
Abstract

Title of Thesis: CONTENT BASED SEARCH OF MECHANICAL

ASSEMBLIES

Degree Candidate: Abhijit Deshmukh

Degree and Year: Master of Science, 2006

Thesis directed by: Associate Professor Satyandra K. Gupta

Department of Mechanical Engineering and Institute of Systems

Research

The increased use of 3D CAD systems by product development organizations has

resulted in large databases of assemblies; this explosion of assembly data will continue in

the future. Currently, there are no effective content-based techniques to search these

databases. Ability to perform content-based searches on these databases is expected to

help the designers in the following two ways. First, it can facilitate reuse of existing

assembly designs, thereby reducing the design time. Second, a lot of useful Design for

Manufacturing and Assembly (DFMA) knowledge is embedded in existing assemblies.

Therefore a capability to locate existing assemblies and examine them can be used as a

learning tool by the designers to learn from the existing assembly designs and hence

transfer the best DFMA practices to new designers.

This thesis describes a system for performing content-based searches on assembly

databases. It lists the templates identified for comprehensive search definitions and

describes algorithms to perform content-based searches for mechanical assemblies. The

characteristics of mechanical assemblies were identified and categorized based on their

similarity and computational complexity to perform comparison. The characteristics were

extracted from the CAD data to prepare a CAD independent signature of the assembly.

The search methodology consists of exact and approximate string matching, number

matching and computing graph compatibility. Various research groups have solved the

former two problems. This thesis describes a new algorithm to solve graph compatibility

problem using branch and bound search. The performance of this algorithm has been

experimentally characterized using randomly generated graphs.

This search software provides a CAD format independent tool to perform content

based search of assemblies based on the form of assemblies. The capabilities of the

search software have been illustrated in this thesis through several examples. This search

tool can contribute to significantly reduce the design time and reuse of the knowledge in

existing designs.

CONTENT BASED SEARCH OF MECHANICAL ASSEMBLIES

by

Abhijit Deshmukh

Thesis submitted to the Faculty of the Graduate School of the

University of Maryland, College Park in partial fulfillment

of the requirements for the degree of

Master of Science

2006

Advisory Committee:

Associate Professor Satyandra K. Gupta, Chairman/Advisor

 Associate Professor Linda Schmidt

Professor David Mount

© Copyright by

Abhijit S. Deshmukh

2006

ii

DEDICATION

To my entire family and all those who contributed immensely to this work and made it

possible

iii

ACKNOWLEDGEMENTS

I would like to sincerely thank my academic advisor Dr. Satyandra K. Gupta for giving

me an opportunity to conduct research under his supervision. I have a firm belief that the

knowledge gained during this research would enable me to fulfill my professional

responsibilities henceforth. His exemplary perseverance and focused approach to any

problem would help me beyond the realms of professional life. I would also like to thank

Dr. Linda Schmidt and Dr. David Mount for readily accepting to be on my thesis

committee.

I am thankful to the Department of Mechanical Engineering and the Institute of Systems

Research for the support during this research. I also want to express my gratitude to Ashis

Banerjee for help in the algorithms for graph compatibility and providing me a random

graph generator. A special note of thanks is due for Ashis for his encouragement. I would

like to thank Maxim Schwartz for providing the assembly search tool. I would like thank

Alok Priyadarshi, Mukul Karnik and Maxim Schwartz for the valuable suggestions

during the implementation of this system. I would also like to thank Arne Gfell for

functions to draw graphs and XML Parser and Changxin for integrating the code to draw

graphs with the code for assembly search.

I would also like to thank my friends: Sameer Kibey, Saurabh Srivastava, Arvind

Ananthnarayanan, Kapil Sahasrabudhe, Shirsho Sengupta, Suresh Kumar

Santhanavannanna, Aditya Kalyanpur and many others for their valuable support and

suggestions during my research.

iv

TABLE OF CONTENTS

List of Figures vii

1 INTRODUCTION 1

1.1 Mechanical Assemblies in CAD ………………………………. 1

1.2 Motivation ……………………………………………………… 4

1.2.1 Need for assembly search systems ………………………….. 4

1.2.2 Existing search methods and their limitations ………………. 5

1.3 Research Issues ………………………………………………… 6

1.3.1 Desired characteristics of the software search system ……… 6

1.3.2 Identifying and extracting characteristics of assembly

for search ……………………………………………………. 8

1.3.3 Search methodology for different characteristics …………… 12

1.4 Outline of Thesis ………………………………………………... 13

2 RELATED WORK 14

 2.1 Assembly Modeling …………………………………………….. 14

 2.2 Part Search Techniques …………………………………………. 20

2.2.1 Search Based on a Query Part ………………………………. 20

2.2.2 Search Based on a Sketch …………………………………… 23

2.2.3 Search by Visual Browsing of Part Database ………………... 24

 2.3 Function Based Search ……………..……………………………. 25

v

 2.4 Overview of subgraph isomorphism ……………………………… 28

3 SEARCH BASED ON ASSEMBLY STATISTICS 33

3.1 Search Definition …………………………………………………. 34

3.2 Search Method ……………………………………………………. 39

3.3 Example …………………………………………………………... 40

4 SEARCH BASED ON CONSTITUENT PART 42

4.1 Search Definition …………………………………………………. 42

4.2 Search Method …………………………………………………….. 45

4.3 Example …………………………………………………………… 47

5 SEARCH BASED ON PART MATING 49

5.1 Search Definition …………………………………………………. 50

5.2 Search Method ……………………………………………………. 56

5.3 Example …………………………………………………………… 60

5.4 Algorithms for initial processing of graph .……………………….. 64

5.5 Pruning algorithms ………………………………………………… 71

5.6 Depth First Search algorithm ……………………………………… 76

5.7 Auxiliary algorithms for Depth First Search ……………………… 83

5.8 Computational Experiments ………………………………………. 87

6 SEARCH BASED ON JOINT RELATIONS 94

vi

6.1 Search Definition …………………………………………………. 95

6.2 Search Method ……………………………………………………. 100

6.3 Example ………………………………………………………….. 101

7 IMPLEMENTATION 104

7.1 System Architecture ………………………………………………. 104

7.2 Libraries used ……………………………………………………... 106

7.3 Conventions used in assembly design …………………………….. 107

7.4 Signature File Format .…………………………………………….. 108

7.5 Query File Format ………………………………………………… 111

7.6 Signature Extraction ………………………………………………. 112

7.7 System Output ……………………………………………………... 114

7.8 Assembly Viewer …………………………………………………. 116

7.9 Summary of assembly database …………………………………… 117

7.9 Interface to Define Search ..………………………………………. 117

8 CONCLUSION, BENEFITS AND FUTURE WORK 125

8.1 Research Contributions …………………………………………… 125

8.2 Anticipated Benefits ………………………………………………. 126

8.3 Future Work ………………………………………………………. 127

Bibliography 129

vii

LIST OF FIGURES

1.1 A universal joint – reuse of existing design 3

1.2 A camera frame – use of design knowledge 4

1.3 Slider crank mechanism occupying different volumes due to

different position of relative parts 6

1.4 Objectives of research 8

1.5 Method to identify assembly characteristics 10

1.6 Top level assembly characteristics 11

2.1 Architecture for part search 21

3.1 Example of a prosthetic device – artificial leg 34

3.2 Bounding box 35

3.3 Bounding sphere 35

3.4 Sheet Metal Part 37

3.5 Rotationally Symmetric Part 37

3.6 Eight assemblies obtained by assembly statistics based search 40

3.7 Two assemblies obtained by assembly statistics based search 41

4.1 Example of a standard part – gear 43

4.2 Example of a custom part 44

4.3 Use of geometry based part search tool in assembly search 46

4.4 Result of the search – Rocket motor assembly 48

5.1 The query graph for part mating conditions 53

5.2 A database mating graph with which the query

viii

graph is compatible 54

5.3 Another database mating graph with which the query

graph is incompatible 55

5.4 Graphical explanation of compatible and incompatible graph 56

5.5 Layout of the flange assembly 61

5.6 A assembly with attached flanges 61

5.7 A Flange Assembly 62

5.8 Another view of the flange assembly 62

5.9 A query graph to search for cell phone assembly 63

5.10 An image of the cell phone assembly retrieved from the 63

database of assemblies

5.11 Number of Nodes in Query Graph X Computation Time

for Depth First Search 88

5.12 Number of Edges in Query Graph X Computation Time

for Depth First Search 90

5.13 Percentage of Wild Card Entries in Query Graph X Computation

Time for Depth First Search 92

6.1 A robot arm with two revolute joints allowing perpendicular

motion and attached on one link 95

6.2 A query definition 96

6.3 A query matching with a database assembly 101

6.4 A match for search by joint relationship – Stewart platform 103

7.1 The architecture of the assembly search system 105

ix

7.2 Output window of the assembly search software 115

7.3 Assembly viewer with tree structure on the left and geometry

view on the right 116

7.4 Main window to define search path and define queries 117

7.5 Interface to define search criteria based on assembly statistics 118

7.6 Interface to define constituent part based search 119

7.7 Dialog to define a constituent part 120

7.8 Interface to define query graph for part mating conditions based search 121

7.9 Dialog to define node in the query graph for search based on

part mating conditions 122

7.10 Interface to define search based on joint relationships 123

7.11 Dialog to define a joint relationship 124

1

Chapter 1

INTRODUCTION

This chapter is arranged in the following manner: Section 1.1 discusses the

mechanical assemblies in CAD software systems, Section 1.2 describes the motivation

behind the research for assembly search system, Section 1.3 describes the issues involved

in the research and Section 1.4 describes the outline of the thesis. Most of the research in

this thesis is based on the work reported in [Desh05, Gupt06].

1.1 Mechanical Assemblies in CAD

Over the last ten years, 3D CAD systems have become very popular in the industry.

These CAD systems are being used to generate 3D models of parts and assemblies. These

models are used as a basis for engineering analysis and generating manufacturing plans.

3D models also allow virtual prototyping and hence reduce the need for physical

prototyping. Nowadays, organizations routinely set up databases of CAD models to

enable all participants in the product development process to have access to 3D data to

support their functions. Specially, design, manufacturing and service engineers are

expected to greatly benefit from these databases. Design engineers can access the designs

of parts and assemblies in the database to design a product for a similar application.

Manufacturing engineers can use these databases to find the manufacturing plans and

vendors to manufacture parts and assemblies. Service engineers can use the strategy to

disassemble and assemble the products for maintenance and servicing. These databases

2

are updated with the latest versions of parts and assemblies and hence significantly

improve information dissemination. CAD databases for even moderate size companies

are expected to be large in size. A product assembly can contain many subassemblies and

each subassembly can contain many parts. Therefore, even a small organization that has

multiple product lines may add hundreds of assemblies to their database every year.

The mechanical assemblies consist of either the pointers to or a copy of the geometry

of the constituent parts. An assembly in a CAD system can be made of individual parts or

subassemblies. The subassemblies are made of its constituent parts. The constituent parts

and sub assemblies are represented in a tree structure that represents the bill of materials

of the assembly. The constituent parts and subassemblies are placed in specific position

using part mating conditions. The assemblies are virtual representation of a product or an

important part of a product. Some products have articulations. The articulation is shown

in assembly by joints. These joints can be simulated to show the movement of different

parts of the assembly. Before a product is manufactured, different analysis are carried out

on the parts and assembly. Some examples of such type of analysis are manufacturability,

strength and motion analysis. Often the results of such analysis including the product

manufacturing (PMI) data are stored with the assemblies. The mechanical assemblies

thus contain much more information about the products of an organization as compared

to CAD files that only contain the geometry of a part in the product.

The assembly databases, besides supporting downstream manufacturing and service

operations, can be very useful during the design phase as well. There are two main uses

of assembly database during the design stage.

3

• The first possible usage is to locate existing assemblies that can be reused in a new

product. Such reuse of existing designs is beneficial from many different

perspectives. It reduces design time by eliminating the need for modeling and

analysis for the assembly being reused. Furthermore, the existing assembly is already

tested and has an established manufacturing plan. This further reduces the product

development time and cost. Sharing assemblies across multiple product lines also

allows a company to take advantage of the economy of scale. The design of universal

joint shown in the figure 1.1 can be reused to design another universal joint.

• The second possible usage is to provide access to existing design knowledge.

Designing assemblies requires considerable effort. Creating good assembly designs

require thoughtful analysis and careful application of Design for Manufacturing and

Assembly (DFMA) principles. The design thumb rules used in an organization are

embedded in the design. These rules include the tweaking of design to suit the

manufacturing capabilities in the organization and its vendors. New designers can

adopt and copy successful design templates. Moreover, once designers manage to

find an assembly with the desired characteristics, they can also access associated data

such as cost, reliability, and failure reports. The camera frame assembly shown in the

Figure 1.1: A universal joint – reuse of existing design

4

figure 1.2 can be used to access the knowledge about an assembly that fit together

tightly.

1.2 Motivation

This section describes the motivation behind this work.

1.2.1 Need for assembly search system

Saaksvuori reports that up to 70 percent of a designers time can be saved if the

existing knowledge base of an organization can be reused for new designs. [Saak04] It is

thus very important to have the capability to search the database based on any

characteristics for a desired assembly. Currently, content-based search tools do not exist

for searching assemblies based on the specified criteria. Therefore, designers locate

assemblies by combining the text based and part search methods and manually opening

various files and browsing through them using a CAD system. This is a highly inefficient

use of designer’s time, and becomes a serious problem as the numbers of assemblies in

Figure 1.2: A camera frame – use of design knowledge

5

the database grow. This also requires that designers should have access to the CAD

software. 3D CAD software are costly and it would be helpful to search database without

requiring to access CAD software. If a designer can access the information of an

assembly and study the design without using CAD, it would result in significant cost

reduction.

1.2.2 Existing search methods and their limitations

Designers have access to several types of search tools. If the assemblies are stored in

hard drives, they can use file name-based search tools. This strategy only works if a

meaningful file naming convention based on assembly contents is adopted. However,

developing and deploying a content-based naming convention is impractical in many

large organizations. Many organizations have manufacturing plants located across

different geographical locations. The merger of two different organizations in different

geographical locations can also lead to two completely different naming conventions that

are individually sufficient to cater to the needs of the different manufacturing units but

cannot be used as search criteria in a single assembly search system. In such case,

information about product designs cannot be used by designers in two different

manufacturing units. A newly developed convention cannot be used to search the legacy

data in the organization. Any organization usually has very large quantity of legacy data

that makes it very difficult to change or implement naming conventions followed in the

organization. Another way is to attach text notations to assemblies and store them in a

Product Data Management (PDM) database. This scheme only provides limited search

capabilities and has a limited discrimination power. Moreover, assemblies need to be

6

manually annotated. The text based search cannot be used to define all attributes of the

mechanical assembly. Moreover, manual annotations introduce human errors that cannot

be avoided thereby reducing the accuracy of a tool that searches for assemblies based on

these text attributes. In the recent past, several geometry-based search tools have

emerged. However, these tools, although useful for part searches, are not very effective

for assemblies. They can only account for the overall shape of the assembly and cannot

account for relationships and structure that exist in assemblies. The overall shape may

differ for an articulated assembly. For example, the four bar link mechanism shown in the

figure 1.3 occupies different volume in different positions. Only text based search tools

and geometry based search tools are clearly insufficient to search for assemblies. This

research has been started to provide a content based assembly search tool for designers an

organization.

1.3 Research Issues

1.3.1 Desired characteristics of software search system

The goal of this research is to develop a content-based assembly search system for

searching assemblies from a database of existing assemblies based on different

Figure 1.3: Slider crank mechanism occupying different
volumes due to different position of relative parts

7

characteristics. The characteristics used by the system to search the database need to be

extensive and also include most of the characteristics of a typical assembly. Hence, the

system will need to support a comprehensive list of characteristics of assemblies based on

which the user can define a search. The characteristics included in the system are

enumerated in subsequent chapters. The system should be flexible and allow the user to

search based on any combination of the characteristics. It should also handle cases that

result in too few or too many search results. Thus, if the search system results are too few

then the user should be able to lower the constraints (strictness) of the search criteria by

increasing the cut-off values. Also, if the search results are too many then the user should

be able to perform iterative refinement. This is achieved by constraining the search by

including more assembly characteristics in the search, then performing search and again

refining search definition. This iterative refinement is very effective in producing the

right number of search results. At any time in the search, the user should be able to

exclude any assembly from further search. Finally, the system should have an easy-to-use

interface and should be efficient so as to locate assemblies from a database in few

seconds. The objectives of this research are summarized in the figure 1.4.

8

The thesis describes a system for performing content-based searches on an

assembly database. It is followed by the description of the templates for comprehensive

search definitions that have been identified after studying various assembly models used

in modern CAD systems. It also describes the algorithms developed to perform content-

based searches for mechanical assemblies based on these search definition templates.

These algorithms have been implemented in a system. The thesis also has illustrations of

the possible usages of the prototype system with some examples.

1.3.2 Identifying and extracting characteristics of assemblies for search

The initial part of research is to identify a comprehensive set of characteristics of

the assembly. These characteristics should cover all possible information about an

Search
Criteria

Search
Algorithms

Search
Strategies

Content based assembly
search software

Figure 1.4: Objectives of research

9

assembly that can be used by a designer to search for the assembly. To build a list of all

the characteristics of an assembly on which search can be performed, an extensive review

of existing CAD systems and literature in the assembly modeling field [Anan96, Boot94,

Brun00, DeFa87, Home91, Khos89, Lee85, Lee93, Moll93, Shah93] was performed. We

decided to base our system with the Pro/Engineer CAD system. Therefore, we also

studied the list of all characteristics available in Pro/Engineer. Based on the published

assembly characteristics and information available in Pro/Engineer models, we developed

a preliminary list of assembly characteristics to support content-based searches. To

ensure that these characteristics are not specific to Pro/Engineer, we also studied the

assembly characteristics available in another CAD system – Unigraphics. We ensured

that our list is compatible with the information available in Unigraphics. This research

shows that data used in the search can be extracted from a CAD system. The application

programming interface (API) of a CAD system can be used to extract the data in the

signature of the assembly before execution. As characteristics used in this research are

based on Pro/Engineer, API program for that CAD should be used to demonstrate the

capability to extract the signature from the CAD system. This will enable the search

system to work independent of any CAD system. The figure 1.5 summarizes the process

of identifying assembly characteristics.

10

An assembly has large quantity of characteristics associated with it. It is important

to have an intuitive distinction between different characteristics to develop a search

system that is based on all of these characteristics and yet has an intuitive interface to

define search. The identified characteristics were categorized into four main categories.

The assembly design process was used as the basis of categorization of characteristics.

The figure 1.6 shows the top level characteristics of an assembly.

Assembly Models in
Published Literature

Set of
Search Criteria

Pro/Engineer Unigraphics

Verify availability of data

Add additional
assembly characteristics

Figure 1.5: Method to identify assembly characteristics

11

Then, a suitable format, independent of any CAD system, was developed to store

all the characteristics in an assembly as its signature. The assembly format defined in

[Gupt01] is used as basis to store the signature of an assembly. In [Gupt01], each part is

described by a name, a pointer to the geometry, and a transformation, which places the

part in its assembled position in the assembly. Every joint is described by a type, a name,

and the names of the base and attached parts forming the joint. The joint and mating

condition data stored in the signature can be read to construct a graph. The representation

is used to support only the mating conditions and joints that are supported in

Pro/Engineer. The signature fully represents an assembly and does not require the use of

CAD files. Thus, these assemblies can be viewed and searched independent of any CAD

software. As these signatures are not dependent on any single CAD software, they can be

Relationships Parts

Mating Joints

Figure 1.6: Top level assembly characteristics

Assembly

12

used to browse and search assemblies designed using different CAD software. This

capability is important for large organizations that use different CAD softwares or for

those who collaborate with external organizations in design.

1.3.3 Search methodology for different characteristics

Many of the characteristics of assembly are text or geometry based. For search

based on text, string matching algorithms can be used. This problem has been studied

extensively and various algorithms for exact and approximate matching strings are

available. For search based on geometry, various approaches have been suggested for

exact geometry match and either of them can be used to compare geometry. This research

will undertake experiments to optimize the search time by ranking the efficiency of the

each of the criteria. The search based on part mating condition will be based on graph

compatibility. The user would define a graph which can be a part of a graph representing

mating conditions in an assembly from the database. The two graphs need to be matched

with each other and this would require a graph compatibility algorithm. Search based on

joint relations uses double, as each relation between two different joints in the query as

well as database is stored in a double. It is required to create data structure that can store

and provide efficient access to all joint relations defined in either query or database. The

search method involves exact string comparison to find the existence of joint relations in

query and assemblies from database.

13

1.4 Outline of Thesis

The thesis has been arranged in the following way. The four major categories of

assembly characteristics that are used for defining search are dealt with in different

chapters as described below. The assembly statistics include assembly characteristics

such as size and number of parts in the assembly. Chapter 3 deals with the search based

on these statistics. Some parts in an assembly can have specific characteristics with

regard to material, size and other characteristics. Use of an uncommon part in an

assembly characterizes the assembly and can be used as search criteria. Chapter 4 deals

with the searches that utilize characteristics of the constituent parts. The mating

conditions in an assembly play an important role in its function. Therefore, we need to

support searches based on the type of mating conditions that exist in assemblies. This

search is discussed in Chapter 5. Joints in articulated assemblies define the possible

motion between the parts. Various joints restrict different degrees of freedom and are

used as identifiers of the assembly. Therefore, we need to support searches based on

joints attached to rigid links. This search is discussed in Chapter 6. Chapter 7 discusses

the implementation details of the research. Chapter 8 presents the conclusions of the

research, the anticipated benefits out of the research and direction for future work in this

area.

14

Chapter 2

RELATED WORK

This chapter provides a review of the state of the art in assembly modeling and

representation, part geometry based search, function based assembly search and subgraph

isomorphism. Assembly modeling and representation has been studied widely and is

important to identify characteristics to search and represent these assemblies. Various

methods have been suggested for geometry-based search and these approaches are

important for a search tool for assemblies. Existing techniques for assembly search are

mostly based on their function and behavior and their limitations with respect to form of

assemblies and legacy data are important considerations to identify characteristics of

assembly search. Various attempts have been made to represent the mating conditions

between parts in a graph. A part of the graph can be used to search for the assembly it

represents. This can be achieved using widely studied subgraph isomorphism. This

chapter is arranged in the following manner: Section 2.1 discusses the approach for

assembly modeling, Section 2.2 discusses the approach for part based search, Section 2.3

discusses the approach for function and behavior based search of assemblies and finally

Section 2.4 presents an overview of subgraph isomorphism.

2.1 Assembly modeling

The common interpretation of an assembly is a collection of parts that have

certain relationship among them. Most assemblies only utilize form based relationships.

15

Recently efforts are being made to emphasize function and behavior based relationships

as well. In order to support computer aided assembly modeling, various attempts have

been made to represent the assembly in computers. The models proposed by different

research groups store different characteristics of assemblies for various end applications.

In order to support content based search we need to assess these representations and

decide which characteristics can be supported during search. These representations also

provide a basis for creating assembly signature that stores all searchable characteristics of

the assembly in a format that can be used in a computer based search system. This

subsection has an overview of assembly representation proposed by different researchers.

CAD systems usually have two separate modules for creating part and assembly

geometry. Geometry of individual parts is created in the parts and is referenced in the

assembly modules. The location of parts is constrained by using low level mating

conditions that are available in CAD system. User can select and specify joints from the

list of joints available in a CAD system. The data about mating conditions and joints can

be extracted from CAD systems. Current CAD systems do not store data about the

function and behavior of the assembly.

 Gupta et al. [Gupt01] propose an intelligent assembly modeling and simulation

(IAMS) environment for assembly simulation and visualization. They provide detailed

data structures to represent parts and assemblies along with tools, workspaces and plans.

Their representation in form of nested lists has the capability to group all parts and store

attributes to parts. Each part is described by a name, a pointer to the geometry, and a

transformation, which places the part in its assembled position in the assembly. The

representation can be extended to store textual attributes of a part. Every joint is

16

described by a type, a name, and the names of the base and attached parts forming the

joint. The mating condition data stored in the signature can be read to construct a graph.

They provide an assembly editor that allows user to define attributes, assembly sequences

and plans.

 The assembly format defined by Gupta et al. is used as basis to store the signature

of an assembly in the research presented in this thesis. The single data structure proposed

by them stores data related to the form of an assembly and can be extended to include

data from the additional criteria proposed in this thesis. Out of the many data files

proposed by them, assembly files and part files are combined and used in this thesis to

represent assemblies. Their tool however generates data like contact between parts from

the part geometry or depends on the user to enter parameters for assembly sequencing by

using an assembly editor. These capabilities of the model are not useful for a content

based assembly search tool because they either generate data that is not known to the user

or requires manual input to generate and thus cannot be used with assembly models

generated by common CAD systems. Thus the research work in this thesis uses a part of

assembly representation which can created using the data extracted from CAD models of

assemblies.

 Noort et al. [Noor02] propose an assembly representation that combines data for a

product from its parts and assembly. This combined representation ensures that any

change made either in the part representation or assembly representation is reflected in

the other representation. It provides separate views for part feature and assembly features

and updates the other representation when any change is made. The representation

17

supports conceptual design, part detail design, assembly design, part manufacturing and

assembly planning view.

 As assemblies are a collection of parts, the features of assembly as well as

individual parts is important in a content-based search system. This approach provides

such a combined representation. This representation is generic in nature and can thus be

used for multiple applications like assembly sequence planning and part manufacturing.

As the views are related, the effects of change in either parts or assembly on the assembly

are evident. This representation however does not use the mating condition specified in

the CAD files but instead stores higher level relations that are inferred from part

geometry. Although these are more intuitive to remember and use, current CAD systems

do not support such relations. Thus, the high level relations cannot be conveniently used

in assembly search.

Nanda et al. [Nand05] present an approach based on web ontology language

(OWL) to systematically develop and deploy product families during all stages of design.

This model captures the needs of the customer, function of the product and the

components of the product. The entity list in the model can be used to map each need to a

function and the component used to perform that function. This representation uses OWL

data structures that provides the meaning of the data structure. The OWL representation

is better than a XML representation due to the use of these data structures. The use of

Description Logic (DL) enables a computer-based interpretation of the semantics without

any human intervention.

The advantage from this approach is in sharing of parts in different designs. It will

also be helpful in search of design information during all stages of assembly design. This

18

model is helpful in capturing the function and behavior of the assembly. The OWL based

representation used in this approach can be used to create search tools based on function

and behavior of the assembly. This approach however does not consider the form of

assembly. The research in this thesis presents algorithms to search for assemblies based

on their form characteristics. Hence we have not used this representation. The signatures

developed in this thesis can be easily stored in OWL format as well. Hence the work

performed in this thesis is complementary to this approach.

Rachuri et al. [Rach06] present an object oriented design definition of an

assembly called as Open Assembly Model (OAM) to represent electromechanical

assemblies. This model represents the form, function and behavior of the system. Form of

an assembly consists of geometry of the part and other constraints on the parts like

mating conditions between parts and kinematic joints in the assembly. Form only

considers the geometric rules to represent designs. Function denotes the transformations

from input to output. Behavior of an assembly denotes its intentional and unintentional

physical interactions. Function is thus said to be a subset of behavior. It consists of a

conceptual model and as well as hierarchical model. The model consists of classes with

artifact as the parent of all classes or the base classes. The information about the

assembly is stored in classes. The model also stores the design rationale. The other

information like size, geometric tolerance, material is attached to individual tolerance

model class. They use the Unified Modeling Language (UML) to represent assemblies.

OAM can be used for collaborative design. This approach can be used to design a

search system based on any of the characteristics of form, function or behavior. The

model can thus be used at any stage of the design. This representation extends the ideas

19

of Core Product Model (CPM) and STEP standard for representing an assembly. The

research work in this thesis can be extended to use the CAD independent signature of the

assemblies as proposed in this approach. The representation proposed by Rachuri et al.

can reduce the time to access the assembly signature as text files from the CAD database.

The representation can also be used to extend the capabilities of this research work to

function and behavior of the assembly when tools to extract them from assemblies

without any manual intervention are available.

Wang and Ozsoy [Wang90] propose the use of assembly graph. They represent

the assemblies, subassemblies and the parts using the root, intermediate and terminal

nodes. A set of mating conditions is recorded for every connection between each instance

of a part or a subassembly. They use this proposed data structure to perform tolerance

analysis for the assembly. The mating graph and the sum dimension of the assembly are

used to find chain links in the tolerance chain and subsequently derive the fundamental

equation.

The graph based representation proposed by Wang and Ozsoy has been used in

this thesis. Wang and Ozsoy however support only three mating conditions viz. fit,

against and parallel and use them to generate homogenous coordinates to position a part

or subassembly. These three mating conditions are not sufficient to describe constraints

on parts in assemblies even in case of non-articulated assemblies. The research in this

thesis extends the graphs data structure to cover all possible mating conditions available

in Pro/Engineer CAD system.

20

2.2 Part Search Techniques

Assemblies are a collection of parts and they can also be searched based on

characteristics of the constituent parts. Thus, this research supports search based on the

constituent parts of the assembly. It involves search based on the geometry of the

constituent part and search based on its textual attributes. Search based on textual

attributes is available in current PLM systems and involves string matching operations. A

search system can be extended to provide textual search and techniques for text-based

search have been identified in Chapter 4 of this thesis. For geometry-based search,

different approaches can be followed based on the application of the user. Many research

groups have proposed different techniques for part similarity assessment that can be

integrated with an assembly search tool. Moreover, the techniques are based on the

geometry of the part and can be used to identify search criteria for assemblies. This

section discusses the search techniques based on the geometry of part.

2.2.1 Search Based on a Query Part

In many applications, a query part is available and the goal is to find all

assemblies that have a similar part from a database of parts. The search strategy for such

locating such parts is shown in figure 2.1. A common scenario is the search for jigs and

fixtures assemblies that can be reused for similar parts with minor modifications. Various

techniques have been developed to perform similarity assessment between 3D solid

models. Similarity assessment between two 3D parts involves two main steps. The first

step is to compute the shape signature of the object and the second step is to compare the

shape signature by a suitable distance function. Major techniques used in the shape

21

similarity assessment area can be classified on the basis of the type of shape signatures

being used.

Figure 2.1 Architecture for part search

The shape similarity assessment technique described in [Osad02] represents the

object as a shape distribution sampled from a shape function measuring global geometric

properties. This technique can be used as a first-cut filter to identify grossly dissimilar

objects. In [Corn03], new filters for shape matching have been proposed. These filtering

techniques have been applied to large databases of mechanical parts. In [Iyer04, Lou04],

each 3D model is voxelized and represented by a vector whose components are moment

invariants, geometric parameters, principal moments and eigenvalues of the skeletal

graph.

Graph-based techniques convert solid models into attributed graphs that represent

relationships among various geometric and topological entities in the solid model.

Among the types of graphs that have been used there are Model Signature Graphs

[ElMe03, McWh01b] and Multiresolutional Reeb Graphs [Besp03]. These techniques are

simple to implement, but may not have high discrimination power.

22

Spatial function based techniques use shape signatures that are spatial functions.

Spatial functions have been introduced in [Ko03, Ko05]. A technique based on spherical

harmonic descriptors is described in [Funk03]. The Fourier transformation based

technique described in [Chak05a, Chak05b] performs similarity analysis based on the

boundary representation.

Feature-based techniques represent the 3D object referring to their features. Many

different types of approaches have been developed [Cici00, Card04, Card05, Karn05a,

Rame01]. Feature based techniques appear to be promising for domains such as

machined parts. Additional details on shape similarity assessment techniques can be

found in [Card03].

Existing techniques provides excellent performance for filtering irrelevant parts.

However, when locations, type, and orientations of faces play a major role in determining

similarity, existing techniques do not seem to have sufficient discrimination capabilities.

This information is important in case of similarity assessment of parts for manufacturing.

A shape similarity assessment technique that uses this information has been described in

[Card06].

Any of the techniques cited above can be used for searching parts in the assembly

search tool proposed in this thesis. The current implementation includes the capability to

search parts as described in [Card05, Card06]. The desired part is located using these

techniques and is used in the assembly search tool.

23

2.2.2 Search Based on a Sketch

3D models are not always available to act as queries in query based search.

Creating a complex 3D model of part to act as query is time consuming activity. It is

easier for a designer to represent the relevant characteristics of the required part in form

of 2D sketches compared to preparing a 3D model. Thus, in many design reuse

applications, users may not want to create detailed CAD model to begin search. In such

cases, sketch based tools for representing parts can be used to search for the required part

or for locating a query part. These sketches usually are standard 2D views, i.e. top view,

front view and side view of the required part.

In [Pu05] a technique capable of retrieving 3D parts from a database based on

user free-from sketches is presented. The 3D part retrieval can be enhanced by user

further feedback. The part can be searched based on up to three views with user assigned

weights for each view. The technique consists of three main steps: (1) determination of

3D part relevant orientations, (2) generation of 2D sketches, and (3) computation of

similarity degree between sketches and 3D part projections. In [Min02] another 2D

sketch-based technique for 3D shape retrieval is presented. This similarity measure is

invariant with respect to rotation. In this case, 2D views are compared based on the

Fourier coefficients of functions obtained by intersecting the 2D Euclidian distance

transform of the image with a set of concentric circles.

The assembly search technique can be extended to integrate sketch based part

search tools to search for constituent parts. These tools can also locate a similar part from

the database to be used as a query part. One of the major applications of this technique is

the sketch based search technique for assemblies. The mating condition between parts is a

24

sketch-based representation of assemblies. The assembly search system uses a graph

based representation of the mating condition between parts and allows users to define a

part of such graphs to search for assemblies. This search technique is based on part search

technique where a user can define an outline of part to search the part database.

2.2.3 Search by Visual Browsing of Part Database

In many situations the user does not have a query part. Moreover, due to the part

complexity and/or user’s limited familiarity with engineering graphics concepts, it is not

possible to use sketch based query methods. In such situations, visual browsing of CAD

databases is a possible solution [Karn05b].

Suppose a designer would like to locate a part in the design database consisting of

thousands of parts for reusing design information. There are two possible cases. In the

first case, the designer has a query part and wants to locate a part similar to the query. In

such cases, geometry-based search techniques are useful for locating similar parts.

However, in the second case the designer may not remember the exact geometric details

of the part to locate it through the geometric search techniques. In such cases, the user

will need to locate the desired object by browsing through the CAD databases. Once the

designer locates a part similar to the desired part, he/she can use that part as the query in

geometry-based technique. Thus, an integrated system that can assist the designer in

locating similar parts by providing geometric as well as visual search is useful.

A similar browsing capability has been provided in the assembly search system to

browse the assemblies in the CAD database. A user can specify all wildcards in the

search criteria that will allow the user to browse the entire database of assemblies. The

25

user can also specify some search criteria to prune away a part of the assemblies’

database and browse the remaining assemblies. A separate assembly viewer tool has been

provided to view individual assemblies in details.

2.3 Function Based Search

The research work in this thesis describes a search system based on the form of an

assembly. The function and behavior are equally important characteristics of an

assembly. They can be described by textual attributes and this research work can be

extended to include such search when tools to extract the data automatically are available.

Currently most of the representation of function and behavior is based on information

gathered during the design process. As can be inferred from the literature review in

Section 2.1, modern CAD systems as yet do not store such design information and

depend on external tools like PLM to store this information. This section considers some

approaches for searching based on the function and behavior of assemblies.

Shaffer et al. [Shaf05] present a web service based approach which can integrate a

number of different approaches to search for assemblies. Additional services are added

by providing a web service description language (WSDL) document that describes the

new repository services. The meta-data obtained from a WSDL document about the

service can be used to generate interface in the target language.

An advantage of such a system is that it integrates different existing approaches to

search for assemblies and provides a framework that can be used to integrate any new

approach. Thus, the designer does not have to spend time to understand the interface to

study different search systems. Moreover, the search systems designed with different end

26

applications like process planning or cost estimation can be used by the designer. This

approach does not use relational database models and thus prior indexing of information

about models in the relational is not required. The architecture proposed by Shaffer et al.

can be used to provide the search tool proposed in this thesis as a web based service. This

will make this search tool independent of any CAD software and extendable to include

function and behavior based assembly search.

Kopena et al. [Kope05] present an approach based on semantic web to represent

conceptual design which can be used to represent and access assemblies. They create

descriptions for products using the conceptual design interface that can be used to

annotate designs and search based on these annotations. These descriptions can also be

used to classify designs. Search based on these class descriptions is one of the

applications of this system. The semantic web also allows markups and publishing of

design besides allowing large data to be collected and organized in an efficient method as

compared to the techniques currently used. The semantic web based assembly

representation is defined using description logic. Thus, automated reasoning can be done

to identify function of an assembly.

They have proposed an approach to capture the form and function of a design

during the conceptual design phase. Once the form and function are captured, search can

be defined on the design repository. In their system, a three dimensional sketch is created

and is annotated with function and flows. A reasoner, which is included in the system,

converts this signature into class description. A search is performed on the database and

all designs which are members of the class description so generated are returned to the

designer as result of the query. The semantic web based approach can improve the

27

efficiency of the search software. The capability to classify designs can be used to form

clusters of similar assemblies in the database which can contribute to improve efficiency

of the search software. The approach proposed by Kopena et al. is useful to capture the

function of an assembly that is being designed in the organization. However, this

approach cannot be used to search for legacy CAD data as the information about the

function of assemblies in legacy format is not available. As of now, a tool that can extract

function of an assembly from legacy data without any human interaction does not exist.

As the legacy data forms very large part of any organization’s database, this approach is

useful only for new designs.

Karnik et al. [Karn05c] provide a design navigator system that stores the

information and allows search based on the functionality of the assembly, changes made

during the design process, geometry of the parts and finally by visual navigation of the

assembly. As the information is captured in computer interpretable form, it can be readily

searched using tools available on a computer. The system also provides a connection

between requirements and specifications to the individual parts in the assembly. The

system includes a functional modeler, rationale modeler and a design history modeler.

Search tools based on different aspects of the assembly have been integrated in a single

framework.

This system is good to search for CAD assemblies of products in the organization

based on function and design history. However, it can only use the data created through

the proposed design modeler. Design history and rationale behinds changes of legacy

CAD data in the database of an organization are not available and cannot be inferred

from the CAD models. A reliable tool to infer the function of a product from its CAD

28

assembly is not available. Thus, this tool cannot be used for content based search. The

approach can however be integrated with a content based assembly search tool to search

for assemblies when the required data is available for all assemblies in the database.

Bohm et al. have used the archived function-based design knowledge to generate

concepts of design. They use the Chi Matrix and the Morphological Matrix technique to

generate the design ideas. They state that 76% specified subfunctions return results and

an average of 61.35% components can be derived by using Morphological Search feature.

They use Functional Basis language to describe functions. It consists of a noun that

describes a flow and verb that describes function. The search returns a number of artifacts

that perform similar function which are then used in the generation of concepts.

 The Morphological Matrix used in this method is generated manually. A method

to extract the Matrix from legacy CAD data must be extracted automatically. This

approach can combine different subfunctions and return them as the result of a single

input query. The method also considers functions from other domains like

electromechanical assemblies. The user however needs to select the input domain for the

search. The authors state that with an increase in the size of the database, the number of

generated concepts would increase which is the primary objective of this search.

2.4 Overview of subgraph isomorphism

Two graphs are isomorphic if there exists one to one mapping between nodes and

edges of the two graphs. Two graphs are said to be subgraph isomorphic if a one to one

mapping exists between some nodes and edges of one graph and all nodes and edges of

another graph. The subgraph isomorphism problem is NP complete. This research

29

involves solving a graph compatibility problem, which is similar to subgraph

isomorphism. This section discusses various approaches to solve the subgraph

isomorphism problem.

Ullmann’s [Ullm76] approach was one of the first attempts to solve the subgraph

isomorphism problem. He used brute-force backtracking search, which is a depth first

tree search method to solve this problem. Most early methods have used backtracking

search method to solve this problem. This method processes the two graphs

simultaneously. This method uses an adjacency matrix with 1 and 0 as its elements. It

uses a refinement procedure to infer and reduce the visits to successive nodes during the

backtracking search. It is used to find all isomorphisms between the two graphs. This

method is tested only for connected graphs.

This algorithm is still very popular and is used for query graph with limited

number of nodes and edges. The backtracking approach suggested by Ullmann is the

basis of many more efficient approaches with refined pruning and search space reduction

techniques. However, this algorithm does not prove to be efficient in case of query graph

with large number of nodes. This algorithm does not take into account any previous

knowledge of correspondence between nodes of query graph and a database graph. Our

algorithm is modeled after this approach. The research in this thesis does not search for

all isomorphisms but only the first instance and thus can be performed in lesser time as

compared to Ullmann’s approach.

Yu and Wang [Yu04] have used a 2D continuous Hopfield Neural Network model

to obtain a subgraph of a graph that is isomorphic to query graph. This algorithm is used

for undirected and connected graphs. They construct a neural network with dimensions

30

equal to the number of nodes in the two graphs. An energy function is defined and

parameters of the network are deduced from the energy function. A random or biased

neuron initialization is used in this method. They use fourth order Runge-Kutta method to

solve the equation.

They define essential conditions for subgraph isomorphism that can be used as

pruning conditions in any method to solve subgraph isomorphism. The pruning

conditions used in this approach are generic in nature and can be used for any approach

for subgraph isomorphism. This thesis has adopted the pruning techniques suggested by

Yu et al. However, the Ullmann’s approach has been found more adaptable for bounding

conditions in this thesis. Thus, the algorithm for subgraph isomorphism proposed in this

research is not based the approach based on Neural Network suggested by Yu et al.

Messmer et al. [Mess98] use a decision tree which is created in a preprocessing

step. Subgraph isomorphism is detected at run time using these decision trees. They

recommend several pruning techniques to reduce the size of the decision tree. The

decision tree is constructed by transforming adjacency matrix of the model graphs i.e. the

graphs in the database.

They claim that the algorithm has a quadratic worst-case asymptotic time

complexity with respect to the number of nodes in the query graph and is independent of

the number of model graphs and the number of edges in any graph. However,

preprocessing step to create decision tree is not included in this time complexity. A major

drawback of this approach is that the decision tree can be exponential. The worst case

complexity of this algorithm is O(Lmnn2) where L is the number of graphs in database, m

is the number nodes in the query graph and n is the number of nodes from the model

31

graph. They have suggested pruning techniques based on prior matching of nodes,

eliminating a set of nodes from database graph with peculiar permutations, and

considering a subgraph of fixed size while testing for subgraph isomorphism. However,

this approach has not been used in the formulation of subgraph isomorphism in this thesis

because a technique to reduce the complexity of decision tree has not been suggested.

Fuchs et al. [Fuch00] have proposed an error tolerant algorithm that uses prior

knowledge of correspondence between nodes of a query graph and a graph from the

database of graphs. They recursively decompose the graphs from database into subgraphs

and propagate the external information during the decomposition of the graph. This

algorithm has been used in 3D reconstruction of buildings from images. They have also

suggested editing of the graph data structure to include external information.

The worst case complexity of the algorithm with the prior knowledge of matches

between some nodes is O(Lmqq3) where L is the number of graphs in database, m is the

number nodes in the query graph and q is the number of nodes from the query graph for

which corresponding nodes are not known. They claim that the step for matching two

nodes is more efficient because the graph data structure integrates the external

information. This algorithm is useful for graph compatibility because of its error

tolerance. A prior knowledge of correspondence between nodes from query graph and

database graph can be used to significantly reduce the search space in DFS. The research

in this thesis however does not store any knowledge about correspondence and this can

be achieved after integrating this search system with a database. The approach is thus

useful for further research on assembly search system.

32

Cordella et al. [Cord04] have suggested an algorithm for large graphs. They claim

to have achieved significant improvement over Ullmann’s approach as their approach is

almost independent of the number of nodes in the query graph. One of the main

contributions of this algorithm is the memory efficient data structure used during the

exploration of search space. This algorithm can consider attributed relational graph and

use the information in the semantic part to provide reduced matching time.

This algorithm has used a state space representation (SSR) of the matching

process. It also includes five rules for feasibility and involves syntactic and semantic

comparison of nodes. Out of the five rules, two are used to check the feasibility of the

solution and three are used to prune the search tree. This algorithm does not assume any

constraints on the topology of the graph and thus has generic applicability. The algorithm

uses vectors that provide constant time access to its members thus reduces memory

requirements making the algorithm usable for graphs with thousands of nodes and edges.

The algorithm explores the search graph using a depth first strategy. The query graph in

this research is not expected to have more than fifteen nodes, and thus this algorithm has

not been adapted for graph compatibility. Moreover, since the query and database graph

used in this research have attributes for nodes and edges that can be used in pruning

search tree, Ullmann’s basic approach has been used to formulate the algorithm.

33

Chapter 3

SEARCH BASED ON ASSEMBLY STATISTICS

This chapter is arranged in the following manner: Section 3.1 describes the

different characteristics that can be used to define search in this criteria, Section 3.2

discusses the methods used for searching based on the characteristics and Section 3.3

illustrates the use of this criteria with an example.

A possible way to search for existing assemblies is based on the overall assembly

statistics. The following scenario illustrates why this type of search is useful in certain

situations. Let us consider the case of an organization that designs and builds prosthetic

devices as shown in the figure 3.1. When a customer approaches the organization with his

own specific requirements, the designers in this organization would prefer to locate an

existing assembly that is close to the given requirements and then adopt this existing

assembly to the new requirements. The ability to effectively locate the most appropriate

existing assembly will eliminate the need to design the assembly from scratch and hence

reduce the design time significantly. A possible way to search for existing prosthetics will

be to search based on the size of existing prosthetic assemblies. This scenario illustrates

the benefits of being able to search based on overall assembly statistics.

34

3.1 Search Definition

In our framework assembly search can be performed based on the following criteria

related to shape statistics.

• Size: The user can search assemblies based on the bounding box size or bounding

sphere size of the assembly. The bounding sphere is defined using the radius of the

sphere and the bounding box is defined by the length, the width, and the height of the

bounding box. The data required for performing searches based on these two sizes are

obtained from the Pro/Engineer assembly model and Open Scene Graph library. The

figure 3.2 and 3.3 shows the bounding box and bounding sphere of an assembly.

Figure 3.1: Example of a prosthetic device – artificial leg [Pros06]

35

• Number of Parts: The user can search assemblies based on the number of parts in an

assembly. In addition, the user also has an option to either include or exclude the

standard fasteners from the part count in the assembly. This option has been provided

to overcome the situations where a user would remember the main parts in the

assembly but not remember the total number of fasteners used in the assembly. To

perform this search the number of parts is extracted from the Pro/Engineer assembly

model. In addition, we also determine if a part being used in the assembly is a

standard fastener. (e.g., screw, bolt, nut, and washer).

Figure 3.3: Bounding sphere

Radius

Figure 3.2: Bounding box

Length

Width

Height

36

• Number and Types of Articulated Joints: The user can also search assemblies

based on the number and types of joints in the assembly. The types of joints that can

be defined in Pro/Engineer are pin, U-joint, gimbal, cylindrical, slider, planar, ball,

weld and bearing. Besides these joints, Pro/Engineer allows the user to define the

connection as cam-follower, slot-follower, and gear pairs. This type of search is

defined by indicating the number of joints in each selected joint type. If a joint type is

not selected by the user, then the system excludes that joint type from the search. The

type and number of each joint are extracted from the Pro/Engineer file. Even though

the system currently uses Pro/Engineer joint types, it can be easily extended to work

with joint types found in other CAD systems.

• Number of Usages in Other Assemblies: An assembly such as a motor may be a

popular assembly and hence used in many other assemblies. So some users might

remember the large number of usage associated with an assembly. Hence, users can

specify the number of usages of an assembly in other assemblies as a possible

definition of search. This might be an effective way of searching a frequently used

assembly.

• Overall Shape Characteristics: Assemblies may have overall shape characteristics

that a user might remember. For example an assembly may predominately consist of

rotationally symmetric parts or sheet metal parts. Such characteristics can often be

used as a possible way to search for an assembly. Currently, we support the following

two ways to search for assemblies based on overall shape characteristics. First, the

user can specify the percentage of rotationally symmetric parts in the assembly.

37

Second, the user can specify the percentage of sheet metal parts in the assembly. The

figure 3.4 and 3.5 show a sheet metal part and prismatic part.

• Names of Conformance Standards: Often assemblies are designed to meet certain

testing and/or performance standards. Names of these standards are often included as

notes on an assembly drawing in Pro/Engineer. Therefore, a possible way to search

for assemblies is to specify standards to which an assembly conforms. We allow users

to specify names of conforming standards as strings. Pro/Engineer assembly drawing

notes are used to extract names of possible standards to which an assembly conforms.

Figure 3.5: Rotationally Symmetric Part

Figure 3.4: Sheet Metal Part

38

• Designer Name: Assembly file attribute also contains the name of the person who

created the assembly. Therefore, assemblies can also be searched by specifying the

designer’s name as a string. The name of designer of each part and the assembly

designer can be readily extracted from PLM system.

Many of the above criteria require the users to specify a positive real number (may or

may not be an integer) for constraining the search. Two types of search definitions are

implemented for specifying such searches. The first type of definition is based on range.

In this case the user can specify an upper and lower limit on the search attribute. For

example, a user can indicate that the number of part needs to be between 30 and 50. We

also allow the user to leave either the upper limit or the lower limit as unspecified. For

example, if the user specifies the lower limit as 30 and leaves the upper limit as

unspecified, then the search attribute has to be greater than or equal to 30. If both the

upper limit and lower limit have the same value, then the attribute in database assembly

has to exactly match the specified value. The second type of definition is based on the

target attribute value. In this case the user specifies only the target value. All relevant

entries in the database are compared against this target value and ranked based on their

closeness to the target value.

A user can also select the multiple different criteria from the above list to define a

search. For example, a user can define a search in the following manner: 30 ≤ number of

parts ≤ 40 AND 5 ≤ number of slider joints. We currently only support conjunctive

(AND) operators to combine search based on multiple different criteria.

39

3.2 Search Method

All search attributes are either defined using numbers or strings. For search

attributes that are defined using numbers with a range option all attribute instances in the

database that meet the search definition are considered as feasible matches. We do not

rank the results if this type of search definition is used.

For search attributes that are defined using numbers with a target option all

relevant attribute entries in the database are compared to this target attribute value and the

penalty function |t-a|/n is used to rank order the matches, where t is the target value, a is

the value of attribute in the database assembly, and n is the normalization value. The

value of n needs to be selected carefully to suit an organization’s needs. The value of n

will determine how many assemblies are considered as matches for a given target value.

The value can be selected based on the size of the database of assemblies in the

organization and the expected deviation of the required assemblies from the chosen target

value. In addition, one can also set a cut off value: if the attribute value in the database

assembly is farther than the cut-off value then that assembly is excluded from the results

reported to the user.

For search attributes that are defined using strings, exact string matching is

performed.

40

3.3 Example

In the first test, a criterion to find all assemblies that had bounding sphere size

between 3 and 20 inches was specified. This criterion gave a list of 8 assemblies from the

database. The figure 3.6 shows the results in the assembly search system’s result window.

Then the search criterion was made stricter by specifying the same range for size

and another criterion was added for the range of the number of components to be between

15 and 20. A search over the entire database gave a list of 2 assemblies. Thus, more

specific search results were found by increasing the strictness of the criteria, i.e., by

imposing additional constraints on the criteria. The figure 3.7 shows these 2 assemblies.

Figure 3.6: Eight assemblies obtained by assembly
statistics based search

41

Figure 3.7: Two assemblies obtained by assembly

statistics based search

42

CHAPTER 4

SEARCH BASED ON CONSTITUENT PARTS

This chapter is arranged in the following manner: Section 4.1 describes the

different characteristics of a part that can be used to define search, Section 2 of Chapter 3

discusses the methods used for searching based on the characteristics and Section 3 of

Chapter 3 illustrates the use of this criteria with an example.

Assemblies can be searched based on the constituent parts of the assembly.

Consider a scenario where the designer wants to search for a rocket motor assembly that

contains a Beryllium liner of a specific size. Rocket motor assemblies are custom made to

satisfy specific requirements. The designer would search for an assembly by specifying

the size and material for a part of the assembly. These criteria will allow the designer to

search for an assembly containing a part with specified size and material. The DFMA

rules embedded in the assembly can be reused for the design of a new assembly.

4.1 Search Definition

The system supports search based on the geometry of the part and the characteristics

of the part. A combination of the two criteria is also supported. The two criteria for

search are:

• Geometry: The geometry-based assembly search has different inputs based on

whether a part is a standard part or a custom part.

43

 Standard part: Every organization has a library of standard parts. A single

assembly can contain a set of many of these standard parts. This criterion is useful

when designer knows that a certain set of standard parts were used in the assembly.

In this method, the user can select any set of standard parts from the library and

search for assemblies containing these parts. The figure 4.1 shows a standard part

used in an organization. The part is a gear.

 Custom part: This is useful in a scenario when the designer knows that a part used

in the assembly approximately matches with a part in the database. The user can

select a .stl representation of any Pro/Engineer part from the database as input

geometry. The system allows search based on approximate geometry matching.

The figure 4.2 shows a custom part used in an organization.

Figure 4.1: Example of a standard part – gear

44

• Part Characteristics: The following criteria for part characteristics-based search are

supported:

 Material of the part: Some assemblies contain a part made of a specific material.

This criterion is useful to search for assemblies that contain a part that is made of

an uncommon material. Users can specify any material from the available list of

materials in the database of the organization.

 Part attributes: Attributes are the textual data stored in the CAD files.

Organizations have a set of standard attributes that help classify the assemblies in

the database. For example, an attribute called part source can have values ‘bought

out part’ or ‘in house part’. Attributes can have values in the form of a numbers or

strings. The system supports search for both the types and values of attribute. The

user can define the title and value for attributes. If the value of an attribute is a

string, the designer can define either an exact or an approximate search. If the value

of the attribute is a real number, the designer can define search based on a target

value or a range.

 Name of the owner: CAD files store the name of the creator and the modifier in

part history. In most CAD systems, this refers to the login names of users on the

Figure 4.2: Example of a custom part

45

Operating System (OS). This data is useful since the designers can search for

assemblies by the name of a designer who worked on a specific project. The user is

allowed to select the name of a designer from the database of designers’ names in

the organization.

We support only single criteria based search and conjunctive search, similar to those

described in Section 3.2. The user can define any combination of the above criteria to

define a single search. The range and target value definitions for numbers and exact and

approximate match options for strings are also available.

4.2 Search Method

Searches based on attributes defined using numbers are handled exactly the same

way as described in Section 3.2.

The problem of finding an approximate match is usually referred as “search for

similar parts.” This problem has been explored in many different design and

manufacturing contexts [Card03, Li04]. There are broadly two different kinds of

methods. The first method uses the overall object shape in identifying similar parts.

Representative techniques in this area include [Hila01, Karn05b, McWh01a, Osad01,

Sung02]. The second method uses shape features in identifying similar parts.

Representative techniques in this area include [Card04, Cici01, Rame01]. Both these

approaches have their own relative merits and demerits. Depending upon a particular

application, one might prove to be better than the other. The figure 4.3 shows the use of

part search tools in the assembly search tool.

46

For search attributes that are defined using strings we use two methods for

identifying matches in the database. The first method is based on the exact string

matching. In this case all database entries that contain the search string are considered as

matches. The second method uses approximate string matching algorithm by Levenshtein

[Leve66] and uses the closeness of the strings to rank order the matches. The

implementation from [Merr06] is used in the code. This criterion does not allow the user

to specify any approximate strings for matching. Approximate string matching is used in

Similar Part

Query Part

z

x

y

x

y

z

Assembly Search Tool

Path

Figure 4.3: Use of geometry based part search tool in
assembly search

47

constituent part based search. A distance of 10 between the query string and the string in

the database is considered a match.

4.3 Example

Consider a scenario where the designer is searching for an assembly that uses a

variant of Beryllium liner. The liner is a custom part in the organization and its geometry

is not available to the designer. The designer knows who designed the assembly, the size

of the assembly and the number of parts used in assembly. The following search criterion

was specified for the search:

• A custom part made of Beryllium and owned by “Chris Harris”

• The assembly bounding box length between 125 and 165 inches, bounding box width

between 160 and 190 inches and bounding box height between 300 and 330 inches.

• A target of 7 parts in the assembly.

The search criteria collectively were found to be sufficient the desired rocket motor

assembly from the database. This assembly satisfies the designer’s exact requirement and

is shown in figure 4.4.

48

Figure 4.4: Result of the search – Rocket motor assembly

49

Chapter 5

SEARCH BASED ON PART MATING

This chapter is arranged in the following manner: Section 5.1 describes the

method to define a query graph to search based on this criteria, Section 5.2 discusses the

graph compatibility methods used for searching based on the characteristics and Section

5.3 illustrates the use of this criteria with an example, Section 5.4 describes the initial

algorithms for initial processing of graphs in details, Section 5.5 lists the pruning

algorithms used before depth first search, Section 5.6 describes the main depth first

search algorithm, Section 5.7 describes the auxiliary algorithms for depth first search and

Section 5.8 describes the experiments conducted to test the performance of the

algorithms.

The mating conditions are the restraints (constraints) imposed on the location of a

part with respect to other parts in the assembly. Different set of restraints imposed on the

same set of parts can constitute different assemblies. This search criterion uses mating

conditions to search for an assembly. The designer specifies the mating condition

between parts of a subassembly or an assembly by building a query mating graph. This

query mating graph is compared with mating graphs corresponding to the assemblies in

the database. The results of the search are all assemblies whose mating graphs are

compatible with the query mating graph.

50

5.1 Search Definition

The designer defines an input mating graph to represent a subassembly/assembly.

Individual parts are represented as nodes or vertices and edges connect two nodes when

mating conditions exist between the two corresponding parts.

Each node has the following attributes:

• Category: This represents whether the part is a standard part or a custom part. The

user can select between either of the two options, or leave this attribute unspecified.

• Geometry: This attribute is a pointer to the Pro/Engineer geometry of the part. The

geometry for standard parts is referenced from the library of standard parts in the

organization. This attribute can also be left unspecified.

• Type: This criterion is defined only for standard parts and specifies the subcategory

of the standard part. The available subcategories are: bolts, nuts, washer, bearings,

resting pads in fixtures, mold base, ejector pins, springs, circlips, rivets, retaining

rings, hydraulic and pneumatic cylinders, chains, belts, gears, brakes, couplings,

engine, actuators, pumps, valves, oil seals, vacuum seals, collars joints, universal

joints, solenoids, switches, heating elements and limit switches. These options are

available to the designer in a pull down menu. The designer can select a specific

variant of the part from another pull down menu after selecting the category to be a

standard part. This attribute can also be left unspecified.

• Degree: It represents the total number of parts that are mated to the part represented

by the node. This attribute can be given a specific value. If no value is specified, it is

51

taken to be zero. The graphs need not be necessarily planar, i.e. the degree of any

node can be greater than 5. In fact, the degree of a node may be equal to one less than

the number of nodes in the query graph. This scenario happens in case of assemblies

where a base is used to mount all parts. Printed circuit boards (PCBs) or fixtures with

a common base plate are examples of such assemblies.

Every edge in the graph has the following attributes:

• Type: This represents the type of mating condition represented by an edge. The

search tool supports all mating condition options available in Pro/Engineer. The

options available to the designer are: mate, align, insert, tangent, point on line, point

on surface, and edge on surface. This attribute can also be left unspecified.

• Vertex-1: This attribute stores the identifier of the node from where the edge

originates. This attribute cannot be empty. The designer needs to specify the node

from where the edge originates.

• Vertex-2: This attribute stores the identifier of the node where the edge terminates.

The query graph specified by the designer can be a partial graph with unspecified

terminating node for an edge.

Please note that the query mating graph need not be a fully specified graph. Many of

the attributes in the query graph can be left unspecified (i.e., equivalent to wild cards in

string search definitions). This means that the query graph is not a unique graph and

many different database graphs might be compatible with the query graph.

An illustration of compatible and incompatible mating graphs is shown below. Figure

5.1 shows an example of a mating graph. This graph will be used as a query graph. The

graph has four nodes. Node 1 includes a custom-built part and includes a reference to a

52

file describing part geometry. Nodes 2 and 3 include standard bolts and hence explicit

reference to part geometry files are not needed. Node 4 again includes a custom built

part. However geometry is not specified for this part and hence during the search process,

parts with different geometries will be able to match this node. In the next step, edges are

created between nodes. They represent the mating conditions between parts. Both custom

parts are connected to the bolts through mating conditions that mate two faces on the

parts. An edge is defined between Nodes 1 and 4 but an exact mating condition is not

specified for this edge. Hence during the search process, this edge will be able to match

with many different mating conditions.

53

Figure 5.2 shows mating graph for an assembly from the database. The graph

defined in figure 5.1 is compatible with the graph shown in this figure 5.2. Nodes 1 and 4

in figure 5.1 above match with Nodes A and F in figure 5.2. Nodes 2 and 3 in figure 5.1

match with Nodes B and D in figure 5.2. The mating conditions between standard part

and custom parts are also same in the two graphs shown in Figures.

1
{category = custom,
geometry = “c:\db\partA.prt”,
type = NULL,
degree = 4}

4
{category = custom,
geometry = ANY,
type = NULL,
degree = 6}

2
{category = standard,
geometry = NA,
type = bolt,
degree = 2}

3
{category = standard,
geometry = NA,
type = bolt,
degree = 2}

mate mate

mate mate

unknown

Figure 5.1: The query graph for part mating conditions

54

Consider a graph shown in figure 5.3 that represents another assembly in the

database. In this graph, the node labeled A does not have an edge connecting it to a node

representing the custom part. However the query graph shown in figure 5.1 has an edge

between the two nodes representing custom parts. Thus, the query graph defined in figure

5.1 is incompatible with the graph shown in figure 5.3.

A
{category=custom,
geometry = “c:\db\partx.prt}

F
{category=custom,
geometry = “c:\db\partz.prt”}

B

C

D

E

G

H

I

J

Represents “mate” mating

B, C, D and E are {category = standard, type = bolt}

G, H, I and J are {category = standard, type = nut}

Figure 5.2: A database mating graph with which the query graph is
compatible

55

A
{category=custom,
geometry = “c:\db\partp.prt}

F
{category=custom,
geometry = “c:\db\partq.prt”}

B

C

D

E

G

H

I

J

Represents “mate” mating

B, C, D and E are {category = standard, type = bolt}

G, H, I and J are {category = standard, type = nut}

Figure 5.3: Another database mating graph with which the
query graph is incompatible

56

 The figure 5.4 shows another example of compatible and incompatible graph.

5.2 Search Method

The system builds a mating graph for every assembly in the database off-line. The

parts are represented as nodes. For each node four attributes namely, category, geometry,

type and degree, are determined and initialized. If two parts are mated together in an

A A

B

A A

B

C

A A

B

C

Compatible Graphs

C

C

A

B

Missing edge

Query Graph

Database Graph

Query Graph

Database Graph

Incompatible Graphs

Figure 5.4: Graphical explanation of compatible and
incompatible graph

57

assembly, then an edge is created between the nodes representing the parts. The type of

mating condition used and the identifier of two mated parts are the attributes of the edge.

As all the information about part and the mating conditions can be extracted from the

Pro/Engineer files, this graph is a completely specified graph and does not include any

wild cards that are typically associated with query graphs. However, since multiple

mating conditions are possible between two parts, two nodes may be connected by

multiple edges in the database mating graph. Hence, strictly speaking, such a graph

should be termed as a multigraph.

The query mating graph needs to be compared with the mating graph of every

assembly in the database. However, as already mentioned before, the query graph may

not be a fully specified graph due to presence of wildcards in the query graph. Thus, the

available subgraph isomorphism techniques cannot be used in their present forms to solve

this problem [Boos06, Fort96, Rein77]. Instead, we call this problem a graph

compatibility problem.

By adapting existing graph isomorphism techniques, we have developed a depth-

first branch and bound algorithm to perform graph compatibility check. The algorithm,

described in the following paragraphs, needs to test various combinations of possible

node matching. This can be computationally expensive. Thus, in order to ensure that

results are obtained in real-time, a two stage pruning process is initially carried out before

the actual graph compatibility check is undertaken. Since the search criteria defined in

Chapters 3 and 4 are computationally very cheap, if applicable they are used first. Only

the assemblies that satisfy all the criteria are retained for further tests.

58

In the second stage, six other conditions are used to prune the list of feasible database

matching multigraphs further. Some of these conditions are analogous to the use of vertex

invariants in solving the subgraph isomorphism problem [Boos06, Fort96]. They are

listed as follows:

• The number of nodes in the database multigraph should be greater than or equal to the

number of nodes in the query graph. This is essential as all the nodes in the query

graph can never be matched with distinct nodes in the database graph otherwise.

• Similarly the number of edges in the database multigraph should also be greater than

or equal to the number of edges in the query graph as all the edges in the query graph

need to be matched with unique edges in the database graph.

• The number of standard parts in the database graph (i.e. nodes having “standard” as

the geometry based attribute) should also exceed or at least equal the number of

standard parts present in the query graph so that all such query graph nodes can be

possibly matched with distinct nodes having identical attributes in the database graph.

• The number of custom parts in the database multigraph must also be equal to or more

than the number of custom parts in the query graph. This follows from the same

argument given in the first three cases.

• For every node in the query graph, at least one distinct node should exist in the

database multigraph such that its degree is greater than or equal to the degree of the

query graph node. This condition ensures that an injective relationship exists between

the two graphs under consideration.

59

• The matching set corresponding to every node in the query graph should be non-

empty. By matching set, we mean the set of nodes belonging to the database

multigraph, which can be possibly matched with a particular query graph node, based

on all the node attributes. This set will help us in pruning certain DFS paths later on

as well.

Once pruning has been completed, we identify the root node for depth-first search

(DFS). As has been explained in [Boos06], if we can label the vertices properly, we can

reduce the search space significantly. The most widely used heuristic is to consider the

most constrained nodes first. Typically, lower-degree nodes should be examined before

high-degree ones as it enables us to chop off a large portion of the trunk before it gets a

chance to branch out. However, other attributes such as whether the geometry of a part

(corresponding to a node) is specified, whether it is a standard part or a custom part also

need to be taken into account. Different weights are assigned to individual factors based

on empirical results and a final scaled ranking is assigned to every node. The node with

the highest rank is selected as the root node and ties are broken arbitrarily. The database

graph node that has the lowest degree greater than or equal to the degree of the root query

graph node is chosen as the initial node for matching purposes.

Now, coming to the main DFS algorithm, we first check whether the two initial nodes

are compatible. Two nodes are compatible if and only if the database multigraph node is

a member of the matching set for the query graph node and a one-to-one correspondence

exists between all the edges connecting every pair of nodes that have been already

matched. If yes, then we explore all the neighbors of the query graph node and try to

match it with one of the neighboring nodes of the database graph node. As long as

60

matching (compatible) nodes are found, we proceed in a depth-wise manner till we

encounter a leaf node. Then we backtrack to a previous level unmatched node and try to

match it with a feasible node in the database graph. A feasible node is obtained by

considering the unmatched neighbors of the database graph node which is compatible to

one of the matched, neighboring nodes of the current query graph node. The algorithm

and its explanation is given in Section 4 of this Chapter.

The algorithm is terminated when all the query graph nodes have been matched or no

match has been found for at least one of them even after exploring all possibilities. A run-

time bounding condition is employed. If the matching set for any unmatched query graph

node becomes empty, then that path can be safely ignored and other possible paths should

be considered.

5.3 Example

Consider a scenario where the designer wants to search for a subassembly commonly

used in the organization. The subassembly consists of some bolts and a custom part for

which the exact geometry is known. The designer looks for an assembly where another

custom part was used along with the parts listed above. The designer knows the mating

conditions between the parts and defines the query graph (shown in Figure above). The

criteria for the search are specified as follows:

• The mating graph as shown in Figure above

• The number of parts as a target value of 10

• Exact geometry match for one of the custom parts

61

• Two standard parts in the form of a bolt and a nut

The figure 5.5 shows the layout of the flange assembly.

 The figure 5.6 shows a flange which can be adapted by the designer for the new

assembly.

Figure 5.6: A assembly with attached flanges [Nore06]

Figure 5.5: Layout of the flange assembly

62

The assembly shown in Figures 5.7 and 5.8 is an assembly returned by the system

that matches the above criteria. In this case, A is the custom part and the bolts shown as

B, C, D and E are the standard parts.

Part G

Part H

Part F

Part I

Part J

Part B
Part A

Part C

Part D

Part E

Figure 5.7: A Flange Assembly

Figure 5.8: Another view of the flange assembly

63

The figure 5.9 and 5.10 shows another query graph and the result retrieved from

the set of assemblies.

Figure 5.9: A query graph to search for cell phone assembly

Figure 5.10: An image of the cell phone assembly retrieved
from the database of assemblies

64

5.4 Algorithms for initial processing of graph

SearchforCompatibleGraphs is a top level algorithm which calls all other

algorithms and controls the entire graph compatibility checking process for all graphs in

the database. It takes as input a connected query graph and a list of fully specified

connected database multigraphs. It outputs a list of graphs that are compatible with the

query graph.

SearchforCompatibleGraphs(G1)

Input

• G1 = (V1, E1) represents partially specified connected query graph

• L1 = the list of fully specified connected database multigraphs

• G2 = (V2, E2) represents a member of L1

Output

• List L2 of compatible database graphs

Internal Variables

• A Boolean variable CompatiblityCheckStatus

Steps

1) Call AssignPriorityScoreToQueryGraphNodes (G1)

2) For each G2 ∈ L1, call CompatibilityCheck(G1, G2) and set output as

CompatiblityCheckStatus

3) If CompatiblityCheckStatus is TRUE, add G2 to L2

Step 1 calls the function to assign priority score to each node in the query graph.

Step 2 recursively calls the functions to check if the query graph is compatible with each

65

database graph. Step 3 adds the compatible database graph to the list of compatible

graphs.

The graphs are connected because each node in the graph is connected with some

other vertex in the graph. The query is not a multigraph i.e. multiple mating conditions

cannot be specified between two nodes in the query graph. The nodes in the query graph

are assigned priority score only once during the search over all assemblies in the

database. The algorithm iteratively checks whether query graph is compatible with any of

the database graphs. The compatible graphs are added to a list of compatible graphs.

The AssignPriorityScoreToQueryGraphNodes algorithm is called by

SearchforCompatibleGraphs algorithm. It takes as input the query graph. It assigns a rank

to each node from query graph based on the number of nodes attached to each node and

other characteristics of the node as specified by the user. This rank is used to identify the

root of the depth first search and the most constrained node during each recursion of the

depth first search function.

AssignPriorityScoreToQueryGraphNodes (G1)

Input

• G1, a query graph

Output

• rank_final, priority score assigned to each node in G1

Internal Variables

• V1 is the set of nodes in G1

• vi is the number of nodes in V1

66

• Degree of a part is the total number of parts attached to the given part in the

assembly. It includes the nodes explicitly specified in the query graph and

implicitly specified during creation of node. Implicit degree of the node is the

number of additional nodes to which the node from query graph is connected but

are not shown in the graph. This number is specified while creating the node.

• Category of a part indicates whether a part is of custom category or standard

category or if the category is not specified.

• Geometry for a custom part is the path of the part in the database

• Type for a standard part is a type selected from the list of standard parts available

in the organization

Steps

1) For each vi ∈V1, assign rank_absolute starting from least possible value of zero

and highest possible equal to vi-2. If two or more nodes have the same degree,

then assign the same rank_absolute to all such nodes.

2) Scale all rank_absolute between 0 and 1 to assign rank_relative to every node.

The highest rank_relative can at the most be equal to 1 and the lowest

rank_relative is at least 0.

3) For each vi ∈V1, assign rank_intermediate based on the following rules:

a. If part is of custom category, then assign 0.5 points to the node

b. If part is of standard category, then assign 0.25 points to the node

c. If part geometry is known, then assign 0.5 points to the node

d. If part category is known, then assign 0.25 points to the node

e. rank_ intermediate = ∑ points assigned to node

67

4) For each vi ∈V1 assign

_ 1 _ 2 _rank final w rank relative w rank intermediate= × + × ,

where 1 1w = and 2 2w =

5) Sort the list of nodes in non-ascending order of their rank_final

The step 1 is based on the degree of the node. The step 2 scales the rank_absolute

between 0 and 1 and assigns rank_relative. The node with highest degree will have

rank_relative as 0 and node with lowest degree will have rank_relative as 1. Step 3

assigns priority score based on other node invariants i.e. category, geometry and type.

Step 4 computes the final priority score value for each node. Finally, in step 5 the nodes

are sorted in descending order of their priority score.

The node invariant properties are used to assign priority score to node. According

to this algorithm, the node which is most constrained in terms of all invariant properties

will have highest priority score. The algorithm assigns highest rank_absolute to a node

with least degree i.e. the most constrained node. If multiple nodes have the same degree,

then they are assigned same priority score. As the highest priority score is always equal to

the number of nodes in the query graph, some ranks will not be assigned to any node in

case of multiple nodes with the same degree. The priority score is normalized. A node

representing a custom made part and for which geometry is specified, is the ideal

candidate to act as the root node for DFS as it is the most constrained node. The total

number of custom parts for which a geometry match is possible are very less and this

reduces the total number of iterations required for compatibility check. Custom parts are

given more weightage as compared to standard parts. This is based on the understanding

68

that custom parts will be used in fewer assemblies than standard parts and thus are better

suited to act as the root for DFS. Also, more weight is assigned to a custom part with

known geometry because it will match with very few parts in database. The highest

rank_intermediate can have value equal to 1. Final rank is the weighted sum of ranks

based on degree and other node variants. The weight for priority score on degree and

other node invariants are chosen empirically. Lastly, the node with highest sum total of

all ranks is the most constrained node in query graph and will act as the DFS root.

The SearchforCompatibleGraphs algorithm in step 2 calls CompatibilityCheck

algorithm. It takes as input the query graph and a fully specified database multigraph. It

calls all algorithms to prune and verify the compatibility of the two graphs. It outputs a

Boolean variable that indicates the status of compatibility between the two input graphs.

True indicates that the graphs are compatible while false indicates that the graphs are

incompatible.

CompatibilityCheck (G1, G2)

Input

• G1, a query graph

• G2, a database graph

Output

• match_found_status, a Boolean variable that returns the status to indicate whether

the two graphs are compatible

Internal Variables

69

• matched_nodes_list is a list of pair of nodes that have been found to match during

depth first search (DFS)

• active_nodes_inG1 is a list of nodes in query graph that have been discovered

during DFS but for whom a match has not been found

• active_nodes_inG2 is a list of nodes in database graph that have been discovered

during DFS but have not been matched to any node from query graph

• matching_set is a list of all qi ∈ V2(G2) for all vi ∈ V1(G1) : vi can match with

every qi present in its list of feasible matches

Steps

1) Call PreliminaryCompatibilityTest (G1, G2) and set Boolean

graph_pruning_check_pass as the output of this function. If

graph_pruning_check_pass is TRUE go to step 2, else set match_found_status as

FALSE and return

2) Set match_found_status as FALSE

3) Select the node p with highest priority score in G1

4) Set Q as the list of feasible matches for p from the matching_set and arrange the

elements in Q in non-descending order of the degree of nodes

5) While Q is not empty and match_found_status is FALSE, do the following:

a) Pop the first element q from Q

b) Set matched_nodes_list = {}

c) Set active_nodes_inG1 = {}

d) Set active_nodes_inG2 = {}

70

e) Call MatchNode (p, q, matched_nodes_list, active_nodes_inG1,

active_nodes_inG2, G1, G2, matching_set) and set output as

match_found_status

6) Return match_found_status

Step 1 calls the function to check the pruning conditions. This function returns a

Boolean value and if the database graph passes the initial pruning step then we proceed to

step 2. We have a list of nodes arranged in non-ascending order of priority score. The

matching_set is created if this function does not return a FALSE value. Step 2 sets the

status of the global variable. Step 3 gets the element at the front of the list of nodes from

query graph. The front node will have the highest priority score amongst all nodes. Step 4

lists all nodes from database graph that are feasible matches for the selected node in a

non-descending order. Step 5 iterates over the list arranged in step 4 till the graphs match

or the list is exhausted. At the beginning of each iteration, a list of matched nodes and

two lists of nodes from query and database graph respectively, that have been discovered

in depth first search (DFS) but not matched to any other node are initiated to empty lists.

The global list of feasible matches for all nodes i.e. matching_sets is passed as an

argument to Match_Node function and the copy gets modified during each recursion of

the function.

This is the main algorithm to check for graph compatibility. The first step prunes

out the database graphs that cannot match with query graph before use of DFS. A priority

score is assigned to all nodes in the query graph to find the most constrained node. The

most constrained one is used as the root of DFS. The use of the most constrained node as

71

root has been suggested in literature to improve computational time by decreasing

number of possible matches to be checked.

The PreliminaryCompatibilityTest algorithm is called by CompatibilityCheck

algorithm. This algorithm implements all pruning conditions before actual depth first

search is performed on the query graph and the database graph. It takes as input the query

graph and the fully specified database multigraph. It outputs a Boolean variable to

indicate if the database graph passed the pruning checks. A true value indicates that the

database graph is not pruned and depth first search needs to be performed while a false

value indicates that database graph is pruned and depth first search need not be

performed.

Section 5.5 Pruning Algorithms

PreliminaryCompatibilityTest (G1, G2)

Input

• G1, a query graph

• G2, a database graph

Output

• Boolean preliminary_compatibility_status as return value to indicate whether

graphs can be compatible according to preliminary check

Internal Variables

• v1 represents the number of nodes in G1

• v2 represents the number of nodes in G2

72

• e1 represents the number of edges in G1

• e2 represents the number of edges in G2

• A is a set of integers: each a ∈ A represents the degree of vi ∈V1

• B is a set of integers: each b ∈B represents the degree of vj ∈V2

Steps

1) If v1 > v2, set preliminary_compatibility_status as FALSE and return

2) If e1 > e2, set preliminary_compatibility_status as FALSE and return

3) If number of standard parts in the query graph > number of standard parts in the

database graph, set preliminary_compatibility_status as FALSE and return

4) If number of custom parts in the query graph > number of custom parts in the

database graph, set preliminary_compatibility_status as FALSE and return

5) Call CheckOnetoOneMappingofNodes(G1, G2) and set

preliminary_compatibility_status as the output.

6) Return preliminary_compatibility_status

Step 1 checks that number of vertices in database graph is equal to or greater than

number of vertices in query graph. Step 2 checks that number of edges in database graph

is equal to or greater than number of edges in query graph. Step 3 and Step 4 check that

the database graph has at least equal number of standard and custom parts as those

specified in the query graph. Step 5 calls the function to check one to one mapping of

nodes. This function ensures that every node from query graph has at least one feasible

match among the nodes of database graph.

73

The database graph represents an assembly in the database. The query graph and

the database graph are related by injective function because every vj ∈V2 should map to

one and only one vi ∈V1. For a database graph to be compatible with the query, it should

at least have the same number of nodes and edges as the query graph. This is the primary

requirement for graphs to match and is checked in step 1 and 2. Based on the injective

function, it follows in step 3 that number of standard parts in database assembly should

be at least equal to or greater than number of standard parts in query graph. The same

condition is applicable for custom parts and is checked in step 4. The fifth condition

checks whether injective function exists only on the basis of degree. If for every a there

does not exist a distinct b, than at least one node from query graph will not have a node

with equal or higher degree from database graph. A complete injective function cannot

exist and thus the two graphs cannot match.

 CheckOnetoOneMappingofNodes algorithm is called by

PreliminaryCompatibilityTest algorithm. This algorithm checks that for every node from

query graph at least one distinct match exists in database graph. It takes as input the

query graph and a fully specified database multigraph. It has two outputs. The first output

is a Boolean that indicates if a match exists for every node from the query graph. If a

match exists than it creates sets of all possible matches for every node from query graph.

It acts as a pruning condition and its output is used in a bounding condition during the

depth first search.

CheckOnetoOneMappingofNodes(G1, G2)

Input

• G1, a query graph

74

• G2, a database graph

Output

• Boolean value mapping_exists. The Boolean is TRUE if one to one mapping

exists between nodes of query graph and database graph and FALSE if it does not

exist

• matching_set is a list of all qi ∈ V2(G2) for all vi ∈ V1(G1) : vi can match with

every qi present in its list of feasible matches

Internal Variables

• degreee_a represents the total number of neighbors for any node a

• category_a represents the category of any node a. The possible values are custom,

standard or not specified

• geometry_a represents the geometry of any node a. The possible values are path

to the geometry or not specified

• type_a represents the type of standard part that node a represents. The possible

values are any entity from the list of standard parts or not specified.

Steps

1) Populate QueryDegreeArray with degree of nodes in query graphs and

DatabaseDegreeArray with degree of nodes in database graph

2) Sort QueryDegreeArray and DatabaseDegreeArray in non-descending order

using Bubble sort

3) If for ∨ a ∈ QueryDegreeArray there does not exist a distinct b ∈

DatabaseDegreeArray : a ≤ b, set mapping_exists as FALSE and return

4) For every p ∈ V1(G1), do the following

75

a. Pop the first element from the list of nodes in the database and set it to q.

When the list of nodes in the database ends, go to step 4.

b. For every p and q, do the following

I. degree_p ≤ degree_q go to 4-b-II else go to step 4-a

II. category_p is not specified or category_p = category_q go to

step 4-b-III else go to step 4-a

III. if category_p = custom then either geometry_p is not specified

or geometry_p = geometry_q go to step 4-b-IV else go to step

4-a.

IV. if category_p = standard then either type_p is not specified or

type_p = type_q go to step 4-c else go to step 4-a.

c. Add q to the matching_set of p

5) Set mapping_exists as TRUE and return

Step 1 populates two arrays with the degree of nodes of query graph and database

graph. Step 2 sorts the two arrays using bubble sort in non-descending order. Step 3 runs

two for loops over the two arrays to check one to one mapping of elements. Step 4 creates

matching_set for all nodes in query graph. Step 4 cycles over all the elements in the

query node. Step 4-a cycles over all the elements in the database node. Step 4-b compares

the two nodes with each other. Step 4-b-I compares the degree, step 4-b-II compares the

category, step 4-b-III compares the geometry for custom parts and step 4-b-IV compares

the type for standard parts. If at any of the step in the in 4-b, the nodes do not match, then

76

the algorithm returns to 4-a and iterates with the next node from the nodes in database

graph. Step 4-c adds the q to the set of feasible matches for node p.

The main step in this algorithm is to find injective relationship between elements

in two arrays. The first two steps populate and sort the arrays. The third step loops over

the two arrays to find if an injective relationship exists. The fourth step populates the

matching sets i.e. a list of nodes for every node from query graph that the query node can

match. These matching sets are used in the both bounding conditions during the DFS.

Section 5.6 Depth First Search algorithm

MatchNode is the depth first search recursive function. This algorithm is initially

called by CompatibilityCheck algorithm in step 5-d. It then recursively calls itself to

create a search tree. It takes as input a node from query graph, a node from database

graph, a list of pair of nodes that have already been matched, a list of nodes from query

graph and a list of nodes from database that have been discovered in the depth first search

but not yet matched and a list of possible matches for each node in query graph. It outputs

a Boolean value to indicate whether the query graph and database graph is compatible.

MatchNode (p, q, matched_nodes_list, active_nodes_inG1, active_nodes_inG2, G1,

G2, matching_set)

Input

• p, a node from the query graph

• q, a node from the database graph

• matched_nodes_list, a list of pair of nodes that have been found to match during

depth first search (DFS)

77

• active_nodes_inG1, a list of nodes in query graph that have been discovered

during DFS but for whom a match has not been found so far

• active_nodes_inG2, a list of nodes in database graph that have been discovered

during DFS but have not been matched to any node as yet

• G1, a query graph

• G2, a database graph

• matching_set, a list of all qi ∈ V2(G2) for all vi ∈ V1(G1) : vi can match with every

qi present in its list of feasible matches

Output:

• The function will return a value of TRUE or FALSE to transfer control between

recursions

Internal Variables

• Boolean match_found_status is a global variable and Match_node function will

set the value for this variable to indicate if query and database graphs are

compatible

• vi, the number of nodes in V1

Steps

1) Call CheckNodeConsistency (p, q, match_nodes_list). If the output is TRUE go to

step 2 else return FALSE.

2) Call CheckMatchNodeAvailability(p, q, match_node_list). If output is TRUE then

go to step 3 else return FALSE

3) Set matched_nodes_list = (p, q) ∪ matched_nodes_list

4) For every matching_set of vi ∈ V1(G1), do the following

78

a. Delete list of feasible matches of p from matching_set

b. Delete q from list of feasible matches of all vi ∈ V1(G1) from the

matching_set

5) If size of matched_nodes_list = vi, then set match_found_status as TRUE and

perform a global exit

6) Find set of all neighbors P for p in G1, that are not in matched_nodes_list

7) If P is a Null set, then go to step 14; else go to step 8.

8) Sort P in non-descending order of degree of the nodes

9) Place all the nodes in P that have an edge of the type unknown at the end of the

list irrespective of their degree

10) For each pi ∈ P, if pi ∉ active_nodes_inG1, insert pi to active_nodes_inG1 at the

beginning of active_nodes_inG1

11) Find all neighbors Q for q in G2 that are not in matched_nodes_list.

12) Sort Q in non-descending order of degree of the nodes

13) For every qj ∈ Q, if qj ∉ active_nodes_inG2 insert qj to active_nodes_inG2 at the

beginning of active_nodes_inG2

14) While active_nodes_inG1 is not a Null set and match_found_status is FALSE

a. Find the list of nodes K in the matched_nodes_list that are neighbor of p′

that is obtained by popping the first element in active_nodes_inG1.

b. While match_found_status is FALSE and K is not a Null set do the

following:

i) Pop the first element k ∈ K.

ii) Find the node l that matches with k from the matched_nodes_list.

79

iii) Find the list of nodes M ∈ active_nodes_inG2 that are neighbors of l.

iv) While match_found_status is FALSE and M is not a Null set, then

pop the first element from M and set it as q′ and do the following:

(i) If edge(k, p′) and edge(l, q′) have the same label or edge(k, p′)

has label unknown then edges are compatible. If edges are not

compatible then go to step 14-b-iv-ii. If edges are compatible then,

do the following:

I) Set active_nodes_inG1 = active_nodes_inG1 – { p′}

II) Set active_nodes_inG2 = active_nodes_inG2 – { q′ }

III) Call MatchNode(p′ , q′ , matched_nodes_list,

active_nodes_inG1, active_nodes_inG2, matching_set). If

function returns FALSE, then go to step 14-b-iv-ii. Else go to

step 14-a.

(ii) Pop the next element from list M and repeat step 14-b-iv-i.

v) If M is a Null set then pop the next element from K and go to step 14-

b-ii.

c. If K is a Null set, then return FALSE.

Step 1 calls the function to check whether the two input nodes can match. This

function checks if the two nodes match and if they match, then algorithm proceeds to step

2. Step 2 checks if all unmatched from the query graph have at least one feasible match.

If they do not have at least one feasible match, then the function returns FALSE. Step 3

updates the list of nodes that have been matched by appending this pair of nodes. Step 4

80

deletes the list of feasible matches of node p from the matching_set and also deletes q

from list of feasible matches of all unmatched nodes from query graph. Step 5 checks

whether the query graph and database graph are found to be compatible using termination

condition. The condition checks if the number of pairs of matched nodes is equal to the

number of nodes in query graph. If the termination condition is satisfied then the global

output is set to TRUE and the recursive function performs a global exit. Step 6 lists all

neighbors of the node p from query graph. Step 7 checks whether the list of neighbors of

p is empty. If the list is empty, then p is leaf node and the function proceeds with other

unmatched nodes from step 14. If the node is not a leaf node, the algorithm goes to step

8. Bubble sorting is used as the size of the array is very small. The implementation is

borrowed from [Lamo06]. Step 8 sorts the list obtained in step 6 in non-descending order

of the degree of nodes. Step 9 places all nodes that are connected to input node by an

unknown edge type at the end of the list. If the elements of the sorted list are not already

a part of the list of unmatched nodes, step 10 appends them at the beginning of the list of

unmatched nodes from query graph. Step 11 lists all neighbors of input node from

database graph that are not present in the list of matched nodes. Step 12 sorts the list

obtained in step 11 in non-descending order of the degree of nodes. Step 13 appends each

element from sorted list obtained in step 12 to the list of unmatched nodes of the database

graph starting from the beginning of the list.

Step 14 iterates over all elements in the list of active from query graph. Step 14-a

lists all neighboring nodes that are also members of the list of matched nodes for the node

selected from in step 14. Step 14-b iterates over all elements of the list found in step 14-a.

Step 14-b-i pops the first element in the list found in 14-a. Step 14-b-ii finds the node that

81

matches with node popped in step 14-b-i. Step 14-b-iii lists all neighbors of node found in

the 14-b-ii. Step14-b-iv iterates over the list found in 14-b-iii by popping each element in

the list. Step-14-b-iv-i checks if edge between nodes found in 14-b-i and 14-1 and the

edge between nodes found 14-b-iii 14-b-iv is compatible. If the nodes are compatible

then algorithm goes to step 14-b-iv-ii. If the edges are compatible then algorithm

proceeds to next step. Step 14-b-iv-i-I removes the node found in 14-a from the list of

active nodes from query graph. Step 14-b-iv-i-II removes the node found in 14-b-iv from

the list active nodes from database graph. Step 14-b-iv-i-III recursively continues the

algorithm with the nodes removed from the list of active nodes, the updated lists of

unmatched nodes from query and database graph, the updated list of matched nodes and

the updated matching_set. Step 14-b-iv-ii pops the next element from the list found in

step 14-b-iii and returns the control to step 14-b-iv-i. Step 14-b-v is reached if the list

found in step 14-b-iii is empty. It pops the next element from the list found in step 14-a

and takes the control back to step 14-b-ii.

This algorithm is the main depth first search (DFS). The input to the algorithm

consists of a node each from query graph and database graph, two lists consisting of

nodes from query and database graph that have not been matched and a list of pairs of

matched nodes. The algorithm first checks whether the two nodes match with each other

by calling function CheckNodeConsistency. If the nodes match with each other, the

algorithm checks two bounding conditions. It ensures that at least one match is available

for every unmatched node from the query graph. The algorithm then updates a copy of

the list of matched nodes and a copy of the feasible matches for unmatched nodes. This

update accounts for the two nodes that have been matched in this step. The algorithm

82

then checks for terminating condition. If the size of the list of matched nodes is equal to

the size of the list nodes in query graph, it implies that a match has been found for all

nodes from the query graph. Thus the algorithm sets a global output and terminates all

recursions.

The algorithm then lists all neighbors of node from query graph and sorts them in

the ascending order of degree of nodes. If the list is empty, it implies that a leaf node has

been reached. In such case the algorithm iterates with the next available node from the

list of active nodes of the query graph. In addition, for this list of query graph nodes, the

nodes having an unknown edge type are placed at the back of the list. This is because

unknown edge type is a wild card entry and can match to edge of any type. The

constraints are lesser as compared to edge that has a specific type and more constrained

nodes are given priority. The elements in the sorted list are appended to the list of

unmatched nodes at the beginning if they are not already a part of the list. As they are

appended at beginning and the nodes are later selected from the beginning of the list, the

search always proceeds in depth first method. Also, the check to ensure that elements are

not already a part of the list accounts for the fact that some nodes can be reached from

multiple paths and should not be appended more than once. In the next step the algorithm

makes a list of all neighbors of input node from database graph, sorts it in ascending

order of degree and appends the elements to the list of unmatched nodes from database

graph with the same rules as described above.

The algorithm then iterates over the list of active nodes from query graph. For

each element, it finds a list of neighbors that have been matched from the list of matched

nodes. It then finds the matching nodes from database graph and list of its unmatched

83

neighbors. The algorithm then tries to iteratively match the node from query graph to all

such neighbors by using recursion. If a match is not found, then algorithm returns a

match failure status. The algorithm then retracts back to an instance where an alternative

path is available for search. If all paths have been explored and a match has not been

found then the recursive algorithm terminates with a match failure status.

Section 5.7 Auxiliary Algorithms for Depth First Search

The CheckMatchNodeAvailability algorithm is called by MatchNode algorithm It

takes as input a node from query graph, a node from database graph, a list of node pairs

that have already been matched and a list of possible matches for each node from query

graph. It checks whether the node from database graph is the only possible match to a

unmatched node from the query graph except the node currently being matched. This

algorithm is used to implement bounding condition during the depth first search.

CheckMatchNodeAvailability (p, q, match_nodes_list, matching_set)

Input

• p, a node from the query graph

• q, a node from the database graph

• matched_nodes_list, a list of pair of nodes that have been found to match during

depth first search (DFS)

• matching_set, a list of all qi ∈ V2(G2) for all vi ∈ V1(G1) : vi can match with every

qi present in its list of feasible matches

Output

• matched_node_available, a Boolean

84

Steps

1) Initialize matched_node_available to TRUE.

2) While matching_set for all nodes in query graph are not explored and

matched_node_available is not FALSE, do the following

a. If q is the only element ∈ matching_set of any node vi ∈ V1(G1) except p,

set matched_node_available as FALSE and go to step 3, else go to

matching_set of next node in query graph

3) Return matched_node_available

Step 1 initializes the output of the function to TRUE. Step 2 iterates over the list

of feasible matches from the matching_set for all nodes of query graph. Step 3 checks if q

is the only element in the list of feasible matches from matching_set for all other node

except p. If q is found to be the only member of a list of feasible matches of any other

node, the output is set to FALSE and function terminates.

This function ensures that the node from database being matched is not the only

possible match for any unmatched node except p from query graph. If the database node

being matched is the only possible match for any unmatched query node, then the query

node will not have a match and the graphs cannot be compatible. Thus, this path is not

feasible and an alternative path needs to be explored. In such case, the function returns

false. If all database nodes have another possible match, then the algorithm can proceed

for matching other nodes in the query graph.

85

The CheckNodeConsistency algorithm compares node from query graph and

database graph. It compares the two nodes and checks if the node from database graph

satisfies any cyclic relation that exists for the node from query graph. Its input is a node

from query graph, a node from database graph and a list of pair of all nodes that have

been matched. It outputs a Boolean that indicates whether the two nodes match.

CheckNodeConsistency(p, q, matched_nodes_list)

Input

• p, a node from query graph

• q, a node from database graph

• matched_nodes_list, the list of pair of nodes that have been already matched

during depth first search (DFS)

Output

• node_consistency_result , a Boolean as return value to indicate whether the two

nodes matched

Internal Variables

• degreee_a, the total number of neighbors for any node a

• category_a, the category of any node a. The possible values are custom, standard

or not specified

• geometry_a, the geometry of any node a. The possible values are path to the

geometry or not specified

• type_a, the type of standard part that node a represents. The possible values are

any entity from the list of standard parts or not specified.

86

• pair(x, y), the pair of nodes in list of matched nodes where x is from query graph

and y is from database graph

• edge(a, b), the edge between node a and node b

Steps

1) If

a. degree_p ≤ degree_q and

b. category_p is not specified or category_p = category_q and

c. if category_p = custom then either geometry_p is not specified or

geometry_p = geometry_q and

d. if category_p = standard then either type_p is not specified or type_p =

type_q

then go to step 2 else set node_consistency_result as FALSE and return

2) Find a list P′ of all the neighboring nodes of p that are already in

matched_nodes_list

3) For every x∈ P′ , do the following:

a. Find the pair (x, y) in matched_nodes_list

b. If edge(y, q) is not compatible to edge(x, p), than set

node_consistency_result as FALSE and return

4) Set node_consistency_result as TRUE and return

Step 1 checks whether the degree, category, geometry and type match for the

input nodes. Except degree, all inputs are optional. Geometry can only be specified if part

is of custom category. Type can only be specified if part is of standard category. Steps 2

87

and 3 are included for checking cyclic relations in the query graph. Step 2 lists all

neighbors from the list of matched nodes that have an unexplored edge with the input

query graph node. Step 3 iterates over the list found in step 2. Step 3-a finds the pair of

nodes from the list of matched nodes that contain node obtained in step 2. The first

element of the pair is a node from the query graph and second element is a node from

database graph. Step 3-b verifies if an edge exists between the input database graph node

and second element of the pair obtained in 3-a that is compatible with the edge between

input query graph node and the first element of the pair. If such edge does not exist, then

the two input nodes do not match.

If the input node from query graph has an unexplored edge with a node from the

query graph that is already in the match list, then a cyclic condition exists in the query

graph. If the node from query graph has a cyclic relation, then its matching node from

database should also have a cyclic relation. Such cyclic relations are checked in step 2

and 3.

5.8 Computational Experiments

A database of 200 database graphs was created randomly. The number of nodes in

each graph varies between 10 and 100. We conducted three experiments to test the

computational speed and robustness of the graph compatibility algorithm. The database

graph used to prepare the query for all experiments consists of 24 nodes.

The first experiment uses varying number of nodes in the query graph. This

experiment qualitatively estimates the time complexity of the algorithm in terms of the

number of nodes in query graph. The graph in figure 5.11 shows the plot for number of

88

nodes in the query graph against the computation time for depth first search. The number

of nodes in query graph varies from 5 to 17. The query graph used in this experiment was

fully defined i.e. it did not have any wild cards. The query graph was prepared from one

of the graphs from the database. As can be observed from the graph, the time required for

depth first search increases more or less linearly with the number of nodes. For each

node, another recursion call is made to the main function in the algorithm. This recursion

involves matching the node attributes and querying and updating of the list of nodes

being currently processed both in the query graph and the database graph. This increases

the amount of time required for depth first search operation.

Number of Nodes in Query Graph X Computation Time for Depth First Search

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0 2 4 6 8 10 12 14 16 18

Number of Nodes in Query Graph

A
ve

ra
ge

 C
om

pu
ta

tio
n

Ti
m

e
fo

r D
ep

th
 F

irs
t

Se
ar

ch

Figure 5.11: Number of Nodes in Query Graph
X Computation Time for Depth First Search

89

The second experiment used different degrees of nodes in the query graph,

keeping the total number of nodes constant (11). This experiment tests the robustness of

the algorithm as we increase the number of edges in the graphs. The graph in figure 5.12

shows the plot for number of nodes in the query graph against the computation time for

depth first search. The edges in query graph vary from 10 to 15. The query graph used in

this experiment was fully defined i.e. it did not have any wild cards. As can be observed

from the graph, there is no considerable change in time required for depth first search.

The maximum variation in the timing of depth first search is of the order of 0.01 s and is

negligible. If the number of nodes is kept constant, addition of edges in the query graph

may only lead to additional cyclic conditions. However, the cyclic edges do not lead to

any new recursion. Instead, when the nodes are matched, few extra edges between nodes

that have already been explored are matched. This involves string matching operations

and the time required to retrieve edge information (attribute) from the graph data

structure. The retrieval time again depends on the total number of edges in the graph.

This does not increase the time for depth first search significantly. Thus, the horizontal

nature of the graph is easily explained from a theoretical standpoint.

90

Number of Edges in Query Graph X Computation Time for Depth
First Search

0

0.002

0.004

0.006

0.008

0.01

0.012

0 2 4 6 8 10 12 14 16

Number of Edges in Query Graph

A
ve

ra
ge

 C
om

pu
ta

tio
n

Ti
m

e
fo

r D
ep

th

Fi
rs

t S
ea

rc
h

The third experiment used query graphs defined with varying amount of

information given about the node and edge attributes, keeping both the total number of

nodes and edges fixed at 10 and 9 respectively. Every node has two optional inputs.

While a node representing a custom part has category and geometry attributes as optional

inputs, a node representing a standard part has category and type attributes as optional

inputs. Every edge has one optional input in form of the type of mating condition that it

represents. If all optional inputs have been defined for all nodes and edges in a query

graph, then the graph is termed as fully specified. This experiment measures the

robustness of the algorithm with varying percentage of wild card entries in a query graph.

The percent of wild card entries in the query graph is calculated using the following

formula.

Figure 5.12: Number of Edges in Query Graph
X Computation Time for Depth First Search

91

Percent of wild card entries in a query graph = (Number of wild card entries in the

query graph) / (2 x the number of nodes in the query graph + the number of edges in the

query graph). Figure below shows a plot of computational time against percentage of

wild card entries in the query graph.

The graph in figure 5.13 shows the plot for percentage of wild card entries in the

query graph against the computation time for depth first search. The query finds one

matching assembly up to 31% wild cards. The number of results increases thereafter

producing 15 results out of a database of 200 graphs. In the final query graph, 79% wild

cards were used. As can be observed from the graph, the time required for depth first

search increases with the increase in number of matching results. When the amount of

wild card entries for nodes is increased, multiple possible matches (arranged in the form

of matching sets) can be found for each node at the time of its discovery in DFS. If only

the category is specified, then the expected size of the matching sets is going to increase.

If the category is also not specified, it can result in further increase in the size of the

matching sets. Moreover, every edge has an optional input (attribute) in form of the type

of mating condition that it represents. If the edge attribute is left unspecified, then

multiple paths can be explored in DFS. As the number of possible matches and explored

edges for every possible match are increasing linearly, an overall quadratic increase in

time is expected. This corroborates well with experimental results. As the percentage of

wild card entries in the query graph are increased and more results are found, the time

required for DFS increases almost quadratically.

92

Percentage of Wild Card Entries in Query Graph X Computation Time
for Depth First Search

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00

Percentage of Wild Card Entries in Query Graph

C
om

pu
ta

tio
n

Ti
m

e
fo

r D
ep

th
 F

irs
t S

ea
rc

h

It can be inferred from these experiments that graph compatibility algorithm is

computationally fast, efficient and robust for query graphs with varying number of nodes,

varying number of edges of graphs and varying amount of optional criteria specified in

the query graph.

To create the test database of 200 graphs a random graph generator program was

created. This can generate a graph with number of nodes between 10 and 100. The

random graphs can consist of any number of parts selected at random from a database of

200 custom parts and 25 standard parts. The mating condition is randomly selected from

the available list of mating conditions in Pro/Engineer Wildfire Educational Edition.

Figure 5.13: Percentage of Wild Card Entries in Query
Graph X Computation Time for Depth First Search

93

Query graph for the experiment was created from one of the graphs generated for the

performance testing.

94

Chapter 6

SEARCH BASED ON JOINT RELATIONS

This chapter is arranged in the following manner: Section 6.1 describes the

relationship between joints that can be used to define search in this criteria, Section 6.2

discusses the methods used for searching based on the characteristics and Section 6.3

illustrates the use of this criteria with an example.

Consider a scenario where a robot designer is searching for an assembly

consisting of two revolute joints at right angles to each other to mimic the motion of a

human arm as shown in the figure 6.1. The main characteristic of this assembly is the

joints defined between these parts. A typical search for such an assembly would be a

manual search. Another possible way to search for this assembly is to specify the type of

joint and their orientations with respect to each other. The joints in articulated assembly

are important to define the function of the assembly. We propose a set of criteria to

search based on joints and their interrelationships.

95

6.1 Search Definition

In the search tool, the designer specifies the type of joint and the orientation between

the joints. The designer can select joint of any type that is available in Pro/Engineer. The

available choices are listed in Section 2 of Chapter 3. The possible orientations between

joints are as follows while the figure 6.2 shows the definition of a query:

• Parallel

• Perpendicular

• Angle (This is specified as range value for angle between the two joints)

• Unknown relationship

• No relationship

Revolute joint A Revolute joint B

Figure 6.1: A robot arm with two revolute joints allowing
perpendicular motion and attached on one link

96

The Angle relationship allows the designer to specify a range of values for the angle

between the joints. The Unknown relationship allows the designer to specify a wild card

for search when the exact relation is not known. If a relation cannot exist between two

joints, then the designer can choose No relationship. The designer will provide a set of

joints that are the defining characteristics for the assembly and the relationships among

them. No relation between joints can be defined if one of the two joints is of the type of

ball, cam-follower, slot-follower, weld or gear-pair. In case of planar joint the angle is

assumed to be defined with respect to (w.r.t.) the plane of joint. In case of gimbal joint,

the angle is assumed to be defined w.r.t. the rotor axis. The angle for bearing joint is

defined w.r.t. the axis of the bearing. The angle for a U joint (i.e. a Universal joint) is

defined w.r.t. the axis perpendicular to both axes about which rotation is possible. The

Joint A

Joint B

1. Parallel

2. Perpendicular

3. Angle

4. Unspecified

Relation options

Joint A and B share a part

Figure 6.2: A query definition

97

angles are assumed to be defined at the zero position of the joints in Pro/Engineer. The

axis of each type of joint is shown in the table below. [Proe04]

Degrees of Freedom Joint Type

Rotational Translational

Description

Pin

1 0 Sometimes known as a

revolute joint.

U-joint

2 0

Gimbal

3 0 Unlike ball joints, gimbal

joints have distinct axes. A

common example of a gimbal

joint is a gyroscope.

Axis 1 is the outer gimbal

axis, axis 2 is the inner gimbal

axis, and axis 3 is the rotor

axis.

98

Cylindrical

1 1

Slider

0 1

Planar

1 2 Bodies connected by a planar

joint move in a plane with

respect to each other.

Ball

3 0 Rotational degrees of freedom

are without respect to a fixed

axis.

Bearing

3 1 The first axis allows both

rotation and translation.

Weld 0 0 This joint allows no relative

movement between bodies. It

welds two bodies together.

99

Pro/MECHANICA displays

axes for this joint only when

you edit it. In this case, it

shows two alignment axes on

each body.

The user input is provided in the form of a list of 2-tuples i.e. doubles. A

representation of the double is as follows:

1 2{{ , }, }D j j m=

The first element of the double is a set of the type of joints represented by j1 and

j2. The second element represented by m is the relation between them. Each element of

the set as well as the second element of the double is a string, which can be any one of

the appropriate type described above. Only joints defined on a single rigid body can be

represented as the first element of any particular double. For every assembly in the

database, a list of doubles defining all relations in the assembly is extracted manually and

stored. The system searches for an assembly that has all the query doubles in the list of

database doubles.

Consider the robot assembly shown in Figure above. The list of doubles for this

assembly is given as follows:

1

2

1 1 2

{{ , }, }
{{ , }, }
{ , ,..., }n

D revolute revolute perpendicular
D revolute otherjoints unspecified
E D D D

=
=
=

100

D1 is the first double. The assembly contains other doubles which have not been

specified. E1 is the list of doubles representing the entire assembly. The two joints in D1

define the range of workspace for the robot. They are oriented perpendicular to each

other. A possible way to search for this assembly is by only using the double D1 in the list

of query doubles. Such a query list will be able to locate the robot assembly as a possible

match from a list of assemblies.

6.2 Search Method

The input is received as a list of doubles. For an assembly from the database to

satisfy the search criteria, it should contain all the joints with relationship between them

as defined in each of the query doubles. Each double from the list of query doubles is

compared to a double from the list representing the joint-pairs in the database assembly.

This is done by exact string matching. The relation between query doubles and database

doubles is injective. A distinct match for every input double must be found in the list of

doubles present in a particular database assembly, in order to match it with the query. The

figure 6.3 shows the method of search.

101

6.3 Example

Consider a scenario where the designer wants to search for a spatial mechanism that

allows a base to have translational motions along three axes, 120 degrees apart from each

other and lying in one plane. Another translational motion is possible along an axis which

is perpendicular to the earlier plane. This motion can be achieved by using three ball

joints and one slider joint. The designer provides a list of doubles to search for such a

mechanism. The designer has a restriction on the total number of joints in the assembly,

Query: three relationships

Relations in a database assembly

Query matches database relationships

P P

P P

R R

P R

0

120

NA

R R

S

120

90

0

NA

R

R R

PR R

Figure 6.3: A query matching with a database assembly

102

and the size and total number of parts in the assembly. The criteria for search are

specified as follows:

• The list representing doubles as shown below

1

2

3

1 1 2 3

{{ , }, }
{{ , }, }
{{ , }, }
{ , , }

D ball ball Norelation
D ball ball Norelation
D ball slider Norelation
E D D D

=
=
=
=

• The total number of joints in the assembly (should not exceed 20)

• The number of ball joints in the assembly (should not exceed 8)

• The number of slider joints in the assembly (should not to exceed 6)

• The bounding sphere volume of the assembly (should be between 2 and 3 inches)

• The total number of parts in the assembly (a target value of 13 is specified)

With these criteria, the system is able to retrieve the Stewart platform shown in figure

6.4. This mechanism comes closest to the designer’s requirement. The platform uses 6

ball and 6 slider joints. The designer can get the required motion by editing the geometry

of Part A. The list of doubles of the Stewart platform is shown below:

1

2

3

4

5

6

2 1 2 3 4 5 6

{{ , }, }
{{ , }, }
{{ , }, }
{{ , }, }
{{ , }, }
{{ , }, }
{ , , , , , }

D ball ball Norelation
D ball ball Norelation
D ball ball Norelation
D ball slider Norelation
D ball slider Norelation
D ball slider Norelation
E D D D D D D

=
=
=
=
=
=
=

103

Part A

Slider joint

Ball joint

The mechanism has 6 slider and 6 ball joints

Figure 6.4: A match for search by joint relationship –
Stewart platform

104

Chapter 7

IMPLEMENTATION

This chapter is arranged in the following manner: Section 7.1 describes the

system architecture, Section 7.2 lists the libraries that have been used in the

implementation, Section 7.3 describes the standards used in the assembly design, Section

7.4 describes the signature file format, Section 7.5 describes the query file format,

Section 7.6 describes the process used to extract the signature of assemblies, Section 7.7

describes the output of the system and Section 7.8 describes the assembly viewer.

7.1 System Architecture

We have developed a system to support content-based searches. This system has

been implemented using C++ and Microsoft Foundation Classes (MFC) library in

Windows XP Professional platform. The MFC library provides the user interface (UI)

component of the code. Microsoft Visual C++ .NET 2003 version was used as the

integrated development environment (IDE) to build the software. Assembly search

software is an event driven software. Figure 7.1 shows the framework of assembly search

system.

105

The algorithm requires user to specify a top-level directory. It then iteratively

searches for the signature files in the directory and all its sub-directories. A user cannot

define a new query or load an existing query without specifying the search directory. A

list of all assemblies in the specified folder is prepared and is used to search for possible

matches. The search sequence is selected depending on the criteria specified for search.

The assembly statistics are used as the first criteria. It is followed by joint relation and

constituent parts. If an assembly passes all checks for these criteria, then part mating

based search is performed. If any criterion is not specified, then it is omitted from the

search. The sequence of the use each criterion during search is decided on the

computational time for each search criteria. Criteria are ranked based on time for

computation. The criterion that takes least time is used as the first criteria and is followed

by the criterion that takes comparatively higher time for search. Assembly statistics is

Assembly Repository

Content Based Assembly
Search Tool

(C++ on Windows
MFC for interface

BOOST graph library for
graph data structure

Open Scene Graph libraries
for visualization)

User

Assembly
Signature

Extraction Tool
(Pro/Toolkit)

Pro/E Assembly
Model

Pro/E Assembly Model and .stl Model

Assembly Signature Generation

Content Based Assembly Search

(Includes signatures in neutral
format and Pro/Engineer models)

Search Query:
Find assemblies with
four spherical joints

Figure 7.1: The architecture of the assembly search system

106

purely a string matching based search and thus is the fastest. Joint relations based search

and constituent part based search are string matching based searches which require

iteration over a list. Thus they follow assembly statistics based search. An assembly is

expected to have fewer numbers of joints than the constituent parts because all parts may

not be part of articulated joints. Thus, joints based search will require lesser iteration and

is used before constituent part based search. Part mating based search is the most time

consuming of the criteria and is thus used last and is only used for assemblies that pass

the check for all three previous criteria.

7.2 Libraries used

MFC library provides the graphical user interface (GUI) to the user to define and

edit the query and select the search folder. The software stores the location of last search

in registry and loads the same each time when it is started. The event handler function

and variables of various components of UI provide the data that is stored in the data

structures built using C++.

The data structure provided by BOOST graph library (BGL) is used to store the

query graph and database graphs. The data structure is in the form of an adjacency list.

The graph is in the form of an undirected graph. The parts in the assembly are

represented by the nodes and mating conditions are represented by the edges. The list of

nodes and list of edges is stored in a vector data structure. Each node and edge in this list

can have attributes. The attributes of nodes and edges are stored in a structure.

Many inbuilt functions from BGL have been used in this implementation. The

query graph required for search is a single component graph. To ensure that a single

107

component graph is available the implementation of a function to find the number of

connected components in graph from BGL has been used. The software makes use of the

data structures from standard template library (STL). The list data structure from STL

has been used to store the joint relations and the list of parts besides the extensive use of

list and vector in part mating along with BGL.

Assembly viewer makes use of Open Scene Graph, a high level, object oriented

library written over OpenGL. This library allows viewing capability of the assemblies

with individual .stl files. The library has inbuilt functions to implement the zooming,

panning and rotation capabilities required in a viewer. It also has inbuilt function to apply

a homogenous transformation to representation of any solid body.

7.3 Conventions used in Assembly Design

The software provides the user an option to select characteristics of part or assembly

like part material, the designer from pull down menus. The available options may change

in an organization as the team of designers changes or additional material may be

introduced or some material may be discarded. This standard is maintained by an

organization and needs to be used in the assembly search software. The list of standards

are stored in and read from a XML file. The file stores a list of assembly designers,

standard parts, standards followed while drafting, the list of standard materials for parts,

the type of joints available in Pro/Engineer Wildfire, the type of relations that can be

defined in joints and the type of mating conditions available in Pro/Engineer Wildfire.

This file can be edited without requiring recompiling of the entire application. Thus, an

administrator with the proper authority can add to or delete from this list and extend the

108

scope of search software. The values in this file are read using an XML parser and stored

by the system at start up. The file is stored in the following format.

- <assemblysearchstringlists>

- <names>

+ <list nodetypes="assembly_owner_names">

+ <list nodetypes="assembly_standard_names">

+ <list nodetypes="standard_part_types">

+ <list nodetypes="part_material">

+ <list nodetypes="type_of_joints">

- <list nodetypes="type_of_joint_relation">

 <name ID="61">Parallel</name>

 <name ID="62">Perpendicular</name>

 <name ID="63">Angle</name>

 </list>

+ <list nodetypes="type_of_mating_condition">

 </names>

 </assemblysearchstringlists>

The functions to read the XML file have been borrowed from Arne Gfell. These

functions are a part of his research work with Dr. Gupta.

7.4 Signature File Format

The search software compares the query with the signature of an assembly stored

in the database. The signature of an assembly from database consists of three files. The

first file has an extension sig which is an acronym for signature and contains all

109

information about assembly statistics, and constituent part based search. In particular, the

signature file contains the length, width and height of the bounding box of the assembly,

the diameter of the bounding sphere of the assembly, the number of parts and fasteners in

the assembly, the number of different types of joints in the assembly, the standard

followed in the drafting, the name of the assembly designer and the details of the

constituent parts. The details of the constituent part include the category of the part, the

part name, the location where the part has been stored, the material of the part, the owner

of the part, the file name, the part number assigned to the part and the mass of the part.

The second file has an extension dot and is in the format used by graphviz to represent

assemblies. Graphviz is graph layout software maintained by AT&T systems. The file

contains a numbered list of parts in the assembly. The list of parts is followed by a list of

edges in the graph. This file is read by the code and is stored in a data structure. The file

contains the path of the part, the category of the part, and the mating condition between

parts in the assembly. The third file has an extension jot and stores the relation between

different joints in the assembly. The file contains information about all such joints in the

assembly that have any relation between them.

The format of the dot file is as follows:

graph

{

//node

LINK_SEG2 ; // C:\Assembly_Search_demo\Database\C-clamp\link_seg2.prt

Custom inhouse

LINK_SEG1 ; // C:\Assembly_Search_demo\Database\C-clamp\link_seg1.prt

Custom inhouse

110

INTERCHANGE ; // C:\Assembly_Search_demo\Database\C-

clamp\interchange.prt Custom inhouse

//end node

//edge

LINK_SEG2 -- LINK_SEG1 [label= Align];

LINK_SEG2 -- INTERCHANGE [label= Align];

//end edge

}

The format of the jot file is as follows:

Slider -- Perpendicular -- Slider – 0

The format of the sig file is as follows:

14.190688

3.0000000

10.000000

22.950001

4 0

1

0

0

0

0

0

0

0

0

111

0

0

0

25

35

ISO

JohnHarris

Custom base_roller

C:\Assembly_Search_demo\Database\stewart_platform3\base_roller.prt

Aluminum JohnHarris base_roller.prt BR 3

Custom roll_joint

C:\Assembly_Search_demo\Database\stewart_platform3\roll_joint.prt

Bronze KenTucker roll_joint.prt RJ 3

Custom joint

C:\Assembly_Search_demo\Database\stewart_platform3\joint.prt Iron

JamesBond joint.prt JT 2

Custom cap C:\Assembly_Search_demo\Database\stewart_platform3\cap.prt

Iron JamesBond cap.prt CP 1

The architecture of the software has been designed to easily adapt to a change in

the format of the signature. It can be adapted to read the information from a standard

assembly signature format like the Open Assembly Model (OAM) proposed by the

National Institute of Standards and Research (NIST).

7.5 Query File Format

The search software has the capability to store the query which has been defined.

When a search is stored a query file (qry), a joint relations file (jot) and query graph file

112

(dot) along with the XML representation of the graph are saved in a folder chosen by the

user. The user can load the query from the directory. A user can load an existing query

from the database or define a completely new query. The results of each search are stored

in a file on the computer. The capacity to store a query and store the search results can be

used for iteratively refining the search. A new query can be defined to find a large set of

assemblies. If the query is saved, it can be loaded from the computer and modified to

search within the existing results and locate the desired assembly or set of assemblies

from the database.

7.6 Signature Extraction

This search software system supports CAD data from Pro/Engineer Wildfire

educational edition. All assemblies used in the search to create a database were created

using Pro/Engineer Wildfire Education Edition. Pro/Toolkit provided with Pro/Engineer

was used to extract the data from assembly files. Pro/Toolkit is C language application

programming interface (API) provided with Pro/Engineer. An asynchronous program was

written using this API to extract the signature of the assembly from the database. The

program can extract information about the parts, their names, mating conditions between

parts, the tree structure of the assembly, the material of a part and the mass properties of

the part and the assembly. The mass properties include the mass and density of the parts

and bounding sphere diameter of the assembly. The parameters of the bounding box were

extracted using Open Scene Graph which provides a function to calculate these

parameters. The assembly viewer requires the assembly signature in form of an XML file

and the individual part files in form of .stl files. The Pro/Toolkit program written for this

113

application exports the XML file and .stl files in the format required by the assembly

viewer. The .stl file size needs to be adjusted so that the details in small features of the

part are not lost and the size is not very large for a computer with a limited memory to

read and display. In order to ensure this, experiments were conducted with the size of

triangles in a .stl file based on the bounding sphere diameter of the part. It was visually

observed that a chord length of size equal to a ratio of bounding sphere diameter to 1000

gives the best resolution and speed for loading the parts in the assembly viewer. The

program in Pro/Toolkit is written accordingly to export the .stl files. If the size of the .stl

file expands beyond 5MB, the file is re-exported with larger chord length. In all cases the

angle value for exporting the .stl file is maintained at 1 degree to ensure that finer details

of the part are visible in the .stl file. The program also exports relative positions of all

parts in the assembly with respect to a single coordinate axis. The relative position is in

the form of homogenous coordinates. The assembly viewer software applies the

transformation to individual .stl files and shows each part in its final position in the

assembly.

We could not function to extract information about joints and the relations

between joints in an assembly in Pro/Toolkit. This information has been extracted

manually. The information about the number of different types of joints is recorded in the

signature file and the type of relation between different joints in the assembly is recorded

in the jot file. In addition, the following information is appended manually to the

signature of the assembly: standards followed in drafting, the name of designers for the

constituent part and assembly, the number of fasteners in the assembly, the names of

114

conformance standards used in the assembly design, the rotationally symmetric nature of

the part and the percentage of sheet metal parts in the assembly.

The API program requires the user to select a folder where the Pro/Engineer

assemblies are stored. In then iteratively searches all sub folders and exports assembly

data. The .stl files and XML file is exported in the same directory as the assembly. The

program can extract information from assemblies with multiple levels of hierarchy in its

tree structure. The signature of each assembly is extracted before it can be used in the

database of assemblies. The software does not require any CAD software as it searches

only based on the assembly signature. Since a separate viewer is provided to browse the

assemblies and the results of search, this software is not dependent on any single CAD

system.

The data stored in the signature of the assembly can be extracted from any CAD

software. Most 3D CAD software provide an API using which a program can be written

to extract data from the CAD files. Examples of other such API programs are UG/Open

API for Unigraphics and CATIA CAA for CATIA. Once such data is extracted from

CAD, the assembly search software can be used to search assemblies. Thus this software

can be used for searching assembly designed in any CAD system. It can also be used to

search in a database that contains assemblies designed using multiple CAD software.

7.7 System Output

The software displays the results as thumbnails in a pop up window. The window

shows the jpeg image of the assemblies that matches with the query. The user can

visually browse the results in the window. The user can see the name and location of each

115

matching assembly file which is printed below each image. The figure 7.2 shows the

output of the system. This window does not provide the user with any additional viewing

capabilities like zooming in or out or rotate, panning. It also does not provide the user

access to the hierarchical tree structure of the assembly. Additional software has been

provided that has all the capabilities and allows the user to browse the results or the

assemblies in the database. The user can double click on an image of any matching

assembly shown in the pop up window to launch the assembly viewer. Double click on

separate images results in multiple sessions of the assembly viewer.

 Figure 7.2: Output window of the assembly search software

116

7.8 Assembly Viewer

The results are displayed using the Assembly Viewer software as shown in the

figure 7.3. Assembly Viewer provides an OpenGL based representation of the assembly

files. To implement OpenGL based representation, Assembly Viewer uses Open Scene

Graph library which is a higher level library built on top of OpenGL. The viewer has the

capability to hide parts in the assembly. It has rotate and pan capabilities of a 3D graphics

viewer. The viewer shows the tree structure of the assembly. The selection of a part for

hiding can be done either on the graphics screen or by clicking on a part in the assembly

tree structure. This viewer is used with assembly search as a tool to view the matching

assemblies in details. It can also be used an independent tool to view the assemblies in

the database instead of viewing them in the CAD system.

Figure 7.3: Assembly viewer with tree structure on the left and geometry view on the right

117

7.9 Statistics of assembly database

The database consists of 50 assemblies. The numbers of parts vary between 2 and

107. The largest assembly has a bounding sphere radius equal to 169 inches and

bounding box length equal to 91, width equal to 115 and height equal to 113 inches. The

highest numbers of joints in any assembly are 6. The smallest assembly has a bounding

sphere radius of 0.5 inches and bounding box length of 0.3 inches, width of 0.4 inches

and height of 0.3 inches.

7.10 Interface to Define Search

 Figure 7.4 shows the main window to define search path.

Figure 7.4: Main window to define search path and define queries

118

Figure 7.5 shows the interface to define search based on assembly statistics.

Figure 7.5: Interface to define search criteria based on assembly statistics

119

Figure 7.6 shows the interface to define search based on constituent parts.

Figure 7.6: Interface to define constituent part based search

120

Figure 7.7 shows the interface to define a constituent part.

Figure 7.7: Dialog to define a constituent part

121

Figure 7.8 shows the interface to define search based on mating conditions

between parts.

Figure 7.8: Interface to define query graph for part mating conditions based search

122

Figure 7.9 shows the interface to add a node to the query graph.

Figure 7.9: Dialog to define node in the query graph for
search based on part mating conditions

123

Figure 7.10 shows the interface to define search based on joint relationship.

Figure 7.10: Interface to define search based on joint relationships

124

Figure 7.11 shows the interface to add a joint relationship to the query.

Figure 7.11: Dialog to define a joint relationship

125

Chapter 8

CONCLUSION AND FUTURE WORK

This chapter is arranged in the following manner: Section 8.1 describes the

contributions of this research, Section 8.2 lists the anticipated benefits from this research

and Section 8.3 describes the future work in this field of research.

8.1 Research Contributions

Content based assembly search: This research work describes a comprehensive

framework for performing content-based search for mechanical assemblies. The search

definition templates support a wide variety of search queries that can be posed to the

system. Search definition templates described in this thesis spans nearly all aspects of the

assembly model. Hence, it provides a designer with a very expressive search definition

capability. A variety of search options are provided to allow users to define from very

narrow to very broad searches based on their needs.

Iterative search with refined criteria for faster computations: Searches can be

iteratively refined to better direct the search. The search has been categorized to enable

the user to define search criteria that can be used to search for multiple assemblies over a

large database. One can first use computationally faster search criterion to narrow down

the search and then subsequently use computationally expensive search criterion. This

search criterion can then be used to search only on the results obtained in the previous

search results. The number of assemblies for the computationally expensive search

126

criteria can thus be reduced to get results in lesser time as compared to applying the

computationally expensive criteria over the entire database of assemblies. Search results

can be browsed through a combination of images and a convenient visual interface of the

assembly viewer.

Pruning search space for lesser computation: Conservative pruning used by search

algorithms ensures efficient search performance and at the same time does not exclude

results that might be of interest to the user. In case of search criteria defined for multiple

criteria, the system ranks the search criteria. The ranking gives highest priority to a search

criteria that will reduce the search space. Thus, progressively the search space is reduced

and the more computationally expensive search criteria are used for less number of

assemblies from the specified database.

Solution of the graph compatibility problem: A problem similar to subgraph

isomorphism, termed in this thesis as graph compatibility, is solved for nodes and edges

with attributes. This research work deals with partially specified query graph and uses

depth first search combined with six pruning criteria to determine compatibility of the

query graph with graphs in the database. We have shown that this approach works well

with small query graph.

8.2 Anticipated Benefits

Reduced design time with better searching: We expect that the system described in

this thesis will serve three purposes. First, it will allow designers to reuse existing

assemblies by giving them a means to identify assemblies with the desired characteristics.

A large part of designer’s time is lost in redesigning solutions for similar problems or for

127

searching the database for earlier design attempts. This research is a further step on

geometry based search and text based search as it allows content based search. The

search time for assemblies can be reduced using this system. This system allows defining

a search based on all characteristics of assemblies defined in a CAD system.

Access to design knowledge in legacy designs: It will provide designers an access to the

DFMA knowledge contained in the assembly database, and hence transfer best practices

to new designs. This capability can also be used by new designers to learn the design

principles followed in the organization. These capabilities will eventually lead to further

cutting down the design time required for assemblies.

CAD independent cost effective search: This research also attempts to separate search

functionality and the proprietary CAD data. Thus, this system can be used by

organizations that use multiple CAD systems. In addition, the capability to search

assemblies independent of any CAD leaves the more costly CAD software free for design

work.

8.3 Future Work

CAD API programs for extracting assembly signature: The current implementation

works only with the assembly characteristics available in Pro/Engineer CAD system to

build the signature of the assembly. The search tool can be extended to search assemblies

from other CAD systems. This would require the API programs for each CAD system to

extract the signature of the assembly from the CAD software.

Inclusion of function based search: An assembly can be defined as a collection of parts

to fulfill a function. The function of the assembly is thus the primary characteristic of an

128

assembly. However, a function of an assembly is not always explicitly stored in CAD

files. Often, the function of an assembly cannot be inferred from its geometric

characteristics. Hence, the designer cannot search for a design fulfilling a particular

function. Further research needs to be done to extend this work to support queries based

on functions.

Extension of search for assemblies beyond mechanical domain: The proposed search

method works only on the basis of the form related characteristics of the assembly. This

search is thus not applicable to assemblies that have characteristics from other domains of

engineering like electromechanical or electrochemical engineering. Further research

needs to done identify characteristics from these domains and algorithms to search based

on these characteristics need to be identified.

Ensuring availability of data for creation of assembly signature: The search also

works on the assumption that the designer explicitly defines joints and mating conditions

or such relations can be implicitly extracted to form a signature of the assembly. If this

data is not available, the assembly cannot be included in the search and this may result in

false negatives during the search process. Further research needs to be done to infer the

data about mating conditions and joints in an assembly where the designer has not

specified it.

129

BIBLIOGRAPHY

[Anan96] R. Anantha, G.A. Kramer, and R.H. Crawford. Assembly modelling by

geometric constraint satisfaction. Computer Aided Design, Vol. 28, No. 9,

pp. 707-722, 1996.

[Besp03] D. Bespalov, W.C. Regli, and A. Shokoufandeh. Reeb Graph Based Shape

Retrieval for CAD. In Proceedings of 23rd ASME DETC Computers And

Information In Engineering (CIE) Conference, Chicago, Illinois, 2003.

[Bohm05] M.R. Bohm, J.P. Vucovich, and R.B. Stone. Capturing Creativity: Using a

Design Repository to Drive Concept Innovation. Proceedings of ASME

Design Engineering Technical Conferences, Long Beach, California,

September 2005.

[Boos06] Boost Graph Library. http://www.boost.org/libs/graph/doc/

[Boot94] G. Boothroyd. Product design for manufacture and assembly. Computer

Aided Design, Vol. 26, No. 9, pp. 505-520, 1994.

[Brun00] G. Brunetti, and B. Golob. A feature-based approach towards an integrated

product model including conceptual design information. Computer Aided

Design, Vol. 32, No. 14, pp. 877-887, 2000.

[Card03] A. Cardone, S.K. Gupta, and M.V. Karnik. A survey of shape similarity

assessment algorithms for product design and manufacturing applications.

Journal of Computing and Information Science in Engineering, Vol. 3,

No. 2, pp. 109-118, 2003.

130

[Card04] A. Cardone, S.K. Gupta, and M.V. Karnik. Identifying similar parts for

assisting cost estimation of prismatic machined parts. In Proceedings of

the ASME Design for Manufacturing Conference, Salt Lake City, Utah,

2004.

[Card05] A. Cardone, A Feature-Based Shape Similarity Assessment Framework.

Ph.D. Thesis, University of Maryland, College Park, Maryland 2005.

[Card06] A. Cardone, and S. K. Gupta. Shape Similarity Assessment Based on Face

Alignment using Attributed Applied Vectors. CAD Conference, Phuket

Island, Thailand, June 2006.

[Chak05a] T. Chakraborty, S. Venkataraman, and M. Sohoni. A fast 3D Shape Search

Technique For 3D Cax/PDM Repositories. Technical Paper, Society Of

Manufacturing Engineers, August 2005.

[Chak05b] T. Chakraborty. Shape-Based Clustering Of Enterprise CAD Databases.

Computer Aided Design and Applications, Vol. 2, No. 1-4, pp. 145-154,

2005.

[Cici00] V. Cicirello, and W.C. Regli. Managing Digital Libraries for Computer-

Aided Design. Computer Aided Design, Vol. 32, No. 2, pp. 119-132, 2000.

[Cici01] V. Cicirello, and W.C. Regli. Machining feature-based comparisons of

mechanical parts. In Proceedings of the International Conference on

Shape Modeling & Applications, Genoa, Italy, 2001.

[Cord04] L.P. Cordella, P. Foggia, C. Sansone, and M. Vento. A (Sub)Graph

Isomorphism Algorithm for Matching Large Graphs. IEEE Transactions

131

On Pattern Analysis And Machine Intelligence, Vol. 26, No. 10, October

2004.

[Corn03] J. Corney, H. Rea, D. Clark, J. Pritchard, R. MacLeod, and M. Breaks.

Coarse Filters for Shape Matching. IEEE Computer Graphics and

Applications, Vol. 22, No. 3, pp. 65-74, 2003.

 [DeFa87] T. De Fazio, and D. Whitney. Simplified generation of all mechanical

assembly sequences. IEEE Transactions on Robotics and Automation,

Vol. 3, No. 6, pp. 640-658, 1987.

[Desh05] A.S. Deshmukh, S.K. Gupta, M.V. Karnik, and R. Sriram. A system for

performing content-based searches on a database of mechanical

assemblies. In ASME International Mechanical Engineering Congress &

Exposition, Orlando, Florida, November 2005.

[ElMe03] M. El-Mehalawi, and R. A. Miller. A Database System Of Mechanical

Components Based On Geometric And Topological Similarity, Part II:

Indexing, Retrieval, Matching, And Similarity Assessment. Computer-

Aided Design, Vol. 35, No. 1, pp. 95-105, 2003.

 [Fort96] S. Fortin. Graph isomorphism problem. Technical Report 96-20,

University of Alberta, Edmonton, Alberta, Canada, 1996.

 [Fuch00] F. Fuchs, and H. Le-Men. Efficient Subgraph Isomorphism with ‘A Priori’

Knowledge. Lecture Notes in Computer Science, Vol. 1876, pp. 427-436,

2000.

132

[Funk03] T. Funkhouser, P. Min, M. Kazhdan, J. Chen, A. Halderman, D. Dobkin,

and D. Jacobs. A Search Engine For 3D Models. ACM Transactions on

Graphics, Vol. 22, No. 1, pp. 83-105, 2003.

[Gupt01] S.K. Gupta, C.J. Paredis, R. Sinha, and P.F. Brown. Intelligent assembly

modeling and simulation. Assembly Automation, Vol. 21, No. 3, pp. 215-

235, 2001.

[Gupt06] S.K. Gupta, A. Cardone, and A. Deshmukh. Content-Based Search

Techniques for Searching CAD Databases. CAD Conference, Phuket

Island, Thailand, June 2006.

[Hila01] M. Hilaga, Y. Shinagawa, T. Kohmura, and T.L. Kunii. Topology

matching for fully automatic similarity estimation of 3D shapes. In

Proceedings of the 28th Annual Conference on Computer Graphics and

Interactive Techniques, Los Angeles, California, August 2001.

[Home91] L.S. Homem de Mello, and A.C. Sanderson. A correct and complete

algorithm for the generation of mechanical assembly sequences. IEEE

Transactions on Robotics and Automation, Vol. 7, No. 2, pp. 228-240,

1991.

[Iyer04] N. Iyer, S. Jayanti, K. Lou, Y. Kalyanaraman, and K. Ramani. A Multi-

Scale Hierarchical 3D Shape Representation For Similar Shape Retrieval.

In Proceedings Of Tools and Methods for Competitive Engineering

Conference, Lausanne, Switzerland, April 2004.

133

 [Karn05a] M.V. Karnik, S.K. Gupta, and E.B. Magrab Geometric Algorithms for

Containment Analysis of Rotational Parts. Computer Aided Design, Vol.

37, No. 2, pp. 213-230, 2005.

[Karn05b] M.V. Karnik, D.K. Anand, E. Eick, S.K. Gupta, and R. Kavetsky.

Integrated visual and geometric search tools for locating desired parts in a

part database. CAD Conference, Bangkok, Thailand, June 2005.

[Karn05c] M.V. Karnik, S.K. Gupta, D.K. Anand, F.J. Valenta, and I.A. Wexler.

Design Navigator system: A case study in improving product development

through improved information management. In ASME Computers and

Information in Engineering Conference, Long Beach, California,

September 2005.

[Khos89] P Khosla, and R Mattikalli. Determining the assembly sequence from a 3D

model. Journal of Mechanical Working Technology, Vol. 20, pp. 153-162,

1989.

[Ko03] K.H. Ko, T. Maekawa, and N.M. Patrikalakis. An Algorithm for Optimal

Free-Form Object Matching. Computer Aided Design, Vol. 35, No. 10, pp.

913-923, 2003.

[Ko05] K.H. Ko, T. Maekawa, and N.M. Patrikalakis. Algorithms for Optimal

Partial Matching Of Free-Form Objects With Scaling Effects. Graphical

Models, Vol. 67, No. 2, pp. 120-148, 2005.

[Kope05] J.B. Kopena, C.D. Cera, and W.C. Regli. Conceptual Design Knowledge

Management and the Semantic Web. ASME 2005 International Design

134

Engineering Technical Conference and Computers and Information in

Engineering Conference, Long Beach, California, September, 2005.

[Lamo06] M. Lamont, http://linux.wku.edu/~lamonml/index.html

[Lee85] K. Lee, and D.C. Gossard. An hierarchical data structure for representing

assemblies: part 1. Computer-Aided Design, 17 (1):15-19, 1985.

[Lee93] S Lee, G. Kim, and G. Bekey. Combining assembly planning with

redesign: An approach for more effective DFA. In Proceedings of the

IEEE International Conference on Robotics and Automation, Atlanta, GA,

1993.

[Leve66] V. Levenshtein. Binary codes capable of correcting deletions, insertions

and reversals. Soviet Phys. Dokl., Vol. 6, pp. 707-701, 1966.

[Li04] Z. Li, M. Liu, and K. Ramani. Review of product information retrieval:

representation & indexing. In Proceedings of the ASME Design

Engineering Technical Conferences, Salt Lake City, Utah, 2004.

[Lou04] K. Lou, S. Prabhakar, and K. Ramani. Content Based Three Dimensional

Engineering Shape Search. In Proceedings Of 20th International

Conference On Data Engineering, Boston, Massachusetts, 2004.

[Merr06] http://www.merriampark.com/ld.htm

[Mess98] B.T. Messmer, and H. Bunke. A decision tree approach to graph and

subgraph isomorphism detection. Pattern Recognition Vol. 32, Issue 12,

pp. 1979-1998, 1999.

[McWh01a] D. McWherter, M. Peabody, A. Shokoufandeh, and W.C. Regli.

Transformation invariant similarity assessment of solid models. In

135

Proceedings of the ASME Design Engineering Technical Conference,

Pittsburgh, Pennsylvania, 2001.

[McWh01b] D. McWherter, M. Peabody, A. Shokoufandeh, and W.C. Regli. Solid

Model Databases: Techniques And Empirical Results. Journal Of

Computer And Information Science In Engineering, Vol. 1, No. 4, pp.

300-310, 2001.

[Min02] P. Min, J. Chen, and T. Funkhouser. A 2D Sketch Interface for a 3D

Model Search Engine. SIGGRAPH 2002 Technical Sketches, San Antonio,

Texas, July 2002.

 [Moll93] E. Molloy, H. Yang, and J. Browne. Feature-based modelling in design for

assembly. International Journal of Computer Integrated Manufacturing,

Vol. 6, No. 1-2, pp. 119-125, 1993.

[Nand05] J. Nanda, T.W. Simpson, S.B. Shooter and R.B. Stone. A Unified

Information Model for Product Family Design Management. ASME 2005

International Design Engineering Technical Conference and Computers

and Information in Engineering Conference, Long Beach, California,

September 2005.

[Noor02] A. Noort, G.F.M. Hoek, and W.F. Bronsvoort. Integrating part and

assembly modeling. Computer-Aided Design, Vol. 34, No. 12, pp. 899 -

912, 2002.

[Nore06] http://www.norecs.com/images/flangeT4_web.jpg accessed on November

17, 2006

136

[Osad01] R. Osada, T. Funkhouser, B. Chazelle, and D. Dobkin. Matching 3D

models with shape distributions. In Proceedings of the International

Conference on Shape Modeling and Applications, Genova, Italy, 2001.

[Osad02] R. Osada, T. Funkhouser, B. Chazelle, and D. Dobkin. Shape

Distributions. ACM Transactions On Graphics, Vol. 21, No. 4, pp. 807-

832, 2002.

[Pu05] J. T. Pu, and K. Ramani. A 2D Sketch Based User Interface for 3D CAD

Model Retrieval. Journal of Computer Aided Design and Application, Vol.

2, pp. 717-727, 2005.

[Proe04] Pro/Engineer Wildfire documentation, 2004.

[Pros06] http://www.prosthetics-orthotics.net/Hip7.JPG accessed on November 17,

2006

[Rach06] S. Rachuri, Y.H. Han, S. Foufou, S.C. Feng, U, Roy, F. Wang. R.D.

Sriram, and K.W. Lyons. A Model for Capturing Product Assembly

Information. Journal of Computing and Information Science in

Engineering. Vol. 6, pp. 11-21, 2006.

 [Rame01] M.M. Ramesh, D.Y. Hoi, and D. Dutta. Feature-based shape similarity

measurement for retrieval of mechanical parts. Journal of Computing and

Information Science in Engineering, Vol. 1, No. 3, pp. 245-256, 2001.

[Rein77] E.M. Reingold, J. Nievergelt, and N. Deo. Combinatorial Algorithms:

Theory and Practice. Prentice Hall, 1977.

[Saak04] A. Saaksvuori and A. Immonen. Product Lifecycle Management. Springer,

2000.

137

[Shaf05] J. Shaffer, J.B. Kopena, and W.C. Regli. Web Service Interfaces for

Design Repositories. ASME 2005 International Design Engineering

Technical Conference and Computers and Information in Engineering

Conference, Long Beach, California, September, 2005.

 [Shah93] J.J. Shah, and M.T. Rogers. Assembly modeling as an extension of

feature-based design. Research in Engineering Design, Vol. 5, No. 3-4,

pp. 218-237, 1993.

[Sung02] R. Sung, H.J. Rea, J.R. Corney, D.E.R. Clark, J. Pritchard, M.L. Breaks,

and R.A. MacLeod. Assessing the effectiveness of filters for shape

matching. In Proceedings of the ASME International Mechanical

Engineering Congress & Exposition, New Orleans, Louisiana, 2002.

[Ullm76] J.R. Ullmann. An Algorithm for Subgraph Isomorphism. Journal of the

Association for Computing Machinery, Vol. 23, No. I, pp. 31-42, 1976.

[Wang90] N. Wang, and T.G. Ozsoy. Representation of Assemblies for Automatic

Tolerance Chain Generation. Engineering with Computers. Vol. 6,

Number 2, pp. 121-126, 1990.

[Yu04] E. Yu, and X. Wang. A Subgraph Isomorphism Algorithm Based on

Hopfield Neural Network. Lecture Notes in Computer Science, Vol. 3173,

pp. 436-441, 2004.

