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Abstract

Traditional constant false alarm rate (CFAR) detection algorithms produce a lot of false targets
when applied to single-look, high-resolution, fully polarimetric synthetic aperture radar (SAR) im-
ages, due to the presence of speckle. We propose a two stage CFAR detector followed by conditional
dilation for detecting point and extended targets in polarimetric SAR images. In the first stage,
possible targets are detected and false targets due to the speckle are removed by using global sta-
tistical parameters. In the second stage, the local statistical parameters are used to detect targets
in regions adjacent to targets detected in the first stage. Conditional dilation is then performed to
recover target pixels lost in second stage CFAR detection.

The performance of a CFAR detector will be degraded if an incorrect statistical model is adopted
and the data are correlated. A goodness-of-fit test is performed to decide the appropriate distribu-
tion and the effects of decorrelation of the data are considered.

Good experimental results are obtained when our method is applied to single-look, high-
resolution, fully polarimetric SAR images acquired from MIT Lincoln Laboratory.
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1 INTRODUCTION

In automatic target recognition (ATR) applications, features that distinguish targets from the
background and recognition criteria are the two key issues to be resolved. In single channel SAR
images, backscattering amplitude is used for target detection and it is usually assumed that strong
backscattering comes from targets. A target will be lost when the backscattering amplitude from
the target is not large enough compared with the background at some aspect angles [1]. To overcome
this, fully polarimetric SAR images are used. The value at every pixel of a polarimetric SAR image

is a four-element complex vector. Usually, a three-element complex vector
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is used according to the reciprocity principle [2]. In (1), j = v/—1, and the real and imaginary
parts are the in-phase and quadrature components. The ensemble average of every element is zero

and the polarimetric covariance matrix is

(HH,HH) (HH,HV) (HH,VV)
Y= | (HV,HH) (HV,HV) (HV,VV) (2)
(VV,HH) (VV,HV) (VV,VV)

where (o) represents ensemble average. The polarimetric covariance matrix is a useful feature for

distinguishing targets from the background. Since the average of every element is zero,
de(X) = (X)'571X (3)

is a weighting distance if the covariance matrix of the background ¥, is known, where X* is the

conjugate of X.

When the determinant of the polarimetric covariance matrix of the targets is much larger than
that of the background, the distance (3) is a measure of the difference between the targets and
the background. In this case, the distance for samples from the background is smaller than the
distance for samples from the targets. The distance is also the output of a polarimetric whitening
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filter. The properties of the filter are discussed in [3]. In this paper, it is used as a criterion to

recognize targets that are of much stronger reflectance than the background.

When d.(X) is greater than a threshold 7', the sample X is considered as a target pixel. The
key problem is the choice of the threshold T.

Ulaby [4] statistically models the background, which is usually called clutter in the radar liter-
ature. The distance d.(X) is also statistically modeled. Since the background is not uniform and

the backscattering amplitude from the background fluctuates, a CFAR detector is adopted.

For a given pixel, called the pixel under test (PUT), its neighboring pixels, called the reference
pixels, are used to calculate test statistics [5] or to estimate the parameters in the probability density
function (PDF) [6]. The threshold for a fixed false alarm rate is obtained from the statistical model.

If the distance for PUT is greater than the threshold, PUT belongs to the target.

The spatial relations between PUT and the reference pixels is shown in Figure 1, where d(u,v)

is PUT and is located at the center. The window is called the reference window and its size is

d(u—p,v—q) d(u —p,v) d(u—p,v+q)
du—pt+Lo—q) |- [du—p+Lo)|[ - [du—p+1v+q)
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Figure 1: Spatial Position of Reference Pixels and the Pixel Under Test.

Quw X Py. All of the pixels in the reference window except d(u,v) are reference pixels. The number
of reference pixels is Q,, X P, — 1, where P, = (2x p+1)and @, = (2x ¢+ 1).

The CFAR detector has been widely used in radar applications [5, 6, 7, 8]. It adapts the thresh-
old automatically to the local background in an attempt to maintain an approximately constant
false alarm rate. Traditional CFAR algorithms are used for point targets and are applied to multi-
look SAR images in order to reduce the effects of speckle noise [5, 6, 7, 8]. They are not suited for
single-look, high-resolution SAR images. For the purpose of recognition, we emphasize the single-
look case because multi-look SAR images are usually obtained by reducing spatial resolution and
a portion of the information is lost. We also emphasize high-resolution because targets have some
extension in high-resolution SAR images and much more information on the targets is available
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than in low-resolution images.

When CFAR detectors are applied to single-look, high-resolution SAR images, several shortcom-
ings remain. Firstly, extended targets disappear because backscatterers from the targets are used
to calculate the required statistics. Secondly, it takes a long time to complete detection because of
pixelwise computation of the statistics. Thirdly, false targets can be found almost everywhere due
to the presence of speckle in SAR images. Finally, the full backscattering patterns from targets are
missed because some backscatterers from targets are not much stronger than the local clutter. To

solve these problems, a two stage CFAR detector is designed here.

The performance of a CFAR detector depends on the correctness of the statistical model because
the calculation of the threshold is based on the assumptions that the PDF of the background is
known except for some parameters and that the reference pixels are independent of each other. The
performance may be degraded if an incorrect statistical model is used. It is preferable to perform

a goodness-of-fit test and an independence test.

The organization of this paper is as follows. Section 2 describes the goodness-of-fit test and the
independence test. The two stage CFAR detector and conditional dilation algorithms are described
in Section 3. Experimental results are reported in Section 4. Conclusions and future research

directions are briefly described in Section 5.

2 STATISTICAL TESTS

The Rayleigh [4], the log-normal [4], the Weibull [4, 5, 6, 7], and the K distribution [8] are all used in
radar applications to describe the amplitude or intensity of backscatterers statistically. The Weibull
distribution can be made to approach either the Rayleigh or the log-normal distribution [7]. The
Rayleigh distribution is also a special case of the K distribution. Recent papers focus on the K
distribution and the Weibull distribution. The K distribution is usually used for sea background [8].
Our goal is to detect stationary man-made objects on land, so we use the Weibull distribution. In
this paper, the CFAR detector is based on the distance d.(X). In order to show the validity
of the Weibull distribution for the distance, a Kolmogorov-Smirnov (K-S) test [9] is used as a

goodness-of-fit test.

Assume that g,...,%,_1 are n independent samples from the same distribution and that the

cumulative distribution function is F'(Y). Let F,(Y) be the sampled cumulative distribution func-



tion. The samples are ordered as yoy < y(1) < -+ < Y(n—1) and then

F(y;) = Prob{y < y;)} (4)
Fo(yi) =i/n (5)

and
My = max|Fu(y;) - F(yi)| (6)

are computed for the test. When the samples actually belong to the distribution being tested for,
the probability of
P = Prob(M,, > ¢) (7)

is shown in Table 1% .

Table 1: Significant Levels

P | 0.010.05]0.10| 0.15| 0.20
¢ [ 1.63 136 1.22 | 1.14 | 1.07

For the Weibull case, the probability density function is

fly) = % (%) o exp [— (%) C] (8)

and the cumulative distribution function is

F(Y)=1—exp (— (%)O) (9)

where (' is the shape parameter and B is the scale parameter. When ' = 2, it is a Rayleigh
distribution, and when C' = 1, it is an exponential distribution. Given the parameters C' and B

and the independent samples, a confidence test on the Weibull distribution can be set up according

to Table 1 and (8) and (9).

When CFAR is implemented, it is required that the samples be independent. The sample
correlation coefficient [9] is used. The smaller the sample correlation coefficient is, the less correlated
the data are. Although decorrelation is a necessary but not a sufficient condition for independence,

it is commonly used due to the simplicity of computing correlation coefficients. Since the data

“This table is from [10].



in this paper are from non-Gaussian distributions, it is difficult to set a confidence level for the
decorrelation test. Therefore, decorrelation of the data is performed only when the data fail to
pass the goodness-of-fit test regardless of the values of the correlation coeflicients. Decorrelation

for every stage of the CFAR detector is considered in Section 3.

3 THE CFAR DETECTOR

In a CFAR detector, the absolute amplitude makes no sense. The square root of the distance is
scaled to make the root representable by integers without loss of significant bits. In the rest of this
paper, the scaled square root of the distance is used and is represented as an integer d(u,v), where

u and v denote a given spatial position in the image, u =0,..., U —1land v =0,...,V — 1.

As described in Section 2, the Weibull distribution is used to model d(u,v). In practice, C' and
B in (8) are unknown and they vary with spatial position (u,v). To make the threshold adapt to
the variations, a CFAR detector is used. An order statistic (OS) CFAR algorithm [5] is proposed for
the Weibull distribution. This algorithm exhibits extensive CFAR loss [6]. Ravid and Levanon [6]
suggest a maximum-likelihood CFAR detector for a Weibull background. In this algorithm [6], the
threshold is calculated according to the maximume-likelihood estimation of C' and B. This algorithm
is adopted to calculate the threshold in this paper, but the method of getting the reference pixels

is different.

Suppose that there are n samples in the reference window of PUT, say dg, ..., d,—1. The samples
come either from the background or from targets. If the samples from targets are used to estimate
the statistical parameters, the performance of CFAR will be degraded. To reduce this degradation,
the % smallest samples are used to estimate the parameters, and the (100 — [)% largest samples,
which might come from targets, are not used. The samples are ordered as dg) < d(yy... < d(,_1),

and L = 1% X n is calculated. The maximum-likelihood estimate [6] of C satisfies

L-1

Y dG Indgy 11
: OL_(f)da . &= 2 ndy (10)
Zj:o (]) 7=0

Solving this equation iteratively, as shown in the Appendix, we obtain the estimated parameter &

and then the estimated parameter B from

o=

A 1 L-1 ‘o ¢
]:
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From ' and B, the threshold

(InPpa)cB  if L > 120
(12000 Ppy)e B if L < 120

is obtained, where Pr4 is the predefined false alarm rate.

In this paper, the algorithm for parameter estimation is slightly different from the algorithm
proposed by Ravid and Levanon [6] in that we discard the (100—1)% largest samples whereas Ravid
and Levanon [6] set them equal to the largest of the (% smallest samples. It is unlikely that one
value occurs many times in a small window since the dynamic range of the SAR image is large.
Therefore, it is more reasonable to discard the largest samples than to set them equal to the same
value since the largest samples might come from targets and the statistical parameters should be

estimated using data from the background.

In our algorithm, the samples are also ordered. But it is different from the algorithm in [5] in
the method used to get the threshold. The [% smallest order stastistics are used in this paper,
while only two are used in [5]. The performance analysis of the maximum-likelihood algorithm can

be found in [6].

As mentioned in Section 1, traditional CFAR algorithms have shortcomings when they are
applied to single-look, high-resolution SAR images. To improve detection, CFAR detection is

performed twice. The CFAR detection algorithms are described in the following subsections.

3.1 THE GLOBAL CFAR DETECTOR

The k% smallest pixels in the whole image are used to estimate C' and B in (8). We refer to this
CFAR as global. The predefined parameters are k and the false alarm rate ng. The threshold is
the same for the whole image, and CFAR is not a proper name for the detector since the threshold

does not change with spatial position. However, the method used to get the threshold is the same

as in CFAR, so we still adopt the name CFAR.

When the global CFAR detector is used, spatial correlation must be considered before doing
the goodness-of-fit test and obtaining the threshold. A straightforward way to decorrelate the data
is to divide the image into small windows, to compute the correlation coeflicients between any two
of these windows [9], and to select windows whose correlation coefficients with each other are small.
However, this method is impractical. For a 1024 x 256 image, 1023! correlation coefficients would
need to be computed if the size of the small windows is 16 x 16. To prevent this burdensome
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computation, a very simple method is used in this paper. Since the dynamic range of SAR images
is large and a single value seldom occurs many times in one small spatial window, samples with the
same value are considered to be a single sample and samples with different values are used to do
the goodness-of-fit test and to estimate the statistical paprameters. The global CFAR algorithm is
then the following.

e Algorithm I.

1. Find the maximum value Dy,ay and the minimum value Dy, of the image d(u,v) and
then compute the histogram h(d) of the image, where h(d) is the number of times that

value d occurs in the image and d = Dy, - - -, Dmax-

2. Find the minimum D which makes Z?:Dmin h(d) > k% x V x U. The image size is
VxU.

3. Let h'(d) = 11if h(d) > 1, where d = Dyyin, ..., D.

4. Caleulate L = 5L h/(d).

5. Order the samples as dgy < d(1y < --- < d(1_1), where h'(d(;)) = 1 and Dyin < dgjy < D
fore=0,...,L—1.

6. Substitute samples d(;(¢ = 0,..., L — 1) into (10) and use the iterative function in the

Appendix to get C'. B is obtained by substituting the samples and C into (11).

7. Substitute the predefined false alarm rate Pﬁg and the estimated parameters C' and B
into (12) and obtain the threshold 7.

8. Set GC(u,v) = 0if d(u,v) < T. Otherwise set GC(u,v) = 1, where u = 0,...,U — 1
andv=20,...,V—=1.

If GC(u,v) = 1, the pixel d(u,v) is accepted as a target pixel in the global CFAR detector.

Otherwise, it belongs to the background.

When the goodness-of-fit test is needed, the estimated parameters ¢ and B and the samples

diy (1=0,...,L — 1) are used to compute M, in (6). The value of M, is reported in Section 4.

3.2 THE LOCAL CFAR DETECTOR

The pixels which are accepted as targets by the global CFAR detector will be detected again using
another CFAR detector. In order to distinguish the CFAR detector in this subsection from that in
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the previous subsection, the name “local CFAR” is used in this subsection because the threshold

is calculated according to local statistical parameters.

When the local CFAR detector is used, the value of M, is much smaller than that in the global
CFAR detector and correlation need not be considered since data in small windows are used to
estimate the statistical parameters. If the data in some windows cannot pass the goodness-of-fit

test, an auto-regression model is used to decorrelate the data.

If GC(u,v) =1, that is, pixel d(u,v) is accepted as a target by the global CFAR detector, the
[% smallest samples in the reference window are used to estimate C' and B in (8). The threshold
T is calculated according to the predefined false alarm rate Pﬁg. If d(u,v) > T, the pixel d(u,v)
is accepted as a target pixel. Otherwise, it is rejected as a target pixel. The value of T varies with
spatial position (u,v).

When extended targets are present, there are reference windows in which most of the pixels are
already thought to be targets by the global CFAR detector. If the pixels which have been accepted
as targets by the global CFAR detector were to be used, the detection would be unreliable since
these pixels might come from targets and should not be used to estimate the statistical parameters.
In this case, we enlarge the reference window until the number of pixels which are rejected as

targets by the global CFAR detector is large enough.

Two algorithms are used in the implementation of the local CFAR detector. In one, the size
of the reference window is fixed, and in the other the size of the reference window varies with the
position of PUT. The former is used for point targets and the latter is used for extended targets.
It is easier to implement the former than to implement the latter. However, the former cannot be
used for extended targets. We prefer the latter algorithm since it can be used for both point targets
and extended targets. The drawback of the latter algorithm is that false targets might occur in the

detected image.

The two algorithms are implemented in the following steps.

o Algorithm II (Point targets).

1. Calculate n = Q,, X P, — 1 and L =% X n.

2. For every pair (u,v), do the following steps if GC(u,v) = 1. Otherwise set LC(u,v) =0,
where u = 0,..., U —1land v =0,...,V — 1.

3. Order the reference pixels as d(gy < d(qy... < d(,_1).
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4. Substitute samples d(;)(7 = 0,..., L — 1) into (10) and use the iterative function in the
Appendix to get C'. B is obtained by substituting the samples and ¢ into (11).

5. Substitute the predefined false alarm rate Pﬁg and the estimated parameters ¢' and B
into (12) and compute the threshold 7. This threshold changes with spatial position

(u,v), but the false alarm rate does not change.
6. Set LC(w,v)=0if d(u,v) <T. Otherwise set LC'(u,v) = 1.

If the distribution test needs to be performed, calculate M,, in (6) instead of the threshold T

in Step 5.
o Algorithm III. (Extended targets)

1. Calculate L = 1% x Q,, X P, — 1. The smallest size of the reference window is Q,, X P,,.

2. For every pair (u,v), do the following steps if GC(u,v) = 1. Otherwise set LC(u,v) =0,
where u =0,...,.U—-1,v=0,...,V — 1.

3. Set P = P, and ) = ¢),,. The size of the reference window is ¢} x P.

4. Order the reference pixels as d(gy < d(yy... < d(,_1), where n = Q X P — 1.

5. Do the following if there exists at least one pixel (7, ) in the reference window which
satisfies GC(i,7) = 0 and d(4, j) = d(;,_1). Otherwise set P = P +2and @ = @ +2 and
go back to Step 4 to find new reference pixels in the enlarged reference window.

6. Substitute samples d(;)(i = 0,..., L — 1) into (10) and use the iterative function in the

Appendix to get C'. B is obtained by substituting the samples and ¢ into (11).

7. Substitute the predefined false alarm rate Pﬁg and the estimated parameters ¢' and B
into (12) and compute the threshold 7. This threshold changes with spatial position

(u,v), but the false alarm rate does not change.

8. Set LC(u,v)=0if d(u,v) <T. Otherwise set LC'(u,v) = 1.

If the distribution test needs to be performed, calculate M,, in (6) instead of the threshold T

in Step 7.

As in the global CFAR detector, a pixel d(u,v) is accepted as a target pixel if LC(u,v) = 1.

Otherwise, it is rejected as a target pixel.



3.3 CONDITIONAL DILATION

Conditional dilation is performed according to the binary images G'C(u,v) formed in the global

CFAR detector and LC(u,v) formed in the local CFAR detector.

If a pixel is accepted as a target pixel by the local CFAR detector, all the pixels connected to
it will also be accepted as target pixels if these pixels are accepted as target pixels by the global

CFAR detector. Doing this is based on the following considerations.

Since the impulse response of a target to the incident wave is not a ¢(¢) function and neither is
the incident wave, the backscatterers from the target are distributed in a region instead of at one
pixel. But the backscattering is very strong only at a few pixels. To see the pattern of backscattering
from the target clearly, we prefer to retrieve the pixels which are backscatterers from the target
but are not much stronger than the backscatterers from the neighboring background. These pixels
should be extracted by the global CFAR detector since the k% smallest pixels in the whole image,

not only the neighbors of the target, are used to get the threshold.

The algorithm for conditional dilation based on 8-neighbors is described as follows.

o Algorithm IV.

1. Scan the first row from left to right to find all the continuous intervals in which (and
at the endpoints of which) the values of GC(u,v) are all equal to one but the values of
LC(u,v) are all equal to zero. Let [v1,v3] be such an interval. This description can be
expressed as GC(0,v) = 1 and LC(0,v) = 0 for any v € [v1, v2]. Note that a special case
18 1 = v9.

2. Set LC(0,v) = 1 for any v € [vy,vq] if LC(0,03 —1) = 1 or LC(0,v3 + 1) = 1, where
[v1, 2] is an interval found at the first step. This is repeated for all the intervals found

at the first step.

3. Do the following, beginning at v = 1 and ending at v = U —1. Find all the intervals in the
u-th row as in the first step. Set LC(u,v) = 1 for any v € [vy,v9] if LC(u,v1 —1) =1
or LC(u,vg + 1) = 1 or there exists an m such that LC(u — 1,m) = 1, where m €
[v7 — 1,v9 + 1] and [vy, v2] is an interval found in the u-th row. This is repeated for all

the intervals found in the u-th row.
4. Do the following, beginning at « = U —2 and ending at v = 0. Find all the intervals in the
u-th row as in the first step. Set LC(u,v) = 1 for any v € [vy,v9] if LC(u,v1 —1) =1
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or LC(u,vg + 1) = 1 or there exists an m such that LC(u + 1,m) = 1, where m €
[v7 — 1,v9 + 1] and [vy, v2] is an interval found in the u-th row. This is repeated for all

the intervals found in the u-th row.

5. The third and fourth steps are repeated until no pixel whose value is equal to one in
G'C(u,v) and is equal to zero in LC(u,v) is set to one after dilation at both the third

and fourth steps.

The binary image LC(u,v) which is obtained after dilation is the final result.

4 EXPERIMENTAL RESULTS

Three single-look, fully polarimetric SAR images obtained from Dr. Les Novak of MIT Lincoln
Laboratory were used. The resolution is 1ft by 1ft and the size is 1024 x 256. Due to space
limitations, only a portion of each image is displayed. The original SAR images are shown in
(a) of Figures 2, 3 and 4. The man-made objects with strong backscattering in these images are

powerlines, bridge fences, metallic guard rails, and buildings.

We have estimated the polarimetric covariance matrix of the background using raw data.

Y= 0 02 0 (13)

is a good approximation to the polarimetric covariance matrix for different types of background.
In (13), the matrix has been normalized to make the first element equal to 1.

For all three images, & = 60, ng = 1075, Pﬁg =10"7,1=90, P, = 11 and Q,, = 11. No
other parameters are required for the CFAR detectors. In the local CFAR detector, the algorithm
for point targets is used for the images in Figures 2 and 3 and the algorithm for extended targets
is used for the image in Figure 4. The final detection results are shown in (b) of Figures 2, 3 and 4.
For illustration purposes, the black dots are used to denote targets with strong backscattering in
the detected images. The results of the distribution test are shown in Table 2. In the global CFAR
detector, the value of M,, in (6) before decorrelation is given in the second row and the value after
decorrelation is given in the third row. The maximum value of M,, for all the pixels under test in
the local CFAR detector is shown in the fourth row. The number of pixels under test in the local

CFAR detector is given in the fifth row. The number of pixels under test whose reference pixels fail
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(a) SAR Image

(b) Detected Image

Figure 2: Powerlines
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(a) SAR Image
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(b) Detected Image

Figure 3: Bridge Fences and Metallic Guard Rails
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(a) SAR Image

(b) Detected Image

Figure 4: Buildings
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Table 2: Results of Distribution Test

Figure 2 3 4
M, B.D. | 18.09 | 16.47 | 23.56

M, A.D. | 2.78 3.23 2.97
M. M, 2.03 2.18 1.70
N. PUT 18705 | 13398 | 8855
N.F. P 18 110 1
N.F. P, |908 1326 | 188

to pass the distribution test is shown in the last two rows. The next to the last row is for P = 0.05;

see (7). The last row is for P = 0.20.

If the pixels whose reference pixels fail to pass the distribution test are displayed, we can see

that most of the pixels are target pixels and the rest are neighbors of target pixels when P=0.05.

5 SUMMARY

Compared with other detection algorithms, the method proposed in this paper has the following
advantages. Single-look data are used instead of multi-look data so that the resolution of the SAR
images remains; the pattern of backscattering from the targets is kept, and small targets, which may
disappear in multi-look data, are kept in the detected images. The effects of speckle are removed
by the global CFAR detector. The full pattern of backscattering from the targets is retrieved by
conditional dilation. Extended targets are extracted since the size of the reference window varies
with spatial position. Compared with other algorithms, fewer computations are required. In the
global CFAR detector, the ordering is realized by computing the histogram, and the computation
is fast. As shown in Table 2, the numbers of pixels required to do the detection in the local CFAR
detector are 18705, 13398 and 8855 for Figures 2, 3 and 4 respectively. Therefore, the computation
in the local CFAR detector is much faster than in other algorithms, where the local statistical

parameters for each of the 1024 x 256 pixels in the image need to be calculated.

The polarimetric covariance matrices in different regions of the background are used to do the
detection. The detection results are almost the same using our method, whereas false targets occur
almost everywhere with other algorithms due to improper polarimetric covariance matrices. Thus,

our method is robust compared with other algorithms.

From Table 2, we see that the decorrelation is successful in the global CFAR detector. The
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agssumption that the background is Weibull distributed is reasonably good according to the exper-

imental results.

In practice, the polarimetric covariance matrix of the background is not known beforehand and
the matrix changes from one region to another in the SAR images. It is desirable to design an
algorithm in which both the threshold for detection and the polarimetric covariance matrix adapt

to variations in the background.

For the CFAR algorithm, detection performance also depends on the false alarm rate. If the rate
is too large, targets may be lost. If it is too small, false targets may be found almost everywhere.
To solve this, one idea is to compute sample polarimetric covariance matrices for every region which
is recognized as a target by the CFAR algorithm and compare them with a priori information on
the background and the target. However, the matrices of some targets are very similiar to that
of the background. This makes it difficult to distinguish targets from the background using the

polarimetric covariance matrix.
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Appendix

It is straightforward to use the one-point iterative function [11]

L-1 ;¢
L Yk 0y
= —— lnd (14)
L-1 ;Cm Z
Crntt St ds

for estimating C' in (10), where the initial value Cy = 2. When the algorithm is implemented, the
sequence {C,} is often divergent or its convergence speed is slow. Analyzing these sequences, the

following features are discovered:

Cpnn = CH+epy (15)

Cm_|_1 = C-|—€m_|_1 (16)

where C' is the correct solution of (10). For a divergent sequence, € is an extremely small positive
value when m is large enough, and for a sequence whose convergence speed is slow, € is an extremely
small negative value when m is large enough. Based on the analysis, a two-point iterative function
is adopted:

Com + Com-1

sz_|_1 - 2 (17)

where (5, is obtained from the one-point iterative function. The initial values are Cy = 1 and

C_q1 = 3. If there exists an M such that
Copr—q1 — C
‘M < 0.01 (18)
Con
the iteration is terminated and the estimated parameter is

C = Cou (19)

After the two-point iterative function is used, M is less than 10 when the sequence C,, is convergent

according to the criterion in (18).
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