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This dissertation focuses on characterizing energy management policies for

energy harvesting communication networks in the presence of stochastic energy ar-

rivals and temperature constraints. When the energy arrivals are stochastic and are

known only causally at the transmitter, we study two performance metrics: through-

put and age of information (AoI). When the energy harvesting system performance

is affected by the change of the temperature, we consider the throughput metric.

When the energy arrivals are stochastic, we study the throughput maximiza-

tion problem for several network settings. We first consider an energy harvesting

broadcast channel where a transmitter serves data to two receivers on the down-

link. The battery at the transmitter in which the harvested energy is stored is of

finite size. We focus on online transmission schemes where the transmitter knows

the energy arrivals only causally as they happen. We consider the case of gen-

eral independent and identically distributed (i.i.d.) energy arrivals, and propose a

near-optimal strategy coined fractional power constant cut-off (FPCC) policy. We



show that the FPCC policy is near-optimal in that it yields rates that are within a

constant gap from the optimal rate region, for all system parameters.

Next, we study online transmission policies for a two-user multiple access

channel where both users harvest energy from nature. The energy harvests are

i.i.d. over time, but can be arbitrarily correlated between the two users. The

transmitters are equipped with arbitrary but finite-sized batteries. We propose a

distributed fractional power (DFP) policy, which users implement distributedly with

no knowledge of the other user’s energy arrival or battery state. We show that the

proposed DFP is near-optimal as in the broadcast channel case.

Then, we consider online power scheduling for energy harvesting channels in

which the users incur processing cost per unit time that they are on. The presence

of processing costs forces the users to operate in a bursty mode. We consider the

single-user and two-way channels. For the single-user case, we consider the case of

the general i.i.d. energy arrivals. We propose a near-optimal online policy for this

case. We then extend our analysis to the case of two-way energy harvesting channels

with processing costs; in this case, the users incur processing costs for being on for

transmitting or receiving data. Our proposed policy is distributed, which users can

apply independently with no need for cooperation or coordination between them.

Next, we consider a single-user channel in which the transmitter is equipped

with finite-sized data and energy buffers. The transmitter receives energy and data

packets randomly and intermittently over time and stores them in the finite-sized

buffers. The arrival amounts are known only causally as they happen. We focus

on the special case when the energy and data arrivals are fully-correlated. We



propose a structured policy and bound its performance by a multiplicative gap from

the optimal. We then show that this policy is optimal when the energy arrivals

dominate the data arrivals, and is near-optimal when the data arrivals dominate

the energy arrivals.

Then, we consider another performance metric which captures the freshness

of data, i.e., AoI. For this metric, we first consider an energy harvesting transmitter

sending status updates to a receiver over an erasure channel. The energy arrivals

and the channel erasures are i.i.d. and Bernoulli distributed in each slot. In order

to combat the effects of the erasures in the channel and the uncertainty in the

energy arrivals, we use channel coding to encode the status update symbols. We

consider two types of channel coding: maximum distance separable (MDS) codes and

rateless erasure codes. For each of these models, we study two achievable schemes:

best-effort and save-and-transmit. We analyze the average AoI under each of these

policies. We show that rateless coding with save-and-transmit outperforms all other

schemes.

Next, we consider a scenario where the transmitter harvests i.i.d. Bernoulli

energy arrivals and status updates carry information about an independent message.

The transmitter encodes this message into the timings of the status updates. The

receiver needs to extract this encoded information, as well as update the status of the

observed phenomenon. The timings of the status updates, therefore, determine both

the AoI and the message rate (rate). We study the trade-off between the achievable

message rate and the achievable average AoI. We propose several achievable schemes

and compare their rate-AoI performances.



Then, with the motivation to understand the effects of temperature sensitiv-

ity on wireless data transmission performance for energy harvesting communication

networks, we study several temperature models. We assume non-causal knowledge

of the energy arrivals. First, we consider throughput maximization in a single-user

energy harvesting communication system under continuous time energy and tem-

perature constraints. We model three main temperature related physical defects in

wireless sensors mathematically, and investigate their impact on throughput max-

imization. Specifically, we consider temperature dependent energy leakage, effects

of processing circuit power on temperature, and temperature increases due to the

energy harvesting process itself. In each case, we determine the optimum power

schedule.

Next, different from the previous work, we consider a discrete time system

where transmission power is kept constant in each slot. We consider two models

that capture different effects of temperature. In the first model, the temperature

is constrained to be below a critical temperature at all time instants; we coin this

model as explicit temperature constrained model. We investigate throughput optimal

power allocation for multiple energy arrivals under general, as well as temperature

and energy limited regimes. In the second model, we consider the effect of the

temperature on the channel quality via its influence on additive noise power; we coin

this model as implicit temperature constrained model. In this model, the change in

the variance of the additive noise due to previous transmissions is non-negligible.

In particular, transmitted signals contribute as interference for all subsequent slots

and thus affect the signal to interference plus noise ratio (SINR). In this case, we



investigate throughput optimal power allocation under general, as well as low and

high SINR regimes. Finally, we consider the case in which implicit and explicit

temperature constraints are simultaneously active.

Finally, we extend the discrete time explicit temperature constraint model to a

multi-user setting. We consider a two-user energy harvesting multiple access channel

where the temperatures of the nodes are affected by the electromagnetic waves due to

data transmission. We study the optimal power allocations when the temperatures

of the nodes are subject to peak temperature constraints, where each node has a

different peak temperature requirement and the nodes have different temperature

parameters. We study the optimal power allocation in this case and derive sufficient

conditions under which the rate region collapses to a single pentagon.
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Professor Richard La
Professor Gang Qu
Professor Nuno Martins
Professor Amr Baz



c© Copyright by
Abdulrahman Baknina

2018



Dedication

To my family.

ii



Acknowledgments

First and foremost, all praises and gratitude are due to God, Allah. Allah the

All-Mighty has blessed me throughout my life. He provided me with all the strength

and patience needed to finish this endeavor.

I would like to thank my adviser, Professor Şennur Ulukuş. She was very
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CHAPTER 1

Introduction

1.1 Overview

The focus of this dissertation is to study power allocation policies for energy har-

vesting communication networks in different settings. When the energy arrivals are

stochastic and known only casually, we consider two performance metrics: through-

put and age of the information (AoI). Then, when the energy arrivals are known

non-causally, we study the effect of temperature on the throughput of the network.

Energy harvesting communication has been the subject of intense research

recently. Most of the research focused on power scheduling for the throughput metric

either in offline or online settings. Offline power scheduling, where all energy arrivals

are known non-causally ahead of time, has been studied in many different settings,

e.g., [1–30]. References [1–4] consider the single-user setting, where [1] develops a

geometric approach for the case of an infinite-sized battery, [2] generalizes it to the

case of a finite-sized battery, and [3] develops a directional water-filling algorithm

for the case with fading. References [5–16] consider the offline scheduling problem in

multi-user systems, in particular, [5–7] consider the broadcast channel, [8,9] consider
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the multiple access channel, [10] considers the interference channel, [11–13] consider

the two-hop relay channel, [14, 15] consider the two-hop relay channel with two

parallel relays, i.e., the diamond channel, and [16] considers the bi-directional relay

channel, i.e., the multiple access channel with user cooperation [31]. More general

settings with battery imperfections are considered in [17, 18], effects of processing

costs are incorporated in [19–21] leading to bursty communication as in glue pouring

[32]. Receiver side energy harvesting is considered in [22–27] where the receivers

incur energy costs for decoding incoming data. Energy cooperation and sharing is

incorporated into offline power scheduling in [28, 29]. The effect of temperature on

the power allocation is studied in [30].

In contrast, online power scheduling, where energy harvests are known only

casually, has been considered in fewer works and mostly for single-user systems so

far [3, 4, 33–50]. In this case, there is a difficulty that arises due to the uncertainty

about the future energy arrivals and the finiteness of the battery size. When the

future energy arrivals are not known: if the energy is used too slowly, the resulting

rate will be smaller and sufficient space will not be open for future energy arrivals

into the battery resulting in wasting of energy; on the other hand, if the energy is

used too fast, from the concavity of the rate-power relationship, the resulting rate

will again be smaller and energy outages will occur due to frequent empty battery.

In most cases, the online problem formulation results in algorithms relying mainly

on dynamic programming and Markov decision process techniques [33–38]. Refer-

ences [3, 39, 40] propose several sub-optimal schemes which do not rely on dynamic

programming, [41] studies competitive ratios of online strategies, [42] uses an adap-
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tive stochastic control approach, [43] uses a Lyapunov optimization technique, [44]

uses a linear programming approach, and [45] considers a multiple access channel

setting with a storage dam model. As dynamic programming needs the knowledge

of the underlying distribution, [46] uses a learning-theoretic approach to remove this

assumption.

More recently, another performance metric, the AoI, has been introduced.

The AoI measures the freshness of the data at the receiver. Status updates and AoI

metric is studied in many different settings, for example, see [51–63]. References [51–

55] study minimizing the AoI with a queuing theoretic approach; penalty functions

and non-linear costs are studied in [56,57]; the optimality of last-come-first-serve for

multi-hop settings is shown in [58]; and erasure channels are considered in [59, 60].

The online energy harvesting case is studied in [61–63]. The optimality of threshold

policies for the case of unit batteries is shown in [63] and extended to larger sized

batteries in [64,65]. Energy harvesting single-user and multi-hop settings with offline

energy arrival knowledge are studied in [66,67].

We first study the setting in which the energy arrivals are known only casually

at the transmitter. For this setting, we study two performance metrics: throughout

and AoI. For the throughput problem, we study the optimal and near-optimal power

scheduling policies for single-user and multi-user network settings. For the multi-

user settings, we consider the broadcast and multiple access channels. For the

single-user setting, we consider the case when the system has an additional data

arrival constraint. When the transmitter and the receiver have imperfections, we

study both the single-user channel and the two-way channel. In all of these settings,
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we generalize the framework developed in [48,49].

Then we study the AoI metric. We first consider the single-user setting in

which the transmitter sends status updates to the receiver through an erasure chan-

nel. To tackle the energy outage and channel erasures, we propose several joint

coding and power allocation policies and study their resulting AoI. We then study

an AoI setting in which the packets sent to the receiver carry two pieces of informa-

tion. The content of the packet contains the status update while the timing of the

packet contains a message which is independent of the status update. We study the

trade-off between the achievable AoI and the achievable message rate.

Finally, we relax the causal knowledge of the energy arrivals and consider the

case when the energy arrivals are known non-causally. For this case, we consider the

throughput metric and study the effects of temperature on offline power management

policies. Temperature dynamics in such systems are typically determined by the

temperature of the surrounding environment, transmit power for data transmission,

and circuit power associated with processing. In energy harvesting wireless sensors,

an additional cause of temperature increase is the energy harvesting process itself.

The increase in temperature can have several undesired outcomes. In particular, it

can cause damage to the device [68] or to its surrounding environment [69]. In this

case, a hard peak temperature constraint could be more suitable. Another effect

of temperature increase is the energy leakage or the energy lost without utilization.

Typically, the energy leakage in sensors is temperature dependent [70]. Temperature

increase can also change the communication rate by affecting the channel quality;

this is because the thermal noise variance is proportional to the system temperature.
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1.2 Outline

We first study energy harvesting systems when the energy arrivals are known only

causally; we study the throughput metric in Chapters 2 through 6 and we study the

AoI metric in Chapters 6 and 7. Then, with non-causal energy arrival knowledge, we

study the effect of temperature on the network throughput in Chapters 8 through

10.

In Chapter 2, we consider an energy harvesting broadcast channel and develop

online power scheduling algorithms for this channel model. This work is most closely

related to [5,7] and [48,49]. References [5,7] consider the energy harvesting broadcast

channel and develop optimal offline power scheduling schemes for infinite-sized and

finite-sized batteries, respectively. They show that the optimum total transmit

power is equal to the optimum single-user power, which is constant between energy

arrivals [1]. In addition, they show that there exists a cut-off power level: the

stronger user is served with the cut-off power when possible, and the weaker user is

served only with the remaining part of the power after the cut-off power is used for

the stronger user; if the total power is less than the cut-off power, only the stronger

user is served. On the other hand, reference [49] consider the single-user energy

harvesting channel and develop online power scheduling algorithms. They show

that near-optimal transmit power decreases over time. Our work may be viewed

as extending the offline broadcast setting of [5, 7] to the case of online broadcast

setting; or it may be viewed as extending the online single-user setting of [48,49] to

the case of online broadcast setting.
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Initially, we consider a special energy arrival process which is Bernoulli that

either brings no energy or fills the battery completely. In this case, we solve for the

exactly optimum online power scheduling strategy. We show that the optimal total

transmit power between the energy arrivals is decreasing in time, and there exists

a cut-off level below which all power is allocated to serve the stronger user, and

only the power above which is allocated to serve the weaker user. Unlike [5, 7], the

optimum total transmit power is not equal to the optimum single-user power, as the

optimum single-user power is not universal as in [1] since it depends on the receiver

noise variance in this case. We determine the optimum online strategy to achieve

any point on the boundary of the broadcast channel capacity region. In certain parts

of the region, only a single user may be served, depending on the user priorities; in

other parts, both users will be served. We show that, when both users are served,

the stronger user is served for a duration no less than the weaker user is served;

that is, the weaker user may be served for a portion of the stronger user’s serving

duration, however the opposite may not occur. We show that between the energy

arrivals, whenever the stronger user’s power allocation is decreasing, the weaker

user’s power allocation is zero; and whenever the stronger user’s power allocation is

equal to the cut-off power, the weaker user’s power allocation is decreasing.

Next, inspired by the optimum solution for Bernoulli arrivals, we propose

a sub-optimal strategy that is valid for all i.i.d. energy arrivals: fractional power

constant cut-off (FPCC) policy. In FPCC, the transmitter uses a universal but

sub-optimal fractional power policy, however, this power is allocated optimally to

users based on a cut-off power. We develop a lower bound for the performance of
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the FPCC policy, and a universal upper bound for the capacity region of the energy

harvesting broadcast channel which depends only on the average recharge rate. We

show that the FPCC scheme is near-optimal in that it yields rates that are within a

constant gap from the developed upper bound, and thus, from the actual capacity

region, for all system parameters.

Next, in Chapter 3, we consider an energy harvesting multiple access channel

and develop online power scheduling algorithms for this channel model. This work is

most closely related with [8] and [49]. Reference [8] develops optimum power alloca-

tion schemes for the energy harvesting multiple access channel in the offline setting

using generalized directional water-filling techniques. Reference [49], as mentioned,

develop a unique approach to the online power allocation problem in the single-user

setting.

In this work, we first consider the case of fully-correlated Bernoulli energy

arrivals. In this case, the Bernoulli arrivals at the two users are synchronized. For

this case, we obtain the jointly optimum online power schedules for the users. We

show that the optimum transmission powers of both users decrease exponentially in

time. We show that the capacity region, which is in general a union of pentagons

over power allocation policies, is a single pentagon for synchronized Bernoulli energy

arrivals. We show that at the corner points of the pentagon where one of the users

gets the single-user rate, the user getting the single-user rate transmits for a shorter

(or equal) duration than the other user.

Motivated by the fractional structure of the optimal policies for fully-correlated

Bernoulli arrivals and the single pentagon structure of the capacity region, we pro-
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pose a sub-optimal policy, which is fixed but distributed between the users, coined

distributed fractional power (DFP) policy. The DFP is universal in that, it does

not depend on the statistics of the energy arrival processes; it depends only on the

average recharge rate and the size of the battery at each user. Users implement

this algorithm distributedly with no knowledge of the other user’s energy arrival or

battery state. We obtain a lower bound on the performance of the the proposed

DFP for the case of fully-correlated (synchronous) Bernoulli arrivals.

Next, we study arbitrarily correlated Bernoulli energy arrivals, in which case,

the Bernoulli arrivals at the users are not synchronized. We show that under the

DFP policy, the performance of the energy arrivals coming from a fully-correlated

Bernoulli energy arrivals forms a lower bound on the performance of arbitrarily

correlated Bernoulli energy arrivals with the same mean. Finally, we show that the

performance with Bernoulli energy arrivals forms a lower bound for the performance

with any other energy arrivals with the same mean. Then, we derive a universal

upper bound that is valid for all online policies. This upper bound is valid for

general energy arrivals, and is universal in that it depends only on the average

recharge rates at the users. We show that the derived upper and lower bounds are

within a constant gap of each other, and hence, the proposed DFP policy achieves

rates that are within a constant gap from the optimal online capacity region for the

multiple access channel under equal normalized recharge rates.

In Chapter 4, we extend the fractional policy approach for the single-user and

two-way channels with processing costs. For the single-user case, this may be viewed

as an extension of the online setting in [49] to incorporate processing costs at the
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transmitter, or equivalently, as an extension of the offline setting in [19, 20] which

consider processing costs to an online setting. In addition, we further extend our

setting from consideration of a single-user channel to the case of two-way channels.

For the single-user case, we first consider the case of i.i.d. Bernoulli energy

arrivals, where the energy arrival amount is either zero or equals the size of the

battery, i.e., either no energy arrives or the energy arrival fills the battery resetting

the system. For this case, we determine the exactly optimal online transmission

policy. We show that the optimum transmit power decreases exponentially between

energy arrivals. Due to the presence of processing costs, there may exist bursts

in the transmission, i.e., slots may not be fully utilized. We show that the bursty

transmission can only occur in the last slot. We also show that the total transmission

duration decreases with the processing cost. Next, we consider the case of general

i.i.d. energy arrivals, and propose a sub-optimal policy. We develop multiplicative

and additive lower bounds on the performance of the proposed policy, and a universal

upper bound for the performance of any online policy with processing costs. We

show that the developed lower and upper bounds are within a constant gap for all

energy arrivals and battery sizes; hence, the proposed sub-optimal policy performs

within a constant gap from the optimal policy.

We then consider the two-way channel with fully-correlated energy arrivals.

This may happen in practice if the users harvest energy from a common source,

which may occur, for instance, if the users are within a close proximity of each other

and are exposed to the same energy harvesting source. We note that even though

the energy arrivals are fully-correlated, the energy intakes of the users are different
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due to their different battery sizes. As in the single-user case, we first consider

i.i.d. Bernoulli arrivals where each energy arrival amount is either zero or larger

than the sizes of both batteries so it fills both batteries simultaneously resetting

the system. We show that the optimum powers of the users decrease over time,

and the on-off times of the users are fully synchronized. We show that a burst

may occur only in the last slot. Next, we consider the case of general i.i.d. energy

arrivals. For this case, we propose a distributed sub-optimal policy for power and

burst duration selection. The policy is fully distributed and can be applied by each

user independently without a need for cooperation or coordination. We develop

multiplicative and additive lower bounds on the performance of the proposed policy.

We show that the proposed sub-optimal policy is near-optimal in that it performs

within a constant gap of the optimal policy for all energy arrival processes and sizes

of the batteries at the users.

In Chapter 5, we consider the single-user setting with both data and energy

arrival constraints. We consider the case when the data and energy arrivals are

fully-correlated. This setting may practically arise when energy and information

are simultaneously transferred as in simultaneous wireless energy and information

transfer [71]. We propose a structured near-optimal solution for the online problem.

We also show, for some special cases, that the proposed policy is exactly optimal.

This setting is closely related to [72] in that it extends the presented model to

the online setting as developed in [49]. We first study the case of synchronized

Bernoulli arrivals, where both data and energy arrivals are either zero or they fill

up their corresponding queues simultaneously. We characterize the exactly optimal
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solution for this case. Then, for the case of fully-correlated general arrivals with the

same arrival means as the Bernoulli arrivals, we propose a structured policy. We

show that this policy is optimal when the energy arrivals dominate, and it is within

a constant additive gap when the data arrivals dominate. In addition, we derive a

multiplicative gap result for the performance of the proposed policy in all cases.

In Chapter 6, we consider an energy harvesting communication system with

the objective of minimizing the average AoI at the receiver. This setting is closely

related to [60], in which coded status updates are proposed in order to overcome

channel errors. We consider a single-user channel, where the transmitter is energy

harvesting and further transmission errors may occur due to energy outages. We

consider two different types of channel codes to encode the status updates. First,

we consider maximum distance separable (MDS) codes. With MDS coding, the

transmitter encodes the k status update symbols into n symbols. The receiver

receives the update successfully if it receives any k of these n encoded symbols.

Next, we consider rateless codes, for example, fountain codes. In this case, the

transmitter encodes the k update symbols into as many symbols as needed until k

of these symbols are received successfully. For each of these models, we consider

two different policies: best-effort and save-and-transmit. Best-effort and save-and-

transmit schemes were originally considered in [73], in the context of achieving the

capacity of the energy harvesting AWGN channel. In the best-effort scheme, in

each slot, the transmitted symbol may suffer from two errors: channel erasure and

energy outage. In the save-and-transmit scheme, the transmitter remains silent at

the beginning to save energy and to reduce the errors due to energy outage.
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For all these cases, we derive the average AoI. Through numerical results,

we show that as the average recharge rate decreases, MDS coding with save-and-

transmit outperforms all the best-effort schemes. The gain becomes significant for

low values of average energy arrivals. We observe that rateless coding with save-

and-transmit outperforms all other policies.

In Chapter 7, different from the existing literature, we consider the scenario

where the timings of the status updates also carry an independent message. In order

to obtain a tractable formulation, we consider an abstraction where the physical

channel is noiseless and the transmitter has a battery of unit size. This work is

closely related to the models presented in [74] and [75]. Intuitively, as will be

clarified shortly, there is a trade-off between the AoI and the rate of the message.

Our goal in this chapter is to characterize this trade-off.

For this scenario, under causal (i.e., online) knowledge of energy arrivals, [75]

has determined that, in order to minimize the long-term average AoI, the transmitter

needs to apply a threshold based policy: There exists a fixed and deterministic

threshold τ0 such that if an energy arrives sooner than τ0 seconds since the last

update, the transmitter waits until τ0 and sends the update packet; on the other

hand, if it has been more than τ0 seconds since the last update, the transmitter

sends an update packet right away when an energy arrives.

On the other hand, again for this scenario, [74] has considered the information-

theoretic capacity of this energy harvesting channel. The main information-theoretic

challenge arises due to having a state-dependent channel (where the state is the

energy availability), time-correlation introduced in the state due to the existence
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of a battery at the transmitter where energy can be saved and used later, and the

unavailability of the state information at the receiver. Reference [74] converts the

problem from regular channel uses to a timing channel and obtains the capacity in

terms of some auxiliary random variables using a bits through queues approach as

in [76].

Sending information necessarily requires the transmitter to send out a packet

after a random amount of time following an energy arrival in [74], whereas mini-

mizing AoI requires the transmitter to apply a deterministic threshold based policy

in [75]. Note that in [75], the transmitter sends a packet either at a deterministic

time τ0 after an energy arrival, or right at the time of an energy arrival, thus, it

cannot send any rate with the packet timings even though it minimizes the AoI.

This is the main source of the tension between AoI minimization and information

rate maximization.

In this work, we first present a general trade-off region between the achievable

AoI and the achievable information rate. We then consider the class of renewal

policies in which the system action depends only on the most recent transmission.

Within this class of policies, we first propose policies that determine the next trans-

mission instant as a function of the time difference between the most recent energy

arrival and the most recent status update. We then consider simpler policies which

we call separable policies. These policies separate the update decision and informa-

tion transmission in an additive manner: When an energy arrives, the transmitter

decides when to update, neglecting the information transmission; once the trans-

mitter decides to send an update, it then encodes the message on top of that update
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timing. For all the policies, we derive the average achievable AoI and the achievable

rate. We then compare the trade-off regions of these policies. We observe numeri-

cally that the first class of policies achieve better trade-off regions. We also observe

that as the value of the average energy arrival increases, policies perform similarly.

In Chapter 8, we consider the throughput maximization problem for energy

harvesting transmitters under temperature constraints in an offline setting. In or-

der to address temperature sensitivity of such systems, we consider problem for-

mulations that capture temperature related physical defects in energy harvesting

communications. In particular, we investigate the impact of these physical defects

on the optimal throughput for energy harvesting communications. We first address

the temperature dependent energy leakage. Energy leakage is inevitable in wire-

less sensors due to power dissipated in the electronics circuitry of the system. It is

well-known that the energy leakage increases with temperature. We adopt a linear

leakage model as in [70,77,78] and investigate the optimal transmit power policy.

Next, we consider the problem of processing cost. Processing cost has been

studied earlier in energy harvesting communications [19, 20]. In view of [20, 32], it

is well-known that the processing cost forces the optimal transmission to be bursty.

In the absence of temperature constraints, the silent and active periods affect the

throughput only through their lengths. However, with temperature constraints,

their sequence has to be properly designed in addition to their lengths. We address

this problem by allowing the transmitter to divide the transmission duration into

two consecutive transmission and silence periods, and identify the optimal policy in

this case. Then, we study the effects of the heat caused by the energy harvesting
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process itself. While harvesting more energy improves the throughput, it also in-

creases the temperature. In this case, the transmitter has to determine the transmit

power level as well as the amount of harvested energy (i.e., energy intake). Under

a linear relation between temperature increase and harvested energy, we investigate

the jointly optimal energy harvesting and transmit power policy.

In Chapter 9, we consider the scheduling problem under energy harvesting

and temperature constraints in discrete time. Our interest in discrete time solution

stems from the fact that circuits typically run on digital clocks and decisions on the

transmission strategy are taken at discrete time intervals. In the first model we con-

sider here, which we coin as the explicit temperature constrained model, we consider

an explicit peak temperature constraint as in [30] and obtain a discrete time version

of the problem considered in [30]. In this temperature constrained problem, increas-

ing the transmission power increases the throughput and the temperature. Due to

the fixed temperature budget, higher temperature levels mean smaller admissible

transmission power levels for future slots. When the temperature constraint is not

binding, the problem reduces to the single-user energy harvesting channel studied

in [1], where the optimal power sequence is monotone increasing. When the energy

constraint is not binding, we show that the optimal power sequence is monotone

decreasing, and the resulting temperature is monotone increasing.

In the second model we consider here, which we coin as the implicit tempera-

ture constrained model, the temperature is not explicitly constrained, however, the

temperature affects the additive noise power and hence the channel quality. This

problem arises when the dynamic range of the temperature is large and affects the
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noise added at the receiver circuitry in the spirit of [79]. Our focus here is to in-

vestigate this problem in a scheduling-theoretic setting. In this case, the transmit

powers used in earlier time slots affect the thermal noise in the form of inter symbol

interference, and hence, the channel becomes a use dependent or action dependent

channel, see [80–82]. Our work represents, to the best of our knowledge, the first

instance of this implicit temperature constrained problem in the context of energy

harvesting communications.

In the implicit temperature constrained model, transmissions in the previous

slots interfere with the current transmission due to temperature dependent noise

and the causality of the temperature filter. This filter is the discrete time version of

the continuous time first order filter that defines the temperature dynamics. For the

general signal to interference plus noise ratio (SINR), we observe that the problem is

non-convex and is a signomial problem for which we obtain a local optimal solution

using the single condensation method in [83]. We then propose a heuristic algorithm

which improves upon the local optimal solution and may achieve the global optimal

solution. Then, we consider the extreme settings of low and high SINR regimes. We

show that in the low SINR regime, saving energy till the last slot and transmitting

only in the last slot is optimal. For the high SINR regime, we observe that the

problem is a geometric program and we explore specific structural results in this

setting. Expanding upon the equivalence of this problem to its convex counterpart

via a one-to-one transformation, we show that the KKT conditions in the original

problem have a unique solution. Then, we obtain an algorithm to solve the KKT

conditions in the original problem. We show convergence of this algorithm to the
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unique solution of the KKT conditions. We then show that for this unique solution,

the power sequence is monotone increasing; hence, proving the monotone increasing

property of the optimal power sequence.

Then, we consider the case when implicit and explicit temperature constraints

are simultaneously active. In general, we observe that the problem is non-convex

and the same signomial programming approach as in the implicit temperature con-

strained case is applicable. In the high SINR regime, the problem is a geometric

program and we show in the temperature limited case that the optimal power se-

quence is monotone decreasing under certain conditions. We illustrate our findings

in various numerical results.

In Chapter 10, we extend the explicit temperature constraint model studied in

Chapter 9 to a multi-user setting. We study the optimal offline power allocation for

the two-user multiple access channel model. We first show that the capacity region

for the energy harvesting multiple access channel with peak temperature constraints

is a convex region, and hence, the region can be fully characterized by studying its

tangent lines. For the single energy arrival, we show that the optimal achievable

rate region is a single pentagon which is constructed by the intersection of two

pentagons which result from the energy and temperature constraints. We show that

for the multiple energy arrivals that the optimal power allocations can be obtained

by generalized water-filling. We then study the special case when the energy is

abundant and the only binding constraint is the peak temperature constraint at

the nodes. In this case, we provide an explicit structure for the optimal power

allocations; we show that at any point in the optimal rate region at least one of
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the powers is non-increasing. We also show that the sum of the powers is also non-

decreasing in most of the optimal rate region. Then, we derive sufficient conditions

under which the optimal rate region of the multiple access channel reduces to a

single pentagon.

In Chapter 11, we provide conclusions to this dissertation.
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CHAPTER 2

Optimal and Near-Optimal Online Strategies for Energy Har-

vesting Broadcast Channels

2.1 Introduction

We consider an energy harvesting broadcast channel, Fig. 2.1, in which a transmitter

which harvests energy from nature at random times and amounts, serves data to two

receivers on the downlink. The transmitter has two buffers, one for the incoming

data and one for the harvested energy. The data buffer is infinitely backlogged.

The energy buffer (battery), which is of finite size B, is recharged randomly by the

energy harvesting process throughout the course of communication. We consider the

online setting where the transmitter gets to know the energy arrivals (harvests) only

causally as they happen. The transmitter needs to determine a transmission policy,

which chooses the total transmit power and also the amount of power allocated to

serve each user’s data, as a function of the available energy in the battery.
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2.2 System Model

We consider a two-user energy harvesting broadcast channel, see Fig. 2.1. The

transmitter has a battery of size B. The time is slotted. At each time slot i,

Ei units of energy enters the battery (is harvested), where Ei is an i.i.d. random

process. We denote the amount of energy in the battery at time i as bi. We follow a

transmit-first strategy, where in each slot data is transmitted first and then energy

is harvested. The battery energy level evolves as:

bi = min{B, bi−1 − Pi−1 + Ei} (2.1)

where Pi−1 is the energy of the symbol transmitted in slot i− 1, and it is limited by

the amount of energy available in the battery in that slot, i.e., Pi−1 ≤ bi−1.

The underlying physical layer is a Gaussian broadcast channel, where the

received signal at receiver k is Yk = X+Nk, for k = 1, 2. Here, X is the transmitted

signal and Nk are the Gaussian receiver noises with variances σ2
k. Without loss of

generality, let σ2
1 < σ2

2. The Gaussian broadcast channel is degraded. In this case,

it is degraded in favor of the first user, i.e., the first user is the stronger user and

the second user is the weaker user. The capacity region of the Gaussian broadcast

channel in slot i is [84] (see e.g., [5–7]):

r1i ≤
1

2
log

(
1 +

αiPi
σ2

1

)
(2.2)

r2i ≤
1

2
log

(
1 +

(1− αi)Pi
αiPi + σ2

2

)
(2.3)
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Figure 2.1: System model: an energy harvesting broadcast channel.

The boundary of the capacity region is traced by sweeping αi in [0, 1]. On the

boundary, X is Gaussian with power Pi, where αiPi portion of this power is allocated

to serve the data of the stronger user, and (1−αi)Pi is allocated to serve the data of

the weaker user. The stronger user experiences no interference as it can decode and

subtract the weaker user’s signal (see (2.2)), while the weaker user experiences the

power allocated for the stronger user as interference (see (2.3)). On the boundary

of the capacity region where (2.2) and (2.3) are satisfied with equality, we can write

Pi in terms of the rates r1i and r2i as:

Pi = σ2
1e

2(r1i+r2i) + (σ2
2 − σ2

1)e2r2i − σ2
2 , g(r1i, r2i) (2.4)

Therefore, g(r1i, r2i) is the minimum total power needed to provide users with rates

r1i and r2i.

Our goal in this chapter is to characterize the optimal long-term throughput

region of the system. We characterize this region by characterizing its tangent lines.

Therefore, characterizing this region is equivalent to determining long-term weighted
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average throughput:

Φ = max
P∈F̂

lim
n→∞

E

[
1

n

n∑

i=1

max
αi∈[0,1]

(µ1r1i + µ2r2i)

]
(2.5)

for all µ1, µ2 ∈ [0, 1], where F̂n denotes the feasible region for transmit powers

subject to causal energy knowledge. From (2.1), the current battery state bi depends

on the previous slot through the action, Pi−1, and battery state, bi−1, along with

the current energy arrival Ei. The stage reward is maxαi∈[0,1](µ1r1i + µ2r2i) and the

admissible policies at each stage, Pi, are the values in [0, bi] which depend only on

the current battery state. Hence, it follows that the optimal policy exists and is

Markovian see e.g., [85, Theorem 6.4] and [86, Theorem 4.4.2], respectively. The

optimal Markov policy can then be found using dynamic programming by solving

Bellman’s equations [87, Chapter 4]. Hence, (2.5) can be expressed as:

Φ = lim
n→∞

E

[
1

n

n∑

i=1

(µ1r
∗
1i + µ2r

∗
2i)

]
(2.6)

where r1i and r2i are replaced by r∗1i and r∗2i, respectively, due to the existence of

the optimal Markovian policy.

While we will eventually consider an arbitrary i.i.d. energy arrival process Ei,

initially, we will consider a special i.i.d. energy arrival process which is Bernoulli with

a particular support set, in particular, Ei = 0 with probability 1 − p, and Ei = B

with probability p. That is, the energy arrival process is such that, either no energy

arrives, or when energy arrives, it fills the battery completely. This process will
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enable renewals when energy arrives. We will start with this special energy arrival

process in Section 2.3 and consider the general arrivals in Section 2.4.

2.3 Optimal Strategy: Case of Bernoulli Arrivals

Since broadcast rate region is convex, we characterize it by determining its tangent

lines. Thus, we consider all weighted sum rates of the form µ1r1 +µ2r2, where µ1, µ2

are both in [0, 1], and are referred to as the priorities of the users. The average

weighted sum rate is:

lim
n→∞

E

[
1

n

n∑

i=1

(µ1r
∗
1i + µ2r

∗
2i)

]
(2.7)

A non-zero energy arrival resets the system and forms a renewal. Then, from [88,

Theorem 3.6.1] (see also [89]):

lim
n→∞

E

[
1

n

n∑

i=1

(µ1r
∗
1i + µ2r

∗
2i)

]
=

1

E[L]
E

[
L∑

i=1

(µ1r
∗
1i + µ2r

∗
2i)

]
(2.8)

= p
∞∑

k=1

p(1− p)k−1

k∑

i=1

(µ1r
∗
1i + µ2r

∗
2i) (2.9)

=
∞∑

i=1

∞∑

k=i

p2(1− p)k−1 (µ1r
∗
1i + µ2r

∗
2i) (2.10)

=
∞∑

i=1

p(1− p)i−1(µ1r
∗
1i + µ2r

∗
2i) (2.11)

where L is the inter-arrival time, which is geometric with p. We used P[L = k] =

p(1 − p)k−1, and E[L] = 1/p in (2.8)-(2.11). Hence, the rate and therefore power
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allocation problem becomes:

max
{r1i,r2i}

∞∑

i=1

p(1− p)i−1(µ1r1i + µ2r2i)

s.t.
∞∑

i=1

g(r1i, r2i) ≤ B

r1i, r2i ≥ 0, ∀i (2.12)

which is an optimization problem only in terms of the rates. In essence, this opti-

mization problem aims to maximize the expected (weighted sum) transmitted rate

before the next energy arrival. Therefore, the power allocation policy obtained as

the solution of (2.12) corresponds to the optimum power allocation policy between

two energy arrivals.

Here, µ1 and µ2 determine the point on the boundary of the capacity region,

and also the power (and rate) schedule that achieves it. First, we will consider

the case where one of the µi is zero (without loss of generality µ2 = 0). This will

achieve the intercept of the boundary of the capacity region with one of the axes.

This will also reduce our multi-user broadcast setting into the single-user setting

of [48,49]. We present this setting in the next sub-section for completeness and also

to emphasize some of the properties of the solution. We will consider the general

case where µ1 and µ2 are non-zero in the subsequent sub-section.

24



2.3.1 µ1 > 0, µ2 = 0

In this case, the problem in (2.12) specializes to:

max
{r1i}

∞∑

i=1

p(1− p)i−1r1i

s.t.
∞∑

i=1

σ2
1e

2r1i − σ2
1 ≤ B

r1i ≥ 0, ∀i (2.13)

This problem is convex and is solved in [48,49]. The Lagrangian is:

L =−
∞∑

i=1

p(1− p)i−1r1i + λ

(
∞∑

i=1

σ2
1e

2r1i − σ2
1 −B

)
−
∞∑

i=1

νir1i (2.14)

where λ, νi ≥ 0, ∀i. The necessary and sufficient KKT optimality conditions are:

−p(1− p)i−1 + λσ2
1e

2r1i − νi = 0, ∀i (2.15)

Here, and also in all the subsequent KKT conditions, we absorb constants into

Lagrange multipliers. For instance, in (2.15) a factor of 2 in the second term is

absorbed into the Lagrange multiplier λ, i.e., we implicitly define a new Lagrange

multiplier which is equal to 2λ. Note that this does not affect the optimum solution

or the analysis of the problem. When r1i > 0, from complementary slackness νi = 0,
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and we have:

e2r1i =
p(1− p)i−1

λσ2
1

(2.16)

Accordingly, from r1i = 1
2

log
(

1 + Pi
σ2

1

)
, when Pi > 0, we have:

Pi =
p(1− p)i−1

λ
− σ2

1 (2.17)

We first note from (2.16)-(2.17) that the optimum rate and power decrease in time;

they decrease strictly when p ∈ (0, 1). Therefore, there exists a time i at which

power Pi hits zero. Let us denote the last instance when Pi > 0 as Ñ . Therefore,

Ñ is the smallest integer such that,

p(1− p)Ñ < λσ2
1 (2.18)

In addition, all power must be consumed, i.e., λ > 0, as otherwise, we can increase

one of the powers and improve the objective function. Thus,

Ñ∑

i=1

(
p(1− p)i−1

λ
− σ2

1

)
= B (2.19)

From (2.19), we have,

λ =
1− (1− p)Ñ
B + Ñσ2

1

(2.20)
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Inserting (2.20) into (2.18), we find the optimum Ñ as the smallest integer satisfying,

[
p

(
B

σ2
1

+ Ñ

)
+ 1

]
(1− p)Ñ < 1 (2.21)

We note from (2.21) that Ñ , and therefore, the optimum power depends on

the noise variance σ2
1. Next, we show that, if the noise variance is larger, then the

transmission duration is shorter. To that end, by rearranging (2.21), we obtain,

B

σ2
1

<
1− (1− p)Ñ
p(1− p)Ñ

− Ñ (2.22)

Let us denote the right hand side of (2.22) as f(i) , 1−(1−p)i
p(1−p)i −i. Then, f(i) increases

in i since,

f(i+ 1)− f(i) =
1

(1− p)i+1
− 1 ≥ 0 (2.23)

Therefore, as σ2
1 increases, the left hand side of (2.22) decreases, and thus, the

smallest value of Ñ for which (2.22) is satisfied decreases.

We summarize the important properties of the optimum single-user transmis-

sion policy compactly in the following lemma, whose proof is developed above in

this sub-section.

Lemma 2.1 The optimal single-user online power allocation policy for i.i.d. Bernoulli

energy arrivals: 1) decreases in time; 2) depends on the noise variance, i.e., is not

universal; and 3) the transmission duration Ñ decreases as the noise variance in-
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creases.

2.3.2 µ1, µ2 > 0

First, we note that, from the degradedness of the channel, if µ1 ≥ µ2 then r1i > 0

and r2i = 0. Hence, we go back to the single-user power allocation as in the previous

sub-section when µ1 ≥ µ2. Therefore, the only remaining case to solve for is the

case when µ1 < µ2.

The Lagrangian for the problem in (2.12) is:

L =−
∞∑

i=1

p(1− p)i−1(µ1r1i + µ2r2i)

+ λ

(
∞∑

i=1

σ2
1e

2(r1i+r2i) + (σ2
2 − σ2

1)e2r2i − σ2
2 −B

)

−
∞∑

i=1

ν1ir1i −
∞∑

i=1

ν2ir2i (2.24)

The necessary and sufficient KKT optimality conditions ∀i are:

−µ1p(1− p)i−1 + λσ2
1e

2(r1i+r2i) − ν1i = 0 (2.25)

−µ2p(1−p)i−1+λ
(
σ2

1e
2(r1i+r2i)+(σ2

2−σ2
1)e2r2i

)
−ν2i=0 (2.26)

Starting from (2.26) and using (2.4), we have

g(r1i, r2i) =
µ2p(1− p)i−1 + ν2i

λ
− σ2

2 (2.27)

≥ σ2
1e

2(r1i+r2i) − σ2
1 (2.28)
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=
µ1p(1− p)i−1 + ν1i

λ
− σ2

1 (2.29)

≥ µ1p(1− p)i−1

λ
− σ2

1 (2.30)

where the inequality in (2.28) is satisfied with equality when r2i = 0, (2.29) follows

from (2.25), and the inequality in (2.30) is satisfied with equality when r1i > 0.

Therefore, when r2i > 0, we have

g(r1i, r2i) =
µ2p(1−p)i−1

λ
−σ2

2 >
µ1p(1−p)i−1

λ
−σ2

1 (2.31)

While, when r2i = 0 (which also implies that r1i > 0), we have

g(r1i, r2i) =
µ1p(1−p)i−1

λ
−σ2

1 >
µ2p(1−p)i−1

λ
−σ2

2 (2.32)

Therefore, we have

g(r1i, r2i) = max{ui, vi} (2.33)

where

ui =
µ2p(1− p)i−1

λ
− σ2

2 (2.34)

vi =
µ1p(1− p)i−1

λ
− σ2

1 (2.35)

Hence, (2.33)-(2.35) give the general form of the optimum g(r1i, r2i), which is the

optimum total transmit power, P ∗i , in the broadcast channel.
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Next, we solve for the components of the optimum total transmit power al-

located to serving the two users’ data, i.e., we solve for αi, or in other words, for

P1i and P2i, where P1i = αiPi and P2i = (1 − αi)Pi, or equivalently the optimal

rates r1i and r2i. To that end, let us assume that we have solved for the ith slot

total transmit power allocation P ∗i for all i already. Then, within the ith slot, the

optimization problem is:

max
{r1i,r2i}

p(1− p)i−1(µ1r1i + µ2r2i)

s.t. g(r1i, r2i) ≤ P ∗i

r1i, r2i ≥ 0 (2.36)

If µ1 ≥ µ2, then from the degradedness of the channel, all the total power will be

allocated to the message of user 1, i.e., P1i = P ∗i . For µ1 < µ2, using the KKT

optimality conditions for (2.36), we obtain the following structure for the optimum

solution:

Pc =

(
µ1σ

2
2 − µ2σ

2
1

µ2 − µ1

)+

(2.37)

P1i = min{Pc, P ∗i } (2.38)

P2i = P ∗i − P1i (2.39)

We provide the details of the derivation of (2.37)-(2.39) in the Appendix. In (2.37)-

(2.39), Pc is the cut-off power level, which determines the maximum possible power

to allocate to the message of user 1. We already know from the discussion before
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(2.37) that if µ1 ≥ µ2, then all the total power will be allocated to the message of

user 1, i.e., P1i = P ∗i and P2i = 0. From (2.37)-(2.39), we see that, if µ2 ≥ σ2
2

σ2
1
µ1,

then Pc = 0, and hence, no power will be allocated to the message of user 1, and

all the power will be allocated for the message of user 2, i.e., P1i = 0 and P2i = P ∗i .

For all the other cases, i.e., when µ1 < µ2 <
σ2

2

σ2
1
µ1, Pc is positive and user 1 will be

allocated the minimum of Pc and the total available power P ∗i , and user 2 will be

allocated the remaining power.

From the development in this sub-section, we conclude the following observa-

tions: First, the optimum total transmit power, P ∗i , which is given by (2.33)-(2.35) is

decreasing in time, as both ui in (2.34) and vi in (2.35) are decreasing, and g(r1i, r2i)

in (2.33) is the maximum of two decreasing sequences, which is decreasing. Second,

the power allocated to the stronger user’s message, P1i, is either equal to Pc if

P ∗i ≥ Pc and therefore is constant, or is equal to P ∗i if P ∗i < Pc and therefore is

decreasing. Thus, the power allocated to the stronger user’s message is decreasing.

Third, the power allocated to the weaker user’s message, P2i, is either decreasing or

equal to zero; it is decreasing when P1i = Pc and is equal to zero when P1i = P ∗i .

Note that, when the stronger user’s power allocation is strictly decreasing, i.e., when

P1i = P ∗i , this happens towards the end of the transmission, and during this time

the weaker user’s power allocation is zero. This means that there exist numbers M̃

and Ñ with M̃ < Ñ such that powers allocated to both users are positive for slots

i = 1, . . . , M̃ and the power allocated only for the stronger user is positive for slots

i = M̃ + 1, . . . , Ñ . This optimal policy is illustrated in Fig. 2.2.

We summarize the important properties of the optimum broadcast transmis-
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P1 P2
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M̃ Ñ

0

P5

Figure 2.2: Structure of the optimal policy. The shaded part is the portion of the
power dedicated to user 1 (stronger user), and the unshaded part is dedicated for
user 2 (weaker user). In this example, M̃ = 3 and Ñ = 5.

sion policy compactly in the following lemma, whose proof is developed above in

this sub-section.

Lemma 2.2 The optimal online power allocation policy for the broadcast channel

with i.i.d. Bernoulli energy arrivals is as follows: 1) the total transmit power de-

creases in time; 2) the individual powers allocated to both users’ messages decrease

in time; 3) the stronger user’s power allocation is positive for a duration longer than

the duration for which the weaker user’s power allocation is positive.

We now give the explicit solution for the optimum broadcast channel power

schedule. When µ1 > µ2 or µ2 ≥ σ2
2

σ2
1
µ1, the problem reduces to a single-user problem,

and the method in the previous sub-section can be used. When µ1 < µ2 ≤ µ1
σ2

2

σ2
1
,

both users are served according to the properties of the optimum solution described

above. Hence, we need to solve for M̃ and Ñ . For slots i = 1, . . . , M̃ , both users are

served, and hence from (2.31), we have g(r1i, r2i) = ui, for i = 1, . . . , M̃ . For slots

i = M̃ + 1, . . . , Ñ , only the stronger user is served, and hence from (2.32), we have
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g(r1i, r2i) = vi. In addition, the total power constraint needs to be satisfied with

equality and hence, λ should be chosen such that,

M̃∑

i=1

ui +
Ñ∑

i=M̃+1

vi = B (2.40)

Using (2.34)-(2.35), we solve (2.40) for λ and obtain

λ =
µ2 − (µ2 − µ1)(1− p)M̃ − µ1(1− p)Ñ

B + Ñσ2
1 + M̃(σ2

2 − σ2
1)

(2.41)

Therefore, if the values of M̃ and Ñ are known, λ can be obtained from (2.41). The

problem then becomes to find the values of M̃ and Ñ ; in fact, the problem is to

solve for M̃ , Ñ and λ jointly. The optimal M̃ ≤ Ñ are the smallest integers such

that the following conditions are satisfied

µ1p(1− p)Ñ < σ2
1λ (2.42)

µ2p(1− p)M̃
λ

− σ2
2 < Pc (2.43)

where λ is given by (2.41). The first condition is similar to the single-user condition

in (2.18) which ensures that there is no further slot that can be utilized after slot

Ñ , i.e., the power drops below zero after slot Ñ . The second condition is to obtain

the slot number M̃ after which the power drops below Pc, hence the weaker user is

no longer served. The solution to (2.41)-(2.43) is unique since it is the smallest pair

of numbers satisfying these conditions. An example case where M̃ , Ñ and Pc are
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marked is shown in Fig. 2.2.

2.4 Near Optimal Strategies: General Energy Arrivals

In this section, we consider the case of general i.i.d. energy arrivals which are not

necessarily Bernoulli. Let Ei be an arbitrary i.i.d. energy arrival process with average

recharge rate E[Ei] = µ. In this case, finding the exactly optimal transmission

scheme analytically seems intractable, as there is no renewal property as in Bernoulli

arrivals. Nevertheless, we will determine a nearly optimal transmission scheme.

Towards that end, we first propose a sub-optimal online scheme which depends only

on the average recharge rate µ and the variances of the receiver noises, σ2
1, σ2

2 in

the next sub-section. We then develop a lower bound on the performance of this

policy for the case of Bernoulli arrivals. Next, we show that, under this scheme, the

performance of Bernoulli energy arrivals provides a lower bound for the performance

of any general i.i.d. energy arrival process. Finally, we develop a universal upper

bound which depends only on the average recharge rate and receiver noise variances

(does not depend on the specific statistics of the energy arrival process), and show

that the proposed sub-optimal online scheme is within a constant gap from the

upper bound, and therefore, from the optimum online scheme.
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2.4.1 Sub-Optimal Scheme: Fractional Power Constant Cut-Off

(FPCC) Policy

We first define the policy for Bernoulli energy arrivals, and then generalize it to

general energy arrivals. We note that for Bernoulli energy arrivals, the optimal

total transmit power allocated decreases exponentially over time, see (2.33)-(2.35);

and the total transmit power is divided among users according to a cut-off property,

see (2.37)-(2.39). As in [48, 49], this motivates us to construct a fractional power

policy over time. Consider that in a Bernoulli arrival case, we had an energy arrival

and the battery became full. Then, in the next slot we allocate a p fraction of

the available energy for transmission, i.e., Bp. This reduces the available energy in

the battery to B(1 − p). In the next slot, we allocate a p fraction of the available

energy for transmission, i.e., Bp(1 − p), and so on so forth. This gives a total

power allocation policy which is Pi = Bp(1 − p)i−1 in slot i, which is different

from the optimum described in (2.33)-(2.35), but preserves the fractional structure.

Next, we follow the exact optimum partition of this sub-optimal total transmit

power in all slots among the two users as in (2.37)-(2.39). That is, we allocate

P1i = min{Pc, Bp(1−p)i−1} for user 1, and P2i = Bp(1−p)i−1−P1i for user 2. Note

that, this results in a universal allocation of total transmit power, which does not

depend on priorities µ1, µ2 (unlike the optimum (2.33)-(2.35)), while the allocation

of individual powers is optimum as in (2.37)-(2.39) and depends on µ1, µ2.

For general energy arrivals, we allocate a fraction q = µ/B of the available

energy in the battery for transmission, i.e., if the energy available in the battery in
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slot i is bi, we choose the total transmit power in that slot as Pi = qbi. Then, we

partition the total transmit power between the two users as in the optimum scheme

in (2.37)-(2.39), i.e., we allocate P1i = min{Pc, qbi} for user 1, and P2i = qbi − P1i

for user 2.

2.4.2 A Lower Bound on the Proposed Online Policy

We first develop a lower bound for the proposed FPCC policy for the case of

Bernoulli arrivals. The power allocated to the stronger user is P1i = min{Pc, Bp(1−

p)i−1}. Let us define a deterministic integer i∗ as

i∗ , max{i ∈ N : Pc ≤ Bp(1− p)i−1} (2.44)

If Pc ≤ pB, then, i∗ represents the last slot until which the stronger user’s power

share is Pc; after i∗, the stronger user gets the entire power. We further define a

random variable K as

K , min{i∗, L} (2.45)

where L is a geometric random variable with parameter p as used in (2.8)-(2.11).

First, we give a lower bound for E[K]
E[L]

in the following lemma.

Lemma 2.3 The quantity E[K]
E[L]

is lower bounded by
(

1− Pc
pB

)
.

Proof: Note that K takes values in [1, i∗] with pmf P[K = k] = p(1 − p)k−1 for
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k = 1, . . . , i∗ − 1, and P[K = i∗] = (1− p)i∗−1. This follows since whenever k < i∗,

we have P[K = k] = P[L = k], which is the pmf of L which is geometric with

parameter p; and, K = i∗ when L ≥ i∗. Then,

E[K] =
i∗−1∑

i=1

ip(1− p)i−1 + i∗(1− p)i∗−1 (2.46)

=
1

p

(
1− (1− p)i∗

)
(2.47)

Then, noting E[L] = 1/p, we have

E[K]

E[L]
= 1− (1− p)i∗ ≥

(
1− Pc

pB

)
(2.48)

where the inequality follows because by the definition in (2.44) i∗ satisfies Pc >

Bp(1− p)i∗ . �

Next, in the following lemma, we derive a lower bound for the rate region

achievable with the FPCC policy for all i.i.d. Bernoulli energy arrivals.

Lemma 2.4 The achievable rate region with the FPCC policy for any i.i.d. Bernoulli

energy arrival process is lower bounded as follows,

r1 ≥
1

2
log

(
1 +

αµ

σ2
1

)
− 0.72 (2.49)

r2 ≥
1

2
log

(
1 +

(1− α)µ

αµ+ σ2
2

)
− 0.99 (2.50)

for some α ∈ [0, 1], where µ = E[Ei] is the average recharge rate.
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Proof: When µ1 ≥ µ2, the entire power is allocated to the message of the first user,

and when µ2 ≥ µ1
σ2

2

σ2
1
, the entire power is allocated to the message of the second

user. In these two cases, the system reduces to a single-user system [49]. These

conditions are valid for both the optimum power allocation and the sub-optimum

power allocation of FPCC. In addition, specific to FPCC, due to the sub-optimal

fractional power allocation, from P1i = min{Pc, Bp(1 − p)i−1}, if Pc > Bp, then

Pc > Bp(1 − p)i−1 for all i, and the stronger user gets all the power all the time,

and the system again reduces to a single-user system [49]. Using (2.37), this last

case happens when µ1 ≥ σ2
1+Bp

σ2
2+Bp

µ2. Therefore, in the following, we only consider the

remaining case, which is
σ2

2+Bp

σ2
1+Bp

µ1 < µ2 <
σ2

2

σ2
1
µ1. In this case, 0 < Pc < Bp, and

i∗ ≥ 1.

First, we consider the first user’s rate,

r1 =
1

E[L]
E

[
K∑

i=1

1

2
log

(
1 +

Pc
σ2

1

)
+

L∑

i=K+1

1

2
log

(
1 +

Bp(1− p)i−1

σ2
1

)]
(2.51)

≥ 1

E[L]
E

[
K∑

i=1

1

2
log

(
1 +

Pc
σ2

1

)
+

L∑

i=K+1

(
1

2
log

(
1+

Bp

σ2
1

)
+
i−1

2
log(1−p)

)]

(2.52)

≥ 1

E[L]
E

[
K∑

i=1

1

2
log

(
1+

Pc
σ2

1

)
+

L∑

i=K+1

1

2
log

(
1+

Bp

σ2
1

)
+

L∑

i=1

i− 1

2
log(1− p)

]

(2.53)

≥ 1

E[L]
E

[
K∑

i=1

1

2
log

(
1+

Pc
σ2

1

)
+

L∑

i=K+1

1

2
log

(
1+

Pc
σ2

1

)
+

L∑

i=1

i− 1

2
log(1− p)

]

(2.54)

=
1

E[L]
E

[
L∑

i=1

1

2
log

(
1+

Pc
σ2

1

)
+

L∑

i=1

i−1

2
log(1−p)

]
(2.55)
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=
1

2
log

(
1+

Pc
σ2

1

)
+

1

E[L]
E
[
L(L−1)

4
log(1−p)

]
(2.56)

≥1

2
log

(
1 +

Pc
σ2

1

)
− 0.72 (2.57)

where (2.52) follows because log(a+x) is monotone in x, (2.53) follows since log(1−p)

is negative, (2.54) follows since Pc ≤ Bp, and (2.57) follows by bounding the last

term numerically as in [49].

Next, we consider the second user’s rate,

r2 =
1

E[L]
E

[
K∑

i=1

1

2
log

(
1 +

Bp(1− p)i−1 − Pc
Pc + σ2

2

)]
(2.58)

=
1

E[L]
E

[
K∑

i=1

1

2
log

(
Bp(1− p)i−1 + σ2

2

Pc + σ2
2

)]
(2.59)

≥ 1

E[L]
E

[
K∑

i=1

1

2
log

(
(1− p)i−1 (Bp+ σ2

2)

Pc + σ2
2

)]
(2.60)

=
1

E[L]
E

[
K∑

i=1

1

2
log

(
Bp+ σ2

2

Pc + σ2
2

)]
+

1

E[L]
E

[
K∑

i=1

i− 1

2
log(1− p)

]
(2.61)

≥ 1

E[L]
E

[
K∑

i=1

1

2
log

(
Bp+ σ2

2

Pc + σ2
2

)]
+

1

E[L]
E

[
L∑

i=1

i− 1

2
log(1− p)

]
(2.62)

=
1

E[L]
E

[
K∑

i=1

1

2
log

(
Bp+ σ2

2

Pc + σ2
2

)]
+

1

E[L]
E
[
L(L− 1)

4
log(1− p)

]
(2.63)

≥ 1

E[L]
E

[
K∑

i=1

1

2
log

(
Bp+ σ2

2

Pc + σ2
2

)]
− 0.72 (2.64)

=
E[K]

E[L]

1

2
log

(
Bp+ σ2

2

Pc + σ2
2

)
− 0.72 (2.65)

≥
(

1− Pc
pB

)
1

2
log

(
1 +

Bp− Pc
Pc + σ2

2

)
− 0.72 (2.66)

where (2.60) follows because log(a+x) is monotone in x, (2.62) follows since log(1−p)
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is negative, (2.64) follows by bounding the last term numerically as in [49], and (2.66)

follows from Lemma 2.3.

Since Pc < Bp, by substituting Pc = αpB with some α ∈ [0, 1], and denoting

µ = Bp, from (2.57) and (2.66), we obtain the simultaneous lower bounds for the

two rates,

r1 ≥
1

2
log

(
1 +

αµ

σ2
1

)
− 0.72 (2.67)

r2 ≥
(1− α)

2
log

(
1 +

(1− α)µ

αµ+ σ2
2

)
− 0.72 (2.68)

Next, we develop a further lower bound for the rate of user 2 as,

r2 ≥
1

2
log

(
1+

(1−α)µ

αµ+σ2
2

)
−α

2
log

(
1+

(1−α)µ

αµ+σ2
2

)
−0.72 (2.69)

≥1

2
log

(
1 +

(1− α)µ

αµ+ σ2
2

)
− α

2
log

(
1

α

)
− 0.72 (2.70)

≥1

2
log

(
1 +

(1− α)µ

αµ+ σ2
2

)
− 0.99 (2.71)

where (2.70) follows since the second term increases in µ, hence, a lower bound is ob-

tained by letting µ→∞, and (2.71) follows by upper bounding the term α
2

log2

(
1
α

)

numerically to 0.265. This, combined with the 0.72 bound, gives a constant bound

of 0.99. �

The next step in lower bounding the achievable rates for general i.i.d. arrivals

is to show that the Bernoulli energy arrivals give the lowest rate over all i.i.d. energy

arrivals with the same mean. This was proved for the single-user case in [49]. We

invoke this result in [49] together with a concavity result from [7] to prove the
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following lemma.

Lemma 2.5 For the FPCC policy, any i.i.d. energy arrival process yields an achiev-

able rate region no smaller than that of the Bernoulli energy arrivals with the same

mean.

Proof: For the FPCC policy, the achievable weighted sum rate, J (gn, E, x, µ1, µ2),

under any energy arrival process E, initial battery state x, transmission policy

gn = {qbi}ni=1, and for a given µ1, µ2 is given by,

J (gn, E, x, µ1, µ2) =
1

n
E

[
n∑

i=1

f(qbi, µ1, µ2)

∣∣∣∣b1 = x

]
(2.72)

where f(gi, µ1, µ2) , maxαi µ1r1(αi, gi)+µ2r2(αi, gi), bi is the battery state in slot i,

and q is the fraction of power transmitted. It was shown in [7, Lemma 2], that after

optimizing αi, the function which is only in terms of the total power, f(gi, µ1, µ2) is

strictly concave in the transmit power gi. Hence, we can apply [49, Lemma 2], and

following similar steps to [49, Proposition 4], we conclude that the rate region for

Bernoulli arrivals provides a lower bound for all other i.i.d. energy arrivals. �

Finally, we give a universal lower bound for the proposed FPCC policy under

any i.i.d. energy arrival process in the following theorem. The lower bound depends

only on the average recharge rate, but not on the statistics, of the energy harvesting

process.

Theorem 2.1 The achievable rate region with the FPCC policy for any arbitrary
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i.i.d. energy arrival process is lower bounded as follows,

r1 ≥
1

2
log

(
1 +

αµ

σ2
1

)
− 0.72 (2.73)

r2 ≥
1

2
log

(
1 +

(1− α)µ

αµ+ σ2
2

)
− 0.99 (2.74)

for some α ∈ [0, 1], where µ = E[Ei] is the average recharge rate.

The proof of Theorem 2.1 follows from combining Lemma 2.4 and Lemma 2.5.

2.4.3 An Upper Bound for Online Policies

Here, we develop an upper bound for the performance of all online scheduling algo-

rithms only in terms of the average recharge rate.

Theorem 2.2 The optimal online achievable rate region is upper bounded as fol-

lows,

r1 ≤
1

2
log

(
1 +

αµ

σ2
1

)
(2.75)

r2 ≤
1

2
log

(
1 +

(1− α)µ

αµ+ σ2
2

)
(2.76)

for some α ∈ [0, 1], where µ = E[Ei] is the average recharge rate.

Proof: First, we note that the achievable rate region for the optimum online al-

gorithm is upper bounded by the achievable rate region with the optimum offline

algorithm, where all of the energy arrival information is known ahead of time. In

addition, the achievable rate region with finite-sized battery is upper bounded by
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the achievable rate region with an unlimited-sized battery. For the offline problem,

eliminating the no-energy-overflow constraints due to the finite battery size, the

feasible set for the total transmit power control policy gn is

Fn,
{
{gi}ni=1 :

1

m

m∑

i=1

gi≤
1

m

(
m∑

i=1

Ei+B

)
,∀m = 1, . . . , n

}
(2.77)

where we have added B to the right hand side of (2.77) to allow for the optimistic

scenario that the system has started with a full battery at the beginning (while

the upper bound does not depend on the initial battery state). Then the offline

weighted sum rate with weights µ1, µ2 is,

Roff , lim
n→∞

max
{gi}ni=1∈Fn

1

n

n∑

i=1

f(gi, µ1, µ2) (2.78)

where f(gi, µ1, µ2) is the maximized weighted sum rate only in terms of the total

transmit power gi in slot i, after maximization with respect to partitioning of the

power to users, i.e., f(gi, µ1, µ2) , maxαi µ1r1(αi, gi)+µ2r2(αi, gi). We further upper

bound this rate as,

Roff ≤ lim
n→∞

max
{gi}ni=1∈Fn

f

(
1

n

n∑

i=1

gi, µ1, µ2

)
(2.79)

≤ f(µ, µ1, µ2) (2.80)

where the first inequality follows due to the concavity of f(gi, µ1, µ2) in gi [7,

Lemma 2]. The second inequality follows by relaxing the feasible set in (2.77) by
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lower bound

optimal policy

fractional policy
(FPCC)

≤1.22

a

b

=1.22

Figure 2.3: Illustration of the bounds on the optimal online policy and the proposed
online policy FPCC. The distance between the upper and lower bound is less than
1.22. a and b are two points on the upper and lower bounds, respectively, with the
same α.

removing all but the last constraint when m = n: 1
n

∑n
i=1 gi ≤ 1

n
(
∑n

i=1Ei +B), and

by noting that from strong law of large numbers 1
n

∑n
i=1Ei → µ almost surely, and

the remaining 1
n
B terms goes to zero as n tends to infinity. Since, this is valid for all

µ1, µ2, then f(µ, µ1, µ2) traces the boundary of the capacity region of the broadcast

channel with average power constraint µ. �

The Euclidean distance between any two points with the same α on the upper

and lower bounds is equal to
√

0.722 + 0.992 = 1.22. Since the distance between

the two points with the same α can be no less than the distance between the two

bounds, the distance between the two bounds is less than or equal to 1.22. Hence,

combining Theorem 2.1 and Theorem 2.2, we conclude that the proposed online

FPCC policy yields rates which are within a constant gap from the universal upper

bound, and therefore, from the optimum online policy, for all system parameters.
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Figure 2.4: Optimum single-user power allocation for i.i.d. Bernoulli arrivals. Here,
the receiver noise variance is σ2

1 = 1.
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Figure 2.5: Optimum single-user power allocation for i.i.d. Bernoulli arrivals. Here,
the receiver noise variance is σ2

1 = 2.

We show the relations developed in Fig. 2.3.

2.5 Numerical Results

In this section, we illustrate the results obtained in this chapter using several nu-

merical examples.

We first show the effect of receiver noise variance on the optimal online power

allocation for the single-user case with i.i.d. Bernoulli arrivals. We let B = 2 and

p = 0.1. The problem is stated in (2.13). We first solve it for σ2
1 = 1 and plot the

optimum power allocation in Fig. 2.4, and then solve it for σ2
1 = 2 and plot the

optimum power allocation in Fig. 2.5. We observe from Figs. 2.4 and 2.5, that 1)
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Figure 2.6: Optimal online power allocation for the broadcast channel with

i.i.d. Bernoulli arrivals. Here, µ1 < µ2 ≤ µ1
σ2

2

σ2
1
, both user rates are positive: µ1 = 1,

µ2 = 1.8.

the optimum power decreases over time, 2) depends on the noise variance, and 3)

the transmission duration decreases as the noise variance increases: when σ2
1 = 1,

the total power is transmitted in Ñ = 6 slots, while when σ2
1 = 2, the total power

is transmitted in Ñ = 4 slots. That is, the power allocation shrinks towards the

earlier slots as the noise variance increases. This also shows that the single-user

solution is not universal as it depends on the receiver noise variance; this is unlike

the case for the offline problem [1], where the solution is the same for all receiver

noise variances, in fact, it is the same for all concave functions.

Next, we consider the broadcast channel with i.i.d. Bernoulli arrivals, and

find the optimum power allocations: the optimum total power allocation Pi and its

optimum distribution to users P1i and P2i. In this broadcast channel, we let σ2
1 = 1
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Figure 2.7: Optimal online power allocation for the broadcast channel with

i.i.d. Bernoulli arrivals. Here, µ1 < µ2 ≤ µ1
σ2

2

σ2
1
, both user rates are positive: µ1 = 1,

µ2 = 1.7.

and σ2
2 = 2, and B = 2 and p = 0.1. In Figs. 2.6 and 2.7, we plot the optimum

power allocations for two different points on the boundary of the capacity region

corresponding to two different µ1, µ2 pairs. In both figures, µ1, µ2 are such that

µ1 < µ2 <
σ2

2

σ2
1

so that both users are allocated power and both users achieve non-zero

rates. In Fig. 2.6, µ1 = 1, µ2 = 1.8 and Fig. 2.7, µ1 = 1, µ2 = 1.7; that is, in Fig. 2.7

the second user’s priority is decreased. The problem is stated in (2.12). We solve it

using the optimum total transmit power in (2.33)-(2.35) together with λ in (2.41),

and the optimum power shares of the users in (2.37)-(2.39) and the transmission

durations of the users M̃ and Ñ in (2.42)-(2.43). As proved in Lemma 2.2, we

observe from Figs. 2.6 and 2.7, that 1) the optimum total transmit power decreases

over time, 2) the individual powers allocated to users decrease over time as well,
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Figure 2.8: Achievable weighted sum rate for the optimum online and sub-optimum
FPCC together with the upper bound as a function of the battery size B for a fixed
energy arrival probability p for i.i.d. Bernoulli arrivals.

3) the stronger (first) user’s power allocation is positive for a longer duration than

that for the weaker (second) user. We also note that when the first user’s power is

constant (slots 1, 2, 3 in Fig. 2.6 and slots 1, 2 in Fig. 2.7), the second user’s power

is decreasing; and when the first user’s power is decreasing (slots 4, 5 in Fig. 2.6

and slots 3, 4, 5 in Fig. 2.7), the second user’s power is zero. We note that in

Fig. 2.6, M̃ = 3 and Ñ = 5, and Fig. 2.7, M̃ = 2 and Ñ = 5. We note that as µ2

decreases from the setting of Fig. 2.6 to the setting of Fig. 2.7, the second user’s

power allocation decreases.

Next, we consider the achievable rates as a function of the battery size B and

energy arrival probability p for the case of i.i.d. Bernoulli arrivals. We consider a

fixed set of weights: µ1 = 1 and µ2 = 1.5. In Fig. 2.8, we plot the achievable

weighted sum rate with the optimal online solution and the sub-optimal FPCC
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Figure 2.9: Achievable weighted sum rate for the optimum online and sub-optimum
FPCC together with the upper bound as a function of the energy arrival probability
p for a fixed battery size B for i.i.d. Bernoulli arrivals.

scheme together with the upper bound as a function of the battery size B for a

fixed energy arrival probability of p = 0.1. We observe that FPCC performs close

to the optimal online. In Fig. 2.9, we plot the achievable rates as a function of the

energy arrival probability p for a fixed battery size B = 2. We again observe FPCC

perform close to the optimal online.

In Fig. 2.10, we plot the entire achievable and upper bound regions for the

broadcast channel with i.i.d. Bernoulli energy arrivals B = 5, p = 0.5, and σ2
1 =

1, σ2
2 = 5. The arrows denote the movement of achievable rate pairs from the

optimal policy to the sub-optimum FPCC. In particular, the optimal policy curve

is traced with changing µ1, µ2, equivalently by changing Pc. The arrows point to

the achievable rates when the optimal total transmit power is replaced with the
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Figure 2.10: Rate regions with the optimum online and sub-optimum FPCC together
with the upper bound for i.i.d. Bernoulli arrivals.

fractional power policy for the same cut-off power Pc.

Finally, we consider an example of general i.i.d. energy arrivals by considering

a (continuous) uniform probability distribution for the energy arrivals in [0, B].

Therefore, the average recharge rate is µ = B/2. In Fig. 2.11, we plot the rate

regions with sub-optimum FPCC and the optimum policy which is found by using

dynamic programming for this uniform energy arrivals. We also show the achievable

rate region with a corresponding Bernoulli arrivals; for this case energies arrive in

amounts 0 and B with probabilities p = 0.5 and 1−p = 0.5. As proved in Lemma 2.5,

the case of Bernoulli arrivals with the same average recharge rate yields a smaller

achievable rate region with the FPCC scheme.
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Figure 2.11: Achievable rate regions for the sub-optimum FPCC for i.i.d. uniform
arrivals together with i.i.d. Bernoulli arrivals with the same average recharge rate.
In addition, the optimum achievable rate region for i.i.d. uniform found by dynamic
programming, and the upper bound.

2.6 Conclusion

In this chapter, we studied the optimal online transmission policies for the broadcast

channel with an energy harvesting transmitter. We noted that, unlike the offline

setting, the online optimal policy depends on the noise variance even in the single-

user case. For Bernoulli arrivals, we showed that the optimal online total transmit

power decreases in time. Depending on the priorities of the users, and hence the

operating point on the boundary of the rate region, only one of the users may be

served, in which case the problem reduces to a single-user problem. When both users

are served simultaneously, then the weaker user may be served for only a subset of

the duration that the stronger user is served. Depending on the user priorities,
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the stronger user is either not allocated any power throughout the transmission

duration or it is allocated power for the entire duration. We showed that, as in

the offline problem, there exists a cut-off power which is dedicated for the stronger

user; the cut-off level depends on the operating point on the rate region. We showed

that whenever the stronger user’s allocated power is decreasing, the weaker user’s

allocated power is zero; and whenever the stronger user’s allocated power is constant,

the weaker user’s allocated power is decreasing. Next, we considered the general

i.i.d. energy arrivals. We proposed a sub-optimum online algorithm, FPCC, where

the total transmit power follows a fractional allocation, and the individual user

powers are cut-off based. The proposed scheme does not depend on the energy

arrival distribution. We obtained bounds on the performance of the FPCC policy

for any general i.i.d. energy arrivals, and showed that it is within a constant gap

from the developed upper bound, therefore, from the optimum online policy.

2.7 Appendix: Solution of problem (2.36)

We can equivalently write problem (2.36) as:

max
α∈[0,1]

µ1

2
log

(
1+

αP ∗i
σ2

1

)
+
µ2

2
log

(
1+

(1− α)P ∗i
αP ∗i + σ2

2

)
(2.81)

where P1i = αP ∗i and P2i = (1− α)P ∗i . Problem (2.81) can be further rewritten as:

max
α∈[0,1]

[
µ1

2
log

(
1 +

αP ∗i
σ2

1

)
− µ2

2
log
(
αP ∗i + σ2

2

)
+
µ2

2
log
(
P ∗i + σ2

2

)
]

(2.82)
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Differentiating the objective function of (2.82) with respect α and equating to zero

we have:

αP ∗i =
µ1σ

2
2 − µ2σ

2
1

µ2 − µ1

(2.83)

We further need to impose the constraint α ∈ [0, 1], i.e., we need to have 0 ≤ αP ∗i ≤

P ∗i . This gives:

αP ∗i = min

{
P ∗i ,

(
µ1σ

2
2 − µ2σ

2
1

µ2 − µ1

)+
}

(2.84)

Denoting Pc =
(
µ1σ2

2−µ2σ2
1

µ2−µ1

)+

gives the expressions in (2.37)-(2.39).
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CHAPTER 3

Energy Harvesting Multiple Access Channels: Optimal and

Near-Optimal Online Policies

3.1 Introduction

We consider a two-user energy harvesting multiple access channel, Fig. 3.1, where

each user harvests energy from nature into its (arbitrary) finite-sized battery. The

energy harvests at the transmitters are i.i.d. in time but can be arbitrarily corre-

lated between the users at any instant. The average recharge rates can be different,

but we assume that average recharge rate per unit battery for both users is equal.

We consider the online setting where the energy arrivals are known only causally

at the transmitters. The users have no prior knowledge about the joint probability

distribution of the energy harvesting processes. We study the online power schedul-

ing problem where the users need to determine their transmit power levels based

only on the energy arrival information so far. Our goal is to determine optimal and

near-optimal online power allocation policies that achieve or approach the boundary

of the capacity region.
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3.2 System Model

We consider a two-user energy harvesting multiple access channel. User k has a

battery of size Bk, see Fig. 3.1. There are two energy harvesting sources which

deliver Eki = eki amount of energy to the kth user in slot i; eki is a realization of

the random variable Eki. We assume that the slot duration is equal to unity. We

assume without loss of generality that Eki ≤ Bk almost surely. The energy harvests

are i.i.d. in time but can be arbitrarily correlated between the users. The battery

state of user k at time i, bki, evolves as bk(i+1) = min{Bk, bki − Pki + eki}. Here, Pki

is the transmit power of user k at time i, which is limited as Pki ≤ bki.

The physical layer is a Gaussian multiple access channel with noise variance at

the receiver equal to σ2. The single slot capacity region, C(P1i, P2i), of this channel

in slot i is [84] (also see e.g., [8]):

r1i ≤
1

2
log

(
1 +

P1i

σ2

)
(3.1)

r2i ≤
1

2
log

(
1 +

P2i

σ2

)
(3.2)

r1i + r2i ≤
1

2
log

(
1 +

P1i + P2i

σ2

)
(3.3)

The formulation here assumes that the slots are long enough that the coding is done

within the course of each slot. This results in being able to achieve the capacity

region in (3.1)-(3.3) in each slot i; see for example, [1–22,27–30,47–50,84,90–100].

The above single slot capacity region is a pentagon. The overall capacity

region is a union of all possible pentagons corresponding to all feasible power al-
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Figure 3.1: System model: an energy harvesting multiple access channel model.

locations over time, and thus, may no longer be a pentagon [8](see also [101]), as

shown in Fig. 3.2. For a feasible policy at user k for n slots, we define a set of power

allocations as: P n
k = [Pk1, . . . , Pkn] where Pki is a function of (eki, ekj, Pkj, bkj, j ∈

{1, . . . , i−1}, k ∈ {1, 2}). Then, the n slot average achievable rate region under this

policy is defined as:

r1 ≤ E

[
1

n

n∑

i=1

1

2
log

(
1 +

P1i

σ2

)]
(3.4)

r2 ≤ E

[
1

n

n∑

i=1

1

2
log

(
1 +

P2i

σ2

)]
(3.5)

r1 + r2 ≤ E

[
1

n

n∑

i=1

1

2
log

(
1 +

P1i + P2i

σ2

)]
(3.6)

where the expectation is over the joint distribution of the energy arrivals. The long-

term average capacity region is equal to the union of all such pentagons over all

feasible policies as n tends to infinity. This is a convex region, see [8, Lemma 3].

We aim to characterize the long-term average rate region under online knowl-
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edge of the harvested energies. We first characterize the set of all feasible policies

subject to causal knowledge of energy arrivals, denoted as F̂ :

F̂ = {∀i ∈ {1, 2, 3, . . .},∀k ∈ {1, 2},

Pki(eki, ekj, Pkj, bkj, j ∈ {1, . . . , i− 1}, k ∈ {1, 2})|Pki ≤ bki} (3.7)

This defines the set of all admissible power policies. The power in each slot is

constrained by the energy available in the battery and can be a function of all the

previous power allocations, battery states, energy arrivals and the current energy

arrival.

Since the long-term average rate region is convex, it can be characterized by

its tangent lines; see [8, 101]. Therefore, the problem of characterizing the long-

term average capacity region, which is the largest long-term average rate region, is

equivalent to solving the following problem for all µ1, µ2 ∈ [0, 1],

Φ = sup
P∈F̂

lim
n→∞

E

[
1

n

n∑

i=1

(µ1r1i + µ2r2i)

]
(3.8)

where the rates (r1i, r2i) belongs to the capacity region in slot i, i.e., satisfies (3.1)-

(3.3). The expectation is with respect to the joint distribution of the energy arrivals.

The stage reward in (3.8) is (µ1r1i + µ2r2i) and the admissible policies at each

stage, P1i × P2i, are the values in [0, b1i]× [0, b2i] which depend only on the current

battery states b1i and b2i. Hence, an optimal policy exists and is Markovian, see

e.g., [85, Theorem 6.4] and [86, Theorem 4.4.2]. We denote the rates achieved by an
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Figure 3.2: Capacity region of a multiple access channel. Points a, f characterize the
single-user rates, points c, d characterize the sum-rate and points b, e characterize
the maximum rates achieved while the other user is operating with its single-user
rate.

optimal Markovian policy for user j in slot i by r∗ji and hence (3.8) can be rewritten

as:

Φ = lim
n→∞

E

[
1

n

n∑

i=1

(µ1r
∗
1i + µ2r

∗
2i)

]
(3.9)

The optimal Markovian policy can be found via dynamic programming by solving

Bellman’s equations [87, Chapter 4], however, this will give little intuition or infor-

mation about the structure of the solution. Instead, in the following, we develop a

fixed and structured solution that will be exactly optimum for certain special energy

arrivals and near-optimal for general energy arrivals.

We first study the special case of the fully-correlated (i.e., synchronized)

Bernoulli energy arrivals with a particular support set in Section 3.3, and deter-

mine the exactly optimum power allocation policies for this case. In this case, either

no energy arrives, or when it arrives, it arrives simultaneously to both users, and
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it fills their respective batteries completely. That is, either E1i = E2i = 0 with

probability 1− p, or energies arrive in the amounts of E1i = B1 and E2i = B2 with

probability p. Intuitively, we also coin this case as the common energy source case,

see Fig. 3.3; see also [99]. In the common energy arrival analogy, there is a common

energy source, where either Ei , E1i = E2i = 0 with probability 1−p, or a common

energy arrives in the amount of Ei = B with probability p, where B ≥ max{B1, B2}.

Such an energy arrival process implies that, when energy arrives, the batteries of

both users fill completely. This constitutes a renewal for the system, and we can

evaluate the optimal expected throughput analytically. In Section 3.4, we propose a

distributed near-optimal power allocation policy and lower bound its performance

under synchronous Bernoulli energy arrivals. By near-optimal policy, we mean a

policy which yields rates that are within a constant gap from the optimal policy for

all system parameters. In Section 3.5, we show that under the near-optimal policy

proposed in Section 3.4, the performance of asynchronous Bernoulli energy arrivals

is lower bounded by the performance of synchronous Bernoulli energy arrivals with

the same mean. We also show that the performance of the asynchronous Bernoulli

energy arrivals forms a lower bound on the performance of all general energy arrivals.

3.3 Optimal Strategy: Case of Synchronous Bernoulli Energy Ar-

rivals

For the synchronous case, see Fig. 3.3, the expectation in (3.8) is over a single

random variable (the common energy arrival). Whenever a positive energy arrives,
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Figure 3.3: System model: a synchronous energy harvesting multiple access channel
model.

the battery states at both users are reset to the full battery state, i.e., we have

P[E1i = 0, E2i = 0] = 1 − p and P[E1i = B1, E2i = B2] = p. Hence, whenever an

energy arrives a renewal occurs. From [88, Theorem 3.6.1], the long-term weighted

average throughput is:

lim
n→∞

E

[
1

n

n∑

i=1

(µ1r
∗
1i + µ2r

∗
2i)

]
=

1

E[L]
E

[
L∑

i=1

(µ1r
∗
1i + µ2r

∗
2i)

]
(3.10)

= p
∞∑

k=1

p(1− p)k−1

k∑

i=1

(µ1r
∗
1i + µ2r

∗
2i) (3.11)

=
∞∑

i=1

∞∑

k=i

p2(1− p)k−1 (µ1r
∗
1i + µ2r

∗
2i) (3.12)

=
∞∑

i=1

p(1− p)i−1(µ1r
∗
1i + µ2r

∗
2i) (3.13)

where L is the inter-energy arrival time which is geometric with parameter p, i.e.,

E[L] = 1
p
.
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Therefore, continuing from (3.13), we focus on the optimization problem:

max
{P1i,P2i,r1i,r2i}

∞∑

i=1

p(1− p)i−1 (µ1r1i + µ2r2i)

s.t. (r1i, r2i) ∈ C(P1i, P2i), ∀i
∞∑

i=1

P1i ≤ B1

∞∑

i=1

P2i ≤ B2, P1i, P2i ≥ 0, ∀i (3.14)

This problem, in effect, maximizes the expected weighted sum rate until the next

energy arrival, given that an energy arrival has just occurred. Point a in Fig. 3.2

represents the single-user rate for user 2, corresponding to µ1 = 0, and can be

obtained as in [48, 49]. Point b represents the largest rate user 1 gets when user 2

maintains its single-user rate; this point can be obtained by fixing the second user’s

rate at its single-user rate and maximizing the first user’s rate. The line between

points c and d represents the sum-rate line where the sum of the two users’ rates

is constant; these points are obtained by setting µ1 = µ2. The curved part of the

long-term average capacity region between b and c is obtained by tracing µ1, µ2 over

µ1 < µ2.

We first consider point a. At this point, P1i = 0, and user 2 transmits with its

optimum single-user rate [48,49]:

P ∗2i =
p(1− p)i−1

λ2

− σ2, i = 1, . . . , Ñ2 (3.15)
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where the optimum power decreases in time and Ñ2 is the last slot where the power is

positive; λ2 in (3.15) is found by satisfying the total power constraint with equality.

Next, we consider point b. At this point, we maximize the first user’s rate,

after fixing the power allocation of the second user to its optimal single-user power

allocation P ∗2i:

max
{P1i,r1i}

∞∑

i=1

p(1− p)i−1r1i

s.t. (r1i, C(P ∗2i)) ∈ C(P1i, P
∗
2i)

∞∑

i=1

P1i ≤ B1, P1i ≥ 0, ∀i (3.16)

where C(P ∗2i) = 1
2

log(1 + P ∗2i) denotes the single-user capacity of user 2 with power

P ∗2i; see point b in Fig. 3.2, see also [8, 101].

The Lagrangian of this problem is:

L =−
∞∑

i=1

p(1− p)i−1 log

(
1 +

P1i

P ∗2i + σ2

)
+ λ1

(
∞∑

i=1

P1i −B1

)
−
∞∑

i=1

ν1iP1i (3.17)

The KKT optimality conditions are:

P1i =
p(1− p)i−1

λ1 − ν1i

− σ2 − P ∗2i (3.18)

along with complementary slackness and λ1, ν1i ≥ 0.

We prove that at point b user 1 transmits for a duration no shorter than user

2, before proceeding to determine P ∗1i.
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Lemma 3.1 With synchronized i.i.d. Bernoulli energy arrivals, at point b, where

user 2 gets its single-user capacity, user 1 transmits for a duration no shorter than

user 2.

Proof: At point b in Fig. 3.2, the rate of user 2 is given by
∑∞

i=1 p(1−p)i−1 log
(
1 + P2i

σ2

)

and the optimal power allocation for user 2 is given by (3.15). The rate of user 1

at point b in Fig. 3.2 is given by
∑∞

i=1 p(1 − p)i−1 log
(

1 + P1i

P ∗2i+σ
2

)
. The coefficient

p(1−p)i−1 in front of the ith term in this expression is decreasing in i. However, the

interference term in the denominator, P ∗2i, is decreasing as well in i; see from (3.15).

Therefore, for any power P1 to be assigned to the first user: from the coefficient

perspective, we should put this power at earlier i as the coefficient is higher there,

however, from an interference perspective, we should put this power at later i as

the interference is lower there. That is, there is a tension here between the pre-log

coefficient and the interference in the denominator.

The rate achieved by user 1 will depend on the value of the interference

caused by user 2. If user 1 transmits at slots i = {1, . . . , Ñ2}, then from (3.15),

by inserting P ∗2i into its rate expression, user 1 will achieve a rate equal to p(1 −

p)i−1 log
(

1 + P1i

p(1−p)i−1/λ2

)
. On the other hand, if user 1 transmits at slots i =

{Ñ2 + 1, . . .}, it will achieve a rate equal to p(1− p)i−1 log
(
1 + P1i

σ2

)
; this follows as

P ∗2i = 0 for slots i = {Ñ2 + 1, . . .}.

We first consider the slots i = {1, . . . , Ñ2}. We will show that if user 1 trans-

mits in slots i = {1, . . . , Ñ2}, it has to begin transmission at slot i = 1, i.e., it is

sub-optimal for user 1 to have zero power in slot i = 1 while it puts a non-zero power
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at any of the slots i = {2, . . . , Ñ2}. To see this, note that, the rate achieved in these

slots can be written in the form x log
(
1 + P1λ2

x

)
, where we denoted p(1 − p)i−1 as

x. The function x log
(
1 + P1λ2

x

)
is increasing in x. Thus, if we have a single energy

P1 to put into this objective function, we will put it when x is larger, i.e., when i

is smaller. This necessitates for user 1 to start as early as possible, i.e., at i = 1,

instead of any other slot in i = {2, . . . , Ñ2}.

We next consider the slots i = {Ñ2 + 1, . . .}. We will show that if user 1

transmits in slots i = {Ñ2 + 1, . . .}, it has to begin transmission at slot i = Ñ2 + 1,

i.e., it is sub-optimal for user 1 to have zero power in slot i = Ñ2 + 1 while it puts

a non-zero power at any of the slots i = {Ñ2 + 2, . . .}. The objective function for

i > Ñ2, is also decreasing in i and hence if we have a single energy P1 to put into

this objective function, we will put it in earlier slots, i.e., at i = Ñ2 + 1, instead of

any other slot in i = {Ñ2 + 2, . . .}.

We then consider slots i = Ñ2 and Ñ2 + 1. We will show that it is sub-optimal

for user 1 to have zero power in slot i = Ñ2 while it puts non-zero power in slot

i = Ñ2 + 1; hence, user 1 has to start its transmission at slot 1. To prove this,

we show that the objective function also decreases from slot Ñ2 to slot Ñ2 + 1 as

follows:

p(1− p)Ñ2−1 log

(
1 +

P1

p(1− p)Ñ2−1/λ2

)
> p(1− p)Ñ2 log

(
1 +

P1

p(1− p)Ñ2/λ2

)

> p(1− p)Ñ2 log

(
1 +

P1

σ2

)

where the last inequality follows since we have p(1−p)Ñ2

λ2
≤ σ2, as otherwise, P ∗2i would
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have been strictly greater than zero for i = Ñ2 + 1 as well from (3.15). Hence, user

1 starts its transmission in slot 1 and always utilizes earlier slots with the non-zero

transmit power.

Then, the rest of the proof follows by contradiction. Assume user 1 has a

transmission duration Ñ1 < Ñ2. Then,

Ñ1∑

i=1

(
1

λ1

− 1

λ2

)
p(1− p)i−1 = B1 (3.19)

Thus, we have 1
λ1
− 1

λ2
> 0. Next, by assumption, we have P1i = 0, P2i > 0 in slot

Ñ2. Then, from (3.18), we have

P1Ñ2
= p(1− p)Ñ2−1

(
1

λ1 − ν1Ñ2

− 1

λ2

)
= 0 (3.20)

However, since we have ν1Ñ2
≥ 0 and p(1− p)Ñ2−1 > 0,

0 =

(
1

λ1 − ν1Ñ2

− 1

λ2

)
≥
(

1

λ1

− 1

λ2

)
> 0 (3.21)

which is a contradiction. Thus, Ñ1 ≥ Ñ2. �

Hence, at point b, user 1 transmits for a duration Ñ1 where Ñ1 ≥ Ñ2. At this

point, user 2 transmits with its single-user power allocation until Ñ2. Then, for user

1,

Ñ2∑

i=1

(
1

λ1

− 1

λ2

)
p(1− p)i−1 +

Ñ1∑

i=Ñ2+1

(
p(1− p)i−1

λ1

− σ2

)
= B1 (3.22)
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where λ2 and Ñ2 are obtained from the second user’s single-user power allocation,

while λ1 and Ñ1 are obtained from solving (3.22) and ensuring that the Lagrange

multiplier λ1 is non-negative, i.e., Ñ1 is the largest integer satisfying,

p(1− p)Ñ1−1 ≥ λ1σ
2 (3.23)

and λ2 > λ1, simultaneously. Solving (3.22) for λ1 we have

λ1 =
1− (1− p)Ñ1

B1 + (Ñ1 − Ñ2)σ2 + 1
λ2

(1− (1− p)Ñ2)
(3.24)

Therefore, Ñ1 is the largest integer that satisfies (3.23) when λ1 in (3.24) is inserted

into (3.23).

We also note that, at point b, both users’ powers are decreasing in time. It

is clear that the second user’s power is decreasing, as it follows the single-user

allocation in (3.15). For user 1, it is clear from (3.22) that the power is decreasing

for the first Ñ2 slots, and again decreasing from slot Ñ2 + 1 onwards. Thus, it

remains to check the transition from slot Ñ2 to slot Ñ2 + 1. We have,

P1Ñ2
=

(
1

λ1

− 1

λ2

)
p(1− p)Ñ2−1 (3.25)

≥
(

1

λ1

− 1

λ2

)
p(1− p)Ñ2 (3.26)

≥ 1

λ1

p(1− p)Ñ2 − σ2 (3.27)

= P1(Ñ2+1) (3.28)
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where (3.26) follows since (1 − p) ≤ 1 and (3.28) follows since the second user’s

transmission ends at Ñ2, hence p(1−p)Ñ2

λ2
< σ2. Thus, the first user’s power is also

decreasing throughout its transmission. This concludes the characterization of the

optimal policies achieving point b.

Next, we consider sum capacity achieving points between point c and point d.

For the sum rate, problem (3.14) reduces to:

max
{P1i,P2i}

1

2

∞∑

i=1

p(1− p)i−1 log

(
1 +

P1i + P2i

σ2

)

s.t.
∞∑

i=1

P1i ≤ B1

∞∑

i=1

P2i ≤ B2, P1i, P2i ≥ 0, ∀i (3.29)

Consider the relaxed problem with a total power constraint:

max
{P1i,P2i}

1

2

∞∑

i=1

p(1− p)i−1 log

(
1 +

P1i + P2i

σ2

)

s.t.
∞∑

i=1

P1i + P2i ≤ B1 +B2, P1i, P2i ≥ 0, ∀i (3.30)

First, we remark that problems in (3.29) and (3.30) are equivalent: This follows

since, any optimal solution of (3.29) is also feasible in (3.30) with the same optimum

value; and, any optimal solution for (3.30), P ∗1i +P ∗2i, can be made feasible in (3.29)

by defining P1i = (P ∗1i + P ∗2i)
B1

B1+B2
and P2i = (P ∗1i + P ∗2i)

B2

B1+B2
, with the same

optimum value. The equivalence here is in the sense of [102].

Using this equivalence, we can find the sum-rate optimal policies by first solv-
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ing a single-user problem with a battery size Bs = B1 + B2, and then dividing the

total power to users in a feasible way. The feasible policy is not unique, and each

feasible policy results in a different point on the c-d line.

Next, we characterize the two extreme points of this line: c and d. From the

single-user analysis in [48, 49], it follows that the transmission duration Ñ is an

increasing function of the battery size, i.e., the larger the battery, the longer the

transmission duration will be, see also [98, Lemma 1]. Hence, in the optimal solution

for (3.30), P ∗1i +P ∗2i is positive for a duration Ñs which is no less than the durations

for the single-user solutions of the users.

We now show that the extreme achievable sum rate optimal point c is actually

the point b, i.e., the long-term average capacity region for the case of synchronized

Bernoulli arrivals is a single pentagon. We will show this by showing that, given the

optimum total power allocation policy in (3.30), a feasible distribution can be found

such that the single-user capacity for either of the users (we will show for user 2) is

achieved. We denote the optimal Lagrange multiplier and the transmission duration

for problem (3.30) by λs and Ñs, respectively. Similarly, we have λ2 and Ñ2 for the

second user single-user power allocation. It is sufficient to show that λs ≤ λ2, since

it will imply:

(
p(1− p)i−1

λs
− σ2

)
−
(
p(1− p)i−1

λ2

− σ2

)
≥ 0 (3.31)
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Recall that we have Ñs ≥ Ñ2. First, if Ñs = Ñ2, then we have

Ñ2∑

i=1

(
p(1− p)i−1

λ2

− σ2

)
= B2 ≤ B1 +B2 =

Ñs∑

i=1

(
p(1− p)i−1

λs
− σ2

)
(3.32)

which can happen if and only if λs ≤ λ2. Next, if Ñs > Ñ2, i.e., Ñs − 1 ≥ Ñ2, then

we have,

λsσ
2 ≤ p(1− p)Ñs−1 ≤ p(1− p)Ñ2 < λ2σ

2 (3.33)

implying λs < λ2. In (3.33) the middle inequality follows from the monotonicity, and

the outer inequalities follow since λs, λ2, Ñs, Ñ2 satisfy their optimality conditions.

Hence, we have proved the following result.

Lemma 3.2 With synchronized i.i.d. Bernoulli energy arrivals, the online long-

term average capacity region of the multiple access channel is a single pentagon.

3.4 Near-Optimal Strategy: Case of Synchronous General Energy

Arrivals

In this section, we consider the general but synchronized i.i.d. energy arrivals, i.e.,

energy arrivals which are fully-correlated but not necessarily Bernoulli distributed.

This can be represented by an arbitrary i.i.d. random variable βi ∈ [0, 1] and then

we have E1i = βiB1, and E2i = βiB2. Hence, there is only one source of randomness,

which is the random variable βi. We propose a sub-optimal online policy for this
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case, and develop a lower bound on its performance. Let the average recharge rate

at user k be P̄k, where P̄k = limn→∞
1
n

∑n
i=1 Eki = E[Eki].

3.4.1 Distributed Fractional Power (DFP) Policy

We first define the proposed sub-optimal online policy, which we coin as distributed

fractional power (DFP) policy, for Bernoulli arrivals and then generalize it to arbi-

trary arrivals. The optimal powers achieving any point on the capacity of the mul-

tiple access channel are exponentially decreasing, hence as in [48,49], this motivates

us for a fractional structure for the sub-optimal policy. Moreover, the long-term

average capacity region for Bernoulli arrivals is a single pentagon, this motivates

that the policy need not depend on µ1, µ2. For Bernoulli arrivals, each transmitter

transmits a fraction p of its available energy. The first user transmits with power

B1p(1− p)i−1 and the second user transmits with power B2p(1− p)i−1 in slot i. In

general, user k transmits with a fraction of qk ,
P̄k
Bk

of its available energy in its

battery, i.e., Pki = qkbki.

3.4.2 A Lower Bound on the Proposed Online Policy

Theorem 3.1 Under the proposed DFP policy, the achievable long-term average

rate region with i.i.d. synchronous Bernoulli energy arrivals is lower bounded as,

r1 ≥
1

2
log

(
1 +

P̄1

σ2

)
− 0.72 (3.34)

r2 ≥
1

2
log

(
1 +

P̄2

σ2

)
− 0.72 (3.35)
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r1 + r2 ≥
1

2
log

(
1 +

P̄1 + P̄2

σ2

)
− 0.72 (3.36)

Proof: It is clear that the achievable long-term average rate region with the pro-

posed DFP is a pentagon, as it is a single policy which does not depend on µ1, µ2.

Hence, the whole long-term average region is completely characterized by four points,

which are shown by a, b, c, d in Fig. 3.4. Therefore, to lower bound this region it

suffices to lower bound the points a, b, c and d. Points a and d are the single-user

rates which can be lower bounded as in [49] to obtain r1 ≥ 1
2

log
(

1 + P̄1

σ2

)
− 0.72

and r2 ≥ 1
2

log
(

1 + P̄2

σ2

)
− 0.72, which are (3.34) and (3.35), respectively. These

identify points a′, d′. Then, we lower bound the achievable sum rate by noting for

the proposed policy: P1i + P2i = (B1 + B2)p(1− p)i−1. Hence, again using [49], we

have (3.36). This identifies points b′, c′. �

Since the long-term average rate region with the DFP policy is a pentagon

even for general energy arrivals, to show that Bernoulli arrivals give a lower bound

for all other energy arrivals, it suffices to show it only for the single-user and sum

rates. These follow directly for the single-user rates from [49, Proposition 4]. It also

follows for the sum rate, since the expectation is taken over a single random variable

which is the fully-correlated energy arrival process. Hence, [49, Lemma 2] can still

be applied and the proof follows similar to the proof of [49, Proposition 4].

Theorem 3.2 With the DFP policy, any arbitrary i.i.d. synchronous energy arrival

process yields an achievable long-term average rate region no smaller than the long-

term average rate region an i.i.d. synchronous Bernoulli energy arrival process with
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Figure 3.4: Relationships between the bounds. We compare: universal lower bound,
DFP policy for fully-correlated energy arrivals, DFP policy for arbitrary-correlated
energy arrivals, optimal policy and a universal upper bound.

the same recharge rate yields.

3.5 General Energy Arrivals

In this section, we study the case of general i.i.d. energy arrivals. We first study the

relation between synchronous and asynchronous Bernoulli energy arrivals. We show

that under the DFP policy and i.i.d. Bernoulli energy arrivals, the performance of

synchronous Bernoulli energy arrivals forms a lower bound for the performance of

all asynchronous Bernoulli energy arrivals with the same mean. We then show that

under the DFP policy and i.i.d. energy arrivals, the performance of asynchronous

Bernoulli energy arrivals forms a lower bound for the performance of all general

energy arrivals with the same mean. Finally, we develop a universal upper bound

for all online policies. We show that the gap between the developed upper bound

and the performance of the DFP under i.i.d. synchronous Bernoulli energy arrivals is

finite for all system parameters. This implies that the performance of the DFP policy
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for any general energy arrival process is within a constant gap from the performance

of the optimal online policy for energy arrivals which have equal recharge rate per

unit battery.

3.5.1 Relation Between Synchronous and Asynchronous Bernoulli

Energy Arrivals

Consider a synchronous Bernoulli energy arrival process where P[E1i = 0, E2i =

0] = 1 − p and P[E1i = B1, E2i = B2] = p; we denote the expectation over this

distribution by Esync[·]. Now, consider any arbitrary asynchronous Bernoulli energy

arrival process where P[E1i = 0, E2i = 0] = p00, P[E1i = 0, E2i = B2] = p01,

P[E1i = B1, E2i = 0] = p10 and P[E1i = B1, E2i = B2] = p11; we denote the

expectation over this distribution by Easync[·]. For a fair comparison, we require

that the marginal distributions of the users in the synchronous and asynchronous

cases are the same. In fact, for Bernoulli arrivals, requiring the marginals to be the

same is equivalent to requiring the average recharge rates to be the same. Under

this condition, we need p00 + p01 = p00 + p10 = 1− p and p11 + p01 = p11 + p10 = p.

This implies that p01 = p10, i.e., the joint distribution is symmetric.

We will now show that, under the DFP policy, the achievable long-term average

rate region with synchronous Bernoulli arrivals is smaller than the achievable long-

term average rate region with asynchronous Bernoulli arrivals for all permissible

probability distributions. We first note that both achievable long-term average

regions are pentagons, therefore, we only need to investigate individual rates and
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the sum rates. We also note that the individual rates are identical in synchronous

and asynchronous cases, as the marginal distributions are identical. Therefore, we

only need to investigate the sum rates in both cases.

We will need the following lemma for this investigation. This lemma states

that, due to the concavity of logarithm, extreme values for transmit power give

lower objective functions (rates) than all other intermediate values. Intuitively, in

the synchronous case, the battery levels of the two users are either high or low

simultaneously, implying simultaneous high or low transmit powers, therefore, high

or low sum powers inside the logarithm. On the other hand, in the asynchronous

case, the users will have mixed battery states (one battery level high, other battery

level low), implying that users’ transmit powers will be disparate and balance each

other out. This, in effect, will average out the power components inside the logarithm

of the sum rate, and will yield larger sum rates for the asynchronous case.

Lemma 3.3 For any four non-negative numbers x, y, w, z, with w ≤ (x, y) ≤ z and

x+ y = w + z, the following inequality holds,

log(x) + log(y) ≥ log(w) + log(z) (3.37)

Proof: Since we have w ≤ (x, y) ≤ z, we can write x as a convex combination of

w, z, i.e., for some α ∈ [0, 1]

x = αw + (1− α)z (3.38)
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Then, inserting this in x+ y = w + z, we have

y = (1− α)w + αz (3.39)

From the concavity of the log function, we have

log(x) + log(y) = log(αw + (1− α)z) + log((1− α)w + αz) (3.40)

≥ α log(w) + (1− α) log(z) + (1− α) log(w) + α log(z) (3.41)

= log(w) + log(z) (3.42)

completing the proof.

Alternatively, we note that the relationship between the vectors [x, y] and

[w, z] is exactly that of majorization [103], i.e., the vector [x, y] is majorized by

the vector [w, z]. That is, the components of [x, y] are more nearly equal than the

components of [w, z]. As the function Θ(x, y) = log(x) + log(y) is Schur-concave,

from [103, Proposition C.1], we have Θ(x, y) ≥ Θ(w, z), i.e., more nearly equal

components through a concave function yield larger values. �

We now show in the following theorem that the performance of DFP with

asynchronous Bernoulli energy arrivals is lower bounded by the performance of DFP

with synchronous Bernoulli energy arrivals (with the same individual recharge rates).

This theorem implies that extreme correlation between energy arrivals at the users

affects the achievable rates negatively.

Theorem 3.3 With the DFP policy, any arbitrarily correlated (i.e., asynchronous)
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i.i.d. Bernoulli energy arrival process yields an achievable long-term average rate

region no smaller than the long-term average rate region a fully-correlated (i.e.,

synchronous) i.i.d. Bernoulli energy arrival process yields.

We provide the proof of Theorem 3.3 in the Appendix.

3.5.2 Non-Bernoulli Energy Arrivals

We now relate the performance of asynchronous i.i.d. Bernoulli energy arrivals and

any general i.i.d. energy arrivals with the same mean. The energy arrivals belong

to any arbitrary distribution, i.e., E1i ∈ [0, B1] and E2i ∈ [0, B2] with arbitrary

correlation between them. We first state the following lemma which is an extension

of [49, Lemma 2] to the case of two random variables. This lemma compares the

expected value of a concave function over Bernoulli and non-Bernoulli random vari-

ables. While we state the lemma for jointly concave functions, in fact, individual

concavity of the function with respect to each variable is sufficient for the proof. In

our case, the function is the sum rate which is jointly concave with respect to both

user powers.

Lemma 3.4 Let f(x, y) be a jointly concave function in x, y on [0, B1]× [0, B2]. Let

X, Y be random variables arbitrarily distributed on [0, B1] × [0, B2]. Let (X̂, Ŷ ) be

Bernoulli random variables distributed on the same support set with the probability

mass function p11 = E[XY ]
B1B2

, p10 = E[X]
B1
− E[XY ]

B1B2
, p01 = E[Y ]

B2
− E[XY ]

B1B2
, and p00 =
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1− E[X]
B1
− E[Y ]

B2
+ E[XY ]

B1B2
. Then,

E[f(X̂, Ŷ )] ≤ E[f(X, Y )] (3.43)

Proof: Applying the concavity of f(x, y) first with respect to x and then with

respect to y,

f(x, y) ≥ x

B1

f(B1, y) +
B1 − x
B1

f(0, y) (3.44)

≥B2 − y
B2

x

B1

f(B1, 0) +
y

B2

x

B1

f(B1, B2)

+
B2 − y
B2

B1 − x
B1

f(0, 0) +
y

B2

B1 − x
B1

f(0, B2) (3.45)

Then, setting x = X, y = Y , taking the expectation of both sides, and applying the

relationship between the probability mass function of the Bernoulli random variable

and the expectations as described above, gives the desired result. �

The following theorem relates the performance of the DFP policy under Bernoulli

and general energy arrivals. The proof follows similar to [49, Proposition 4] using

Lemma 3.4 above.

Theorem 3.4 With the DFP policy, any general i.i.d. energy arrival process yields

an achievable long-term average rate region no smaller than the long-term average

rate region a corresponding arbitrary (i.e., asynchronous) i.i.d. Bernoulli energy

arrival process with the same recharge rate yields.
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3.5.3 An Upper Bound for Online Policies

We now develop an upper bound which is valid for all online policies. This upper

bound is universal in that it does not depend on the joint distribution of the energy

arrival processes. It is valid for all energy arrival processes, and depends only on

the average recharge rates of the energy arrival processes.

Theorem 3.5 The online long-term average capacity region for the multiple access

channel is upper bounded as,

r1 ≤
1

2
log

(
1 +

P̄1

σ2

)
(3.46)

r2 ≤
1

2
log

(
1 +

P̄2

σ2

)
(3.47)

r1 + r2 ≤
1

2
log

(
1 +

P̄1 + P̄2

σ2

)
(3.48)

where P̄k is the average recharge rate of user k.

Proof: The achievable long-term average rate region for any online policy is upper

bounded by the achievable long-term average rate region with the optimum offline

policy, where all of the energy arrival information is known non-causally ahead of

time. In addition, the achievable long-term average rate region with finite-sized

battery is upper bounded by the achievable long-term average rate region with an

unlimited-sized battery. For the offline problem, eliminating the no-energy-overflow

constraints due to the finite battery size, the feasible set for the transmit power

78



policy for user k, denoted as gnk , becomes

Fnk ,
{
{gki}ni=1 :

1

m

m∑

i=1

gki ≤
1

m

(
m∑

i=1

Eki +Bk

)
, m = 1, . . . , n

}
, k = 1, 2

(3.49)

where we have added Bk to the right hand side of (3.49) to allow for the case when

the system has started with a full battery at the beginning of the communication

session. We assume without loss of generality that Eki ≤ Bk. Next, we define a

larger feasible set as,

Gn ,
{
{g1i}ni=1, {g2i}ni=1 :

1

n

n∑

i=1

g1i + g2i ≤
1

n

(
n∑

i=1

E1i +B1 +
n∑

i=1

E2i +B2

)}

(3.50)

which is formed by considering only one of the constraints for m = n instead of all

of the constraints m = 1, . . . , n in the set Fnk , and by adding up the inequalities.

Then, the offline sum rate is upper bounded as,

Roff , lim
n→∞

max
{gki}ni=1∈Fnk

1

n

n∑

i=1

1

2
log

(
1 +

g1i + g2i

σ2

)
(3.51)

≤ lim
n→∞

max
{gki}ni=1∈Gn

1

n

n∑

i=1

1

2
log

(
1 +

g1i + g2i

σ2

)
(3.52)

≤ lim
n→∞

max
{gki}ni=1∈Gn

1

2
log

(
1 +

1
n

(
∑n

i=1 g1i + g2i)

σ2

)
(3.53)

≤ lim
n→∞

1

2
log

(
1 +

1
n

(
∑n

i=1E1i +B1 +
∑n

i=1E2i +B2)

σ2

)
(3.54)

=
1

2
log

(
1 +

P̄1 + P̄2

σ2

)
(3.55)
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where (3.52) follows because Gn is a larger feasible set, (3.53) follows from the

concavity of the log function, (3.54) follows by applying the inequality in Gn, and

(3.55) follows by the strong law of large numbers and since the remaining 1
n
Bk terms

go to zero as n tends to infinity. This proves (3.48). The proofs for (3.46) and (3.47)

follow similarly. �

Finally, comparing the lower bound in Theorem 3.1 and the upper bound in

Theorem 3.5, we note that the distance in all directions is bounded by a finite

number (0.72 in this case) which is independent of all system parameters. We recall

that: 1) the lower bound in Theorem 3.1 is valid for all synchronous Bernoulli

arrivals; 2) by Theorem 3.2, the rates of any general synchronous energy arrivals

are no smaller than the rates of synchronous Bernoulli arrivals; 3) by Theorem 3.3,

the rates of any arbitrary (asynchronous) Bernoulli arrivals are no smaller than the

rates of a corresponding synchronous Bernoulli arrivals; and 4) by Theorem 3.4, the

rates of any arbitrary energy arrivals are no smaller than a corresponding arbitrary

(asynchronous) Bernoulli arrivals.

To complete the argument, and put everything together, we note the following

subtlety: Starting from any arbitrary energy arrival processes, the Bernoulli energy

arrivals obtained in Theorem 3.4 (see the construction of the joint probability mass

function in Lemma 3.4) is not in general such that p01 = p10, which is required

by Theorem 3.3. Note that, we have p01 = p10, if the average recharge rates per

unit battery are equal, i.e., P̄1

B1
= P̄2

B2
. This ensures E[X]

B1
= E[Y ]

B2
in Lemma 3.4, and

therefore, ensures p01 = p10. We refer to this condition as either equal normalized

recharge rates, or alternatively as equal recharge rates per unit battery. Our final
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Figure 3.5: Optimal powers for Bernoulli arrivals (fully-correlated arrivals).

result therefore is that, under equal recharge rates per unit battery, the proposed

DFP policy is near-optimal as it yields rates that are within a constant gap from

the optimal online policy for all system parameters.

We note though that this restriction is not too strict as it does not necessarily

imply a complete symmetry in the system with B1 = B2 and P̄1 = P̄2. For instance,

all uniform distributed energy arrival processes with realizations in [0, Bk] satisfy

this condition. This restriction allows us to make a direct comparison between

synchronous and asynchronous Bernoulli energy arrivals as in Theorem 3.3, and gives

more intuition. We note that the same lower bound follows without this condition

as in [100] without making any comparisons with fully-synchronized energy arrivals.

We show the relationships between the bounds derived in this chapter in
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Figure 3.6: Optimal powers for Bernoulli arrivals (fully-correlated arrivals).

Fig. 3.4.

3.6 Numerical Examples

In this section, we illustrate the results obtained through several numerical examples.

We set σ2 = 1 mW (milli-Watt). We first consider the case of fully-correlated

(synchronized) i.i.d. Bernoulli energy arrivals. For the corner point where user 2

operates at its single-user capacity, i.e., when µ2 > µ1, we plot the optimal power

allocations in Fig. 3.5, for p = 0.1, B1 = 0.5 mJ (milli-Joule) and B2 = 3 mJ. As

we proved, user 1 transmits for a longer duration than user 2, and user 2 follows its

single-user power allocation. Note that this occurs even though the battery at user 1

is much smaller than the battery at user 2. Similarly, when µ1 > µ2, Fig. 3.6 shows
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Figure 3.7: Optimal powers for Bernoulli arrivals (fully-correlated arrivals).

that user 1 operates at its single-user rate and user 2 transmits for a longer duration.

We then plot the total power achieving the optimal long-term average sum-rate in

Fig. 3.7. As we proved, the total power is higher than the optimal single-user power

allocations of the users in every slot.

Next, we show the performance of the proposed DFP policy versus the op-

timal online policy and the upper bound in Fig. 3.8 for fully-correlated Bernoulli

arrivals. We study the sum-rate point at which we have µ1 = µ2. We observe that

DFP performs close to the optimal. We also study the performance of the greedy

policy in which the transmitter transmits whenever there is energy in the battery.

We notice that the performance of the greedy policy is poor. The reason for this

poor performance is that under Bernoulli arrivals, the transmitters transmits with

probability p a rate of 1
2

log(1 +B1 +B2) and remains silent with probability 1− p,

thus, the long-term average throughput is equal to p1
2

log(1 +B1 +B2) and for low

values of p this rate is far from optimal.

In Fig. 3.9, we study the performance of the DFP policy for the fully-correlated
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Figure 3.8: Sum rate: optimal policy, DFP policy, greedy policy and upper bound
(fully-correlated Bernoulli arrivals).

Bernoulli energy arrivals under fixed average recharge rate. We fix the average

recharge rate to P̄1 = 1mJ and P̄2 = 2mJ. The performance of the DFP policy is

close to the performance of the optimal policy. The performance of both the optimal

and the DFP policies decrease with the battery size. This is because the average

recharge rate for the Bernoulli arrivals is equal to P̄k = Bkp, thus, for a fixed average

recharge rate, as the value of the battery increases the value of p decreases. The

smaller the value of p the less frequent the energy will arrive and this will degrade

the performance.

In Fig. 3.10, we compare the performance of the DFP policy for fully-correlated

and independent Bernoulli energy arrivals. As proved, the achievable performance

of fully-correlated energy arrivals serves as a lower bound for the performance of

84



100 101 102

user 1 battery, B1 (mJ)

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

av
er
ag
e
ac
h
ie
va
b
le

ra
te

(b
it
s/
se
c)

B2 = 2B1, P̄1 = 1, P̄2 = 2 (mJ), µ1 = µ2 = 1 (sum-rate)

optimal policy

DFP policy

Figure 3.9: Sum rate: optimal policy and DFP policy (fully-correlated Bernoulli
arrivals) for fixed average recharge rate.

asynchronous (in this case completely independent) energy arrivals. In Fig. 3.11, we

compare the achievable rates of the DFP policy for fully-correlated and independent

(asynchronous) uniformly-distributed (i.e., not Bernoulli) energy arrivals with the

support of [0, Bk] at user k. We note that fully-correlated energy arrivals yield lower

sum rates. However, the gap between the two is less than the gap between the

performances of the fully-correlated and independent Bernoulli energy arrivals in

Fig. 3.10. In Fig. 3.12, we show the long-term average rate regions obtained by the

DFP policy for fully-correlated and independent energy arrivals for Bernoulli and

uniform-distributed energy arrivals. We observe that in both cases, independent

arrivals yield larger rates, and also uniform arrivals yield larger rates than Bernoulli

arrivals.
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3.7 Conclusion

In this chapter, we studied the optimal and near-optimal online power control poli-

cies which achieve the largest long-term average rate region for a two-user multiple

access channel under equal average recharge rate per unit battery. We first con-

sidered the synchronous i.i.d. Bernoulli energy arrivals and obtained the exactly

optimum policy. For this case, we showed that the long-term average rate region

is a single pentagon and the optimal power allocation achieving the boundary of

this region is decreasing between energy arrivals. The fractional form of the optimal

policy and the single pentagon structure of the rate region motivated the proposed

distributed fractional power (DFP) policy. We showed that under the DFP pol-

icy and for Bernoulli energy arrivals, synchronous arrivals yield a smaller rate re-
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Figure 3.11: Sum rate: Upper bound and DFP policy (fully-correlated and inde-
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gion than the asynchronous arrivals. Then, we showed that under the DFP policy,

Bernoulli energy arrivals yield a smaller rate region than general energy arrivals.

We developed a lower bound for the synchronous Bernoulli energy arrivals and a

universal upper bound for all energy arrivals and all online policies. We showed

that the developed lower and upper bounds are within a constant gap of each other,

and hence, the optimal online policy is within a constant gap to the proposed DFP

policy for equal normalized average recharge rates.

3.8 Appendix: Proof of Theorem 3

As discussed at the beginning of this sub-section, we consider a synchronous Bernoulli

energy arrival process with parameter p, and an asynchronous Bernoulli energy ar-
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rival process with parameters p00, p01, p10 and p11 with p01 = p10. As also discussed,

it suffices to consider only the sum rate, i.e., we need to show,

lim
n→∞

1

n
Esync

[
n∑

i=1

1

2
log (1+pb1i+pb2i)

∣∣∣∣∣x1, x2

]

≤ lim
n→∞

1

n
Easync

[
n∑

i=1

1

2
log (1+pb1i+pb2i)

∣∣∣∣∣x1, x2

]
(3.56)

where pb1i and pb2i inside the logarithms show that p fraction of the available energy

b1i and b2i are being used for transmission, and xk is the initial battery state at the

kth user in slot 1. To prove (3.56), it suffices to prove it for each individual slot,
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i.e.,

Esync

[
log (1 + pb1i + pb2i)

∣∣∣∣∣x1, x2

]
≤ Easync

[
log (1 + pb1i + pb2i)

∣∣∣∣∣x1, x2

]
, ∀i

(3.57)

To give intuition, we first prove the inequality for a few indices. First note

that when i = 1, both sides of (3.57) are identical and equal to log (1 + px1 + px2),

and therefore, the inequality in (3.57) holds as an equality.

For i = 2, we evaluate the expectations by considering the possibilities of an

energy arrival and no arrival in slot 1, for the synchronous case as,

Esync

[
log (1 + pb12 + pb22)

∣∣∣∣∣x1, x2

]

=p log (1 + pB1 + pB2) + (1− p) log (1 + p(1− p)x1 + p(1− p)x2) (3.58)

and for the asynchronous case as,

Easync

[
log (1 + pb12 + pb22)

∣∣∣∣∣x1, x2

]

=p11 log (1 + pB1 + pB2) + p10 log (1 + pB1 + p(1− p)x2)

+ p01 log (1 + p(1− p)x1 + pB2) + p00 log (1 + p(1− p)x1 + p(1− p)x2)

(3.59)

≥p11 log (1 + pB1 + pB2) + p10 log (1 + p(1− p)x1 + p(1− p)x2)

+ p01 log (1 + pB1 + pB2) + p00 log (1 + p(1−p)x1 + p(1− p)x2) (3.60)
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=p log (1 + pB1 + pB2) + (1− p) log (1 + p(1− p)x1 + p(1− p)x2) (3.61)

=Esync

[
log (1 + pb12 + pb22)

∣∣∣∣∣x1, x2

]
(3.62)

where the inequality in (3.60) follows from Lemma 3.3 and the fact that p01 = p10;

(3.61) follows because p11 + p01 = p and p00 + p10 = 1 − p; and (3.62) follows from

(3.58).

For i = 3, we evaluate the expectations by considering the possibilities of

energy arrivals and no arrivals in slots 1 and 2, for the synchronous case as,

Esync

[
log (1 + pb13 + pb23)

∣∣∣∣∣x1, x2

]

=p log (1 + pB1 + pB2) + p(1− p) log (1 + p(1− p)B1 + p(1− p)B2)

+ (1− p)2 log
(
1 + p(1− p)2x1 + p(1− p)2x2

)
(3.63)

and for the asynchronous case as,

Easync

[
log (1 + pb13 + pb23)

∣∣∣∣∣x1, x2

]

=p11 log (1 + pB1 + pB2) + p10(1− p) log
(
1 + pB1 + p(1− p)2x2

)

+ p01(1− p) log
(
1+p(1−p)2x1 + pB2

)

+ p2
00 log

(
1+p(1−p)2x1 + p(1−p)2x2

)

+ p01p00 log
(
1+p(1−p)2x1 + p(1−p)B2

)

+ p10p00 log
(
1+p(1−p)B1+p(1−p)2x2

)
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+ p11p00 log (1 + p(1− p)B1 + p(1− p)B2)

+ p01p log (1 + p(1− p)B1 + pB2)

+ p10p log (1 + pB1 + p(1− p)B2) (3.64)

≥p11 log (1 + pB1 + pB2) + p10(1− p) log (1 + pB1 + pB2)

+ p01(1− p) log
(
1+p(1−p)2x1+p(1−p)2x2

)

+ p2
00 log

(
1+p(1−p)2x1+p(1−p)2x2

)

+ p01p00 log
(
1 + p(1−p)2x1+p(1−p)2x2

)

+ p10p00 log (1+p(1−p)B1+p(1−p)B2)

+ p11p00 log (1 + p(1−p)B1 + p(1−p)B2)

+ p01p log (1+p(1− p)B1+p(1−p)B2)

+ p10p log (1 + pB1 + pB2) (3.65)

=p log (1 + pB1 + pB2) + p(1− p) log (1 + p(1− p)B1 + p(1− p)B2)

+ (1− p)2 log
(
1 + p(1− p)2x1 + p(1− p)2x2

)
(3.66)

=Esync

[
log (1 + pb13 + pb23)

∣∣∣∣∣x1, x2

]
(3.67)

where (3.65) follows from Lemma 3.3 and the fact that p01 = p10; (3.66) follows from

adding up similar terms; and (3.67) follows from (3.63).

We now proceed to the proof of the general case where i = k. For this case,

the sum rate for the synchronous case is,

Esync

[
log (1 + pb1k + pb2k)

∣∣∣∣∣x1, x2

]
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=(1− p)k−1 log
(
1 + p(1− p)k−1x1 + p(1− p)k−1x2

)

+
k−2∑

j=0

p(1− p)j log
(
1 + p(1− p)jB1 + p(1− p)jB2

)
(3.68)

and for the asynchronous case is,

Easync

[
log (1 + pb1k + pb2k)

∣∣∣∣∣x1, x2

]

=pk−1
00 log

(
1 + p(1− p)k−1x1 + p(1− p)k−1x2

)

+
k−2∑

j=0

p01p
j
00(1− p)k−2−j log

(
1 + p(1− p)k−1x1 + p(1− p)jB2

)

+
k−2∑

j=0

p10p
j
00(1− p)k−2−j log

(
1 + p(1− p)jB1 + p(1− p)k−1x2

)

+
k−3∑

j=0

p01p
j
00p(1− p)k−3−j log

(
1 + p(1− p)k−2B1 + p(1− p)jB2

)

+
k−3∑

j=0

p10p
j
00p(1− p)k−3−j log

(
1 + p(1− p)jB1 + p(1− p)k−2B2

)

+
k−4∑

j=0

p01p
j
00p(1− p)k−4−j log

(
1 + p(1− p)k−3B1 + p(1− p)jB2

)

+
k−4∑

j=0

p10p
j
00p(1− p)k−4−j log

(
1 + p(1− p)jB1 + p(1− p)k−3B2

)

...

+
1∑

j=0

p01p
j
00p(1− p)1−j log

(
1 + p(1− p)2B1 + p(1− p)jB2

)

+
1∑

j=0

p10p
j
00p(1− p)1−j log

(
1 + p(1− p)jB1 + p(1− p)2B2

)

+ p01p log (1 + p(1− p)B1 + pB2) + p10p log (1 + pB1 + p(1− p)B2)

+
k−2∑

j=0

p11p
j
00 log

(
1 + p(1− p)jB1 + p(1− p)jB2

)
(3.69)
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The proof for the general case follows similarly by applying Lemma 3.3 between

all two consecutive terms except for the first and the last, and then, by adding up

similar terms.
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CHAPTER 4

Online Scheduling for Energy Harvesting Channels with Pro-

cessing Costs

4.1 Introduction

We consider two settings in which the receiving terminals incur processing costs

to receive information. We first consider a single-user energy harvesting channel,

see Fig. 4.1, where the transmitter incurs a processing cost per unit time that it

is on. The processing cost is the power consumed by the transmitter to be on

and transmitting. This cost forces the transmitter to transmit in bursts instead

of transmitting continually. The transmitter has a finite-sized battery, which is

recharged by an exogenous i.i.d. energy harvesting process. We consider the problem

of online scheduling, where the transmitter knows the energy arrivals only causally,

and needs to determine a power allocation and burst length policy with only a causal

knowledge of the energy arrivals. We then extend our analysis to the case of a two-

way energy harvesting channel, Fig. 4.2, where users harvest energy from a fully

correlated energy source. The users have finite but arbitrary-sized batteries to save

unused energy for future use. Each user is subject to an arbitrary processing cost
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Figure 4.1: Single-user energy harvesting channel.

which accounts for power used per unit time by the user for being on to transmit

or receive data. The processing costs force users to operate in bursty modes, where

they do not utilize the entire duration available for communication. The users need

to determine their power allocation and burst length policies based only on causal

knowledge of energy arrivals.

4.2 Single-User Channel

We first consider a single-user energy harvesting channel, see Fig. 4.1. The trans-

mitter has a battery of size B. Time is slotted. The amount of energy in the battery,

bi, evolves as:

bi+1 = min{B, bi − θi (Pi + ε) + Ei+1} (4.1)

where Ei is the energy harvested in slot i, ε is the processing cost (power) per unit

time, and θi is the duration in slot i that the transmitter is on and transmitting. In

(4.1), θiPi is the energy spent for transmission, and θiε is the energy spent for being

on.
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Figure 4.2: Two-way energy harvesting channel with fully-correlated energy arrivals.

The physical layer is Gaussian with rate transmitted in slot i [84],

ri =
θi
2

log (1 + Pi) (4.2)

where Pi is the allocated power and θi is the transmission duration in slot i. These

two variables satisfy θi(Pi + ε) ≤ bi, which means that the total energy used is less

than the energy available in the battery in this slot.

We first consider the case where Ei are i.i.d. Bernoulli random variables with

a particular support: P[Ei = B] = p and P[Ei = 0] = 1 − p, that is, when energy

arrives it fills the battery completely. For this case, we determine the optimal online

policy in the next sub-section. We then consider the general i.i.d. energy arrivals

and propose a near-optimal policy in the following sub-section, and prove optimality

guarantees on it.

4.2.1 Optimal Strategy: Case of Bernoulli Arrivals

Due to the special i.i.d. Bernoulli energy arrival structure, when an energy arrives, it

fills the battery, and resets the system. This constitutes a renewal. Then, from [88,
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Theorem 3.6.1] (see also [48–50, 97–100]), the long-term average rate can be found

as:

lim
n→∞

E

[
1

n

n∑

i=1

ri

]
=

1

E[L]
E

[
L∑

i=1

ri

]
(4.3)

= p

∞∑

k=1

p(1− p)k−1

k∑

i=1

ri (4.4)

=
∞∑

i=1

∞∑

k=i

p2(1− p)k−1ri (4.5)

=
∞∑

i=1

p(1− p)i−1ri (4.6)

where L is the inter-arrival time between energy harvests, which is geometric with

parameter p, and E[L] = 1/p. Note that, via renewal reward theory, (4.3) reduces

the infinite horizon problem into a finite horizon problem; instead of calculating the

average reward over time, it is calculated over a single renewal event. The renewal

event here is an energy arrival. Then, (4.4) follows by substituting a geometric

distribution with parameter p for random variable L, (4.5) follows by interchanging

the order of summations, and (4.6) follows by evaluating the inner sum.

Inserting (4.2) in (4.6), the online power allocation problem is:

max
{Pi,θi}

∞∑

i=1

p(1− p)i−1 θi
2

log (1 + Pi)

s.t.
∞∑

i=1

θi(Pi + ε) ≤ B

0 ≤ θi ≤ 1, Pi ≥ 0, ∀i (4.7)
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This optimization problem can be viewed as maximizing the expected transmitted

rate before the next energy arrival.

The problem in (4.7) is non-convex. We transform it to an equivalent convex

problem by defining new variables P̄i = Piθi,

max
{P̄i,θi}

∞∑

i=1

p(1− p)i−1 θi
2

log

(
1 +

P̄i
θi

)

s.t.
∞∑

i=1

P̄i + θiε ≤ B

0 ≤ θi ≤ 1, P̄i ≥ 0, ∀i (4.8)

Here, P̄i can be interpreted as the transmit energy allocated to the ith slot, and

θi is the duration during which this energy is transmitted. The optimum online

scheduling problem is to find the sequence of {P̄i, θi}∞i=1.

The Lagrangian for the problem in (4.8) is:

L =−
∞∑

i=1

p(1− p)i−1 θi
2

log

(
1 +

P̄i
θi

)
−
∞∑

i=1

γiP̄i

+ λ

(
∞∑

i=1

P̄i + θiε−B
)
−
∞∑

i=1

µiθi−
∞∑

i=1

νi(1−θi) (4.9)

where λ, γi, µi, νi are non-negative Lagrange multipliers.

First, we note that, in the optimum solution of (4.7), Pi = 0 if and only

if θi = 0. This follows because, when Pi or θi is zero, the objective function is

zero, and choosing the other variable non-zero wastes resources. While by definition

P̄i = 0 when either Pi = 0 or θi = 0, from the preceding argument, in the optimum
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solution of (4.8), P̄i = 0 if and only if Pi = 0 and θi = 0. Since the problem in

(4.8) is convex, the optimal solution is found by the KKT optimality conditions.

Taking the derivative of (4.9) with respect to P̄i, equating it to zero, and using the

corresponding complementary slackness condition:

P̄i
θi

=
p(1− p)i−1

λ
− 1 (4.10)

for slots where θi > 0. When θi = 0, from the preceding discussion P̄i = 0. Noting

that Pi = P̄i
θi

, from (4.10), we conclude that the optimal power is decreasing over

time. Therefore, there exists a time slot when it hits zero. Hence, we define Ñ for

which we have P̄i, Pi, θi > 0,∀i ∈ {1, . . . , Ñ}, and P̄i = Pi = θi = 0,∀i ∈ {Ñ+1, . . .}.

Note that the transmission duration of the single-user problem with no processing

costs in [49] (let us denote it as Ñnpc) forms an upper bound for the transmission

duration here, i.e., Ñ ≤ Ñnpc. This is because, any processing costs use up energy

for being on and reduce the effective battery size, and the transmission duration is

an increasing function of the battery size [97].

Next, taking the derivative of (4.9) with respect to θi, we have

− p(1− p)i−1 log

(
1 +

P̄i
θi

)
+
P̄i
θi

p(1− p)i−1

1 + P̄i
θi

+ λε− µi + νi = 0 (4.11)

The optimal θi can be 0, 1, or 0 < θi < 1. When 0 < θi < 1, we have bursty

transmission. In this case, from complementary slackness, we have µi = νi = 0.
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Then, from (4.10)-(4.11),

p(1− p)i−1

(
log

(
p(1− p)i−1

λ

)
− 1

)
= λ(ε− 1) (4.12)

Hence, (4.12) should be satisfied in any slot i where 0 < θi < 1, i.e., where there is

burstiness. Next, we note that, since the left hand side of (4.12) is monotonically

decreasing in i, (4.12) can be satisfied in at most one slot. Moreover, this slot can

only be the last slot. This follows from the presence of factor p(1− p)i−1 in front of

the log in (4.8). Hence, it is always better to fill-up (i.e., θi = 1) earlier slots first;

fractional θi should come later.

Next, we discuss how to solve for the optimum online policy. We just showed

above that for all slots we have θi = 1, except for possibly the last slot where θÑ ≤ 1.

From the total energy constraint and (4.10), we have:

Ñ−1∑

i=1

(
p(1−p)i−1

λ
−1+ε

)
+ θÑ

(
p(1−p)Ñ−1

λ
−1+ε

)
=B (4.13)

In addition, for i ∈ {1, . . . , Ñ}, we need to satisfy:

p(1− p)i−1 ≥ λ (4.14)

p(1− p)i−1

(
1− log

(
p(1−p)i−1

λ

))
+λ(ε−1) ≤ 0 (4.15)

where (4.14) ensures the non-negativity of power in (4.10), and (4.15) ensures the

existence of non-negative Lagrange multipliers {νi} satisfying (4.11). Hence, we need
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to find the optimal Ñ , λ, θÑ that satisfy (4.12), (4.13), (4.14) and (4.15). Towards

this end, we consider the following approach: We first fix Ñ to be the single-user

transmission duration with no processing costs in [49], i.e., Ñ = Ñnpc, and solve for

λ in (4.12) with i = Ñ . Then, we check whether (4.14) and (4.15) are satisfied. If

they are, then, we solve for θÑ from (4.13). If there does not exist a solution, then

we reduce Ñ and repeat until we reach Ñ = 1. If we do not have a solution when

we reach Ñ = 1, then this means that (4.12) cannot be satisfied, and we must have

θÑ = 1. In this case, (4.13) becomes:

Ñ∑

i=1

(
p(1− p)i−1

λ
− 1 + ε

)
= B (4.16)

For this case, we solve (4.16) along with (4.14)-(4.15) for the largest Ñ and the

corresponding λ.

4.2.2 Near-Optimal Strategy: General Arrivals

Now, we consider a general i.i.d. energy arrival process Ei with recharge rate E[Ei] =

µ. In this case, we no longer have a renewal structure, and finding the exactly optimal

online policy is analytically intractable. Instead, we propose a sub-optimal online

policy and prove that it performs close to optimal.

4.2.2.1 Sub-Optimal Policy

We first define the proposed sub-optimal online policy for Bernoulli energy arrivals

and then extend it to general energy arrivals. We note from (4.10) that, for Bernoulli
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energy arrivals, the optimal total transmit power allocated decreases exponentially

over time. As in [48–50, 97–100], this motivates us to construct a fractional power

policy over time, in particular, we use a total allocated energy of Bp(1 − p)i−1 in

slot i. That is, we allocate a fixed p fraction of available energy in the battery to

use in slot i. We then decide on the duration of the burst θi by solving a single-slot

problem as:

max
P̄i,θi

θi
2

log

(
1 +

P̄i
θi

)

s.t. P̄i + θiε ≤ Bp(1− p)i−1

0 ≤ θi ≤ 1, P̄i ≥ 0 (4.17)

In the optimal policy, the first constraint is satisfied with equality, hence P̄i =

Bp(1− p)i−1 − θiε, and the problem can be written only in terms of θi as:

max
θi∈[0,1]

θi
2

log

(
1 +

Bp(1− p)i−1

θi
− ε
)

(4.18)

For general energy arrivals, we allocate a fraction q = µ/B of the available

energy in the battery for slot i, i.e., qbi. Then, solve for the optimum burst θi in

each slot as in (4.18):

max
θi∈[0,1]

θi
2

log

(
1 +

qbi
θi
− ε
)

(4.19)
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4.2.2.2 A Lower Bound on the Proposed Online Policy

In Lemma 4.1 and Lemma 4.2 below, we develop multiplicative and additive lower

bounds for the performance of the proposed sub-optimal algorithm for Bernoulli

arrivals. In the following, we denote the solution of maximization problems in

(4.18) and (4.19) for available power P as θ∗(P, ε), i.e., the solution of (4.18) is

θ∗(Bp(1− p)i−1, ε) and the solution of (4.19) is θ∗(qbi, ε).

Lemma 4.1 The achievable rate with the proposed sub-optimal policy for any i.i.d.

Bernoulli energy arrival process with average recharge rate of µ = E[Ei] is lower

bounded as,

r ≥ 1

2− µ
B

max
θ∈[0,1]

θ

2
log
(

1 +
µ

θ
− ε
)

(4.20)

≥ 1

2
max
θ∈[0,1]

θ

2
log
(

1 +
µ

θ
− ε
)

(4.21)

We provide the proof of Lemma 4.1 in Appendix 4.6.1. The multiplicative bound in

Lemma 4.1 performs well when the achievable rates are small, whereas the additive

bound in Lemma 4.2 performs well when the achievable rates are large. We provide

the proof of Lemma 4.2 in Appendix 4.6.2.

Lemma 4.2 The achievable rate with the proposed sub-optimal policy for any i.i.d.

Bernoulli energy arrival process with average recharge rate of µ = E[Ei] is lower
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bounded as,

r ≥ max
θ∈[0,1]

θ

2
log
(

1 +
µ

θ
− ε
)
− 0.72− 1

2
log+(ε) (4.22)

where log+(x) = max{log(x), 0}.

We next show that i.i.d. Bernoulli energy arrivals yield the lowest rate over

all i.i.d. energy arrivals with the same mean. The proof follows by the approach

in [49, Proposition 4] as,

f(x) = max
θi∈[0,1]

θi
2

log

(
1 +

qx

θi
− ε
)

(4.23)

is concave in x. The concavity of f(x) follows since it is equivalent to the maxi-

mization of θi
2

log
(

1 + P̄i
θi

)
over the feasible set P̄i + θiε ≤ qx, 0 ≤ θi ≤ 1, P̄i ≥ 0.

The objective of this equivalent problem is jointly concave in θi, P̄i, and the con-

straint set is affine in x, θi and P̄i. Then, it follows that f(x) is concave in x; see

also [102, Section 3.2.5].

Lemma 4.3 The rate of the proposed sub-optimal policy with any i.i.d. energy ar-

rival process is no smaller than that with an i.i.d. Bernoulli energy arrival process

of the same mean.

Combining Lemmas 4.1, 4.2, and 4.3, we have the following general theorem

for arbitrary i.i.d. energy arrival processes.

Theorem 4.1 The achievable rate with the proposed sub-optimal policy for any ar-

104



bitrary i.i.d. energy arrival process with average recharge rate µ = E[Ei] is lower

bounded as in (4.20) and (4.22).

4.2.2.3 An Upper Bound for Online Policies

In Theorem 4.2 below, we develop a universal upper bound for the performance of

any online policy in terms of E[Ei] = µ.

Theorem 4.2 For a recharge rate of E[Ei] = µ, the achievable rate of any online

algorithm is upper bounded as,

r ≤ max
θ∈[0,1]

θ

2
log
(

1 +
µ

θ
− ε
)

(4.24)

Proof: We consider the rate of the optimum offline algorithm which upper bounds

the rates achievable by any online algorithm. We consider the following larger than

actual feasible region for the offline policy by neglecting the no-energy-overflow

constraints due to the finite-sized battery [2, 3]:

Fn,
{
{P̄i, θi}ni=1 :

1

m

m∑

i=1

P̄i+θiε ≤
1

m

m∑

i=1

Ei, ∀m
}

(4.25)

Then, we consider the further larger feasible set by keeping only the bound for

m = n, and starting with a full battery B,

Gn,
{
{P̄i, θi}ni=1 :

1

n

n∑

i=1

P̄i+θiε ≤
1

n

(
n∑

i=1

Ei+B

)}
(4.26)
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Then, we have:

r ≤ lim
n→∞

max
{P̄i,θi}ni=1∈Gn

1

n

n∑

i=1

θi
2

log

(
1 +

P̄i
θi

)
(4.27)

Since the energies Ei are i.i.d., from strong law of large numbers, for all δ > 0, there

exists an integer N such that, for all n ≥ N , we have 1
n

(
∑n

i=1Ei+B) ≤ µ + δ.

Hence, for large enough n, i.e., n ≥ N , we have Gn to be

Gn ,
{
{P̄i, θi}ni=1 :

1

n

n∑

i=1

P̄i+θiε ≤ µ+ δ

}
(4.28)

Then, from the joint concavity of the objective function, it is maximized when all

θi = θ and all P̄i = P̄ . Hence, we have P̄ + θε ≤ µ + δ. Since this is valid for all

δ > 0, we take its limit to zero, which gives the desired result in (4.24). �

4.2.2.4 Putting the Bounds Together

The additive lower bound in Theorem 4.1 (i.e., (4.22)) together with the general

upper bound in Theorem 4.2 (i.e., (4.24)) imply that there is a constant gap between

the bounds. Both the proposed sub-optimal policy and the optimal policy live

between these bounds which are separated by a finite gap. Hence, the proposed

online policy performs within a constant gap of the optimal online policy for all

system parameters.
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4.3 Two-Way Channel

We next consider a two-way energy harvesting channel with a common energy har-

vesting source, see Fig. 4.2. Transmitter j has a battery of finite size Bj. The

energy available in the jth user battery in slot i, bji, evolves as:

bj(i+1) = min{Bj, bji − θjiPji −max{θ1i, θ2i}εj + Ej(i+1)} (4.29)

where Pji is the power transmitted by user j in slot i, Eji is the energy harvested

at the jth user in slot i, εj is the processing cost incurred per unit time for being

on1, and θji is the duration for which user j is on, either transmitting or receiving,

in slot i.

The physical layer is Gaussian with sum rate in slot i [84],

r1i + r2i =
θ1i

2
log (1 + P1i) +

θ2i

2
log (1 + P2i) (4.30)

where rji is the rate of user j in slot i. The power and burst of user j, θji, Pji,

are constrained by the current battery state as θjiPji + max{θ1i, θ2i}εj ≤ bji. The

objective of the online scheduling is to obtain the optimal policy which consists of

{θ1i, θ2i, P1i, P2i} to maximize the expected rate. In (4.30), the 1
2

factors in front of

logs are due to Shannon capacity formula (see e.g., [84, Eqn. (9.17)]), not due to

time-sharing. There is no time-sharing; the system is full-duplex, and hence, the

1In this chapter, we assume that the cost of being on while transmitting is the same as cost
of being on while receiving. A more general model could be to consider different energy costs for
being on for transmission and reception.
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sum of two single-user rates is achievable (see e.g., [84, Section 15.1.6]).

In the following, we first consider the case where the energy arrivals, E1i =

E2i = Ei, are i.i.d. Bernoulli random variables with support {0, B}, and with

P[E1i = E2i = B] = p, where B ≥ max{B1, B2}, i.e., when an energy comes it

fills both batteries completely. For this case, we determine the optimal online pol-

icy. Subsequently, we consider the case of general i.i.d. energy arrivals, and propose

a distributed near-optimal policy.

4.3.1 Optimal Strategy: Case of Bernoulli Arrivals

With Bernoulli energy arrivals, each energy arrival resets the system state; energy

arrivals form a renewal process. From [88, Theorem 3.6.1], the long-term average

throughput is,

lim
n→∞

E

[
1

n

n∑

i=1

(r1i + r2i)

]
=

1

E[L]
E

[
L∑

i=1

(r1i + r2i)

]
(4.31)

= p
∞∑

k=1

p(1− p)k−1

k∑

i=1

(r1i + r2i) (4.32)

=
∞∑

i=1

∞∑

k=i

p2(1− p)k−1(r1i + r2i) (4.33)

=
∞∑

i=1

p(1− p)i−1(r1i + r2i) (4.34)

where L is the geometric inter-arrival time with E[L] = 1/p.

Hence, the online power allocation problem becomes:

max
{Pji},{θji}

∞∑

i=1

p(1− p)i−1 (r1i + r2i)
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s.t.
∞∑

i=1

(θ1iP1i + max{θ1i, θ2i}ε1) ≤ B1

∞∑

i=1

(θ2iP2i + max{θ1i, θ2i}ε2) ≤ B2

P1i, P2i ≥ 0, 0 ≤ θ1i, θ2i ≤ 1, ∀i (4.35)

This optimization problem can be viewed as maximizing the expected transmitted

sum rate before the next energy arrival.

Problem (4.35) is non-convex. We transform it to an equivalent convex prob-

lem by defining new variables P̄ji = θjiPji,

max
∞∑

i=1

p(1−p)i−1

(
θ1i

2
log

(
1+

P̄1i

θ1i

)
+
θ2i

2
log

(
1+

P̄2i

θ1i

))

s.t.
∞∑

i=1

(P̄1i + max{θ1i, θ2i}ε1) ≤ B1

∞∑

i=1

(P̄2i + max{θ1i, θ2i}ε2) ≤ B2

P̄1i, P̄2i ≥ 0, 0 ≤ θ1i, θ2i ≤ 1, ∀i (4.36)

where the maximization is over {P̄ji}, {θji}.

Before proceeding with finding the optimal policy, we state two important

observations: First, both users should consume all of their energies in their batteries.

If a user does not consume all of its energy, then we can increase its power until

all of its energy is used, increasing the objective function. Second, the two users’

transmissions should be fully synchronized, i.e.., θ1i = θ2i, for all i. If for a slot i

users are not synchronized, say e.g., θ1i < θ2i, then we can always increase θ1i to be
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equal to θ2i without violating the constraints of the problem, while increasing the

objective function. Hence, hereafter, we will assume that θ1i = θ2i = θi for all i, so

that max{θ1i, θ2i} = θi. In this case, the Lagrangian for (4.36) is:

L =−
∞∑

i=1

p(1−p)i−1

(
θi
2

log

(
1+

P̄1i

θi

)
+
θi
2

log

(
1+

P̄2i

θi

))

+ λ1

(
∞∑

i=1

(P̄1i + θiε1)−B1

)
−
∞∑

i=1

ν1iP1i

+ λ2

(
∞∑

i=1

(P̄2i + θiε2)−B2

)
−
∞∑

i=1

ν2iP2i

−
∞∑

i=1

µliθi −
∞∑

i=1

µui (1− θi) (4.37)

From the KKTs, the optimal powers for the slots with θi > 0:

P̄1i

θi
=

(
p(1−p)i−1

λ1

−1

)+

,
P̄2i

θi
=

(
p(1−p)i−1

λ2

−1

)+

(4.38)

For the slots with θi = 0, both powers are zero, i.e., P̄1i = P̄2i = 0, as otherwise, any

assigned positive power is wasted, since the objective function is zero when θi = 0.

From (4.38), we observe that for slots with θi > 0, the powers P1i and P2i are

monotonically decreasing in time. In addition, due to the decreasing p(1 − p)i−1

factors before the log, we can divide the slots into {1, . . . , Ñ} where θi > 0, and

{Ñ + 1, . . .} where θi = 0. Furthermore, the transmission duration Ñ is bounded

above by the maximum of the user transmission durations without any processing

costs (define them as Ñnpc1 and Ñnpc2), i.e., Ñ ≤ max{Ñnpc1, Ñnpc2}. This follows

as the processing costs reduce the energy available in the battery dedicated for
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transmission, and hence reduce the effective battery size at both users; it is shown

in [97] that the transmission duration is monotone increasing in the battery size.

Similarly, from the optimality conditions, the bursts satisfy:

2∑

j=1

log

(
1+

P̄ji
θi

)
−

P̄ji
θi

1+
P̄ji
θi

=

∑2
j=1 λjεj+µ

u
i −µli

p(1− p)i−1
(4.39)

substituting (4.38), we obtain,

2∑

j=1

log

(
p(1−p)i−1

λj

)
=

∑2
j=1 λj(εj−1)+µui −µli

p(1− p)i−1
+2 (4.40)

From complementary slackness, if θi ∈ (0, 1), then we have µui = µli = 0. Thus, in

this case, (4.40) becomes:

2∑

j=1

(
log

(
p(1− p)i−1

λj

)
− 1

)
=

∑2
j=1 λj (εj − 1)

p(1− p)i−1
(4.41)

The left and right hand sides of (4.41) are monotone decreasing and increasing,

respectively. Hence, (4.41) can be satisfied at most for one time index, thus the

bursty transmission can occur at most in one slot. Due to decreasing p(1 − p)i−1

multiplying the rate, this bursty transmission can occur only in the last slot.

From the above, the optimal solution is characterized by λ1, λ2, Ñ , θÑ . Next,

we solve for them. For the complete solution we need to solve (4.40) along with the
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total power constraints, which using (4.38) become:

Ñ−1∑

i=1

[
p(1−p)i−1

λ1

−1+ε1

]
+θÑ

[
p(1−p)Ñ−1

λ1

−1+ε1

]
=B1 (4.42)

Ñ−1∑

i=1

[
p(1−p)i−1

λ2

−1+ε2

]
+θÑ

[
p(1−p)Ñ−1

λ2

−1+ε2

]
=B2 (4.43)

Solving (4.42) and (4.43) for θÑ we have:

θÑ =
B1 −

∑Ñ−1
i=1

(
p(1−p)i−1

λ1
− 1 + ε1

)

p(1−p)Ñ−1

λ1
− 1 + ε1

(4.44)

=
B2 −

∑Ñ−1
i=1

(
p(1−p)i−1

λ2
− 1 + ε2

)

p(1−p)Ñ−1

λ2
− 1 + ε2

(4.45)

We note that (4.44) and (4.45) are strictly increasing in λ1 and λ2 when the nu-

merators and denominators are non-negative. Hence, for each fixed λ1 which makes

θÑ ∈ (0, 1) there corresponds a unique λ2 which makes (4.44) and (4.45) equal.

This in effect makes it easy to search over the pairs {λ1, λ2} which equate (4.44)

and (4.45), using a one dimensional search on either λ1 or λ2. We also need to

satisfy for i ∈ {1, . . . , Ñ}:

λ1 ≤p(1− p)i−1 (4.46)

λ2 ≤p(1− p)i−1 (4.47)

0 ≤
2∑

j=1

(
log

(
p(1−p)i−1

λj

)
−1

)
+

∑2
j=1 λj (1−εj)
p(1−p)i−1

(4.48)

where (4.46) and (4.47) ensure the non-negativity of the power, and (4.48) guaran-
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tees the existence of a non-negative Lagrange multiplier µui satisfying (4.40).

Towards this end, next, we present a method to obtain the optimal solution.

We first initialize Ñ = max{Ñnpc1, Ñnpc2}, where Ñnpcj can be found by solving

a single-user problem with no processing costs for user j as in [49]. From this, we

obtain {λ1, λ2} pairs which equate equations (4.44) and (4.45) and make θÑ ∈ (0, 1).

Then, we check if any of the obtained pairs satisfies (4.41), (4.46), (4.47) and (4.48).

If yes, then this is the optimal solution. Otherwise, we decrease Ñ by one and repeat

this again. If we reach Ñ = 1 and no solution is found, then, this implies that

θÑ = 1. Hence, we solve similarly for the largest integer Ñ and that corresponding

λ1, λ2 that satisfy:

Ñ∑

i=1

(
p(1− p)i−1

λ1

− 1 + ε1

)
= B1 (4.49)

Ñ∑

i=1

(
p(1− p)i−1

λ2

− 1 + ε2

)
= B2 (4.50)

along with the conditions (4.46), (4.47) and (4.48).

4.3.2 Near-Optimal Strategy: General Arrivals

Now, we consider an arbitrary i.i.d. energy arrival process Ei with average admitted

recharge rate µj = E[max{Bj, Ei}] at user j. Although finding the exactly optimal

policy in this case may not be tractable, we propose a distributed sub-optimal policy

which we show is near-optimal.
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4.3.2.1 Sub-Optimal Policy

We first present our proposed sub-optimal policy for the Bernoulli case and then

extend it to the case of general energy arrivals. For Bernoulli energy arrivals, mo-

tivated by (4.38), we assign exponentially decaying total power for each user. In

each slot, the users allocate a fraction p of the available energy in the battery, and

then optimize the transmit power and burst duration. Hence, in slot i, the energy

allocated for transmission by user j is Bjp(1 − p)i−1. Then, the users solve the

following single-slot optimization problem:

max
P̄ji,θi

θi
2

log

(
1 +

P̄1i

θi

)
+
θi
2

log

(
1 +

P̄2i

θi

)

s.t. P̄1i + θiε1 ≤ B1p(1− p)i−1

P̄2i + θiε2 ≤ B2p(1− p)i−1

P̄1i, P̄2i ≥ 0, 0 ≤ θi ≤ 1 (4.51)

Since, the first two constraints will be satisfied with equality we have P̄ji = Bjp(1−

p)i−1 − θiεj, which reduces (4.51) to:

max
θi∈[0,1]

θi
2

log

(
1 +

B1p(1− p)i−1

θi
− ε1

)
+
θi
2

log

(
1 +

B2p(1− p)i−1

θi
− ε2

)
(4.52)
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Similarly, for the case of general energy arrivals, we allocate a fraction qj =
µj
Bj

of

the battery energy, i.e., qjbji, and solve:

max
θi∈[0,1]

θi
2

log

(
1+

q1b1i

θi
−ε1

)
+
θi
2

log

(
1+

q2b2i

θi
−ε2

)
(4.53)

Problems (4.52) and (4.53) can be solved by both users independently, because

both users know the energy arrival Ei, and they are consuming the power in a

deterministic fractional way, hence, both users can track the state of both batteries.

4.3.2.2 An Upper Bound for Online Policies

In the following theorem, we develop an upper bound for all online policies in terms

of the average admitted energy.

Theorem 4.3 For an average admitted energy µj at user j, the achievable rate for

any online policy is upper bounded by:

rub = max
θ∈[0,1]

θ

2

(
log
(

1+
µ1

θ
−ε1

)
+log

(
1+

µ2

θ
−ε2

))
(4.54)

Proof: We denote the admitted energy arrivals as Ẽji = min{Bj, Eji}. We use the

offline achievable rate as an upper bound for the online achievable rate. We consider

the following set which is larger than the feasible set of the offline case:

Fn ,
{
{P̄1i, P̄2i, θi}ni=1 :

1

m

m∑

i=1

P̄1i+θiε1≤
1

m

(
m∑

i=1

Ẽ1i

)
,
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1

m

m∑

i=1

P̄2i+θiε2 ≤
1

m

(
m∑

i=1

Ẽ2i

)
,∀m = 1, . . . , n

}
(4.55)

which neglects the overflow constraints due to the finite battery [2, 3]. We then

consider a bigger feasible set by considering the constraints only when m = n to

get:

Gn ,
{
{P̄1i, P̄2i, θi}ni=1 :

1

n

n∑

i=1

P̄1i + θiε1 ≤
1

n

(
n∑

i=1

Ẽ1i

)
,

1

n

n∑

i=1

P̄2i + θiε2 ≤
1

n

(
n∑

i=1

Ẽ2i

)}
(4.56)

Hence, the online achievable rate is upper bounded by:

lim
n→∞

max
Gn

1

n

n∑

i=1

θi
2

(
log

(
1+

P̄1i

θi

)
+log

(
1+

P̄2i

θi

))
(4.57)

Since the energies Ẽ1i, Ẽ2i are i.i.d., from strong law of large numbers, for all

δ > 0 there exists an integer N such that for all n ≥ N , we have 1
n

∑n
i=1 Ẽ1i ≤ µ1 +δ

and 1
n

∑n
i=1 Ẽ2i ≤ µ2 + δ. For large enough n, i.e., n ≥ N , the constraints in (4.56)

will be:

1

n

n∑

i=1

P̄1i+θiε1≤µ1+δ,
1

n

n∑

i=1

P̄2i+θiε2≤µ2+δ (4.58)

Then, from the joint concavity of the objective function, it is maximizes when all

θi = θ and P̄ji = P̄j. Since this is valid for all δ > 0, we can the take δ to zero,

which gives (4.54). �
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4.3.2.3 A Lower Bound on the Proposed Online Policy

In this section, we derive multiplicative and additive bounds for the performance

of the proposed sub-optimal policy. In what follows, we denote the solution of

the problems in (4.52) and (4.53) for available powers P1, P2 as θ∗(P1, P2), i.e., the

solutions of (4.52) and (4.53) are denoted as θ∗(B1p(1 − p)i−1, B2p(1 − p)i−1) and

θ∗(q1b1i, q2b2i), respectively.

Lemma 4.4 The achievable rate with the proposed fractional policy for any i.i.d. Bernoulli

energy arrival process with average admitted energy µj at user j is lower bounded

as:

r ≥ 1

2
rub (4.59)

We provide the proof of Lemma 4.4 in Appendix 4.6.3.

Lemma 4.5 The achievable rate under the proposed fractional policy for any i.i.d. Bernoulli

energy arrival process with average admitted energy µj at user j is lower bounded

as:

r ≥rub − 1.44− 1

2
log+(ε1)− 1

2
log+(ε2) (4.60)

where log+(x) = max{0, log(x)}.

We provide the proof of Lemma 4.5 in Appendix 4.6.4.

We next show that i.i.d. Bernoulli energy arrivals give the lowest rate over
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all i.i.d. energy arrivals with the same mean. The proof follows by the approach

in [49, Proposition 4] as

f(x1, x2) , max
θi∈[0,1]

θi
2

(
log

(
1+

q1x1

θi
−ε1

)
+log

(
1+

q2x2

θi
−ε2

))
(4.61)

is jointly concave in x1, x2. The concavity of f(x1, x2) follows since it is equivalent to

maximizing θi
2

log
(

1 + P̄1i

θi

)
+ θi

2
log
(

1 + P̄2i

θi

)
over the feasible set P̄1i + θiε1 ≤ q1x1,

P̄2i + θiε2 ≤ q2x2, 0 ≤ θi ≤ 1, P̄1i, P̄2i ≥ 0. The objective function here is jointly

concave θi, P̄1i, P̄2i and the constraint set is affine in x1, x2, θi, P̄1i, P̄2i. Then, it

follows that f(x1, x2) is concave in x1, x2; [102, Section 3.2.5]. In addition, [49,

Lemma 2] can be used as we have a single random variable representing the common

energy arrival.

Lemma 4.6 For the proposed fractional policy, any i.i.d. energy arrival process

yields an achievable sum rate no less than that of the Bernoulli energy arrivals with

the same mean.

Combining Lemmas 4.4, 4.5, and 4.6, we have the following general theorem

for arbitrary i.i.d. energy arrival processes.

Theorem 4.4 The achievable sum rate with the proposed sub-optimal policy for any

arbitrary i.i.d. energy arrival process with average admitted energy of µj at user j

and with µ1

B1
= µ2

B2
is lower bounded by (4.59) and (4.60).
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4.3.2.4 Putting the Bounds Together

The additive lower bound in Theorem 4.4 (i.e., (4.60)) together with the general

upper bound in Theorem 4.3 (i.e., (4.54)) imply that there is a constant gap between

the bounds. Both the proposed sub-optimal policy and the optimal policy live

between these bounds which are separated by a finite gap. Hence, the proposed

online policy performs within a constant gap of the optimal online policy for all

system parameters.

4.4 Numerical Results

In this section, we illustrate our results using several numerical examples. We begin

with the single-user setting. We first show the optimal policy for Bernoulli energy

arrivals. We fix the battery size to B = 2 and the probability of energy arrival

to p = 0.1. We show the optimal policy in Fig. 4.3 for ε values of 0.1 and 1.5.

As the processing cost increases, the transmission time decreases. When ε = 0.1,

the optimal power is decreasing and is non-zero for a total duration of 2.6 slots.

However, when the processing cost is 1.5, the transmission duration decreases to

0.55 slots. Next, in Fig. 4.4, for the case of Bernoulli energy arrivals, we show

the optimal policy versus the proposed sub-optimal policy. Here, we have B = 3,

p = 0.3, ε = 0.1. In the sub-optimal policy the energy is spread over more (infinite)

slots.

In Figs. 4.5 and 4.6, we show the performance of the proposed sub-optimal

policy and the optimal policy in terms of the expected rate versus the battery size.

119



0 0.5 1 1.5 2 2.5 3

p
o
w
er

le
v
el

0

0.5

1

1.5

2

2.5

B =2, p =0.1, ǫ =0.1

slot

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p
o
w
er

le
v
el

0

0.5

1

1.5

2

2.5

B =2, p =0.1, ǫ =1.5

Figure 4.3: Optimum online power allocation for i.i.d. Bernoulli arrivals.

We fix p = 0.1 and show the performance for processing costs of ε = 1 and ε = 10 in

Figs. 4.5 and 4.6. We note that, for the case of Bernoulli arrivals, the performance

of the proposed sub-optimal policy is quite close to the performance of the optimal

policy, in fact, much closer than the derived theoretical bounds show. In Figs. 4.5

and 4.6, we further plot two other sub-optimal schemes. The first scheme uses the

same total fractional power as our proposed policy but fixes θi = 1 for all i (i.e.,

neglects the processing cost effect) and transmits whenever it is feasible to transmit.

The second scheme also uses the same total fractional power as our proposed policy

but uses a fractional decreasing burstiness as θi = (1 − p)i−1θ∗. We observe that

both of these policies perform worse than our proposed policy. We observe that the

policy with θ = 1 performs close to the optimal when the value of processing cost

120



slot

0 1 2 3 4 5 6 7 8 9 10

su
b
-o
p
ti
m
a
l
p
o
w
er

le
v
el

0

1

2

3

slot

0 1 2 3 4 5 6 7 8 9 10

o
p
ti
m
a
l
p
o
w
er

le
v
el

0

1

2

3

B =5, p =0.3, ǫ =0.1

Figure 4.4: Optimum online power allocation versus sub-optimal power allocation
for i.i.d. Bernoulli arrivals.

is negligible with respect to the battery size, i.e., for large battery sizes. However,

for small battery sizes, e.g., B in [1, 10] when ε = 1 and B in [1, 100] when ε = 10,

this algorithm performs poorly.

In Figs. 4.5 and 4.6, we also plot the performance of the proposed sub-optimal

policy when the energy arrivals come from a continuous uniform distribution (non-

Bernoulli) with the same mean as the Bernoulli energy arrivals. As expected, the

rate is higher for the case of general energy arrivals compared to Bernoulli energy

arrivals with the same mean. Finally, we show the performance of our scheme versus

the processing cost in Fig. 4.7. The gap between the optimal and the sub-optimal

decreases for high processing costs.

Next, we consider the two-way channel. We first show the optimal versus
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Figure 4.5: Optimum online policy versus proposed sub-optimum online policy.

proposed sub-optimal power allocation for Bernoulli arrivals in Fig. 4.8. As we

showed, in the optimal power allocation, bursty transmission takes place only in the

last slot. We then compare the performance of the proposed sub-optimal scheme

and the optimal policy in Fig. 4.9. The performance of our proposed policy is

close to the optimal. We also show the performance of the sub-optimal policy on a

general energy arrival with a continuous uniform distribution with the same mean as

Bernoulli. In Fig. 4.9 we also show the performance of the fractional θi scheme which

is used in the proof of Lemma 4.4, and a scheme which always uses θi = 1 whenever

feasible, i.e., neglects the processing costs. Both perform worse than our proposed

policy. Finally, we show the performance of our scheme versus the processing cost

in Fig. 4.10. We observe that for high processing costs the performance gap is small.
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Figure 4.6: Optimum online policy versus proposed sub-optimum online policy.

4.5 Conclusion

In this chapter, we considered energy harvesting channels where users incur process-

ing costs (power spent to run the circuitry) for being on to transmit or receive data,

in addition to the power spent for communication. Such processing costs may result

in bursty transmissions, where users may not be on all the time. In such channels,

the users need to determine the optimal burst duration (duration to be on) and the

optimal transmit power. In this chapter, we considered the design of online power

control algorithms which use only the causal knowledge of energy arrivals. First, we

studied the single-user channel. In this channel, we characterized the optimal online

policy for the case of Bernoulli energy arrivals. We showed that the optimal power
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Figure 4.7: Performance versus processing cost for i.i.d. Bernoulli arrivals.

policy is decreasing and can be bursty (i.e., the user may not utilize the entire slot).

However, the bursty transmission can occur only in the last slot of transmission.

We then considered the case of general energy arrivals. For this case, we proposed a

sub-optimal online power control scheme, and proved that it performs within a con-

stant gap of the optimal. The sub-optimal policy allocates powers fractionally over

time and solves a single-slot optimization problem to determine the burst duration

in each slot. We then extended our analysis to the two-way channel model. We

considered the special case of fully-correlated energy arrivals at the users. In this

channel, we first characterized the optimal policy for the case of Bernoulli energy

arrivals. We showed that the powers of both users decrease and the transmission

of both users need to be synchronized, i.e., both users turn on or off simultane-

124



slot

0 1 2 3 4 5

u
se
r
1
:
su
b
-o
p
ti
m
a
l

0

1

2

3

slot

0 1 2 3 4 5
u
se
r
2
:
su
b
-o
p
ti
m
a
l

0

1

2

3

slot

0 1 2 3 4 5

u
se
r
1
:
o
p
ti
m
a
l

0

1

2

3

B1 =3, B2 =2, p =0.5, ǫ1 =0.2, ǫ2 =0.1

slot

0 1 2 3 4 5

u
se
r
2
:
o
p
ti
m
a
l

0

1

2

3

Figure 4.8: The optimal and sub-optimal power allocations for Bernoulli.

ously. We then proposed a sub-optimal distributed policy for the case of general

fully-correlated energy arrivals. The proposed policy allocates powers fractionally

in a distributed manner, and each user solves a single-slot problem distributedly.

We proved that the proposed distributed scheme performs within a constant gap of

the optimal.

In the two-way channel, we assumed that the energy cost for being on is the

same for transmitting and receiving data. As a future work, different energy costs

for transmission and reception can be considered. In addition, we assumed that the

energy arrivals at the two users are fully-correlated. Arbitrarily correlated energy

arrivals at the users can be considered in future work. Further research directions

are to consider energy cooperation between the users in an online setting, and finite-
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Figure 4.9: Performance of Bernoulli and general energy arrivals.

sized data buffers at both users.

4.6 Appendix

4.6.1 Proof of Lemma 4.1

We lower bound the performance as follows. The first lower bounding step in (4.63)

is obtained by choosing all θi as θi = (1 − p)i−1θ∗, where θ∗ denotes θ∗(Bp, ε) in

short:

r =
1

E[L]
E

[
L∑

i=1

max
θi∈[0,1]

θi
2

log

(
1+

Bp(1−p)i−1

θi
−ε
)]

(4.62)

≥ 1

E[L]
E

[
L∑

i=1

θ∗(1− p)i−1

2
log

(
1+

Bp

θ∗
−ε
)]

(4.63)
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Figure 4.10: Performance of Bernoulli energy arrivals versus the processing cost.

=
θ∗

2
log

(
1+

Bp

θ∗
−ε
)

1

E[L]
E

[
L∑

i=1

(1−p)i−1

]
(4.64)

=
θ∗

2
log

(
1+

Bp

θ∗
−ε
)
p

[
∞∑

L=1

p(1−p)L−1

L∑

i=1

(1−p)i−1

]
(4.65)

=
θ∗

2
log

(
1+

Bp

θ∗
−ε
)[ ∞∑

L=1

p2(1−p)L−1 1−(1−p)L
p

]
(4.66)

=
θ∗

2
log

(
1+

Bp

θ∗
−ε
)[ ∞∑

L=1

p(1−p)L−1
(
1−(1−p)L

)
]

(4.67)

=
θ∗

2
log

(
1+

Bp

θ∗
−ε
)[ ∞∑

L=1

p
(
(1−p)L−1−(1−p)2L−1

)
]

(4.68)

=
θ∗

2
log

(
1+

Bp

θ∗
−ε
)[

p

(
1

p
− (1−p)

2p−p2

)]
(4.69)

=
θ∗

2
log

(
1+

Bp

θ∗
−ε
)(

1

2− p

)
(4.70)

=
1

2− µ
B

max
θ∈[0,1]

θ

2
log
(

1 +
µ

θ
− ε
)

(4.71)
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which is (4.20). Here, (4.71) follows since E[Ei] = µ = Bp and θ∗ = θ∗(Bp, ε) =

θ∗(µ, ε). Finally, (4.21) follows as µ
B
≥ 0.

4.6.2 Proof of Lemma 4.2

We first prove for the case ε < 1. The first lower bounding step in (4.73) is obtained

by choosing all θi as θi = θ∗, where θ∗ denotes θ∗(Bp, ε) in short:

r =
1

E[L]
E

[
L∑

i=1

max
θi∈[0,1]

θi
2

log

(
1+

Bp(1−p)i−1

θi
−ε
)]

(4.72)

≥ 1

E[L]
E

[
L∑

i=1

θ∗

2
log

(
1+

Bp(1−p)i−1

θ∗
−ε
)]

(4.73)

=
θ∗

2

1

E[L]
E

[
L∑

i=1

log

(
(1−ε)

(
1+

Bp(1−p)i−1

(1−ε)θ∗
))]

(4.74)

=
θ∗

2

1

E[L]
E

[
L∑

i=1

log(1−ε)+log

(
1+

Bp(1−p)i−1

(1−ε)θ∗
)]

(4.75)

≥θ
∗

2

1

E[L]
E

[
L∑

i=1

log(1−ε)+log

(
1+

Bp

(1−ε)θ∗
)

+ log
(
(1−p)i−1

)
]

(4.76)

≥θ
∗

2

1

E[L]
E

[
L∑

i=1

log(1−ε)+log

(
1+

Bp

(1−ε)θ∗
)]
−0.72 (4.77)

=
θ∗

2
log

(
1 +

Bp

θ∗
− ε
)
− 0.72 (4.78)

which is (4.22), since E[Ei] = µ = Bp, θ∗ = θ∗(Bp, ε), and log+(ε) = 0 in this case.

Next, we prove for the case ε ≥ 1:

r =
1

E[L]
E

[
L∑

i=1

max
θi∈[0,1]

θi
2

log

(
1+

Bp(1−p)i−1

θi
−ε
)]

(4.79)

≥ 1

E[L]
E

[
L∑

i=1

max
θi∈[0,1]

θi
2

log

(
1+

Bp(1−p)i−1

θi
−ε

ε

)]
(4.80)

128



=
1

E[L]
E

[
L∑

i=1

max
θi∈[0,1]

θi
2

log

(
1+

Bp(1−p)i−1

θiε
−1

)]
(4.81)

≥ 1

E[L]
E

[
L∑

i=1

max
θi∈[0,1]

θi
2

log

(
Bp

θi

)]
− 1

E[L]
E

[
L∑

i=1

max
θi∈[0,1]

θi
2

log (ε)

]

− 1

E[L]
E

[
L∑

i=1

max
θi∈[0,1]

θi
2

log

(
1

(1− p)i−1

)]
(4.82)

=
1

E[L]
E

[
L∑

i=1

max
θi∈[0,1]

θi
2

log

(
Bp

θi

)]
− 1

E[L]
E

[
L∑

i=1

1

2
log (ε)

]

− 1

E[L]
E

[
L∑

i=1

1

2
log
(
(1− p)i−1

)
]

(4.83)

= max
θ∈[0,1]

θ

2
log

(
Bp

θ

)
− 1

2
log (ε)− 0.72 (4.84)

≥ max
θ∈[0,1]

θ

2
log

(
1 +

Bp

θ
− ε
)
− 1

2
log (ε)− 0.72 (4.85)

which is (4.22), since log+(ε) = log(ε) in this case. Here, (4.80) follows since at

the maximum Bp(1−p)i−1

θi
− ε is non-negative and ε ≥ 1, (4.82) follows since for

any three positive functions a(x), b(x), c(x), we have: maxx[a(x) − b(x) − c(x)] ≥

maxx a(x) − maxx b(x) − maxx c(x), and (4.85) follows since we added a negative

term (1− ε) inside the log.

4.6.3 Proof of Lemma 4.4

The first step, (4.87), for the lower bound follows by using a sub-optimal decreasing

burst as θi = θ∗(1− p)i−1, where θ∗ is a short notation for θ∗(B1p,B2p):

r =
1

E[L]
E

[
L∑

i=1

max
θi∈[0,1]

θi
2

(
log

(
1+

B1p(1−p)i−1

θi
−ε1

)
+log

(
1+

B2p(1−p)i−1

θi
−ε2

))]

(4.86)
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≥ 1

E[L]
E

[
L∑

i=1

(1− p)i−1rub

]
(4.87)

=rub
1

E[L]
E

[
L∑

i=1

(1− p)i−1

]
(4.88)

=rub
1

E[L]

[
∞∑

L=1

p(1− p)L−1

L∑

i=1

(1− p)i−1

]
(4.89)

=rub

[
∞∑

L=1

p2(1− p)L−1 1− (1− p)L
p

]
(4.90)

=rub

[
p

(
1

p
− (1− p)

2p− p2

)]
(4.91)

=rub

(
1

2− p

)
(4.92)

≥1

2
rub (4.93)

where (4.93) follows since p ≥ 0.

4.6.4 Proof of Lemma 4.5

The proof technique we use for the case εj ≤ 1 is different than εj > 1. In what

follows, we assume that ε1 > 1 while ε2 ≤ 1, however, all other combinations follow

similarly. We bound the performance of (4.86) as follows:

r ≥ 1

E[L]
E

[
L∑

i=1

max
θi∈[0,1]

θi
2

(
log

(
1+

B1p(1−p)i−1

θi
−ε1

ε1

)
+log

(
1+

B2p(1−p)i−1

θi
−ε2

))]

(4.94)

=
1

E[L]
E

[
L∑

i=1

max
θi∈[0,1]

θi
2

(
log

(
1+

B1p(1−p)i−1

ε1θi
−1

)
+log

(
1+

B2p(1−p)i−1

θi
−ε2

))]

(4.95)
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≥ 1

E[L]
E

[
L∑

i=1

max
θi∈[0,1]

θi
2

(
log

(
B1p

θi

)
+log

(
1+

B2p(1−p)i−1

θi
−ε2

))]

− 1

E[L]
E

[
L∑

i=1

max
θi∈[0,1]

θi
2

log (ε1)

]
− 1

E[L]
E

[
L∑

i=1

max
θi∈[0,1]

θi
2

log

(
1

(1−p)i−1

)]
(4.96)

≥ 1

E[L]
E

[
L∑

i=1

max
θi∈[0,1]

θi
2

(
log

(
B1p

θi

)
+log

(
1+

B2p(1−p)i−1

θi
−ε2
))]

− 1

2
log (ε1)− 0.72 (4.97)

≥ 1

E[L]
E

[
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i=1

max
θi∈[0,1]

θi
2

(
log

(
1+

B1p

θi
−ε1

)
+log

(
1+

B2p(1−p)i−1

θi
−ε2
))]

− 1

2
log (ε1)− 0.72 (4.98)

≥ 1

E[L]
E

[
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i=1

θ∗

2

(
log

(
1+

B1p

θ∗
−ε1
)

+log

(
1+

B2p(1−p)i−1

θ∗
−ε2
))]

− 1

2
log (ε1)− 0.72 (4.99)

=
θ∗

2
log

(
1+

B1p

θ∗
−ε1
)
− 1

2
log (ε1)− 0.72

+
1

E[L]
E

[
L∑

i=1

θ∗

2
log

(
(1−p)i−1

(
1−ε2

(1−p)i−1
+
B2p

θ∗

))]
(4.100)

≥θ
∗

2
log

(
1+

B1p

θ∗
−ε1
)
− 1

2
log (ε1)−0.72

+
1

E[L]
E

[
L∑

i=1

θ∗

2
log

(
(1−p)i−1

(
1−ε2+

B2p

θ∗

))]
(4.101)

≥θ
∗

2
log

(
1 +

B1p

θ∗
− ε1

)
− 1

2
log (ε1)− 1.44 +

θ∗

2
log

(
1 +

B2p

θ∗
− ε2

)
(4.102)

where (4.94) follows as the maximum B1p(1−p)i−1

θi
− ε1 is non-negative, and ε1 >

1, (4.96) follows since for any three positive functions a(x), b(x), c(x) we have:

maxx[a(x) − b(x) − c(x)] ≥ maxx a(x) − maxx b(x) − maxx c(x), (4.97) follows by

bounding the last term numerically by 0.72, (4.98) follows since we added 1−ε1 which

is negative, (4.102) follows again by numerically bounding 1
E[L]

E
[∑L

i=1
1
2

log
(

1
(1−p)i−1

)]
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by 0.72. The θ∗ used here is a shorthand for θ∗(B1p,B2p).
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CHAPTER 5

Single-User Channel with Data and Energy Arrivals: Online

Policies

5.1 Introduction

We consider an energy harvesting single-user system where the transmitter receives

energy and data packets randomly and intermittently over time, and stores them

in finite-sized queues, see Fig. 5.1. We study the online power scheduling prob-

lem for this system, where both energy and data arrivals are known only causally

at the transmitter. We focus on the case when the energy and data arrivals are

fully-correlated. We characterize the optimal policy in the special case of Bernoulli

arrivals. We then propose a structured policy for general arrivals. The proposed

policy takes into account the available energy and data at each instant. We show

that the performance of this policy is near-optimal for general arrivals.
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Figure 5.1: An energy harvesting single-user transmitter with finite-sized energy
and data buffers.

5.2 System Model

The physical layer is a Gaussian single-user channel with noise variance at the

receiver equal to unity. The capacity of this channel in slot i is,

ri =
1

2
log (1 + Pi) (5.1)

where Pi is the transmit power in slot i. The transmitter is equipped with finite-

sized data and energy buffers, with sizes B̄ and B, respectively. The battery state

bi evolves as,

bi+1 = min {B, bi − Pi + Ei+1} (5.2)

The data queue state, denoted as b̄i, evolves as,

b̄i+1 = min

{
B̄, b̄i −

1

2
log (1 + Pi) + Ēi+1

}
(5.3)
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The transmit power, Pi, is constrained by,

Pi ≤ min
{
bi, 2

2b̄i − 1
}

(5.4)

This constraint ensures that the transmission power does not exceed the energy

available in the battery and does not attempt to send more data than remaining in

the queue.

The objective then is to maximize the long term-average throughput subject

to data and energy constraints,

Φ = lim
n→∞

max
Pn∈Fn

E

[
1

n

n∑

i=1

1

2
log(1 + Pi)

]
(5.5)

where Fn is the set of all feasible online policies for n time slots. The aim now is

to characterize the optimal power allocation. Under the existence of the optimal

Markov policy, the optimal power allocation will be function of the current energy

and battery states. We fully characterize the powers in the case of Bernoulli arrivals.

For general arrivals, we propose a structured policy and we determine the cases in

which it is optimal or near optimal.

5.3 Optimal Strategy: Bernoulli Arrivals

In this section, we characterize the optimal policy for Bernoulli arrivals. We consider

the case when data and energy arrivals are fully-correlated; whenever the energy

queue is filled, the data queue is filled also and there is no intermediate values for
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the energy or data arrivals. In other words, we have Ei = αĒi, and P[Ei = αĒi =

B] = 1−P[Ei = αĒi = 0] = p. From [88, Theorem 3.6.1], and similar to [49,98,99],

we characterize the optimal powers by solving a modified offline problem with a

single arrival. For the case of data and energy arrivals, we obtain the optimal

powers by solving,

max
{Pi}

∞∑

i=1

p(1− p)i−1 1

2
log (1 + Pi)

s.t.
∞∑

i=1

Pi ≤ B,
∞∑

i=1

1

2
log(1 + Pi) ≤ B̄ (5.6)

This is a non-convex problem due to the last constraint which is a non-convex con-

straint. We transform this problem to an equivalent convex problem by expressing

the problem in terms of rates, i.e., we apply the transformation ri = 1
2

log (1 + Pi).

The equivalent problem is,

max
{ri}

∞∑

i=1

p(1− p)i−1ri

s.t.
∞∑

i=1

22ri − 1 ≤ B,
∞∑

i=1

ri ≤ B̄ (5.7)

This is a convex optimization problem in ri which we can solve using the KKTs

which are necessary and sufficient. The Lagrangian of this problem is,

L =−
∞∑

i=1

p(1− p)i−1ri + λ

(
∞∑

i=1

22ri − 1−B
)

+ µ

(
∞∑

i=1

ri − B̄
)

(5.8)
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We differentiate with respect to ri and equate to zero to get,

ri =
1

2
log

(
p(1− p)i−1

λ
− µ

λ

)
, i = 1, . . . , Ñ (5.9)

It is clear that the transmit power decreases in time. The rates should be non-

negative. Thus, we need p(1−p)i−1

λ
− µ

λ
≥ 1 to be satisfied for i = 1, . . . , Ñ . Hence, it

suffices just to ensure that it is satisfied in the last slot, i.e.,

p(1− p)Ñ−1 ≥ λ+ µ (5.10)

We can then identify the optimal λ, µ and Ñ by solving (5.10) along with the total

energy and data constraints. This can be done using simple one-dimensional line

search.

5.4 Near-Optimal Strategy: General Arrivals

In this section, we propose a structured online policy as in [49], [98–100, 104, 105].

We first note that the optimal power allocation in (5.9) follows a fractional policy.

The power allocation is controlled by the available data through the Lagrange mul-

tiplier µ. Hence, we propose the following fractional policy which is bounded by the

available data in the queue,

Pi = min
{
pbi, 2

2b̄i − 1
}

(5.11)
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The policy mimics the optimal policy in (5.9) in that it is fractional when the amount

of fractional power is less than the amount needed to transmit the remaining data,

or else it is limited by the remaining data. To describe the policy for the Bernoulli

energy arrivals, we first define i∗ as follows,

i∗ = max
{
i : Bp(1− p)i−1 ≤ 22[B̄−

∑i−1
k=1

1
2

log(1+Bp(1−p)k−1)] − 1
}

(5.12)

This represents the last index at which the policy transmits with a fractional de-

creasing power. In slot i∗+ 1, if no new arrival occurs, the transmitter transmits all

the remaining data in its buffer. Hence, the allocated power is as follows,

Pi = Bp(1− p)i−1, i = 1, . . . , i∗ (5.13)

Pi = 22[B̄−
∑i−1
k=1

1
2

log(1+Bp(1−p)k−1)] − 1, i = i∗ + 1 (5.14)

Pi = 0, i > i∗ + 1 (5.15)

Note that i∗ is a deterministic number which depends only on the system parameters

B, B̄, p. We define the following random variable, which will be useful later in the

analysis,

K = min{L, i∗} (5.16)

where L is the time between the Bernoulli arrivals, which is geometrically distributed

with parameter p.
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In what follows, we begin by deriving a universal upper bound for all online

policies with general arrivals. We then study the performance of the policy proposed

in (5.11) under Bernoulli energy arrivals. We first derive a multiplicative lower

bound. Then, we study the case when this policy is optimal and the case when it is

within a constant additive gap. We then show that the performance of the proposed

policy is the worst under Bernoulli arrivals with the same arrival rate, hence, all the

lower bounds derived for Bernoulli arrivals are also valid for general arrivals.

5.4.1 Upper Bound

In the following lemma, we present a universal upper bound which depends only on

the average arrival rates.

Lemma 5.1 For an average energy arrival rate of µe and an average data arrival

rate of µd, the throughput of any online policy is upper bounded as,

ron ≤ min

{
1

2
log (1 + µe) , µd

}
(5.17)

The proof of Lemma 5.1 follows from the single-user offline upper bound with

no data arrival constraints [49] in addition to the data arrival constraint: the trans-

mitter cannot transmit more data on average than the average data arrival. Hence,

the upper bound on the rate is the minimum of these two upper bounds.
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5.4.2 Multiplicative Gap

We now analyze the performance of the proposed policy. We first derive a multi-

plicative gap for Bernoulli arrivals.

Lemma 5.2 The performance of the fractional policy is lower bounded by,

ron ≥ max{p, c}min

{
1

2
log (1 + pB) , B̄p

}
(5.18)

where c is defined as,

c =
1 + max

{
22[B̄−

∑∞
k=1

1
2

log(1+Bp(1−p)k−1)] − 1, 0
}

2− p −
max

{
22[B̄− 1

2
log(1+Bp)] − 1, 0

}

Bp

(5.19)

Proof: We derive two lower bounds and then take the maximum of both. For the

case when i∗ = 0, we show later that the policy is optimal. Hence, the multiplicative

lower bound is still valid. Thus, we now consider, without loss of generality, the case

when i∗ ≥ 1. We first begin with the one with p multiplicative gap in (5.18). For

this case, we have,

ron =
i∗∑

i=1

1

2
p(1− p)i−1 log

(
1 +Bp(1− p)i−1

)

+ p(1−p)i∗
[
B̄−

i∗∑

k=1

1

2
log
(
1+Bp(1−p)k−1

)
]

(5.20)

≥
i∗∑

i=1

1

2
p(1− p)i−1 log

(
1 +Bp(1− p)i−1

)
(5.21)

140



≥
i∗∑

i=1

1

2
p(1− p)2(i−1) log (1 +Bp) (5.22)

=

(
1− (1− p)2i∗

2− p

)
1

2
log (1 +Bp) (5.23)

≥
(

1− (1− p)2

2− p

)
1

2
log (1 +Bp) (5.24)

=p
1

2
log (1 +Bp) (5.25)

≥pmin

{
1

2
log (1 +Bp) , B̄p

}
(5.26)

where (5.21) follows from the positivity of B̄−∑i∗

k=1
1
2

log
(
1 +Bp(1− p)k−1

)
, (5.22)

follows from the monotonicity of the logarithm, and (5.24) follows by setting i∗ = 1.

This proves the first lower bound.

We then derive the other lower bound with c multiplicative gap in (5.18). We

first derive an upper bound on (1− p)i∗ ,

Bp(1− p)i∗ ≤ Bp(1− p)i∗−1 (5.27)

≤ 2
2
[
B̄−

∑i∗−1
k=1

1
2

log(1+Bp(1−p)k−1)
]
− 1 (5.28)

≤ 22[B̄− 1
2

log(1+Bp)] − 1 (5.29)

where (5.27) follows from monotonicity, (5.28) follows from the definition of i∗, and

(5.29) follows by considering only the first term in the summation. Hence, we have,

(1− p)i∗ ≤ 22[B̄− 1
2

log(1+Bp)] − 1

Bp
(5.30)
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We also derive a lower bound on (1− p)i∗ ,

Bp(1− p)i∗ > 2
2
[
B̄−

∑i∗
k=1

1
2

log(1+Bp(1−p)k−1)
]
− 1 (5.31)

> 22[B̄−
∑∞
k=1

1
2

log(1+Bp(1−p)k−1)] − 1 (5.32)

Hence, we have,

(1− p)i∗ > 22[B̄−
∑∞
k=1

1
2

log(1+Bp(1−p)k−1)] − 1

Bp
(5.33)

We now derive the c multiplicative lower bound in (5.18),

ron =
i∗∑

i=1

1

2
p(1− p)i−1 log

(
1 +Bp(1− p)i−1

)

+ p(1− p)i∗
[
B̄−

i∗∑

k=1

1

2
log
(
1 +Bp(1−p)k−1

)
]

(5.34)

=
i∗∑

i=1

1

2

(
p(1−p)i−1−p(1−p)i∗

)
log
(
1+Bp(1−p)i−1

)
+ p(1− p)i∗B̄ (5.35)

≥
i∗∑

i=1

1

2

(
p(1−p)i−1−p(1−p)i∗

)
(1−p)i−1 log (1+Bp) + p(1− p)i∗B̄ (5.36)

=
i∗∑

i=1

1

2

(
p(1−p)2(i−1)−p(1− p)i∗+i−1

)
log (1+Bp) + p(1− p)i∗B̄ (5.37)

=w
(
1−(1−p)i∗

) 1

2
log (1+Bp)+p(1−p)i∗B̄ (5.38)

where w is defined as follows:

w ,
i∗∑

i=1

(
p(1− p)2(i−1) − p(1− p)i∗+i−1

)

(1− (1− p)i∗) (5.39)
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=

1−(1−p)2i∗

2−p − (1− p)i∗
(
1− (1− p)i∗

)

(1− (1− p)i∗) (5.40)

=
1 + (1− p)i∗

2− p − (1− p)i∗ (5.41)

It is clear that 0 ≤ w ≤ 1. Hence, continuing from (5.38),

ron ≥w
(
1−(1−p)i∗

) 1

2
log (1+Bp) + wp(1−p)i∗B̄ (5.42)

≥wmin

{
1

2
log (1 +Bp) , B̄p

}
(5.43)

where (5.43) follows since for any x, y and θ ∈ [0, 1],

θx+ (1− θ)y ≥ min{x, y} (5.44)

It now remains to lower bound w which follows directly from (5.30) and (5.33). �

5.4.3 Optimal Case: Energy Dominant Case

We study here the case when the proposed policy is optimal, which we state in the

following lemma.

Lemma 5.3 The policy proposed in (5.11) is optimal when

Bp ≥ 22B̄ − 1 (5.45)
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Proof: When we have Bp ≥ 22B̄ − 1, then

P1 = 22B̄ − 1, Pi = 0 ∀i > 1 (5.46)

Then evaluating the achievable rate explicitly gives,

ron = pB̄ ≥ min

{
1

2
log (1 + pB) , pB̄

}
(5.47)

which is exactly equal to the upper bound. Hence, the gap is equal to zero in this

case and this policy is optimal. �

We call this the energy dominant case because the average energy arrival rate,

Bp, is larger than the energy needed to transmit a full data buffer, i.e., Bp ≥ 22B̄−1.

5.4.4 Constant Additive Gap: Data Dominant Case

We now study the case when the proposed policy yields performance within a con-

stant additive gap of the optimal.

Lemma 5.4 When 1
2

log (1 +Bp) + Bp
2
≤ B̄p, the performance of the fractional

policy is lower bounded by,

ron ≥ min

{
1

2
log (1 + pB) , B̄p

}
− 0.72 (5.48)
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Proof: The throughput under the sub-optimal policy,

ron ≥
1

E[L]
E

[
K∑

i=1

1

2
log
(
1 +Bp(1− p)i−1

)
]

+E

[
1[L > i∗]

E[L]

[
B̄−

i∗∑

k=1

1

2
log
(
1+Bp(1−p)k−1

)
]]

(5.49)

=
1

E[L]
E

[
K∑

i=1

1

2
log
(
1 +Bp(1− p)i−1

)
]

+
P[L > i∗]

E[L]

[
B̄−

i∗∑

k=1

1

2
log
(
1 +Bp(1− p)k−1

)
]

(5.50)

≥E[K]

E[L]

1

2
log (1 +Bp)− 0.72

+
P[L > i∗]

E[L]

[
B̄−

i∗∑

k=1

1

2
log
(
1 +Bp(1− p)k−1

)
]

(5.51)

=(1− (1− p)i∗)1

2
log (1 +Bp)− 0.72

+p(1−p)i∗
[
B̄−

i∗∑

k=1

1

2
log
(
1+Bp(1−p)k−1

)
]

(5.52)

=(1− (1− p)i∗)1

2
log (1 +Bp)− 0.72 + p(1− p)i∗B̄

− p(1− p)i∗
i∗∑

k=1

1

2
log
(
1+Bp(1− p)k−1

)
(5.53)

≥(1− (1− p)i∗)1

2
log (1 +Bp)− 0.72 + p(1− p)i∗B̄

− p(1− p)i∗
i∗∑

k=1

1

2
Bp(1− p)k−1 (5.54)

≥(1− (1− p)i∗)1

2
log (1 +Bp)− 0.72 + p(1− p)i∗B̄ − p(1− p)i∗B

2
(5.55)

=(1− (1− p)i∗)1

2
log (1 +Bp)− 0.72 + p(1− p)i∗

(
B̄ − B

2

)
(5.56)

≥min

{
1

2
log (1 +Bp) , p

(
B̄ − B

2

)}
− 0.72 (5.57)

=
1

2
log (1 +Bp)− 0.72 (5.58)
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≥min

{
1

2
log (1 +Bp) , pB

}
− 0.72 (5.59)

where (5.52) follows as in the proof of [98, Lemma 3] and (5.58) follows if 1
2

log (1 +Bp) ≤

p
(
B̄ − B

2

)
. �

We call this the data dominant case because the average data arrival rate, B̄p,

is larger than the amount of data that can be transmitted by the average energy

arrival in addition to half the average energy arrival rate, i.e., 1
2

log (1 +Bp) + Bp
2
≤

B̄p.

5.4.5 General Energy Arrivals

For the general arrival case we have the following lemma.

Lemma 5.5 The performance of the proposed policy under Bernoulli arrivals forms

a lower bound on the performance of the proposed policy under general fully-correlated

arrival distributions with the same arrival mean.

Since the minimum of concave functions is concave, the objective function with

(5.11) is concave and the proof of Lemma 5.5 follows similar to [49].

From Lemma 5.5, we conclude that all the derived bounds for the fully-

correlated Bernoulli arrivals are also valid for the fully-correlated general arrivals

with the same arrival rates. Hence, the policy is optimal when the energy is more

dominant, in particular, when Bp ≥ 22B̄−1, and is within a constant 0.72 gap when

the data is more dominant, in particular, when 1
2

log (1 +Bp) + Bp
2
≤ B̄p.
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Figure 5.2: Illustration of upper bound, optimal policy and the sub-optimal policy.
Bernoulli arrivals.

5.5 Numerical Examples

In this section, we illustrate our results using simple numerical examples. We first

show the case when B̄ = 1
2p

log(1 + Bp) in Fig. 5.2. In this case, we show that the

proposed policy performs close to the optimal policy. In addition, the multiplicative

lower bound closely lower bounds the performance of the proposed policy. We then

show in Fig. 5.3 that when B̄ = 1
2

log(1 +Bp), the optimal policy and the proposed

policies for uniform arrivals are the same.
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5.6 Conclusion

In this chapter, we considered a single-user energy harvesting setting in which the

transmitter gets data and energy arrivals throughout the course of communication.

The transmitter knows the data and the energy arrivals only causally, i.e., after

they arrive. We restricted our attention to the case of fully-correlated data and

energy arrivals which may occur in practice as in the case of simultaneous data and

energy transfer. We proposed a structured near-optimal policy which adapts to the

available data and energy in the buffers. We showed that this policy is within a

multiplicative gap to the optimal. We further showed that this policy is optimal

when the average energy arrival is higher than the energy required to send a full

data buffer and it is within a constant additive gap to the optimal when the average
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data arrivals is higher than a threshold.

149



CHAPTER 6

Coded Status Updates in an Energy Harvesting Erasure Chan-

nel

6.1 Introduction

We consider an energy harvesting single-user system, where the communication

channel between the transmitter and the receiver is an erasure channel. The trans-

mitter collects measurements of a certain phenomenon and sends updates on this

phenomenon to the receiver; these updates are referred to as status updates. The

purpose of sending status updates is to minimize the age of information (AoI) at

the receiver. We consider two different types of channel codes to encode the status

updates. First, we consider maximum distance separable (MDS) codes. With MDS

coding, the transmitter encodes the k status update symbols into n symbols. The

receiver receives the update successfully if it receives any k of these n encoded sym-

bols. Next, we consider rateless codes, for example, fountain codes. In this case,

the transmitter encodes the k update symbols into as many symbols as needed until

k of these symbols are received successfully. For each of these models, we consider

two different policies: best-effort and save-and-transmit.
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Figure 6.1: An energy harvesting transmitter with an infinite battery. The trans-
mitter collects measurements and sends updates to the receiver over an erasure
channel.

6.2 System Model

We consider a single-user channel with a transmitter which has an infinite-sized

battery, see Fig. 6.1. The energy arrivals are Bernoulli and i.i.d.: in slot i, a unit

energy arrives with probability p or no energy arrives with probability 1 − p, i.e.,

P[Ei = 1] = 1 − P[Ei = 0] = p. The transmitter obtains the measurements (status

updates), which are packets of length k, which should be sent to the receiver in a

way to minimize the average AoI at the receiver.

The total AoI up to time T is,

∆T =

∫ T

0

(t− u(t)) dt (6.1)

where u(t) is the time stamp of the latest received status update packet and ∆(t) =

t− u(t) is the instantaneous AoI.

An example evolution of the AoI is shown in Fig. 6.2. The average long-term
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Figure 6.2: An example for the evolution of the age of information.

AoI in this case is calculated as,

∆ = lim
T→∞

∆T

T
= lim

i→∞

∑i
j=1 Qj∑i
j=1 Tj

(6.2)

In all the subsequent analysis we will assume renewal policies, i.e., where Qj and Tj

are i.i.d. The AoI then reduces to,

∆ = lim
i→∞

1
i

∑i
j=1Qj

1
i

∑i
j=1 Tj

=
E[Q]

E[T ]
(6.3)

where we dropped the subscript j as Qj and Tj are i.i.d.

The channel between the transmitter and the receiver is an i.i.d. erasure

channel. The probability of symbol erasure (loss) in each slot is δ. In order to

combat the channel erasures and the energy outages, the transmitter encodes the

status updates before sending them through the channel.

We consider two types of channel codes: MDS and rateless codes. We first
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consider MDS channel codes. For this case we have an (n, k) channel coding scheme,

where k is the length of an uncoded status update and n is the length of an encoded

codeword which is sent through the channel with n ≥ k. When the transmitter is

done with sending the n symbols, it generates a new update and begins sending

it. This is irrespective of the success of the transmission of these n symbols. The

optimal value of n depends on k, δ, and p. For MDS channel coding, we study

two achievable schemes. We first study a save-and-transmit scheme in which the

transmitter saves energy from the incoming energy arrivals until it has at least

n units of energy in its battery. This in effect makes sure that errors which can

occur during the codeword transmission are only due to the erasures in the channel.

To ensure that the synchronization is maintained between the transmitter and the

receiver, the transmitter remains in the saving phase for a number of slots which is

multiple of n. We then study a best-effort scheme, in which the transmitter attempts

transmission in each slot. In this case, the error in each symbol can be either due

to an energy outage or a channel erasure or both.

We next study the case of rateless coding in which the transmitter keeps

sending the update until k symbols are successfully received. For this case, we also

study two schemes: best-effort and save-and-transmit. In the best-effort scheme,

once the update is successfully received, the transmitter generates a new update

and begins transmitting it immediately. In the save-and-transmit scheme, once the

update is successfully received, the transmitter waits some time in order to save

some energy in the battery to prevent future energy outages. The transmitter saves

for m slots, where the optimal m should be obtained as a function of the system
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parameters δ, k, and p.

6.3 AoI Under MDS Channel Coding

6.3.1 Save-and-Transmit Policy

In the save-and-transmit policy, before the transmitter attempts to transmit the

coded update, the transmitter remains silent for an integer multiple of n slots until

the battery has energy at least equal to n. The duration the transmitter remains

silent for the jth time while transmitting the ith update is a random variable denoted

by Zij ∈ {n, 2n, 3n, . . .} which depends on the energy arrival distribution. The

random variable Zij can be expressed as:

Zij =

⌈
Wi

n

⌉
n (6.4)

where Wi is the random variable which denotes the number of slots needed to save

n units of energy and dxe denotes the smallest integer greater than or equal to x.

Since the energy arrivals follow an i.i.d. Bernoulli distribution, Wi will follow a

negative binomial distribution as follows:

PWi
(w) =

(
w − 1

n− 1

)
pn(1− p)w−n, w = n, n+ 1, . . . (6.5)
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The distribution of Zij can be obtained using (6.5) as follows:

PZij(z) =
z∑

w=z−n+1

PWi
(w), z = n, 2n, . . . (6.6)

After the saving phase, the transmission resumes for n slots. After the trans-

mitter is done transmitting the n coded symbols, the transmitter again goes to the

saving phase until it recharges its battery to at least n. The transmitter alternates

between saving and transmission phases.

The update is successful if at least k symbols are received without being erased;

there will be no energy outage due to the saving phase. Hence, the probability of

having a success in a n slot of duration is,

εk,n(δ) =
n∑

x=k

(
x− 1

k − 1

)
(1− δ)kδx−k (6.7)

Thus, in the n consecutive slots the transmission is successful with probability

εk,n(δ). Now, the update will be successful in the V th transmission, where V is

a geometrically distributed random variable with a the following pmf,

PV (n)(v) = εk,n(δ)(1− εk,n(δ))v−1, v = 1, 2, . . . (6.8)

Hence, we may need to repeat the save-and-transmit phases for V times before we

have a successful status update.

We now characterize the random variable which identifies the instant at which

the update will be successful within the n consecutive slots. We denote this random
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variable by X̃i which has a conditional pmf PXi|Xi≤n(x) where

PXi(x) =

(
x− 1

k − 1

)
(1− δ)kδx−k, x = k, k + 1, . . . (6.9)

Hence, X̃i is distributed as:

PX̃i(x) =

(
x−1
k−1

)
(1− δ)kδx−k
εk,n(δ)

, x = k, k + 1, . . . , n (6.10)

An example which illustrates the AoI evolution is shown in Fig. 6.3. In this

figure, the transmitter at first waits 3n slots in order to recharge the battery to at

least the level n. It then attempts to transmit. The transmission in this case is not

successful due to the channel erasures so the transmitter again waits for n slots in

order to charge the battery. The transmission then proceeds again in the next slot.

The transmission is then successful and the receiver received the update after X̃i

transmissions, where k ≤ X̃i ≤ n.

We now consider a renewal policy which serves as an upper bound for the

save-and-transmit policy described above. We assume that at the end of the update

period, the transmitter depletes all its battery. Thus, the transmitter renews its state

at the end of each successful update and always begins with a depleted battery. In

this case, the AoI can be written as:

∆MDS−ST =
E[Qi]

E[Ti]
(6.11)
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Figure 6.3: An example for the evolution of the age of information under the save-
and-transmit scheme for the MDS channel coding case.

Next, we evaluate E[Qi] and E[Ti]. We first obtain Qi as,

Qi =n

[
n (Vi − 1) + X̃i +

Vi∑

j=1

Zij

]

+
1

2

[
n (Vi − 1) + X̃i +

Vi∑

j=1

Zij

]2

+
n2

2
− X̃2

i

2
(6.12)

=n2Vi
2

2
+ nViX̃i + n

Vi∑

j=1

Zij

+
[
n (Vi − 1) + X̃i

] Vi∑

j=1

Zij +
1

2

(
Vi∑

j=1

Zij

)2

(6.13)

We then obtain Ti as,

Ti = nVi +

Vi∑

j=1

Zij (6.14)

Now, it remains to calculate the expectation of Qi and Ti. We first calculate
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the first and second moments of
∑Vi

j=1 Zij, using [106, Theorem 6.13], as follows:

E

[
Vi∑

j=1

Zij

]
=

E [Z]

εk,n(δ)
(6.15)

Similarly, we have:

E



(

Vi∑

j=1

Zij

)2

 =

E [Z2]

εk,n(δ)
+

2− 2εk,n(δ)

ε2k,n(δ)
E [Z]2 (6.16)

We then combine all these to obtain:

E [Ti] =
n

εk,n(δ)
+

E [Z]

εk,n(δ)
(6.17)

and

E [Qi] =
n2(2− εk,n(δ))

2ε2k,n(δ)
+

nµX̃
εk,n(δ)

+
n(2− εk,n(δ))E [Z]

ε2k,n(δ)

+
µX̃E [Z]

εk,n(δ)
+

1

2

E [Z2]

εk,n(δ)
+

(1−εk,n(δ))E [Z]2

ε2k,n(δ)
(6.18)

where E [Z] and E [Z2] can be calculated using (6.6) and µX̃ can be calculated using

(6.10). Hence, the average AoI ∆MDS−ST in (6.11) can be found by substituting

with the expressions in (6.17) and (6.18).

6.3.2 Best-Effort Policy

We now consider the case when the transmitter does not wait at the beginning in

order to save energy, instead it begins transmission immediately. The error events in

158



this case can be either an erasure in the communication channel or an energy outage

at the transmitter. These two events may occur for each transmitted symbol. Hence,

for the symbol to be received without an error, there should be no energy outage

and no channel erasure; this forms a Bernoulli random variable with probability of

success equal to q , p(1− δ). The evolution of AoI is similar to Fig. 6.3 but in this

case, Zij is equal to zero as the transmitter does not wait to save energy.

Using analysis similar to the previous scheme, but with having the probability

of success equal to q, the average AoI in this case can be written as:

∆MDS−BE =
n

εn
− n

2
+
kεk+1,n+1(q)

qεk,n(q)
(6.19)

This can also be obtained using the same analysis as in [60], but with probability

of success equal to q,

6.4 AoI Under Rateless Channel Coding

6.4.1 Best-Effort Policy

We consider here the case when the transmitter begins to transmit immediately. In

each slot, the transmitter suffers two possible error events. The first is channel era-

sure and the second is energy outage. Hence, a symbol will be received successfully

if neither error occurs, which happens with probability equal to q. The channel is

now equivalent to an erasure channel, similar to the one considered in [60], but with

probability of success equal to q. Following analysis similar to the one in [60], but
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Figure 6.4: An example for the evolution of the age of information under the save-
and-transmit scheme for the rateless channel coding case.

with probability of success equal to q, the average AoI in this case is equal to:

∆RC−BE =
k

q

(
3

2
+

1− q
k

)
(6.20)

6.4.2 Save-and-Transmit Policy

In this policy, we consider the case when the transmitter does not generate a new

update immediately once the transmission of the previous update is successful, but

it waits for a deterministic time of m slots. Here, m is a deterministic number

which both the transmitter and the receiver know in advance; this m should then

be optimized to minimize the average AoI and will be a function of δ, p and k.

The transmission in this policy proceeds as follows: once the previous update

is successful, the transmitter begins a saving phase of duration m slots. Then,
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the transmitter generates a new update and begins transmitting it to the receiver.

While transmitting the update, the transmitter may receive more energy arrivals;

however, the amount of energy in the battery will always be non-increasing as the

transmitter transmits a symbol in each slot while the energy may not arrive at every

slot. The transmitter keeps transmitting the update until its battery state hits zero;

this declares the end of the no-outage phase. We denote the number of symbols sent

successfully in this phase by ki. If ki ≥ k, then no more transmission is required

and the update is successful. Otherwise, the transmitter transmits the remaining

k − ki using the best-effort scheme described in Subsection 6.4.1.

We denote the duration the transmitter transmits with no outage by Yi and

we denote the duration we transmit using the best-effort scheme by Zi. An example

for the evolution of the AoI in this case is shown in Fig. 6.4. The average AoI can

be calculate as follows,

∆RC−ST =
E[Qi]

m+ E[Yi + Zi]
(6.21)

=
E
[
(m+ Yi+Zi)

2+2 (m+Yi+Zi) (Yi−1+Zi−1)
]

2m+ 2E[Yi + Zi]
(6.22)

This AoI can be calculated explicitly once E[Yi], E[Y 2
i ], E[Zi], E[Z2

i ] and E[YiZi] are

calculated. We note that Yi and Zi are dependent on each other while Yi and Yi−1

are independent due to using a renewal policy.

We now define the random variables {Ei}∞i=1; the random variable E1 repre-

sents the amount of energy harvested in the first m slots. For i ≥ 2, the random

variable Ei represents the amount of energy harvested during the previous Ei−1
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Figure 6.5: An example to illustrate the random variable Yi.

slots. Hence, we have Ei ≤ Ei−1.

We now characterize the random variable Yi,

Yi =
∞∑

i=1

Ei (6.23)

where E1 is Bin(m, p), and for i ≥ 2, Ei given Ei−1 = ei−1 is Bin(ei−1, p); Bin(.)

denotes binomial distribution. An example for the evolution of Yi is shown in Fig.

6.5.

We can obtain the marginal pmf for the random variables Ei, i ≥ 2, by ap-

plying [106, Theorem 6.12] and using [106, Table 6.1]. Each Ei consists of a sum

of i.i.d. Bernoulli random variables and the number of these random variables is

distributed according to a binomial distribution of Ei−1 which is independent of the

Bernoulli random variables. Hence, the marginal pmf of the random variable Ei is

Bin(m,pi).

We can now calculate E[Yi] as,

E[Yi] =
∞∑

i=1

E [Ei] =
mp

1− p (6.24)

Next, we want to calculate E[Y 2
i ] which we calculate as E[Y 2

i ] = var(Yi) + E[Yi]
2.
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The term var(Yi) can be calculated as follows

var(Yi) =
∞∑

i=1

var(Ei) + 2
∞∑

i<j

cov(Ei, Ej) (6.25)

=
mp

1− p2
+ 2

∑

i<j

cov(Ei, Ej) (6.26)

This requires the calculation of cov(Ei, Ej), ∀i > j. To calculate the covariance,

we first calculate the conditional probability P(Ej+1|Ei). For j > i, we have that

P(Ej|Ei) is distributed as Bin(Ei,p
j−i). This again follows by applying [106, Theo-

rem 6.12] and using [106, Table 6.1].

We now calculate for j > i cov(Ej, Ei) as follows:

cov(Ej, Ei) =E[EjEi]− E[Ej]E[Ei] = mpj(1− pi) (6.27)

Next, we calculate
∑

i<j cov(Ei, Ej) as follows:

∑

i<j

cov(Ei, Ej) =
∞∑

i=1

∞∑

j=i+1

mpj(1− pi) (6.28)

=
mp2

(1− p)(1− p2)
(6.29)

Therefore, var(Yi) is equal to

var(Yi) =
mp

1−p2
+ 2

mp2

(1−p)(1−p2)
=

mp(1+p)

(1−p)(1−p2)
(6.30)
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Hence, E[Y 2
i ] can be calculated as follows:

E[Y 2
i ] =

mp(1 + p)

(1− p)(1− p2)
+

m2p2

(1− p)2
(6.31)

Next, we calculate E[Zi], E[Z2
i ] and E[YiZi]. The pmf of Zi|Yi = k1 is negative

binomial distribution as in (6.5) but with number of successes equal to max(k−k1, 0)

and with success probability equal to q. The value of E[Zi|Yi = yi] can then be

calculated using conditional expectation as follows:

E[Zi|Yi = yi] =

yi∑

w=0

(
yi
w

)
δyi−w(1− δ)w g(w)

q
(6.32)

and the value of E[Z2
i |Yi = yi] can be calculated as follows

E[Z2
i |Yi = yi] =

yi∑

w=0

(
yi
w

)
δyi−w(1− δ)w g(w)(g(w) + (1− q))

q2
(6.33)

where g(w) , max(k − w, 0). Similarly, we can obtain E[YiZi|Yi = yi]. Now, it

remains to calculate the expectation over the pmf of Yi. Due to the dependency

between the terms Ei and their infinite sum, there is no closed form for the pmf of

Yi and it can be found numerically.

6.5 Numerical Results

In this section, we compare the performances of the proposed schemes. When there

is no energy harvesting, i.e., energy arrives with probability p = 1 at every slot,
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Figure 6.6: Comparison of average AoI, p = 1.

rateless coding has the best AoI (this mimics the result obtained in [60]) and save-

and-transmit with MDS coding has the worst performance. The reason that the

save-and-transmit with MDS coding has the worst performance is that it requires

a saving phase of at least n slots, which is not necessary as the energy arrives at

all slots. When the probability of energy arrivals decreases to p = 0.7, save-and-

transmit with MDS coding performs the same as the best-effort rateless coding case,

as shown in Fig. 6.7. Rateless coding with save-and-transmit performs slightly

better than all the other policies. As the probability of energy arrival decreases

further, save-and-transmit with MDS coding outperforms all the best-effort policies

as shown in Fig. 6.8 and Fig. 6.9. As shown in Fig. 6.9, the gain becomes significant

for low values of p. The reason for this is that save-and-transmit eliminates the errors
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Figure 6.7: Comparison of average AoI, p = 0.7.

due to energy outage by saving sufficient energy before attempting to transmit.

For example, in Fig. 6.9, for the best-effort scheme, the probability of success

in transmitting a symbol is equal to q = 0.2 × 0.7 = 0.14, while if we eliminate

the energy outage due to energy harvesting as in save-and-transmit scheme, the

success probability for reach symbol will be 0.7, which is much higher than the best-

effort scheme. Rateless coding with save-and-transmit is better than MDS coding

with save-and-transmit, because rateless coding with save-and-transmit gives more

flexibility for the transmitter to choose just the right saving duration, while in MDS

coding case, the transmitter is forced to save for a multiple of n slots.
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Figure 6.8: Comparison of average AoI, p = 0.4.

6.6 Conclusion

In this chapter, we studied a single-user energy harvesting setting in which the

transmitter sends status updates to the receiver through an erasure channel. We

studied MDS and rateless coding in conjunction with two different policies: best-

effort and save-and-transmit. For each of these schemes, we derived the long term

average AoI. We showed through numerical results that the rateless coding with save-

and-transmit always out performs the others. The reason for this is that rateless

coding with save-and-transmit saves energy for just the right duration. For low

values of average energy arrival, MDS coding with save-and-transmit performs the

worst. The reason for this is that the transmitter saves for some slots which is
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Figure 6.9: Comparison of average AoI, p = 0.2.

unnecessary.
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CHAPTER 7

Sending Information Through Status Updates

7.1 Introduction

We consider an energy harvesting transmitter sending status updates to a receiver

via status update packets; see Fig. 7.1. Each status update packet requires a unit

of energy; and the transmitter harvests energy stochastically over time, one unit at

a time, at random times.1 The timings of the status updates also carry a message

independent of the status updates. We study the trade-off between the achievable

AoI and the achievable message rate.

7.2 System Model

We consider a noiseless binary energy harvesting channel where the transmitter

sends status updates and an independent message simultaneously as in Fig. 7.1. The

transmitter has a unit size battery, i.e., B = 1. Energy arrivals are known causally

at the transmitter and are distributed according to an i.i.d. Bernoulli distribution

with parameter q, i.e., P[Ei = 1] = 1 − P[Ei = 0] = q. Hence, the inter-arrival

1Energy requirements and energy harvests are normalized.
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Figure 7.1: An energy harvesting transmitter with a finite-sized battery, that sends
status updates and independent information to a receiver.

times between the energy arrivals, denoted as τi ∈ {1, 2, · · · }, are geometric with

parameter q. Each transmission costs unit energy; thus, when the transmitter sends

an update, its battery is depleted. The timings of the transmitted updates determine

the average AoI and the message rate.

The instantaneous AoI is given by

∆(t) = t− u(t) (7.1)

where u(t) is the time stamp of the latest received status update packet and t is the

current time. An example evolution of the AoI is shown in Fig. 7.2. The average

long-term AoI is

∆ = lim sup
n→∞

E

[∑n
j=1 Qj∑n
j=1 Tj

]
(7.2)

= lim sup
n→∞

E

[ ∑n
j=1 T

2
j

2
∑n

j=1 Tj

]
(7.3)

where Ti is the duration between two updates, Qj = T 2
j /2 is the total accumulated

age between two updates represented by the area (see Fig. 7.2), and the expectation
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Figure 7.2: An example evolution of instantaneous AoI.

is over the energy arrivals and possible randomness in the transmission decisions.

Then, the minimum AoI is given by

∆∗ = inf
π∈Π

∆ = inf
π∈Π

lim sup
n→∞

E

[ ∑n
j=1 T

2
j

2
∑n

j=1 Tj

]
(7.4)

where Π is the set of all feasible policies. Since the transmitter is equipped with a

unit-sized battery and due to energy causality [1], we have Ti ≥ τi. Note that due

to the memoryless property of the geometric distribution, we assume without loss

of generality, that τi is the time from the instant of the previous update and not the

time from the instant of the previous energy arrival.

To send information through the timings of the status updates, we consider

the model studied in [74, Section V.A]. Thus, here, we assume the knowledge of the

energy arrival instants causally at the transmitter and the receiver. The information

in the time duration Ti is carried by the random variable Vi ∈ {0, 1, · · · } where we
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Figure 7.3: Sending information through a timing channel.

have here Ti = τi+Vi, see Fig. 7.3. The achievable rate of this timing channel is [74],

R = lim inf
n

sup
p(V n|τn)

I(T n;V n|τn)∑n
i=1 E[Vi] + E[τi]

(7.5)

= lim inf
n

sup
p(V n|τn)

H(V n|τn)∑n
i=1 E[Vi] + E[τi]

(7.6)

where the second equality follows since H(V n|τn, T n) = 0.

We denote the AoI-rate trade-off region by the tuple (AoI(r), r), where r is

the achievable rate and AoI(r) is the minimum achievable AoI given that a message

rate of at least r is achievable,

AoI(r) = inf
M

lim sup
n→∞

E

[ ∑n
j=1 T

2
j

2
∑n

j=1 Tj

]
(7.7)

where M is defined as

M=

{
{Ti}∞i=1

∣∣∣∣∣Ti ≥ τi, lim inf
n

sup
p(V n|τn)

H(V n|τn)∑n
i=1 E[Vi] + E[τi]

≥ r

}
(7.8)
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where V n denotes (V1, · · · , Vn) and similarly for τn. An alternate characterization for

the trade-off region can also be done using the tuple (α,R(α)) where the achievable

AoI is equal to α and R(α) is the maximum achievable information rate given that

the AoI is no more than α.

7.3 Achievable Trade-off Regions

In this section, we consider several achievable schemes. All considered achievable

schemes belong to the class of renewal policies. A renewal policy is a policy in which

the action Ti at time i is a function of only the current energy arrival instant τi.

The long-term average AoI under renewal policies is,

∆ = lim sup
n→∞

E

[ ∑n
j=1 T

2
j

2
∑n

j=1 Tj

]
=

E[T 2
i ]

2E[Ti]
(7.9)

which results from renewal reward theory [88, Theorem 3.6.1]. Since we use renewal

policies and τi is i.i.d., hereafter, we drop the subscript i in the random variables.

Then, the maximum achievable information rate in (7.6) reduces to,

R = max
p(v|τ)

H(V |τ)

E[V ] + E[τ ]
(7.10)

and the AoI in (7.9) reduces to

∆ =
E[T 2]

2E[T ]
=

E[(V + τ)2]

2E[V + τ ]
(7.11)
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Next, we present our achievable schemes. In the first scheme, information

transmission is adapted to the timing of energy arrivals: If it takes a long time for

energy to arrive, the transmitter tends to transmit less information and if energy

arrives early, the transmitter tends to transmit more information. This scheme

fully adapts to the timings of the energy arrivals, but this comes at the cost of

high computational complexity. We then relax the adaptation into just two regions,

divided by a threshold c: If energy arrives in less than c slots, we transmit the

information using a geometric distribution with parameter pb, and if energy arrives

in more than c slots, we transmit the information using another geometric random

variable with parameter pa. The choice of a geometric random variable for V here

and hereafter is motivated by the fact that it maximizes the information rate when

the energy arrival timings are known at the receiver; see [74, Section V.A].

In the previous schemes, the instantaneous information rate depends on the

timings of energy arrivals. We next relax this assumption and assume that the

instantaneous information rate is fixed and independent of timings of energy arrivals.

We call such policies separable policies. In these policies, the transmitter has two

separate decision blocks: The first block is for the status update which takes the

decision depending on the timing of the energy arrival, and the second block is

for encoding the desired message on top of the timings of these updates. This is

similar in spirit to super-position coding. In the first separable policy, the update

decision is a threshold based function inspired by [75]: if the energy arrives before

a threshold τ0, the update block decides to update at τ0 and if the energy arrives

after τ0, the update block decides to update immediately. The information block

174



does not generate the update immediately, but adds a geometric random variable

to carry the information in the timing on top of the timing decided by the update

block. In the second separable policy, which we call zero-wait policy, the update

block decides to update in the channel use immediately after an energy arrival.

7.3.1 Energy Timing Adaptive Transmission Policy (ETATP)

In this policy, the information which is carried in V is a (random) function of the

energy arrival realization τ . This is the most general case under renewal policies.

The optimal trade-off can be obtained by solving the following problem

min
p(v|τ)

E[(V + τ)2]

2E[V + τ ]

s.t.
H(V |τ)

E[V ] + E[τ ]
≥ r (7.12)

The maximum possible value for r is equal to r∗ = maxp(v|τ)
H(V |τ)

E[V ]+E[τ ]
. The solution

of this problem can be found by considering the following alternative problem which

gives the same trade-off region

max
p(v|τ),m

H(V |τ)

m

s.t. E[(V + τ)2] ≤ 2αE[V + τ ]

E[V + τ ] = m (7.13)

For a fixed m, problem (7.13) is concave in p(v|τ) and can be solved efficiently.

Then, to obtain the entire trade-off region, we sweep over all possible values of the
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parameter α (which are all possible values of the AoI). The solution for (7.13) is

found numerically by optimizing over all possible conditional pmfs p(v|τ) for each

value of m. Then, we use line search to search for the optimal m. All this, has to be

repeated for all possible values of the AoI α. Finding the optimal solution for (7.13)

has a high complexity, hence, we propose the following policy which reduces this

complexity significantly, and at the same time adapts to the timing of the energy

arrivals to the extent possible within this set of policies.

7.3.2 Simplified ETATP

In this policy, we simplify the form of the dependence of the transmission on the

timings of energy arrivals significantly. The transmitter waits until an energy ar-

rives, if the energy takes more than c slots since the last update, we transmit the

information using a geometric random variable with probability of success pb, oth-

erwise the transmitter transmits the information using a geometric random variable

with probability of success pa, i.e., the transmitter chooses p(v|τ) as follows

p(v|τ) =





pb(1− pb)v−1, τ < c

pa(1− pa)v−1, τ ≥ c

, v = 1, 2, · · · (7.14)

In this case, pa, pb and c are the variables over which the optimization is performed.

The average achieved information rate as a function of pa, pb and c can be obtained
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as,

R =

H2(pb)
pb

(1− (1− q)c) + H2(pa)
pa

(1− q)c
E[τ ] + E[V ]

(7.15)

where E[V ] is equal to

E[V ] =
(1− pb)
pb

(1− (1− q)c) +
(1− pa)
pa

(1− q)c (7.16)

Now, we can calculate the average AoI with this policy as,

∆ =
E[(τ + V )2]

2E[τ + V ]
=

2−q
q2 + E[V 2] + 2E[τV ]

2E[τ ] + 2E[V ]
(7.17)

where we have E[V 2] as

E[V 2] =

(
2 + p2

b − 3pb
p2
b

)
(1− (1− q)c) +

(
2 + p2

a − 3pa
p2
a

)
(1− q)c (7.18)

and E[τV ] as

E[τV ] =
(1− pb)
pb

(
1

q
(1− (1− q)c+1)− (c+ 1)(1− q)c

)

+
(1− pa)
pa

(
(1− q)c+1

q
+ c(1− q)c−1

)
(7.19)

This schemes is simpler than the general class of ETATP; still, we need to

search for the optimal pa, pb and c. We reduce this complexity further in the next

policy.
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7.3.3 Threshold Based Transmission Policy

We now present the first separable policy. In this policy, we assume that T = Z(τ)+

V , where the information is still carried only in V ; see Fig. 7.2. Z(τ) is the duration

the transmitter decides to wait in order to minimize the AoI, while V is the duration

the transmitter decides to wait to add information in the timing of the update. Z(τ)

and V are independent which implies that H(V |Z(τ)) = H(V |τ) = H(V ). The

duration Z(τ) is determined according to a threshold policy as follows,

Z(τ) = τU(τ − τ0) + τ0U(τ0 − τ − 1) (7.20)

The optimal value of τ0 is yet to be determined and is an optimization variable.

The optimal value of τ0 is to be calculated and, thus, known both at the transmitter

and the receiver; hence, this threshold policy is a deterministic policy. This ensures

that we still have H(V n|τn, T n) = 0, which is consistent with (7.6). We then choose

V to be a geometric random variable with parameter p. The trade-off region can

then be written as,

min
T (τ),p

E[(Z(τ) + V )2]

2E[Z(τ) + V ]

s.t. Z(τ) ≥ τ

r ≤ H2(p)/p

(1− p)/p+ E[Z(τ)]
(7.21)

where r is a fixed positive number. The feasible values of r are in [0, r∗] where
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r∗ is equal to r∗ = maxp∈[0,1]
H2(p)/p

(1−p)/p+E[τ ]
. This follows because the smallest value

that Z(τ) can take is equal to τ . The optimization problem in this case becomes a

function of only τ0 and p.

We now need to calculate E[Z(τ)] and E[Z2(τ)]. We calculate E[Z(τ)] as

follows,

E[Z(τ)] =(1− q)τ0 +
(1− q)τ0+1

q
+ τ0 (7.22)

and we calculate E[Z2(τ)] as follows,

E[Z2(τ)] =

(
2− 3q

q2

)
(1−q)τ0 +2(τ0+1)(1−q)τ0 +2(τ0+1)

(1−q)τ0+1

q
+τ 2

0 (7.23)

Finally, we note that in this case E[V 2] is equal to,

E[V 2] =
2 + p2 − 3p

p2
(7.24)

Substituting these quantities in the above optimization problem and solving for p

and τ0 jointly gives the solution.

7.3.4 Zero-Wait Transmission Policy

This policy is similar to the threshold based policy, with one difference: The update

block does not wait after an energy arrives, instead, it decides to update right away,
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Figure 7.4: The rate-AoI trade-off region for q = 0.2.

i.e., Z(τ) = τ . Hence, the trade-off region can be obtained by solving,

min
p

E[(τ + V )2]

2E[τ + V ]

s.t. r ≤ H2(p)/p

(1− p)/p+ E[τ ]
(7.25)

We can then calculate E[(τ+V )2] = E[τ 2+V 2+2V τ ], where V and τ are independent

as the message is independent of the energy arrivals. Since τ is geometric E[τ 2] =

2−q
q2 . This optimization problem is a function of only a single variable p. This

problem is solved by line search over p ∈ [0, 1].
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Figure 7.5: The rate-AoI trade-off region for q = 0.5.

7.4 Numerical Results

Here, we compare the trade-off regions resulting from the proposed schemes. We plot

these regions in Figs. 7.4-7.6 for different values of average energy arrivals, namely,

q = 0.2, q = 0.5 and q = 0.7. For low values of q, as for q = 0.2 in Fig. 7.4, there

is a significant gap between the performance of ETATP and the simplified schemes.

For this value of q, in most of the region, simplified ETATP performs better than

the threshold and zero-wait policies. As the value of q increases as shown in Fig. 7.5

and Fig. 7.6, the gap between the performance of the different policies decreases

significantly. In Fig. 7.5, the threshold and zero-wait policies overlap. In Fig. 7.6,

simplified ETATP, threshold and zero-wait policies overlap. In all cases, zero-wait
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Figure 7.6: The rate-AoI trade-off region for q = 0.7.

policy performs the worst. This is consistent with early results e.g., [51], early results

in the context of energy harvesting e.g., [61,62], and recent results [66,67,75], where

updating as soon as one can is not optimum.

7.5 Conclusion

In this chapter, we considered a single-user energy harvesting setting with a unit

battery. The transmitter harvests energy and uses it to send status updates to the

receiver along with an independent message encoded in the timings of these status

updates. We studied the trade-off between the minimum AoI and the maximum

information rate of the message. We first presented the general setting and then

restricted our attention to renewal policies. Under renewal policies, we proposed

182



four achievable schemes. These schemes differ in the complexity and the achievable

AoI-rate region; low complexity schemes come at the cost of smaller AoI-rate region.
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CHAPTER 8

Energy Harvesting Communications Under Temperature

Constraints

8.1 Introduction

We consider several effects of the temperature on the offline power allocation prob-

lem. We first study the effect of temperature dependent energy leakage. As the

temperature of the transmitter increases due to information transmission, the en-

ergy leakage increases. Next, we consider the problem of processing costs. We tackle

this problem by allowing the transmitter to divide the transmission duration into

two consecutive transmission and silence periods, and identify the optimal policy in

this case. Then, we study temperature increases caused by the energy harvesting

process itself. As the transmitter admits the incoming energy arrivals, its tempera-

ture may increase.
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Figure 8.1: System model representing an energy harvesting transmitter in an en-
vironment with temperature Te.

8.2 Model and Problem Formulation

We consider a single-user energy harvesting channel, Fig. 8.1, subject to temper-

ature constraints. The physical layer is an additive Gaussian noise channel where

the noise variance is unity for convenience. We use a continuous time model: In an

infinitesimal time duration dt in [t, t+dt], the transmitter decides a feasible transmit

power level p(t), and 1
2

log (1 + p(t)) dt units of data is sent to the receiver.

The battery at the transmitter has unlimited size and the initial energy avail-

able in the battery at time zero is E0. Energy arrivals occur at times {s1, s2, . . .}

in amounts {E1, E2, . . .}. We call the time interval between two consecutive en-

ergy arrivals an epoch. D is the deadline. Ei and si are known offline. Let

h(t) = max{k : sk < t}. Power policy p(t) is subject to energy causality constraints

as [1]:

∫ t

0

p(τ)dτ ≤
h(t)∑

i=0

Ei, ∀t ∈ [0, D] (8.1)
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We adopt the following first order thermal model:

dT (t)

dt
= ap(t)− b(T (t)− Te) + c(t) (8.2)

where Te is the environment temperature, T (t) is the temperature at time t, c(t)

represents additional heat sources, and a, b are non-negative constants. With the

initial temperature T (0) = Te, the solution of (8.2) is [107]:

T (t) = e−bt
∫ t

0

ebτ (ap(τ) + c(τ)) dτ + Te (8.3)

First, we consider the throughput maximization problem with temperature

dependent energy leakage:

max
p(t)

1

2

∫ D

0

log(1 + p(τ))dτ

s.t.

∫ t

0

p(τ)dτ +

∫ t

0

εl(T (t)− Te)dτ ≤
h(t)∑

i=0

Ei

p(t) ≥ 0, ∀t ∈ [0, D] (8.4)

where εl is the energy leakage coefficient. Energy leakage happens even when the

transmitter is not transmitting. In particular, εlTeD is the nominal energy leakage,

which is the amount of energy that leaks when the transmitter is not transmitting

and the temperature is Te. We assume that Ẽi ≥ εlTe(si+1 − si) is the actual

harvested energy at t = si and that Ei in the formulation in (8.4) is Ei = Ẽi −

εlTe(si+1 − si).
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Next, we consider the throughput maximization problem under temperature

constraints in the presence of processing costs due to power spent for the transmitter

to be on:

max
p(t),{θi}

∫ θ2

θ1

1

2
log(1 + p(τ))dτ +

∫ θ4

θ3

1

2
log(1 + p(τ))dτ

s.t.

∫ θ2

θ1

(εp + p(τ))dτ +

∫ θ4

θ3

(εp + p(τ))dτ ≤ E

T (t) ≤ Tc

0 ≤ θ1 ≤ θ2 ≤ θ3 ≤ θ4 ≤ D

p(t) ≥ 0, ∀t ∈ [0, D] (8.5)

where εp is the processing cost, E is the available energy at the transmitter. This

problem is motivated by the approach in [32]. It is well-known that, when there is

processing cost, the transmission becomes bursty. Under temperature constraints,

in general, there may be many intervals of being on and off for the transmitter. In

the formulation in (8.5), we allow the transmitter to divide the transmission session

into two parts only and to cool-down in between transmissions. Here, in the single

epoch formulation in (8.5), the transmitter is active in the intervals [θ1, θ2] and

[θ3, θ4] and silent in the rest.

Finally, we consider the temperature increase due to energy harvesting. In

this case, c(t) =
∑N

i=1 εhαiEiδ(t − si) where Ei is the available energy and αiEi is

the amount of harvested energy (i.e., energy intake) with αi ∈ [0, 1]. Note that αi is

controlled by the transmitter. Here, εh is the coefficient that determines the temper-
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ature increase due to energy harvesting. In particular, at time t = si, temperature

increases with amount εhαiEi. We impose a hard temperature constraint T (t) ≤ Tc

for all t ∈ [0, D]. This constraint is equivalent to:

∫ t

0

aebτp(τ)dτ +

h(t)∑

i=1

εhαiEie
bsiu(t− si) ≤ Tδe

bt, ∀t (8.6)

where u(·) is the unit step function. We consider the following problem:

max
p(t),{αi}

1

2

∫ D

0

log(1 + p(τ))dτ

s.t.

∫ t

0

p(τ)dτ ≤
h(t)∑

i=0

αiEi

∫ t

0

aebτp(τ)dτ +

h(t)∑

i=1

εhαiEie
bsiu(t− si) ≤ Tδe

bt

p(t) ≥ 0, ∀t ∈ [0, D] (8.7)

In the following sections, we specialize in the problems stated in (8.4), (8.5),

and (8.7).

8.3 Temperature Dependent Energy Leakage: Problem in (8.4)

In this section, we focus on the throughput maximization problem in (8.4) with

temperature dependent energy leakage. The problem is convex and the Lagrangian

is:

L =−
∫ D

0

log(1 + p(τ))dτ +

∫ D

0

λ(t)

(∫ t

0

p(τ)dτ

)
dt
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+

∫ D

0

λ(t)



∫ t

0

εl(T (τ)− Te)dτ −
h(t)∑

i=0

Ei


 dt (8.8)

The KKT optimality conditions are:

− 1

1 + p(t)
+

∫ D

t

λ(τ)dτ + εlae
bt

∫ D

t

∫ x

t

λ(x)e−bτdxdτ = 0 (8.9)

In the following sub-sections, we first investigate the solution for a single energy

arrival, then for multiple energy arrivals, and then provide the general form of the

solution.

8.3.1 Single Energy Arrival

In this case, (8.9) reduces to the following:

p(t) =

(
1

λ
(
1 + εla

b
(1− eb(t−D))

) − 1

)+

(8.10)

Lemma 8.1 The optimal power, p(t), is monotone increasing and convex.

Proof: Since 1 + εla
b

(1 − eb(t−D)) is a monotone decreasing, concave and positive

function, its reciprocal is a monotone increasing and convex function. Hence, from

(8.10), the optimum power is monotone increasing and convex. �

Lemma 8.1 suggests that in the optimal policy, energy utilization is deferred

to the future to the extent possible. This enables a controlled increase in the tem-

perature and the energy loss due to leakage. Note that the linear dependence of

the energy leakage on the temperature forms a positive feedback loop in that more
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energy is lost as the temperature increases.

Lemma 8.2 The temperature, T (t), resulting from the optimal power policy is

monotone increasing.

Proof: First, we need to calculate the temperature based on the optimal power

policy (8.10). It suffices to consider only the term with the integration in the tem-

perature expression in (8.3) since Te is constant and will not affect the analysis.

Since the power is increasing, there exists t = t0 such that p(t) > 0 for all t ∈ [t0, D].

Hence, using (8.10) we have,

T (t)− Te =
e−b(t−D)

λεl
log

(
λ+ εlλa

b

(
1− e−b(D−t0)

)

λ+ εlλa
b

(1− e−b(D−t))

)
− a

b

(
1− eb(t0−t)

)
(8.11)

Next, we need to show that this T (t) is increasing. To check this, we evaluate the

derivative of T (t) as follows,

dT

dt
=− be−b(t−D)

λεl
log

(
1 + εla

b

(
1− e−b(D−t0)

)

1 + εla
b

(1− e−b(D−t))

)

+
a

λ+ εlλa
b

(1− λe−b(D−t))
− aeb(t0−t) (8.12)

=− be−b(t−D)

λεl
log

(
εla
b

(
e−b(D−t) − e−b(D−t0)

)

1 + εla
b

(1− e−b(D−t)) + 1

)

+
a

λ+ εlλa
b

(1− λe−b(D−t))
− aeb(t0−t) (8.13)

≥− be−b(t−D)

λεl

(
εla
b

(
e−b(D−t) − e−b(D−t0)

)

1 + εla
b

(1− e−b(D−t))

)

+
a

λ+ εlλa
b

(1− e−b(D−t))
− aeb(t0−t) (8.14)
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=aeb(t0−t)p∗(t) > 0 (8.15)

where the inequality follows since log(1 +x) ≤ x. Hence, the temperature is strictly

increasing whenever the optimum power is non-zero. �

Lemma 8.3 Optimum Lagrange multiplier satisfies λ ∈ (0, 1).

Proof: From (8.10), we know that the optimum power is increasing, and if it is

non-zero, then, it is non-zero specifically at t = D. Hence, we have,

λ
(

1 +
εla

b
(1− eb(t−D))

) ∣∣∣
t=D

< 1 (8.16)

which in turn implies that λ < 1. In addition, the Lagrange multiplier cannot

be zero, as this would imply the power to be infinity. Combining this with the

non-negativity of the Lagrange multiplier gives the desired result. �

Note that the only variable in the expression in (8.10) is λ. The optimal power

can be obtained by one-dimensional search on λ ∈ (0, 1). The next lemmas will be

useful in providing the optimal algorithm for the multiple energy arrival case. They

state the monotonicity of the power with the harvested energy.

Lemma 8.4 In the optimal power policy, the energy constraint is satisfied with

equality.

Proof: The proof follows by contradiction. If the optimal power does not satisfy

the energy constraint with equality, then we can increase the power which strictly
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increases the objective function, and this violates the optimality. �

Lemma 8.5 p(t) is monotonically increasing with E.

Proof: Assume we have energy arrival E, and corresponding power p(t). We know

that the constraint will be satisfied with equality. Then, if we increase the energy

to E+ ε for any ε > 0, the constraint is not satisfied. Hence, there exists δ > 0 such

that when λ is replaced with λ− δ, equality is achieved. Decreasing λ increases p(t)

for all t ∈ [0, D]. �

8.3.2 Multiple Energy Arrivals

Lemma 8.6 p(t) is monotonically increasing throughout the transmission duration.

Proof: Using (8.9) we have

p∗(t) =

(
1∫ D

t
λ(τ)dτ + εlaebt

∫ D
t

∫ x
t
λ(x)e−bτdτdx

− 1

)+

(8.17)

which when the inner integral is evaluated becomes,

p∗(t) =

(
1∫ D

t
λ(τ)dτ + εla

b

∫ D
t
λ(x)[1− e−b(x−t)]dx

− 1

)+

(8.18)

Since the denominator is a decreasing function of t, p(t) is increasing in t. �

Lemma 8.7 The battery can be empty only at the energy arrival instants. It is

certainly empty at the end.
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Proof: This follows since the optimal power is monotonically increasing throughout

the transmission duration, hence, there does not exist a duration of non-zero measure

with zero power. Hence, the battery can never be empty for a non-zero measure

interval. Therefore, the battery cannot be empty except a duration of measure zero,

which can only happen at energy arrival instants or at the end of the deadline. If

the battery is not empty at the end, then we can always increase the power without

violating the constraint, which violates optimality. �

Lemma 8.8 The transmission power may have possible positive jumps only at the

energy arrival instants.

Proof: From Lemma 8.7, we have that the energy can be consumed fully only at

the energy arrivals or the deadline, hence, the energy constraint can be tight only

at these instants. Therefore, from the complementary slackness, we have,

λ(t) =
N∑

i=1

λiδ(t− si) (8.19)

Then, substituting this in (8.18), we have,

p∗(t) =

(
1∑N

i=1 λiu(si − t)
(
1 + εla

b
[1− e−b(si−t)]

) − 1

)+

(8.20)

which may have positive jumps at the instants si due to the presence of the unit

step function. �

Lemma 8.9 The temperature is monotone increasing throughout the communica-
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tion session.

Proof: We show this for a two epoch system, however, the proof for N epochs

follows identical steps. It is clear that for the second slot temperature is increasing

since the power in the second epoch has the form,

p∗(t) =
1

λ2

(
1 + εla

b
[1− e−b(s2−t)]

) − 1 (8.21)

which is the same form as in the case of a single epoch, hence we can proceed as in

the proof of Lemma 8.2. Thus, it remains to show the same for the first epoch. The

optimal power in the first epoch can be written as,

p∗(t) =
1∑2

i=1 λi
(
1 + εla

b
[1− e−b(si−t)]

) − 1 (8.22)

=
1

λ̃+ λ̃ εla
b
− εla

b
(e−bs1λ1 + e−bs2λ2) ebt

− 1 (8.23)

=
1

λ̃
(
1 + εla

b
[1− e−b(D̃−t)]

) − 1 (8.24)

where λ̃ = λ1 + λ2 and D̃ is some number between s1, s2. The existence of D̃ is

guaranteed since we have,

λ̃min{e−bs1 , e−bs2} ≤ λ1e
−bs1 + λ2e

−bs2 (8.25)

≤ λ̃max{e−bs1 , e−bs2} (8.26)

and the exponential function is continuous. We can now apply again the proof in
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Lemma 8.2. Hence, the temperature is strictly increasing within each slot, and

therefore, throughout the communication session. It also follows that the temper-

ature can be constant only when the power is zero, which can happen only at the

beginning of the transmission duration. �

8.3.3 Optimal Policy

We provide the optimal policy first for the case of a single arrival and then for the

case of multiple arrivals.

8.3.3.1 Single Energy Arrival

For the single energy arrival case, we showed that the optimal solution depends only

on λ. We also showed in Lemma 8.3 that λ lies in the interval (0, 1). Also, using

the fact that the energy constraint is always satisfied with equality, λ satisfies the

following equation:

∫

p(t)≥0

(p(τ) + εl(T (τ)− Te))dτ = E (8.27)

where p(t) is given in (8.10). Hence, the optimal λ is found by a one-dimensional

search on (0, 1). Note also that since p(t) is monotone in λ and (8.27) is linear in

p(t), (8.27) is monotone in λ. Hence, we can search for λ using the bisection method

in the range (0, 1) until this equation is satisfied with equality.
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8.3.3.2 Multiple Energy Arrivals

We know from (8.19) that the optimal multiple epoch problem reduces to finding

{λi}Ni=1. The algorithm begins by solving each slot individually using the single

epoch solution. However, the epochs are not completely independent of each other,

due to the temperature accumulation throughout the transmission duration.

We begin by assuming an initial energy allocation, where we use only the

energy that arrived in each epoch with no energy transfer between the epochs. We

first solve for epoch 1 power allocation. In the first epoch, there is no temperature

accumulation which should be taken into account. Next, we solve for epoch 2 power

allocation, but with setting the temperature as follows,

T (t) =e−bt
∫ t

0

ebτap(τ)dτ + T (s1) (8.28)

where T (s1) is the temperature of the system at the end of the epoch 1, i.e., the

system starts at the second slot from temperature T (s1) instead of Te. Note that

this can be calculated using the optimal λ, t0 from (8.11). In effect, this is equivalent

to subtracting from the available energy in the second epoch an amount equal to

(s2− s1)εl(T (s1)−Te), where s2− s1 is the duration of the second epoch. Similarly,

we proceed to solve for power allocation in all epochs with setting the temperature

at epoch i as,

T (t) =e−bt
∫ t

0

ebτap(τ)dτ + T (si−1) (8.29)
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Until this point, the obtained solution may not be optimal. We need to check if

the solution satisfies the optimality conditions. If the power allocations between the

slots is increasing, then indeed this is the optimal solution, according to Lemma 8.6,

since we can find the corresponding Lagrange multipliers.

Next, if the solution for the power is not increasing, then this is not the optimal

solution, and it needs to be modified. If slots i and i − 1 do not satisfy this, then

we transfer energy from slot i− 1 to slot i, and re-solve the problem until we equate

the powers at time si. According to Lemma 8.5, transferring energy from one slot

to another decreases the power in slot i − 1 while increases the power in slot i,

which guarantees the existence of an increasing solution by transferring energy. In

this case, we have λi = 0. We repeat this procedure between every two consecutive

slots which have non-increasing power until the power is increasing throughout the

transmission duration.

8.4 Non-zero Processing Power: Problem in (8.5)

In this section, we focus on the throughput maximization problem in (8.5) with

processing cost. First, we discuss the interpretation of the possible solutions of

problem (8.5). If θ∗1 = 0, θ∗2 = θ∗3 and θ∗4 = D, then this corresponds to the case

that the transmitter is on for the whole duration. This usually happens when the

transmitter has sufficient energy. If θ∗1 = 0, θ∗1 < θ∗2 < θ∗3 and θ∗3 = θ∗4 = D,

then the problem reduces to a problem similar to the one proposed at [32]. If

θ∗1 < θ∗2 < θ∗3 < θ∗4, then there is a cooling down phase for the duration [θ2, θ3].
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We now argue that without loss of generality we can set θ∗1 = 0 and θ∗4 = D.

The intuition behind this is that we want to separate the two transmissions as much

as we can to give the system the longest time to cool down, and hence may achieve

a better rate. The problem in this case is:

max
p(t),{θi}

∫ θ1

0

1

2
log(1 + p(τ))dτ +

∫ D

θ2

1

2
log(1 + p(τ))dτ

s.t.

∫ θ1

0

(εp + p(τ))dτ +

∫ D

θ2

(εp + p(τ))dτ ≤ E

T (t) ≤ Tc

0 ≤ θ1 ≤ θ2 ≤ D

p(t) ≥ 0, ∀t ∈ [0, D] (8.30)

Lemma 8.10 Problems (8.5) and (8.30) are equivalent.

Proof: To prove this, we need to show that the optimal solution of each problem is

feasible in the other problem with optimal value no less than the other.

It is clear that the optimal solution for (8.30) is always feasible in (8.5) with

the same optimal value. Now, for (8.5), assume that the optimal solution is θ∗1 > 0

and θ∗4 < D. We now need to check the feasibility of it in (8.30). The feasibility is

easy to check for the energy constraint, since it only depends on the duration and not

the position. The temperature constraint is also feasible, since the heat generated

for (8.5) in the duration [θ∗1, θ
∗
2] is the same as when translated to [0, θ∗2 − θ∗1]. Thus,

we have now verified that the problem is feasible for t ∈ [0, θ∗3]. Similarly the heat

generated [θ∗3, θ
∗
4] will be the same as when translated to [D − (θ∗4 − θ∗3), D] and
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also the temperature at D − (θ∗4 − θ∗3) is lower that the original problem since we

allowed more time for it to cool down. Hence, the temperature constraint is also

feasible. Additionally, the objective function is the same. Hence, the two problems

are equivalent. �

The advantage of considering problem (8.30) is that we have eliminated two

variables from the original problem (8.5). Hereafter, we will only consider problem

(8.30).

8.4.1 Characterization of the Optimal Solution

In this section, we provide the properties of the optimal of (8.30). This problem

is not convex due to the presence of the variables {θi} in the integration limits.

The main challenge besides the non-convexity of this problem is the non-uniqueness

of the global optimal solution. In some cases, we can show that there exists an

infinite number of global optimal solutions. A simple example is the case when the

temperature constraint is never tight. Hence, in what follows we provide sufficient

conditions for the optimality of the solution.

First, we assume that the optimal value for {θ∗i }s are known. Fixing the

{θ∗i }s yields a convex optimization problem in p(t). Hence, KKT conditions are now

necessary and sufficient. The Lagrangian of the problem is:

L =−
∫ θ∗1

0

1

2
log(1 + p(τ))dτ −

∫ D

θ∗2

1

2
log(1 + p(τ))dτ

+ λ

(∫ θ∗1

0

(εp + p(τ))dτ +

∫ D

θ∗2

(εp + p(τ))dτ − E
)
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+

∫ D

0

β(t)

[∫ t

0

aebτp(τ)dτ − Tδebt
]
dt (8.31)

which yields KKT optimality conditions:

p(t) =

[
1

λ+ ebt
∫ D
t
β(τ)dτ

− 1

]+

, ∀t ∈ [0, θ∗1] ∪ [θ∗2, D] (8.32)

Next, we study the properties of the optimal solution. We first state the lemma

indicating the non-increasing property of the power. The proof follows as [107,

Lemma 2].

Lemma 8.11 The optimal power allocations is monotonically non-increasing in the

durations (0, θ∗1) and (θ∗2, D).

Next, we show that if the temperature constraint is never tight, or equivalently,

the temperature constraint is removed, then we get back to the formulation proposed

in [32] which yields constant transmission power. We also highlight the fact that

the number of solutions can be infinite.

Lemma 8.12 If there is no temperature constraint (or equivalently, the temperature

constraint is never tight), then the optimal power, p∗(t), is constant and θ2 = D

achieves the optimal solution. However, the solution is not unique.

Proof: When the temperature constraint is never tight, from slackness we have

λ(t) = 0, ∀t. Hence, using this along with (8.31) we have:

p∗(t) =
1

λ
− 1, ∀t ∈ [0, θ∗1] ∪ [θ∗2, D] (8.33)
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which proves that the power is constant. Then, if θ∗2 < D, we can define a new

policy,

p̃(t) =





p∗(t), ∀t ∈ [0, θ∗1]

p∗(t+ θ∗2 − θ∗1), ∀t ∈ [θ∗1, D − (θ∗2 − θ∗1)]

(8.34)

This new policy is then feasible since the temperature constraint is not active. Hence,

θ∗2 = D is feasible and gives the optimal solution.

Now, for the non-uniqueness, note that if we have an optimal solution which is

p∗(t) = c for t ∈ [0, θ∗1], then for any δ ∈ [0, θ∗1], p∗(t) = c for t ∈ [0, θ∗1−δ]∪ [D−δ,D]

is also an optimal solution. This follows since, for all these values of δ, we still have

the same value for the objective function. �

Lemma 8.13 Assume that we fix θ2 to a value and solve for the optimal value of

θ1 < θ2. Then, if the resultant optimal power is constant, then: 1) the power level

in both slots is equal, 2) the energy constraint will be satisfied with equality, and 3)

if this obtained transmission duration (θ1 +D− θ2) is equal to the optimal duration

with no temperature constraint, then the obtained (θ1, θ2, p(t)) is the optimal solution

for this problem.

Proof: Since the power is constant, this means that the temperature constraint can

be tight at most on an interval of zero measure, i.e., only at θ1, D. Hence, we have

β(t) = β(θ1)δ(t− θ1) + β(D)δ(t−D). Since the power is constant, from (8.32), this

implies that β(θ1) = β(D) = 0. Hence, the power in both slots are equal, and equal
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to

p(t) =
1

λ
− 1,∀t ∈ [0, θ1] ∪ [θ2, D] (8.35)

Since p(t) should be finite, we must have λ 6= 0. Hence, from complementary

slackness, the energy constraint must be satisfied with equality. Since the energy

constraint is satisfied with equality, power is constant and the duration θ1 +D− θ2

is the same as with no temperature constraint, we obtain a solution equal to the

unconstrained solution. Since the unconstrained problem forms an upper bound to

our temperature constrained problem, this is the optimal solution. �

Hence, if we restrict θ2 = D and solve problem (8.30), if the solution results

in an inactive temperature constraint, then solving the original problem (8.30) op-

timally without this restriction gives the same value and the power is constant in

both cases.

The next lemma states that if we restricted our solution to θ2 = D, to obtain

the optimal θ∗1, if the temperature constraint is tight for a non-zero measure, then

the obtained solution in this case is strictly sub-optimal than allowing θ2 < D.

Lemma 8.14 It cannot happen that the temperature constraint is active for an

interval of non-zero measure and θ∗2 = D, while θ∗1 < D.

Proof: Define t′ = arg min{t ∈ [0, θ∗1] : T (t) = Tc}, which is the first instant at

which the temperature touches Tc. From [107, Lemma 6], we have that p∗(t) =

Tδb
a
,∀t ∈ [t′, θ∗1]. This also implies that the power was monotone decreasing before
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t′, since if it was constant and equal to Tδb
a

, it would not have touched Tc. We

then proceed to the proof by contradiction. Assume the statement is not true, then

consider a modified policy as follows:

p̃δ(t) =





p∗(t), ∀t ∈ [0, δ]

p∗(t+ θ∗1 −D), ∀t ∈ [D − θ∗1 + δ,D]

0, otherwise

(8.36)

In this policy, we transfer all but δ part of the power to the end of the duration. This

policy will give the same optimal value. However, since the temperature constraint

was originally tight for an interval, the power would have been monotone decreasing

for at least an interval. Then, we can take a small enough interval [0, δ] in p̃(t) and

replace it by its average, i.e.,

p̂δ(t) =





∫ δ
0 p̃δ(t)

δ
, ∀t ∈ [0, δ]

p̃δ(t), otherwise

(8.37)

For small enough δ, this will result in a feasible policy with a strictly higher objective

function, since we strictly decreased the temperature at the point D − θ∗1 + δ, so

we had room to equalize the power more. This contradicts the optimality of the

original policy. �

203



8.4.2 Solving the Problem for Fixed {θi}

We will discuss how to obtain the optimal solution for {θi} and p(t). In general,

we may need to perform line search over all the possible values of θ1, θ2. However,

with the aid of the previously derived lemmas, we may be able to reduce this search

significantly. In the following, we first state how to solve the problem for a fixed

{θi}, then discuss how to search for these optimal {θi}.

8.4.2.1 Case: θ1 = θ2

In this case, we have the transmitter is on throughout the interval [0, D]. In this

case, the optimization problem can be rewritten as:

max
p(t),{θi}

∫ D

0

1

2
log(1 + p(τ))dτ

s.t.

∫ D

0

p(τ)dτ ≤ E − εpD

T (t) ≤ Tc (8.38)

This is the same problem as the single energy arrival case in [107] but with a modified

energy arrival equal to E − εpD. Hence, the solution can be obtained as in [107].

Note that this case will happen only if the energy is large enough to overcome the

power needed for processing cost.
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8.4.2.2 0 < θ1 and θ2 = D

Obtaining the solution for this case is similar to the previous case, however, here

the deadline will be θ1 instead, and the modified energy is equal to E − θ1εp.

8.4.2.3 0 < θ1 < θ2 < D

In this case, the problem in (8.30) can be equivalently written as:

max
p(t),α

∫ θ1

0

1

2
log(1 + p(τ))dτ +

∫ D

θ2

1

2
log(1 + p(τ))dτ

s.t.

∫ θ1

0

(εp + p(τ))dτ ≤ αE

∫ D

θ2

(εp + p(τ))dτ ≤ (1− α)E

T (t) ≤ Tc, p(t) ≥ 0, α ∈ [0, 1] (8.39)

For each fixed value of α, the above problem breaks down into two single epoch

temperature constrained problem as in [107]. However, the rise in temperature in

the first epoch due to [0, θ1] should be taken into consideration while solving [θ2, D].

Hence, finding the optimal α ∈ [0, 1] solves the problem.

8.4.3 Solving for the Optimal {θi}

We note that the problem is not jointly convex, hence using the KKTs may lead to

a local optimal solution. Thus, one optimal way for determining the solution is to

search over θ1, θ2; however, due to the previously derived properties, we can limit
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the computation complexity significantly. We assume without loss of generality that

there always exists an optimal policy for which θ∗1 > 0. This follows since we can

always shift the transmission to the beginning without violating the constraints, and

with the same objective function.

We now present our approach to determine the optimal {θi}. First, we begin by

assuming θ2 = D and solve for the optimal θ1 ∈ [0, D), which can be done using line

search on [0, θ2]. If for the optimal θ1, the optimal power policy is constant, then we

terminate the algorithm and this is the optimal solution. Otherwise, if the power

is decreasing or if the temperature constraint is tight for an interval of non-zero

measure, then according to Lemma 8.14, this implies that there has to be another

phase of transmission, i.e., θ2 = D cannot be optimal. Hence, we can decrease θ2

gradually and obtain the corresponding optimal θ1. If it happens that we get to a

constant power allocation of a duration equal to the unconstrained problem, then by

Lemma 8.13, this is an optimal solution, and the search is terminated. Otherwise,

we will have to continue searching and then take the highest optimal value recorded

and its corresponding {θi}.

8.5 Temperature Increase Due to Energy Harvesting: Problem in

(8.7)

In this section, we focus on the throughput maximization problem in (8.7) with

temperature increase due to the energy harvesting process. Note that this problem

is a direct generalization of the problem considered in [107]. In particular, the
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transmitter is allowed to determine the amount of harvested energy by determining

αi while this is not allowed in [107].

The problem in (8.7) is convex and the Lagrangian is:

L =

∫ D

0

1

2
log (1 + p(t)) dt

−
∫ D

0

β(t)

(∫ t

0

aebτp(τ)dτ +

h(t)∑

i=0

ebsiεhαiEiu(t− si)− Tδebt
)
dt

−
∫ D

0

λ(t)



∫ t

0

p(τ)dτ −
h(t)∑

i=0

αiEi


 dt (8.40)

The KKT optimality conditions are:

1

1 + p(t)
− ebt

∫ D

t

β(τ)dτ −
∫ D

t

λ(τ)dτ = 0 (8.41)

which gives

p(t) =

[
1∫ D

t
λ(τ)dτ + ebt

∫ D
t
β(τ)dτ

− 1

]+

(8.42)

We also have the following condition due to the derivative with respect to αi:

N∑

k=i

Ek

(
−
∫ D

0

β(t)ebskεhu(t− sk)dt+

∫ D

0

λ(t)dt

)
= 0 (8.43)

whenever 0 < α∗i < 1. If α∗i = 1, then the left hand side in (8.43) is non-negative

and if α∗i = 0, it is non-positive.

We first note that the transmitter has to harvest the energy that will be utilized
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and energy is never wasted.

Lemma 8.15 At t = D, we have
∫ D

0
p(τ)dτ =

∑N
i=0 αiEi.

Proof: Assume
∫ D

0
p(τ)dτ <

∑N
i=0 αiEi and let i∗ = max{i : αi > 0}. Then, αi∗

can be replaced with α̃i∗ < αi∗ so that
∫ D

0
p(τ)dτ =

∑i∗−1
i=0 αiEi + α̃i∗Ei∗ . This

replacement yields a lower temperature increase and a larger set for feasible power

policies p(t) and, therefore, yields larger throughput. �

We note that despite no energy waste property, the temperature constraint

may or may not be tight at t = D. Next, we specialize in the solution for the single

energy arrival case.

8.5.1 Single Energy Arrival

In the single energy arrival case, since non-zero energy is needed to perform trans-

mission, α∗ > 0. Therefore, the constraint in (8.43) reduces to the following:

−
∫ D

0

β(t)εhdt+

∫ D

0

λ(t)dt ≥ 0 (8.44)

with equality whenever α∗ < 1. For fixed αi, the problem is identical to that in [107]

with an arbitrary initial temperature. Therefore, the properties identified in [107]

for the single energy arrival case hold here as well in the current setting. Still, there

are additional properties that arise due to the fact that the transmitter is allowed

to determine the amount of harvested energy. We first note the following:

Lemma 8.16 If εh ≥ a
bD

or E ≤ TδbD
a

, then p(t) = α∗E
D

.
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Proof: If E ≤ TδbD
a

, then αE ≤ TδbD
a

. This follows immediately irrespective of α

and we select α∗ = min
{

Tδ
εhE

, 1
}

so that εhαE ≤ Tδ. By [107, Lemma 5], T (t) ≤ Tc

if p(t) ≤ Tδb
a

for all t ∈ [0, D]. Therefore, p(t) = αE
D

yields T (t) ≤ Tc and hence is

optimal. Now, assume εh ≥ a
bD

. Since the temperature increase due to harvested

energy at t = 0 is εhαE ≤ Tδ, we have α∗E
D
≤ Tδb

a
. By [107, Lemma 5], T (t) ≤ Tc

and therefore, p(t) = α∗E
D

is optimal. �

We note that for E ≤ Ecritical = bTδDe
bD

a(ebD−1)
, optimal power policy is the constant

power policy for εh = 0, see [107]. Next, we extend this property.

Lemma 8.17 If E ≤ Ecritical and εh ≤ Tδ
E
− a

bD

(
1− e−bD

)
then p(t) = E

D
is optimal.

Proof: We first note that T (t) expression under the constant power policy p(t) = αE
D

is:

T (t) = Te +
a

b

αE

D
+ αE

(
εh −

a

bD

)
e−bt (8.45)

Note that when 0 ≤ εh <
a
bD

, T (t) in (8.45) is monotone increasing. Therefore, in

this case, it suffices to guarantee that T (t) ≤ Tc at t = D. If E ≤ Ecritical and

εh ≤ Tδ
E
− a

bD

(
1− e−bD

)
≤ a

bD
then T (D) ≤ Tc when p(t) = E

D
. If α = 1 yields

T (D) ≤ Tc, then for λ(t) = λ̃δ(t−D) and β(t) = 0, (8.44) holds and hence α∗ = 1

and p(t) = E
D

is optimal. If εh >
a
bD

, then T (t) in (8.45) is monotone decreasing and

hence it suffices to guarantee T (0) = Te + εhE ≤ Tc. For εh ≤ Tδ
E
− a

bD

(
1− e−bD

)
,

we have εhE ≤ Tδ, and therefore, α∗ = 1 and p(t) = E
D

is optimal. �

Lemma 8.18 For TδbD
a
≤ E ≤ Ecritical and Tδ

E
− a

bD

(
1− e−bD

)
< εh <

a
bD

, optimal

209



p(t)

t

Tδb
a

D

increasing ǫh

Figure 8.2: Optimal power policy with increasing εh when E > Ecritical.

p(t) cannot be constant.

Proof: For TδbD
a
≤ E ≤ Ecritical and Tδ

E
− a

bD

(
1− e−bD

)
< εh <

a
bD

, T (t) is monotone

increasing and T (D) > Tc if p(t) = E
D

. Hence, if p(t) = αE
D

, then α < 1 is necessary

for T (D) ≤ Tc, and therefore, (8.44) has to be satisfied with equality if optimal

p(t) is constant. This, in turn, means
∫ D

0
β(τ)dτ > 0. However, the only possible

solution is β(t) = β̃δ(t −D) with β̃ > 0, and from (8.42), p(t) cannot be constant

in this case. �

We observe that if E > Ecritical, then constant power policy p(t) = α∗E
D

is

optimal only for εh ≥ a
bD

. In this case, as εh increases from 0 to a
bD

, the length of the

time interval in which the optimal power policy remains constant also increases. We

illustrate the variation of the optimal policy with the coefficient εh when E > Ecriticial

in Fig. 8.2.
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Figure 8.3: Optimal policy for the single energy arrival with temperature dependent
energy leakage.
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Figure 8.4: Illustration of the impact of a large leakage coefficient on the optimal
policy in the single epoch case.
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Figure 8.5: Optimal policy for three energy arrivals with temperature dependent
energy leakage.

8.6 Numerical Results

In this section, we present numerical examples to illustrate our results. We take the

environment temperature as Te = 37.

8.6.1 Temperature Dependent Energy Leakage

In this section, we present numerical results for the problem in (8.4). We set a =

b = 0.1. We first study the single energy arrival case. In this case, as proved

in Lemma 8.1, the transmit power is strictly increasing as shown in Figs. 8.3 and

8.4. However, in Fig. 8.4, we note that since the energy is small and leakage cost is

high, the transmitter remains silent at the beginning of the transmission, and begins

transmission only at t = 0.5. The temperature is increasing as shown in Lemma 8.2.
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Figure 8.6: Considering both θ1 and θ2 with processing cost.

The battery is empty only at the end.
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Figure 8.7: Considering only θ1 and setting θ2 = D with processing cost.

Then, we study the multiple energy arrival case. Fig. 8.5 shows that the power
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Figure 8.8: Considering both θ1 and θ2 with processing cost.

and temperature are strictly increasing. In Fig. 8.5, there are two positive jumps,

each at an energy arrival instant. Hence, energy of each slot is used individually,

and no energy is transferred between epochs.

8.6.2 Non-zero Processing Power

In this section, we present numerical results for the problem in (8.5). We set a = 0.1,

b = 0.3, εp = 20 and D = 2. We first study the setting in Fig. 8.6. The optimal value

in this setting is equal to 0.77. As shown in the figure, the temperature constraint

is tight at the end of transmission in each duration, hence power is decreasing in

both epochs. In the middle, when the transmitter is silent, the temperature drops to

create a margin for the second transmission epoch. If we do not allow splitting the

transmission into two epochs, i.e., θ2 = D, then Fig. 8.7 shows the optimal solution.
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Figure 8.9: Considering only θ1 and setting θ2 = D with processing cost.

The optimal value in this case is 0.7 which is strictly less than the two epoch case.

Then, we study another case in Fig. 8.8. In this case, the optimal transmission

power is constant. The optimal value in this case is equal to 0.82. Also, it is equal to

the solution when the temperature constraint is removed. If we restrict the system

to only one epoch as in Fig. 8.9, then we obtain strictly less optimal value which

is 0.78, as this forces the temperature constraint to be tight and the power to be

decreasing, and hence, giving less throughput.
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Figure 8.10: Temperature increase due to energy harvesting: single epoch.
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Figure 8.11: Temperature increase due to energy harvesting: multiple epochs.
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8.6.3 Temperature Increase Due to Energy Harvesting

In this section, we present numerical results for the problem in (8.7). We set a = 0.1

and b = 0.3. In Fig. 8.10, we show the optimal power in the single energy arrival case.

The power is monotonically decreasing, and all the admitted energy is consumed by

the end of the deadline. In Fig. 8.11, we show the multiple energy arrival case, where

the power is decreasing in the first epoch and the temperature is also decreasing in

order to give more temperature room for the second epoch.

In both single and multiple energy arrival cases, we note that there is a positive

temperature jump at the instants of the energy arrivals. This is due to the immediate

heat generated by the admitted energy at these instants due to the energy harvesting

process.

8.7 Conclusion

In this chapter, we studied three effects of the temperature on the power allocation

of a single-user energy harvesting system. We first studied a temperature dependent

energy leakage setting. In this setting, we showed that the optimal power allocation

is non-decreasing, i.e, the transmitter increases the transmission rate gradually as

it gets closer to the deadline. Next, we studied the effect of processing costs at

the receiver with a peak temperature constraint on the policy. We restricted our

attention to the case when there is only one silence (cooling) duration throughout

the communication session. We showed that the cooling period needs to be in the

middle of the total communication session and the optimal power allocation is non-
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increasing before and after the cooling period. We studied temperature increase

due to the energy harvesting process itself. We showed that it is optimal to admit

energy which will be totally used.
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CHAPTER 9

Energy Harvesting Communications under Explicit and Im-

plicit Temperature Constraints

9.1 Introduction

We study the optimal power allocation policies for single-user energy harvesting

communication setting, see Fig. 9.1, under temperature constraints. We consider

two discrete temperature models. Each model captures a different aspect of the tem-

perature effect on the energy harvesting communication system. The first model we

study, which we coin explicit temperature constraint model, the maximum peak

temperature is constrained by a fixed value. This constraint makes sure that the

device does not overheat beyond a certain temperature. Next, we study another

model which we coin implicit temperature constraint case. In this model, the tem-

perature affects the channel quality. This happens as the increase in temperature

is proportional to an increase in the variance of the thermal noise. We characterize

the optimal power allocation for both models.
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Figure 9.1: System model: the system heats up due to data transmission.

9.2 System Model

We consider an energy harvesting communication system in which the transmitter

harvests energy Ẽi in the ith slot, see Fig. 9.1. We consider the temperature model

considered in [30,93]. In this model, the temperature, T (t), evolves according to the

following differential equation,

dT (t)

dt
= ap(t)− b(T (t)− Te) (9.1)

where Te is the environment temperature, T (t) is the temperature at time t, p(t)

is the power, and a, b are non-negative constants. With the initial temperature

T (0) = Te, the solution of (9.1) is:

T (t) = e−bt
∫ t

0

ebτap(τ)dτ + Te (9.2)

In what follows we assume that the duration of each slot is equal to ∆, which

can take any positive value. Let us define Ti , T (i∆) as the temperature level by
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the end of the ith slot, Pi , P (i∆) as the power level used in the ith slot. Using

(9.2), Ti can be expressed as:

Ti =e−bi∆
∫ i∆

0

ebτap(τ)dτ + Te (9.3)

=e−b∆e−b(i−1)∆

∫ (i−1)∆

0

ebτap(τ)dτ + e−bi∆
∫ i∆

(i−1)∆

ebτaPidτ + Te (9.4)

=e−b∆(Ti−1 − Te) +
aPi
b

[
1− e−b∆

]
+ Te (9.5)

=αTi−1 + βPi + γ (9.6)

where α = e−b∆, β = a
b

[1− α] and γ = Te [1− α].

The effect of ∆ in (9.6) appears through the constants α, β, γ. As the slot

duration increases, the values of β, γ increase while the value of α decreases; as

the slot duration increases, the temperature at the end of the slot becomes more

dependent on the power transmitted within this slot and less dependent on the

initial temperature at the beginning of the slot.

We now eliminate the previous temperature readings in Ti making the tem-

perature a function of the powers only. We can do this by recursively substituting

Ti−1 in Ti in (9.6) to have

Tk = β

k∑

i=1

αk−iPi + Te (9.7)

This formula shows that the temperature at the end of each slot depends on the

power transmitted in this slot and all previous slots through an exponentially de-

caying temperature filter. We note that this is the same formula that was developed
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in [79] in which the slot duration was assumed to be unity; here we assume a general

slot duration which is equal to ∆. In what follows, we denote the vector of elements

by the bold letter without a subscript, i.e., for example, the vector of powers is

defined as P , [P1, . . . , PD].

9.3 Explicit Peak Temperature Constraint

We now consider the model in which we have an energy harvesting transmitter

with a peak temperature constraint. The noise variance is the same throughout the

communication session and is set to σ2. We consider a slotted system with a constant

power per slot. There are D slots. It follows from (9.4) (and also [30, equation (47)]),

that the temperature is monotone within the slot duration. Hence, for the peak

temperature constrained case, it suffices to constrain the temperature only at the

end of each slot; we begin the communication with the system having temperature

Te. In this case, the problem can be written as

max
P≥0

D∑

i=1

∆

2
log

(
1 +

Pi
σ2

)

s.t. Tk ≤ Tc

k∑

i=1

∆Pi ≤
k∑

i=1

Ẽi, ∀k (9.8)

where ∆ in the objective function and the energy constraint is to account for the

slot duration. In what follows, without loss of generality, we drop ∆ since it is just

a constant multiplied in the objective function and by defining Ei = Ẽi
∆

.
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We rewrite problem (9.8) making use of (9.7) as

max
P≥0

D∑

i=1

1

2
log

(
1 +

Pi
σ2

)

s.t.
k∑

i=1

αk−iPi ≤
Tc − Te
β

k∑

i=1

Pi ≤
k∑

i=1

Ei, ∀k (9.9)

In the last slot, either the temperature or the energy constraint has to be satis-

fied with equality. Otherwise, we can increase one of the powers until one of the

constraints is met with equality and this strictly increases the objective function.

This problem is a convex problem, which can be solved optimally using the

KKT conditions. The Lagrangian function for (9.9) is:

L =−
D∑

i=1

log

(
1 +

Pi
σ2

)
+

D∑

k=1

λk

(
k∑

i=1

αk−iPi −
Tc − Te
β

)

+
D∑

k=1

µk

(
k∑

i=1

Pi −
k∑

i=1

Ei

)
(9.10)

where λk and µk represent the Lagrange multipliers corresponding to the first set

and the second set of constraints in (9.9), respectively. Differentiating with respect

to Pi and equating to zero we get,

Pi =
1

α−i
∑D

k=i λkα
k +

∑D
k=i µk

− σ2 (9.11)
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Additionally, the corresponding complementary slackness conditions are

λk

(
k∑

i=1

αk−iPi −
Tc − Te
β

)
= 0 (9.12)

µk

(
k∑

i=1

Pi −
k∑

i=1

Ei

)
= 0 (9.13)

In the optimal solution, if neither constraint was tight in slot i < D, then the power

in slot i+1 is strictly less than the power in slot i. This follows from complementary

slackness in (9.12)-(9.13) since if at slot i, if both constraints were not tight then we

have λi = µi = 0 which, using (9.11), implies that Pi > Pi+1.

In the optimal solution, the optimal Lagrange multipliers are non-negative,

i.e., µi, λi ≥ 0. Hence, from (9.11), the following two equations are satisfied:

1

Pi + σ2
− 1

Pi+1 + σ2
≥ α−i

D∑

k=i

λkα
k − α−(i+1)

D∑

k=i+1

λkα
k (9.14)

1

Pi + σ2
−

D∑

k=i

µk ≥ α

(
1

Pi+1 + σ2
−

D∑

k=i+1

µk

)
(9.15)

where, in slot i, (9.14) is with equality when the energy constraint is tight and (9.15)

is with equality when the temperature constraint is tight. If (9.14) is not satisfied,

then this implies that µi < 0. Then, this means that we need to increase Pi+1 or

decrease Pi. The optimal solution can be found by searching over the feasible values

of λi, µi until we find any solution satisfying the KKTs. The feasible values for λi

and also µi is [0, 1/Ai], where Ai =
{∑i

k=1Ek,
Tc−Te
β

+ σ2
}

. Alternatively, solving

this problem can be done numerically by using standard techniques for constrained
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convex optimization. In particular, one can use projected gradient descent [102] to

determine the optimal Lagrange multipliers and corresponding power allocation.

In the following two subsections, we consider special cases of (9.9) which we

call energy limited case and temperature limited case. In the energy limited case, the

temperature budget is sufficiently large so that the problem reduces to that limited

by the energy constraints only. In the temperature limited case, energy budget

is sufficiently large so that the problem reduces to that limited by temperature

constraints only.

9.3.1 Energy Limited Case

In this subsection, we study a sufficient condition under which the system becomes

energy limited, i.e., when the temperature budget is sufficiently large so that the

temperature constraints are not binding. For all slots j in which the following is

satisfied

j∑

i=1

Ei ≤
Tc − Te
β

(9.16)

the temperature constraint cannot be tight. Intuitively, in this case, the incoming

energy is so small that it can never overheat the system. Therefore, the binding

constraint here is the availability of energy. In particular, when (9.16) is satisfied

for j = D, then the temperature constraint can be completely removed from the

system. To prove this, we assume for the sake of contradiction that we have at slot

225



j,
∑j

i=1Ei ≤ Tc−Te
β

while the temperature constraint is tight, which implies:

Tc − Te
β

=

j∑

i=1

αj−iPi <

j∑

i=1

Pi ≤
j∑

i=1

Ei (9.17)

which contradicts the assumption
∑j

i=1 Ei ≤ Tc−Te
β

. The strict inequality follows

since α < 1. The structure of the optimal solution for this case is studied in [1].

9.3.2 Temperature Limited Case

In this subsection, we first study a sufficient condition for problem (9.9) to be

temperature limited, i.e., when the energy budget is sufficiently large so that the

energy constraints are not binding. The energy constraint is never tight if the

following condition is satisfied:

Tc − Te
β

<

∑k
i=1Ei
k

, ∀k ∈ {1, . . . , D} (9.18)

Intuitively, the incoming energy is so large that there will never be a shortage of

energy. Therefore, the binding constraint here is overheating the system. For the

temperature limited case, an upper bound on the transmission powers is equal to

Tc−Te
β

. This follows because for any slot k we have
∑k−1

i=1 α
k−iPi + Pk ≤ Tc−Te

β
, thus

Pk can be at most equal to Tc−Te
β

. Hence, (9.18) is sufficient to satisfy
∑k

i=1 Pi <

∑k
i=1Ei.

In what follows, we study the structure of the optimal policy for the tempera-

ture limited case. In the last slot, the temperature constraint is satisfied with equal-
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ity. The optimal powers are monotonically decreasing in time. The proof follows

by contradiction. Assume for some index j that we have P ∗j < P ∗j+1. We now form

another policy, denoted as {P̄i}, which has P̄i = P ∗i for all slots i 6= j, j+1, while we

change the powers of slots j, j + 1 to be P̄j = P ∗j + δ and P̄j+1 = P ∗j+1 − δ for small

enough δ > 0. This δ always exists as P ∗j < P ∗j+1 implies that
∑j

k=1 α
j−kP ∗k <

Tc−Te
β

.

Since the objective function is strictly concave, this new policy yields a strictly higher

objective function, which contradicts the optimality of P ∗j < P ∗j+1. Now it remains

to check that with this new policy, the temperature constraint is still feasible for

any slot k ≥ j + 1 which follows from:

k∑

i=1, 6=j,j+1

αk−iP̄i + αk−jP̄j + αk−j−1P̄j+1 =
k∑

i=1,6=j,j+1

αk−iP ∗i + αk−jP̄j + αk−j−1P̄j+1

(9.19)

<
k∑

i=1,6=j,j+1

αk−iP ∗i + αk−jP ∗j + αk−j−1P ∗j+1

(9.20)

=
k∑

i=1

αk−iP ∗i (9.21)

<
Tc − Te
β

(9.22)

Since this is valid for any k ≥ j + 1, we can take in particular k = D. Now we can

increase any of the powers to satisfy the last inequality by equality which strictly

improves the objective function. Hence, this violates the optimality of any policy

which has P ∗i < P ∗i+1 for any i ∈ {1, . . . , D}.
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Moreover, the optimal temperature levels are non-decreasing in time. To prove

this, using (9.7), it suffices to show that:

k∑

i=1

αk−iP ∗i ≤
k+1∑

i=1

αk+1−iP ∗i , ∀k = {1, . . . , D − 1} (9.23)

We rewrite (9.23) as follows,

(1− α)
k∑

i=1

αk−iP ∗i ≤ P ∗k+1, ∀k = {1, . . . , D − 1} (9.24)

Since, we know that the last slot has to be satisfied with equality then we know

∑D
i=1 α

D−iP ∗i = Tc−Te
β

. Hence, for the constraint at k = D − 1 we have:

D−1∑

i=1

αD−1−iP ∗i ≤
Tc − Te
β

=
D∑

i=1

αD−iP ∗i (9.25)

which can be written as follows

(1− α)
D−1∑

i=1

αD−1−iP ∗i ≤ P ∗D (9.26)

which proves (9.24) for k = D − 1. Now assume for the sake of contradiction that

(9.24) is false for k = D − 2, i.e.:

P ∗D−1 < (1− α)
D−2∑

i=1

αD−2−iP ∗i (9.27)
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Substituting this in (9.26), we get:

P ∗D−1 = αP ∗D−1 + (1− α)P ∗D−1 (9.28)

< α(1− α)
D−2∑

i=1

αD−2−iP ∗i + (1− α)P ∗D−1 (9.29)

= (1− α)
D−1∑

i=1

αD−1−iP ∗i ≤ P ∗D (9.30)

But since we know that in the optimal policy the power sequence is monotone

decreasing, this is a contradiction and (9.24) holds for k = D − 2. The same

argument follows for any k < D − 2.

In the optimal solution, if the constraint is satisfied with equality for two

consecutive slots then the power in the second slot must be equal to (1 − α)Tc−Te
β

.

To obtain this, the two consecutive constraints which are satisfied with equality

are solved simultaneously for the power in the second slot. In addition, when the

temperature hits the critical temperature for the first time, the transmission power

in that slots will be strictly higher than (1 − α)Tc−Te
β

. To show this we denote the

time slot at which the temperature hits Tc for the first time as i∗. Hence, we have:

i∗−1∑

i=1

αi
∗−1−iPi <

Tc − Te
β

,
i∗∑

i=1

αi
∗−iPi =

Tc − Te
β

(9.31)

Using both equations in (9.31) simultaneously we have:

(1− α)
Tc − Te
β

< Pi∗ (9.32)
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which is the power of the slot at which temperature hits the critical temperature for

the first time.

Hence, when the temperature hits the critical temperature, the optimal trans-

mission power in all the subsequent slots becomes constant and equal to (1−α)Tc−Te
β

.

This follows since the temperature is increasing, thus whenever the constraint be-

comes tight, it remains tight for all subsequent slots. We now conclude that the

transmission power at all slots are bounded as follows

(1− α)
Tc − Te
β

≤ Pi ≤
Tc − Te
β

, ∀i = {1, . . . , D} (9.33)

The lower bound follows from the discussion above while the upper bound follows

from the feasibility of the constraints.

We now proceed to find the optimal power allocation. Since the problem is

convex, a necessary and sufficient condition is to find a solution satisfying the KKTs.

The optimal power is given by setting µ = 0 in (9.11), which gives:

Pi =
αi∑D

k=i λkα
k
− σ2 (9.34)

It follows from the complementary slackness that if at slot i the temperature con-

straint is satisfied with strict inequality then Pi+1 < Pi.

To this end we present an approach to obtain the optimal powers. We use

line search to search for the time slot at which the temperature constraint becomes

tight, which we denote as i∗. Then, slots i = {i∗ + 1, . . . , D} have power allocation
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equal to (1−α)Tc−Te
β

, while the power allocations for slots i = {1, . . . , i∗} are strictly

decreasing and strictly higher than (1 − α)Tc−Te
β

. Hence, we initialize i∗ = D and

search for a solution for the powers satisfying the KKTs. If we obtain a solution

then we stop and this is the optimal solution. Otherwise, we decrease i∗ by one and

repeat the search.

9.4 Implicit Temperature Constraint

We now consider the case when the dynamic range of the temperature increases.

In this case, we need to consider the change in the thermal noise of the system

due to temperature changes. The thermal noise is linearly proportional to the

temperature [108, Chapter 11]. The problem can be written as:

max
P≥0

D∑

i=1

1

2
log

(
1 +

Pi
cTi−1 + σ2

)

s.t.
k∑

i=1

Pi ≤
k∑

i=1

Ei, ∀k (9.35)

where c is the proportionality constant between the thermal noise and the temper-

ature. In this setting, the noise variance in each slot is determined by the value of

the temperature at the beginning of the slot. Using (9.7) in (9.35), the problem can

now be written in terms of only transmission powers as follows:

max
P≥0

D∑

i=1

1

2
log


1 +

Pi

c
(
β
∑i−1

k=1 α
i−1−kPk + Te

)
+ σ2



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s.t.
k∑

i=1

Pi ≤
k∑

i=1

Ei, ∀k (9.36)

where we define SINRi ,
Pi

cβ
∑i−1
k=1 α

i−1−kPk+cTe+σ2
. In what follows, in order to simplify

the notation, we assume without loss of generality that cβ = 1 and we define Γj ,

cTe+σ2

αj
. Therefore, SINRi inside the log in (9.36) becomes SINRi = Pi∑i−1

k=1 α
i−1−kPk+Γ0

.

The problem in this form highlights the effect of previous transmissions on

subsequent slots. The transmission power at time i appears as an interfering term

at slot indices greater than i with an exponentially decaying weight due to the

filtering in the temperature. Using (9.7), the maximum temperature the system can

reach is equal to Tmax , β
∑D

i=1 Ei+Te. This occurs when the transmitter transmits

all its energy arrivals in the last slot. The value of Tmax is useful in determining the

maximum possible temperature for the system. As we show, in the low SINR case

in Section 9.4.1, the optimal power allocation results in system temperature equal

to Tmax.

The problem in (9.36) is non-convex and determining the global optimal solu-

tion is generally a difficult task. Next, we adapt the signomial programming based

iterative algorithm in [83] for the energy harvesting case. This algorithm provably

converges to a local optimum point. The problem in (9.36) can be written in the

following equivalent signomial minimization problem

min
P≥0

D∏

i=1

( ∑i−1
k=1 α

i−1−kPk + Γ0∑i−1
k=1 α

i−1−kPk + Γ0 + Pi

)

s.t.
k∑

i=1

Pi ≤
k∑

i=1

Ei, ∀k (9.37)
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The objective function in (9.37) is a signomial function which is a ratio between

two posynomials. Note also that the energy harvesting constraints in (9.37) are

posynomials in Pi.

In each iteration we approximate the objective by a posynomial. We do this

by approximating the posynomial in the denominator by a monomoial. Appropri-

ate choice of an approximation which satisfies the conditions in [109] guarantees

convergence to a local optimal solution. Let us denote the posynomial in the ith

denominator evaluated using a power vector P by ui(P), i.e., we have

ui(P) ,
i+1∑

k=1

vik(P) =
i−1∑

k=1

αi−1−kPk + Pi + Γ0 (9.38)

where for k = {1, . . . , i−1} we have vik(P) = αi−1−kPk, v
i
i(P) = Pi and vii+1(P) = Γ0.

Using the arithmetic-geometric mean inequality, we approximate each posyn-

omial by a monomial as follows:

ui(P) ≥
(
i−1∏

k=1

(
αi−1−kPk

θik

)θik)(Pi
θii

)θii ( Γ0

θii+1

)θii+1

(9.39)

where
∑i+1

k=1 θ
i
k = 1 for all i = {1, . . . , D}.

We now solve the problem in (9.37) iteratively. First, we initialize the power

allocation to any feasible power allocation P0. Then, we approximate the posyno-

mials ui(P
0) using the arithmetic-geometric mean inequality shown above. In each

iteration j, where the power allocation is Pj, we choose θik as a function of the
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Algorithm 1 Single-condensation method

1: Initialize Pi = Ei
2: repeat
3: For k = {1, . . . , i− 1}, calculate vik(P) = αi−1−kPk
4: Set vii+1(P) = Γ0 and vii(P) = Pi
5: Calculate ui(P) using (9.38)
6: Calculate θik(P

j) according to (9.40)
7: Approximate ui(P) using (9.39)
8: Solve problem (9.37) using the approximate objective function calculated in

Step 7
9: until Convergence to a local optimal solution

posynomials and the current power allocation as follows:

θik(P
j) =

vik(P
j)

ui(Pj)
(9.40)

which satisfies
∑i+1

k=1 θ
i
k(P

j) = 1. This choice of θik(P
j) guarantees that the itera-

tions converge to a KKT point of the original problem [109]. In particular, for each

iteration this is a geometric program and as required by [109], this can be trans-

formed into a convex problem; see also [83]. A pseudo code for this procedure is

provided in Algorithm 1. In each iteration, the computation complexity of finding

the solution of the convex problem is polynomial in the number of constraints and

the number of variables, see [110].

The above iterative approach converges to a local optimal solution. Achieving

the global optimal solution is of exponential complexity. Alternatively, to get to the

optimal solution, an approach introduced in [111] can be used. This approach solves
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the following problem iteratively:

min
P≥0,t

t

s.t. O(P) ≤ t

t ≤ t0
α

k∑

i=1

Pi ≤
k∑

i=1

Ei, ∀k (9.41)

where O(P) is the objective function of (9.37) and α is chosen to be a number which

is slightly more than 1 and t0 can be initialized to be the solution of problem (9.37)

and then updated as the optimal solutions resulting from (9.41).

This completes our treatment of the general problem for the case of implicit

temperature constraints. In the following two subsections, we consider the two

special cases of low and high SINR, where we are able to provide more structural

solutions.

9.4.1 Low SINR Case

The low SINR case occurs when the incoming energies are small with respect to

the noise variance. In this case, an approximation to the logarithm function in the

objective function is the linear function, i.e., log(1 + x) ≈ x. Hence, the objective

function of (9.36) can be written as follows, c.f. [112, equation (14)]:

D∑

i=1

Pi∑i−1
k=1 α

i−1−kPk + Γ0

(9.42)
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We next show that the optimal power allocation dictates that the energy is saved

till the last slot and transmitted then, i.e.,

P ∗i = 0, i ≤ D − 1, and P ∗D =
D∑

i=1

Ei (9.43)

This can be proved by developing an upper bound as follows:

D∑

i=1

Pi∑i−1
k=1 α

i−1−kPk + Γ0

≤
D∑

i=1

Pi
Γ0

(9.44)

≤
∑D

i=1 Ei
Γ0

(9.45)

and noting that this bound is achieved by the claimed power allocation.

A sufficient condition to have a low SINR regime is
∑D

i=1Ei � Γ0. The

temperature at the end of the communication session is equal to Tmax = β
∑D

i=1Ei+

Te. Also, the optimal power allocation does not need the non-causal knowledge of

the energy arrival process, as all the harvested energy is used in the last slot.

9.4.2 High SINR Case

When the values of c and σ are small, SINR is high and we approximate the objective

function by ignoring 1 inside the logarithm, i.e., log(1 + x) ≈ log(x). Hence, the

problem in (9.36) can be written as:

max
P≥0

D∑

i=1

1

2
log

(
Pi∑i−1

k=1 α
i−1−kPk + Γ0

)
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s.t.
k∑

i=1

Pi ≤
k∑

i=1

Ei, ∀k (9.46)

The problem in (9.46) has the Lagrangian:

L = −
D∑

i=1

log

(
Pi∑i−1

k=1 α
i−1−kPk + Γ0

)
+

D∑

k=1

µk

(
k∑

i=1

Pi −
k∑

i=1

Ei

)
(9.47)

Taking the derivative with respect to Pi gives,

∂L
∂Pi

= − 1

Pi
+

D∑

j=i+1

αj−1−i
∑j−1

k=1 α
j−1−kPk + Γ0

+
D∑

k=i

µk (9.48)

and then equating to zero gives:

1

Pi
−

D∑

j=i+1

αj−1−i
∑j−1

k=1 α
j−1−kPk + Γ0

=
D∑

k=i

µk (9.49)

Although the problem in (9.46) is non-convex, it is a geometric program and

we show next that any local optimal solution for this problem is globally optimal.

To show this, we consider the following equivalent problem:

min
x∈RD

D∑

i=1

1

2
log

(∑i−1
k=1 α

i−1−kexk + Γ0

exi

)

s.t.
k∑

i=1

exi ≤
k∑

i=1

Ei, ∀k (9.50)

This equivalent problem is obtained by substituting Pi = exi and letting xi ∈ R. The

equivalent problem in (9.50) is a convex optimization problem since the objective
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is a convex function in the form of a log-sum-exponent and the constraint set is a

convex set [102]. Hence, the KKTs are necessary and sufficient for global optimality.

We show this as follows.

We first write the Lagrangian of problem (9.50) as:

L = −
D∑

i=1

log

(
exi∑i−1

k=1 α
i−1−kexk + Γ0

)
+

D∑

k=1

νk

(
k∑

i=1

exi −
k∑

i=1

Ei

)
(9.51)

Taking the derivative with respect to xi gives,

∂L
∂xi

= −1 +
D∑

j=i+1

αj−1−iexi∑j−1
k=1 α

j−1−kexk + Γ0

+ exi
D∑

k=i

νk (9.52)

which provides the following necessary condition:

e−xi −
D∑

j=i+1

αj−1−i
∑j−1

k=1 α
j−1−kexk + Γ0

=
D∑

k=i

νk (9.53)

Using the transformation xi = log(Pi) and setting νi = µi, we observe that any

solution of (9.49) satisfies (9.53). Also, complementary slackness corresponding to

(9.47) is satisfied if and only if it is satisfied by those for (9.51). Since the equivalent

problem in (9.50) is convex, any solution satisfying the KKTs is global optimal

and through the transformation xi = log(Pi), µi = νi is also global optimal in the

original problem in (9.46).

The equivalent problem in (9.50) can be solved using any convex optimization

toolbox. We further note that the equivalent problem and the original problem

both have unique solutions. More generally, for any fixed multipliers µ, the primal
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problem of minimizing the Lagrangian function in (9.47) has a unique solution. This

follows because the Lagrangian function in (9.51) is strictly convex as it is formed

with strictly convex constraint functions and a convex objective function; for fixed

Lagrange multipliers the Lagrangian function in (9.51) is strictly convex.

We now focus on the KKT conditions of the original problem (9.46). Our

ultimate goal in the following discussion is to show that the optimal solution of

(9.46) has a power allocation which is monotone increasing in time index i, that is,

Pi ≤ Pi+1. We prove this by showing that the solution of the corresponding KKTs

in (9.49) with an arbitrary µ ≥ 0 is monotone increasing in time index i, hence,

this also follows for the optimal µ∗. We provide the proof for this fact in Appendix

9.8.1. The proof is enabled by developing an algorithm with an update rule which

satisfies the properties of standard interference functions introduced in [113]. Hence,

from [113, Theorem 2], the algorithm converges to a unique fixed point. We then

show that the power allocation at this unique fixed point is monotone increasing in

time. Then, from strict convexity of this problem, we know that KKTs in (9.49)

have a unique solution. Hence, our algorithm converges to the unique solution of

the KKTs in (9.49) and this solution has monotone increasing power allocations.

When compared to its predecessors in [1–5, 8], our method yields a more general

class of problems in which optimal power allocation is monotone increasing under

energy harvesting constraints. We also note that due to [30, Lemma 3] and since

the powers are monotone increasing, the temperature sequence T ∗i resulting from

the optimal power allocation P ∗i is also monotone increasing.

In order to obtain the optimal solution, one has to determine the optimal
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Lagrange multipliers µ∗ and the power allocation P. This can be done numerically

by using standard techniques for constrained convex optimization. In particular,

one can use projected gradient descent [102] in the equivalent convex problem in

(9.50) to determine µ∗ and corresponding power allocation.

9.5 Explicit and Implicit Temperature Constraints

In this section, we consider the case when both implicit and explicit temperature

constraints are active. In this case, the temperature controls the channel quality

and is also constrained by a critical level. This problem is in the following form:

max
P≥0

D∑

i=1

1

2
log

(
1 +

Pi∑i−1
k=1 α

i−1−kPk + Γ0

)

s.t.
k∑

i=1

αk−iPi ≤
Tc − Te
β

k∑

i=1

Pi ≤
k∑

i=1

Ei, ∀k (9.54)

which is a non-convex optimization problem. We can tackle the challenge due to

non-convexity here as we did in Section 9.4. In particular, in the general SINR

case, one can reach a local optimal solution for problem (9.54) using the signomial

programming approach described there. On the other hand, in the low SINR case,

the objective function in (9.54) is approximated by
∑D

i=1
Pi∑i−1

k=1 α
i−1−kPk+Γ0

and it is

a fractional program which can in general be mapped to a linear program.

The problem in (9.54) possesses some of the properties of the problem with

explicit temperature constraints only studied in Section 9.3. In particular, if the
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Figure 9.2: Simulation for explicit temperature constraint: general case.

temperature constraint is tight for two consecutive slots in the optimal solution,

then the power level in the second slot must be equal to Tc−Te
β

(1−α). Additionally,

when the temperature at the end of a slot hits Tc for the first time, then the power in

that slot must be strictly higher than Tc−Te
β

(1− α). We also note that the problem

reduces to the case of implicit temperature constraint when the energy arrivals

satisfy
∑D

i=1Ei ≤ Tc−Te
β

as the explicit temperature constraint is never tight in this

case.

In the high SINR case, we have log(1 + x) ≈ log(x) and the problem (9.54)

is a geometric program which can be transformed to an equivalent convex problem.

In general, the optimal power sequence does not have a monotonic structure in this

case. When harvested energies are sufficiently large and the energy constraints are

not binding, and if α ≤ βΓ0

Tc−Te+βΓ0
, then the optimal power sequence Pi is mono-
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Figure 9.3: Simulation for explicit temperature constraint, general case: optimal
achieved rate versus a.

tone decreasing and when the temperature hits Tc, the power becomes constant

and is equal to (Tc−Te)(1−α)
β

. Furthermore, under this condition the temperature is

monotone increasing. We provide the proof for these facts in Appendix 9.8.2.

9.6 Numerical Results

In this section we present some numerical results. Unless stated otherwise, we

assume σ2 to be equal to unity throughout this section. We first consider the explicit

peak temperature constrained model considered in Section 9.3. As shown in Fig.

9.2, in general the power allocation does not possess any monotonicity. The optimal

power allocation is close to the minimum of the power allocation of the energy and

temperature limited cases. We also show in Fig. 9.3 the optimal rate versus different
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Figure 9.4: Simulation for explicit temperature constraint, general case: optimal
rate versus b.

values of a. As the value of a increases, the value fo β increases and hence the effect

of the explicit temperature constraint becomes more evident and the rate decreases.

The opposite behavior is observed for b. As the value of b increases, the value of β

decreases and the effect of the explicit temperature constraint becomes less evident.

We study the temperature limited case considered in Section 9.3.2 in Fig. 9.5. When

the temperature is strictly increasing, the power is strictly decreasing. When the

temperature reaches the critical level, the power remains constant.
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Figure 9.5: Simulation for explicit temperature constraint: temperature limited
case.
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Figure 9.6: Simulation for implicit temperature constraint: general case.
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vergence of the achieved rate for the single condensation method.
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Figure 9.10: Simulation for implicit temperature constraint: high SINR case.
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Figure 9.11: Simulation for comparing the explicit and the implicit temperature
constraints versus b. We set the noise variance for the explicit constraint case to
unity and set the noise variance for the implicit constraint case to 0.5.

We then consider implicit temperature constrained model considered in Section

9.4. For the general SINR case, we initialize the signomial programming problem

using a feasible power allocation of Pi = miniEi in all slots. For the case shown in

Fig. 9.6, we show the convergence of the single condensation method in Fig. 9.7.

In this case, the single condensation method yields a value which is numerically

indistinguishable from the global optimal value in approximately 80 iterations. We

obtain the global optimal value by exhaustive search over the feasible set. In general,

we observe numerically that the single condensation method gives solutions very

close to the global optimal solution, however, there is no analytic guarantee for

this. For this case, the naive greedy policy yields an objective function equal to

0.0892, which is less than the optimal rate. We then compare the achieved rate
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versus the values of a and b in Fig. 9.8 and Fig. 9.9, respectively. As in the explicit

temperature case, the rate decreases with a and increases with b. As the value of a

increases, the denominator inside the logarithmic function of the objective function

in (9.36) increases, until the objective function converges to zero. As b increases the

denominator decreases until it converges to a constant which is equal to cTe + σ2.

We then present the high SINR case considered in Section 9.4.2 in Fig. 9.10. We

observe that the optimal power allocation is monotone increasing as proved. We then

compare the performance of the explicit and the implicit temperature constraint

cases in Fig. 9.11 when we set c = 1/2Te, set the noise variance for the explicit

constraint case to unity and set the noise variance for the implicit constraint case

to 0.5. As the value of b increases, the two systems converge to the same rate. This

is because as b increases, the explicit temperature constraint becomes loose and

the interference in the denominator of the implicit temperature constraint objective

function becomes unity. We also notice that in the implicit constraint case, the rate

gets near to its maximum value for small values of b, unlike the explicit constraint

case which gets to its maximum value approximately when b = 1.

Next, we study the case when implicit and explicit temperature constraints are

simultaneously active as considered in Section 9.5. For the high SINR case, unlike

the implicit temperature constrained case, we observe in Fig. 9.12 that the power

sequence does not possess a monotonic structure. We then study the high SINR case

when the system is temperature limited in Fig. 9.13. The optimal power allocation

is monotone decreasing, corresponding temperature is monotone increasing and the

power is constant when the temperature reaches the critical level.
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Figure 9.12: Simulation for implicit and explicit temperature constraint: high SINR
case.

9.7 Conclusion

We considered explicit and implicit temperature constraints in a single-user energy

harvesting communication system in discrete time. Under explicit temperature con-

straints, the temperature is imposed to be less than a critical level. In this case, we

studied optimal power allocation for multiple energy arrivals. For the temperature

limited regime, we showed that the optimal power sequence is monotone decreasing

while the temperature of the system is monotone increasing. Next, we considered an

implicit temperature constraint where the temperature level affects channel quality.

We studied the general case as well as the high and low SINR cases. In the low

SINR case, we showed that the optimal allocation dictates the transmitter to save

its harvested energy till the last slot and transmit all the harvested energy then. In
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Figure 9.13: Simulation for implicit and explicit temperature constraint: tempera-
ture limited high SINR case.

the high SINR case, we observed that the problem is a geometric program and we

expanded upon its equivalent convex version to show that optimal power allocation

is monotone increasing in time. Finally, we considered the case in which implicit and

explicit temperature constraints are simultaneously active. We identified a sufficient

condition on the system parameters that results in a monotone decreasing optimal

power allocation. Our current investigation leaves several directions to purse in

future research, such as, optimal power allocation for the finite battery case; on-

line power allocation under explicit and implicit temperature constraints; explicit

and implicit temperature constraints in multi-user settings such as broadcast and

multiple access channels.
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9.8 Appendix

9.8.1 Proof of the monotonicity of optimal power allocation of Prob-

lem (9.46)

In this appendix, we present the proof for the monotonicity of the optimal power

allocation for the problem in (9.46). We rewrite its KKTs in (9.49) as follows:

1

Pi
=

D∑

k=i

µk +
D∑

j=i+1

αj−1−i
∑j−1

k=1 α
j−1−kPk + Γ0

(9.55)

Based on this equation, for a fixed µ, we now define an update rule to solve for the

power allocation Pi iteratively as follows:

Pi(P) ,
1∑D

k=i µk +
∑D

j=i+1
αj−1−i∑j−1

k=1 α
j−1−kPk+Γ0

(9.56)

where the function Pi(P) calculates the updated power Pi when the powers are equal

to P. The algorithm proceeds as follows: We first initialize the power allocation

with any arbitrary non-negative power allocation P0, where the superscript denotes

the iteration index. We then substitute with P0 in (9.56) to obtain the new power

allocation P1, where P1 , (P1(P0), . . . , PD(P0)). Similarly, we use the powers P1

to obtain the updated powers P2, and repeat this process. We show next that this

algorithm converges to a unique fixed point.

To show that these updates converge to a unique fixed point, we first present

the following definition of a standard interference function [113]:
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Definition 9.1 Interference function I(P) is standard if for all P ≥ 0 the following

properties are satisfied:

• Positivity I(P) > 0.

• Monotonicity: If P ≥ P′, then I(P) ≥ I(P′).

• Scalability: For all θ > 1, θI(P) ≥ I(θP).

Now, we want to show that the update rule I(P) = (P1(P), P2(P), . . . , PD(P))

is a standard function, i.e., it satisfies the three properties above.

The positivity property follows from,

Pi(P) ≥ 1∑D
j=i µj

≥ 1

µD
> 0 (9.57)

where µD > 0 follows from (9.49) with i = D and since the power PD is finite due

to the finite energy constraint.

The monotonicity property follows since the denominator of Pi(P) is a de-

creasing function of the powers, and hence, Pi(P) is an increasing function of the

powers.

The scalability property follows from the following for θ > 1,

Pi(θP) =
1∑D

k=i µk +
∑D

j=i+1
αj−1−i∑j−1

k=1 α
j−1−kθPk+Γ0

(9.58)

=
θ

θ
∑D

k=i µk +
∑D

j=i+1
αj−1−i∑j−1

k=1 α
j−1−kPk+

Γ0
θ

(9.59)

<
θ∑D

k=i µk +
∑D

j=i+1
αj−1−i∑j−1

k=1 α
j−1−kPk+Γ0

(9.60)
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= θPi(P) (9.61)

This completes the proof that I(P) = (P1(P), P2(P), . . . , PD(P)) in (9.56) is a

standard interference function.

From [113, Theorem 2], we now conclude that the algorithm in (9.56) converges

to a unique fixed point. From the equivalence of (9.46) to the strictly convex problem

in (9.50), we know that there is only one unique solution to the equations in (9.49),

and hence, the algorithm in (9.56) converges to the unique power allocation which

solves the KKTs in (9.49).

It now remains to show that at this unique fixed point, the power allocation

is monotone increasing in time. We prove this by showing that if we begin with

any arbitrary monotone increasing power allocation, the update algorithm retains

this ordering for the power allocation in each iteration, and hence, in the limit. To

show this, let us assume that we have an arbitrary power vector P which satisfies

Pi ≤ Pi+1 for all i = {1, . . . , D − 1}. We want to show that Pi(P) ≤ Pi+1(P). This

follows from:

Pi+1(P) =
1∑D

k=i+1 µk +
∑D

j=i+2
αj−2−i∑j−1

k=1 α
j−1−kPk+Γ0

(9.62)

≥ 1∑D
k=i µk +

∑D
j=i+2

αj−2−i∑j−1
k=1 α

j−1−kPk+Γ0

(9.63)

≥ 1∑D
k=i µk +

∑D
j=i+2

αj−2−i∑j−1
k=2 α

j−1−kPk+Γ0

(9.64)

=
1∑D

k=i µk +
∑D

j=i+2
αj−2−i∑j−2

k=1 α
j−2−kPk+1+Γ0

(9.65)
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≥ 1∑D
k=i µk +

∑D
j=i+2

αj−2−i∑j−2
k=1 α

j−2−kPk+Γ0

(9.66)

≥ 1∑D
k=i µk +

∑D−1
j=i+1

αj−1−i∑j−1
k=1 α

j−1−kPk+Γ0

(9.67)

≥ 1∑D
k=i µk +

∑D
j=i+1

αj−1−i∑j−1
k=1 α

j−1−kPk+Γ0

(9.68)

= Pi(P) (9.69)

where (9.63) follows by adding the non-negative Lagrange multiplier µi in the de-

nominator, (9.64) follows by neglecting positive terms in the denominator in the

second term of the denominator, (9.65) follows by replacing
∑j−1

k=2 by
∑j−2

k=1 and

changing the indices inside the summation accordingly, (9.66) follows since we have

Pk ≤ Pk+1, (9.67) follows by replacing
∑D

j=i+2 by
∑D−1

j=i+1 and changing the indices

inside the summation accordingly, and (9.68) follows by adding a positive term in

the denominator. Since in each iteration the power is monotone increasing, the

power allocation will also be monotone increasing at the fixed point.

9.8.2 Proof of the monotonicity of the optimal power allocation

of problem (9.54) when α ≤ βΓ0

Tc−Te+βΓ0

We start the proof by noting that the KKT conditions and the complementary slack-

ness conditions for the problem in (9.54) are necessary and sufficient for optimality.

Let us now define i∗1 as the first slot at which the temperature hits Tc. Since

µk = 0 for k = 1, . . . , i∗1 − 1, KKT conditions in the integer interval [1 : i∗1] are in
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the following form:

1

Pi
−

D∑

j=i+1

1∑j−1
k=1 α

i−kPk + Γj−1−i
= α−iW, i = 1, . . . , i∗1 (9.70)

where W ,
∑D

k=i∗1
αkµk. By comparing (9.70) for i and i+ 1 ≤ i∗1, we have:

1

Pi
− 1∑i

k=1 α
i−kPk + Γ0

=
α

Pi+1

(9.71)

We now rewrite (9.71) as follows:

Pi+1 = α

∑i−1
k=1 α

i−kPk + Pi + Γ0∑i−1
k=1 α

i−kPk + Γ0

Pi (9.72)

= α

(
1 +

Pi∑i−1
k=1 α

i−kPk + Γ0

)
Pi (9.73)

Now, due to the temperature constraints, we have Pi ≤ Tc−Te
β

for all i and Pi∑i−1
k=1 α

i−kPk+Γ0
≤

Tc−Te
βΓ0

. Hence, under the assumed condition on α, we have

α

(
1 +

Pi∑i−1
k=1 α

i−kPk + Γ0

)
≤ 1 (9.74)

This proves that Pi+1 ≤ Pi for all i ∈ [1 : i∗1 − 1], i.e., the optimal power allocation

is non-increasing in the slots {1, . . . , i∗1}.

Now, if the temperature drops below Tc after slot i∗1, say at slot i∗2, the KKT

conditions will have the form identical to (9.70) in the interval [i∗1 +1 : i∗2]. Following

the steps, we have that Pi+1 ≤ Pi for [i∗1 + 1 : i∗2], i.e., the optimal power allocation

is non-increasing in the slots {i∗1 + 1, . . . , i∗2}. It remains to show that the power
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allocation is also non-increasing between slots i∗1 and i∗1 + 1. Note that it follows

that the power in slot i∗1 is strictly higher than (Tc−Te)(1−α)
β

, while in slot i∗1 + 1 the

power can be no larger than (Tc−Te)(1−α)
β

as otherwise this violates the temperature

constraint. Hence, the power allocation between slots i∗1 and i∗1 + 1 is non-increasing

also. This concludes the proof of the first part. The proof of the monotonicity of

the resulting temperature follows similar to (9.23)-(9.30).
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CHAPTER 10

Energy Harvesting Multiple Access Channel with Peak Tem-

perature Constraints

10.1 Introduction

We study the optimal power allocation problem for a two-user energy harvesting

multiple access channel where the temperatures at the transmitters and the receiver

are constrained by a peak value; see Fig. 10.1. The temperature constraint ensures

that the nodes do not overheat as a result of data transmission. We first study the

optimal power allocation when the nodes are manufactured from different materials,

i.e., react differently to the incident transmission power, and have different peak

temperature constraints. Then, we derive sufficient conditions under which the

multiple access rate region collapses to a single pentagon.

10.2 System model

We consider the temperature model considered at [30, 93,114,115]. In the two-user

multiple access channel shown in Fig. 10.1, we assume that each node is placed in
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Figure 10.1: An energy harvesting multiple access channel with peak temperature
constraints. In general, the critical temperatures at the nodes are different.

a different physical environment with different heat characteristics in the presence

of electromagnetic radiation. The temperature at node j ∈ {1, 2, r}, Tj(t), is given

by the following differential equation

dTj(t)

dt
= ajpj(t)− bj(Tj(t)− Te) (10.1)

where Te is the environment temperature, pj(t) is the power at user j, and aj, bj

are non-negative constant parameters in the device temperature evolution model.

These parameters determine the speed of heating up and cooling down in the pres-

ence of applied electromagnetic radiation. For example, if aj is small, the de-

vice temperature will not change much by the electromagnetic radiations while if
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bi is small, the device will cool down quickly. Incident power at the receiver is

pr(t) = h1p1(t) + h2p2(t). For simplicity, we let h1 = h2 = 1.

With initial temperature Tj(0) = Te, the solution of (10.1) is:

Tj(t) = e−bjt
∫ t

0

ebjτajpj(τ)dτ + Te (10.2)

Similar to [114, 115], we consider temperature levels at discrete time instants i∆

where i is the slot index and ∆ is the slot length. We define Tji , Tj(i∆) as the

temperature level at the end of the ith slot, and Pji , pj(i∆) as the power level

used in the ith slot. Using (10.2), Tji is expressed as:

Tji =e−bji∆
∫ i∆

0

ebjτajpj(τ)dτ + Te (10.3)

=αjTj(i−1) + βjPji + γj (10.4)

where αj = e−bj∆, βj =
aj
bj

[1− αj] and γj = Te [1− αj].

The goal of this chapter is to determine the optimal power allocation policy

which achieves the largest departure region for the Gaussian multiple access chan-

nel under temperature and energy constraints. Assuming a unit variance for the

Gaussian noise, the achievable rates for the multiple access channel are given by:

C(P1i, P2i) =
{
(r1i, r2i) :r1i ≤

1

2
log (1+P1i)

r2i ≤
1

2
log (1+P2i)

r1i+r2i ≤
1

2
log (1+P1i+P2i)

}
(10.5)
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The aim is to maximize the cumulative achievable rate region, departure region, i.e.,

subject to a deadline D.

The maximum allowable peak temperature at node j ∈ {1, 2, r} is Tcj. The

peak temperature constraint can then be written as follows:

Tk({aj, bj, Tcj}, j = 1, 2, r) =
{

(T1i, T2i, Tri)
k
i=1 :T1k ≤ Tc1

T2k ≤ Tc2

Trk ≤ Tcr

}
(10.6)

Using (10.4), these temperature constraints can be written in terms of only the

transmission powers as follows:

Tk({aj, bj, Tcj}, j = 1, 2, r) =
{

(P1i, P2i)
k
i=1 :

k∑

i=1

αk−i1 P1i ≤
Tc1 − Te
β1

k∑

i=1

αk−i2 P2i ≤
Tc2 − Te
β2

k∑

i=1

αk−ir (P1i + P2i) ≤
Tcr − Te
βr

}
(10.7)

Moreover, power allocations P1i and P2i must satisfy the following energy causality

constraints:

Ek(E1,E2) =
{

(P1i, P2i)
k
i=1 :

k∑

i=1

P1i ≤
k∑

i=1

E1i,

k∑

i=1

P2i ≤
k∑

i=1

E2i

}
(10.8)

In this chapter, we characterize the maximum achievable multiple access rate

region under the constraints (10.5), (10.7) and (10.8). We first establish the con-
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vexity of the region resulting from these constraints in the following lemma:

Lemma 10.1 The optimal rate region formed by (10.5), (10.7) and (10.8) is a

convex region.

Proof: Let us consider two feasible power policies (P̄1, P̄2) and (P̃1, P̃2). Let us

also consider a new policy which is a convex combination of the previous two feasible

policies (P1,P2) = η(P̄1, P̄2)+(1−η)(P̃1, P̃2), where η ∈ [0, 1]. Since the constraints

(10.7) and (10.8) are linear, this new policy is also feasible in the constraints.

Now assume that policies (P1,P2), (P̄1, P̄2) and (P̃1, P̃2) achieve pentagons

C, C̄ and C̃, respectively. Now, choose two points q̄ and q̃ such that q̄ ∈ C̄ and q̃ ∈ C̃.

Then for any η ∈ [0, 1] we define q = ηq̄ + (1− η)q̃. We need to show that q is in C.

We show this as follows:

q1 = ηq̄1 + (1− η)q̃1 (10.9)

= η
D∑

i=1

1

2
log(1+P̄1i)+(1−η)

D∑

i=1

1

2
log(1+P̃1i) (10.10)

≤
D∑

i=1

1

2
log(1 + ηP̄1i + (1− η)P̃1i) (10.11)

=
D∑

i=1

1

2
log(1 + P1i) (10.12)

which is feasible in C. Similarly, we can show this for q2 and q1 + q2. This concludes

the proof. �

Since the region is a convex region, we can characterize it by considering its

tangent lines. The tangent lines can be expressed as µ1r1i+µ2r2i. Changing the ratio
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Figure 10.2: The rate region for the multiple access channel.

between µ1 and µ2 will change the slope of the tangent line. Hence, we formulate

the problem as follows:

max
{ri,Pi}

D∑

i=1

µ1r1i + µ2r2i

s.t. (P1i, P2i)
k
i=1 ∈ Tk({aj, bj, Tcj}, j = 1, 2, r)

(r1k, r2k) ∈ C(P1k, P2k)

(P1i, P2i)
k
i=1 ∈ Ek(E1,E2), ∀k ∈ {1, . . . , D} (10.13)

for µ1, µ2 ∈ [0, 1]. For each different value of µ1

µ2
we get a point on the boundary of the

optimal achievable rate region, the region is shown in Fig. 10.2, where Bj =
∑D

i=1 rji.

In what follows, we first study the general case. We show that for the single

slot scenario, i.e., when D = 1, that the rate region is a single pentagon generated

by the intersection of regions generated by the temperature and energy constraints.
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We then study the multiple slot setting and show that the optimal power allocation

can be obtained by using generalized water-filling algorithms. We then study the

temperature limited case and derive sufficient conditions under which the capacity

region collapses to a single pentagon.

10.3 General Case

In this section, we first study the single energy arrival. Then we study the multiple

energy arrival case.

10.3.1 Single Slot Analysis

In this subsection, we study the case when there is only one energy arrival and one

slot to use this incoming energy. The problem in this case is,

max
r1,r2,P1,P2

µ1r1 + µ2r2

s.t. (P1, P2) ∈ T ({aj, bj, Tcj}, j = 1, 2, r)

(P1, P2) ∈ E(E1, E2), (r1, r2) ∈ C(P1, P2) (10.14)

For this case, the optimal rate region is a single pentagon which we characterize in

the next lemma which is also illustrated in Fig. 10.3.

Lemma 10.2 The optimal rate region for problem (10.14) is a single pentagon and
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Figure 10.3: The rate region for the multiple access channel with a single energy
arrival.

is given by:

Cs(E1, E2) =

{
(r1, r2) :r1 ≤

1

2
log

(
1+min

{
E1,

Tc1 − Te
β1

})

r2 ≤
1

2
log

(
1+min

{
E2,

Tc2 − Te
β2

})

r1+r2 ≤
1

2
log

(
1+ min

{
E1 + E2,

Tcr − Te
βr

})}
(10.15)

The proof of Lemma 10.2 follows from the intersection of (10.7) and (10.8) for a

single slot setting, i.e., when D = 1. The rate region is a single pentagon as there

is only one transmission policy, which is to use the maximum allowable power in a

way to make sure that both energy and temperature constraints are satisfied.

264



10.3.2 Multiple Slot Analysis

Now, we study the multiple energy arrival case and characterize the optimal solution

for different parts of the rate region in Fig. 10.2.

10.3.2.1 Point a

Achieving points a (and similarly f) is similar to the single-user case in [115], how-

ever, here there is an extra constraint due to the difference between the transmitter

and receiver’s material. The problem can be written as follows:

max
{P2i}

D∑

i=1

1

2
log(1 + P2i)

s.t.
k∑

i=1

αk−i2 P2i ≤
Tc2 − Te
β2

k∑

i=1

αk−ir P2i ≤
Tcr − Te
βr

k∑

i=1

P2i ≤
k∑

i=1

E2i, ∀k ∈ {1, . . . , D} (10.16)

This problem is a convex optimization problem and the KKTs are necessary and

sufficient. The Lagrangian of this problem can be written as follows:

L =−
D∑

i=1

1

2
log(1+P2i)+

D∑

k=1

λ2k

(
k∑

i=1

αk−i2 P2i−
Tc2−Te
β2

)

+
D∑

k=1

λrk

(
k∑

i=1

αk−ir P2i −
Tcr − Te
βr

)
+

D∑

k=1

ν2k

(
k∑

i=1

P2i −
k∑

i=1

E2i

)
(10.17)
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Differentiating with respect to P2i gives the optimal power as:

P2i =

(
1∑D

k=i λ2kα
k−i
2 + λrkαk−ir +

∑D
k=i ν2k

−1

)+

(10.18)

which can be solved by directional generalized water-filling. We next specify a

special case in the following lemma.

Lemma 10.3 When either αr < α2 and Tc2−Te
β2
≤ Tcr−Te

βr
or αr ≤ α2 and Tc2−Te

β2
<

Tcr−Te
βr

is satisfied, we have λrk = 0 and the problem reduces to the single-user problem

in [115].

Proof: Let us consider the case when αr < α2 and Tc2−Te
β2
≤ Tcr−Te

βr
are satisfied. This

implies the following:

k∑

i=1

αk−ir P2i <
k∑

i=1

αk−i2 P2i ≤
Tc2 − Te
β2

≤ Tcr − Te
βr

(10.19)

From complementary slackness, this implies that λrk = 0. The proof follows similarly

for the other case. �

The problem reduces to a single-user problem when either α2 < αr and Tcr−Te
βr
≤

Tc2−Te
β2

or α2 ≤ αr and Tcr−Te
βr

< Tc2−Te
β2

.

10.3.2.2 Point b

We then study point b (or similarly point e). Point b represents the maximum rate

the first user can achieve while user 2 is achieving its single-user rate. Hence, to
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achieve point b, we need to fix the second user’s power allocation to be the optimal

single-user power allocation P s
2i and then solve for the maximum rate for user 1.

This can be done by solving the following optimization problem:

max
{P1i}

D∑

i=1

1

2
log

(
1 +

P1i

1 + P s
2i

)

s.t.
k∑

i=1

αk−i1 P1i ≤
Tc1 − Te
β1

k∑

i=1

αk−ir (P1i + P s
2i) ≤

Tcr − Te
βr

k∑

i=1

P1i ≤
k∑

i=1

E1i, ∀k (10.20)

Here, the power suffers from a different fading of 1
1+P s2i

in each slot. Moreover,

there is a time-varying peak temperature constraint. Using a Lagrange analysis, the

optimal power allocation is given by:

P1i=

(
1∑D

k=i λ1kα
k−i
1 +λrkαk−ir +

∑D
k=i µk

−1− P s
2i

)+

(10.21)

The optimal solution can be found using generalized water-filling. Similar to Lemma

10.3, we conclude that if either α1 < αr and Tcr−Te
βr

≤ Tc1−Te
β1

or α1 ≤ αr and

Tcr−Te
βr

< Tc1−Te
β1

we have λ1k = 0.

Also note that if for any slot m we have
∑m

i=1 α
m−i
r P s

2i = Tcr−Te
βr

, this implies

that in the optimal solution of (10.20) we have P1i = 0,∀i ∈ {1, . . . ,m}.
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10.3.2.3 The points between b and c

The points between b and c can be achieved by setting µ2 > µ1 > 0. In this case,

we are aiming to characterize the left corner point of the resulting pentagon. The

problem in this case is written as:

max
{P1i},{P2i}

D∑

i=1

(µ2−µ1)
1

2
log (1+P2i)+µ1

1

2
log (1+P1i+P2i)

s.t. (P1i, P2i)
k
i=1∈Tk({aj, bj, Tcj}, j = 1, 2, r)

(P1i, P2i)
k
i=1∈Ek(E1,E2), ∀k∈{1, . . . , D} (10.22)

Similar to the previous cases, the optimal power allocation can be obtained using

generalized water-filling.

10.3.2.4 Sum-rate (the Line Between c and d)

For the sum-rate, we have µ1 = µ2 > 0 and the problem can be written as:

max
{Pi}

D∑

i=1

1

2
log (1 + P1i+P2i)

s.t. (P1i, P2i)
k
i=1 ∈ Tk({aj, bj, Tcj}, j = 1, 2, r)

(P1i, P2i)
k
i=1 ∈ Ek(E1,E2), ∀k ∈ {1, . . . , D} (10.23)

The solution in general can be found using generalized water-filling. The problem

reduces to a single-user problem in terms of of the sum of the power, i.e., P1i + P2i,

when either max{α1, α2} < αr and Tcr−Te
βr
≤min{Tc1−Te

β1
, Tc2−Te

β2
} or max{α1, α2} ≤ αr
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and Tcr−Te
βr

< min{Tc1−Te
β1

, Tc2−Te
β2
} is satisfied. The proof follows similar to Lemma

10.3.

10.4 Temperature Limited Case

In this section, we study the case when the system is temperature limited, i.e., when

the energy constraint is never binding. This occurs when the following is satisfied:

Tjc − Te
β

<

∑k
i=1Eji
k

, ∀k ∈ {1, . . . , D}, j = 1, 2 (10.24)

The problem in this case can be written as:

max
{ri,Pi}

D∑

i=1

µ1r1i + µ2r2i

s.t. (P1i, P2i)
k
i=1 ∈ Tk({aj, bj, Tcj}, j = 1, 2, r)

(r1k, r2k) ∈ C(P1k, P2k), ∀k (10.25)

We first study the case when ai, bi, Tic are not equal.

10.4.1 General Case

In this part, we first study a general characteristic of the rate region. We first have

the following lemma.

Lemma 10.4 At any point of the boundary of the optimal achievable rate region,

for any two slots, either P1i or P2i is non-increasing or both are non-increasing.
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Furthermore, for the region between points b and e, P1i + P2i is non-increasing

throughout.

Proof: To prove this, we need to show it in each part of the rate. We begin with

the sum-rate region. In this case, the problem can be written as follows:

max
{Pi}

D∑

i=1

1

2
log (1 + P1i + P2i)

s.t. (P1i, P2i)
k
i=1∈Tk({aj, bj, Tcj}, j = 1, 2, r), ∀k (10.26)

Now, assume for the sake of contradiction that the optimal powers for slots j < k

satisfy P1j + P2j < P1k + P2k. This means that at least one of the powers is also

increasing. Assume without loss of generality that it is at user 2, i.e., P2j < P2k. We

can then decrease P2k by a small enough δ and increase P2j with the same amount.

This remains feasible in all the constraints as this makes room for more temperature

budget. Moreover, due to concavity of the objective function this strictly increases

the objective function. Hence, Pt , P1i + P2i has to be non-increasing. This also

proves that at least one of the powers has to be non-increasing, as otherwise Pt will

be equal to the sum of two increasing sequences which has to be increasing also.

We now consider the case when µ1 > µ2. In this case, the problem can be

written as:

max
{ri,Pi}

D∑

i=1

(µ1−µ2)
1

2
log (1+P1i)+µ2

1

2
log (1 + P1i+P2i)

s.t. (P1i, P2i)
k
i=1∈Tk({aj, bj, Tcj}, j = 1, 2, r), ∀k (10.27)
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The proof again follows by contradiction following the same steps as the previous

case. This covers the statement for the curve between points b and e

It remains to consider the optimal individual power allocation for the curve

between points a and b (or equivalently point e) in Fig. 10.2. At this point, the

second user is transmitting with its single-user power allocation, and it follows from

[115] that it is non-increasing. �

10.4.2 Identical Temperature Parameters

In this part, we consider the case when all nodes have identical temperature dy-

namics parameters, i.e., ai = a, bi = b. We still allow different critical temperature

constraints in each node.

In what follows we study sufficient conditions for which the multiple access

rate region reduces to a single pentagon.

Lemma 10.5 The optimal rate region is a single pentagon when the following con-

dition is satisfied:

max{Tc1, Tc2}−Te≤(Tcr−Te) (1−α)≤(1−α) min{Tc1, Tc2} (10.28)

Proof: To prove this, we need to show that point b is the same as point c. To

show this we need to first obtain the optimal sum-power allocation achieving the

region between c and d. Then, we need to show that the optimal single user power

allocation is feasible in the optimal sum-power allocation. This will imply that point
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c is at least the same height as point b, which implies that points b and c are the

same point.

We first characterize the optimal power allocation for the sum-rate case. When

the following condition is satisfied:

Tcr ≤ min{Tc1, Tc2} (10.29)

the sum-rate problem reduces to only one constraint which is at the receiver. This

follows because we have the following:

k∑

i=1

αk−i max{P1i, P2i} ≤
k∑

i=1

αk−i (P1i + P2i)

≤ Tcr − Te
β

≤ min{Tc1, Tc2} − Te
β

(10.30)

Hence, whenever the temperature constraint is satisfied at the receiver, it will be

also satisfied at both transmitters. Hence, this is reduced to the single-user problem

studied in [115] with the optimization variable as P1i + P2i. From the properties of

the single-user power allocations in [115], we have that the optimal powers satisfy:

(P1i + P2i)
∗ ≥ Tcr − Te

β
(1− α) (10.31)

Now for the single-user optimal power allocation of user 2, from the feasibility
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we have:

P s
2i ≤

Tc2 − Te
β

(10.32)

Therefore, we have:

(P1i + P2i)
∗ − P s

2i ≥
Tcr − Te

β
(1− α)− Tc2 − Te

β
(10.33)

≥ 0 (10.34)

where the last inequality follows from our assumption. Similarly, this follows for the

points d and e. �

Note that only one side of the optimal rate region could indeed collapse, i.e.,

points b and c may coincide while points d and e are always different. We state this

fact in the next corollary.

Corollary 10.1 In the optimal rate region, point b and point c are the same point

when the following is satisfied:

Tc2−Te ≤ (Tcr−Te) (1−α) ≤ (1−α) min{Tc1, Tc2} (10.35)
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10.4.3 Temperature Constraint Only at the Receiver

In this section, we study the case when there is a temperature constraint only at

the receiver. In this case, the problem can be written as follows:

max
{ri,Pi}

D∑

i=1

µ1r1i + µ2r2i

s.t.
k∑

i=1

αk−i (P1i + P2i) ≤
Tc − Te
β

(r1k, r2k) ∈ C(P1k, P2k), ∀k (10.36)

We now present the following lemma.

Lemma 10.6 When µ1 > µ2, the optimal sum-power allocation P1i + P2i is non-

increasing. Moreover, user 1 power allocation, P1i, is also non-increasing. Similarly,

when µ2 > µ1 we have that the second single-user power allocation, P2i, is non-

increasing.

Proof: When µ1 > µ2, the objective function reduced to:

max
{ri,Pi}

D∑

i=1

(µ1−µ2)
1

2
log (1+P1i)+µ2

1

2
log (1 + P1i+P2i)

s.t.
k∑

i=1

αk−i (P1i + P2i) ≤
Tc − Te
β

, ∀k (10.37)

The proof for having P1i + P2i is non-increasing follows similar to Lemma 10.4.

Now, assume that for some j < k, we have that P1j < P1k. Since we have

P1j + P2j > P1k + P2k this implies that P2j > P2k. Now, we can decrease P2j
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by a small enough δ while increasing P1j with the same amount. This leaves the

sum powers to be equal, and hence, does not change the constraint feasibility while

strictly increasing P1j and hence strictly increasing the objective function. �

10.5 Numerical results

In this section, we show a numerical result for the general setting in Fig. 10.4. The

optimal power allocation does not possess any monotonicity in general. Moreover,

even though the temperature is monotonically increasing at both the transmitters,

the temperature is not monotonically increasing at the receiver. We observe a

main reason for this as the differences among the system parameters defining the

temperature dynamics for each node.

10.6 Conclusion

In this chapter, we studied a two-user multiple access channel with a peak tem-

perature constraint at all the nodes. We first studied the general case where the

transmitters and the receiver are made from different materials and have different

peak temperature constraints. For this case, we showed that the resulting rate

region is a convex region and we characterized the different points of the region.

We showed that the optimal power allocation can be obtained using generalized

water-filling. Then, we studied the temperature limited case and derived sufficient

conditions under which the rate region collapses to a single pentagon.
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Figure 10.4: Simulation result for the general setting with µ1 > µ2.
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CHAPTER 11

Conclusions

In this dissertation, we study online energy management policies for energy harvest-

ing networks under stochastic energy arrivals, Chapters 2-7, and we study offline

energy management policies when the network performance is affected by tempera-

ture, Chapters 8-10.

In Chapters 2-5, we considered the throughput metric.

In Chapter 2, we considered an energy harvesting broadcast channel in which

the energy arrivals are independent and identically distributed (i.i.d.) over time.

The transmitter knows the energy arrivals only causally. We studied the optimal

power allocation policy for Bernoulli energy arrivals and proposed a near-optimal

policy for general energy arrivals. We showed that this policy performs within a

constant gap to the optimal for all system parameters.

In Chapter 3, we studied a two-user energy harvesting multiple access channel

in which the energy arrivals are i.i.d. over time but arbitrarily correlated between

the users. We studied the optimal power allocation for fully-correlated Bernoulli

arrivals. Then, for general energy arrivals, we proposed a near-optimal policy which
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performs within a constant gap from the optimal policy. The proposed policy is also

distributed, i.e., it does need coordination between the users.

In Chapter 4, we studied the impact of processing costs on the online power

allocation policies for a single-user channel and a two-way channel. For the single-

user channel, we studied the optimal power allocation for Bernoulli energy arrivals

and proposed a near-optimal policy for general energy arrivals. Next, for the two-

way channel, we restricted our attention to fully correlated energy arrivals between

the users. We studied the optimal power allocation for Bernoulli energy arrivals.

For general energy arrivals, we proposed a distributed near-optimal policy which

performs within a constant gap to the optimal.

In Chapter 5, we considered a single-user energy harvesting channel in which

the transmitter has an additional data arrival constraint. We considered the case of

fully correlated data and energy arrivals. We characterized the optimal policy for

Bernoulli energy arrivals. For general energy arrivals, we proposed a sub-optimal

policy. We showed that this policy is within a multiplicative gap to the optimal;

it is optimal when the average energy arrival is higher than the energy required to

transmit a full data buffer; and it is also within a constant additive gap when the

data arrivals are higher than a threshold.

In Chapters 6 and 7, we considered the age of information (AoI) metric.

In Chapter 6, we considered an energy harvesting single-user channel in which

the transmitter sends the status updates to the receiver through an erasure channel.

The energy arrivals are i.i.d. Bernoulli arrivals. We studied the performance of

MDS and rateless coding schemes combined with best-effort and save-and-transmit
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schemes. We showed that rateless coding with save-and-transmit performs the best

among all the considered schemes.

In Chapter 7, we considered a single-user energy harvesting channel with a

transmitter equipped with a unit battery. The transmitter sends status updates to

the receiver to minimize the AoI and also sends an independent message through the

timings of these updates. We restricted our attention to renewal policies. We studied

the optimal renewal policy. Due to the high computational complexity of this policy,

we proposed several sub-optimal policies with lower computational complexity. As

the average energy arrival rate increases, the gap between the performance of these

policies decreases.

In Chapters 8-10, we considered the effects of temperature on the optimal

offline power allocation policies. In Chapter 8, we studied a continuous time setting

and in Chapters 9 and 10, we considered a discrete time setting.

In Chapter 8, we considered three different models. We studied the effects

of temperature dependent energy leakage, processing cost with peak temperature

constraint, and temperature increases due to the energy arrival process itself. For

each of these models, we studied the optimal power allocation policy.

In Chapter 9, we studied the optimal power allocation for a single-user set-

ting. We considered two temperature models: explicit and implicit temperature

constraints. In the explicit temperature constraint model, the peak temperature

of the transmitter is constrained by a maximum value. In the implicit tempera-

ture constraint model, the peak temperature is not constrained explicitly but it is

implicitly constrained as the temperature affects the channel quality. The channel
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quality here is captured by the thermal noise which is proportional to the system

temperature. For each of these models, we studied the optimal power allocation.

In Chapter 10, we extended the explicit temperature constraint model con-

sidered in Chapter 9 to a two-user multiple access energy harvesting channel. We

studied the optimal power allocation for the general case. For the temperature lim-

ited case, we derived sufficient conditions under which the rate region reduces to a

single pentagon.

The contents of Chapter 2 are published in [97, 98], Chapter 3 in [99, 116],

Chapter 4 in [104, 105, 117], Chapter 5 in [118], Chapter 6 in [119], Chapter 7

in [120], Chapter 8 in [93], Chapter 9 in [115,121], and Chapter 10 in [122].
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