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Chronic myelogenous leukemia can be considered as a chronic condition thanks

to the development of tyrosine kinase inhibitors in the early 2000s. Most CML pa-

tients are able to manage the disease, but unending treatment can affect quality

of life. The focus of much clinical research has thus transitioned to treatment ces-

sation, where many clinical trials have demonstrated that treatment free remission

is possible. While there are a lot of existing questions surrounding the criteria for

cessation candidates, much evidence indicates the immune system plays a significant

role.

Mathematical modeling provides a complementary component to clinical re-

search. Existing models well-describe the dynamics of CML in the first phase of

treatment where most patients experience a biphasic decline in the BCR-ABL ratio.

The Clapp model is one of the first to incorporate the immune system and capture

the often-seen oscillations in the BCR-ABL ratio that occur later in therapy. How-

ever, these models are far from capable of being used in a predictive manner and do



not fully capture the dynamics surrounding treatment cessation.

Based on clinical research demonstrating the importance of immune response,

we hypothesize that a mathematical model of CML should include a more detailed

description of the immune system. We therefore present a new model that is an

extension of the Clapp model. The model is then fit to patient data and determined

to be a good qualitative description of CML dynamics. With this model it can be

shown that treatment free remission is possible. However, the model introduces new

parameters that must be correctly identified in order for it to have predictive power.

We next consider the parameter identification problem. Since the dynamics of

CML can be considered in two phases, the biphasic decline of and oscillations in the

BCR-ABL ratio, we hypothesize that parameter values may differ over the course

of treatment and look to identify which parameters are most variable by refitting

the model to different windows of data. It is determined that parameters associated

with immune response and regulation are most difficult to identify and could be key

to selecting good treatment cessation candidates.

To increase the predictive power of our model, we consider data assimilation

techniques which are successfully used in weather forecasting. The extended Kalman

filter is used to assimilate CML patient data. Although we determine that the EKF

is not the ideal technique for our model, it is shown that data assimilation methods

in general hold promising value to the search for a predictive model of CML. In

order to have the most success, new techniques should be considered, data should

be collected more frequently, and immune assay data should be made available.
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Chapter 1: Introduction

This dissertation aims to develop mathematical models and numerical methods

that can be used to study the progression of Chronic Myeloid Leukemia (CML) under

therapy, and ultimately be instrumental in evaluating and improving treatment

protocols. We begin with an introduction to the biological properties and processes

that serve as the foundation for this work.

1.1 Chronic Myeloid Leukemia

Chronic Myelogenous Leukemia (CML) is a type of blood cancer resulting in

the overproduction of blood cells of the myeloid lineage. Approximately 15-20%

of all leukemia cases in adults are CML [1, 2]. CML can be characterized by a

genetic mutation in hematopoietic stem cells in which a translocation between chro-

mosomes 9 and 22 occurs, fusing the BCR and ABL genes to form what is known

as the Philadelphia (Ph) chromosome. This particular characteristic is detectable

in more than 95% of all CML patients [3] and is used to confirm diagnosis. With-

out successful treatment, CML progress from chronic phase (CML-CP) through an

accelerated phase (CML-AP) to a highly lethal blastic phase (CML-BP) within 3-5

years [4].

1



Fusion of the BCR-ABL gene is responsible for a variety of cancer-favorable

changes, including changes in adhesion molecules, resistance to apoptosis, growth

factor independence, and inhibition of DNA repair [5, 6]. Most notably, the BCR-

ABL gene results in increased tyrosine kinase activity, which contributes to uncon-

trolled stem cell growth. The extent of damage caused by this oncogene makes it

essential for development and maintenance of CML, and its effect on DNA repair is

the likely cause for disease progression.

There are currently many types of treatments available to CML patients. Early

treatment protocols relied on cytotoxic agents which are able to normalize white

blood cell counts, but, in addition to harmful side effects, are usually incapable of

preventing progression to blast phase. In the early 1980s, interferon-alpha (IFN)

became the standard of treatment. Significant antitumor and immunomodulatory

affects of IFN lead to a doubling of the median survival rate [4]. Despite these

advances, few patients experienced a complete cytogenic response (CCR) and the

adverse effects of IFN make it untenable for long treatment schedules.

Discovery of the Ph chromosome and specifically the BCR-ABL gene, con-

tributed to an increase in reasearch of gene specific therapies and development of

BCR-ABL tyrosine kinase inhibitors (TKIs). TKIs, such as imatinib, dasatinib,

and nilotinib, specifically target Ph cells by occupying the binding pocket of the

BCR-ABL protein to prevent phosphorylation of any substrates [5]. This controls

the population of leukemic cells by inhibting cellular proliferation of mutated cells.

Imatinib has proven to be a highly effective treatment by which approximately 80%

of patients experience CCR [3] and is largely responsible for doubling the 5-year
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survival rate [7]. Side effects of imatinib are much milder than previous therapies,

but approximately 25% of patients develop resistance to it [4].

Second generation TKIs, like dasatinib and nilotinib, were developed to ad-

dress imatinib resistance. Nilotinib is more than 30 fold more effective than imatinib

at lysing BCR-ABL expressing cells and is effective against 32/33 imatinib-resistant

point mutants [6]. Dasatinib is also more effective against BCR-ABL mutant types

with high imatinib resistance. Despite these promising statistics, TKIs are not a

cure for CML as they fail to eliminate leukemic stem cells (LSCs) which are pri-

marily responsible for disease recurrence. Most CML patients will need to take the

drug for life which can decrease their quality of life. Stem cell transplantation and

donor transfusions remain the only potentially curative therapies available.

Clinicians classify response to treatment in three ways: hematological, cytoge-

netic and molecular. Hematological response is measured through blood cell counts,

with a complete hematological response (CHR) characterized as a normalization of

blood counts and spleen size. Cytogenetic response is determined by the decrease in

Ph+ metaphase cells in the blood. Patients with Ph+ metaphase in 0-35% of cells are

classified as having major cytogenetic response (MCR). An absence of Ph metaphase

cells is considered to be a complete cytogenetic response (CCR). Patient response to

therapy can also be assessed through measurement of BCR-ABL chimeric mRNA

by real-time quantitative polymerase chain reaction (PCR). Quantitative PCR is

the most sensitive assay to detect the presence of the BCR-ABL gene, detecting one

cell in a background of 105 − 106 normal cells [8]. Molecular response to therapy is

assessed by this method. A 3-log reduction in the BCR-ABL ratio as measured by
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real-time PCR is considered a major molecular response (MMR), while undetectable

ratios are classified as complete molecular response (CMR). To account for variation

in BCR-ABL ratios measured in different laboratories and therefore increase relia-

bility of therapy protocols, an International Scale (IS) of measurement was adopted

using method-specific conversion factors [9].

1.2 CML and the Immune System

In recent years much research has been conducted into the development of

cancer immunotherapies, influenced by the cancer immune surveillance theory that

the immune system has the ability to target tumor cells. The immune system is

comprised of two components, innate and adaptive immunity, both of which are

equally important to defending the body against foreign antigen. The innate im-

mune system provides a primary rapid defense and plays a large role in activating

the adaptive immune system, while adaptive immunity is more specific and there-

fore more effective at targeting various pathogens. Research and clinical studies

have provided evidence both for and against the cancer immune surveillance the-

ory [10], but the idea that the immune system can be harnessed or encouraged to

destroy cancer cells remains. Evidence exists to suggest that this theory is relevant

particularly to CML.

Much of the evidence of immune activity in CML is in the response of CML to

immunomodulatory treatments such as donor lymphocyte tranfusions and stem cell

therapy, which remains the only perceived cure for CML. Clinical trials with BCR-
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ABL peptide vaccines have shown the possibility of provoking an anti-CML immune

response [11]. TKI therapy also shows evidence of immune activity. A majority of

patients with untreated CML have lymphocytes with clonal T cell receptor gene

rearrangements. These clonal T cells continue to exist at low levels under imatinib

therapy, while clonal CD8+ cytotoxic cells and NK cells expand significantly under

dasatinib therapy [11, 12]. In vitro studies have shown that TKIs can inhibit T

cell activation and proliferation and have immunomodulatory effects on antigen

presenting cells, but whether these inhibitory effects occur in patients is yet to be

seen [6, 12].

Prior to the use of TKIs, interferon-alpha (IFNα) was the predominant treat-

ment for CML patients. IFNα has many anti-tumor and immunomodulatory mech-

anisms, including inhibition of cell growth, induction of apoptosis, promotion of

cycling of quiescent hematopoeitc stem cells, activation of immune effector cells,

and increased expression of tumor associated antigen [11, 13]. Research has shown

a significant increase in CD8+ T cells and NK cells in patients undergoing IFNα

therapy. The presence of CTLs specific for PR1 expressed by CML progenitors has

also been noted in patients who receive IFNα [2]. For these reasons, IFNα is ex-

periencing a revival of usage in CML treatment, specifically in combination with

TKIs.

In addition, within the last decade the outcomes of various clinical trials on

treatment cessation suggest that the immune system plays a role in combating CML.

The Stop Imatinib (STIM) study [14] enrolled 100 CML patients undergoing ima-

tinib treatment in CMR for at least two years as candidates for treatment cessation.
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Of the 69 patients with at least 12 months of follow-up, 41% experienced persistent

CMR at month 12. The remaining 42 patients relapsed, which was defined as posi-

tivity of BCR-ABL transcripts as measured by quantitative PCR with a BCR-ABL

ratio of 10−5 or more in a second point of analysis. TWISTER [15] studied treat-

ment cessation by following 40 patients that had been treated with imatinib and

achieved undetectable minimal residual disease (UMRD) during treatment. Relapse

was characterized as any single sample with BCR-ABL ratio greater than 0.1% or

two consecutive samples with any detectable value. Of the 40 patients, 45% had

not relapsed by time of analysis. Five of these patients had detectable BCR-ABL

ratios on one or two occasions. Euro-Ski [16] enrolled 758 CP-CML patients using

any TKI for at least 3 years with confirmed CMR for at least 1 year. Relapse was

defined as loss of MMR, or BCR-ABL ratio greater than 0.1% on the International

Scale. 61% and 50% of patients experience relapse-free survival at 6 months and 24

months respectively. All three of these cessation studies were relatively successful

and demonstrated that treatment free remission (TFR) is possible. However, low

levels of leukemic cells are often still detectable in these patients. Fluctuating BCR-

ABL levels just below MMR but without loss of MMR, in common in many of these

trials [11, 17] suggesting that some other mechanism, perhaps immune response, is

responsible for keeping the disease under control and preventing a relapse.
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1.3 Outline of Dissertation

In the past decade, there has been much interest in the use of mathematical

models to gain further insight into the dynamics of CML genesis and to analyze the

effects of treatment. These models are summarized by Clapp and Levy [18]. While

many models focus on hematopoiesis, treatment and drug resistance, few models

currently incorporate the role of the immune system in the growth and control of

CML. Chapter 2 of this dissertation presents a review of a few of these models.

Chapter 3 presents an extension of the Clapp et al. model, which first captured the

oscillations observed in the leukemic loads of patients.

The remaining components of this dissertation focus on the use of numerical

methods for improving the predictive ability of mathematical models of CML. These

methods are applied to the extended model presented in Chapter 3. Chapter 4

incorporates the use of adaptive or adjustable parameter values. This will allow

for better understanding of dynamic changes in immune response as well as better

tools for the design of adaptive immunotherapy treatments and gradual treatment

cessation. Chapter 5 explores methods of data assimilation to apply our model to

treatment cessation data and forecast when relapse may occur. Chapter 6 provides

the conclusion to the thesis.
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Chapter 2: Mathematical Models of CML and the Immune System

2.1 Overview

The use of mathematical modeling and computational methods to study biol-

ogy, medicine and the health sciences can have many benefits to how diseases are

studied, diagnosed and treated. This chapter presents various models of CML and

the immune system that have informed the work in this dissertation.

2.2 Models of CML

This section will provide a summary of existing mathematical models of CML

that have served as a basis for the thesis work. We begin by looking at two models

that factor in hematopoeisis but do not incorporate the immune system [19, 20].

These models, when looking at CML progression under imatinib therapy, show

a biphasic exponential decline in the BCR-ABL ratio. While this behavior does

correspond to phenomena seen in patient data, it does not completely capture the

dynamics of the disease. Further, these models do not lend themselves to be good

models of treatment cessation.

The following two models of CML presented here [21, 22], provide the main
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foundation for the model introduced in Chapter 3. They also looks at CML on a

cellular level, separating leukemia cells into different compartments based on their

stage in the hematopoetic process, while also incorporating the immune system.

These two models give evidence for an optimal range of leukemic cell concentration

in which the immune response is most effective, a result that could greatly inform

the use of immunotherapies in CML treatment. Using a simple representation of

the immune response, the last model [22] describes the dynamics of CML beyond

the reach of the other models [19,20].

2.2.1 An Agent Based Model

Roeder et al. considered an agent based model of CML [19], biologically based

on a cell differentiation process consisting of three stages: stem cells, precursors and

mature cells. Stem cells are further categorized as either non-proliferating (A) or

proliferating cells (Ω). Movement between these compartments corresponds with the

development and maturation process of hematopoeitic cells (fig. 2.1). Each stem cell

may be characterized by its cellular affinity, a quantity based on cell age and state.

Non-proliferating or quiescent cells increase their affinity over time until maximal

affinity is reached. Quiescent cells become proliferating, or cycling, stem cells with

some probability ω determined by affinity and the total number of proliferating

cells. Cycling stem cells proliferate by completing the 48 hour cell cycle. The cell

cycle consists of four necessary phases for cell growth and division. These stages in

order are G1, S, G2, and M . Roeder et al. considered quiescent cells to become

9



Figure 2.1: Diagram of hematopoetic cell differentiation process as de-
scribed by Roeder et al. [19]. Cells are categorized as stem cells, precur-
sors or mature cells. Stem cells are further delineated as quiescent (A)
or cycling (Ω). Figure from [20]

proliferating at hour 32 of the cell cycle, the beginning of the S phase during which

DNA synthesis occurs. At hour 48, the cell divides into two identical daughter cells

that each begin the cycle in the G1 growth phase. Transitions from Ω to A occur

during the G1 phase with probability α. Proliferating stem cells lose cellular affinity

over time until minimal affinity is attained. The transition probabilities ω and α

are determined by each cell’s affinity and the total number of cycling or quiescent

cells respectively:

ω(Ω(t), a(t)) =
amin
a(t)

fω(Ω(t)),

α(A(t), a(t)) =
a(t)

amax
fα(A(t)). (2.1)

Stem cells with minimum affinity differentiate into precursor cells. Within this

model, cells are considered to divide symmetrically once every 24 hours for 20 days,
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at which point they differentiate into fully functional mature cells. Cells live in the

mature stage for 8 days before dying.

The biology described here is a simplification of the cell maturation process

and makes a few assumptions. First, the differentiation process has been reduced

to three stages of maturation. Second, transition probabilities between stem cell

compartments are assumed to be based on affinity, an internal quantity for each

stem cell that varies in time within an interval [amin, amax]. Affinity is a notion

whose existence was postulated by Roeder [19] and is not directly associated with

any known biological mechanism specific to the hematopoietic system. Furthermore,

the time spent in each stage is deterministic. It is assumed that these lifespans are

known and fixed. Lastly, it is assumed that when a cell undergoes mitosis and

divides, it does so symmetrically. This means that each daughter cell is identical

and of the same type of cell as the parent, i.e. stem cells divide into two stem cells,

precursors divide into two precursors.

An agent based model (ABM) provides a natural way of describing the hematopoi-

etic system as it can mathematically represent the underlying biological system as

a single-cell stochastic process. It retains information about individual cell charac-

teristics and interactions with other cells. The ABM presented by Roeder et al. [19]

defines a set of rules to govern the development of hematopoietic stem cells, as de-

scribed above. These rules are applied to each stem cell simultaneously in discrete

time steps that begin by computing the total number of both A and Ω stem cells.

These values are used to govern the behavior of each stem cell in the model. The

transition probabilities ω and α for cells in A and Ω respectively are calculated by
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equation (2.1). A stem cell is considered to transition from A to Ω or vice versa if

the transition probability is greater than a randomly generated number. Cells that

remain in A increase affinity by a factor r known as the regeneration factor while

cells in Ω decrease affinity by a differentiation factor 1/d. Unlike the stem cells in

this model, the behavior of differentiated cells is not stochastic. Therefore, these

cells do not need to be treated on an individual basis.

The rules described above can be used to simulate a population of healthy

hematopoietic cells. For a long enough simulation, healthy stem cells reach a steady

state profile in which the majority of cells are quiescent stem cells having maximal

affinity (fig. 2.2a). The Roeder et al. ABM is applied to CML and imatinib therapy

by simulating three non-interacting cell populations: healthy cells (Ph-), leukemic

cells (Ph+) and imatinib-affected cells (Ph+/A).

Since Ph+ cells proliferate uncontrollably, the transition rates between A and Ω

differ from those of Ph- cells. This difference is incorporated with distinct parameter

values for the sigmoidal transition functions fα/ω found in the transition probabilities

(2.1). A majority of simulations show Ph+ mature cells overtaking the Ph- mature

cell population approximately 5 years after the introduction of leukemia (fig. 2.2b).

Due to the stochasticity of the ABM, not all simulations result in this outcome

(fig. 2.3a). This model is able to capture delayed CML growth as well as early

eradication of the Ph+ population.

Simulation of imatinib treatment initiates once the proportion of differentiated

Ph+ cells reaches more than 99.5% of the total cell population. The model incorpo-

rates the effects of imatinib in two ways, reflecting the two ways in which imatinib
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may affect leukemic cells. Cycling Ph+ stem cells become imatinib-affected with

probability rinh and both Ph+ and Ph+/A cells undergo apoptosis with probability

rdeg. This is implemented as a stochastic decision at the beginning of each time step

of the ABM.

The affects of treatment are measured using a ratio of leukemic cells to healthy

cells given by the BCR-ABL ratio:

BCR-ABL Ratio =
# mature Ph+ cells

# mature Ph+ cells + 2 · (# mature Ph- cells)

Simulations of treatment depict a biphasic exponential decline of this ratio over

a treatment span of 400 days (figs. 2.2c and 2.3b), which is consistent with the

dynamics seen in patient data. This model can be quite computationally expensive

as the complexity is proportional to the number of cells being simulated. In order

to achieve relatively efficient runtime at initial implementation in 2006 [19], cell

numbers had to be scaled down to approximately 1
10

of realistic numbers, thereby

simulating approximately 105 stem cells. More efficient implementations of this

algorithm were proposed by Kim et al. in [20,21] and are described in detail below.

2.2.2 A System of Difference Equations

The limitations of the ABM were considered and improved by Kim et al.

[20]. Rather than simulating each stem cell individually, this model groups cells by

their common characteristics and describes their behavior as a system of discretized

difference equations. In order to devise the difference equations, the state space must
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Figure 2.2: Example simulation of the ABM. (a) Steady state profile of
stem cells plotted as number of quiescent (orange) and cycling (blue)
stem cells versus affinity level. (b) Mature Ph+ (orange) and Ph- (blue)
cells during CML geneis. (c) BCR-ABL ratio plotted over a 400 day
treatment period.
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Figure 2.3: Simulation of CML for 20 different runs of the ABM over a 15
year period. (a) Mature Ph+ and Ph- cells populations. Corresponding
runs are plotted in the same color. Almost all simulations reach a 99%
BCR-ABL threshold within the 15 year period. One simulation predicts
slower CML development, while the last predicts the extinction of the
leukemic population after roughly 100 days of simulation. (b) Average
BCR-ABL ratio of 18 ABM simulations plotted over a 400 day simulation
of treatment. Only runs that attained a 99% BCR-ABL threshold were
used to calculate the average.
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be discretized. Affinity is discretized by setting a(t) = e−kρ where ρ = log d ≈ 0.0488

and 0 ≤ k ≤ 127 is an integer. The affinity of each cell can therefore be represented

discretely by the value of k where log a(t) = −kρ. The stem cell populations are

modeled by the following difference equations with k representing cell affinity and c

representing position in the cell cycle.

Ak(t+ 1) =



(A0(t)−B0(t)) + (A1(t)−B1(t)) + (A2(t)−B2(t)), k = 0

(Ak+2(t)−Bk+2(t)) +
∑31

c=0 Ψk,c(t), k = 1, ..., 125

∑31
c=0 Ψk,c(t), k = 126, 127

(2.2)

Ωk(t+ 1) =



B0(t), k = 0, c = 32

2Ωk−1,48(t), k > 0, c = 0

Ωk−1,c−1(t)−Ψk−1,c−1(t), k > 0, c = 1, ..., 31

(Ωk−1,31(t)−Ψk−1,31(t)) +Bk(t), k > 0, c = 32

Ωk−1,c−1(t), k > 0, c = 33, ..., 48

0, otherwise

(2.3)

Transitions between the Ak and Ωk,c compartments are determined by binomial

random variables Bk and Ψk,c which have the following distributions:

Bk(t) Bin(Ak(t), ω(Ω(t), e−kρ)

Ψk,c(t) Bin(Ωk,c(t), α(A(t), e−kρ)
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Here Ω(t) =
∑

k,c Ωk,c and A(t) =
∑

k Ak(t) denote the total number of cycling and

quiescent cells respectively. The transition probabilities ω and α are as given in

(2.1).

The differentiated cells are represented in a similar fashion. The equations for

precursors are denoted Pj(t) where j = 0, ..., 479 is the number of hours a cell has

spent as a precursor, up to 20 days. Similarly, mature cells are denoted by Mj(t)

where j = 0, ..., 191.

Pj(t+ 1) =



∑48
c=0 Ω127,c(t)−

∑31
c=0 Ψ127,c(t), j = 0

2Pj−1(t), j = 24, 48, 72, ..., 456

Pj−1(t), otherwise

(2.4)

These equations directly reflect the rules of cell differentiation as described in Sec-

tion 2.2.1. For example, the first line of (2.4) represents cycling stem cells that have

attained minimum affinity and differentiate into precursors. Precursors divide every

24 hours producing two identical daughter cells, as represented by line 2 of (2.4).

Line 3 denotes an increase in age of the precursors, which is necessary to track the

time spent as a precursor before the cell matures.

As in the ABM (2.2.1), three non-interacting cell populations are simulated

to mathematically model clinically observed phenomena. The equations as given

above ((2.2)-(2.4)) mathematically describe the growth and development of Ph-

cells. Simulation of this model produces a quiescent-dominated steady state stem

cell profile (fig. 2.4a), similar to the ABM. Altering the parameter values in (2.3)
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allows the model to replicate uncontrolled cell growth and therefore model Ph+ and

Ph+/A cells (fig. 2.4b).

To incorporate the effects of imatinib therapy, equation (2.3) is altered for

Ph+ and Ph+/A cells. Let Ω+/I(t) Bin(Ω+
k,c(t), rinh) be the number of proliferating

Ph+ stem cells infected by imatinib as time t. Let Ω+/D(t) Bin(Ω+
k,c(t), rdeg) be the

number of proliferating Ph+ stem cells undergoing apoptosis at time t. Then, the

right hand side of (2.3) is replaced by Ω
+/R
k,c (t) where Ω

+/R
k,c (t) = Ω+

k,c(t)−Ω
+/I
k,c (t)−

Ω
+/D
k,c (t) is the number of cycling Ph+ stem cells remaining unaffected at the next

time step. Likewise, for Ph+/A cells, the right hand side of (2.3) is replaced by

Ω
+/A,R
k,c (t) = Ω

+/A
k,c (t) + Ω

+/I
k,c (t) − Ω

+/A,D
k,c (t). The overall structure of the equations

remains unchanged. This model also captures the biphasic decline typical of the

BCR-ABL ratio typical under TKI therapy (fig. 2.4c).

The computational efficiency of this model lends itself well to exploring the

various effects of imatinib therapy. Simulation of the Kim et al. difference equation

model ((2.2)-(2.4)) during therapy shows an immediate and rapid decline in the

number of Ph+ cells (fig. 2.5a). However, this model does not predict a complete

eradication of CML. In an average run of this model, the Ph+ population reaches

a minimum value of approximately 5.6 × 106 cells after 160 days of treatment.

Extending the treatment period beyond 400 days result in a continuously declining

BCR-ABL ratio (fig. 2.5b). Since a steady state is never reached in any simulation,

the model suggests that eradication of CML is possible if duration of therapy is

long enough. This result does not agree with the true behavior of CML reflected

in available patient data. Since treatment cessation is an important question in
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current clinical research of CML, it is important to look at what this model can say

about post-treatment dynamics. A 400 day treatment period significantly reduces

the leukemic cell population. When treatment simulation is stopped (all model

transitions occur according to the original transition rules), the Ph+ population

is able to recover and outgrow the Ph- population approximately 5 years post-

treatment (fig. 2.5c). By 10 years post-treatment in all simulations of the model,

the BCR-ABL ratio has reached the 99% barrier once more, suggesting a complete

relapse of CML (fig. 2.5d). The Kim et al. difference equation model is unable to

simulate TFR. This therefore suggests that this model, and similarly the Roeder

ABM, is lacking in its ability to capture the full range of dynamics of this disease.

2.2.3 The Kim Model

Kim et al. also formulated a model [21] to provide an alternative explana-

tion for the long-term remission experienced by most CML patients undergoing

imatinib therapy, by incorporating the effects of immune response on CML. The

inclusion of immune response was inspired by experimental research that suggested

an anti-leukemia immune response by CD4+ and CD8+ T cells. The model [21] is
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Figure 2.4: Example simulation of the Kim et al. difference equation
model [20]. (a) Steady state profile of stem cells plotted as number
of quiescent (orange) and cycling (blue) stem cells versus affinity level.
(b) Mature Ph+ (orange) and Ph- (blue) cells during CML geneis. (c)
BCR-ABL ratio plotted over a 400 day treatment period.
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Figure 2.5: A look at the effects of imatinib therapy by simulation of the
Kim et al. difference equation model [20]. (a) Mature Ph+ (orange) and
Ph- (blue) cell populations over a 15 year simulation of CML genesis and
400 day treatment period. (b) Log of the BCR-ABL ratio plotted over
5 year treatment period. (c) Mature Ph+ (orange) and Ph- (blue) cell
populations over 15 year CML genesis phase, 400 day treatment period
and 10 year post treatment span. (d) Log of the BCR-ABL ratio (blue)
corresponding to the mature cell populations displayed in (c). The red
line indicated treatment cessation.
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formulated as a system of DDEs:

ẏ0 = [ry − d0]y0 − qCp(C, T )y0, (2.5a)

ẏ1 = ay0 − d1y1 − qCp(C, T )y1, (2.5b)

ẏ2 = by1 − d2y2 − qCp(C, T )y2, (2.5c)

ẏ3 = cy2 − d3y3 − qCp(C, T )y3, (2.5d)

Ṫ = sT − dTT − p(C, T )C + 2np(Cnτ , Tnτ )qTCnτ . (2.5e)

Leukemic cells (yi) are compartmentalized into stem cells (y0), progenitors (y1),

differentiated cells (y2), and terminally differentiated cells (y3), to describe the

hematopoietic differentiation process. Stem cells grow at a rate r. Progenitors,

differentiated cells and terminally differentiation cells differentiate and expand at

rates a, b, and c respectively. These differentiation rates are reduced to simulate

imatinib therapy. Natural death rates for each cell compartment are given by di.

Anti-leukemia response is modeled by the final term qCp(C, T )yi = qCp0e
−cnCkTyi

in each of the leukemic cell equations where C denotes the total concentration of

all leukemic cells and T is the total concentration of anti-leukemia T cells. Each

leukemic cell population interacts with T cells at a rate kTyi. T cells engage the

leukemia cell with probability p0 and kills it with probability qC . The exponential

component of these terms reflect suppression of immune response by leukemia cells.

The T cell population is established from a constant supply term sT and dies

off at a rate dT . T cells are stimulated to amplify upon successful interaction with
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leukemic cells. Stimulated T cells exit the system, reentering after completing n

divisions. The average duration of one division is given by τ . Cnτ and Tnτ are the

concentrations of leukemic and T cells after a delay of nτ time units.

With this model 2.5, Kim et al. described CML dynamics and long-term re-

mission through incorporation of anti-leukemia immune response. Furthermore, the

structure of immune-leukemia interaction terms allowed them to study the balance

between the two cell types and determine an optimal load zone in which the anti-

leukemia T cell response is most effect. This optimal load zone is a precursor to the

immune window hypothesized in the Clapp model [22].

2.2.4 The Clapp Model

Clapp et al. noticed that while much of their patient data showed the typical

biphasic exponential decline described by the models in sections 2.2.1 and 2.2.2 and

other mathematical models, the data also showed fluctuations in BCR-ABL ratio

after this period that existing models were unable to capture. Representative graph

for two patients are shown in Figure 2.6. Clapp hypothesized that these oscillations

were due to additional mechanisms of the autologous immune system. They thus
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constructed an ODE model [22] of CML and the immune system:

ẏ0 = b1y1 − a0y0 −
µy0z

1 + εy23
, (2.6a)

ẏ1 = a0y0 − b1y1 + ry1(1−
y1
K

)− d1y1 −
µy1z

1 + εy23
, (2.6b)

ẏ2 =
a1
inh1

y1 − d2y2 −
µy2z

1 + εy23
, (2.6c)

ẏ3 =
a2
inh2

y2 − d3y3 −
µy3z

1 + εy23
, (2.6d)

ż = sz − dzz +
αy3z

1 + εy23
. (2.6e)

The model consists of four leukemic cell populations, quiescent stem cells (y0), cy-

cling stem cells (y1), progenitors (y2), mature cells (y3), and a single immune cell

compartment (z). The maturation process of leukemic cells generally follows the

assumptions previously described in Sections 2.2.1 and 2.2.2. Stem cells are either

quiescent or cycling and can transition between the two types until they differen-

tiate into progenitors. Cycling stem cells are assumed to follow logistic growth.

Progenitor cells further differentiate into mature cells. Each leukemic cell type is

assumed to have a natural death rate and also dies due to interaction with immune

cells. The effect of TKI therapy is incorporated by reducing the differentiation rate

and expansion factors for progenitors and mature cells. The immune system is

simplistically represented as a single compartment, supplied by a constant source sz

with a natural death rate dz. Amplification of immune cells is directly stimulated

by leukemic cell presence. Clapp et al. introduce the concept of an immune win-

dow to describe the window of leukemic load in which the immune system is most
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Figure 2.6: Representative patient data for two CML patients. The
log of BCR-ABL ratio during imatinib therapy is plotted over time in
months. An initial biphasic decline can be seen, followed by oscillations
in the ratio.

active and effective. Large leukemic populations reduce amplification of immune

cells while small leukemic populations affect the ability of immune cells to destroy

leukemic cells. It is assumed that immune cells affect all types of leukemic cells in

the same manner.

With this mathematical model, Clapp et al. were able to not only capture

the same dynamics of previous models, notably the biphasic decline, but they were

also able to demonstrate that the oscillations in the BCR-ABL ratio observed in

a majority of patient data, may be the result of an individualized response to the

drug and a varying degree of the immune response.

2.3 Modeling the Dynamics of the Immune System

In the last 10-15 years, the study of immunology through use of mathemat-

ical models has grown drastically. The nature of these models varies greatly from
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the scale of the model (molecular, cellular, tissue, multi-scale), to the mathematics

behind it (ODEs, PDEs, Monte-Carlo simulations), and the specific area of im-

munology being studied (T cell receptors, tumor-immune interaction, etc.). Many

of these variations and example models are laid out in various reviews [23–25]. In

this section, we will briefly discuss a delay differential equation (DDE) model of

adaptive regulation of the immune response on a cellular level and various exten-

sions of this model. This model will serve as the motivation for the CML model in

Chapter 3.

2.3.1 A Model of Adaptive Regulation

Kim et al. proposed a mathematical model of primary immune response in-

corporating contraction of the immune system through regulatory T cells [26]. The

model is formulated as a system of DDEs describing the interaction of five cell types:

naive antigen presenting cells A0 (APCs), mature APCs A1, naive T cells K0, mature

T cells K, and regulatory T cells R. The model is as follows:

Ȧ0 = sA − d0A0(t)− a(t)A0(t), (2.7a)

Ȧ1 = a(t)A0(t)− d1A1(t), (2.7b)

K̇0 = sK − δ0K0(t)− kA1(t)K0(t), (2.7c)

K̇ = 2mkA1(t− σ)K0(t− σ)− kA1(t)K(t) + 2kA1(t− ρ)K(t− ρ) (2.7d)

− (δ1 + r)K(t)− kR(t)K(t),

Ṙ = rK(t)− δ1R(t). (2.7e)
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Naive APCs interact with antigen at a rate a(t), causing them to mature and trans-

port the antigen to the lymph node where immature T cells are located. The

presence of APCs in the lymph initiates a minimal developmental program. After

m divisions, T cells are considered fully developed and further proliferate due to

interaction with mature APCs. Mature T cells differentiate into regulatory T cells

at a rate r. Regulatory cells suppress mature T cells. Naive APCs and T cells

are supplied by constant source terms sA and sK respectively and all cells type are

assumed to experience a natural death.

This model does not distinguish between CD4+ and CD8+ T cells in order

to simplify the model and thereby focus on the feedback between effector cells and

regulatory cells in general. Kim et al. note that their formulation of differentiation of

effector cells into regulatory cells is based on the notion of an antigen-independent T

cell program [26]. That is, a primary immune response is initially stimulated by the

presence of antigen but T cells are then able to self-regulate independently of further

stimulation from APCs. Although this model represents an oversimplification of the

biological processes that occur in a primary immune response, it is able to describe

the basic dynamics (fig. 2.7), providing a useful tool for studying immune regulation.

Kim et al. also established an extension of this model [26], incorporating CD4+ T
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Figure 2.7: (a) Graph of a(t), the rate at which antigen interact with and
stimulate immature APCs. (b) Dynamics of immature and mature APCs
over a 20 day period. (c) Dynamics of naive effector, mature effector and
regulatory T cells. To view the dynamics of all three populations on one
figure the concentrations of naive cells and regulatory cells are multiplied
by a factor of 1000 and 100 respectively.
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cells and stimulation of T cell expansion by cytokine:

Ȧ0 = sA − d0A0(t)− a(t)A0(t), (2.8a)

Ȧ1 = a(t)A0(t)− d1A1(t), (2.8b)

Ḣ0 = sH − δ0H0(t)− kA1(t)H0(t), (2.8c)

Ḣ = 2m1kA1(t− σ1)H0(t− σ1)− kA1(t)H(t) + 2kA1(t− ρ1)H(t− ρ1) (2.8d)

− (δH + r)H(t)− kR(t)H(t),

K̇0 = sK − δ0K0(t)− kA1(t)K0(t), (2.8e)

K̇ = 2m2kA1(t− σ2)K0(t− σ2)− kP (t)K(t) + 2kP (t− ρ2)K(t− ρ2) (2.8f)

− δKK(t)− kR(t)K(t),

Ṗ = r1H(t) + r2K(t)− δPP (t)− kP (t)K(t)− kP (t)R(t), (2.8g)

Ṙ = rH(t)− kP (t)R(T ) + 2kP (t− ρ1)R(t− ρ1)− δHR(t). (2.8h)

Here H0, H and P represent the concentrations of naive CD4+ (helper) T cells, ma-

ture CD4+ T cells and positive growth signal, respectively. The dynamics of naive

and mature APCs remain the same as in Equation (2.7). Mature APCs activate

both types of effector cells, initiating their minimal developmental programs. Upon

completing a specific number of divisions, further interaction with mature APCs

cause CD4+ effector cells to continue dividing, while CD8+ effector cells proliferate

by consuming positive growth signal. Positive growth signal is secreted by both

types of effector cells. Effector CD4+ cells differentiate into regulatory T cells. Pro-

liferation of regulatory cells is stimulated by positive growth signal and regulatory
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cells suppress both CD4+ and CD8+ effector cells. This more detailed model bet-

ter represents the underlying biology, yet generally yields the same dynamics as the

original model.
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Chapter 3: A Model of CML and the Immune System under TKI

Treatment

3.1 Introduction

The purpose of this chapter is to introduce and study an extension of the

Clapp et al. model (2.6) that was introduced in Chapter Section 2.2.4. Clapp

et al. [22] constructed their model of CML and the autologous immune system in

order to address the inability of previous models [19, 20] to capture certain key

characteristics of CML patient data. They hypothesized that the immune system

was in some way responsible for the development of fluctuations in the BCR-ABL

ratio seen in much of the available data.

While model (2.6) produces a relatively good fit to the data and supports the

hypothesis that the immune system plays a role in the dynamics of CML under IM

therapy, it is based on an overly simplified representation of immune response. The

goal of this chapter is to extend the model of [22] by replacing the single immune

compartment with a more accurate representation of immune response. Including

immune cell subtypes should improve the accuracy of the fit of the model to the

clinical data. It will also provide the necessary infrastructure for incorporating
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detailed clinical data regarding the immune dynamics of individual patients once

immunological assays are made available.

Our proposed model of CML with expanded immune components is presented

in Section 3.2. In Section 3.3 we discuss parameter estimation and demonstrate

simulations of the model. A discussion of the results, including a comparison to the

Clapp et al. model, can be found in Section 3.4.

3.2 An Improved Model of the Immune Response to CML

As in the Clapp et al. model, we let y0, y1, y2 and y3 represent concentrations of

quiescent leukemic stem cells, cycling leukemic stem cells, progenitor leukemic cells

and mature leukemic cells, respectively. We replace the immune cell compartment

z with three new compartments T0, T1 and R that represent the concentrations of

naive T cells, mature T cells and regulatory T cells, respectively.

The dynamics of the leukemic cell populations remain largely unchanged from

the base model. Stem cells transition between quiescent and cycling states, and

experience growth while cycling. Cycling stem cells may differentiate into progen-

itor cells, which may further differentiate into mature cells. Cycling stem cells,

progenitors and mature cells all have a natural death rate. Leukemic cells are also

killed through interaction with mature effector T cells. From a constant source,

naive T cells are activated and develop into mature T cells based on interaction

with leukemic cells. Further interaction with leukemic cells prompts mature T cells

to continue dividing. Mature T cells differentiate into regulatory cells which can
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suppress mature T cell growth.

For simplicity, both CD4+ and CD8+ T cells are grouped together into a

single effector T cell compartment, and other types of effector cells (NKs, etc.) are

excluded. This simplification does not allow us to represent the specific mechanisms

by which regulatory cells are produced, which is not a concern of this work. We

assume that effector cells that differentiate into regulatory cells do not proliferate

further. Inclusion of the regulatory cells in this model allows us to handle the con-

traction of the immune response independently of the CML cell populations. These

simplifications and assumptions are motivated by the adaptive immune regulation

model of Kim et al. [26]. This allows us to effectively simulate an immune response

while leaving open the possibility of further expansion in later work through inclu-

sion of other immune cell types, biologically accurate dynamics, and incorporation

of immunotherapies.
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Figure 3.1: Diagram of mathematical model of CML with expanded
immune compartments. Leukemic cells are divided into four subpopu-
lations: quiescent stem cells (y0),cycling stem cells (y1), progenitor cells
(y2) and mature cells (y3). Immune cells are divisded into three sub-
types: naive T cells (T0), mature T cells (T1) and regulatory T cells (R).
Leukemic stem cells transition between quiescence and cycling, undergo-
ing divison and duplication in the cycling compartment. Cycling stem
cells can differentiate into progentior cells, which can then differentiate
into mature cells. Leukemic cells die at a natural death rate or due to
interaction with mature T cells. We assume a constant supply rate of
naive T cells. Naive cells are activated and develop into mature T cells do
to the presence of leukemic cells. Mature T cells continue to proliferate
in response to further interaction with leukemic cells and differentiate
into regulatory T cells at rate r. Regulatory T cells suppress mature T
cells and all immune cells die with natural death rates dT i.
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The model is structured as the following system of ODEs:

ẏ0 = b1y1 − a0y0 −
µy0T1

1 + εy23
, (3.1a)

ẏ1 = a0y0 − b1y1 + ry1(1−
y1
K

)− d1y1 −
µy1T1

1 + εy23
, (3.1b)

ẏ2 =
a1
inh1

y1 − d2y2 −
µy2T1

1 + εy23
, (3.1c)

ẏ3 =
a2
inh2

y2 − d3y3 −
µy3T1

1 + εy23
, (3.1d)

Ṫ0 = sT − dT0T0 −
αy3T0
1 + εy23

, (3.1e)

Ṫ1 =
αy3T0
1 + εy23

+ αy3T1 − (dT1 + rT )T1 − kTRT1, (3.1f)

Ṙ = rTT1 − dT1R. (3.1g)

Equation (3.1a) describes the dynamics of quiescent leukemic stem cells. These

cells enter the cell cycle at a rate b1 and return to quiescence at a rate a0. Quiescent

stem cells undergo apoptosis after interaction with mature T cells at a rate µ.

Equation (3.1b) refers to cycling stem cells. The first two terms are similar to those

in (3.1a), describing the transition between the two stem cell compartments. We

use logistic growth to describe the proliferation of cycling stem cells, with growth

rate r and carrying capacity K. Cycling stem cells have a natural death rate of

d1 and are also killed by mature T cells with maximal effective kill rate µ. The

first term of equation (3.1c) describes the differentiation of cycling stem cells into

progenitors. The parameter value a1 incorporates both the differentiation rate and

the amplification that occurs due to proliferation. Progenitor cells die at a natural

death rate d2 as well as by interaction with mature T cells. The fourth equation
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describes the dynamics of mature leukemic cells and is similar to equation (3.1d).

Here, the differentiation rate is a2 and the death rate is d3.

The final three equations of the model govern the dynamics of the immune cell

compartments. Equation (3.1e) includes terms for a constant source sT and natural

death rate dT0 of naive T cells. Naive T cells are activated through interaction

with leukemic cells at a rate α. The first term of (3.1f) represents the development

of naive T cells into mature cells, while the second term refers to proliferation of

mature T cells stimulated by leukemic cells. Mature T cells die with natural death

rate dT1 and differentiate into regulatory cells at a rate rT . The last term refers to

the suppression of mature T cells by regulatory cells at a rate kT . Finally, equation

(3.1g) describes the dynamics of regulatory cells. The first term gives the rate at

which mature T cells differentiate into regulatory cells and the second describes the

natural death of regulatory cells. We assume that this death rate is the same as

that of mature T cells.

As in the Clapp model [22], this model incorporates immunosupression in two

ways. First, mature leukemic cells inhibit the killing potential of mature T cells.

This can be seen in the final term of (3.1a)-(3.1d) where µ is divided by a factor

of 1 + εy23. Second, mature leukemic cells diminish the activation of naive effector

T cells and the proliferation of mature effector T cells. This is incorporated by

decreasing the expansion rate α by the same factor of 1 + εy23 in (3.1e) and (3.1f).

Structuring immunosupression in this way restricts the effectiveness of effector T

cells to an immune window [ymin, ymax]. Large leukemic loads (y3 > ymax) result

in an ineffective immune response, while leukemic populations that are too small
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(y3 < ymin) do not stimulate enough of a response. Since the total leukemic cell

population is predominantly mature cells, we consider only the y3 concentration

when incorporating immunosuppression.

Imatinib targets CML in two ways: reducing the proliferation rate and trig-

gering apoptosis of leukemic cells. This model incorporates the former by reducing

the proliferation rates a1 and a2 of progenitor and mature leukemic cells by factors

of inh1 and inh2 respectively. There is little consensus on the effects of imatinib on

leukemic stem cells with some research suggesting that CML stem cells may be par-

tially or completely resistant to this therapy [27]. Therefore, we do not incorporate

an effect of imatinib on the stem cell compartments of our model.

3.3 Results

3.3.1 Data and Numerical Methods

We fit our model to patient data made available by our collaborator Dr. Franck

Nicolini (Centre Léon Bérard). The data set consists of BCR-ABL ratios of 104 CML

patients that were monitored during imatinib therapy in the Centre Hospitalier Lyon

Sud. Patients were treated with first-line imatinib 400 mg daily. BCR-ABL ratios

were measured in the same laboratory by quantitative RT-PCR. Measurements were

taken at diagnosis, every 3 months for the first year of therapy, and every 6 months

thereafter. Each ratio was measured twice and the average was reported. Of the 104

patients in this study, 33 patients changed TKIs for safety reasons and 14 patients

experienced a progression in disease, with a few patients falling into both categories.
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We excluded these patients and fit our model to the remaining 65 patients who

responded well to imatinib. This is the same data set used by Clapp et al. and

therefore allows for comparison of the two models.

Most of the parameters in our model are considered to be universal; their

values are estimated based on background biological knowledge and are fixed for

all patients (Table 3.1). The remaining eight parameters relate to either the effect

of imatinb therapy (inh1, inh2) or immune response (µ, dT1 , α, ε, kT , rt). Since

the immune system varies between individuals [28] and the effectiveness of imatinib

differs between patients, we consider these parameters to be patient specific and are

therefore determined by fitting the model to measured patient BCR-ABL ratios.

Latin hypercube sampling is used to generate sample parameter sets. For each pa-

tient, a single parameter set is selected by minimizing the squared distance between

the log of the simulated ratio and the log of the measured ratio. This parameter set

is then used as an initial condition in a nonlinear minimization routine to find the

optimal patient-specific parameter set.

Rather than fit the immune expansion rate α and immunosupression strength

constantε directly, we fit the immune window [ymin, ymax] and compute ε = 1/(yminymax)

and α = (ymin + ymax)εdT1. The sampling range for ymax can be found by determin-

ing the y3 concentration at the second phase of decline in the BCR-ABL ratio, since

we hypothesize that this decline occurs when the leukemic load is pushed into the

immune window. Similarly, we look at the center and magnitude of the oscillations

in the BCR-ABL ratio to determine an initial sampling range for ymin. For most

patients in the available data set, these ranges are [104, 106] for ymax and [102, 104]
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for ymin.

We use Matlab’s ode45 differential equation solver to run simulations of our

model. From the results of the solver, we compute a simulated BCR-ABL ratio with

the following formula:

BCR− ABLratio = 100β
y3

2x+ y3
(3.2)

This is a ratio of the number of BCR-ABL genes to normal ABL genes in the

blood. Here, in (3.2), y3 refers to the mature leukemic cell population, as in (3.1), x

represents the healthy cell population, and β is a factor that accoutns for differences

in mRNA expression between the mutated and control gene. Each cell has two copies

of the ABL gene, one in each copy of chromosome nine. Only one copy is mutated

when the Philadelphia chromosome is formed [29].

3.3.2 Simulations

We fit our model (3.1) to the available data for each patient using the process

described in Section 3.3.1. The simulated BCR-ABL ratio for 12 CML patients

undergoing Imatinib therapy is plotted on a logarithmic scale in Figures 3.2 and 3.3.

Patient-specific parameters for these simulations are found in Table 3.2. From these

figures, it is noticeable that this extended model can reproduce patient dynamics.

Notably, the model captures the biphasic decline in BCR-ABL ratio typically seen

during the first year of Imatinib treatment. The steep first phase of this decline

occurs on average over the first 6 months. The second phase is more gradual,
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Parameter Value Description Source

a0 0.0027 Transition rate to cycling stem cell Estimated

b1 0.0247 Transition rate to quiescent stem cell Estimated

r 0.08 Logistic growth rate of cycling stem cell Estimated, [21]

K 4.2872 Carrying capacity of cycling stem cell Estimated

a1 899.9820 Differentiation rate and expansion factor of progenitor cells Estimated

a2 24.0005 Differentiation rate and expansion factor of mature cells Estimated

d1 0.00225 Natural death rate of cycling stem cells [21]

d2 0.006 Natural death rate of progenitor cells [21]

d3 0.0375 Natural death rate of mature cells [21]

dT0 0.03 Natural death rate of naive T cells [26]

sT 120 ∗ dT0 Naive T cell source term Estimated

y0(0) 37.5 Initial concentration of quiescent stem cells Estimated, [30]

y1(0) 4.1667 Initial concentration of cycling stem cells Estimated, [30]

y2(0) 1.6667 · 104 Initial concentration of progenitor cells [30]

y3(0) 1.5 · 108 Initial concentration of mature cells [31]

T0(0) 120 Initial concentration of naive T cells Estimated, [31]

β 3 BCR-ABL ratio adjustment factor Estimated based on patient data

Table 3.1: Universal parameter values and descriptions.

sometimes appearing more as a plateau than a reduction (e.g. fig. 3.2a and fig. 3.3c).

For some patients, the initial reduction in cancer load presents more as a triphasic

decline, with the third phase being more gradual than the second. This can be seen

in Figures 3.2b, 3.2e and 3.3e. The first phase again lasts approximately 6 months

while the second phase varies in length from approximately 18 months (figs. 3.2e

and 3.3e) to 34 months (fig. 3.2b). This initial deline in BCR-ABL ratio, either

biphasic or triphasic, can be attributed to the effect of imatinib.

Of the 65 patients in the available data set, 15 have monotonically decreasing

BCR-ABL ratios. The remaining patients experience fluctuations in their measured

ratios, which the extended model is also able to capture. The effect of therapy

pushes the cancer load into the immune window. This can occur within the first

year (fig. 3.2a), two years (fig. 3.3f), or much later (fig. 3.2b) into therapy. At this
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point, an immune response is initiated and effector T cells begin to kill CML cells.

The combination of imatinib and immune response reduce the leukemic load to a

concentration that lies below the immune window, ending the immune response

and allowing a recurrence of CML. As the concentration of CML cells reenters the

immune window, a second immune response begins and again the cancer load is

pushed to a level below the immune window. This behavior continues, resulting in

oscillations in the simulated BCR-ABL ratio. The nature of these oscillations vary

depending on the patient. Period length can be quite short (fig. 3.2f) or much longer

(fig. 3.3f). Amplitude of the oscillations often rapidly decreases (figs. 3.2a, 3.2d

and 3.2f) until the simulated ratio approaches an equilibrium at ymin. Occasionally

this steady state takes longer to approach, as in Figure 3.2c where visible oscillations

are still occurring at year 10 of the simulation.

The involvement of the immune system is more clearly depicted in Figure 3.4.

Fluctuations in the mature leukemic cell concentration lead to fluctuations in the

concentration of mature effector T cells (fig. 3.4a). As the leukemic load initially

drops into the immune window, an increase in mature effector T cells occurs corre-

sponding to an initial immune response. The mature effector population decreases

once the leukemic load is below the immune window and no longer stimulating acti-

vation and amplification of the effector cells. The largest spike in effector cells occurs

during the initial immune response. As the concentration of effector cells oscillates,

the amplitude of the oscillations decays over time. This occurs in our simulation due

to the structure of our model and the lower concentration of leukemic cells, but it

also makes sense biologically as a secondary immune response requires less effector
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Figure 3.2: Fits of the the extended model (3.1a)-(3.1g) to patient data
for six patients. The log of the BCR-ABL ratio is plotted over time.
Dots represent patient data. Blue horizontal lines indicate the immune
window. Black horizontal lines indicate the minimal level detectable by
RT-PCR. Points are this line correspond to those points at which the
disease was not observed.
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Figure 3.3: Fits of the the extended model (3.1a)-(3.1g) to patient data
for six additional patients. The log of the BCR-ABL ratio is plotted
over time. Dots represent patient data. Blue horizontal lines indicate
the immune window. Black horizontal lines indicate the minimal level
detectable by RT-PCR. Points are this line correspond to those points
at which the disease was not observed.
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cells to reduce the amount of antigen. The dynamics of each immune cell type are

shown in Figure 3.4b. A reduction in naive effector T cells occurs at the beginning

of an immune response, followed by a large spike in mature effector cells. Spikes in

regulatory cell concentration occur towards the end of an immune response.

Since the model is quite complex and the number of parameters is large, sensi-

tivity analysis of the parameters was done computationally rather than analytically.

Figure 3.5 shows the quality of fit of the extended model as a function of four dif-

ferent pairs of patient-specific parameters for a single representative patient. The

model is most sensitive to (inh1, inh2) and (ymin, ymax). This makes sense as inh1

and inh2 are responsible for the initial decline in leukemic load and ymin andymax in-

dicate when the immune system kicks on. There is also a strong correlation between

fit and the parameters governing regulation of the immune system (rT , kT , dT1). Al-

though the range of acceptable values for these parameters seems to be much larger

with pairs of values producing either very good or very poor fits. The maximal kill

rate of effector cells (µ) seems to be less important; almost no correlation is seen

between quality of fit and this parameter value.

3.4 Discussion

Since their introduction in the early 2000s, TKI therapies such as imatinib

have greatly improved the outcomes for most CML patients. Despite improved

survival rates and their impressive ability to reduce leukemic load, TKIs are not a

cure for CML and the majority of patients rely daily on this drug to manage the
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Patient inh1 inh2 dT1 µ ymin ymax kT rT

1 1.015 867.543 0.124 7.045 · 10−9 3.747e4 2.441 · 105 2.725 · 10−5 2.087 · 10−7

2 644.798 14.424 0.097 2.261 · 10−7 3.099 · 103 1.884 · 104 0.003 1.650 · 10−8

3 10.231 100.858 0.374 1.055 · 10−9 4.240 · 104 1.855 · 105 1.417 2.245 · 10−11

4 2.280 558.193 0.047 9.489e · 10−7 8.059 · 103 1.908 · 105 1.137 · 10−7 0.001

5 32.815 113.547 0.143 8.063 · 10−10 5.578 · 102 5.331 · 104 2.440 · 10−7 0.001

6 6.340 743.093 0.114 1.761 · 10−9 1.141 · 103 5.515 · 104 1.328 · 10−8 0.003

7 2.661 1289.170 0.173 6.826 · 10−13 1.993 · 104 8.597 · 104 3.505 2.374 · 10−14

8 2.891 93.428 0.132 3.032 · 10−8 9.151 · 104 9.899 · 105 2.092 1.597 · 10−10

9 1.144 282.370 0.027 3.325 · 10−8 5.399 · 104 8.282 · 105 0.220 4.626 · 10−11

10 19.122 104.663 0.053 3.200 · 10−17 1.003 · 102 3.424 · 105 1.628 · 10−11 1.409 · 10−7

11 32.634 282.314 0.088 7.787 · 10−7 6.249 · 103 1.887 · 104 1.411 2.092cdot10−11

12 40.701 126.263 0.093 9.594 · 10−8 1.276 · 104 4.906 · 104 0.139 1.007 · 10−10

Table 3.2: Patient parameter values used for the simulations in Fig-
ure 3.2 and Figure 3.3. Patients 1-6 correspond to Figures 3.2a to 3.2f.
Patients 7-12 correspond to Figures 3.3a to 3.3f. The bounds of the
immune window are fit to the data rather than the parameters α and
ε. These parameters can be computed from the immune window as
ε = 1/(yminymax) and α = (ymin + ymax)εdT1.

inh1 inh2 dT1 µ ymin ymax kT rT

Min 0.398 10.548 0.016 3.200 · 10−17 100.309 1.668 · 104 1.628 · 10−11 2.374 · 10−14

Mean 41.319 1.497 · 103 0.114 1.380 · 10−7 1.695 · 104 3.291 · 105 4.029 3.842 · 10−4

Max 644.798 9.496 · 103 0.374 9.489 · 10−7 9.396 · 104 1.968 · 106 84.5288 0.0042

STD 130.663 2.511 · 103 0.078 2.710 · 10−7 2.748 · 104 4.788 · 105 17.178 9.916 · 10−4

Table 3.3: The minimum, mean, maximum and standard deviation are
computed from the patient-specific parameter values of 25 of the patients
in the data set. These 25 patients did not change TKI or dose during
therapy, experienced no disease progression, and have at least 6 IS data
points.
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Figure 3.4: A look at the immune compartments for a representative
patient (Patient 4 in Figure 3.2d and Table 3.2). (a) depicts the con-
centration (cells/mL of blood) of mature CML cells (blue) and mature
effector T cells (red) on a logarithmic scale over time. The immune win-
dow is plotted in black. (b) shows the dynamics of naive effector T cells
(blue, dashed), mature effector T cells (blue solid), regulatory cells (red).
Concentration (cells/mL of blood) is plotted over time. Note: the naive
cell concentration is scaled by a factor of 100 and the regulatory cell
concentration is scaled by a factor of 10 to show all three populations
on the same graph.
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Figure 3.5: Sensitivity analysis of patient-specific parameters for a rep-
resentative patient (Patient 1 in Figure 3.2a and Table 3.2). For each
plot, the two specified patient-specific parameter values are varied while
all other values are as stated in Table 3.1 and Table 3.2. The 2-norm
error of the model (3.1) is plotted as a color. Better fits (lower error)
are dark blue. Worse fits (higher error) are dark red. (a) log(inh1) vs.
log(inh2) (b) log(ymin) vs. log(ymax) (c) dT1 vs. log(µ) (d) log(kT ) vs.
log(rT )
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disease. Recent studies such as STIM, TWISTER and EuroSki have shown the

possibility of successful treatment cessation with over 40% of enrolled participants

achieving TFR, but TFR does not equate to cancer free status. These patients

often exhibit signs of CML presence, although at very low levels, suggesting other

mechanisms are involved in maintaing TFR. These studies as well as other clinical

evidence suggest that the immune system may be capable of combatting a rise in

leukemic cell populations, and has aided a push to incorporate immunomodulating

treatments like IFNα and further explore treatment cessation. The application of

mathematical models can be a valuable tool in studying the connection between

CML, immune response and successful treatment cessation.

Previous mathematical models, a few of which are described in Chapter 2,

have provided valid descriptions of CML dynamics under TKI therapy, capturing a

biphasic exponential decline in BCR-ABL ratio shortly after the onset of treatment.

The Clapp et al. model [22] further explained characteristics of patient data by in-

corporating the immune system as a single compartment of their ODE model. Their

hypothesis of a narrow window of leukemic cell concentration in which the immune

system is both active and effective, was shown to produce oscillatory dynamics in

the BCR-ABL ratio similar to those exhibited in available patient data. This as-

sumption was further validated by Fassoni et al. in their comparison of models of the

interaction of CML and immune effector cells [32]. Of the 20 different sub-models

considered, they found that only those that utilized an immune window for either

immune response to leukemic cells or immune recruitment were most plausible in

that these models were capable of simulating three relevant steady states of disease,
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remission and cure. The concept of an immune window is a solid foundation from

which to work, but more is needed to be known about the interaction between the

immune system and CML.

This chapter has presented a new mathematical model describing the dynamics

of CML under imatinib therapy while incorporating immune response. The model

retains the leukemic cell differentiation process of the Clapp model from stem cell

to fully developed mature cell. Since it has been suggested that LSCs are a possible

cause of relapse for CML patients, their inclusion in this model is vital. The single

immune cell compartment of the Clapp model is replaced by three new compart-

ments that describe both effector cell development and adaptive regulation through

the inclusion of naive T cells and regulatory T cells. Expansion of the immune

system compartments from previous models allows for a more biologically accurate

description of immune response, and is a natural first step in model expansion.

While this extended model does appear to capture the dynamics of the dis-

ease, comparison of the model only to the measured BCR-ABL ratio provides little

evidence to suggest it produces the true dynamics of CML under TKI therapy. Sim-

ulations of the Clapp model also give a generally valid depiction of the dynamics.

Figures 3.6 and 3.7 provide a comparison of the two models for twelve representative

patients. The two models sometimes predict similar or identical representations of

CML under therapy (figs. 3.6a and 3.6b) and are close fits to the data. However,

for other patients, the two models result in noticeably different outcomes. The

expanded model can predict increased oscillatory BCR-ABL behavior (figs. 3.6c,

3.6f and 3.7b) or smoother approaches to a steady state along the immune window
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minimum (figs. 3.7e and 3.7f), in comparison to the Clapp model. In either case,

the 2-norm error between the model-simulated BCR-ABL ratio and the clinically-

measured ratio is always small, and quite close to the errors produced by the Clapp

model (table 3.4). This suggests that more information, perhaps more data or bet-

ter computational methods, is needed for fitting these models to data in order to

determine exactly what kind of dynamics are taking place and therefore increase

the predictive value of these models.

Patient 1 2 3 4 5 6 7 8 9 10 11 12

Error - Clapp 0.560 0.556 0.466 1.991 1.635 1.493 0.355 0.773 0.397 0.174 1.651 0.435

Error - Extension 0.530 0.530 0.412 2.382 1.803 1.796 0.302 0.816 0.385 0.298 1.662 0.411

Table 3.4: Comparison of 2-norm errors for the Clapp et al. model (2.6)
and our extended model (3.1).

An advantage of this extended model is its ability to provide insight into the

patient immune profile, allowing the user to explore the effect of specific immune

mechanisms on the behavior of CML under TKI therapy. Comparing patient-specific

immune parameters confirms variation exists between the immune systems of differ-

ent patients and suggests that the immune system can or does play a larger role in

the success of TKI therapy for various patients. To further explore this hypothesis,

we considered the removal of the regulatory T cell compartment. Regulatory T

cells are responsible for suppressing immune response by decreasing the number of

effector cells when antigen levels diminish. In this model, this occurs as the CML

population falls below the immune window. Reduced levels of leukemic cells do not

result in an eventual eradication of the disease. Instead, suppression of the immune
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Figure 3.6: Fits of the Clapp model (blue) and our extended model
(3.1a)-(3.1g) (red) to patient data for six different patients. The log of
the BCR-ABL ratio is plotted over time. Dots represent patient data.
Horizontal lines show the immune windows for the respective models.
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Figure 3.7: Fits of the Clapp model (blue) and our extended model
(3.1a)-(3.1g) (red) to patient data for six additional patients. The log of
the BCR-ABL ratio is plotted over time. Dots represent patient data.
Horizontal lines show the immune windows for the respective models.
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response by regulatory cells and lack of activation factors allows for a regrowth of

the leukemic population. It is reasonable to then ask if reduction or removal of

regulatory cells is enough to counteract this regrowth.

To answer this question, we looked at the effect of removing regulatory cells

from the extended model by setting the Treg differentiation rate (rT ) to zero. For

roughly 40% of patients in our data set, there is no change in the dynamics of the

BCR-ABL ratio (fig. 3.8a). Our model suggests that for the remaining 60% of pa-

tients, modulation of regulatory cells may improve outcomes. Changes in dynamics

include a smaller minimum value of the BCR-ABL ratio after the initial decline

(fig. 3.8d), increased frequency of oscillations in the BCR-ABL ratio (fig. 3.8c) and

the possibility of a cure (fig. 3.8b). While it is not clinically feasible to completely

eliminate regulatory T cells, these results suggest that an attempt to reduce the

number of or the function of these cells may be an important addition to CML

treatment protocol.

Since the effects of imanitib are generally the same as all TKI therapies, this

extended model of CML and immune response should easily be able to describe the

dynamics of CML under second and third generations of the drug and therefore

could be fit to data from dasatinib and nilotinib patients. Comparison of patient-

specific parameters between these groups of patients may be beneficial in identifying

key characteristics between the three iterations of the drug. Of more interest to

furthering the study of CML through mathematical models, would be to further

expand the description of the immune system in this model. Splitting the effector T

cell compartment into CD4 and CD8 T cells would allow for better description of the
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Figure 3.8: Effect of removing regulatory T cells from the model for four
representative patients. Simulation of the log BCR-ABL ratio using full
extended model shown in blue and without regulatory T cells (rT = 0)
shown in red. Removing regulatory cells had various effects: (a) no
change in treatment outcome, (b) a simulated cure, (c) more dramatic
initial decline in BCR-ABL ratio (d) increased oscillatory behavior.
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formation of regulatory T cells. Inclusion of antigen presenting cells, natural killer

cells or other innate immune cells that have been shown to be present during CML

therapy could allow for the exploration of other immunomodulatory treatments.

With these additions, the effects of IFNα, could be incorporated to aid ongoing

clinical research into the resurgence of this drug allowing our model to be useful in

determining combination therapy protocol.
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Chapter 4: Adaptive Parameters

4.1 Introduction

The extended model of CML and the immune response (3.1) provides an ap-

proximation of the BCR-ABL ratio over time for a given patient. However, there

is no reason to assume that this simulation represents the true dynamics of CML

under imatinib therapy. A major reason for this uncertainty is the identifiability

of the parameter values, particularly with respect to the patient-specific parame-

ters. There is little evidence to suggest that these values must remain fixed over

the course of treatment. In fact, biologically at least some of these values may be

likely to change over time. For example, inh1 and inh2 may decrease over time if

TKI therapy becomes less effective or if treatment is gradually terminated. While

immune systems of healthy people are generally stable over time, this is not neces-

sarily true for cancer patients. For instance, patients living with chronic diseases,

like CML, can experience T cell exhaustion, a state of the immune system defined

by low effector cell function [33]. Such a condition could be reflected in a change

in immune parameters later on in the treatment phase. The goal of this chapter

is to examine parameter values over shorter windows of data to determine which

parameters must change, and in what way, for the model to have the most predictive
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power.

This goal is approached in the following way. Working from the theory that

the human immune system for a single person has little variation over an extended

time span [28], it is hypothesized that changes in parameter values will not be large

in magnitude and will most likely change gradually over the treatment time frame.

Consider a window of length l being shifted by s months, a subset of the complete

treatment time frame. Beginning with the window [0, l] months, the selected pa-

rameter values are fit to the data points contained in that window. The window is

then shifted to [s, l + s] months and parameters are refit to data points contained

in the new window. This process is continued until the current window contains the

last data point in the patient data set. The measured ratios are available through

our collaboration with the group of Dr. Nicolini (Lyon). For the remainder of this

thesis, parameter values that are fit to the complete data set for a given patient

are referred to as optimal parameters while parameters fit on a given window are

referred to as adaptive parameters.

In Section 4.2, we consider different fitting windows and variations of the cost

function. This approach is then used to look at TKI treatment cessation data and

explore the differences between CML patients that relapse and those that main-

tain TFR. A summary of these simulations and results is provided in Section 4.3.

Concluding remarks are made in Section 4.4.
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4.2 Procedure and Results

Using the values listed in Table 3.1 as initial conditions for the ODE solver

and optimal parameters as initial conditions for the selected optimization routine,

the extended model (3.1) is fit to data in the first window [0, l]. The simulated

BCR-ABL ratio is computed from the ODE solution and the selected optimization

scheme then searches for parameter values that minimize the 2-norm error between

the simulated ratio and the data. Once optimal parameters are found for window

[0, l], the window is shifted to [s, l + s] and the process is repeated.

After each shift, the initial conditions for both the ODE solver and the op-

timization routine are reset using the solution of the model and the adaptive pa-

rameters from the previous window. We choose to reset the optimization initial

conditions rather than use the optimal parameter values on every window. The idea

being that parameter values may change gradually over the full simulation time

frame, and therefore the parameter values in the next window will be closer to the

current adaptive parameter values.

A couple of optimization routines were considered which have various advan-

tages in relation to our adaptive fitting scheme. Matlab’s lsqnonlin, a nonlinear

least-squares solver, uses a trust region reflective algorithm to minimize the sum

of squares of the input function. Advantages of this routine include the ability to

bound the parameter values. However, lsqnonlin relies on the use of finite differ-

ences to estimate the derivative of the objective function, in absence of a provided

gradient. Since the function we seek to optimize depends on the numerical solution
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of our ODE model, a number of issues can arise when using finite difference ap-

proximations including amplification of inaccuracies in the numerical methods and

insensitivity of the model to small changes in parameter values. Therefore, mat-

lab’s fminsearch is considered a better alternative. This routine uses a direct search

method to minimize the objective function, but does not accommodate additional

constraints on the solution. To avoid optimal solutions that are invalid in the con-

text of our application, for example parameter values that are negative, the value

of the objective function is set to NaN.

When determining the length of the fitting window, the amount of data avail-

able for fitting and the number of total windows are considered. The length of each

window needs to be short enough for the total data set to be covered by multi-

ple windows, but long enough that there are enough data points in each window

to provide a reasonable fit. Since the majority of patients in the data set have

measurements covering at least 3 years of treatment, a window length of 2 years is

selected. As data is available every 3 or 6 months, this guarantees at least 5 data

points in each fitting window.

Three different window shifts are considered: 6 months, 1 year, and 2 years.

The shorter shifts provide for more overlap in windows and allow us to consider how

the model reacts to each newly available data point. A 2 year shift eliminates all

overlap in windows and can be thought of as looking at different phases of CML

under imatinib therapy. For many patients the initial biphasic decline in BCR-ABL

ratio occurs within the first two years of therapy and could therefore be completely

contained in the first window, isolated from the evolving dynamics in the later phases
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of treatment.

This adaptive fitting approach is applied to the data described in Chapter 3.

Results for four example patients are shown in Figures 4.1 and 4.2 for the three

different shift values. Refitting patient-specific parameters in the first window of

[0, 24] months does not seem to alter the simulation of the model, suggesting that

the extended model provides a fairly consistent description of the dynamics of CML

in the first phase of treatment. The 6 month and 1 year shifts provide slightly

more variation in predictions over these first two years, but generally the dynamics

are quite similar. Behavior over the remaining windows seems to vary by patient.

For certain patients, the adaptive parameters increase the amplitude and frequency

of oscillations in the BCR-ABL ratio (figs. 4.1a and 4.1b), while for others the

adaptive parameters smooth out oscillations in the ratio (fig. 4.2b 6 month and 1

year). Occassionally, the adaptive parameters match the dynamics produced by the

optimal parameters (fig. 4.2a and fig. 4.2b 2 year). In most cases the adaptive fits

produce reasonable alternative simulations of the dynamics of CML, that is, they

match the data as well as the optimal fits as measured by the 2-norm errors. There

are a few patients where the adaptive fits significantly reduce error. These patients

typically have a BCR-ABL ratio that tends to increase, patient 4 (fig. 4.1b) for

example.

How the adaptive parameters change from the optimal values and across the

windows depends on the patient and the window shift. Figure 4.3 shows the percent

of change in each parameter value as compared to the optimal parameter value for

each of the four example patients using a 2 year shift. There is no pattern among
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Figure 4.1: Adaptve fits of the the extended model (3.1a)-(3.1g) to pa-
tient data for Patient 1 (a) and Patient 4 (b) on windows with 6 month,
1 year and 2 year shifts (top to bottom). The log of the BCR-ABL ratio
is plotted over time. Dots represent patient data. The black curve show
simulation of the model over the full time span using optimal parameter
values (table 3.2). Colored curves indicate simulation over each window.
Black horizontal lines indicate the minimal level detectable by RT-PCR.
Points are this line correspond to those points at which the disease was
not observed.
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Figure 4.2: Adaptive fits of the the extended model (3.1a)-(3.1g) to
patient data for Patient 8 (a) and Patient 9 (b) on windows with 6 month,
1 year and 2 year shifts (top to bottom). The log of the BCR-ABL ratio
is plotted over time. Dots represent patient data. The black curve show
simulation of the model over the full time span using optimal parameter
values (table 3.2). Colored curves indicate simulation over each window.
Black horizontal lines indicate the minimal level detectable by RT-PCR.
Points are this line correspond to those points at which the disease was
not observed.
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the four patients, with certain parameters increasing for one patient, decreasing

for another, and exhibiting very little change in value for others. If we assume

that these are accurate reflections of the true characteristics of patient disease and

immune response, then these differences between patients further confirm the vari-

ability of immune response between patients and suggest that these parameter values

are indeed patient-specific. Despite these vast differences, three parameter values

governing immune response tend to be highly variable across all patients: maximal

effective kill rate of immune cells µ, supression rate of regulatory cells kT and the

differentiation rate of effector T cells in regulatory cells rT . These values seem to

differ greatly from the corresponding optimal parameter values even when the re-

sulting simulations are quite similar, as seen in Patients 1 and 9 when using the 2

year shift, suggesting an identifiability issue. The average percent change in param-

eter values for all patients is displayed in Figure 4.4. It is clear that the variations

in parameter values depend on the shift in the window as these three plots show

little similarities.

Immune systems of different patients can vary greatly. However, the immune

profile of a single patient is not likely to vary greatly over time. And yet, the

adaptive fitting procedure often produces large changes in certain parameter values.

Since the selected optimization scheme cannot handle constraints on the solution,

we add a second term to the objective function that forces adaptive parameters to

remain close to the initial parameters

objective = ||log(BCR− ABLsim − log(BCR− ABLmeas)||2 + c · ||padapt − p0||2
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Figure 4.3: Percent change in value of the adaptive parameters from the
optimal parameter values for four example patients. Adaptive parameter
values are for windows with a 2 year length and 2 year shift. Cells are
colored from a 100% decrease (dark blue) to a 100%+ increase (dark
red) in parameter value. (a) Patient 1, (b) Patient 4, (c) Patient 8, (d)
Patient 9.
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Figure 4.4: Average percent change in parameter values for each of the
three window shifts (a) 6 months, (b) 1 year, (c) 2 year. Cells of the heat
maps are colored from a 100% decrease (dark blue) to a 100%+ increase
(dark red) in parameter value.
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and consider different weights c ∈ [0, 1].

Adding this second penalty (section 4.2) reduces the change in parameter val-

ues over time, while still improving the quality of fit in most cases. A few simulations

for an example patient are provided in Figure 4.5. In general, the dynamics do not

differ greatly as the weight on the second penalty or the size of the window shift

change. Despite this, certain parameter values do seem to change over the different

windows. This behavior is summarized in Figure 4.6. Parameter values govern-

ing the effect of imatinib (inh1, inh2) and the immune window (ymin, ymax) rarely

change value when the second penalty is added to the cost function. Of these four,

inh1 changes the most over the windows, but never by more than 20%. The remain-

ing four parameters show much more dramatic behavior. The death rate of effector

T cells dT1 generally steadily increases over the windows, suggesting that T cells

die off more quickly as the length of treatment increases. The maximal kill rate of

effector cells (µ) generally increases over the first half of windows and then steadily

decreases. The values of this parameter are much larger than the optimal value

during the first half of treatment and then much smaller than the optimal value

in the later phases of treatment. Similarly, the adaptive value of rT is on average

increased from the optimal value on the first half of windows and decreased on the

second half, although this parameter fluctuates in value more than µ. This could

suggest that both µ and rT are dependent on the phase of treatment, and that the

optimal fit produces some average value for the parameters. Lastly, the regulatory

cell suppression rate kT has behavior that varies depending on the weight c. In

general, this parameter fluctuates over treatment. Again, this could suggest that
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the value of kT is dynamic, or simply that it is unidentifiable.

4.3 Application to Treatment Cessation Data

In this section, we explore the ability of our model to capture the dynamics

of CML for patients who are candidates for treatment cessation. Further, we seek

to use the method of adaptively fitting parameters on smaller windows of data to

determine any differences in the underlying dynamics or in the parameter values

between patients who experience relapse and those that maintain TFR. We are

particularly interested in the windows of data that occur just before treatment

cessation. Determining any qualitative or quantitative difference between the two

types of patients could be vital in aiding successful treatment cessation.

Data for this section are unpublished observations during and after TKI ther-

apy and are provided by our collaborator, Dr. Nicolini, Centre Léon Bérard. The

data set contains BCR-ABL ratios for 79 patients over a follow-up period of at least

33 months. All patients in the study had achieved MMR while undergoing TKI

therapy, most had also achieved CMR as noted by at least one undetectable BCR-

ABL ratio measurement. BCR-ABL ratios were measured at diagnosis as well as

every 3 months for the first year of therapy followed by every 6th month thereafter,

including throughout the cessation period. When plotted, the data suggests that

patients in this study experienced the same general behavior in BCR-ABL ratio.

Within the first two years of therapy, a noticeable biphasic decline in the ratio oc-

curs, followed in most cases by damped oscillations approaching a low disease steady
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Figure 4.5: Adaptive fit of the the extended model (3.1a)-(3.1g) to pa-
tient data for Patient 4 with second penalty (section 4.2) added to the
cost function. The log of the BCR-ABL ratio is plotted over time. Dots
represent patient data. The black curve shows simulation of the model
over the full time span using optimal parameter values (table 3.2). Col-
ored curves indicate simulation over each window. Black horizontal lines
indicate the minimal level detectable by RT-PCR. Points are this line
correspond to those points at which the disease was not observed. (a) 6
month window shift and c = 1, (b) 1 year window shift and c = 0.75, (c)
2 year window shift and c = 0.5, (d) 2 year window shift and c = 0.25
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Figure 4.6: Average percent change in parameter values for a window
shift of 1 year and second penalty (section 4.2) weighted by c = 0.75.
The average percent change is similar for all window shifts and second
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state. The noticeable difference in this data set is the high number of undetectable

measurements. On average, each patient has 8 undetectable measurements across

the course of treatment and following treatment cessation. Despite the large num-

ber of undetectable measurements, it is expected that the extended model will still

capture the underlying dynamics of the disease.

Of the 79 patients in the database, 30 had taken IFN prior to or in combination

with a TKI. Imatinib was the primary TKI of use (47 patients). The remaining

patients used second generation TKIs, dasatinib (11) or nilotinib (21). Since our

model does not take the effects of IFN into account, we considered only patients

who were currently using imatinib and had never taken IFN. Approximately 2/3 of

these remaining 29 patients did not experience a relapse during the study. A relapse

is indicated by loss of MMR and the restarting of TKI therapy. After resumption

of therapy, all patients regained MMR.

The extended model of CML and immune response (eq. (3.1)) was fit to data

for each of these patients, using the process described in Section 3.3.1 to obtain

patient-specific parameter values. Because the underlying dynamics of treatment

cessation are not fully captured by this model, only data points occurring before

the primary treatment cessation date were used for fitting. Initial conditions and

universal parameter values are as listed in Table 3.1. The logarithm of the simulated

BCR-ABL ratio for a select 15 patients is plotted over the course of the study, up

to the first treatment cessation date, as shown in Figures 4.7 and 4.8. The patient-

specific parameter values are provided in Table 4.1. The selected example patients

are an even mix of relapse and TFR cases, and each have at least 5 detectable BCR-
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ABL measurements prior to cessation to improve the ability of fitting the model.

From the simulations (figs. 4.7 and 4.8), it is evident that the model captures the

general dynamics of CML prior to TKI cessation. Thus the model performs well,

reasonably depicting the dynamics of CML during imatinib therapy.

There does not appear to be any discernible difference between the predicted

dynamics of relapse and remission patients. A summary of parameter values for

both relapse and TFR patients is provided in Table 4.2. It appears that on average

inh1 and inh2 are higher for relapse patients, while ymax and kT are much larger in

value for TFR patients. This would suggest that imatinib plays a greater role in

the reduction of cancer load for relapse patients. A larger immune window for TFR

patients, indicated by a larger ymax value, would mean that an immune response

begins sooner in the treatment phase for these patients. It could also indicate that

relapses post-treatment cessation would take a longer period of time to occur, if at

all. The values of kT and rT also appear to be larger on average for TFR patients

while µ is smaller. This is interesting as this would suggest that T cells are less

effective at killing leukemic cells and that the average immune response in TFR

patients is effected more by regulatory cells. It is important to note that these

averages are calculated from small samples and may be biased by a single extreme

value in one patient. Figure 4.9 better represents the distribution of patient-specific

parameter values in both relapse and TFR patients.

We choose not to refit parameter values at treatment cessation due to the

scarcity of the data. Patients that relapse tend to lose MMR quickly and restart

TKI therapy soon after, resulting in only one to two data points in this time frame.
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Figure 4.7: Fits of the the extended model (3.1) to patient data for seven
patients who experienced relapse after treatment cessation. The log of
the BCR-ABL ratio is plotted over time. Dots represent patient data.
Black horizontal lines indicate the minimal level detectable by RT-PCR.
Points are this line correspond to those points at which the disease was
not observed. Red vertical lines indicated time of treatment cessation,
while green vertical lines indicate a restart of treatment.
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Figure 4.8: Fits of the the extended model (3.1) to patient data for
eight patients with TFR after treatment cessation, at least until end
of study. The log of the BCR-ABL ratio is plotted over time. Dots
represent patient data. Black horizontal lines indicate the minimal level
detectable by RT-PCR. Points are this line correspond to those points
at which the disease was not observed. Red vertical lines indicated time
of treatment cessation.
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Patient inh1 inh2 dT1 µ ymin ymax kT rT

1 39.187 413.995 0.100 2.120 · 10−10 93.564 7.263 · 104 1.050 7.473 · 10−11

2 2.3763 1.012 · 104 0.072 4.622 · 10−10 90.8323 1.204 · 104 1.539 · 10−4 6.769 · 10−7

3 8.210 769.773 0.031 1.042 · 10−7 1.664 · 103 2.738 · 104 8.990 1.577 · 10−12

4 2.556 1.731 · 103 0.058 2.220e · 10−15 99.7233 3.384 · 105 0.114 1.636 · 10−14

5 4.227 4.775 · 103 0.122 6.918 · 10−7 1.307 · 103 8.238 · 103 0.095 2.245 · 10−7

6 8.371 · 103 1.043 0.091 7.230 · 10−7 784.265 1.960 · 104 0.257 2.722 · 10−9

7 26.510 278.965 0.064 1.074 · 10−8 661.7145 4.360 · 104 4.497 · 10−6 6.001 · 10−5

8 17.481 864.572 0.025 1.812 · 10−8 968.778 1.332 · 104 12.625 8.038 · 10−12

9 4.912 186.556 0.011 2.212 · 10−9 1.165 · 103 1.228 · 106 2.429 7.214 · 10−12

10 31.215 488.623 0.065 6.489 · 10−10 238.149 1.300 · 104 1.586 · 10−4 3.584 · 10−7

11 4.111 4.071 · 103 0.023 1.522 · 10−9 220.378 1.624 · 104 4.859 · 10−8 5.768 · 10−4

12 24.546 81.071 0.095 1.756 · 10−10 793.277 1.617 · 105 9.7834 8.274 · 10−12

13 1.430 4.660 · 103 0.049 7.900 · 10−10 357.739 1.080 · 105 48.102 1.160 · 10−12

14 140.724 54.703 0.180 1.142 · 10−7 1.534 · 103 2.734 · 104 0.001 6.556 · 10−7

15 20.013 253.240 0.066 4.700 · 10−10 290.783 8.824 · 104 1.123 3.864 · 10−11

Table 4.1: Patient parameter values used for the simulations in Fig-
ure 4.7 and Figure 4.8. Patients 1-7 correspond to Figures 4.7a to 4.7g.
Patients 8-15 correspond to Figures 4.8a to 4.8h. The bounds of the
immune window are fit to the data rather than the parameters α and
ε. These parameters can be computed from the immune window as
ε = 1/(yminymax) and α = (ymin + ymax)εdT1.

inh1 inh2 dT1 µ ymin ymax kT rT

Relapse

Min 2.376 1.043 0.031 2.220 · 10−15 90.832 8.238 · 103 4.497 · 10−6 2.245 · 10−7

Mean 1207.674 2583.881 0.077 2.186 · 10−7 671.560 7.456 · 104 1.501 8.638 · 10−6

Max 8370.650 10117.917 0.121 7.230 · 10−7 1663.632 3.384 · 105 8.989 6.001 · 10−5

STD 3158.607 3703.000 0.030 3.361 · 10−7 632.370 1.184 · 105 3.323 2.265 · 10−5

Remission

Min 1.430 54.703 0.011 1.756 · 10−10 220.377 1.299 · 104 4.858 · 10−8 1.160 · 10−12

Mean 30.554 1332.411 0.064 1.727 · 10−8 696.015 2.070 · 105 9.258 7.223 · 10−5

Max 140.724 4659.758 0.180 1.142 · 10−7 1533.830 1.228 · 106 48.102 5.768 · 10−4

STD 45.765 1896.488 0.054 3.963 · 10−8 495.758 4.162 · 105 16.433 2.039 · 10−4

Table 4.2: The minimum, mean, maximum and standard deviation are
computed from the patient-specific parameter values of the relapse and
remission patients in the Stop TKI data set.
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Figure 4.9: Heat map of patient-specific parameter values. Colors in
each cell correspond to the parameter values in Table 4.1 normalized
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Instead, following treatment cessation, the parameter values inh1 and inh2 are set

to a value of 1, indicating that leukemic cells regain their natural amplification and

differentiation rates with loss of TKI inhibition. The system is then simulated until

therapy is restarted or for a period of 20 months if resumption does not occur.

The extended model ((3.1)) predicts a relapse for all 15 patients, including the 8

TFR patients that never restart imatinib therapy within the span of this study.

This suggests an inability of the model to provide an accurate prediction of CML

progression after therapy under the assumptions that leukemic cells fully regain their

proliferative ability and that the immune system experiences no changes.

With no clearly discernible difference in the dynamics or the patient-specific

parameter values between relapse and remission patients, we next look to the adap-

tive fitting process to see if any distinctions arise between the two classes of patients.

All 15 Stop TKI patient data was adaptively fit using 6 month, 1 year and 2 year

windows and the second penalty ((4.2)) weighted by various values. The dynamics

for each patient do not generally change as the length of the shift and the weight on

the penalty change. Example adaptive fits are found in Figure 4.10 for four patients,

two relapse and two remission. As with the previous data set, the adaptive fit agrees

with the optimal fit on the first window [0, 24], with small deviations seen only in

a couple patients. The adaptive method is more suited to improving the quality of

fit in the later stages of treatment, where the two resulting simulations often differ

greatly. However, looking at the simulations alone, there again does not appear to

be any noticeable difference in the dynamics between relapse and TFR patients.

How the parameter values adapt to each window provides slightly more insight.
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Figure 4.10: Adaptve fits of the the extended model (3.1a)-(3.1g) to
Stop TKI patient data for (a) Patient 2, (b) Patient 3, (c) Patient 8,
and (d) Patient 10 on windows with a 2 year shift and second penalty
weighted by c = 0.75. The log of the BCR-ABL ratio is plotted over
time. Dots represent patient data. The black curve show simulation
of the model over the full time span using optimal parameter values
(table 4.1). Colored curves indicate simulation over each window. Black
horizontal lines indicate the minimal level detectable by RT-PCR. Points
are this line correspond to those points at which the disease was not
observed. Treatment cessation and resumption are indicated by vertical
red and green lines, respectively.
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Figure 4.11: Average percent change in parameter values for (a) relapse
patients and (b) remission patients using a window shift of 2 years and
second penalty weighted by c = 0.75. (c) Heat map of patient-specific
parameter values on the 2 year window leading up to treatment cessation.
Cells of (a) and (b) are colored from a 100% decrease (dark blue) to a
100%+ increase (dark red) in parameter value. Cells of (c) are colored
by parameter value and normalized by column. Larger values displayed
in dark red. The smallest values are in dark blue. Relapse and remission
patient-specific parameters are separated by a horizontal line.
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For both relapse and TFR categories, the average percent change in parameter value

from the optimal was computed for each combination of window shift and second

penalty weight. Figures 4.11a and 4.11b give a comparison of these changes for a

2 year window and a weighted second penalty of c = 0.75. Parameter values for

inh1, inh2, ymin and ymax are fairly consistent across the different windows for both

relapse and TFR patients. For this specific window shift and weight combination,

the behavior of the other four patient-specific parameters differs between relapse

and TFR.

Parameter values for relapse patients tend to follow certain trends. For ex-

ample, dT1 gradually increases in value over the windows, reaching its largest value

prior to cessation. The maximal kill rate µ increases over the first half of treatment

and then decreases in the later phase. There is also a large increase in the value

of kT , which suggests an increase in self-regulation. These trends suggest that the

immune response is weakened closer to treatment cessation and could provide ex-

planation for relapse. In TFR patients, µ and rT tend to fluctuate in value over the

windows, while dT1 gradually decreases and kT experiences very little change.

It should be noted that Figure 4.11a is representative of the average percent

change for all window shifts and weights c for relapse patients, i.e. the shift and

penalty do not greatly affect the adaptive fit. However, this is not the case for TFR

patients. The drug and immune window parameters are consistently fixed in the

adaptive fit, but there are no discernible trends in the other four immune parameters

for TFR patients. This could mean that no trend exists for these parameters, or

perhaps that some of these patients are misclassified as TFR.
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Lastly, we examined the parameter values themselves in the window immedi-

ately preceding treatment cessation. Although many of the parameters have changed

from the optimal values for each patient, the distribution of values is quite similar

to that of the optimal (fig. 4.9 vs. fig. 4.11c). Relapse and TFR patients cannot be

categorized by their parameter values alone.

4.4 Discussion

The dynamics of CML under imatinib therapy can be split into two phases.

The first phase is a well-documented biphasic exponential decline in the BCR-ABL

ratio. This characteristic has been widely noted in many CML patients and there are

numerous mathematical models that capture this behavior. Chapter 3 introduced

a new model to capture not only this initial decline, but also the oscillatory nature

of the BCR-ABL ratio in later phases of treatment. Due to these two phases and

the possibility of a varying immune response, we hypothesized that the patient-

specific parameters in our model, governing the effect of imatinib and the immune

response, were likely to vary in value and adapt to the phase of therapy. Therefore,

an adaptive data fitting process was developed in which the model parameters are

refit on shifting windows of data. A window length of 2 years was selected and

various window shift lengths were explored. In order to prevent parameter values

from extreme changes between windows, a second penalty term was added to the

objective function in the optimization scheme. We looked at not only how the

simulated dynamics differed between the adaptive and optimal fits, but also in what
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way the parameter values changed.

The goal set out at the beginning of this chapter, to improve the predictabil-

ity of the model through adaptively fitting to the data, was not met. The adaptive

fitting method is not perfect. Issues arise in using an optimization routine in combi-

nation with a ”function” that is an estimated solution of an ODE. Variations in our

results could be attributed to the inability of the model to react to small changes in

parameter values. We also recognized the possibility of overfitting our model. This is

not a big data problem but rather a scarce data problem, as there are very few data

points in each window. Overfitting is not a large concern if the the purpose of the

model is to qualitatively understand the dynamics of CML and the immune system

during imatinib therapy. However, it is a concern that will need to be accounted for

if the model is to be used for forecasting CML progression. Lastly, we are assuming

the data is completely accurate, ignoring measurement and representation errors in

our data fitting process. These errors should be taken into account if the model is

to be used to quantitatively represent CML.

Despite these imperfections in the adaptive fitting process, we do gain insights

into CML and immune response and are able to determine what may be needed to

improve the forecasting ability of the extended model. First, a few trends became

apparent for certain parameter values that give some insight into disease dynamics.

The large variability in immune parameters (dT1, µ, kT , rT ) throughout treatment

suggest that identifying or controlling these values may be key to fully understanding

the role of immune response, and therefore successful treatment, for CML patients.

While no clear distinction was made between relapse and TFR patients when using
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the adaptive fitting method on Stop TKI data, it was observed that immune pa-

rameters of relapse patients signaled a decrease in immune response in the stages of

therapy immediately preceding treatment cessation. Further exploration of immune

characteristics in these patients, including immune assays directly measuring the

immune response, could be vital to fully understanding the cause of relapse in CML

patients. Second, the adaptive fit tends to provide differing yet equally plausible

dynamics from the optimal simulation, especially in the oscillatory phase of therapy,

suggesting that not enough is known about the underlying dynamics in this phase.

Further revisions or extensions of the model may be necessary. Additional data

types would be beneficial in accomplishing this. Finally, new methods of parameter

estimation are necessary to improving the confidence in parameter values and thus

model predictions.

82



Chapter 5: Data Assimilation Methods

5.1 Introduction

Data assimilation is a technique that combines a dynamical model of a physi-

cal process with observations of that process to determine the optimal state of the

system. Numerical models can provide general descriptions of the underlying dy-

namics of a physical process, but are imperfect due to numerical errors, uncertainty

in initial conditions and unknown parameter values. Thus, they often lack the abil-

ity to accurately quantify the present or future state of the system. Observations of

the state are also imperfect. Available data are often sparse and are accompanied

by measurement errors. Additional error in observations can arise due to inaccu-

rate representation of the observations as a function of the state variables. Data

assimilation seeks to account for all of these errors, combining the dynamical and

statistical properties of the system, to improve predictability of the model.

The longest documented use of data assimilation techniques are in meteorology

where the goal is to provide reliable weather forecasts by merging well-adapted at-

mospheric models with noisy observations of the state (temperature, velocity, etc.).

Data assimilation has also become standard practice in oceanography, improving

understanding of ocean dynamics. Other applications of data assimilation to the
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geosciences, including seismology and modeling of Earth’s magnetic field, naturally

gained popularity. More recently, data assimilation has been gaining traction in

biomedical applications, where observations come in numerous forms including elec-

trocardiograms, MRIs, CT scans, and cell-based assays. Specific applications of data

assimilation techniques in medical applications include brain tumor growth [34], car-

diac function [35, 36], epidemiology [37] and neurology [38]. Nonetheless, this is a

relatively novel approach to studying disease progression and response to treatment,

specifically in relation to CML. Successful use of data assimilation in these fields

could launch major developments in personalized medicine. The use of data assim-

ilation in mathematical oncology could be particularly beneficial [39].

We have shown that the extended model of CML and the immune system

(3.1) has advantages over previous models of CML under TKI therapy, capturing

not only the typical biphasic decline of the BCR-ABL ratio but also oscillations

in the ratio that are experienced by numerous patients. In addition, the extended

model better represents the immune response in CML patients by incorporating

self-regulation and a more biologically accurate representation. However, we have

also demonstrated that the model is only a general description of the underlying

dynamics of the disease. Simplifications of biological processes, estimated initial

conditions, and unknown patient-specific parameter values lead to uncertainties in

the prediction of the model. Applying data assimilation methods to models of CML

would take into account errors in model formulation and model noise to improve

forecasts, and ideally, allow these mathematical models to provide valid predictions

in a clinical setting.
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Most data assimilation techniques are based on a Bayesian framework. A given

dynamical model provides a projection of the state variable X, often unobservable.

It is assumed that the prior distribution p(x) is known or can be reasonably esti-

mated. Noisy observations Y can be thought of as conditioned on the true state x,

and so p(y|x) describes the distribution of measurement errors [40]. Bayes’ Theorem

states that the posterior distribution p(x|y) is proportional to the product of the

prior and measurement distributions. Knowledge of the posterior distribution can

then be used to update X. Often data assimilation techniques such as the Kalman

filter and its extensions, as well as Monte Carlo methods like sequential Monte Carlo

and particle filters, are based in Bayesian inference. The choice of a particular tech-

nique can depend on whether the available dynamical model is linear or nonlinear

and what is known about the distribution of errors.

5.2 The Extended Kalman Filter

The Extended Kalman Filter (EKF) is selected for this application, since the

extended model of CML and the immune system (3.1) is nonlinear. The Kalman

filter provides the optimal estimate for linear systems. This nonlinear extension,

which is commonly used for nonlinear models with Gaussian error distributions,

relies on a local linearization of the model.

As with the Kalman filter, the EKF consists of two main steps: prediction

and update. Let x be an N -dimensional vector describing the state of a system or

physical process. Assume that the true system is governed by a stochastic nonlinear
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differential equation

ẋt = f(xt) + η̇t, (5.1a)

ηt ∼ N (0,Qt). (5.1b)

Here ηt is the process noise, normally distributed with mean zero and N×N covari-

ance matrix Qt. The superscript ‘t’ indicates the true state. Suppose observations

yo become available at times ti for i = 1, ..., p. It is assumed that observations

are imperfect, accompanied by Gaussian white noise with mean zero and covariance

matrix Rt
j .

yo
i = yt

i + εi, (5.2a)

εi ∼ N (0,Rt
i). (5.2b)

Suppose there are M different types of observations of the system made at a given

time ti. Then yo is an M -dimensional vector and R is M ×M . Observations are

related to the state variable through an observation function h, possibly nonlinear,

such that

yt
j = hj(x

t(tj)).

The EKF begins with the prediction or forecast step during which both the state

vector x and the error covariance matrix P ,

P ≡ E[(x− xt)(x− xt)T ],
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of the system are forecasted forward in time according to

ẋf = f(xf ), (5.3a)

Ṗ f = FP f + P fF T +Q, (5.3b)

where

F =
∂f

∂x

∣∣∣
x=xf

,

is the Jacobian matrix of the deterministic process f and Q is the estimated process

noise covariance. The superscript ‘f’ indicates forecast. The use of F , also known as

the tangent linear model (TLM), in eq. (5.3) provides a linearization of the nonlinear

process f for use with the Kalman filter equations.

At each observation time ti, the update or analysis step is performed. The

goal of this step is to minimize the mean square error Ji,

Ji ≡ tr
(
P a(ti)

)
= tr

(
E
[(
xa(ti)− xt(ti))(x

a(ti)− xt(ti)
)T])

.

Although no truly optimal solution is computable in finite time for nonlinear dy-

namics, the EKF consistently provides a first-order approximation [41, 42]. The

forecasted variable xf and P f are updated to xa and P a respectively, as follows.

xa = xf +K[yo − h(xf )], (5.4a)

P a = (I −KH)P f , (5.4b)
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where

K = P fHT (HP fHT +R)−1,

is the result of minimizing J , known as the Kalman gain and

H =
∂h

∂x

∣∣∣
x=xf

,

is the linearization of observation function h. The superscript ‘a’ indicates analysis.

The results of the update step, xa and P a, become initial conditions for the next

forecast and the process continues.

5.3 Applying EKF to CML data

To apply the EKF to our model, we consider the state variable x ∈ R7 to be

the vector of cell concentrations

x = [y0, y1, y2, y3, T0, T1, R]T .

The state variable evolves in time according to the forecast model f given by the

right hand side of (3.1). To initialize the model error covariance matrix, we first

consider

P0 = diag
(
(x0 − xt

0)(x0 − xt
0)T
)
.

The initial conditions in Chapter 3 are considered suitable based on background

information as well as previous models of CML and the immune system. However,
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we cannot guarantee that these values are the exact true state xt
0 for each patient.

Instead, we estimate reasonable upper and lower bounds for the true state using a

10% margin of error. These upper and lower bounds can then be used to determine

an estimate for our initial state x0 = 0.5(xub + xlb) and error covariance matrix

where x0 − xt
0 = 0.5(xub − xlb). Additionally, we consider correlation between a

few of our state variables based on determination of initial conditions in Chapter 3.

Initial concentrations of y0 and y1 were computed as percentages of a estimated

concentration of total leukemic stem cells. Additionally, the initial concentration of

y2 is determined by considering progenitor cells to be in a steady state ratio with

their precursors (y1) [30]. With this in mind, P0 is structured as a block diagonal

matrix where

P0 = (x0 − xt
0)(x0 − xt

0)T , (5.5a)

Pi,j = 0 for (i, j) 6= (1, 2), (2, 1), (2, 3), (3, 2). (5.5b)

The non-zero elements of P0 can be further adjusted by multiplying by a factor ki,j

to increase or decrease confidence in a particular value.

The process noise covariance matrix Q is difficult to estimate and can have a

large effect on performance of the EKF. Many different approaches exist for estimat-

ing or tuning Q including Bayesian, maximum-likelihood, covariance matching and

correlation techniques. For this work, an adaptive adjustment of Q is applied [43],
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updating Q at each analysis step using the innovation

d = yo − h(xf ).

Since the true process noise is unknown, it is estimated as

η̃ = xa
k − f(xa

k−1) (5.6a)

= Kd. (5.6b)

Thus

Qk−1 = E
[
η̃η̃T

]
(5.7a)

= E
[
K(ddT )KT

]
. (5.7b)

The expected value is approximated by taking an average of ddT over time using a

‘forgetting factor’ 0 < γ ≤ 1, so that at each update step

Qk = γQk−1 + (1− γ)K(ddT )KT .

The value of γ can be adjusted to put more or less weight on previous estimates of

Q.

For CML patients, a few types of data can be collected. As noted before,

BCR-ABL ratios for a set of 104 CML patients have been made available by our

collaborator Dr. Franck Nicolini. In the future, it may be possible to addition-
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ally obtain cell concentration measurements for various cell types through immune

assays. Cell concentrations for both naive and mature CD4+ and CD8+ T cells,

as well as regulatory T cells have been measured in numerous studies researching

the connection between CML and the immune system. We therefore consider two

variations of the observation function h. In the case of BCR-ABL ratio alone, h ∈ R

and is given by (3.2). With the addition of cell concentration data, h ∈ R4 and

h(x) = [x5, x6, x7, 100β
x4

2z + x4
].

The last element of h is again (3.2), with x4 denoting the component of the state

variable representing the mature leukemic cell concentration and z denoting an

estimate of the total healthy cell population.

Observations are assumed to be uncorrelated, thusR is structured as anM×M

diagonal matrix. In the case of BCR-ABL ratio as the only data type, R is a

scalar value. BCR-ABL data is obtained through quantitative PCR. Coefficient of

variation (CV) is the typical measurement of inter-assay precision. Low BCR-ABL

ratios (<1%) were found to have a CV of 48%, while high BCR-ABL ratios (>1%)

have a CV of 17%. These values are quite similar to the CVs between patient

duplicates of 50% (BCR-ABL < 1%) and 21% (BCR-ABL > 1%) [8]. Immune

assay data for CML patients can be collected by various methods such as enzyme-

linked immunosorbent assays (ELISA), fluorescence-activated cell sorting (FACS),

and mass cytometry (CyTOF) [44–46]. Assessing accuracy of cellular population

measurements produced by flow cytometry is consider impossible as there is no
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true standard reference material [47]. Each technique can be affected by various

errors, which vary from laboratory to laboratory. When immune assay data is made

available by our collaborators, information about measurement errors should also

be obtainable. Until then, cellular counts by FACS will be considered to have an

imprecision of ± 5% [48,49].

Before applying the EKF, the TLM was validated and the assumption of Gaus-

sian error was evaluated to determine if the EKF was a suitable DA technique to

use. Since the EKF relies on the linearization of the dynamic model to forecast

the model error covariance matrix, it is necessary to determine the accuracy of the

TLM. The Taylor expansion of a nonlinear model F gives

F(x+ ap) = F(x) + apTF (x) + O(a2),

where F is the TLM for F , x is the state variable, and p is a perturbation vector.

Thus the difference in trajectories of the nonlinear model (∆x) should be similar to

the evolution of the perturbation δx by the TLM.

∆x = x(tn;x0 + ap, t0)− x(tn;x0, t0), (5.8a)

δx =

∫
˙δx =

∫
apTF dt. (5.8b)

These two quantities are computed for a random perturbation p and various scaling
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factors a. The relative difference

r =
||∆x− δx||
||δx||

,

is calculated at each day in a 10 day period. The steps taken here follow the

validation approach used by Yang et al. [50]. Since the time step used in our model

of CML is on the scale of one day, evaluating the relative difference at these points

should reasonably inform the validity of our TLM in the EKF formulation. The

results are shown in Figure 5.1. The relative difference is quite small for all values

of the scaling factor with a minimum value achieved for a = 10−5 for all time spans

except 1 day. This suggests that the TLM provides a good local linearization of our

dynamic model.

To determine the validity of the assumption of Gaussian error in our model,

we evolve an ensemble X of 10000 initial states using the extended model and check

the distribution at various time points. The ensemble is a multivariate normal with

X ∼ N (x0,P0). The extended model of CML (3.1) was used to evolve the ensemble

over a one-year period. The same patient-specific parameter values were used for

each member of the ensemble. At each day in the simulation, the Doornik-Hansen

omnibus multivariate normality test [51] was used to determine if the forecasted

ensemble remained Gaussian. P-values from this test are plotted versus simulation

time in Figure 5.2, which suggests that the ensemble is no longer multivariate normal

after 11 days at a 0.05 significance level. However, all of the individual cell pop-

ulations retain a unimodal, roughly normal distribution throughout the simulation
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Figure 5.1: The relative difference between ∆x and δx versus the scaling
factor a for integration time spans. The one-day integration window
increases linearly as the scaling factor decreases. All other integration
windows have a minimum relative difference at a = 10−5
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Figure 5.2: P-values for Doornik-Hansen omnibus multivariate normality
test for an ensemble of 10000 initial conditions. The ensemble is tested
for normality each day in a one-year simulation. Only the p-values for
the first 20 days are plotted, after which the p-value is zero. The red
line shows the significance level of 0.05.

(fig. 5.3). Since the time between observations is typically at least 3 months, the

loss of Gaussianity in a few days could affect the success of the EKF, but together

these results are not enough to completely rule out the viability of the EKF.

5.3.1 Numerical Results without Process Noise

In this section, we investigate the performance of the EKF without process

noise, i.e. Q = 0. BCR-ABL ratio data is assimilated to the extended model of CML

and the immune system (3.1) using the EKF for various patients. Parameter values
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Figure 5.3: After the ensemble is run through the model for a one-year
simulation, histograms of each cell population are plotted. (a) cycling
stem cells y1, (b) precursors y2, (c) mature effector T cells T1, and (d)
regulatory cells R. Each population is fit with a normal distribution.
The T1 and R components of the ensemble are slightly skewed.
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used for the forecast model are given by Tables 3.1 and 3.2. The data is described

in Section 3.3.1. Performance of the EKF is evaluated by comparison of the data

with the estimated observations calculated from the state variable, evolution of the

state variables with and without the EKF, evolution of tr(P ) signifying the mean

square error, and evolution of the variance of the state variable given by Pi,i.

Figure 5.4 shows the estimated BCR-ABL ratio derived with and without the

EKF for four representative patients. Initial conditions x0 and P0 are identical

for each approach. The pure forecast curves (blue) are identical to the simulations

shown in Chapter 3. Assimilating the data using the EKF has varying results. For

many patients, the result is quite similar to the pure forecast (e.g. fig. 5.4a). In

other cases, the assimilated ratio is pulled towards the data at specific time points.

For example, in Figure 5.4d at month 3, the prediction with EKF deviates from, but

eventually realigns with the pure forecast. The differences in performance can be

explained as follows. First, the forecast model utilizes different parameter values for

each patient which change the evolution of both the state and the covariance matrix.

Second, the measurement covariance R is a function of the observation. Higher

BCR-ABL ratios are associated with a lower CV than low BCR-ABL measurements.

Therefore patients who respond better to therapy may have higher variability in their

measurements, causing the EKF to correspond more to the model than the data.

Similarity between the pure forecast and the forecast with EKF suggests that

the model forecast is weighted more than the observations. This could simply be a

reflection of the chosen model error estimates, which if increased could move the as-

similated BCR-ABL ratio away from the pure forecast and closer to the data points.
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Figure 5.4: Evolution of the BCR-ABL ratio when data is assimilated
with EKF for four different patients with Q = 0. (a) patient 1, (b)
patient 6, (c) patient 8, (d) patient 9. Parameter values are given in
tables 3.1 and 3.2. Blue line - forecast only, without assimilation. Red
line - with assimilation by EKF. Blue dots - patient data.

Experimentation with inflating certain components of P0 did confirm this for some

patients. However, a larger initial covariance also tended to lead to negative, and

therefore unrealistic, values of the state variables and variance. In these instances,

resetting any negative values to 0 after the update step can, but not always, allow

the filter to continue without failing.

Figure 5.5 shows the evolution of each state variable for the selected patients.

As with the BCR-ABL ratios, there is much agreement between the pure forecast and
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the forecast with assimilation. Although the observation function h is dependent

only on the mature leukemic concentration y3, the effect of assimilation is similar

across all state variables. This suggests a high correlation between these values.

The evolution of the mean square error given by tr(P ) is depicted in Figure 5.6.

For most patients, the evolution of this value is quite similar between the pure

forecast and the forecast with EKF. tr(P ) initially decreases steadily over the first

12 months, after which it increases sometimes almost to its initial value. This

increase corresponds to the end of the second decline in the BCR-ABL ratio. A non-

monotonic decline occurs for the duration of the assimilation window corresponding

to the oscillations in BCR-ABL ratio. Figure 5.7 shows that the evolution of variance

for each state variable is quite similar with the exception of T1 which tends to increase

much sooner, during the initial 6 months.

5.3.2 Numerical Results with Process Noise

It is more likely that the model prediction is affected by process noise. In

this section, the process noise covariance Q is incorporated through the previously

described adaptive method. Various initial conditions were considered for Q as

well as for the forgetting factor γ. However, the selection was limited again by a

tendency of the state variable to become negative. In certain cases resetting the

negative values to 0 allowed the EKF to continue without failing. The choice of Q0

and γ were selected in part by comparing the values of HP fHT and R at each

update step to retain learning potential from the observations but without causing
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Figure 5.5: Evolution of each component of the state variable for four
different patients. Top to bottom: y0, y1, y2, y3, T0, T1, R. EKF as-
similation with Q = 0. (a) patient 1, (b) patient 6, (c) patient 8, (d)
patient 9. Parameter values can be found in tables 3.1 and 3.2. Blue
line - forecast only, without assimilation. Red line - with assimilation by
EKF.

100



0 10 20 30 40 50 60 70

time (in months)

7

8

9

10

11

12

13

14

15

lo
g
(t

ra
ce

 o
f 
P

a
)

(a)

0 20 40 60 80 100 120

time (in months)

-2

0

2

4

6

8

10

12

14

16

lo
g
(t

ra
ce

 o
f 
P

a
)

(b)

0 5 10 15 20 25 30

time (in months)

6

7

8

9

10

11

12

13

14

15

lo
g
(t

ra
ce

 o
f 
P

a
)

(c)

0 10 20 30 40 50 60

time (in months)

6

7

8

9

10

11

12

13

14

15

lo
g
(t

ra
ce

 o
f 
P

a
)

(d)

Figure 5.6: The log of tr(P ) over time for four different patients. EKF
assimilation with Q = 0. (a) patient 1, (b) patient 6, (c) patient 8, (d)
patient 9. Blue line - forecast only, without assimilation. Red line - with
EKF assimilation.
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Figure 5.7: The log of variance for each state variable component over
time for four different patients. Top to bottom: y0, y1, y2, y3, T0, T1, R.
EKF assimilation with Q = 0. (a) patient 1, (b) patient 6, (c) patient
8, (d) patient 9. Blue line - forecast only, without assimilation. Red line
- with EKF assimilation.
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the filter to diverge. An initial process noise covariance of Q0 = 0 and a forgetting

factor of almost 1 allowed the EKF to perform largely without incident of unrealistic

values. This choice puts more emphasis on the original model error covariance and

delays the changes due to the innovation. It is not assumed that this choice results

in the best performance of the EKF in terms of leading to an accurate prediction.

Figure 5.8 is similar to Figure 5.4 but now incorporates process noise. The

evolution of the BCR-ABL ratio is shown for the same four representative patients.

The difference in prediction with EKF (red) is most notable towards the end of the

assimilation window, as is to be expected with the choice of a large α value. In a

sense, Q is acting as an inflation of the error covariance and for many patients pulls

the predicted BCR-ABL ratio towards the data over the pure forecast estimation.

The evolution of tr(P ) is shown in Figure 5.9. The evolution over the first year

is similar to the behavior of the same quantity when process noise is not considered.

Behavior after that point varies by patient, although it has a tendency to reach a

steady state rather than continue to decrease. These two observations are the result

of a large α value that delays the inflation of the model covariance.

5.4 Observing System Simulation Experiments

Observing System Simulation Experiments (OSSE) [52] provide a way to de-

sign data assimilation ideas and investigate the impact of different types of obser-

vations or different frequencies of observations with out the need for real data. An

OSSE begins with what is known as a nature run generated from a reasonable model

103



0 10 20 30 40 50 60 70

time (in months)

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

lo
g

1
0
(B

C
R

-A
B

L
)

(a)

0 20 40 60 80 100 120

time (in months)

-6

-5

-4

-3

-2

-1

0

1

2

3

lo
g

1
0
(B

C
R

-A
B

L
)

(b)

0 5 10 15 20 25 30

time (in months)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

lo
g

1
0
(B

C
R

-A
B

L
)

(c)

0 10 20 30 40 50 60

time (in months)

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

lo
g

1
0
(B

C
R

-A
B

L
)

(d)

Figure 5.8: Evolution of the BCR-ABL ratio when data is assimilated
with EKF for four different patients with adaptive Q. (a) patient 1, (b)
patient 6, (c) patient 8, (d) patient 9. Parameter values can be found in
tables 3.1 and 3.2. Blue line - forecast only, without assimilation. Red
line - with assimilation by EKF. Blue dots - patient data.

104



0 10 20 30 40 50 60 70

time (in months)

7

8

9

10

11

12

13

14

15

16

lo
g
(t

ra
ce

 o
f 
P

a
)

(a)

0 20 40 60 80 100 120

time (in months)

2

4

6

8

10

12

14

16

lo
g
(t

ra
ce

 o
f 
P

a
)

(b)

0 5 10 15 20 25 30

time (in months)

7

8

9

10

11

12

13

14

15

lo
g
(t

ra
ce

 o
f 
P

a
)

(c)

0 10 20 30 40 50 60

time (in months)

6

7

8

9

10

11

12

13

14

15

lo
g
(t

ra
ce

 o
f 
P

a
)

(d)

Figure 5.9: The log of tr(P ) over time for four different patients. EKF
assimilation with adaptive Q. (a) patient 1, (b) patient 6, (c) patient 8,
(d) patient 9. Blue line - forecast only, without assimilation. Red line -
with EKF assimilation.
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of the system in question. Nature runs ideally have the same statistical behavior as

the system that is being model and therefore should be created with realistic, high-

quality models. They can be produced by the same dynamical model used in the

data assimilation technique, in which case the OSSE is known as an identical-twin

experiment. The nature run provides the ‘true’ state of the system. Synthetic data

is then generated from the truth state using the observation function and assigning

realistic measurement errors

y = h(xt) + εm, (5.9a)

εm ∼ N (0,Rt). (5.9b)

A control run is performed in which synthetic data representing current avail-

able observations is used for the data assimilation scheme. In the context of CML

and the extended model (3.1), the control run would consist of synthetic BCR-ABL

ratio data measured every 3 months for the first year and every 6 months thereafter.

Following the control run, simulated candidate observations are added and assimi-

lated for a perturbation run. Here, two perturbations will be considered. First, we

will consider the effect of having more frequent measurements by generating obser-

vations that occur every 1 and 3 months throughout treatment. Additionally, new

observations in the form of immune cell counts will be considered.
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5.4.1 Increased Frequency of Observations

To determine the impact of an increased frequency of observations on the

EKF, multiple nature runs were created using both the extended model (3.1) and

the Clapp model (2.6), for various patient-specific parameter sets. When using the

extended model, only the initial state variable is changed between nature run and

the data assimilation process. This identical-twin experiment allows us to test the

success of the EKF in recovering the true dynamics of the state. Since the extended

model is imperfect, the Clapp model is used for additional experiments to determine

how well the EKF can estimate dynamics generated by an alternate model. This

imparts a form of model error in the assimilation process.

The following figures show results for three OSSEs exploring the effect of

more frequently available data. The nature run for Figure 5.10 is created with the

extended model and patient-specific parameter values associated with patient 1 in

Table 3.2. Figures 5.11 and 5.12 display results where the true state is generated

from the Clapp model with optimal parameters for patients 1 and 6 respectively.

For all three experiments, it is clear that the additional observations improve the

success of the EKF. Evolution of the BCR-ABL ratio with and without the EKF

are quite similar through the first year of treatment. From that point forward, the

EKF gradually pulls the ratio closer to the true value. The effect of assimilation

increases as the length of time between observations decreases, although the true

state is never perfectly recovered. Tuning of the process noise covariance matrix Q

may be necessary to achieve this but, as discussed in section 5.3, is difficult to carry
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out.

5.4.2 Addition of Immune Assay Data

Since the Clapp model does not differentiate between different types of im-

mune cells, it is difficult to use this model for generating any additional data types.

Therefore, only identical-twin experiments were conducted to determine the effect

of incorporating immune assay data. Nature runs are generated using the extended

model of CML and the immune system with a selected initial condition and set of

patient-specific parameters. The same parameters are then used for the model dur-

ing the forecasting step of the EKF. Observations of the true BCR-ABL ratio and

cellular concentrations of T0, T1 and R are made every 3 months for the first year

and every 6 months thereafter. All four observation types are used to assimilate

the model using the EKF. The result is compared to the control run in which only

the BCR-ABL ratio is used. The experiment is repeated for various initial state

variable values and different patient-specific parameters. The results for one such

experiment are shown in Figure 5.13.

It is clear that the addition of new data types greatly improves the ability

of the EKF to recover the true state. After only 9 months, the BCR-ABL ratio

prediction with EKF using all data types (red) matches the true ratio almost exactly,

while the control (green) more closely resembles the pure-forecast ratio (blue). As

the assimilation process continues, the perturbation run does appear to drift from

the true values but only marginally. It is still much closer to the true value than
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Figure 5.10: Evolution of the BCR-ABL ratio after assimilation with
synthetic data. Synthetic data are sampled from a truth run created with
the extended model of CML and the immune system ((3.1)). (a) control
run, (b) observations every 3 months, (c) observations every month.
Black line - true BCR-ABL ratio. Blue line - BCR-ABL ratio without
assimilation. Red line - BCR-ABL ratio with EKF assimilation. Blue
dots - noisy observations of the true state.
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Figure 5.11: Evolution of the BCR-ABL ratio after assimilation with
synthetic data. Synthetic data are sampled from a truth run created
with the Clapp model ((2.6)). (a) control run, (b) observations every 3
months, (c) observations every month.Black line - true BCR-ABL ratio.
Blue line - BCR-ABL ratio without assimilation. Red line - BCR-ABL
ratio with EKF assimilation. Blue dots - noisy observations of the true
state.
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Figure 5.12: Evolution of the BCR-ABL ratio after assimilation with
synthetic data. Synthetic data are sampled from a truth run created
with the Clapp model ((2.6)). Patient-specific parameter values differ
from those used in fig. 5.11. (a) control run, (b) observations every 3
months, (c) observations every month. Black line - true BCR-ABL ratio.
Blue line - BCR-ABL ratio without assimilation. Red line - BCR-ABL
ratio with EKF assimilation. Blue dots - noisy observations of the true
state.
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the control run. The same behavior is demonstrated in the evolution of the three

immune cell populations.

The effect of incorporating these new data types is immediate and lasting. This

would suggest that immune assay data does not need to be measured as frequently

as the BCR-ABL ratio for the EKF to be successful. Observations should be taken

through the first year of treatment and near any changes in therapy that could likely

result in a change in disease dynamics (dose or scheduling changes, cessation, etc.).

5.5 Discussion

Data assimilation has proven to be an extremely useful process for combin-

ing imperfect dynamical models of a process with noisy observations to produce

reasonably likely estimates of the true state. While the use of data assimilation

in weather forecasting and other geoscientific applications is well established, it

has only recently been considered as a useful tool in biomedical applications. The

ability to accurately predict disease progression would allow doctors to proactively

tune treatment protocols for individual patients, and therefore improve outcomes.

With respect to CML, data assimilation could aid in the creation of more predictive

models that can be used to predetermine relapse in treatment cessation trials.

Since the extended model of CML and the immune system is nonlinear and

the assumption of gaussian model noise seemed reasonable, the extended Kalman

filter was selected as an appropriate data assimilation technique. Effect of the EKF
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Figure 5.13: Evolution of the BCR-ABL ratio after assimilation with
synthetic data. Synthetic data are sampled from a truth run created
with the Clapp model ((2.6)). Patient-specific parameter values differ
from those used in fig. 5.11. (a) log of the BCR-ABL ratio, (b) cell
concentration of T0, (c) cell concentration of T1, (d) cell concentration of
R. Black line - true value. Blue line - forecast only, without assimilation.
Red line - with assimilation by EKF using all 4 data types. Green
line - control run, only BCR-ABL ratio used in EKF. Blue dots - noisy
observations of the true state.
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was shown to vary patient to patient most likely due to the high degree of variation

in patient-specific parameter values. For some patients, the EKF produced very

little change from the pure prediction of the model, while for others the forecast was

noticeably different.

Success of the data assimilation process is difficult to determine from the

available patient data alone, since the true state itself is unknown. To better evaluate

performance, a variety of OSSEs were performed in which the ability of the EKF

process to recover a ‘true’ state was tested using synthetic data. We found that

the EKF is able to adjust the state variable to a point that more closely resembles

the true state, although it was not able to consistently recover the exact true state.

It was determined that more frequent observations resulted in a more accurate

recovery. Based on these results, we could recommend to increase the frequency

of data collection to at least every 3 months throughout treatment. Measurements

every month would be ideal, but realistically may be inconvenient and expensive.

Additionally, incorporation of more data types can greatly improve results. By

including three new data types that directly measure the concentrations of immune

cells, the forecast recovers the true state almost immediately. It does not appear

that these cell concentrations need to be measured as frequently as the BCR-ABL

ratio alone. Obtaining this data for the first year of therapy appears to be enough to

successfully recover the underlying dynamics, assuming accurate parameter values.

The success of any data assimilation processes is heavily weighted on the ability

to accurately estimate the covariances of process noise Q and measurement error R.

We consider the measurement errors used in this work to be reasonable. However,
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it may be possible to obtain more precise estimates directly from our collaborators.

The appropriate estimate for Q was more difficult to acquire. While the adaptive

process used in this chapter has been shown to be more robust to initial errors

than other methods [43], tuning the initial guess and the forgetting factor α proved

difficult due to the tendency of the updated state variable values and variances to

become negative. This is perhaps due to the possibly incorrect assumption of Gaus-

sianity in the model error. Further investigation is needed or perhaps an alternate

data assimilation technique. For example, a particle filter could be utilized, which

makes no assumption about specific error distributions.

Error in parameter values, particularly patient-specific parameters, was not

taken into account in this work. Since inaccurate values could affect the EKF

process, these errors should be addressed before results of the EKF on patient data

can be fully evaluated. Data assimilation techniques can be extended for optimal

parameter estimation by simply augmenting the state variable with the parameters

of interest.

x =

xs
xp

 . (5.10)

The new state variable consists of two components, xs the state variable as described

in Sections 5.2 and 5.3 and xp representing the model parameters. x is an N -
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dimensional vector where N = Ns +Np and evolves according to

dx

dt
=

d

dt

xs

xp

 =

f(xs)

0

 . (5.11)

This assumes that the model parameters are subject only to stochastic processes.

The new model error covariance matrix is defined as

P =

Pss Psp

Pps Ppp

 ≡ E


xs − xt

s

xp − xt
p


xs − xt

s

xp − xt
p


T (5.12)

Thus P is an (Ns + Np) × (Ns + Np) matrix. Likewise, Q accounts for errors

associated with both the system components and the model parameters. In the

context of our CML model (3.1), xp would be an 8-dimensional vector consisting of

the patient-specific parameter values inh1, inh2, dT1, µ, ymin, ymax, kT and rT . Since

these values are patient-specific, the covariance Ppp is likely also dependent on the

specific patient and could potentially be determined using the adaptive parameter

values computed in Chapter 4. Besides changes in dimensionality and updates of

the TLM F and Jacobian of the observation function H , the forecast and analysis

steps of the EKF would remain as previously stated in Section 5.2.

Although the use of data assimilation techniques in modeling CML needs to

be explored further, the results described in this chapter suggest its use to improve

the predictive power of CML models appears promising.
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Chapter 6: Conclusion

Since the development of TKIs in the early 2000s, CML has become a man-

ageable chronic condition increasing survival rate and leading approximately 80%

of patients to achieve CCR [3]. Despite this, TKIs are not considered a cure. Most

patients will take the drug indefinitely to prevent progression to the highly lethal

blast phase. This can be both inconvenient and costly, affecting patient quality of

life. Thus, much of the clinical research surrounding CML is conducted in an effort

to increase the number of patients reaching TFR and determining characteristics

necessary to maintain TFR.

Research into both of these areas suggests involvement of the immune system.

Prior to the development of TKIs, IFNα was considered the primary treatment

for CML. Discovery of numerous anti-tumor and immunomodulatory effects, have

led to creation of treatment protocols combining IFNα with TKIs. In the last

decade, outcomes of treatment cessation trials such as STIM [14], TWISTER [15]

and Euro-Ski [16] have further increased the interest in understanding the role of

immune response in CML. Although different criteria for candidate patients and

different definitions of relapse were utilized across these trials, the outcome of each

determined that successful treatment cessation is possible. Between 40% and 50%
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of patients experienced TFR following treatment cessation, often with low levels of

leukemic cells still present. The immune system is hypthesized to keep this residual

disease in check, thus preventing a relapse. Determining the exact involvement of

the immune system and the appropriate criteria for treatment cessation candidates

remains an open question in clinical research.

Mathematical modeling provides a beneficial complementing approach to clin-

ical research, allowing for the exploration of the underlying dynamics of the disease

and experimentation with treatment protocols in a cost-effective manner. Various

models of leukemia, and CML in particular, have been created. Early models of CML

under TKI therapy focus on capturing the initial biphasic decline in patient BCR-

ABL ratios, providing explanation for the phenomenon. Findings in clinical trials

and research tying immune response to disease management inspired new mathe-

matical models incorporating the immune system in some capacity. The Kim [21]

and Clapp [22] models incorporated the autologous immune response through a

single immune cell compartment. This addition allowed Clapp et al. to provide

explanation for the oscillations often observed in patient data in later phases of TKI

treatment. While their results provide new insights into the underlying biological

processes, the Clapp model is unable to explain extended relapse-free periods fol-

lowing treatment cessation and cannot accurately forecast disease progression. The

goal of the research presented in this dissertation was to develop new mathematical

models and consider numerical methods that together could be utilized to provide

reasonable predictions of CML for use in a clinical setting.

A new model of CML and the immune system is presented in Chapter 3, which
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is an extension of the Clapp model [22]. The Clapp model describes CML through

5 interacting compartments, 4 of which represent leukemic cells at various stages

of maturation and the last representing a generic immune cell. The dynamics gov-

erning leukemic cells have been well established in numerous mathematical models.

For this reason, these equations were left largely untouched. Instead, the focus of

our model was to provide a more detailed description of the immune response by

expanding the single immune compartment of the Clapp model (z) into three new

compartments (T0, T1, R) incorporating adaptive regulation of immune response

through the addition of regulatory T cells.

The extended model (3.1) was fit to patient data and compared to the per-

formance of the Clapp model. Although the two models do not produce identical

simulations, they both perform qualitatively well in that they capture all of the

key characteristics of CML patient data. The extended model may be better suited

for determining the difference between relapse and remission. For example, it was

shown that reducing the concentration of regulatory cells can greatly increase the

likelihood of TFR. Nonetheless, the extended model does not have much predictive

power. When simulating treatment cessation by setting TKI inhibition parameters

to 1, the model consistently predicts an immediate relapse. Adjusting the immune

parameters can allow for the simulation of remission, but it is unclear how this

should be done. It is evident that in order to use the extended model for prediction

purposes, the model parameters must be better identified.

In Chapter 4, we considered the possibility that the patient-specific parameters

could vary in time and developed a routine to refit the model to the data in different
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time windows. The routine begins by fitting the model only to data that appears

in the first window. A window length of two years allowed major characteristics of

the data to be captured in a single window and worked well with the frequency of

our data. Since biologically the behavior of the immune system is not considered to

drastically change over time, a second penalty was added to the objective function in

the optimization scheme to prevent large changes in parameter values from window

to window. The results suggest that the parameter values governing the effect of

therapy and the size of the immune window are well established and are unlikely

to change over the course of treatment. However, the remaining patient-specific

parameters fluctuate much more across the windows. Accurately estimating these

values will be key to fully understanding the role of immune response in CML.

The adaptive parameter fitting routine was used to fit the model to Stop TKI

data with the goal of discovering characteristics that could be used to distinguish

between relapse and TFR patients. We were unable to find such characteristics that

clearly categorized the two potential results of treatment cessation. However, it was

noted that immune parameters of relapse patients adapted in a way that reflected

a diminished immune response in later stages of therapy.

Data assimilation techniques have long been used in the geosciences to improve

understanding of underlying dynamics and improve predictions of physical processes.

Application of data assimilation in biomedicine is relatively new, yet holds promising

prospects for creating mathematical models that can be used for prediction in a

clinical setting. In Chapter 5, the extended Kalman filter was used to assimilate our

extended model of CML with patient data. The performance of the EKF using real
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patient data was not well-determined as the update step had a tendency to produce

unrealistic values for our state variable. However, OSSEs suggested that the EKF

could be successful if parameter values are well established. Results of various OSSEs

also suggested that an increased frequency of measurements as well as availability

of new data types in the form of immune assays could be vital to success of the

assimilation process. Data assimilation can also be used for parameter estimation.

This was not attempted in the course of the research presented here, but should be

considered for future work.

Collaboration between the mathematical and medical communities can provide

insight to disease in a way that neither can provide on their own. Data provided

by clinicians are used to inform mathematical models, which in turn can be used

to address questions that are difficult to answer in a clinical setting. Continued

cooperation between these communities is vital in the search for a cure to cancer,

particularly in the context of CML where many questions about treatment cessation

remain unanswered.
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