may concurrently access and update the database through varied and complex views. Then, the
response time of the interface a�ects signi�cantly the level of users' acceptance and satisfaction of a
system. Generally, people have a positive reaction to fast predictable responses, but they easily get
annoyed or frustrated from unexpected delays.

These factors present several challenges to the design of the database and the applications as
well as the architecture of the DBMS itself. In the following section, we elaborate on these chal-
lenges through problems related to database design, user interface performance and user interface
consistency for highly interactive database applications. Then, in section 3, we propose extensions
of database techniques, such as caching and locking, that e�ciently address these problems. In sec-
tion 4 we brie
y describe our experience from extending an existing OODBMS to support interactive
applications as well as implementing such an application. Finally, we present references to related
work in section 5 before we conclude in section 6.

2

2 Interactive Database Applications Challenges

2.1 Database Design for GUI Based Applications

User interfaces contain several graphical elements that are aimed to be an intuitive representation of
real world entities. These elements o�er some view of the real world tailored to the desired functional
requirements. In database applications, each such element is associated to one or more database
objects. Its appearance depends �rst on attribute values of the associated database object(s), and
second on the user interface context. Consider, for example, a network management application that
displays a graph representing the nodes and links of a real communication network. Assume that
in the database schema, a class Link is de�ned whose Utilization attribute represents the current
utilization of a link. On the user's monitor, a link would appear as a line connecting two nodes (boxes,
circles, icons etc). Depending on the interface context, there are several options for displaying its
utilization. Examples include color coding (e.g. red, pink and white lines could represent links with
high, moderate and low utilization respectively) and width coding (the line width is proportional to
the link utilization).

It can be argued that the database schema should be designed in a way that incorporates user
interface functionality. In other words, classes should include attributes and methods that allow
object display and manipulation through a graphical user interface. However, we believe that there
are several points that make this approach impractical:

Simplicity Modelling real world entities through a collection of data structures is often a very
di�cult task by itself. Extreme caution must be taken so that the �nal schema design is
an adequately accurate and e�cient model. Obviously, any additional design requirements
imposed by the user interface, makes this process far more complicated. It would prescribe
the introduction of additional attributes (e.g. screen coordinates), methods (e.g. for drawing
objects, clicking on objects etc) and possibly hierarchies (e.g., all drawable objects should be
derived from a common base class).

Multiple perspectives Depending on the function that a user performs, it may be desirable to
have several visual representations (perspectives) of the same object (e.g. color-coded and
width-coded link utilization) or di�erent \views" of the same database (e.g. tabular or graph
representation). Each representation may require a di�erent set of attributes (e.g. screen
coordinates, color, width, etc) and the user interface methods could become extremely complex
to implement. Beside the added design complexity, the extra attributes may incur a signi�cant
storage space overhead and potentially degrade performance.

Multiple users A database schema that incorporates user interface speci�c attributes (e.g. screen
coordinates) cannot accommodate di�erent user or application preferences about the way data
are displayed. Consider, for example, a scenario where multiple users are working on a common
subset of the database objects. Even if all these users select the same visual representation, it
is conceivable that they may prefer di�erent screen layout (i.e. di�erent object arrangement
on the screen) for the speci�c function they perform. But this would not be possible since the
attributes of persistent objects must have the same value system-wide, no matter how many
physical copies of the objects exist.

Orthogonal design Most existing database systems do not e�ciently support schema evolution.
In many cases, a modi�cation in the structure of the data is very expensive since it may involve
o�-line re-loading of the entire database. But it is possible that new application and/or user
interfaces are designed and developed or existing ones are modi�ed long after the database.
Obviously, it is practically impossible for the database schema to have provision for every
future user interface. Therefore, the database design should be orthogonal to user interface
design, and focus on capturing the important aspects of the real world, ignoring any design

3

requirements from user interfaces. Ideally, no modi�cations to the database structure should
be required in order to create new user interfaces.

2.2 Performance Considerations for GUI Based Applications

One of the main concerns of application developers is that users are very sensitive to the response
time of the system. Lengthy response times are usually detrimental to productivity, increasing user
error rates and decreasing satisfaction [Shn92]. Also, users tend to establish expectations of the time
required to complete a given task based on past experiences. Unexpected delays usually trouble or
frustrate the users. Therefore, high variability in the response time of the user interface should be
prevented. So, building a GUI that displays large amounts of information stored and managed by a
DBMS can be very challenging. Many potential performance problems exist since the response to a
user action may require extensive data processing, a number network message exchanges as well as
several data retrievals from secondary storage.

The majority of available object-oriented database systems are based on the client-server model,
mainly in order to take advantage of the ample resources of modern workstations. The role of servers
is limited to serving clients' requests for data (e.g. individual objects, object clusters or disk pages)
while maintaining the integrity of data across the system. The main part of the processing load
is distributed among powerful clients. This approach yields better overall system throughput and,
consequently, wider scalability margins.

The degree up to which client processing can be exploited depends on the degree of coupling
between the clients and the server. The more a client depends on a server to perform a task the
less it can use its local resources. A widely used method for minimizing this coupling is client data
caching [Fra93b]. This method allows data to be located close to where they are needed, reducing the
client-server communication overhead. As a result, there is a big performance bene�t from reduced
transaction latency and server workload.

Client data caching appears as the best approach to deal with the performance problems of the
user interface too. Database objects cached in client's main memory can be directly used for user
interface manipulations. This can reduce secondary storage accesses and client-server communication
overhead. However, data caching as has been implemented in current systems does not completely
address the user interface requirements. More speci�cally, there are two important performance
pitfalls:

� It is possible that not every attribute of database objects is required in order to build a
display. In the link example we mentioned earlier, a Link object may contain a large number
of attributes that characterize the actual link. But for display purposes, only the end points
of the link and its utilization are necessary. With traditional caching techniques, database
objects are cached as a whole. Therefore, it is possible that a large part of the client memory
is wasted for storing data completely useless to the user interface.

� Usually the applications have no explicit control on the clients' cache. Although they can cause
data to come into the local memory, they cannot \pin" data there either due to space limitations
or concurrency control considerations. The DBMS architecture and parameters (e.g. bu�er
replacement policy, bu�er size, object clustering) as well as the system-wide workload a�ect
the contents of the cache. For example, the bu�er manager may drop a display object out of
the bu�er in order to free memory space or simply because its copy has become invalid. As
a result, a simple user action such as zooming or panning that involves that object maybe
unexpectedly delayed until it is brought back into the bu�er.

4

2.3 User Interface/Database Consistency

A non-trivial problem for the graphical user interfaces of database applications is presenting a con-
sistent and up-to-date view of the database. This problem is more evident and more di�cult in
a multi-user environment where di�erent users may view and possibly update the same database
objects. Obviously, some sort of display synchronization mechanism is required which preserves
the consistency of the user interfaces, under the performance requirements mentioned above. Gen-
erally, the straightforward approach of periodically refreshing the user interfaces is not considered
acceptable since it may cause excessive overhead.

From the database perspective, the display consistency problem is not much di�erent than the
client cache coherency problem. GUIs retain graphical representations of database objects much
like caches keep copies of these objects. Therefore, the consistency requirements imposed upon the
database system by user interfaces are similar to the those of client caches.

DBMSs preserve client cache coherency as well as transaction semantics by enforcing some kind
of concurrency control protocol. Transactions that read and/or update data must satisfy the ACID
properties [GR94]. Among those, isolation is usually guaranteed by a data locking mechanism. Under
such mechanism, a transaction must obtain exclusive (write) locks for data it wants to update and
shared (read) locks for reading data. An exclusive lock can be granted to a transaction only if no
other lock of any kind has been granted to any other transaction.

Displaying some database objects can be considered a kind of long transaction, a display trans-
action, which spans the lifetime of the display. However, traditional transaction semantics cannot
be used to preserve GUI consistency since they are much too restrictive. User interfaces cannot
hold shared locks on objects being displayed since it would prevent any updates to them or, at best,
it would require all but one client to remove (erase) their renderings of the database objects to be
updated at least until the updates are committed to the database. In other words, these display
transactions cannot be isolated. In section 3.3 we describe how data locking can be extended to
handle this looser requirement.

3 Proposed Database Extensions

3.1 Display Classes and Objects

Through GUIs, applications try to o�er an environment where users can carry out their tasks with
minimal e�ort. Thus, depending on the speci�c tasks performed as well as personal preferences,
interfaces may present several views of the same database. This way, users may perceive a number
of di�erent data organizations (schemas) which may be quite di�erent from the actual database
schema.

In section 2.1 we argued that the database design should not be a�ected by the user interface. As
an alternative, we propose that, for each interactive application, a proper external display schema
should be de�ned over the existing database schema. Such display schemas are composed of display
classes (DCs) that encapsulate the desired user interface functionality and form inheritance and/or
containment hierarchies that better meet GUI requirements (e.g. for screen layout computation, for
screen navigation etc) both in terms of implementation e�ort and runtime e�ciency.

The de�nition of a DC depends on the database class(es) it represents as well as the user interface
context. It should include only attributes and methods that are necessary for the display and
manipulation of the corresponding user interface elements. These attributes may be a subset of the
database class(es) attributes as well as additional GUI speci�c attributes (e.g. screen coordinates).

The graphical elements that compose the image displayed by a GUI must be instances of display
classes, i.e. display objects (DOs). Display objects are created by copying and/or computing the
necessary information from database objects. During their lifetime, they are explicitly associated

5

and kept consistent with those database objects1. This association turns the collection of display
objects into an active (updatable) view of the database as opposed to a passive snapshot.

From our network management example, the ColorCodedLink and the WidthCodedLink display
classes can be de�ned, as in �gure 1. Both classes have attributes for screen coordinates whose values
are computed by graph layout algorithms, as well as methods for drawing the graphical elements
(i.e. lines). In addition, the ColorCodedLink class has a Color attribute and the WidthCodedLink
class a Width attribute. The value of these attributes are determined by the Utilization attribute of
the associated Link database object.

Link
Node1:
Node2:
Utilization:
...

A
B
0.85
...

ColorCodedLink
X1:
Y1:
X2:
Y2:
Color:

100
50
300
250
Red

WidthCodedLink
X1:
Y1:
X2:
Y2:
Width:

230
470
510
400
8

A

B

A

B

Figure 1: Display Classes Example

DCs can also be de�ned in order to combine multiple database objects into a single graphical
element or represent a single database object with multiple graphical elements. For example, the
path between two nodes in a communication network may be represented by a line connecting the
two nodes, without showing the actual links in the path. The graphical element for that line can
be a display object that is associated with all the Link database objects of the path. Its utilization
(i.e., color, width etc) would depend on the utilization of all these database objects (e.g. maximum
or average utilization).

3.2 Display Caching

The various memory spaces found in client-server database systems form a memory hierarchy de-
pending on the data access latency associated with each of them [FCL93]. Usually, it is a three level
hierarchy consisting of the server's disk, the server's main memory and the clients' main memory2.

1Each display object keeps an OID list for all its associated database objects
2A client's local disk has occasionally been considered as an extra intermediate level of the hierarchy

6

C
lien

t
req

u
ests

fo
rce

d
a
ta

to
b
e
co
p
ied

from
a
low

er
to

an
u
p
p
er

level
in

th
e
h
ierarch

y
in

ord
er

to
red

u
ce

th
e
la
ten

cy
of

fu
tu
re

a
ccesses

to
th
e
sam

e
d
ata.

C
lien

t
cach

in
g
ca
n
y
ield

som
e
p
erform

an
ce

b
en
e�
ts

for
u
ser

in
terfaces,

b
u
t
as

p
resen

ted
in

sec-
tio

n
2
.2
,
th
ere

are
p
o
ten

tial
p
ro
b
lem

s.
T
h
e
m
ain

cau
se

of
th
ese

p
rob

lem
s
is
th
at

th
e
con

ten
ts
of
th
is

cach
e
a
re
con

trolled
m
o
re
b
y
th
e
d
a
ta
b
ase

sy
stem

th
an

th
e
ap
p
lication

.
W
e
p
rop

ose
th
e
in
tro

d
u
ction

o
f
d
isp

lay
ca
ch
e
as

a
n
a
d
d
ition

al
lev

el
in

th
e
m
em

ory
h
ierarch

y
o
n
top

of
th
e
clien

t's
d
atab

ase
cach

e
(see

�
gu
re

2
).

C
lient

Link
N

ode1:
N

ode2:
U

tilization:
...

AB0.85
...

C
olorC

odedLink
X

1:
Y

1:
X

2:
Y

2:
C

olor:

100
50300
250
R

ed

W
idthC

odedLink
X

1:
Y

1:
X

2:
Y

2:
W

idth:

230
470
510
400
8

Link
N

ode1:
N

ode2:
U

tilization:
...

AB0.85
... AB0.85
...

Link
N

ode1:
N

ode2:
U

tilization:
...

AB0.85
...

Link
N

ode1:
N

ode2:
U

tilization:
...

AB0.85
...

Display Cache
(level 3)

Database Cache
(level 2)

Secondary & Main Memory
(levels 0 & 1)

S
erver

C
lient

F
ig
u
re

2
:
E
x
ten

d
ed

C
lien

t-S
erv

er
M
em

ory
H
ierarch

y

S
in
ce,

th
e
d
isp

lay
cach

e
rep

licates
d
ata

th
at

m
ay

a
lread

y
ex
ist

in
an
oth

er
p
art

of
th
e
sam

e
p
h
y
sical

m
em

o
ry

sp
ace,

it
m
ay

ap
p
ear

as
an

u
n
n
ecessary

overh
ead

.
H
ow

ever,
it
h
as

tw
o
m
a
jo
r

p
erform

a
n
ce

a
d
va
n
ta
g
es

ov
er

trad
ition

al
cach

in
g:

�
U
n
like

th
e
o
th
er

m
em

o
ry

lev
els

th
at

h
old

d
atab

ase
ob
jects,

it
cach

es
d
isp

lay
o
b
jects.

A
s
w
e

m
en
tio

n
ed

earlier,
on
e
of

th
e
fu
n
ction

s
of

d
isp

lay
o
b
jects

is
�
lterin

g
ou
t
d
atab

ase
in
form

ation
th
at

is
irrelevan

t
to

th
e
G
U
I.
U
sin

g
th
is
ap
p
roach

th
e
d
isp

lay
cach

e
sp
ace

can
b
e
m
an
aged

in
an

op
tim

a
l
w
ay

from
th
e
G
U
I
p
ersp

ective.
D
isp

lay
ob
jects

are
created

in
th
e
d
isp

lay
cach

e
b
y

rea
d
in
g
d
a
ta
b
a
se
ob
jects

th
a
t
a
re
b
rou

gh
t
in
to

th
e
d
atab

ase
cach

e.
O
n
ce

th
ey

are
created

,
th
ey

a
re

reta
in
ed

for
as

lon
g
a
s
th
ey

are
d
isp

layed
.
T
h
e
a
sso

ciated
d
atab

ase
ob
jects

are
n
o
lon

ger
o
f
an
y
u
se

to
th
e
G
U
I
an
d
th
ey

w
ill

even
tu
ally

b
e
d
rop

p
ed

ou
t
of

th
e
d
atab

ase
cach

e
3.

T
h
is

3
A
ssu

m
in
g
L
R
U
b
u
�
er

rep
la
cem

en
t
p
o
licy

7

way, the information overlap between the two client caches is reduced. The database cache
is released from the GUI data requirements and can be more e�ectively used for answering
database queries. In cases where large database objects are associated with relatively small
display objects, this double caching scheme could save instead of waste memory.

� It is explicitly managed by the application which gives the GUI the
exibility to \pin" data
in local main memory according to its own performance requirements. The contents of the
display cache are a�ected neither by database system parameters and policies nor by system
workload and concurrency control considerations. This is very crucial for avoiding long and
unpredictable user interface responses.

3.3 Display Locks

From what we described so far, we can think of the image presented to a user by the GUI as
an accurate visual re
ection of its display cache. In this way, the problem of keeping application
interfaces synchronized and consistent with the database turns into a client cache coherency problem.
As we mentioned earlier, the only di�erence has to do with transaction correctness criteria since
display transactions cannot be isolated.

In client-server DBMSs, the server is usually responsible for maintaining data consistency through
the enforcement of a concurrency control protocol. It must make sure that all user accessible copies
of the same data in any level of the memory hierarchy are consistent, so that a user never accesses
stale information. An extensive discussion on client caching and concurrency control protocols
can be found in [Fra93a]. Generally, there are two major classes of protocols: detection-based and
avoidance-based protocols. Detection-based protocols allow stale data to reside in a client's main
memory but require that transactions validate any cached data before they commit. On the other
hand, under avoidance-based schemes, cached data are guaranteed to be valid at any time. This
is achieved by employing the read-one/write-all (ROWA) replica management paradigm. Locally
cached data are considered read-locked (and therefore valid) across transaction boundaries, unless
instructed di�erently by the server. As a result, no explicit communicationwith the server is required
for reading cached data. For updates, the server is responsible for \calling back" data that some
client either intends to update or has already updated.

Detection-based protocols, which allow stale copies of data to reside in the client's cache, are
not suitable for display objects. Moreover, within the display's lifetime there are no transaction
boundaries, thus there are no clear points when data consistency should be validated. The user
interface, therefore, needs to be somehow noti�ed on relevant data updates so that any necessary
action can be taken (i.e. redraw the updated part of the display). This makes avoidance-based
protocols more appropriate since, under such a scheme, data validation is initiated by the server
whenever necessary.

However, these protocols are mostly designed to enforce strict transaction correctness. For the
relaxed correctness requirements of display transactions we propose a non-restrictive form of shared
locks, called display locks. These are non-restrictive in the sense that display locked database objects
can be updated, provided that at any time all lock holders get noti�ed about the updates committed
to the database.

The display locking protocol is quite simple and can be easily integrated with a strict avoidance-
based protocol. A client requests display locks for all database objects that are associated with
display objects. The database lock manager on the server is expected to grant those locks, since
display locks are compatible with all types of locks. When a transaction wants to update some
data, it does so after obtaining an exclusive lock for that data. When the update is committed to
the database, the lock manager releases the exclusive locks and noti�es all clients that hold display
locks on the updated data. The noti�ed clients refresh the associated display objects (and therefore
the display) by reading the new data from the database. We call this protocol post-commit notify
protocol.

8

A variation of this protocol is the early notify protocol. In this case, user interfaces are noti�ed
about update intentions as well. When a client requests an exclusive lock for a database object, the
lock manager sends noti�cations to displays holding display locks on that object. The displays could
then graphically mark (e.g. turn red) the object being updated. When the exclusive lock is released
the lock manager sends again messages informing whether the update transaction committed. We
must note that the database consistency is ultimately guaranteed by the existing concurrency control
algorithm. Therefore this variation of the display lock protocol is optional.

4 Implementation

In order to demonstrate the concepts presented and investigate any potential implementation prob-
lems, we attempted an implementation of this framework. We programmed a multiple user, lim-
ited functionality version of a network con�guration management application [KPTS94]. This ap-
plication employs two di�erent visualization techniques, the Tree-Map [JS91] and the PDQ Tree-
browser [KPS95], to display complex hardware hierarchies. ObjectStore [LLOW91], a commercial
object-oriented database system, was used to store the network database.

The implementation included three major tasks:

1. Extend the database server with display locking capabilities,

2. Enhance the client applications structural design to incorporate the display locking mechanism,
and

3. Design the user interface in terms of de�ning appropriate display classes for the tree-map and
PDQ tree-browser.

The overall system architecture is presented in �gure 3. In the following subsections we will discuss
in more detail each of the three tasks and explain the various modules of the �gure.

4.1 Extending the server

Extending the database server with display locking capabilities is straightforward, assuming that
the server already implements an avoidance-based protocol for client cache consistency. The lock
manager would be the only module that should be modi�ed. But the required modi�cations are
just simple extensions, since it has already built-in most of the required internal structures and
functionality4.

However, using a commercial system prohibited us from directly modifying the existing lock
manager. The desired functionality had to be implemented on top of the existing server, at the
application level. Therefore, we built the Display Lock Manager (DLM) as a separate application,
acting as an agent to the server. This approach is possible because display locks are compatible with
all types of locks and there is no need for the DLM to interact with the existing lock manager. The
obvious drawback is that most of the lock management functions are replicated at the agent, but
on the other hand, there is a potential performance bene�t by relieving the database server from
additional overhead5.

The DLM has two-way communication capability with the clients. It receives messages for holding
or releasing display locks as well as update noti�cations and propagates noti�cations to clients as
necessary. Display lock requests are not acknowledged back to the clients since they are expected to
be satis�ed. Internally, it maintains information about the clients' display locks. This information
is updated with any display lock request or release and determines which clients (if any) should be
noti�ed upon updates.

4For more details look chapter 8 in [GR94]
5The database server and display lock manager may run on di�erent machines

9

Display Lock

Manager

Database
Server

Database
Access
Module

Display
Lock Client

Application

User Interface

TCP/IP

Display Display

TCP/IP

Agent

Enhanced Server

Database
Access
Module

Application

User Interface

TCP/IP

Display Display

Display
Lock Client

Figure 3: Implementation Architecture

4.2 Enhancing the client design

Incorporating the display locking mechanism into client applications requires some extra care in
their design. They should be able to

� request and release display locks for database objects that a�ect the appearance of the interface,

� \listen" for update noti�cations, and

� react properly upon receiving such noti�cations.

Carefully designed and implemented display classes are the solution to the �rst and third require-
ments. Construction and destruction of display objects associated with database objects, supports
the systematic control over the set of data that a�ect the GUI's appearance and, consequently, the
required display locks. Moreover, display classes can encapsulate the desired reaction of the GUI to
database update. In other words, when a display receives an update noti�cation, it can invoke prop-
erly designed update methods of the display objects associated with the updated database object in
order to refresh the display.

Early in the implementation process, we made the observation that a single client application
often uses multiple displays (windows) concurrently. It is also possible that such displays may share
some database objects, in which case the same consistency problem arises. One solution to this is to

10

consider the di�erent displays of an application as di�erent clients for display locking purposes. Each
display would contact the agent separately and the agent could send update noti�cations directly
to each display. However, this solution would add some extra overhead to the agent in terms of
communication, processing and memory requirements.

A better solution is to use a hierarchical approach that distributes part of the display locking
responsibility to the clients. For this purpose, each client should include a display lock client (DLC)
module. The DLC functionality and internal structure is almost identical to the that of the DLM.
This concept is similar to that of having a single bu�er manager per client. The bene�t is two-fold:

� The DLC can take over all communication with the DLM. Display lock requests and releases
as well as update noti�cations can be sent through the DLC. Also, this module can be used
to satisfy the second of the above requirements, as the \listener" for DLM noti�cations. The
user interface development is relieved from network programming details.

� The DLC can be a local display lock manager that manages, �lters and dispatches local display
lock requests and update noti�cations. This can result in signi�cant decrease in the number
of messages that need to exchanged with the DLM. A database object is display-locked at
the DLM only once, no matter how many local displays depend on it. Also, the DLM has to
send only one update noti�cation to the client no matter how many of the client's displays are
a�ected.

5 Related Work

To the best of our knowledge, not much emphasis has been given by the database research community
on user interfaces even though it has been recognized as an important area [SAD+93]. User interfaces
are usually considered external to a database system and communication is limited to pure data
exchange.

Views in the context of object-oriented databases [HZ90] are similar to the display schemas that
we propose. As in relational databases, views provide external schemas for user convenience and
data protection. They allow dynamic de�nition of classes, sets of objects, multiple interpretations
of objects and can facilitate schema evolution [Ber92]. Work on this area has mainly concentrated
on view de�nition mechanisms and query languages, as in [AB91] where a query language is pro-
posed to de�ne virtual classes which are populated either with database or with imaginary objects.
Performance and consistency issues have been largely ignored. However, it would be interesting to
investigate the applicability of these view de�nition techniques for dynamic user interface speci�ca-
tion.

An analogous two-level client caching architecture has been proposed in [HK95]. Likewise, their
approach uses the top cache level for realizing application speci�c schemas. However, the focus of
this work was on exploiting this architecture to e�ciently implement object-views over a relational
database as well as reuse local data for answering subsequent queries.

Last, display locks are similar to the notify locks presented in [WN90]. Their di�erence is that the
notify lock algorithms were designed to provide strict transaction concurrency control. However, it
seems that the rich set of locks and communicationmodes o�ered by ObServer [HZ87] for cooperative
transactions, can be used to implement display locks. Non-restrictive read (NR-READ) locks allow a
transaction to read an object without prohibiting write privileges to other transactions. These locks
can be combined either with the update-notify (U-NOTIFY) communication mode which noti�es
lock holders upon updates (post-commit notify protocol), or with the write-notify (W-NOTIFY)
communicationmode which noti�es lock holders when another transaction request object for writing
(early notify protocol).

11

6 Conclusions

In this paper we have presented and discussed several issues necessary to support the creation and
maintenance of consistent, acceptably performing GUIs for highly interactive, multi-user database
applications. We focused on schema design, memory organization and management mechanisms as
well as locking protocols as the principal areas in which to address the issues.

In the area of schema design we noted the di�erence between database object attributes and
methods, and those needed by the GUI only to render the objects on its display. We proposed the
adoption of GUI speci�c display schemas, external to the database. This way, GUIs are realized
through instances of that schema, called display objects, that need not (and sometimes can not)
be maintained by the database. For performance reasons, we de�ned a new niche for them in the
topmost level of the system's memory hierarchy where they can be cached according to the GUI
needs, not a�ected either by DBMS policies and parameters or by other concurrent user accesses to
the data.

This approach to GUI implementation, gave us the opportunity to address GUI consistency as
a client cache coherency problem. Since it is necessary that cached display objects are at all times
consistent with persistent, yet updatable, objects, we proposed a locking mechanism based on a
display locks and two variations of a noti�cation protocol.

Finally, we presented some implementation details from a simple prototype of a network con�g-
uration management application to test the feasibility of our approach.

Acknowledgements

The authors wish to thank Michael Franklin, Ramesh Karne and Sandeep Gupta for their helpful
comments and suggestions.

References

[AB91] Serge Abiteboul and Anthony Bonner. Objects and Views. In James Cliford and Roger
King, editors, Proceedings of the ACM SIGMOD International Conference on Manage-
ment of Data, pages 238{247, Denver, CO, May 1991.

[Ber92] Elisa Bertino. A View Mechanism for Object-Oriented Databases. In Proceedings of the
International Conference on Extending Database Technology, pages 136{151, Vienna,
Austria, March 1992.

[FCL93] Michael J. Franklin, Michael J. Carey, and Miron Livny. Local Disk Caching for Client-
Server Database Systems. In Rakesh Agrawal, Sean Baker, and David Bell, editors,
Proceedings of the 19th International Conference on Very Large Data Bases, pages 641{
655, Dublin, Ireland, August 1993.

[Fra93a] Michael J. Franklin. Caching and Memory Management in Client-Server Database Sys-
tems. PhD thesis, University of Wisconsin - Madison, 1993.

[Fra93b] Michael J. Franklin. Exploiting Client Resources Through Caching. In Proceedings of
the 5th International Workshop on High Performance Transaction Processing, Asilomar,
CA, September 1993.

[GR94] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Techniques. Mor-
gan Kaufmann, San Francisco, CA, 1994.

[HK95] Catherine Hamon and Arthur M. Keller. Two-Level Caching of Composite Object Views
of Relational Databases. In P. S. Yu and A. L. P. Chen, editors, Proceedings of the 11th

12

International Conference on Data Engineering, pages 428{437, Taipei, Taiwan, March
1995. IEEE Computer Society.

[HRB+93] Jayant R. Haritsa, Nicholas Roussopoulos, Michael O. Ball, Anindya Datta, and John S.
Baras. MANDATE: MAnaging Networks using DAtabase TEchnology. IEEE Journal
on Selected Areas in Communications, 11(9):1360{1372, December 1993.

[HZ87] Mark F. Hornick and Stanley B. Zdonik. A Shared, Segmented Memory System for
an Object-Oriented Database. ACM Transactions on O�ce Information Systems, 5(1),
1987.

[HZ90] Sandra Heiler and Stanley Zdonik. Object Views: Extending the Vision. In Proceedings
of the 6th International Conference on Data Engineering, pages 86{93, Los Angeles, CA,
February 1990. IEEE Computer Society.

[JS91] Brian Johnson and Ben Shneiderman. Tree-Maps: A Space-Filling Approach to the Vi-
sualization of Hierachical Information Structures. In Proceedings of IEEE Visualization
Conference, pages 284{291, San Diego, CA, October 1991.

[KPS95] Harsha P. Kumar, Catherine Plaisant, and Ben Shneiderman. Browsing Hierarchical
Data with Multi-Level Dynamic Queries and Pruning. Technical Report 95-53, Institute
for Systems Research, University of Maryland, March 1995.

[KPTS94] Harsha Kumar, Catherine Plaisant, Marko Teittinen, and Ben Shneiderman. Visual
Information Management for Network Con�guration. Technical Report 94-45, Institute
for Systems Research, University of Maryland, June 1994.

[LLOW91] Charles Lamb, Gordon Landis, Jack Orenstein, and Dan Weinreb. The ObjectStore
Database System. Communications of the ACM, 34(10), October 1991.

[SAD+93] Michael Stonebraker, Rakesh Agrawal, Umeshwar Dayal, Erich J. Neuhold, and Andreas
Reuter. DBMS Research at a Crossroads: The Vienna Update. In Rakesh Agrawal,
Sean Baker, and David Bell, editors, Proceedings of the 19th International Conference
on Very Large Data Bases, pages 688{692, Dublin, Ireland, August 1993.

[Shn92] Ben Shneiderman. Designing the User Interface: Strategies for E�ective Human-
Computer Interaction. Addison-Wesley, Reading, MA, second edition, 1992.

[VLDB93] Rakesh Agrawal, Sean Baker, and David Bell, editors. Proceedings of the 19th Interna-
tional Conference on Very Large Data Bases, Dublin, Ireland, August 1993.

[WN90] Kevin Wilkinson and Marie-Anne Neimat. Maintaining Consistency of Client-Cached
Data. In Dennis McLeod, Ron Sacks-Davis, and Hans-J�org Schek, editors, Proceedings of
the 16th International Conference on Very Large Data Bases, pages 122{133, Brisbane,
Queensland, Australia, August 1990.

13

