
Design of Scalable Continuous Media Servers with DynamicReplicationChengFu ChouDepartment of Computer ScienceUniversity of Maryland at College ParkLeana GolubchikUniversity of Maryland Institute for Advanced Computer Studiesand Department of Computer ScienceUniversity of Maryland at College ParkJohn C.S. LuiDepartment of Computer Science and EngineeringThe Chinese University of Hong KongI-Hsin ChungDepartment of Computer ScienceUniversity of Maryland at College ParkAbstractMultimedia applications place high demands for quality-of-service (QoS), performance, and reli-ability on systems. These stringent requirements make design of cost-e�ective and scalable systemsdi�cult. Therefore e�cient adaptive and dynamic resource management techniques in conjunctionwith data placement techniques can be of great help in improving performance, scalability andreliability of such systems. In this paper, we �rst focus on data placement.In the recent past, a great deal of work has focused on \wide" data striping as a way of dealingwith load imbalance problems caused by skews in data access patterns. Another approach to dealingwith load imbalance problems is replication. The appropriate compromise between the degree ofstriping and the degree of replication is key to the design of scalable continuous media (CM) servers.In this work we focus on evaluation of this compromise in the context of a hybrid CM server design.Changes in data access patterns lead to other questions: (1) when should the system alter thenumber of copies of a CM object, and (2) how to accomplish this change. We address (1) throughan adaptive threshold-based approach, and we use dynamic replication policies in conjunction witha mathematical model of user behavior to address (2). We do this without any knowledge of dataaccess patterns and with provisions for full use of VCR functionality. Through a performancestudy, we show that not only does the use of this mathematical model in conjunction with dynamicresource management policies improves the system's performance but that it also facilitates reducedsensitivity to changes in: (a) workload characteristics, (b) skewness of data access patterns, and (c)frequency of changes in data access patterns. We believe that not only is this a desirable propertyfor a CM server, in general, but that furthermore, it suggests the usefulness of these techniquesacross a wide range of continuous media applications.1

1 IntroductionWith the rapid growth of multimedia applications, there is a growing need for large-scale continuousmedia (CM) servers that can meet user demand. Multimedia applications (such as video streamdelivery, digital libraries, and distance learning systems) place high demands for quality-of-service(QoS), performance, and reliability on storage servers and communication networks. These, oftenstringent, requirements make end-to-end design of cost-e�ective and scalable CM servers di�cult. Thescalability of a CM server's architecture depends on its ability to:� expand as user demand and data sizes grow;� maintain performance characteristics under degradation of system resources, which can be causedby losses in network and storage capacities;� maintain performance characteristics under growth or re-con�guration.In particular, the choice of data placement techniques can have a signi�cant e�ect on the scalabilityof a CM server and its ability to utilize resources e�ciently. Existing data placement techniques inconjunction with scheduling algorithms address two major ine�ciencies in such systems: (1) variousoverheads in reading data from storage devices and (2) load imbalance, e.g., due to skews in data accesspatterns. In this work, we focus on the latter issue and speci�cally on its bearing on the scalabilitycharacteristics of a distributed (read-only) CM server.Due to the enormous storage and I/O bandwidth requirements of multimedia data, a CM server isexpected to have a large disk farm. Thus, we must necessarily consider designs which contain multipledisk clusters and processing nodes, i.e., we must consider distributed designs. An important issue thenis the placement of objects on the nodes of the CM server which directly a�ects its load balancingcharacteristics.

disk 1 disk 2 disk J

A1

C2

Bj

A2

C3

B1

Ai

C1

Bj-1
Object B={B1,B2,...,Bj}
Object A={A1,A2,...,Ai}

Object C={C1,C2,...,Ck}Figure 1: Objects striped across disks.In the recent past, a great deal of CM server designs, e.g., as in [2, 10, 14], have focused on \wide"data striping techniques, where each object is striped across all the disks of the system, i.e., disk 1through disk J, as illustrated in Figure 1. The potential load imbalance is largely due to the skews indata access patterns which, without data striping, could result in high loads on some disks containingthe more popular objects, while the disks containing less popular objects may remain idle. Moreover,2

this problem is exacerbated by the fact that access patterns change over time. Thus, an advantage ofwide data striping is that it \implicitly" achieves load balance by decoupling an object's storage fromits bandwidth requirements. However, wide data striping also su�ers from several shortcomings:1. It is not practical to assume that a system can be constructed from homogeneous disks, i.e.,as the system grows or experiences faults (and thus disk replacement) we are forced to usedisks with di�erent transfer and storage capacity characteristics; having to stripe objects acrossheterogeneous disks would lead to further complications [1].2. An appropriate choice of a striping unit, the object size, and the communications networkinfrastructure dictate an upper bound on the number of disks over which that object can bestriped, beyond which replication of objects is needed to increase the number of simultaneoususers [10], e.g., to the best of our knowledge, in implementations described in [10, 14] striping isperformed over (at most) a few tens of homogeneous disks only1. Note that, delivery of relativelyshort CM objects is of use to many applications, including digital libraries and news-on-demandsystems.3. Due to the continuity constraints, some form of synchronization in delivery of a single objectfrom multiple nodes2 must be considered. The need for some form of \synchronization" arisesfrom the fact that di�erent fractions of an object are being delivered from di�erent nodes atdi�erent times during the object's display, and hence some form of coordination between thesenodes (and perhaps the client) is required in order to present a \coherent" display of the object.4. As user demand and data sizes grow and hence the system requires more storage and diskbandwidth capacity, the needed expansion results in re-striping of all the objects.5. Due to the potential need for communication of CM data between the nodes over which the datais striped, the capacity of the communication network limits the performance of the distributedCM server. This limitation directly a�ects the scalability of the CM server and is one of themain issues we investigate in this work.Another approach to dealing with the load imbalance problem arising from skews in data accesspatterns is replication, i.e., creating a su�cient number of copies of a (popular) object so as to meetthe demand for that object. Note that, disadvantages of replication are: (1) a need for additionalstorage space, and (2) a need for techniques that adjust the number of replicas as the access patternschange. Some of these issues are addressed in [26], and in our previous work [19, 7]. In addition, herewe also improve on the dynamic replication schemes in [19, 7].1In fact, we are not aware of, in the current literature, any large-scale implementation that utilizes heterogeneousdisks.2A more detailed de�nition of a node is given in Section 2.3

In this paper, we consider a hybrid approach (refer to Section 2), which addresses the above listedshortcomings. Speci�cally, the main focus here is on the tradeo�s between striping and replication,which are as follows. In a small-scale CM server, where all disks are assumed to be connected to asingle node, data striping can provide better performance characteristics than replication because of itsability to deal with load imbalance problems without the need for additional storage space and withoutsigni�cant networking constraints. However, in a large-scale CM server, data striping can result in aneed for signi�cant communication network capacities which can lead to poor scalability characteristicsand high costs. Essentially, striping is a good approach to load balancing while replication is a goodapproach to \isolating" nodes from being dependent on other (\non-local") system resources. Thatis, the wider we stripe in a distributed CM system, the more we are dependent on the availability ofnetwork capacity as well as resources not local to a node. Furthermore, replication has the bene�t ofincreased reliability (see Section 4.1) in terms of: (a) longer mean time to loss of data from the disk sub-system, and (b) dealing with lack of network resources, including network partitioning. The downsideof replication is that it increases storage space requirements and hence cost of storage. However, asstorage costs decrease (fairly rapidly) and the need for scalability grows, replication becomes a moreattractive technique. In summary, the appropriate compromise between the degree of striping and thedegree of replication is key to the design of a scalable distributed CM server. This is the �rst majorfocus of our paper.Instead of striping each objects across all the nodes of the system, we take a hybrid approach, as in[26], and constrain the striping to a single node while replicating popular objects on several nodesin order to provide su�cient bandwidth capacity to service the demand for these objects. Hereimportant questions include: (a) how many copies of each CM object should the system maintain,(b) on which nodes should these copies be placed, and (c) (possibly) how to migrate users from onenode to another, in mid-stream, in order to admit more users through adjustments to current loadallocations. For instance, an interesting approach to addressing these questions is given in [26], inthe context of workloads with relatively infrequent changes in object access patterns (e.g., on a dailybasis).More frequent changes in data access patterns lead to the following additional important questions:(1) when should the system alter the number of copies of a CM object, and (2) how to accomplish thischange. Thus, in the paper we also address load imbalance problems arising from relatively frequentchanges in data access patterns | we address (1) through a threshold-based approach, and we usedynamic replication policies in conjunction with a mathematical model of user behavior to address(2). 4

Related Work and Our ContributionsMany of the issues raised above in the context of CM servers have been considered in the context ofeither distributed database systems or web-servers, such as the dynamic replication issues consideredin [11, 12], to name a few. Briey, works on these topics di�er from ours in one or more of the followingmain aspects: (1) our system (the CM server), is a read-only system (from the user's point of view),thus we do not consider consistency/coherency type issues; (2) our objects (e.g., movies) are extremelylarge (e.g., on the order of several gigabytes of data per object), consequently in our system replicationtimes are much longer, which leads to di�erent considerations for dynamic replication policies; and(3) due to the real-time constraints in the delivery of media such as video, we must insure that thereis no jitter in the delivery of objects, which also reects on the dynamic replication policies (real-timeconstraints are not a consideration in the above mentioned works).Much research has also been done on design of CM storage servers, e.g., as in [2, 10, 14], which mostlyfalls into several broad categories: (1) small-scale servers, where in most cases all disks are connectedto a single node; (2) medium-scale LAN-based servers, and (3) medium-scale (either distributed ornot) servers, which employ high speed interconnects, such as ATM-based technology. To the best ofour knowledge, most of these designs employ wide data striping techniques and the correspondingexisting successful implementations employ only tens of disks. In contrast, the use of replication forthe purpose of addressing changes in data access patterns has been less explored. In [25] the authorsconsider skews in data access patterns but in the context of a static environment. In [26], the authorsaddress various questions arising in the context of load imbalance problems due to skews in data accesspatterns, but in a less dynamic environment (than we investigate here). In [9, 8], the authors alsoconsider dynamic replication as an approach to load imbalance, and in our previous work [19, 7], westudy a taxonomy of dynamic replication schemes. However, all of these works, except our work in[6, 7], either (a) assume some knowledge of frequencies of data access to various objects in the system,and/or (b) do not provide users with full use of VCR functionality, and/or (c) consider less dynamicenvironments than the one considered here. Our motivation in doing away with such assumptions inour work is largely due to considerations of applicability of dynamic replication techniques in moregeneral settings and to a wider range of applications of CM servers.Lastly, to the best of our knowledge, previous works do not consider alternative design characteristicsthat a�ect the scalability of CM servers in an end-to-end setting under changes in access patterns (i.e.,taking into consideration both the network and the storage resource constraints). The quantitativestudy of such issues and the cost/performance and reliability characteristics that distributed designsexhibit under growth, recon�guration, degradation of resources, and changes in workloads are essentialto assessing the scalability of proposed architectures and to the development of large-scale CM servers,in general. 5

Thus, the main contributions of our work are as follows. (Initial results of this study are given in[6, 7]).� A mathematical model of user behavior is given, which facilitates reduction in (at least the\virtual") replication time (see Section 3.2 for details). We show that the model is not verysensitive to the accuracy of its parameters and thus is of reasonably practical use.� Quantitative evaluation of performance and resource demand characteristics of wide data stripingvs. hybrid techniques in large-scale distributed CM servers; such an evaluation is crucial toachieving a scalable design of CM servers.� Quantitative evaluation of performance characteristics of dynamic replication policies. We showthat the use of the mathematical model of user behavior in conjunction with dynamic thresholdadjustment method (1) improves the performance of the more \conservative" (in terms of re-source usage) dynamic replication policies as well as (2) facilitates reduced sensitivity to changesin workload characteristics, skewness of data access patterns, and frequency of changes in dataaccess patterns.� Improved, as compared to [7], dynamic replication techniques for distributed hybrid CM servers,needed to achieve better performance, which adjust the number of replicas in the system basedon changes in data access patterns and user demand.� Quantitative evaluation of reliability characteristics of wide data striping vs. hybrid systems.� Quantitative evaluation of the tradeo�s between various resources (such as local switch capac-ity, local storage space capacity and global switch capacity) of the CM server. Based on thisevaluation, current costs and technology trends, the designer can make system sizing decisions.� Quantitative evaluation of performance characteristics of hybrid CM servers with heterogeneousresources. In practice, we expect CM servers to have heterogeneous resources as a result ofsystem growth (due to expansion) and disk failures (and subsequent replacement). We showthat the hybrid design naturally extends to systems with heterogeneous resources with little orno loss in performance as compared to the corresponding homogeneous systems. We also notethat we are not aware of wide data striping techniques for systems with heterogeneous resourceswhich do not su�er from loss of either bandwidth or storage resources. Hybrid designs do notsu�er from such a loss.Based on this end-to-end cost/performance and reliability study we argue that hybrid designs inconjunction with dynamic replication schemes result in large scalable, reliable, high performance, andcost-e�ective CM systems. 6

2 Hybrid CM System ArchitectureA hybrid system architecture is illustrated in Figure 2(a). It consists of a set of nodes connected by,
(a) hybrid architecture

Global Switch

...........

...........

Node 2

Node
i+2

Node 1 Node i

Node
i+1

Node
m

(b) Node i with k processing units

controller

d1

d2

dn

Local Switch

C1 C2 C3 Cj Ci=client i

PU1 PUk

.....

.....
.......

.......

.......

Global Switch

PU2

PUj (processing unit j)Figure 2: Hybrid System Architecture.what we termed, a high speed global switch, which is a high bandwidth resource that can, for instance,correspond to a high capacity WAN or an ATM-type infrastructure. Each node i, as depicted inFigure 2(b), contains one or more processing units (PUs) and one, what we termed, local switch (e.g.,switched Ethernet) which is used to connect all local PUs as well as local clients. Each client connectsto its local switch. Requests from this client which are serviced by a PU from node i are termed\local". When a request from a client cannot be serviced by its local node i, it is forwarded to aremote node j, which contains a replica of the requested object. We term this request \global", as itsservice requires some capacity of the global switch, i.e., to deliver data from the remote node, throughthe global switch to the local node and subsequently to the client.Each PU has one or more CPUs, memory, and an I/O sub-system (e.g., a cluster/array of disks), and itis also connected to the global switch. Each node x 2 S, where S is the set of nodes in the system, hasa �nite storage capacity, Dx (in units of CM objects), as well as a �nite service capacity, Bx (in units ofCM access streams). For instance, consider a server that supports delivery of MPEG-2 video streamswhere each stream has a bandwidth requirement of 4 Mbits/s and each corresponding video �le is 100minutes long. If each node in such a server has 20 MBytes/s of bandwidth capacity and 36 GB ofstorage space, then each such node can support Bx = 40 simultaneous MPEG-2 video streams andstore Dx = 12 MPEG-2 video objects3. Likewise, we measure the global and local switch capacities inunits of access streams. In general, di�erent nodes in such a hybrid system may di�er in their storage,3The constant bit rate description is used for simpli�cation of this example only.7

I/O bandwidth, and local switch service capacity. This exibility of the hybrid architecture shouldresult in a scalable system which can grow on a node by node basis.Each CM object resides on one or more nodes of the system depending on its current popularity. Anobject is striped only across local disks which belong to the same node. Objects that require morethan a single node's service capacity (to support the corresponding demand) are replicated on multiplenodes. The number of replicas needed to support requests for a CM object is a function of demand,and therefore this number should change as the demand changes.Let Ri(t) denote the set of nodes containing replicas of object i at time t. Upon a customer's arrivalat time t, there is a probability pi(t) that the corresponding request is for object i and a probabilityqij(t) that this request is generated by a client local to node j. The admission of this customer intothe system proceeds as follows. If at time t object i resides on node j and there is service capacityavailable at node j, then the system admits and serves this new request at node j, i.e., locally. LetLx(t) be the load on node x at time t. If at time t object i does not reside on node j or there is noservice capacity available at node j, then the system examines the load information on each node inRi(t), and if there is su�cient capacity (on at least one of these node and in the global switch), toservice the newly arrived request, the system assigns this request to the least-loaded node in Ri(t).Otherwise, the customer cannot be served immediately. In this case we consider two di�erent cases:(1) the customer is immediately rejected, or (2) the customer joins a FIFO queue and awaits service(there is no restriction on the size of the queue). We refer to case (1) as the no queueing case and tocase (2) as the queueing case. These are two extreme cases (i.e., allowing no queueing at all or allowingin�nite queueing). And, although these are not necessarily representative of how a real system shouldoperate4, they are useful in our performance evaluation study, i.e., these cases provide the necessaryinsight for the design of CM server (as we will illustrate in the remainder of the paper).Note that a \stream migration" approach to dealing with more \short-term" uctuations in accesspatterns is given in [26]; this is an orthogonal approach and can be combined with techniques presentedin this paper. However, in the interest of isolating the performance e�ects of dynamic replication wedo not consider this here further. We also note that the problem of determining whether or not there is\su�cient capacity" (under either CBR or VBR stream models) is orthogonal to the problems studiedin this work; much literature exists on this topic (refer to [13]), and such solutions can be used inconjunction with policies developed in this paper.Full VCR functionality (i.e., fast-forward, rewind, and pause/resume) is available to all admitted4In a real system one is likely to use a reasonably sized �nite queue, whose size depends on the required performancecharacteristics. Hence, the actual size of the queue should be a function of the performance characteristics required byan application. 8

customers, with fast-forward and rewind provided at nspeed > 1 times the rate of normal playback.We assume that the user views the data as he/she is searching (e.g., fast-forwarding or rewinding)through it, and thus nspeed is �nite. Let T inp be the mean amount of time that a customer spends in thenormal playback mode, before entering some VCR function mode. And, let T iff , T irw, and T ipause be thethe mean amount of time a customer spends in fast-forward, rewind, and pause modes, respectively,before returning to the normal playback mode. We also assume that the use of VCR functionality(such as fast-forward and rewind) does not require additional service capacity on the part of the CMserver. This can be accomplished, for instance, by using techniques proposed in [4].Note that, in a hybrid system we need to maintain load information on remote nodes and otherbookkeeping information, which will require (a relatively small amount) of communication capacity;the exact amount depends on a particular implementation, and we leave these considerations to futurework. Note also that in the case of wide data striping, the bookkeeping information must be exchangedbetween nodes to schedule each newly arrived request, whereas in hybrid architectures, we can tradeo�relying more on local (rather than remote) information for some loss in performance. Quantitativeassessment of this tradeo� is left for future work.To assess the scalability characteristics of the potential designs in an environment where data accesspatterns change over time, we consider the following cost/performance and reliability metrics:1. the system's acceptance rate, in the no queueing case, which is de�ned as the percentage of allarriving customer requests that are accepted by the system;2. the mean and variance of the waiting time as well as the mean and variance of the queue lengthin the queueing case. The mean waiting time is the mean amount of time a customer spends inthe queue before he/she is served. The mean queue length is the mean number of customers inthe queue awaiting service. The variances are de�ned accordingly and are used as a measure ofQoS (as described later in the paper).3. the capacity of the global switch required to support a particular architecture and correspondingacceptance rate;4. the capacities as well as the number of local switches required to support a particular architectureand corresponding acceptance rate;5. the amount of disk storage required to support a particular architecture and correspondingacceptance rate;6. the mean time to failure (MTTF) of a particular architecture.9

Table 1 summarizes the main notation used in this paper. We will de�ne this notation throughoutthe paper, as it is needed.S set of all nodes in the systemN number of nodes in the system; N = jSjK number of distinct objects in the systemBx maximum service capacity of node x (in streams)�B average service capacity of the nodes in the system (in streams)Cx maximum storage capacity of node x (in streams)Lx(t) load on node x at time t (in streams)Ai(t) available service capacity for object i at time t; Ai(x) =Px2Ri(t)(Bx � Lx(t))ReThi replication threshold, i.e., the threshold for adding another copy of object iDeThi de-replication threshold, i.e., the threshold for removing a copy of object iDi di�erence between the replication and the de-replication thresholds, i.e., Di = ReThi �DeThiT ilength length of object i� average arrival rate to the systemRi(t) set of replica nodes for object i at time tpi(t) probability of an arriving request being for object i at time tqij(t) probability of a request for object i being made at time t by a client local to node jnspeed ratio between the speed of fast forward (or rewind) and the speed of normal playbackT inp mean amount of time a customer spends in normal playback mode each time it enters thatmode, for object iT iff mean amount of time a customer spends in fast forward mode each time it enters thatmode, for object iT irw mean amount of time a customer spends in rewind mode each time it enters thatmode, for object iT ipause mean amount of time a customer spends in pause mode each time it enters thatmode, for object i Table 1: Summary of notation.3 Dynamic ReplicationWe consider a dynamic approach to reacting to changes in user data access patterns. Since the numberof copies of object i partly determines5 the amount of resources available for servicing requests forthat object, we adjust the number of replicas maintained by the system dynamically . Of course, thesystem's performance depends on its ability to make such adjustments rapidly and accurately.3.1 General Approach and Main Tradeo�Given the distributed server described in Section 2, such a dynamic replication approach gives rise toseveral interesting design issues, including:1. when is the right time for the system to recon�gure the number of replicas, i.e., when to createan additional copy of an object and when to remove a copy;5Other factors include requests for other objects being made at the same time.10

2. to which node should a (new) replica be added or from which node should a no longer (deemed)useful replica be removed; and3. what are proper policies for actually creating a new replica (or removing a no longer useful one).In the remainder of this paper, we discuss and evaluate techniques that address these issues in ane�cient manner. As already stated, the system's acceptance rate is our performance metric in the noqueueing case, which is de�ned as the percentage of all arriving customer requests that are acceptedby the system (with zero waiting time; refer to Section 2 for the relevant discussion); the system meanqueue length and mean waiting time (as well as the respective variances) are used as performancemetrics in the queueing case. We note that unless otherwise stated, the following discussion is givenin the context of the no queueing case6.In general, a replication process of a CM object has a source node (which currently contains a copy ofobject i) and a target node (on which we are placing a new copy of object i)7. One simple approachto performing the replication is to \inject" a single replication stream into each of the source andtarget nodes, for reading and writing of the replica, respectively. We refer to this strategy as sequentialreplication. The sequential replication policy results in a relatively small increase in load on the sourceand target nodes, i.e., equal to the bandwidth requirements of a single user stream. However, sucha policy results in a relatively long replication time (i.e., the replication time is equal to the playouttime, at the normal display rate, of the object being replicated), and consequently many customersmay be rejected/queued during the replication period due to lack of resources for that object, i.e., alack of other nodes in the system, that can service requests for that object.Clearly, one approach to reducing the replication time would be to increase the rate at which thereplication is performed, i.e., to read (write) the CM object from (to) the source (target) node at Mtimes the rate of a single stream. This, of course, requires M times the bandwidth of a single userstream on both the source and the target nodes. We refer to this strategy as parallel replication, i.e.,conceptually this is equivalent to using M single streams in parallel to do the replication. Althoughthis approach reduces the replication time, it also creates an additional load on both, the sourceand the target nodes, which could result in rejection of customer requests, possibly for CM objectsother than the one being replicated, due to lack of resources on the source and/or target nodes, whichare being used by the replication process. Thus, we essentially have conicting goals of (a) using as6At �rst, we do not consider queueing of customers that cannot be admitted immediately, as it would entail con-sideration of scheduling policies for queued requests; these are a function of customers' willingness to wait and thecorresponding application. That is, in the interest of isolating performance characteristics of data layout policies anddynamic replication schemes, we �rst consider the no queueing case. Later, we also consider a simple queueing policy(i.e., FIFO) in order to further explore characteristics of the data layout and dynamic replication policies.7We will discuss source and target node selection in Section 3.4.11

few resources as possible to perform the replication (in order not to interfere with \normal" systemoperation) while (b) trying to complete the replication process as soon as possible.3.2 Early AcceptanceIn an attempt to reach a compromise between the conicting goals stated in the previous section, weconsider \early acceptance" of customers, where admitted customers are allowed to use incompletereplicas (while the replication is in process). That is, once the system completes replication of the �rstT iea time units of a new replica of a object i, it will treat it as a \virtually" complete copy and beginusing it in servicing customer requests for object i. We are motivated by the continuous nature ofobjects, and essentially it is this property that we exploit here. Note that, for ease of presentation, inthe remainder of the paper, we measure the amount of replication completed in time units of normalplayback time of that object, from the beginning of the object, rather than in storage size, e.g., bytes.Furthermore, for simplicity and clarity of exposition of ideas, in the remainder of this section, muchof the discussion is in terms of a speci�c object being replicated, and thus we drop the superscript ifrom our notation (the meaning should still be clear from the context of the discussion).The issue that we need to consider is that a user might attempt to access a portion of an incompletecopy which has not been replicated yet, e.g., by fast-forwarding past the replication point. To allowcustomers to have full use of VCR functionality, we need to determine a \safe" value for Tea. Clearly,one safe value is Tea = Tlength (full length of the CM object). However, the intuition is that a smallervalue of Tea should result in a higher (at least in the \short term") acceptance rate of customerrequests.In order to lower Tea (and improve performance) we construct a model of user behavior which allowsus to compute a \safe" (but lower than Tlength) value of Tea while still providing the desired QoS (witha high probability). Below, we give a deterministic and a stochastic approach to this problem.3.2.1 Deterministic ModelGiven that the replication process constructs a new copy of an object, from the beginning to the end ofthe object (i.e., in a \linear" fashion), and using only knowledge of the ratio between normal playbackand fast-forward, i.e., nspeed, we can construct a very simple model which will allow us to compute Tea,as illustrated in Figure 3(a). Speci�cally, if a newly arrived customer is allowed to use an incompletereplica after Tea = Tlength (nspeed�1)nspeed time units of the object have been replicated, then he/she will notaccess data beyond the replication point with probability 1. Thus, if we use this deterministic modelfor admission of customers to the new replica, then (under a sequential policy, refer to Section 3.1)the \virtual replication completion time" of an object becomes Tea as compared to Tlength.12

amount of video
replicated (mins)

time (mins)

slope = 1

0

replication
process

user
fast-forwarding

0, 3 0, 4 0, 5 0, 6

1, 4 1, 5 1, 6

2, 4 2, 5 2, 6

3, 5 3, 6

4, 5 4, 6

5, 6

6, 6

Trap State

ppause
pnp
pff
prw

Legend:

(a) Deterministic Model (b) Stochastic Model

slope = Tea TlengthTlength nspeed M nspeed TeaState Transition Diagram for with =2, =3Figure 3: Mathematical Models of User Behavior.3.2.2 Stochastic ModelTo further lower the value of Tea, we employ a stochastic model of user behavior, at the cost oflowering the probability that the user will not access data beyond the replication point (of course,this probability still has to be high, but less than 1). Speci�cally, we model the combination of thebehavior of a user watching a display of a partially replicated object and the corresponding replicationprocess using a Discrete Time Markov Chain (DTMC)8, M, with the following state space S:S = f(V;R) j (0 � V � Tlength) ^ (Tea � R � Tlength) ^(V � R) ^ ((R� V) � Tlengthnspeed � 1nspeed)g [f(Trap State)gwhere V is the current viewing position of the customer and R is the current replication position ofthe partial copy being viewed by that customer.An example state space forM with nspeed = 2 is illustrated in Figure 3(b). There are 4 types of statetransitions between adjoining states, which are attributed to: (1) normal playback, (2) fast-forward,(3) rewind, and (4) pause, which occur with probabilities pnp, pff , prw, and ppause, respectively. Amore formal speci�cation of the state transitions inM with a corresponding one step transition matrix,8Although by using a DTMC as our model we make the assumption that the amount of time a user spends in aparticular playback mode has a memoryless distribution, we show in Section 4 that the performance of the system isfairly insensitive to either the parameters of the model or to the distributional assumptions.13

P , is as follows:(V;R) �! (min(V + nspeed � tu; Tlength); R+ tu)Prob = pff1f ((V + nspeed � tu) � (R + tu)) ^ ((R � V) < Tlength nspeed�1nspeed) ^ (R < Tlength) g(V;R) �! (max(V � nspeed � tu; 0); R+ tu)Prob = prw1f (R < Tlength) ^ ((R � V) < Tlength nspeed�1nspeed) g(V;R) �! (V;R+ tu)Prob = ppause1f (R < Tlength) ^ ((R � V) < Tlength nspeed�1nspeed) g(V;R) �! (V + tu; R+ tu) Prob = pnp1f (R < Tlength) g(V;R) �! (Trap State) Prob = pff1f ((V + nspeed � tu) > (R+ tu)) ^ (R < Tlength) g(V;R) �! (V;R) Prob = 11f ((R� V) = Tlength nspeed�1nspeed) _ (R = Tlength) g(Trap State) �! (Trap State) Prob = 1where 1fxg is an indicator function (i.e., 1fxg = 1 if x is true and 0 if x is false), and tu is the \gran-ularity" of our model, i.e., the number of time units in an object's display (under normal playback)corresponding to a unit of time9 in the DTMC M. Finally,pff = Tff(Tnp + Trw + Tpause + Tff)prw = Trw(Tnp + Trw + Tpause + Tff)ppause = Tpause(Tnp + Trw + Tpause + Tff)pnp = 1� pff � prw � ppausewhere Tff , Tnp, Trw, and Tpause are application-dependent model parameters which were de�ned inSection 2, and the \Trap State" in M is a state corresponding to V > R, which represents a user'sattempt to access data which has not been replicated yet.Our goal then is to determine a value of Tea for which the probability of entering the \Trap State"before the time the replication process completes (i.e., before R = Tlength) is su�ciently low. Or,conversely, given a value of Tea, we need to compute the probability of entering the \Trap State" bytime tn < Tlength � Tea, which can be accomplished through a transient analysis of M [24], i.e., bysolving the following set of equations10:�(tn) = �(0) � P tn and Xj2S �j(tn) = 1 (1)where �(tn) is the vector of transient state probabilities at time tn, �(0) = e(0;Tea) is the initialstate vector which is equal to a row vector of 0's in all components except for a 1 in the component9For instance, if the object is a video clip, then a \natural" time unit in its display would be the amount of timecorresponding to the normal playback time of a single frame (on the order of (130)th of a sec). However, in order tomaintain a reasonable size of the DTMC state space, we allow tu to take on larger time scales, e.g., on the order ofminutes | essentially, performing (in general, approximate) aggregation of states.10More sophisticated methods for computing transient results exist [24], but are not the subject of this paper.14

corresponding to state (0; Tea). Our interest then is in �(Trap State)(tn), which is the probability thatthe user will attempt to access data which has not been replicated yet.Clearly, the e�ciency of solving the above solution depends on the size of M, which is �nite but canbe quite large. For instance, with Tlength = 90, tu = 1 min, and nspeed = 2, the size of M's statespace is on the order of 3000 states. We can trade o� computational cost for the system's performanceby using higher values of tu, e.g., for tu = 2 min, the state space can be reduced to approximately750 states. This modi�cation can result in higher values of Tea, due to a \coarser granularity" of themodel, and hence the (potential) loss in the system's performance.In any case, a simple approach to determining the value of Tea would be to solve the model (possi-bly) multiple times (e.g., using binary search), with di�erent values of Tea, until a desired value for�(Trap State)(tn) is obtained, which, corresponds to the desired QoS to be provided by the system. Wewill illustrate in Section 4 that it is not necessary to obtain extremely low values for �(Trap State)(tn) inorder to provide a reasonable QoS | this is due to the fact that the model tends to be conservative,especially with higher values of tu.In general, this is an acceptable approach since it only needs to be performed rarely, on a per applicationbasis. That is, a set of statistics or measurements corresponding to interactivity characteristics of anapplication intended to be run on the CM server can be used to compute the model parameters (i.e.,Tnp, Tff , Trw, and Tpause), needed to solve M. We will show in Section 4 that the model is not verysensitive to the accuracy of the input parameters and thus is of reasonably practical use | this ispartly due to its conservative nature. Therefore, we expect that the need for \re-solving" of the modelwith new parameters would be quite rare and occur only after signi�cant changes in the interactivenature of an application have been detected.However, if the state space of M is still unacceptable or a more \run-time" approach to computingTea is desirable, instead of increasing the value of tu, we can reduce the size of the state space bydecreasing the amount of information included in the model about the user's behavior. Again, thisreduction in computational cost results in more conservative estimates of Tea, and thus we would betrading o� system's performance for cost of the solution (for reasons similar to the ones stated above).We elaborate on this approach next.We should note briey that simple Markov chain models of user behavior have been employed inprevious works on video servers, e.g., the two state Markov chain in [16]; however, these have beenused for a somewhat di�erent purpose and to the best of our knowledge, with interest in steady statecharacteristics only. 15

3.2.3 Reduction of the Stochastic ModelWe can reduce the size of the state space and the number of transitions by not including all theinformation about user behavior in the DTMC. For instance, the state space and the number oftransitions can be reduced by not including explicitly pause and rewind functionalities in the DTMCbut rather \grouping" rewind and pause with the normal playback mode. This is still \safe" sincepause and rewind can not cause the viewer to access an unreplicated portion of the data. That is,the reduced DTMC, Mr, would have 2 types of state transitions between adjoining states, which areattributed to: (1) normal playback (with rewind and pause \grouped" here) and (2) fast-forward,which occur with probabilities prnp and prff , respectively. Similarly, we could have created anotherDTMC with only one of, pause or rewind, not explicitly included. We omit these variations since theyare very similar in form to the one presented in this section.More formally, the reduced DTMC, Mr, has the following state space Sr:Sr = f(V;R) j (0 � V � Tlength) ^ (Tea � R � Tlength) ^(V � R) ^ ((R� V) � Tlengthnspeed � 1nspeed) ^ ((R� V) � Tea)g [f(Trap State)gwhere as before V is the current viewing position of the customer and R is the current replicationposition of the partial copy being viewed by that customer.An example state space for Mr with nspeed = 2 is illustrated in Figure 4.
Legend:

0, 3

1, 4

2, 4 2, 5

3, 5 3, 6

4, 5 4, 6

5, 6

6, 6

Trap Statepff
r

pnp
rFigure 4: State Transition Diagram for Mr with nspeed = 2, Tea = 3.A more formal speci�cation of the state transitions of Mr with a one step transition matrix, P r, isas follows: 16

(V;R) �! (min(V + nspeed � tu; Tlength); R+ tu)Prob = prff1f ((V + nspeed � tu) � (R + tu)) ^ ((R � V) < Tlength nspeed�1nspeed) ^ (R < Tlength) g(V;R) �! (V + tu; R+ tu) Prob = prnp1f (R < Tlength) g](V;R) �! (Trap State) Prob = prff1f ((V + nspeed � tu) > (R+ tu)) ^ (R < Tlength) g(V;R) �! (V;R) Prob = 11f ((R� V) = Tlength nspeed�1nspeed) _ (R = Tlength) g(Trap State) �! (Trap State) Prob = 1where prff = Tff(Tnp + Trw + Tpause + Tff) and prnp = 1� prffand Tff , Tnp, Trw, and Tpause are as de�ned in Section 2, and again the \Trap State" is a statecorresponding to an aggregate of all states where V > R, which represents a user's attempt to accessdata which has not been replicated yet.As in the previous section, we can perform transient analysis on Mr to determine a \safe" value forTea with a su�ciently high probability of not entering the \Trap State" before the replication processcompletes.Clearly, the cost of the solution will be reduced, as compared to M, given the reduction in the statespace and the number of transitions. For instance, with Tlength = 90, tu = 1 min, and nspeed = 2, thesize of Mr's state space is on the order of 500 states (as compared to � 3000 states in M), wherea brute force solution of Equation (1) takes several minutes to compute using MATLAB numericalsolutions package on a Sun Ultra-1 machine.As before, we can trade o� computational cost for system's performance (and obtain a more conserva-tive solution) by using higher values of tu, e.g., for tu = 2 min, the size of the state state is reduced toapproximately 130 states. In this case, a brute force solution of Equation (1), requires less than oneminute. As we mentioned before, better than brute force transient analysis techniques can be used tofurther improve on this time [24].3.3 Threshold-based Activation SchemeWe use a threshold-based approach to trigger object replication and de-replication, both of whichare only triggered at customer arrival and/or departure instances. Threshold-based techniques forreacting to changes in workload are employed often for improving the cost/performance ratio of asystem, e.g., in communication protocols [17]. Here, as in other systems, the main motivation forusing a threshold-based scheme is that there is a non-negligible cost for creating or removing a replica.17

That is, it takes a non-negligible amount of time to replicate an object or remove11 a copy, and thusit should be done \sparingly".Furthermore, in such an environment, having the amount of service capacity proportional to theaccess probabilities (even if we knew them) would not necessarily insure acceptance of newly arrivedcustomers. An important factor in the performance of the system is the mixture of requests thatarrives and is ultimately serviced by the nodes of the CM server. That is, we may reject requests forobject i on node j due to an inux of requests for other objects residing on node j, i.e., other thanobject i.Thus, in this paper we study dynamic data replication and de-replication techniques which do notassume knowledge of access probabilities. Without such information, one simple approach is to increase(decrease) the amount of service capacity allocated to an object when the amount of available resourcesleft in the system to service that object falls below (above) some threshold value.More formally, when a customer request for object i arrives to the system at time t, replication ofobject i is initiated if and only if all of the following criteria are satis�ed:1. Ai(t) < ReThi, where ReThi is the replication threshold and Ai(t) =Px2Ri(t)(Bx � Lx(t));2. object i in not currently under replication;3. there is su�cient available service capacity on the source node;4. there is su�cient available storage space capacity and service capacity on the target node;5. there is su�cient available service capacity in local switches as well as the global switch (i.e.,interconnection network).In the case of de-replication, it should be performed before the system runs out of storage space.Basically, we do not want to leave this decision until the time the system actually needs the space forcreating a new replica. This is due to the fact that there might be customers using the copy that wewould like to delete, and either we will have to wait for them to complete their display, or we will haveto relocate them. \Planning ahead" for removing copies of \cold" objects before the space is actuallyneeded should improve the system's performance.De-replication is invoked at both the customer request arrival and departure instances. More formally,a replica of object i at node x will be removed at time t if and only if the following conditions aresatis�ed:11Even removal time can be signi�cant, since the copy may be utilizes by users that, e.g., would have to be migratedto other nodes, at the time of removal, again due to real-time constraints on data delivery.18

1. Ai(t) = maxj2SfAj(t) > ReThig. The motivation for this condition is that the number ofreplicas for object i at time t is more than its current workload demand and at this time it hasthe greatest excess of replicas among all relatively \cold" objects.2. i has \crossed" the de-replication threshold, i.e.,Ai(t)� (Bx � Lx(t))� Cix(t) > DeThi (2)where Cix(t) denotes the number of customers viewing object i at node x at time t. With thedeletion of object i at node x, Ai(t) would be decreased by (Bx � Lx(t)). Since a customerviewing object i at node x will have to be migrated to other replica nodes in Ri(t), Ai(t) wouldbe further decreased by Cix(t).3. Px2S Dx(t) < DS , where DS is the storage space threshold for activating de-replication.4. In the case of the Delayed Migration (DM) de-replication policy only (see Section 3.4.2), thereis an additional condition, namely that Cix(t) must be equal to 0.To prevent the system from oscillating between replication and de-replication, a di�erence of Di isintroduced between ReThi and DeThi, i.e., DeThi = ReThi + Di. That is, we introduce hysteresisinto the system.Thus, we use dynamic replication and de-replication techniques which do not assume knowledge ofaccess probabilities. To improve threshold estimation in the absence of access statistics, we use thelast interarrival time for object i to (coarsely) \approximate" pi(t) and compute threshold values asfollows:1. For each object i, we record its last request access time, ati. At arrival time, t, of a request forobject i, we compute its latest interarrival time, (t�ati), and use it as a coarse \approximation"of pi(t). Whenever a new request for object i arrives, we record ati and update the thresholdsfor the object i accordingly.2. Then, ReThi = d T ieat�ati e. That is, the replication threshold, ReThi, represents the amount ofworkload, corresponding to requests for object i, that are expected to arrive in the next T iea timeunits, which is the amount of time needed to create a new (virtual) replica of object i (shouldwe deem it necessary). Thus, the motivation for this setting of the replication threshold valuesis that if we have fewer resources than are estimated to be needed in a period representing theamount of time needed to create another replica (i.e., add resources), then we increase the numberof replicas. That is, we attempt to match the available resources with anticipated workload.3. Lastly, DeThi = ReThi + Hi, where Hi = d T ilengtht�ati e, i.e., we introduce a hysteresis. Themotivation for this setting of the hysteresis value is similar to the motivation given above for19

ReThi, except that T ilengtht�ati corresponds to the expected number of requests for object i thatmight arrive in the next T ilength time units, i.e., during the entire duration (in normal playback)of the display of object i. That is, T ilength corresponds to an estimate of the amount of timethat will elapse before some of the currently allocated resources, which can be used to servicerequests for object i, are released. That is, we can release resources that are in access of whatwe anticipate is needed in that time period.Note that in this work we dynamically adjust threshold values12 based on minimal amount of informa-tion, i.e., the last inter-arrival time of a request for object i. This is in contrast to the static thresholdvalues we used in [7]. Extensive simulations showed that the system's performance (using the metricsdescribed earlier) is signi�cantly improved through the use of dynamic threshold values. The tradeo�is the need to adjust thresholds and the need to collect some information (i.e., the latest inter-arrivaltime of requests for each object in the system), which we note is fairly small. Hence, in the remainderof this paper, we only consider our replication policies under dynamic threshold values.3.4 PoliciesIn this section we describe the node selection, replication, and de-replication policies of the CM server.3.4.1 Selection PoliciesFirstly, the choice of a source node for replication of object i is simple: we select the least-loaded nodein the set Ri(t). For the target node, we choose the node which has the highest estimated residualservice capacity (in streams) and has available storage capacity. More formally, we choose the node xsuch that x 62 Ri(t) and Lx(t) = maxy2(S�Ri(t)) nBy�Ly(t)1+y(t) o, and the remaining storage capacity on xis su�cient for the new replica, where y(t) corresponds to the number of replication processes alreadyin progress on node y at time t. Intuitively, such a choice should avoid replication of multiple relativelypopular objects on the same target node (which may later compete for that node's capacity).3.4.2 Replication PoliciesWe now describe the replication policies. Recall that T iea, as determined in Section 3.2, represents theinitial amount of data that must be replicated before customers are allowed to use a partial replica, andit is measured in units of normal playback time of that object. Thus, the value of T iea is independentof the replication policy used, but how long it takes to copy T iea time units worth of data is a function12This is similar in spirit to the approach we use in [6]. However, in that case we only applied this to the SREA policy(refer to Section 3.4) and using a di�erent set of threshold equations.20

of the replication policy. For example, if replication proceeds at the same rate as playback (as in thesequential policies below), then the replication time will be equal to T iea, but if replication proceedsat a faster rate (as in the parallel policies below), then the replication time will be smaller than T iea.Sequential Replication (SR): The replication is performed \sequentially" (as described in Section2), i.e., the system replicates at the rate of normal playback of a single stream by injecting a singleread stream at the source node and a single write stream at the target node | each of these requiresthe same capacity as a single user stream. Thus replication of object i takes T ilength time units, andusers are not admitted to the new replica until the entire copy is complete. This policy is consideredfor comparison purposes only.Sequential Replication + Early Acceptance (SREA): The replication is performed as in theSR policy, except that newly arrived users can be admitted to the new (incomplete) replica as soonas T iea time units of that object have been replicated on the target node. Furthermore, this \virtual"replication completion time is used in checking the satisfaction of condition (2) in the decision of whento create a new replica (see Section 3.3).Parallel Replication (PR): The system replicates atM times the rate of a normal display of a singleuser stream, where M = min((Bsource � Lsource(t)); (Btarget� Ltarget(t))) at time t, when replicationbegins. Thus the \real" replication time of object i is reduced to T ilengthM , and users are not admitted tothe new replica until the entire copy is complete. This policy is considered in order to show a contrastin performance between policies that do and do not utilize the early acceptance technique.Parallel Replication + Early Acceptance (PREA): The replication is performed in the samemanner as in the PR policy, except that users are admitted to the new (incomplete) replica after the�rst T iea time units of the replica are completed. Furthermore, as in the case of the SREA policy,this \virtual" replication completion time is used in checking the satisfaction of condition (2) in thedecision of when to create a new replica.Mixed Parallel, Early Acceptance + Sequential Replication (MPEA): The �rst T iea timeunits of the object are replicated as in policy PREA and the remainder of the object is replicated as inpolicy SREA. Users are admitted to the new (incomplete) replica after the �rst T iea time units of thereplica are complete. And, as in the other policies using early acceptance, the \virtual" replicationcompletion time is used in checking condition (2) in the decision of when to create a new replica.21

3.4.3 De-replication PoliciesThe decision process of which replica to remove, i.e., which object i, will be described in Section 3.3.What remains to determine is the choice of the node from which to remove it. Part of the di�culty isin considering the customers that would have to be migrated from the node where the removal occurs.We consider the following de-replication policies.Delayed Migration (DM): This policy removes a replica of object i only after the last customer�nishes viewing the movie. That is, we only remove the replica of object i at node x at time t whenCix(t) = 0 in Equation (2). No new users are admitted to this replica after the de-replication decisionis made. This is motivated by the (possible) implementation complexity of migrating customers fromone node to another.Immediate Migration Minimum Overhead (IMMO): This policy chooses the node on whichfewest customers are currently viewing object i. The motivation here is to reduce the (possible) systemoverheads associated with user migration. That is, at time t the replica of object i is removed fromnode x where Cix = miny2Ri(t)fCiy(t)g in Equation (2); The Cix customers are distributed evenlyamong the remaining nodes in Ri(t).Immediate Migration Maximum Capacity (IMMC): This policy selects the node which couldprovide the greatest estimated (residual) service capacity after the replica of object i is removed. Thatis, at time t the replica of object i is removed from node x where Cix = maxy2Ri(t)fCiy(t)+(By�Ly(t))gin Equation (2); the Cix customers are distributed evenly among the remaining nodes in Ri(t).4 Discussion of ResultsIn this section, we �rst present a scalability study of CM server designs in the context of data placementtechniques where the main concern is the system's load balancing characteristics and the subsequentsystem performance. Then, we focus on a performance study of dynamic replication schemes, usedin conjunction with the data placement techniques, with emphasis on their sensitivity to user modelparameters, workload characteristics, and skewness of data access patterns, as well as applicability tovarious CM applications.Table 2 lists the parameters considered here along with their default values/distributions and alterna-tives as used in the remainder of this section. All values are given in units of minutes, unless otherwisespeci�ed. (Refer to Section 2 for the de�nition of the notation used in Table 2.)22

4.1 Scalability StudyIn this section we present results of our simulation and analytical study using the cost/performanceand reliability metrics given in Section 2. The arrival process (of requests for objects) is Poissonwith a mean arrival rate of � = a �BNT ilength , where 0 � a � 1 is the \relative arrival rate". For ease ofpresentation, we discuss the results in terms of a, i.e., relative to the total service capacity of thesystem (e.g., a = 1:0 corresponds to the maximum service capacity of the system).We consider the design of a CM server with the following capacity requirements: (1) a total servicecapacity of N � �B = 1600 streams; (2) a total storage capacity of K = 400 distinct objects; and (3)each object is of length T ilength = 90 minutes.Since the main motivation for using dynamic replication policies is the need to react to changes indata access patterns, we consider the performance of these policies as a function of such changes. Thatis, the workload will have the characteristic that every \rotation time period" of X minutes, pi(t)schange. One change in access probabilities is described by Equation (3), which is intended to emulatea relatively \gradual" increase/decrease in popularities:pi(t0) = 8>>>>><>>>>>: pi+2(t) if i is odd & 1 � i < K � 1pK(t) if i is odd & i = K � 1pi�2(t) if i is even & 2 < i � Kp1(t) if i is even & i = 2 (3)where t and t0 refer to two consecutive rotation periods and for ease of presentation we assume thatK is even. This is to illustrate that even under a relatively gradual change, dynamic policies are stilluseful. Furthermore, we believe this is a reasonable \emulation" of change in access patterns for manyCM applications.To test our policies further, we also emulate an \abrupt" increase in popularity of currently unpopularobjects as well as a \gradual" decrease in popularity of the currently more popular objects as follows:pi(t0) = 8<: p1(t) if i = Kpi+1(t) if 1 � i � K � 1 (4)Here, we consider the Zipf distribution [18], given in Equation (5), for skewness of access probabilities.Prob[request for object i] = ci(1��) 8 i = 1; 2; : : : ; K and 0 � � � 1 (5)where c = 1H(1��)K and H(1��)K = KXj=1 1j(1��)23

We set � = 0:0, which corresponds to the measurements performed in [5] (for a movies-on-demandapplication). In Section 4.2 we also consider a �nite geometric distribution, for skewness of accessprobabilities.The architectural settings considered in this section are the default parameters of Table 2 together withTable 313. Here arch2w corresponds to wide data striping, where a single copy of each object is stripedacross all nodes of the system, and arch2 through arch5 groups correspond to various con�gurationsof a hybrid CM server (as described in Section 2). For the hybrid architectures we experiment withdi�erent amounts of per node storage space capacity, in order to illustrate the tradeo� between storagespace capacity local to a node and the corresponding required capacity of the global switch.Moreover, we consider the a�ect on the overall system performance of limitations of communicationnetwork resources. Let nc represent the ratio of the global switch and the storage system servicecapacities, i.e., nc = 1:0 represents equal service capacities in the storage and communication sub-systems. Then we vary the service capacity of the global switch, 0:1 � nc � 1, and compute thesubsequent degradation in performance experienced by the various architectures. The motivationfor these experiments is to: (1) observe the performance degradation characteristics of possible CMserver designs (as this is an indication of their scalability), and (2) assess whether reduction in overallrequired global switch capacity (which should lead to lower costs) is possible without signi�cant lossin the overall system performance.Lastly, below \upper bound" on the acceptance rate refers to the acceptance rate that a wide datastriping system can achieve without considering network capacity constraints; thus this is the onlycurve in the following �gures that is not a function of nc.4.1.1 Wide Data Striping System vs. Hybrid SystemFigures 5 and 6(b) illustrate that under lower network capacities, a hybrid system has better overallperformance as well as performance degradation characteristics than the wide data striping system.More importantly, the hybrid architecture allows us to tradeo� capacities of the various system re-sources in order to achieve a more cost-e�ective system overall. Speci�cally, we can tradeo� localstorage space and local switch capacities with global switch capacity and achieve nearly the sameperformance characteristics. For instance, for a particular architectural setting, the larger the localstorage space capacity is, the smaller the global switch capacity need be, in order to achieve the sameoverall system performance, e.g., consider the \arch2 group" in Figure 5(a) | in the case of the 2413For a hybrid system that requires more storage space than the corresponding wide data striping system we onlyincrease the storage space per disk, not the number of disks, as that would also increase the service capacity and hencewould not make for a fair comparison. 24

upper bound

wide striping

22 objs / node

24 objs / node

26 objs / node

28 objs / node

30 objs / node

Acceptance rate

network constraint

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

upper bound

wide striping

44 objs/ node

48 objs / node52 objs / node

56 objs/ node

60 objs / node

Acceptance rate

network constraint

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

92 objs / node

96 objs/ node

100 objs/ node

104 objs/ node

Acceptance rate

network constraint

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

upper bound

wide striping

210 objs/ node

215 objs/ node

220 objs/ node

225 objs / node

Acceptance rate

network constraint

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

(a) arch2 group

(c) arch4 group

(b) arch3 group

(d) arch5 group

upper bound

wide striping

88 objs / node

205 objs/ node

Figure 5: Di�erent network constraints.objects/node architecture, the corresponding required service capacity of the global switch14 is 1280streams, whereas in the case of the 30 objects/node architecture, it is only 960 streams.Conversely, the larger the local switch is, the more we can reduce the storage space and global switchcapacities, e.g., consider the \arch2 group" in Figure 5(a) | in this case with a local switch capac-ity of 80 streams15, the corresponding required total storage space capacity is 600 objects (i.e., 30objects/node) and the corresponding required service capacity of the global switch is 960 streams.Consider now the \arch4 group" in Figure 5(c) | although in this case the local switch capacityincreases to 320 streams, the corresponding required service capacity of the global switch drops downto 640 streams and the corresponding required total storage space capacity drops down to 460 objects14The needed global switch capacity is determined from Figure 5(a) by �rst �xing the acceptance rate that we would liketo achieve. Here, we �x the required acceptance rate to be at least 0:95 � acceptance rate of the \upper bound result",and then determine, using Figure 5(a), the smallest network constraint, nc, that satis�es that acceptance rate forthe appropriate architecture curve; then, the required global switch capacity is nc � 1600 streams where 1600 streamscorresponds to the maximum required system capacity.15These values can be determined from Tables 3 and 4. 25

wide striping

arch2

arch3

arch4

arch5

Acceptance rate

3rotatio time period x 10 (min)

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0 1.2

upper bound

wide striping

22 objs/ node

24 objs / node

26 objs/ node

28 objs/ node

30 objs / node

Acceptance rate

network constraint

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

(a) arch2, arch3, arch4 and arch5 (b) arch2 groupFigure 6: Abrupt increase/gradual decrease.(i.e., 92 objects/node). These results are due to the fact that with larger local switch capacities, wecan service more customer requests locally (hence the corresponding smaller required global switchcapacity). Furthermore, larger local switches and corresponding larger node service capacities alsoprovide more opportunities to take advantage of the load balancing characteristics of striping withina node (hence the smaller required storage space capacity per node).4.1.2 System Sizing IssuesQuantitatively evaluating the tradeo�s between local switch capacity, node storage space capacity, andglobal switch capacity is no easy task, as it is not immediately clear how to tradeo� one resource foranother. Ideally, one would like to evaluate these tradeo�s based on cost. However, cost considerationsare a complex issue, given that costs depend on many factors. Thus, next we instead evaluate thedi�erent hybrid designs based on the amount of each resource they require relative to the wide datastriping system. Such an evaluation quantitatively illustrates to the designer the relative merits ofthe di�erent architectures, without the need for choosing a speci�c technology16. The purpose of theseexperiments is to illustrate how a CM server designer can deal with these (fairly complex) systemsizing issues.We further re�ne our test cases in Table 4, and choose the per node storage space and correspondingglobal switch capacity of each architecture based on the results of the previous section, i.e., we choosethose architectures that can achieve an acceptance rate of at least 0:95� acceptance rate of the \upper16Characterizing a resource using only its capacity may result in a simpli�cation for certain types of resources; however,this is still a good abstraction for evaluating cost-e�ectiveness of designs, without having to choose a speci�c technologyfor each system component. 26

bound result" with reasonably small per node storage space and global switch capacities17. Figure 7depicts the results of this comparison for each resource asresource requirement of arch iresource requirement of arch2w 8i 6= 2w:Hence, the straight line at the value of 1:0 in each of the graphs of Figure 7 corresponds to the(\scaled") resource requirement of \arch2w".As already stated, these results illustrate to the designer the relative merits of the di�erent architecturesby quantifying the tradeo�s between the various resources of the CM server. Based on these resultsand current costs and technology trends, the designer can make system sizing decisions.
global switch size ratio

arch type

0.0

0.2

0.4

0.6

0.8

1.0

arch2

arch2.1

arch3

arch4

arch5

arch5.1

total storage space ratio

arch type

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

arch2

arch2.1

arch3

arch4

arch5

arch5.1

number of local switches ratio

arch type

0

0.5

1

arch2

arch3

arch5

arch2.1

arch4

arch5.1

local switch size ratio

arch type

0

2

4

6

8

10
arch2

arch2.1

arch3

arch4

arch5

arch5.1

Figure 7: System sizing.17The upper bound is computed without considering network capacity constraints; since it is not always achievable byan architecture, we choose a performance goal that is reasonably close.27

4.1.3 Heterogeneous SystemsNext, we illustrate the ease of dealing with heterogeneous systems when using hybrid CM server designswithout loss of performance as compared to an equivalent homogeneous case. For this purpose, weconsider a hybrid CM architecture with 5 nodes and a total service capacity of 1600 streams. Weuse two test cases in the following experiments, both based on the homogeneous version of \arch4"with the storage space capacity of 104 objects per node (refer to Table 3). We introduce 5% and10% di�erences in storage space and service capacities between the nodes of the system (as well ascorresponding di�erences in local switch capacities), e.g., to emulate a system that gradually grows (aswell as experiences replacements due to failures) and thus is forced to use heterogeneous resources18.The results, depicted in Figure 8(a), show that, using a hybrid design, we can achieve heterogeneous
(a) Heterogeneous systems (b) MTTF comparison

MTTF ratio

arch type

0

5

10

15

20

arch2 arch2.1 arch3 arch4 arch5 arch5.1

homogeneous

heterogeneous (10%)

heterogeneous (5%)

Acceptance rate

network constraint

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0Figure 8: Heterogeneous systems and MTTF.system performance that is comparable to homogeneous system performance.4.1.4 ReliabilityWe use the mean time to failure (MTTF) as our reliability metric, which is de�ned as the mean timeuntil some combination of disk failures results in loss of some data (i.e., losses that can no longer berecovered through the use of redundant information). We compare the architectures in Table 4, usinga conservative estimate for the hybrid system based on an assumption of only a single copy per object.These results are depicted in Figure 8(b), as the following ratio between MTTF of a particular hybrid18Hence, we have one test case of a 5 node system, with 84, 94, 104, 114, and 124 objects/node, respectively andservice capacities of 256, 288, 320, 352, and 384 streams, respectively. And, we have another test case of a 5 node system,with 94, 99, 104, 109, and 114 objects/node, respectively and service capacities of 288, 304, 320, 336, and 352 streams,respectively. 28

architecture and the wide data striping architecture:MTTF of arch iMTTF of arch2w 8i 6= 2w:where, the straight line at 1:0 corresponds to the (\scaled") MTTF of wide data striping. Thederivations of the MTTF equations used to compute the results in Figure 8(b) are given in theAppendix.These results clearly show that higher reliability can be achieved by hybrid systems, even for objectsthat only have a single copy, as compared to wide data striping. This increase in reliability is due tothe \isolation" of fault a�ects, i.e., the wider we stripe an object, the more disk failures can a�ect it.Of course, the reliability is even higher for objects with multiple copies, as is natural in a system whichemploys data replication. Thus, in a hybrid system, we can provide signi�cantly higher reliability forthe popular objects, as there will always be multiple replicas of such objects in a hybrid system. Lastly,under network failures or high workload conditions at remote nodes, local nodes can at least deliversome objects19, which is not the case for wide data striping, as all nodes and network capacity mustbe available in order to serve a request for any object.SummaryIn summary, the main observations based on the experiments presented above are as follows:� The use of hybrid designs allows us to tradeo� resources and speci�cally we can tradeo� anode's local storage space, its local switch capacity, and the system's global switch capacitygiven a particular performance requirement. This should allow a system designer to make bettersystem sizing decisions by making appropriate tradeo�s, i.e., it should allow for cost-e�ectivedesigns while satisfying the required system performance.� Hybrid designs naturally extend to systems with heterogeneous resources with little or no loss inperformance as compared to the corresponding homogeneous systems. Since in practice we expectCM servers to have heterogeneous resources as a result of system growth (due to expansion) anddisk failures (and subsequent replacement), this is an important characteristic.� Hybrid designs result in higher system reliability (as de�ned above) even under the conservativeassumption of have a single copy per object (refer to the above discussion). Better reliabilitycharacteristics are of signi�cant importance to CM servers since they service real-time workloadand furthermore there is a need to recover from failure in real-time [3].19For example, in a movies-on-demand application, even if a requested movie is not available, the user has the optionto choose another movie that may be available. 29

4.2 Policy Performance EvaluationIn this section we conduct a number of experiments in order to understand the sensitivity of thedynamic replication policies to di�erences in architectures, user model parameters, workload charac-teristics, skewness in data access patterns, as well as applicability to di�erent CM applications. Thisperformance study is performed via simulation, with the simulation parameters20 given in Table 2.We consider the following performance metrics (refer to Section 2 for details):1. the system's acceptance rate (in the no queueing case), where the acceptance rate is de�ned asthe percentage of all arriving customer requests that are accepted by the system;2. the system mean queue length, mean waiting time, as well as the respective variances (in thequeueing case).There is a multitude of parameters that can be varied in studying performance of dynamic replicationpolicies. And, we performed a great number of experiments [7]; of course, we cannot present themall. We note that the architectures chosen in Table 2 reect the state of disk technology at the timeof experiments, with respect to storage vs. bandwidth capacities, and hence the choice of presentingthese results here. We also note, that with larger storage capacities (given the trend of more rapidadvances in disk space rather than bandwidth) our policies are expected to perform even better (i.e.,the ability to maintain a greater number of replicas results in better performance). Several otherentries in Table 2 require a few words of clari�cation, which are as follows.The default arrival process (of requests for objects) is Poisson21 with a mean arrival rate of � = a �BNT ilength ,where 0 � a � 1 is the \relative arrival rate". As before, we discuss the results in terms of the relativearrival rate, a, i.e., relative to the total service capacity of the system. In order to further explore thebene�ts of early acceptance schemes, we consider another arrival process, speci�cally an on-o� process[23] which, with proper parameter settings, exhibits more bursty characteristics 22. An on-o� processis a two state Markov chain, i.e., one state is an \on" state and the other state is an \o�" state.Let � be the transition rate from \on" state to \o�" state and � be the transition rate from \o�"state to \on" state. When the process is in the \on" state, one customer arrives every (deterministic)time interval 1A . There are no arrivals when the process is in the \o�" state. In order to make ameaningful comparison, the parameters of the on-o� arrival process, i.e., the deterministic arrival rate20Most results presented here are obtained with 95�5% con�dence intervals; all results are within 95�10% con�denceintervals.21We believe it is reasonable for us to consider a Poisson arrival process for purposes of this study, since user requestsare essentially considered on a \per session" basis; refer to [20] for details that support the use of Poisson arrivals in thiscase.22In our case, the on-o� process with 1� = 0:5 minutes and 1� = 6 minutes has the same mean arrival rate, �, as thecorresponding Poisson process. However, its variance is 12� times the variance of the corresponding Poisson process.30

A and transition rates � and � are set such that the on-o� process has the same mean arrival rate asthe Poisson process, i.e., A ��+� = �, but a higher variance, i.e., A2 ��(�+�)2 .As already stated, the default is the no queueing case, i.e., a customer is rejected if its request cannotbe serviced immediately. To further understand the characteristics of the dynamic replication policiesin conjunction with data layout techniques, we also consider the queueing case. The (in�nite) queueis FIFO, i.e., sorted by the arrival times of requests. At customer arrival and departure instances, aswell as at completion of object replication instances, the system �rst adjusts the threshold values (asdescribed in 3.3). Then, if excess service capacity is available, the system gives priority to replicationof objects (based on current threshold values) where remaining capacity is given to currently \serve-able" requests in the queue, in a FIFO manner. A request for object i is \serve-able" at time t ifAi(t) > 0 and there is su�cient network capacity to serve this request.In this performance study, we not only consider the Zipf distribution for the skewness of accessprobabilities (refer to Section 4.1), but also a �nite geometric distribution [22], given in Equation(6), where we set � = 0:618.Prob[request for object i] = (�)(i�1)(1� �)1� �K 8 i = 1; 2; : : : ; K (6)The motivation being that some applications (other than movies-on-demand) may exhibit higherskewness in data access, e.g., news-on-demand. As we are not aware of measurements available forapplications such as news-on-demand, we use a \generically" highly skewed distribution, i.e., thegeometric. Furthermore, applications with relatively little skew in access patterns should not, in asense, present a performance problem in this case, and thus we do not consider such access patternshere.Moreover, the interactivity entry in Table 2 refers to how interactive the users are, with NP: FF: RW:PAUSE referring to the ratio between normal playback (NP) and the various VCR functions (FF, RW,PAUSE/RESUME), where T inp, T iff , T irw, T ipause are as de�ned in Section 2. These values are used asparameters ofM in the computation of Tea (refer to Section 3.2). The default values are in agreementwith the range of values used in [16]. Unless otherwise stated, in all �gures below we use the defaultvalues given in Table 2.In order to also explore the bene�ts of dynamic replication, in general, we consider the following versionof a static replication policy for purposes of comparison only. Note that, we do not suggest thatit is realistic to implement such a policy, but we would like to make a conservative comparison andthus favor the static policy. (Furthermore, we are not aware of a better static policy in the existingliterature.) We assume that a system using the static policy has perfect knowledge of the accessprobabilities, pi(t)s, and that it alters the number of copies, based on this knowledge once per day.31

(This is along the lines of suggestions, for adapting to data access pattern changes on a daily basis,made in [26].) That is, every 24 hours, the system alters the number of copies maintained for eachobject based on the current access probabilities. Speci�cally, for each object i, it attempts to providedpi(t) �Ne copies23 | if this is not possible, due to storage space constraints then priority is givento \hotter" objects; if there is excess storage capacity, then the remaining storage space is �lled withrandomly chosen objects (of course, no more than one copy of an object per node). The only exceptionsto these rules are that: (1) there is always a minimum of one copy per object, and (2) copies that arestill being utilized by users at the time this alteration takes place are not removed. Note that, thechange in the number of copies, in this static policy, is assumed to be performed instantaneously andwithout the use of any additional resources. These are not realistic assumptions (as is knowing theexact access probabilities), but they are made in order to favor the static policy in our comparison. Aswe are interested in bene�ts of dynamic replication, in general, we would like to make this comparisona conservative one.Finally, we note that, although the evaluation of the replication policies presented in the remainderof this section is quantitative, the main focus of the following discussion is \trends" in the curves andrelative performance of the policies, rather than absolute performance. This is due to the fact thatour main motivation is to explore the above stated issues and tradeo�s, rather than to predict the(exact) performance of the system through simulation. To this end, we run the simulations at a veryhigh load for the no queueing case 24 in order to illustrate our points (since it almost does not matterwhat resource management techniques are used at low loads). This is not to say that we recommendthat the system is operated at such high loads; e.g., clearly, under extremely frequent changes in accesspatterns25 the acceptance rate will be low under very high loads and thus, under such conditions thereal system should be operated at lower loads. In the queueing case, we use somewhat lower loads toinsure system stability (since we allow the queue to grow without bound as explained in Section 2).4.2.1 Static vs. DynamicWe �rst give the motivation for using dynamic replication policies, as opposed to static ones. Thiscomparison is depicted in Figures 9 and 10, where the more important observations are as follows.Based on extensive simulations, we conclude that dynamic replication with early acceptance doesresult in signi�cantly better performance as compared to a static scheme. With a reasonably largeamount of per node resources (e.g., arch2.0 as described in Table 2), dynamic policies perform better23This is not the best solution to the so called \apportionment problem"; however, it su�ces for our purposes ofcomparison. For better solutions see [15].24There is no stability issue here.25We include these for the sake of completeness. 32

Acceptance rate

rotation time period x 10 (min)

0.5

0.6

0.7

0.8

0.9

1.0

0.2 0.4 0.6 0.8 1.0 1.2

Acceptance rate

rotation time periodx 10 (min)

0.5

0.6

0.7

0.8

0.9

1.0

0.2 0.4 0.6 0.8 1.0 1.2

(a) arch1.0 (b) arch2.0

3 3

SREA

PR

MPEA

PREA

 Static

 SR

SREA

PR

MPEA

PREA

 Static

 SR Figure 9: Default settings.
Acceptance rate

rotation time period x 10 (min)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.2 0.4 0.6 0.8 1.0 1.2

Acceptance rate

rotation time period x 10 (min)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.2 0.4 0.6 0.8 1.0 1.2

(a) arch1.0 (b) arch2.0

3 3

SREA

PR

MPEA

PREA

 Static

 SR

SREA

PR

MPEA

PREA

 Static

 SR Figure 10: Default settings, with geometric distribution of access patterns and both architectures.than the static policy (refer to Figures 9(b) and 10(b)). As the per node resources become fewer,while keeping the same amount of overall system resources (e.g., arch1.0 as described in Table 2),the bene�ts of the more conservative dynamic policies (i.e., SR) are signi�cantly diminished (refer toFigure 9(a) and 10(a)). However, addition of early acceptance (i.e., as in the case of SREA) mitigatesthis problem.In general, these results are due to the fact that, dynamic replication schemes make good decisionsabout: (a) which CM objects are hot, and (b) when to replicate such objects. The problem with themore conservative policies such as SR is that the inability to make rapid adjustments in number ofreplicas is a more severe handicap when resources are few. As we saw above this problem is alleviatedthrough the use of early acceptance. That is, our dynamic replication schemes, in conjunction withthe early acceptance technique, allow the CM server to react to changes in data access patterns fairlyaccurately and rapidly. This results in the system's performance that appears to be fairly insensitive to33

the changes in data access patterns, i.e., the system maintains nearly the same performance regardlessof how frequently the access patterns change.One advantage of the static policy, of course, is that it is easier to implement. Speci�cally, theneed to migrate users from one node to another (in mid-stream) during de-replication may result incomplications in the implementation. In the results presented above as well as in the remainder of thepaper, unless otherwise stated, we use the DM de-replication policy in an attempt to make a morefair comparison with the static policy.4.2.2 Early Acceptance vs. No Early AcceptanceWe now motivate the use of early acceptance techniques in conjunction with dynamic replicationpolicies. To this end we compare performance of the dynamic policies with and without the use ofearly acceptance. This comparison is depicted in Figures 9, 10, 11, and 13, where the more importantobservations are as follows.
Mean waitingtime (min)

rotation time period x 10 (min)

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0.2 0.4 0.6 0.8 1.0 1.2

Mean waiting time x 10 (min)-3

rotation time period x 10 (min)

20.0

40.0

60.0

80.0

0.2 0.4 0.6 0.8 1.0 1.2

(a) arch1.0 (b) arch2.0

33

SREA

PR

MPEA

PREA

SREA

PR

MPEA

PREA

Figure 11: Default settings with a=0.8Firstly, based on extensive simulations, we conclude that early acceptance does result in a nice com-promise between using resources for performing replication and using resources for servicing customerrequests (as stated earlier). This point is best illustrated by considering the more conservative policywith early acceptance, i.e., SREA, and comparing it to the least conservative policy we have withoutearly acceptance, i.e., PR. SREA uses as few resources as possible for replication but still makes thenew copy available to customers fairly quickly | this policy performs well consistently, i.e., it eitherresults in the best or nearly the best performances in the test cases examined in Figures 9, 10, 11, and13. 34

Variance of waiting time

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

0.2 0.4 0.6 0.8 1.0 1.2

Variance of waiting time x 10-3

100.0

200.0

300.0

400.0

500.0

600.0

0.2 0.4 0.6 0.8 1.0 1.2

SREA

PR

MPEA

PREA

SREA

PR

MPEA

PREA

3rotation time period x 10 (min)3rotation time period x 10 (min)Figure 12: Default settings but with a=0.8
Acceptance Rate

rotation time period x 10 (min)

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2

(a) a = 0.8

3

Acceptance Rate

rotation time period x 10 (min)

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2

(b) a = 1.0

3

 SREA

 PR

 MPEA

 PREA

 SREA

 PR

 MPEA

 PREA

Figure 13: Default setting but with on-o� process: 1� = 12 (min), and 1� = 6 (min)To further explore the e�ects of early acceptance, we consider (1) more bursty arrival processes, i.e.,the on-o� arrival process (refer to Section 4.2) and (2) the queueing case (refer to Section 2). Morespeci�cally, we observe that all policies with early acceptance (such as SREA, MPEA, and PREA) ascompared to the PR policy are: (a) less sensitive to the more bursty arrival process (compare Figure9(b) with Figure 13(b)), and (b) result in better performance in the queueing case26, i.e., smaller meanwaiting time (see Figure 11) and better QoS, i.e., smaller waiting time variance (see Figure 12). Notethat, in a system with a small mean waiting time but a large waiting time variance, it is still possiblefor a customer to su�er a fairly long waiting time period on occasion; this is clearly undesirable. Hence,we use the variance of the waiting time as our measure of quality of service.26We already showed that these result in better performance in the no queueing case.35

4.2.3 Sensitivity to User ModelNext we show that the mathematical model of user behavior is not very sensitive to the precisionof the model parameters (which need to be computed based on statistics or measurements collectedabout user behavior), and thus it is of reasonably practical use. To validate this conjecture, in oursimulation we deviate on several points from the analytical model. Firstly, in our simulations thedistribution of residence times in various user playback modes (NP, FF, RW, PAUSE) is uniform ascompared to the exponential assumption made in the analytical model. We experimented with otherdistributions as well, e.g., normal; the results were within a few percent of those given here (in theinterests of brevity we do not present them). For all cases where the interactivity model correspondsto NP:FF:RW:PAUSE = 19:1:1:1, the fraction of admitted customers that enter \Trap State" in oursimulations is zero | recall that, in our computation of T iea we chose �Trap State(tn) = 0:1 (refer toTable 2). This is partly due to the fact that our analytical model tends to be conservative (see Section3.2). We experimented with values of T iea that were smaller than those predicted by the analyticalmodel, to determine whether the model's conservative nature is resulting in some loss of performance| this turned out not to be the case in our experiments, that is, beyond a certain value of T iea oneonly obtains diminishing returns in performance gains, but the fraction of accepted customers whichenter the \Trap State" continues to grow. (We do not present those experiments here in the interestsof brevity.)To further \stress test" our model we ran a set of simulations where T iff was increased by 20% inthe simulation, as compared to the parameter used in the analytical model. The result is that thereis no change in the fraction of admitted customers entering the \Trap State" in the simulation, i.e.,it is still zero. This supports our conjecture (made in Section 3.2), that the parameters used in theanalytical model do not have to be exact, with respect to the \real" user behavior | that is, fairly largeinaccuracies in the collected statistics about the user behavior can be tolerated and consequently themodel is reasonable, and \re-solving" of the model with new parameters only needs to be performed\occasionally" (and not necessarily in real-time as explained in Section 3.2).These results are due to: (1) the conservative nature of the analytical model; (2) good dynamicthreshold adjustment methods, i.e., the system is able to distinguish between \hot" and \cold" ob-jects su�ciently well; and (3) the fact that the level of interactivity (19:1:1:1) is relatively low (althoughreasonable for a movies-on-demand application [16]). Thus, in order to further \stress test" the ana-lytical model, we consider a workload with a signi�cantly higher level of interactivity (i.e., alternative(2) for interactivity settings in Table 2) | this may not necessarily correspond to a realistic workloadbut is useful for purposes of illustration. Here we consider the following observations in simulations:the fraction of admitted customers entering the \Trap State", the mean amount of time a customer36

spent in the \Trap State", given that he/she entered it, and the maximum amount of time a customerspent in the \Trap State", given that he/she entered it.Even with such high interactivity levels, the results show that the fraction of admitted customerswhich enter the \Trap State" in the simulation is quite small (on the order of 10�6). That is, in ourexperiments, most admitted customers do not enter the \Trap State". Even in the rare case when anadmitted customer did enter the\Trap State", the mean and the maximum time he/she spent in the\Trap State" in the simulation was less than 30 seconds. However, we would like to stress that thisrarely occurs.If we want to further reduce the time a customer may spend in the \Trap State", some possiblesolutions include: (1) migration of customers entering the \Trap State" to other nodes which containa copy of the object they are viewing and have available service capacity, or (2) increasing T iea (at thecost of some performance degradation).4.2.4 Sensitivity to workload characteristicsNext, we show the lack of sensitivity to the workload characteristics, accomplished through the useof early acceptance. To this end we ran a set of simulations with three di�erent modi�cation to theworkload characteristics (refer to Table 2), as compared to the default workload used thus far (i.e., ascompared to a Poisson process with a constant rate and a = 1:0): (1) \time of day" based workload,which is still Poisson but with arrival rates based on time of day, i.e., with a = 0:9 over 7 hours of a dayand a = 0:5 over the remaining 17 hours; (2) lower workloads, i.e., still Poisson with a constant arrivalrate but with a = 0:8; and (3) more bursty workloads, i.e., an on-o� arrival process with a = 0:8,1� = 0:5 min and 1� = 6 min. The results are depicted in Figures 13 and 14. More speci�cally, weobserve that all policies with early acceptance (such as SREA, MPEA, and PREA) as compared tothe PR policy are less sensitive to changes of workload characteristics (e.g., compare Figure 13(a) withFigure 14(a)).4.2.5 Applicability to a variety of applicationsNext, we consider applicability of dynamic replication with early acceptance to a wide range of appli-cations of CM servers. To this end, we ran a set of simulations with: (a) smaller objects, i.e., shorterclips with T ilength = 10 min 8i, as well as in addition (to smaller clips) (b) higher levels of interactivity,NP:FF:RW:PAUSE=4:1:1:1; these cases correspond to interactivity alternatives (1) and (3) in Table2. The results for cases (a) and (b) are illustrated in Figures 15 and 16, respectively. Qualitatively,37

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0 1.2

0.5

0.6

0.7

0.8

0.9

1.0

0.2 0.4 0.6 0.8 1.0 1.2

rotation time period x 10 (min)3 rotation time period x 10 (min)3

(a) a = 0.8 (b) a = 0.9 for 7 hours; a = 0.5 for 17 hours

Acceptance rate Acceptance rate

SREA

PR

MPEA

PREA

SREA

PR

MPEA

PREAFigure 14: Default settings, but with alternatives (1) and (2) for arrivals.all the conclusions made above, in the context of T ilength = 90, still hold27.We also consider the sensitivity of the mathematical model of user behavior to the new workloadsettings which are intended to represent di�erent applications of CM servers. Speci�cally, in case (b),the fraction of admitted customers entering the \Trap State" in the simulation was on the order of10�5; the mean and maximum time in the \Trap State", given that an admitted customer enteredit, in the simulation was smaller than 20 sec. Again, recall that this is a very rare occurrence. Weobtained similar results in case (a).
 Acceptance rate

 rotation time period (min)

0.5

0.6

0.7

0.8

0.9

1.0

100 200 300 400 500 600

 Acceptance rate

 rotation time period (min)

0.5

0.6

0.7

0.8

0.9

1.0

100 200 300 400 500 600

(a) arch1.0 (b) arch2.0

SREA

PR

MPEA

PREA

SREA

PR

MPEA

PREAFigure 15: Default settings with alternative (1) for interactivity settings.Summary27We observe that there is a signi�cant reduction in the acceptance rate in Figure 16 as compared to Figure 15. Thisis due to the fact that with higher interactivity levels each customer stays in the system longer, on the average. That is,with higher interactivity levels each customer holds on to the resources allocated to him/her longer.38

Acceptance Rate

0.5

0.6

0.7

0.8

0.9

1.0

100 200 300 400 500

SREA

PR

MPEA

PREA

Acceptance Rate

rotation time period (min)

0.5

0.6

0.7

0.8

0.9

1.0

100 200 300 400 500 600

(a) arch1.0 (b) arch2.0
rotation time period (min)

SREA

PR

MPEA

PREA

600Figure 16: Default settings with alternative (3) for interactivity settings.In summary, the main observations based on the experiments presented above are as follows: Dynamicreplication schemes in conjunction with early acceptance:� Dynamic replication schemes in conjunction with early acceptance provide a good compromisebetween using resources for performing replication and using resources for serving customerswhich in turn results in good performance characteristics across a wide range of workloads,skewness data access patterns and frequency of changes in data access patterns.� The mathematical model of user behavior, which is used to allow early acceptance in a \safe"manner, is not very sensitive to the precision of the model parameters, as illustrated by testingover a wide range of workloads as well as by using di�erent assumptions in the simulations ascompared to the model. Thus, this approach is of reasonably practical use.� Dynamic adjustment of threshold values, in conjunction with dynamic replication and earlyacceptance, results in systems that are able to make a reasonably good distinction between\hot" and \cold" objects. This in turn results in improved system performance.Thus, we believe that these techniques are applicable to a wide range of applications of CM servers.5 ConclusionsIn this work, we studied the scalability of large CM end-to-end server designs as a function of theircost/performance and reliability characteristics under various workloads and system constraints. First,we focused on data placement issues and compared the scalability characteristics of hybrid vs. widedata striping architectures. We showed that hybrid designs, in conjunction with dynamic replicationtechniques, are less dependent on the availability of the interconnect network resources, provide higherreliability, and can be properly sized so as to result in cost-e�ective end-to-end systems. Thus, we39

believe that hybrid designs result in scalable large distributed CM servers.Moreover, we have presented a performance study of dynamic replication techniques in conjunctionwith a mathematical model of user behavior, in the context of hybrid designs. These techniques werestudied under relatively frequent changes in data access patterns but without making assumptionsabout knowledge of the statistics of such patterns and without having to collect such statistics. Wehave showed that not only does the use of the mathematical model of user behavior improve theperformance of the more \conservative" (in terms of resource usage) dynamic replication policiesbut it also facilitates signi�cantly reduced sensitivity to changes in: (a) workload characteristics, (b)skewness of data access patterns, and (c) frequency of changes in data access patterns. We believethat not only is this a desirable property for a CM server, in general, but that furthermore, it suggeststhe usefulness of these techniques across a wide range of continuous media applications .

40

Parameter Default AlternativesArrival process Poisson with a = 1:0 (1) Poisson with a = 0:8(2) \time of day" based Poisson witha = 0:9 for 7 hrs, a = 0:5 for 17 hrs(3) on-o� source with a = 0:8, 1� = 12 (min),1� = 6 (min)(4) on-o� source with a = 1:0, 1� = 12 (min),1� = 6 (min)User Behavior Model Stochastic with no reduction in state space(used in computing T iea) (DTMC M with �Trap State(tn) = 0:1)ReThi d T ieat�ati eHi dT ilengtht�ati eDeThi ReThi +HiT ilength 90 8i 10 8iPlayback Mode distribution Uniform(NP,FF,RW,PAUSE) [0:95� mean, 1:05� mean]Interactivity NP:FF:RW:PAUSE = 19 : 1 : 1 : 1 (1) NP:FF:RW:PAUSE=19 : 1 : 1 : 1Parameters T ilength = 90, nspeed=4 T ilength = 10, nspeed=4T inp = 9:5, T iff = 0:5, T irw = 0:5, T ipause = 0:5 T inp = 1:9, T iff = 0:1, T irw = 0:1, T ipause = 0:1T iea = 12 T iea = 3(2) NP:FF:RW:PAUSE=4 : 1 : 1 : 1T ilength = 90, nspeed=4T inp = 2, T iff = 0:5, T irw = 0:5, T ipause = 0:5T iea = 18(3) NP:FF:RW:PAUSE=4 : 1 : 1 : 1T ilength = 10, nspeed=4T inp = 2, T iff = 0:5, T irw = 0:5, T ipause = 0:5T iea = 3Replication policy SREA PR, MPEA, PREADe-replication policy DMAccess Probability change \gradual" \abrupt"Skewness distribution Zipf, � = 0:0 Geometric, � = 0:618qij(t) uniformly distributed between 1 and N ,for each object i, 8t� 0DS 5Architecture (1) arch2.0: Bx = 80 8x (2) arch1.0: Bx = 20 8xCx = 28 8x Cx = 7 8xN = 20 N = 80(3) arch2 group, (4) arch3 group,(5) arch4 group, (6) arch5 group,(7) arch2w (see Table 3)(8) heterogeneous arch (see Section 4.1.3)K 400Request Queue Size zero in�niteNetwork constraint nc = 1:0 nc = 0:1; :::;0:9Rotation time period 200 (min) 50,100,400,600,800,1000,1200 (min)Table 2: Parameters.Arch type No. of Srv cap/node Stor space/nodenodes Lcl switch cap(in streams) (in objects)arch2w 20 80 20arch2 group 20 80 22; 24; 26; 28; 30arch3 group 10 160 44; 48; 52; 56; 60arch4 group 5 320 88; 92; 96; 100; 104arch5 group 2 800 205;210;215;220;225Table 3: Parameters for architecture groups.41

Arch No of Srv cap/node Stor space Glbltype nodes Lcl switch cap per node switch cap(in streams) (in obj's) (in streams)arch2w 20 80 20 1600arch2 20 80 26 1120arch2.1 20 80 30 960arch3 10 160 52 800arch4 5 320 92 640arch5 2 800 215 320arch5.1 2 800 225 160Table 4: Parameters for architectures used in Section 4.1.
42

References[1] Personal Communication with Miscrosoft Research. 1999.[2] S. Berson, S. Ghandeharizadeh, R. R. Muntz, and X. Ju. Staggered Striping in MultimediaInformation Systems. SIGMOD, 1994.[3] S. Berson, L. Golubchik, and R. R. Muntz. Fault Tolerant Design of Multimedia Servers. InProc. of the ACM SIGMOD Conf. on Management of Data, pages 364{375, San Jose, CA, May1995.[4] M.-S. Chen, D. D. Kandlur, and P. S. Yu. Support for Fully Interactive Playout in a Disk-Array-Based Video Server. Proceedings of the 2nd ACM Intl. Conf. on Multimedia, pages 391{398,October 1994.[5] A. L. Chervenak. Tertiary Storage: An Evaluation of New Applications. Ph.D. Thesis, UCBerkeley, 1994.[6] C.-F. Chou, L. Golubchik, and J. C.S. Lui. Sriping doesn't scale: How to achieve scalabilityfor continuous med ia servers with replication. In Proceedings of the International Conferenceon Distributed Computing Systems (ICDCS), Taipei, Taiwan, April 2000.[7] C.-F. Chou, L. Golubchik, and J. C.S. Lui. A performance study of dynamic replicationtechniques in continuous media servers. In International Symposium on Modeling, Analysis andSimulation of Computer and Telecommunication Systems, San Francisco, CA, August 2000.[8] A. Dan, M. Kienzle, and D. Sitaram. A Dynamic Policy of Segment Replication for Load-Balancing in Video-on-Demand Servers. ACM Multimedia Systems, 3:93{103, 1995.[9] A. Dan and D. Sitaram. An Online Video Placement Policy Based on Bandwidth to SpaceRatio (BSR). In Proceedings of ACM SIGMOD'95, 1995.[10] Bolosky et al. The Tiger Video Fileserver. Technical Report MSR-TR-96-09, Michrosoft Re-search, 1996.[11] J. Sidell et al. Data Replication in Mariposa. In Proceedings of ICDE, New Orleans, LA, 1996.[12] M. Stonebraker et al. Mariposa: A Wide-Area Distributed Database System. VLDB, 1996.[13] S. Ghandeharizadeh and R. R. Muntz. Design and Implementation of Scalable ContinuousMedia Servers. Parallel Computing Journal, pages 123{155, January 1998.[14] R.L. Haskin. Tiger Shark : A Scalable File System for Multimedia. Technical report, IBMResearch, 1996.[15] T. Ibaraki and N. Katoh. Resource Allocation Problems. The MIT Press, 1988.[16] K.D. Jayanta, J.D. Salehi, J.F. Kurose, and D. Towsley. Providing VCR Capacities in Large-Scale Video Servers. In Proc. ACM Intl. Conf. on Multimedia, pages 25{32, 1994.[17] P.J.B. King. Computer and Communication Systems Performance Modeling. Prentice-Hall,1990.[18] D. E. Knuth. The Art of Computer Programming, Volume 3. Addison-Wesley, 1973.43

[19] P. W. K. Lie, J. C.-S. Lui, and L. Golubchik. Threshold-Based Dynamic Replication in Large-Scale Video-on-Demand Systems. Multimedia Tools and Applications, 11(1):35{62, 2000.[20] V. Paxson and S. Floyd. Wide-Area Tra�c: The Failure of Poisson Modeling. IEEE/ACMTransactions on Networking, 3(3):266{244, June 1995.[21] S. Ross. A First Course in Probability. Prentice-Hall, Inc., Upper Saddle River, NJ, 1998.[22] S. M. Ross. Introduction to Probability Models. Academic Press, Inc., 1989.[23] M. Schwartz. Boardband Integrated Networks. Prentice-Hall, Inc., Upper Saddle River, NJ,1996.[24] W. J. Stewart. Introduction to Numerical Solution of Markov Chains. Princeton UniversityPress, 1994.[25] N. Venkatasubramanian and S. Ramanathan. Load Management in Distributed Video Servers.In Proceedings of ICDCS, pages 528{535, Baltimore, MD, May 1997.[26] J. Wolf, H. Shachnai, and P. Yu. DASD Dancing: A Disk Load Balancing Optimization Schemefor Video-on-Demand Computer Systems. In ACM SIGMETRICS/Performance Conf., 1995.

44

Appendix: Derivation of MTTF EquationsIn this appendix, we give the derivation of the mean time to failure equations used in Section 4.1.(We use the terms \cluster" and \array" of disks interchangeably below.) We will use the followingnotation in this derivation:MTTFdisk mean time to failure of a diskMTTRdisk mean time to repair of a diskMTTFcluster mean time to failure of a cluster or array of disksOur goal is to compute the MTTFcluster under the following assumptions: (1) each disk has indepen-dent and exponential failure rate equal to 1MTTFdisk ; and (2) the total number of disks in the clusteris C.We �rst compute the mean time to failure of some disk in a cluster of C disks. Let Xi be the randomvariable corresponding to the mean time to failure of disk i with an exponential failure rate �, where1 � i � C. Let Y = min(X1; X2; : : : ; XC), which corresponds to the mean time until some disk in acluster of C disks fails (or the mean time between failures in a cluster of C disks). Then, given thatthe disk failures are independent, we haveProb[Y � a] = 1� Prob[X1 � a ^X2 � a ^ � � � ^XC � a]= 1� Prob[X1 � a]� Prob[X2 � a]� � � � � Prob[XC � a]= 1� (e��a)C = 1� e�C�aSince the failure rate of each disk in our case is � = 1MTTFdisk , we have that the mean time until somedisk fails, or the mean time between failures in a cluster of C disks, is MTTFdiskC .Now, a cluster of C disks is considered failed when 2 disks in that cluster have failed. Recall that adisk array is able to continue delivery of data under a single failure; once a second failure in an arrayof C disks occurs, some data is lost, and we term this failure of the array or cluster. Thus, to computeMTTFcluster we need to determine the probability that, given that one failure has already occurredin that cluster, a second disk failure will occur within MTTRdisk time units. Hence, we have thatProb[a disk fails within MTTRdisk] = 1� e�MTTRdiskMTTFdiskand Prob[a disk does not fail within MTTRdisk]= 1� Prob[a disk fails within MTTRdisk] = e�MTTRdiskMTTFdisk45

Then, given that one of the disks in a cluster of C has already failed, we have thatProb[at least one of the remaining disks fails within MTTRdisk]= 1� Prob[none of the remaining disks fail within MTTRdisk]= 1� e�hMTTRdisk=MTTFdiskC�1 i = 1� e�MTTRdisk�(C�1)MTTFdiskGiven a well designed system, we can assume that MTTRdisk << MTTFdiskC where MTTFdiskC is themean time to failure of some disk in a cluster of C. It is also well known that (1 � e�x) � x is areasonable approximation when 0 < x << 1. Then,Prob[at least one of the remaining disks fails within MTTRdisk] � MTTRdiskMTTFdisk (C � 1)Now we are ready to compute MTTFcluster . Given that one disk in an array of C disks has failed, wecan next observe an event which has one of two possible outcomes:1. a second disk fails before the �rst is repaired and thus the entire array/cluster fails2. the �rst disk is repaired before the second failure and thus the array/cluster continues to operatenormallywe refer to the �rst outcome of this event as a \failure" and to the second outcome as a \success",i.e., this is a Bernoulli trial [21]. We also know thatProb[\failure"] = Prob[a second disk failure occurs before the �rst is repaired] =Prob[at least one of the remaining disks fails within MTTRdisk]Prob[\success"] = Prob[the �rst failure is repaired before a second failure occurs] =1� Prob[\failure"]Thus, in determining the mean time to failure of a disk array we are interested in a sequence of eventoutcomes or trials, where all outcomes but the last one correspond to \success" and the last onecorresponds to a \failure". It is well known that on the average it takes 1Prob[\failure"] trials beforewe obtain a \failure" [21]. Now we have thatMTTFcluster= Expected[time between failures in a cluster] � Expected[number of trials before obtain a \failure"]= Expected[time between failures in a cluster] = Prob[\failure"]= MTTFdiskC � 1MTTRdiskMTTFdisk (C � 1) = (MTTFdisk)2C(C � 1)MTTRdisk46

Given the above derivation ofMTTFcluster , we can now compute theMTTF equations used in Section4.1 as follows. Let Nd be the total number of disks in the wide data striping as well as the hybridarchitectures.Wide data striping architecture:Recall that this architecture only keeps a single copy of each object i in the entire system. Thus (usingreasoning similar to the one used above to derive MTTFcluster), we have thatMTTF (wide data striping arch) � MTTFclusternumber of clusters in the system � (MTTFdisk)2Nd(C � 1)MTTRdiskHybrid architecture:Here each node has NdN disks, and as before we assume that the nodes are independent in terms oftheir failures. First, we consider the mean time to data loss for those objects which only have a singlecopy in the entire system, which is as follows (again, using reasoning similar to the one used above toderive MTTFcluster):MTTF (hybrid arch/single copy) � MTTFclusternumber of clusters in one node � N(MTTFdisk)2Nd(C � 1)MTTRdiskNext, we consider the mean time to data loss for object i which has k copies in the system, i.e., in kdi�erent nodes. Once the �rst disk failure occurs in (the �rst28) node containing a copy of object i,let Event A correspond to the event where: \a second disk fails in the cluster of the �rst node in Ri(t)already operating under failure29 and at least one cluster fails in each of the other nodes in Ri(t).Then, as before, we are looking at a Bernoulli trial [21] where now Prob[\failure"] = Prob[Event Aoccurs within MTTRdisk]. Consequently, we haveMTTF (k copy object)= Expected[time between failures in a cluster] � Expected[number of trials before obtain a \failure"]= Expected[time between failures in a cluster] = Prob[\failure"]� MTTFdiskCNdCN 1MTTRdisk(C�1)MTTFdisk 1MTTRdiskNdMTTFdiskN 1MTTRdisk(C�1)MTTFdisk � � � 1MTTRdiskNdMTTFdiskN 1MTTRdisk(C�1)MTTFdisk� MTTF 2kdiskMTTR2k�1disk (NNd(C � 1))k28This is a general derivation as the \numbering" of the nodes is logical.29That is, this is the cluster where the �rst failure occurred.47

