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Abstract

In This paper we investigate the design of controllers, faacmtte-time Markovian jump linear
systems, that achieve optimal reference tracking in thesgmee of preview. In particular, given a
reference sequence, we obtain the optimal control law ferftlily observed case, while the output
feedback case is also briefly discussed. We provide the aptiontrol law for the infinite and finite
optimization-horizon cases. The optimal control policysists of the additive contribution of two terms:
a feedforward term and a feedback term which is identicahtostandard LQR solution. We provide
explicit formulas for computing the feedforward term, vehéstablishing a comparison with the internal

model principle.

. INTRODUCTION

This paper deals with the problem of designing control systéhat achieve optimal reference
tracking in discrete-time. More specifically, we considex $ervomechanismroblem, i.e., given
an output reference, the objective is to design feedbackfegdforward strategies so that pre-
selected maeasured variables of the plant track the refergptimally, according to a quadratic
cost. In contrast with existing work in optimal referencacking, we consider a plant that is
linear but varies in time according to a Markovian procesd thkes values in a finite alphabet,

such systems are denotedMarkovian jump linear systems
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Definition 1.1: (Fully-observed Markovian jump linear system) Let m, n andg be given
positive integers along with a matrix of conditional probigiles M € [0,1]"*™ satisfying
S ™. M;; =1, for eachj in the set{1,...,m}. Consider also a given collection of matrices
{A;}, and {B;}*,, where for each integerin the set{1,...,m} it holds that4; € R"*"
and B; € R™*4. In addition, consider two independent random variatléy andm(0) taking
values inR™ and{1, ..., m}, respectively. The following specifies a discrete-timéyfalbserved

Markovian jump linear system:
X(/{? -+ 1) = Am(k)X(k‘) —+ Bm(k)u(k), k>0 (l)

wherem(k) is an autonomous Markovian process taking values in the{ket ., m} and
whose statistical behavior is governed By(m(k+1) = i|m(k) = j) = M;;. In this description,
u(k) takes values irR? and it represents the plant’s input.

Notice that the Markovian jump linear system defined by (13 hahybrid state composed
by x(k), the continuouscomponent, and byn(k), the discretepart of the state. The system
featuresm modes of operation which are specified @, B;) through(A,,, B,,). The mode

processm(k) determines which mode of operation is active at each ingthtime.

A. Brief survey of related results and summary of the te@irdontributions of this paper

The problem of designing controllers for Markovian jumpelam systems that achieve optimal
reference tracking, also referred to as #svomechanism problerhas not been investigated.
This section starts with a short survey, of the state of thénahe design of optimal controllers
of Markovian jump linear systems. This is followed by a dssion of existing results in optimal
reference tracking for deterministic systems.

Results on Optimal Control of Markovian Jump Linear Systems Motivated by a wide
spectrum of applications, for the last thirty years, thesise heen active research in the analysis
[32], [31] and in the design of controllers [30] for Markowigump linear systems. More
specifically, in the last fifteen years, the classical payadi of optimal control have been solved
for Markovian jump linear systems, such as the ones defined.gnd mixedH,/H., measures
of performance [29], [28], [27] (see [2] for a more detailaghey of existing work). Other
approaches aiming at the design of robust controllers cafoted in [26], [24]. Not only
optimal solutions were fully characterized but also theimpt cost and its associated control
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law can be computed by means of solviligear matrix inequalities(LMIs) [25], which are
convex programs that can be solved very efficiently by a tyagéwidely available mathematical
software tools.

Brief Survey of Results on the Theory of Optimal Reference Tracking for Deterministic
Systems (Optimal servomechanism design) A classical approach in servomechanism design
is to guarantee asymptotic reference tracking via the nalemodel principle [23]. Simple
applications of this idea are practical rules that date kacthe early twentieth century, such
as achieving asymptotic tracking of step references by mgakure that the open loop gain
of a linear, time-invariant feedback system has polé,atr at0 for continuous time systems.
Asymptotic tracking of many other periodic references carabhieved using the internal model
principle, at the expense sfate augmentation techniqués the late eighties, techniques based
on operator theory were used to derive control laws for lireal time-invariant systems that
guarantee optimal reference tracking, under the assumpti@inite horizon and infinite horizon
preview [22], [21]. The papers [20], [19], [18], [34], [33}eaalso relevant contributions for the
particular case of no reference preview. Examples of agidio can be found in [17], [35], [36],
[16], [15]. More recently, since the nineties, the theorycohtrol leading to optimal reference
tracking, for deterministic systems, achieved a level ahpketion. In particular, more general
performance metrics, such &&,,, were considered [14], [13], [12]. There is also a substnti
collection of results on fundamental limits of optimal nefiece tracking [37], [38] for a variety of
metrics [11], constraints [10], [9], [8]and plant class&§ [6], [5], [4], [3]. All of these results,
in one way or another, conclude that reference preview may le a substantial increase in the

tracking performance.

B. Paper Organization

This paper has three sections, besides the introductiatio&dl gives preliminary definitions
and a review of the linear quadratic optimal control of Masilem jump linear systems, while
Sections Il and IV focus on the problem formulation of thetioyal preview control problem

and its solution for the infinite horizon case, respectively
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[I. PRELIMINARY DEFINITIONS AND REVIEW OF THE OPTIMAL LINEAR QUADRATIC

REGULATOR (LQR) FOR MARKOVIAN JUMP LINEAR SYSTEMS

Definition 2.1: (Regulator) Let s(k) = (x(k), m(k)) be the state of a dimensional and
fully-observed Markovian jump linear system (MJLS) witlput u(k) taking values inR?. The
class of regulator&/#9 consists of all feedback policiég’*s with the following structure:

u(k) = U (k, {s(1) o) )
Definition 2.2: (Linear quadratic regulator (L QR): problem formulation) Consider a fully-
observed Markovian jump linear system, as in Definition arid denote by, andg its order and
dimension of the input, respectively. Given a reguldioe U9, time horizonT € N|J{oo},
and symmetric matrice® € R™" and@ € R?*?, which are semi-definite and positive definite,

respectively, we adopt the following cost function:

T
TR U T) = Exoymayr, | > xOBx(l) +ul)Qu(l) |, T < oo 3)

=0
where u(k) = U(k,{s(l)}}_,). The linear quadratic regulatorparadigm is defined by the

following optimization problem:

USERT — grg min JH9R (WU, T) @)
ueUReg

The infinite-horizon LQR controller is defined as:

u*,LQR,oo — lim u*,LQR,T (5)

T—o0

The solution to the infinite horizor/{= oc) LQR for MJLS has the following form:
ULk {s()} o) = —Kmux(k), k > 0 (6)
where K; through K;, are matrices iR?*" given by:
K, = (Q+ B/B,B,) " BiPA, 7)

The characterization of the optimal LQR feedback law is cletegl by the following collection

of coupled Riccatiequations:

P.= R+ A\PA, — APB, (Q+ BRB) ' BPA, P=P. >0, ic{l,. ...} ()

=y [M];Piefl,... m} (9)
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Remark 2.1:The following are basic properties of the optimal solutiorthie infinite horizon
LQR paradigm for MJLS:
« The optimal solution to (6) exists and the optimal cost istéinf and only if the coupled
Riccati equations (8)-(9) have a solution.
« From (6) it follows that the optimal feedback policy is a mewgiess function of the state
s(k).
« The solution to (8)-(9), or a certificate of infeasibilityarc be obtained via linear matrix

inequalities (LMI) methods.

IIl. OPTIMAL PREVIEW FULL-STATE FEEDBACK CONTROL PROBLEM FORMULATION

In this section we formulate the optimal preview controlgzigm, under full-state feedback.

We start by defining the following class of allowable previeantrollers:

Definition 3.1: (Preview controller) Let s(k) = (x(k), m(k)) be the state of @ dimensional
and fully-observed Markovian jump linear system (MJLS)hihput u(k) taking values inRq.
Given a reference sequenge(l)}°, taking values irR", the class of preview controllefig™ <
consists of all feedback policié#” =’ with the following structure:

u(k) = U (k. {s() Yo {r(1)}2) (10)

Definition 3.2: (Optimal preview control) Consider a fully-observed Markovian jump linear
system, as in Definition 1.1, and denote hyand ¢ its order and dimension of the input,
respectively. Given a sequenge(l)}, taking values inR", a preview controllet/ € U,
time horizonT € N|J{oo}, and symmetric matrice® € R™" and Q € R?*9, which are

semi-definite and positive definite, respectively, we adbptfollowing cost function:
T

T UAr D} 0, T) = Exo) gmant, | D0 =) R(x(1) = (D) +u)Qu() | , T < o0
= (11)
whereu(k) = U(k, {s()}F_,, {r(1)}2,). The optimalpreview controlparadigm is defined by

the following optimization problem:

Ut —arg min J7 WU, {r(1)}2,, T) 12)
MEUPTSU
The solution to the infinite-horizon optimal preview pagdiis defined by:
u*,Prev,oo — lim u*,Prev,T (13)

T—o0

provided that the limit is well defined.
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A. Preview control with respect to pre-selected perforneanariables

In most applications, there is no need to specify trackingalves with respect to the entire
state. For instance, consider a matthe R"7*", wheren is an integer strictly smaller than the
dimension ofx(k). In this casez(k) wf Cx(k) may represent a vector of measured variables,
such as the velocity vector of a moving vehicle. Given a seqei¢r (1)}, taking values in
R"”, one might be interested in computing the optimal solutmrhie optimal control problem

based on the following cost:

T
FEreemees U {7 (1320, T) = Exoymunr, | 220 = (1) (#(1) = (1)) + u(l) Qu(l)
= 14)
However, notice that such a problem can be solved using ooruiation of Definition 3.2 by
selecting@ = C'C and7(l) = CTr(l), whereCT represents the Moore-Penrose pseudo-inverse
of C.

IV. OPTIMAL SOLUTION FOR THE INFINITE-HORIZON CASE (T = c0)

Theorem 4.1:(Part-l:Existence of a solution) Consider a the optimal preview control prob-
lem of Definition 3.2. The optimal solution to the infinite+imon paradigm (see (12)) exists and
the optimal cost is well defined if and only if the following amconditions hold:

« The optimal LQR Riccati equations (8)-(9) have a solution.

« The reference sequende(l)};°, is such that the following limits are well defined for all

k:

BiLi(k,00) = Bj lim Li(k,T), i € {1,...,m} (15)

where

LT = ( ) [Pi(Air(k) = r(k +1)) + Li(k, T)] Teoo
0 if k=T
(16)
Li(k, T)= > [M];:Lj(k+1,T) (17)
je{1,...,m}
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(Part-I1:Optimal solution) If the conditions above hold then the solution to the optima

preview control paradigm is given by:

Ut (b {s(1)} o {r(D}2) =
—(Q+ BIP,B) " Bl (Li(k,00) + P(Air(k) — r(k + 1)) — Kmgy(x(k) — r(k)), k >0
(18)
where K throughk; are matrices iiR?*" given by the optimal LQR solution (7). The matrices
P; follow from the LQR coupled Riccati equations (8)-(9).
Proof: For any given optimization horizofi’, we use a dynamic programming method,
analogous to the one adopted in [2] for deriving the optim@R, to obtain the following

optimal preview control:

u*,Prev,T (kv {T(l) loiov ) =

—(Q + By Py (K, 7T)Bm(k))_1 (Lin(e) (K, T) + Prgoy (k, T) (x(k) — 7(k))) = K (x(k)—r(k))

(19)
whereL;(k,T) is computed from (16)-(17) anflm o (k, T) is given by the following backward
iterations:

R if k=T
Py(k,T) = (20)
R+ AlP,(k,T)A; — Ki(k, T) (Q + B/P;(k,T)B;) K;(k,T) otherwise
Pl<k7T) :Z[M]JJPJ(]{;—i_lvT) (21)
j=1
where
Ki(k,T) = — (Q + B/B,(k,T)B;)”" B.P,(k,T)A; (22)

The proof follows by taking the limit wheff’ goes to infinity[].

A. Comparison between infinite-horizoh £ oo) optimal preview control and the LQR

The following is a list of observations relating optimal yiewv control and the LQR:
« The optimal preview control law (18) results from the additcontribution of a feedback
term and a feedforward component. Notice that(if 2 0 then the optimal preview control

law reduces to the LQR.
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« If r(1) is such that4,r(l) = r(I+1) then (18) reduces to the solution we would obtain from
the well known internal model principle. In fact, #;r(l) = r(l + 1) then the solution to
the optimal preview control paradigm consists of a simplaifrcation of the LQR where
the gain matrices are multipltied by the tracking erxdk) — r(k).

« The LQR optimal solution is well defined and the minimum casbounded if and only
if the coupled Riccati equations (8)-(9) have a solutiore(Bemark 2.1). In constrast, the
optimal preview control framework requires extra conditrelated with the convergence of
the limits defining the sequencég(k, o), leading to the conclusion that the well posedness
of such an optimization paradigm will depend on the refeeeri¢). This motivates Section

IV-B, where we study computable criteria for establishihg boundedness df;(k, co).

B. Computation of_;(k, co)

The solution to the optimal preview control paradigm foreln and time-invariant systems
can be found in several papers and books, such as [1]. Howswer work on the computation
of the feedforward term in the preview control for deterraiit systems (time-invariant or time-
varying) is not applicable to the paradigm addressed inghjzer.

The following proposition gives an explicit formula for cputing ; (k, co) in the presence of
constant references. Before we state such a propositiofigstetroduce the following notation.

Notation: Given a collection of matrices (or vectorg); throughV,;,, we denote the corre-

sponding block diagonal matrix as:

W, 0 --- 0
_ 0 Wy --- 0
m \ def 2
oqwyzy | T @3)
0 -~ 0 W

Given vectorsy; throughwv,;, we use the following notation to denote vectorization:

U1

B({v)r) < | (24)
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The Kronecker product between two matricésandY € R™*"2 js denoted as:

X[Yhy X[Yha - X [Y]ig

Sl xy o X [Yom,
Yoy [. J21 | | [ .]2, (25)

X [Y]nhl X [Y]m,2 e X [Y]nl,nz

Proposition 4.2:Let integersm, n, ¢, a vectorr € R" and a stochastic matrix/ € R™*™
be given. Consider matrice$, through A, taking values irR™*™ and symmetric positive semi-
definite matricesP; through P;, also taking values ifR"*". The sequences (k, co) through

Ly (k,00), given in (15)-(17), are constant with respectit@nd they can be computed as:

B({Li(k, o) }i2y) =

(1~ D ({4~ BE)YR) (M © 1)) B (A= BEYP(A = Dr}) k20

(26)
Proof: We start by representing the backward equations (16)-(1Zhe following equivalent

form:

B({Li(k, T)}2) =D ({(A — BIG) Fy) (M @ L) B({ Lk + 1L, T)}L) )+

The proposition follows by noticing that if(/) is constant and equal tothen:

B({Li(k, ) }i2y) =

[e.e]

© ({(Ai = B Yy) (M @ L)' B ({(Ai — BiG) P(A; — Dr}y) - (28)

=0
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