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Abstract

In This paper we investigate the design of controllers, for discrete-time Markovian jump linear

systems, that achieve optimal reference tracking in the presence of preview. In particular, given a

reference sequence, we obtain the optimal control law for the fully observed case, while the output

feedback case is also briefly discussed. We provide the optimal control law for the infinite and finite

optimization-horizon cases. The optimal control policy consists of the additive contribution of two terms:

a feedforward term and a feedback term which is identical to the standard LQR solution. We provide

explicit formulas for computing the feedforward term, while establishing a comparison with the internal

model principle.

I. INTRODUCTION

This paper deals with the problem of designing control systems that achieve optimal reference

tracking in discrete-time. More specifically, we consider theservomechanismproblem, i.e., given

an output reference, the objective is to design feedback andfeedforward strategies so that pre-

selected maeasured variables of the plant track the reference optimally, according to a quadratic

cost. In contrast with existing work in optimal reference tracking, we consider a plant that is

linear but varies in time according to a Markovian process that takes values in a finite alphabet,

such systems are denoted asMarkovian jump linear systems.
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Definition 1.1: (Fully-observed Markovian jump linear system) Let m̄, n and q be given

positive integers along with a matrix of conditional probabilities M ∈ [0, 1]m×m satisfying
∑m̄

i=1 Mij = 1, for eachj in the set{1, . . . , m̄}. Consider also a given collection of matrices

{Ai}
m̄
i=1 and {Bi}

m̄
i=1, where for each integeri in the set{1, . . . , m̄} it holds thatAi ∈ R

n×n

andBi ∈ R
n×q. In addition, consider two independent random variablesx(0) andm(0) taking

values inR
n and{1, . . . , m̄}, respectively. The following specifies a discrete-time fully-observed

Markovian jump linear system:

x(k + 1) = A
m(k)x(k) + B

m(k)u(k), k ≥ 0 (1)

wherem(k) is an autonomous Markovian process taking values in the set{1, . . . , m̄} and

whose statistical behavior is governed byPr(m(k+1) = i|m(k) = j) = Mij . In this description,

u(k) takes values inRq and it represents the plant’s input.

Notice that the Markovian jump linear system defined by (1) has a hybrid state composed

by x(k), the continuouscomponent, and bym(k), the discretepart of the state. The system

featuresm̄ modes of operation which are specified by(A1, B1) through(Am, Bm). The mode

processm(k) determines which mode of operation is active at each instantof time.

A. Brief survey of related results and summary of the technical contributions of this paper

The problem of designing controllers for Markovian jump linear systems that achieve optimal

reference tracking, also referred to as theservomechanism problem, has not been investigated.

This section starts with a short survey, of the state of the art in the design of optimal controllers

of Markovian jump linear systems. This is followed by a discussion of existing results in optimal

reference tracking for deterministic systems.

Results on Optimal Control of Markovian Jump Linear Systems Motivated by a wide

spectrum of applications, for the last thirty years, there has been active research in the analysis

[32], [31] and in the design of controllers [30] for Markovian jump linear systems. More

specifically, in the last fifteen years, the classical paradigms of optimal control have been solved

for Markovian jump linear systems, such as the ones defined byH2 and mixedH2/H∞ measures

of performance [29], [28], [27] (see [2] for a more detailed survey of existing work). Other

approaches aiming at the design of robust controllers can befound in [26], [24]. Not only

optimal solutions were fully characterized but also the optimal cost and its associated control
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law can be computed by means of solvinglinear matrix inequalities(LMIs) [25], which are

convex programs that can be solved very efficiently by a variety of widely available mathematical

software tools.

Brief Survey of Results on the Theory of Optimal Reference Tracking for Deterministic

Systems (Optimal servomechanism design) A classical approach in servomechanism design

is to guarantee asymptotic reference tracking via the internal model principle [23]. Simple

applications of this idea are practical rules that date backto the early twentieth century, such

as achieving asymptotic tracking of step references by making sure that the open loop gain

of a linear, time-invariant feedback system has pole at1, or at 0 for continuous time systems.

Asymptotic tracking of many other periodic references can be achieved using the internal model

principle, at the expense ofstate augmentation techniques. In the late eighties, techniques based

on operator theory were used to derive control laws for linear and time-invariant systems that

guarantee optimal reference tracking, under the assumption of finite horizon and infinite horizon

preview [22], [21]. The papers [20], [19], [18], [34], [33] are also relevant contributions for the

particular case of no reference preview. Examples of application can be found in [17], [35], [36],

[16], [15]. More recently, since the nineties, the theory ofcontrol leading to optimal reference

tracking, for deterministic systems, achieved a level of completion. In particular, more general

performance metrics, such asH∞, were considered [14], [13], [12]. There is also a substantial

collection of results on fundamental limits of optimal reference tracking [37], [38] for a variety of

metrics [11], constraints [10], [9], [8]and plant classes [7], [6], [5], [4], [3]. All of these results,

in one way or another, conclude that reference preview may lead to a substantial increase in the

tracking performance.

B. Paper Organization

This paper has three sections, besides the introduction: Section II gives preliminary definitions

and a review of the linear quadratic optimal control of Markovian jump linear systems, while

Sections III and IV focus on the problem formulation of the optimal preview control problem

and its solution for the infinite horizon case, respectively.
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II. PRELIMINARY DEFINITIONS AND REVIEW OF THE OPTIMAL LINEAR QUADRATIC

REGULATOR (LQR) FOR MARKOVIAN JUMP LINEAR SYSTEMS

Definition 2.1: (Regulator) Let s(k) = (x(k),m(k)) be the state of an dimensional and

fully-observed Markovian jump linear system (MJLS) with input u(k) taking values inRq. The

class of regulatorsUReg consists of all feedback policiesUReg with the following structure:

u(k) = UReg(k, {s(l)}k
l=0) (2)

Definition 2.2: (Linear quadratic regulator (LQR): problem formulation) Consider a fully-

observed Markovian jump linear system, as in Definition 1.1,and denote byn andq its order and

dimension of the input, respectively. Given a regulatorU ∈ U
Reg, time horizonT ∈ N

⋃

{∞},

and symmetric matricesR ∈ R
n×n andQ ∈ R

q×q, which are semi-definite and positive definite,

respectively, we adopt the following cost function:

J LQR (U , T ) = E
x(0),{m(l)}T

l=0

[

T
∑

l=0

x(l)′Rx(l) + u(l)′Qu(l)

]

, T < ∞ (3)

where u(k) = U(k, {s(l)}k
l=0). The linear quadratic regulatorparadigm is defined by the

following optimization problem:

U∗,LQR,T = arg min
U∈UReg

J LQR (U , T ) (4)

The infinite-horizon LQR controller is defined as:

U∗,LQR,∞ = lim
T→∞

U∗,LQR,T (5)

The solution to the infinite horizon (T = ∞) LQR for MJLS has the following form:

U∗,LQR,∞(k, {s(l)}k
l=0) = −K

m(k)x(k), k ≥ 0 (6)

whereK1 throughKm̄ are matrices inRq×n given by:

Ki =
(

Q + B′
iP̄iBi

)−1
B′

iP̄iAi (7)

The characterization of the optimal LQR feedback law is completed by the following collection

of coupled Riccatiequations:

Pi = R + A′
iP̄iAi − A′

iP̄iBi

(

Q + B′
iP̄iBi

)−1
B′

iP̄iAi, Pi = P ′
i > 0, i ∈ {1, . . . , m̄} (8)

P̄i =
∑

j∈{1,...,m̄}

[M ]j,iPj i ∈ {1, . . . , m̄} (9)
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Remark 2.1:The following are basic properties of the optimal solution to the infinite horizon

LQR paradigm for MJLS:

• The optimal solution to (6) exists and the optimal cost is finite if and only if the coupled

Riccati equations (8)-(9) have a solution.

• From (6) it follows that the optimal feedback policy is a memoryless function of the state

s(k).

• The solution to (8)-(9), or a certificate of infeasibility, can be obtained via linear matrix

inequalities (LMI) methods.

III. OPTIMAL PREVIEW FULL-STATE FEEDBACK CONTROL: PROBLEM FORMULATION

In this section we formulate the optimal preview control paradigm, under full-state feedback.

We start by defining the following class of allowable previewcontrollers:

Definition 3.1: (Preview controller) Let s(k) = (x(k),m(k)) be the state of an dimensional

and fully-observed Markovian jump linear system (MJLS) with inputu(k) taking values inRq.

Given a reference sequence{r(l)}∞l=0 taking values inRn, the class of preview controllersUPrev

consists of all feedback policiesUPrev with the following structure:

u(k) = UPrev(k, {s(l)}k
l=0, {r(l)}

∞
l=0) (10)

Definition 3.2: (Optimal preview control) Consider a fully-observed Markovian jump linear

system, as in Definition 1.1, and denote byn and q its order and dimension of the input,

respectively. Given a sequence{r(l)}∞l=0 taking values inRn, a preview controllerU ∈ U
Prev,

time horizonT ∈ N
⋃

{∞}, and symmetric matricesR ∈ R
n×n and Q ∈ R

q×q, which are

semi-definite and positive definite, respectively, we adoptthe following cost function:

J Prev (U , {r(l)}∞l=0, T ) = E
x(0),{m(l)}T

l=0

[

T
∑

l=0

(x(l) − r(l))′R(x(l) − r(l)) + u(l)′Qu(l)

]

, T < ∞

(11)

whereu(k) = U(k, {s(l)}k
l=0, {r(l)}

∞
l=0). The optimalpreview controlparadigm is defined by

the following optimization problem:

U∗,P rev,T = arg min
U∈UPrev

J Prev (U , {r(l)}∞l=0, T ) (12)

The solution to the infinite-horizon optimal preview paradigm is defined by:

U∗,P rev,∞ = lim
T→∞

U∗,P rev,T (13)

provided that the limit is well defined.
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A. Preview control with respect to pre-selected performance variables

In most applications, there is no need to specify tracking objectives with respect to the entire

state. For instance, consider a matrixC ∈ R
η×n, whereη is an integer strictly smaller thann, the

dimension ofx(k). In this case,z(k)
def
= Cx(k) may represent a vector of measured variables,

such as the velocity vector of a moving vehicle. Given a sequence {r̃(l)}∞l=0, taking values in

R
η, one might be interested in computing the optimal solution to the optimal control problem

based on the following cost:

J Prev,meas (U , {r̃(l)}∞l=0, T ) = E
x(0),{m(l)}T

l=0

[

T
∑

l=0

(z(l) − r̃(l))′(z(l) − r̃(l)) + u(l)′Qu(l)

]

(14)

However, notice that such a problem can be solved using our formulation of Definition 3.2 by

selectingQ = C ′C and r̃(l) = C†r(l), whereC† represents the Moore-Penrose pseudo-inverse

of C.

IV. OPTIMAL SOLUTION FOR THE INFINITE-HORIZON CASE (T = ∞)

Theorem 4.1:(Part-I:Existence of a solution) Consider a the optimal preview control prob-

lem of Definition 3.2. The optimal solution to the infinite-horizon paradigm (see (12)) exists and

the optimal cost is well defined if and only if the following two conditions hold:

• The optimal LQR Riccati equations (8)-(9) have a solution.

• The reference sequence{r(l)}∞l=0 is such that the following limits are well defined for all

k:

B′
iLi(k,∞) = B′

i lim
T→∞

Li(k, T ), i ∈ {1, . . . , m̄} (15)

where

Li(k, T ) =











(Ai − BiKi)
′
[

P̄i(Air(k) − r(k + 1)) + L̄i(k, T )
]

if k < T

0 if k = T
, T < ∞

(16)

L̄i(k, T ) =
∑

j∈{1,...,m̄}

[M ]j,iLj(k + 1, T ) (17)
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(Part-II:Optimal solution) If the conditions above hold then the solution to the optimal

preview control paradigm is given by:

U∗,P rev,∞(k, {s(l)}k
l=0, {r(l)}

∞
l=0) =

−
(

Q + B′
iP̄iBi

)−1
B′

i

(

L̄i(k,∞) + P̄i(Air(k) − r(k + 1))
)

− K
m(k)(x(k) − r(k)), k ≥ 0

(18)

whereK1 throughKm̄ are matrices inRq×n given by the optimal LQR solution (7). The matrices

P̄i follow from the LQR coupled Riccati equations (8)-(9).

Proof: For any given optimization horizonT , we use a dynamic programming method,

analogous to the one adopted in [2] for deriving the optimal LQR, to obtain the following

optimal preview control:

U∗,P rev,T (k, {r(l)}∞l=0, T ) =

−
(

Q + B′
m(k)P̄m(k)(k, , T )B

m(k)

)−1 (

L̄
m(k)(k, T ) + P̄

m(0)(k, T )(x(k) − r(k))
)

−K
m(k)(x(k)−r(k))

(19)

whereL̄i(k, T ) is computed from (16)-(17) and̄P
m(0)(k, T ) is given by the following backward

iterations:

Pi(k, T ) =











R if k = T

R + A′
iP̄i(k, T )Ai − Ki(k, T )′

(

Q + B′
iP̄i(k, T )Bi

)

Ki(k, T ) otherwise
(20)

P̄i(k, T ) =

m̄
∑

j=1

[M ]j,iPj(k + 1, T ) (21)

where

Ki(k, T ) = −
(

Q + B′
iP̄i(k, T )Bi

)−1
B′

iP̄i(k, T )Ai (22)

The proof follows by taking the limit whenT goes to infinity�.

A. Comparison between infinite-horizon (T = ∞) optimal preview control and the LQR

The following is a list of observations relating optimal preview control and the LQR:

• The optimal preview control law (18) results from the additive contribution of a feedback

term and a feedforward component. Notice that ifr(l)
∆
= 0 then the optimal preview control

law reduces to the LQR.
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• If r(l) is such thatAir(l) = r(l+1) then (18) reduces to the solution we would obtain from

the well known internal model principle. In fact, ifAir(l) = r(l + 1) then the solution to

the optimal preview control paradigm consists of a simple modification of the LQR where

the gain matrices are multipltied by the tracking errorx(k) − r(k).

• The LQR optimal solution is well defined and the minimum cost is bounded if and only

if the coupled Riccati equations (8)-(9) have a solution (see Remark 2.1). In constrast, the

optimal preview control framework requires extra condition related with the convergence of

the limits defining the sequencesLi(k,∞), leading to the conclusion that the well posedness

of such an optimization paradigm will depend on the reference r(k). This motivates Section

IV-B, where we study computable criteria for establishing the boundedness ofLi(k,∞).

B. Computation ofLi(k,∞)

The solution to the optimal preview control paradigm for linear and time-invariant systems

can be found in several papers and books, such as [1]. However, prior work on the computation

of the feedforward term in the preview control for deterministic systems (time-invariant or time-

varying) is not applicable to the paradigm addressed in thispaper.

The following proposition gives an explicit formula for computingLi(k,∞) in the presence of

constant references. Before we state such a proposition, wefirst introduce the following notation.

Notation: Given a collection of matrices (or vectors)W1 throughWm̄, we denote the corre-

sponding block diagonal matrix as:

D ({Wi}
m̄
i=1)

def
=















W1 0 · · · 0

0 W2 · · · 0
...

. ..
...

0 · · · 0 Wm̄















(23)

Given vectorsv1 throughvm̄, we use the following notation to denote vectorization:

V({vi}
m̄
i=1)

def
=











v1

...

vm̄











(24)
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The Kronecker product between two matricesX andY ∈ R
n1×n2 is denoted as:

X ⊗ Y
def
=















X [Y ]1,1 X [Y ]1,2 · · · X [Y ]1,n2

X [Y ]2,1 · · · · · · X [Y ]2,n2

...
...

...
...

X [Y ]n1,1 X [Y ]n1,2 · · · X [Y ]n1,n2















(25)

Proposition 4.2:Let integersm̄, n, q, a vectorr ∈ R
n and a stochastic matrixM ∈ R

m̄×m̄

be given. Consider matricesA1 throughAm̄ taking values inRn×n and symmetric positive semi-

definite matricesP̄1 throughP̄m̄ also taking values inRn×n. The sequencesL1(k,∞) through

Lm̄(k,∞), given in (15)-(17), are constant with respect tok and they can be computed as:

V({Li(k,∞)}m̄
i=1) =

(

I − D ({(Ai − BiKi)
′}m̄

i=1) (M ′ ⊗ In×n)
)−1

V
(

{(Ai − BiKi)
′P̄i(Ai − I)r}m̄

i=1

)

, k ≥ 0

(26)
Proof: We start by representing the backward equations (16)-(17) in the following equivalent

form:

V({Li(k, T )}m̄
i=1) = D ({(Ai − BiKi)

′}m̄
i=1) (M ′ ⊗ In×n)V({Li(k + 1, T )}m̄

i=1)+

V
(

{(Ai − BiKi)
′P̄i(Air(k) − r(k + 1))}m̄

i=1

)

, k < T (27)

The proposition follows by noticing that ifr(l) is constant and equal tor then:

V({Li(k,∞)}m̄
i=1) =

∞
∑

l=0

[D ({(Ai − BiKi)
′}m̄

i=1) (M ′ ⊗ In×n)]
l
V

(

{(Ai − BiKi)
′P̄i(Ai − I)r}m̄

i=1

)

(28)

�
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