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Abstract — The capacity region of the multiple-access arbitrarily varying channel (AVC) was
characterized by Jahn, assuming that the region had a nonempty interior; however, he did not
indicate how one could decide whether or not the capacity region had a nonempty interior. Using
the method of types and an approach different from Jahn’s, we have partially solved this problem.
We begin by considering the notion of symmetrizability for the two-user AVC as an extension of the
same notion for the single-user AVC. We show that if a multiple-access AVC is symmetrizable, then
its capacity region has an empty interior. For the two-user AVC, this means that at least one (and
perhaps both) users cannot reliably transmit information across the channel. More importantly, we
show that if the channel is suitably nonsymmetrizable, then the capacity region has a nonempty
interior, and both users can reliably transmit information across the channel.

Our proofs rely heavily on a rather complicated decoding rule. This leads us to seek conditions

under which simpler multiple-message decoding techniques might suffice. In particular, we give

conditions under which the universal mazimum mutual information decoding rule will be effective.

This paper was presented in part at the Twenty-Second Annual Conference on Information Sciences
and Systems, Princeton University, March 1988, and at the Twenty-Sixth Annual Allerton Conference on
Communication, Control, and Computing, University of Illinois, September 1988. This rescarch was con-
ducted while the author was supported by an IEEE Frank A. Cowan Scholarship and by fellowships from the
Minta Martin Fund, the University of Maryland Graduate School, and the University of Maryland Systems
Research Center under NSF Grant OIR-85-00108.

The author was with the Electrical Engineering Department and Systems Research Center, University of
Maryland, College Park. He is now with the Department of Electrical and Computer Engineering, University
of Wisconsin, Madison, WI 53706.



I. INTRODUCTION

A two-user multiple-access arbitrarily varying channel (or AVC for brevity) is a tran-
sition probability W from X' x J x § into Z, where X, ), §, and Z are finite sets, each
containing at least two elements. We interpret W(z|z,y, s) as the conditional probability
that the channel output is z € Z given that the channel input symbol from user 1is z € &,
the channel input symbol from user 2 is y, and that the channel state is s € S. The channel
operation on n-tuples x = (z3,...,z,) € X",y € V", s € §", and z € Z" is given by

n
W"(z|x,y,s) 2 1}—]:1 W (zk|zk, Yk, Sk)-

Using the average probability of error performance criterion with deterministic codes,
Jahn [16] characterized the capacity region, C(W), of the multiple-access AVC, assuming
that the region had a nonempty interior. Jahn did not address the question of how one
could decide whether or not C'(W) had a nonempty interior. In this paper we present
simple conditions on the channel transition probability W which determine whether or not
the capacity region C'(W) has a nonempty interior. The techniques used to establish these
conditions will also be used in a forthcoming paper [15] to study the case in which the
channel state sequences are constrained to lie in a certain subset of S™. Our work on the
multiple-access AVC was motivated by the recent results of Csiszér and Narayan [8] for the
single-user AVC. A preliminary study of the multiple-access AVC quickly reveals the far
more complex nature of this channel, and clearly indicates that a more intricate approach
is required. By combining extensions of the techniques and results of [8] with new ones of
our own, we have uncovered some rather intriguing behavior of the multiple-access AVC.
We summarize our results below.

In Section III, we introduce the crucial notion of symmetrizability as an extension
of the notion of single-user symmetrizability introduced in [8]. We show that if W is
symmetrizable (in the sense of Definitions 3.1, 3.2, or 3.3), then C(W) has an empty
interior. In Scction IV we discuss the decoding rule used to prove our major results. As
this rule is rather complicated, in Scction IV.B we describe the much simpler and universal

mazimum mutual information (MMI) decoding rule. In Section V we state our major



results. In particular we claim that certain nonsymmetrizability conditions are sufficient
to imply that C' (W) contains various open rectangles, and thereby possesses a nonempty
interior (cf. Theorems 5.1, 5.3, and 5.4). In addition, Theorem 5.5 gives conditions under

which the simpler MMI decoding rule can be used in the proof of Theorem 5.1.

I1. THE MULTIPLE-ACCESS AVC

We begin with the definition of a code for a multiple-access AVC.

Definition 2.1 Let N, M, and n be positive integers. If f, ¢, and ¢ are mappings with
f:{1,...,N} = &" and g:{1,...,M} =",
and
p: 2" - {1,...,N} x{1,...,M},

then the triple (f,g,p) is called a code. The mapping f is called an encoder for user 1;
the mapping ¢ is called an encoder for user 2, and the mapping ¢ is called a decoder. The

rate pair of this code is the pair of nonnegative real numbers!

log N log M
<°g o8 ) (2.1)

?
n n
Setting x; 2 f(e),e=1,...,N,and y; £ 9(5), 73 =1,...,M, we call xy,...,%xn codewords
for user 1, and we call yy,...,ya codewords for user 2. There is no requirement that the

codewords be distinct. Clearly, knowing f and ¢ is equivalent to knowing the codewords

x; and y;.
Remark. In the literature, (f,g,¢) is called a deterministic code in order to distinguish
it from more general random codes. Random codes are discussed in {4, p. 209].

We next introduce the concept of an achievable rate pair.

Definition 2.2 A pair of nonnegative real numbers, (R;, R,), is said to be achievable for

the AVC 1V if:

IThroughout this paper, log and exp are understood as being to the base 2.



For every 0 < A < 1, and every AR > 0, there exists a positive integer ng such that
for all n > ng, there exist positive integers N and M such that

log N log M

>R - AR  and > Ry — AR,

and such that there exists a code (f,g,¢) with the probability of decoding error

N M
ols) & =S T Wz € 27 p(a) # ()}Ixeyss) € A, Vs€Sh  (22)

Definition 2.3 The capacity region of the AVC W, denoted C(W), is defined by
C(W) 2 {(Ry, Ry): (Ry, Ry) is achievable}.

A few comments are in order here. First, it is clear from the definition that C(W) is a
closed set. Second, by the usual time-sharing principle [4, Lemma 2.2, p. 272], C(W) is
also convex. Consequently, if E is any subset of C(W), then the closed convex hull of E
is also a subset of C'(W).

Before proceeding further, we shall need the following notation. Let D(X x Y x Z)
denote the set of all probability distributions on X x ¥ x Z. For all Qxyz € D(X x Y x Z),

let
Ivaz(Qxvz) £ I(X A2Z),
Iyaz(Qxvz) 2 I(Y A 2),
Ivazp(Qxvz) & I(X AZ|Y),
Iyazix(Qxyz) = I(Y A Z|X),
Ivyaz(Qxyz) 2 I(XY A Z),

where the expressions on the right are the usual mutual information quantities computed
with the distribution indicated on the left. Next, suppose p € D(X), ¢ € D(}), and

r € D(S). We can define a probability measure on &’ x Y x § x Z by setting

(pxgxrxW)z,y,s,2) 2 p(z)gy)r(s)W(zlz,y,s).



After setting (p X ¢ X rW)(z,vy, 2) £ YdpxgxrxW)z,y,s,z), we then define

I:Y/\Z(p)Qa W) é réllr)léf IX,\Z(p xXqg¥X TVV),

onz(p,q, W) 2 Té%fS) Iynz(p x g x TW),

« A
IX/\Z[)?(pa W) = relgfs)h/\zw(l’ X qx rW),

inf Iyazix(p x ¢ x rW),

I§7A2,'|X(p)qavv) reD(S)

* A
IA’yAz(P, . W) = Tegf )IxyAz(P x g x rW).

Definition 2.4 Let

R*(p,q, W) £ {(Ry,R,): 0< Ry < Iynzpp(pia, W),
0 _<_ R2 < I§)/\z|,¥(p’Qa W),

0 S R] + R2 < I:I’y/\Z(p,QaW)}v

and denote by R*(W) the closed convex hull of

U R*(p,q, W).
peD(X),9€D(Y)

Theorem 2.5 (Jahn (1981) [16}). For every AVC W, we always have
C(W) c R (W), (the weak converse),
and, if C(W) has a nonempty interior, then

RY (W) C C(W), (the forward part).

(2.3)

(2.4)

(2.5)

The weak converse, inclusion (2.4), asserts that all achievable rate pairs must belong

to R*(W). The forward part, inclusion (2.5), asserts that every rate pair in R*(W) is

in fact achievable, provided C'(WW) has a nonempty interior. Obviously, one would like to

know exactly when C'(W) has a nonempty interior. In Section V we will give sufficient

conditions under which C(W) will have a nonempty interior. In fact, using techniques

unrelated to Jahn’s, we will show that under certain conditions, C(W) contains certain



open rectangles, proving that C(W) has a nonempty interior. In Section III we will give
sufficient conditions under which C'(W) will have one of the following forms, each with an
empty interior,

c(w) = {(0,0)},

CW) = [0,C\(W)] x {0}, or C(W) = {0} x [0,Ca(W)],

where

Ci(W) < sup  Iyazip(p,q, W) and  Cy(W) < sup  Iyaza(py 0, W).
PED(Y),9€D(Y) pED(X),9€D(Y)

III. SYMMETRIZABILITY

The various notions of symmetrizability presented below will play a crucial role in
determining whether or not C(W) has an empty interior. The definitions below generalize

the notion of single-user symmetrizability introduced in [8].

Definition 3.1 The AVC W is said to be symmetrizable-X'Y if there exists a transition
probability U from X x Y into & such that

S W(z|z,y,s)U(s|z',y") = Y W(z|z',y',s)U(s|z, y), Vz, ', y, v, =. (3.1)
If no such U exists, we say that W is nonsymmeirizable-X').

Definition 3.2 The AVC W is said to be symmetrizable-X if there exists a transition
probability U from A" into S such that

S W(zlz,y,s)U(sl|a") = > W(zl|z',y,s)U(s]z), Vr, 2', y, 2. (3.2)

If no such U exists, we say that W is nonsymmetrizable-X’.



Definition 3.3 The AVC 1V is said to be symmetrizable-) if there exists a transition

probability U from Y into S such that
S W(zle,y, WU (sly") = D_W(zlz,y,s)U(sly),  Va,y, ¢, = (3.3)
If no such U exists, we say that W is nonsymmetrizable-).

Example. Let &' =Y =8 = {0,1}, and let Z = {0,1,2,3}. Consider the adder channel
given by W(z|a,y,s) = 6(z —z —y — 8), where 6(t) 21ift=0, and 5(t) £ 0 otherwise.
For this channel, it is easy to show that if U satisfies (3.1), then U = 0. Since U = 0
is not a transition probability, the adder channel is nonsymmetrizable-X'Y. Similarly, it
is a simple matter to show that if U satisfies (3.2), then U(s|z) = (s — z), and so the
adder channel is symmetrizable-X'. Of course, an identical argument shows that the adder

channel is symmetrizable-).

Theorem 3.4 If the AVC W 1s symmetrizable-X'Y, then
C(WV) = {(0,0)}.

Proof. This result follows almost immediately from Csiszdr and Narayan’s “Proof of

Lemma 1” in [8, p. 187 through equation (3.29)].

Lemma 3.5 If the AVC W 13 symmetrizable-X, then
C(W) = {0} x[0,Co(W)],
where Cy(W) < sup I, 7,4(p, ¢, W).
p’q

Proof. Let n be any positive integer. Let N and M be positive integers. Suppose
Xi,...,XpN, each in A" are codewords for user 1, and suppose yi,...,yar, each in V",
are codewords for user 2. Let ¢(z) = (¢1(2z), ¢2(z)) be any decoder such that ¢;: Z" —
{1,...,N} and p2: 2" — {1,...,M}. If N > 2, we will show below, by using a procedure
similar to that in [8], that there exists some s € S™ with

] N

a7 2 2 Wz € 27 p(2) # (65)} Ixi vi,8) 2 1/4 (3.4)

=1 j=1




In other words, if N > 1, the code can not have an arbitrarily small probability of error
for every s € 8", Since the alternative N = 1 implies ’—°§lﬁ = 0, all achievable rate pairs
must have the form (0, R;). Clearly, C2(W) is the largest value of R, such that the pair
(0, R,) is achievable. By Jahn’s weak converse (2.4), Co(W) < sup,, I;,AZIX(p, q, W).

Suppose N > 2. Since W is symmetrizable-X’; let U be a symmetrizing transition
probability satisfying (3.2). For each 1 <7 < N,let S; = (Si1,...,5in) be an S™-valued
random variable whose components are independent and distributed according to

P(Six=38) = U(s|zir), 1<k<n.
Observe that for all z € Z", and all 7,7’, and j,
E[W"(zlxs,y;,8)] = [IE[W(zkleee yin Sik)]
k=1
= I3 W(zlzik yin $)U(sleix)

k=1 s
n

= JID°Wzklzik, ik, $)U(s|zi k)

k=1 s

= E[‘/I,n(z'xiayj, Si')]a (35)
with the third equality following from symmetrizability-X'. Next, let

M
eliti) & 2 S EIW({z s pa(2) # 8 Yo 5, S

By (3.5),
. 1 M
6(2,,2) = '—Z z E[I/Vn(zlxi’,yjasi)]
M
=1 zip1 (2)#
1 M
- = E[ ) IV"(z|x,',yj,Si/)]. (3.6)

1 "z (2)#¢

.
i

Now, if 7 # ' and ¢(z) = 1, then @i(z) # /. With this fact in mind, we can use (3.6) to
write, if ¢ % 1/,
e(i,7') + e(¢)9)
1 /\[\ .
2 -A_I-Z_JE[ Z W (zlxi$yj)si’)+ Z TV"(zlxi,y]-,Si/)]

z:p1 (2)Fi Zip1(2)=i

= 1. (3.7)



Now, recalling the definition of e(s) in (2.2), we observe that

1 N Af

S Wz € 27 pa(2) # i} X, Y50 9).

i=1j=1

Then

1=1

E[ eX(S,v)] = ']%]" Z e(i, Z/)

Next, observe that

LS Eler(S)] = S el )
N i3 A 7 iez,l

1 N(N-1)
> S ),
_ N-1
2N
> 1/4, since N > 2.

From this it follows that for some ', E[ex(S;)] > 1/4, which in turn implies the existence

of some s € S™ with e(s) > ex(s) > 1/4 so that (3.4) holds. O

By interchanging the roles of A and ), we have the obvious analog of the preceding

lemma.

Lemma 3.6 If the AVC W 1s symmetrizable-), then
CW) = [0,C:(W)] x {0},
where Cy(W) < sup Iinzy(p, 0, V).
Corollary 3.7 If the AVC W i3 symmetrizable-X and symmetrizable-Y, then
C(W) = {(0,0)}.

Clearly, the three kinds of symmetrizability defined above give simple conditions under
which C'(W) will have an empty interior. We conjecture that if ¥ is nonsymmetrizable-
A'Y, nonsymmetrizable-V, and nonsyminetrizable-Y, then every pair (R, IR,) € R*(TV) is
achievable; we have been unable to prove this. In order to state what we can prove, we

need the following two definitions.



Definition 3.8 For any q € D(Y), set (¢WW)(z|z,s) 2 Yy a(y)W(zlz,y,s). We say that
¢W is symmetrizable-X if there exists a transition probability U from & into & such that

ST (qW)(zlz, s)U(slz") = > (gW)(z]z’, s)U(s]z), Vz, z', 2. (3.8)

38

If no such U exists, we say that ¢WW is nonsymmetrizable-X.

Remark. If W is symmetrizable-X'Y and U satisfies (3.1), and if ¢ is any element of
D()), then multiplying both sides by ¢(y)q(y’) and summing over all y, y’ shows that ¢i¥
is symmetrizable-Y’. Similarly, if W is symmetrizable-X and U satisfies (3.2), multiplying

both sides by q(y) and summing over all y shows that ¢W is symmetrizable-A’ for every
q € D(Y).

Definition 3.9 For any p € D(X), set (pW)(z|y, s) £ v p(z)W(z|z,y,s). We say that
pW is symmetrizable-) if there exists a transition probability U from ) into § such that

S (pW)(zly, s)U(sly') = S (pW)(zly',s)U(sly),  Vy, ¥, 2. (3.9)

L

If no such U exists, we say that pIV is nonsymmetrizable-).

IV. DECODING RULES

Our major results are presented in the form of theorems stated in next section; the
purpose of this section is to introduce the decoding rule used in the proof of these results.
As this decoding rule is very complicated, we also introduce the much simpler (and univer-
sal) mazimum mutual information decoding rule (MMI decoding rule). Conditions under

which an MMI decoder will be effective are given in Theorem 5.5.

A. The Primary Decoding Rule

The decoding rule we use is an extension of the single-user rule developed in [8]. To

define our decoding rule, we proceed as follows. Recall that the type? of an n-tuple x € X"

2The reader unfamiliar with the notion of types may consult Csiszar and Kérner [4, pp. 29-33].

10



is defined to be the probability distribution Py given by Px(a) 2 N{(alx)/n for a € X,
where N(a|x) denotes the number of occurrences of a in the n-tuple x. In an analogous
way, the joint type of a pair of n-tuples, x and y, is defined by Pxy(a,b) 4 N(a,bjx,y)/n
for a € X and b € ), where N(a,b|x,y) denotes the number of occurrences of (a,b) in
the n-tuple ((z1,¥1),...,(Zn,Yn)). Let Do(X') denote the set of types generated by X'
more precisely, D,(X') is the set of P € D(X') such that P = P, for some x € X™. Let
P € D,(X)and Q € D,(Y) be types chosen as in the proof of Theorem 5.1 in Appendix A.
Also, let 17 be as in Appendix A. We shall use the following subsets of Z™. For s € §", and
t=1,...,N, let

J2s) & {z€ Z": D(Py 54||P x Py x QW) <}, (4.1)

where (P x Py x QW)(z, s, 2) 2 >y P(2)Q(y)Ps(s)W(z|z,vy,s), and where D(-||-) denotes
the Kullback-Leibler informational divergence [4, p. 20]. Next, let

P U I

srEST

If z € JP(s), then we say that (x;,s,z) is jointly typical. Thus, if z € J?, there must be
some s’ € 8™ with (x;,s”,2z) jointly typical. What we would like to do is use a decoder
which decides message 7 was sent whenever z € J? and z ¢ J? for all i/ # 7. In other
words, if there is a unique 7 such that z € J?, then we would decide message i was sent.
Unfortunately, this approach, sometimes called typicality decoding, will not suffice for a

general AVC [8]. We need a stronger decoding rule. To help us decide between ¢ and 7’

when z belongs to both J? and J2, we will use the set
Jis) £ {z€eZ":Vi'#iz€ J? = I(x;z A xpls) < n}, (4.2)
where I(x,;2 A xu|s) denotes I(XZ A X'|S) computed using Pyxisz = Py, x, sz Let
2 (I NI (4.3)

S’ES"

We note that this definition implies that for any fixed s € §*,

Fe = () [ U TN ) € [T%(s)°U TX(s)°). (4.4)

i
S’ES”

11



We claim that Fy,..., Fy are pairwise disjoint. This is a consequence of the assumption in
the statement of Theorem 5.1 that ¢1V is nonsymmetrizable-Y .3 Let ¢, be any mapping

defined on Z" such that for each 1,
z€F, = ¢i(z) =1, (4.5)

ie., F; C Z"is the decoding set for message 1. Note that in general, '61 F’; is a proper subset
of Z™; however, it will turn out that any ¢, satisfying (4.5) will ;\—Jfﬁce. To summarize,
the mapping ¢, will assign message  to the output z if for some s', (x;,s’,2) is jointly
typical and, whenever i’ # 7 is such that (x;,s”,z) is jointly typical for some s”; then
I(x;z A xp|s’) < 5. It remains to define the decoding rule for the messages of user 2. To

this end, for each ¢ = 1,...,N and each j =1,..., M, let

K{(s) 2 {zez2": D(Py,y,52llP x Q x Ps x W) < n}, (4.6)
K?j 4 U I\'?j(s”),
S”ES"

K}i(s) 2 {zez":vy #j,2 € K = I(x;y;z Ayjls) <n).

Now let
Gi 2 U [EYs)NnKL(s)). (4.7)
Slesn
For future reference, note that for any fixed s € S,

G§; C [K{(s)°U KL(s)°] (4.8)

We claim that for each i, Gii,...,Gip are pairwise disjoint. This is a consequence of
the assumption in Theorem 5.1 that ¥ is nonsymmetrizable-); we establish this claim in
Appendix B. Let ¢, be any mapping defined on Z" such that for all 1, 7,

S F,'ﬂG,‘j - (,92(2) =]

Let

w(z) 4 (©1(2z),pa(2)).

3As a conscquence of Lemma A2, if ¢IV is nonsymmetrizable- X', then a type Q can be chosen so that

QW is also nonsymmetrizable-X. See also Appendix B.

12



In other words, we first try to decode message @ from user 1, and only then do we try to
decode message j from user 2. (The idea of first decoding message ¢ and then decoding
message j also appears in the context of source coding; sce Slepian and Wolf [20}.)

As demonstrated in Appendix A, this decoding rule enables us to prove Theorem 5.1.

Since this decoding rule is so complicated, we now describe the much simpler and universal

MMI decoding rule.

B. The Mazimum Mutual Information Decoding Rule

The decoder ¢ above was described in terms of the sets {F;} and {G};} defined by (4.3)
and (4.7). For a given z € Z™, determining which F; and G;; that z belongs to would be a

complex task. Consider the following maximum mutual information (MMI) decoder. Let

F 2 {zeZ": I(xiNz)> I(xy Nz), V' # 1} (4.9)
and
Gi; & {z€2": I(y; nzlx)) > Iyj Nzlx), V)’ # j}. (4.10)

Obviously, the {F;} Y, are disjoint, as are the {G;} 1L, for each 7. If ¢(z) = ($1(2), p2(z))

J=

has the property that

z€F = ¢\(z)=1 (4.11)
and
z€ F;NG; = ¢i(z) = j, (4.12)

then we say ¢ is an MMI decoder. Clearly, the decoder ¢ is much simpler than the decoder
¢ described above. More importantly, ¢ is universal in the sense that the definition of the
scts {F,} and {G;j} does not depend in any way on V. In the next section we will discuss

conditions under which an MMI decoder will be useful.

13



V. MAJoRrR RESULTS

In this section we present nonsymmetrizability conditions under which the capacity
region C(W) contains certain nonempty open rectangles of achievable rate pairs. We also
give conditions under which an MMI decoder can be used to achieve rate pairs in these

same rectangles.

Theorem 5.1 Suppose W 1is nonsymmetrizable-y. Fiz any p € D(X) and ¢ € D(Y).
Further, suppose qW i3 nonsymmetrizable-X. If

0 < Ry < Iypz(pyg, W) (5.1)

and
0 < R, < I;)/\ZI/I’(p’Qa"V)’ (52)

then (Ri, R3) 18 achievable in the sense of Definition 2.2.
Proof. See Appendix A.

Remark 5.2 Suppose p € D(X) and ¢ € D()) are strictly positive. If ¢V is nonsym-
metrizable-A’; and if W is nonsymmetrizable-Y, then I3 ,z(p, ¢, W) and I;,AZ}X(p,q,I/V)
are both strictly positive. To see this, suppose I}Az(p,q, W) = 0. Then there is some
r € D(S) with Tyaz(p x ¢ x W) = 0. This implies 3_,(¢W)(z|x, s)r(s) is not a function of
z. But then taking U(s|z) = r(s) will symmetrize ¢W. Similarly, if I3,z v(p,q, W) = 0,
there is some r € D(S) with Iyszix(p x ¢ x W) = 0. This implies Y, W(z|x,y, s)r(s) is
not a function of y. Taking U(s|y) = r(s) shows that IV is symmetrizable-Y. An analogous

observation for single-user AVC’s was made in (8].

Upon proving Theorem 5.1 we must also have the following analog obtained by interchang-

ing the roles of A and ).

Theorem 5.3 Suppose W is nonsymmetrizable-X. Fiz any p € D(X) and ¢ € D(Y).
Further, suppose pW is nonsymmetrizable-). If

0 < Ry < Iyagy(pyg, W) and 0 < Ry < Ippaz(pyg, W),

then (Ry, R;) is achievable in the sense of Definition 2.2.

14



We now state our major result.

Theorem 5.4 If WV is nonsymmetrizable-Y and there exists a ¢ € D(Y) such that qW 1is
nonsymmetrizable-X, or if W is nonsymmetrizable-X and there exists a p € D(X) such

that pW is nonsymmetrizable-Y, then C(W) = R*(W).

Proof. See Appendix A.

As the proof in Appendix A shows, Theorem 5.4 relies on Jahn’s forward result, in-
clusion (2.5), together with our forward results, Theorems 5.1 and 5.3. We will say more

about this in the next section.

Our final result gives conditions under which an MMI decoder can be used in the proof

of Theorem 5.1.

Theorem 5.5 If p € D(X) and ¢ € D()Y) are such that
Ivaz(px gxr x W) > Isaz(px gxrx W), Vr € D(S), (5.3)
and
Iy,\z|,y(p XgXrX W) > ISAZIX(p X qgXTrX VV), Vr € D(S), (54)

then for
0 < Ry < I:w\z(P,QaVV) and 0 < R2 < I,)k)/\Z|X(p7Q$vV),

there exists an € > 0 such that for all sufficiently large n, if N 2 |lexp(nR;)| and M 2
lexp(nR;)|, then there exist codewords for user 1, xq,...,Xy, each in X", and there exist
codewords for user 2, y1,...,Ynm, each in Y", and there exists an MMI decoder ¢ with

N M
= S Wz € 2" @(2) # (6 )}xnYas) < exp(—ne)

i=1j5=1

holding uniformly for cvery s € S™.

Proof. See Appendix D.
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Observe that Theorem 5.5 makes no explicit assumptions concerning nonsymmetrizabil-
ity. We emphasize that the proof of Theorem 5.1 uses the nonsymmetrizability assumptions
only to show that the decoding sets { F;} and the {G};} are disjoint. For the MMI decoder,
the {£} and the {G;;} are obviously disjoint. We also point out that while no knowledge
of W is required to define ¢, the conditions (5.3) and (5.4) do depend on W.

VI. CONCLUSIONS

In 1981, Jahn [16] characterized the capacity region C'(W) of the multiple-access AVC,
assuming that C(W) had a nonempty interior. Jahn did not address the question of how
one could decide a priori whether or not C(W) had a nonempty interior. In Section III
we showed that if W is symmetrizable in the sense of Definitions 3.1, 3.2, or 3.3, then
C(W) has an empty interior. We then gave sufficient nonsymmetrizability conditions
under which C(W) contains various open rectangles, and thereby possesses a nonempty
interior (cf. Theorems 5.1 and 5.3). However, we still have the following open problem.
If W is nonsymmetrizable-X, nonsymmetrizable-), and nonsymmetrizable- Y}, does it
follow that C(¥) has a nonempty interior? We conjecture that this is the case.

To prove Theorem 5.4, in Appendix A we appeal to Jahn's forward result, inclusion
(2.5), to show that if W is nonsymmetrizable-) and ¢W is nonsymmetrizable-X', then
R*(W) C C(W). To see why we took this approach, suppose that ¥ is nonsymmetrizable-
X and nonsymmetrizable-), and suppose that for some p € D(&X') and ¢ € D(Y), pWV is
nonsymmetrizable-) and ¢W is nonsymmetrizable-Y". Then Theorem 5.1 and Theorem 5.3

do not in general combine even to show that C(IV) contains the region

{(Rl, R2) : 0 S Rl S I}'Az|y(P, an)’ 0 S R2 ..<_ I;U\Zlfl'(p’qa ‘/V)a
0 <Ry + Ry £ Iyyaz(p,a, W)}

(6.1)
This can be seen by considering the inequalities

It ¢, W) & inf I X W
xyAz(P q ) rel%(S) xynz(p X g x r¥V)

= it I < 1) + Tynziy w)
rel‘B(S)[ xaz(p X g X W) + Iypziv(p x ¢ x v W)
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> inf Iy w inf I w
= lg(s) ynz(pxgxr )+Tc_lg(5) yazix(p X ¢ x rW)

TE
= Iyaz(P, & W) + azix(py g, W) (6.2)
and
I(;’y/\Z(p’ q, I/V) Z I;U\Z(pa q, VV) + I;.'Azly(P, q, I/V) (63)

If either inequality is strict, then the closed convex hull of the union of the open rectangles
{(RI)R2) :0< Rl < I:l’/\Zl)?(p)QaW)7 0< R2 < I;)AZ(p’an)}

and

{(R1,R2): 0 < Ry < I3nz(p, ¢, W), 0 < Ry < I z2(P, ¢, W)}

will be a proper subset of the region in (6.1). It follows that in general, our approach
cannot give a direct proof that R*(W) C C(W). As a possible topic of future research,
we suggest that a more complicated decoding rule might overcome this difficulty (cf. the
Remark at the end of Appendix A). Of course, in the special case that for every p € D(X)
and every q € D()), one can show that cach of the five different infima in (6.3) and (6.2)
is achieved by the same 7 € D(S) (7 depending on p and ¢), Theorems 5.1 and 5.3 can
be combined with a time-sharing argument to give a proof that R*(W) c C(W) without
appealing to Jahn’s result.

A very important part of our proof of Theorem 5.1 was the decoding rule defined
in terms of the decoding sets F; and G;; (cf. (4.3) and (4.7)). As we pointed out, this
decoding rule is significantly more powerful than the so-called typicality decoding rule.
However, as seen from the definition of the sets F; and G;;, our decoding rule is quite
complicated. For this reason, we included Theorem 5.5 to give conditions under which the
simpler (and universal) maximum mutual information decoding rule could be used in the

proof of Theorem 5.1.
ACKNOWLEDGEMENTS

I am deeply grateful to my advisor, Professor Prakash Narayan, for introducing me to
the arbitrarily varying channel, and for many discussions during my research. I also thank

Professor Imre Csiszar for his helpful suggestions.

17



APPENDIX A

PRrROOF OF THEOREMS 5.1 AND 5.4

Recall that the variational distance between any two distributions, P, Q € D(X), is

given by
d(P,Q) £ 3 |P(z) — Q(z)]-

zelX
Lemma A.1 (Projection). For every Pxy and Qxy in D(X x )),

d(Px,Qx) < d(Pxy,Qxvy), and D(Px||Qx) < D(Pxy|Qxy).

Notation. For joint types, if Pxy € D,(X x Y), we say that (x,y) € Txy if and only if
Py y = Pxy. We denote by D, (Y|x) the set of all Pyy € D,(X x )) such that Px = Px.

Before proceeding with the proofs of Theorems 5.1 and 5.4, we need to introduce two
auxiliary functions and an associated lemma. Observe that W is symmetrizable-Y if and

only if for some transition probability U from ) into & we have

FY(U) = o,
where
FY(U) & max | W(zle,y,s)U(sly) = X Wiela,y',s)Ulsly)|. (A1)
Now, let 8 s
Ey(W) & inf FYY(U). (A.2)

Since F)‘,V is a continuous function on the compact set of transition probabilities from Y
into &, the infimum in (A.2) is always achieved. It follows that W is symmetrizable-) if
and only if £3(W) = 0. Similarly, if ¢ € D(Y), and if U is any transition probability from
A into §, we let

F¥(q,U) & max
z,x’,z

Y (aW)(z|z, s)U(sla") = S (gW)(z|2', s)U(s|z)|, (A.3)
and we sct
Ex(q,TV) 2 inf FY¥(q,U), (A4)

The following lemma says that £y (¢, V) is a uniformly continuous function of ¢ € D(}).
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Lemma A.2 For any q, § € D(Y),

I‘fX(QaVV) - éX((.’i)VV)' < d(q';(j)

Proof. Sec [14, Lemma 3.18, p. 39].

Proof of Theorem 5.4. By Jahn’s weak converse, inclusion (2.4), C(W) C R*(W). Now,
suppose that W is nonsymmetrizable-) and that for some ¢, ¢W is nonsymmetrizable-X'.
By combining the preceding lemma with the fact that every ¢ € D()) can be approxi-
mated by a strictly positive distribution, we may assume that g is strictly positive. Choose
any positive p € D(X). By Remark 5.2, I}, z(p, 9, W) and I3, z/x(p, ¢, W) are both pos-
itive. By Theorem 5.1, C(1W) has a nonempty interior, and by Jahn’s forward result,
inclusion (2.5), R*(W) C C(W). O

Proof of Theorem 5.1. Let us first state explicitly what we shall prove.

Provided that the hypotheses of the theorem hold, we shall prove that there exists
an ¢ > 0 such that for all sufficiently large n, if we take N = |exp(nR;)| and M =
|exp(nl2)|, then there exist codewords xy,...,xy for user 1, each in A", and there

exist codewords yi,...,ynm for user 2, each in Y, and there exists a decoder ¢ with

N M
S S WN({a € 2 0() £ () ke yis) S exp(-nef8),  Vse & (A5)

Now, suppose that R; satisfies (5.1) and R, satisfies (5.2). Then we can choose § > 0
so small that (cf. (A.2) and (A.4))

0 < 26 < min{{x(q,W),fy(W)}, (A6)
0 < Ry < I}AZ(I),(_],W)—26,

0 < Ry < Iynzul(p,g,W)—26.

Next, observe that we can always find p € D(V') and § € D(Y) such that for all 2 € .V,
p(z) > 0, and for all y € Y, §(y) > 0, and such that d(p, p) and d(q, §) are both sufficiently

19



small so that

Ex(g, W) < Ex(§,W)+6/2,
Iyaz(p, ¢, W) < Iyaz(0,4, W)+ 6/2,

IS)/\ZH'(P’ q, VV) < I,;U\ZM'(IA’, é) W) + 6/2
Let 8 £ ymin{min (<), min §(y)} > 0. Choose n with

) 5 ﬂ452 ,3652
0 <m< mm{i’ 161n2’161n2}’

(A.7)

and so small that if P() and P(® are any two distributionson X x Z oron X x Y x Z
with D(PW||P™) <, then

Ixaz(PM) = Ivaz(P®)| < 6/2 (A.8)
and
Iynzix(PD) — Iyazix(PP)| < 6/2. (A.9)

Choose () < € < min{R,, Ry,n/5}. We must now specify how large n must be for the
theorem to hold. Obsecrve that for all sufficiently large n, we can find types P € D,(X)
and Q € D,(Y¥) with d(p, P) and d(§, @) both so small that not only do we have P(z) > f
for all z € A’ and Q(y) > B for all y € Y, but also

6/\’(‘?7 W) < fA’(Q7 W) + 5/2)
I;{’/\Z(ﬁ’ éa W) S I;,’/\Z(Pa Qa W) + 6/27

I;)AZ|X(ﬁ7daIV) S I;)AZ|X(PaQaW)+5/2,

which implies

6 < E/\’(Qa W)a (A].O)
Ri+é6 < Ipaz(P,Q, W), (A.11)
R2 + 6 S I;]AZIX(P7 Q, I/V) (A12)

We further assume that n is large enough that if
N £ |exp(nR;)] and M 2 |exp(nRy)], (A.13)
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and if

and R, 2 logj\/.f,

n n

log N
R &2k

then e < By < Ryand ¢ < R, < R,. (Weneed R, > € and R, > ¢ in order to apply
Theorem C.1 below.) Hence, from (A.11) and (A.12) we get

By +6 = Iiaz(P,Q, W), (A.14)

and

Ry +6 < I5hz10(P,Q,W). (A.15)

In the remainder of this proof we drop the underscore from R, and R,; hence, from here
until the end of the proof, references to Ry, R;, (A.11), and (A.12) are actually references
to R, R,, (A.14), and (A.15). Also note that this convention means that instead of (A.13),

we can write

N = exp(nR;) and M = exp(nR,).

Regard n as fixed so large that we have found P € D,(X) and Q € D,()) satisfying
(A.10), (A.11), and (A.12). Now, assuming n is large enough,! we select codewords for
user 1, X4, ..., Xn, each of type P € D,(X'), and we select codewords for user 2, y1,...,yar,
each of type Q € D,(Y), such that the codeword properties we use below in the proof will
hold. The fact that we can do this is the subject of Theorem C.1 in Appendix C. Since
the properties that we need seem quite strange at first, we will not introduce them until
they appear naturally in the course of the proof. The reader is referred to Theorem C.1
in Appendix C for a complete description of these properties.

The next step in the proof is to define the decoding rule. This was done in Section IV.A.

After rereading Section IV.A, it is now easy to see that
p(z) #(1,5) => pi(z) #1 or paz) #j,
or, in terms of the decoding sets,

©(z) # (i,j) = z€ FfU[F/UG{;] = FfUGE

13°

4How large depends only on ¢ and on the cardinalities of the sets A', Y, and S.
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Now, for fixed s € S, let e(s) be as in (2.2). Clearly, applying the union bound followed
by (4.4) and (4.8) yields,

1 N M
C(S) S NAI ZZiﬂ/n(Fc U GC |xlaYJas)
i= 1_1 1
N
< W™ Ff|xi, ¥,
— N]\{[ ;JX:I ( IX y; S)
1 N M
N]\l ZZWH ?j'xi)yjas)
1—1] 1
< N]\[ Z Z‘Vn JO ‘U J}(S)C|X,-,yj,s)
=1 =
1 N M
+ W37 - DD WHIEL(s)TU KL(s)|xs,y;,8).
i=1 j=1

Next, observe that
K?j(s) C Js) = Js)C K?j(s)",

and apply the union bound again to obtain
N M

os) < o 3 D WKY(S) i )

=1 j=1
1 N M

—_— n 1 c . )
+ N]M’ ;]Zl W (Jl (S) |X,,yJ,S) (A16)

N M

ZZ W™ (I (s) x4, ¥ 5, 9).

11]1

We now turn to the task of bounding e(s) uniformly for s € S®. Each of the three

preceding sums will be treated separately. To begin, let
N M

eo(s) £ NM;]ZIW"I (s)°1x:,¥;, 8)- (A.17)
Set
A(s) £ {i:I(x;As)>e¢},
and
B(s,x:) & {j:I(y;Axis)>e).
Then
1 M
eos) < —IA(s)I+N Z MZW"(K (8)°1xi, ¥, 8).

[SV]
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Continuing,

1 1 1 1
c(s) < FlAGI+5 T (FBExI+ 57 T WK i y;s)
N N ae M M ohex) ! !
< ZJA(S)| + o max | B(s, x,)]
S N s +]W max S, X;
1 n > C
TN ( > WrI(s) Ixf,yg',S)>. (A.18)

igA(s) J¢B(sxi)
Fix 1 ¢ A(s) and j ¢ B(s, x;) and observe that if Pxysz € D,(Z[x;,y;,8), then (X AS) <
e and I(Y A XS) < ¢e. Now, write (cf. (4.6))
K(s)® = U Tz1xv s(Xi,¥i,8)-
Pxysz€Dn(Z|%i,y;8): D(Pxysz||[PXQxPsxW)>n

Then using {4, inequality (2.8), p. 32], the union bound, and the Type Counting Lemma
[4, Lemma 2.2, p. 29] (see Notes following (A.19) below),

W EG(s) %0, ¥5,8) < 3 exp(—nD(Pxyszl|Pxyvs x W))
= Y exp[—n(D(PxyszllP x Q@ x Ps x W)
~I{(XAS)~I(Y AXS)]

3 exp[ ~n(n — 2¢)]
(n + 1)REIDISI

IA

IN

exp[—n(n — 2¢))

IA

exp[ —n(n — 3¢)]

exp(—2ne), since 1 > 5e¢. (A.19)

IA

Notes. (i) The summations are understood to be over all
PXYSZ & Dn(ZIX,’,y]',S) such that D(P,\'ysz”P X Q X Ps X VV) >7n.

(i) We assume n is so large that (n + 1)¥IVISIZ) < exp(ne). We caution the reader that

we will make similar assumptions as needed below without comment.



Now, it is a property of our codewords (Theorem C.1, inequalities (C.1) and (C.2)) that

for all s € §™, and all x € A",
1 1
—|A(s)| £ exp(—ne/2) and —|B(s,x)| < exp(—ne/2).
N M
Putting these inequalities along with (A.19) into (A.18) yields
eo(s) < 3exp(—ne/4). (A.20)

We now bound the third sum in (A.16). The second sum is treated similarly. Let

N M

1 - c
er(s) = WZZ”’"(—’*L'(S) %, ¥5,8). (A.21)

1=1 j=1

For each ¢, j, and s, write

I\”}j(s)C = U [I\’ioj, N{z: I(x;y;zAyz|s) >n}l]
J#s

We claim that

K € {z: I(yy Az|x;) > Ry +n).

This is easily seen as follows. Suppose that z € K?,. Then there is some s” € S™ such that

z € K{;(s”). This means that
D(Px'.,yj,,su,zHP X Q X Pen x W) < 1.
Applying the Projection Lemma A.1,
D(Px;y, 2l|P x Q x PsuW) < . (A.22)
By (A.22) and the definition of n in regard to (A.9), we can write

I(y]‘r A ZIX,') = Iy/\ZM'(thyJ"-Z) > I)MZM’(P X Q X PSMW) - 5/2
2 I;MZ]X(P) Q, W) - 5/2
Using (A.12), followed by the fact that we chose nn < §/2,
Hyynalx) > (Ry+6)-6/2
> R2 -+ 7.
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Having established our claim, we then see that
]{z.lj(s)c C U {z : I(y]v A z|x,-) > Ro+1n and I(x,-yjz A y]-:|s) > 17}. (A23)
i'#I

The next step is to write

{(77#33 n U {: x,¥5,Y5,8) € Txyyis}

Pxyyts

U {i'#7:xuy5¥58) € Txyyis},

PXYY’S

{3 # 3}

where the union is over all joint types Pxyyrs € Dpo(X x Y x Y x §). So, we can write
Klisyc U ( U{z : I(y; A zlx;) > Ry +n and I(x;y;z Ayjls) > 17})
Pxyyrs " §'#5:(x0.¥; ¥ 8)€Txyyris

We use this inclusion as follows. By setting

8:(s) 2 U {z: I(yj Az|x:) > Ry +nand I(xiy;z Ayjls) >n},  (A.24)
P'#5(Xi,Y;Y,08)€Txyyes

it is clear that we can write

1 NM
eis) < D w2 2 Wh(Bi(s)xi, v ;). (A.25)
P NM o
XYY's =1J=
Fix a type Pxyy's and consider
1 N 1 M
= ;(—M 2 WO, ). (A.26)

Observe that if i has the property that there is no j’ with (xi,y;,s) € Txyss, then
8:i(s) = ¢, and W(8;;(s)|xi,¥;,8) = 0 for all j. Now, it is a property of our codewords
(Theorem C.1, inequality (C.7)) that if
I(XAY'S)> |Ry = IY'AS)T +¢, (A.27)
then
1. . .
-Nl{z : 35’ with (x;,¥;,8) € Txys}t| < exp(—ne/2).

Similarly, for fixed 1, if j has the property that there is no J' with (x;,¥;,¥;,8) € Txyy's,
then 8,(s) = ¢, and W*(8;;(s)|x;,y;,8) = 0. Again, it is a property of our codewords

(Theorem C.1, inequality (C.8)) that if
Y AXY'S)> |Ry— I(Y' AXS)|t +¢, (A.28)
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then
Al—,[l{j : 35" # j with (xi,¥5,¥5,8) € Txyyis}| < exp(—ne/2).
From this we see that if (A.27) or (A.28) holds, then the quantity in (A.26) is bounded
above by exp(—ne/2).
We now consider (A.26) when (A.27) and (A.28) do not hold. Rewrite (A.24) as
b:i(s) = U Cis
F#IHXY Y 8)€Txyyrs
where
. Cjr 2 {z : I(yj Azlx;) > Ry +n and I(x;y;z Ayjls) > n}.
We would like to apply the union bound to W™(8;;(s)|x;,y;,s). Before doing so, we bound
the quantity W™(¢;|x:,y;,s) uniformly for j' such that (x;,y;,y;,8) € Txyy's. To do this,

write

Cir = CnZT

Gy N U Tzixyy's(Xi,¥5, Y54 S)
Pxyyrsz€0n(Z1X1Y;.¥,1.8)

= U [{i N Tzixvy s(Xi, Y5, Y35 8) - (A.29)
Pxyyisz€Dn(Z]Xiy;.¥,18)

Now, consider a set of the form

v = (N Tz xvyis(Xi, Y5, Y5 8)

for some joint type Pxyy'sz € Do(Z|X:,¥;,¥j,8). The first step is to bound W"(v|x;,y;,s)
independently of the particular type Pxyyisz € Do(Z2|xi,¥;,¥,,8). In other words, we
need a bound that depends only on Pxyyrs = Px,y,y, s Now,if z € v, then Py, y vy sz =
Pxyyisz and

I(Y'AZ|X) > Ry+n, (A.30)

and

I(XYZAY'|S) > 7. (A.31)



In other words, either v = ¢ or (A.30) and (A.31) both hold. Now, observe that by (4,

Lemma 2.5, p. 31},

vl < |Tzixvys(x,Y5,¥5,8) < exp[nH(Z|XYY'S)].

Then note that since

v C Tzixyvis(X,¥5,¥58) C Tzixys(Xi, ¥, s),

we have, by [4, equation (2.7), p. 32],

267 = W(zlxi,y;,8) < expl—nH(Z|XYS)).

We can now write

Ivn(7‘xi7 Yis S) = Z vvn(z'xia Y S)

zey

|vlexp[ —nH(Z|XY S)]

IA

IA

exp[nH(Z|XYY'S)] - exp[—nH(Z|XYS)]

exp| —nI(Y'A Z|XY S)], (A.32)

where the distribution Pyyyrsy satisfics both (A.30) and (A.31). We must still lower bound

I(Y' A Z|XY S) independently of Z. There are four cases to consider:

1.

o

4.

R, > I(Y'AXYS)
I(Y'AXYS) > R, > I(Y'AXS)
I(Y'AXS) > Ry > I(Y'AS)

I(Y'AS) > R,

In the first three cases, we will use the inequality

I(Y'AZ|IXYS) = IY'AYSZ|X)~I(Y' AYS|X)

IY'AYSZIX)~ I(Y' AXYS) + I(Y' A X)

vV

IV AYSZ|X)~I(Y'AXYS)

Y

IY'AZ|IX)—I(Y'AXYS). (A.33)
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By (A.30),
I(Y'AZ|XYS) > Ry+n—IY'AXYS).

Substituting this into (A.32) yields
W"(ylxi,¥j,8) < exp[—n(n+ Ry — I(Y'AXYS))],

independently of Pxyyrsz € Du(Z|xi,y;,¥;,8). Applying the Type Counting Lemma to
(A.29), we get

W™¢i|xi,¥5,8) < exp[—n(n—e+ Ry — I(Y'AXYS))].
By another property of our codewords (Theorem C.1, inequality (C.5)),
|{]I . (xi,yj,yj',s) - Txyyls}| S exp[n(|R2 - I(Y’ A XYS)|+ + 6)] (A34)

Thus
W™(8,(s)|xi,yj,8) = W™ U ¢y %6, Y5, 8)

F#5(XiY ¥, 8)€ETxyyrs

is bounded above by
exp[—n(n — 26 + Ry — I(Y' AXYS) — |R: — I(Y' A XY S)|1)].
In case 1 we get
W™ (0:5(s)Ixi,y5,8) < exp[—n(n —2e)].
In case 2 we use the fact that the inequality in (A.28) fails. This leads to
IYAXY'S) < Rp—I(Y'AXS)+e.
Rewriting this as
IIYAXY'S)+I(Y'AXS) £ Ry +e¢,

or equivalently as

IYAXYS)+ (Y ANXS) < Ry+e,

we obtain I(Y' A XY S) < Ry + €. Thus in case 2,
W™(6:5(s)Ixi y;,8) < exp[—n(n — 3e)].

28



In case 3 we use the fact that both inequalities, (A.27) and (A.28), fail. So,
IYANXY'S) < ¢,

and

[XAY'S)+I(Y'AS) < Ry+e.
Write
I(Y'AXYS) = I(Y/\XY'S’)+I(X/\Y'S)+I(Y'/\S)

~[H(X)+ HY)+ H(S) - HXYS)]

< R2+25.

So, in case 3,
W™(8;(s)xi,yj,8) < exp[—n(n —4e)].

Since the bounds for the first two cases imply the third, in the first three cases, we may

use the preceding inequality. Now, in case 4 use (A.31) to write

I(Y'AZIXYS) = I(XYZAY'|S)=I(XY AY'|S)

> n—I(XY AY'|S).
We claim that I(XY AY’|S) < 2¢. Since the inequalities in (A.27) and (A.28) fail,
I(XAY'S) < ¢ and IY AXY'S) < e.
Writing

XY AY'|S) = (Y AXY'S)4+I(X AY'S)
—[H(X)+ HY )+ H(S) - HXYS)]

< 2,

we have I(Y' A Z|XY S) > n — 2¢. Combining this with (A.32), and applying the Type
Counting Lemma to (A.29) yields

W™((ilxi,yj,8) < exp[—n(n— 3e)].
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Since in case 4, the upper bound in (A.34) reduces to exp(ne), we have

IV”(GU(SHX,',}’]',S) = ‘an( U CJ" |X,’,y]’,5)

F#EFXOY) Y, 8)€Txyyis

< exp[—n(n —4e)].
We then have, in all four cases, when (A.27) and (A.28) both fail,

W™0;;(s)|xi,¥5,8) < exp[—n(n — 4e)]

IN

exp(—ne), since 7 > 5e,
< exp(—ne/2).

To summarize, regardless of (A.27) and (A.28), we always have the quantity in (A.26)
bounded above by exp(—ne/2). By (A.25) we have

eifls) < ) exp(—ne/2)

PXYY’S

(n + 1)WIPPISlexp(—ne/2)

IA

IN

exp(ne/4) exp(—ne/2)
exp(—ne/4). (A.35)

Finally, by using a similar procedure, whose main difference is that instead of (A.33)

we use the fact that
I(X'AZIXYS) = I(X'NXYSZ)-I(X'ANXYS)
> I(X'ANZ)-I(X'AXYS),
and also the fact that

I(X'A Z|XYS)

I(XYZAX'|S) - I(XY A X'|S)
> I(XZAX'|S)-I(XY AX'|S),

we can bound the middle term in (A.16) by exp(—ne/4). Combining this with (A.20) and

(A.35), we have, for every s € S™,
e(s) < 8exp(—ne/4).

30



Since for all sufficiently large n, 8 < exp(ne/8), we see that (A.5) holds. - O

Remark. Before arriving at the decoding rule described in Section IV.A, we tried the

following. Let

Ki(s) & {ze€2":Vi'#i,2 € K = I(xiy;z Axals) < n},

I7i(s) A (g€ 2"V #£4, Y5 #j,z € K = I(xiy;z Axeyjyls) < 0},

and set

E; & U KXY N KL(s) N KX(s") N K§(s)].

J
Slesn

Then with only a little extra care, one can show that the {E;;} are pairwise disjoint,
provided that W is nonsymmetrizable-X ), nonsymmetrizable-X, and nonsymmetrizable-

Y. One would then like to use any decoder ¢ with the property that
2 € Ej = o(z) = (4,9).

Our problem with this approach is that we have been unable to find a useful bound on

(compare (A.34))

H(i/’j,) : (Xi)xi’>yj> Yj”s) € 7:\’X’)"Y’S}l-

APPENDIX B

THE DECODING SETS

In this appendix we prove our claim that for each i, the decoding sets {Gi;}IL, defined
in equation (4.7) are pairwise disjoint. Based on this proof, it can easily be shown that
the sets {F;} defined in equation (4.3) are also pairwise disjoint.

Suppose that for some pair j # j', 2 € G;; N G;y. Since z € Gj, there must be some
s € S™ with

z € K(s)N Ki(s).
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Similarly, since z € G, there must be some s’ € ™ with

z € K, (s") N K} (s).

Now, since z € K7i(s'), z € K. Since we also have z € IV;(s), we conclude that
I(xiy;z Aypls) < n.
Arguing similarly, since z € I\'f’j(s), z € K?j. Since we also have
z€ Kj(s) = {z€2":Vj#j' 2 € Kj;= I(xiyyzAy;l|s') <n},
we conclude that
I(xiyjz Ay,ls) < n.

We also obviously have

(B.1)

(B.2)

D(Py,y,szl|P x Q@ x Psx W) <n and D(Px‘-,yj,,s',z”P X QX PyxW) < n (B.3)

Let Pyyyissiz = Pey,y 882 Note that Py = Py» = () and Py = P. Thus,
D(Pxysz|PxQ xPsxW) < n and I(XYZAY'|S) < g
and
D(Pxyigizl|Px Qx Pg x W) < n and I(XY'ZAY|S) < n.
We can rewrite the two incqualities in (B.5) as

log Pxyisiz(z,y',s,2) < n
P(z)Q(y")Ps(s)W(z|z,y’,s) ~

> Pxyvsz(z,y,y,s,2)

!
T\HY 08,2

and

Py g ! ,
> Pxvvisz(z,4,y,s,2)log 5o sz(x,;y,y 8, 2)Psi(s) <
T,Y:Y' 9,2 PXY'S'Z(:L‘,?/ 1S, Z)PYS’(ya S)

Adding these two inequalities yields

Pxyyisiz(z, 9,9, s, 2)
PXY]"S'Z(xay)y,)Sa z log 0 >~
2 18 B GIQ()W (2l s 3) P (5T9)

We recognize the preceding expression as an informational divergence. If we let

V'(Z|.’L‘,y,y’) 2 ZPV(ZL’B’:‘/”S)PS’IY(Sly)a
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then applying the Projection Lemma A.1 yields
D(Pxyyiz]|P x Q@ x Q x V') < 2n.

By Pinsker’s Inequality [4, Problem 17, p. 58],

d(Pxyyiz, PxQx Qx V') < 1/(2In2)D(Pxyyz|P x Q x Q x V')

< 2¢ynln2.

Next, starting with (B.4) and proceeding as above, we arrive at
(l(nyylz,P X Q X Q X V) S 2 771II2,

where
V(z|z,y,y") 2 > Wi(z|z,y, s)Psy:(sly’).

Since d is a metric, we can use the triangle inequality to get

Y. P()Qy)QW)IV(zlz,y,y") — V'(z|lz,y,y")| < 4y/nln2.

z,y,y' 2

Recalling that P(z) > >0 and Q(y) > 5 > 0,

max |V(z|z,y,y") — V'(z|z,y,y")| < 4—2\?—2 < ¢

7 )
Y Y2

since we chose n < %%/(161n2) in (A.7). Now, observe that the preceding maximum
does not change if we interchange y and y’ and then interchange V' and V'. Hence, we also
have

max |V'(z|z,y',y) — V(z|z,v',y)| < 6.

Y,y 2

It is then easy to show that

max
z,y,y 2

sV (zle,y,y') + Vizle,y', v)] = 3V (zlz, v, y') + V(zlw,y',y)]’ < 6

If we set U(s|y) £ 2[Ps v (sly) + Pspy+(sly)], this becomes

max

- t
.Y, Y2

Yo W(zle,y, $)U(sly") = D W(zlz,y', s)U(s|y)| < 6. (B.6)

s
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In other words (cf. (A.1)) FJ¥(U) < 8, and so we must have (cf. (A.2))
6)’(‘/‘/) < 5a

contradicting (A.6).
Having established that for each ¢, G, ..., Gy are pairwise disjoint, it can be simi-

larly established that Fy, ..., Fy are pairwise disjoint; simply contradict (A.10) instead of

(A.6).

APPENDIX C

THE CODEWORD PROPERTIES

In this appendix we present a theorem which establishes that for all sufficiently large n,
we can always find a set of codewords for each user such that the properties used to prove

Theorem 5.1 in Appendix A will hold. (See [8] for the analogous single-user properties.)

Theorem C.1 (Codeword Properties). Given € > 0, there exists an ng depending only on
g, |X|, |V, and |S|, such that for every n > ng, if P € D, (X) and Q € D,(Y), and if N

and M are positive integers with

log N
ESR1:Oi and ¢ < Ry, = =

log M

)

then there exist codewords, x,,...,xy, each of type P, and there exist codewords, y,,...,¥as,

cach of Lype () awch thet (C1)  (CHO) all hold simullancouwsly:

%/,—Hi:[(x,-/\s) S e}| < exp(—ne/2), Vse S (C.1)
1\17'“ :I(y; Axs) >e}| < exp(—ne/2), Vx € X", s€S" (C.2)
i Iy;As) > €}l < exp(-ne/2), Vs e ST, (C.3)
%Hi I(xiAys) >e}| < exp(—ne/2), Vy €Y' seS" (C.4)

For coery type Py xiyyrs € Dy(A' x A x Y x Y x §),

Hi": (x6,¥5,¥58) € Txyyis} < exp[n(|R —I(Y'AXYS)|t +¢)], VseS*, (C.b5)
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and
{i' : (xi,%i,¥5,8) € TxxysH < exp[n(|Ry — I(X'A XYS)|t+¢e)], VseS8™ (C.6)
fI(XAY'S) > Ry, — I(Y'AS)|t +¢,
%Hi L 3j" with (xi,¥5,5) € Tyyrs}| < exp(—ne/2), Vs e 8™ (.7
if Y AXY'S) > |Ry — IY' AXS)|* +e,
J\_lij : 35’ # § with (x4,¥;,¥5,8) € Txyys} < exp(—ne/2), Vse ST (C.8)
FIY AX'S) > |Ri — I(X' A S)|* +e,
]\1—1|{J : ' with (x4,y;,8) € Txivs}| < exp(—ne/2), Vse S (C.9)
FIXAXYS)> |Ri— I(X'AYS)|* +e,
%Hi : 3 # 4 with (x4, xp,Y5,8) € Taxxys}t < exp(—ne/2), Vse S™ (C.10)

Proof. Observe that if Py, = P and Py, = @Q for all ¢ and j respectively, then in order that
all of the bounds (C.5) — (C.10) be nonvacuous, it is necessary that Py = Px» = P and
Py = Pyi.= Q. Most of the properties follow easily from their single-user counterparts
proved in the appendix of [8]. The exceptions are (C.7) and (C.9); for these, a proof is
required. It will suffice to prove (C.7).

Let {X,,...,Xn~} and {Y1,..., Y} be two independent families of independently
identically distributed random variables such that each member of the family {X,,..., Xy}
is uniformly distributed on 7p, and each member of the family {Y1,..., Y} is uniformly
distributed on 7y.

Let t 2 exp(—ne/2), and and define the events
1. ., .
A(S,TXYIS) é {]—V—I{Z : 3]1 with (X,-,le,s) € TXY'S}I < t},

and

A é ﬂ A(S7 TXY‘S))
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where the intersection is over all s € S™ and all types Pxy:s such that
I(XAY'S)> |Ry—I(Y'AS)|T +e.

The assertion in (C.7) will be proved if P(4) > 0, or equivalently, P(A°) < 1. Now, we will

show below that, uniformly for every s € §™ and every set Txy's,
P(A(s,Txy's)®) < 2exp[—jexp(ne/4)]. (C.11)
It will then follow that

P(4%) < |S[*(n + 1)*WVISE. 2 exp[—1 exp(ne/4)]
— exp[nlog|S| + X[ V15| log(n +1) — Yexp(ne/4)].
Clearly, if n is sufficiently large (obviously, how large depends only on ¢, |X|, ||, and |S]),
P(A°) < 1.

In order to prove (C.11), we will prove and employ the following: wuniformly for every

s € §" and every sct Tyrg, we have

P(G(s,Tyis)?) < exp|—3exp(ne/4)], (C.12)

where
G(s,Trrs) 2 {[i': (Ys5) € s}l < ¢,

and t £ exp[n(|Ry — I(Y' A S)|* +¢/4)]. To prove (C.12), let

g5
0, otherwise.

A { 1, fY; € qus(s)

Observe that
M
15" (Yjr,8) € Tyis} = D gi.
=1

So, using Markov’s inequality, followed by the independence of the random variables {g; },
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P(G(s, Trs)) = P(ﬁ g5 > )

i'=1

= P(exp(igj') > exp(t'))

IA

exp(—t") - E[ exp(i:1 gjl) ]

M
= exp(—t')- ,I:I E[exp(g;)]-

Now, since exp’s are to the base 2, and since

we can write

27 < 14 =z, when z € [0, 1],

Elexp(g;)] < E[1+4g5]

< eEley]

= exp(E[g; ]loge).

To upper bound E[ g, |, we appeal to [4, Lemmas 2.3 and 2.5, pp. 30-31], and then assume

thé.t n is so large that (n + 1)P! < exp(ne/4)/(2loge). This yields

Elgy]

With this upper bound,

P(G(Sa 7-)"5)6)

IAN

IA

P(YJ‘! € Ty:lg(s))
1

m‘llTy'IS(SN

exp(nH(Y'|S))/[exp(rH(Y"))(n + 1)~ 1|

exp[—n(I(Y'AS) —¢e/4)]/21oge.

< exp[—t' + ME[g]loge]

exp[ —(t' — Jexp[n((Ry — I(Y' A S)) +¢/4)])]

IA

IA

exp[ —1 exp(ne/4)].
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Having established (C.12), we proceed to verify (C.11). Write
P(A(s, Txy's)?) = P(A(s,Txy's)°NG(s,Tys)) + P(A(s, Txy's)* N G(s, Ty5)°)
< P(A(s, Txy's) N G(s, Tyis)) + exp| — 3 exp(ne/4) |. (C.13)
Keeping in mind that
Xi € Txpys(Yj,s) <= X;€ Txys(Y;,s)and Y € Tyns(s),
let

1, if Xi c A U TX'YIS(Y]'l,S)
fi 2 3'Y 1 €Ty 5(8)

0, otherwise.

Let g denote the indicator function of the event G(s,7y+s). Then
1 N
P(A(s, Txvs) N G(s, Tyrs)) = P({;V— S fi> t} NG(s,Tvs))
=1

< exp[—Nt] -E[g-exp (i f,) ]. (C.14)
i=1
To upper bound the preceding expectation, we need the following o-fields. Let
fo é U(Yl, ey YM),
and fori=1,..., N, let

Fifo(Yy. .., Y, Xy, ..., X))

Write
N N-1
Elg-exp(30 £i)1 = ElElexp(f) | Frva]g exp( X i) (C.15)
=1 1=1
First, observe that by independence,
1
E[fv | Fnaa) g = g 7 U Txyys(Yj,s)|.
P j':Yj/ETylls(S)

If ¢ = 0 in the preceding cquation, the left-hand side is 0, and any nonnegative number

will be an upper bound. If ¢ = 1, we have
{i": Yy € Tys(s)}] < ¢,
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If n is sufficiently large,

E[fnv | Fnvoi1l g < g-t-exp[—n(J(X AY'S)—¢/4)]/2]loge
= g-exp[n(|R, — I(Y'AS)|P = I(X AY'S) +¢€/2)]/2loge.
So, if (X AY’S) > |R; — I(Y'AS)|t +¢,
E[fv | Fn-1l-g £ g-exp(—ne/2)/2loge.
Invoking the inequality 2° < 1+ z, we then get
Elexp(fx) | Fraal 9 < (L4 ELfw | Fyal) o
< (1+exp(—ne/2)/2loge) - g
< g-exp[%exp(—ne/Q)].

Applying the preceding analysis inductively to (C.15),

N
Elg-exp(X /)] < Elg]- exp[4N exp(-ne/2)]

Since E[g] =P(¢ =1) <1,

N
Elg- exp(z fi> ] < exp[iNexp(—ne/2)].

Combining this with (C.14),
P(A(s, Tryss)* N G5, Trrs)) < expl =Nt — exp(—ne/2))]
= exp[—N(;exp(—ne/2)))
= exp[—1exp[n(Ry —€/2)]]

exp[ —3 exp(ne/2)], (C.16)

IA

where the last step follows because R; > ¢. Combining (C.13) with (C.16) yields (C.11).
O

Remark. We point out that the procedure that established (C.12) also shows that with

positive probability we can find Yy, ..., Yy, each of type @, such that for all Pxyyrs,
7' (x,¥,Yj,8) € Txyyis} < exp[n(|R,— I(Y'AXYS)|* +¢)], Vx,y,s.
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Thus we have also proved (C.5). Since (C.8) and (C.10) are more intricate, we refer the

rcader to the appendix in [8].

APPENDIX D

PROOF OF THEOREM 5.5

In this appendix we prove Theorem 5.5. We first need the following general lemma.

Lemma D.1 Let {£}} and {G;} be arbitrary subsets of Z™, not necessarily given by (4.9)
and (4.10). Suppose that the {F}}N| are disjoint and that the {G',-j}j”il are disjoint for
cach i. Let ¢ satisfy (4.11) and (4.12). Let JX(s) and K¥(s) be given by (4.1) and (4.6)
respectively. If

FenJ¥(s) UA{z: I(xi A2) > Ry +n and I(x;z A xpls) >}, Vse S, (D.1)

i
and if
éfj NKX(s) C | J{z: I(yj Az|x)) > Ry 4+ n and I(x;y;2 A yjls) > n}, VseS", (D.2)
3#I

then we can use @ instead of v in the proof of Theorem 5.1.

Proof. Observe that

¢(z) # (i,j) = z € FPUGE,

Hence
1 M
NI 2 2 ({2 € 271 6(m) £ ()} o v 09)
1 XM . 1 NM )
S MM ;gwn(ﬂclxi,w, s) + 777 ;; W™(G5l%i, ¥4, 8).

We consider only the second term. The first is treated similarly. Write

ij = [C;’C n K,-Oj(s)c] U [Gf n I\'?j(s)]

5] J

C K%s)U[GENKL(s)).

J
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By (D.2),
Gs C K%(s)°U |U{z : I(y; Az|xi) > Ry +n and I(x;y;2 Ayjls) > n}.
i'#3
A review of the proof of Theorem 5.1 giving special attention to equations (A.17) and

(A .20) as well as (A.21), (A.23), and (A.35) shows that

1 N M re
N M Y Y WHGSxi,y5,8) < 4exp(—ne/4).
i=1j=1

Proof of Theorem 5.5. Assume § > 0 has been chosen small enough that
Iypaz(pXx g X1 Xx W) =Ispz(pxgxrxW) > 2§, Vr € D(S),

and

Iy/\zw(p XqgXrX I/V) — IS/\ZM’(P XqgXrX VV) > 25, Vr € D(S)

Then as in the proof of Theorem 5.1, we can assume that p and § and P and @ have been

chosen so that
Iypz(PX QX1 XW)=Isaz(PxQxrxW) > § Vr € D(S), (D.3)
and
Iypzix(P x @ x 17 X W) —Ispzix(P x Q xr x W) > §, Vr € D(S). (D.4)

Let xy,...,Xy be the codewords for user 1, all of type P, and let y;,...,ya be the
codewords for user 2, all of type ) and having the properties listed in Theorem C.1. With

F; and Gy; given by (4.9) and (4.10) respectively, we have z € Fen JO(s) if and only if

z € | J{z: I(xs Az) > I(x; Az) and D(Px, s4||P x Ps x QW) < n}.
i1 i
By the Projection Lemma A1, D( Py, s 2| P x Ps x QW) < 5 implies D(Px, z||P X QPsW) <
n, and so by (A.8), (A.11), and the fact that n < §/2,if z € FA’fﬂ J?(s), then there is some
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' # 1 with

I(X,‘l/\Z) > I(X,‘/\Z) > IXAz(PXQXPSVV)—(S/Q
.:'/\Z(Pa Qa T/V) - 5/2

Ry + 7.

v

\

We claim that I(x;z A x;|s) > n as well. Observe that

I(X,‘Z/\X{/|S) > I(Z/\X,'/'S)

I(xpshNz)—I(sAz)

v

I(xp ANz)—I(sAz)

Y

I(x;Anz)—I(s A z)

v

[Txaz(P x Py x QW) — Isaz(P x Ps x QW)] —6/2,
since z € J2(s) (see Note below),

> 8/2 > 7, by (D.3).

Note. We assume 1 was chosen so small that not only do we have (A.8) and (A.11), but
also if PMW and P® are any two distributions on ¥ x S x £ oron X x Y x § x Z with
D(PMW||P@) < n, then

\[I.W(P‘”) — Ispnz(PM)] — [Txaz(PP?) - IsAz(P@))ﬂ < 6/2

and

‘[Iy’\z""(P(l)) — Ispzie(PM)] = [Iyazn(PP) — ISAZ!X(P(Z))]’ < 8/2.

Thus FfNJYs) € U{z: I(xs Az) > Ry +1n and I(x;z A xs|s) > n}.
i1

The proof of (D.2) follows similarly if one observes that



I(xiyjzAypls) = I(xizAyjls)
= I(xzAyys)— I(xiz As)
= [I(xiAyys)+ Iz Aypsxi)] — [I(xiAs) + I(‘z As|x;)]
= [I(yjsAzlx)— I(s Az|x:)) ]+ [I(xi Ayys) — I(xi A s)]

> I(y; Azlxi) — I(s A z|x:).

43






[11]

[13]

[14]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

A. El Gamal and T. M. Cover, “Multiple user information theory,” Proc. IEEE,
vol. 68, no. 12, pp. 1466-1483, Dec. 1980.

. Fan, “Minimax theorems,” Proc. N. A. S., vol. 39, pp. 42-47, 1953.

R. G. Gallager, Information Theory and Reliable Communication. New York: Wiley,
1968.

J. A. Gubner, “Deterministic codes for arbitrarily varying multiple-access channels,”

Ph.D. Dissertation, Electrical Eng. Dept., University of Maryland, College Park, 1988.

J. A. Gubner, “State Constraints for the Multiple-Access Arbitrarily Varying Chan-

nel,” in preparation for submission to the IEEE Trans. on Inform. Theory.

J.-H. Jahn, “Coding of arbitrarily varying multiuser channels,” IEEE Trans. Inform.
Theory, vol. IT-27, pp. 212-226, Mar. 1981.

S. Karlin, Mathematical Methods and Theory in Games, Programming, and Eco-
nomaics, Volume II The Theory of Infinite Games. Reading, MA: Addison-Wesley,
1959.

H. Liao, “A coding theorem for multiple access communications,” presented at the
Int. Symp. Information Theory, Asilomar, 1972. Also Ph.D. dissertation, “Multiple

Access Channels,” Dep. Eng., Univ. Hawaii, Honolulu, 1972.
H. L. Royden, Real Analysis, 2nd ed. New York: MacMillan, 1968.

D. Slepian and J. K. Wolf, “Noiseless coding of correlated information sources,” IEEE
Trans. Inform. Theory, vol. IT-19, pp. 471-480, July 1973.

E. C. van der Meulen, “Recent coding theorems and converses for multi-way channels.

Part II: The multiple-access channel (1976-1985),” preprint.

J. van Tiel, Convezx Analysis, An Introductory Tezt. Chichester: Wiley, 1084.

45






