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In collisionless and weakly collisional plasmas, the particle distribution func-

tion is a rich tapestry of the underlying physics. However, actually leveraging the

particle distribution function to understand the dynamics of a weakly collisional

plasma is challenging. The equation system of relevance, the Vlasov–Maxwell–

Fokker–Planck (VM-FP) system of equations, is difficult to numerically integrate,

and traditional methods such as the particle-in-cell method introduce counting noise

into the distribution function.

In this thesis, we present a new algorithm for the discretization of VM-FP

system of equations for the study of plasmas in the kinetic regime. Using the

discontinuous Galerkin (DG) finite element method for the spatial discretization and

a third order strong-stability preserving Runge–Kutta for the time discretization,

we obtain an accurate solution for the plasma’s distribution function in space and

time.

We both prove the numerical method retains key physical properties of the



VM-FP system, such as the conservation of energy and the second law of thermo-

dynamics, and demonstrate these properties numerically. These results are con-

textualized in the history of the DG method. We discuss the importance of the

algorithm being alias-free, a necessary condition for deriving stable DG schemes of

kinetic equations so as to retain the implicit conservation relations embedded in

the particle distribution function, and the computational favorable implementation

using a modal, orthonormal basis in comparison to traditional DG methods applied

in computational fluid dynamics.

A diverse array of simulations are performed which exploit the advantages of

our approach over competing numerical methods. We demonstrate how the high

fidelity representation of the distribution function, combined with novel diagnostics,

permits detailed analysis of the energization mechanisms in fundamental plasma

processes such as collisionless shocks. Likewise, we show the undesirable effect

particle noise can have on both solution quality, and ease of analysis, with a study

of kinetic instabilities with both our continuum VM-FP method and a particle-in-cell

method.

Our VM-FP solver is implemented in the Gkyell framework1, a modular

framework for the solution to a variety of equation systems in plasma physics and

fluid dynamics.

1https://github.com/ammarhakim/gkyl
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Preface

This thesis was an enormous labor of love, and if you are reading it now with

the intention of learning about what I, and the Gkeyll project, accomplished, from

the bottom of my heart: thank you. The length of this thesis requires a preface

about my goals and what I hope a reader comes away with after reading it.

At every turn, we in the Gkeyll project have attempted to make the code

accessible and user-friendly, and I think we have broadly accomplished this goal. I

feel blessed to have had numerous conversations with fellow graduate students, post

doctoral scientists, and more senior members of our community that have found

Gkeyll to be an excellent tool, not just in the breadth of plasma physics that can be

studied, but in the ease with which they have found downloading the code, building

it, and running simulations everywhere from their laptops to supercomputers.

But, there is more that can be done in making a tool accessible, especially to

those just entering the field of plasma physics. While the equation system of interest

in this thesis, the Vlasov–Maxwell–Fokker–Planck system of equations, is one of the

most fundamental equation systems in all of plasma physics, it is not always the

case that a budding new plasma physicist has immediate exposure to the equation

system, its derivation, and the wealth of physics content within the equation system.

The few universities that offer rigorous courses in kinetic theory often break up the

discussions of this equation system over the course of a full year. In addition, some

beloved textbooks that offer clear explanations of plasma kinetic theory are out of

print, such as Nicholson [1983], and may only become harder to find with time.

iii



I do not claim to have rigorously derived the foundations of plasma physics

in this thesis. But it is my wish to impart physical intuition about plasma kinetic

theory, thinking about a many-body system like a plasma in a statistical sense, and

the rich physics buried in the Vlasov–Maxwell–Fokker–Planck system of equations

that ultimately made the derivation and implementation of novel numerical methods

such a rewarding project. In this vein, I hope to proceed pedagogically through the

intuition that forces us to develop kinetic theory, what kinetic theory means, and

how we obtain workable equations for the physics of a plasma so that when we

ultimately work to discretize the equation system and numerically integrate the

discrete system to model plasma phenomena, we have a sense of what properties of

the continuous system of equations we would like our discretization to respect.

This thesis is not intended as a user manual for the code, at least not if

a reader’s goal is to find installation instructions and assistance in building the

Gkeyll simulation framework. I refer an interested reader in this regard to our

GitHub2 and documentation website3. It is the goal of this thesis to explain every

aspect of our numerical method, how it works, and how we can leverage this par-

ticular algorithm to perform simulations of kinetic plasmas. In this way, this thesis

is intended as much to be an introduction to the algorithms in the Gkeyll sim-

ulation framework as it is to kinetic theory, especially the difference between the

mathematical formulation of an algorithm, and the translation of this algorithm to

code.

2https://github.com/ammarhakim/gkyl
3https://gkyl.readthedocs.io/en/latest/
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I have attempted to organize this thesis in a logical fashion for an aspiring

plasma physicist interested in diving into the details of plasma dynamics. Chap-

ter 1 provides an introduction to plasma physics and kinetic theory and attempts

to motivate both why we need the Vlasov–Maxwell–Fokker–Planck system of equa-

tions, and from where this equation system ultimately comes. Importantly, while

the discussion of the Vlasov–Maxwell–Fokker–Planck system of equations may not

be wholly rigorous, we will in detail work through many of the properties of the

continuous system in anticipation of what properties we desire a numerical method

to respect in the process of discretizing the equation system of interest.

Chapter 2 will introduce our numerical method, the discontinuous Galerkin

finite element method, and attempt to build intuition for how the method works

and how we can apply the method generally to partial differential equations. We

will then in detail discretize the Vlasov–Maxwell–Fokker–Planck system of equations

and mathematically determine the properties our discrete scheme retains from the

continuous system. Chapter 2 will form a mathematically complete description of

our method, before we turn to Chapter 3, where we will translate this mathematics

into an algorithm which can be implemented in code. This conversion to code is

equally nontrivial to the mathematical formulation of the algorithm, but it is my

goal that after reading Chapter 3, a reader may dive into Gkeyll with newfound

understanding of how to put all the pieces together into a discrete scheme that can

be used for performing numerical experiments.

Chapter 4 will involve taxing testing of the implemented numerical method

for the Vlasov–Maxwell–Fokker–Planck system of equations, and attempt to demon-
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strate to the reader that the scheme outlined in this thesis is on firm foundation; you

may trust both that the scheme discussed in this thesis is a valid one, and that the

code will work for whatever you envision doing with it. We will conclude in Chap-

ter 5 with a number of applications of my implementation of the DG discretization

of the Vlasov–Maxwell–Fokker–Planck system of equations to demonstrate the full

utility of this approach, leveraging the code to understand the details of energization

processes and nonlinear plasma instabilities.

Because this thesis is intended to live beyond my graduate career, I would ask

future readers that find typos or issues to contact me at my personal email: juno-

ravin@gmail.com. At every stage of my career, I will attempt to keep this thesis in a

state of maximum utility by updating it as necessary on the Gkeyll documentation

website. Readers interested in reproducing the simulations presented in this thesis

can do so by running the input files available through a GitHub repository4. The

changesets used to produce the data are documented in the input file, and where

appropriate the scripts used to produce the figures in this thesis can be found along-

side the input files. In addition, if any readers are interested in the publications

which formed the basis for this thesis, I refer them to Juno et al. [2018], Hakim,

Francisquez, Juno, and Hammett [2019], Hakim and Juno [2020], Juno et al. [2020],

and Skoutnev, Hakim, Juno, and TenBarge [2019].

Without further ado, let us begin. I hope you ultimately find this thesis as

much fun to read as I had writing it. To quote Robert Louis Stevenson, “It is one

thing to mortify curiosity, another to conquer it.”

4https://github.com/ammarhakim/gkyl-paper-inp
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and Andréas Sundström. It has been an absolute pleasure to collaborate with you

all. I recall being worried that you had caught a subtle bug for the electron Landau

damping and dynamo paper, and I was ready to send you an email discouraging the

use of Gkeyll for this project, only for István to email within 24 hours that he had

figured out a physics explanation for the code’s behavior. It is no exaggeration that

I am overwhelmed with excitement for our future research endeavors.

Thank you to the colleagues I have made through the Solar, Heliospheric,

and INterplanetary Environment (SHINE) conference, Prof. Gregory Howes and

x



Prof. Kristopher Klein. You both have been so encouraging of the development

of Gkeyll , and I am elated that your encouragement has led to multiple ongoing

projects, the results of which partially appear in this thesis. Amongst my fellow

graduate students at SHINE, I am grateful to have served alongside Doǧa Can Su
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4.15 The aluminum (left) and proton impurity (right) distribution func-
tions in the vicinity of the shock at t = 35

√
me/mpω

−1
pe ∼ 1500ω−1

pe .
Over-plotted in white are contours of constant H(x, v) = 1

2
msv

2 +
qsφ(x), the Hamiltonian. We note that the Hamiltonian has been
transformed to the rest frame of the shock, v̂ = v − Vshock, and there
is some freedom in computing φ(x) from the electric field in our sim-
ulations. We choose φ(x = 0) = 0 on the left edge of the domain,
and then integrate Ex along the 1D domain to determine the electro-
static potential. We draw attention to the trapped particle regions
in the proton distribution function just down-stream of the shock,
which amplify the cross-shock potential and lead to a large reflected
population of protons. Note that we are plotting a normalized value
for the distribution function, as in Pusztai et al. [2018], and that the
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tion at (y = Ly/2, vy = 0) (bottom left), (x = Lx/2, vx = 0) (bottom
middle), and (x = Lx/2, y = Ly/2) (bottom right) at t = 125ω−1
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as the oblique mode, θ = 45◦, instability is going nonlinear. We ob-
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the oblique mode, θ = 45◦, instability deep in the nonlinear phase
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and Juno [2020].

Chapter 1: Introduction

Plasmas are ubiquitous in nature, and the study of plasmas has application to

a wide variety of problems, from the development of nuclear fusion, to understanding

the dynamic interaction between the solar wind and the Earth’s magnetosphere, to

elucidating the mysteries of astrophysical phenomena such as binary star collisions

or the accretion disks of black holes. Unfortunately, many plasmas of interest are

only weakly collisional and far from equilibrium, making the system best described

by kinetic theory. The use of kinetic theory significantly complicates the theoretical

analysis and simulation of the plasma’s dynamics due to the increased dimensionality

of the corresponding equations, which are solved in a combined position and velocity

phase space, along with the large collection of waves and instabilities that the kinetic

system supports.
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While there are many avenues for tackling the numerical solution of the kinetic

equation, popular approaches such as the particle-in-cell method have deficiencies

due to the counting noise inherent to the algorithm. This noise can significantly

degrade the quality of the solution, in addition to making the ultimate analysis of

simulations more challenging, especially for problems requiring high signal-to-noise

ratio. In this thesis, we outline and demonstrate the utility of an approach that

directly discretizes the kinetic equation on a phase space grid.

This approach requires care, as we must consider both the cost, since the par-

tial differential equation is defined in a six dimensional phase space, alongside the

challenges which arise from the wealth of physics buried within the equation system

of interest. For example, important conservation relations, such as the conserva-

tion of energy, are implicit to the kinetic equation, leading to additional difficulties

in ensuring a discrete scheme satisfies these properties. But this same wealth of

physics contained in the kinetic equation motivates a direct discretization of the

kinetic equation. We can leverage the uncontaminated phase space from a contin-

uum discretization to diagnose energization processes directly in phase space and

carefully ascertain the nonlinear saturation mechanisms of unstable plasmas.

Some readers may be left wondering right from the beginning why the numer-

ical solution of a plasma system is at all challenging. Before diving deeper into the

details of the algorithm and the verification of this approach, let us take a moment

to address the paradoxically simple yet subtle question of what makes plasmas so

rich in their underlying physics. We will then define some of the terminology used

in this brief introduction, most importantly kinetic theory, and how we use kinetic

2



theory to derive a useful equation system for modeling a plasma. This brief overview

will serve as the foundation from which we will build intuition for what we want

from a numerical model of a kinetic plasma, most especially the fundamental physics

properties of a plasma we would like our discretization to respect.

It is the goal of this introduction to proceed in a pedagogical fashion. We

will assume no prior plasma physics knowledge, much less knowledge about the

subtleties described so far concerning particle versus continuum methods. We will

connect this holistic introduction to plasma physics to these questions regarding

our choice of numerical method in the final section of this introduction, Section 1.7,

when we outline the objectives of this thesis.

1.1 What is a plasma?

Formally, a plasma is a collection of mobile, or “free,” charged particles. Col-

lection in this case refers to the fact that a plasma is an N -body system, where

N � 1. By mobile, or “free,” we mean that the particles in a plasma are not

confined by inter-particle forces and the individual particles in a plasma behave

similarly to a gas, as opposed to a solid or crystalline structure, albeit with the

added complication of the particles being charged. And in this case, the fact that

the particles are charged means that the particles are subject to the Lorentz force

and can interact with each other via microscopic electromagnetic fields governed by

Maxwell’s equations.

This definition of a plasma is somewhat restrictive. In this case, we limit
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ourselves to what are commonly referred to as weakly coupled plasmas, as the mobile

component of our definition implies the kinetic energy of the particles is much, much

greater than the potential energy of the particles. Likewise, we restrict our attention

to plasmas which are fully ionized.

Let us be a bit more concrete about our definition of a plasma, so that we can

gain more intuition for what it means to limit ourselves to this subset of so-called

weakly coupled plasmas. Consider a gas of some number of charged species, such

as a gas of protons and electrons, where each charged species has density n0. Since

n0, the density, is the number of particles in a given volume, the average distance

between two charged particles is roughly n
−1/3
0 . This rough estimate for the average

distance between two particles can be used to approximate the average potential

energy per particle in this sample plasma,

Φ ∼ 1

4πε0

e2

r
∼ 1

4πε0
n

1
3
0 e

2, (1.1)

where e is the elementary charge, i.e., the charge carried by a proton. Likewise,

we can estimate the average kinetic energy of a particle using the equi-partition

theorem,

1

2
ms〈v2〉 ∼ 3

2
kBTs, (1.2)

where ms and Ts are the mass and temperature of the particles of species s, re-

spectively, and 〈·〉 denotes an average over all particle velocities at a given point in

space. Here, kB is Boltzmann’s constant.

Thus, our definition of a plasma, that the average kinetic energy of the particles
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is much larger than the average potential energy of the particles, implies

3

2
kBTs �

1

4πε0
n

1
3
0 e

2, (1.3)

or

6πn
2
3
0

(
ε0kBTs
n0e2

)
� 1. (1.4)

This expression at first glance looks somewhat unremarkable, but upon raising both

sides to the 3/2 power, and rewriting the expression in terms of a characteristic

length scale of a plasma, the Debye length,

λDs =

√
ε0kBTs
n0e2

, (1.5)

we obtain

(6π)
3
2n0λ

3
D � 1. (1.6)

Note that in the definition of the Debye length we could have a species dependent

density, but since we have assumed that both the protons and electrons have the

same density we have set np = ne = n0.

Ignoring the constant for a moment, we may gain a bit of intuition for what we

have just found. n0λ
3
D is the number of particles in a cube with side lengths equal to

the Debye length. We will gain a deeper understanding of the physical significance

of this expression which follows from our definition of the a plasma in the following

section.
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1.2 The Debye length and the Plasma Parameter

Because plasmas are a large collection of charged particles, inevitably, the

particles will rearrange themselves in response to each other’s charges. Consider

one particular particle with a positive charge. Since the particle’s charge is positive,

the electrons in the plasma will be attracted to the particle, while the positively

charged ions will be repelled, creating a local area where the density of the electrons

has increased, while the density of the positively charged ions has decreased.

Without loss of generality, let us take the positively charged ions to be protons.

Then, if the electrons have density ne, and the protons have density np, Poisson’s

equation tells us that the electric potential for the plasma is

∇2φ = −ρc
ε0

=
e

ε0
(ne − np)− qT δ(r), (1.7)

where we denoted the charge of the particular particle as qP and used the Dirac

delta function, δ(r), to denote the position of the particle in space.

We need to determine how the density of electrons and protons has been mod-

ified by the presence of this particular charge. If we assume that we have waited

long enough for electrons and protons to come into thermodynamic equilibrium with

the particular charge, i.e., that we wait long enough that the temperature becomes

a well-defined quantity, we can use equilibrium statistical mechanics. Without in-

sisting that the electrons and protons have the same temperature, only that we

can define temperatures, the densities of the electrons and protons are given by the
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Boltzmann distribution,

ne = n0 exp

(
eφ

kBTe

)
, (1.8)

np = n0 exp

(
−eφ
kBTp

)
, (1.9)

where n0 is the density of the electrons and protons far away from the particular

charged particle of interest, i.e., far enough away so that electric potential from the

particular charged particle of interest is zero.

But, recall what we have continually reiterated from our definition of a plasma:

the average potential energy of the particles is much less than the average kinetic

energy. Therefore, eφ� kBTs, and the exponential function can be Taylor expanded

far away from r = 0, the location of the particular charged particle, so that

∇2φ =
1

r2

d

dr

(
r2dφ

dr

)
=
e2n0

ε0kB

(
1

Te
+

1

Tp

)
φ. (1.10)

Using Eq. (1.5), we can see that the above equation simplifies to

1

r2

d

dr

(
r2dφ

dr

)
=

(
1

λ2
De

+
1

λ2
Dp

)
φ. (1.11)

If one waits longer for the protons and electrons to come in to thermodynamic

equilibrium with each other so the temperatures of the two species are equal, Te =

Tp = T , then (
1

λ2
De

+
1

λ2
Dp

)
=

2

λ2
D

. (1.12)

The solution to this differential equation then follows from trying functions of the
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form φ = φ̃/r, so that

d2φ̃

dr2
=

2

λ2
D

φ̃. (1.13)

The only solution which respects the boundary condition that the electric potential,

φ, not blow up as r →∞ is a solution of the form

φ(r) = A exp

(
−
√

2

λD
r

)
, (1.14)

where A is a constant of integration. This constant of integration can be found by

considering the boundary condition at r = 0, where the electric potential will be

dominated by the particular charged particle of interest. We know from Gauss’ law

that the electric potential of an individual charged particle is simply 1/(4πε0) qP/r

so that the complete solution for the electric potential of an individual charged

particle in a plasma is

φ(r) =
1

4πε0

qP
r

exp

(
−
√

2

λD
r

)
. (1.15)

This functional form for the potential implies that the electric potential, and

thus the charge, of a particle falls off much faster than just the inverse of the distance.

It thus follows from this solution that the charged particles in a plasma rearrange

themselves to cancel the charges of their neighbors, and that the characteristic length

scale on which a plasma’s charged particles are screened is the Debye length.

We return now to Eq. (1.6) with newfound understanding of the physical sig-

nificance of the Debye length. If the number of particles in a Debye cube is very

large, then it becomes a bit more apparent why these plasmas are often referred
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to as weakly coupled. When the number of particles in a Debye cube is large, no

individual electrostatic interaction between particles is of dynamical importance.

Because a single particle is feeling the electrostatic potential of a large number of

particles in its immediate vicinity, the individual electrostatic interactions between

particles are dwarfed by the accumulation of all of the electrostatic interactions. We

need not discuss the electric field one particle exerts on another; rather, what we

require is the net electric field of all of the particles in a Debye cube, so that we may

obtain the aggregated response of the particles in the plasma.

In this regard, we should avoid being dismissive of the individual electrostatic

interactions occurring within a Debye cube in a plasma. It is true that the sum is

greater than the individual parts in a weakly coupled plasma where there are many

particles in a Debye cube. But in this vein, we must distinguish between individual

and collective effects. Eq. (1.15) shows us that the electrostatic potential of an

individual particle falls off exponentially on scales larger than the Debye length,

but the collective effects of all the individual particles within the Debye cube can

be of critical importance for the plasma’s dynamics. The collective response of the

plasma, on scales above and below the Debye length, is a crucial consideration in

the derivation of the resulting equations of interest in the forthcoming sections.

1.3 The challenge in modeling plasmas

For now, let us use this discussion as a segue into the original question which

galvanized defining a plasma: “Why is modeling a plasma hard?” Regardless of
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whether individual particle-particle interactions are important or irrelevant in a

many-body plasma, it does not change the fact that the equations of motion for

particles in electromagnetic fields are well-known and easy enough to solve numer-

ically. So why not model all the particle-particle interactions in the many-body

system?

The answer may be obvious just from the description of a plasma as a many-

body system. Since the challenge inherent in modeling a plasma can be seen even

without considering the magnetic field, for readability, we will ignore the magnetic

field for now and only consider the particle-particle interactions from the plasma’s

self-consistent electric field. In this case, one could evolve a single particle under

the equations of motion,

dxk
dt

= vk, (1.16)

dvk
dt

=
qk
mk

N∑
i=1,i 6=k

Ei, (1.17)

where k is the label for the particle being evolved. One would then proceed to solve

these equations for each k = 1, . . . , N . The electric field in this system of equations

is given by

Ei =
1

4πε0

qi
(xi − xk)2

x̂ik. (1.18)

Here, Ei is the electric field particle i exerts on particle k, so that in this notation,

xi is the ith particle’s position, xk is the position of the particle currently being

evolved, i.e. the particle the electric field Ei is acting on, and x̂ik is the unit vector

pointing from xi to xk.
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What is the computational cost to solve these two coupled sets of ordinary

differential equations? For each of the N particles, we require at least N − 1 opera-

tions to compute the total electric field since each particle’s electric field depends on

all of the other particles. Even if one stores the electric field of each particle so as

not to recompute any particle’s contribution, the computational work only reduces

to a sum of the form

N∑
i=1

(N − i) =
N2

2
− N

2
. (1.19)

Thus, the computational complexity of such an algorithm is O(N2), meaning

if we double the number of particles we are evolving numerically, we quadruple the

cost to compute the solution. In addition, this argument implies that, at minimum,

this method requires on the order of N2 operations to perform a single time step.

But, modern supercomputers are already fast and will only continue to speed

up with time. As of the completion of this thesis, we have achieved exascale com-

puting1. Is this enough to make this approach feasible?

We require a concrete example. Let us consider the ITER (International Ther-

monuclear Experimental Reactor) Tokamak currently being built to demonstrate the

feasibility of nuclear fusion as a power source. According to the website for ITER

(ITER 2020), the vacuum vessel is 840m3 in volume, and the average density of

the electrons in the plasma will be ∼ 1020m−3. The plasma will be quasi-neutral,

so a conservative estimate of the number of particles, protons, electrons, and alpha

1With the caveat that this is only for reduced precision, i.e., the supercomputers at the writing
of this thesis could achieve an exaflop, 1018 floating point operations per second, if one only required
single precision.
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particles, inside ITER is ∼ 1023 particles. A single “shot,” or run of the experiment,

is expected to last anywhere from 100 to 1000 seconds. So, could we model ITER

through a full experimental shot, tracking every particle in the experiment?

To answer this question, we require one final piece of information: the fastest

time scale in the system, so that we know how many time-steps we would require

to evolve all the particles for 100 to 1000 seconds. The fastest time scale in a

plasma can be found by considering how particles jostle about. We have found a

characteristic length scale, the Debye length, Eq. (1.5), and it is simple enough to

define a characteristic velocity from the equipartition theorem

1

2
mv2

rms ∼
N

2
kBT, (1.20)

where N is the number of degrees of freedom. Each degree of freedom thus has

root-mean-square velocity

vths =

√
kBTs
ms

. (1.21)

This speed is called the thermal velocity, and approximates the average speed of

particles with temperature Ts (or energy kBTs). Note that Eq. (1.21) is typically

referred to as the thermal velocity even though it is not a vector quantity, and though

we will maintain this nomenclature throughout our discussion, we will attempt to

minimize confusion by emphasizing Eq. (1.21) is a speed where appropriate. The

ratio of these two quantities for the electrons,

vthe
λDe

=

√
e2ne
ε0me

, (1.22)
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has units of inverse seconds and defines a frequency,

ωpe =

√
e2ne
ε0me

. (1.23)

Although we have not demonstrated this here, this frequency is roughly the

highest frequency in the system. With the Debye length as our length scale, and this

frequency, ωpe, called the plasma frequency, setting a time scale, we have a rough

estimate of the cost of numerical integration of Eqns. 1.16–1.17. For the purposes

of numerical integration, we wish to avoid particles moving distances greater than

the Debye length on time scales shorter than the inverse plasma frequency, as this

may introduce numerical instabilities into the integration of the particle orbits.

In ITER, the plasma frequency for the electrons is ∼ 1011 – 1012 Hz, so even

if our numerical method is very robust and requires only one time-step per inverse

plasma frequency, we require a large number of time steps per second. In total,

assuming N2 operations per time-step and 1014 time steps to model a single run of

the experiment, a computer simulation of all the particle dynamics would need to do

approximately 1060 floating point operations. If current supercomputers, even with

the trade-offs in terms of floating point precision, can only perform 1018 floating point

operations per second, an exa-flop, we would still require 1042 seconds of simulation

time. For reference, the universe has only existed for just over 1017 seconds, so a

simulation like this requires quite a few universe lifetimes with modern computer

architecture.

It is worth taking a moment to go further and try to improve this algorithm

before we give up on tracking every single particle-particle interaction. For example,
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there are algorithms which would reduce the cost of computing the electric field,

and thus the algorithm, from O(N2) to O(N), by using a multipole expansion

of the electrostatic potential [Greengard and Rokhlin, 1987]. Such algorithms are

commonly employed in computational cosmology for solving for the gravitational

potential of a large number of dark matter particles and simulating galactic dynamics

and evolution [Stadel, 2001]. Even with a multipole expansion of the electric field,

the total number of operations would reduce from 1060 to only ∼ 1037, and the

total time to 1019 seconds. Unfortunately, this is not a large enough reduction, and

one would have to track a lot fewer particles for a lot less time, to say nothing

of the added complexity of the magnetic field acting on individual particles. For

example, it would be quite a large simulation to run on a modern supercomputer

for 4 continuous months, ∼ 107 seconds, so one would have to eliminate 12 orders of

magnitude in some combination of the amount of time being simulated and number

of particles being evolved, again to say nothing of the assumptions which made this

back-of-the-envelope calculation remotely reasonable.

So, what is one to do? All hope is not lost for the reason we have emphasized

throughout these introduction sections. That is, the individual particle-particle dy-

namics are of minimal importance in a weakly coupled plasma, and in fact what

is principally important to the plasma’s dynamics is its collective response to elec-

tromagnetic fields. In other words, a weakly coupled plasma is an ideal system for

which a mean-field theory may arise, one which allows for the study of the plasma

of interest in a statistical sense. We will be careful to define both what we mean by

a mean-field theory and what we mean by thinking about the particle dynamics in
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a statistical sense in the next section.

1.4 An introduction to kinetic theory

Up until now, we have concerned ourselves with the microscopic properties of

the plasma, and, as demonstrated in the previous section, this limits our ability to

model the plasma. We would like to still respect the fact that the plasma is made

of discrete particles though, and so we turn to kinetic theory. “Kinetic” in this

case means, “pertaining to motion,” and kinetic theory provides the foundation to

consider the motion of all of the particles in the plasma, but without the stringent

requirement to track individual particle dynamics and interactions.

Consider the density of particles of species s, Ns, in a combined position and

velocity space. This density is simply a sum of Dirac delta functions denoting the

individual positions and velocities of every particle in the plasma,

Ns(x,v, t) =

N0∑
i=1

δ(x−Xi)δ(v −Vi), (1.24)

where we have used capital Xi and Vi to specify the individual particle positions

and velocities in the x–v phase space. The motions of the particles in this plasma

in space and time are governed by the particle characteristics2,

dXi

dt
= Vi, (1.25)

dVi

dt
=

qs
ms

[Em(Xi, t) + Vi ×Bm(Xi, t)] , (1.26)

2Assuming the particles are traveling at velocities much less than the speed of light, |v| � c,
so we can ignore the Lorentz boost factors, and further that the self-force due to radiation is of
minimal dynamical importance.
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similar to Eqns. 1.16–1.17, but with a simplified notation for the microscopic elec-

tromagnetic fields using the superscript m. We can see that change in velocity does

not couple to the acceleration in such a way as to require a third set of equations for

the time derivative of the acceleration of the particles and thus the two equations

Eqns. (1.25) and (1.26) are closed once we specify evolution equations for the elec-

tromagnetic fields. In this case, the evolution of the electromagnetic fields is given

by Maxwell’s equations,

∂Bm(x, t)

∂t
+∇x × Em(x, t) = 0, (1.27)

ε0µ0
∂Em(x, t)

∂t
−∇x ×Bm(x, t) = −µ0J

m(x, t), (1.28)

∇x · Em(x, t) =
%mc (x, t)

ε0
, (1.29)

∇x ·Bm(x, t) = 0, (1.30)

where the microscopic charge density and current density are given by

%mc (x, t) =
∑
s

qs

∫
Ns(x,v, t) dv, (1.31)

and

Jm(x, t) =
∑
s

qs

∫
vNs(x,v, t) dv, (1.32)

respectively.

This density of particles of species s, Ns, can neither be created nor destroyed

because the number of particles cannot change in time, assuming the system is

closed. This attribute implies Ns obeys a continuity equation. For a reader unfa-

miliar with the concept of a conservation equation, consider a quantity f(r, t), a
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function of some space r and time, which in the process of its motion in space and

time can neither be created nor destroyed. Then, this quantity f(r, t) obeys

∫
Ω

∂f(r, t)

∂t
dr = 0, (1.33)

where Ω is the domain the function f(r, t) is defined in. But this quantity f(r, t) can

still be transported throughout the domain Ω. Let us define the flux function for the

function f(r, t) as G, where G could be as simple as a constant, or as complex as a

nonlinear function of the quantity of interest, G = G(f). Then, the flux of f(r, t) is

Gf(r, t). We have argued in Eq. (1.33) that the time derivative of the integral over

the whole domain of the function f(r, t) is zero, which means that the flux of the

function f(r, t) out the boundary of the domain must also be zero,

∮
∂Ω

f(r, t)G · dS = 0, (1.34)

so that we can say

∫
Ω

∂f(r, t)

∂t
= −

∮
∂Ω

f(r, t)G · dS. (1.35)

But using the divergence theorem,

∮
∂Ω

f(r, t)G · dS =

∫
Ω

∇r · [Gf(r, t)] dr, (1.36)

so that we can argue

∫
Ω

∂f(r, t)

∂t
+∇r · [Gf(r, t)] dr = 0, (1.37)

allows us to attain an evolution equation for the function f(r, t) using the fact that
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the integrand itself must also be equal to zero,

∂f(r, t)

∂t
+∇r · [Gf(r, t)] = 0. (1.38)

Because the time rate of change of the quantity, f(r, t), integrated over the whole

domain, is zero, i.e., f(r, t) is not appearing or disappearing over time, f(r, t) will

inevitably obey an equation of the form Eq. (1.38).

If the density of particles of species s, Ns, obeys a similar equation, what

is the flux function to advect Ns in the combined position-velocity phase space?

It is simply the characteristics defined in Eqns. 1.25–1.26, but importantly, with a

change of variables from the individual particles’ physical locations and velocities

to the phase space coordinates. This change follows from the fact that Ns is a

function of the phase space variables x and v, not a function of the individual

particle positions. Thus, the conservation equation governing the evolution of the

density of particles of species s is

∂Ns(x,v, t)

∂t
+∇x · [vNs(x,v, t)]

+∇v ·
{
qs
ms

[Em(x, t) + v ×Bm(x, t)]Ns(x,v, t)

}
= 0. (1.39)

This equation is more commonly known as the Klimontovich equation, or Klimon-

tovich’s equation [Klimontovich, 1967, Nicholson, 1983]. Oftentimes, Eq. (1.39) is

rearranged to emphasize the connection between the particle characteristics, and
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how Ns advects in phase space,

∂Ns(x,v, t)

∂t
+ v · ∇xNs(x,v, t)

+
qs
ms

[Em(x, t) + v ×Bm(x, t)] · ∇vNs(x,v, t) = 0, (1.40)

where we have exploited the fact that

∇x · v = 0, (1.41)

∇v · [Em(x, t) + v ×Bm(x, t)] = 0, (1.42)

in the rearrangement of Eq. (1.39) to Eq. (1.40). Eq. (1.41) likely seems intuitive,

the velocity coordinate v of course does not depend on the configuration space

coordinate x, and Eq. (1.42) follows from properties of the cross product, in addition

to the fact that the electromagnetic fields themselves do not depend on velocity. Just

as Eq. (1.39) follows from the fact that the density of particles of species s cannot

be created or destroyed, Eq. (1.40) shows that Ns is constant along characteristics,

i.e.,

DNs(x,v, t)

Dt
= 0, (1.43)

where D/Dt is a convective derivative,

D

Dt
=

∂

∂t
+ v · ∇x +

qs
ms

[Em(x, t) + v ×Bm(x, t)] · ∇v, (1.44)

a time derivative with respect to a moving coordinate system.

The Klimontovich equation is essentially an alternative way of expressing the

motion of every particle in phase space, and it suffers from the same issues discussed
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in Section 1.3. We do not want to track the motion of every particle in phase

space, especially if we can prioritize collective effects over individual particle-particle

interactions and microscopic fields in a weakly coupled plasma. But how does one

go from the Klimontovich equation to a more suitable representation of a weakly

coupled plasma’s dynamics? How does one obtain an equation which contains the

accumulated physics of the many individual particle interactions in our many-body

system?

We now leverage a mathematical technique known as an ensemble average.

An ensemble average is an average over realizations of the solution, i.e., an aver-

age of the results of different initial conditions. Imagine, if one could, solving the

Klimontovich equation many times and finding with different initial conditions the

collective motion of the plasma was similar while the details of the individual particle

interactions varied. A concrete example: imagine solving the Klimontovich equa-

tion repeatedly for the plasma system considered in Section 1.2. While the details

of the relaxation to a Debye-shielded charged particle may vary from realization to

realization depending on how exactly we initialize the electrons around the partic-

ular positively charged particle, we still end up at the same place: a distribution of

electrons moving around a positively charged particle, shielding its charge strongly

beyond this characteristic length scale of the Debye length.

So what would this mean for the collective behavior, a Debye shielded charged

particle for example, to be roughly similar between different realizations of the

plasma’s dynamics? We turn now to the language of statistics to lay a solid founda-

tion for the next derivation. This roughly similar collective behavior is an example
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of the average response of the plasma to its internal, individual particle-particle,

dynamics, likely with some standard deviation or variance across different realiza-

tions. While every realization of the Klimontovich equation is deterministic, there

is also some stochasticity between different realizations. We now argue that a more

appropriate, and ultimately more useful, way to characterize the plasma’s dynamics

is by focusing on this stochasticity, so as to obtain a probabilistic description of the

plasma’s dynamics.

We define the particle distribution function for species s as

fs(x,v, t) = 〈Ns(x,v, t)〉, (1.45)

where 〈·〉 defines the ensemble average, the average over many (formally an infinite

number) realizations of the plasma. The particle distribution function tells us how

many particles are likely to be found in a small volume ∆x∆v. Before, the density

of particles of species s could only take the value of 0 or 1—it was a simply a sum

of Dirac delta functions for the exact location in configuration and velocity space

of each particle. We have now shifted perspective to focusing on the probability of

finding a particle at a particular location in position-velocity phase space.

To obtain an equation for the evolution of the particle distribution function

we ensemble average Eq. (1.39), the Klimontovich equation,

∂fs(x,v, t)

∂t
+∇x · [vfs(x,v, t)] +∇v ·

{
qs
ms

[E(x, t) + v ×B(x, t)] fs(x,v, t)

}
= −

〈
qs
ms

∇v · {[δE(x, t) + v × δB(x, t)] δNs(x,v, t)}
〉
, (1.46)
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where

δNs(x,v, t) = Ns(x,v, t)− fs(x,v, t), (1.47)

δE(x, t) = Em(x, t)− E(x, t), (1.48)

δB(x, t) = Bm(x, t)−B(x, t), (1.49)

and we have used the shorthand E = 〈Em〉 and B = 〈Bm〉 for the ensemble-

averaged fields. By definition, the ensemble average of the fluctuating quantities

〈δNs〉 = 〈δE〉 = 〈δB〉 = 0. Thus, in the process of ensemble averaging the Klimon-

tovich equation, terms proportional to 〈NsδE〉 = Ns〈δE〉 and their permutations

will vanish, leaving only the term which is quadratic in the fluctuating quantities.

Eq. (1.46) is the plasma kinetic equation. We are close to a more useful equa-

tion, as we have replaced a deterministic equation with a probabilistic equation,

which will allow us to understand the plasma’s collective behavior irrespective of

the details of the discrete particle dynamics. Importantly, in the process of ensemble

averaging, we now have on the left hand side of Eq. (1.46) how the plasma responds to

ensemble-averaged electromagnetic fields, i.e., effective electromagnetic fields from

the collective motions of the entire plasma instead of individual particle-particle

electromagnetic interactions. But we have retained the effects of the discrete parti-

cle interactions on the right-hand side, or at least the accumulation of many discrete

particle interactions. We need one final simplification, to complete the derivation of

the equation, and equation system, which is of principal interest in this thesis.
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1.5 Bogoliubov’s Timescale Hierarchy and the

Vlasov–Maxwell–Fokker–Planck System of Equations

To complete the probabilistic picture of a plasma, we need to know the physics

of the right hand side of the plasma kinetic equation, Eq. (1.46). We have already

shown in Section 1.2 that the electric field from an individual particle in the plasma

falls off exponentially at length scales larger than the Debye length, so we might

expect the physics of these fluctuating fields to be at scales smaller than the De-

bye length. Indeed, that must be the case, as the fluctuating electromagnetic fields

become vanishingly small on scales larger than the Debye length, i.e., the “mi-

croscopic” electromagnetic fields and ensemble-averaged electromagnetic fields are

indistinguishable when one is no longer considering “microscopic” scales. This jus-

tification may seem like a tautology, that once we consider length and time scales in

the plasma on which collective effects arise, we no longer have to concern ourselves

with these fluctuating quantities. In fact, it can be shown that the term on the right

hand side of Eq. (1.46) scales like Λ−1, the inverse of the plasma parameter,3 so it is

3One can see this scaling with a thought experiment. Imagine breaking an electron into an
infinite number of pieces, so that ne → ∞,me → 0, e → 0 while the charge density, charge to
mass ratio, and thermal velocity nee, e/me, vthe

all remain constant. Note that in this thought
experiment, the electron temperature Te → 0 for the thermal velocity to be constant, while the
electron plasma frequency and Debye length ωpe, λD are both constant through the break up of
the electron. Importantly, this means the plasma parameter Λ = nλ3D → ∞. Now, any volume,
no matter how small contains an infinite number of point particles with an infinitesimal charge.
Statistical mechanics tells us that the fluctuations in the density will scale like the square root
of the density, δNs ∼ N1/2 ∼ Λ1/2, but the electromagnetic fields, for example the electric field
from Poisson’s equation, scales like δE ∼ eδN ∼ N−1N1/2 ∼ N−1/2, because the charge density is
constant, meaning e ∼ N−1. Thus, the right hand side of the plasma kinetic equation, Eq. (1.46),
is constant in this thought experiment. But on the left hand side of Eq. (1.46), the distribution
function becomes infinite in this thought experiment, fe → ∞, so the right hand side vanishes
with the scaling of the left hand side, N ∼ Λ. The contribution of the fluctuating fields is thus
Λ−1 smaller in scaling for the evolution of the particle distribution function.
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tempting to argue the the fluctuating fields contribute negligibly to the dynamics of

a weakly coupled plasma where Λ � 1—there are many particles in a Debye cube

that their individual electromagnetic interactions cannot possibly be of consequence.

But the physics of the ∼ Λ Coulomb collisions the particles are experiencing

within a Debye cube is slightly more subtle. While each individual Coulomb collision

a particle experiences is a small effect, a small deviation to its trajectory, the cu-

mulative effect of many Coulomb collisions can significantly perturb the path of the

particle. One may have to wait an exceedingly long time for the cumulative effect

of many Coulomb collisions to noticeably affect the plasma’s dynamics compared

to the collective motion of the plasma contained in the left hand side of Eq. (1.46),

especially given the scaling of the right hand side compared to the left hand side

of Λ−1. But, wait long enough, and small deviations will accumulate to make an

impact on the dynamics of these plasma particles.

How long is long enough to wait for Coloumb collisions to be of dynamical im-

portance? Bogoliubov’s timescale hierarchy [Nicholson, 1983] tells us that a plasma’s

dynamical evolution consists of the following stages:

1. Pair correlations are established, leading to shielded Coloumb potentials on

Debye scales. These correlations are established on the time scale of the in-

verse electron plasma frequency, Eq. (1.23), and once these correlations are

established, for tωpe & 1, collective behavior dominates over individual parti-

cle interactions.

2. The plasma relaxes to local thermodynamic equilibrium. We will show in the
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next section, Section 1.6, that this relaxation is contained in the physics of

collisions, the right hand side of Eq. (1.46). If we define a collision frequency

ν, we expect the plasma to relax to local thermodynamic equilibrium on time

scales νt & 1, a much longer time scale than the plasma frequency ν/ωpe ∼

Λ−1, given the scaling of the terms in Eq. (1.46).4

3. On time scales νt� 1, the plasma attempts to relax to global thermodynamic

equilibrium. The plasma’s boundary conditions or sources may prevent this

global relaxation from occurring, but on these time scales, we would seek

alternative means of describing the plasma so as to capture its transport.

We have engaged in a small amount of circumlocution as we attempted to not

get too far ahead of ourselves in a heuristic derivation of the equation system of

interest. A detailed derivation of the collisional response of the plasma, valid for all

4We can also argue for the difference in the time scale of collisions versus the plasma frequency
by estimating the size of the mean free path, the average distance a particle travels before it
experiences a significant deflection due to a binary inter-particle Coulomb collision, compared to
the Debye length. Here significant deflection could mean the accumulation of many small angle
Coulomb collisions, i.e., small deviations due to individual electrostatic interactions, or by one
large angle collision due to a close fly-by of one plasma particle of another. The mean free path
can be estimated from the collisional cross section σ,

λmfp ∼
1

nσ
∼ T 2

ne4
, (1.50)

where we have estimated the collisional cross section σ ∼ d2 by balancing the potential energy at
a distance d with the average kinetic energy of the particle, e2/d ∼ T . Comparing the mean free
path and the Debye length, we have,

λmfp

λD
∼ T 2

ne4

√
e2n

T
∼ nλ3D, (1.51)

which is the plasma parameter Λ ∼ nλ3D � 1. But if the mean free path is much larger than the
Debye length, than considering a thermal particle moving with velocity vth,

vth
vth

λmfp

λD
=

ν

ωpe
∼ Λ. (1.52)
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the timescales in Bogoliubov’s hierarchy, is a longer calculation. For now, we state

that because collisions are the accumulation of many small effects, that the right

hand side of Eq. (1.46) must inevitably be a Fokker-Planck operator [Landau, 1936,

Helander and Sigmar, 2005],

〈
qs
ms

∇v · ([δE + v × δB] δNs)

〉
∼ ∇v ·

[
− (Afs) +

1

2
∇v ·

(←→
D fs

)]
, (1.53)

where we have dropped the spatial dependence temporarily for notational conve-

nience. We note that the details of the derivation of Eq. (1.53) can be found in

Chapter 3 and Appendix A of Nicholson [1983], where the author performs the full

BBGKY (Bogoliubov-Born-Green-Kirkwood-Yvon) hierarchy to derive the equation

system of interest, including the Fokker–Planck equation.

Each individual Coulomb collision has a small effect on the trajectory of a par-

ticle in a plasma, so in analogy with Brownian motion in a gas, the cumulative effect

of many Coulomb collisions is a diffusive process in velocity space. The exact expres-

sions for the drag coefficient, A, and the diffusion tensor,
←→
D , in Eq. (1.53) require

more careful treatment, and a more in depth discussion and derivation [Rosenbluth

et al., 1957]. We choose, in this thesis, a simplified form for the drag and diffusion

coefficients,

A = u− v, (1.54)

←→
D =

2T

m

←→
I , (1.55)

where
←→
I is the identity tensor. These simplified drag and diffusion coefficients are
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related to the velocity moments of the particle distribution function,

u(x, t) =

∫
vf(x,v, t) dv∫
f(x,v, t) dv

, (1.56)

T (x, t)

m
=

1

3

∫
|v − u(x, t)|2f(x,v, t) dv∫

f(x,v, t) dv
, (1.57)

where the factor of 1/3 in the second equation follows from the fact that there are

three velocity dimensions.

You probably recognize Eq. (1.57) as the thermal velocity squared from Eq. (1.21).

We could use the thermal velocity squared5 as the diffusion coefficient, v2
th = T/m,

but we want to emphasize the connection between the drag and diffusion coefficients

and the velocity moments of the particle distribution function, so we will switch no-

tation and define the diffusion coefficient with respect to the temperature. While

these expressions for the drag and diffusion coefficients may appear unintuitive at

first glance, there is a rich history for their use as a lowest order approximation to

the Fokker-Planck behavior we expect the plasma to have due to Coloumb collisions.

The “full” Fokker–Planck operator [Rosenbluth et al., 1957] includes addi-

tional physics, most importantly that collisions should be velocity dependent and

that faster particles experience fewer collisions. However, the solution to the com-

plete Fokker–Planck operator is more computationally demanding. For the purposes

of the algorithms and physics presented in this thesis, the most important compo-

nent of modeling collisions is that collisions are a Fokker–Planck operator modeling

the drag and diffusion in velocity space particles should experience from the accu-

5Note that in this definition, Boltzmann’s constant has been absorbed into the temperature,
kBTs → Ts, so that the units of temperature are an energy, e.g. electron-volts or Joules.
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mulation of many small-angle collisions. We will continue to call this operator the

Fokker–Planck operator throughout this thesis, but with these drag and diffusion

coefficients, one can commonly find the names Lenard-Bernstein and Dougherty

attached [Lenard and Bernstein, 1958, Dougherty, 1964]. These particular drag

and diffusion coefficients will also appear particularly inspired after we explore the

properties of the kinetic equation in the next section, Section 1.6.

Let us now bring all the pieces together to describe the equation system in

totality. We begin with the Vlasov–Fokker–Planck equation for the evolution of the

particle distribution function for each species s in phase space,

∂fs(x,v, t)

∂t
+∇x · [vfs(x,v, t)] +∇v ·

{
qs
ms

[E(x, t) + v ×B(x, t)] fs(x,v, t)

}
= νs∇v ·

{
[v − us(x, t)]fs(x,v, t) +

Ts(x, t)

ms

∇vfs(x,v, t)

}
, (1.58)

where we have added the collision frequency νs, which will allow us to accurately

characterize the contribution of the collision operator to the dynamics in comparison

to the collisionless evolution from the macroscopic electromagnetic fields. In other

words, we can pick the collision frequency νs to be Λ−1 smaller than the electron

plasma frequency, ωpe, as it should be. This equation is coupled to the ensemble-

averaged Maxwell’s equations for the evolution of the macroscopic electromagnetic
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fields,

∂B(x, t)

∂t
+∇x × E(x, t) = 0, (1.59)

ε0µ0
∂E(x, t)

∂t
−∇x ×B(x, t) = −µ0J(x, t), (1.60)

∇x · E(x, t) =
%c(x, t)

ε0
, (1.61)

∇x ·B(x, t) = 0, (1.62)

where the current density J and charge density ρc are related to velocity moments

of the particle distribution function,

ρc(x, t) =
∑
s

qs

∫
fs(x,v, t) dv, (1.63)

J(x, t) =
∑
s

qs

∫
vfs(x,v, t) dv. (1.64)

Having closed the equation system with the coupling between the electro-

magnetic fields and the particle distribution function, the Vlasov–Maxwell–Fokker–

Planck system of equations is complete. This equation system forms the foundation

for the theory of weakly coupled plasmas and will be the principal focus for the re-

mainder of this thesis. The particle distribution function contains a wealth of data,

and we are strongly motivated by the veritable treasure trove of information the

particle distribution function holds. We thus want to make sure however we choose

to numerically integrate the Vlasov–Maxwell–Fokker–Planck system of equations,

we can still leverage the particle distribution function to understand the plasma’s

dynamics.

While we now have an equation system we can actually use the computer to
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solve, having simplified the N-body dynamics of the plasma to a probabilistic equa-

tion system in a six dimensional phase space, we must still be careful in our next

steps for how we discretize the Vlasov–Maxwell–Fokker-Planck system of equations.

In this next section, we will review many of the most important properties of the

Vlasov–Maxwell–Fokker-Planck system of equations. These properties of the con-

tinuous system of equations will help us ultimately make an informed decision in

both our choice, and implementation, of the numerical method for constructing the

discrete Vlasov–Maxwell–Fokker-Planck system of equations.

1.6 Properties of the Vlasov–Maxwell–Fokker–Planck

System of Equations

Before we begin this discussion of the properties of the continuous Vlasov–

Maxwell–Fokker–Planck (VM-FP) system of equations, we want to simplify some of

our notation for readability. Firstly, we will separate the collisionless and collisional

components of the system of equations,

∂f collisionlesss

∂t
= −∇x · (vfs)−∇v ·

[
qs
ms

(E + v ×B) fs

]
, (1.65)

∂f cs
∂t

= νs∇v ·
[
(v − us)fs +

Ts
ms

∇vfs

]
, (1.66)

∂fs
∂t

=
∂f collisionlesss

∂t
+
∂f cs
∂t

, (1.67)

and we will drop the notation for the explicit dependence on configuration space

and phase space. Importantly, this separation is for readability of the coming dis-

cussion of the properties of the VM-FP system of equations, and is not due to any
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explicit need to separate the collisionless and collisional components of the plasma’s

evolution. These contributions to the plasma’s dynamics are on equal footing, and

we could just as easily demonstrate the properties of VM-FP system of equations

holistically, but we feel this makes the subsequent discussion unnecessarily dense.

Suffice to say, if, for example both the collisionless and collisional components of the

VM-FP system of equations conserve the total energy in the system, we know that

together the whole system conserves the energy.

For brevity of notation, we will introduce the full phase space variable z =

(x,v) so that the collisionless component of the VM-FP system of equations can be

written as,

∂f collisionlesss

∂t
= −∇z · (αsfs), (1.68)

a conservation equation in the full phase space with phase space flux,

αs =

(
v,

qs
ms

[E + v ×B]

)
. (1.69)

We will also use the notation K to define the phase space domain that the distri-

bution function is defined on and Ω to define the configuration space domain that

velocity space moments and electromagnetic fields are defined on.

We have hinted at the connection between the bulk properties of the plasma

and the velocity moments of the particle distribution function. Both the compo-

nents of the drag and diffusion coefficients, Eqns. 1.56–1.57, and the charge density

and current density that couple the particle dynamics to the electromagnetic fields,

Eqns. 1.63–1.64, are defined with integrals over velocity space of the particle dis-
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tribution function. We should solidify this connection with a number of definitions

which will prove critical to our discussion of the properties of the continuous VM-FP

system of equations. We will focus on the first few velocity moments,

ρs = msns = ms

∫
fs dv, (1.70)

Ms = msnsus = ms

∫
vfs dv, (1.71)

Es =
3

2
nsTs +

1

2
msns|us|2 =

1

2
ms

∫
|v|2fs dv, (1.72)

i.e., the mass density, momentum density, and energy density of the plasma species

with label s.

To gain intuition for why these quantities can be defined this way, recall what

the particle distribution function is: the probability of finding a particle in a given

volume ∆x∆v. Thus, if we integrate the particle distribution in velocity space,

Eq. (1.70), we are computing the number density of the particles (the number of

particles per unit volume) at a given configuration space location, or the mass density

at a given configuration space location. For the higher velocity moments, we can

make similar connections. The velocity weighted moment, which includes a factor of

the particle mass, Eq. (1.71), tells us the amount of momentum per unit volume, the

momentum density, at a particular configuration space location. We might have also

guessed this physical interpretation for Eq. (1.71) by considering what statistics tells

us the first velocity moment is: the average velocity of the particles. This same logic

can be applied to Eq. (1.72); the second velocity moment, weighted by ms/2, gives

us the total energy density—internal, 3/2nsTs, plus kinetic, 1/2msns|us|2—of the

32



particles at a given configuration space location. And, in the language of statistics,

the second velocity moment is related to the spread, or standard deviation, of the

particle velocities.

In both velocity space moment cases, we should be careful not to make the

connection between our physical intuition and our knowledge of statistics superficial.

The average velocity is only u, not the full definition of the momentum density in

Eq. (1.71), and we have to account for this average velocity when computing the

real standard deviation, i.e.,

σ ∝

√∫
|v − us|2fs dv, (1.73)

where we have used the standard notation of the variable σ for the standard devi-

ation. It is not the energy density, Eq. (1.72), that is the variance of the particle

distribution function. Only the square root of the internal energy, 3/2nsTs, will en-

ter into the definition of the variance, because in subtracting off the average velocity

we are eliminating the kinetic energy, 1/2msns|us|2, component. If we recall our def-

initions for the various components of the drag and diffusion coefficients, Eq. (1.56)

and Eq. (1.57), we can make the parallels concrete, and drive home some of the

intuition for our choice of simplified drag and diffusion coefficients. The particle

distribution function is centered around some velocity u, the average velocity of the

particles, with some variance in velocity space quantifying the thermal spread of the

particles6,
√
Ts/ms. Thus, we naturally have links between our physical intuition

6In the diffusion coefficient Eq. (1.57), Ts/ms is the standard deviation squared. The variance
must have the same units as velocity and thus the actual spread in velocity space of the distribu-
tion function is

√
Ts/ms, the thermal velocity, again noting that we have absorbed Boltzmann’s

constant into our definition of the temperature, kBTs → Ts.
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for how much of the plasma’s mass, momentum, and energy is at a single physical

location in configuration space and the statistical nature of the particle distribution

function quantifying the probability of particles being located in a given volume

∆x∆v.

Let us now move on to properties of the continuous VM-FP system of equa-

tions. Since one set of properties we wish to quantify are the conservation relations

inherent to the system of equations, we will need to assume specific boundary con-

ditions for the distribution function and electromagnetic fields. In particular, we

will assume the distribution function f(x,v → ±∞, t) → 0 faster than the loga-

rithmic singularity ln(fs). Note that in this assumption, it naturally follows that

f(x,v → ±∞, t) → 0 faster than vn for finite n. Likewise, we will take configura-

tion space to be either periodic or some similar self-contained boundary condition,

such as a reflecting wall for E,B, and the distribution function at the edge of con-

figuration space.

We wish to be rigorous at this point and prove many of these properties,

but to avoid the discussion becoming overly cumbersome here in the introduction,

we prove all of the forthcoming properties of the VM-FP system of equations in

Appendix A. Here, we will only state the properties to foreshadow the work we

will do in the upcoming chapters on retaining properties of the continuous VM-

FP system of equations when we discretize and numerically integrate the equation

system. We will first focus on the collisionless component, Eq. (1.65), of the VM-FP

system of equations, often referred to as the Vlasov–Maxwell part. The Vlasov–

Maxwell system of equations has the following properties:
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Proposition 1. The Vlasov–Maxwell system conserves mass,

d

dt

(
ms

∫
K

fs dz

)
= 0. (1.74)

Proposition 2. The collisionless Vlasov–Maxwell system conserves the L2 norm of

the distribution function, i.e.,

d

dt

(
1

2

∫
K

f 2
s dz

)
= 0. (1.75)

Proposition 3. The collisionless Vlasov–Maxwell system conserves the entropy den-

sity S = −f ln(f) of the system7,

d

dt

[∫
K

−fs ln(fs) dz

]
= 0. (1.76)

Proposition 4. The Vlasov-Maxwell system conserves the total, particles plus fields,

momentum,

d

dt

(∫
Ω

∑
s

Ms + ε0E×B dx

)
= 0. (1.77)

The first term is the total particle momentum, and the second term is the momentum

carried by the electromagnetic fields.

Proposition 5. The Vlasov-Maxwell system conserves the total, particles plus fields,

7Note that it is the physicists’ convention to include a minus sign in the definition of the
entropy, thus making the entropy a non-decreasing quantity and the Maxwellian the maximum
entropy state. The minus sign could be dropped, as is often done in the theory of hyperbolic
conservation laws, and then the entropy would be a non-increasing quantity and the Maxwellian
would minimize the entropy. For a discussion of the Maxwellian velocity distribution as the entropy
maximizing particle distribution function, see Proposition 9 and Corollary 1.
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energy,

d

dt

(∫
Ω

∑
s

Es +
ε0
2
|E|2 +

1

2µ0

|B|2 dx

)
= 0. (1.78)

The first term is the total particle energy, and the second two terms are the energy

contained in the electromagnetic fields.

So, the collisionless Vlasov–Maxwell system of equations conserves mass, to-

tal momentum, and total energy, and additionally the entropy of the particles is

unchanged by the collisionless component of the VM-FP system of equations. The

latter property of entropy conservation in the collisionless system naturally leads us

to a discussion of collisions. We alluded to the effect collisions would have on the

thermodynamics of the plasma with Bogoliubov’s timescale hierarchy in Section 1.5.

We will now make the connection concrete with a discussion of the properties of the

Fokker-Planck collision operator, Eq. (1.66). We first focus on the conservation prop-

erties of the Fokker-Planck collision operator, and then we will discuss the effect of

the collision operator on the thermodynamics of the system. As with our discussion

of the collisionless Vlasov-Maxwell system of equations, the proofs for the properties

of the continuous Fokker–Planck collision operator can be found in Appendix A.

Proposition 6. The Fokker–Planck equation conserves mass,

d

dt

(
ms

∫
K

f cs dz

)
= 0. (1.79)

Proposition 7. The Fokker–Planck equation conserves the particle momentum,

d

dt

(∫
K

msvf
c
s dz

)
= 0. (1.80)
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Proposition 8. The Fokker–Planck equation conserves the particle energy,

d

dt

(∫
K

1

2
ms|v|2f cs dz

)
= 0. (1.81)

Proposition 9. The Fokker–Planck equation leads to a non-decreasing entropy den-

sity, S = −f ln(f), of the system,

d

dt

[∫
K

−f cs ln(f cs ) dz

]
≥ 0. (1.82)

Thus, the Vlasov–Maxwell–Fokker–Planck system of equations satisfies the Second

Law of Thermodynamics, ∆S ≥ 0.

Corollary 1. The maximum entropy solution to the Fokker–Planck collision oper-

ator is attained by the Maxwellian velocity distribution,

fs = ns

(
ms

2πTs

) 3
2

exp

(
−ms

|v − us|2

2Ts

)
. (1.83)

Thus, the Vlasov–Maxwell–Fokker–Planck system of equations satisfies Boltzmann’s

H-theorem, and a plasma in local thermodynamic equilibrium is described by the

Maxwellian velocity distribution.

So, the Fokker–Planck component of the VM-FP system of equations also

conserves mass, momentum, and energy, so that the complete equation system pos-

sesses these properties. And the Fokker–Planck component is a critical piece of the

evolution of the thermodynamics of the plasma, governing both entropy production

and providing us the form of the distribution function which maximizes the entropy

and describes local thermodynamic equilibrium—see Appendix A for further dis-

cussions of the connection between the Maxwellian velocity distribution and local

37



thermodynamic equilibrium. We should reiterate that our discussion of the collision

operator in the VM-FP system of equations utilizes simplified drag and diffusion

coefficients [Lenard and Bernstein, 1958, Dougherty, 1964], Eqns. (1.56) and (1.57),

and that, while collisions in a plasma are well approximated by a Fokker–Planck op-

erator, the real drag and diffusion coefficients are more complex [Rosenbluth et al.,

1957]. Nonetheless, this equation system contains all the ingredients required to

characterize a weakly coupled plasma, a plasma whose collective motions dominate

over individual particle-particle interactions. This equation system is simultaneously

more computationally tractable than integrating all the particle trajectories, while

also still containing the properties our physical intuition tells us the plasma should

have despite this perspective shift to a probabilistic picture from the deterministic

picture of individual particle motions.

This discussion naturally leads us into the next section. We have presented an

equation system for modeling a myriad of plasma systems, relevant everywhere from

laboratories, to the heliosphere, to astrophysical systems such as the interstellar and

intracluster medium. We want to now utilize the computer to understand the dy-

namics of weakly coupled plasmas. But just because we have made the problem

of simulating plasma dynamics computationally tractable, shifting our perspective

from integrating every single particle’s equations of motion to focusing on the col-

lective behavior we know to be of critical importance, does not imply we have made

the problem easy. There is a rich history in tackling the numerical integration of

the Vlasov–Maxwell–Fokker–Planck system of equations, and it is worth reviewing

this history to motivate the novel approach derived and implemented in this thesis.
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1.7 A Brief History of Kinetic Numerical Methods

and the Objectives of This Thesis

We restate here, in its entirety, the VM-FP, or Vlasov–Maxwell–Fokker–Planck,

system of equations,

∂fs
∂t

= −∇z · (αsfs) + νs∇v ·
[
(v − us)fs +

Ts
ms

∇vfs

]
,

∂B

∂t
+∇x × E = 0, ε0µ0

∂E

∂t
−∇x ×B = −µ0J,

∇x · E =
%c
ε0
, ∇x ·B = 0,

where,

αs =

(
v,

qs
ms

[E + v ×B]

)
,

us =

∫
vfs dv∫
fs dv

,
Ts
ms

=
1

3

∫
|v − us|2fs dv∫

fs dv
,

ρc =
∑
s

qs

∫
fs dv, J =

∑
s

qs

∫
vfs dv,

define the phase space flux, flow and temperature per mass, and charge density and

current density, which close the system of equations and couple the electromagnetic

fields to the motion of the particles. This equation system provides an alternative,

ultimately more useful, perspective on the evolution of the plasma by shifting from

a purely deterministic picture to a probabilistic picture; we track the evolution of

the particle distribution function for the probability of finding particles in a phase

space volume ∆x∆v instead of every individual particle in the plasma.

Given the discussion in Section 1.6, we would like however we ultimately dis-
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cretize the VM-FP system of equations to retain some of these properties of the

continuous system of equations. But, we also want to weigh the computational fea-

sibility of our approach. The VM-FP system of equations involves the solution of a

high dimensional, up to six dimensions plus time, partial differential equation, and

this presents its own challenges numerically.

Because of the high dimensionality of the Vlasov–Fokker–Planck equation for

the dynamics of the particle distribution function, the most common numerical tech-

niques historically have been Monte Carlo methods, principally the particle-in-cell

(PIC) method [Dawson, 1962, Langdon and Birdsall, 1970, Dawson, 1983, Birdsall

and Langdon, 1990]. This approach attempts to alleviate the computational chal-

lenge in integrating the Vlasov–Fokker–Planck equation in the six dimensional phase

space by discretizing the particle distribution function as a collection of “macropar-

ticles,” i.e., particles of finite size [see, e.g, Lapenta, 2012, and references therein].

Maxwell’s equations are then discretized on a grid, and the charge and current den-

sity of the “macroparticles” are deposited on the grid for the coupling. By making

the particles have finite size, the scheme essentially smooths over the spatial scales

of the particle size, eliminating discrete particle effects. Thus, despite the numerical

method involving the integration of particle trajectories, the PIC method really is

a discretization of the VM-FP system of equations. There are additional subtleties

for the Fokker–Planck component of the equation system since the collisional com-

ponent of the dynamics occurs inside the macroparticle’s finite size; thus, numerical,

unphysical, collisions can arise [Hockney, 1968, Okuda and Birdsall, 1970, Okuda,

1972, Hockney, 1971, Langdon, 1979, Krommes, 2007], and the implementation of
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a physical collision operator requires modifications to the underlying particle-in-cell

algorithm [Lemons et al., 2009].

As a consequence of discretizing the particle distribution function as a collec-

tion of macroparticles, the numerical method only requires a configuration space

grid—the velocity space discretization is implicit in the sampling of the particles to

compute quantities such as the charge and current density. Thus, the dimensional-

ity of the problem is reduced from six to three, with the freedom to use as many,

or as few, particles per configuration space grid cell as deemed necessary to resolve

the kinetic plasma physics encompassed in the VM-FP system of equations. This

reduction in dimensionality, combined with modern algorithms for particle-sorting

and sampling, allows one to construct efficient schemes for the complete particle-in-

cell algorithm which perform well on the largest supercomputers in the world [e.g.,

Fonseca et al., 2008, Bowers et al., 2009, Germaschewski et al., 2016].

Discretizing the particle distribution function as a collection of macroparticles

has its disadvantages though, chief among them the particle noise that is introduced

via the particle’s finite size.This pollution of the solution of the VM-FP system

of equations is a real travesty, as the particle distribution function is such a rich

tapestry of the underlying physics of the weakly coupled plasma. One can always

mollify this concern by increasing the number of particles in the simulation, but the

counting noise decreases like 1/
√
N , where N is the number of particles per grid

cell.

In addition to degrading the quality of the solution and potentially making the

ultimate analysis more challenging, the particle noise inherent to the PIC algorithm
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can have more severe consequences, potentially giving incorrect or deceptive answers

in situations requiring high signal to noise ratios. For example, Camporeale et al.

[2016] have demonstrated that a large number of particles-per-cell is required to

correctly identify wave-particle resonances and compare well with linear theory.

There are means of reducing noise in PIC methods, such as the delta-f PIC method

[Parker and Lee, 1993, Hu and Krommes, 1994, Denton and Kotschenreuther, 1995,

Belova et al., 1997, Cheng et al., 2013a, Kunz et al., 2014], but noise mitigation

techniques like the delta-f PIC method can break down if the distribution function

deviates significantly from its initial value. Further noise mitigation techniques,

such as very high order particle shapes, e.g., particle-in-wavelets [Nguyen van yen

et al., 2010, 2011] and von Mises distributions based on Kernel Density Estimation

theory [Wu and Qin, 2018], and time-dependent deformable shape functions for

the particles [Coppa et al., 1996, Abel et al., 2012, Hahn and Angulo, 2015, Kates-

Harbeck et al., 2016] are active areas of research. However, these more sophisticated

particle shape functions add significant computational complexity to the algorithm.

Thus, preliminary application of some of these techniques is done in post-processing

to assist in analysis [Totorica et al., 2018], and not in situ during a simulation, so

any issues due to noise that arise during the course of a simulation are not mitigated.

We thus have strong motivation, both from a desire to eliminate noise and a

desire to fully leverage the particle distribution function in our analyses, to directly

discretize the VM-FP system of equations on a phase space grid. But as we have

said before, direct discretization of a six dimensional, plus time, partial differential

equation, presents its own challenges. To mitigate the cost, much of the current
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body of research on direct discretization of the VM-FP system of equations has

focused on the hybrid approximation [Valentini et al., 2007, Valentini et al., 2010,

Greco et al., 2012, Perrone et al., 2012, Servidio et al., 2014, Valentini et al., 2016,

Kempf, 2012, Kempf et al., 2013, Pokhotelov et al., 2013, Palmroth et al., 2018].

In this approximation, proton species are treated with the Vlasov–Maxwell system

of equations, with potentially a Fokker–Planck equation for the ion-ion collisions

[Pezzi et al., 2015, 2019], while the electrons are taken to be a massless, isothermal

background. This approximation still requires the solution of the VM-FP system of

equations on a high dimensional phase space grid, but the challenges in multi-scale

modeling of a plasma, from the electron to the proton scales to the macroscopic

dynamics, are alleviated. There are exceptions in recent years [Vencels et al., 2016,

Wettervik et al., 2017, Roytershteyn and Delzanno, 2018, Roytershteyn et al., 2019],

but the direct discretization approach for the full VM-FP system of equations for the

solution of a multi-species weakly coupled plasma, including the effects of collisions,

is not common.

It is the objective of this thesis to outline, derive, and implement a novel

scheme for the numerical integration of the multi-species VM-FP system of equa-

tions. Such a scheme should, as much as possible, respect the properties derived

in Section 1.6. But, in order for our scheme to accomplish this goal, we must be

careful to respect the fact that many of these properties, most especially the con-

servation properties, are implicit to the equation system being evolved. In other

words, we must, for example, encode the fact that the second velocity space mo-

ment is a conserved quantity in our evolution of the particle distribution function.
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Especially for Fokker–Planck collision operators, such schemes are an active area

of research [Taitano et al., 2015, Hirvijoki and Adams, 2017, Hirvijoki et al., 2018],

but the task of a robust, accurate, conservative, and cost effective numerical method

for the full VM-FP system of equations is a tall task. We have tackled this task in

this thesis, and applied the resulting algorithm to a wide variety of plasma systems

to solve outstanding questions about the energization mechanisms in fundamen-

tal plasma processes and the nonlinear dynamics of saturated plasma instabilities

using the pristine, noise-free, distribution function granted to us by a continuum

discretization of the VM-FP system of equations.

As an example of the power of this approach of direct discretization, we show

in Figure 1.1 the results of a simulation we will discuss in Chapter 5. Figure 1.1

shows the proton distribution function undergoing energization due to a collision-

less shock, a shock wave which forms on scales smaller than the particle’s mean-free

path. The conversion of energy in collisionless shocks, from the kinetic energy of the

incoming supersonic flow to other forms of energy, e.g., thermal energy, thus occurs

due to kinetic processes such as wave-particle interactions and small-scale instabili-

ties rather than inter-particle collisions. We will study this system in greater detail

when we discuss analysis techniques for extracting data from such a pristine repre-

sentation of the distribution function. Suffice to say, the quality of the distribution

function from the continuum approach discussed in this thesis is made manifest by

inspection of the structure the algorithm can resolve on a phase space grid.

Having motivated our wish to directly discretize the VM-FP system of equa-

tions, and briefly demonstrated the capability to resolve detailed particle distribu-
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Figure 1.1: The electromagnetic fields (top plot) and proton distribution function
due to a collisionless shock, where the kinetic energy of an incoming supersonic
flow is dissipated and converted into other forms of energy, e.g., thermal energy, on
scales smaller than the particle mean-free path, such as the proton inertial length
dp = c/ωpp. We plot the reduced proton distribution function in x−vx (second from
top plot) and slices of the proton distribution function in vx − vy (bottom plots)
at the specified lines in the x − vx plots, x = 19.5, 20.5, 21.5, and 22.5 dp. We will
discuss this structure and the specific energization mechanisms of this collisionless
shock in Chapter 5, but for now we draw attention to the quality of the solution
from a continuum representation of the distribution function using a phase space
grid. By directly discretizing the VM-FP system of equations in phase space, we
can represent fine-scale structure in velocity space which we can leverage to dive in
to the details of the energization of the protons.
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tion function structure in kinetic plasma processes like collisionless shocks with this

approach, we now discuss the organization of the rest of the thesis. We will de-

scribe the numerical method, the discontinuous Galerkin finite element method, in

Chapter 2. Chapter 2 will form a complete mathematical description of our discrete

system, including what properties the discrete VM-FP system of equations retains

compared to the continuous VM-FP system of equations, and the stability prop-

erties of the algorithm. We will then move to a discussion of the implementation

of the algorithm in Chapter 3. This discussion will detail two of the major break-

throughs in this thesis: the requirement that the algorithm be alias-free so it retains

the properties of the discrete scheme, most especially the stability and conservation

properties, and the specific choice of an orthonormal, modal basis expansion in the

discontinuous Galerkin method to optimize the computational complexity of the

algorithm.

Chapter 4 will numerically demonstrate the accuracy and robustness of the

implemented scheme. We will show via a variety of numerical tests the proven

properties of the discrete scheme, and compare a number of numerical experiements

to known analytic solutions. Chapter 5 will be a tour-de-force showcase of the

power of the implemented scheme. With access to a high fidelity representation

of the particle distribution function from our direct discretization, we will examine

energization mechanisms in fundamental plasma processes directly in phase space,

such as the collisionless shock shown in Figure 1.1, and conclude with an application

comparison between the particle-in-cell method and our continuum approach that

shows explicitly where particle noise can pollute the simulation of plasma kinetic
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systems.

The scheme is implemented within the Gkeyll framework. Gkeyll is a general

purpose, open-source, simulation framework with support for five- [Hakim et al.,

2006] and ten-moment multi-fluid [Hakim, 2008, Wang et al., 2015, Ng et al., 2015,

Wang et al., 2019], full-f gyrokinetic [Shi et al., 2015, Shi, 2017, Mandell et al., 2020],

and Vlasov–Maxwell–Fokker–Planck systems [Juno et al., 2018, Hakim et al., 2019,

Hakim and Juno, 2020]. For the purposes of reproducibility, the source code for

Gkeyll is available through GitHub8, and all input files for the simulations run in

this thesis are available through a GitHub repository9, with the changesets used to

produce the data documented in the input file. Additional documentation can be

found through the Gkeyll documentation website10.

8https://github.com/ammarhakim/gkyl
9https://github.com/ammarhakim/gkyl-paper-inp

10https://gkyl.readthedocs.io/en/latest/
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Some of the material in this

chapter has been adapted from

Juno et al. [2018], Hakim,

Francisquez, Juno, and

Hammett [2019], and Hakim

and Juno [2020].

Chapter 2: The Discontinuous Galerkin Finite Element Method

The method we will employ to discretize the Vlasov–Maxwell–Fokker–Planck

system of equations is called the discontinuous Galerkin finite element method, or

DG for short. DG was first introduced to study neutron transport [Reed and Hill,

1973] and became an active area of study in numerical methods after the general

formulation of the algorithm by Cockburn and Shu [1998b, 2001]. DG has become

an enticing method for a variety of problems, from computational fluid dynamics

to seismology and wave equations[see, e.g., Hesthaven and Warburton, 2007, and

references therein], because DG methods are constructed to combine advantages of

both finite element methods and finite volume methods. By combining the power

of the finite element method, principally the high order accuracy and flexibility in

the chosen basis expansion, with the benefits of a finite volume method, such as
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locality of data and the ability to construct conservative discretizations, one can

design robust, physically-motivated, numerical methods for the chosen equation or

equation system of interest. In fact, DG has become a particularly active area of

research in recent years for kinetic equations such as the Vlasov–Maxwell–Fokker–

Planck system of equations, and its subsidiaries Vlasov–Poisson and Vlasov–Ampere

[Cheng et al., 2011, 2013b, 2014a,b]

It is worth taking a moment to give some intuition for the construction of

the DG method in a more general context before diving in to our discretization of

the VM-FP system of equations. We will define what we mean by a “Galerkin”

method, and then apply DG to a simple hyperbolic partial differential equation. In

doing so, we will be able to connect with our knowledge of other numerical methods,

and see why DG is often discussed as a hybrid finite volume-finite element method,

combining the strengths of both numerical methods into a singular, powerful, means

of discretizing a partial differential equation.

2.1 L2 Minimization of the Error

The two essential ingredients of a Galerkin method are the definition of some

finite dimensional space of functions and a definition of errors. The former allows

us to connect the function space the continuous equation, or equation system, lives

in, to a discrete representation of the solution to our equation or equation system.

The latter gives us a unique way of finding the discrete representation, as we would

like to minimize the errors of our discrete representation of our solution.
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Consider an interval [−1, 1] and the function space of polynomials of order p,

Pp. The particular space of polynomials will form a complete basis on our interval1.

On this interval, we will employ the inner product,

〈f, g〉L2 =

∫ 1

−1

f(x)g(x) dx, (2.1)

with the following norm,

〈f, f〉L2 =

∫ 1

−1

f 2(x) dx, (2.2)

the L2 norm.

In general, we want to solve problems of the form

∂f(x, t)

∂t
= G[f ], (2.3)

where G[f ] is some operator for f . G[f ] may be a very general operator, such

as in the VM-FP system of equations wherein we have first order terms, e.g., the

collisionless advection in phase space, and second order terms, e.g., the collision

operator. In seeking an approximation of our solution f(x, t), we will expand f(x, t)

in our basis set,

f(x, t) ≈ fh(x, t) ..=
N∑
k=1

fk(t)φk(x), (2.4)

where φk(x) ∈ Pp, for k = 1, . . . , N . Thus, the problem of interest is approximated

1A good example of such a complete basis would be the Legendre polynomials up to some order
n, Pn(x).
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as

N∑
k=1

dfk(t)

dt
φk(x) = G[fh], (2.5)

and we need to determine the time evolution of the coefficients fk(t). Note that we

have changed notation from ∂/∂t to d/dt to emphasize that the coefficients fk are

only a function of time.

We defined a norm in Eq. (2.2), so let us minimize the error with respect to

this norm,

EL2 =

∫ 1

−1

(
N∑
k=1

dfk(t)

dt
φk(x)−G[fh]

)2

dx, (2.6)

by taking the derivative of the error with respect to each time-dependent coefficient,

∂EL2

∂f ′`
= 2

∫ 1

−1

φ`(x)

(
N∑
k=1

dfk(t)

dt
φk(x)−G[fh]

)
dx. (2.7)

Here, we have used the shorthand f ′` = df`/dt. To minimize the error with respect

to the time derivative of the coefficients, we set Eq. (2.7) equal to 0,

∫ 1

−1

∑
k

dfk(t)

dt
φk(x)φ`(x) dx =

∫ 1

−1

G[fh]φ`(x) dx. (2.8)

To give a bit more insight into how one could then evaluate this expression to find

each of the time dependent coefficients, consider what this expression reduces to if

the polynomials φk(x) ∈ Pp for k = 1, . . . , N are an orthonormal basis set such that

∫ 1

−1

φk(x)φ`(x) dx = δk`, (2.9)

where δk` = 1 if k = ` and zero otherwise. Then our equation for the time evolution
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of the coefficients would reduce to

df`
dt

=

∫ 1

−1

G[fh]φ`(x) dx, (2.10)

for ` = 1, . . . , N , and we would then have a system of ordinary differential equations

to solve for each of df`/dt.

The discussion up to this point has been somewhat abstract, so we would like

to make this concrete in two ways. First, let us perform the L2 minimization of

the error on a non-polynomial function. In doing so, we would like to show what

it means to take a function in some infinite dimensional space, since it would take

an infinite number of polynomials to represent this function normally, and project

it to a finite dimensional subspace.

We plot in Figure 2.1 the projection of the function f(x) = x4 +sin(5x) onto a

number of different basis expansions. Here, we have a further generalization of the

previous discussion for the Galerkin method, where the domain of [−1, 1] is further

subdivided into non-overlapping cells, and the projection is done within each cell.

As we move to higher and higher polynomial order, we can see the reduction, even

just visually, of the error between the exact solution and our discrete representation

of the solution. This reduction in the error with higher polynomial order is our first

evidence of the connection between the discontinuous Galerkin method and finite

element methods, where higher order basis sets correspond to higher accuracy.

The second way we will make our discussion of the Galerkin minimization of

the L2 error less abstract is by considering the full discretization of the constant
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Figure 2.1: The projection of f(x) = x4 + sin(5x) onto piecewise constant (left),
piecewise linear (middle), and piecewise quadratice (right) functions. The domain
from [−1, 1] is divided into non-overlapping cells and the projection is done within
each cell to minimize the L2 error. We begin to see some of the connection between
the discontinuous Galerkin method and finite element methods, as moving to higher
polynomial order manifestly reduces the L2 error between the exact solution and
projected solution.

advection equation in one dimension,

∂f(x, t)

∂t
+ λ

∂f(x, t)

∂x
= 0. (2.11)

Define the domain of the advection equation as Ω, which we will divide into non-

overlapping cells Ij ∈ Ωj, for j = 1, ..., Nj. Plugging −λ∂f/∂x into Eq. (2.8) for the

operator G[fh], and integrating by parts we obtain

∫
Ij

dfh,j
dt

φ` dx = −λφ`,j+1/2F̂j+1/2 + λφ`,j−1/2F̂j−1/2 + λ

∫
Ij

dφ`
dx

fh,j dx, (2.12)

where the subscripts j ± 1/2 define the right, +, and left, −, sides of the cell

respectively, and fh,j is the projection of the solution in each cell Ij as defined by

Eq. (2.4). Note that the solution in each cell requires a minimization of the error for

every φ`, ` = 1, . . . , N , for however many basis functions in each cell one has, and

further that the full solution is a direct sum over all cells Ij ∈ Ωj,

fh(x, t) =

Nj⊕
j=1

fh,j(x, t). (2.13)
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Since we have a solution in each cell Ij, the integration by parts gives us a means

to connect the solution within each cell to its neighbors, but we need to prescribe

the numerical flux function, F̂j±1/2. A natural choice for the constant advection

equation is known as upwind fluxes,

F̂ (f+
h , f

−
h ) =


f−h if λ > 0

f+
h if λ < 0,

(2.14)

where the superscript plus-minus is the solution evaluated just inside, −, or just

outside +, the cell interface—see Figure 2.2 for a visualization of this notation.

Figure 2.2: Annotated piecewise linear representation to make our notation more
clear, most especially superscript plus-minus, where the solution is evaluated just
inside, −, or just outside +, the cell interface.

To make further progress, let us consider two cases. The first case is one in
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which our basis expansion is just the set of piecewise constant basis functions,

φ = {1}. (2.15)

Substituting the piecewise constant basis function into Eq. (2.12), we obtain,

dfj
dt

∆x = −λ(fj − fj−1), (2.16)

since the derivative of a constant function is 0, and the integral of the left hand side

in Eq. (2.12) when the basis function is a constant is the volume of the cell, ∆x.

We can immediately recognize this formula as a first order finite volume method, or

an upwind finite difference method, if you prefer. We can then discretize the time

derivative with a forward Euler method to obtain

fn+1
j = fnj −

λ∆t

∆x
(fj − fj−1), (2.17)

and should we choose, we could combine multiple forward Euler steps into a multi-

stage method, such as a Runge–Kutta method.

The second case is one in which our basis functions are a piecewise linear

expansion,

φ1,2 = {1, 2(x− xj)/∆x}, (2.18)

where xj is the cell center value of cell Ij. We can obtain update formulas for

a forward Euler step for the constant and linear coefficients when employing the
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piecewise linear basis,

fn+1
1,j = fn1,j −

λ∆t

∆x

(
F̂j+1/2 − F̂j−1/2

)
, (2.19)

fn+1
2,j = fn2,j − 3

λ∆t

∆x

(
F̂j+1/2 + F̂j−1/2

)
+ 6

λ∆t

∆x
fn1,j, (2.20)

which again, can be combined into a general multi-stage time-stepping method.

Note that the numerical flux function F̂j±1/2 is still given by Eq. (2.14), but due

to the piecewise linear representation within a cell, we will need to evaluate the

numerical flux function at the corresponding cell interfaces when implementing the

method.

So the switch from piecewise constant basis functions, which produced a stan-

dard first order finite volume method, to piecewise linear basis functions, led to more

general update formulas. As we might expect, the accuracy of the method has also

improved as a result of switching to a higher order set of basis functions. To see

this, we plot in Figure 2.3 the result of advecting a Gaussian pulse on a domain [0, 1]

with Nj = 32 (32 cells) and periodic boundary conditions one full period. The size

of the time-step is chosen to satisfy stability constraints for a forward Euler time-

step. We expect that after one period, the initial condition and the final solution

should be identical, since the exact solution of the linear advection equation is sim-

ply f0(x− λt, t), where f0 is the initial condition at t = 0. However, the first order

finite volume method has significant numerical diffusion, leading to a less accurate

representation of the solution than the piecewise linear basis function solution.

Based on the results of this numerical experiment, we now want to more

strongly connect the discontinuous Galerkin method to finite volume methods. It
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Figure 2.3: Comparison of advection of a Gaussian pulse one period with a piecewise
constant (left) and piecewise linear (right) basis function expansion and upwind
fluxes. While the piecewise constant solution suffers from numerical diffusion which
leads to poor agreement between the analytic solution (red) and the numerical
solution (black), the piecewise linear solution agrees to a reasonably high degree
with the expected result.

is natural to think of DG as a generalization of finite volume methods. In finite

volume methods, one only tracks the evolution of a single quantity in each cell, the

cell average, just like with our piecewise constant representation. But, we now see

there is no reason to restrict ourselves. We can evolve higher “moments,” coefficients

corresponding to a higher order representation of our solution, within a cell, and in

doing so, obtain a higher accuracy numerical method.

A useful analogy is to connect DG with higher order finite volume methods

such as MUSCL schemes [van Leer, 1979] or the piecewise parabolic method [Colella

and Woodward, 1984]. In these higher order finite volume methods, one is still only

tracking the evolution of the cell average, but a reconstruction of the solution is done

at every time-step to increase the order of accuracy of the scheme, e.g., a linear or

quadratic reconstruction of the solution. In the DG method, instead of generating

a reconstruction, we are explicitly evolving something like a reconstruction—we are
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evolving the higher order representation of the solution inside the cell! With new-

found intuition about how the DG method works, let us now turn to the equation

system of interest in this thesis, the Vlasov–Maxwell–Fokker–Planck system of equa-

tions. We will proceed in stages just as with the properties of the VM-FP system of

equations in Chapter 1, first focusing on the collisionless component of the equation

system, the Vlasov–Maxwell system of equations.

2.2 The Semi-Discrete Vlasov–Maxwell System of Equations

We seek a discretization of the Vlasov–Maxwell system of equations using

the discontinuous Galerkin method in all of phase space. To discretize the Vlasov

equation, we introduce a phase space mesh T with cells Kj ∈ T , j = 1, . . . , N , and

a piecewise polynomial approximation space for the distribution function, fs(z, t),

Vph = {w : w|Kj
∈ Pp,∀Kj ∈ T }, (2.21)

where Pp is some space of polynomials of order p. We then seek fh ∈ Vph such that,

for all Kj ∈ T ,

∫
Kj

w
∂fh
∂t

dz +

∮
∂Kj

w−n · F̂ dS −
∫
Kj

∇zw ·αhfh dz = 0, (2.22)

for all test functions w ∈ Vph. Eq. (2.22) is commonly referred to as the discrete-

weak form of the Vlasov equation. In the derivation of the discrete-weak form of

the Vlasov equation, we have used integration by parts on the operator for the flux

in phase space, thus producing the surface and volume integrals in Eq. (2.22).

The pieces of the discrete-weak form of the Vlasov equation again evoke the
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comparison to finite element and finite volume methods. The third term, the volume

integral, calls to mind the integrals over a cell one performs in a finite element

method, while the second term, the surface integral, involves the prescription of a

numerical flux function, F̂, exactly as in a finite volume method. The subscript h

indicates the discrete solution, the notation w− (w+) indicates that the function is

evaluated just inside (outside) the location on the surface ∂Kj, and n is an outward

unit vector on the surface of the cell Kj.

The discrete distribution function is represented as

fh(t, z) =
∑
i

fi(t)wi(z), (2.23)

where wi(z) are a set of polynomials chosen such that they lie in the aforementioned

space of polynomials Pp, i.e., we are employing a Galerkin method where the test

functions and basis functions are one and the same. We will avoid specifying the

exact polynomial space Pp for now, as the specific form of the polynomials is not

a necessary component of the mathematical formulation of the algorithm. All that

we will require in our mathematical formulation is that the basis set is made up of

polynomials.

There are many choices for the numerical flux function, F̂, which can be em-

ployed for the Vlasov equation. We will pick the numerical flux function most

importantly to be a Godunov flux,

∮
∂Kj

w−n · F̂ dS = −
∮
∂Kj

w+n · F̂ dS. (2.24)

In other words, the flux into the cell Kj along some surface ∂Kj is equal and opposite
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in sign to the flux out of its neighbor cell along the shared interface. This property

likely reads like a sensible and obvious property one would desire of a numerical flux

function, as it means that the flux is conserved across the interface, i.e., there is

no creation or destruction of the distribution function as it advects in phase space.

Example Godunov fluxes include central fluxes,

n · F̂(α+
h f

+
h ,α

−
h f
−
h ) =

1

2
n ·
(
α+
h f

+
h + α−h f

−
h

)
, (2.25)

the local Lax-Friedrichs flux,

n · F̂(α+
h f

+
h ,α

−
h f
−
h ) =

1

2
n ·
(
α+
h f

+
h + α−h f

−
h

)
− c

2
(f+ − f−), (2.26)

where c = max∂Kj
(|n ·α+

h |, |n ·α
−
h |), and the global Lax-Friedrichs flux2,

n · F̂(α+
h f

+
h ,α

−
h f
−
h ) =

1

2
n ·
(
α+
h f

+
h + α−h f

−
h

)
− τ

2
(f+ − f−), (2.27)

where τ = maxT |n · αh|. Note the difference between the local and global Lax-

Friedrichs fluxes, where in the local Lax-Friedrichs flux, Eq. (2.26), the max of the

phase space flux is taken along the specific surface ∂Kj, while for the global Lax-

Friedrichs flux, Eq. (2.27), the max of the phase space flux is taken over the entire

domain T . Both Eqns. (2.26) and (2.27) are defined with the motivation to penalize

the size of the jumps in the flux so that the discontinuities can be controlled in some

fashion. We will see in Proposition 11 that this penalization naturally leads to some

numerical diffusion, thus why we refer to the penalty term as controlling the size of

the jumps in the flux.

2Note that global Lax-Friedrichs flux applies to a general class of numerical flux functions in
which the parameter, τ , is a globally calculated quantity.
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For the DG discretization of Maxwell’s equations, we require the restriction of

the phase-space mesh, T , to configuration space by TΩ. The cells in configuration

space are denoted by Ωj ∈ TΩ, for i = 1, . . . , NΩ, where NΩ are the number of

configuration space cells, and we introduce the solution space

X p
h = {ϕ : ϕ|Ωj

∈ Pp,∀Ωj ∈ TΩ}. (2.28)

These basis, and test, functions are defined only on the configuration space domain

Ω and thus contain only dependence on the configuration space variable x. As with

the discrete distribution function, we seek, Eh,Bh ∈ X p
h such that, for all Ωj ∈ TΩ,

∫
Ωj

ϕ
∂Bh

∂t
dx +

∮
∂Ωj

ds× (ϕ−Êh)−
∫

Ωj

∇xϕ× Eh dx = 0, (2.29)

ε0µ0

∫
Ωj

ϕ
∂Eh

∂t
dx−

∮
∂Ωj

ds× (ϕ−B̂h) +

∫
Ωj

∇xϕ×Bh dx = −µ0

∫
Ωj

ϕJh dx.

(2.30)

Note in the derivation of Eqns. (2.29–2.30), we needed to evaluate volume integrals

which include terms of the form ϕ∇x×Eh, for ϕ ∈ X p
h and likewise for the magnetic

field, Bh. We have made use of the fact that

∫
Ωj

ϕ∇x × Eh︸ ︷︷ ︸
∇x×(ϕEh)−∇xϕ×Eh

dx. (2.31)

Gauss’ law can then be used to convert one volume integral into a surface integral

∫
Ωj

∇x × (ϕEh) dx =

∮
∂Ωj

ds× (ϕEh), (2.32)

where ds is the (vector) area-element that points in the direction of the outward

normal to the configuration space cell Ωj.
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As with the discrete-weak form for the Vlasov equation, Eq. (2.22), we require

a prescription for the numerical flux functions Êh, B̂h. We consider two methods

of obtaining the cell interface fields needed in the discrete weak-form of Maxwell’s

equations: central fluxes and upwind fluxes. As we will see later, both numerical

flux functions have advantages and disadvantages, particularly in terms of the con-

servation properties the discrete system retains from the continuous system. For

central fluxes, we use averages of values just across the interface, i.e.,

Êh = JEK, (2.33)

B̂h = JBK, (2.34)

where J·K represents the averaging operator,

JgK ≡ (g+ + g−)/2, (2.35)

for any function g.

On the other hand, using upwind fluxes requires solving a Riemann problem in

a coordinate system local to that face. Consider a local coordinate system (s, τ 1, τ 2)

on the configuration space cell face, i.e., on ∂Ωj. Here, s is a unit vector normal to

∂Ωj, and τ 1 and τ 2 are tangent vectors such that τ 1 × τ 2 = s. Let (E1, E2, E3)

and (B1, B2, B3) be electric and magnetic fields in this coordinate system. Then,

assuming variations only along direction s, Maxwell’s equations reduce to ∂B1/∂t =

0, ∂E1/∂t = 0, and the following uncoupled set of two equations for the tangential
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field components,

∂B2

∂t
− ∂E3

∂x1

= 0;
∂E3

∂t
− c2∂B2

∂x1

= 0, (2.36)

and

∂B3

∂t
+
∂E2

∂x1

= 0;
∂E2

∂t
+ c2∂B3

∂x1

= 0. (2.37)

Multiplying the first of each pair by c and adding and subtracting from the second

of that pair we obtain a set of four uncoupled constant advection equations exactly

like the constant advection equation considered in Section 2.1,

∂

∂t
(E3 + cB2)− c ∂

∂x1

(E3 + cB2) = 0, (2.38)

∂

∂t
(E3 − cB2) + c

∂

∂x1

(E3 − cB2) = 0, (2.39)

and

∂

∂t
(E2 + cB3) + c

∂

∂x1

(E2 + cB3) = 0, (2.40)

∂

∂t
(E2 − cB3)− c ∂

∂x1

(E2 − cB3) = 0. (2.41)

Hence, the solution to the Riemann problem with initial conditions is

(E2, E3) = (E−2 , E
−
3 ); (B2, B3) = (B−2 , B

−
3 ), (2.42)

for x1 < 0, and

(E2, E3) = (E+
2 , E

+
3 ); (B2, B3) = (B+

2 , B
+
3 ), (2.43)
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for x1 > 0. At x1 = 0, the solution is

Ê3 + cB̂2 = E+
3 + cB+

2 , (2.44)

Ê3 − cB̂2 = E−3 − cB−2 , (2.45)

and

Ê2 + cB̂3 = E−2 + cB−3 , (2.46)

Ê2 − cB̂3 = E+
2 − cB+

3 . (2.47)

Rearranging these expressions shows that the upwind fields in the local face coordi-

nate system are

Ê2 = JE2K− c {B3} (2.48)

Ê3 = JE3K + c {B2} (2.49)

and

B̂2 = JB2K + {E3}/c (2.50)

B̂3 = JB3K− {E2}/c (2.51)

where {·} is the jump operator,

{g} ≡ (g+ − g−)/2 (2.52)

for any function g, and subscripts 2 and 3 denote the two directions tangent to

the surface normal. Note that we require the two directions tangent to the surface

normal since the surface integral involves a cross product for the discrete version
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of Maxwell’s equations, Eqns. (2.29)-(2.30). The solutions to the Riemann problem

given by Eqns. (2.48)-(2.51) are identical to those presented in previous studies of

Maxwell’s equations [Barbas and Velarde, 2015].

Eqns. (2.22) and (2.29)-(2.30) define the semi-discrete Vlasov–Maxwell system

of equations, i.e., a discretization in phase and configuration space, with the time

discretization not yet specified. Before proceeding to the properties of our semi-

discrete system, we note that the discretization of Maxwell’s equations given by

Eqns. (2.29) and (2.30) does not include the constraints given by Eqns. (1.61) and

(1.62), i.e., the divergence constraints in Maxwell’s equations, ∇x · E = ρc/ε0 and

∇x · B = 0. Thus, our algorithm may violate these constraints over the course of

the simulation. Where appropriate in Chapter 4 as part of the benchmarking of the

scheme, we will discuss how the violation of the divergence constraints in Maxwell’s

equations manifests.

2.3 Properties of the Semi-Discrete Vlasov–Maxwell

System of Equations

We proceed as we did with the continuous system, first considering whether

the discrete system conserves mass (or number) density, and then moving through

the subsequent conservation properties we studied for the continuous system in

Section 1.6. An important consideration for the discrete scheme, just like with the

continuous system, will be our boundary conditions in configuration and velocity

space. While we can employ similar boundary conditions in configuration space for

65



the discrete system as we did with the continuous system, i.e., periodic or some sort

of self-contained boundary like a reflecting wall, velocity space is slightly more subtle.

Since the continuous distribution function was defined on v ∈ [−∞,∞], we could

use “half-open” cells, where a grid cell in velocity space could span |v| > vmax, where

the absolute value encompasses both positive and negative values for the velocity of

the particles. However, we will instead employ a fixed boundary in velocity space,

v ∈ [vmin,vmax], and at the velocity space boundary employ zero-flux boundary

conditions,

n · F̂(x,vmax) = n · F̂(x,vmin) = 0. (2.53)

Note that Eq. (2.53) corresponds to a homogeneous Neumann boundary condition

in velocity space. This velocity space boundary condition, along with appropriate

boundary conditions in configuration space, will allow us to prove the following

properties for the discrete scheme.

Proposition 10. The discrete scheme conserves mass,

d

dt

∑
j

∫
Kj

msfh dz = 0. (2.54)

Proof. Choosing w = ms, a constant, in the discrete weak-form, Eq. (2.22), and

summing over all phase-space cells Kj,

∑
j

∫
Kj

ms
∂fh
∂t

dz +
∑
j

∮
∂Kj

msn · F̂ dS = 0, (2.55)

where the volume term vanishes since it involves the gradient of a constant function.

If the appropriate boundary conditions are chosen, i.e., zero-flux boundary condition
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in velocity space and periodic boundary conditions in configuration space, or a

similar self-contained boundary condition such as a reflecting wall, then the sum

over surface integrals is a telescopic sum and vanishes. This pairwise cancellation

of the surface integrals requires no special knowledge of the form of the numerical

flux function n · F̂ = n · F̂(α−h f
−
h ,α

+
h f

+
h ); we only require that the numerical flux

function is Godunov, Eq. (2.24), and that the flux at both configuration space and

velocity space boundaries vanishes as it does with zero flux boundary conditions in

velocity space, plus an appropriate boundary condition in configuration space. We

are then left with

∑
j

∫
Kj

ms
∂fh
∂t

dz = 0, (2.56)

and it is thus shown that the semi-discrete scheme in the continuous time limit

conserves the total (mass) density.

Before we move on to the L2 norm, we consider the following Lemma on the

compressibility of phase space.

Lemma 1. Phase space incompressibility holds for the discrete system, i.e.,

∇z ·αh = 0. (2.57)

Proof. For the specific discrete phase space flow in the Vlasov-Maxwell system,

αh = (v, qs/ms[Eh + v × Bh]). Within a cell, Eq. (2.57) is zero since, as with the

continuous system, v has no configuration space dependence, and qs/ms(Eh+v×Bh)

has no divergence in velocity space. The question is whether the jumps in αh across
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cell interfaces in phase space are accounted for by the scheme. Integrating Eq. (2.57)

over a phase space cell Kj, employing the divergence theorem, and summing over

cells,

∑
j

∮
∂Kj

n ·α−h dS = 0. (2.58)

This result follows for the simple reason that the phase space flow is in fact con-

tinuous with respect to the surfaces considered, allowing us to pairwise cancel the

integrand upon summation. For example, consider the configuration space compo-

nent of the flow αh, v. The velocity, v, is continuous across configuration space

surfaces because v has no configuration space dependence. Likewise, the velocity

space component of αh, qs/ms(Eh + v × Bh), is continuous across velocity space

surfaces because Eh and Bh have no velocity space dependence, and v in the v×Bh

term is the velocity coordinate, and thus is continuous. We note that this proof is

specific to the phase space flow for the Vlasov-Maxwell system and in general may

not hold for all systems.

Using Lemma 1, we can examine the behavior of the L2 norm of the distri-

bution function. The exact behavior of the L2 norm will depend on the choice of

numerical flux function, and importantly, the fact that the phase space flux, αh, is

continuous at the corresponding surface interfaces allows us to simplify the numer-
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ical flux functions previously defined,

n · F̂(αhf
+
h ,αhf

−
h ) =

1

2
n ·αh

(
f+
h + f−h

)
, (2.59)

n · F̂(αhf
−
h ,αhf

+
h ) =


n ·αhf

− if sign(αh) > 0,

n ·αhf
+ if sign(αh) < 0,

(2.60)

n · F̂(αhf
−
h ,αhf

+
h ) =

1

2
n ·αh

(
f+
h + f−h

)
− τ

2
(f+ − f−), (2.61)

with τ = maxT |n ·αh|, the global maximum of the phase space flux over the entire

domain T as before. Importantly, Eq. (2.26) has simplified to an upwind flux because

αh is continuous at the corresponding surface interfaces. An additional consequence

of αh being continuous at the corresponding surface interfaces: Eqns. (2.60) and

(2.61) are now solely penalizing the jump in the distribution function, fh, as opposed

to the jump in the flux. Connecting to our earlier discussion in Section 2.2, we now

examine the L2 norm of the distribution function in our semi-discrete scheme for

the Vlasov equation and determine what effect these numerical flux functions have

on the time evolution of the L2 norm.

Proposition 11. The discrete scheme conserves the L2 norm of the distribution

function when central fluxes are employed and decays the L2 norm of the distribution

function monotonically when using either upwind fluxes or global Lax-Friedrichs

fluxes.

Proof. Since the distribution function itself lies in the test space, we can set w = fh
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in Eq. (2.22). We then have,

∫
Kj

fh
∂fh
∂t

dz+

∮
∂Kj

f−h n · F̂ dS −
∫
Kj

∇zfh ·αhfh dz =

1

2

∫
Kj

∂f 2
h

∂t
dz +

∮
∂Kj

f−h n ·
(

F̂−αh
f−h
2

)
dS = 0, (2.62)

where we have used Lemma 1 to rewrite,

∇zfh ·αhfh =
1

2
∇z ·

(
αhf

2
h

)
, (2.63)

since phase space is incompressible, even in our discrete system, and then used the

divergence theorem. First, consider the case where F̂ is given by Eq. (2.59), central

fluxes. If we sum over all cells, and group cells pairwise by their common interface,

we find,

∑
j

∮
∂Kj

f−h n·
(

F̂−αh
f−h
2

)
dS

=
∑
j

∮
∂Kj

n ·
(
f−h

(
F̂−αh

f−h
2

)
− f+

h

(
F̂−αh

f+
h

2

))
dS

=
∑
j

∮
∂Kj

n ·αh

(
f−h f

+
h − f

+
h f
−
h

)
= 0. (2.64)

Thus, central fluxes do not change the L2 norm of the distribution function in our

semi-discrete scheme.
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We can proceed in a similar fashion for upwind fluxes, Eq. (2.60),

∑
j

∮
∂Kj

f−h n·
(

F̂−αh
f−h
2

)
dS

=
∑
j

∮
∂Kj

n ·
(
f−h

(
F̂−αh

f−h
2

)
− f+

h

(
F̂−αh

f+
h

2

))
dS

=
∑
j

∮
∂Kj

1

2
|n ·αh|

(
(f−h )2 − 2f−h f

+
h + (f+

h )2
)
dS

=
∑
j

∮
∂Kj

1

2
|n ·αh|

(
f−h − f

+
h

)2
dS, (2.65)

where we have used the fact that if αh > 0,

∑
j

∮
∂Kj

n·
(
f−h

(
F̂−αh

f−h
2

)
− f+

h

(
F̂−αh

f+
h

2

))
dS

=
∑
j

∮
∂Kj

1

2
n ·αh

(
f−h − f

+
h

)2
dS, (2.66)

and if αh < 0 we have,

∑
j

∮
∂Kj

n·
(
f−h

(
F̂−αh

f−h
2

)
− f+

h

(
F̂−αh

f+
h

2

))
dS

= −
∑
j

∮
∂Kj

1

2
n ·αh

(
f−h − f

+
h

)2
dS, (2.67)

so we can simplify the behavior of the L2 norm irrespective of the sign of αh by

absorbing the minus sign into the αh < 0 case. But, this means that

1

2

∫
Kj

∂f 2
h

∂t
dz = −

∑
j

∮
∂Kj

1

2
|n ·αh|

(
f−h − f

+
h

)2
dS, (2.68)

a negative definite quantity. Thus, the L2 norm is a monotonically decaying quantity

when using upwind fluxes.

We can proceed in a similar fashion to the two previous derivations for the
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global Lax-Friedrichs flux. Since one component of the global Lax-Friedrichs flux is

exactly equivalent to central fluxes, we know that this component of the global Lax-

Friedrichs flux will not contribute to the time evolution of the L2 norm. Following

a similar procedure to what we used for upwind fluxes, we find

1

2

∫
Kj

∂f 2
h

∂t
dz = −

∑
j

∮
∂Kj

τ

2

(
f−h − f

+
h

)2
dS, (2.69)

a negative definite quantity. So, global Lax-Friedrichs fluxes also monotonically

decay the L2 norm, and they further decay the L2 norm more strongly since,

τ = max
T
|n ·αh| ≥ |n ·αh|, (2.70)

at every surface interface ∂Kj. We can then say that the penalization of the size

of the jumps in the distribution function, whether by the use of upwind fluxes,

Eq. (2.60), or by the use of a global Lax-Friedrichs flux, Eq. (2.61), introduces nu-

merical diffusion into the scheme by decaying the L2 norm of the distribution func-

tion.

Corollary 2. If the discrete distribution function fh remains positive definite, then

the discrete scheme conserves the entropy if the L2 norm is conserved, and the

discrete scheme grows the discrete entropy monotonically if the L2 norm is a mono-

tonically decaying function3,

d

dt

∑
j

∫
Kj

−fh ln(fh) dz ≥ 0 (2.71)

3The behavior of the discrete entropy is due to our convention in the definition of the entropy.
If one drops the minus sign in the definition of the entropy, then the discrete entropy is a mono-
tonically decreasing function when the L2 norm is a monotonically decreasing function if the
discrete distribution function fh remains positive definite.
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Proof. Using the well known bound,

ln(x) ≤ x− 1, (2.72)

we can see that ln(fh) ≤ fh − 1, so long as fh remains a positive definite quantity,

and thus ln(fh) is well-defined. Multiplying by −fh then gives us the inequality,

−fh ln(fh) ≥ −f 2
h + fh. (2.73)

But, the left-hand side is just the discrete entropy. Integrating over a phase space

cell Kj, summing over cells, and taking the time-derivative of both sides gives us an

expression for the time evolution of the discrete entropy in our scheme,

d

dt

∑
j

∫
Kj

−fh ln(fh) dz ≥
d

dt

∑
j

∫
Kj

−f 2
h + fh dz. (2.74)

Now, we note that in Proposition 11 we have already proved that the L2 norm of

the discrete distribution function is either a conserved quantity or a monotonically

decaying function, depending on which numerical flux function we employ. Thus,

the negative of the L2 norm is either exactly conserved or a monotonically increas-

ing function, and by Proposition 10, the semi-discrete scheme conserves particles.

Therefore, the discrete entropy is either conserved or a monotonically increasing

function depending on our choice of numerical flux function.

It is worth taking a moment to reflect on the practical consequences of Propo-

sition 11 and Corollary 2. These choices of numerical flux functions, Eqns. (2.59–

2.61), lead to L2 stable schemes, schemes which do not grow the L2 norm. In

addition, if we employ a numerical flux function that leads to the decay of the L2
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norm, then this diffusivity in the L2 norm leads naturally to the growth of the dis-

crete entropy. In other words, numerical diffusion can manifest in our scheme in the

form of the growth of the discrete entropy. Importantly, as of yet, the numerical flux

function only affects the discrete entropy. We will now examine the conservation of

energy in our semi-discrete scheme, first in Maxwell’s equations, and then for the

complete system.

Lemma 2. The semi-discrete scheme for Maxwell’s equations conserves electromag-

netic energy exactly when using central fluxes and monotonically decays when using

upwind fluxes,

d

dt

∑
k

∫
Ωk

(
ε0
2
|Eh|2 +

1

2µ0

|Bh|2
)
dx ≤ −

∑
k

∫
Ωk

Jh · Eh dx. (2.75)

Note that because Jh·Eh can have either sign, by monotonic decay when using upwind

fluxes, we mean that when the right hand side is positive, the electromagnetic energy

will increase less than
∣∣∣∑k

∫
Ωk

Jh · Eh dx
∣∣∣, and when the right hand side is negative

the electromagnetic energy will decay more than −
∣∣∣∑k

∫
Ωk

Jh · Eh dx
∣∣∣.

Proof. From the discrete weak-form of Maxwell’s equations, we need to compute

equations for |Eh|2 and |Bh|2. Since each component of the field lies in the selected

test space, we take the ith-component of Eq. (2.29) and use Bhi as a test function,

e.g., choose ϕ = Bhx. Summing these three equations will give us an expression

for the time-derivative of |Bh|2. We follow the same procedure for Eq. (2.30), which

gives an expression for the time-derivative of |Eh|2. With a bit of algebra, we obtain

d

dt

∫
Ωj

1

2
|Bh|2 dx +

∮
∂Ωj

ds · Êh ×B−h +

∫
Ωj

Eh · ∇x ×Bh dx = 0, (2.76)
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and

ε0µ0
d

dt

∫
Ωj

1

2
|Eh|2 dx−

∮
∂Ωj

ds · B̂h × E−h −
∫

Ωj

Bh · ∇x × Eh dx = −
∫

Ωj

Jh · Eh dx.

(2.77)

We now multiply both equations by 1/µ0 and add them. Since

Eh · ∇x ×Bh −Bh · ∇x × Eh = ∇x · (Bh × Eh), (2.78)

we can combine the third terms of Eqns. (2.76) and (2.77),

∫
Ωj

∇x · (Bh × Eh) dx =

∮
∂Ωj

ds ·B−h × E−h . (2.79)

In the above result, note that upon integration by parts, we must use the field just

inside the face of cell Ωj. Hence, the evolution of the electromagnetic energy in a

single cell becomes

d

dt

∫
Ωj

(
ε0
2
|Eh|2 +

1

2µ0

|Bh|2
)
dx

+

∮
∂Ωj

ds ·
(
Êh ×B−h + E−h × B̂h − E−h ×B−h

)
= −

∫
Ωj

Jh · Eh dx. (2.80)

Exact Energy Conservation With Central Flux. Using central-fluxes to de-

termine the interface fields, i.e., setting Êh = JEK and B̂h = JBK, gives us,

d

dt

∫
Ωj

(
ε0
2
|Eh|2 +

1

2µ0

|Bh|2
)
dx

+
1

2

∮
∂Ωj

ds ·
(
E+
h ×B−h + E−h ×B+

h

)
= −

∫
Ωj

Jh · Eh dx, (2.81)

where the E−h ×B−h terms cancel upon substitution of central fluxes for the interface

fields. Summing over all configuration space cells and assuming appropriate bound-
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ary conditions in configuration space, we see that the surface term vanishes because

it is symmetric and has opposite signs for the two cells sharing an interface. This

cancellation of the surface term leads to the desired discrete electromagnetic energy

conservation equation,

d

dt

∑
k

∫
Ωk

(
ε0
2
|Eh|2 +

1

2µ0

|Bh|2
)
dx = −

∑
k

∫
Ωk

Jh · Eh dx. (2.82)

Monotonic Decay With Upwind Flux. To see what happens when using up-

wind fluxes, we transform the fields appearing in surface integral into the (s, τ 1, τ 2)

coordinate system. We can then write the third term in Eq. (2.80) as,

ds·
(
Êh ×B−h + E−h × B̂h − E−h ×B−h

)
= ds

[
(Ê2B

−
3 − Ê3B

−
2 ) + (E−2 B̂3 − E−3 B̂2)− (E−2 B

−
3 − E−3 B−2 )

]
. (2.83)

Using Eqns. (2.48)-(2.51) for the interface fields, assuming appropriate boundary

conditions, and summing over all configuration space cells, we then obtain

d

dt

∑
k

∫
Ωk

(
ε0
2
|Eh|2 +

1

2µ0

|Bh|2
)
dx = −

∑
k

∫
Ωk

Jh · Eh dx

+
∑
j

∮
∂Ωj

ds
(
{E2}E−2 /c+ {E3}E−3 /c+ c{B2}B−2 + c{B3}B−3

)
. (2.84)

Note that due to the symmetry of the terms, the central flux terms in Eqns. (2.48)-

(2.51) have vanished on summing over all cells. Now consider the contribution of the

term {E2}E−2 to the two cells adjoining some face. This term will be (E+
2 −E−2 )E−2 /2

and (E−2 −E+
2 )E+

2 /2. On summing over the two cells, this contribution will become

−(E+
2 − E−2 )2/2. Similar results are achieved for the other electric and magnetic

field coordinates. Hence, the surface terms, on summation, contribute non-positive
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quantities to the right-hand side, implying that

d

dt

∑
k

∫
Ωk

(
ε0
2
|Eh|2 +

1

2µ0

|Bh|2
)
dx < −

∑
k

∫
Ωk

Jh · Eh dx. (2.85)

Note that because the resulting surface terms contribute non-positive quantities,

we can say that, despite the sign of Jh · Eh being undetermined, the electromag-

netic energy still monotonically decays, i.e., when the right hand side is positive,

the electromagnetic energy will increase less than
∣∣∣∑k

∫
Ωk

Jh · Eh dx
∣∣∣, and when

the right hand side is negative, the electromagnetic energy will decay more than

−
∣∣∣∑k

∫
Ωk

Jh · Eh dx
∣∣∣.

Lemma 3. If |v|2 belongs to the approximation space Vph, then the semi-discrete

scheme satisfies

d

dt

∑
j

∑
s

∫
Kj

1

2
m|v|2fh dz−

∑
k

∫
Ωk

Jh · Eh dx = 0. (2.86)

Note that the species index is implied, the sum over j in the first term is over all

phase space cells, and the sum over k in the second term is over all configuration

space cells.

Proof. If |v|2 ∈ Vph, we can set w = m|v|2/2 in Eq. (2.22) and obtain

∫
Kj

1

2
m|v|2∂fh

∂t
dz +

∮
∂Kj

1

2
m|v|2n · F̂ dS −

∫
Kj

∇z

(
1

2
m|v|2

)
·αh︸ ︷︷ ︸

qv·Eh

fh dz = 0.

(2.87)

Since |v|2 is continuous at cell interfaces, there is no distinction between the ba-

sis function w evaluated just inside and outside the cell surface interface. Upon
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summing over all cells and the number of species, and the use of appropriate bound-

ary conditions in velocity space and configuration space as in Proposition 10, we

are again able to exploit the fact that the numerical flux function is Godunov and

cancel the telescopic sum to obtain,

d

dt

∑
j

∑
s

∫
Kj

1

2
m|v|2fh dz−

∑
k

∫
Ωk

Jh · Eh dx = 0. (2.88)

Note that we have performed the integration in velocity space and substituted in

the current density, leaving an integration and sum over only configuration space.

This operation is somewhat subtle, and we will discuss this operation and operations

similar in the next section, Section 2.4.

Corollary 3. Even if only using piecewise linear polynomials and |v|2 does not

belong to the approximation space Vph, then the semi-discrete scheme satisfies

d

dt

∑
j

∑
s

∫
Kj

1

2
m|v|2fh dz−

∑
k

∫
Ωk

Jh · Eh dx = 0. (2.89)

We again note that the species index is implied, the sum over j in the first term

is over all phase space cells, and the sum over k in the second term is over all

configuration space cells. In this case, g refers to the projection of the prescribed

function onto a lower order basis set.

Proof. We define the projection of |v|2 onto piecewise linear basis functions as |v|2.
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Substituting this in for our test function, w, in Eq. (2.22) we obtain,

∫
Kj

1

2
m|v|2∂fh

∂t
dz +

∮
∂Kj

1

2
m|v|2n · F̂ dS −

∫
Kj

∇z

(
1

2
m|v|2

)
·αh︸ ︷︷ ︸

qv·Eh

fh dz = 0,

(2.90)

where v is the derivative of the piecewise linear representation of 1/2 |v|2 and is

a piecewise constant in each cell4. We note that because |v|2 is also continuous

at cell interfaces, we can again exploit the fact that the numerical flux function is

Godunov, and upon summing over all cells and species, and employing appropriate

boundary conditions in velocity and configuration space as in Proposition 10, cancel

the surface integral since it is a telescopic sum. We are then left with,

d

dt

∑
j

∑
s

∫
Kj

1

2
m|v|2fh dz−

∫
Kj

qv · Ehfh dz = 0. (2.92)

Upon substitution of the projected current, Jh, after performing the velocity inte-

gration first, we obtain the desired analogous expression to Lemma 3 for piecewise

linear polynomials.

Proposition 12. If central-fluxes are used for Maxwell’s equations, and if |v|2 ∈ Vph,

the semi-discrete scheme conserves total (particles plus field) energy exactly,

d

dt

∑
j

∑
s

∫
Kj

1

2
m|v|2fh dz +

d

dt

∑
k

∫
Ωk

(
ε0
2
|Eh|2 +

1

2µ0

|Bh|2
)
dx = 0. (2.93)

4We can show that v is the cell center velocity,

∇v

(
1

2
|v|2

)
=

1

2
(vleft + vright) = vcenter, (2.91)

since |v|2 is continuous. Here vleft/right is the value of the velocity on the left (right) edge of the
cell, so the average value of the two quantities is the cell center velocity.
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If upwind fluxes are used for Maxwell’s equations, and if |v|2 ∈ Vph, the semi-discrete

scheme decays the total (particles plus field) energy,

d

dt

∑
j

∑
s

∫
Kj

1

2
m|v|2fh dz +

d

dt

∑
k

∫
Ωk

(
ε0
2
|Eh|2 +

1

2µ0

|Bh|2
)
dx < 0. (2.94)

And if only piecewise linear polynomials are used and thus |v|2 /∈ Vph, then the

projected energy will either be conserved or decaying depending on the choice of

fluxes for Maxwell’s equations,

d

dt

∑
j

∑
s

∫
Kj

1

2
m|v|2fh dz +

d

dt

∑
k

∫
Ωk

(
ε0
2
|Eh|2 +

1

2µ0

|Bh|2
)
dx ≤ 0, (2.95)

so long as the scheme is consistent and the appropriate current Jh is incremented

on to the electric field in Maxwell’s equations.

Proof. The proof of this proposition follows from the substitution of the results of

Lemma 2 into the results of Lemma 3, or Corollary 3 if |v|2 is not in the solution

space.

We wish to make a few remarks about the results of this section. Firstly,

we emphasize that energy conservation for the Vlasov equation was agnostic on

the specific form of the numerical flux function, central, upwind, or global Lax-

Friedrichs, so long as the numerical flux is Godunov. Secondly, we want to point

out a subtlety in comparison between the continuous proof of energy conservation,

Proposition 5, and the proof of energy conservation for our semi-discrete system,

Proposition 12. The continuous proof involves the manipulation of terms which are

higher order than |v|2, but we note that the higher order terms in the continuous
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proof come from the substitution of the explicit expressions for α, the phase space

flow, whereas in the discrete proof presented here, we have left the discrete phase

space flow αh as is to stress the fact that αh has its own basis function expansion.

Thus, the higher order terms which are explicit in the continuous energy conservation

proof are implicit here in the discrete energy conservation proof. If |v|2 ∈ Vph, then

v ∈ Vph as well, and terms in the discrete phase space flow such as v, the configuration

space component of the phase space flow, can be exactly represented in terms of our

basis function expansion.

Finally, we note that, although the total energy decays when using upwind

fluxes for Maxwell’s equations, this decay is small due to the high order nature

of the scheme. We will demonstrate this explicitly in Chapter 4 as part of the

benchmarking of the algorithms. Other authors have also demonstrated that this

loss of energy is small for higher order schemes such as the DG method employed

here [Balsara and Käppeli, 2017].

Before we conclude this section on the properties of the semi-discrete Vlasov–

Maxwell system of equations, we would be remiss not to discuss the evolution of

the total momentum. The total momentum, particles plus fields, is conserved in

the continuous system of equations, but what about our semi-discrete system? Our

formulation of the DG method for the Vlasov–Maxwell system of equations does

not conserve momentum.

We can show momentum non-conservation by choosing w = msv and proceed-
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ing as we did with the continuous system,

∫
Kj

mv
∂fh
∂t

dz +

∮
∂Kj

mvn · F̂ dS −
∫
Kj

∇z (mv) ·αhfh dz = 0. (2.96)

Since v is continuous, upon summation over all phase space cells and species, we

obtain

∑
j

∑
s

∫
Kj

msv
∂fh
∂t

dz−
∑
k

∫
Ωk

ρchEh + Jh ×Bh dx = 0. (2.97)

We can proceed exactly as we did with the continuous proof, but we note a key

subtlety,

d

dt

∑
j

∑
s

∫
Kj

msvfh dz +
d

dt

∑
k

∫
Ωk

(ε0E×B) dx

+

∫
Ωj

∇x

(
ε0
2
|Eh|2 +

1

2µ0

|Bh|2
)
−∇x ·

(
ε0EhEh +

1

µ0

BhBh

)
dx = 0. (2.98)

Since the electric and magnetic fields are discontinuous across configuration space

cell interfaces, we cannot use integration by parts to eliminate the latter two terms.

In other words, integration by parts holds only locally and not over the whole domain

due to the jumps in the fields across surfaces. However, it is important to note from

the form of this equation that momentum conservation depends only weakly on

velocity space resolution. Since the size of the discontinuities in the electric and

magnetic fields decrease with increasing configuration space resolution, we can more

strongly conserve momentum by increasing configuration space resolution.

So, our semi-discrete Vlasov–Maxwell system of equations using the discontin-

uous Galerkin finite element method conserves mass, and can conserve the energy,

L2 norm, and entropy depending on our choice of numerical flux function, while
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incurring errors in the total momentum due to our discretization of Maxwell’s equa-

tions. We still need to discretize the system in time, but we will delay this discussion

for a moment as we move to the semi-discrete discretization of the Fokker–Planck

collision operator and the discrete Fokker–Planck collision operator properties. Be-

fore we derive the semi-discrete form of the Fokker–Planck operator, it is useful to

go into more detail on a concept we have been surreptitiously employing throughout

our discussion of the discontinous Galerkin method: the concept of weak equality.

Weak equality underlies all of our discussion up to this point, but we have not made

explicit what it means for two functions to be weakly equal, nor how we can use weak

equality to actually compute quantities we require in our algorithm, such as velocity

moments and the drag and diffusion coefficients in the Fokker–Planck equation.

2.4 An Interlude on Weak Equality and Weak Operators

Consider some interval I and some function space P spanned by basis set ψ`,

` = 1, . . . , N . We will define two functions f and g to be weakly equal if

∫
I

(f − g)ψ` dx = 0, ∀` = 1, . . . , N. (2.99)

We will denote weakly equal functions by f
.
= g. Unlikely strong equality, in which

functions agree at all points in the interval, weak equality only assures us that the

projection of the functions on a chosen basis set is the same. However, the functions

themselves may be quite different from each other with respect to their behaviour,

e.g, each function’s positivity or monotonicity in the interval.
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The connection between weak equality and the minimization of the error in

the L2 norm in Section 2.1 is immediately clear. In constructing a DG discretization

of some operator G[f ], we are saying,

∂f

∂t
.
= G[f ], (2.100)

and then we construct a projection of the solution f in the space P , which we chose

to be the space of piecewise polynomials of order p,, i.e., Pp. This concept of weak

equality is another means of deriving Eqns. (2.22) and (2.29)-(2.30) for the semi-

discrete Vlasov–Maxwell system of equations, and why these forms for the Vlasov

equation and Maxwell’s equation are referred to as the discrete weak forms for these

equations.

The real power in the concept of weak equality is the ability to connect func-

tions defined in different spaces. Consider an operation we performed as part of our

proof of energy conservation for the Vlasov equation, Lemma 3,

∑
j

∑
s

∫
Kj

qsv · Ehfh dz ..=
∑
k

∫
Ωk

Jh · Eh dx. (2.101)

Note that we are using the ..= symbol here to emphasize that in the process of

proving Lemma 3, we took Eq. (2.101) as a definition.

While Eq. (2.101) may seem to follow naturally from our definition of the

continuous current density in Eq. (1.64), the subtlety here is that the distribution

function projection is defined over the full phase space, fh ∈ Vph, while the current

density is defined only in the solution space for configuration space, Jh ∈ X p
h . But,
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here is where we can leverage weak equality,

Jh
.
=
∑
j

∑
s

∫
Kj\Ωk

qsvfh dv, (2.102)

i.e., we project the integral over velocity space of the distribution function, weighted

by qsv in this case, onto configuration space basis functions in the space X p
h . Note

the change of subscript between the phase space cell Kj and configuration space cell

Ωk since for the purposes of this operation, we need to sum the contributions from

all the velocity space cells for a given configuration space cell. The full computation

for this expression would be

∑
m

Jm

∫
Ωk

ϕmϕ` dx =
∑
j

∑
s

∫
Ωk

∫
Kj\Ωk

qsvfhϕ` dv dx, (2.103)

upon plugging in the phase space expansion of the distribution function. Note that

this operation is performed for all ϕ` ∈ X p
h . This procedure gives us a general means

of defining the velocity space moments, such as the current density, which couple

the particle dynamics and the electromagnetic fields.

So, the actual operation for proving Lemma 3 is

∑
j

∑
s

∫
Kj

qsv · Ehfh dz
.
=
∑
k

∫
Ωk

Jh · Eh dx. (2.104)

Importantly, for the purposes of using the weak operation to compute the current

density in Eq. (2.104), we should have technically substituted w = 1/2ms|v|2ϕ`(x),

where ϕ` are each of our ` configuration space basis functions, as our test function

w when proving Lemma 3 (and Corollary 3). In other words, to actually convert

the integral over velocity space of v ·Ehfh to the discrete analog of Jh ·Eh, we must
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ensure we are projecting the velocity integral of v ·Ehfh onto the full configuration

space expansion.

These procedures, such as the operation defined in Eq. (2.103), are sometimes

referred to as weighted L2 projections, or more generally weighted projections, if the

norm of choice is not the L2 norm. A more mathematically complete discussion of

these types of projection operators can be found in textbooks on the foundations of

finite element methods, such as Brenner and Scott [2008], and these operators are

common throughout the literature [Cockburn and Dawson, 2000]. In fact, there has

been growing interest in leveraging weighted L2 projections in novel ways, especially

for wave propagation in heterogeneous media, so that the complexities of the media

the wave is propagating in are directly encoded within the discretization [Chan et al.,

2017, Chan and Wilcox, 2019, Guo and Chan, 2020, Shukla et al., 2020].

We will use the concept of weak equality in a similar fashion to the construc-

tion of these weighted L2 projections to define other types of weak operators in

anticipation of the needed machinery to discretize the Fokker–Planck equation in

the VM-FP system of equations. We will define a new set of notation to make the

subsequent discussion a bit more clear,

M0h
.
=
∑
j

∫
Kj\Ωk

fh dv, (2.105)

M1h
.
=
∑
j

∫
Kj\Ωk

vfh dv, (2.106)

M2h
.
=
∑
j

∫
Kj\Ωk

|v|2fh dv, (2.107)

which are related to discrete representations of Eqns. (1.70–1.72), but without factors
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of mass and the relevant constants. For example, we can compute the discrete charge

density and discrete current density from Eqns. (2.105–2.106),

ρch =
∑
s

qsM0hs
, (2.108)

Jh =
∑
s

qsM1hs
. (2.109)

For the drag and diffusion coefficients in the Fokker–Planck equation, Eqns.

(1.54) and (1.55), we require the flow and temperature, Eqns. (1.56) and (1.57),

which involve a number of different operations applied to the velocity moments,

such as the division of two velocity moments in Eq. (1.56). We might naively expect

the discrete representation for the flow to be

uh =

∑
j

∫
Kj\Ωk

vfh dv∑
j

∫
Kj\Ωk

fh dv
. (2.110)

But, we only know the projections of the moments, not the actual functions, so sim-

ple division like in Eq. (2.110) is ill-defined. To make this point more concrete, con-

sider what constructing a polynomial expansion of uh defined in Eq. (2.110) would

require: a polynomial expansion of a rational function, since both the numerator

and denominator have their own polynomial expansions in Eq. (2.110). We cannot

project a rational function onto a polynomial as we would incur aliasing errors in

the construction of the polynomial because a rational function requires an infinite

number of polynomials to represent, and we are already limiting ourselves to a finite

subspace of polynomials.

By aliasing errors, we mean errors that arise due to being unable to uniquely

determine the representation of the quantity of interest. Because the flow uh in
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Eq. (2.110) has no unique representation in a finite subspace of polynomials, the

ultimate computation of Eq. (2.110) can lead to uncontrolled and unbounded errors5.

We will find later in Chapter 3 that the elimination of aliasing errors will prove a

critical component of constructing stable discretizations of the VM-FP system of

equations.

So, in anticipation of this requirement for our algorithm, how do we eliminate

aliasing errors in the computation of the flow and temperature required by the

Fokker–Planck equations? To find uh, we need to invert the weak-operator equation,

M0huh
.
= M1h . (2.111)

Using the definition of weak-equality in Eq. (2.99) extended to multiple dimensions,

this expression means,

∫
I

(M0huh −M1h)ψ` dx = 0, (2.112)

where in general, for our algorithms, the space I is a configuration space cell Ωj

(or Kj) and the basis expansion is ϕ ∈ X p
h (or w ∈ Vph). This procedure should

determine uh, i.e., the projection of the flow in the function space, so we can write

uh =
∑

m umψm, leading to the linear system of equations

∑
m

um

∫
I

M0hψ`ψm dx =

∫
I

M1hψ` dx, (2.113)

5A suitable analogy would be the aliasing that arises in the context of Fourier transforms,
where an undersampled signal, a signal which would require a higher sampling rate to resolve
the Nyquist frequency, will produce an inaccurate Fourier transform due to power in the higher
frequencies being “aliased” into the signal[see, e.g., Press et al., 2007]. This power aliased into the
signal is the same manifestation of the unbounded and uncontrolled errors that arise in trying to
construct a polynomial representation of a rational function like the rational function in our naive
definition of the flow uh in Eq. (2.110).
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for ` = 1, . . . , N . Inverting this linear system determines um and hence the pro-

jection of uh in the function space. We call this process weak-division. Note that

weak-division only determines uh to an equivalence class as we can replace the spe-

cific uh in the function space with any other function that is weakly equal to it.

In addition, note that M0h and M1h are determined by Eq. (2.105) and Eq. (2.106)

and thus themselves have expansions that must be included in this computation.

Therefore, the weight in the weighted L2 projection is the basis expansion of the

moment M0h .

We can follow a similar procedure for the temperature,

M0h

Th
m

.
=

1

3
(M2h −M1h

· uh) , (2.114)

where the factor of 1/3 comes from the number of velocity dimensions, since the

integrals over each velocity direction all contribute to the temperature. This proce-

dure requires both weak-division and what can be referred to as weak-multiplication,

because we require the expansion of M1h
· uh,

Kh
.
= M1h

· uh, (2.115)∑
m

Km
∫
I

ψ`ψm dx =

∫
I

M1h
· uhψ` dx, (2.116)

where both M1h
and uh themselves have expansions which must be included in the

computation. These sorts of “polynomial operations,” where division and multi-

plication are extended to act on quantities which have expansions in some basis,

have been exploited previously in the literature [Atkins and Shu, 1998, Lockard and

Atkins, 1999].
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Having generalized certain operations such as division and multiplication to

situations where all the quantities of interest are projections, we can ask the ques-

tion: do these operations have similar rules to their elementary counterparts? For

example, does weak-division have the equivalent of divide-by-zero issues? Consider

the interval [−1, 1] and the orthonormal linear basis set

ψ0 =
1√
2

; ψ1 =

√
3√
2
x. (2.117)

In one dimension, where M1h and uh have just a single component, let M1 = 1 and

M0 = n0ψ0 + n1ψ1. For this simple case, the result of weak-division is

u =

√
2

n2
0 − n2

1

(n0 −
√

3n1x). (2.118)

Hence, the weak-division is not defined for n1 = ±n0
6. This calculation shows

that, even if the mean density is positive, the slope cannot become too steep—see

Figure 2.4 where we plot the trend of steepening the slope of density, M0, and the

effect of the steepening on the calculation of the flow, u. When the “blow-up”

occurs, i.e., n1 = ±n0, M0 has a zero-crossing at either x = ±1/
√

3. Although

the function for the flow, u, appears well behaved through the steepening of the

density, this blow-up corresponds to the situation where the density itself becomes

unrealizable with a positive definite function.

In this regard, there is nothing necessarily unphysical with a piecewise lin-

ear reconstruction M0(x) having a zero crossing within the domain, and the DG

algorithm can result in such solutions. In principle, there is a physically realizable

6Formally, the mean density n0 is a positive definite quantity, so this constraint should simply
be n1 = n0
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Figure 2.4: Weak division for the p = 1 basis, Eq. (2.117), to compute u from
M0u

.
= M1. In this plot, M1 = 1 and the effect of changing M0 (top row) on

the flow u (bottom row) is shown. As the density steepens, the velocity becomes
larger. If the density becomes too steep, if we increase the slope of the density
further so that the density has a zero crossing at x = ±1/

√
3 (magenta crosses),

the solution for u would blows in the sense that the flow becomes an unrealizable
function. Importantly, this blow-up condition corresponds to the situation where
the slope of M0 becomes too steep to represent M0 with a positive definite function,
which physically corresponds to a situation where the representation of the density
is producing negative density functions. Since the value of the particle density can
only be positive, this blow-up is highly undesirable.

function that is weakly equivalent M̃0(x)
.
= M0(x) but positive everywhere, as long

as n1 <
√

3n0. However, if the slope of M0 becomes too steep, if the density varies

too rapidly within a cell, we lose the ability to construct a physically realizable

representation for the density, and thus the computation of the flow u would also

become physically unrealizable. In practice we can use constraints like these to

limit the slope of the density and thus make the weak division operator always well

posed. This idea of using these constraints to limit the higher order moments in
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our DG expansion is similar to the philosophy of limiters in high order finite-volume

methods. In smooth regions, we use can the standard calculations and so retain

high-order accuracy there, while introducing limiters where the solution is locally

varying too quickly to be accurately resolved, in order to robustly preserve certain

properties of the solution.

Another application of weak-equality is to recover a continuous function from

a discontinuous one. Say we want to construct a continuous representation f̂ on the

interval I = [−1, 1], from a function, f , which has a single discontinuity at x = 0.

We can choose some function spaces PL and PR on the interval IL = [−1, 0] and

IR = [0, 1] respectively. Then, we can reconstruct a continuous function f̂ such that

f̂
.
= fL x ∈ IL on PL (2.119)

f̂
.
= fR x ∈ IR on PR. (2.120)

where f = fL for x ∈ IL and f = fR for x ∈ IR.

As with all our previous discussions about weak equality, this procedure only

determines f̂ up to its projections in the left and right intervals. To determine f̂

uniquely, we use the fact that given the N pieces of information in IL and N pieces

of information in IR, where N is the number of basis functions in PL,R, we can

construct a polynomial of maximum order 2N − 1. We can hence write

f̂(x) =
2N−1∑
m=0

f̂mx
m. (2.121)

Using this expression in Eqn. (2.119) and (2.120) completely determines f̂ . In a

certain sense, the recovery procedure is a special case of a more general method
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to go from one basis to another under the restriction of weak equality, just as we

constructed the velocity moments, defined only in configuration space, from an

operation over the full phase space.

And just as we leveraged weak equality to give us a prescription for the com-

putation of the components of the drag and diffusion coefficients, this procedure to

recover a continuous function from discontinuous function foreshadows an additional

need we have when discretizing the Fokker–Planck equation: the ability to compute

second derivatives. As an example in one dimension, we wish to compute g
.
= fxx

where we know f on a mesh with cells Ij = [xj−1/2, xj+1/2]. Multiply by some test

function ψ ∈ Pj, where Pj is the function space in cell Ij and integrate to get the

following weak-form,

∫
Ij

ψg dx = ψf̂x

∣∣∣∣xj+1/2

xj−1/2

−
∫
Ij

ψxfx dx. (2.122)

Where we have replaced f by the reconstructed function f̂ in the surface term. Note

that we need two reconstructions, one using data in cells Ij−1, Ij and the other using

data in cells Ij, Ij+1. In the volume term, we continue to use f itself and not the

left/right reconstructions as the latter are weakly-equal to the former and can be

replaced without changing the volume term. Once the function space is selected, we

have completely determined g.

Notice that one more integration by parts can be performed in Eq. (2.122) to

obtain another weak-form,

∫
Ij

ψg dx = (ψf̂x − ψxf̂)

∣∣∣∣xj+1/2

xj−1/2

+

∫
Ij

ψxxf dx. (2.123)
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In this form, we need to use both the value and first derivative of the reconstructed

functions at the cell interfaces. Numerically, each of these weak-forms will lead to

different update formulas. For example, for piecewise linear basis functions, the

volume term drops out in Eq. (2.123). We will find two integration by parts allows

us to retain more properties of the continuous Fokker–Planck equation in our semi-

discrete formulation of the Fokker–Planck equation in Section 2.6.

The procedure outlined above is essentially the recovery discontinuous Galerkin

(RDG) scheme first proposed in van Leer and Nomura [2005] and van Leer and Lo

[2007]. Extensive study of the properties of the RDG scheme to compute second

derivatives is presented in Hakim et al. [2014], where it is shown that the RDG

scheme has some advantages compared to the standard local discontinuous Galerkin

(LDG) schemes [Cockburn and Shu, 1998a, Cockburn and Dawson, 2000] tradition-

ally used to discretize diffusion operators in DG. The formulation in terms of weak

equality allows systematic extension to higher dimensions just as we developed gen-

eral formulas for velocity moments irrespective of dimensionality, and we turn now to

a semi-discrete formulation of the Fokker–Planck equation given the tools outlined

in this section.

2.5 The Semi-Discrete Fokker–Planck Equation

We now want to derive the semi-discrete form of the Fokker–Planck equation

using a DG method. Since the Fokker–Planck equation is solved in tandem with

the Vlasov–Maxwell portion of the VM-FP system of equations, we will consider
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the same phase space mesh, T , with cells Kj, and solution space Vph defined in

Eq. (2.21). For the Fokker–Planck component, we can integrate by parts once to

obtain a discrete weak form, analogous to the collisionless component of the VM-

FP system of equations in Eq. (2.22),

∫
Kj

w
∂fh
∂t

dz =

∮
∂Kj

ν w−n · Ĝ dS −
∫
Kj

ν∇vw ·
[
(v − uh)fh +

Th
m
∇vfh

]
dz.

(2.124)

Here, the numerical flux function Ĝ includes both the drag and diffusion terms,

n · Ĝ = n ·
(

F̂drag +
Th
m
∇vf̂

)
, (2.125)

where F̂drag is a numerical flux function for the drag term. Our only requirement

for the numerical flux function for the drag term will be that, like the collisionless

flux in phase space, this numerical flux function for the drag term is a Godunov

flux, Eq. (2.24). The latter term involves the recovery of the distribution function at

a velocity space cell as described in Section 2.4. Note that Th is unchanged by the

recovery process, as the temperature is only a function of configuration space, and

thus is continuous across velocity space interfaces. As with the collisionless phase

space flux, example Godunov fluxes for the drag term include,

n · F̂drag =
1

2
n · (v − uh)(f

+ + f−), (2.126)

n · F̂drag =


n · (v − uh)f

− if sign(v − uh) > 0,

n · (v − uh)f
+ if sign(v − uh) < 0,

(2.127)

n · F̂drag =
1

2
n · (v − uh)(f

+ + f−)− maxT |v − uh|
2

(f+ − f−), (2.128)
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where we have already exploited the fact that v−uh is continuous at velocity space

interfaces to simplify a central flux, upwind flux, and global Lax-Friedrichs flux to

the forms shown in Eqns. (2.126–2.128).

While Eq. (2.124) may seem like a perfectly fine DG method for the Fokker–

Planck equation, the method as written in Eq. (2.124) does not retain some of the

important properties of the continuous system. For example, we can show that the

method as written in Eq. (2.124) does not conserve momentum. To see this lack

of conservation, substitute w = mv, where we have dropped the species subscript

because, as we showed in Section 1.6, the Fokker–Planck equation conserves the

momentum of each species individually. Upon substitution of w = mv and summing

over all cells, we obtain

∑
j

∫
Kj

mv
∂fh
∂t

dz = −
∑
j

∫
Kj

mν∇vv ·
[
(v − uh)fh +

Th
m
∇vfh

]
dz, (2.129)

where we have already eliminated the surface term due to the assumption of the flux

being Godunov and the fact that v is continuous at velocity space interfaces. Note

that implicit in the cancellation of the surface terms is the fact that we are again

employing zero-flux boundary conditions in velocity space, similar to Eq. (2.53),

n · Ĝ(x,vmax) = n · Ĝ(x,vmin) = 0. (2.130)

Additionally, while the numerical flux due to the drag is a Godunov flux, and thus

why it can be eliminated upon summation over cells, the reason the ∇vf̂ term, the

gradient of the recovered distribution function, vanishes is for the simple reason

that ∇vf̂ can also be constructed to be continuous at the corresponding interfaces.
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When constructing the recovered distribution function, we can make sure that both

the value, and the slope, are continuous at the shared interface, a desirable property

for the discretization of a diffusion operator!

Substitution of ∇vv =
←→
I allows us to determine under what conditions our

discrete scheme conserves momentum. Firstly, we require that

∑
j

∫
Kj

(v − uh)fh = 0, (2.131)

but this is simply M0huh
.
= M1h once the integrals are separated into their con-

figuration space and velocity space components7. So, if we ensure computation of

the discrete flow exactly as we described in Section 2.4, i.e., that the projection of

the discrete flow is consistent and incurs no aliasing errors, this term will vanish.

Unfortunately, the final term,

∑
j

∫
Kj

Th
m
∇vfh =

∑
j

∮
∂Kj

Th
m
f−h dS 6= 0, (2.132)

since the distribution function is not continuous at cell interfaces. Thus, in this for-

mulation of the semi-discrete Fokker–Planck equation, we cannot expect to conserve

momentum.

A similar argument shows that the semi-discrete Fokker-Planck equation de-

scribed in Eq. (2.124) does not conserve energy either. The lack of conservation of

both momentum and energy can be traced to the gradient term, Th/m∇vfh, which

7Note that Eq. (2.111) is a stronger statement than Eq. (2.131), because Eq. (2.111) is the full
projection of the flow onto the configuration space basis expansion. As we mentioned in Section 2.4
when discussing the equality in Eq. (2.104), for the purposes of discussing conservation relations,
we have substituted expressions such as w = v or w = |v|2, but we could have just as easily
substituted w = vϕ`(x) or w = |v|2ϕ`(x), where ϕ` ∈ X p

h are each of the ` basis functions
spanning configuration space. Doing so would not change the algebra and the subsequent proofs
and would make the connection between Eq. (2.111) and Eq. (2.131) concrete.
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regardless of whether one is examining the energy or momentum, will pick up the

jumps in the distribution function at cell interfaces. We are thus motivated to inte-

grate by parts again to obtain a new semi-discrete formulation for the Fokker–Planck

equation,

∫
Kj

w
∂fh
∂t

dz =

∮
∂Kj

ν w−n · Ĝ dS −
∮
∂Kj

ν n · ∇vw
−Th
m
f̂dS

−
∫
Kj

ν

[
∇vw · (v − uh) fh −∇2

vw

(
Th
m
fh

)]
dz. (2.133)

For this scheme, we require both the value and the slope of the recovered distribution

function at the cell interfaces. Eq. (2.133) will be the form whose properties we

examine in the next section as we determine what we have retained compared to

the continuous Fokker–Planck equation.

2.6 Properties of the Semi-Discrete Fokker–Planck Equation

We now proceed as we did in Section 2.3, but for the semi-Discrete Fokker–

Planck equation, to determine what properties the semi-discrete formulation retains

in comparison to the continuous equation. As with the semi-discrete Vlasov equa-

tion, we will assume the boundary conditions in velocity space are zero flux,

n · Ĝ(x,vmax) = n · Ĝ(x,vmin) = 0.
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In addition, we note that there is an additional boundary term due to our second

integration by parts,

∮
∂Kj

ν n · ∇vw
−Th
m
f̂dS =∫

Ωj

∮
∂Vmax/min

ν n · ∇vw
−Th
m
fh(x,vmax/min, t) dx dSVmax/min

, (2.134)

where we have separated the surface integral over the edge of velocity space into

an integral over configuration space and the specific edge of velocity space surface,

and we have substituted for the recovery polynomial at the edge of velocity space

the distribution function evaluated at the edge of velocity space. Since we have

no information beyond the edge of velocity space due to the zero flux boundary

condition on the numerical flux function Ĝ, choosing the recovery polynomial at

the edge of velocity space to be simply the distribution function evaluated at the

edge is the most natural choice. This vector notation may seem somewhat strange,

so as a concrete example, this operation for the vx derivative is

∮
∂Kj

ν x̂ · ∇vw
−Th
m
f̂dS =∫

Ωj

∮
∂Vmax/min

ν∇vxw
−Th
m
fh(x, vxmax/min

, vy, vz, t) dx dvydvz, (2.135)

i.e., for the edge of vx in velocity space, we evaluate the distribution function at

the maximum or minimum vx and leave the other dependencies (all of x and vy, vz)

intact to be integrated over. This particular boundary term will turn out to be

important for the conservation properties of the semi-discrete system, in addition to

being an explicit boundary term required as part of the complete update formula.
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Note that, because the Fokker–Planck equation only involves derivatives in velocity

space, our semi-discrete formulation of the Fokker–Planck equation is agnostic to

the boundary conditions in configuration space for the following properties. We will

also drop the species subscript from the mass, as we know from Section 1.6 that

the continuous Fokker–Planck equation conserves mass, momentum, and energy

individually for each species.

Proposition 13. The discrete scheme in Eq. (2.133) conserves mass,

d

dt

∑
j

∫
Kj

mfh dz = 0. (2.136)

Proof. Substituting w = m into Eq. (2.133) and summing over all cells, we obtain

∑
j

∫
Kj

m
∂fh
∂t

dz =
∑
j

∮
∂Kj

νmn · Ĝ dS = 0, (2.137)

since the gradient of a constant function is zero, and we have chosen the numeri-

cal flux function Ĝ to be a Godunov flux so that the sum over surfaces pairwise

cancels the flux. Combined with a zero flux boundary condition in velocity space,

the proof of mass conservation is complete. Note that because the Fokker–Planck

equation only contains derivatives in velocity space, just like the continuous proof

in Section 1.6, we can construct the time evolution of the zeroth moment due to the

semi-discrete Fokker–Planck equation,

∑
j

∫
Kj\Ωj

m
∂fh
∂t

dz
.
=
∂ρmh

∂t
= 0, (2.138)

where ρmh
is the projection of the mass density onto configuration space basis func-

tions.
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Proposition 14. The discrete scheme in Eq. (2.133) conserves momentum,

d

dt

∑
j

∫
Kj

mvfh dz = 0, (2.139)

if

Th

(∑
j

∮
∂Vmaxj

fh dSVmax −
∑
j

∮
∂Vminj

fh dSVmin

)
+mM1h −mM0huh

.
= 0,

(2.140)

i.e., for each velocity component, for example the x component, we have

Th

[∑
j

∮
∂Vmaxj

fh(x, vxmax , vy, vz) dvydvz −
∑
j

∮
∂Vminj

fh(x, vxmin
, vy, vz) dvydvz

]

+mM1xh
−mM0huxh

.
= 0, (2.141)

where we have temporarily dropped the time dependence from fh for ease of notation.

Proof. Substituting w = mv into Eq. (2.133) and summing over all cells, we obtain

∑
j

∫
Kj

mv
∂fh
∂t

dz = −
∑
j

∮
∂Kj

νThf̂dS −
∑
j

∫
Kj

νm (v − uh) fh dz, (2.142)

where we have eliminated the sum over the surface integral involving the numerical

flux function Ĝ since it involves the Godunov flux for the drag and the gradient of

the recovered distribution function, both of which cancel upon pairwise summation

over the shared surfaces. Likewise, ∇2
vv = 0, so the second volume term vanishes.

These simplifications leave the surface term involving the value of the recovered

distribution function, plus the volume term for the drag. Since the recovered distri-

bution function is continuous at the shared interface, this term also pairwise cancels

upon execution of the sum over the surfaces, with the exeception of the contribution
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at the edge of velocity space. Thus, to conserve momentum, we require,

∫
Ωk

Th

(∑
j

∮
∂Vmaxj

fh dSVmax −
∑
j

∮
∂Vminj

fh dSVmin

)
dx

+

∫
Ωk

[∑
j

∫
Kj\Ωk

m (v − uh) fh dv

]
dx = 0, (2.143)

where we have used the fact that the Fokker–Planck equation only involves deriva-

tives in velocity space to explicitly separate the configuration space and velocity

space integrals, i.e., we have made the conservation of momentum local to a config-

uration space cell as it must be given the continuous proof in Proposition 7. But

we note that this constraint is simply

Th

(∑
j

∮
∂Vmaxj

fh dSVmax −
∑
j

∮
∂Vminj

fh dSVmin

)
+mM1h −mM0huh

.
= 0,

with the caveat that the weak equality will involve a projection over the entire

configuration space basis expansion. To complete the proof, we just redo this cal-

culation with w = mvϕ`(x) for each of our ` configuration space basis functions,

ϕ` ∈ X p
h , so that we can substitute

∫
Ωk

[∑
j

∫
Kj\Ωk

m (v − uh) fh dv

]
dx = 0,

with

mM1h −mM0huh
.
= 0. (2.144)

For clarity, we note that the constraint equation for the flow and temperature re-

quired for momentum conservation, Eq. (2.141), in one spatial dimension and one
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velocity dimension, 1X1V, is

Th
[
fh(vmax)− fh(vmin)

]
+mM1h −mM0huh

.
= 0. (2.145)

Proposition 15. The discrete scheme in Eq. (2.133) conserves energy,

d

dt

∑
j

∫
Kj

1

2
m|v|2fh dz = 0, (2.146)

if |v|2 ∈ Vph, and

Th

[∑
j

∮
∂Vmaxj

(n · vmax)fh dSVmax −
∑
j

∮
∂Vminj

(n · vmin)fh dSVmin

]

+mM2h −mM1h · uh − 3M0hTh
.
= 0, (2.147)

where the n ·vmax/min involves a sum over the contribution from each velocity space

surface, i.e.,

Th

[∑
j

∮
∂Vmaxj

vxmaxfh(x, vxmax , vy, vz) dvydvz −
∑
j

∮
∂Vminj

vxmin
fh(x, vxmin

, vy, vz) dvydvz

]

+Th

[∑
j

∮
∂Vmaxj

vymaxfh(x, vx, vymax , vz) dvxdvz −
∑
j

∮
∂Vminj

vymin
fh(x, vx, vymin

, vz) dvxdvz

]

+Th

[∑
j

∮
∂Vmaxj

vzmaxfh(x, vx, vy, vzmax) dvxdvy −
∑
j

∮
∂Vminj

vzmin
fh(x, vx, vy, vzmin

) dvxdvy

]

+mM2h −mM1h · uh − 3M0hTh
.
= 0, (2.148)

where we have temporarily dropped the time dependence from fh for ease of notation.

Proof. Since |v|2 is in our approximation space Vph, we can substitute w = 1/2m|v|2
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into Eq. (2.133) and sum over all cells to obtain

∑
j

∫
Kj

1

2
m|v|2∂fh

∂t
dz = −

∑
j

∮
∂Kj

νTh(n · v)f̂dS

−
∑
j

∫
Kj

νmv · (v − uh) fh − 3νThfh dz, (2.149)

where we have again leveraged the fact that the surface integral involving the nu-

merical flux function, Ĝ, is a Godunov flux for the drag, and the gradient of the

recovered distribution function is continuous, so that both terms cancel upon pair-

wise summation over the shared surfaces. We have also substituted ∇v|v|2 = 2v

and ∇2
v|v|2 = 6. As with our proof of discrete momentum conservation, Proposi-

tion 14, the interior summation of the remaining surface terms vanishes since the

recovered distribution function is continuous at velocity space surfaces, leaving only

the integrals along the surfaces at the edge of velocity space. To conserve energy,

we then must satisfy

∫
Ωk

Th

[∑
j

∮
∂Vmaxj

(n · vmax)fh dSVmax −
∑
j

∮
∂Vminj

(n · vmin)fh dSVmin

]
dx

+

∫
Ωk

[∑
j

∫
Kj\Ωk

m
(
|v|2 − v · uh

)
fh − 3Thfh dv

]
dx = 0, (2.150)

where we have again used the fact that the Fokker–Planck equation only involves

derivative in velocity space to explicitly separate the configuration space and velocity

space integrals, i.e., we have made the conservation of energy local to a configuration

space cell as it must be given the continuous proof in Proposition 8. This constraint
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is simply

Th

[∑
j

∮
∂Vmaxj

(n · vmax)fh dSVmax −
∑
j

∮
∂Vminj

(n · vmin)fh dSVmin

]

+mM2h −mM1h · uh − 3M0hTh
.
= 0,

so long as we recognize that weak equality is a stronger statement than the constraint

in Eq. (2.150), and we repeat our calculation with w = 1/2m|v|2ϕ`(x) for each of

our ` configuration space basis functions, ϕ` ∈ X p
h , so that we can substitute

∫
Ωk

[∑
j

∫
Kj\Ωk

m
(
|v|2 − v · uh

)
fh − 3Thfh dv

]
dx = 0, (2.151)

with

mM2h −mM1h · uh − 3M0hTh
.
= 0. (2.152)

We note that in one spatial dimension and one velocity dimension, 1X1V, this

constraint in Eq. (2.147) is simply

Th
[
vmaxfh(vmax)− vminfh(vmin)

]
+mM2h −mM1huh − ThM0h

.
= 0, (2.153)

where the coefficient multiplying ThM0h has reduced from three to one because

we are now only integrating over one velocity dimension, instead of three velocity

dimensions.

One of the most important consequences of Propositions 14 and 15 is that the

constraints, Eqns. 2.141 and 2.147, provide a closed set of equations to determine

the components of the drag and diffusion coefficients. Collecting our constraint
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equations,

Th

(∑
j

∮
∂Vmaxj

fh dSVmax −
∑
j

∮
∂Vminj

fh dSVmin

)
+mM1h −mM0huh

.
= 0,

Th

[∑
j

∮
∂Vmaxj

(n · vmax)fh dSVmax −
∑
j

∮
∂Vminj

(n · vmin)fh dSVmin

]

+mM2h −mM1h · uh − 3M0hTh
.
= 0,

or in one spatial dimension and one velocity dimension (1X1V),

Th
[
fh(vmax)− fh(vmin)

]
+mM1h −mM0huh

.
= 0,

Th
[
vmaxfh(vmax)− vminfh(vmin)

]
+mM2h −mM1huh − ThM0h

.
= 0,

we have a system of linear equations which allow us to uniquely determine the tem-

perature, Th, and flow, uh, which can then be substituted into our discrete weak

form, Eq. (2.133). These expressions may at first seem surprising, as they are a

coupled set of linear equations, involving corrections to the temperature, Th, and

flow, uh, based on the value of the distribution function at the boundary of veloc-

ity space. If the distribution function vanishes at the boundary, one can eliminate

these boundary conditions and recover what we might naively expect for the con-

straint equations for the temperature and flow, e.g., Eq. (2.111) for the flow. But

critically, because we are using a zero-flux boundary condition in velocity space,

the distribution function is not exactly zero at the boundary, and one must ac-

count for this correction, however small it may be, to ensure the discrete scheme for

the Fokker–Planck equation conserves momentum and energy, both locally within

a configuration space cell, and globally.
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Additionally, we note that we only discussed the case when |v|2 ∈ Vph when

examining whether the semi-discrete Fokker–Planck equation conserved energy in

Proposition 8. Since we showed in Corollary 3 and Proposition 12 that the semi-

discrete Vlasov–Maxwell system of equations conserves energy, even if only employ-

ing piecewise linear polynomials and thus |v|2 /∈ Vph, we can examine a similar case,

but for the semi-discrete Fokker–Planck equation. We note that we can at this

point connect our discussion about the projection of |v|2 onto piecewise linear basis

functions using the language of weak equality, i.e.,

|v|2 .
= |v|2. (2.154)

We emphasize again an important property of this projection: just like |v|2, |v|2 is

continuous in velocity space, so that we do not have to worry about discontinuities

in the projection of |v|2 onto piecewise linear basis functions.

Proposition 16. The discrete scheme in Eq. (2.133) conserves energy when using

piecewise linear polynomials,

d

dt

∑
j

∫
Kj

1

2
m|v|2fh dz = 0, (2.155)

where |v|2 is the projection of |v|2 onto piecewise linear basis functions, if

Th

[∑
j

∮
∂Vmaxj

(n · vmax)fh dSVmax −
∑
j

∮
∂Vminj

(n · vmin)fh dSVmin

]

+mM∗
2h
−mM∗

1h
· uh − 3M∗

0h
Th

.
= 0. (2.156)

Here, n · vmax/min involves a sum over the contribution from each velocity space
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surface, i.e.,

Th

[∑
j

∮
∂Vmaxj

vxmaxfh(x, vxmax , vy, vz) dvydvz −
∑
j

∮
∂Vminj

vxmin
fh(x, vxmin

, vy, vz) dvydvz

]

+Th

[∑
j

∮
∂Vmaxj

vymaxfh(x, vx, vymax , vz) dvxdvz −
∑
j

∮
∂Vminj

vymin
fh(x, vx, vymin

, vz) dvxdvz

]

+Th

[∑
j

∮
∂Vmaxj

vzmaxfh(x, vx, vy, vzmax) dvxdvy −
∑
j

∮
∂Vminj

vzmin
fh(x, vx, vy, vzmin

) dvxdvy

]

+mM∗
2h
−mM∗

1h
· uh − 3M∗

0h
Th

.
= 0, (2.157)

and the “star moments” are defined as follows,

M∗
0h

.
=
∑

j 6=jmax

∮
∂Kj\Ωk

(n ·∆v)f̂dS, (2.158)

M∗
1h

.
=
∑
j

∫
Kj\Ωk

vfh dv, (2.159)

M∗
2h

.
=
∑
j

∫
Kj\Ωk

v · vfh dv, (2.160)

where f̂ is the recovery polynomial, v is 1/2∇v|v|2 and equal to the cell center

velocity, as previously shown in Corollary 3, and ∆v is the 1D grid spacing along

the direction v. Note that ∆v in the jth cell is related to the cell center velocity,

∆vj = vj+1 − vj, (2.161)

and the sum in Eq. (2.158) is over all surfaces except the edges of velocity space,

i.e., the last index jmax.

Proof. Since we are restricting ourselves to only using piecewise linear polynomials,

|v|2 /∈ Vph, and we must project |v|2 onto our basis set using Eq. (2.154). We can
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then substitute w = 1/2m|v|2 into Eq. (2.133) and sum over cells to obtain

∑
j

∫
Kj

1

2
m|v|2∂fh

∂t
dz = −

∑
j

∮
∂Kj

νTh(n · v)f̂dS

−
∑
j

∫
Kj

νmv · (v − uh) fh dz, (2.162)

where 1/2∇v|v|2 = v, the cell center velocity. Note the differences in Eq. (2.162)

compared to Eq. (2.149) in Proposition 15, when we were employing at least quadratic

polynomials and |v|2 ∈ Vph. The sum over surface integrals involving the numerical

flux function, Ĝ, still vanishes because |v|2, despite being a projection, is continuous

across velocity space interfaces, and we can thus still leverage the fact that the flux

for the drag term is a Godunov flux and the gradient of the recovered distribution

function is continuous to pairwise cancel the surface integrals in the sum. Impor-

tantly, the volume term for the diffusion has vanished, since ∇2
v|v|2 = 0. Likewise,

we cannot cancel the interior sums over the surface in the remaining surface inte-

grals like we did in Proposition 15 because v is not continuous at velocity space

surfaces—v is a piecewise constant function! To have energy conservation, we then

must have

∫
Ωk

Th

[∑
j

∮
∂Vmaxj

(n · vmax)fh dSVmax −
∑
j

∮
∂Vminj

(n · vmin)fh dSVmin

]
dx

+

∫
Ωk

[∑
j

∫
Kj\Ωk

mv · (v − uh) fh dv − Th
∑

j 6=jmax

∮
∂Kj\Ωj

(n ·∆v)f̂dS

]
dx = 0,

(2.163)

where we have used Eq. (2.161) to simplify the interior surface integrals of the re-

covered distribution function. Repeating our calculation for w = 1/2m|v|2ϕ`(x) for
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each of our ` configuration space basis functions, ϕ` ∈ X p
h , and using Eqns. (2.158–

2.160), we then have

Th

[∑
j

∮
∂Vmaxj

(n · vmax)fh dSVmax −
∑
j

∮
∂Vminj

(n · vmin)fh dSVmin

]

+mM∗
2h
−mM∗

1h
· uh − 3M∗

0h
Th

.
= 0,

exactly the constraint we expect for energy to be conserved. We note that in one

spatial dimension and one velocity dimension, this constraint simplifies to

Th
[
vmaxfh(vmax)− vminfh(vmin)

]
+M∗

2h
−M∗

1h
uh − ThM∗

0h

.
= 0, (2.164)

where, like in Eq. (2.153) in Proposition 15, the 1X1V constraint does not have a

factor of three multiplying Th.

So, the semi-discrete Fokker–Planck equation also retains conservation of en-

ergy with piecewise linear polynomials, provided one modifies the constraint equa-

tions,

Th

(∑
j

∮
∂Vmaxj

fh dSVmax −
∑
j

∮
∂Vminj

fh dSVmin

)
+mM1h −mM0huh

.
= 0,

Th

[∑
j

∮
∂Vmaxj

(n · vmax)fh dSVmax −
∑
j

∮
∂Vminj

(n · vmin)fh dSVmin

]

+mM∗
2h
−mM∗

1h
· uh − 3M∗

0h
Th

.
= 0,

or in one spatial dimension and one velocity dimension (1X1V),

Th
[
fh(vmax)− fh(vmin)

]
+mM1h −mM0huh

.
= 0,

Th
[
vmaxfh(vmax)− vminfh(vmin)

]
+M∗

2h
−M∗

1h
uh − ThM∗

0h

.
= 0.
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When using piecewise linear polynomials, one must not only compute M0h and

M1h , the standard moments given in Eqns. (2.105) and (2.106), but also the “star

moments” given by Eqns. (2.158 – 2.160). Using these coupled constraint equations,

we can then uniquely compute the temperature, Th, and flow, uh, for use in our

semi-discrete Fokker–Planck equation.

Before we conclude this section, we note that we have not discussed a discrete

analogy to the continuous system’s Second Law of Thermodynamics, Proposition 9,

and H-theorem, Corollary 1. Unfortunately the finite velocity space extents required

by our continuum approach complicate the requisite proofs, along with the required

gradients of the expansion of ln(fh). We will instead defer until Chapter 4, when

we demonstrate numerically that the scheme still respects these essential physics

properties.

2.7 The Time Discretization of the

Vlasov–Maxwell–Fokker–Planck System of Equations

Having now constructed a semi-discrete scheme for the VM-FP system of equa-

tions for the discretization of the equation system in phase space and configuration

space, we seek to complete the discretization with a discussion of how best to nu-

merically integrate the semi-discrete system in time. We note that the result of

the semi-discrete system is a set of ordinary differential equations. For the Vlasov–
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Fokker–Planck equation we have

∂fh
∂t

.
= L(fh,Eh,Bh, t), (2.165)

and likewise for Maxwell’s equations, where L is a linear operator encompassing the

evaluation of the integrals in the discrete weak forms, Eqns. (2.22) and (2.133), for

all basis functions w ∈ Vph and all cells Kj ∈ T . We will show in Chapter 3 how

we actually construct and evaluate L in Eq. (2.165). For now, we imagine that we

have evaluated L for the Vlasov–Fokker–Planck equation, and likewise Maxwell’s

equations, and now need to solve the system of ordinary differential equations for

the time derivative of the discrete distribution function and electromagnetic fields.

We consider in this thesis a class of strong stability preserving Runge–Kutta

(SSP-RK) methods [Shu, 2002, Durran, 2010]. These methods are all multi-stage

Runge–Kutta methods. Defining a forward Euler step as

F(f, t) = f + ∆tL(f, t), (2.166)

we can construct, for example, the second order SSP-RK,

f (1) = F (fn, tn) ,

fn+1 =
1

2
fn +

1

2
F
(
f (1), tn + ∆t

)
,

(2.167)

the third order SSP-RK,

f (1) = F (fn, tn) ,

f (2) =
3

4
fn +

1

4
F
(
f (1), tn + ∆t

)
,

fn+1 =
1

3
fn +

2

3
F
(
f (2), tn + ∆t/2

)
,

(2.168)
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and the four stage third order SSP-RK:

f (1) = F (fn, tn) ,

f (2) =
1

2
f (1) +

1

2
F
(
f (1), tn + ∆t/2

)
,

f (3) =
2

3
fn +

1

6
f (2) +

1

6
F
(
f (2), tn + ∆t

)
,

fn+1 =
1

2
f (3) +

1

2
F
(
f (3), tn + ∆t/2

)
.

(2.169)

There are SSP-RK methods with more stages, as well as higher order, than the

methods shown here [Shu, 2002]. Multi-stage Runge–Kutta methods require a bal-

ance between the order of the scheme and the number of stages, and thus the amount

of computations required. Especially for very high order multi-stage Runge–Kutta

methods, it can require increasingly large numbers of intermediate stages to attain

marginal improvements to the order of the scheme. We will most often employ the

three-stage, third order SSP-RK method, Eq. (2.168), as a balance between accuracy,

computation, and memory footprint for the storage of the intermediate stages.

The result of the SSP-RK-DG space-time discretization for the VM-FP system

of equations is a fully explicit scheme, and thus we expect to be restricted in the

size of our time-step by a Courant-Friedrich-Lewy (CFL) condition. CFL conditions

arise due to the restriction that we must be able to integrate the system of ordinary

differential equations along the characteristics of the partial differential equation.

In practical terms, imagine propagating a wave with velocity v in a discrete system.

In order to propagate the wave along a discrete grid with some cell spacing ∆x, we

must be careful not to take too large of a time-step, lest the wave move multiple grid

cells in a single time-step and thus potentially lose amplitude and phase information.

113



Thus, we require

∆t .
∆x

v
. (2.170)

CFL conditions can be expressed simply in terms of the CFL frequency, the

fastest signal in the discrete system,

d∑
i=1

ωi∆t ≤ C, (2.171)

where d is the dimensionality of the problem, ωi is the fastest frequency in each of

the i dimensions, and C is some additional safety factor which may be required for

stability. One CFL condition will come from solving Maxwell’s equations, where we

must be able to stably propagate light waves,

CDIM∑
i=1

c
∆t

∆xi
≤ 1

2p+ 1
. (2.172)

Here, c is the speed of light, CDIM is the number of configuration space dimensions,

and p is the polynomial order of our basis expansion. We recognize c/∆xi as the

largest discrete frequency in the system given some cell spacing ∆xi in each of the i

configuration space dimensions, since the speed of light is unequivocally the fastest

velocity in the system.

Note that we have plugged in for the safety factor C = 1/(2p+ 1). This CFL

condition is similar to the constraint for the finite-difference-time-domain (FDTD)

discretization of Maxwell’s equations [Yee, 1966], but with this additional safety

factor for stability which depends upon the polynomial order of our basis expan-

sion[Cockburn and Shu, 2001]. In fact, Cockburn and Shu [2001] explicitly calculated
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the required safety factor arising from the polynomial order of the basis expansion

for L2 stability, and although it is not exactly 1/(2p + 1), the safety factor is ap-

proximately this value for a wide variety of polynomial orders, at least to within five

to ten percent. As such, we use 1/(2p+ 1) for the safety factor in our computation

of the size of the time-step. In the limit that the grid spacing in each configuration

space dimension is equal, ∆x = ∆y = ∆z, we can simplify the Maxwell’s equation

CFL condition to

c
∆t

∆x
≤ 1/CDIM

2p+ 1
. (2.173)

We likewise have a CFL condition for the Vlasov–Fokker–Planck equation. We

first note that the Vlasov equation CFL condition can be written as,

∆t
CDIM+V DIM∑

i=1

max
T

∣∣∣∣ αi∆zi

∣∣∣∣ ≤ 1

2p+ 1
, (2.174)

where | · | is the absolute value. It will give us better intuition for this time step

constraint by separating the configuration space and velocity space CFL conditions,

∆t

[
CDIM∑
i=1

max
T

∣∣∣∣ vi∆xi

∣∣∣∣+
V DIM∑
j=1

max
T

∣∣∣∣qs/ms (Eh + v ×Bh)j
∆vj

∣∣∣∣
]
≤ 1

2p+ 1
, (2.175)

where we have abbreviated the number of configuration space dimensions as CDIM ,

as before in Eq. (2.172), and the number of velocity space dimensions as V DIM .

The first term on the left-hand side of Eq. (2.175) uses the maximum velocity in

each direction, i.e., the velocity space edge in each direction, to determine the largest

frequency in configuration space from the local configuration space grid spacing ∆xi.

The second term on the left-hand side of Eq. (2.175) uses the maximum acceleration
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due to the electromagnetic fields measured in the phase space domain T to compute

the largest frequency in velocity space from the local velocity space grid spacing

∆vj.

Likewise, for the Fokker–Planck equation we have

∆t

[
V DIM∑
j=1

max
T

∣∣∣∣ν (v − uh)j
∆vj

∣∣∣∣+
V DIM∑
j=1

max
T

∣∣∣∣ν Thms

1

(∆vj)2

∣∣∣∣
]
≤ 1

2p+ 1
, (2.176)

where the first term on the left-hand side of Eq. (2.176) is the maximum frequency

due to the drag term, and the second term on the left-hand side of Eq. (2.176) is the

CFL frequency due to the diffusion operator. Note that the CFL frequency of the

diffusive term scales like (∆vj)
−2, the inverse square of the grid spacing, as it must

because the diffusion operator involves two derivatives of the distribution function

in velocity space. Defining

CFLcollisionless =
CDIM∑
i=1

max
T

∣∣∣∣ vi∆xi

∣∣∣∣+
V DIM∑
j=1

max
T

∣∣∣∣qs/ms (Eh + v ×Bh)j
∆vj

∣∣∣∣ , (2.177)

CFLc =
V DIM∑
j=1

max
T

∣∣∣∣ν (v − uh)j
∆vj

∣∣∣∣+
V DIM∑
j=1

max
T

∣∣∣∣ν Thms

1

(∆vj)2

∣∣∣∣ , (2.178)

we can then say that the total CFL condition for the Vlasov–Fokker–Planck equation

is

∆t(CFLcollisionless + CFLc) ≤ 1

2p+ 1
. (2.179)

A few remarks on the CFL condition for the Vlasov–Fokker–Planck equation

are in order. The first remark is that we are being careful to determine the max-

imum frequency in each dimension. For Maxwell’s equation, the CFL condition,

Eq. (2.172), could naturally be simplified because the speed of light is the same in
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each direction. We could presume a similar restriction for the Vlasov–Fokker–Planck

equation, find the maximum characteristic of each of the phase space dimensions,

find the maximum of those maximum characteristics, and then include an addi-

tional safety factor of 1/dz where dz is the number of phase space dimensions. In

other words, presuming the acceleration in the x direction, Ex + vyBz − vzBy, is

the maximum characteristic in the system, we can use that acceleration divided by

the grid spacing ∆vx to calculate the CFL frequency, and then divide that CFL

frequency by six if one is evolving the Vlasov–Fokker–Planck equation in the full

six dimensional phase space. Of course, this approach could lead to a quite restric-

tive time-step compared to the combination of CFL frequencies in Eqns. (2.175) and

(2.176), depending on how anisotropic the characteristics are. For example, even if

the acceleration is quite large in the x direction, leading to a large CFL frequency

in the vx direction, the acceleration in the other two velocity dimensions, along with

the maximum velocity in the three configuration space dimensions, could be lower

magnitude and thus lead to smaller contributions to the total CFL frequency. So

long as we are careful to stay within the region of stability for our SSP-RK scheme,

there is little reason not to take the largest possible time-step.

An additional remark is to connect the maximum characteristic, for example

the maximum acceleration or the maximum drag, to the numerical flux functions

defined previously, Eqns. (2.61) and (2.128). In the global Lax-Friedrichs fluxes

defined for the Vlasov equation and drag component of the Fokker–Planck equation,

we required the maximum of the flux, either collisionless or drag, sampled over the

whole phase space domain, T . This term, τ for example in Eq. (2.61), is exactly the
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required component of the CFL frequency in each dimension in Eqns. (2.175) and

(2.176). Historically, the definition of the penalization term has also been done in

the opposite direction, with for example

τi =
1

2p+ 1

∆zi
∆t

, (2.180)

as in [Lax, 1954]. Though this particular penalization term is a critical component of

some stability bounds proved for the hyperbolic partial differential equations studied

in [Lax, 1954], such a large penalization can have unintended consequences for the

accuracy of the scheme, leading to a combination of overdiffusion and monotonicity

errors in the discrete solution. We will avoid such an extreme definition and instead

continue to use Eqns. (2.61) and (2.128) when we discuss the actual implementation

of the method in the next chapter, Chapter 3.

With both the CFL constraint for Maxwell’s equations and the CFL constraint

for the Vlasov–Fokker–Planck equation in hand, we have completed the mathemat-

ical formulation of our discrete VM-FP system of equations. We evaluate the oper-

ators defined in our semi-discrete scheme, Eqns. (2.22) and (2.133) for the Vlasov–

Fokker–Planck equation, and Eqns. (2.29) and (2.30) for Maxwell’s equations, and

then determine from these evaluations which of the two CFL conditions, Eq. (2.179)

or Eq. (2.172), is more restrictive. Having calculated both the linear operator L for

the complete semi-discrete VM-FP system of equations and the size of the time step

∆t, we can then plug the results into a forward Euler time step, Eq. (2.166), and

repeat the process as desired for a multi-stage SSP-RK method, e.g., SSP-RK3 in

Eq. (2.168). Before we move on from the mathematical foundation we have laid in
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this chapter to the details of turning this mathematical foundation into algorithms

and code, we summarize the results of this chapter in the next section.

2.8 Summary of Chapter 2

We now summarize the contents of this chapter, and in doing so, foreshadow

some of the most important issues we will have to address in Chapter 3 when we

move from a mathematical formulation of the discrete scheme to an algorithmic

formulation of the numerical method. In this regard, it is worth further driving

the point of this chapter home: Eqns. (2.22) and (2.133) for the Vlasov–Fokker–

Planck equation, and Eqns. (2.29) and (2.30) for Maxwell’s equations, followed by an

appropriate ordinary differential equation integrator such as an SSP-RK3 method,

Eq. (2.168), are a mathematically complete description of the discrete scheme. To

now be a bit glib, mathematically, we are done.

We have formulated a discrete scheme, which has provably retained proper-

ties of the continuous system, with some flexibility in the choice of numerical flux

function, e.g., for Maxwell’s equations, central fluxes, Eqns. (2.33)-(2.34), or up-

wind fluxes, Eqns. (2.48)-(2.51), both of which are perfectly acceptable numerical

flux functions for Maxwell’s equations which have different, but potentially better

properties depending on the problem being tackled. For example, we showed in

Lemma 2 that central fluxes for Maxwell’s equations conserves the electromagnetic

energy, thus producing a completely conservative scheme in Proposition 12, while

upwind fluxes for Maxwell’s equations introduces numerical diffusion in the electro-
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magnetic energy, thus leading to a monotonic decay of the energy. Central fluxes

for Maxwell’s equations is not free of numerical errors though, replacing diffusive

errors with dispersive errors, errors in the phases of the solutions, e.g., when propa-

gating an electromagnetic wave. These dispersive errors can be equally problematic

[Hesthaven and Warburton, 2004], but regardless of the choice of numerical flux

function, the central point remains: the mathematical formulation of the discrete

Vlasov–Maxwell–Fokker–Planck (VM-FP) system of equations using a discontinu-

ous Galerkin finite element method, with a polynomial basis, is completely specified

by Eqns. (2.22) and (2.133) for the Vlasov–Fokker–Planck equation, and Eqns. (2.29)

and (2.30) for Maxwell’s equations. Of course, to go from Eqns. (2.22) and (2.133)

for the Vlasov–Fokker–Planck equation, and Eqns. (2.29) and (2.30) for Maxwell’s

equations, to a numerical algorithm and code is its own non-trivial task, which we

address in Chapter 3. So, to summarize:

1. The discontinuous Galerkin finite element method (DG) is a spatial discretiza-

tion scheme which combines aspects of finite element and finite volume meth-

ods and leverages the benefits of both numerical methods to produce high

order accurate, robust, physically motivated spatial discretizations of a wide

spectrum of partial differential equations. The essential idea is an L2 mini-

mization of the error after expanding the quantity of interest, for example the

distribution function,

f(z, t) ≈ fh(z, t) =
N∑
k=1

fk(t)w(z),

in a basis set w = w(z), which we took to be the space of polynomials of
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order p, Pp throughout this Chapter. The L2 minimization of the error can be

formulated in the language of weak equality,

∂fh
∂t

.
= G[fh],

where G[fh] is a general operator acting on the quantity of interest, for example

the Vlasov–Fokker–Planck spatial operator, and
.
= in the space spanned by

w = w(z) denotes the operation

∫
I

∂fh
∂t

w`(z) dz =

∫
I

G[fh]w`(z), ∀` = 1, . . . , N.

Note that weak equality, unlike strong equality where functions are everywhere

equal, determines the solution up to an equivalence class, enforcing that the

projections of the left hand side and right hand side on the basis set spanned

by w`(z), ∀` = 1, . . . , N are equal.

2. With the machinery of weak equality and an L2 minimization of the error, we

can formulate the DG discretization of our equation system of interest and

derive the discrete-weak forms of the VM-FP system of equations,

∫
Kj

w
∂fh
∂t

dz +

∮
∂Kj

w−n · F̂ dS −
∫
Kj

∇zw ·αhfh dz =∮
∂Kj

ν w−n · Ĝ dS −
∮
∂Kj

ν n · ∇vw
−Th
m
f̂dS

−
∫
Kj

ν

[
∇vw · (v − uh) fh −∇2

vw

(
Th
m
fh

)]
dz,∫

Ωj

ϕ
∂Bh

∂t
dx +

∮
∂Ωj

ds× (ϕ−Êh)−
∫

Ωj

∇xϕ× Eh dx = 0,

ε0µ0

∫
Ωj

ϕ
∂Eh

∂t
dx−

∮
∂Ωj

ds× (ϕ−B̂h) +

∫
Ωj

∇xϕ×Bh dx = −µ0

∫
Ωj

ϕJh dx,
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where the first equation is the semi-discrete Vlasov–Fokker–Planck equation,

and the second two equations are the semi-discrete Faraday and Ampere-

Maxwell equations from Maxwell’s equations. Note that, as we pointed out

in Section 2.2, the divergence constraint for Maxwell’s equations are not an

explicit component of our discretization, and thus errors in the divergence of

the electric and magnetic fields may arise throughout the numerical integra-

tion of our DG discretization of Maxwell’s equations. We will address this

subtlety in Chapter 4 when we benchmark our numerical method for the VM-

FP system of equations. The discrete weak forms for the VM-FP system of

equations, Eqns. (2.22) and (2.133) for the Vlasov–Fokker–Planck equation,

and Eqns. (2.29) and (2.30) for Maxwell’s equations, are derived using inte-

gration by parts on the spatial operators, so that we obtain contributions to

the solution from both volume and surface integrals. These individual pieces

make the connection between DG and finite element and finite volume meth-

ods concrete, with the volume integral bearing a resemblance to the integrals

over the grid cells required in a finite element method, and the surface inte-

gral requiring the specification of a numerical flux function for the advection

of the quantities of interest across surface interfaces, just as in a finite volume

method. Importantly, the semi-discrete Fokker–Planck equation requires two

integration by parts on the diffusion operator to ultimately demonstrate the

semi-discrete scheme retains some of the properties of the continuous Fokker–

Planck equation discussed in Section 1.6.
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3. There are many potential options for numerical flux functions, but a critical

property of the numerical flux function to prove our semi-discrete spatial dis-

cretization retains properties of the continuous system is that the numerical

flux function obeys the Godunov flux condition,

∮
∂Kj

w−n · F̂ dS = −
∮
∂Kj

w+n · F̂ dS,

i.e., the flux into a cell is equal and opposite to the flux out of its neigh-

bor cell along the shared interface. Example numerical flux functions for the

collisionless advection in phase space are

n · F̂(αhf
+
h ,αhf

−
h ) =

1

2
n ·αh

(
f+
h + f−h

)
,

n · F̂(αhf
−
h ,αhf

+
h ) =


n ·αhf

− if sign(αh) > 0,

n ·αhf
+ if sign(αh) < 0,

n · F̂(αhf
−
h ,αhf

+
h ) =

1

2
n ·αh

(
f+
h + f−h

)
− τ

2
(f+ − f−),

i.e., central fluxes, upwind fluxes, and global Lax-Friedrichs fluxes. Note that

these forms of the numerical flux function exploit the fact that the discrete

phase space flow, αh, is continuous at the corresponding surface interfaces,

Lemma 1. Likewise, similar flux functions can be defined for the numerical

flux function for Maxwell’s equations,

Êh = JEK,

B̂h = JBK,
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or upwind fluxes,

Ê2 = JE2K− c {B3},

Ê3 = JE3K + c {B2},

B̂2 = JB2K + {E3}/c,

B̂3 = JB3K− {E2}/c,

with

JgK ≡ (g+ + g−)/2,

{g} ≡ (g+ − g−)/2,

and the drag component of the Fokker–Planck equation,

n · F̂drag =
1

2
n · (v − uh)(f

+ + f−),

n · F̂drag =


n · (v − uh)f

− if sign(v − uh) > 0,

n · (v − uh)f
+ if sign(v − uh) < 0,

n · F̂drag =
1

2
n · (v − uh)(f

+ + f−)− maxT |v − uh|
2

(f+ − f−),

where we have used the fact that v − uh is continuous across velocity space

surfaces to simplify a central flux, upwind flux, and global Lax-Friedrichs flux

for the drag component of the numerical flux function for the Fokker–Planck

equation. The total numerical flux function for the Fokker–Planck equation is

n · Ĝ = n ·
(

F̂drag +
Th
m
∇vf̂

)
,
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where f̂ is the distribution function at the interface using the recovery pro-

cedure, and we require both the gradient, and the value, of the recovered

distribution function since we integrated the diffusion term by parts twice.

4. The recovery procedure for computing the surface terms for the diffusion also

leverages weak equality. We have the distribution function in two neighboring

cells sharing an interface,

f̂
.
= fL,

f̂
.
= fR,

where fL is the distribution function in the cell to the “left” of the interface

and fR is the distribution function to the “right” of the interface. Defining

the recovery polynomial as

f̂(x) =
2N−1∑
m=0

f̂mx
m, (2.181)

in one dimension, we can then uniquely compute a continuous polynomial

(with continuous first derivatives, too). Importantly, the recovery procedure is

fundamentally one-dimensional, since the discontinuity we are constructing the

continuous representation along is a discontinuity at a surface. A continuous

function, with continuous first derivatives, is “recovered” using the data that

is discontinuous at a given surface, i.e., the discontinuity is along the one

dimension that is fixed at that surface. The reconstruction of the recovery

polynomial’s functional dependence along the surface in arbitrary dimensions
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will be addressed as part of our discussion of how to turn the mathematical

formulation of the discrete scheme into code in Chapter 3.

5. We further utilize weak equality to determine the required velocity space

moments for the coupling between the Vlasov–Fokker–Planck equation and

Maxwell’s equations, as well as the moments required for the drag and dif-

fusion coefficients in the Fokker–Planck equations. Weak equality allows us

to define fundamental operators, e.g., division and multiplication, when the

quantities being manipulated are themselves projections. The velocity space

moments are

M0h
.
=
∑
j

∫
Kj\Ωk

fh dv,

M1h
.
=
∑
j

∫
Kj\Ωk

vfh dv,

M2h
.
=
∑
j

∫
Kj\Ωk

|v|2fh dv,

with the charge and current densities required for coupling to Maxwell’s equa-

tions given by

ρch =
∑
s

qsM0hs
,

Jh =
∑
s

qsM1hs
.

Note that the charge and current density are strongly equal to the sum over

species of the velocity space moments, since we have already projected down

to the configuration space expansion. Likewise, for the flow and temperature
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in the drag and diffusion coefficients,

Th

(∑
j

∮
∂Vmaxj

fh dSVmax −
∑
j

∮
∂Vminj

fh dSVmin

)
+mM1h −mM0huh

.
= 0,

Th

[∑
j

∮
∂Vmaxj

(n · vmax)fh dSVmax −
∑
j

∮
∂Vminj

(n · vmin)fh dSVmin

]

+mM2h −mM1h · uh − 3M0hTh
.
= 0,

which require weak multiplication and division, or weighted L2 projections, as

defined in Section 2.4. These expressions can be modified, for the discrete cur-

rent density, temperature, and flow, in the case of running with only piecewise

linear polynomials, as discussed in Corollary 3 and Proposition 16 respectively.

6. Using weak equality to construct consistent projections of velocity moments, a

Godunov numerical flux function, and appropriate boundary conditions, i.e.,

zero-flux in velocity space and a self-contained boundary condition in con-

figuration space, like periodic boundary conditions, we can prove that the

semi-discrete scheme retains a number of the continuous VM-FP system of

equations’ properties. In particular, the whole system conserves mass and en-

ergy, even when using piecewise linear polynomials and projecting |v|2 onto

linear polynomials, and we can show that even though the collisionless evolu-

tion does not obey momentum conservation, the semi-discrete Fokker–Planck

equation conserves momentum. Importantly, the lack of momentum conser-

vation arises from our discretization of Maxwell’s equations, and thus only

depends on configuration space resolution, a property we will numerically

demonstrate in Chapter 4. The collisionless component, the semi-discrete
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Vlasov–Maxwell system of equations, is also L2 stable, either conserving or

decaying the L2 norm. This L2 stability leads to a discrete analogue of the

second Law of Thermodynamics for the semi-discrete Vlasov–Maxwell system

of equations, with numerical diffusion arising as a production of entropy in

our discrete system. Although we did not analytically prove a discrete second

Law of Thermodynamics for the semi-discrete Fokker–Planck equation, we

will compare the entropy behavior between collisionless and collisional simula-

tions in Chapter 4, and show that the collisionless entropy production is small

compared to the collisional entropy production. Because many of these prop-

erties, especially for the semi-discrete Vlasov–Fokker–Planck equation, only

depended on the numerical flux function being Godunov and not a specific

form of the numerical flux function, we can imagine further flexibility in terms

of the mathematical formulation of the scheme. For example, we could extend

the recovery procedure to handle the collisionless and drag components of the

discretization and still retain the properties proved.

7. Having specified a spatial discretization and constructed the semi-discrete VM-

FP system of equations, we only require an ordinary differential equation in-

tegrator for the time integration to complete the discretization and integrate

the equation system in time. Example integrators include strong-stability pre-
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serving Runge–Kutta methods, e.g., a three-stage third order method,

f (1) = F (fn, tn) ,

f (2) =
3

4
fn +

1

4
F
(
f (1), tn + ∆t

)
,

fn+1 =
1

3
fn +

2

3
F
(
f (2), tn + ∆t/2

)
,

with F defining the complete evaluation of the semi-discrete VM-FP system

of equations, Eqns. (2.22) and (2.133) for the Vlasov–Fokker–Planck equation,

and Eqns. (2.29) and (2.30) for Maxwell’s equations. These explicit time inte-

grators have Courant-Friedrichs-Lewy constraints on the size of the time-step,

CFLcollisionless =
CDIM∑
i=1

max
T

∣∣∣∣ vi∆xi

∣∣∣∣+
V DIM∑
j=1

max
T

∣∣∣∣qs/ms (Eh + v ×Bh)j
∆vj

∣∣∣∣ ,
CFLc =

V DIM∑
j=1

max
T

∣∣∣∣ν (v − uh)j
∆vj

∣∣∣∣+
V DIM∑
j=1

max
T

∣∣∣∣ν Thms

1

(∆vj)2

∣∣∣∣ ,
∆t(CFLcollisionless + CFLc) ≤ 1

2p+ 1
,

for the Vlasov–Fokker–Planck equation, and

c
∆t

∆x
≤ 1/CDIM

2p+ 1
,

for Maxwell’s equations. Here, we have abbreviated the number of configura-

tion space dimensions as CDIM and the number of velocity space dimensions

as V DIM . The more restrictive of the two conditions tells us the maximum

stable time-step, and completes the prescription for the numerical integration

of the VM-FP system of equations in space and time.

Thus, we can now move to a discussion of how to evaluate the discrete scheme,
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i.e., how do we turn the math into code, an algorithmic formulation of the discrete

scheme that allows one to actually perform numerical experiments. Throughout this

summary, we have emphasized the requirements that components of the discrete

scheme be constructed consistently, e.g., computing velocity moments using weak

equality. This emphasis is not without merit. When we first described plasmas as

rich in their underlying physics in Chapter 1, we alluded to the fact that important

physics properties are implicit to the underlying equation system. For example, we

are discretizing the Vlasov–Fokker–Planck equation for the evolution of the particle

distribution function, but just as important is that velocity moments such as the

zeroth, mass, and second, energy, obey conservation equations. To actually retain

these properties that we painstakingly proved in this Chapter, we will find that

the ultimate algorithmic formulation of the scheme requires a comparable amount

of precision to the amount of mathematical care that was taken when deriving the

discrete scheme.
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Some of the material in this

chapter has been adapted from

Juno et al. [2018], Hakim,

Francisquez, Juno, and

Hammett [2019], and Hakim

and Juno [2020].

Chapter 3: From Math to Code: Efficient Implementation of DG for

the Vlasov–Maxwell–Fokker–Planck System of Equations

It is now time to undertake the task of translating the discrete scheme de-

scribed in Chapter 2 into an algorithm which can be implemented in a code, in this

case, the Gkeyll simulation framework. As part of our derivation of the discrete

scheme, there were many components of the scheme we left deliberately abstract

as they were unnecessary for describing the numerical method mathematically and

proving properties of the discretization of the VM-FP system of equations. We

have a long to-do list for converting Eqns. (2.22) and (2.133) for the Vlasov–Fokker–

Planck equation, and Eqns. (2.29) and (2.30) for Maxwell’s equations, into code.

We have restricted ourselves to basis sets of polynomials as part of the proofs

of the various conservation properties that our discrete scheme retains from the
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continuous system, such as conservation of mass and energy, but we have made no

mention yet of what specific form this polynomial basis takes. We likewise must

now evaluate these integrals in the discrete weak forms of the VM-FP system of

equations in some fashion, including a potential transformation from a more con-

venient computational space to the physical domain on which the equations are

defined. Finally, in tandem with actually performing the integrals in the discrete

weak forms, we must determine algorithmically how to compute the various compo-

nents of the scheme, such as velocity moments for the coupling between Maxwell’s

equations and the Vlasov–Fokker–Planck equation and the recovery of the distri-

bution function for the Fokker–Planck equation. With a prescription for how to

perform these operations, we will then be able to bring the whole algorithm to-

gether and evaluate computationally the spatial discretization. Combined with the

time discretization described in Section 2.7, we will then have completed the conver-

sion from the mathematical machinery described in Chapter 2 to the computational

machinery required to perform the numerical integration of the VM-FP system of

equations in our simulation framework Gkeyll.

3.1 Polynomial Bases in 1D: Nodal versus Modal

Even in one dimension, there is tremendous freedom in the definition of the

polynomial basis. The definition of the function space, Pp, only restricts us to

polynomials of, at most, order p. We could, for example, take our basis set to be
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simply

ψk(x) = xk, k = 0, . . . , p, x ∈ [−1, 1], (3.1)

where we have defined the polynomials on the interval [−1, 1] for convenience.

We could define the polynomials with respect to the local grid cell immediately,

as we did in the brief one dimensional DG example in Section 2.1 in Eq. (2.18)

wherein the linear polynomial included the local grid cell volume and cell center

coordinate. However, as we will show in Section 3.3, we can always transform our

computational domain to the physical domain on which the equations are defined.

We will find certain properties of the polynomial basis are ultimately more intuitive

by defining the polynomials on a reference element, in this case the element [−1, 1]

in one dimension. By defining the polynomials on a reference element, we also afford

ourselves greater flexibility, especially with respect to the physical coordinate system

and the overall structure of the grid on which the physical domain is defined.

So, with these caveats about defining the polynomial basis on a reference

element aside, the basis set defined in Eq. (3.1) seems perfectly acceptable. Indeed,

Eq. (3.1) is, mathematically, a completely reasonable basis. We could employ this

basis and the basis would lead to the discrete scheme retaining all the properties of

the continuous system proved in Chapter 2 and the discrete scheme would still be

L2 stable. However, the basis defined in Eq. (3.1) is a very bad choice for our basis

expansion because the basis has serious computational issues.

To see why Eq. (3.1) forms a bad basis computationally, consider the following
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operation that will be required as part of our discretization,

∫
Kj

∂fh(z, t)

∂t
w`(z) dz =

∑
k

dfk(t)

dt

∫
Kj

wk(z)w`(z) dz = M
df

dt
, (3.2)

where the matrix M has entries

Mk` =

∫
Kj

wk(z)w`(z) dz, (3.3)

and we have added back in the spatial dependence to the basis functions to make

the meaning of evaluation of entries of the matrix M more clear. In other words,

each combination of basis functions, integrated over the cell Kj, produces a matrix

with size Np×Np, where Np is the number of basis functions in the expansion within

a cell. This matrix, Eq. (3.3), is often called the mass matrix in the DG and finite

element literature [Hesthaven and Warburton, 2007]. Note that Eq. (3.2) implies

that we will require the inverse of the mass matrix, M, to ultimately discretize the

system of ordinary differential equations for f , the vector of expansion coefficients

within a cell.

Now, this mass matrix in one dimension on the reference cell is simply

Mk` =

∫ 1

−1

ψk(x)ψ`(x) dx. (3.4)

To make this example concrete, for the basis defined in Eq. (3.1), consider the mass
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matrix in one dimension for polynomial order four:

Mk` =

∫ 1

−1

xkx` dx =



2 0 2
3

0 2
5

0 2
3

0 2
5

0

2
3

0 2
5

0 2
7

0 2
5

0 2
7

0

2
5

0 2
7

0 2
9


. (3.5)

Perhaps unremarkable, but let us examine the condition number for the matrix in

Eq. (3.5),

κ∞(M) ..= ||M−1||∞||M||∞ =
8211

16
, (3.6)

where || · ||∞ is the L∞ matrix norm1,

||A|| = max
1≤k≤N

N∑
`=1

|Akl|. (3.7)

The condition number measures the sensitivity of the solution to small changes

in the initial data. Because we require the inverse of the mass matrix, M, before we

can discretize the system of ordinary differential equations for the time evolution of

f a large condition number for the mass matrix is very bad. A rough rule of thumb

is that for κ∞(A) = 10n, we expect to lose n digits of accuracy due to a loss of

precision from the inversion of the matrix [Press et al., 2007]. So, for the matrix in

1Note the condition number can be defined with any suitable matrix norm, such as the Frobenius
norm,

||A|| =

√√√√ N∑
k=1

N∑
`=1

|Akl|2.
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Eq. (3.5), we would expect to lose log10(κ∞(M)) ∼ 2.7 digits of accuracy. As we go

to higher and higher polynomial order with the simple monomial basis defined in

Eq. (3.1), the loss of accuracy becomes quite high.

A standard means of ameliorating this issue of poor conditioning of the com-

ponent matrices, such as the mass matrix, in the DG discretization is to perform

a Gram-Schmidt orthogonalization process on Eq. (3.1). We would thus obtain a

basis of orthogonal polynomials, which can then be made orthonormal. As part of

the Gram-Schmidt procedure, we first define a projection operator,

projυ(ψ) =
(ψ, υ)L2

(υ, υ)L2

υ, (3.8)

where the L2 inner product, (·, ·)L2 , is the inner product we have been continually

employing,

(ψ, υ)L2 =

∫ 1

−1

ψ(x)υ(x) dx,

with natural generalizations to higher dimensions. We then use this projection

operator to transform the monomial basis in Eq. (3.1) into a set of orthogonal poly-
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nomials. Proceeding sequentially through the polynomial set,

υ0 = ψ0 = 1,

υ1 = ψ1 − projυ0
(ψ1) = x,

υ2 = ψ2 − projυ0
(ψ2)− projυ1

(ψ2) =
3x2 − 1

3
,

υ3 = ψ3 − projυ0
(ψ3)− projυ1

(ψ3)− projυ2
(ψ3) =

x(5x2 − 3)

5

υ4 = ψ4 − projυ0
(ψ4)− projυ1

(ψ4)− projυ2
(ψ4)− projυ3

(ψ4) =
35x4 − 30x2 + 3

35
.

(3.9)

This procedure generalizes to higher polynomial orders as we might expect, with

υk = ψk −
k−1∑
j=1

projυj−1
(ψk). (3.10)

We can make these polynomials orthonormal using

υ̂ =
υ√

(υ, υ)L2

, (3.11)

i.e., dividing by the L2 norm of the polynomials. This procedure gives us the

following set of orthonormal polynomials for the one dimensional, p = 4, basis,

υ̂0 =
1√
2
,

υ̂1 =

√
3

2
x,

υ̂2 =

√
5

8
(3x2 − 1),

υ̂3 =

√
7

8
(5x3 − 3x),

υ̂4 =
3

8
√

2
(35x4 − 30x2 + 3).

(3.12)
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Because these polynomials are orthonormal,

∫ 1

−1

υ̂kυ̂` dx = δk`, (3.13)

Eq. (3.5) reduces to

M =
←→
I , (3.14)

the identity matrix, whose condition number is trivially κ∞(M) = 1.

As an aside, we can gain intuition for why the conditioning of the mass matrix

improves so dramatically when employing orthonormal polynomials by examining

the behavior of our two choice of basis sets on the interval [−1, 1], shown in Fig-

ure 3.1. We can understand the poor conditioning of Eq. (3.5) because the monomial

basis defined in Eq. (3.1) becomes less linearly independent as we go to higher order,

i.e., the higher order polynomials become indistinguishable from each other, imply-

ing that the representation is more sensitive to changes in the solution. In other

words, we have trouble actually obtaining an accurate representation of the solution

from the monomial basis because of the behavior of the monomials on the interval

[−1, 1]. In contrast, the orthonormal basis maintains good coverage of the interval

as we increase the order of the polynomials, and thus we expect the accuracy of the

representation continually improves as we go to higher and higher order.

Also, we note the similarities between the orthonormal polynomials defined

and Legendre polynomials, which are an orthogonal set of polynomials defined on

the interval [−1, 1] with an identical inner product to the inner product we have

been employing, Eq. (2.1). Legendre polynomials are normalized to be equal to ±1
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Figure 3.1: The simple monomial basis (left) defined in Eq. (3.1) and the orthonor-
mal basis obtained by a Gram-Schmidt orthogonolization (orthonormalization) ap-
plied to the monomial basis (right). We can see that in the limit of high polynomial
order, the monomial basis becomes less linearly independent, i.e., the higher order
polynomials are essentially indistinguishable. On the other hand, the orthonormal
basis maintains better “coverage” of the space on the interval from [−1, 1] so that it
is easy to imagine why higher order orthonormal polynomials do actually improve
the accuracy of the representation.

at the edges of the interval. Although Legendre polynomials are orthogonal and

very similar to the orthogonal polynomials we first found with our Gram-Schmidt

procedure, they are not orthonormal,

∫ 1

−1

Pn(x)Pm(x) dx =
2

2n+ 1
δmn. (3.15)

Importantly, we have our first instance justifying out choice to define the poly-

nomials on a reference element [−1, 1]: we are performing a Gram-Schmidt orthog-

onalization (orthonormalization) process on polynomials defined on this interval.

Thus, the polynomials will be orthogonal and orthonormal on this interval, and po-

tentially only on this interval. We will see that this restriction does not cause any

issues for the purposes of transforming from the reference element, or computational

space, to physical space in Section 3.3.
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The set of one dimensional orthonormal polynomials derived in this chapter,

e.g., Eq. (3.12) for polynomial order four, define what is called a modal basis for our

DG discretization. This terminology follows from the fact that in the projection of

a quantity of interest onto our basis set, we are projecting onto a set of modes. An

alternative prescription is called a nodal basis, wherein the basis set is defined by a

set of polynomials whose values are known at nodes. In other words, a basis such

as

f(x, t) ≈ fh(x, t) ..=

Np−1∑
k=0

fk(ξk, t)`k(x), (3.16)

where `k are the Lagrange interpolating polynomials,

`k(x) =

Np−1∏
j=0,j 6=k

x− ξj
ξk − ξj

, (3.17)

and ξk are the k nodes by which the polynomials are defined. In other words, in this

basis set, the polynomials take the value of one at one node and zero at all other

nodes, thus the coefficients fk in Eq. (3.16) are known at the nodes ξk.

Just as Eq. (3.1) was related mathematically to the orthonormal, modal basis

by the Gram-Schmidt orthogonalization (orthonormalization) process, so too do the

one dimensional modal and nodal bases have a mathematical connection. Using the

Vandermonde matrix,

Vk` = υ̂`(ξk), (3.18)

i.e., the matrix whose entries are each of the ` orthonormal polynomials evaluated at

the nodes ξk, we can transform the coefficients in the modal basis to the coefficients
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in the nodal basis,

Vk`f`(t) = fk(ξk, t). (3.19)

And just as with Eq. (3.1), both the modal and nodal bases are perfectly mathemat-

ically acceptable basis sets for implementing the DG scheme for the VM-FP system

of equations described in Chapter 2, but they have quite different computational

properties. Before we can explore the full extent of the computational consequences

for a modal versus a nodal basis set, we should first discuss the generalization of

these basis sets to higher dimensions.

3.2 Polynomial Bases in Higher Dimensions:

The “Curse of Dimensionality” and Serendipitous Basis Choices

From the beginning, we have been interested in the numerical integration of

an equation system which is high-dimensional, up to six dimensions plus time. This

high dimensionality of the VM-FP system of equations presents a special set of

challenges for the design and implementation of our numerical method. The “curse

of dimensionality,” the exponential cost scaling of a numerical method with the di-

mensionality of the problem, is not a “curse” to be taken lightly. This exponentially

increasing cost scaling with dimensionality is in fact one of the principal reasons for

the popularity of the particle-in-cell method discussed in Chapter 1, as it is argued

that the integration of particles on a three-dimensional grid, instead of the inte-

gration of the particle distribution function on a six-dimensional grid, is inevitably
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more cost effective. Of course, we have strong motivation for the direct discretiza-

tion approach, so we instead want to focus on whether this burden of cost can be

overcome.

The standard higher dimensional generalization of the one dimensional bases

defined in Section 3.1 is a tensor basis constructed from a tensor product of the

one dimensional basis sets for each dimension of interest. For example, in two

dimensions, the generalization of the monomial basis is simply

Qp
2 = span

0≤m,n≤p
{xmyn}. (3.20)

Due to the nature of the tensor product, the number of basis functions within a cell

scales like (p+ 1)d, exactly the exponential scaling we predicted at the beginning of

this section. We seek reductions then of this tensor product basis.

The first reduction we consider is known as the Serendipity basis set [Arnold

and Awanou, 2011]. The Serendipity basis set is obtained by dropping all monomial

terms which have “super-linear” degree greater than the specified polynomial order

p. For example, for the piecewise quadratic, two dimensional, Serendipity basis

expansion, we would have

S2
2 = {1, x, y, xy, x2, y2, x2y, xy2, x2y2}, (3.21)

because the “super-linear” degree of x2y2 is four, which is greater than the specified

polynomial order of two. We could then apply the appropriate higher dimensional

generalization of the Gram-Schmidt orthonormalization procedure described in the

previous section, Section 3.1. In two dimensions, this generalization of the inner
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product would be

(υ, ψ)L2 =

∫ 1

−1

∫ 1

−1

υ(x, y)ψ(x, y) dxdy, (3.22)

so that we would find the two dimensional, piecewise quadratic, orthonormal, modal,

Serendipity basis to be

υ̂0(x, y) =
1

2
,

υ̂1(x, y) =

√
3x

2
,

υ̂2(x, y) =

√
3y

2
,

υ̂3(x, y) =
3xy

2
,

υ̂4(x, y) =

√
5(3x2 − 1)

4
,

υ̂5(x, y) =

√
5(3y2 − 1)

4
,

υ̂6(x, y) =

√
15(3x2 − 1)y

4
,

υ̂7(x, y) =

√
15(3y2 − 1)x

4
.

(3.23)

The general scaling of the Serendipity basis set is given by

Np =

min(d,p/2)∑
i=0

2n−i
(
d

i

)(
p− i
i

)
, (3.24)

where Np is the number of polynomials, d is the dimensionality of the basis set, and

p is the polynomial order. This particular reduced basis set has been extensively

studied in the literature, and found to have the same formal convergence order as

the tensor basis, though the generalization of the Serendipity basis to unstructured

grids requires care as arbitrary refinements of an unstructured grid will destroy the

convergence order of the Serendipity expansion [Arnold et al., 2002]. By convergence
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order, we mean the rate of convergence to the true solution of the continuous system

in the limit that the grid spacing goes to zero. So a second order method corresponds

to a method where the errors decrease as (∆x)2 as ∆x→ 0. Although we have not

said so explicitly up to this point, all the work of this thesis uses structured grids,

specifically structured quadrilaterals.

We can consider a further reduction on top of the Serendipity basis to drop

all monomials of total degree greater than the polynomial order specified, which we

call the maximal order basis set. For this reduced basis set, we would only retain

polynomials zero through five in Eq. (3.23), since polynomials six and seven have

total degree three. The general scaling of the maximal order basis set is

Np =
(p+ d)!

p!d!
. (3.25)

Elsewhere in the finite element literature, these three basis sets, the tensor ba-

sis, Serendipity, and what we are calling maximal order, are sometimes abbreviated

as the Q,S, and P spaces respectively. Like the Serendipity basis set, the maximal

order basis set has been the subject of a large number of studies to examine its

convergence order and accuracy relative to the tensor basis. While maintaining the

same convergence order, the maximal order basis set is generally found to be less

accurate, and this basis can have further detrimental consequences for the physical-

ity of the solution. For example, Cheng et al. [2013b] found the maximal order basis

to have more serious issues with artificial dissipation compared to the tensor basis

in a Vlasov–Poisson study using the discontinuous Galerkin method.

For reference, the number of degrees of freedom in a cell for a variety of poly-
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nomial orders and up to six dimensions for the three basis sets, tensor, Serendipity,

and maximal order, is included in Tables 3.1, 3.2, and 3.3, respectively. We can

Q Polynomial Order 1 2 3 4 5 6

Dimension (p+ 1)d

2 4 9 16 25 36 49

3 8 27 64 125 216 343

4 16 81 256 625 1296 2401

5 32 243 1024 3125 7776 16807

6 64 729 4096 15625 46656 117649

Table 3.1: Number of degrees of freedom internal to a cell in the tensor product
basis set.

S Polynomial Order 1 2 3 4 5 6

Dimension
∑min(d,p/2)

i=0

(
d
i

)(
p−i
i

)
2 4 8 12 17 23 30

3 8 20 32 50 74 105

4 16 48 80 136 216 328

5 32 112 192 352 592 952

6 64 256 448 880 1552 2624

Table 3.2: Number of degrees of freedom internal to a cell in the Serendipity basis
set.

see the aforementioned exponential increase in the number of polynomials, and thus

the cost, with the tensor product basis in Table 3.1. We note the rather dramatic

reduction in the number of degrees of freedom, especially for the higher dimensional

cases, for the Serendipity and maximal order basis sets.

We conclude this section with a brief discussion of how these reduced modal

basis sets in higher dimensions can also be converted to their nodal counterparts.
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P Polynomial Order 1 2 3 4 5 6

Dimension (p+d)!
p!d!

2 3 6 10 15 21 28

3 4 10 20 35 56 84

4 5 15 35 70 126 210

5 6 21 56 126 252 462

6 7 28 84 210 462 924

Table 3.3: Number of degrees of freedom internal to a cell in the maximal order
basis set.

While there is no known nodal configuration for the maximal order basis, there are

nodal configurations for the Serendipity basis with potentially favorable computa-

tional properties, such as the nodal configuration in one, two, and three dimensions

(1D, 2D, 3D) discussed in Arnold and Awanou [2011] and shown in Figure 3.2.

In this case, we will have a unique polynomial for each node, which has variation

throughout the entire multi-dimensional reference cell, that takes the value of one

at one node and zero at the other nodes.

This particular nodal layout is constructed such that every higher dimensional

reference quadrilateral element is built from the lower dimensional reference quadri-

lateral elements, so that the lower dimensional faces of a reference quadrilateral

element also form a unisolvent expansion, i.e., the polynomials local to the face

form a complete basis of the solution space. For example, consider the pictorial rep-

resentation of the 3D reference element. Each 2D face of the reference 3D element

is exactly the 2D reference element for that particular polynomial order. This same
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Figure 3.2: Schematic drawing of the nodal locations for the Serendipity basis in
1D (top), 2D (middle), and 3D (bottom) for polynomial orders one (far left), two
(middle left), three (middle right), and four (far right).

recursive approach can be applied to higher dimensions as well2, with the reference

4D element being comprised of reference 3D elements for each of the 4D element’s

eight 3D faces, a reference 5D element consisting of a reference 4D element for all

ten 4D faces of a 5D element, and so on. This approach has the advantage of greatly

simplifying surface integral calculations. Since every higher dimensional element is

recursively generated from lower dimensional elements, every face of a higher di-

mensional element, the 2D faces in 3D or the 4D faces in 5D, forms a unisolvent

expansion for that surface. We thus only require the nodal information local to that

2This fact is true in general, but higher polynomial orders may modify the lower dimensional
reference elements such that the recursive algorithm is not quite as obvious as the one presented
here. Just as polynomial order four introduces an interior node to a reference 2D element, so can
higher polynomial orders introduce interior nodes to higher dimensional reference elements which
would have to be taken into account in the recursive generation of the reference element. For up to
polynomial order four though, every higher dimensional object can be easily generated as described,
with 2D reference elements making up the faces of a 3D reference element, 3D reference elements
making up the faces of a 4D reference element, and so on. Considering that the Serendipity basis in
four, five, and six dimensions, with polynomial order four, involves the solution of a large number
of degrees of freedom per cell, we will not consider further extensions of this recursive algorithm
due to the same performance and cost considerations that motivated the use of the Serendipity
basis—we seek to avoid evolving thousands of degrees of freedom per cell.
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face and can reduce the number of multiplications in the evaluation of the surface

integrals by a somewhat sizable fraction. In 5D for instance, to advance the solution

of the distribution function in time, one performs one 5D volume integral and ten

4D surface integrals, so the 4D surface integrals can be performed with this reduced

number of degrees of freedom.

So, we have mitigated the malediction normally imposed on us by solving a

higher dimensional partial differential equation system like the VM-FP system of

equations by choosing reduced basis sets such as the Serendipity and maximal order

basis set. In addition, we have prescriptions for both nodal and modal bases for

the Serendipity basis set. Having defined our basis sets, we will now move to the

actual evaluation of the integrals in the discrete weak form, first focusing on the

transformation from the reference elements on which we have chosen to define the

polynomials to the actual physical domain on which the VM-FP system of equations

is defined, and then moving to a procedure to evaluate the integrals in totality.

The latter procedure will prove especially subtle and lead to the two most critical

algorithmic advancements in this thesis.

3.3 Transforming from Computational Space to Physical Space

Having defined suitable polynomial basis sets for the full spectrum of dimen-

sionality of interest, for arbitrary polynomial order, we return to an issue discussed

in Section 3.1. We require integrals over the physical domain, i.e., a physical cell Kj

in phase space, such as in Eq. (3.3), but we have defined the polynomials on the in-
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terval [−1, 1]d, where d is the dimensionality of the reference element. To transform

Eq. (3.3), we can make a change of variables,

Mk` =

∫
Kj

wk(z)w`(z) dz

=

∫
I

wk(z(η))w`(z(η))

∣∣∣∣ dzdη
∣∣∣∣ dη

=

∫
I

υ̂k(η)υ̂`(η)

∣∣∣∣ dzdη
∣∣∣∣ dη, (3.26)

where

(
dz

dη

)
ij

=
dzi
dηj

(3.27)

is the Jacobian matrix, and we require its determinant to perform the transforma-

tion. In this procedure, we have transformed the basis functions w(z) defined on

the physical phase space mesh to υ̂(η), the orthonormal basis set defined on the ref-

erence element I = [−1, 1]d, where d is the dimensionality of the reference element.

We could also just as easily transform the phase space basis functions w(z) to the

nodal basis defined on the reference element I = [−1, 1]d.

To determine the Jacobian matrix and its determinant, we must know the

functional form for the change of variables from the coordinate z to the coordinate

η. To take a simple example, we could transform from a uniform, structured,

Cartesian grid to the reference element with the formula

z = η
∆z

2
+ zcenter, (3.28)

where ∆z is the grid spacing in each direction of phase space, and zcenter is the cell
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center. The entries of the Jacobian matrix would then be

dzi
dηj

=
∆zi
2
δij, (3.29)

and since this matrix is diagonal, the determinant is straightforwardly

∣∣∣∣ dzdη
∣∣∣∣ =

1

2d

d∏
i=1

∆zi. (3.30)

The change of variables need not be so simple. But, so long as the Jacobian

for the change of variables is known, we can map the reference element onto as

complex a physical grid as we can imagine. For example, we can construct a non-

orthogonal coordinate system which follows magnetic field lines, as is done with the

simulation framework the VM-FP solver is built in, Gkeyll, for other applications

[Bernard et al., 2019, Shi et al., 2019, Mandell et al., 2020, Bernard et al., 2020,

Francisquez et al., 2020]. Depending on the complexity of the Jacobian though, e.g.,

if the transformation itself varies in space, further modification of the integrals may

be required, especially for the terms involving gradients.

Let us now, in the lead up to the next section, return to the explicit expres-

sion for the discrete weak form of the Vlasov equation, Eq. (2.22), and attempt to

reveal exactly the integrals we need to compute. Substituting the expansions of the

distribution function, fh and the phase space flow, αh, into Eq. (2.22), we obtain

∑
k

dfk(t)

dt

∫
Kj

wk(z)w`(z) dz +
∑
m

F̂m(t) ·
∮
∂Kj

nw−` (z)wm(z) dS

−
∑
m,n

fm(t)αn(t) ·
∫
Kj

∇zw`(z)wm(z)wn(z) dz = 0. (3.31)

Assuming our grid is uniform, structured, and Cartesian we can rearrange this ex-
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pression using the procedure in Eq. (3.26), as well as the determinant of the Jacobian

matrix in Eq. (3.30), to obtain

∑
k

dfk(t)

dt

1

2d

d∏
i=1

∆zi

∫
I

υ̂k(η)υ̂`(η)dη +

(
1

2d

d∏
i=1,i 6=j

∆zi

)∑
m

F̂m(t) ·
∮
∂Ij

nυ̂−` (η)υ̂m(η) dS

−

(
1

2d

d∏
i=1

∆zi

)∑
m,n

fm(t)αn(t) ·
∫
I

2

∆z
∇ηυ̂`(η)υ̂m(η)υ̂n(η)dη = 0. (3.32)

Note the slight change in notation, where we are denoting the surface ∂Ij as the

surface with constant j dimension, where j = x, y, z, vx, vy, vz, since the determinant

of the Jacobian for the surface integral will not have the volume factor for that di-

mension. In addition, we have obtained an additional factor of 2/∆z in transforming

the gradient from ∇z to ∇η. Importantly, this term is still a vector, and one only

picks up the factor of 2/∆z for the particular gradient being transformed.

Since Eq. (3.32) must be solved for every υ̂` in our basis expansion, we can

make Eq. (3.32) more elegant by rearranging it to be a linear system,

dfk
dt

= (Mk`)
−1

[∑
m

U`m · F̂m(t) +
∑
m,n

C`mn ·αn(t)fm(t)

]
, (3.33)

where (Mk`)
−1 is the inverse of the transformed mass matrix,

Mk` =

∫
I

υ̂k(η)υ̂`(η)dη, (3.34)

and the tensors U`m and C`mn are

U`m =
2

∆zj

∮
∂Ij

nυ̂−` (η)υ̂m(η) dS, (3.35)

C`mn =

∫
I

2

∆z
∇ηυ̂`(η)υ̂m(η)υ̂n(η)dη. (3.36)
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A few remarks on these matrices and tensors are in order. The first remark is the

implicit sum in retaining the dot products in Eq. (3.33), i.e., we have to perform

the surface integrals for each of the j surfaces and sum over the contribution, and

likewise we must sum over each contribution from the phase space flux, αh, in the

volume term. In addition, we remark that the contribution from the determinant

of the Jacobian matrix has been cancelled when going from Eq. (3.32) to Eq. (3.33).

The only coordinate transform contributions that survive are the factor from trans-

forming the gradient ∇z to ∇η, and the remaining inverse volume factor, 2/∆zj, in

the surface integral for the dimension which is constant at the corresponding surface,

∂Ij.

While we chose to illustrate the change of coordinates and construction of the

linear system with the orthonormal modal basis expansion, i.e., υ̂` for each of the

` basis functions in the expansion, we could have just as easily illustrated these

transformations with the nodal basis expansion. Importantly, a key operation we

must perform to be able to construct the linear system shown in Eq. (3.33) is to

project the numerical flux function onto our basis expansion. For example, if we

employ central fluxes, then using the machinery of weak equality from Section 2.4,

we have

F̂
.
=

1

2
αh(f

+
h + f−h ), (3.37)

where the projection is done over the full basis expansion, but the phase space flux

αh and the distribution function f±h are evaluated at the corresponding surface.

Similar manipulations which produced Eq. (3.33) can also be performed for
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our semi-discrete forms of Maxwell’s equations and the Fokker-Planck equation.

The essential idea is always to construct the mass matrix which multiplies the time

derivative, and the two tensors which encode the spatial discretization, one for the

surface integral contributions, for each surface on the reference element, and one

for the volume integral contribution. Note that in the construction of the tensor

for the surface integral contributions, we must project the flux functions onto the

corresponding basis set, i.e., we must project central, Eqns. (2.33)-(2.34), or upwind

fluxes, Eqns. (2.48)-(2.51), for Maxwell’s equations onto configuration space basis

functions. Likewise, we must project the two surface fluxes for the semi-discrete

Fokker–Planck equation onto phase space basis functions.

The evaluation of all of these linear operations in each cell Kj in phase space

and Ωj in configuration space then completes the algorithm for the spatial discretiza-

tion. To actually evaluate these linear operations though, we now need to construct

these tensors for the surface integrals and volume integral by specifying how to

compute the integrals in Eqns. (3.34–3.36). What may seem relatively straightfor-

ward belies a subtlety that is of singular consequence for the construction of the

algorithm.

3.4 Evaluating the Integrals: The Importance of an

Alias-Free Scheme

At first glance, there is nothing remarkable about the integrals which must be

performed in the construction of Eqns. (3.34–3.36). They are products of polynomi-
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als; we could either use Gaussian quadrature of an appropriate degree, or even ex-

actly integrate the combinations of polynomials and store the entries of the matrices

and tensors defined in Eqns. (3.34–3.36) for the Vlasov equation and the analogous

matrices and tensors for the Fokker–Planck equation and Maxwell’s equations.

Consider what the application of Gaussian quadrature to Eq. (3.36) would

entail. In one dimension, the numerical integration of a function with Gaussian

quadrature is done via

∫ 1

−1

f(x) dx ≈
Nq∑
i=1

Wif(xi), (3.38)

where Wi and xi are the i weights and abscissas for the Gaussian quadrature rule.

The extension to higher dimensions is done using a tensor product of one dimensional

weights and abscissas, e.g., in two dimensions,

∫ 1

−1

∫ 1

−1

f(x, y) dxdy ≈
Nq∑
i=1

Nq∑
j=1

WiWjf(xi, yj). (3.39)

An example Gaussian quadrature rule, Gauss-Legendre, is shown in Table 3.4. To

perform Gaussian quadrature on integrals such as Eq. (3.36), we require a tensor

product of Nq quadrature points in each direction for every dimension we wish to

integrate. This approach will integrate exactly monomials of a particular order,

e.g., 2Nq − 1 for Gauss-Legendre or 2Nq − 3 for Gauss-Lobatto, regardless of the

dimension in which the monomial varies.

Even with the added accuracy of Gauss-Legendre, this strategy quickly be-

comes untenable for the same reason the tensor product basis is prohibitively ex-

pensive for solving the VM-FP system of equations: the “curse of dimensionality.”
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Nq xi Wi Order of Accuracy (2Nq − 1)

1 0 2 1

2 ± 1√
3

1 3

3
0 8

9

±
√

3
5

5
9

5

4
±
√

3
7
− 2

7

√
6
5

18+
√

30
36

±
√

3
7

+ 2
7

√
6
5

18−
√

30
36

7

5
0 128

225

±1
3

√
5− 2

√
10
7

322+13
√

70
900

±1
3

√
5 + 2

√
10
7

322−13
√

70
900

9

Table 3.4: The weights and abscissas for the Gauss-Legendre quadrature rule. The
nodes (abscissas) are the roots of the Legendre polynomial PNq(x) and the weights
Wi = 2/[(1− x2

i )(P
′
Nq

(xi))
2] [Abramowitz and Stegun, 1985].

For example, consider integrating the volume term in five dimensions with second

order polynomials. Naively, one expects this to require the integration of monomials

with degree 3p = 6 in each dimension, because both αh and fh have polynomial

expansions, thus requiring at least 4 quadrature points in each dimension, or a to-

tal of 45 = 1024 quadrature points, to avoid under-integrating the volume term in

Eq. (3.36). Given that the scaling of the computation of the volume integral in a

cell is O(N tot
q Np), where N tot

q is the total number of quadrature points, the number

of operations per phase space cell becomes quite large for modest polynomial orders

in high dimensions.

Leveraging the fact that Eq. (3.36) is just a triple product of polynomials and

exactly integrating each term in the tensor to some specified precision, e.g., double

155



precision, is not guaranteed to produce a more favorable computational complex-

ity. If every degree of freedom within a phase space cell is coupled, the resulting

tensor would be dense and the computational complexity of evaluating this tensor

convolution would then be O(N3
p ), where Np is the number of basis functions in

our phase space expansion. It is perhaps the case that the scaling would not be

as dire as O(N3
p ), since the phase space flux, αh, requires the expansions of the

electromagnetic fields, which live in the configuration space subspace of our phase

space expansion, but α does vary linearly in velocity space via the v × B compo-

nent of the Lorentz force. Thus, we expect the computational complexity would be

between O(N3
p ) and O(NcN

2
p ), where Nc is the number of configuration space basis

functions, and not the full reduction to the more favorable O(NcN
2
p ) scaling.

An approach that is standard with nodal bases is to reduce the cost of the

scheme by only evaluating the terms in these integrals, such as Eq. (3.35) and

Eq. (3.36), at the specified nodes that define the polynomials [Hesthaven and War-

burton, 2007, Hindenlang et al., 2012]. In doing so, the required number of op-

erations would be significantly decreased, as the values of the coefficients at the

nodes are known by the definition of the nodal basis, reducing the computational

complexity to O(N2
p ). But, this approach incurs the very same aliasing errors we

warned about in Section 2.4. Even if the values of the various quantities such as αh

and fh are known at the nodes, the product of the two quantities required for the

volume term is not known at the nodes because the product of the two quantities

is higher order. Thus, we will be unable to determine the nonlinear term uniquely

if we evaluate αh and fh at the nodes and multiply the result.
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We now make concrete one of the principal advancements of this thesis: the

intolerable consequences of aliasing errors in a DG discretization of an equation

system such as the VM-FP system of equations. We emphasized in Section 1.6 and

Appendix A for the continuous system, and again when we discussed the properties

of the discrete system in Sections 2.3 and 2.6, that many properties of the VM-FP

system of equations are implicit to the equation system. The Vlasov–Fokker–Planck

equation is a conservation equation for the particle distribution function, and the

fact that it is a conservation equation makes certain properties explicit, such as phase

space incompressibility for the collisionless component of the equation system. How-

ever, other properties are contained in velocity moments of the equation system. For

example, it is the second velocity moment of the Vlasov–Fokker–Planck equation,

combined with Maxwell’s equations, that gives us total energy conservation.

When proving that the discrete scheme maintains properties of the continu-

ous system such as conservation of mass and energy, we substituted for the test

functions, w, expressions we presumed we would be able to integrate. In one case,

we substituted w = 1/2m|v|2 and evaluated the integrals to massage the volume

term into forms which determined the conditions for which energy would be con-

served. While at first glance this may seem like an obvious assertion: we have to

evaluate the integrals correctly to actually retain properties such as conservation of

mass and energy, it is important to realize why this is the case. Were we evalu-

ating explicit conservation relations, such as the conservation of mass, momentum,

and energy equations in the Euler equations, the Navier-Stokes equations, or the

equations of magnetohydrodynamics, aliasing errors could be problematic, but they
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would not destroy conservation relations. The aliasing errors arising from not ex-

actly representing the fluid equation solution in a DG algorithm exactly might cause

anomalous energy transport, but the aliasing induced transport would not destroy

energy conservation of the equation system.

We do not wish to be overly uncharitable on this point. It is well known

within the DG computational fluid dynamics community that aliasing errors can

lead to stability issues [Kirby and Karniadakis, 2003]; however, because the aliasing

errors manifest in the smallest scales and highest wavenumbers, techniques such as

filtering and artificial dissipation are commonly employed to ameliorate these errors

[Fischer and Mullen, 2001, Gassner and Beck, 2013, Flad et al., 2016, Moura et al.,

2017]. And because fluids equations such as the Euler equations, the Navier-Stokes

equations, or the equations of magnetohydrodynamics involve the discretization of

explicit conservation relations for mass, momentum, and energy, there is far less

concern that such filtering or artificial dissipation will destroy the quality of the

solution, at least at scales above the resolution of the simulation. There are other

means of alleviating or eliminating aliasing errors using split-form formulations of

the DG method3 [Gassner, 2013, 2014, Gassner et al., 2016a,b, Flad and Gassner,

2017], and overintegration, essentially the idea we already discussed of adding suf-

ficient quadrature points to exactly integrate the nonlinear term [Mengaldo et al.,

2015, Kopriva, 2018, Fehn et al., 2019]. For a comparison of these two approaches,

see Winters et al. [2018]. Importantly, with the exception of overintegration4, tech-

3In the split-form forumulation, conservative and non-conservative forms of the equation at
the continuous level are averaged to produce a different, but ultimately more computationally
favorable, equation to discretize.

4And only overintegration in specific circumstances, as overintegration of expressions such as
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niques such as filtering and the split-form formulation are attempts to reduce aliasing

errors, not completely eliminate them. For certain equation systems, the split form

formulation has been shown to balance robustly two sources of aliasing: too much

energy in the small scales due to under-integration of the conservative form and too

little energy in the small scales caused by under-integration of the non-conservative

form. These errors then roughly cancel and produce a more favorable method; how-

ever, formulating the equations in split-form is still principally a means of controlling

aliasing errors, not removing aliasing errors entirely [Winters et al., 2018].

Critically, we must eliminate aliasing errors from our DG discretization of

the VM-FP system of equations, lest these aliasing errors manifest themselves as

the “energy content” of the velocity moments being transported in uncontrolled

and undesirable ways. Because the physics content of the velocity moments of

the particle distribution function are directly encoded in our DG discretization, we

cannot allow aliasing errors to change the behavior of these moments in our basis

expansion. We are explicitly evolving a polynomial expansion in velocity space

that corresponds directly to evolving velocity moments like mass and energy, so

any anomalous transport of the “energy content” of our expansion will inevitably

destroy the conservation relations implicit to the VM-FP system of equations.

The very same structure of our basis expansion we leveraged to demonstrate

the discrete VM-FP system of equations retained key properties of the continuous

system imposes the constraint that we eliminate aliasing errors from the evaluation

Eq. (2.110) for computing the discrete flow, uh will always incur aliasing errors unless you apply
overintegration to the linear operation defined in Eq. (2.111), because Eq. (2.110) involves integra-
tion of a rational function, which Gaussian quadrature cannot integrate exactly.
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of the discrete weak forms for the VM-FP system of equations. If we do not respect

this restriction on our discrete scheme, we by no means guarantee the VM-FP system

of equations retains these properties of the continuous system, and thereby risk not

just the physicality of the solution, but the overall stability of the numerical method.

It would be nigh impossible to correct the rearrangement of the “energy content”

of the basis expansion in a physically reasonable way, much less a stable way. If we

cannot safely apply standard techniques such as filtering to mitigate aliasing errors,

we must then eliminate these errors in their entirety.

So, we return to the computational complexity we found for the naive means of

eliminating aliasing errors with exact integration. For exact numerical integration,

the computational complexity will inevitably be O(N tot
q Np), while exact analytic in-

tegration will produce an algorithm we expect will lie between O(NcN
2
p ) and O(N3

p ),

at least if one assumes that every degree of freedom couples to every other degree

of freedom in the expansion. We can ask the question if there is any way to reduce

this cost, and indeed for numerical integration, some savings can be obtained by use

of an anisotropic quadrature scheme. For example, if we consider the advection in

velocity space,

∫
Kj

∇vw` ·αv
hfh dz =

∫
Kj

∇vw` ·
q

m
(Eh + v ×Bh)fh dz, (3.40)

for each of the ` basis functions in our phase space expansion, we can see that,

while we require integrating monomials of degree 3p in configuration space, in ve-

locity space we require at most integrating monomials with degree 2p + 1. Table

3.5 considers the impact anisotropic quadrature, using only the minimum number
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of quadrature points required along each direction of integration, has on a few com-

binations of velocity space and configuration space dimensions. While there is no

Polynomial Order 1 2 3 4

Dimension ((3p+ 1)/2)CDIM × ((2p+ 2)/2)3

1X3V 16 108 320 875

2X3V 32 432 1600 6125

3X3V 64 1728 8000 42875

Table 3.5: Number of quadrature points required to integrate the volume term
for the advection of the distribution function in velocity space as a function of
dimension.

Cost(Original/New) Polynomial Order 1 2 3 4

Dimension

1X3V 1 ∼ 2.37 ∼ 1.95 ∼ 2.74

2X3V 1 ∼ 2.37 ∼ 1.95 ∼ 2.74

3X3V 1 ∼ 2.37 ∼ 1.95 ∼ 2.74

Table 3.6: Reduction in the number of quadrature points, relative to isotropic
quadrature, required to integrate the volume term for the advection of the dis-
tribution function in velocity space.

gain for polynomial order one, there is a moderate improvement relative to isotropic

quadrature for other combinations, as shown in Table 3.6. A similar reduction in the

number of quadrature points required can be demonstrated for the surface integrals.

Although we could individually examine each component of the semi-discrete

Vlasov–Fokker–Planck equation and determine the minimum amount of quadrature

required to integrate each term exactly, it is worth pointing out that, inevitably, the

computational complexity of this algorithm remains O(N tot
q Np). There are some

exceptions: for example, we can rewrite the phase space flux in configuration space
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to exploit the fact that the we are employing structured, Cartesian grids,

∫
Kj

∇xw` · vfh dz =

∫
Kj

∇xw` · (v − vcenter)fhdz +

∫
Kj

∇xw` · vcenterfh dz, (3.41)

for each of the ` basis functions in our phase space expansion, where vcenter = v is

the cell center velocity. These integrals can be pre-computed on the phase space ref-

erence elements because they are only coordinate weighted matrices, independent of

one’s exact position in velocity space, thus reducing their computational complexity

to O(N2
p ).

However, the rearrangement of the phase space flux in configuration space

to reduce the cost is the exception and not the norm. The individual pieces of

the semi-discrete Fokker–Planck equation will be limited in cost by the number of

quadrature points required to integrate exactly the semi-discrete form because the

Fokker–Planck equation is nonlinear, just like the advection in velocity space due

to the electromagnetic fields.

So, numerical quadrature will be inescapably expensive if we are to satisfy our

constraint that we must integrate the semi-discrete VM-FP system of equations ex-

actly to prevent aliasing errors from destroying the quality of our solution. As stated

above, at first glance, the analytical integration to pre-compute and construct the

tensors, for example Eq. (3.36), for convolution as part of the update, are very dense.

The convolution of these dense tensors will lead to an unfavorable computational

complexity, similar to the numerical quadrature approach, between O(NcN
2
p ) and

O(N3
p ). However, if we could sparsify these tensors in some way, thereby reducing

the couplings between all of the polynomials in our basis expansion, we may dra-
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matically improve the computational complexity, and thus reduce the cost, of our

numerical method for the VM-FP system of equations.

It is no coincidence we have drawn continual attention to the modal, orthonor-

mal basis in our discussion of the specific forms our polynomial bases might take.

We now emphasize the second of our most important algorithmic advances in our

implementation of our DG discretization of the VM-FP system of equations: em-

ploying a modal, orthonormal basis set for our polynomial basis expansion. This

judicious choice of basis functions allows us to significantly sparsify the requisite ten-

sors needed to evaluate the spatial discretization of the VM-FP system of equations,

while still respecting the requirement that our algorithm be alias-free for stability

and accuracy.

To get a sense for just how sparse the update with a modal, orthonormal basis

is, we consider again the collisionless update, the Vlasov equation, and the volume

term defined in Eq. (3.36). Now, we will project the phase space flux, αh, onto this

modal, orthonormal basis,

αx
j (t) =

∫
I

(v − vcenter)υ̂j(η)dη +

∫
I

vcenterυ̂j(η)dη (3.42)

αv
j (t) =

∑
i

∫
I

q

m
[Ei(t) + vcenter ×Bi(t)] ϑ̂i(ζ)υ̂j(η)dη

+
∑
i

∫
I

q

m
(v − vcenter)×Bi(t)ϑ̂i(ζ)υ̂j(η)dη, (3.43)

where we have denoted the orthonormal basis expansion in phase space as υ̂(η)

and the orthonormal expansion in configuration space as ϑ̂(ζ). Importantly, these

expressions have already leveraged the fact that the mass matrix is the identity
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matrix, up to the volume factor in a cell, to simplify the resulting expressions so that

the index αj maps to the jth basis function on the right hand side. By separating

v → (v − vcenter) + vcenter, we can cleanly separate the velocity dependence into

the piecewise constant basis function and a piecewise linear basis function. In other

words, we can clearly see that we require only a small fraction of the full basis

expansion’s dependence in velocity space to represent both the configuration space

and velocity space phase space flux αx,v
h .

These expressions for the phase space flux can be plugged in for the coefficients

in Eq. (3.33), and the whole update evaluated, after exploiting a similar sparsity in

the collisionless numerical flux function and the other components of the discrete

weak forms of the VM-FP system of equations. To actually evaluate matrices such

as Eq. (3.36), we can use a computer algebra system, for example Maxima [Maxima,

2019], and compute the explicit form of the sums in Eq. (3.33). In other words, by

evaluating

outk =
∑
m,n

Ckmn ·αnfm, (3.44)

where outk is a component of the update for dfk/dt, and using the fact that the

mass matrix is the identity matrix to change variables `→ k, we obtain the update

shown in Figure 3.3 for the piecewise linear tensor product basis in one spatial and

two velocity dimensions (1X2V).

Figure 3.3 shows a C++ computational kernel that can be called for every cell

Kj of a structured, Cartesian grid in phase space, as we are passing all the informa-

tion required to the kernel to determine where we are physically in phase space, i.e.,
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Figure 3.3: The computational kernel for the volume integral, Eq. (3.36), for the
collisionless advection in phase space of the particle distribution function in one
spatial dimension and two velocity dimensions (1X2V) for the piecewise linear tensor
product basis. Note that this computational kernel takes the form of a C++ kernel
that can be called repeatedly for each grid cell Kj depending on the local cell center
coordinate and the local grid spacing. Here, the local cell coordinate is the input
“const double w” and the local grid spacing is the input “const double dxv”. The out
array is the increment to the right hand side due this volume integral contribution in
a forward Euler time-step, i.e., a piece of Eq. (2.165) for the Vlasov–Fokker–Planck
equation. To complete the right hand side of Eq. (2.165) for the evolution of the
particle distribution function, for a given phase space cell, we require the surface
contributions for the collisionless advection, as well as the computational kernels for
the corresponding tensors encoding the spatial discretization of the Fokker–Planck
equation.

the local cell center coordinate and grid cell size. The output of this computational

kernel, the out array, is a piece of Eq. (2.165) for the Vlasov–Fokker–Planck equa-

tion, the volume integral of the collisionless advection in phase space. To complete

the right hand side of Eq. (2.165) for a given phase space cell, we require the surface

contributions for the collisionless advection, as well as the computational kernels for

the corresponding tensors encoding the spatial discretization of the Fokker–Planck
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equation. We will likewise have computational kernels for Maxwell’s equations which

completely specify the volume and surface contributions, and allow for the incre-

menting of the solution in a forward Euler time-step.

Notably, the computational kernel in Figure 3.3 has no matrix data structure,

much less the requirement to perform quadrature since we have already analytically

evaluated the integrals in Eq. (3.36) with a computer algebra system and written out

the results to double precision. We refer to this as a “quadrature- and matrix-free”

implementation of the DG method. Such quadrature-free methods using orthogonal

(orthonormal) polynomials were studied in the early days of the DG method [Atkins

and Shu, 1998, Lockard and Atkins, 1999] and are still applied to a variety of linear

hyperbolic equations, such as the acoustic wave equation for studies of seismic ac-

tivity, the level set equation, and Maxwell’s equations [Käser and Dumbser, 2006,

Marchandise et al., 2006, Koutschan et al., 2012, Kapidani and Schöberl, 2020].

Even for alternative formulations of DG which do not seek to eliminate aliasing

errors by exactly integrating the components of the discrete weak form, matrix-free

implementations are desirable to reduce the memory footprint of the scheme [Fehn

et al., 2019]. Minimizing the memory footprint can lead to performance gains even

beyond the reduction in the number of operations required to take a time-step.

We emphasize again the novelty of our approach. Using a modal, orthonormal

basis, we produce a “quadrature- and matrix-free” method that respects our require-

ment that our algorithm be alias-free by analytically evaluating the integrals in the

discrete weak forms of the VM-FP system of equations, thus the quadrature-free

component. And the matrix-free component follows from the fact that the result-
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ing integrals produce sparse tensors whose convolutions can be unfolded in their

entirety, eliminating the need for a matrix data structure to actually evaluate the

tensor-tensor convolutions. All that is required is entry-by-entry evaluation of the

results of these convolutions, as demonstrated in Figure 3.3 by the out array.

As a frame of reference the sparseness of our “quadrature- and matrix-free”

method, the computational kernel in Figure 3.3 has ∼ 70 multiplications; whereas,

the update for numerical quadrature applied to a nodal basis has ∼ 250 multiplica-

tions. The potential gains from a nodal basis by only requiring the expansion local

to a surface in the surface integrals do not provide enough computational savings

to compete with the sparsity of the orthonormal, modal expansion. We will do a

thorough computational complexity experiment in Section 3.7 to determine both

exactly what the computational complexity of the sparse, orthonormal, modal basis

expansion is, as well as compare in totality the performance of a sparse, orthonor-

mal, modal basis expansion to an optimized nodal basis expansion using anisotropic

quadrature with high performance linear algebra libraries. Before we do this com-

parison though, it is worth going through the final details of the algorithm. We

must now discuss how we compute the recovery polynomial in generality, and how

we compute velocity moments, to complete the implementation of our numerical

method for the VM-FP system of equations.
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3.5 Extending the Recovery Scheme to Higher Dimensions

As stated above in Section 3.3, many of the components of the surface inte-

grals, for example the numerical flux functions for the collisionless advection and

drag term, are simple enough to project onto our phase space basis expansion,

compute the coefficients in our modal, orthonormal basis expansion, and then con-

volve tensors such as Eq. (3.35) to evaluate the surface integral contributions in our

discretization of the VM-FP system of equations. However, we require a prescrip-

tion for computing the recovery polynomial in generality so we can evaluate the

corresponding surface integrals in the discrete Fokker–Planck equation. Whereas

projections such as Eq. (3.37) for central fluxes applied to the collisionless advec-

tion naturally retain the spatial dependence at the surface, and thus the high order

nature of our scheme, we have not yet described a procedure for the non-recovered

spatial dependence in our computation of the recovery polynomial.

We said in the summary of Chapter 2, Section 2.8, that the recovery procedure

is fundamentally one dimensional: we are only generating a recovery polynomial

across the surface where the function has a discontinuity. So, let us consider the

operation of projecting a two dimensional function, f(x, y), onto a one-dimensional

basis,

∫ 1

−1

g(x, y)ψk(x) dx =

∫ 1

−1

f(x, y)ψk(x) dx, (3.45)

gk(y) =

∫ 1

−1

f(x, y)ψk(x) dx, (3.46)

i.e., each of the k coefficients for the component expansion in the x dimension retain
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their y variation. Note that the simplified form of Eq. (3.46) assumes the basis ψk

is our modal, orthonormal basis expansion to simplify the left hand side, and that

as part of this operation f(x, y) has a two dimensional basis expansion in x and y.

Although we characterized the recovery procedure mathematically in Sec-

tion 2.4, we should now explicitly compute the recovery polynomial in a specific test

case to make apparent how to use Eq. (3.46) to compute the recovery polynomial

in generality. Let us use the piecewise linear, one dimensional, modal, orthonormal

basis for this demonstration,

υ̂1(x) =
1√
2
,

υ̂2(x) =

√
3

2
x,

(3.47)

but on a slightly different reference element, KL = [−2, 0] on the left, and KR = [0, 2]

on the right, so that the left and right cells each have the same volume as our original

reference element [−1, 1]. The discontinuity will still be located x = 0. These shifted

basis functions are then

υ̂L1(x) =
1√
2
,

υ̂R1(x) =
1√
2
,

υ̂L2(x) =

√
3

2
(x+ 1),

υ̂R2(x) =

√
3

2
(x− 1),

(3.48)
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so that the full basis expansions in each cell are,

fL(x) =
1√
2
fL1 +

√
3

2
(x+ 1)fL2,

fR(x) =
1√
2
fR1 +

√
3

2
(x− 1)fR2.

(3.49)

Since we are using piecewise linear polynomials in the left and right cells, two basis

functions in each cell, four basis functions total, we can represent a cubic function

across the interface,

h(x) = h1 + h2x+ h3x
2 + h4x

3. (3.50)

We then solve the following set of equations∫ 0

−2

[h(x)− fL(x)]υ̂L1(x) dx = 0,∫ 0

−2

[h(x)− fL(x)]υ̂L2(x) dx = 0,∫ 2

0

[h(x)− fR(x)]υ̂R1(x) dx = 0,∫ 2

0

[h(x)− fR(x)]υ̂R2(x) dx = 0,

(3.51)

using a computer algebra system to analytically evaluate each integral and invert

the matrix equation for the coefficients,

h1 =

√
2
(
−2
√

3fR2 + 2
√

3fL2 + 3fR1 + 3fL1

)
12

,

h2 = −
√

2
(
5
√

3fR2 + 5
√

3fL2 − 9fR1 + 9fL1

)
16

,

h3 = −
√

3 (fL2 − fR2)
√

2
5 ,

h4 =

√
2
(
5
√

3fR2 + 5
√

3fL2 − 5fR1 + 5fL1

)
32

.

(3.52)

Now we can use Eq. (3.46) to modify the individual pieces of Eq. (3.52). For example,
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if the original function f = f(x, y), we can compute in the right cell

fR1(y) =

∫ 2

0

f(x, y)υ̂R1(x) dx,

fR2(y) =

∫ 2

0

f(x, y)υ̂R2(x) dx,

(3.53)

and likewise for the left cell.

This procedure, combining the one dimensional recovery in Eq. (3.52) with

the projection from the higher dimensional space onto the one dimensional basis,

Eq. (3.46), to determine how the coefficients vary in the other dimensions, is general

and can be extended to as high dimensionality and as high polynomial order as

we choose. Notably, regardless of the specific form of the recovery polynomial,

we emphasize that we only require the first and second coefficients, h1 and h2 in

Eq. (3.52), because we are evaluating the recovery polynomial and its first derivative

at the x = 0 surface. In other words, the value of the recovery polynomial at the

surface of the reference element is h1, and the value of the gradient of the recovery

polynomial at the surface of the reference element is h2, at least for piecewise linear

polynomials. We have thus completely specified the required recovered function,

e.g., the recovered distribution function in the discrete Fokker–Planck equation,

the value and the gradient of the recovered function, and the recovered function’s

variation along the surface across which we are constructing the recovered function.

We can then project the results of this recovery process onto phase space basis

functions, and construct a similar tensor to Eq. (3.35) to convolve and evaluate the

surface contributions in the discrete Fokker–Planck equation.
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3.6 Computing the Coupling Moments

The final component of our implementation is a means of computing the veloc-

ity moments which close our equation system, such as Jh for coupling to Maxwell’s

equations. In the same way we demonstrated how one leverages weak equality to ac-

tually calculate the recovery polynomial in arbitrary dimensions in Section 3.5, the

goal of this section is to illustrate the use of weak equality to compute the coupling

moments, and the form these computational kernels take. Recall the operations we

defined in Eqns. (2.105–2.106), which we here write out explicitly transformed to

the reference element on which the modal, orthonormal basis sets are defined,

∑
m

M0m

∫
IΩ

ϑ̂`(ζ)ϑ̂m(ζ)dζ

=

(
1

2V DIM

VDIM∏
i=1

∆vi

)∑
n

∑
j

∫
Ij\IΩ

fn(t)υ̂n(η)ϑ̂`(ζ)dη, (3.54)

∑
m

M1m

∫
IΩ

ϑ̂`(ζ)ϑ̂m(ζ)dζ

=

(
1

2V DIM

VDIM∏
i=1

∆vi

)∑
n

∑
j

∫
Ij\IΩ

vfn(t)υ̂n(η)ϑ̂`(ζ)dη, (3.55)

∑
m

M2m

∫
IΩ

ϑ̂`(ζ)ϑ̂m(ζ)dζ

=

(
1

2V DIM

VDIM∏
i=1

∆vi

)∑
n

∑
j

∫
Ij\IΩ
|v|2fn(t)υ̂n(η)ϑ̂`(ζ)dη. (3.56)

We note that the matrix on the left hand side is simply the mass matrix in config-

uration space, and since we have already canceled the configuration space volume

factor, the matrix is simply the identity matrix. However, we require a means to

make the integrals on the reference element independent of our location in phase
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space, and so we perform a similar transform as done in Eqns. (3.42) and (3.43),

M0` =

(
1

2V DIM

VDIM∏
i=1

∆vi

)∑
n

∑
j

∫
Ij\IΩ

fn(t)υ̂n(η)ϑ̂`(ζ)dη, (3.57)

M1` =

(
1

2V DIM

VDIM∏
i=1

∆vi

)∑
n

∑
j

∫
Ij\IΩ

(v − vcenter)fn(t)υ̂n(η)ϑ̂`(ζ)dη

+

(
1

2V DIM

VDIM∏
i=1

∆vi

)∑
n

∑
j

∫
Ij\IΩ

vcenterfn(t)υ̂n(η)ϑ̂`(ζ)dη (3.58)

M2` =

(
1

2V DIM

VDIM∏
i=1

∆vi

)∑
n

∑
j

∫
Ij\IΩ
|v − vcenter|2fn(t)υ̂n(η)ϑ̂`(ζ)dη

+

(
1

2V DIM

VDIM∏
i=1

∆vi

)∑
n

∑
j

∫
Ij\IΩ

2vcenter · (v − vcenter)fn(t)υ̂n(η)ϑ̂`(ζ)dη

+

(
1

2V DIM

VDIM∏
i=1

∆vi

)∑
n

∑
j

∫
Ij\IΩ
|vcenter|2fn(t)υ̂n(η)ϑ̂`(ζ)dη, (3.59)

which can be further simplified to,

M1` = vcenterM0`

+

(
1

2V DIM

VDIM∏
i=1

∆vi

)∑
n

∑
j

∫
Ij\IΩ

(v − vcenter)fn(t)υ̂n(η)ϑ̂`(ζ)dη, (3.60)

M2` = 2M1` · vcenter − |vcenter|2M0`

+

(
1

2V DIM

VDIM∏
i=1

∆vi

)∑
n

∑
j

∫
Ij\IΩ
|v − vcenter|2fn(t)υ̂n(η)ϑ̂`(ζ)dη. (3.61)

We can then generate a computational kernel to compute these coupling moments

sequentially, and the needed quantities such as the current density can be computed

from the results, e.g., via Eq. (2.109). Using a 1X2V, one configuration space dimen-

sion and two velocity space dimensions, piecewise linear, tensor product basis again

as an example, we show the results of a computer algebra system evaluating the

integrals in Eqns. (3.57–3.59), with the simplifications outlined in Eqns. (3.60) and
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Figure 3.4: Example computational kernel for the calculation of the zeroth through
second moments using weak equality in one spatial dimension and two velocity
dimensions (1X2V) with piecewise linear, tensor product, modal, orthonormal poly-
nomials. Note that this computational kernel is called inside a loop over velocity
space for a given configuration space cell, as we are integrating over velocity space.

(3.61), in Figure 3.4. It is critical to note that the computational kernel in Figure 3.4

is called for every velocity space cell associated with a given configuration space cell,

i.e., these kernels form a reduction operation across velocity space, as expected since

we are integrating over velocity space at a given configuration space cell. The beauty

of Eqns. (3.57–3.59), with the simplifications outlined in Eqns. (3.60) and (3.61), is

that this same computational kernel can be called irrespective of our location in

phase space, so long as we pass the correct cell center coordinate and local grid

cell size. Analogous to the updates for the Vlasov–Fokker–Planck equation and

Maxwell’s equations, the computation of the coupling moments is also free of both

quadrature and matrix data structures.

We note in concluding this section that these procedures can be, and within

Gkeyll are, extended to other diagnostic moments, for example the stress tensor
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and heat flux,

←→
S h

.
=
∑
j

∫
Kj\Ωk

vvfh dv, (3.62)

Qh
.
=

1

2

∑
j

∫
Kj\Ωk

|v|2vfh dv, (3.63)

which can be rearranged similarly with the same variable manipulation as before,

v→ (v−vcenter) + vcenter. In general, the mathematical machinery of weak equality

can be straightforwardly converted to linear equations which can be computed to

determine the desired projection of some quantity, whether it is a velocity moment,

a numerical flux function, or a more complicated constraint equation for quantities

such as uh and Th. The components of the linear equation, the integrals over

complex combinations of basis functions, can then be analytically evaluated using a

computer algebra system such as Maxima [Maxima, 2019], and with the help of the

modal, orthonormal polynomial basis, significantly sparsified, reducing the number

of operations required to evaluate and solve the linear equations.

Although we have focused on the components of the discretization which are

both quadrature- and matrix-free, we should briefly discuss the parts of the dis-

cretization which are not necessarily matrix-free. For example, the solution to the set

of linear equations for the discrete flow and temperature, uh and Th, e.g., Eqns. 2.141

and 2.147 when using at least piecewise quadratic polynomials, is not matrix-free

because of the coupling between the projections of uh and Th due to the boundary

corrections from finite velocity space extents. All the computational machinery we

have outlined, i.e., the analytic evaluation of the integrals using a computer alge-
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bra system, is still the procedure for evaluating uh and Th. Now though, instead

of completely unrolling the evaluation of the matrix equations and eliminating the

need for a matrix data structure by evaluating every individual term in the linear

equation, we construct the relevant matrix and invert the linear system to obtain our

solution for uh and Th. In Figure 3.5 we show an example computational kernel to

solve the coupled linear system for uh and Th, using the Eigen linear algebra library

[Guennebaud, Jacob, et al., 2010], in one configuration space and one velocity space

dimension (1X1V) with piecewise quadratic Serendipity polynomials. Importantly,

the fact that our basis is modal and orthonormal reduces the number of terms in

the matrix we have to invert. These computational kernels can then be called in

every configuration space cell to calculate the local expansion of uh and Th required

for the discretization of the Fokker–Planck equation.

Now that all the pieces of our discrete scheme are complete, including the

means of computing the coupling moments between Maxwell’s equations and the

Vlasov–Fokker–Planck equation, the implementation of our discrete scheme is fin-

ished. We turn now to the question of the computational complexity of our discrete

scheme. Although we expect the modal, orthonormal basis to have significantly

decreased the cost of numerically integrating our DG discretization of the VM-FP

system of equations, we require quantitative proof of this cost reduction.
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Figure 3.5: A C++ computational kernel for the construction and inversion of the
matrix to solve the coupled linear system for the discrete flow and temperature,
uh and Th. Here, we show the form of the matrix in one spatial and one velocity
dimension (1X1V) using piecewise quadratic Serendipity polynomials. Since both
uh and Th have three degrees of freedom, i.e., three basis functions, which describe
their projection, the coupled linear system is six by six. We construct the individual
terms in the matrix using a combination of weak multiplication, weak division, and
the corrections at the boundary due to our finite velocity space extents. We can
then use a linear algebra library, in this case Eigen, to solve the linear system and
determine the discrete flow and temperature required in the evaluation of the drag
and diffusion coefficients in the discrete Fokker–Planck equation.

3.7 A Computational Complexity Experiment

We know the choice of a modal, orthonormal polynomial basis leads to the

tensors over which we need to sum, such as Eq. (3.36), being sparse, and we have

evidence from the computational kernel presented in Figure 3.3 that the number of

operations is indeed reduced compared to the use of numerical quadrature. We would
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like to determine generally how sparse the tensors required to update our discrete

VM-FP system of equations are. In Figure 3.6, we plot the results of a numerical

experiment using the computational kernels for updating the collisionless component

of the VM-FP system of equations. We show the time to evaluate the computational

Figure 3.6: Scaling, i.e., the time to evaluate the update versus the number de-
grees of freedom, Np, in a cell, of just the streaming term, αx

h = v, (left) and the
total, streaming and acceleration, update (right) for the Vlasov solver. The dimen-
sionality of the solve is denoted by the relevant marker, and the three colors cor-
respond to three different basis expansions: black:maximal-order, blue:Serendipity,
and red:tensor. Importantly, this is the scaling of the full update, for every dimen-
sion, i.e., the 3x3v points include the six dimensional volume integral and all twelve
five dimensional surface integrals.

kernels for just the streaming term, αx
h = v, in the left plot of Figure 3.6, and the

evaluation of the full phase space update, streaming and acceleration, in the right

plot. From the scaling of the cost to evaluate these computational kernels we can

determine the computational complexity of the algorithm with respect to the number

of degrees of freedom per cell, i.e., the number of basis functions in our expansion,

Np.

It is immediately apparent that even with the steepening of the scaling as the

number of degrees of freedom increases there is at least some gain over the use of di-
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rect quadrature to evaluate the integrals in the discrete weak form because, at worst,

the total, streaming plus acceleration, update scales roughly as O(N2
p ). In fact, this

scaling of, at worst O(N2
p ), is exactly the scaling obtained by under-integrating

the nonlinear term in a nodal basis, as mentioned in Section 3.4 [Hesthaven and

Warburton, 2007, Hindenlang et al., 2012]. But critically, we have obtained this

computational complexity while eliminating aliasing errors from our scheme, as we

require for stability and accuracy! We can explicitly evaluate the gain compared to

the anisotropic quadrature shown in Table 3.5. For example, for piecewise quadratic

basis functions in six dimensions, the Serendipity space has 256 degrees of freedom

in a cell but requires 1728 quadrature points to evaluate the nonlinear term

However, the improvement in the scaling is actually better than it first ap-

pears. The scaling shown in Fig. 3.6 is the cost scaling of the full update to perform

a forward Euler step in a phase space cell, i.e., in six dimensions, three spatial and

three velocity, the total update time in the right plot of Fig. 3.6 is the time to com-

pute the six dimensional volume integral plus the twelve required five dimensional

surface integrals. This means the scaling we are quoting is irrespective of the dimen-

sionality of the problem, unlike in the case of the nodal basis, where the quadrature

must be performed for every integral and there is a hidden dimensionality factor in

the scaling. In other words, in six dimensions, what at first may only seem like a

factor of ∼ 7 improvement moving from a nodal to an orthonormal, modal repre-

sentation is in fact a factor of ∼ 40 improvement in the scaling once one includes

the dimensionality factor, up to the constant of proportionality of the scaling. Of

course, one must also compare the size of the constant of proportionality multiplying
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both scalings to accurately compare the reduction in the number of operations and

improvement in the overall performance, since said constant of proportionality can

either tell us the picture is much rosier, that in fact the improvement in performance

is larger than we expected, or much more dire, that the improvement in the scaling

is offset by a larger constant of proportionality.

To determine the constant of proportionality, we will perform a more thor-

ough numerical experiment and compare the cost of the alias-free nodal scheme and

alias-free modal scheme for a complete collisionless Vlasov–Maxwell simulation. We

consider the following test: a 2X3V computation done with both the nodal and the

modal algorithms, with a detailed timing breakdown of the most important step of

the algorithm, the Vlasov time step. The reader is referred Table 3.7 for a summary

of the following two paragraphs if they wish to skip the details of the computer ar-

chitecture and optimizations employed. Both computations are performed in serial

on a Macbook Pro with an Intel Core i7-4850HQ (“Crystal Well”) chip, the

same architecture on which the scaling analysis was performed. The only optimiza-

tion in the compilation of both algorithms is “O3” and both versions of the code

are compiled with the C++ Clang 9.1 compiler.

Specific details of the computations are as follows: a 162 × 163 grid, with

polynomial order two, and the Serendipity basis, 112 degrees of freedom per cell. The

two simulations were run for a number of time-steps to allow us to more accurately

compute the time per step of just the Vlasov solver, as well as the time per step of

the complete simulation. The time-stepper of choice for this numerical experiment is

the three-stage, third order, SSP-RK method, Eq. (2.168). To make the simulations
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as realistic as possible in terms of memory movement, we also evolve a “proton”

and “electron” distribution function, i.e., we evolve the Vlasov–Maxwell system of

equations for two plasma species.

To make the comparison as favorable as possible for the nodal algorithm, we

also employ the Eigen linear algebra library, Eigen 3.3.4 [Guennebaud, Jacob,

et al., 2010], to perform the dense matrix-vector multiplies required to evaluate

the higher order quadrature needed to eliminate aliasing errors in the nodal DG

discretization. And we note that the nodal algorithm is optimized to use only the

surface basis functions in the surface integral evaluations, so we are doing as much

as possible to reduce the cost of the alias-free nodal scheme.

The results are as follows: for the nodal basis, the computation required

1079.63 seconds per time step, of which 1033.89 seconds were spent solving the

Vlasov equation. The remaining time is split between the computation of Maxwell’s

equations, the computation of the current from the first velocity moment of the

distribution function to couple the particles and the fields, and the accumulation of

each Runge-Kutta stage from our three stage Runge-Kutta method. For the modal

basis, the computation required 67.4312 seconds per time step, of which 60.3431

seconds were spent solving the Vlasov equation.

In the nodal case, we emphasize that we achieve a reasonable CPU efficiency,

and the nodal timings are not a matter of poor implementation. We estimate the

number of multiplications in the alias-free nodal algorithm required to perform a full

time-step is ∼ 3e12, three trillion, once one considers the fact that we are evolving

two distribution functions with a three-stage Runge–Kutta method. One thousand
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seconds to perform three trillion multiplications corresponds to an efficiency of∼ 3e9

flops per second (3 GFlops/s). This estimate is within 50 percent of the measured

efficiencies of Eigen’s matrix-vector multiplication routines for Eigen 3.3.4 on a

similar CPU architecture to the one employed for this test [Guennebaud, Jacob,

et al., 2010], so we argue that the cost of the alias-free nodal algorithm is due

to the number of operations required and not an inefficient implementation of the

algorithm.

It is then worth discussing how this improvement in the timings using the

modal algorithm compares with our expectations. Given the scaling of the modal

basis, we would anticipate the gain in efficiency in five dimensions would be around

a factor of twenty, a factor of four from the reduction in the scaling from O(NqNp)

to O(N2
p ), and a factor of five from the latter scaling containing all of the five

dimensional volume integrals and the ten four dimensional surface integrals. We

can see that the gain in just the Vlasov solver is ∼ 17, while the gain in the overall

time per step is ∼ 16, not quite as much as we would naively expect, but still a

sizable increase in the speed of the Vlasov solver. The reduction in the overall time

is due to the fact that, while the time to solve Maxwell’s equations and compute the

currents to couple the Vlasov equation and Maxwell’s equations is reduced, these

other two costs, in addition to the cost to accumulate each Runge-Kutta stage, is

not reduced as dramatically as the time to solve the Vlasov equation is. Again, the

details of this comparison are summarized in Table 3.7.

So, we have achieved our goal of respecting the requirement that our DG

method for the VM-FP system of equations be alias-free, while measurably reducing
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Computer Architecture Compiler

MacBook Pro Intel Core i7-4850HQ Clang 9.1 C++
(High Sierra OS) (“Crystal Well”)

Optimization Flags Grid Size Polynomial Order

“O3,” 162 × 163 Serendipity quadratic,
Eigen 3.3.4 for nodal 112 degrees of freedom

Nodal Total Time Modal Total Time Total Time Reduction

1079.63 seconds
time-step

67.4312 seconds
time-step

∼ 16

Nodal Vlasov Time Modal Vlasov Time Vlasov Time Reduction

1033.89 seconds
time-step

60.3431 seconds
time-step

∼ 17

Table 3.7: Summary of the parameters for the numerical experiment to compare the
full cost of an alias-free nodal and orthonormal, modal algorithm.

the cost to attain the computational complexity of other common DG schemes which

tolerate or simply attempt to control aliasing errors. Because there were ultimately

many pieces to the evaluation of the DG method for the VM-FP system of equations,

we summarize in the next section the complete algorithm for computing the spatial

discretization and taking a forward Euler time-step.

3.8 Summary of the Algorithm

The focus of this chapter has been principally on the evaluation of the linear

operator in Eq. (2.165) which goes into a forward Euler time-step, Eq. (2.166). We

summarize now all the steps in the evaluation of this linear operator, for the discrete

Vlasov–Fokker–Planck equation and Maxwell’s equations, so that we can perform a

forward Euler time-step.

1. Loop over configuration space cells, and for each configuration space cell, com-
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pute the needed coupling moments from the distribution functions for each

species at the old time-step, fnh , where superscript n denotes the known time-

step.

• Within each configuration space cell, loop over velocity space to com-

pute velocity moments using computational kernels, such as the 1X2V

kernel shown in Figure 3.4. These kernels will give Mn
0h
,Mn

1h
and Mn

2h
,

Eqns. (3.57–3.59).

• Calculate the current density from Mn
1h

for each plasma species,

Jnh =
∑
s

qsM
n
1hs
.

• Calculate the discrete flow and temperature, unh and T nh , from Mn
0h
,Mn

1h

and Mn
2h

, as well as the boundary corrections in velocity space, using

computational kernels such as the one shown in Figure 3.5 for a 1X1V,

polynomial order two, simulation. Note that if using piecewise linear

polynomials, we require the additional “star moments” in the computa-

tion of unh and T nh , Eqns. (2.158–2.160).

2. Loop over configuration space cells and update the electromagnetic fields,

En
h,B

n
h, forward in time.

• Project the chosen numerical flux function for the electric and magnetic

fields, central fluxes, Eqns. (2.33)-(2.34), or upwind fluxes, Eqns. (2.48)-

(2.51), onto the modal, orthonormal configuration space basis expansion.
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• Evaluate the volume and surface integrals using the corresponding com-

putational kernels, analogous to the volume and surface tensors for the

collisionless Vlasov equation, Eqns. (3.35) and (3.36), but note that these

computational kernels only involve the configuration space basis expan-

sion. After evaluation of the volume and surface integrals, increment the

electromagnetic fields with this contribution multiplied by the size of the

time-step ∆t,

En+1
h = En

h + ∆tLEM(En
h,B

n
h),

and likewise for the magnetic field.

• Increment the current density at the known time-step onto the electric

field,

En+1
h = En

h +
∆t

ε0
Jnh. (3.64)

3. Loop over phase space cells and update the particle distribution function for

each species, fnh , forward in time.

• Project the chosen numerical flux functions for both the collisionless ad-

vection and the drag term in the Fokker–Planck equation, e.g., central

fluxes, Eq. (2.59), or global Lax-Friedrichs fluxes, Eq. (2.61), for the colli-

sionless advection and central fluxes, Eq. (2.126), or global Lax-Friedrichs

fluxes, Eq. (2.128), for the drag term in the Fokker–Planck equation.

• Determine the recovered distribution function from the general recovery
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procedure described in Section 3.5, i.e., recover a continuous function

across the interface from the distribution function in the two neighbor-

ing cells, while retaining the phase-space dependence of the distribution

function representation on the surface. Compute the value and gradi-

ent of the recovered distribution function at the surface, and add these

contributions to the numerical flux functions for computing the surface

integral contributions to the discrete Fokker–Planck equation.

• Evaluate the volume and surface integrals in the DG discretization of the

Vlasov–Fokker–Planck equation, e.g., the volume kernel in Figure 3.3 for

a piecewise linear, 1X2V, simulation, and increment these contributions

multiplied by the size of the time-step ∆t onto the old values of the

particle distribution function,

fn+1
h = fnh + ∆tLV FP (fnh ,E

n
h,B

n
h,u

n
h, T

n
h ).

• Repeat each calculation, the flux function project, the recovery proce-

dure, and the evaluation of volume and surface integrals, for each species

in the plasma.

The above steps form the core of forward Euler time-step, which can then be

combined into a multi-stage Runge–Kutta method, such as our preferred three-stage,

third order, SSP-RK3 scheme, Eq. (2.168). Note that for computing the size of the

time-step, while the CFL condition for Maxwell’s equation at each stage will remain

fixed since the speed of light is a constant, we can evaluate the CFL constraint for
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the Vlasov–Fokker–Planck equation at each stage. The general structure of this

forward Euler method is unchanged, even if we modify components of the update,

for example applying the recovery procedure for the update of the advective terms

such as the collisionless update of the Vlasov equation. However, we could modify

this update to separate the collisionless and collision operators if an operator split

would provide a more favorable time-stepping scheme. For example, as the collision-

ality increases and the collision operator becomes the more restrictive component

of taking a time-step, standard operator splits that employ Runge–Kutta-Legendre

multi-stage methods for advection-diffusion equations are an option [Meyer et al.,

2014].

So, we have formulated and implemented a Runge–Kutta discontinuous Galerkin

discretization of the Vlasov–Maxwell–Fokker–Planck system of equations—a sizable

effort! But now we turn to the equally important question: does the code give the

right answer? In the next chapter, Chapter 4, we will pursue an extensive bench-

marking endeavor to determine the validity of our numerical method.
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Some of the material in this

chapter has been adapted from

Juno et al. [2018], Hakim,

Francisquez, Juno, and

Hammett [2019], and Hakim

and Juno [2020].

Chapter 4: Benchmarking our DG Vlasov–Maxwell–Fokker–Planck

Solver in Gkeyll

We will proceed on three different fronts to determine the validity of our imple-

mented DG scheme for the VM-FP system of equations. First, we will examine just

the Vlasov–Fokker–Planck equation, in the absence of electromagnetic fields. Then,

we will benchmark the collisionless Vlasov–Maxwell system of equations, with spe-

cial focus on self-consistent simulations including the feedback between the plasma

and the electromagnetic fields. Finally, we will bring it all together for a benchmark

of the complete equation system, a validation of the VM-FP system of equations in

their entirety.

We reiterate a few definitions for convenience here. We will make use of the
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Maxwellian velocity distribution as a common initial condition,

fs(x,v, t = 0) = ns(x)

(
ms

2πTs(x)

)V DIM
2

exp

(
−ms

|v − us(x)|2

2Ts(x)

)
, (4.1)

where V DIM is the number of velocity dimensions. We note that we will have to

project Eq. (4.1) onto our basis expansion at the start of any simulation. Although

this distribution function defines local thermodynamic equilibrium, as we discussed

in Corollary 1 in Chapter 1 and in Appendix A, the Maxwellian velocity distribution

might have some configuration space dependence that is unstable to perturbations.

The system will then rearrange itself to a different energy state in a collisionless

system, and to a higher entropy state in the presence of collisions. Eq. (4.1) is thus

often a convenient initial condition, though we will make clear when we employ

different initial plasma distributions. We will also use consistently the definition

of the thermal velocity vths =
√
Ts/ms, especially to define the extents in velocity

space.

Although we will reiterate many of the specifics for every benchmark, we

note here a few details which will be unchanged throughout our benchmarks. We

will consistently use the Serendipity element space for our polynomial basis as an

optimal middle ground of cost and accuracy between the tensor product basis and

the maximal order basis. As an optimization of the computation and memory

required in a multi-stage method, and accuracy of the time integration, we will also

employ the three stage, third order, SSP-RK3 method for the time integration of all

benchmarks presented. Importantly, we will use the same numerical flux functions

for all the presented benchmarks, upwinding, Eq. (2.60) for αx = v, the streaming
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term, and global Lax-Friedrichs for both the acceleration αv = q/m (Eh + v×Bh),

Eq. (2.61), and the drag term, Eq. (2.128). Finally, we will uniformly use zero-

flux boundary conditions in velocity space, with the additional boundary term we

must evaluate in the Fokker–Planck operator due to integrating by parts twice,

Eq. (2.134), so as to retain the proved conservation properties in Chapter 2. When

we refer to zero flux boundary conditions in velocity space in all of the forthcoming

boundary conditions, and when numerically integrating the discrete Fokker–Planck

equation in Sections 4.1 and 4.3, we are implicitly also taking into account this

additional boundary condition in Eq. (2.134).

4.1 Benchmarks of the Vlasov–Fokker–Planck Equation

4.1.1 Collisional Relaxation to a Discrete Maxwellian

In the absence of streaming and body forces, any initial distribution function

should relax to a Maxwellian. Although we did not demonstrate this to be the

case via analytic examination of our discretization of the Fokker–Planck equation,

we now consider a numerical demonstration of a discrete analog to the H-theorem

proved in Corollary 1 in Chapter 1. Importantly, a proper implementation of the

discrete Fokker–Planck equation has a maximum entropy state, which by definition

is the discrete Maxwellian. However, such a discrete Maxwellian is not necessarily

the projection of Eq. (4.1) onto basis functions, as Eq. (4.1) is a continuous function

defined on all of velocity space, v ∈ (−∞,∞), and we are employing finite velocity

space extents. Nevertheless, these two quantities, the projection of Eq. (4.1) and
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the maximum entropy state of our discrete Fokker–Planck operator will converge

towards each other as the grid is refined.

In this first test, the relaxation of an initial non-Maxwellian distribution func-

tion to a discrete Maxwellian, due to collisions, is studied. We will avoid the use of

a species index in this test since the electromagnetic fields are zero, and we are only

studying the effects of the collision operator. The initial distribution function is a

step-function in velocity space,

f0(x, v, t = 0) =


1/(2v0) |v| < v0

0 |v| ≥ v0,

(4.2)

where v0 =
√

3vth. Piecewise linear and quadratic Serendipity basis sets on 16 and

8 velocity space cells, respectively, are used. Note that there is no variation in

configuration space in this problem, so only one configuration space cell is required.

Velocity space extents, (vmin, vmax), are placed at ±6vth the simulation is run to

νt = 5, five collisional periods, and zero flux boundary conditions are used in velocity

space.

In each case, the relative change in density and energy are close to machine

precision, demonstrating excellent conservation properties of the scheme. In Fig-

ure 4.1, the time-history of the error in normalized energy change is plotted. The

errors per time-step of the conservative scheme are machine precision, and the small

change in energy is due to the numerical diffusion inherent to the SPP-RK3 scheme.

For fixed time-step size, changing resolution or polynomial order has little impact on

the magnitude of energy errors, and they always remain close to machine precision.
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Figure 4.1: (a) Relative change in energy, ∆M2/M2(t = 0) = [M2(t) − M2(t =
0)]/M2(t = 0), for p = 1, N = 16 (solid and dashed blue) and p = 2, N = 8 (dot-
ted and dash-dot orange) cases for relaxation of a square distribution to a discrete
Maxwellian. The decrease in energy in our conservative scheme is close to machine
precision. The curves labeled ‘no conservation’ omit the boundary correction terms
and use regular moments instead of “star moments” (for p = 1) needed for momen-
tum and energy conservation. (b) Time-history of relative change in entropy. When
using the conservative scheme, the entropy rapidly increases and remains constant
once the distribution function becomes a discrete Maxwellian.

Figure 4.1 also shows that as the distribution function relaxes, the entropy

rapidly increases and then remains constant once the discrete Maxwellian state is

obtained. The change in entropy between p = 1 and p = 2 is indicative that different

discrete Maxwellians will be obtained depending on grid resolution and polynomial

order. The same figure shows that neglecting the boundary corrections and “star

moments” (for p = 1) needed for conservation degrade energy conservation by many

orders of magnitude, and in the p = 1 case, can even lead to decreasing entropy.

In fact, the violation of the second law of thermodynamics when neglecting the

boundary corrections to the drag and diffusion coefficients provides solid evidence

that the care taken in accounting for the finite velocity space extents in formulating

the scheme in Chapter 2 produces a more reliable scheme for the physics content of

the equation system. Note that this is not a good test for momentum conservation,

192



because the initial momentum is zero.

We now consider relaxation in a 1X2V setting. For this test, the initial condi-

tion is selected as a sum of two Maxwellians, the first with drift velocity u = (3vth, 0)

and the second with drift velocity u = (0, 3vth). Both Maxwellians have a thermal

speed of vth = 1/2. A 162 grid in velocity space with p = 2 Serendipity basis func-

tions is used. Again, there is no variation in configuration space in this problem, so

only one configuration space cell is required.

As the particles collide, the distribution function will relax to a new Maxwellian

with non-zero drift and different temperature, thus allowing us to test momentum

conservation. The simulation is run to νt = 5, five collisional periods. Figure 4.2

shows the initial and final distribution function demonstrating the relaxation to

the discrete Maxwellian. The errors in the energy and the x- and y-components

of momentum are close to machine precision for our conservative scheme, as shown

in panel (c). Neglecting boundary correction terms degrades conservation by many

orders of magnitude. Also, panel (d) demonstrates that the entropy increases mono-

tonically, reaching its steady-state value once the discrete Maxwellian is obtained.

These tests demonstrate the high accuracy with which the moments are conserved

as well as providing empirical evidence that entropy is a non-decreasing function

of time, so long as we are careful to include the corrections in the computation

of the moments and additional boundary condition which arise from solving the

Vlasov–Fokker–Planck equation on a finite velocity grid.
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Figure 4.2: The initial (a), relaxed (b) distribution function in a 1X2V relaxation
test. Conservation (c) of energy (orange) and momentum (green, purple) is at
machine precision for our conservative scheme. Neglecting boundary corrections
breaks conservation by more than 8 orders of magnitude. Purple and green curves
overlay each other on this scale. (d) The entropy increases rapidly and then remains
constant once the discrete Maxwellian is obtained.

4.1.2 Kinetic Sod-Shock

We now add in the streaming of particles in configuration space, αx
h = v, while

keeping the electromagnetic fields zero, to test the accuracy of our DG Vlasov–

Fokker–Planck equation in the presence of spatial gradients. In this benchmark, we

study shock structure in the kinetic regime with the classic Sod-shock [Sod, 1978]
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initial conditions in one spatial dimension and one velocity dimension (1X1V),
ρl

ul

pl

 =


1

0.0

1.0

 ,

ρr

ur

pr

 =


0.125

0.0

0.1

 , (4.3)

where this mass density, flow, and pressure are used to initialize the Maxwellian

velocity distribution defined in Eq. (4.1) on the left, l, and right, r, sides of the

domain. The phase space domain is [0, L] in configuration space and [−6vth,l, 6vth,l]

in velocity space, with v2
th,l = pl/ρl = 1 since pl = nlTl = 1 and ρl = mnl = 1,

and we initialize the discontinuity to be at x = L/2. Note that for this 1X1V

system, the gas adiabatic constant is γ = 3 because the internal energy is defined as

p/(γ−1) = Nρv2
th/2, N = 1 in one dimension, and upon rearranging, we find γ = 3.

The simulations were run on a 64 × 16 grid, with piecewise quadratic Serendipity

elements, L = 1, and tend = 0.1. Zero flux boundary conditions are used in velocity

space and copy boundary conditions are used for configuration space, where the

value of the distribution function at x = 0 and x = L is copied into the ghost layer

for the computation of the fluxes at the configuration space boundary. Note that

this copy boundary condition copies the full expansion of the distribution function

from the skin cells at x = 0 and x = L into the ghost layer, and so is not the

same as a homogeneous Neumann boundary condition, but more akin to a perfectly

matched layer, i.e., an open boundary condition.

The Knudsen number (Kn = λmfp/L, where ν = vth/λmfp) is varied between

1/10, 1/100 and 1/500. In the first case, the gas is close to collisionless on the
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time-scale of the simulation, as the box size is not much greater than the mean free

path of particle collisions, but in the last case, the gas is highly collisional, because

the particles undergo many collisions while propagating through the box, L� λmfp.

Hence, in the last case the solution should match, approximately, the solution from

the Euler equations for the evolution of a fluid1.

Figure 4.3 shows the density, velocity, temperature and gas frame, or kinetic,

heat-flux,

qh(x, t)
.
=
∑
j

∫
Kj\Ωk

(v − uh(x, t))3 fh(x, v, t) dv, (4.4)

obtained from the kinetic simulations. For comparison, the exact solution to the

corresponding inviscid Euler Riemann problem is also shown. It is observed, as

expected, that as the gas becomes more collisional, the moments tend to the Euler

solution. An interesting aspect of the kinetic results, though, are the viscosity, heat-

conductivity and other transport effects which smooth the shock structures that are

sharp in the Euler solution. In particular, the lower-right plot of Figure 4.3 shows

that the heat-flux is completely absent in the inviscid equations. There is significant

heat-flux in the low collisionality case, but this heat flux vanishes as the collisionality

increases. It is a testament to the accuracy of our discrete Vlasov–Fokker–Planck

implementation that we can transition from the low to high collisionality limit,

comparing favorably with the Euler equation solution in the high collisionality limit.

1We note that the Euler equations are formally derived with the full Boltzmann collision op-
erator accounting for hard sphere collisions of gas particles, and then taking viscosity and heat
conduction to be zero. In this case, even the simplified Fokker–Planck operator leads to a high
collisionality limit. However, the transport coefficients for matching a Navier-Stokes solution with
finite viscosity and heat conduction, i.e., finite momentum and heat transport, would need to be
modified to account for this particular collision operator.
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Figure 4.3: Density (a), velocity (b), temperature (c) and gas frame, or kinetic,
heat-flux (d) from a Sod-Shock problem. Plotted are results with Knudsen numbers
of 1/10 (red), 1/100 (magenta), and 1/500 (blue), with the inviscid Euler results
(black dashed) shown for comparison. As the gas becomes more collisional, i.e.,
decreasing Knudsen number, the solutions tend to the Euler result. Note that there
is no heat-flux in the inviscid limit.

We next consider a Sod-shock with a sonic point in the rarefaction wave. The

initial conditions are selected as
ρl

ul

pl

 =


1

0.75

1.0

 ,

ρr

ur

pr

 =


0.125

0.0

0.1

 , (4.5)

and this mass density, flow, and pressure are again used to construct an initial

Maxwellian velocity distribution, Eq. (4.1). We employ the same 64× 16 grid with
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piecewise quadratic Serendipity elements, [−6vth,l, 6vth,l] velocity space extents, and

zero-flux boundary conditions in velocity space. In contrast to the standard Sod-

shock, this problem is run on a periodic domain [−1, 1], with the “left” state applied

for |x| < 0.3. The Knudsen number is 1/200 and the simulation is run to t = 0.1.

As the domain is periodic, the total momentum and energy should remain constant,

thereby testing conservation properties in a more complex setting. Note that the

net momentum is not zero in this problem, which, combined with the configuration

space variation that develops in this benchmark, makes this a more strenuous test

of momentum conservation compared to the relaxation test.

Figure 4.4 shows the density, velocity, and distribution function at t = 0.1.

Complex shock structures are visible both in the moments and the distribution

function. Figure 4.5 shows the errors in momentum and energy as a function of time

for p = 1 and p = 2 cases. In each case, the errors are close to machine precision

when using our conservative scheme, but neglecting boundary corrections and using

regular moments instead of ‘star moments’ (for p = 1) leads to errors many orders of

magnitude greater. We note that, even in the presence of spatial gradients, the errors

are independent of polynomial order and only depend on the number of time-steps

taken in the simulations, as we expect from our mathematical formulation in the

algorithm in Chapter 2. So, not only do we converge to the inviscid Euler solution in

the limit of high collisionality as we expect, but momentum and energy are conserved

to a high precision by the scheme. Importantly, while we did not discuss the limit of

no electromagnetic fields in Chapter 2 when we discussed momentum conservation

in the discrete scheme, we did note that the errors in momentum conservation arose
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Figure 4.4: The density (a), velocity (b), and distribution function (c) for the Sod-
shock problem with a sonic point in the rarefaction. Complicated shock structures
are formed and are visible both in the moments as well as the distribution function.

from our discretization of Maxwell’s equations. Thus, we find here by numerical

demonstration that our DG discretization of the Vlasov–Fokker–Planck equation in

the limit of E = B = 0 exactly conserves the momentum, in addition to the energy,

as the momentum conservation errors in the relaxation test and kinetic Sod-shock

benchmark are only a function of the size of the time-step.
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Figure 4.5: The relative change in the momentum (a) and energy (b) for p = 1
(blue) and p = 2 (orange) cases for the Sod-shock problem with a sonic point in the
rarefaction. Our conservative scheme gives us machine precision errors in momentum
and energy errors that are nearly independent of polynomial order and only depend
on the number of time-steps taken in each simulation. However, neglecting the
boundary corrections needed for conservation leads to errors orders of magnitude
greater.

4.2 Benchmarks of the Collisionless Vlasov–Maxwell

System of Equations

4.2.1 Conservation Test for the Vlasov–Maxwell System of Equations

To test the conservation properties of the discrete Vlasov–Maxwell system of

equations, we set up a drifting electron-proton plasma with a large density gradient

in both species to drive strong asymmetric flows. We initialize a Maxwellian velocity

distribution, Eq. (4.1), for both protons and electrons with a density gradient,

n(x, t = 0) = n0(1 + 4 exp(−βl(x− xm)2)) x < xm,

= n0(1 + 4 exp(−βr(x− xm)2)) x > xm, , (4.6)

in a 1X1V box. The phase space domain is Lx = 96λD with velocity space extents

[−5.0vthe , 7.0vthe ] and [−6.0vthp + vthe , 6.0vthp + vthe ] for the electrons and protons
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respectively. Here, λD is the Debye length, Eq. (1.5), and vthe and vthp are the

electron and proton thermal velocities.

We set βl = 0.5λ−2
D , βr = 0.03125λ−2

D , xm = Lx/4 = 24λD, and n0 = 1 in

Eq. (4.6). There is a constant drift in both the protons and electrons, u(x, t = 0) =

vthe , and the following parameters are chosen: mp/me = 1836, Tp/Te = 1.0, and

vthe = 1.0. The latter is a normalization such that the velocity normalization in the

system is the electron thermal velocity, a reasonable choice in 1X1V when Maxwell’s

equations reduce to just Ampere’s Law,

∂E

∂t
=

J

ε0
, (4.7)

and thus there are no light waves in the system.

We employ periodic boundary conditions in x and zero-flux boundary condi-

tions in vx, though we note that this density gradient is not periodic. However, the

value of the gradient at the edge of configuration space is small, far below machine

precision. To demonstrate energy conservation, irrespective of configuration space

resolution or polynomial order, we perform a number of simulations with Nx = 4,

∆x = 24λD, and Nv = 12, ∆v = 1vths . Simulations are run for 1000ω−1
pe , where

ωpe is the electron plasma frequency, Eq. (1.23). Results are plotted in Figure 4.6,

where the change in the total energy is defined as

∆E =

∣∣∣∣∣
∫ Lx

0
E(t)− E(t = 0) dx∫ Lx

0
E(t = 0) dx

∣∣∣∣∣ , (4.8)
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Figure 4.6: The change in the total, electron plus proton and electromagnetic, energy
for a number of simulations to demonstrate the robustness of our energy conserving
scheme. The scheme’s energy conservation is independent of the polynomial order
(top left/right), with the caveat that the choice of polynomial order 1 requires
sufficient velocity resolution to reduce the projection errors in projecting |v|2. The
latter caveat of projection errors in the polynomial order 1 simulations is also the
reason for the dip in the most resolved polynomial order 1 calculation, where the
computation of errors is the most sensitive and we must be careful about finite
precision effects. We note though that for fixed time-step we recover the energy
conservation result of p = 2 and p = 3 if we use enough velocity space resolution
with the p = 1 simulations. Likewise, the scheme’s energy conservation depends only
the size of the time-step, not the configuration space resolution (bottom left/right).
The convergence of the energy errors in the top left plot match our expectations for
a third order time-stepping method, 2.5 and 2.9 for p = 2, and 2.0 and 2.9 for p = 3.

with

E =
1

2
me

∫ vmax

vmin

|v|2fe dv +
1

2
mp

∫ vmax

vmin

|v|2fp dv +
1

2
ε0|E|2. (4.9)

Note that the absolute value in the definition of the relative energy change is due
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to the fact that the total energy decreases with time.

We emphasize a number of results. Defining the convergence order as,

C(E1, E2) = log2

(
E1

E2

)
=

log(E1)− log(E2)

log(2)
, (4.10)

we find the order of convergence with decreasing time-step to match our expectations

for a third-order Runge-Kutta method, 2.5 and 2.9 for p = 2, and 2.0 and 2.9

for p = 3. In addition, the energy conservation errors are independent of choice

of polynomial order. We note in particular that energy can be conserved with

polynomial order 1, but depending on the size of the time-step, one may require more

velocity resolution so that projection errors from projecting |v|2 onto linear basis

functions do not dominate the error in the computation of the energy. Finally, as

expected, the conservation of energy is determined by the error in the time-stepping

scheme, and refining the grid and increasing the configuration space resolution from

Nx = 4 to Nx = 8, 16 does not improve the energy conservation compared to

decreasing the size of the time-step.

We can likewise examine the extent to which momentum is conserved, even

though our algorithm does not formally conserve the total momentum. In Figure 4.7,

we plot the integrated total momentum, relative to the total momentum at the

beginning of the simulation,

∆M =

∣∣∣∣∣
∫ Lx

0
M(t)−M(t = 0) dx∫ Lx

0
M(t = 0) dx

∣∣∣∣∣ , (4.11)
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Figure 4.7: The change in the total, electron plus proton, momentum in a number
of simulations. Simulations with polynomial order 2 (left) and polynomial order 3
(right) are performed with increasing configuration space and velocity space reso-
lution to demonstrate that errors in the total momentum decrease with increasing
configuration space resolution, while only weakly depending on velocity space reso-
lution. The convergence orders of the polynomial order 2 simulations are 1.35, 2.55,
2.93, and 3.14, and the convergence orders of the polynomial order 3 simulations
are 2.83, 3.32, 3.38, and 4.76, and these convergence orders are calculated using
the higher velocity resolution results. We note the convergence orders are largely
unaffected by using the lower velocity resolution simulations to compute them.

where

M = me

∫ vmax

vmin

|v|fe dv +mp

∫ vmax

vmin

|v|fp dv, (4.12)

is the total, electron plus proton, momentum. We note again the absolute value in

Eq. (4.11) is due to the fact that the total momentum decreases with time. While

we cannot show that our scheme conserves the total momentum, the errors in the

total momentum converge rapidly with increasing configuration space resolution,

and depend only weakly on resolution in velocity space. The convergence order as

defined by Eq. (4.10) are 1.35, 2.55, 2.93, and 3.14 for p = 2, and 2.83, 3.32, 3.38, and

4.76 for p = 3, calculated using the higher velocity resolution results, though one can

use the lower velocity resolution results and obtain virtually identical convergence
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rates. We have thus demonstrated one aspect of the scheme that is high-order: the

convergence of the errors in the total momentum with our orthonormal, modal, DG

algorithm are super-linear in polynomial order.

Finally, we examine two additional convergence metrics for our discretization of

the Vlasov–Maxwell system with this initial condition: the behavior of the L2 norm

of the distribution function and the divergence errors in Gauss’ law for the electric

field. We expect with our choice of numerical flux function, upwinding, Eq. (2.60)

for αx, the streaming term, and global Lax-Friedrichs for the acceleration αv, that

the L2 norm of the distribution function is a monotonically decaying function. We
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Figure 4.8: The change in the L2 norm of the electron (left) and proton (right)
distribution function with increasing resolution and polynomial order. As expected,
the behavior of the L2 norm of the distribution function is monotonic and decays in
time. We note as well that increasing the polynomial order from 2 to 3 corresponds
extremely well with a doubling of the resolution, providing direct evidence for the
often assumed benefit of a high order method.

present numerical evidence for this proof in Figure 4.8 for both the protons and

electrons by plotting the relative change in the L2 norm,

L2
s =

∣∣∣∣∣
∫ Lx

0

∫ vmax

vmin
f 2
s (t)− f 2

s (t = 0) dxdv∫ Lx

0

∫ vmax

vmin
f 2
s (t = 0) dxdv

∣∣∣∣∣ . (4.13)
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It is interesting to note the behavior of polynomial order 3 compared to polynomial

order 2, which provides anecdotal evidence that increasing the polynomial order of

the simulation is analogous to increasing the resolution in configuration and velocity

space. Although this behavior is often touted as prima facie for employing high

order methods, such behavior is difficult to demonstrate analytically for nonlinear

equation systems, if it is demonstrable at all.

Likewise, we consider how well Gauss’ law for the electric field is satisfied in a

discrete sense. In one dimension, Eq. (1.61) becomes

∂Ex(x)

∂x
= |e|np(x)− ne(x)

ε0
, (4.14)

where we have already substituted in for the charge density, ρc = |e|(np − ne). We

plot the results for the suite of simulations considered above, polynomial order 2

and 3, in Figure 4.9 at the end of the simulations, t = 1000ω−1
pe . We note that,

while the agreement is not perfect, the two quantities track remarkably well, even

as larger amplitude, smaller scale, electric fields are formed with increasing resolu-

tion. Especially for the finest resolution, polynomial order 3, when very fine scale

structure forms in the electric field as the resolution approaches the Debye length,

the characteristic length scale of these simulations, the charge density and diver-

gence of the electric field agree very well. We reiterate that we currently do not

enforce this condition, as the charge density ρc does not appear anywhere in the

Vlasov equation or Ampere’s law, and thus it is a testament to the robustness of

our numerical method that we do not observe large divergence errors in Gauss’s law

for the electric field.
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Figure 4.9: Comparison of the divergence of the electric field (dashed line) and
the charge density (stars) for polynomial order 2 (left) and polynomial order 3
(right) simulations at the end of the simulation, t = 1000ω−1

pe . We can see that
the two quantities agree reasonably well, especially as we refine the grid. Even as
higher amplitude, smaller scale, electric fields are excited in the higher resolution
simulations, the two quantities track each other well, despite the fact that we do not
enforce this condition, and the charge density does not appear anywhere in evolved
system of equations.

4.2.2 Advection in Specified Electromagnetic Fields

We now turn our attention to another simple, yet subtle, test of the Vlasov–

Maxwell solver: advection in specified electromagnetic fields. Since charged particles

circulate around magnetic fields, and we are employing a Cartesian mesh, we check

that our numerical method can handle the advection of the distribution function

in phase space. In other words, we are checking that our algorithm can handle

corner transport across cells. Consider a constant magnetic field in the z direction,

B = B0ez and an oscillating electric field of the form,

E(t) = E0 cos(ωt)ex. (4.15)
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The evolution of charged particles in such a system can be solved analytically. As-

suming no spatial variation of the electric and magnetic fields, we have two ordinary

differential equations for the evolution of the particles’ velocities,

dvx
dt

=
qs
ms

E0 cos(ωt) + Ωcvy, (4.16)

dvy
dt

= −Ωcvx, (4.17)

where Ωc = qsB0/ms is the cyclotron frequency of the particles in this particular

magnetic field. For simplicity, let us normalize the time and frequency to the inverse

cyclotron frequency and cyclotron frequency respectively so that our two ordinary

differential equations become,

dvx

dt̃
=
E0

B0

cos(ω̃t̃) + vy, (4.18)

dvy

dt̃
= −vx, (4.19)

where tildes indicate normalized quantities.

We can convert this system of coupled first-order ordinary differential equa-

tions into a set of uncoupled second order ordinary differential equations and solve

for the particular solutions of each to obtain,

vx(t̃) = wx(t̃) + vx(0) cos(t̃) + vy(0) sin(t̃), (4.20)

vy(t̃) = wy(t̃)− vx(0) sin(t̃) + vy(0) cos(t̃), (4.21)
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where,

wx(t̃) =


E0

B0(1−ω̃2)
[sin(t̃)− ω̃ sin(ω̃t̃)] ω̃ 6= 1,

E0

2B0
[t̃ cos(t̃) + sin(t̃)] ω̃ = 1,

(4.22)

wy(t̃) =


E0

B0(1−ω̃2)
[cos(t̃)− cos(ω̃t̃)] ω̃ 6= 1,

− E0

2B0
t̃ sin(t̃) ω̃ = 1.

(4.23)

Note that ω̃ = 1 means that the denormalized frequency is equal to the cyclotron

frequency, i.e., when ω̃ = 1, that is the resonant case for the particles. Since the

motion of a distribution of particles is constant along characteristics, we know that,

given an initial distribution f0(vx, vy), the distribution of particles at any later time

is

f(vx(t), vy(t), t) = f0(vx(0), vy(0), 0). (4.24)

Consider an initial Maxwellian distribution of electrons in one spacial dimension

and two velocity dimensions, 1X2V, Eq. (4.1). Using our solution for the particles’

velocities, we can see that,

[vx(t̃)− wx(t̃)]2 + [vy(t̃)− wy(t̃)]2 = vx(0)2 + vy(0)2. (4.25)

So, the exact solution for an initial Maxwellian distribution of particles is just a

Maxwellian with drift velocities wx(t̃), wy(t̃) for all future times.

We simulate the evolution of an initially Maxwellian distribution function

of electrons under the influence of a constant magnetic field in the z direction,

B = B0ez, and a time-varying electric field given by Eq. (4.15), one simulation
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with ω̃ = 0.5, E0/B0 = 1.0, a non-resonant case, and one simulation with ω̃ =

1.0, E0/B0 = 0.5, a resonant case. We compare the analytic solution from Eqns.

(4.22)–(4.25) to simulations using our Vlasov–Maxwell solver in Figures 4.10 and

4.11. Both simulations are performed on a 1X2V grid with Lx = 2π, and velocity

space extents [−8vthe , 8vthe ] in both the vx and vy dimensions. We use polynomial

order 2, Nx = 2, and Nvx = Nvy = 16, so ∆vx = ∆vy = 1vthe . Periodic boundary

conditions are employed in configuration space, and zero flux boundary conditions

are employed in velocity space. Even on a coarse velocity space mesh, the evolution

of the distribution function is well-described by our analytic solution, with very lit-

tle diffusion as electrons circulate around the magnetic field. Additionally, we run

the non-resonant case, ω̃ = 0.5, E0/B0 = 1.0, to t = 1000Ω−1
c and plot the final

distribution function in Figure 4.12. While we note some noticeable diffusion in the

polynomial order 2 simulation, by increasing to polynomial order 3 on the same grid,

we virtually eliminate this diffusion, again illustrating the virtues of a high-order

method applied to the discretization of the Vlasov–Maxwell system.

It is worth emphasizing an inherent flexibility we have in our Vlasov–Maxwell

solver in Gkeyll: we can choose whatever polynomial order is ultimately necessary

for the required dynamics. While the polynomial order 3 simulation of the non-

resonant case is slightly more expensive, an 80 percent increase in cost for a t =

1000Ω−1
c simulation for the specified grid resolution of Nx = 2, Nvx = Nvy = 16, this

freedom to increase the polynomial order as needed ultimately allows us to tackle

a wider range of problems. And, we wish to point out that an 80 percent increase

in cost is actually better than we would naively expect, as there are 60 percent
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Figure 4.10: The non-resonant (top) and resonant (bottom) advection of a distri-
bution of electrons in phase space, over-plotted with the analytical solution. The
electron distribution function is plotted at f(x = π, vx, vy). We can see that in
both cases the distribution function’s evolution is well described by our derived an-
alytical solution, and that in the non-resonant case, where the distribution function
is advected for a large number of inverse cyclotron periods, there is no noticeable
diffusion of the distribution function in phase space. We emphasize that these sim-
ulations are performed with polynomial order 2 on a relatively coarse velocity space
mesh, Nvx = Nvy = 16 with velocity space extents [−8vthe , 8vthe ] in both the vx and
vy dimensions, so ∆vx = ∆vy = 1vthe .
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Figure 4.11: The value of the flow computed from the simulations (red dots) over-
plotted with the analytic solution (black line) for non-resonant (top) and resonant
(bottom) cases. The values of the flow are plotted at ux(x = π), uy(x = π).
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Figure 4.12: Comparison of a polynomial order 2 (left) and polynomial order 3
(right) simulation of the non-resonant case at t = 1000Ω−1

c . The electron distribution
function is plotted at f(x = π, vx, vy). On this coarse mesh, Nvx = Nvy = 16
with velocity space extents [−8vthe , 8vthe ] in both the vx and vy dimensions, so
∆vx = ∆vy = 1vthe , the diffusion of the distribution function in phase space starts
to become noticeable for the polynomial order 2 case after running the simulation
for a long enough time. But, we note that for the same coarse mesh, the distribution
function in the polynomial order 3 simulation remains pristine at this late time.

more basis functions, 32/20 = 1.6, going from polynomial order 2 to 3, and we

require 50 percent more time-steps for the high polynomial order simulation from a

more restrictive CFL condition. This back-of-the-envelope calculation suggests that

polynomial order 3 should be 2.5 times more expensive for the same grid resolution

and end time. The improvement over the naive cost scaling occurs because the

higher polynomial order computational kernels obtain better efficiency in terms of

arithmetic intensity, i.e., the number of floating point operations per byte of memory

moved.
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4.2.3 Landau Damping of Langmuir Waves

Consider a plasma, or Langmuir, wave propagating in a plasma of protons and

electrons whose distribution functions are given by Maxwellians, Eq. (4.1). Langmuir

waves are dispersive waves, with a dispersion relation given by

1− 1

2k2λ2
De

Z ′
(

ω√
2vthek

)
= 0, (4.26)

in the limit that the proton mass is much larger than the electron mass and the

protons can thus be considered immobile. Z(ζ) is the plasma dispersion function,

defined as

Z(ζ) =
1√
π

∫ ∞
−∞

e−x
2

x− ζ
dx, (4.27)

with the derivative of the plasma dispersion function given by

Z ′(ζ) = −2[1 + ζZ(ζ)]. (4.28)

An application of complex integration techniques shows that depending on the sign

of the largest imaginary component of the frequency ω = ωr + iγ, the wave is either

unstable and will grow with time, or will damp away, a phenomenon known as

Landau damping.

For Langmuir waves propagating in a Maxwellian plasma of protons and elec-

trons, the waves quickly damp. Using a 1X1V setup, we can initialize Langmuir

waves in the Vlasov–Maxwell system with a small density perturbation and the
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corresponding electric field to support this density perturbation,

ne(x) = n0[1 + α cos(kx)] (4.29)

np(x) = n0 (4.30)

Ex(x) = −|e|αsin(kx)

ε0k
, (4.31)

where n0 = 1.0, α is the size of the perturbation, and k is the wavenumber of the

wave. The electric charge e and permittivity of free space ε0 are included in the

electric field to satisfy Eq. (1.61). Choosing α � 1 allows us to compare with the

linear analytical theory described above. The box size is set to Lx = 2π/k so exactly

one wavelength fits in the domain. Specific parameters for these runs are: α = 10−4,

mp/me = 1836, Tp/Te = 1.0, and vthe/c = 0.1. For the proton species, the velocity

space extents are ±6vthp , and for the electrons, the velocity space extents are ±6vthe .

The boundary conditions in configuration space are periodic, while the boundary

conditions in velocity space are zero flux.

The resolution is chosen for each simulation to adequately resolve the De-

bye length in configuration space and to mitigate numerical recurrence in velocity

space. By numerical recurrence, we refer to the process by which the collisionless

system artificially “un-mixes” if the distribution function forms structure at the ve-

locity space grid scale, see, e.g., Cheng et al. [2013b] for a discussion of numerical

recurrence in DG schemes. Numerical recurrence is inevitable with finite velocity

resolution for this particular problem, because the Landau damping of the wave will

create smaller and smaller velocity space structure through the phase-mixing of the

215



wave. We could completely eliminate this issue with a diffusive process in velocity

space, such as a collision operator, and we will explore the effects of collisions on the

Langmuir wave in Section 4.3.1. Here, we choose ample velocity resolution so that

the wave damps enough for us to extract a clean damping rate and frequency for

the initialized wave. We find for the longest wavelengths, using polynomial order

2, a resolution of 64 points in configuration space adequately resolves the Debye

length, and 128 points in velocity space permits the wave to phase-mix sufficiently

to extract damping rates.

The evolution of the electromagnetic energy, as well as the other components

of the energy, in a prototypical simulation is given in Figure 4.13. Comparisons of
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Figure 4.13: Prototypical evolution of the electromagnetic energy (blue), ε0
2

∫
|E|2dx,

for the damping of a Langmuir wave, in this case kλD = 0.5, for a number of plasma
periods (left), and the evolution of various components of the energy for the full
length of the simulation (right). The right plot is the relative change in the energy
component compared to the total energy at t = 0, i.e, ∆Ecomp/E0. The local
maxima (red circles) of the evolution in the left plot are used to determine both the
damping rate and frequency of the excited wave via linear regression, with the black
line being our reference fit for the damping rate. We note that energy is very well
conserved, and, as expected, the plasma waves damp on the electrons, converting
electromagnetic energy to electron thermal energy.

a number of Vlasov–Maxwell simulations with theory for both the damping rates
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and the frequencies of the waves are given in Figure 4.14. For the theoretical result,
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Figure 4.14: Damping rates (left) and frequencies (right) of Langmuir waves from
theory (solid line) and for a number of Vlasov–Maxwell simulations (red circles).
The solid lines are obtained using a root finding technique applied to Eq. (4.26).
The x-axis of both figures is normalized to the Debye length, λD, and the y-axis of
both figures is normalized to the plasma frequency, ωpe.

we solve Eq. (4.26) using a root-finding technique. We emphasize that we solve the

Vlasov–Maxwell system in its entirety, including the nonlinear term, for both the

protons and electrons. With the above simulation parameters, the plasma waves

damp entirely on the electron species, so the approximation that the protons are

essentially immobile in our dispersion relation holds to high precision. We also wish

to note that the resolution of 64 points in configuration space is not required for

every simulation. For example, the prototypical simulation presented in Figure 4.13

uses only 16 points in configuration space, or approximately one grid cell per De-

bye length. As long as the gradients are properly resolved, the Vlasov–Maxwell

discretization is extremely robust.
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4.2.4 Three-Species Collisionless Electrostatic Shock

We turn now to benchmarking the flexibility of our Vlasov–Maxwell solve in

Gkeyll by considering the evolution of a plasma with more than two species. In

Pusztai et al. [2018], a semi-analytic model for electrostatic collisionless shocks was

derived and then checked against the results of a number of fully nonlinear Vlasov–

Maxwell calculations. The Vlasov–Maxwell simulations performed in Pusztai et al.

[2018] were done with an initially alias-free nodal scheme implemented and described

in Juno et al. [2018], before the algorithm was improved with an orthonormal, modal

basis—see Chapter 3 for details on the othornormal, modal basis compared to the

nodal basis. In the following test, we employ the orthonormal, modal basis algorithm

for the three-species shock problem and reproduce the results of Pusztai et al. [2018]

with our new and improved implementation of the DG scheme for the VM-FP system

of equations.

The three-species collisionless shock setup described in Pusztai et al. [2018] is

repeated here for clarity. A Maxwellian, Eq. (4.1), with a density gradient in 1X1V

in all three species is initialized and allowed to evolve freely, as in Section 4.1.2, but

now allowing the electromagnetic fields to evolve as well. This density gradient is a

step function, with nL = n0, and nR = 2n0, where n0 is the density normalization,

and the subscripts L and R denote the left and right values of the density in the 1D

configuration space domain.

The three species in the plasma are electrons, fully ionized aluminum, and a

proton impurity species. The real mass ratios of the various species are employed

218



so that mp/me = 1836,mi/mp = 27, where the subscript i denotes the mass of

the aluminum ion species. Note that Zi = 13 for fully ionized aluminum. Since

the proton species is an impurity, we choose np/ni = 0.01. The electrons are much

hotter than either ion species, Te/Tp = 45, Tp = Ti. The configuration space domain

has length Lx = 100λD. Note that the jump in the density is initialized at x = 50λD,

the middle of the domain. The velocity space extents of the electrons, aluminum

ions, and proton impurity are [−6vthe , 6vthe ], [−18vthi , 54vthi ], and [−6vthp , 18vthp ]

respectively, with vths denoting the thermal velocity of the specified species. We use

the same resolution as Pusztai et al. [2018], Nx = 256 and Nv = 96 for all three

species, and p = 2 Serendipity elements. Copy boundary conditions are employed

in the x dimension as in Section 4.1.2, i.e., we employ a perfectly matched layer

in configuration space to allow the electromagnetic fields and distribution function

to evolve freely at x = 0 and x = 100λD, and zero flux boundary conditions are

employed in velocity space.

We plot the aluminum and proton distribution functions in the vicinity of the

shock in Figure 4.15. We note that this figure is similar to Figure 9 in Pusztai et al.

[2018]. These distribution functions are plotted at t = 35
√
me/mpω

−1
pe ∼ 1500ω−1

pe

and over-plotted in white are contours of constant H(x, v) = 1
2
msv

2 + qsφ(x), the

Hamiltonian. We note that the Hamiltonian has been transformed to the rest frame

of the shock, v̂ = v− Vshock, and there is some freedom in computing φ(x) from the

electric field in our simulations. We choose φ(x = 0) = 0 on the left edge of the

domain, and then integrate Ex along the 1D domain to determine the electrostatic

potential.
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Figure 4.15: The aluminum (left) and proton impurity (right) distribution functions
in the vicinity of the shock at t = 35

√
me/mpω

−1
pe ∼ 1500ω−1

pe . Over-plotted in
white are contours of constant H(x, v) = 1

2
msv

2 + qsφ(x), the Hamiltonian. We
note that the Hamiltonian has been transformed to the rest frame of the shock,
v̂ = v − Vshock, and there is some freedom in computing φ(x) from the electric field
in our simulations. We choose φ(x = 0) = 0 on the left edge of the domain, and
then integrate Ex along the 1D domain to determine the electrostatic potential. We
draw attention to the trapped particle regions in the proton distribution function
just down-stream of the shock, which amplify the cross-shock potential and lead
to a large reflected population of protons. Note that we are plotting a normalized
value for the distribution function, as in Pusztai et al. [2018], and that the v-axes
are different for the two species.

We find similar results to Pusztai et al. [2018] for the value of the shock

velocity, Vshock = 5.66vthp ,M = 1.216, where M = Vshock/
√
ZiTe/mi is the mach

number, the value of the maximum normalized electrostatic potential, φ̂max = 23.9,

where φ̂ = eφ/Tp, and the measured ratio of the reflected population of the proton

impurity species, αp = 0.874, computed from integrating the density in the upstream

and reflected components of the proton distribution function at x = 85λD. These

results are in good agreement with the semi-analytic model derived in Pusztai et al.
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[2018], especially for the reflected proton ratio, αp ∼ 0.889.

The utility of a continuum discretization of the Vlasov-Maxwell system is made

manifest by the clean representation of the proton impurity distribution function in

Figure 4.15. The trapped particles in the downstream region amplify the cross-shock

potential and lead to a large reflected population. We make no claims of the effort

that may be required to reproduce these features with a particle code. We merely

wish to emphasize here that a continuum representation can be useful for elucidating

features of the particle distribution function relevant to the overall dynamics.

4.2.5 Lower Hybrid Drift Instability

The Vlasov–Maxwell system of equations supports a large zoo of instabilities.

Many of these instabilities are fundamentally “kinetic” in nature, meaning their

ultimate evolution is challenging to model with fluid systems of equations. In other

words, the actual collisionless dynamics of the plasma is a critical component to the

evolution of the instability, and equations that evolve a truncated set of of velocity

moments of the Vlasov–Maxwell system of equations will have difficulty modeling

these instabilities.

Determining whether an extended two-fluid model could capture the dynamics

of current sheets unstable to modes such as the lower-hybrid drift instability (LHDI)

[Hirose and Alexeff, 1972, Davidson et al., 1977, Yoon et al., 2002] was the focus of

a recent paper, Ng et al. [2019] (see also Ng [2019]). Due to the inhomogeneities in

the magnetic field and density in the vicinity of the current, diamagnetic effects may
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become important and drive instabilities such as the LHDI. As part of this study,

Vlasov–Maxwell simulations of the LHDI were performed with Gkeyll to compare

both the linear and nonlinear stages of the evolution of the unstable current sheet in a

fully kinetic model and the aforementioned extended two-fluid models. A simulation

of a current sheet unstable to the LHDI is reproduced here as evidence our modal,

orthonormal DG discretization of the Vlasov–Maxwell system of equations provides

a fiducial representation of the dynamics of this kinetic instability.

We use the same parameters as Ng et al. [2019]. In 2X2V, two spatial, (x, y),

and two velocity, (vx, vy), dimensions, we initialize a gradient in an out-of-plane

magnetic field,

Bz(x, y) = B0(y) + δB(x, y), (4.32)

B0(y) = −C0 tanh
(y
`

)
, (4.33)

δB(x, y) = C1 cos

(
πy

Ly

)
sin

(
2πmx

Lx

)
, (4.34)

where ` = ρp and m = 8, i.e., a current sheet of width ρp and an m = 8 perturba-

tion to the current sheet. Here, ρp is the proton Larmor radius, ρp = vthp/Ωcp. The

box size is Lx × Ly = 6.4ρp × 12.8ρp. The velocity space extents for electrons are

[−8vthe , 8vthe ]
2, and the velocity space extents for the protons are [−6vthe , 6vthe ]

2.

Zero flux boundary conditions are used in velocity space, periodic boundary condi-

tions are used in x, and reflecting boundary conditions are used in y. By reflecting,

we mean that the particles reflect off the y-boundary, and the boundary condition

for Maxwell’s equations is that of a perfect conductor, zero tangent electric field
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and zero normal magnetic field. The grid resolution is Nx × Ny = 128 × 256, with

N2
v = 322 grid points in velocity space for the electrons, and N2

v = 242 for the

protons, with piecewise quadratic Serendipity elements.

Additional parameters are vthe/c = 0.06,mp/me = 36, Tp/Te = 10, and βtot =

1.0. Since βtot = 1.0 and the protons are 10 times hotter than the electrons, we have

βp = 10.0/11.0 and βe = 1.0/11.0. The system is normalized such that the constants

are C0 = vthe/
√
βe = vAe, the electron Alfvén velocity, and C1 = 10−4/m where m

is the mode number being initialized. Note that with the chosen parameters, the

resolution is such that ∆x ≈ ρe, where ρe is the electron gyroradius, ρe = vthe/Ωce.

Finally, we note two critical components to initializing the system. First, the

astute reader will notice that the the initial magnetic field has non-zero curl, and

therefore there must be a supporting current in the plasma, thus we refer to this

initial condition as a current sheet,

Jx = −C0

`
sech2

(y
`

)
− C1

π

Ly
sin

(
πy

Ly

)
sin

(
2πmx

Lx

)
, (4.35)

Jy = −C1
2πm

Lx
cos

(
πy

Ly

)
cos

(
2πmx

Lx

)
. (4.36)

Since the protons are 10 times hotter than the electrons, we give the appropriate

fraction of the current to the protons and electrons, 10.0/11.0 to the protons and

1.0/11.0 to the electrons. Second, to initialize the particle distribution functions,

we initialize both a current carrying and background Maxwellian, the sum of two
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instances of Eq. (4.1), for each species,

fs(x, y, vx, vy) =
msn0 sech2

(
y
`

)
2πTs

exp

(
−ms

(vx − uxs)2 + (vy − uys)2

2Ts

)
+
msnB
2πTs

exp

(
−ms

v2
x + v2

y

2Ts

)
, (4.37)

where,

uxs = Tfrac
Jx

qs sech2
(
y
`

) , (4.38)

uys = Tfrac
Jy

qs sech2
(
y
`

) , (4.39)

and n0 = 1.0 and nB = 10−3. Note that Tfrac is the aforementioned fraction of

the current given to the protons and electrons, 10.0/11.0 and 1.0/11.0 respectively.

This background density is for numerical stability, so that the density does not go

to zero away from the current sheet.

We plot the results of this simulation in Figures 4.16 and 4.17, focusing on the

late linear stage when the traditional mode structure of the LHDI is most visually

evident. In Figure 4.16, we see the logarithmic growth of the electric field associated

with the LHDI2, with a growth rate found γ ∼ 1.1Ωci, in agreement with linear

theory and Ng et al. [2019]’s computation, as well as the mode structure expected

for an m = 8 perturbation. Likewise the structure is concentrated away from the

current sheet centered at y = 0, as expected since it is the edge of the current sheet

where the density gradient is largest and thus most unstable to the LHDI.

2Note that we use a slightly different coordinate system from Ng et al. [2019], who instead
define the 2X2V domain as (y, z, vy, vz). This is why the equivalent mode structure found in Ng
et al. [2019] is in the y-electric field, as opposed to here, where the LHDI mode structure is found
in the x-electric field.
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Figure 4.16: The exponential growth of the LHDI electric field (left) and the LHDI
electric field visualized in configuration space late in the linear stage at t = 6Ω−1

ci

(right). The growth rate, γ ∼ 1.1Ωci, compares well with linear theory and the
results presented in Ng et al. [2019]. Likewise, the mode structure in a snapshot of
the LHDI electric field corresponds to the typical LHDI electric field for an m = 8
perturbation, with the electric field localized to the edge of the current sheet where
the density gradient is largest. The LHDI electric field magnitude is normalized
to B0vA0 = B2

0/
√
µ0n0mp where B0 is the asymptotic magnetic field and n0 is the

density in the current layer.

In Figure 4.17, we present the proton distribution function at the edge of the

current sheet and confirm the presence of the proton resonance expected for the

LHDI. Both the initial drift and the phase velocity for the ion resonance condition

are over-plotted with a cut of the distribution function through x = 2.3ρp, y =

−1.7ρp, vy = 0.0vthp
3. The resonant velocity is computed by solving Eq. (18) in Ng

et al. [2019]. The clear resonance structure in the ion distribution function, used as

3Note that Ng et al. [2019] contains a sign difference in the initial magnetic field profile, which
manifests as a difference in the sign of the proton flow. The growth rate, mode structure, and
resonant velocity are manifestly unaffected, because in 2D a change in sign of the initial flow profile
is analogous to a rotation of the whole system by 180 degrees, and the Vlasov-Maxwell system has
rotational symmetry.
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Figure 4.17: The distribution function for the protons plotted at f(x, y =
−1.7ρp, vx, vy = 0.0vthp), at the edge of the current sheet (left), and a further cut of
the 2D distribution function, f(x = 2.3ρp, y = −1.7ρp, vx, vy = 0.0vthp) (right). The
mode structure for an m = 8 perturbation is again easily seen in the 2D visualization
of the proton distribution function, as the protons at the edge of the current sheet
are resonant with the growing electric field from the LHDI. We have over-plotted the
initial drift velocity (red solid) and the phase velocity for the resonance condition
(green dashed) on top of the 1D cut of the distribution function at x = 2.3ρp.

proof of the importance of ion kinetics in the dynamics of the instability in Ng et al.

[2019], is again a prominent aspect of the algorithm presented here in this thesis.

While there have been numerous particle-in-cell studies of the LHDI [Lapenta and

Brackbill, 2002, Lapenta et al., 2003, Daughton, 2003, Roytershteyn et al., 2012],

the phase space structure lucidly provided by a continuum approach presents an

alternative means of understanding the plasma physics of these small scale, kinetic,

instabilities.
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4.2.6 Hybrid Two-stream/Filamentation Instability

Our final benchmark of our collisionless Vlasov–Maxwell solver is in the same

vein as the previous section and concerns the modeling of small scale, kinetic insta-

bilities. In astrophysical settings, interpenetrating beams, or flows, of plasma are

quite common, as they can serve as a free energy source for a myriad of instabilities.

In particular, in the unmagnetized case, the two-stream instability, filamentation

instability [Fried, 1959], and a hybrid mode of the two-stream and filamentation re-

ferred to as the electromagnetic oblique mode [Bret, 2009] are of interest for a variety

of astrophysical systems from gamma ray bursts [Medvedev and Loeb, 1999] to pul-

sar wind outflows [Kazimura et al., 1998] to cosmological scenarios [Schlickeiser and

Shukla, 2003, Lazar et al., 2009]. It is of particular interest in these astrophysical

contexts if the filamentation instability, or filamentation-like instabilities, are effi-

cient enough to produce dynamically important magnetic fields, and, for example,

explain the observed emission or the presence of a magnetic field in the system.

The dynamics of these instabilities, especially their competition, served as the

motivation for a recent study using the Vlasov–Maxwell solver in Gkeyll [Skoutnev

et al., 2019]. Skoutnev et al. [2019] found that in a certain parameter regime, as

the beams internal temperature was decreased and vth/ud, the ratio of the thermal

velocity to the drift speed of the beam, became smaller, the electromagnetic oblique

modes had comparable growth rates to the two-stream instability. These modes thus

saturated on similar time scales, leading to the dynamics of a single mode having

a manifestly different final nonlinear state in comparison to an initialization of a
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spectrum of modes.

We will consider the results of these nonlinear simulations from Skoutnev et al.

[2019] in Chapter 5, but here we focus on the ability of the DG Vlasov–Maxwell

solver to accurately capture the linear growth of these modes, two-stream, filamen-

tation, and electromagnetic oblique. For the purposes of demonstrating that the

algorithm adequately captures the growth of these modes, we will focus on single

mode simulations, in contrast to the simulations presented in Skoutnev et al. [2019],

which were initialized from a bath of random fluctuations. We will focus particular

attention on the electromagnetic oblique modes in anticipation of how their unique

physics will prove a critical component of the nonlinear evolution of a spectrum of

modes discussed in Chapter 5.

To initialize these single mode simulations, we consider an electron-proton

plasma in 2X2V, but with the protons forming a stationary, charge-neutralizing

background4. The electrons are initialized as two drifting Maxwellians, Eq. (4.1),

fe(x, y, vx, vy) =
men0

2πTe
exp

(
−me

(vx)
2 + (vy − ud)2

2Te

)
+
men0

2πTe
exp

(
−me

(vx)
2 + (vy + ud)

2

2Te

)
, (4.40)

where n0 = 0.5 and the drift velocity is chosen to be uy = 0.3c, with c being the

speed of light. The electron temperature is chosen so that vthe/ud = 1/3, vthe = 0.1c.

The simulations are performed with Nx ×Ny ×N2
v = 8× 8× 82 configuration and

velocity space resolution, with polynomial order 3 and the Serendipity element basis.

4For the purposes of the simulation, this limit is achieved by not adding a proton contribution
to the current in Maxwell’s equations so that the only contribution to the current comes from the
dynamic electron species.
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The box size in configuration space is chosen to fit exactly one wave mode in the

box Lx × Ly = 2π/kx × 2π/ky, and the velocity space extents are [−3uy, 3uy]
2,

with periodic boundary conditions in configuration space and zero-flux boundary

conditions in velocity space. A small perturbation is seeded in the electric and

magnetic fields of the form

Ex = −δ sin(kxx+ kyy)

kx + kyα
, (4.41)

Ey = αEx, (4.42)

Bz = kxEy − kyEx, (4.43)

where δ is the size of the perturbation and α is a coefficient determined by the

eigenfunctions of the linear theory and corresponds to the ratio of the y-electric

field to the x-electric field.

In the notation of Skoutnev et al. [2019], we define an angle θ with respect to

x-axis so that the wave vector, k = (kxx̂, kyŷ), corresponds to a pure filamentation

mode when θ = 0 degrees, and a pure two-stream mode when θ = 90 degrees. In

other words, a pure kx mode is a filamentation mode, and a pure ky mode is a two-

stream mode, with all the intermediate angles defining the aforementioned oblique

modes. We note in both cases the initial condition simplifies, as a filamentation mode

reduces to a perturbation in Bz, and a two-stream mode reduces to a perturbation

in Ey. For all of the simulations, δ is chosen to be sufficiently small to maximize

the linear regime of the simulation and insure a reasonable fit of the growth rate.

In Figure 4.18, we compare the results of the linear theory with a sequence
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of Vlasov-Maxwell simulations using Gkeyll for a variety of initial perturbations.

The linear theory solution is found by linearizing the Vlasov–Maxwell system of

Figure 4.18: Comparison of linear theory (solid line) calculated from the disper-
sion relation in Eq. (4.44) after rotation to the coordinate system aligned with k,
Eqns. (4.47–4.49), with a number of Gkeyll simulations (stars) for the filamenta-
tion limit, θ = 0◦, an oblique mode at θ = 45◦, and the two-stream limit, θ = 90◦.
We observe good agreement between the linear theory and our DG Vlasov-Maxwell
solver.

equations to obtain the dispersion matrix,

Dij =
ω2

c2

(
kikj − k2δij

)
+ εij, (4.44)

where,

εij =

(
1−

∑
s

ω2
ps

ω2

)
δij +

∑
s

ω2
ps

ω2

∫ ∞
−∞

vivj
k · ∇vf0s

ω − k · v
dv. (4.45)

It is most convenient to rotate the dispersion matrix to the coordinate system aligned
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with the wave vector k, i.e., a rotation by the angle θ previously defined,

D =

 D11 D12

D21 D22

 , (4.46)

where

D11 = 1−
ω2
pe

4k2v2
th

[Z ′(ξ+) + Z ′(ξ−)] , (4.47)

D12 = D21 =
ω2
peud cos θ

4ωkv2
th

[Z ′(ξ+)− Z ′(ξ−)] , (4.48)

D22 = 1−
ω2
pe

ω2
− k2c2

ω2
−
ω2
pe (u2

d cos2 θ + v2
th)

4ω2v2
th

[Z ′(ξ+) + Z ′(ξ−)] . (4.49)

Here, Z(ξ±) is the plasma dispersion function previously employed in Section 4.2.3,

Eq. (4.27), but now with ξ± = ω±kud sin θ√
2kvth

. The linear solution, the solid lines in

Figure 4.18, are eigenmodes of the system found by solving det(D) = 0 for ω with

the corresponding eigenvectors satisfying RTDRE = 0, where R is the rotation

matrix for the angle −θ.

We now turn to the evolution of an electromagnetic oblique mode in the nonlin-

ear regime. We repeat the oblique mode calculation with θ = 45◦ with an increased

resolution, Nx × Ny × N2
v = 48 × 48 × 642, and slightly larger velocity extents,

[−10vthe , 10vthe ]
2, running the simulation for t = 500ω−1

pe , deep into the nonlinear

evolution of the mode, with wave-vector kx = ky = 2.0. In Figure 4.19, we plot the

three field components, Ex, Ey, and Bz, as well as the particle distribution function

at (y = Ly/2, vy = 0), (x = Lx/2, vx = 0), and (x = Lx/2, y = Ly/2) at t = 125ω−1
pe

at the initial nonlinear phase. We can see that the oblique mode grows all three

components of the field that are initialized, as well as the standard signatures of the
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Figure 4.19: The evolution of the electromagnetic fields, Ex (top left), Ey (top
middle), and Bz (top right), as well as the electron distribution function at
(y = Ly/2, vy = 0) (bottom left), (x = Lx/2, vx = 0) (bottom middle), and
(x = Lx/2, y = Ly/2) (bottom right) at t = 125ω−1

pe as the oblique mode, θ = 45◦,
instability is going nonlinear. We observe the growth of all three components of the
initial electromagnetic fields, with standard signatures of both two-stream- and fila-
mentation modes in the distribution function: the phase space vortices in the x−vx
and y − vy plane, and the deflection of the beams in the vx − vy plane respectively.

the two-stream and filamentation instability, the phase space vortices in the x− vx

and y − vy plane, and the deflection of the beams in the vx − vy plane respectively.

Late in time at t = 500ω−1
pe in Figure 4.20, we see that the saturated state has little

if any magnetic field, as potential wells have formed in the electric fields that have

scattered the particles to a fairly isotropic state in the vx−vy plane and depleted the

phase space structure required to support a magnetic field. This particle scattering

will prove to be an important component of the nonlinear evolution of a spectrum

of unstable modes in Chapter 5.
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Figure 4.20: The evolution of the electromagnetic fields, Ex (top left), Ey (top
middle), and Bz (top right), as well as the electron distribution function at (y =
Ly/2, vy = 0) (bottom left), (x = Lx/2, vx = 0) (bottom middle), and (x = Lx/2, y =
Ly/2) (bottom right) at t = 500ω−1

pe of the oblique mode, θ = 45◦, instability deep in
the nonlinear phase of the dynamics. Here, we observe little, if any, magnetic field,
as the electrostatic wells forming in the electric field components scatter particles to
a nearly isotropic state in the vx − vy plane and deplete the phase space structure
required to support the magnetic field.

4.3 Benchmarking the Complete Vlasov–Maxwell-Fokker–Planck

System of Equations

4.3.1 Collisional Landau Damping

We return now to the Landau damping of Langmuir waves discussed in Sec-

tion 4.2.3, but now including the effects of collisions with our discretization of the

Fokker–Planck equation. Collisions can significantly change the damping rate, and

in the limit of high collisionality, the damping can be “shut off.” This shut off
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happens when the mean free path becomes shorter than the wavelength, preventing

the particles from resonating with the wave and gaining energy before being scat-

tered via collisions. We are interested in demonstrating that the discrete VM-FP

system of equations in Gkeyll can smoothly transition from the collisionless to col-

lisional regimes, similar to our benchmarks in Section 4.1.2, but now including the

self-consistent plasma-electromagnetic field feedback.

We again initialize Maxwellian, Eq. (4.1), proton and electron distribution

functions with the initial density and electric field again given by Eqns. (4.29–4.31).

We choose a fixed k for this study scanning collisionality, kλD = 0.5, and still set

Lx = 2π/k so exactly one wavelength fits in the domain. The proton and electron

velocity space limits are again set to ±6vths , with periodic boundary conditions in

configuration space and zero flux boundary conditions in velocity space.

Figure 4.21 shows the electric field energy as a function of time for ν =

0.0ωpe, 0.25ωpe, and 1.0ωpe. As the collision frequency increases, we find a rapidly de-

creasing damping rate in the moderate collisionality regime, as seen in Figure 4.22.

We compare this damping rate cut off with the results of Anderson and O’Neil

[2007b], who employ a similar simplified collision operator, though they consider

the 1X3V case, and here we are examining the 1X1V case, so the results are not

expected to match exactly. Nevertheless, a fit (black dashed line in Figure 4.22)

to the slope in the intermediate collisionality transition regime from the theory in

Anderson and O’Neil [2007b] shows reasonable agreement with the numerical results.
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Figure 4.21: Field energy as a function of time for the linear collisional Landau
damping problem with varying collisionality. Similar to Figure 4.13, we compute
the damping rate of each simulation by fitting to the peaks of the field energy. The
collision frequency ν is normalized to the electron plasma frequency.

Figure 4.22: Damping rate versus collisionality computed from simulations such as
those shown in Figure 4.21. As expected, the damping rate shuts off with increas-
ing collisionality due to the particles being scattered by collisions before they can
resonate with the wave. The black dashed line shows an analytical estimate of the
damping rate computed from expressions found in Anderson and O’Neil [2007b] and
agrees well with the results computed here.
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4.3.2 Heating via Magnetic Pumping

Our final benchmark provides an opportunity to perform our most exacting

test yet of the VM-FP system of equations. We will examine heating via magnetic

pumping, a process by which oscillations of the magnetic field are converted to

particle energy. Magnetic pumping relies on the approximate conservation of the

magnetic moment, µ = mv2
⊥/2B, in a magnetized plasma. As the magnetic field

increases, to maintain magnetic moment conservation, v2
⊥ should also increase. In

a collisionless system, if the magnetic field is oscillating slowly compared to the

gyro period, then v2
⊥ oscillates up and down in a reversible way, and there is no net

heating of the plasma. However, collisions can provide a route to pitch angle scatter

the energy into the parallel direction, leading to an overall irreversible heating of

the plasma.

This mechanism was originally proposed as a heating mechanism in the early

days of fusion research and investigated extensively [Berger et al., 1958, Laroussi

and Roth, 1989]. Recently, this same mechanism has been studied as a potential

source of particle heating in the solar wind [Lichko et al., 2017]. We use a similar

setup as Lichko et al. [2017], with a small modification to the parameters and a

different collision operator5. Note that the collision operator employed by Lichko

et al. [2017] retains the velocity dependence of the collision frequency, and is thus

5Both our collision operator and the collision operator employed by Lichko et al. [2017] are
Fokker–Planck collision operators, but Lichko et al. [2017] discretizes the full, unsimplified Fokker–
Planck equation written in Landau form,

∂fcs
∂t

=
∑
s′

νs,s′∇v ·
∫
dv′
←→
U (v,v′) ·

(
fs′(v

′)∇vfs(v)− ms

ms′
fs(v)∇v′fs′(v

′)

)
, (4.50)
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a more accurate description of collisions in a plasma. Nevertheless, our simplified

Fokker–Planck operator contains pitch-angle scattering due to the isotropic diffusion

term, and thus can be used to test whether our discretization of the VM-FP system

of equations contains an accurate representation of magnetic pumping.

We set up a 1X3V domain which has extents [0, 200πρe]× [−8vth,s, 8vth,s]
3 on

a 256× 243 grid. Here, ρs = vth,s/Ωcs is the gyroradius of species s. A perturbation

is driven on a background magnetic field B = B0ẑ using an antenna that drives

currents given by

J=ŷJ0 sin2
[π

2
min(1, ωrampt)

]
sin(ωpumpt)

×
[
exp

(
−(x− x1)2

2σ2
J

)
− exp

(
−(x− x2)2

2σ2
J

)]
. (4.53)

The current is turned on slowly over one pumping period using ωramp = ωpump.

This ramping phase ensures that the antenna is “turned on” slowly and hence does

not excite unwanted waves in the plasma. Further, we need to ensure that the

plasma density is low enough that the electromagnetic waves are not “trapped” in

the density holes that are created around the antenna.

The tests shown here use ωpump = 0.1Ωce, x1 = 50πρe, x2 = 150πρe, σJ =

200πρe/256, and Ωce = 2.5ωpe. We employ a proton mass ratio mp/me = 1836 and

where

νs,s′ =
q2sq

2
s′ ln(Λ)

8πmsε0
(4.51)

is the collision frequency of species s colliding with species s′, and
←→
U (v,v′) is the Landau tensor,

←→
U (v,v′) =

1

|v − v′|

(
←→
I − (v − v′)(v − v′)

|v − v′|2

)
. (4.52)
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initialize electron and proton species as Maxwellians with zero mean flow, number

density n ρ3
e = 2.99 × 105, and thermal speed v2

the
/c2 = βΩ2

ce/[2ω
2
pe(1 + τ)]. The

temperature ratio is τ = Tp/Te = 1, and the ratio between plasma and magnetic

pressures is β = 2× 10−4. With these quantities, the normalized background mag-

netic field amplitude is ε0ωpeB0/(en) = Ωce/ωpe, and we use the normalized driving

current density amplitude J0/(enc) = Ωce/(2ωpe).

Figure 4.23 shows the evolution of the magnetic field and thermal energy in the

middle of the domain, x = 100πρe. As the antenna current ramps up, an oscillating

Figure 4.23: Time evolution of the magnetic field (top) in the middle of the do-
main from the magnetic pumping problem. As the antenna currents ramp up, an
oscillating field is created that then transfers energy, via pitch-angle scattering, to
the plasma, leading to an increase in the thermal energy (bottom). With zero colli-
sionality (bottom, green), the energy exchange is completely reversible, and no net
heating is observed, but as the collision frequency is made finite, magnetic pumping
begins to heat the plasma.
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magnetic field structure is created. The amplitude of oscillations are about 15%

of the background. This oscillating energy is then transferred to parallel heating

via pitch angle scattering. This heating is shown in the bottom panel of the figure,

which shows that as the collision frequency becomes finite, the plasma gains thermal

energy through the simulation. Importantly, these simulations show how taxing this

test problem is, as it relies on every part of the discretization of the VM-FP system

of equations, and that the scheme must be able to preserve the adiabatic invariants.

Were the magnetic moment, µ, not conserved in the zero collisionality case, and

the overall scheme not conservative, we would not be able to confidently argue

the heating demonstrated is a consequence of the physics contained in the collision

operator.

As a comprehensive test of the algorithm’s ability to model heating via mag-

netic pumping, we next turn to the heating rate versus the ratio of the collisionality

to the pump frequency, ν/ωpump. In Figure 4.24, we plot the heating rate computed

from the code,

γH =
1

E
∂E
∂t
, (4.54)

where E is the second velocity moment, Eq. (1.72), the particle energy. This quantity

is computed in the middle of the domain, x = 100πρe. We compare the results of

Gkeyll simulations with our DG VM-FP solver to the heating rate predicted by the

theory of magnetic pumping [Lichko et al., 2017],

γmp = ω2
pump

2

9

(
δn

n0

)2
ν

(ω2
pump + 4ν2)

, (4.55)
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Figure 4.24: Heating rate via magnetic pumping, plus an additional viscous heating
mechanism, as a function of normalized collision frequency. The code agrees well
with the theoretical prediction (black line) magnetic pumping at lower collision
frequency, but shows an additional heating mechanism at higher collisionalty due to
the viscous damping of out-of-plane flows, which are included in the Braginskii-based
theory (red line).

where δn and n0 are computed from the central density n(t) = n0 + δn sin(ωpumpt)

after the initial transients. Note that this heating rate is derived in terms of the

magnetic fluctuations, δB/B0, but if the plasma is frozen-in to the magnetic field, the

ratios δn/n0 and δB/B0 are equal. To correctly match the heating rates computed

from the time evolution of the temperature, the density compression is also measured

in the middle of the domain, x = 100πρe.

Our discretization of the VM-FP system of equations agrees with magnetic

pumping theory for small ν/ωpump . 1, but indicates an additional heating mecha-

nism for larger collisionality. This trend was also observed, but in a different param-

eter regime and using the Landau form of the collision operator, Eq. (4.50), in Lichko

et al. [2017]. Because the pump frequency is larger than the proton cyclotron fre-
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quency, ωpump > Ωcp, the protons are unmagnetized and unable to respond to the

compression of the magnetic field. Thus, when the electrons undergo compression,

the protons are effectively stationary, leading to an electric field to maintain charge

neutrality, but this electric field drives an E × B flow. In our chosen geometry,

the electric field to maintain quasi-neutrality develops in the x direction, so the z

magnetic field drives a flow in the y direction. This flow is then viscously damped,

leading to additional heating.

This additional heating can be derived by considering a Braginskii calculation

[Braginskii, 1965] in which flows are viscously damped in the limit ν � ωpump. We

can use the Braginskii stress tensor6 to compute the heating rate for the viscous

damping of the electron flows,

γB =
2

3nT

[(η0

3
+ η1

)(∂ux
∂x

)2

+ η1

(
∂uy
∂x

)2
]
, (4.56)

where η0 = 0.96nTτc and η1 = 0.3nT/(τcΩ
2
c) are two of Braginskii’s viscosity co-

efficients and τc is the collision time for the species. These expressions are for

ωpump � ν � Ωc, but are generalized for arbitrary ν/Ωc in Braginskii [1965].

The η0 term gives rise to magnetic pumping in the collisional limit [Kulsrud, 2005,

Schekochihin et al., 2005], and asymptotic matching can be done to extend the

definition of η0 into the low collisionality regime. We can then relate Braginskii’s

collision time, τc, to the collision rate for our simplified Fokker–Planck collision op-

erator by τc = 0.52/ν. The η1 term represents additional viscous heating due to

classical cross-field momentum transport.

6Note that the Braginskii calculation is performed as an asymptotic expansion of the full Fokker–
Planck collision operator, written in the Landau form, Eq. (4.50)
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One can calculate the time-averaged squared shearing rate given by

(
∂ux
∂x

)2

= (1/2)ω2
pump

(
δn

n0

)2

, (4.57)

and

(
∂uy
∂x

)2

=
1

2

ω4
pe

Ω2
ce

(
δn

n0

)2

, (4.58)

to find that the out-of-plane flows are actually larger, with u2
y ≈ 2.56u2

x for our

parameters. Viscous heating from damping these flows dominates at high collision-

ality for these parameters. Note that because we are using δn/n0 in the formulas,

we obtain a slightly smaller heating rate since δn/n0 = 0.131, but δB/B0 = 0.148

in our simulations, because the plasma is not completely frozen-in. In spite of these

subtleties, the plasma not being completely frozen-in and the use of a different colli-

sion operator, we find good agreement between the theoretical heating rates in these

two different parameter regimes, and our simulations add further credibility to our

implementation of the DG discretization VM-FP system of equations in Gkeyll.

Although this benchmarking section has been by no means exhaustive, we have

covered a wide spectrum of functionality within our algorithm for the VM-FP sys-

tems of equations. We have demonstrated numerically the conservation properties

proved analytically in Chapter 2, and further shown numerically that our scheme

satisfies discrete analogs of the Second Law of Thermodynamics and an H-theorem.

We have shown the code obtains theoretical estimates for damping rates, growth

rates, and heating rates in a variety of non-trivial test cases of both the collisionless

Vlasov–Maxwell implementation and the full Vlasov–Maxwell–Fokker–Planck nu-
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merical method. Further, we have shown that a continuum VM-FP solver provides

a high fidelity representation of the particle distribution function which can be lever-

aged to clearly identify everything from particle trapping to resonant wave-particle

interactions. We turn now to the question of critical importance: what science can

be done with this novel, well-tested tool that provides such high quality particle

distribution function data?
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Some of the material in this

chapter has been adapted from

Juno et al. [2020] and Skoutnev,

Hakim, Juno, and TenBarge

[2019]

Chapter 5: Leveraging the Uncontaminated Phase Space

We turn now to a question of the utmost importance after the meticulous work

to derive, implement, and test a novel numerical method for the VM-FP system

of equations: what new science can be done with this tool? As we discussed in

Chapter 4, the continuum representation of the particle distribution function, free

of the counting noise which normally pollutes a particle-based discretization, allows

for the clear identification of plasma processes in phase space. We would like now

to leverage this high fidelity representation for the particle distribution function

in a variety of numerical experiments to provide new perspective on energization

processes and nonlinear saturation mechanisms in a number of plasma environments.

This chapter will not be an exhaustive discussion of every ongoing project with

the VM-FP solver in Gkeyll. It is merely our goal to demonstrate the versatility of

this approach of a continuum discretization and to justify our effort in the previous
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chapters deriving and implementing the DG algorithm for the VM-FP system of

equations. We refer the reader to a number of publications for the breadth of

applicability of the VM-FP solver, including bounded plasma and plasma sheath

studies [Cagas et al., 2017a, Cagas, 2018, Cagas et al., 2020], electrostatic shocks

[Pusztai et al., 2018, Sundström et al., 2019], instability calculations [Cagas et al.,

2017b, Ng et al., 2019], and simulations of the plasma dynamo [Pusztai et al., 2020].

We will focus on the ability to directly diagnose the energy transfer between

the electromagnetic fields and the plasma in phase space, and the nonlinear satura-

tion of instabilities driven by counter-streaming beams of plasma. Using the clean,

uncontaminated phase space, we will be able to identify phase space energization sig-

natures as a complement to other methods of determining the mechanisms of energy

exchange within a plasma. Likewise, we will leverage the high fidelity representa-

tion of the distribution function to completely characterize the nonlinear dynamics

of the beam-driven instabilities discussed in Section 4.2.6, and in doing so, showcase

a situation where the particle noise inherent to particle-based methods can lead to

deceptive dynamics.

5.1 Directly Diagnosing the Energy Transfer in Phase Space

5.1.1 The Field-Particle Correlation

Before we dive into the distribution function, we require a means of interpreting

the structure in the distribution function and how this structure can be translated

to study the energy transfer between the electromagnetic fields and the plasma.
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To probe the energy exchange between electromagnetic fields and the plasma in

phase space, we will utilize a technique called the field-particle correlation [Klein

and Howes, 2016, Klein, 2017, Klein et al., 2017, Klein et al., 2020, Howes et al.,

2017, Howes et al., 2018, Li et al., 2019]. The essential idea behind the field-particle

correlation is to determine where in phase space the plasma is gaining or losing

energy, and thereby ascertain the specifics of the energization process, or processes,

that may be occurring.

To derive the field-particle correlation diagnostic, we examine the collisionless

Vlasov equation weighted by 1/2ms|v|2,

∂ws
∂t

= −v · ∇xws −
qs
2
|v|2E · ∇vfs −

qs
2
|v|2(v ×B) · ∇vfs, (5.1)

where we have separated out each component of the phase space flux: the con-

figuration space streaming term, the electric field, and the magnetic field. Here,

ws(x,v, t) = ms|v|2fs(x,v, t)/2 is the phase space energy density and is a function

of the full 6D phase space, because we have not performed any integrations over

phase space.

However, we can gain intuition for how ws evolves by integrating over phase

space,

∂Ws

∂t
= −

∫ ∫
qs
|v|2

2
E · ∇vfs dx dv = −

∫ (∫
qsvfs dv

)
· E dx

= −
∫

Js · E dx, (5.2)

where we have split the integral over phase space into an integral over configuration
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space and velocity space. Here,

Ws =

∫
Es dx, (5.3)

the integral of the particle energy over all of configuration space. Note that we have

performed similar operations to the proof of Proposition 5 in Appendix A, i.e., we

have integrated the velocity gradient by parts which eliminates the contribution from

the magnetic field by properties of the cross product, and we have used a suitable

boundary condition, such as periodic boundary conditions in configuration space

and the distribution function vanishing at the edge of velocity space, to eliminate

the boundary terms. In other words, the exchange of energy between the plasma

and the electromagnetic fields is governed entirely by the electric field since only the

electric field can do work on the plasma, and vice versa. Both the magnetic field

and streaming term can move energy around in phase space, but neither component

of the Vlasov equation corresponds to a net energization or de-energization of the

plasma.

We could stop here and only use Js ·E as a proxy for the bulk energization of

the plasma, but this would be restrictive, as Js · E gives us no information about

what is happening to the particles as a function of their particular velocities. From

this formulation of the energy exchange, we would be unable to distinguish be-

tween energization processes such as resonant wave-particle interactions and direct

acceleration via electric fields. In this vein, we have no way to distinguish between

a transfer of energy which is oscillatory, such as a wave propagating through the

plasma, and a transfer of energy which is secular, such as the wave damping on the
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plasma via a resonant process like Landau damping.

So, we step back from performing the integration over phase space and focus

on Eq. (5.2). Since we expect the electric field to be the only participant in the

direct energization and de-energization of the plasma, we will define the field-particle

correlation

C(x,v, t, τ) = −qs
2

1

τ

∫ t+τ

t

|v|2E(x, t′) · ∇vfs(x,v, t
′) dt′. (5.4)

Here, τ defines a correlation time over which to average so we can address our pre-

vious concern about distinguishing between oscillatory and secular energy transfer

by averaging over the oscillatory energy exchange. In the limit of τ → 0, we obtain

the instantaneous energy exchange,

C(x,v, t, 0) =
∂ws
∂t

= −qs
2
|v|2E(x, t) · ∇vfs(x,v, t). (5.5)

Importantly, because this diagnostic does not require integrations over config-

uration space, it can be used as a single-point diagnostic. This feature has already

been leveraged to discover the presence of electron Landau damping in observa-

tions of the Earth’s turbulent magnetosheath using spacecraft measurements [Chen

et al., 2019]. The result in Chen et al. [2019] provides sizable motivation to apply

the field-particle correlation to other plasma systems beyond the Alfvénic turbu-

lence studied with the field-particle correlation in, e.g., Klein et al. [2017], that gave

a frame of reference for the signature of Landau damping observed in Chen et al.

[2019]. By applying the field-particle correlation to other plasma systems, we can

build a Rosetta stone that can be used to translate the signatures observed in other
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spacecraft observations. We undertake such a study in the next section.

5.1.2 Perpendicular Collisionless Shock

We now examine in greater detail the results of the simulation shown in Fig-

ure 1.1 in Section 1.7. The particular simulation is a perpendicular collisionless

shock. Here, a collisionless shock refers to a shock-wave, a disturbance propagat-

ing faster than the local (magneto)sonic speed, which inevitably dissipates its bulk

kinetic energy as other forms of energy, e.g., thermal energy, by means other than

particle collisions, because the shock wave forms on scales smaller than the inter-

particle mean-free path. For a survey of studies of collisionless shocks relevant for

the heliosphere and Earth’s bow shock, we refer the reader to Wilson III et al. [2010,

2012, 2014a,b] and references therein.

Since these shock-waves are collisionless, we know that the energy transfer

from the kinetic energy of the incoming supersonic flow into thermal and electro-

magnetic energy occur due to kinetic processes such as wave-particle interactions

and small-scale instabilities. And, since this energy conversion is collisionless, it can

be diagnosed directly in phase space with the aforementioned field-particle correla-

tion technique, Eq. (5.4). We will use a perpendicular collisionless shock set-up in

1X2V to determine how the upstream kinetic energy from the supersonic plasma

flows is converted to other forms of energy. Here, perpendicular refers to the orien-

tation of the magnetic field with respect to the shock normal, the direction of the

incoming supersonic flow. We now describe in detail the simulation parameters.
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The particular geometry we choose is the one spatial coordinate is in the x

direction, with the initial magnetic field in the z direction, B(t = 0) = B0ẑ. In this

geometry, we can see why we only require the two velocity dimensions perpendicular

to the magnetic field to describe the dynamics because of how Maxwell’s equations

simplify,

∂Bz

∂t
= −∂Ey

∂x
, (5.6)

∂Ey
∂t

= −c2∂Bz

∂x
− Jy
ε0
, (5.7)

∂Ex
∂t

= −Jx
ε0
. (5.8)

The electrons and protons are initialized with the same supersonic flow into a re-

flecting wall, which leads to a shock wave that propagates from left to right in our

simulation. Note that the particles reflect from the wall, but the “reflecting wall”

boundary condition for the electromagnetic fields is a conducting wall boundary

condition in the traditional sense, with zero normal magnetic field and zero tangen-

tial electric field. This method of initialization is often called the “injection” setup,

and this setup has been previously employed in numerous particle-in-cell studies of

collisionless shocks [e.g., Caprioli and Spitkovsky, 2014a,b,c, and references therein].

Detailed parameters are as follows: the reflecting wall for the particles and

conducting wall for the electromagnetic fields are at x = 0, and plasma is injected

with a copy boundary condition1 at x = 25dp, where dp is the proton collisionless

1We previously employed this boundary condition in Sections 4.1.2 and 4.2.4, but we repeat
the definition of this boundary condition here for completeness. A copy boundary condition means
that the value in the ghost layer at the rightmost grid cell is exactly equal to the value in the
rightmost grid cell, for all the quantities being evolved, including the distribution functions for the
electrons and protons, and the electromagnetic fields. Because the plasma is initialized with a flow
propagating from right to left, this boundary condition leads to a continuous injection of plasma
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skin depth, dp = c/ωpp. Here, c is the speed of light, and ωpp is proton plasma

frequency, ωpp =
√
e2n0/ε0mp. We use a reduced mass ratio between the protons

and electrons, mp/me = 100. The total plasma beta, β = 2µ0n0(Te + Tp)/B
2 = 2,

with the proton beta, βp = 1.3, and electron beta, βe = 0.7.

Both the protons and electrons are non-relativistic, with vthe/c = 1/(16
√

2),

with the previous definitions of the thermal velocity, vths =
√
Ts/ms. The in-

flow velocity to initialize the perpendicular, electromagnetic shock is Ux = −3vA

(Ux < 0 because the in-flow is from right to left), where vA is the proton Alfvén

speed, vA = B0/
√
µ0n0mp. Since the plasma is initialized with a flow transverse to

a background magnetic field, we initialize the corresponding electric field necessary

to support this flow, E = −u ×B = UxB0ŷ. With these specified parameters and

initial flow, we can initialize Maxwellian velocity distribution, Eq. (4.1), functions

for the protons and electrons.

For the grid in configuration space, we use Nx = 1536, ∆x ∼ de/6, with

piecewise quadratic Serendipity elements for the discontinuous Galerkin basis ex-

pansion. In velocity space, the electron extents are ±8vthe , and the proton extents

are ±16vthp , with zero-flux boundary conditions at the edges of velocity space, and

Nvx = Nvy = 64 for both species, corresponding to ∆v = vthe/4 for the electrons

and ∆v = vthp/2 for the protons.

We solve the full VM-FP system of equations and run the simulation with

a small amount of collisions to regularize velocity space. We find the additional

from the right wall, with the corresponding electric field and magnetic field to support the E×B
flow.
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boundary condition from the collision operator, Eq. (2.134), also assists in stability

by providing a small amount of regularization at the edge of velocity space. In this

case, we choose an electron-electron collision frequency, νee = 1.0e−4Ωce = 0.01Ωcp,

much less than the proton cyclotron frequency, Ωcp = eB0/mp, with the proton-

proton collision frequency correspondingly smaller based on the square root of the

mass ratio, νpp = 0.001Ωcp.

We will begin with a discussion of the overall structure of the collisionless

shock. In Figure 5.1, we show the electromagnetic fields and reduced particle dis-

tribution functions in x − vx phase space, integrated over vy, for the electrons and

protons, after the perpendicular shock has formed and propagated through the sim-

ulation domain, tend = 11Ω−1
cp . Although the downstream region after the shock has

passed through the plasma is fairly oscillatory, because the energy injected into the

plasma by the shock sloshes back and forth between the electromagnetic fields and

particles, we can estimate the compression ratio of this low Mach number shock

based on the magnetic field to be roughly, r ∼ 2.5. This estimate is based on the

mean value of the magnetic field, Bz, in the downstream region (solid black line in

Figure 5.1). With this estimate for the compression ratio, we calculate the shock

velocity to be Ushock = Ux/(r − 1) = 2vA.

We have marked an approximate transition from the upstream of the shock to

the shock ramp (dashed-dotted lines) and likewise an approximate transition from

the shock to the downstream region (dashed lines) in Figure 5.1. The full extent of

the shock includes the foot, where the initial field variation begins, the ramp, where

most of the reflected proton population can be found, and the overshoot. It is worth
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emphasizing a striking feature of the electromagnetic fields through the shock: we

expect the y-electric field to be the dominant component of the energization of

the protons and electrons through the shock, because the x-electric field is roughly

bimodal through the shock and oscillates about 0 in the downstream. This feature

is perhaps intuitive, as in this reduced dimensionality, the x-electric field is the

electrostatic component of the dynamics, and so we might naively expect that the

dominant energy exchange will happen through the electromagnetic component of

the fields, i.e., the component of the electric field which supports the compression

of the magnetic field. Still, these features fittingly foreshadow our ultimate analysis

of the phase space signature of the energization mechanism.

The particle distribution functions in x − vx phase space in Figure 5.1 are

illustrative of the dynamics through the shock, showing a clear compression of the

electrons and a reflected population of protons. We can gain further insights into

the dynamics of this shock by looking at the distribution function in vx − vy at

fixed points in configuration space through the shock. In Figure 5.2, we plot the

proton and electron distribution functions in velocity space through the shock, from

upstream through the ramp to downstream. We draw special attention to the proton

distribution function in the shock ramp, where we can identify a higher energy tail

in vx − vy.
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Figure 5.1: The x-electric field (top), y-electric field (second from top), z-magnetic
field (middle), reduced proton distribution function (second from bottom), and re-
duced electron distribution function (bottom), both integrated in vy, after the per-
pendicular shock has formed and propagated through the simulation domain. We
have marked an approximate transition from upstream of the shock to the shocked
plasma (dashed-dotted lines), and likewise an approximate transition from the shock
to the downstream region (dashed lines). To mark the mean values of the oscillat-
ing downstream electromagnetic fields, we have used a solid black line to mark the
approximate compression of the magnetic field, along with E = 0.
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Figure 5.2: The proton (top two rows) and electron (bottom row) distribution
functions plotted through the shock at t = 11Ω−1

cp . As we move from upstream,
x = 24.5dp, through the shock ramp centered at x = 21.5dp, we can identify the
reflected proton population as well as a broadening of the electron distribution func-
tion.

5.1.2.1 Proton Energization in a Perpendicular Shock

We would like to identify the energization mechanism for this high energy

tail of protons, along with the cause of the broadening of the electron distribution.

We thus turn to Eq. (5.4), but instead of performing a time average, we use the

instantaneous limit, Eq. (5.5), since we expect the energization through this shock
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to be impulsive and not require any averaging over an oscillatory component of

the energy exchange. Further, we separate the field-particle correlation into the

energization in each of the two velocity directions and transform the fields and

velocities to the shock rest-frame,

Cvx(x, v′x, v
′
y, t) = −qs

(v′x − Ushock)2

2
Ex(x, t)

∂fs(x, v
′
x − Ushock, v′y, t)
∂v′x

, (5.9)

Cvy(x, v′x, v
′
y, t) = −qs

v′2y
2

[Ey(x, t)− UshockBz(x, t)]
∂fs(x, v

′
x − Ushock, v′y, t)
∂v′y

, (5.10)

where we have performed a Lorentz transformation of the the y electric field,

E′ = E− u×B. (5.11)

Here, primed coordinates denote the simulation frame and unprimed coordinates

denote the shock rest-frame, so that, for example, the velocity in the shock rest-

frame is

vx = v′x − Ushock. (5.12)

Note that we are multiplying by the velocity squared in the particular direction of

interest, as we expect the orthogonal velocity coordinates, e.g., vy for the Ex corre-

lation, will integrate to zero as the x electric field can only provide net energization

in the vx direction.

We first investigate the proton energization in the shock foot through the

downstream transition, x = 22.5dp → 19.5dp in Figure 5.2. We plot in Figures 5.3

and 5.4 the field-particle correlation separated into the vx and vy components, Eqns.

(5.9) and (5.10), as well as the corresponding proton distribution function, through
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the shock. We focus in Figure 5.3 on the shock foot and ramp, around x = 22.5dp and

x = 21.5dp respectively, at the specified time of t = 11Ω−1
cp . The blue-red signature

identifies the region in phase space in which particles are being accelerated to higher

velocities. Blue regions correspond to a loss of phase space energy density, while red

regions correspond to an increase, so a blue-red region means phase space energy

density is being transported from the blue to the red region. We note that in both

the shock foot and ramp, the energization is dominantly in vy and concentrated in

the vicinity of the high energy tail.

In Figure 5.4, we examine the overshoot and transition to the downstream re-

gion of the shock, where all of the secular energization is complete and the remaining

energy exchange is governed by a sloshing back and forth between the electromag-

netic fields and plasma. In the overshoot and transition region, we note that the

energization has decreased in magnitude in the units of the field-particle correlation

and become much more unstructured. The progression from the region of direct

energization to the downstream region where no further secular energization occurs

and energy is merely exchanged back and forth between the fields and the particles

is then nearly complete. By this point, the shock is “done” in the sense of converting

the incoming bulk kinetic energy of the supersonic flows to other forms of energy,

though it remains for the downstream region to further partition the energy between

the thermal energy of the plasma and electromagnetic energy via other collisionless

processes.

Although we can make some sense of the energy exchange occurring by the

relative magnitudes of the field-particle correlation and the overall structure, we
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Figure 5.3: Proton distribution functions (top row), Cvx field-particle correlations
(middle row), and Cvy field-particle correlations (bottom row) in the shock foot
and ramp region, where the shock has begun energizing the plasma. We see clear
evidence in the proton distribution function of a high energy tail in vx−vy. Further,
we note that the energization of the plasma is localized to this high energy tail.
This energization is due to the component of the proton distribution function which
returns upstream via its gyromotion, and is thus able to gain energy along the
motional electric field, Ey, which supports the E×B drift.
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Figure 5.4: Proton distribution functions (top row), Cvx field-particle correlations
(middle row), and Cvy field-particle correlations (bottom row) in the overshoot and
transition regions of the shock, after much of the secular energization has been
completed by the shock. We see that the magnitude of the field-particle correlation
has decreased in comparison to Figure 5.3, and that the correlation has become
more unstructured. By this point in the shock, protons in the plasma are almost
downstream, and thus no long experience the gradient in the magnetic field off
which the protons reflected, preventing them from gaining further energy along the
motional electric field. What remains is oscillatory energy exchange between the
plasma and the electromagnetic fields.

259



would like to understand what particular processes are present in the energy ex-

change. We wish to further scrutinize the high energy tail in the shock ramp in

the proton distribution function which is prominent in Figure 5.3 and a “hot spot”

for the energization of the protons. This higher energy tail in the proton distribu-

tion function arises from the component of the proton distribution function which

returns upstream via its gyromotion, and is thus able to gain energy along the

motional electric field, Ey, which supports the E×B drift.

To understand this process of protons returning upstream and gaining energy

along the motional electric field, we consider a single-particle picture. In this single-

particle picture, we approximate the shock as a discontinuity in the magnetic field,

since the proton gyro-orbit, or Larmor orbit, is as large or larger than the shock

scale length, ρp & Lshock ∼ dp. In Figure 5.5, we plot (a) the trajectory of a proton

in the (x, y) plane and (b) its corresponding trajectory in (vx, vy) velocity space

in the shock frame, where the colors indicate the corresponding segments of the

trajectory. The proton velocity is normalized to the proton thermal velocity, vthp .

In the upstream region, x > 0 (black), the black circle centered about the upstream

E × B velocity (black star) corresponds to the gyro-orbit of the proton about the

upstream inflow velocity in the (vx, vy) plane.

Upon first crossing the magnetic discontinuity to x < 0, the particle changes

to a Larmor gyration in the (vx, vy) plane (blue) about the downstream E × B

velocity (green star). In the larger amplitude downstream perpendicular magnetic

field, the radius of the Larmor motion in the (x, y) plane is reduced (blue), and

under appropriate conditions, it can lead to the particle crossing back upstream to
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Figure 5.5: (a) Real space trajectory of a proton as it traverses the shock front and
(b) the corresponding velocity space trajectory. Note that the magnetic gradient
is assumed to be a discontinuity in this simple picture of the perpendicular shock.
The colors of the particle trajectories in real space (a) correspond to the particle’s
location in phase space (b). Black is upstream, blue corresponds to a proton crossing
the magnetic discontinuity before returning upstream, gaining energy along the red
trajectory, and then returning downstream and following the green trajectory.
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x > 0 (red).

When the proton passes back upstream to x > 0, it will once again undergo a

Larmor orbit in the (vx, vy) plane (red) about the upstream E ×B velocity (black

star). In this segment of the trajectory (red), the proton gains perpendicular energy

in the shock frame, given by the distance in velocity space of the proton from the

origin of the (vx, vy) plane. This picture is exactly what we observe in phase space

in Figure 5.3, and it is no coincidence that the segment of the trajectory in red

roughly corresponds to the location in phase space of the high energy tail which is

gaining energy in our self-consistent perpendicular shock simulation.

Finally, the particle will eventually cross back into the downstream region to

x < 0 (green), resuming its Larmor orbit in the (vx, vy) plane (green) about the

downstream E × B velocity (green star). Without any additional crossings of the

magnetic discontinuity, the proton will simply E×B drift downstream, periodically

gaining and losing energy, in the shock frame, due to work on the proton by the

motional electric field Ey < 0, but the proton will experience no net energization

over a complete Larmor orbit. This energy exchange, without any overall gain in

energy, is present in Figure 5.4, wherein the field-particle correlation becomes more

structured and lower amplitude. In the transition to the downstream region, we

only observe the oscillatory exchange of energy between the electromagnetic fields

and plasma because the protons are drifting past the magnetic gradient. Once the

protons have drifted past the magnetic gradient, they no longer have the means to

return upstream and gain energy off the motional electric field.
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Whether a given proton will be “reflected”2 by the increased magnetic field

magnitude beyond the discontinuity and return to the upstream region (x > 0) from

downstream (x < 0) depends on three conditions in this idealized shock model: (i)

the jump in the magnetic field magnitude Bd/Bu; (ii) the perpendicular velocity in

the frame of the upstream E ×B velocity relative to that inflow velocity, v⊥,u/Uu;

and (iii) the gyrophase θ of the proton’s gyro-orbit when it first reaches the magnetic

discontinuity at x = 0. For given values of Bd/Bu and v⊥,u reflection may occur over

a range of values of gyrophase θ. For the self-consistent perpendicular shock studied

here, a portion of the the distribution of protons have the required gyrophase to

reflect off the magnetic gradient and gain energy in Figure 5.3.

The energization mechanism we have identified in Figure 5.3 is called shock-

drift acceleration and has been studied previously in the literature [Paschmann et al.,

1982, Sckopke et al., 1983, Anagnostopoulos and Kaliabetsos, 1994, Anagnostopou-

los et al., 2009, Ball and Melrose, 2001]. We have identified, for the first time, the

phase space signature of this energization process using the field-particle correlation

and a continuum method for the solution of the VM-FP system of equations. Phase

space energization signatures, such as those shown in Figure 5.3 for shock-drift ac-

celeration, are useful not just for the study of direct numerical simulations, but also

as a means of interpreting observational results from in situ spacecraft—see Chen

et al. [2019] and the motivating theoretical studies by Howes et al. [2017] and Klein

et al. [2017].

2Note that, unlike many early simple models of collisionless shocks [eg., Sckopke et al., 1983],
this is not a specular reflection at the magnetic discontinuity at x = 0, but rather the result of the
Lorentz force leading to a return of the proton upstream to x > 0 due to the increased magnetic
field at the shock ramp.
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5.1.2.2 Electron Energization in a Perpendicular Shock

Having identified the proton energization mechanism, we turn now to the

electron dynamics in the shock. We again examine the field-particle correlation in

vx and vy through the shock foot to the transition to the downstream in Figures 5.6

and 5.7. At first glance, the phase space signature appears to roughly cancel on each

side of vx,y = 0 for all of the correlations, each correlation has a slight asymmetry

which leads to either net energization or net de-energization. In the shock foot and

ramp, Figure 5.6, these slight asymmetries correspond to a gain of energy due to Ex,

and a loss of energy due to Ey, and we note by their magnitudes that more energy

is gained due to Ex than lost due to Ey. Thus, the electrons overall gain energy. We

see the opposite trend in the overshoot and transition to the downstream, Figure 5.7,

wherein the electrons gain energy due to Ey and lose energy due to Ex. Again, the

gain in energy due to Ey is larger than the loss of energy due to Ex, so the electrons

overall continue to gain energy.

The energy gain and loss due to Ex can be thought of simply as electrons

responding to an electrostatic potential, Ex = −∂φ/∂x, as Ex is the electrostatic

component of the electromagnetic fields. We are especially interested, though, in

the energy gain (and loss) due to Ey, the electromagnetic component of the electric

field, since this component of the field supports the compression of the magnetic

field. To understand the energy exchange between the electrons and Ey, we again

turn to a single-particle picture for intuition.

Because the electron gyro-orbit is much smaller than the length scale of the
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Figure 5.6: Electron distribution functions (top row), Cvx field-particle correlations
(middle row), and Cvy field-particle correlations (bottom row) in the shock foot and
ramp region. The field-particle correlation has a slight asymmetry that corresponds
to an energy gain to the x field-particle correlation and an energy loss due to the y
field-particle correlation. The gain in energy due to Ex exceeds the loss in energy
due to Ey, corresponding to a net energization of the electrons.
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Figure 5.7: Electron distribution functions (top row), Cvx field-particle correlations
(middle row), and Cvy field-particle correlations (bottom row) in the overshoot and
transition regions of the shock. Here, we observe the opposite behavior to Figure 5.6,
where now the asymmetry in the field particle correlation is such that the particles
gain energy due to Ey and lose energy due to Ex. The gain in energy due to Ey still
exceeds the loss in energy due to Ex, so the electrons continue to gain energy in this
region of the shock. This particular energization signature in the y field particle
correlation arises from alignment of the ∇xB drift and the motional electric field,
Ey, and relies on conservation of the electron’s magnetic moment, the first adiabatic
invariant. Because of the relationship between this energization mechanism and the
electron’s first adiabatic invariant, we call this adiabatic heating.
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collsionless shock, ρe � Lshock ∼ dp, we approximate the shock in an idealized

model as a linear ramp in the magnetic field. In Figure 5.8, we plot in the top

panel the profile of the perpendicular magnetic field Bz(x) (blue) and the motional

electric field Ey(x) (red) along the shock normal direction, and in the middle panel

the trajectory of an electron in the (x, y) plane as it flows through the shock ramp,

0 ≤ x/dp ≤ 2. The trajectory plot shows clearly the ∇xB drift in the +y direction.

A salient difference between the idealized single particle motion for electrons and

protons is that the electron thermal velocity is larger than the inflow velocity, so

electrons can move in the +x direction, even upstream of the shock. This condition

is also satisfied for the shock parameters in our self-consistent perpendicular shock

simulation, Ushock ∼ 2vA � vthe .

Although the electron constantly gains and loses energy as part of its E ×B

drift due to the motional electric field Ey, the net effect on the particle energy over

a Larmor orbit is zero, because the drift in the −x direction is perpendicular to the

electric field, UE×B · Ey = 0. But, in the region where the perpendicular magnetic

field changes magnitude, 0 ≤ x/dp ≤ 2, a∇xB drift arises in the +y direction, which

leads to a net energization of the electrons by Ey. This alignment of the motional

electric field, Ey, with a drift, in this case the ∇xB drift, allows the electrons to

gain energy, as shown in the bottom panel of Figure 5.8.

As an aside, the rate of energization of the electrons by the ∇xB drift in the

motional electric field is precisely the rate required to satisfy the conservation of

the first adiabatic invariant of the electron, the electron magnetic moment, µ =

mev
2
⊥/2Bz. This connection can be shown by calculating the net rate of work done
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Figure 5.8: (Top panel) Profiles along the shock normal direction of the perpendicu-
lar magnetic field Bz (blue) and the motional electric field Ey (red), (Middle panel)
trajectory of an electron in the (x, y) plane, and (Bottom panel) the rate of work
done by the electric field on the electron jyEy.

268



by Ey due to the ∇xB drift, which contributes to the perpendicular kinetic energy

of the electrons,

dmev
2
⊥/2

dt
= qeu∇xBEy, (5.13)

where the magnitude of the ∇xB drift in the +y direction is given by

u∇B =
mev

2
⊥

2qeBz

(
1

Bz

∂Bz

∂x

)
. (5.14)

For the static fields in this idealized model, the total time derivative is determined

by the E×B velocity,

d

dt
=

∂

∂t
+ ux

∂

∂x
= uE×B

∂

∂x
. (5.15)

Substituting uE×B = Ey/Bz, we can manipulate (5.13) to obtain

∂

∂x

mev
2
⊥

2Bz

=
∂µ

∂x
= 0, (5.16)

proving that the electron’s first adiabatic invariant µ is conserved. Because this

energization process relies on the electron’s first adiabatic invariant being conserved,

we call this energization adiabatic heating.

This simple model for the electron energization presumes that the only electric

field participating is Ey, but we can see from Figure 5.1 that this is not the case.

Even if the electrostatic field is roughly bi-modal across the shock so that much

of the energy exchange between the electrostatic field and the electrons is reversed

when the electrons cross downstream, the presence of this electrostatic field still

complicates the picture. The electrostatic electric field leads to an E×B flow in the
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−y direction which counters the ∇xB drift in the +y direction. Still, for at least a

component of the energization through the shock, especially in the overshoot and

transition region in Figure 5.7, we see a signature in the field-particle correlation of

energy gain in y, which is characteristic of this alignment between the ∇xB drift

and the motional electic field, Ey. Because of the finite ∇xB drift, there are more

electrons with velocities aligned with the motional electric field, Ey, leading to the

asymmetry in the field-particle correlation in Figure 5.7, and thus a net gain of

energy for the electrons.

We conclude this study of a self-consistent perpendicular shock with our DG

VM-FP solver noting that, with the combination of diagnostics such as the field-

particle correlation and our continuum representation of the particle distribution

function, we can directly diagnose the energy exchange of kinetic plasma processes

in phase space. We have shown, for the first time, the phase space signature of

shock-drift acceleration of the protons and adiabatic heating of the electrons in a

collisionless shock. Although these energization mechanisms have been studied pre-

viously, especially using the same single particle, and more generally Lagrangian,

picture we used to model the particulars of the energization processes, the Eulerian

phase space picture presented here is of considerable value. Especially when inter-

preting spacecraft observations of particle distribution functions, which must usually

be done in the Eulerian frame to obtain good enough sampling statistics, having a

means of interpreting the specific energization mechanisms opens new possibilities

for diagnosing the details of the phase space dynamics.

There is more that can be learned from this perpendicular shock simulation.
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For example, we have only noted and not examined the competition between the

electrostatic and electromagnetic electric fields in energizing electrons. Given the

requirements for adiabatic heating, ρe � Lshock, we might expect more realistic

mass ratios to yield different results for this competition as well.

Finally, the distribution function structure we resolve in the downstream re-

gion, where the plasma and electromagnetic fields continually exchange energy, is

a rich problem for understanding the ultimate “mixing” of the plasma. Collision-

less shocks are often discussed interchangeably with irreversible heating and entropy

increase, though we note that the energy exchange happens on length scales much

smaller than the collisional mean-free path. Thus, despite the total energy exchange

being “done” once the shock has passed through the plasma, we expect additional

kinetic mechanisms are at play which transfer energy to smaller velocity space scales,

where collisions ultimately dissipate this energy. Given the structure we can rep-

resent in phase space with the continuum VM-FP solver presented in this thesis,

we expect the ultimate diagnosis of this collisionless mixing is ideally studied by

the approach taken here, as the details of the collisionless mixing may be obscured

in particle-based method with the artificial collisionality introduced by finite sized

particles [Birdsall and Langdon, 1990].

The focus of this section has been on how we can use the high fidelity repre-

sentation of the distribution function to more carefully analyze plasma processes in

phase space. Because diagnostics such as the field-particle correlation, Eq. (5.4) and

Eq. (5.5), involve gradients of the velocity distribution function, traditional particle-

based methods may have difficulty leveraging these diagnostic to examine the pre-
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cise processes present. Counting noise can add sizable errors to the computation of

these velocity space gradients, and significant spatial averaging to reduce the noise

in post-processing may mix energization processes occurring in different regions of

configuration space, thus making it more challenging to determine the specifics of

the energy exchange between the plasma and the electromagnetic fields. We now

turn to another application which reveals a different utility of the continuum kinetic

discretization: the phase space dynamics themselves being sensitive to phase space

resolution.

5.2 The Phase Space Dynamics of Filamentation-Type Instabilities

We consider here an extension of the benchmark studied in Section 4.2.6, the

phase space dynamics of filamentation-type instabilities. Recall in Figure 4.18 for

the parameters chosen for the benchmark that the oblique, 45◦, mode had a growth

rate within 20-30 percent of the two-stream. This may not be similar enough to

affect the dynamics under more general perturbations of all modes in the system for

this parameter regime, vthe/uy = 1/3, vthe = 0.1c. But the evolution the competition

of all the modes present, as would occur in the astrophysical systems where these

modes are present, is likely to have an effect on the dynamics. For example, we can

ask whether the full spectrum of modes vying for dominance under more general

conditions affects the efficiency of magnetic field growth from the unstable beams of

plasma, a question of vital importance for the origins of the cosmological magnetic

field [Schlickeiser and Shukla, 2003, Lazar et al., 2009].
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If we survey the parameter space more extensively, we find that these oblique

modes can have comparable growth rates to the two-stream instability as the ratio of

the thermal velocity to the drift speed is reduced and the beams are made colder—

see Figure 5.9. Although some parameters, e.g., vthe/ud = 0.5, clearly show that the

two-stream instability is the fastest growing mode and there is not much competition

for the fastest growing mode in the system, we can expect that the competition could

be quite significant as the beams become colder and multiple modes spanning a wide

range of angles saturate at similar times.

To study the competition between all of these modes, two-stream, oblique, and

filamentation, we set-up a similar phase space domain to Section 4.2.6, two configura-

tion space and two velocity space dimensions (2X2V) with a drifting electron-proton

plasma. The protons are taken to be a stationary, charge-neutralizing background

as before, and the electrons are initialized as two drifting Maxwellians, Eq. (4.40).

We repeat this initial electron distribution here for clarity,

fe(x, y, vx, vy) =
men0

2πTe
exp

(
−me

(vx)
2 + (vy − ud)2

2Te

)
+
men0

2πTe
exp

(
−me

(vx)
2 + (vy + ud)

2

2Te

)
.

The electromagnetic fields are initialized as a bath of fluctuations in the electric and

magnetic fields in the two configuration space dimensions, i.e.,

Bz(t = 0) =

16,16∑
nx,ny=0

B̃nx,ny sin

(
2πnxx

Lx
+

2πnyy

Ly
+ φ̃nx,ny

)
, (5.17)

where B̃nx,ny and φ̃nx,ny are random amplitudes and phases respectively. The electric

fields, Ex(t = 0) and Ey(t = 0), are initialized similarly to Eq. (5.17), and all three
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Figure 5.9: Contour plot of the angle of the fastest-growing mode in the parameter
space of vthe/ud and ud/c (top panel). θ = 90◦ corresponds to a pure two-stream
mode, and θ = 0◦ corresponds to a pure filamentation mode. Red crosses correspond
to the four simulations presented. Growth rates versus wavenumber (bottom panels)
of different modes for the hot (right panel) and cold (left panel) cases for ud = 0.1c.
We can see in the hot case, vthe/ud = 0.5, that the two-stream instability is the
fastest growing mode, while when we make the beams colder, vthe/ud = 0.1, the
oblique modes for a variety of angles have comparable growth rates to the pure
two-stream instability.
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dynamically important electromagnetic fields in this two dimensional geometry are

given equal average energy densities, 〈ε0E2
x/2〉 = 〈ε0E2

y/2〉 = 〈B2
z/2µ0〉 ≈ 10−7EK ,

where EK is the initial total electron energy.

We focus on four particular simulations, whose parameters are indicated by

red crosses in Figure 5.9. The drift velocity is fixed at ud = 0.1c, but we vary the

temperature of the beams by choosing vthe/ud ∈ {0.1, 0.175, 0.25, 0.5}. The box

sizes, respectively, are Lx/de ∈ {2.7, 3.8, 4.4, 7.7} and Ly/de ∈ {3.1, 4.0, 4.8, 6.3},

where de is the electron inertial length, de = c/ωpe. Box sizes Lx = 2π/kmax0◦ and

Ly = 2πm/kmax90◦ are chosen to be roughly equal, Lx ≈ Ly, while fitting a single

fastest-growing wavelength of the filamentation instability and an integer number,

m ≈ kmax90◦ /k
max
0◦ , of two-stream modes. The configuration space boundary conditions

are periodic, and the velocity space boundary conditions are zero-flux. The velocity

space extents are varied for each simulation to contain the phase space evolution

of the instabilities in the nonlinear regime, [−3ud, ud]
2 to [−5ud, 5ud]

2. Likewise,

we vary the resolution in configuration and velocity space to obtain convergence,

from 322 × 322 to 642 × 962. All simulations use piecewise quadratic Serendipity

polynomials.

We plot in Figure 5.10 the evolution of the magnetic field energy, εB, and

electric field energy, εE, normalized to the initial total energy of the electrons. We

compare in Figure 5.10 the results of the four simulations in 2X2V (solid lines), where

two-stream, oblique, and filamentation modes are allowed to grow and compete

with each other, with the results of similar 1X2V simulations (dashed lines) varying

vthe/ud, but which only support the filamentation instability. We see that, while
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Figure 5.10: Growth and saturation of magnetic field (top panel) and electric field
(bottom panel) energies normalized by the initial total electron energy for beams
with drift velocity ud = 0.1c at different temperatures. Solid lines correspond to
2X2V simulations with initial random modes which drive two-stream, oblique and
filamentation modes, while dashed lines correspond to 1X2V simulations which only
support pure filamentation modes. We can see clearly the effect of the higher di-
mensionality and competition between the different modes, since for all 1X2V sim-
ulations, regardless of the ratio of vthe/ud, a magnetic field grows and saturates,
whereas the growth of a magnetic field is sensitive to this ratio of vthe/ud when
the two-stream, oblique, and filamentation modes are allowed to compete with each
other in two configuration space dimensions.
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the 1X2V simulations robustly grow a magnetic field from the free energy of the

unstable beams of plasma and the formation of current filaments from this free

energy, irrespective of this ratio of vthe/ud and the temperature of the beams, the

situation is quite different in two configuration space dimensions, wherein the various

modes are permitted to compete with each other.

In 2X2V, the initial growth phase is quite different from the corresponding

1X2V simulations. In 2X2V, we see the growth of both magnetic and electric fluc-

tuations due to the combination of unstable oblique and two-stream modes. The

oblique modes in particular are what lead to the growth of both electric and mag-

netic field fluctuations, as the two-stream instability would only grow an electric

field, and the filamentation instability is much more slowly growing than the other

instabilities. Following saturation, potential wells formed by the saturation of two-

stream and oblique modes, the tilted current filaments of oblique modes, and the

vertical, i.e., uniform in y, current filaments associated with the potentially still-

growing filamentation instability all nonlinearly interact and vie for dominance.

To understand this interplay between the formation of current filaments and

potential wells by the various instabilities, we examine the electromagnetic fields and

particle distribution functions of the two limiting cases, vthe/ud = 0.5, the hot case,

and vthe/ud = 0.1, the cold case. We plot in Figures 5.11 and 5.12 the evolution of

the hot case in the early and late nonlinear stages of the plasma. Likewise, he cold

case is presented in Figures 5.13 and 5.14.

In the hot case, in the early nonlinear stage, we see the formation of the two-

stream modes with their quasi-one dimensional structure in Ey, uniform in x and

277



Figure 5.11: t = 60ω−1
pe and t = 100ω−1

pe snapshots of the evolution of the hot
case. We see the initial development of the two-stream instability and roll-up of the
distribution function, before the electron tubes formed by the two-stream instability
are destroyed by the more slowly growing filamentation instability.

278



Figure 5.12: t = 150ω−1
pe and t = 300ω−1

pe snapshots of the evolution of the hot case.
In the deep nonlinear phase we observe the development of a temperature anisotropy
in the distribution function, which provides a secondary free energy source for the
secular Weibel instability. The growth of the secular Weibel instability from the
temperature anisotropy ultimately supports a saturated magnetic field.
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Figure 5.13: t = 30ω−1
pe and t = 50ω−1

pe snapshots of the evolution of the cold case.
We observe significantly more structure in the electromagnetic fields compared to
the hot case in Figure 5.11, as a variety of oblique modes all growth in tandem with
the two-stream instability. These additional modes also lead to additional phase
space structure, in contrast to the simple plateaus in vy which formed in the hot
case.
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Figure 5.14: t = 100ω−1
pe and t = 175ω−1

pe snapshots of the evolution of the cold case.
The saturated oblique modes have now given their energy back to the electrons in
a much more isotropic fashion than a pure two-stream mode, leading to almost zero
temperature anisotropy. Without a temperature anisotropy to provide free energy
to the Weibel instability, the magnetic field collapses, and we observe no saturated
magnetic field structure.
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multiple wavelengths of the fastest growing mode in y. While there is some initial

magnetic field present due to the growing oblique modes, the dynamics are domi-

nated at this stage by the electrostatic two-stream instability. As the two-stream

modes saturate, we see the roll-up in phase space in the y− vy reduced distribution

functions shown. Importantly, in the early nonlinear stage, the more slowly grow-

ing filamentation instability arises and fractures the saturated two-stream modes.

We thus have the beginnings of magnetic field growth due to the presence of the

filamentation instability.

However, the sustained growth of the magnetic field arises due to the presence

of a secondary instability in the hot case. The fast saturation of the two-stream

instability, along with the disruption and release of the stored electrostatic energy

from the saturated two-stream modes by the filamentation instability, heats the

electrons primarily in one direction in velocity space, vy, because the electrostatic

two-stream instability is fundamentally one-dimensional. But this leads to a tem-

perature anisotropy in the electron distribution, as can be seen forming in the late

nonlinear evolution of the hot case in Figure 5.12. This temperature anisotropy pro-

vides a source of free energy for the secular Weibel instability [Weibel, 1959], and a

saturated magnetic field. We can clearly see this temperature anisotropy by inspec-

tion of the electron distribution function in vx−vy in the late nonlinear time, as the

distribution function is visibly broadened in vy. Note that the magnetic energy sat-

urates at εB ∼ 10−2, near the Alfvén-limited regime, ρe ∼ meud/(eBz) ∼ 7de ∼ Lx,

and enters a steady-state oscillation at the magnetic bounce frequency, agreeing

closely with previous particle-in-cell studies [Fonseca et al., 2003, Silva et al., 2003,
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Nishikawa et al., 2003, 2005, Kato and Takabe, 2008, Kumar et al., 2015, Takamoto

et al., 2018] and 1X2V simulations [Califano et al., 1998, Cagas et al., 2017b].

The cold case is strikingly different, as we see that the two-stream mode is

now competing with a spectrum of oblique modes in the early nonlinear stage in

Figure 5.13. The electric and magnetic fields are much more structured, and while

a single oblique mode is relatively dominant, we see that the distribution function

structure from the initial saturation of the instabilities is not as simple as the roll-up

and formation of electron tubes observed in the hot case. Critically, the saturation

of a spectrum of oblique modes at similar times leads to a heating of the electrons

in a roughly isotropic fashion, as can be seen in the vx−vy cuts in Figure 5.14. This

isotropic energization means that there is no temperature anisotropy to provide

free energy for the Weibel instability to sustain the growing magnetic field. The

magnetic field that has grown ultimately collapses as the oblique modes damp on

the electrons, giving their energy back to the electrons.

We can explicitly quantify this difference in the anisotropy after these insta-

bilities have gone nonlinear. In Figure 5.15, we find that the spatially averaged

temperature anisotropy, Ā, drops from a large initial value in both the hot, Ā = 5,

and cold, Ā = 101, cases to some residual value as the instabilities present grow

off this effective temperature anisotropy, where the spatially averaged temperature

anisotropy is defined as

Ā =

∫ Ly

0

∫ Lx

0

∫
(vy − uy)2f(x, y,v) dv∫
(vx − ux)2f(x, y,v) dv

dx, (5.18)

where ux,y are the flows in the x and y dimensions respectively. We note the evolution
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Figure 5.15: Effective temperature anisotropy of the hot case (red) and cold case
(blue) over time. The effective temperature anisotropy starts at a finite value be-
cause of the initial beams in vy and then decreases as the beam-driven instabilities
are excited. For the hot case, the temperature anisotropy reduces to a finite value,
off which the secular Weibel instability can ultimately feed. In the cold case, the
effective temperature anisotropy decreases to a value close to one, i.e., close to
isotropy, and thus there is no free energy source for the secular Weibel instability
to grow and support a saturated magnetic field.

of the temperature anisotropy in the hot case, where we observe a decrease in the

anisotropy from Ā = 5 to a finite value, Ā ≈ 2, that explains the source of free energy

for the secular Weibel instability that ultimate supports the saturated magnetic

field. The cold case on the other hand, has functionally no temperature anisotropy

after nonlinear saturation, having collapsed from the large effective temperature

anisotropy of two cold beams, Ā = 101, to Ā ≈ 1.2.
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This collapse of the magnetic field and inefficient conversion of the initial ki-

netic energy of the cold beams to any appreciable amount of magnetic energy has not

been previously observed in the literature, and in fact contradicts previous particle-

in-cell studies in similar parameter regimes [Kato and Takabe, 2008]. While there

are many differences between the study performed here and the study performed in

a similar parameter regime in Kato and Takabe [2008], e.g., Kato and Takabe [2008]

includes the effect of the protons on the dynamics and self-consistently drives the

system by studying a collisionless shock which excites these instabilities, we con-

sider here the effect particle noise can have on simulations in this parameter regime.

Since the magnetic field collapses by orders of magnitude as a result of these oblique

modes isotropically heating the electrons as these instabilities nonlinearly saturate,

we are interested in determining the effective phase space resolution required to

adequately resolve this process.

We plot in Figure 5.16 a suite of simulations using the particle-in-cell code p3d

[Zeiler et al., 2002]. We initialize the simulations in exactly the same way as the

continuum VM-FP simulations using Gkeyll, we specify two drifting Maxwellians

for the electrons, and a bath of fluctuations in the electromagnetic fields given

by Eq. (5.17). The particle-in-cell simulations are performed using linear particle

interpolants (triangle shaped particles), and the number of particles per cell is varied

to determine the effect that particle noise has on the solution.

We can see that indeed, particle noise does appear to lead to a saturated

magnetic field state. Further, the convergence to the continuum, grid-based method

is slow, as it requires a considerable number of particles to recreate the behavior
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Figure 5.16: Comparison of the integrated magnetic field energy between a number
of particle-in-cell simulations, varying the particles-per-cell, and the GkeyllVM-FP
simulation of the cold case. In the limit of large particle-per-cell counts, the particle-
in-cell simulations agree with the continuum kinetic result, but as the number of
particles-per-cell is decreased, a saturated magnetic field appears.

of the collapsing magnetic field. The saturated magnetic field in the low particle

count simulations is a result of “quasi-thermal” noise in the sampling of the current

to produce the magnetic field. Essentially, in the same way that particle noise can

manifest as fluctuations in the electric field due to errors in the sampling of the

density of the particle distribution function [Langdon, 1979], so too can these errors

manifest in the current, giving rise to and supporting a magnetic field.

Given the fact that the low particle count simulations saturate at what appears

to be the noise floor of the simulations, we can potentially improve the comparison

by filtering the particle-in-cell data using a simple low pass filter at the largest

wavenumber fluctuations in the box. We plot the same comparison between our
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continuum VM-FP simulation of the cold case, and the two extreme particle counts,

with and without filtering, in Figure 5.17. The improvement from a low-pass filter

Figure 5.17: Comparison of the integrated magnetic field energy between the largest
and smallest particle-per-cell counts, with and without a low pass filter, and the
GkeyllVM-FP simulation of the cold case. We can see that the filter does allow
for the recovery of the collapsing magnetic field in the low particle-per-cell count,
adding credibility to the interpretation that the saturated magnetic field is due to
noise.

adds further credibility to the interpretation that the saturated magnetic field in

the low particle count particle-in-cell calculations arises due to counting noise.

Importantly, while these isolated simulations can be improved with filtering,

it does not eliminate the possibility that particle noise is at least partially respon-

sible for the lack of agreement between the Gkeyllresults presented here and other

particle-in-cell studies [Kato and Takabe, 2008]. While filtering as a post-processing

step works robustly for this problem set-up, where the plasma is perturbed and al-
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lowed to evolve, a driven simulation in which the plasma instabilities are constantly

being excited may be polluted by this same noise that we can see in the non-filtered

case. It is much more difficult to filter the noise in-situ, and thus the dynamics may

be affected by the magnetic field attempting to collapse due to the electron instabil-

ities, but being unable to, under the stress of a constant injection of noise-polluted,

unstable fluctuations. Given the sensitivity of the overall dynamics and magnetic

field growth to parameter regimes of relevance in astrophysical plasmas, it is vital

that care be taken when resolving the phase space evolution of these instabilities.

Further details of this comparison can be found in Juno et al. [2020].

We conclude this section having presented a series of simulations of unstable

plasmas, in which novel behavior in the competition between beam-driven instabili-

ties was found in the limit of the beam temperature and the ratio vthe/ud decreasing.

While the continuum DG VM-FP solver described in this thesis recovers the results

of previous kinetic studies when the electron beams are hot, we find that the secular

Weibel instability can feed off the residual temperature anisotropy remaining from

saturated two-stream modes, the picture changes dramatically as the beams grow

colder. The oblique modes that exist between the filamentation instability and two-

stream instability become as fast growing as, or faster than, the two-stream insta-

bility, significantly complicating the initial nonlinear phase. Without the dominant

two-stream mode in the early nonlinear saturation, the electrons are ultimately en-

ergized quasi-isotropically, leading to a collapse of the temperature anisotropy and

lack of a free energy source to support a saturated magnetic field.

We attempted to replicate this result in analogous particle-in-cell simulations
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and found that the result is sensitive to the particle noise arising from the number

of particles per cell employed in the simulation. Simulations with very few particles

per cell attain saturated magnetic field states arising from the presence of quasi-

thermal noise in the magnetic field, i.e., sampling error in the computation of the

current from the particles discretizing the distribution function. While these errors

can be mitigated with filtering in this isolated system, we emphasize that recovering

the behavior of these instabilities in a driven context, such as a collisionless shock,

may be more challenging. We thus argue for the utility of the continuum approach

presented in this thesis as a means of obtaining an accurate solution for plasma

dynamics that are sensitive to phase space resolution.
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Chapter 6: Summary and Future Work

We have presented in this thesis the derivation, implementation, and appli-

cation of a discretization of the Vlasov–Maxwell–Fokker–Planck (VM-FP) system

of equations which uses the discontinuous Galerkin (DG) finite element method to

numerically integrate the VM-FP equation system on a phase space grid. In con-

trast to traditional particle-based approaches to the numerical integration of the

kinetic equation, this approach provides a high fidelity representation of the particle

distribution function, free of the counting noise inherent to Monte Carlo methods.

This unpolluted discrete representation of the particle dynamics in the full phase

space affords new opportunities for analysis of the plasma processes present directly

in phase space, and makes new problems accessible by increasing the signal-to-noise

ratio.

We identified and solved a number of analytic and numerical challenges through-

out this thesis. We showed what is required in the mathematical formulation of the

DG algorithm for the discrete VM-FP system of equations to retain important prop-

erties of the continuous system, such as conservation of mass and energy. In the

implementation stage, we noted that the direct discretization of the VM-FP system

of equations was rife with difficulties owing to the high dimensional nature of the
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equation system. Importantly, we noted that standard means of lowering the cost

of DG schemes would be catastrophic for the discretization of the VM-FP system

of equations, as numerical integration errors that could reduce the computational

complexity of the algorithm would inevitably destroy the implicit properties of the

VM-FP system of equations, such as conservation of energy. We designed a scheme

free of aliasing errors in the integration, and further formulated a basis set for

our DG scheme using orthonormal, modal polynomials that sparsified the resulting

tensor-tensor convolutions.

We benchmarked the implementation of the DG VM-FP solver against a large

suite of tests, and numerically demonstrated the analytically proved properties of

the scheme. The DG VM-FP solver was then deployed to study the energization of

plasmas in fundamental plasma processes such as collisionless shocks as well as the

details of the nonlinear saturation of beam-driven instabilities. Using the increased

phase space resolution afforded to us by a continuum discretization of the VM-FP

system of equations, we were able to directly diagnose the energization processes

such as shock-drift acceleration in phase space. Likewise, we were able to identify

a new parameter regime as the unstable beams became colder for the saturation

of filamentation-type instabilities. In this cold parameter regime, we observed no

saturated magnetic field as a result of the competition between additional unstable

modes that could grow more quickly in the cold beam parameter regime. We drew

special attention to this result, as analogous particle-in-cell simulations of this sys-

tem found saturated magnetic fields when using low numbers of particles per cell

due to particle noise.
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There are a number of avenues of future research to build off the algorithmic

and physics work presented in this thesis. The methods in this thesis can be ex-

tended to other kinetic systems, for example the relativistic Vlasov-Maxwell system

of equations. In addition, it is worth exploring whether the recovery procedure de-

scribed in Chapters 2 and 3 for the diffusion operator in the Fokker–Planck equation

can also be applied to other components of the update, e.g., the discretization of

Maxwell’s equations. Given some of the challenges in discretizing Maxwell’s equa-

tions, especially in the choice of numerical flux function, an alternative approach

that reconstructs continuous functions at the interface could be particularly power-

ful.

On the physics side, we have demonstrated that the field-particle correlation,

combined with our continuum discretization of the VM-FP system of equations,

provides a particularly useful way to characterize the energization processes present

in phase space, but we have only scratched the surface of what can be done. Even

amongst the benchmarks presented, for example the lower hybrid drift instability

and magnetic pumping, identifying the phase space energization signatures of these

processes would further build a Rosetta stone for assistance in interpreting future nu-

merical and observational solutions. We can also extend the study of filamentation-

type instabilities to include the proton dynamics as well as inhomogeneities in the

beams, e.g., if the two beams have different densities.

But we conclude noting the power and utility of our continuum VM-FP solver

in the Gkeyll simulation framework, and emphasize that there is an enormous

array of problems that can be tackled with this solver, especially if one requires
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high phase space resolution.
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Appendix A: Proofs of the Properties of the Continuous

Vlasov–Maxwell–Fokker–Planck System of Equations

Proof of Proposition 1 (The collisionless Vlasov–Maxwell system of

equations conserves mass.)

Proof. If we multiply the conservation equation form of the collisionless Vlasov

equation, Eq. (1.68), by the mass of the particle, integrate over the phase space

domain K, and apply the divergence theorem, we obtain,

d

dt

(
ms

∫
K

fs dz

)
= −ms

∮
∂K

αsfs dS = 0, (A.1)

by our assumed boundary conditions. Note that this proposition holds individually

for each species s in the plasma as we are not including the effects of source terms

such as ionization or recombination in our system.

Proof of Proposition 2 (The collisionless Vlasov–Maxwell system of

equations conserves the L2 norm of the particle distribution function.)

Proof. We first multiply the conservation equation form of the collisionless Vlasov

equation, Eq. (1.68), by the distribution function fs and integrate over the full phase
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space to obtain

d

dt

(
1

2

∫
K

f 2
s dz

)
= −

∮
∂K

αsf
2
s dS +

∫
K

∇zfs ·αsfs dz, (A.2)

where we have used the chain rule,

fs
d

dt
fs =

1

2

d

dt

(
f 2
s

)
, (A.3)

to simplify the left hand side and integration by parts to rewrite the right hand

side. We can again use our assumed boundary conditions to eliminate the surface

integral, and the product rule to rewrite the volume integral,

∇zfs ·αsfs = ∇z ·
(

1

2
αsf

2
s

)
− 1

2
(∇z ·αs) f

2
s = ∇z ·

(
1

2
αsf

2
s

)
, (A.4)

since phase space is incompressible,

∇z ·αs =

(
∇x · v,

qs
ms

∇v · [E + v ×B]

)
= 0. (A.5)

But, since we can rewrite the volume term as a total derivative, we can again apply

the divergence theorem and use boundary conditions to eliminate the remainder of

the right hand side,

d

dt

(
1

2

∫
K

f 2
s dz

)
= 0.

This completes the proof. As with the conservation of particles, the conservation of

the L2 norm by the collisionless Vlasov–Maxwell system holds individually for each

species s in the system.

Proof of Proposition 3 (The collisionless Vlasov–Maxwell system of
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equations conserves the entropy density S = −f ln(f) of the system.)

Proof. Again using the conservation equation form of the collisionless Vlasov equa-

tion, Eq. (1.68), multiplying by − ln fs, and integrating over phase space we obtain

d

dt

[∫
K

−fs ln(fs) dz

]
=

∮
∂K

ln(fs) (αsfs) dS −
∫
K

∂fs
∂t

+∇z ln(fs) ·αsfs, (A.6)

where we have again used the chain rule to rewrite the time derivative,

− ln(fs)
∂

∂t
fs =

∂fs
∂t
− ∂ ln(fs)fs

∂t
, (A.7)

since

∂ ln(fs)

∂t
=
∂fs
∂t

1

fs
. (A.8)

We have also again used integration by parts on the right hand side of Eq. (1.68)

and can eliminate the surface integral with our boundary conditions in phase space.

Using the chain rule and the incompressibility of phase space, Eq. (A.5), we find

∇z ln(fs) ·αsfs = αs · ∇zfs = ∇z · (αsfs) , (A.9)

but this expression means the the right hand side is simply the collisionless Vlasov

equation, Eq. (1.68), which is equal to zero, completing the proof,

d

dt

(∫
K

−fs ln(fs) dz

)
= 0.

As before with mass conservation and conservation of the L2 norm, conservation

of entropy holds independently for each species in the collisionless Vlasov–Maxwell

system.
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Proof of Proposition 4 (The collisionless Vlasov–Maxwell system of

equations conserves the total, particles plus fields, momentum.)

Proof. We begin by multiplying Eq. (1.65) by msv, summing over species, and in-

tegrating over phase space to obtain

∫
K

∑
s

msv
∂fs
∂t

dz︸ ︷︷ ︸∫
Ω

∑
s

∂Ms
∂t

dx

= −
∫
K

∑
s

msv∇x · (vfs) dz

−
∫
K

∑
s

msv∇v ·
[
qs
ms

(E + v ×B) fs

]
dz. (A.10)

Since the velocity coordinate does not depend on configuration space, we can bring

msv inside the divergence in the first term on the right side, apply the divergence

theorem, and eliminate this term by our configuration space boundary conditions.

For the second term on the right hand side, we can use integration by parts to move

the velocity divergence onto msv, eliminating the surface term using our boundary

condition in velocity space,

−
∫
K

∑
s

msv∇v ·
[
qs
ms

(E + v ×B) fs

]
dz =

∫
K

∑
s

qs∇vv · (E + v ×B) fs dz,

=

∫
Ω

ρcE + J×B dx, (A.11)

where we have used the fact that ∇vv =
←→
I and the definitions of the charge density

and current density, Eqns. 1.63–1.64, to perform the integral over velocity space. To

make further progress, we consider Maxwell’s equations. Taking the cross-product

of Eq. (1.59) with ε0E, the cross-product of Eq. (1.60) with B/µ0, and subtracting
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the resulting equations we obtain

ε0
∂

∂t
(E×B) + ε0 E× (∇x × E)︸ ︷︷ ︸

(∇xE)·E−(E·∇x)E

+
1

µ0

B× (∇x ×B)︸ ︷︷ ︸
(∇xB)·B−(B·∇x)B

= −J×B, (A.12)

for the evolution of the electromagnetic momentum density,1 ε0E×B. Now, for any

vector field A we have

(∇A) ·A = ∇|A|2/2, (A.15)

(A · ∇)A = ∇ · (AA)−A∇ ·A. (A.16)

Using these vector identities and the divergence Eqns. (1.61) and (1.62) to replace

∇x · E = ρc/ε0 and ∇x ·B = 0 gives

ε0
∂

∂t
(E×B) +∇x

(
ε0
2
|E|2 +

1

2µ0

|B|2
)
−∇x ·

(
ε0EE +

1

µ0

BB

)
+ %cE = −J×B.

(A.17)

We recognize the spatial gradients and divergences in Eq. (A.17) to be acting on the

Maxwell stress tensor,

←→σ = ε0

(
EE− 1

2
|E|2
←→
I

)
+

1

µ0

(
BB− 1

2
|B|2
←→
I

)
. (A.18)

So, inserting Eq. (A.17) into Eq. (A.11) and using configuration space boundary

conditions to eliminate the total derivatives of the Maxwell stress tensor gives our

1The electromagnetic momentum density is also commonly written as

pEM =
S

c2
, (A.13)

where S is the Poynting flux,

S =
1

µ0
E×B, (A.14)

and c is the speed of light, c = 1/
√
ε0µ0.
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desired conservation relation,

d

dt

(∫
Ω

∑
s

Ms + ε0E×B dx

)
= 0.

We emphasize that the linear momentum is a conserved vector quantity. In other

words, only the corresponding components of the particle and electromagnetic mo-

mentum can be exchanged, e.g., the x particle momentum can be exchanged with

the x component of the electromagnetic momentum. Of course the stress tensor for

the particles,

←→
S s =

∫
∇x · (vvfs) dv, (A.19)

can move momentum between the various components of the particle momentum

density, and likewise the Maxwell stress tensor can move momentum between the

various components of the electromagnetic momentum density. But when the par-

ticles and electromagnetic fields exchange momentum, they do so component by

component.

Proof of Proposition 5 (The collisionless Vlasov–Maxwell system of

equations conserves the total, particles plus fields, energy.)

Proof. We proceed in a similar fashion to our proof of momentum conservation, but

we now multiply Eq. (1.65) by 1/2ms|v|2, sum over species, and integrate over phase
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space to obtain

∫
K

∑
s

1

2
ms|v|2

∂fs
∂t

dz︸ ︷︷ ︸∫
Ω

∑
s

∂Es
∂t

dx

= −
∫
K

∑
s

1

2
ms|v|2∇x · (vfs) dz

−
∫
K

∑
s

1

2
ms|v|2∇v ·

[
qs
ms

(E + v ×B) fs

]
dz.

(A.20)

Since the velocity coordinate does not depend on configuration space, we can move

1/2ms|v|2 inside the configuration space divergence, forming a total derivative and

allowing us to use the divergence theorem and boundary conditions to eliminate

this term. As before with momentum conservation, we use integration by parts and

velocity space boundary conditions on the second term on the right hand side,

−
∫
K

∑
s

1

2
ms|v|2∇v ·

[
qs
ms

(E + v ×B) fs

]
dz =

∫
K

qs
2
∇v|v|2 · (E + v ×B) fs dz

=

∫
Ω

J · E dz, (A.21)

where we have used the fact that v · (v×B) = 0 by properties of the cross product

to eliminate the magnetic field term. To make further progress, we again examine

Maxwell’s equations. Taking the dot product of Eq. (1.60) with E/µ0, the dot

product of Eq. (1.59) with B/µ0, and adding the resulting equations gives us

∂

∂t

(
ε0
2
|E|2 +

1

2µ0

|B|2
)

+
1

µ0

[B · (∇x × E)− E · (∇x ×B)]︸ ︷︷ ︸
=∇x·(E×B)

= −J · E. (A.22)

Using this result in Eq. (A.21), along with configuration space boundary conditions

to eliminate the divergence of the Poynting flux, gives the total energy conservation
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law,

d

dt

(∫
Ω

∑
s

Es +
ε0
2
|E|2 +

1

2µ0

|B|2 dx

)
= 0.

Proof of Proposition 6 (The Fokker–Planck equation conserves mass.)

Proof. If we multiply Eq. (1.66) by the mass of the particle and integrate over phase

space, just as with Proposition 1, we can use the boundary conditions in velocity

space to obtain

d

dt

(
ms

∫
K

f cs dz

)
=

∮
∂K

νs

[
(v − us)fs +

Ts
ms

∇vfs

]
dS = 0. (A.23)

Because we are not including particle sources such as ionization and recombination,

this conservation relation holds for each plasma species. Importantly, because the

Fokker-Planck operator only involves derivatives in velocity space, this conservation

is local,

∫
K\Ω

ms
∂f cs
∂t

dv =
∂ρs
∂t

= 0, (A.24)

i.e., the Fokker-Planck collision operator does not change the local mass (or number)

density in configuration space.

Proof of Proposition 7 (The Fokker–Planck equation conserves the

particle momentum.)

Proof. If we first multiply Eq. (1.66) by msv and integrate over phase space, we can
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integrate the collision operator by parts once to obtain

d

dt

(∫
K

msvf
c
s dz

)
=

∮
∂K

msv νs

[
(v − us)f +

Ts
ms

∇vfs

]
dS

−
∫
K

msνs∇vv ·
[
(v − us)fs +

Ts
ms

∇vfs

]
dz. (A.25)

We can eliminate the surface integral with our boundary conditions in velocity space.

Recall that ∇vv =
←→
I , so the volume integral simplifies to

∫
K

ms∇vv ·
[
(v − us)fs +

Ts
ms

∇vfs

]
dz =

∫
K

ms(v − u)fs dz,

=

∫
Ω

(Ms −msnsus) dx = 0, (A.26)

where we have dropped the velocity independent collision frequency for notational

convenience. In our simplification to Eq. (A.26) we have used the fact that the

diffusion coefficient, Ts/ms, does not depend on velocity space to write what remains

of the diffusion term as a total derivative, which upon integrating the total derivative

and using the boundary conditions in velocity space, eliminates the diffusion term.

Eq. (A.26) completes the proof. As with conservation of mass in Proposition 6, since

the Fokker–Planck collision operator only includes derivatives in velocity space, we

can construct a local conservation law,

∫
K\Ω

msv
∂f cs
∂t

dv =
∂Ms

∂t
= 0, (A.27)

i.e., the Fokker–Planck collision operator does not change the local momentum den-

sity in configuration space.

Proof of Proposition 8 (The Fokker–Planck equation conserves the
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particle energy.)

Proof. In analogy with Proposition 7, we multiply Eq. (1.66) by 1/2ms|v|2, integrate

over phase space, and use integration by parts to obtain

d

dt

(∫
K

1

2
ms|v|2f cs dz

)
=

∮
∂K

1

2
ms|v|2 νs

[
(v − us)f +

Ts
ms

∇vfs

]
dS

−
∫
K

1

2
msνs∇v|v|2 ·

[
(v − us)fs +

Ts
ms

∇vfs

]
dz. (A.28)

As before, we can eliminate the surface integral with our boundary conditions in

velocity space. Using the fact that∇v|v|2 = 2v, the volume integral can be rewritten

as

∫
K

msv ·
[
(v − us)fs +

Ts
ms

∇vfs

]
dz =

∫
K

[
ms

(
|v|2 − v · us

)
fs + Tsv · ∇vfs

]
dz,

=

∫
Ω

2Es −msns|us|2 − 3nsTs dx = 0, (A.29)

where we have dropped the velocity independent collision frequency for notational

convenience and used integration by parts and the velocity space boundary condi-

tions to simplify

∫
K

Tsv · ∇vfs dz =

∫
K

Tsfs(∇v · v) dz =

∫
Ω

3nsTs dx. (A.30)

Eq. (A.29) completes the proof. We note that as with conservation of mass in Propo-

sition 6 and conservation of momentum in Proposition 7, since the Fokker–Planck

collision operator only includes derivatives in velocity space, we can construct a local
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conservation law,

∫
K\Ω

1

2
ms|v|2

∂f cs
∂t

dv =
∂Es
∂t

= 0, (A.31)

i.e., the Fokker–Planck collision operator does not change the local energy density

in configuration space.

Proof of Proposition 9 (The Fokker–Planck equation satisfies the

Second Law of Thermodynamics and leads to a non-decreasing entropy

density S = −f ln(f).)

Proof. Defining the total entropy as

Ss = −
∫
K

fs ln fs dz, (A.32)

and taking the time derivative of the total entropy, we have

∂Ss
∂t

= −
∫
K

∂fs
∂t

[ln(fs) + 1] dz. (A.33)

We can rewrite the Fokker–Planck operator as a flux in velocity space,

∂f cs
∂t

= ∇v · F, (A.34)

where

F = (v − us)fs +
Ts
ms

∇vfs, (A.35)

and we have dropped the velocity independent collision frequency νs for notational

convenience without loss of generality. Because we have already proved the collision-

less component of the VM-FP system of equations does not change the entropy of the
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system, Proposition 3, we need only consider the contribution of the Fokker–Planck

equation to the evolution of the total entropy,

∂Ss
∂t

= −
∫
K

∇v · F[ln(fs) + 1] dz. (A.36)

We can integrate the flux by parts and use our boundary conditions in velocity space

to obtain

∂Ss
∂t

=

∫
K

1

fs
∇vfs · F dz. (A.37)

We now substitute

∇vfs =
ms

Ts
[F− (v − us)fs], (A.38)

into Eq. (A.37) to obtain,

∂Ss
∂t

=

∫
K

ms

Ts

[
|F|2

fs
− (v − us) · F

]
dz. (A.39)

Using the definition of F, the second term in this equation becomes

∫
K

(v − us) · F dz =

∫
K

(|v|2 − 2us · v + |us|2)fs +
Ts
ms

(v − us) · ∇vfs dz

=

∫
Ω

2

ms

Es − 2ns|us|2 + ns|us|2 − 3ns
Ts
ms

dx = 0, (A.40)

where we have used integration by parts on the ∇vfs term. Hence,

∂Ss
∂t

=

∫
K

ms

Ts

1

fs
|F|2 dz ≥ 0, (A.41)

as long as fs ≥ 02. Given the preceding discussion, we can also define a velocity

2And νs > 0 of course. If the collision frequency was not positive definite, that would be a real
problem!

305



integrated entropy density,

ss(x, t) = −
∫
K\Ω

fs(x,v, t) ln(fs(x,v, t)) dv, (A.42)

which is a monotonically increasing function,

∂ss(x, t)

∂t
=

∫
K\Ω

ms

Ts(x, t)

1

fs(x,v, t)
|F(x,v, t)|2 dv ≥ 0, (A.43)

since the Fokker–Planck operator only involves derivatives in velocity space. In

other words, the collision operator leads to non-decreasing entropy at each point in

configuration space, and further mixing in configuration space is required to attain

a global maximum entropy state. We might be unsurprised by this statement, as

the entropy increase in velocity space corresponds to the second of Bogoliubov’s

timescales, while the entropy increase in all of phase space corresponds to the third

of Bogoliubov’s timescales.

Proof of Corollary 1 (The maximum entropy solution to the Fokker–

Planck collision operator is the Maxwellian velocity distribution.)

Proof. By Proposition 9, we know that the entropy is a monotonically increasing

function. But, if the entropy is a monotonically increasing function in time, and the

entropy is a well-defined quantity, i.e., Eq. (A.32) is not a divergent integral, then

the extremum of the entropy must necessarily maximize the entropy. Thus, we need

only find when

∂Ss
∂t

= 0. (A.44)
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The time evolution of the entropy vanishes when

F = 0, (A.45)

i.e.,

∇vfs = −ms

Ts
(v − us)fs. (A.46)

Solving for the distribution function fs, we find

fs = A exp

(
−ms

|v − us|2

2Ts

)
, (A.47)

where A is some constant of integration. To find the constant of integration, we

exploit the requirement that the integral over velocity space of the distribution

function must by definition give the density,

ns =

∫
K\Ω

A exp

(
−ms

|v − us|2

2Ts

)
dv, (A.48)

which means

A = ns

(
ms

2πTs

) 3
2

, (A.49)

where the integral over each velocity direction naturally gives a factor of
√

2πTs/ms.

Further discussions of the Maxwellian velocity distribution and its

connection to thermodynamic equilibrium.

Eq. (A.44) is often referred to as the principle of detailed balance. To give

ourselves physical intuition for what it means for the time evolution of the entropy
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to vanish, we must consider what we mean by the plasma being in thermodynamic

equilibrium. A useful way to define equilibrium is that every process ongoing in the

plasma is exactly compensated by its reverse, e.g., every Coulomb collision a particle

in the plasma experiences is exactly balanced by an equal and opposite Coulomb

collision. The contribution of Coulomb collisions to the plasma’s dynamics would

then vanish. But the contribution of Coulomb collisions vanishing was exactly the

requirement for entropy production to disappear. Inevitably, the velocity distribu-

tion function for which Coulomb collisions are “in balance” defines our equilibrium

state and the state of maximum entropy.

There are additional subtleties worth mentioning; for example, we have used

the total entropy vanishing to derive the Maxwellian as the maximum entropy dis-

tribution, but the plasma is free to be a different Maxwellian at each point in con-

figuration space since the density, flow, and temperature may vary in space. In this

case, the entropy density can be maximized at a given configuration space location,

but the total entropy may not yet be maximized. For example, a spatially varying

Maxwellian may itself be unstable and drive the system to a still higher entropy

state.

We wish to make one additional note about the interconnection between the

Maxwellian velocity distribution, the Fokker–Planck equation, and the entropy. The

Maxwellian velocity distribution is actually the naturally arising weight function

when considering additional properties of the Fokker–Planck operator in Eq. (1.66).

For example, we can show that the Fokker–Planck operator is self-adjoint, i.e., for
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arbitrary functions g(x,v, t), f(x,v, t),

(
g,
∂f c

∂t

)
fM

=

(
f,
∂gc

∂t

)
fM

, (A.50)

with the inner product defined as

(f, g)fM =

∫
K\Ω

1

fM
fg dv. (A.51)

Note that (·, ·)fM is a bilinear operator taking two arguments, defined by the integral

equation in Eq. (A.51). Here, we consider only the integrals over velocity space for

simplicity and fM is the Maxwellian for which the collision operator vanishes. Note

that we have dropped the species subscript. Integrating Eq. (A.50) by parts we get

(
g,
∂f c

∂t

)
fM

= −
∫
K\Ω
∇v

(
g

fM

)
·
[
(v − u)f +

T

m
∇vf

]
dv. (A.52)

We have the identity

T

m
fM∇v

(
f

fM

)
= (v − u)f +

T

m
∇vf. (A.53)

Using this identity leads to

(
g,
∂f c

∂t

)
fM

= − T
m

∫
K\Ω

fM∇v

(
g

fM

)
· ∇v

(
f

fM

)
dv. (A.54)

This equation is symmetric in f and g from which the self-adjoint property follows.

As an aside, the self-adjoint property indicates that the eigenvalues of the

operator are all real and hence all solutions are damped. In other words, the Fokker–

Planck operator in the VM-FP system of equations does not support any oscillatory

modes. One can show that the eigenfunctions of the operator Eq. (1.66) are simply
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the multi-dimensional tensor Hermite functions [Grant and Feix, 1967, Hammett

et al., 1993, Harris, 2004, Anderson and O’Neil, 2007a, Patarroyo, 2019] and each

mode is damped proportional to the mode number.

We can use the self-adjoint property to discuss the behavior of the distribution

function squared, f 2, at least in this norm with the Maxwellian weight. If we set

g = f in Eq. (A.54) we get

∫
K\Ω

f

fM

∂f c

∂t
dv =

d

dt

∫
K\Ω

1

2

(f c)2

fM
dv

= − T
m

∫
K\Ω

fM∇v

(
f

fM

)
· ∇v

(
f

fM

)
dv ≤ 0, (A.55)

which shows that the Fokker–Planck operator will decay f 2/fM integrated over

velocity space. But what about f 2, the L2 norm, without the Maxwellian weight?

We previously discussed the L2 norm of the collisionless component of the

VM-FP system of equations in Proposition 2, showing it is a conserved quantity in

the evolution of the distribution function from the collisionless part of the VM-FP

system of equations. We proceed in a similar fashion to Proposition 2, but now with

the Fokker–Planck equation,

d

dt

∫
K\Ω

1

2
f 2 dv = −

∫
K\Ω
∇vf ·

[
(v − u)f +

T

m
∇vf

]
dv, (A.56)

where we have already integrated by parts once and used our velocity space boundary

conditions to eliminate the surface term. We now write the first term as

∇vf · (v − u)f = ∇v

(
1

2
f 2

)
· (v − u) = v · ∇v

(
1

2
f 2

)
−∇v ·

(
u

1

2
f 2

)
. (A.57)

The second term is a total derivative and will vanish on upon the use of the diver-
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gence theorem and our velocity space boundary conditions. This procedure leaves

d

dt

∫
K\Ω

1

2
f 2 dv = −

∫
K\Ω

v · ∇v

(
1

2
f 2

)
+
T

m
|∇vf |2 dv. (A.58)

Performing integration by parts on the first term we obtain

d

dt

∫
K\Ω

1

2
f 2 dv =

∫
K\Ω

3

2
f 2 − T

m
|∇vf |2 dv. (A.59)

For a Maxwellian, the right-hand side vanishes,

d

dt

∫
K\Ω

1

2
f 2
M dv =

∫
K\Ω

3

2
f 2
M −

T

m

(
−m(v − u)

T
fM

)2

dv,

=

∫
K\Ω

3

2
f 2
M −

m

T
|v − u|2f 2

M dv = 0, (A.60)

but one can construct perturbations on the Maxwellian that may change the sign.

To see this, perform a perturbation around a Maxwellian f = fM + δf to get the

variation,

δ
d

dt

∫
K\Ω

1

2
f 2 dv =

∫
K\Ω

(
3fM − 2

T

m
∇2

vfM

)
δf dv,

=

∫
K\Ω

(
3− 2m|v − u|2

T

)
fMδf dv. (A.61)

Clearly, δf can be of any sign. This result shows that the L2 norm is not monotonic

and the Maxwellian is not the extremum of the L2 norm. Physically, as the drag

velocity v−u is compressible, the contribution from the drag term cannot be turned

into a total derivative. The compressibility of the drag term is in contrast to the

collisionless case, in which the phase-space velocity is incompressible and hence the

phase-space integrated f 2 is constant.

We have focused on these additional properties of the Fokker–Planck collision
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operator—the operator is self-adjoint and decays f 2/fM , but not f 2—to make the

connection between the Maxwellian velocity distribution and the entropy production

of the operator even more explicit. Proposition 9, that the VM-FP system of equa-

tions obeys the Second Law of Thermodynamics, and Corollary 1, that the VM-FP

system of equations obeys Boltzmann’s H-theorem, are inseparable, and Corollary 1

naturally follows from Proposition 9. The fact that the Maxwellian velocity distri-

bution is then a natural weight function for discussing additional properties of the

collision operator in the VM-FP system of equations should thus be unsurprising,

and we cannot avoid including this weight function when discussing the behavior of

quantities such as the distribution function squared, f 2.

We will conclude this discussion with one final way to think about the con-

nection between the Maxwellian velocity distribution, entropy production, and the

1/fM weighting of the inner product. 1/fM naturally arises when measuring how

much a distribution function deviates away from a Maxwellian in terms of entropy.

In other words, writing f = fM + δf , then the entropy S[f ] = −
∫
K
f ln(f) dv as a

functional of f can be written as,

S[fM + δf ] = S[fM ]− (1/2)

∫
(δf)2/fM dv + . . . , (A.62)

through second order. This expansion is consistent with the result that any small

deviation, δf � fM , away from a Maxwellian is a state of lower entropy. Note that,

to derive this, we have made use of

∫
vpδf dv = 0 for p = 0, 1, 2, (A.63)
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because the Maxwellian fM has the same zeroth through second moments as f by

construction. In other words, any finite zeroth through second moments in δf could

just be absorbed into the Maxwellian fM , and fM redefined. This norm for δf is

equivalent to a norm on the total f , plus a constant, since

∫
f 2/fM dv =

∫
(fM + δf)2/fM dv = n+

∫
(δf)2/fM dv, (A.64)

where the density n =
∫
f dv is conserved by the collision operator. This result that

S[fM + δf ] = constant− (1/2)

∫
f 2/fM dv + . . . , (A.65)

shows a relationship between the collision operator causing the entropy to be never

decreasing and the 1/fM -weighted norm to be never increasing.
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Low mach-number collisionless electrostatic shocks and associated ion accelera-
tion. Plasma Phys. Con. Fus., 60(3):035004, 2018.

I. Pusztai, J. Juno, A. Brandenburg, J. M. TenBarge, A. H. Hakim, M. Fran-
cisquez, and A. Sundström. Dynamo in weakly collisional non-magnetized plas-
mas impeded by Landau damping of magnetic fields. 2020. URL https:

//arxiv.org/abs/2001.11929.

W. Reed and T. Hill. Triangular mesh methods for the neutron transport equation.
10 1973.

M. N. Rosenbluth, W. M. MacDonald, and D. L. Judd. Fokker-planck equation for
an inverse-square force. Phys. Rev., 107(1):1–6, 1957. doi: 10.1103/PhysRev.107.
1. URL https://link.aps.org/doi/10.1103/PhysRev.107.1.

V. Roytershteyn and G. L. Delzanno. Spectral approach to plasma kinetic sim-
ulations based on hermite decomposition in the velocity space. Frontiers in
Astron. Space Sci., 5:27, 2018. doi: 10.3389/fspas.2018.00027. URL https:

//www.frontiersin.org/article/10.3389/fspas.2018.00027.

V. Roytershteyn, W. Daughton, H. Karimabadi, and F. S. Mozer. Influence of the
lower-hybrid drift instability on magnetic reconnection in asymmetric configura-
tions. Phys. Rev. Lett., 108:185001, May 2012. doi: 10.1103/PhysRevLett.108.
185001. URL https://link.aps.org/doi/10.1103/PhysRevLett.108.185001.

V. Roytershteyn, S. Boldyrev, G. L. Delzanno, C. H. K. Chen, D. Grošelj, and N. F.
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A. Retinò, A. Vaivads, M. Salatti, and P. Veltri. Differential kinetic dynamics
and heating of ions in the turbulent solar wind. New J. Phys., 18(12):1–17,
2016. ISSN 1367-2630. doi: 10.1088/1367-2630/18/12/125001. URL https:

//doi.org/10.1088%2F1367-2630%2F18%2F12%2F125001.

B. van Leer. Towards the Ultimate Conservative Difference Scheme. V. A Second-
Order Sequel to Godunov’s Method. J. Comp. Phys., 32(1):101–136, Jul 1979.
doi: 10.1016/0021-9991(79)90145-1.

B. van Leer and M. Lo. A discontinuous Galerkin method for diffusion based on
recovery. In 18th AIAA Comput. Fluid Dyn. Conf., number AIAA 2007-4083,
Miami, FL, 2007. American Institute of Aeronautics. ISBN 1563478994.

B. van Leer and S. Nomura. Discontinuous Galerkin for Diffusion. In 17th AIAA
Comput. Fluid Dyn. Conf., number AIAA 2005-5109, Toronto, Ontario, Canada,
2005. American Institute of Aeronautics. ISBN 978-1-62410-053-6. doi: 10.2514/
6.2005-5108.

330

https://doi.org/10.3847%2F2041-8213%2Faac6d6
https://doi.org/10.3847%2F2041-8213%2Faac6d6
https://doi.org/10.1063/1.5037348
http://www.sciencedirect.com/science/article/pii/S0021999107000022
http://www.sciencedirect.com/science/article/pii/S0021999107000022
https://doi.org/10.1063/1.3420278
https://doi.org/10.1063/1.3420278
https://doi.org/10.1088%2F1367-2630%2F18%2F12%2F125001
https://doi.org/10.1088%2F1367-2630%2F18%2F12%2F125001


J. Vencels, G. L. Delzanno, G. Manzini, S. Markidis, I. B. Peng, and V. Royter-
shteyn. SpectralPlasmaSolver: a spectral code for multiscale simulations of col-
lisionless, magnetized plasmas. J. Phys. Conference Series, 719:012022, may
2016. doi: 10.1088/1742-6596/719/1/012022. URL https://doi.org/10.1088%

2F1742-6596%2F719%2F1%2F012022.

L. Wang, A. H. Hakim, A. Bhattacharjee, and K. Germaschewski. Compari-
son of multi-fluid moment models with particle-in-cell simulations of collision-
less magnetic reconnection. Phys. Plasmas, 22(1):012108, Jan. 2015. doi:
10.1063/1.4906063.

L. Wang, A. Hakim, J. Ng, C. Dong, and K. Germaschewski. Exact and locally
implicit source term solvers for multifluid-maxwell systems. 2019. URL https:

//arxiv.org/abs/1909.04125.

E. S. Weibel. Spontaneously growing transverse waves in a plasma due to
an anisotropic velocity distribution. Phys. Rev. Lett., 2:83–84, Feb 1959.
doi: 10.1103/PhysRevLett.2.83. URL https://link.aps.org/doi/10.1103/

PhysRevLett.2.83.

B. S. Wettervik, T. C. DuBois, E. Siminos, and T. Fülöp. Relativistic vlasov-maxwell
modelling using finite volumes and adaptive mesh refinement. The European
Phys. J. D, 71(6):157, 2017. doi: 10.1140/epjd/e2017-80102-2. URL https:

//doi.org/10.1140/epjd/e2017-80102-2.

L. B. Wilson III, C. A. Cattell, P. J. Kellogg, K. Goetz, K. Kersten, J. C. Kasper,
A. Szabo, and M. Wilber. Large-amplitude electrostatic waves observed at a
supercritical interplanetary shock. J. Geophys. Res., 115:A12104, dec 2010. doi:
10.1029/2010JA015332.

L. B. Wilson III, A. Koval, A. Szabo, A. Breneman, C. A. Cattell, K. Goetz, P. J.
Kellogg, K. Kersten, J. C. Kasper, B. A. Maruca, and M. Pulupa. Observations of
electromagnetic whistler precursors at supercritical interplanetary shocks. Geo-
phys. Res. Lett., 39:L08109, apr 2012. doi: 10.1029/2012GL051581.

L. B. Wilson III, D. G. Sibeck, A. W. Breneman, O. Le Contel, C. Cully, D. L.
Turner, V. Angelopoulos, and D. M. Malaspina. Quantified Energy Dissipation
Rates in the Terrestrial Bow Shock: 1. Analysis Techniques and Methodology.
J. Geophys. Res., 119(8):6455–6474, sep 2014a. doi: 10.1002/2014JA019929.

L. B. Wilson III, D. G. Sibeck, A. W. Breneman, O. Le Contel, C. Cully, D. L.
Turner, V. Angelopoulos, and D. M. Malaspina. Quantified Energy Dissipation
Rates in the Terrestrial Bow Shock: 2. Waves and Dissipation. J. Geophys. Res.,
119(8):6475–6495, sep 2014b. doi: 10.1002/2014JA019930.

A. R. Winters, R. C. Moura, G. Mengaldo, G. J. Gassner, S. Walch, J. Peiró,
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