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For virtual and augmented reality applications, it is desirable to render audio

sources in the space the user is in, in real-time without sacrificing the perceptual

quality of the sound. One aspect of the rendering that is perceptually important for

a listener is the late-reverberation, or “echo”, of the sound within a room environ-

ment. A popular method of generating a plausible late reverberation in real-time is

the use of Feedback Delay Network (FDN). However, its use has the drawback that

it first has to be tuned (usually manually) for a particular room before the late-

reverberation generated becomes perceptually accurate. In this thesis, we propose

a data-driven approach to automatically generate a pre-tuned FDN for any given

room described by a set of room parameters. When combined with existing method

for rendering the direct path and early reflections of a sound source, we demon-

strate the feasibility of being able to render audio source in real-time for interactive

applications.
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Chapter 1: Introduction

When a sound wave is propagating through a room, what is perceived by

a listener is typically composed of the direct signal from the sound source to the

listener, as well as the various indirect signals from the sound source bouncing off of

the surfaces of the room. This perceived reverberated sound can be divided into two

perceptually different segments based on the room impulse response (RIR). The first

segment is referred to as the early reflection, while the last segment is referred to as

the late reverberation [19]. In this thesis, we are primarily interested in developing

a framework for efficient approximation of the late reverberation of audio signals in

an arbitrary environment.

Being able to approximate the late reverberation in real-time is important for

interactive applications where realistic audio rendering is required. For example, in

augmented and virtual reality applications, it is often desirable to create as immer-

sive or realistic of an experience as possible. This can be realized with a traditional

head up display hardware which can render visual elements and play audio. In par-

ticular, we can imagine augmented or virtual reality use case such as virtual concert

performance where realistic audio can dramatically enhance the listening experience

since music being perform in an amphitheater or concert hall carries very rich tone.
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Similarly, for virtual conference meetings and virtual classrooms, realistic audio and

visuals can potentially provide a higher level of engagement and more closely repli-

cate the experience of in-person meetings, which is especially useful for times when

in-person meetings might be inconvenient.

In audio rendering applications, the original, unaltered audio signal that a

listener will hear is referred to as the dry audio, and the process of the dry audio

propagating through a room environment and bouncing off of the surfaces of the

room to form the final reverberated sound a listener perceives can be referred to

as reverberation. The point-to-point RIR of a room characterizes the behavior of a

sound traveling from a source location to a receiver location, and the convolution of

the dry audio signal with the RIR can be use to accurately render the reverberated

sound [10]. Thus, to render audio that is similar to how a sound is actually perceived

by a listener in a given room, it is often sufficient to compute the RIR of a room,

along with the Head-Related Transfer Function (HRTF) unique an individual. While

we can accurately compute a reverberated sound through convolution, that alone is

not enough if we are interested in being able to render the reverberated sound in

real-time [18] [19].

To render the reverberated sound in real-time, one approach is to approximate

the late-reverberation using a Feedback Delayed Network (FDN), allowing us to

apply other existing methods for rendering just the direct path and early reflections

of the sound rather than the entire sound source [19]. This approach, however,

has the drawback that the FDN must be first tuned for a particular room (often

manually) before the late-reverberation generated becomes perceptually accurate.
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To overcome this drawback, we propose a data-driven approach to automatically

generate a pre-tuned FDN for any given room described by a set of room parameters.

This approach involves building a data set to train a model to learn a mapping

between a parametric model of a room and the parameteric model of the FDN

corresponding to those rooms. The main requirement for this model is that once

the model is built, it can be use to infer the FDN parameters in real-time once

information about the room environment is known. This, when combined with

existing methods for rendering the direct path and early reflections of a sound source,

allows us to render more realistic audio in real-time.

In the next section we will discuss relevant background and previous works

related to our proposed approach. After the background, we will then discuss the

methodology of our approach and the results of our implementation in sections 3

and 4. Finally, we provide some discussions and conclusion regarding our work in

the remaining sections.
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Chapter 2: Background

2.1 Artificial Reverberation

As mentioned earlier, reverberation is the result of sound bouncing off the

surfaces of the room. More specifically, as the sound propagates through an envi-

ronment, it is slowed down from interaction with the environment, giving the listener

a sense of the space and structure of the environment. Furthermore, a sound source

can bounce off surfaces in the room multiple time, meaning the resulting sound

the listener hears is a combination of various paths the sound waves took prior to

reaching the ears.

Sound that have only bounces off surfaces a couple of times can be heard more

distinctly are referred to as the early reflections of the sound. While the sound that

traveled directly to the listener (the direct path) allows listeners to perceive the

direction of the sound, the early reflections are distinct enough to give listeners a

sense of the geometry and material of the room [19]. The early reflection ends once

the reverberation reaches its “asymptotic statistical behavior,” but it is typically

taken to be the first 80 to 100 ms of the sound signal [13]. An example of the

different parts of a room impulse response (RIR) for characterizing the interaction

of the sound with the environment is shown in Fig. 2.1. Since the direct path and
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early reflections are rather distinct, it is important to be able to accurately simulate

them in order to render sound realistically. In contrast, the late reverberation that

resulted from the sound bouncing off the surfaces of the room many times becomes

less distinct and conveys a sense of the size of the environment and its absorbing

power. Furthermore, this late reverberation can be characterize statistically, making

it acceptable to approximate it without significant loss in realism [19].

Figure 2.1: Anatomy of a typical room impulse response from [7]

Since the idea of recreating reverberation through artificial reverberation was

first introduced by Schroeder in 1961, three main types of algorithms have been

developed: delay networks, convolutional, and computational acoustic [19]. Con-

volutional approaches focuses on obtaining good physical measurements of a room

and being able to compute the convolution efficiently. Computational acoustic ap-

proaches simulates the propagation of acoustic signals in a geometric representation

of the room and can be further broken down into two variants: one being the wave-

based methods that aims to solve the wave equation numerically, and the other

being ray-based methods that propagates sound as rays geometrically. Delay net-

work approaches use networks of delay lines and digital filters to recreate the sound

delays of a reverberation. A popular example of a delay networks structure is the
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Feedback Delay Networks (FDNs), which will be the main focus of this thesis for

producing reverberation in real-time.

2.2 Convolutional and Computational Acoustics

The goal of convolutional approaches and computational acoustics approaches

for simulating artificial reverberation is to compute the room impulse response

(RIR). Once the RIR is computed the artificial reverberation can be obtain by

finding the convolution of the dry audio signal and the computed RIR [10] [18].

Both approaches are both physically based, allowing them to accurately reproduce

the reverberated audio.

As mentioned previously, convolutional approaches are concern with physically

measuring the RIR through sound recordings and applying the measured RIR to

generate artificial reverberation efficiently. Once a recording of the RIR is obtained,

post-processing algorithm is necessary to deal with noise and other limitations re-

lated to the recording device [19]. With the post-processing complete, the Fast

Fourier Transform (FFT) algorithm and its variants are used to efficiently compute

the convolution between the dry audio signal and the impulse response.

Meanwhile, for wave-based computational acoustics approaches, the wave equa-

tion can be solve through various numerical techniques in either the time or fre-

quency domain [19]. Notable time domain technique include the finite-difference

time-domain (FDTD) technique and its variants [5] [19]. For the frequency domain,

finite element method (FEM) [15] and boundary element method (BEM) are used
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[4] [9] [19].

Wave-based approaches are consider to be the most accurate way to simulate

the RIR, however, they are also very computationally expensive. Ray-based com-

putational acoustics approaches (also call geometrical acoustics) offers alternative

techniques that are faster but less accurate [17] [19]. Because ray-based approaches

treats sound as rays, it is more accurate for mid to high frequency sound waves and

have difficulty capturing lower frequency wave phenomena.

2.3 Delay Network and Feedback Delay Network

Feedback Delay Network were first pioneer by Jot and Chaigne in 1991 and

remains a state-of-the-art reverberation method [7][19]. Feedback Delay Network

and other delay networks methods aim to simulate reverberation through networks

of delay lines and digital filters. For the purpose of generating high quality artificial

reverberation, reverberator based on Feedback Delay Network has the advantage

that it can independently tune the energy storage, damping, and diffusion compo-

nents related to the reverberation. However, Feedback Delay Network and other

delay networks are not physically based so they do not necessarily model the RIR

accurately. Instead, they aim to capture the perceptual quality of the RIR [18].

FDN has two major components: a set of delay lines and a feedback ma-

trix. For a given sound source the FDN generates the artificial reverberant sound

by continually looping the signal through a set of delay lines (represented as a di-

agonal delay matrix), and then mixing the delayed signal with a feedback matrix
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(potentially with some additional filters in between).

An example of a full FDN is displayed below in Fig. 2.2 to clarify the interac-

tion between the input audio signal (u(n)) and the components of a FDN. Besides

the feedback matrix and delay lines (denoted {qi,j} and z−Mi in the figure), a FDN

can also have a set of input gains (bi’s), output gains (ci’s), and feedback gains

(gi’s). Optionally, the output from each delay line may also be pass through a low

pass filter (not pictured). The remainder of section 2.3 will describe the different

components and typical design of the these components for a FDN as described in

[7][18].

Figure 2.2: Example FDN structure from [7]

2.3.1 Feedback Matrix

In a FDN, the feedback matrix serves the role of mixing the delayed signals

to simulate the aggregate effect of a sound signal’s interaction with the surfaces

of the enclosing environment. For this reason, the feedback matrix is sometimes

also referred to as the scatter matrix. The Hadamard and Householder Feedback
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Matrix are common choices for the feedback matrix in FDN and are well studied,

but generally we can choose any unitary matrix to ensure stability for the FDN [18].

A Hadamard matrix is a square orthogonal matrix whose entries are either 1 or -1.

Furthermore, it is known that for a Hadamard matrix of order n ≥ 4, n is divisible

by 4. Although there are no known formula for constructing all possible Hadamard

matrices, there are known methods for constructing Hadamard matrices of a specific

structure [1]. An example of of a Hadamard matrix for n = 4 would be:

H4 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


The Householder matrix represents a reflection transformation about the hy-

perplane defined by the vector u [6] and is defined as

Hu = I −
(

2

uTu

)
uuT (2.1)

2.3.2 Delay Line and Length

The delay line in the FDN specifies the amount of time that a signal that is

passed through it gets “delayed,” and the number of delay line that the FDN has is

often referred to as the number of tap the FDN has.

The delay line length should roughly be around the “mean free path” given

approximately as d = 4V/S, due to Sabine, where S is the total surface area of the

room and V its enclosing volume [10] [20]. More precisely each delay line length, Mi,
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should be chosen to be mutually prime (to maximize the number of samples that

the lossless reverberator prototype must be go through before the impulse response

repeats) and chosen to ensure a sufficiently high mode density in all frequency bands

(typically, we want M ≥ 0.15t60fs where M =
∑N

i=1Mi).

To generate a set of prime power delay-line length, a common schema is to

parameterize delay line length as an integer power of a distinct prime number; where

the power is chosen as

mi =

⌊
0.5 +

log(Mi)

log(pi)

⌋

for a given prime pi, yielding the final set of delay line length as {pmi
i }.

In practice, to generate a good prime power delay line, we should ensure

that the minimum delay line length roughly corresponds to the minimum acoustic

ray length in the reverberator (that is, the desired delay time between the sound

source and receiver for a given the sampling frequency). Similarly, we should bound

the maximum delay line length to correspond to the maximum acoustic ray length

(“room size”) [18].

2.4 Important Perceptual Metrics for Reverberation

To compare how similar two room impulse responses are to one another in

terms of how an individual perceives them, it is useful to be able to quantify any

perceptual differences. The following features are considered to be good metrics for

measuring the perceptual accuracy of the generated impulse response for a given

sampling frequency [8]:
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• t60(f) - desired reverberation time at each frequency f , used as a measure of

perceived reverberation time. It is defined as the tie it takes for the sound

level in the room to decrease by 60 dB [16] The Energy Decay Curve (EDC)

defined as

EDC(t) =

∫ ∞
t

h(τ)dτ (2.2)

is often use to compute t60 since it decays more smoothly than the impulse

response envelope [18]. t60 may be approximated by Sabine’s Formula [10]

[20]:

T =
0.049V

Sα
(2.3)

for room dimensions measured in feet, where V is the volume of the room, S,

is the boundary surface area, and ᾱ is the average absorption coefficient given

as

α =
1

S

n∑
i=1

siαi (2.4)

where si is the area of a boundary surface and αi is the absorption value of

the corresponding boundary surface.

• G2(f) - signal power gain at each frequency

• C50(f) or C80(f) - clarity or early-to-late index (related to the direct-to-

reverberant-ratio), important for perception of room size and perception of

sound quality [12]. It can be defined as

C80 = 10 log10

[ ∫ 80ms

0

h2(t)dt

/∫ ∞
80ms

h2(t)dt

]
(2.5)
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where h(t) is the impulse response. C50 is similarly defined [16].

Other features from the impulse response, such as the Mel-frequency cepstral

coefficients (MFCC) and signal power envelope, can also serve as perceptual com-

parison metrics, though less common. Each of these metrics are computed for an

individual impulse response and are then compared somehow base on their differ-

ences. Another way to compare the impulse response is with the spectral distortion

and signal-to-distortion ratio. These two metrics can be use to directly compare

two impulse responses by treating one of the impulse response (such as the FDN

generated impulse response) as some distortion of the other impulse response.

2.5 Automatic Tuning of Feedback Delay Network

When Jot and Chaigne first propose FDN, the various components of FDN

has to be manually designed and tuned for each room before a plausible late rever-

beration can be generated from the FDN. The FDN tuning is done in such a way

to match some perceptual metrics (see Fig. 2.3 for example). Typically, FDN are

designed for a given reverberation time at several frequencies.

The idea of automatically tuning a FDN was first proposed in [2] and then

further refined in [3]. The core idea behind these automatic tuning methods is to

tune the FDN to match a given RIR by using the Genetic Algorithm to optimize

some loss function with respect to the FDN parameters describing the FDN. The

loss function is a function of the given RIR and the generated RIR produced by

the FDN, and should ideally model decrease in perceptual differences between the
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Figure 2.3: Example of a simulated impulse response from a FDN matched to have
the same energy as the measured IR [11].

two RIR’s as the loss approaches zero. To ensure that perceptual differences are

captured in the loss function, perceptual metrics are used in formulating possible

loss functions.

A subset of these perceptual metrics described in section 2.4 have been ex-

plored are compared in [3] for automatic tuning of FDN. The choice for the best set

of perceptual metrics to use in the automatic tuning of FDN is explored to a limited

extent in this thesis, though it is outside of the main scope of the thesis.
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Chapter 3: Methodology

3.1 Automatic FDN Construction from Room Parameters

We aim to construct a FDN in real-time that produces an impulse response

that perceptually matches the impulse response of a given room described by a set

of room parameters. A possible approach to accomplish this goal is to break the goal

into two sub-problems. The first sub-problem involves computing the RIR of the

parameterized room and computing some perceptual metric to represent the RIR.

The second sub-problem then involves finding a FDN that produces an impulse

response that matches the same perceptual metric. Here we propose an initial

general method to solving the problem by combining the results from the two sub-

problems to build a data set based on the correspondence between the set of room

parameters and FDN parameters. The data set can then be use to train a regression

model to infer the FDN parameters from a given set of room parameters. The general

method is outlined below (Fig. 3.1):

1. Generate a set of RIR parameterized by a set of parameters describing a room

2. Apply optimization algorithm to generate a matching FDN for each RIR over

a set of FDN parameters with a perceptual loss function

14



3. Train a regression model to learn mapping between room parameters and FDN

parameters

4. Refine inferred FDN to generate late reverberation (optional)

5. Deploy regression model to infer a plausible FDN for each room of interest

Figure 3.1: Flow chart of the proposed general method. The final regression model
to deploy for inference is boxed in red.

One possible implementation approach for our proposed method using a shoe box

room Binaural Room Impulse Response (BRIR) generator, Genetic Algorithm, and

Support Vector Machine Regression is described in the rest of this section.

3.2 Obtaining the Room Impulse Response

BRIR simulation for a box room is used to generate a set of room impulse

response corresponding to a room parameterized by its room dimensions (length,

width, and height) and reflection coefficient of each of the six walls. Once the BRIR
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is simulated, the BRIR corresponding to the “left ear” is chosen to be use as the RIR,

and the reverberation time and other possible perceptual metrics can be computed

from this RIR. The particular method used to generate the BRIR is described in [21].

Note that a box room is used here for ease of parameterization. This process can

be generalize further by simulating BRIR for rooms with more complex geometries

so long as there is a reasonable way to parameterize the complex geometries of the

room.

3.3 Automatic Design of FDN

The automatic design of FDN can be frame as an inverse problem: given an

impulse response for some room, recover a set of parameters that would describe a

FDN that can produce the same matching impulse response (as close as possible).

Previous approach to solving this problem requires the use of Genetic Algo-

rithm to search for the FDN parameters, given an objective function whose optima

correspond to a match of some chosen perceptual metric. In that sense the inverse

problem is solved through global optimization. Genetic Algorithm is a viable opti-

mization method for this case because it does require the gradient of the perceptual

loss function. Working with the gradient of the loss function is tricky because the

loss function is a function of the impulse response generated from the FDN. This

would require finding derivatives of a recurrent function which can be difficult in

practice. Automatic differentiation or numerical differentiation might use apply to

utilize gradient-based optimization methods and can be explore in later works.
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We take a modified approach to tune the FDN based on work by [3]. As

in their approach, the impulse response is generated at a sampling rate of 48kHz

and the first 4096 sample are directly taken from the original matching impulse

response. The main modification to the optimization process is that we use a four-

tap FDN, the perceptual metric we use for the matching is different (see Section

3.4), and instead of constraining tap delay line length be to integer values that cover

a scale of 1:2.5 and with the longest value corresponding to 100 milliseconds, we just

have the constraint that the integers be mutually prime. This can be achieve by

optimizing over a set of integers corresponding to the exponent component of the

delay length and having a fix set of prime basis: {2, 3, 5, 7}. Further, we do not

modify the input and output gains, as well as the low-pass filter. In summary, we

optimize over a parameterization of the FDN given by {g,m1,m2,m3,m4} where g

is the feedback gain and mi’s are the delay line length exponents. We also try out

another parameterization where we only optimize base on the input gain (b), output

gain (c), and feedback gain (g) of the FDN.

3.4 Choice of Perceptual Metric

Some options explored by [3] so far for suitable perceptual metrics are ISO

acoustic metrics (such as clarity index) matching, energy decay (EDC) matching,

MFCC matching, and power envelope matching. For simplicity and as a proof-of-
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concept, we chose the following loss function:

L(IR, IRFDN) =
8

10
(t60(IR)− t60(IRFDN))2 +

2

10
(C50(IR)− C50(IRFDN))2 (3.1)

where IR is the impulse response we want to match, IRFDN is the impulse response

generated from the FDN, and t60(·) and C50(·) are the reverberation time and clarity

index computed for each respective impulse response.

3.5 SVM Regression for Generating FDN Parameters

To achieve real time reverberation generation for a given room, just using the

Genetic algorithm to construct the FDN parameters would not be sufficient because

the optimization takes a non-trivial amount of time to compute. Thus, ideally we

would want to be able to generate the FDN parameters in real time as soon as

information about the room becomes available. To achieve this we can train a

Support Vector Machine (SVM) regression model, and run inference on the trained

model to predict the desired set of FDN parameters from the given room parameters

in real time.

To train the SVM model would first require some training data. This training

data can be generated first using the BRIR simulator and then with the Genetic

algorithm applied to build correspondence between the room parameters that yield

a particular RIR and a suitable FDN.

Two sets of training data were generated. The first data set consist of RIR

generated from rooms with length and width varying between 3 to 8 meters and
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height of 2.7 meters. The reflection coefficients for the walls are fixed with the side

wall all set to the reflection coefficient and the top and bottom coefficient differs.

Similarly, the second data set consist of RIR generated from rooms with length

and width varying between 22 to 27 meters and height of 8 meters. The reflection

coefficients for the walls are set the same way as the previous data set. We refer to

the first data set as the small room data set and the second data set as the large

room data set.

For each impulse response generated, we compute the reverberation time and

clarity index and then use the automatic FDN tuning approach described above

to generate the corresponding FDN parameters that “best” matches the impulse

response in terms of the perceptual loss function 3.1. This establishes a correspon-

dence between the room parameters that generated the impulse response with the

FDN parameters. This correspondence can be use as training data for the SVM

regression.

19



Chapter 4: Results

4.1 Genetic Algorithm Optimization Loss Value

Three sample results from the RIR matching using Genetic Algorithm is dis-

played below (Fig. 4.1(a), 4.1(b), 4.1(c)) in decreasing order of final loss value as

calculated by Equation 3.1. The figures display the spectrogram of the reverber-

ated sound produced using the simulated RIR compared to the spectrogram of the

reverberated sound produced from the RIR generated from the matching FDN.

The visualization of the spectrogram and sound produced from the two RIR

demonstrates visually the difference between the dry audio and the reverberated

sound. It also illustrates visually how loss value effects the matching of two RIR.
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(a) Loss value of 18.3822

(b) Loss value of 2.4727 (c) Loss value of 1.0042× 10−4

Figure 4.1: Spectrogram of sound signal convolved with RIR and FDN produced
RIR for various loss values. In each set of three spectrogram, the top is the original
audio, middle is the result produced from the simulated RIR and bottom is the
result produced from FDN generated RIR.

4.2 SVM Results

We want to build a regression model to map some parameterization of a boxed

room to the corresponding parameterization of the FDN that would produce a per-

ceptually identical room impulse response. In the impulse generation process, we

have a simplified parameterization of the room given by (`, w, h) where `, w, and h

are the length, width, and height of the boxed room and the reflection coefficient of
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each wall is described by a set of fixed γ taken to be in the range 0 to 1. To represent

the FDN we parameterize it as (g, m1, m2, m3, m4) where g is the feedback gain

that is then multiplied with the feedback matrix, Λ, and mi is the exponent power

we raise the prime basis to for our prime delay line. For the four tap FDN we are

modeling, the prime bases used are 2, 3, 5, and 7. We alternatively parameterize

the FDN as (g,b,c) where g is the feedback gain, b is the input gain, and c is the

output gain.

With the genetic algorithm we were able to establish more than 100 corre-

spondences so far between the set of room and FDN parameter for both the large

room data set and the small room data set.

4.2.1 Small Room Data Set Results

For the small room data set, we trained four sets of SVM regression model:

for each parameterization of the FDN, we trained a SVM model with the Gaussian

(RBF) kernel and a SVM model with the polynomial kernel. The SVM regression

implementation from Matlab is used with the hyperparameters for the SVM model

set to be determined automatically. For each model we report the mean squared

error for each of the prediction of each FDN parameters. The mean squared error

by itself is not very informative, rather the loss function described in Equation

3.1 evaluated over the predicted FDN is much more indicative of the perceptual

relevance of the result. Thus, we also predict the perceptual loss value for each

model.
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The training and testing results for the first FDN parameterization (g, m1,

m2, m3, m4) is tabulated in Table 4.1 and 4.2 below. The training data is restricted

to ones with loss value less than 0.8 from the initial Genetic Algorithm matching,

and the remaining data serves as the testing data set. The threshold is set in such

a way to ensure the training data set is approximately of the same size across all

the models trained

Regression Model FDN Parameters MSE Perceptual Loss Stat.
g m1 m2 m3 m4 Mean Median

RBF Kernel SVM 0.0727 2.0345 4.8966 1.1724 1.0690 1.9955 2.1470
Poly. Kernel SVM 0.0284 4.1379 4.9310 0.7586 0.4828 45.7648 2.3623

Table 4.1: Training performance for SVM regression model for FDN parameteriza-
tion (g, m1, m2, m3, m4) for the small room data set.

Regression Model FDN parameters MSE Perceptual Loss Stat.
g m1 m2 m3 m4 Mean Median

RBF Kernel SVM 0.0840 16.2254 12.0704 3.2113 1.4225 1.5700 1.0308
Poly. Kernel SVM 0.0861 22.7042 13.8592 4.5915 1.3099 246.0664 20.8343

Table 4.2: Testing performance for SVM regression model for FDN parameterization
(g, m1, m2, m3, m4) for the small room data set.

Sample spectrogram of the audio output from the FDN predicted from the

SVM model is displayed in Fig. 4.2. The spectrogram of the dry audio and the

reverberated audio obtained from convolution with RIR is also included for reference.

Note that the sample output is not necessarily representative of how well the model

perform.
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(a) Sample result from SVM with Gaussian
Kernel

(b) Sample result from SVM with Polynomial
Kernel

Figure 4.2: Sample output from the SVM regression model trained on the small
room data set with FDN parameterized as (g, m1, m2, m3, m4). In each set of
three spectrogram, the original audio (top), result produced from the simulated
RIR (middle) and result produced from the FDN predicted by the SVM (bottom).

Now we shift to reporting the SVM regression result of predicting the FDN

parameterized by (g,b,c). As before, the training and testing results for the second

FDN parameterization is tabulated in Table 4.3 and 4.4 below. The training data

is restricted to ones with loss value less than 0.2 from the initial Genetic Algorithm

matching, and the remaining data serves as the testing data set. Sample spectrogram

of the audio output from the FDN predicted from the SVM model is displayed in

Fig. 4.3 like before.

Regression Model FDN Parameters MSE Perceptual Loss Stat.
g b c Mean Median Min Max

RBF Kernel SVM 0.0083 0.0040 0.0047 0.0676 0.0343 0.0010 0.5456
Poly. Kernel SVM 0.0101 0.0053 0.0053 0.0713 0.0378 0.0003 0.3636

Table 4.3: Training performance for SVM regression model for FDN parameteriza-
tion (g,b,c) for the small room data set.
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Regression Model FDN Parameters MSE Perceptual Loss Stat.
g b c Mean Median Min Max

RBF Kernel SVM 0.0734 0.0265 0.0051 0.1519 0.0622 0.0018 0.8613
Poly. Kernel SVM 0.0761 0.0320 0.0067 0.1332 0.0721 0.0016 0.7356

Table 4.4: Testing performance for SVM regression model for FDN parameterization
(g,b,c) for the small room data set.

(a) Sample result from SVM with Gaussian
Kernel

(b) Sample result from SVM with Polynomial
Kernel

Figure 4.3: Sample output from the SVM regression model trained on the small room
data set with FDN parameterized as (g, b, c). In each set of three spectrogram, the
original audio (top), result produced from the simulated RIR (middle) and result
produced from the FDN predicted by the SVM (bottom).

4.2.2 Large Room Data Set Results

For the SVM regression model trained on the large room data set, we also

report its mean squared training error and loss function statistics in Table 4.5 and

4.6. The threshold for the training set is now set to ones with loss value less than

0.7 from the initial Genetic Algorithm matching, and the remaining data serves as

the testing data set as before. Sample spectrogram of the audio output from the

FDN predicted from the SVM model is displayed in Fig. 4.4. Models were only

trained for the second FDN parameterization for the large room data set.
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Regression Model FDN Parameters MSE Perceptual Loss Stat.
g b c Mean Median Min Max

RBF Kernel SVM 0.0045 0.0172 0.0113 31.2218 31.6700 25.0280 34.5177
Poly. Kernel SVM 0.0062 0.0159 0.0110 31.1467 32.0197 21.9203 47.1815

Table 4.5: Training performance for SVM regression model for FDN parameteriza-
tion (g,b,c) for the large room data set.

Regression Model FDN Parameters MSE Perceptual Loss Stat.
g b c Mean Median Min Max

RBF Kernel SVM 0.0075 0.0647 0.0397 31.4420 31.7469 26.3002 34.7566
Poly. Kernel SVM 0.0082 0.0569 0.0360 32.1311 31.8487 22.4158 62.6516

Table 4.6: Testing performance for SVM regression model for FDN parameterization
(g,b,c) for the large room data set.

(a) Sample result from SVM with Gaussian
Kernel

(b) Sample result from SVM with Polynomial
Kernel

Figure 4.4: Sample output from the SVM regression model trained on the large room
data set with FDN parameterized as (g, b, c). In each set of three spectrogram, the
original audio (top), result produced from the simulated RIR (middle) and result
produced from the FDN predicted by the SVM (bottom).

4.3 Real-time System Demonstration

To demonstrate the feasibility of approximating the late-reverberation in real-

time using our proposed method, a mock demo was implemented in C/C++ demon-

strate the audio stream processing capability of FDN. The demo consists of two

system processes. The first process sends sample audio data through a pipe to sim-
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ulate a dummy audio stream. The second process reads from the pipe and process

the audio stream in batches of 4800 samples and outputs the resulting audio that

has been passed through the FDN.

Figure 4.5: Plot of the total amount of time the mock demo took to process different
number of audio samples.

The running time of the mock demo run on a 1.6 GHz Dual-Core Intel Core i5

processor is displayed in Fig. 4.5. This suggests that FDN should be able to stream

and process audio in real-time, depending on the sampling frequency of the audio,

tap-delay line lengths, and the processor speed.

At the time of this writing, a full virtual demo of our pre-tuned FDN is also

under development using [14], which is a real-time virtual environment rendering

system originally developed in the Spatial Auditory Displays Lab at NASA Ames

Research Center.
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Chapter 5: Discussions

5.1 Quality of the Training Data Set

Our method of obtaining FDN parameters that perceptually matches some

target impulse response is to set an objective function to compare the FDN generated

impulse response with the target and then optimize for that objective with respect

to the FDN parameters. This matching process is done for each RIR we generated

from a set of room parameters, thus the quality of our training data set for the SVM

regression model is limited by how closely the Genetic Algorithm was able to tune

the FDN parameters.

In practice, we see from the results in section 4.1 that the matching computed

from the Genetic Algorithm is not necessarily always good since there are already

some visually distinct differences between the FDN produced RIR and the simulated

RIR when the loss value is around 2. As with any optimization algorithm, Genetic

Algorithm can occasionally run into issues with finding sub-optimal solution when

trying to minimize the loss function. This can occur if the Genetic Algorithm did

not converge within the given maximum iterations (or “generations” in the specific

context of Genetic Algorithm) or if the optimization got stuck in local-minima. In

the context we are working with, a sub-optimal result means that the set of FDN
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parameters obtained from the Genetic Algorithm corresponds to objective function

that is sufficient large enough to yield a noticeable perceptual difference between

the generated impulse response and the desired impulse response.

There are practical ways to improve the sub-optimal results, however, under

time and resource constraint we would have to settle and deal with these sub-

optimal results. Pre-mature convergence can be overcome with high probability by

applying the Genetic algorithm multiple times and taking the best result out of all

the run. We have done this a couple time to construct our data set, but some sub-

optimal results still remain. Meanwhile, having results that have not yet converge

before the maximum number of generations can be overcome simply by increasing

the maximum allowed generations or setting the algorithm to terminate only when

certain objective threshold is met. This, however, can significantly increase the

amount of time it takes to optimize for one impulse response, and the amount of

increase may or may not be too much to handle. We have tried optimizing up

to 15 generations with a population size of 20. We have applied these methods to

improve our data set quality and have driven down the loss function value calculated

from each optimization to be less than one. User listening tests may be necessary

to confirm whether the FDN produced from the SVM trained on the data set is

sufficiently good for application purposes.
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5.2 SVM Regression Performance

In section 4.2, the mean squared training error serves mainly as an indication

of the SVM model’s ability to learn the patterns captured in the training data.

We see evidence of this through the SVM model for the large room data set where

despite low mean squared training error the loss value remains high. While this

training error is not necessarily indicative of the perceptual relevance of the SVM

model, it can be useful for comparing between regression models.

The loss function value of the RIR generated from the predicted FDN is more

directly relevant to the perceptual performance of the SVM regression in actual au-

dio rendering application. This can be seen in section 4.1 where we see that the

spectrogram of the reverberant sound produced from the optimized FDN more visu-

ally resemble the spectrogram of the reverberant sound produced from the simulated

RIR with lower loss values. Base on the loss value the polynomial kernel SVM model

trained on the small room data set has a higher variance in terms of being able to

predict a good set of FDN parameters for the given room dimension compared to

the Gaussian kernel SVM model.

When predicting the FDN with the first parameterization, notice that the

mean squared training error of the mi’s are significantly larger than that of the

feedback gain parameter g. This suggests that the regression model is not learning

the mi exponents well. The mi’s parameters seems more difficult to learn likely

because the set of integer powers we optimize over is very small and contain patterns

that is hard to disambiguate from overlap. It is also possible that there is little
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correlation between the individual value of the mi values with the perceptual metrics

we are matching, and that it is the aggregate behavior of the mi exponents that has

relation to the perceptual metrics.

Another interesting result from the SVM regression worth pointing out is the

high loss value for the model trained and evaluated over the large room data set.

This is in-spite of a mean training error lower than the mean training error for the

SVM model trained on the small room data for predicting (g, m1, m2, m3, m4). A

possible explanation for this poor result is that a four tap FDN is not sufficiently

complex enough to model the reverberation of a large room; perhaps a eight tap

FDN would be more sufficient for modeling larger rooms. Another possibility is that

the delay line lengths chosen is not appropriate for modeling the larger rooms.

Out of the different parameterization and data set we considered, training

the SVM model on the small room data set to predict the feedback, input, and

output gains parameters demonstrate that it is possible to construct a model that

can predict good pre-tuned FDN that closely model the impulse response of a given

room.

5.3 Computational Cost Considerations

As seen in Section 4.3, the FDN is able to process the audio stream in ap-

proximately linear time with respect to the duration of the stream. This mean

depending on the quality of the audio we want to process, that is, its sampling

rate, we can potentially process each signal before the next signal arrives: yielding
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real-time performance.

What this also mean is that the time it will take to run Genetic Algorithm

is also approximately linear with respect to the length of the audio signal (or more

specifically, the length of the impulse response). However, the constant factor can be

quite large and have a significant impact on the running time. The constant factor

associated with this linear running time has to do with the maximum length of our

delay line and also the population size and maximum number of generations allowed

for the Genetic Algorithm implementation. This in practice mean that the Genetic

Algorithm can take time on the order of half an hour to run for a population of 10

and max generation of 5. This make the optimization procedure using the Genetic

Algorithm relatively expensive, especially when scaled to a large data set size or

considering that the algorithm is not guaranteed to converge to a good result within

the maximum set generation.
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Chapter 6: Conclusion

6.1 Summary

Through the course of this thesis work we have examine previous works done

to generate artificial reverberation. On the one hand, we have convolutional and

computational acoustic approaches that are capabable of producing highly accurate

reverberant sound, but at a high computational cost not practical for real-time

applications. On the other hand, we have delay network based approach that is

computationally efficient, but produce a lower quality reverberant sound. With the

goal of producing higher quality reverberant sound in real-time, we developed a

data-driven framework for enabling real-time approximation of late-reverberation.

This approximation method can be combined with existing efficient methods for

rendering the direct path and early reflections of a sound source to render the full

reverberant audio source in real-time, as shown in the mock demo. This data-

driven approach can be view as a hybrid method that takes advantage of the high

quality RIR generated offline using computational acoustics method to quickly infer

a plausible FDN for efficient rendering. This is useful for enhancing the realism of

augmented and virtual reality applications where audio signal needs to be streamed

to the user in real-time, such as virtual video conferencing and concert performance
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broadcasting. To conclude, we make several suggestions on possible future direction

related to the thesis.

6.2 Possible Future Work

One area with rooms for improvement is to improve the speed and effectiveness

of the optimization process used to build the training data set. Because some of the

room dimension input are similar, an optimal output for one set of impulse response

matching can be a good candidate initial candidate for another that is similar. This

mean we can potentially achieve speed up for the optimization process from joint

optimization of multiple impulse response using the Genetic Algorithm, allowing us

to more efficiently build up a larger and more representative training data set and

improve the data set quality. The choice of using the Genetic Algorithm itself is

also open for exploration, it is possible that gradient based optimization methods

will be more suitable for the optimization process involved in matching a FDN to a

given RIR.

Similarly, the choice of regression model for predicting the FDN parameters

from the room parameters can be explored as well. Once a sufficiently large training

set is constructed, it might even be possible to apply neural networks for handling

the regression task.

Finally, it is known that with a given HRTF, it is possible to combine two

FDN to simulate the Binaural Room Impulse Response (BRIR). Rendering a sound

source using a person’s HRTF and BRIR provides additional value over using just
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the RIR because it enables a higher level of personalization and realism for the

listener. More sophisticated FDN can be considered to improve the realism of the

reverberant audio even further, so long as the more complex FDN model still remain

efficent for evaluation.
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