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This thesis investigates a new approach to create hybrid polymer hydrogels that 

comprise multiple gel types juxtaposed in predetermined zones, with the unique 

properties of each gel being retained. The key is to ensure that the viscosities of pre-gel 

mixtures are sufficiently high when brought into contact and subsequently polymerized, 

preventing convective mixing at gel/gel interfaces. The final gel appears as a single, 

homogeneous material with robust interfaces between the dissimilar zones. By modifying 

the pre-gel viscosity, we construct hybrid hydrogels by a procedure that is quick, simple, 

and has fewer limitations than alternate methods. By varying the components of each gel, 

we have produced a vast array of hybrid hydrogels with regions of distinct chemical, 

optical, and mechanical properties. This has enabled the creation of strong, highly-

extensible soft materials (e.g. a spinal disc mimic), and of gels bearing hidden patterns 

that can be revealed with a variety of stimuli. 
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Chapter 1: INTRODUCTION AND OVERVIEW 

 

Polymer hydrogels are three-dimensional networks of polymer chains crosslinked 

by chemical or physical bonds and swollen in water.1,2 Their wide ranging and tunable 

properties have propelled them to the forefront of many current technological 

applications. Typically, these gels are formed by free-radical polymerization of a 

monomer such as N-isopropylacrylamide (NIPA) in water using a chemical crosslinker 

such as N,N′-methylenebis-acrylamide (BIS).3,4 NIPA gels are known for their 

temperature-dependent response: they shrink when heated above ~ 32 °C.3 Other 

monomers or monomer combinations have been used to create a variety of stimuli-

responsive gels including those that shrink upon cooling,1,2 those that shrink in certain 

aqueous solvent mixtures,1 or in response to pH5 or ionic strength.6 Many potential 

applications have arisen for stimuli-responsive hydrogels including in drug delivery,7,8 

tissue engineering,9,10 and as biomaterials.8 As research on hydrogels has progressed, 

scientists have been looking to engineer gels with a combination of properties (e.g., gels 

that are responsive to more than one stimulus, etc.) This challenge has been largely 

approached from the standpoint of polymer chemistry, i.e., in suitably engineering the 

molecular structure of the monomer and/or the crosslinker.  

 

An alternative way to engineer new gels is to physically combine multiple gel 

components into a single material, while still retaining the unique features of each 

component. This cannot be achieved by simply mixing two different monomer solutions 

before polymerization--in that case, the monomers would be copolymerized into a single 
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network that would not retain the properties of each individual gel. Instead, the approach 

that is usually adopted to combine different gels into the same material is a variation of 

Chatterji’s interpenetrated network11--more commonly associated with the work of 

Gong12 and Hu.13,14 In their approaches, the first monomer solution is allowed to 

completely polymerize and is then soaked in a pre-gel solution of the second monomer 

and subsequently polymerized. Thereby, the two monomers do not mix, yet the polymer 

networks interpenetrate. This approach has been used to create high-strength double-

networks,12 patterns of one gel in another,13 and also to impart shape memory effects to 

the combined material.14 However, the method does have its limitations in that it is time 

consuming (requiring multiple polymerizations) and is best suited to patterning in two 

dimensions. Furthermore, the components do not remain fully separated; the first gel is 

partially interwoven with the second gel, thereby producing a gel with a mixed set of 

properties.  

 

In this thesis, we present a new approach for combining dissimilar gels into one 

whole material while fully preserving the unique character of each individual gel. The 

key to our approach is that we bring dissimilar pre-gel mixtures into contact when their 

viscosities are sufficiently high and thereafter polymerize the hybrid. The high viscosities 

eliminate convective mixing and slow down diffusive mixing at gel/gel interfaces. Our 

approach allows the two individual gel components (which can have vastly different 

characteristics) to be spatially juxtaposed in a desired fashion in the hybrid gel. As seen 

in Figure 1.1, the final gel visually appears as a single, homogeneous, transparent 

material. The blowup schematics in the figure illustrate that though the hybrid is a single 
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crosslinks,18,19 and compared to conventional gels, they have much higher mechanical 

strength and extensibility.19,20 Recently, Thomas et al. showed that Laponite-crosslinked 

gels can separate cationic dyes from solution due to the strong chemical affinity of 

Laponite particles for cationic species.21 This result is extended to our hybrid gels. We 

demonstrate that the Laponite-crosslinked regions of our hybrids exhibit a strong affinity 

for cationic dyes, which is not present in BIS-crosslinked regions. In addition, clay-

crosslinked regions are shown to have distinct mechanical properties as well as optical 

(birefringence) properties. An application of the latter is shown where high-Laponite gel 

regions are embedded as a hidden pattern or “message” within a matrix of low-Laponite 

gel. The “message” is revealed either when the hybrid gel is viewed under crossed 

polarizers or when heated. A similar “message” hybrid gel that was also created with 

slightly different clay content that reveals its hidden message only when it is subjected to 

a uniaxial stress. 

 

We have also created some interesting macroscale gels. Our squid-like gel (which 

combines three gel types of various crosslinkers and monomers) is an example of large-

scale assembly of soft matter in a robustly-connected, highly malleable, functional 

hybrid. We then extend this macroscale assembly to a practical application, using our 

hybrid technique to form a gel for spinal disc replacements. Finally, we note that our 

overall approach is simple and versatile; it can be easily extended in a variety of ways to 

create new gels with unusual and unique properties.  
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acrylamide (NIPA). As shown in Figure 2.4 (a), the structure of NIPA differs from that of 

acrylamide by the presence of the isopropyl group attached to the nitrogen. The isopropyl 

group gives the monomer and resulting polymer chain hydrophobic characteristics. While 

the monomer is still largely hydrophilic, its solubility in water is much less than that of 

AAm and DMAA.  

 

Below 32 °C, the isopropyl groups are hydrophobically hydrated in water via the 

formation of a clathrate structure (i.e. hydrophobic hydration cluster).19 As the 

poly(NIPA) solution is heated, the clathrate structure becomes less stable and eventually 

collapses, causing the poly(NIPA) chains to aggregate due to the hydrophobic 

interactions between the isopropyl groups. The rapid change in solubility at 32 °C is what 

is referred to as the lower critical solution temperature (LCST) of poly(NIPA). This 

produces a well-defined coil-to-globule transition, as shown in Figure 2.4 (b), where the 

poly(NIPA) chains collapse together, expelling water from between them, rapidly 

shrinking/deswelling. Figure 2.4 (c) illustrates the discontinuity of the transition--how a 

temperature difference of a few degrees can cause a very large volume-phase transition. 

Because of the large deswelling at a temperature that is biologically relevant, NIPA has 

been studied quite thoroughly and has shown promise in areas such as drug delivery.7 

 

Another interesting stimulus-response response system is that involving 

polyacrylamide gels and the combined stimuli of temperature and solvent composition, 

originally investigated by Tanaka in 1981.1 Tanaka found that polyacrylamide gels 

showed similar collapse and volume-phase transition properties as that of the NIPA 
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Chapter 3: CREATING HYBRID POLYMER HYDROGELS 

 

3.1. INTRODUCTION 

In this chapter, we present a new approach for combining distinct gels into a 

single material while fully preserving the unique character of each individual gel. The 

key to our approach is that we bring dissimilar pre-gel mixtures into contact when their 

viscosities are sufficiently high and thereafter polymerize the hybrid. The high viscosities 

eliminate convective mixing and slow down diffusive mixing at gel/gel interfaces. Our 

approach allows the two individual gel components to be spatially juxtaposed in a 

prescribed fashion in the hybrid gel. The final gel visually appears as a single, 

homogeneous, transparent material. Interfaces between the component gels in the hybrid 

are smooth, i.e., not apparent on visual inspection; moreover, the interfaces are highly 

robust and mechanical failure does not occur at these locations.   

 

We start out by describing our hybrid method--highlighting the details necessary 

for successfully implementation and contrasting it with alternative approaches and the 

current state-of-the-art. We then demonstrate the utility of our approach through multiple 

examples where we take advantage of the chemical, mechanical, and optical 

heterogeneity of our hybrid gels. The hybrid gels described here comprise either two or 

three different gel types that can have different monomer combinations and/or different 

crosslinker combinations. Many of our gels utilize synthetic clay Laponite nanoparticles 

as physical crosslinkers. We show hybrids with regions that have different affinities for 

cationic dyes as well as distinct mechanical properties. We show hybrids with regions of 



 20

distinct optical (birefringence) properties that are embedded as a hidden pattern or 

“message” within a matrix of another gel. The “message” is revealed either when the 

hybrid gel is viewed under crossed polarizers or when heated. We have also created a 

hybrid gel that reveals its hidden message only when it is subjected to a substantial 

uniaxial stress. Our squid-like gel (which combines three gel types of various crosslinkers 

and monomers) and spinal disc replacement gel are examples of large-scale, soft matter 

hybrids that exemplify the robustness and practicality of our hybrid technique. 

 

3.2. EXPERIMENTAL SECTION 

Materials. The monomers acrylamide (AAm), N,N-dimethylacrylamide (DMAA), N-

isopropylacrylamide (NIPA), and N,N′-methylene-bis(acrylamide) (BIS); the initiator 

potassium persulfate (KPS); and the accelerant N,N,N′,N′-tetramethylethylenediamine 

(TEMED) were all purchased from Sigma-Aldrich and used as received. Acrylic acid 

(AA) was purchased from Sigma-Aldrich and was combined in equimolar amounts with 

sodium hydroxide (NaOH) to produce sodium acrylate (SA). The inorganic clays 

Laponite® XLG (LAP), a synthetic hectorite, and Cloisite® Na+ (MONT), a natural 

montmorillonite, were obtained from Southern Clay Products and used as is. The cationic 

dyes methylene blue (MB) and rhodamine B (RB) were purchased from Sigma-Aldrich 

while the anionic dye 5(6)-carboxyfluorescein (CF) was purchased from ACROS and 

used as is. 
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Basic Gel Preparation. Two types of crosslinkers were used to produce the polymer 

networks in the hybrid gels: the tetrafunctional acrylamide derivative BIS for chemical 

crosslinks, and clay particles for physical crosslinks. Gels were prepared using a 15 g 

water basis. First, nitrogen gas was bubbled through deionized water (18 MΩ, Millipore-

spec) for 3 hours prior to use to remove any dissolved oxygen. Monomer was then 

dissolved in the water at 1 M concentration, following which crosslinker was added. In 

the case of BIS, the concentration used was typically 2.2 mol% (with respect to the 

monomer). In the case of Laponite, the content ranged between 3.3 and 6.4 wt% (with 

respect to total solution weight) and the particles had to be added slowly to avoid 

clumping. The solution was stirred for ~10 minutes on a magnetic stirrer plate. The 

accelerant (12 μL of TEMED) and initiator (0.015 g KPS) were then added. At this point 

polymerization began and was allowed to proceed at room temperature (or in a controlled 

temperature water bath) in a nitrogen-only environment for 20 hours.  

 

DMAA/LAP(4.0)--DMAA/LAP(3.3) Test Tube Gel for Hybrid Technique 

Demonstration. The hybrid gel created for demonstration of our approach consisted of 

4.0 wt% LAP/DMAA solution with a small amount of blue MB dye for pre-gel A and  

3.3 wt% LAP/DMAA solution with a small amount of pink RB dye for pre-gel B. Pre-gel 

A was first pipetted into the bottom of a glass test tube. After a few minutes, the viscosity 

of the mixture was quite high, and pre-gel B was pipetted on top--a single, easy step for 

combining the two gels. The hybrid was polymerized for 20 hours at room temperature in 

an oxygen-free environment. Afterwards, the test tube was broken and the gel hybrid was 

removed and rinsed. 
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DMAA/LAP(4.0)--DMAA/LAP(3.3) Test Tube Gel for Non-Hybrid Comparison. 

The “non-hybrid,” i.e. sequential polymerization gel was prepared using the same 

formulation as that in the hybrid technique above, yet this time in a two-step process. A 

4.0 wt% LAP/DMAA pre-gel with a small amount of pink RB dye was created, pipetted 

into a test tube, and allowed to fully polymerize overnight in an oxygen-free 

environment. The next day, pre-gel B was prepared, consisting of 3.3 wt% LAP/DMAA, 

with a small amount of blue MB dye. The pre-gel was then poured over top of gel A and 

polymerized overnight in an oxygen-free environment. Afterwards, the test tube was 

broken and the gel network was removed and rinsed. 

 

DMAA/BIS--DMAA/BIS Test Tube Gel for Clay-free Hybrid. Our hybrid gel 

approach was extended to pre-gels containing no Laponite by utilizing the onset of gel 

polymerization to produce the viscosity increase necessary to prevent convective mixing 

of the pre-gels. The components of pre-gel A were first combined--AAm/BIS with a 

small amount of pink RB dye, and then pipetted into the bottom of a glass test tube. In 

order to produce an appropriate viscosity increase within about 10 minutes, ~0.05 M 

TEMED (ten times higher than the usual value) was used to accelerate/initiate the 

polymerization of pre-gel A (along with the normal amount of KPS). As the viscosity 

began to increase, pre-gel B, containing no RB dye and ~0.005 M TEMED was added 

over top. After 20 hours of polymerization at room temperature in an oxygen-free 

environment, the test tube was broken and the gel hybrid was removed and rinsed. 
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DMAA/LAP(3.3)--DMAA/BIS Dye Separation Rod. The hybrid gel for dye separation 

and mechanical tests was a 5 mm diameter rod, approximately 7 cm long. One half of the 

rod was BIS-crosslinked and the other half was LAP-crosslinked (3.3 wt%)--both 

portions using DMAA as the monomer. The DMAA/LAP mixture was pipetted into a 5 

mm diameter glass vial. After a few minutes, the viscosity of the mixture was sufficiently 

high, and the DMAA/BIS pre-gel solution was pipetted on top of the DMAA/LAP 

mixture. After 20 hours of polymerization, the vial was broken and the gel hybrid was 

removed and rinsed.  

 

DMAA/LAP--DMAA Test Tube Gel for Crosslinker-free Hybrid. The hybrid gel of a 

clay-crosslinked region and a self-crosslinked DMAA region was produced using our 

general hybrid approach. Pre-gel A consisted of a 4.0 wt% LAP/DMAA (with a small 

amount of blue MB dye) and pre-gel B consisted of 50 wt% DMAA in water. Both were 

initiated using the KPS+TEMED system, which in the case of the high DMAA monomer 

pre-gel, caused self-crosslinks to occur. After pipetting pre-gel A into a glass test tube, 

pre-gel B was slowly pipetted on top. Both were left to polymerize for 20 hours in a 

nitrogen-only environment, broken out of the test tube, and rinsed. 

 

NIPA/LAP(6.4)--NIPA/LAP(3.3) Hidden Message Gel. The hybrid gels in which a 

pattern is embedded (hidden) were made with NIPA as the monomer and Laponite of 

different concentrations as the crosslinker. A high-Laponite pre-gel was created with 6.4 

wt% Laponite and a low-Laponite pre-gel was made with 3.3 wt% Laponite. In the case 

of the high-Laponite pre-gel, the particles had to be added to the monomer solution very 
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slowly along with vigorous mixing by magnetic stirring as well as using a vortex mixer. 

The resulting viscous mixture was then centrifuged to remove trapped bubbles. The 

mixture was then transferred to a cake pipetting bag in order to hand-write the 

pattern/message. After the message was written, the 3.3 wt% pre-gel was poured around 

until the message was just covered. The hybrid was then placed in an oxygen-free 

environment and polymerized for 20 hours. 

 

NIPA/LAP(4.9)--NIPA/LAP(3.3) Hidden Message Gel. Another NIPA-based hybrid 

gel with a hidden pattern was made using Laponite of moderate concentration (4.9 wt%) 

to write the pattern/message. The corresponding pre-gel mixture was not as viscous as the 

6.4 wt% and did not require a cake pipetting bag. Instead a simple disposable pipette was 

used to write the message. Once again, after the message was written, the low-Laponite 

(3.3 wt%) pre-gel was poured around it and the hybrid was polymerized as above. 

 

NIPA/LAP(4.0)--DMAA/LAP(4.0)--AAm-SA/BIS-MONT Squid Gel. The squid gel 

was polymerized in a home-made glass mold, constructed by gluing several pipettes 

together for the tentacles, then epoxying the pipettes to a glass tube for the head and 

body. The pre-gel recipe for the tentacles was comprised of 4.0 wt% LAP/NIPA and was 

pipetted into the squid gel mold, flowing down into the tentacle region of the mold. Next, 

the pre-gel for the body was added, a 4.0 wt% LAP/DMAA solution. Finally, the pre-gel 

for the head was pipetted on top of the body, containing SA and AAm (in a 1:9 ratio) as 

comonomers and BIS (2.2 mol%) and Cloisite Na+ natural montmorillonite clay (1 wt%) 
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as co-crosslinkers. The hybrid was then left to polymerize for 20 hours in an oxygen-free 

environment before being extracted from the mold and rinsed. 

 

DMAA/LAP(5.2)--DMAA/LAP(3.3) Spinal Disc Replacement Gel. The spinal disc 

replacement hybrid was created by combining the various pre-gels in a prescribed fashion 

in the bottom of a glass beaker. The pre-gel for the outer region consisted of 5.2 wt% 

LAP/NIPA. Since the pre-gel became quite viscous almost immediately after adding the 

KPS and TEMED, two-thirds of the mixture was scooped and then molded into the 

bottom of a beaker. The pre-gel for the inner core (3.3 wt% LAP/NIPA with a small 

amount of blue MB dye) was then gently poured into the “crater” left by the first pre-gel. 

After waiting a few minutes for the viscosity of the inner core pre-gel to increase, the 

remainder of the outer region pre-gel was then pipetted across the top in thin strips, 

continuing to add strips until a thick layer completely covered the core. The gel was then 

polymerized at room temperature for 20 hours in an oxygen-free environment before 

being taken out of the beaker and rinsed. 

 

Rheology/Viscosity Measurements. Rheological and viscosity measurements were 

performed on an AR2000 (TA Instruments) stress-controlled rheometer. Dynamic 

rheology was conducted for gel samples (e.g. the spinal disc gels) using a 20 mm 

diameter parallel plate geometry with a solvent trap to minimize water loss. Dynamic 

frequency runs were conducted in the linear viscoelastic regime of the samples, as 

determined from dynamic stress sweep measurements. Viscosity measurements were 
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taken using the same rheometer with a couette (bob and cup) geometry for increased 

sensitivity/accuracy at low shear stresses, maintained at 20 °C. 

 

3.3. RESULTS AND DISCUSSION 

3.3.1. HYBRID METHOD 

Our hybrid approach consists of combining gels when they are in the pre-gel state 

in order to allow them to polymerize together. The central idea arose out of the fact that 

adding a few weight percent of Laponite particles to a monomer solution (pre-gel) makes 

the mixture quite viscous. This is not surprising because Laponite is well-known for its 

ability to thicken and gel water by physical interactions of the particles15 (as discussed in 

section 2.4.1). The viscous nature implies that when two Laponite-containing pre-gels are 

brought into contact, they will not mix at their interface. Shown in Figure 3.1 is the 

typical procedure for preparing a hybrid gel. In panels 1 and 2, viscous pre-gel A (4 wt% 

LAP, DMAA, and a small amount of methylene blue (MB) dye) was pipetted into a test 

tube. In panel 3, viscous pre-gel B (3.3 wt% LAP, DMAA, and a small amount of pink 

rhodamine B (RB) dye) was gently pipetted over top. It can be seen that since both 

mixtures were sufficiently viscous (consistency of honey) at the time of contact, the two 

zones of the hybrid did not undergo any convective mixing. There was still some weak 

diffusive mixing, however, (as seen by the purple region at the interface), which ensured 

that the zones of the hybrid were strongly melded. Panels 5, 6, and 7 reveal a single 

hybrid gel with two distinct regions that can be stretched to great extents without tearing 

apart at their interface. 
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seen that the tearing appears to be at the interface of the two gels, and panel 4 indeed 

confirms this.  

It is clear that the two networks are only weakly connected when prepared using 

consecutive polymerizations (i.e. the non-hybrid method), with a second pre-gel that had 

a moderate viscosity and/or was initiated immediately. The poorly connected interface of 

the non-hybrid gel from Figure 3.3 really highlights the significance of our hybrid 

method while also illustrating its improvement over traditional interpenetrated networks 

(see section 2.3). Two main limitations of interpenetrated networks are the fact that they 

are time consuming to make and have restrictions on the size and components of the gel 

networks that can be used. Thorough diffusion of one monomer into a fully-polymerized 

gel can require hours, depending on the size and shape of the gel to diffuse into. Thus, 

polymerization cannot be initiated at the time in which the gel and the second monomer 

are brought into contact. In this case, polymerization will begin to increase the viscosity 

of the second pre-gel, slowing down/ inhibiting further diffusion. Because of this, IPNs 

usually use low viscosity pre-gels for the second monomer and are initiated either 

thermally or with UV light, after sufficient time has been allowed for thorough diffusion. 

Yet this poses another limitation--thermal initiation is incompatible with a 

thermoresponsive polymer (as it will cause phase separation during the polymerization) 

and UV initiation is generally restricted to 2D patterns or thin 3D films (because of the 

limited penetration depth of the UV light). Therefore, our hybrid approach seems to stand 

out; in a single polymerization we can combine many different pre-gel solutions on a 

large scale and be confident that they will form a high-integrity connection with each 

other.  
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viscosity and “house-of-cards” formation. It was qualitatively observed from 

experimentation that for a 4 wt% LAP pre-gel, the viscosity became high enough to layer 

another gel on top of it after approximately 3-4 minutes. It was also noted that the 

viscosity at this point seemed to be somewhere between syrup and honey. To try to 

quantify this value, an AR2000 stress-controlled rheometer with a couette (bob and cup) 

geometry was used to apply a very small steady shear stress (0.2 Pa) and track the 

viscosity change with time. All of the pre-gel components were combined before time = 

0, with the exception of the initiator and accelerant. (Note that at the level of clay used, it 

takes on the order of hours for substantial formation of the “house-of-cards” structure in 

pure water.) As soon as the initiator and accelerant are added (which act as salts/ions), the 

“house-of-cards” structure formation is greatly accelerated and the mixture starts to 

thicken, even before the onset of polymerization. As Figure 3.5 shows, the viscosity of 

the pre-gel increases very sharply over the first few minutes, keeping in mind that the y-

axis is log-scale. (One may notice that after the data point at t = 0, there are a lack of data 

in the plot between time = 0 and ~75 s. This was the time it took for the bob geometry to 

descend into the pre-gel before it started acquiring data.) In addition to the pre-gel data, 

viscosity values were measured for Giant® brand Clover Honey and Original syrup in 

order to try to establish common reference points with what was noticed during the 

hybrid gel preparation. The zero-shear viscosity for the honey was ~27 Pa·s, and the 

syrup was ~2 Pa·s. It can be seen from the graph that the viscosity of the pre-gel reaches, 

then exceeds that of syrup shortly before 4 minutes, while it reaches that of honey at 

approximately 5 minutes. This roughly agrees with our experimental observations that the 
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greater started showing noticeably lower values. But even though the viscosity value is an 

approximation at best, it nonetheless provides useful insight for hybrid preparation--that 

pre-gel viscosities must be at least several orders of magnitude greater than water (0.001 

Pa·s) in order to prevent convective mixing during layering. 

 

3.3.2. HYBRIDS WITH DIFFERENT CROSSLINKING METHODS 

3.3.2.1 CLAY GEL HYBRIDIZED TO BIS-ACRYLAMIDE GEL 

Having developed a method for preparing high-integrity hybrids, we can now 

begin to create hybrids that combine gels of distinct properties with specific features and 

applications in mind. Figure 3.6 shows the DMAA/LAP--DMAA/BIS hybrid gel that was 

briefly mentioned in the introduction--a rod of diameter 5 mm and length 7 cm. The top 

half of the hybrid, termed DMAA/LAP, was crosslinked using Laponite nanoparticles, as 

shown schematically in the upper portion of Figure 3.6. As indicated in the schematic, the 

polymer chains are expected to extend from one face of the Laponite discs and terminate 

at another.18,19 The bottom half of the hybrid, termed DMAA/BIS, was crosslinked using 

the conventional BIS crosslinker, shown as red dumbbells in the lower schematic. The 

polymer chains are covalently crosslinked by BIS molecules within this region. Note that 

the interface between the two regions of the hybrid gel is not discernible in the 

photograph. Thus, the overall gel looks to be a single, homogeneous mass. 
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interface between the two gel regions, which is usually assumed to be the weakest point 

in a composite or layered network. This indicates the high integrity and robustness of the 

gel/gel interface in our hybrid. 

 

Overall, Figure 3.8 shows that the DMAA/LAP zone of our hybrid has very 

different mechanical properties (a much higher strength and extensibility) compared to 

the DMAA/BIS zone. The higher strength and extensibility of Laponite-crosslinked gels 

are well-known and are attributed to the fact that the polymer chains between junction 

points in these gels are longer and less polydisperse than those in a conventional gel (as 

discussed in section 2.4.2.19,20 Incidentally, we performed the stretching by hand to 

ensure a gentle grip on the gel. When stretching was attempted with a clamp or vise, the 

hybrid would prematurely tear at the gripping point of the DMAA/BIS portion, which 

further shows its lower strength. Also, we should clarify that the same results were 

obtained on dye-free gels and so the dye has no influence on the mechanical tests. 

 

3.3.2.2 CLAY GEL HYBRIDIZED TO NO-CROSSLINKER GEL 

While Haraguchi’s finding that clay particles can be used as substitutes for 

conventional crosslinkers was quite notable, a similarly interesting discovery was made 

long before by Needles et al. in 196528. They found that growing chains of poly(DMAA) 

would crosslink with other poly(DMAA) chains in the absence of any external 

crosslinker as long as the free-radical polymerization had been initiated using a disulfate 

system (e.g. potassium persulfate, ammonium persulfate). The mechanism described by 

Needles is shown in Figure 3.9.  
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Light entering an isotropic material is refracted at a constant angle and passes 

through the crystal at a single velocity without being polarized. When a ray of light enters 

an optically anisotropic material, however, it is refracted into two rays, each polarized 

and traveling at different velocities. Thus, anisotropic materials will have more than one 

index of refraction (measure of the speed of light in that substance). The quantification of 

the difference between these indices of refraction is defined as birefringence. When 

viewed under a pair of polarizers (crossed with respect to each other), birefringence can 

be observed as streaks of light (which would normally be blocked by the crossed 

polarizers, but instead comes through, ranging in colors corresponding to the extent of 

birefringence).31 

 

As mentioned, clay particles impart optical anisotropy to clay gels, as they are 

discs, not spheres and thus are not symmetrical in all dimensions. Furthermore, the 

birefringence in clay-crosslinked gels is concentration-dependent.29,30 At low Laponite 

concentrations, the nanodiscs are oriented randomly and the gel is not birefringent at rest, 

as shown in Figure 3.13 (b). However, above a critical Laponite concentration (Ccrit > 6 

wt%), the nanodiscs stack together into columns and the resulting alignment of the 

particles causes the gel to be birefringent at rest.30 We used this property to engineer 

hybrid gels with birefringent regions. For these experiments, we worked with NIPA as 

the monomer because its thermoresponsive property also prove useful in the experiments 

(shown later). We created the hybrid by first forming a pattern or “message” consisting of 

the letters “UMD” using a pre-gel mixture of NIPA/LAP with 6.4 wt% Laponite (above 

Ccrit), as shown in Figure 3.13 (a). Thereafter, a pre-gel mixture of NIPA/LAP with 3.3 
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In the hybrid in Figure 3.16, the message “UMD” was formed by a NIPA/LAP 

pre-gel mixture with 4.9 wt% Laponite. This was surrounded as before by a pre-gel of 

NIPA/LAP with 3.3 wt% Laponite. Both these Laponite concentrations are below Ccrit, 

and thus there is negligible birefringence anywhere in the gel at rest. Hence, the message 

is not visible under crossed-polarizers, as seen in the left panel of Figure 3.16 (a). 

However, when subjected to a uniaxial stress, the polymer segments tend to align parallel 

to the direction of the stress while the Laponite discs align perpendicular to it, as shown 

by the schematic in Figure 3.16 (b).19,30 This causes stress-induced birefringence, which 

again is higher in gels with higher Laponite content. Figure 3.16 (b) shows a photograph 

of the hybrid gel while it is stretched uniaxially by hand. Both the message region as well 

as the surrounding gel show the stress-induced birefringence. Since the message portion 

has a higher Laponite content, it is more birefringent than the surrounding portion, 

allowing the message to be read off. 
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body was then added, consisting of DMAA monomer, again with 4 wt% Laponite 

crosslinker. With this composition, the body would be unresponsive to temperature, yet 

would be highly extensible. Finally, the pre-gel for the head was pipetted on top of the 

body. The pre-gel for the head was the most elaborate, containing sodium acrylate (SA) 

and acrylamide (AAm) as comonomers and BIS and Cloisite Na+ natural 

montmorillonite clay (MONT) as co-crosslinkers. Sodium acrylate was chosen to cause 

the head to swell to a greater extent than the rest of the squid. As discussed in section 2.2, 

a gel with an ionic monomer such as sodium acrylate will swell greatly under certain 

conditions. Only 10% of the total monomer amount used was SA, the remainder being 

AAm (total monomer content being ~1 M). Had it consisted of 100% sodium acrylate 

monomer, the head would have swelled to an extremely large size, giving the squid an 

undesired top-heaviness. The choice for crosslinker composition corresponded to the 

monomers used. Laponite clay particles are not stable in solutions of high ionic content. 

At very low ionic levels, the clay particles quickly gel, forming the “house-of-cards” 

structure. As the ionic levels increase, however, the clay particles flocculate, clumping 

together and falling out of suspension. Thus, since Laponite could not be used, BIS was 

used as a crosslinker at 2.2 mol%. We have found from experience that the strength and 

elasticity of BIS-crosslinked gels is generally improved through the addition of small 

amounts of clay. While our SA-co-AAm pre-gel was too ionic for Laponite clay particles, 

the natural montmorillonite, Cloisite Na+, (which is more tolerant to ions than Laponite) 

was added, and at the level used (1 wt%), the pre-gel remained a low-viscosity solution 

able to be pipetted on top of the body pre-gel. Figure 3.18 (b) shows the squid hybrid 

after polymerization, having taken it out of its mold. 
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The difference between the head and body can be seen in the figure, as the head is 

yellow and opaque. This is due to the montmorillonite, whose color and opacity are the 

result of the size of the clay particles and the presence of naturally occurring impurities. 

A clear interface between the tentacles and body cannot be readily discerned as both have 

similar color and transparency. Figure 3.18 (c) shows the squid after swelling in water for 

48 hours, then briefly heating in 50 °C water for ~30 seconds to reveal the 

thermoresponsive character of the tentacles. Notice that the scale bars between Figure 

3.18 (b) and (c) are the same--the gel hybrid has swollen to about one and a half times its 

original size in only a 48 hour period. Also notice that the head has become more bulbous 

than the body, due to its high degree and fast rate of swelling (imparted by the ionic 

comonomer). Because of the brief heating, the tentacles can now be readily differentiated 

from the body as they have turned opaque.  

 

Placing the squid hybrid into a vigorously circulating 50 °C water bath (Figure 

3.19) demonstrates the integrity of the connection between each hybrid section. Though 

the actual video is more revealing than the still photo, the squid survives being tossed 

around in a “swimming”-like fashion, with all sections of the hybrid firmly intact. 
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Since the pre-gel becomes quite viscous almost immediately after adding the KPS and 

TEMED, two-thirds of the mixture was scooped and then molded into the bottom of a 

beaker as shown in panel 1 of Figure 3.21. 

 

The pre-gel for the nucleus pulposus (3.3 wt% LAP/NIPA with a small amount of 

blue MB dye) was then gently poured into the “crater” left by the first pre-gel (see panel 

2 of Figure 3.21). After waiting a few minutes for the viscosity of the nucleus pulposus 

pre-gel to increase, the remainder of the annulus fibrosus pre-gel was then pipetted across 

the top in thin strips (as shown in panel 3 of Figure 3.21), continuing to add strips until a 

thick layer completely covered the core. The gel was then polymerized at room 

temperature for 20 hours before being taken out of the mold and rinsed. 

 

Once polymerized, the spinal disc hybrid could be handled quite forcefully 

(Figure 3.22), demonstrating the toughness of the hybridized connection between the two 

gel regions. The differences in compressive behaviors were readily discernible when 

pinching various portions of the disc (softer in the center and firmer at its edges).  

 

To attempt to quantify the differences in mechanical properties between the two 

regions, we utilized dynamic rheology. Though basic dynamic rheology cannot truly 

reflect how accurately our spinal disc hybrid would perform when placed between two 

vertebrae in a real spine, it can however illustrate how different the two regions of our 

hybrid are--the first step in creating a faithful replica. To analyze the gel regions 

individually, the spinal disc hybrid was cut up to obtain thin slices of both the outer ring 
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An actual human spinal disc is very complex, compressing and distributing loads 

on the spine in a multitude of directions. Though our spinal disc is fairly primitive, it can 

still be seen as the first step towards a fully-functional replacement. Future visions of a 

spinal disc replica utilizing our hybrid method involve enhancing the complexity and 

components of each region. For example, adding a collagen fiber mesh to the annulus 

fibrosus pre-gel can help mimic the radial-tire-like lamellae of an actual spinal disc. 

 

3.4. CONCLUSIONS 

In this chapter, we presented a new approach for combining dissimilar gels into a 

single material while fully preserving the unique character of each individual gel. We 

began by describing our hybrid method, and then demonstrated the utility of our approach 

through multiple examples utilizing the chemical, mechanical, and optical heterogeneity 

of various gel formulations. We created hybrids with regions that have different affinities 

for cationic dyes as well as distinct mechanical properties. We generated hybrids with 

regions of distinct optical characteristics that were revealed under crossed polarizers or in 

response to heat or stress. Finally, we designed several macroscale gels (squid gel and 

spinal disc gel) which combined a variety of monomers and crosslinkers in a manner 

which demonstrates the practicality of our hybrid technique. 
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Chapter 4: CONCLUSIONS AND RECOMMENDATIONS 

 

4.1. CONCLUSIONS  

In this thesis, we have demonstrated that hybrid hydrogels can be easily created in 

which individual components retain their identities in a single continuous matrix. We 

engineered hybrids with regions or patterns of one gel juxtaposed with another. Our 

method to assemble these hybrids is quicker, easier, and has fewer limitations than those 

used to make traditional interpenetrated networks. Moreover, the gel/gel interfaces in our 

hybrids have high mechanical integrity and are not the failure points during mechanical 

testing.  

To demonstrate the utility of our method, we developed hybrids of multiple gels 

made with both different monomers and crosslinkers. Regions of our hybrids that were 

crosslinked by Laponite particles had distinct chemical properties (ability to selectively 

absorb a cationic dye), mechanical properties (higher strength and extensibility) and 

optical properties (birefringence). We also showed hybrids could be embedded with a 

message or pattern that remained hidden until it was revealed by viewing the material 

under crossed polarizers, heated, or subjected to a uniaxial stress. We also created some 

interesting macroscale gels. Our squid-like gel (which combines three gel types of 

various crosslinkers and monomers) is an example of large-scale construction of soft 

matter in a robustly-connected, highly malleable, functional fashion. We then extend this 

macroscale assembly to one very practical application as a hybrid gel for spinal disc 

replacement. In closing, we note that our overall approach is simple and versatile; it can 
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be easily extended in a variety of ways to create new gels with unusual and unique 

properties. 

 

4.2. FUTURE DIRECTIONS 

Our approach can be extended to create a range of new hybrid gels by varying the 

monomer and/or the crosslinker for different zones of the gel and also by forming hybrids 

of numerous gels (i.e. more than just two and three). Because our approach is relatively 

straightforward, its real utility is revealed with the conception of unique, novel hybrids 

with direct applications. Accordingly, time spent in the future to further explore how gel 

hybrids could be used in biological and soft matter applications would be very 

worthwhile. 

Some of the more promising leads for hybrids include applications in separations, 

mechanical-optical sensors, biomaterials, drug delivery, and many other areas. For 

example, currently, gels can be used as scaffolds for stem cells to differentiate into 

specific cell types or tissues.8,10 It is known that the differentiation is triggered by the 

physical and chemical nature of the scaffold. Thus, hybrid gels may be useful to induce 

stem cells to simultaneously differentiate into several different cell types within adjacent 

regions of a continuous matrix--this would be a step towards the bottom-up assembly of a 

tissue.10  
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