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This dissertation examines the conversion decision of a landowner from an undeveloped or 

agricultural use to a subdivision in the presence of an active housing market and an active land 

preservation program. It utilizes a unique panel dataset and incorporates a real options 

framework to evaluate the impacts of housing market volatility on conversion timing. At the 

same time, this work evaluates the impact of a preservation program on the timing of conversion. 

Typical program evaluation of this type focuses on quantity or quality of acres enrolled. This 

work focuses on the timing of the conversion decision and involves a potential program benefit 

that is not related to enrollment in the preservation program itself. The benefit of a delayed 

conversion decision is a desirable outcome for the county even if parcels ultimately convert to a 

developed state. Hazard models are estimated which account for multiple exit states, i.e. 

competing risks, of conversion or preservation and correlation among these competing risks is 

modeled. Results of these models suggest that price volatility, as well as eligibility for the 

preservation program, significantly delays conversion decisions. The median estimated delay 

induced by easement eligibility ranges from 7 years to over 20 years depending on parcel size. 



However, enrollment in a preservation easement may impact neighboring land use 

decisions in the presence of spillover effects. That is, an enrolled parcel may attract development 

in the sense that neighboring parcels become more likely to convert. A propensity score 

matching procedure is utilized to quantify the spillover effect of preservation activity on future 

surrounding land conversion decisions. The propensity score estimation approach allows a semi-

parametric estimate which controls the non-random selection or endogeneity of preservation 

activity. Results of this model suggest that parcels neighboring recent preservation activity are 

almost three times more likely to convert than similar parcels without a newly preserved 

neighbor. 
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1. Introduction and Policy Environment 
 

There has been much discussion about the pace of land use change in recent 

decades especially in ex-urban areas of the country.1   In many areas land use change 

has taken the form of forest or farmland converting to low density residential use. 

According to a recent government publication approximately 80% of the nearly 2 

million acres of land recently used for new housing is located outside urban areas 

(Heimlich and Anderson, 2001). Although accurate statistics are difficult to obtain 

about the rate or amount of conversion in any particular area, the level of concern 

expressed by local governments in many states provides, at a minimum, indirect 

evidence for the prevalence of this land conversion issue. Many local governments 

have responded to this conversion activity by implementing policies to preserve land 

in openspace (farmland) or by enacting regulations to slow the pace of development; 

some have done both. Since 1988, over 53 localities have passed more than $111 

billion in conservation measures and these referenda have been exceedingly popular 

with over 75% of such measures passing (Trust for Public Land, 2007).  

  Because directly regulating development is both politically and legally 

difficult, jurisdictions are looking toward incentive based mechanisms to manage the 

pace and pattern of urban growth and the conversion of agricultural land. Under one 

such mechanism, landowners voluntarily receive payment for agreeing to forego 

conversion and accept easements placed on their land. Since the first ‘purchase of 

development rights’ (PDR) program was implemented in 1974, over 53 state and 

                                                 
1 Exurban areas are defined as locations outside of metropolitan areas but within their ‘commuter-
shed’. Virtually all of Howard County meets this definition. 
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local governments have collectively spent almost $3.723 billion in public funds to 

preserve nearly 1.67 million acres in the U.S. (American Farmland Trust, 2005). In 

2002 the Federal government authorized $986 million in matching funds for farmland 

preservation for the 2002-2006 period. PDR programs enjoy continued taxpayer 

support; in 2003 alone, $700 million in state and local ballot measures were passed to 

provide funding for farm and ranch land protection (Trust for Public Land).  

In urbanizing areas where landowners can choose to reap immediate financial 

windfalls through development, PDR’s offer an alternative that allows them to 

continue farming while receiving remuneration for their development rights. 

Empirical studies have characterized decisions to participate in PDR programs (e.g., 

Nickerson, 2000; Duke, 2004), or evaluated efficiency and distributional aspects of 

these programs (Nickerson and Barnard, 2004; Lynch and Musser, 2001; Lynch and 

Lovell, 2003). 

Given the significant costs involved in preserving farmland – which averages 

approximately $2,000 per acre nationally (American Farmland Trust) but varies 

greatly over regions of the country – government agencies are increasingly interested 

in the effectiveness of PDR programs. A couple of studies have considered the effects 

of preservation programs on rates of urban development and found limited evidence 

that these programs slow land conversion rates (Lynch and Carpenter, 2003; Lynch 

and Liu, 2007). Other studies suggest that PDR programs may actually hasten the 

development of adjacent parcels by making this land more valuable in residential use, 

due to a positive spillover effect (e.g., Irwin, 1998; Irwin and Bockstael, 2002; 

Geoghegan, Lynch, and Bucholtz, 2003; Roe, Irwin, and Murrow-Jones, 2004).  
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Until recently, no studies had explored the effects of the existence of PDR 

programs on land development decisions themselves. In a paper that arose from 

preliminary work on this dissertation (Towe, Nickerson and Bockstael, 2008), we 

consider the impacts of a preservation program on conversion decisions but we 

implement a class of models that is potentially inadequate in fully describing the 

conversion decision. This dissertation estimates a class of models that accounts for 

two primary shortfalls of the previous work, incorporation of multiple exit states and 

unobservable heterogeneity of landowners and land parcels. 

Chapters 2-5 of this dissertation explore how the existence of an option to 

participate in a PDR program affects landowners’ development decisions. This is 

done by utilizing a theoretically appropriate model that matches the true decision 

environment where the choice set of eligible landowners includes enrollment in an 

easement, conversion, or the status quo. Even if a landowner chooses not to preserve, 

the existence of an option to do so may alter the time at which conversion occurs. 

Results from real options theory suggest that this may be the case – and, in particular, 

that the existence of the PDR option may delay conversion decisions.  

With any program, incentive based or regulatory, there are often unintended 

consequences. Inevitably, the question which arises from these farmland preservation 

programs concerns the impact on neighboring parcels. If surrounding land use has an 

effect on the value of a parcel in a given land use, then it follows that surrounding 

land use will also have an effect on the likelihood of a parcel being developed. In the 

presence of such interaction effects, policies that alter development decisions can 

alter the likelihood of development of parcels other than those directly affected by the 
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policy. The existence of interactions among neighboring parcels leads logically to 

path dependence in land use and pattern change. Concisely stated, do perpetual 

easement programs change the likelihood of development for the surrounding 

parcels?  Previous work attempting to evaluate the impact of openspace on 

surrounding property values by Irwin (1998) and others suggests this is likely the 

case. Chapters 6 and 7 address the spillover effect of enrollment in the preservation 

program on neighboring parcels by utilizing an econometric technique to control for 

the endogeneity of preservation activity. An increase in the probability of conversion 

for surrounding parcels might mitigate the ability of the preservation activity to 

protect the rural landscape. 

In summary, many proponents of land preservation focus on directly 

measurable quantities like the number of acres preserved as a measure of program 

success, but the benefits and costs of these programs likely extend beyond the 

quantity of land preserved. More difficult to measure goals, but ones often voiced by 

local governments, include maintenance of a functioning rural landscape and a curb 

on urban expansion.2  This dissertation considers the possibility that these programs 

may generate benefits beyond those provided by the farmland enrolled in the 

programs by delaying development and allowing the county time to build 

infrastructure to meet the demands of recent urban expansion.3  But it also addresses 

in part the possibility that the program, by creating pockets of permanently preserved 

land, may attract surrounding development activity.  

                                                 
2 Both farmland preservation and these additional ‘farmland’ benefits do come at a cost, however: the 
foregone benefits associated with development. Whether the one outweighs the other is not at issue in 
this paper. 
3 This is the stated goal of many land use policies such as Adequate Public Facilities Ordinances. 
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 1.1 Policy Environment  

 
Because of the nature of property rights in the U.S., a limited number of policy 

instruments are available to the public sector to affect land use pattern and land use 

change. Land use policies are implemented at the state or local level and so can vary 

considerably across regions of the country. However, all are subject to challenges 

under the ‘Takings Clause’ of the U.S. Constitution, which restricts the degree to 

which public actions are allowed to affect the market value of a parcel and therefore 

the extent to which direct land use control is possible.  

The study area for the empirical portion of this paper is Howard County in the 

state of Maryland (see Figure 1.1), so described below are the types of land use 

controls that are typically implemented in this region. While zoning ordinances serve 

to restrict the location of commercial and industrial uses, it is typically not possible to 

prohibit residential development except under very special circumstances (such as 

particularly extreme environmental conditions). Mentioned here are four common 

types of policies that attempt to affect the spatial pattern of residential development. 

In each case, the policies are designed so as to have differential effects across 

locations within a given locality. 

• Regulations that require different configurations of development in different 

regions of the locality. Zoning stipulates the maximum overall density of new 

residential development in any given area. In recent years, many counties in 

Maryland facing development pressure have attempted to protect rural areas 

by ‘down-zoning’ (reducing the maximum allowable densities) in order to 

make development less profitable in those areas. Some have also introduced 
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the concept of clustered development. Although the total number of housing 

lots does not change, clustering either allows or requires smaller housing lots 

than would be implied by maximum allowable densities, but clustered on one 

portion of a parcel, leaving the remainder in non-built uses. Zoning 

regulations can also stipulate that a portion of the parcel be set aside in 

common open space, even if clustering is not required. 

• Moratoria that temporarily slow development rates in specific areas. 

Adequate public facilities moratoria can be used by Maryland counties to 

close a school district to further development for up to three years if school 

capacity has been reached. 

• Public works projects that encourage development in some areas by providing 

more public services. Chief among these is the provision of public water and 

sewer service, which reduces infrastructure costs of construction.  

• Programs that support the public purchase of development rights of land 

parcels in specifically targeted areas. These include state and locally funded 

programs to purchase development easements from landowners and thus 

preserve chiefly agricultural lands, although forested lands can be preserved 

under these programs as well. 
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Figure 1.1:  Map of Study Area. 

 

Howard County, Maryland is not an extremely large county in area, totaling 

only 160,000-acres, but it is unique because its location, wealth, and rural history 

combine to create competing preferences for growth and open space preservation. As 

shown in Figure 1.1 Howard lies between Baltimore to its east, Washington, D.C. to 

its south, and the growing city of Frederick to its west. Residents commute to all 

these employment centers, and as such the entire county is in one or another city’s 

‘commuting shed’. Not surprisingly Howard County has experienced heavy 

development pressure over the last several decades. A simple review of the census 

data is quite revealing. Over the course of the study period relevant to this dissertation 

(1991-2001), the population of the county increased from 187,000 to 266,000 (a 41% 
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increase) and median home values rose from $206,000 to $425,000 (in 2000 dollars) - 

a 105% increase. Additional pressure is being exerted by neighboring counties that 

have ‘downzoned’ their agricultural areas to allow only extremely low density 

development (i.e. one house per 15 to 25 acres). In contrast, allowable densities 

outside the public water and sewer service boundaries in Howard County – that is, 

land nominally eligible for agricultural preservation – can be developed at densities of 

one house per 3 to 4.25 acres. 

In Howard County, and indeed in most of the U.S., the primary mechanism 

for land use regulation is zoning which limits the number of units per acre via density 

requirements, open space requirements, and/or environmental restrictions. As a land 

preservation mechanism, zoning is not a very useful tool because zoning regulations 

are impermanent and, in most cases, cannot entirely prohibit land conversion.4  

Prohibitive, or even highly restrictive, zoning is likely to be challenged in court if 

landowners are not adequately compensated. Other than zoning and offering the 

preservation easement option, the county has relied on adequate public facilities 

ordinances to manage the pace and pattern of development. These ordinances allow 

the county to postpone, temporarily, new subdivision construction in any planning 

zone with insufficient school (and, more recently, road) capacity until new 

infrastructure can be built.  

  In this policy environment the Howard County PDR program purchases 

development rights from landowners in perpetuity and thus offers a mutually 

agreeable means for achieving permanent land preservation. In general, PDR 

                                                 
4 Prohibitions on land conversion for environmental reasons are possible in some parts of Maryland – 
particularly along the Chesapeake Bay - but none of these areas exist in Howard County. 
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programs sever the development potential from the land while allowing the 

landowner to pursue any other permitted use of the land. As with many ‘purchase of 

development rights’ programs, Howard County’s program purchases easements that 

prohibit conversion of land to specific non-agricultural uses, with the easement 

attached to the land in perpetuity, thus applying to all future land owners. The 

county’s program is somewhat unique, however, in that the enrollment process is not 

bureaucratically cumbersome. In contrast, the state of Maryland’s agricultural 

preservation program (MALPF – Maryland Agricultural Land Preservation 

Foundation), in operation since 1977, requires landowners to enroll in an agricultural 

district prior to selling easements. This constitutes a burden in a rapidly developing 

landscape. By the late 1980’s, the terms of the county’s program had become so 

favorable relative to the state’s program that Howard County landowners universally 

chose the former over the latter. The county program paid over 3 times the price per 

acre offered under the MALPF program. 

1.1.1 Preservation Program Details 

 
When Howard County instituted the PDR program in 1980, about 34 percent 

of its 161,408 acres were in farmland. The goal of the program was to enroll 30,000 

acres. Over the decades of the 1980’s and 90’s, more than 16,000 acres (at a cost of 

approximately $193 million dollars) were preserved in a PDR program while 

approximately 20,000 acres of the county were developed in residential uses.5  These 

16,000-plus preserved acres represent about 10% of Howard County’s land.  

                                                 
5 With the exception of some MALPF preservations in the early years, most of these 16,000 acres were 
preserved in the Howard County preservation program. 
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  To qualify for the county PDR program, a parcel must be at least 100 acres; 

parcels at least 25 acres qualify if adjacent to at least 50 acres of preserved farmland. 

Eligibility requires 50% of land to be in the best soil classes and 66% in the top four 

of six land capability classes, as defined by the NRCS.6  In addition, only parcels not 

served by public sewer and water are eligible. The price a landowner can expect to 

receive for an easement in the county PDR program is based on a published, publicly 

available, formula. For example, the county pays a higher price for parcels with better 

soils, more surrounding agricultural land, less erosion or drainage problems, and more 

actively farmed land in the production of food or fiber. The amount of public road 

frontage also adds value to a parcel in enrollment, for an example price formula 

worksheet see Appendix A.  

The county ranks the applications based on the same criteria as in the pricing 

formula together with subjective information on the parcel’s contribution to the 

farming industry (for example, farms with feed distribution facilities are ranked 

higher) and its viability in farming. Landowners are entitled to develop “family lots” 

while enrolled in the preservation program at a density of one lot per 50 acres 

enrolled. These family lots are meant to encourage farm transfers between 

generations, but there are no restrictions on the sale of these lots so landowners 

willing to forgo or limit this entitlement receive higher rankings. Parcels whose 

owners have offered to sell their easements are ranked on the basis of the above 

considerations and the county extends offers until funds are exhausted in each year. 

Deadlines for application are typically in November and decisions are made by the 

                                                 
6 These eligibility requirements remained constant during the study period, but were slightly modified 
in 2003.  
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county in the following spring. To address environmental concerns each preserved 

farm must file a conservation plan with the county.  

Over the life of the Howard County Agricultural Preservation Program, 

funding has been an issue. Parcels were preserved during the 1980’s under a lump 

sum payment option which limited the amount of enrollment due to the significant 

payments coming from the county. In 1988 significant funds were appropriated (55 

million) and again in 2000 (15 million), leading to easement purchases in 1990-97 

and 2002 to the present, respectively.  

In addition to the funds injected into the program, financing and payment 

changes were made in 1988. First, the financing system was converted from a one-

time payout to a tax free installment payout for 30 years and a balloon payment for 

the full easement amount at term end. From the landowners’ perspective this greatly 

eased the tax consequences of enrollment and from the county’s perspective this 

allowed the financial outlay to be spread across many years enabling more 

enrollments in each year. For example, a landowner with 100 acres receiving $6,000 

an acre would initially have received a one-time easement payment of $600,000. 

Under the new terms, the landowner would receive a tax exempt payment each year 

of 6.5% of the easement value and at the end of the term a balloon payment of the full 

easement value, resulting in payments of over 1.7 million to the landowner but spaced 

out over 30 years. The county finances the payments by buying a bond to cover the 

principal amount, resulting in a first year outlay of approximately $60,000 rather than 

$600,000. This new system has enabled the county to purchase many more easements 

per year than prior to the changes. 
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The second major change concerned the funding source. As of 1988 the 

funding was tied to a 0.25% tax on real estate sales transactions, so that funding was 

secured via activity in the development market and future funding could be reliably 

forecast. Additionally a majority of the 5% conversion tax on land losing the 

preferential agricultural tax due to conversion has been dedicated to the PDR 

program. Since 1988 no general fund monies have been used to purchase 

development rights. The maximum payment per acre was set at $6,600 in 19887, 

adjusted to $20,000 in 2001, and is currently at $40,000 an acre. 

From 1998 to 2000 the program had exhausted forecasted funds and no land 

was preserved.8  From the very start of the program, the county’s budget constraint 

was binding. Applicants whose parcels received a relatively low subjective ranking 

were either unable to preserve or experienced delays in the timing of preservation. 

Figure 1.2 shows the distribution of preservation activity over time. Arguably, recent 

decades represent the first time in history that the value of land in exurban counties 

exceeds the value of the productive resources of the land. This PDR program is 

designed to offer existing landowners the ability to extract some of the gains in land 

value that are ordinarily only accessible by converting land to development.   

                                                 
7 For comparison the estimated development value was $15,000 per acre at this time per the county 
documentation proposing the changes to the financing structure. 
8 A budgeting issue prevented enrollment in 1993 as well. 
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Figure 1.2  Distribution of Preservation Enrollments. 
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2. Theoretical Framework 
 

In order to analyze the effects of a land preservation program on development 

decisions, a theoretical model of the timing of development decisions serves as a 

necessary starting point.  

2.1 The Traditional Net Present Value Rule and Extensions 

 

Land conversion occurs when the land use is changed from an undeveloped or 

agricultural state to a developed state. The traditional  economic model used to 

evaluate land conversion decisions implies a landowner will switch land use when the 

discounted stream of returns to development exceeds the discounted returns to the 

status quo land use — either agriculture, forestry, or a natural vegetative state. This is 

a net present value (NPV) approach (Carrion-Flores and Irwin, 2004; Parks, 1995; 

Brownstone and De Vany, 1991; Stavins and Jaffe, 1990).  

Each period in which the land remains in the status quo state the landowner is 

viewed as making a decision about his land. The decision to subdivide is the first step 

in an irreversible development process and thus is the important decision to model for 

land use conversion. Subdivision is expensive to the landowner because it requires a 

change in tax status as well as legal, regulatory, and drafting fees. An alternative end 

state for undeveloped land in the study area is enrollment in the county agricultural 

easement program. In what follows any reference to ‘preservation’ refers to enrolling 
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in an easement program in perpetuity9 and to ‘conversion’ or ‘development’ refers to 

subdividing a parcel into housing lots unless explicitly stated otherwise. The small 

amount of land that is zoned ‘commercial/industrial’ is ignored, as commercial 

development is not an option in areas where preservation is possible. 

Putting the preservation option aside for the moment, the traditional 

conversion decision rule is the net present value rule which suggests a landowner will 

change land use at the moment the return to conversion is greater than the discounted 

sum of future agricultural returns.10  The net present value rule (NPV) prescribes 

conversion when 

(1) D(i,t) -  C(i,t) > β s

s

A i t s
=

∞

∑ +
0

( , ) . 

sβ is the discount rate and A(i, t+s) is the return to agriculture for parcel i in period 

t+s, so that the right hand side of (1) is the discounted net present value of all future 

agricultural returns. C(i,t) is the conversion cost which may include real estate fees 

and infrastructure costs, and D(i,t) is the return to the landowner from subdividing. 

This return might come as a lump sum or a stream of payments. A one-time payment 

occurs if the landowner sells directly to a developer. However if the landowner 

contracts with a developer or undertakes the conversion himself, the return is a stream 

of payments over the course of the lot sales. Unfortunately, detailed transaction 

specific data are not available, making payment structures impossible to distinguish, 

                                                 
9 Throughout the term ‘parcel’ is used to refer to the original, undeveloped land unit and ‘lot’ to refer 
to each of the subdivided land units. 
10 For the moment the analysis will ignore the fact that land not in agricultural use or developed use 
(simply “undeveloped” land) has a negative return stream based on the NPV approach in an accounting 
sense, although it may generate utility to its owner. Since forest use is an agricultural use, the 
“undeveloped” category is a small percentage of land in the exurban area. 
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and from here on the model is presented in terms of a one-time payment to the 

landowner.  

In many exurban areas of Howard County, development returns net of 

conversion costs can be expected to exceed the discounted stream of agricultural 

returns for most parcels, yet we do not observe all parcels immediately converting to 

development. In such areas, the NPV conversion rule implies more land conversion 

than is actually observed. This rule does not take into account expectations that future 

development returns might be growing at a rapid rate, making postponement desirable 

even in the face of high current returns to development. This possibility can be 

captured in a modification of the above rule, such that conversion occurs if the net 

returns to development today exceed the expected net returns if development is 

postponed one period. Development will occur under this rule if: 

 

(2) D(i,t) -  C(i,t) > At(i,t)+ β{ E[D(i,t+1)]-C(i,t+1)} 

 

where E[] is the expectation operator. This framework implies that all parcels will 

eventually be profitable for development and follows from the expectation of no real 

growth in agricultural returns in the region or growth that is slow relative to growth 

in development returns as to be trivial. In exurban areas it may be reasonable to 

assume that as developable land becomes scarce the growth in development returns 

will swamp returns to other uses. The expression in (2) mimics a stochastic dynamic 

programming approach and has formed the basis of previous research on 

development (e.g. Irwin, 1998), where postponement (or the ‘wait’ decision) was 
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attributed to expected ongoing increases in development returns due to land scarcity 

and development pressure from growing populations and/or incomes.  

The alternative end state – preservation – can be introduced into this 

framework. The returns to preservation equal the value of holding the land in 

perpetuity. This is most easily represented as the present value of an infinite stream of 

agricultural returns, but may also include non-monetary utility-generating motives 

such as the value of holding a large tract of land for aesthetic or recreational use or 

the value of preserving a family farm. Defining y as the present value of expected 

returns from the landowner’s optimal decision, and ignoring the non-measurable/non-

monetary returns from preservation, the decision rule is now based on the maximum 

value function:   

(3) y = max{ β s

s

A i t s
=

∞

∑ +
0

( , ) + e(i), E[D(i,t)] – C (i,t), A(i,t)+β( E[D(i,t+1)]-C(i,t+1)}.  

The first term in (3) is the monetary return to preservation, equaling the returns to 

agriculture in perpetuity plus the easement payment, e(i), which varies over parcels. 

The second term is the expected net development return if development is initiated in 

the current period. The third term represents the returns from agriculture in the 

current period plus the discounted expected net returns from postponing development 

until the next period.  

2.2 A Real Options Model of Land Conversion 

 

A key element of the models in expressions (2) and (3) is the term 

representing the value of waiting. The value of waiting to make an investment is 

analogous to a financial option in which having the option to make a decision in the 
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future is of value. Many economists have compared the development decision to the 

exercise of an option (see Capozza and Li, 1994; Capozza and Hensley, 1990; Geltner 

et al., 1996; Plantinga, Lubowski, and Stavins, 2002). Real options are like financial 

options but pertain to real assets such as land.  

Unlike a NPV conversion rule, a real options approach allows uncertainty to 

influence decisions. Specifically, the option to invest in the future has value which 

helps explain why undeveloped parcels exist even when development returns exceed 

returns from the current use. Three characteristics define a real option: 

• The option, once exercised, is irreversible. 

• The decision can be delayed. 

• Uncertainty exists about future payoffs. 

Land conversion exhibits all these features. First, developed land is generally not 

converted back to agricultural land. Second, the decision can be delayed and, in most 

cases, cannot be removed from the parcel owner by right, eminent domain cases 

being the exception. Finally, the payoffs are uncertain because future property values 

are uncertain.  

In most real options models of land use and in the model being proposed here, 

the uncertainty associated with decisions is concentrated in the returns to future 

development. The landowner is assumed to have far less uncertainty over returns to 

current uses (which may be effectively zero or may experience little variation over 

time) and to easement payments (as they follow published county formula). However 

future returns to development – and especially growth in those returns – may be 

highly variable over time, depending on regional growth in population, employment, 
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and incomes, as well as changes in interest rates and in the demographic composition 

of the population. Therefore the primary driver in this model is the uncertainty in 

development returns.  

The basic real options story is outlined in many sources (see Dixit and 

Pindyck, 1994, Ch. 5), so the focus of this discussion is on the key elements relevant 

to the empirical model to be described in the next chapter. The problem is one of 

choosing the optimal time to invest in a project with return of D and an investment 

cost of C. D is assumed to evolve over time following a geometric Brownian motion 

with drift: 

 

(4)     DdzDdtdD σα +=  . 

 

In equation (4), α is the ‘drift’ (i.e. the rate of growth) in expected returns, σ is the 

standard error of the investment value, and dz is an increment of a Weiner process or 

the continuous time equivalent of a random walk. Equation (4) implies that the 

current value of the project is known, but future values are uncertain. 11  The change 

in development value is assumed distributed log normal with a variance that grows 

linearly with the time horizon.12   

                                                 
11 In the land conversion model, the drift and variance parameters are time varying. This does not 
change the interpretation. 
12 Employing techniques described in Marathe and Ryan (2005) the assumption of log normality is 

validated. This is done by testing whether the change in inflation adjusted house prices departs from a 
log normal distribution. Specifically, the difference in the log mean sales prices from year t and t-1, by 
tract, does not violate the null hypothesis of normality using a Shapiro-Wilk test or visually using Q-Q 
plots. 
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In this study D represents the gross return to the landowner from subdividing 

the parcel and selling the resulting lots to households. D is a function of parcel, 

neighborhood, and regional characteristics that are likely to influence development 

returns. The value of the option to convert land in the future is defined by the function 

F(D): 

 

(5)    ])
~

),([(max)( t

t
eCtiDEDF

ρ−−= , 

 

where T is the optimal time of conversion, C
~

 is the cost of conversion including 

opportunity costs of foregoing future agricultural returns, and ρ is the discount rate.13 

C
~

 is assumed to vary little in real terms over the foreseeable time horizon. The option 

will be exercised when the return to investment exceeds the expected capital 

appreciation in the value of the option.  

The solution to the problem must satisfy several conditions, including 

continuity restrictions and an ‘absorbing boundary’ condition - if the option value 

goes to zero it stays at zero. In the land use context, a zero option value would imply 

that the development option is no longer available, which is typically not possible 

unless the landowner enters a preservation easement. Dixit and Pindyck derive the 

solution to the optimal timing decision as: 

 

(6)    CD
~

1−
=∗

ψ
ψ

 , 

                                                 
13 It is necessary for ρ > α. That is, the impatience embodied in the discount rate must exceed the mean 
increase in return. Otherwise, a landowner would always find it optimal to wait to invest. 
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where the term pre-multiplying C
~

represents the wedge between the real options 

investment rule and the neoclassical (NPV) investment rule. The termψ  is a function 

of the drift (α ), standard error (σ ), and a discount rate ( ρ ) and is shown by Dixit 

and Pindyck to be positive and greater than 1. Therefore, in a world of growing 

development returns, the real options rule represents delayed development relative to 

the NPV rule. 

Dixit and Pindyck derive the comparative static results that are the basis for 

inclusion of the variance and drift variables in this empirical application. They show 

that ψ  is decreasing in both drift (α ) and standard error (σ ). Since 

0)1()
~

( 2 <−+−=∂∂ ∗ ψψ ACD , a decrease in ψ  implies a larger wedge between 

investment return and cost. This increases the hurdle to development and delays the 

optimal time to convert. The comparative static results from the options framework 

imply that increases in the variance and drift of the returns to development decrease 

ψ  and thus will tend to delay conversion decisions. The theory of real options is quite 

elegant and intuitive despite the mathematical complexity however testing the 

implications of this theory has proven quite elusive perhaps due to the intense data 

requirements necessary. The next chapter describes the necessary empirical 

framework for testing the theoretical predictions from real options theory. 
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3. The Empirical Framework 
 
  

The initial hypothesis concerns whether or not preservation eligibility affects 

the timing of the development decision. In the event that a statistically significant 

effect is found, it is also of interest to quantify the magnitude of the impact. The last 

chapter framed the decision process for the landowner in the context of an options 

model where the landowner had three choices at any given time - convert, preserve, 

or wait. This section presents an empirical model capable of estimating the 

preservation eligibility impact on the conversion decision as well as the impact of 

price volatility in the time dimension. Although the easement price does not fluctuate 

explicitly with market conditions, qualification for the easement program does 

present an additional option which is expected to enter the decision process of the 

landowner when making land use decisions. 

Many land use studies evaluate conversion decisions utilizing discrete choice 

models as a function of parcel level attributes (Bockstael, 1996; McMillen, 1989; 

Kline and Alig, 1999; Landis and Zhang, 1998). This approach provides insights on 

how parcel attributes affect the probability of conversion but does not account for the 

dynamic environment in which conversion decisions are made. Duration models, on 

the other hand, are particularly useful for studying factors affecting the occurrence 

and timing of decisions and are increasingly applied in a land use context (Mayer and 

Somerville, 2000; Irwin and Bockstael, 2002; Bulan, Mayer, and Somerville, 2002; 

Hite, et al., 2003).  



 

 23 
 

Duration models are employed because the addition of a time dimension 

allows for more sophisticated preservation program evaluation – something more than 

just counting acres preserved. Also, duration models can incorporate time varying 

covariates which help account for the dynamic environment in which land use 

decisions are made. Duration models explicitly take account of the fact that an action 

taken in period t implies the action was not taken in any previous period, T<t. This 

model will be used to test the impacts of the preservation option on the timing of 

conversion and to test the comparative static results from real options theory. In order 

to be more confident in the results, several obstacles must be overcome - most 

importantly the impact of unobserved heterogeneity and the assumption of non-

random censoring.   

This chapter will briefly cover the basics of duration analysis, then highlight 

the issues of unobserved heterogeneity and non-random censoring and mention how 

each will be addressed in estimation. The desired model is one that is robust in the 

presence of unobserved heterogeneity and allows the existence of a competing exit 

state, or risk. In the lingo of duration models, preservation and development outcomes 

are referred to as “risks” and the observed failure event is the act of subdivision or the 

act of enrollment in the preservation program. The fact that multiple risks exist tends 

to greatly complicates analysis but leads to a richer model that closely mimics the 

decision process outlined in the previous chapter. Again, the primary goal of this 

estimation is to quantify the impact of eligibility on development timing in the real 

options framework. However, an important secondary goal is to specify an 
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appropriate parametric functional form for prediction and simulation of future land 

conversion patterns.  

3.1 Duration Analysis – the Basics 

 

An exhaustive review of the concepts of duration models can be found 

elsewhere.14   What follows is a brief summary of the basics and terminology required 

to present the proposed empirical model. Suppose one is concerned with a random 

variable t, the time until an event, and one wishes to know the influence of specific 

covariates x on t. An application of least squares to this type of problem suffers from 

three major problems – it requires data aggregation that will drop time varying 

covariates, it cannot handle censored observations (observations that do not 

experience the ‘event’), and it might predict meaningless negative durations (event 

occurrence before time zero).  

Duration models were developed to address these limitations. Observations 

(spells) are realizations of an underlying random process which can be characterized 

by the probability density function (pdf) 

)Pr()( dttTttf +<≤=   

and the corresponding cumulative density, 

)Pr()()(
0

tTdssftF
t

≤== ∫ , 0≥t , 

where 0≥T denotes the duration until failure and t denotes a particular value of T. By 

assuming f(t) has only nonnegative support eliminates the possibility of negative time 

durations.  

                                                 
14 For detailed surveys see Kalbfleisch and Prentice (1980); Keifer (1988); Lancaster(1990) 
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The survival function, S(t)=1-F(t), is the complement of the cumulative 

distribution function (cdf) and is the mathematical representation of the likelihood of 

surviving until time t. Thus S(t)= )Pr( tT > . The survival function serves as the 

contribution to the likelihood function for observations that do not fail during the time 

under study. These observations are called ‘right-censored’ in the literature. 

Observations that “fail” contribute the value of their pdf to the likelihood function.  

There are two additional functions of interest: the hazard function, )(tλ , and 

the integrated hazard, Λ(t). The hazard function is the instantaneous probability of 

failure in the interval dt assuming survival up to time t:  

(7)   
)(

)(
)|Pr()(

tS

tf
tTdttTtt =≥+<≤=λ . 

The discrete analog to (7) is 

(8)   
t

tTttTt
t

t ∆
≥∆+<≤

=
→∆

)|Pr(
lim)(

0
λ . 

The integrated hazard is given by ∫=Λ
t

dsst
0

)()( λ  and is the total accumulated risk an 

individual has been exposed to by time t.15   

To facilitate estimation, it is necessary to incorporate covariates. This is 

typically accomplished by specifying the individual hazard as 

(9)    )()()( 0 Xtti κλλ = , 

where )(xκ is the systematic part typically specified as exp[Xi β ] and )(0 tλ is the 

baseline hazard common to all observations. This general form is called the 

proportional hazards specification because the effect of covariates is to shift the 

                                                 
15 It is easily shown that S(t)=exp[ )(tΛ− ] . That is, the survival function is directly related to the 

sum of all previous hazards. 



 

 26 
 

hazard proportionally. It is, by far, the most popular model utilized in the hazard 

literature. Since duration models do not aggregate data across time, incorporating 

time varying covariates in this framework is straightforward.  

The most common approach to estimation is maximum likelihood. 

Observations are divided into two groups: observed failures and censored 

observations. As observed failures enter the hazard via their probability density 

functions and censored observations enter through their survival functions, the 

general form of the log likelihood function for N observations is written as 

(10)  ∑
=

−+=
N

i

iiiiii XtSdXtfdL
1

)],(ln[)1()],(ln[ln . 

Xi is observation i’s vector of observed covariates and di is an indicator variable equal 

to 1 if the ith observation fails during the study period and 0 if the observation is right-

censored. From this formula, it is easy to see how hazard models utilize information 

from censored observations via the likelihood contribution of the survival function. 

This formula ignores the possibility of time varying covariates. Including them 

amounts to adding ‘spells’ to the data, where a ‘spell’ is defined as an interval of time 

and the associated quantities relevant to each observation during that interval. That is, 

an observation will contribute multiple spells of data, one for each time interval over 

which covariates remain constant.16     

There are important explicit assumptions involved in estimating a traditional 

hazard model, most noticeably the choice of baseline hazard specification. The next 

section describes an array of hazard models which will be utilized to select the final 

                                                 
16 One should estimate standard errors using appropriate robust techniques that drop the independence 
assumption between observations. 
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form of the dependent competing risks. This discussion will begin by concentrating 

on the parametric assumptions involved in estimating hazard models and the pros and 

cons of imposing various parametric assumptions. These techniques will be utilized 

during estimation to impose necessary restrictions on the general competing risks 

model which will be introduced at the end of this chapter. First the specification of 

the baseline hazard, )(0 tλ , will need to be determined. Then unobserved heterogeneity 

will be incorporated. Last the dependent competing risks model can be estimated 

imposing the necessary distributional assumptions. 

3.1.1  Parametric Baseline Models 

 
If strong prior theoretical or empirical grounds exist to imply a particular form 

for the baseline hazard, a parametric function for )(0 tλ can be imposed. By imposing 

a particular baseline hazard specification the researcher is restricting the shape of the 

baseline hazard and may even impose a specific form of duration dependence. 

Duration dependency is best thought of as the shared, or baseline, probability of 

failure for the members of the dataset in response to the passage of time. Specifically, 

if the longer one survives without failure implies a lower probability of failure for the 

next time interval then the duration dependency is negative. However, if a similarly 

lengthy survival implies a high probability of failure in the next time interval then the 

duration dependency is positive. Examples of negative duration dependency include 

infant mortality or post operative infection because the longer an infant survives 

outside the womb the more likely they are to survive to the toddler stage and in many 

cases the probability of post operative infection declines with the passage of time 

after surgery. Examples of positive duration dependency are adult mortality or failure 
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of a mechanical object because as we age our probability of survival decreases and 

similarly a mechanical object, such as a light bulb or a mechanical gear, has a higher 

probability of failure as time passes.17     

Among the class of proportional hazards, the most popular specification for 

the baseline is the Weibull, ,)( 1

0

−= p
pttλ  characterized by a monotonically 

decreasing or increasing hazard rate with one shape parameter, p. A Gompertz 

baseline hazard, )exp()(0 ptt =λ , also allows for monotonic duration dependency 

while an exponential baseline, 1)(0 =tλ  , produces a “memory-less” hazard which 

has no dependency on time and obviously no additional parameters to estimate.18  

Specification of a parametric baseline hazard allows for more efficient estimation and 

prediction of survival times for censored parcels in the analysis.  

Unfortunately, in this application there is no reason to assume a form of 

duration dependency. Duration dependence can be expected to be negative if, as time 

progresses, observations remaining in the risk set are less and less likely to ‘fail’. 

There is at least one reason why this might characterize the land use conversion case. 

Parcels that develop early will tend to have attributes with high development value. 

Thus the composition of the risk set will be changing over time, with an increasing 

proportion characterized by attributes with less desirable attributes for development. 

This phenomenon suggests negative duration dependence. However market pressures 

may conceal or mitigate this negative effect. As the supply of developable parcels 

                                                 
17 Duration dependency can also exhibit a minimum, a bathtub shape, or a maximum, a humped shape, 
but these models are not proportional hazard models and can be estimated with semi-parametric 
proportional hazards. 
18 The exponential is so named because the covariates are incorporated using an exponential and the 

form the of hazard presented in equation (9) reduces to )exp()( βλ Xti = . 
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decreases, the rising returns to conversion of remaining land may mitigate the 

negative effects of declining quality. Because of these countervailing forces there is 

no strong theoretical reason to expect a specific shape of the baseline hazard or to 

expect the baseline to be monotonically increasing or decreasing throughout the study 

period. However, semi-parametric proportional hazard specifications allow the 

baseline hazard to take any shape without restriction. The next section explains how 

these models are estimated. 

3.1.2 Semi-Parametric Baseline Models 

 
If theory offers no insight about the shape of the baseline hazard, a safe 

approach is to allow semi or non parametric estimation of this function. A semi-

parametric method to accomplish this uses a piecewise exponential baseline hazard 

specification. In this case the baseline is allowed to vary freely from one time interval 

to another but is constant across observations within time intervals. The piece-wise 

exponential baseline hazard is specified as: 

(11)  ∑
=

=
M

m

mmh
1

0 δλ  where 1=mδ  for mm ata <≤−1  and = 0 otherwise. 

 

In (11), the ma ’s represent a series of temporal breakpoints, and the hm’s represent the 

baseline hazard rates in each of the m intervals. The breakpoints can be set such that 

0λ  follows the periodicity of the data or partitioned such that an equal number of 

failures occur in each period. The key weakness of this specification is the lack of 

predictive power beyond the last time period in the data. Because h is allowed to vary 
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in a non-systematic way over time, there is no way of predicting future outcomes that 

is not heavily influenced by the value of the hm in the last defined period.  

3.1.3 Non-Parametric Baseline Model 

 

If one is interested only in the impacts of covariates, a method developed by 

Cox (1959) using a partial likelihood approach is appropriate. The common baseline 

hazard is treated as a nuisance parameter and factored out of the likelihood function. 

To see this, note that for any two observations, i and j, 

(12)   })(...)exp{(
)(

)(
111

0

0
kjkikji

j

i xxxx
(t)λ

(t)λ

t

t
ββ

λ
λ

−++−= , 

and the baseline hazard, being the same for everyone, cancels out. Estimation is 

accomplished using the ‘partial’ likelihood function, where the term ‘partial’ denotes 

the fact that estimation of the baseline is not attempted. This method is based on the 

assumption that the intervals between successive duration times (failure times) 

contributes no information regarding the relationship between the covariates and the 

hazard rate (Collett, 1994). It is the order of the failure times, not the interval between 

failure times, which contributes information to the partial likelihood function.  

Consider a data set in which there are N observations of which Nf fail during 

the study period and N-Nf are censored. The likelihood function for the Cox model is 

the product of Nf terms – one for each failure, in which the contribution of the ith 

failure is given by: 

(13)   
∑ ∈

==
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where ti is defined as the time period of the ith failure and R(ti) is the set of all 

observations still at risk at time ti. Expression 13 is the probability that, given that a 

failure occurs in period ti, it is the observation i among the set of observations still at 

risk that is the one that fails. Taking the product of these conditional probabilities 

yields the partial likelihood function: 

(14)   ,
)'exp(

)'exp(

1 )(

i

i

d

N

i tRj j

i
p

X

X
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




=

β
β

 

where di=1 if the observation is uncensored and di=0 if it is right-censored (i.e. the 

observation does not ‘fail’ during the study period and remains in the risk set). This is 

a conditional logit likelihood function, often referred to as a fixed effects model, 

where the “effect” that is “fixed” is the risk period. Note that the likelihood function 

does not include an explicit term for the censored observations, although they are 

represented repeatedly in the denominator as they remain in the risk set throughout.  

If the data have many ‘ties’, in the sense that multiple observations fail in the 

same time period, then problems arise in composing the risk set, as it is typically 

impossible to know which observation failed first. There are methods to handle ties, 

but in general when data contain many ties the Cox method should be used with 

caution. However, since the Cox model is primarily concerned with the impact of 

covariates, it provides an appealing specification test for estimation based on a 

parametric functional form of the baseline hazard. Because parametric specifications 

are usually somewhat arbitrary but necessary if simulation into the future is desirable, 

it is useful to compare parametric results to the results of the Cox model. Such a 

comparison allows investigation of the impact of the parametric choice, and in 
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particular whether the imposed baseline is altering the covariate effects. It is for this 

purpose that the Cox model will be estimated.  

3.2 Unobserved Heterogeneity 

 

Despite the great detail afforded by the land use data available in Howard 

County, there are still significant unobservable individual or parcel specific factors 

that will impact the conversion or preservation decision. As mentioned in the 

previous section in order to control for heterogeneity in the observables, as it impacts 

the duration dependence, these observables are simply included in the model. 

However, heterogeneity that is not captured by the observed explanatory variables 

within the conversion hazard may imply that more desirable parcels will likely 

convert first leaving less desirable parcels in the sample longer, resulting in a length-

biased sample and potentially incorrect negative duration dependence.19  To make the 

model robust in the presence of influential unobservables, an estimation approach that 

can accommodate a distribution of unobservable “random effects” will be utilized. In 

this policy environment unobservables arise from at least two sources related to the 

parcel, through parcel attributes and landowner attributes. 

Unobservable parcel attributes include the type of activity on the parcel. In 

the dataset it is known that a parcel is in an agricultural use but there is no knowledge 

of the type of agricultural activity.20  It would be logical that certain farm types are 

more likely to enroll in a preservation program while simultaneously less likely to 

convert. For example, vegetable and equine operations might be more apt to preserve 

                                                 
19 The length-bias sample issue is prevalent in stock samples. These data are a stock sample because 
developable land is not added during the study period. 
20 Publicly available data do not contain parcel level crop or livestock activity.  
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than soybean/corn or forestry operations, possibly because the former are more 

profitable in Maryland than the latter. Other unobservable but important attributes 

might include aesthetic characteristics such as elevations with views that might make 

a parcel more valuable in housing and thus prone to conversion. There may also be 

unobservable parcel attributes that affect both preservation and development 

likelihoods, such as drainage problems or odd parcel shapes. These factors may 

preclude parcels from receiving high scores by preservation authorities and make 

them unlikely candidates for conversion as well. 

Unobservable landowner attributes will also affect the hazards of 

development and/or preservation. Landowners with intensive investment in the 

operation may be less inclined to convert because of sunk investment costs, but these 

same parcels might be more inclined to protect their investment by enrolling in an 

easement program. Landowners close to retirement age may tend to develop while 

those in need of cash to pay off farm debt or send children to college may be more 

likely to develop or preserve relative to the status quo. All of these individual 

landowner attributes potentially impact the duration variables of interest but are not 

available in most land use datasets. Models that fail to account for the influence of 

unobserved heterogeneity can lead to inconsistent estimates, incorrect standard errors, 

and misleading inference concerning duration dependence, all of which will be 

discussed in detail in the next chapter.  
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3.2.1 Incorporating Unobserved Heterogeneity 

 

In univariate (single risk) duration models, unobserved heterogeneity arises 

because of the inability of a researcher to obtain all the relevant covariates that govern 

the duration under study. Unobserved heterogeneity can lead to problematic inference 

from inconsistent parameter estimates, incorrect standard errors, and misleading 

estimates of duration dependence. Concerning duration dependence, the most serious 

problem is this: unobserved heterogeneity tends to produce estimated hazard 

functions that decline in time, even when the true hazard is not declining for any 

individual in the sample (Allison, 1997).  

Lancaster (1990) and Kalbfeisch and Prentice (1980) discuss issues 

surrounding unobserved heterogeneity and suggest that a parametric distribution be 

multiplicatively included in the proportional hazards specification as a potential 

modeling solution: 

(15)    iii Xtt υβλλ )exp()()( 0= . 

In duration models iυ is often called “frailty”, although iυ  is more familiarly 

recognized as a random effect (see Nickell (1979), Flinn and Heckman (1982) for 

implementations). Models that specify a parametric baseline and a parametric frailty 

are called mixture models because the “error” is essentially a mixture of two 

distributions. The “frailty” term is drawn from a distribution with density )(υg  and is 

assumed uncorrelated with any covariates in the model. The imposition of a random 
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effect is a contentious and perhaps heroic assumption, because of this assumption of 

zero correlation between the random effect and the observed covariates. In panel data 

models the uncorrelated nature of the random effect is testable, but in single spell 

duration data it is not (Heckman and Singer, 1982).21   

If one is willing to assume a distribution for the individual frailty parameter, 

estimation of these models amounts to estimation of one (or more) additional 

parameters describing the frailty distribution (see Klein and Moeschberger, 1997, or 

Box-Steffensmeier and Jones, 1997, for overviews). Log normal distributions are 

often used such that );()( θυυ gg = is distributed log normal with a unit mean, 

necessary for identification, and a variance, θ .22   This approach allows one to test 

the hypothesis that 0=θ , which suggests no undue influence of unobserved 

heterogeneity. 

Heckman and Singer (1984) is an often cited work for the nonparametric 

inclusion of unobserved heterogeneity in the duration model. They show that 

including parametric heterogeneity is potentially too limiting and prove that in the 

class of mixed proportional hazard models the nonparametric (maximum likelihood) 

estimator of the heterogeneity distribution is a discrete one. Their results illustrate the 

flexibility of discrete distributions to mimic a wide range of mixture duration 

distributions (van den Berg, Lindeboom, and Ridder, 1994). In applications where a 

fixed number of supports are used, the locations and population proportions at each 

                                                 
21 However, with the addition of time varying covariates which effectively induces a panel dataset, a 
Hausman test might be applicable, though not currently established. 
22 Other distributions include t, inverse Gaussian, Gamma, and power variance model. Technically, any 
continuous distribution with a positive support with unit mean and a finite variance can be used.  
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support are estimated jointly. The number of supports should increase as the data 

allow (Gritz, 1993; Ham and LaLonde, 1996).  

  On the other hand, Han and Hausman suggest that the non-parametric 

unobserved heterogeneity estimation proposed by Heckman and Singer is not 

completely necessary. The results from Heckman and Singer, and similar results from 

Honore (1990), are derived from a model with a parametric baseline hazard and non-

parametric unobserved heterogeneity. In contrast, Han and Hausman impose a gamma 

distribution for the unobserved heterogeneity and a semi-parametric piecewise 

exponential baseline hazard suggested by Meyer (1986) and conclude that the non-

parametric unobserved heterogeneity is not necessary. As with the specification of the 

baseline hazard the specification of a distribution for unobserved heterogeneity 

should be tested against the least parametric approach available, in this case the finite 

mixture distribution, as validation that the imposed distributional assumptions are not 

influencing the estimated results. 

3.3 Non-random censoring / multi-state models 

 

To this point univariate hazard models have been assumed, i.e. models with 

one exit state – either development or preservation. An obvious extension, and a 

necessary one for this analysis, allows for multiple exit states. Examples of multiple 

hazards from the general hazard literature include exit from an unemployment spell to 

a part time or full time job, and exit from a healthy state to diabetes and/or heart 

disease. In the land use context some parcels can ‘exit’ the status quo state by 



 

 37 
 

enrolling in the preservation program or by converting to development, and both 

possibilities need to be explicitly taken into account.  

It is possible, even within the context of a univariate model, for observations 

to exit the sample by means other than the failure event under study.  Thinning of the 

sample through time for reasons unrelated to the exit event of interest is called panel 

attrition. The univariate model will continue to be a valid one if the incidental exits 

are independent of the modeled failure event. This independence assumption is 

commonly called random censoring or non-informative censoring in the literature. 

Independence is conditional on observed covariates and is an implicit assumption of 

all univariate hazard analyses.23   

Applying a univariate model can lead to misleading results when exit to 

another state is not an independent process. The unemployment example provides a 

clear violation of this assumption. If unobserved ability influences exits to part time 

work or school then the processes are not independent of the failure event of interest:  

full time employment. The land conversion decision in the presence of a preservation 

program is another good example of potentially dependent exit states. There is no 

reason to assume that exit to preservation is independent of the development decision, 

even when conditioned on observables. For one thing, landowners whose 

circumstances require them to liquidate assets are more likely either to develop or 

preserve than to remain in the status quo state. 

With multiple states, the hazard model must be reframed. For each 

observation, i, a draw from the latent K-dimensional distribution may be represented 

                                                 
23 This is the hazard model’s version of the conditional independence assumption. If a researcher can 
identify and measure the underlying risk factors that produce the dependency, then accounting for 
them explicitly in the model maybe sufficient to ensure this condition.  
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as a Kx1 vector Ti, where K is the number of possible exit states  Each element in this 

vector, Tki, is an exit time and each k is an exit state. In some applications the entire 

vector may be observable which implies the exit into one state does not preclude exits 

into a second, third, or Kth state. Based on the statistical nomenclature, ‘competing 

risks’ models are a subset of these more general models.  

In the competing risks models, exits are mutually exclusive. The best 

example, though slightly morbid, is the exit from a post-operative state. One might 

observe patient i’s death from an infection, but this patient was at risk from a myriad 

of other sources (e.g. heart disease, cancer), only one of which could kill him. This 

analysis falls into the competing risks models because exits to preservation are 

precluded from conversion and conversion exits cannot subsequently enroll in the 

preservation program.24  Given that the nature of the land use problem is one in which 

only two alternative exit states exist, the remaining discussion is presented assuming 

two mutually exclusive states. 

When exit states are mutually exclusive, the entire distribution of survival 

times, S(t1, t2), is not observable. As a consequence competing risk models are 

considered latent variable models. The researcher observes T = min(T1, T2) along 

with the cause of failure outcome, O. The data (T, O) are referred to as the identified 

minimum. In the absence of regressors the joint distribution (T1, T2) is not identified 

by (T, O) (Cox, 1959, 1962; Tsiatis, 1975). In particular, for any joint distribution of 

dependent failure times there is a joint distribution of independent failure times that 

                                                 
24 Although both reversals are technically possible it is unlikely a housing development will revert to 
agriculture and preserve and as designed the preservation easements are written in perpetuity. 
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will produce the same identified minimum.25  Because it was believed that all 

dependent competing risks models were unidentified, it was common practice to 

assume independence for estimation (Gordon, 2002). However, erroneously assuming 

independence leads to incorrect inference. In addition, the fact that durations, Tk k=1, 

2, are related is often an important issue in its own right. Generally, independence 

does not make sense if individual behavior influences the decision to enter multiple 

end states.  

Identification with regressors was first established by Heckman and Honore 

(1989) they proved that models with dependent risks are identified if there is 

sufficient variation in the latent failure times with regressors. Abbring and van den 

Berg (2003) prove identification for a class of slightly more restrictive but more 

popular models called mixed proportional hazard (MPH) models. By focusing on 

MPH models the authors impose fewer restrictions on the domain of the covariates, 

X. Loosely speaking, X must have two continuous variables that are not perfectly 

collinear and that act differently on each hazard in the two-risk world (van den Berg, 

2005).  

The general specification for a MPH competing risks model with unobserved 

heterogeneity is 

(16)    
2222
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)'exp()(),|(
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where )(t
k

ω is the baseline hazard associated with each risk. Each risk is modeled as 

a mixed proportional hazard where V is unobserved. For each risk the composition of 

survivors changes selectively with time, as the more ‘frail’ exit quicker than the ‘less 

                                                 
25 This non-identifiability theorem was established for models in the absence of covariates. 
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frail’ via the distribution of unobserved heterogeneity, so identification from (T | X) is 

non-trivial and is not always possible. Assuming independence implies that (T1, T2|X) 

are independent and is equivalent to running two univariate hazards - one for the 

preservation risk and one for the conversion risk. Allowing for dependence then 

implies that (T1,T2|X,V) are independent where the end states exhibit dependence 

through the distribution of V1 and V2 , not directly through X.  

Van den Berg (2005) gives an intuitive summary of the identification results 

which are paraphrased here. Assuming at least two continuous regressors, one can 

manipulate exp(x’β1) while keeping exp(x’β2) constant. If (T1, T2|X) are independent 

then the observable hazard rate of T2 at t>0 given T1≥t does not vary with changes in 

exp(x’β1). However, the MPH model presented in (16) allows for dependence of (T1, 

T2|X) via the unobservables. For example, changes in exp(x’β1) change the 

distribution of the unobservable V1 among survivors at time t due to the fact that X 

and V are dependent conditional on survival T1 ≥ t > 0 even though they are 

independent unconditionally.26  Now if V1 and V2 are dependent this change affects 

the distribution of V2 among the survivors at t which in turn affects the hazard of T2 at 

t given T1>t, i.e. the observation has not exited via the first exit pathway. Thus the 

variation in T1 with exp(x’β1) for a given exp(x’β2) is informative on the dependence 

of the durations.  In the most flexible competing risks model the unobservables are 

serving two functions. They allow for dependency across risks, and they control for 

the inherent selection problem due to unobserved heterogeneity within each risk. 

                                                 
26 This is simply another description of the unobservable heterogeneity impact presented in the 
previous section. 
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To summarize, the dependent competing risks models, though first thought to 

be unidentified, have subsequently been proven identified by including regressors 

with varying restrictions on covariates depending on the class of model. This 

dissertation will utilize the mixed proportional hazard model discussed in detail by 

Abbring and van den Berg (2003) and van den Berg (2005) and rely on identification 

from the continuous variables in the model which will be discussed in detail in the 

next chapter. Additionally, in the next section, which presents the full model, a 

potential exclusion restriction will be illustrated even though exclusion restrictions 

are not necessary in this class of models. None of the identification results presented 

above require such an exclusion restriction as the same set of covariates can be 

allowed to affect both durations.  

As one can see from this introduction to the necessary components of a 

competing risks hazard model implementation, there are many issues and 

distributional decisions to make in constructing a general, theoretically consistent 

model to estimate land conversion decision with multiple exit states.  

3.4  A Land Use Application of the Competing Risks Model  

 

Utilizing data on the timing of preservation, Tp, and the timing of conversion, 

Tc, combined with parcel attributes, X, the proposed hypotheses, preservation 

qualification’s influence on development decisions, will be tested and the size of any 

effect can be estimated. This work closely follows Lillard (1993), Fallick and Ryu 

(2007), Gordon (2002), McCall (1996), Steele (2003), Deng (2000) and Abbring with 
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van den Berg (2003). However it is the first such implementation in a land use 

context.   

The hazard for the preservation rate as given by 

  (17)   ( ) pp

p

p

p vzXXItvzXt 'exp)()(),,|( 0 αβλλ +=   

where I(X) is an indicator function that equals 1 if the parcel is known to be eligible 

for the preservation program as defined by eligibility criteria and characteristics of the 

parcel, )(0 t
pλ is the baseline hazard of preservation, and ),,|( p

p vzXtλ is the 

instantaneous hazard rate. Covariates in X include parcel attributes and locational 

attributes of surrounding land use. The covariate z is a dummy variable equal to one 

in the years the program was funded and zero otherwise. Finally the parameter pv  in 

(17) is the parameter representing unobserved heterogeneity in the preservation 

hazard process.  

The conversion hazard is as follows, 

(18)  
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where X  includes all variables in common with the preservation hazard, Y includes 

variables expected to influence the conversion hazard through conversion costs or 

development pressures, including the options variables described in the theoretical 

model, and cv  is the unobserved heterogeneity parameter specific to the conversion 

hazard. Variables included in X and Y can, and do, change across time. However the 

unobservable parameters, pv  and cv
 
, are observation-specific and not time-specific. 

As has been true throughout, time subscripts are omitted to reduce notational 

complexity, but X, Y, and z all contain time varying covariates. 
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In the competing risks framework these hazard rates will be jointly estimated. 

The funding dummy present in the preservation hazard should impact the 

preservation decision but not the conversion decision directly and thus acts as an 

exclusion restriction. In a similar framework, Fallick and Ryu (2003) argue that a 

term such as I(X) serves as an additional exclusion restriction because the eligibility 

criteria is forced to have a larger impact on the preservation hazard due to prior 

knowledge of the world. The specification implies eligible parcels can be delineated a 

priori using observable covariates. In this case the preservation eligibility criteria are 

well documented by the county and involve observable data.  

The system of equations in log form is rewritten as 

(19)   
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where the baseline hazards )(0 t
cλ and )(0 t

pλ  are replaced by functions of time, 

)('0 tH cβ and )('0 tH pϕ , which can be estimated parametrically, by defining Hi(t), or 

non-parametrically. Parametric estimation involves using a distributional assumption 

on the baseline hazard, and non-parametric estimation is most often accomplished via 

a piecewise linear baseline suggested by Han and Hausman.27  Selection of these 

distributional assumptions will be described in the next section. To estimate the 

dependent competing risks model the parameters pv  and cv  are allowed to be 

correlated and estimate the correlation parameter, 
pcvvρ , jointly in the model.  

                                                 
27

 In fact, Han and Hausman suggest that non-parametrically estimating the baseline hazard absorbs 

some variation being picked up by the unobserved heterogeneity term in Heckman and Singer. They 
argue that the restrictive parametric baseline hazard imposed by Heckman and Singer is a contributing 
factor in the finding of influential unobserved heterogeneity. This suggests a potential tradeoff between 
a parametric restriction on the baseline versus a parametric restriction on the heterogeneity term.  
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   To compose the likelihood function there are three cases to consider—the 

parcel converts, the parcel preserves, or the parcel does not change status.  

i.) The contribution to the likelihood function for parcels that convert, where t is the 

conversion period, is given by the following28: 

[ ]),,,,|1,1Pr()1,1Pr( , pcpcvvpc vvzYXtTtTtEtTtTt
pc

−>≤<−=−>≤<−
;
 

ii.) the contributions for parcels that preserve (where t is the period in which the 

preservation takes place) is: 

)],,,,|1,1[Pr()1,1Pr( , pccpvvcp vvzYXtTtTtEtTtTt
pc

−>≤<−=−>≤<−  

iii.) and the contribution for parcels that remain in the current state for the duration of 

the study period is: 

)],,,,|,[Pr(),Pr( , pccpvvcp vvzYXtTtTEtTtT
pc

>>=>> , 

where E is the expectation operator.  

The integrated hazard rates for preservation and conversion are defined as 
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Assuming variables in X, Y, and z are constant within each year of the data, even 

though they may vary across years, these integrations reduce to the summations, 29 

 

                                                 
28 Technically the probability )1,1Pr( −>≤<− tTtTt pc

 is an approximation of the true probability, 

),1Pr( cpc TTtTt >≤<− . This approximation is used because the true probability, which is the 

probability of receiving a preservation and a conversion offer in the same year, is quite involved to 
compute and would be a rare occurrence.  
29 Due to the discrete nature of the data this assumption must be made. 
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The survivor function is equal to the exponentiated negative integrated hazard,  so 

that the survivor functions are  
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Now if conditional independence based on the observed data and inclusion of 

unobservables in the model is assumed, the probabilities i. through iii. can be 

rewritten as 
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Since the realization of (vc, vp) is not observed the expectation of these 

quantities must be taken with respect to the stochastic nature of (vc, vp). In the hazard 

literature this is accomplished by making a parametric assumption or using a bivariate 

discrete distribution following Heckman and Singer. For this presentation, bivariate 

normal distribution is assumed to estimate the competing risks model.30 

                                                 
30 Distributional assumptions will be described and validated, where possible, in the next section of this 
chapter. 
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The heterogeneity components are assumed jointly normally distributed as 

follows 
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This assumption requires the data to be modeled as continuous data which is often 

done in hazard models if the distribution of failures within the discrete step is not 

important to the analysis. In this dissertation information on the month of conversion 

will be used and continuity assumed, so this assumption is not overly restrictive.  

Embedded in this model is the assumption that, conditional on the unobserved 

heterogeneity, the marginal density functions for the failure times are independent. 

Defining the term )(tχ as representing the covariate paths of z, Y, and X from the 

beginning of the study period, the distribution of failure times for parcel i is given by 
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for a parcel that converts. Given this conditional independence, censored parcels 

(those remaining in the risk set at the end of the study period) are represented by their 

survival functions 
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The likelihood function in this case is 
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cpcpp

ppp

nc

ccc

n dvdvvvfvttSvttS ),()),(,()),(,( χχ∗                      

where 1=pnδ  if the parcel preserves and 1=cnδ if the parcel converts. The term 

),( cp vvf  is the pdf of the bivariate frailty distribution. This parameterization of the 

frailty distribution requires numerical integration to compute the likelihood function. 

This framework allows the impact of covariates to be measured in the time dimension 

and in the presence of the preservation program where the preservation exit is 

modeled explicitly and can influence the outcome of the conversion hazard. That is, 

the decision to exit the risk set by preserving the parcel is not assumed to be simply a 

case of random censoring. Estimation for these complex models is accomplished 

using aML, statistical software specifically designed to estimate correlated outcomes 

and joint models (Lillard and Panis, 2003). 

This general competing risks model addresses both unobserved heterogeneity 

and non-random censoring and can be very general. However a parametric 

assumption is still required for the baseline hazard and the heterogeneity parameters 

to facilitate estimation. The next section will describe the data used in the model and 

in subsequent chapter will illustrate the various methods to inform selection of the 

baseline distribution and the distribution of unobserved heterogeneity. 
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4. Data  
 

4.1 Risk Set and Outcome Variables 

 

The data for this study include all parcels in Howard County, Maryland that, 

as of the end of 1990, were eligible to be subdivided into at least three new housing 

lots. The latter criterion avoids counting the development of family lots as a 

conversion of farmland to residential use. The process by which these parcels were 

identified was quite complex and included two components. The first component 

involved identifying all actual subdivision activity during the study period and the 

second required classifying parcels that had not been developed during the study 

period as either potentially ‘developable’ or not developable.  

The process of identifying subdivisions began with an examination of a series 

of snapshots (taken in 1993, 1995, 1997 and 2001) of the tax assessment data base for 

Howard County for clues that would link disappearing parcels with newly appearing 

housing lots. A variable called a ‘record creation date’ became a key feature of the 

investigation, as it is this variable that helps establish the date (month and year) at 

which an identified parcel subdivision took place. Because the record creation date 

variable was not included in the data base prior to 1991, the study period must begin 

at that point. Prior subdivisions are identifiable, but their conversion dates are not 

known with precision. 

Subsequent to this initial investigation using the non-spatial tax assessment 

data base, a geocoded version of the Howard County tax map (as of 2003) became 
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available, including the digitized boundaries of parcels and account identifiers that 

linked to tax assessment data base attributes. This new data source allowed a means 

to check and correct prior subdivision assignments. It also provided digitized 

boundaries of all parcels that made up the final observation set. A second source of 

subdivision data came directly from the Howard County planners office which 

included the actual county database used to track large subdivisions from application 

to approval. Though this list was not geocoded or well-organized, some account 

identifiers facilitated cross-checking of previous subdivision assignments. The final 

product of this first component was a map of subdivision activity that took place 

between 1991 and 2001, including the boundaries of the final housing lots and the 

reconstructed boundaries of the original pre-subdivision parcels. 

Once the actually developed parcels had been identified, all potentially 

developable parcels had to be added to the observation set. These were defined using 

attribute data for the parcel and existing zoning regulations. Undeveloped parcels 

eligible for inclusion in the observation set were those zoned in a way that allowed 

for residential development and those with capacity for at least three additional 

housing units, given maximum density regulations applicable to the parcel.  Parcels 

with existing houses were included as long as they met this criterion. Zoning criteria 

were obtained from Howard County’s 1992 zoning ordinance. The zoning categories 

relevant to each parcel were determined from the tax assessment data base and, where 

missing, from the digitized zoning map available from the Maryland Department of 

Planning.31 

                                                 
31 Current data are available from http://www.mdp.state.md.us/. 
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Further eliminations were made from this initial set. Included in these 

deletions was land preserved through preservation or conservation activity prior to 

1991, as well as wildlife sanctuaries, parks and other prior public acquisitions. Parcels 

were also deleted from the observation set if their shape precluded reasonable 

subdivision. The resulting dataset represents the county landscape as of 1990 and the 

conversion history from 1991 to 2001. The conversion (failure) time is defined as the 

date the lots of a subdivision were recorded. In the case where a parcel converted but 

left a portion of land large enough to be further subdivided this portion is redefined as 

a new parcel and remains in the risk set.  

While all parcels eligible for preservation must also be developable, not all 

potentially developable parcels had the option to preserve, only those meeting quite 

specific eligibility criteria. Because the 100 minimum acre limit was relaxed for 

parcels adjacent to already preserved or protected land, smaller parcels that became 

eligible as adjoining parcels were preserved were added to the eligibility pool during 

the study period where appropriate.  

The final data set includes 1,756 parcels totaling 43,300 acres. The 

distribution of these parcels is displayed in Figure 4.1. Of these parcels 258 were 

eligible for preservation at some time during the study period and 59 enrolled in the 

preservation program. Each of these sets of parcels is shown in Figure 4.2. The 

distribution of the 463 subdivided parcels is shown in Figure 4.3. Of the subdivided 

parcels in the final data set, 57 were eligible to preserve which illustrates the 

competing nature of preservation and conversion in the county. This geocoded spatial 
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data set represents a unique and rich view of the land conversion process across space 

and time in a rapidly developing county.  
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Figure 4.1 Distribution of the “at risk” parcels 
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Figure 4.2 Distribution of preservation eligibility and activity 
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Figure 4.3 Distribution of conversion activity 
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4.2 Explanatory Variables 

 

Data to populate the X and Y vectors for the model developed in Chapter 3 

were obtained from a number of sources. Variables pertaining to the X and Y vectors 

for the development risk will be discussed first followed by a discussion of the X 

vector for the preservation risk. 

Consistent with the story presented in earlier chapters, factors that vary over 

parcels and are expected to shift the hazard of development include characteristics 

that make the location more or less desirable for residential use, those that affect 

agricultural productivity (and thus opportunity costs), and those that cause some 

parcels to be developable at lower cost. Within the first category, arguably the most 

commonly considered are commuting costs to major employment centers – 

Baltimore, MD (distBA) and Washington, D.C. (distDC). These distances were 

measured from the centroid of each parcel in the observation set, along the county 

roads network, to the centroid of each of the two cities using ARC/INFO software. 

The geocoded roads network used is a product of the Maryland Department of 

Transportation. 

If surrounding land use has an effect on the value of a parcel in a given land 

use, then it follows that surrounding land use will also have an effect on the 

likelihood of a parcel being developed. In the presence of such interaction effects, 

policies that alter development decisions can alter the likelihood of development of 

parcels other than those directly affected by the policy. Simply stated surrounding 

land uses will impact the value of a parcel in development because people care about 
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what is near to their house. People select homes based, in part, on the surroundings. 

Some prefer forests while others parks, and some prefer to live in densely populated 

areas, while others prefer less congestion. Additionally, the existence of interactions 

among neighboring parcels leads logically to path dependence in land use pattern 

change. For these reasons measures of the surrounding land uses are included as 

variables in the hazard model to control for these interaction effects with neighboring 

parcels.  

In measuring the surrounding land use variables, land uses are aggregated into 

ten categories: developable land with an existing house (e.g. a farmstead) 

(sluDevWithHs), developable land without an existing house (sluDevNoHs), 

commercial/industrial/institutional use (sluComm), subdivided land (but not yet built 

on) (sluSubdiv), preserved land (sluPreserved), private not developable openspace 

(sluOpen), roads (sluRoad), protected land (e.g. publicly supplied open space) 

(sluProtected), and “fully developed” land in residential use (the normalized 

category). The surrounding land use measures are calculated as percentages of land 

within a 100 meter buffer around the true boundary of each parcel and are calculated 

using the parcel boundary GIS data from Howard County, reconstructed to reflect 

land uses in each year. Land use designations are assigned to each parcel in Howard 

County based on parcel attribute data, largely from the tax assessment data base. 

Specifically, the existence of structures and their date of construction can be 

determined from the Howard County GIS layers and from the Tax Assessment 

database (TA). Residential uses are designated by the TA’s land use code and by 

mass appraisal data in the TA database that describes each house. Non-residential 
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land uses are further categorized based on the TA’s land use code and TA variables 

describing the specific use of properties that are commercial or tax exempt at a highly 

refined level. As examples, exempt classes include schools, churches, government 

office buildings, public works operations, etc. Commercial and industrial uses include 

retail stores, manufacturing plants, warehouses, office buildings, etc. 

Although surrounding land use results are sensitive to the use of larger radii, 

e.g. 400 and 800 meters, estimated coefficients associated with the main variables of 

interest in the models turn out not to be sensitive to the buffer size. The surrounding 

land use measures are updated in each analysis year as neighboring parcels are 

converted, preserved, or built upon.  

Each parcel in the risk set is assigned to a Census block group and tract by 

overlaying the 1990 Census maps on the parcel boundary map. Where parcels overlap 

Census areas, the area with the largest share of the parcel is assigned. Two variables 

are then constructed using the Census boundaries. First, by overlaying the recent sales 

data from the Howard County tax assessment database on the Census block group 

map a spatially distinct variable for recent construction activity (devRate) is 

constructed. This variable is calculated as the percentage increase in housing stock by 

Census block group from the previous year and is included to capture the influence of 

recent construction activity.32  The recent construction activity serves at least two 

purposes – a) it picks up some desirability not fully measured by the distance or 

surrounding land use attributes and b) it proxies for areas of the county into which the 

planners’ office may be attempting to funnel new development. The second Census 

                                                 
32 This is calculated as new construction in year t divided by existing units as of the beginning of year 
t.  
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related variable is the density of housing (popDen), measured as number of housing 

units per acre at the Census tract level and included to proxy for congestion and other 

amenities/disamenities of the landscape that are correlated with density of residential 

housing at a larger spatial scale than the immediate neighborhood. 

To proxy for construction costs a measure of parcel slope (steep), the 

percentage of the parcel with a slope greater than 15%, is calculated from the natural 

soils maps from NRCS. Steep sloped parcels are less likely to be suitable land for 

agriculture. The impact on development is unknown because steep slopes may proxy 

for parcels with scenic views, but steep slopes increase construction costs and can 

invoke erosion control regulations. Other construction related variables are obtained 

from the site development engineering tables of the Soil Survey Geographic Database 

(SSURGO) from NRCS. These are the road suitability (notRoadSuit) and septic 

suitability (notSepticSuit) variables where both are represented in the dataset as 

percentage of the parcel in the “very limited” category. The classifications combine 

data on soil type, slope, permeability, bedrock depth, saturated zone depth, and frost 

action to estimate these construction indices.  

The 1990 Maryland Department of Planning (MDP) maps provide data for the 

percentage of each parcel’s land cover in forest (forested) and agricultural 

(agriculture) use. Agriculture is defined as field, forage, or row crops and forest cover 

as deciduous, evergreen, or mixed forest. The status of sewer construction 

(sewerPlnd) is also available from MDP data and is coded as a dummy variable equal 

to one if sewer service does not exist but is planned for the near future. The variable 

(hasHouse) is constructed using a Howard County GIS layer of structures and the Tax 
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Assessment database. The variables is set equal to one for parcels with an existing 

house, with updating taking place each year of the analysis to reflect new home 

construction. This variable for existence of a house is expected to negatively 

influence the conversion decision, particularly for small parcels, due to the 

unobserved location of the house on the parcel. For example, a parcel that can yield 3 

additional units based on acreage and zoning is included in the dataset, but if there is 

an existing house and it is located centrally on the parcel may not be possible to add 

three new housing units without removing the existing structure. Additionally, parcel 

owners who live on their property have recreational and aesthetic uses for their land 

and thus may be less likely to subdivide than owners who do not live on their parcels. 

The final ‘construction cost’ variable is the 3 month Treasury bill rate (intRate), 

included as an indicator of the cost of carrying the land from the time the 

development process is initiated until the lots are sold. This last variable varies only 

over time but not across observations. 

A number of regulations affect various aspects of the above factors. These 

regulations are treated as exogenous, given that the Howard County Comprehensive 

Plan and zoning codes were passed in 1990 and remained static through the study 

period. The effects of zoning are measured by the number of lots that the parcel can 

be divided into (numLots) and the existence of open space set-aside requirements 

(reqOpenSpace). Finally, in a few planning areas in the county, development activity 

was capped by adequate public facilities moratoria in some of the study period years. 

The variable (Apfo) equals zero or one, respectively, for any year in which the parcel 

is in a planning area constrained by an adequate public facilities moratorium relating 
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to school capacity for none or any part of the year. This variable is updated as 

adequate public facilities moratoria are introduced and phased out. The Apfo data are 

compiled using legislative records and a subdivision tracking database from the 

Howard County Planning Department. 

To capture the effect of returns in an agricultural use on the hazard of 

development, the percent of the parcel in each of four soil quality classes (classes 1 

through 4) from the land capability class (LCC) are included. LCC is a composite 

index from USDA representing many factors such as slope, soil type and others that 

are important to the suitability of land for agricultural use. The effect of these 

variables is measured relative to the worst soils for agriculture (the excluded soil 

category). Although the soil classifications are intended to proxy for potential 

agricultural returns, good agricultural soils can also be favorable soils for 

development, so the expected effect on the hazard rate is ambiguous. Another 

measure relating to agricultural returns is parcel size (acres and acres
2
). The likely 

effect this has on the hazard rate is also ambiguous, as economies of scale may be 

evident in both farming and development.  

Variables that impact preservation eligibility (the X vector) are included in the 

preservation hazard. Recall these requirements are defined by the county exogenously 

based on soil quality, acreage, viability as a farm operation, and contribution to the 

farm sector. Thus variables such as acreage (acres), agricultural or forest use 

(agriculture or forested), terrain of the parcel (steep), and soil classes (class1-4) are 

included in the hazard model for preservation  
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Interaction effects with surrounding land uses are expected to be prevalent in 

the preservation hazard as well as in the conversion hazard especially since many of 

the preservation requirements are enhanced or depend upon the neighboring land 

uses. It is assumed that landowners may self-select for preservation due to 

development or preservation activity on surrounding parcels, and additionally, that 

the county may choose to enroll a parcel which applies for the preservation program 

based on the activity surrounding the applying parcel, i.e. development pressures or 

agricultural uses. Thus surrounding land use measures are included in the 

preservation hazard.  

A dummy variable for the presence of an existing house is included 

(hasHouse) as is a dummy variable equal to one in years the county has funding 

(funded) for the preservation program which is the z variable described in the 

previous chapter. These years are 1991-92, 1994-96, and 2000-01. As mentioned in 

the first chapter the program exhausted forecasted funds in 1993 and again in 1997-

99. Even in the years of limited funding the program remained active and was never 

considered for cancellation.33  

The options related covariates, defined in detail in the next section, are not 

included in the preservation hazard. The compensation formula for the preservation 

option does not change during the time period and thus presents no variability to 

impact the preservation time. The full variable list is given in Table 4.1 for both the X 

and Y matrices which pertain to both the development and preservation hazards. 

Summary statistics for all the explanatory variables used in this analysis are presented 

in Table 4.2 and a detailed listing of sources is presented in Appendix B. Time 

                                                 
33 The state preservation program was an active option throughout the period as well. 
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varying covariates are updated on a yearly schedule because it is often the case that 

exact months of changes are not available.  

 

 

Table 4.1  Variables used in Competing Risks model, by Risk (or Hazard) 

Variables Preservation Hazard Conversion Hazard 

distBA x X 

distDC x x 

sluDevWithHs x x 

sluDevNoHs x x 

sluComm x x 

sluSubdiv x x 

sluPreserved x x 

sluOpen x x 

sluRoad x x 

sluProtected x x 

sluExempt x x 

popDen  x 

numLots  x 

reqOpenSpace  x 

Funding x  

Opportunity costs 

class1 x x 
class2 x x 

class3 x x 

class4 x x 

Agriculture x x 

Acres x x 

hasHouse x x 

Conversion costs 

Steep  x 
Forested  x 

notRoadSuit  x 

notSepticSuit  x 

sewerPlanned  x 

intRate  x 

Apfo  x 

Options variables 

Drift measure  x 

Variance measure  x 

Easement  x 
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Table 4.2  Summary Statistics 

Variable Description Mean S.D. Min Max 

Options Variables 

Easement* 
Qualified for 
easement 0.093 0.287 0.000 1.000 

Variance 
measure* 

Standard error of 
sales price 16.751 5.695 8.022 30.909 

Drift measure* Drift in sales price 0.645 3.860 -11.025 11.831 

Returns to Development 

distBA 
Distance to 
Baltimore, in km  28.349 10.555 10.935 72.959 

distDC 
Distance to DC, in 
km 47.827 9.072 29.511 68.782 

sluDevWithHs* 

% surrounding land 
use not fully 
developed with a 
house 17.451 19.651 0 96.169 

sluDevNoHs* 

% surrounding land 
use not fully 
developed with a 
house 11.067 14.268 0 97.781 

sluComm* 

% surrounding land 
use in commercial / 
institutional 3.669 9.087 0 75.369 

sluSubdiv* 
% surrounding land 
use subdivided   3.885 6.045 0 69.353 

sluPreserved* 

% surrounding land 
use enrolled in 
preservation program 4.850 13.576 0 94.182 

sluOpen* 
% surrounding land 
use in openspace 2.676 6.987 0 93.385 

sluRoad* 
% surrounding land 
use in roads 11.028 10.904 0 71.265 

sluProtected* 

% surrounding land 
use in protected 
status 6.747 13.429 0 95.154 

sluExempt* 

% surrounding land 
use in tax exempt 
status 2.409 6.981 0 66.841 
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devRate* 

% of new 
construction added 
by block group 4.371 3.687 0 20.292 

popDen 

# households per 
acre by census tract, 
1990 .538 .458 .069 2.363 

numLots 
# lots allowed per 
zoning regs 16.637 35.492 3 700 

reqOpenSpace 
=1 if open space 
required, 0 if no .882 .322 0 1 

Opportunity Costs 

class1 
% of parcel with class 
1 soils (prime) 1.177 4.824 0 66.971 

class2 
% of parcel with class 
2 soils 44.862 31.481 0 100 

class3 
% of parcel with class 
3 soils 32.234 28.986 0 100 

class4 
% of parcel with class 
4 soils 9.597 18.515 0 100 

Agriculture % of parcel in crops 29.084 37.171 0 100 

Acres Parcel size, in acres 2.231 3.844 .751 798.465 

hasHouse 
existing house on 
parcel .640 .480 0 1 

Construction Costs 

steep 
% of parcel with 
steep slopes 16.504 31.213 0 100 

forested 
% of parcel in forest 
cover 36.695 36.650 0 100 

notRoadSuit 
% of parcel not road 
suitable 43.952 30.413 0 100 

notSepticSuit 
% of parcel not septic 
suitable 60.905 34.404 0 100 

sewerPlanned* 
Sewer planned in 
next 10 years .149 .357 0 1 

intRate* 
Annualized 3 month 
T bill rate 4.55 .901 2.998 5.820 

APFO* 

=1 if restricted by 
adequate public 
facilities moratoria  .134 .341 0 1 

Number of observations 16,116(1756 parcels) 

* - Time varying covariate 
Sources:  Maryland Department of Planning; Maryland Department of Assessments 
and Taxation; Howard County Department of Planning; U.S. Census Bureau 
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4.2.1 Options Variables 

 

The principle empirical task is to test whether the presence of the easement 

option delays development. The variable (Easement) equals one in the years a parcel 

is eligible to sell a preservation easement and in which a county preservation program 

budget exists to purchase easements. This variable is updated for parcels that became 

eligible during the study period due to prior preservation of adjacent parcels.  

The drift and variance variables described in Chapter 2 are intended to capture 

the effects of uncertainty on development timing decisions. Landowners/developers 

are assumed to form expectations on returns from development based on recent new  

house sales in the same geographic and socioeconomic vicinity. Therefore, the drift 

and variance variables are constructed using a separate dataset of sales of new and 

existing houses – all of which were built within the last 10 years. Sales in which price 

exceeded two standard deviations from the Census tract average for the year were 

omitted in order to eliminate the undue influence of outliers whose special 

characteristics were not measurable. After eliminating these outliers, non-arms length 

sales, and clearly mistyped entries, 37,085 observations remained.  

The drift variable for any given tract and year was calculated as the average 

rate of growth in deflated lot price for sales within the tract over the 3 previous 

years34, corrected for some principle sources of price variation. For example, a 

landowner/developer forming expectations on the drift and variance in returns in 

                                                 
34 Pooled lagged sales prices from 2, 3, 4, and 5 years were also tested with remarkably consistent 
results in terms of the magnitude of variance. As one would expect the drift calculation stabilized and 
moved off zero as a mean value with the inclusion of more years.   
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order to make an investment decision in 1996 is assumed to use information on 

housing sales within the relevant Census tract from the years 1993, 1994, and 1995. 

The covariates included to account for systematic price variation are the natural logs 

of each of the following - distance to Washington DC, lot size, square-footage of 

house - as well as an index for quality of construction, the age of the home at the sale 

data, and a dummy variable for townhouse. These covariates are represented by the W 

vector in equation (22) below.  

 A separate drift and variance value is calculated for each area of the county 

(defined by 15 groups of Census tracts) and each year of the analysis (11 years from 

1991 through 2001), by estimating 15 regressions for each year of the analysis, one 

for each Census tract. Thus the impact of the W variables on price is allowed to vary 

across the tracts and years within the county. To isolate the drift an implicit temporal 

effect for each tract is estimated. Specifically, for any analysis year t and census tract 

the following OLS regression was estimated: 

(22)         1,...15n    )ln( 10 =∀+++= inininnnni WlagyeardeflatedSP εϑββ
.
 

Each regression included all qualifying sales for years t-1, t-2, and t-3. The variable 

deflatedSPi is defined as the inflation adjusted sales price in 2000 dollars for the ith 

sale, and lagyeari equals s if the ith sale took place in year t-4+s (s=1,2,3). A total of 

165 regressions were estimated. The coefficient on (lagyear), n1β , becomes the 

measure for the drift parameter for the nth Census tract group and the tth year of 

analysis of the regression.  

The variance measure is defined as the sum of squared residuals: 
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expected sales price, Ln is the number of observations in tract n, and k is the number 

of regressors. This variance is calculated for each of the 165 regressions (15 tracts 

and 11 analysis years) in the dataset. The absolute level of variance is not the desired 

variable but the percentage of variance relative to sales price is, so this measure is 

standardized by dividing by the mean sales price in the respective tract.  

The average drift for the entire sample is 0.645% and the average standard 

deviation is 16.75%. Of course, few observations in a year can lead to a high variance 

- but this is appropriate as it is a signal of the limited information on recent sales with 

which current landowners can develop their expectations.35 

In summary, this analysis does not depend on commonly used sources of 

national land use data, but instead on micro, parcel level data spanning a time horizon 

of approximately one decade. This extremely rich dataset of time invariant attributes 

including parcel characteristics and location characteristics combined with time 

varying attributes such as the options variables, land use, interest rates, development 

rates, and recording dates for preservation or conversion decisions provides 

information on the re-construction of the landscape as of the end of 1990 as well as 

the pattern and timing of land conversion from 1991 to 2001. This dataset allows 

estimation of a data ‘hungry’ general model of the timing of land conversion and 

                                                 
35 Specifications used in this analysis assume constant and homogeneous discount rates (ρ) across 
landowners, as data limitations preclude controlling for variation in landowner discount rates. The 
frailty specifications should remove some of the noise from this unobservable. 
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preservation decisions. The appropriate model incorporates the dynamics inherent in 

the process of land use change which are often overlooked when estimating land 

conversion decisions.36 

                                                 
36 In fact, many land use studies use the ‘current’ landscape as the source of data, failing to account for 
the direct correlation of the housing units within one subdivision. For example a twenty unit 
subdivision is not twenty different decisions, it is one decision. 



 

 69 
 

5. Empirical Implementation and Results 
 

A necessary step in evaluating the impact of the preservation option on the 

conversion decision in the competing risks framework is the selection of an 

appropriate baseline hazard specification and a specification for the unobserved 

heterogeneity. The best way to select these distributions is to evaluate each risk 

individually and statistically eliminate specifications, if possible, or heuristically 

eliminate specifications, if not, by comparing output of parametric and nonparametric 

models.  

5.1 Model Selection – Conversion Risk 

 

The starting point for model selection is to determine if a time dependent 

baseline hazard is necessary.  If not, the exponential baseline, which imposes a time 

invariant baseline hazard, can be employed. Ideally, a researcher would like to 

understand a process so completely that there exists no remaining dependency on 

time, but this is rarely if ever possible.  

Throughout this section the estimated models will incorporate covariates as 

described in Chapter 4. Although the coefficient estimates are important, the 

coefficient impacts should not be directly interpreted until appropriate specification 

tests are performed. At this point in the model selection process the covariates are 

serving two purposes. First and foremost, they control for observable variation in 

parcels. But secondly, an examination of the differences in coefficient estimates 
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across models, from nonparametric to fully parametric, provides the researcher with 

an indication of sensitivity to the parametric assumptions imposed by each model.  

To determine if a time dependent baseline hazard is necessary a Weibull 

model, which allows a monotonic baseline, is compared with the exponential 

baseline, which has no dependency on time. Because the exponential is nested in the 

Weibull, a likelihood ratio test can be used. Based on this test the null hypothesis of 

an exponential, “memoryless”, hazard is rejected in favor of a time dependent 

baseline at a critical level of less than 1%.37    

The baseline estimate for the Weibull model is presented in Figure 5.1. The 

extreme curvature of the Weibull specification in the early periods is unconvincing in 

the land use context and probably an artifact of the Weibull’s behavior around time, 

t=0. It is not likely that parcels in 1990 have a very small baseline hazard rate which 

increases sharply through the early months. This is especially true as the data for this 

analysis begin in 1990, not at the beginning of a parcel’s lifetime. It seems logical 

that the hazard rate at the beginning of the study period should be a non-zero rate. 

The Gompertz specification allows the hazard rate to take non-zero values in the 

interval around t=0 and is also a monotonic hazard specification. In Figure 5.2 the 

estimated Gompertz and Weibull baseline hazard results are portrayed and illustrate 

the difference in the two in the early years of the study.38   

 

 

 

 

 

                                                 
37 The null hypothesis is rejected using a likelihood ratio test, chi2(1) = 10.69 at 0.0011. 
38 Also included in Figure 4 are results from the exponential, which imposes a constant baseline 
hazard. These results are included for a comparison in scale. 
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Figure 5.1:  Weibull Parametric Baseline Hazard Conversion Risk. 

 

The behavior of the Weibull at in the neighborhood of t=0 was also analyzed 

by Ridder and Woutersen (2003) who suggest restrictions on the Weibull in mixed 

proportional hazard models necessary to reach convergence rates similar to the 

Gompertz. Interestingly, their restrictions amount to bounding the baseline away from 

0 or ∞ in the small interval around t=0. These facts, combined with the fact that the 

coefficient estimates associated with model covariates are quite similar between the 

Weibull and Gompertz models as illustrated in Table 5.1, suggest the Gompertz 

specification is most appropriate. However, before finalizing the choice of a baseline 

hazard specification, sensitivity of coefficient estimates under less parametric 

versions of the baseline hazard is necessary. If coefficient estimates are not stable 

across parametric and nonparametric estimators it is possible the parametric 

assumptions are inappropriate. 



 

 72 
 

Figure 5.2:  Conversion Hazard - Parametric Baselines.  
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Table 5.1 Parametric Baseline Hazard, Conversion Risk  

 Gompertz  Weibull  Exp  

Variables       

Options variables 
Easement -0.4855 ** -0.4549 * -0.5123 ** 

Variance measure -0.0252 * -0.0192  -0.0299 ** 

Drift Measure -0.0037  0.0072  -0.0042  

Development Returns 
distDC -0.0103  -0.0093  -0.0112 * 

distBA 0.0054  0.0052  0.0057  

sluDevWithHs -0.0222 ** -0.0222 ** -0.0221 ** 

sluDevNoHs -0.0114 ** -0.0102 ** -0.0120 ** 

sluComm -0.0113 ** -0.0112 ** -0.0113 ** 

sluSubdiv 0.0095  0.0118 * 0.0082  

sluPreserved -0.0201 ** -0.0206 ** -0.0198 ** 

sluOpen 0.0117  0.0117  0.0119 * 

sluRoad 0.0070 * 0.0075 * 0.0066  

sluProtected -0.0002  -0.0001  -0.0002  

sluExempt -0.0232 ** -0.0235 ** -0.0231 ** 

devRate 0.0497 ** 0.0567 ** 0.0459 ** 

popDen 0.1735  0.1993  0.1574  

numLots 0.0003  0.0005  0.0002  

reqOpenSpace -0.1377  -0.1224  -0.1489  

Opportunity costs 
class1 0.0107  0.0105  0.0110  

class2 0.0030  0.0030  0.0029  

class3 0.0010  0.0011  0.0009  

class4 0.0007  0.0009  0.0006  

agriculture -0.0032  -0.0035  -0.0030  

acres 0.2685 ** 0.2676 ** 0.2703 ** 

hasHouse -0.9187 ** -0.9319 ** -0.9096 ** 

Conversion costs 
steep -0.0060 ** -0.0062 ** -0.0059 ** 

forested -0.0015  -0.0016  -0.0015  

notRoadSuit -0.0050 ** -0.0050 ** -0.0050 ** 

notSepticSuit -0.0003  -0.0004  -0.0003  

sewerPlanned -0.7178 ** -0.7045 ** -0.7392 ** 

intRate -0.1253 ** -0.1333 ** -0.1098 ** 

apfo -0.2014  -0.2564  -0.1375  

       

Constant -4.2134 ** -5.1200 ** -4.7333 ** 

 0.0018  0.1636 **   

 **   - significant at 5%, *     - significant at 10% 
  
 



 

 74 
 

5.1.1 Semi-parametric and Nonparametric Specifications 

 

A sensitivity analysis is performed by comparing the fully parametric 

Gompertz model’s coefficient and baseline hazard estimates with estimates from 

models that incorporate semi-parametric baseline specification and models that 

abstract from the baseline hazard altogether (i.e. the Cox model). When the pattern of 

coefficients’ signs and significance are similar across models, one can feel more 

comfortable with the parametric baseline specification.  

Semi-parametric estimation of the baseline hazard uses the piecewise 

exponential specification described in Chapter 3 but allows the resulting 

“memoryless” baseline to vary across pre-specified intervals of time. The piecewise 

specification has the advantage of removing temporal unobserved heterogeneity not 

already represented by time varying covariates in the data. Estimation of this model 

requires dividing the study period into time intervals which can be done in any of a 

number of ways. Time intervals are typically groups of sequential time periods in the 

data, grouped in intervals defined by calendar time or into intervals where an equal 

number of failures occur. The former method is implemented here by allowing the 

baseline hazard to be constant over all observations within a calendar year but vary 

between years. This is accomplished by including a dummy variable for each year in 

the exponential baseline model. Splitting the data on calendar time puts different 

numbers of failure events and observations in each interval. The latter procedure of 

grouping the data such that an equal number of failure events fall into each interval 

allows the data to ‘choose’ the interval width. For this method dummy variables are 

defined such that a fixed percentage of observed failures fall into each time interval.  
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For this analysis, both approaches are considered. In order to choose the 

number of intervals for the grouping by number of failures approach, three different 

sized groups of failures are estimated. The resulting Akaike Information Criteria 

(AIC) statistic is compared across these three specifications, as well as with the 

specification which incorporates yearly dummies, in order to select the best fitting 

model.39  The intervals for the percentage of failures approach are tested for 4, 6, and 

8 groups of failures, and the AIC values from these models are 2622, 2620, and 2614 

respectively. The AIC value using the calendar year approach is 2622. Figure 5.3 

displays the baseline hazard estimates from each of these models and includes the 

Gompertz baseline for comparison. From these interval based piecewise estimates, it 

is easy to see how a few months of high conversion activity in the middle of the study 

period are represented in the baseline hazard estimation. However, one could argue 

that the general pattern of the baseline estimates is flat or increasing in time as in the 

Gompertz baseline. In the remainder of the paper all references to the piecewise 

model will refer to the model with eight intervals grouped by the number of failure 

events. 

 

 

 

 

                                                 
39 Non-nested models such as the Weibull and Gompertz can be compared using the Akaike 
Information Criteria (AIC) proposed by Akaike (1974) defined as, 

)(2ln2 ckLAIC ++−=  

where lnL is the log-likelihood value, k is the number of covariates in the model, and c is the number 
of ancillary parameters. Although the best fitting model typically has the largest log likelihood, the 
AIC is designed to penalize models with excessive parameters. The most preferred model has the 
lowest AIC value.    
 



 

 76 
 

Figure 5.3:  Piecewise Baseline Hazards Conversion Risk.  
 

 

The specification of a baseline can be heuristically validated by comparing the 

coefficient estimates against the nonparametric alternative, the Cox model. Loosely 

speaking, if there are dramatic differences in coefficient estimates between the 

nonparametric and parametric baseline specifications, the imposition of the 

parametric baseline should be questioned further. If the coefficient estimates are not 

sensitive to the selection of the parametric model then the researcher can be more 

confident in the results. Table 5.2 displays the coefficient estimates from the 

piecewise model and the Cox model. Not only are the estimates similar to one another 

but the pattern, size, and significance of the estimated coefficients are very similar to 

those from the fully parametric Gompertz specification presented in Table 5.1. The 

only major difference is the coefficient on the options parameter measuring drift, 
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which is negative in the parametric Gompertz model and positive in the less 

parametric models, though not significant in either. The coefficient on easement 

eligibility and the variance measure are consistently negative and significant in 

parametric, semi-parametric, and nonparametric models.  
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Table 5.2   Non/Semi Parametric Results, Conversion Risk 

Baseline specification Cox PW Exp  

   8 intervals  
Variables     

Options variables 
Easement -0.5277 ** -0.5289 ** 

Variance measure -0.0259 ** -0.0265 * 
Drift Measure 0.0185  0.0093  

Development Returns 
distDC -0.0111 * -0.0111 * 
distBA 0.0054  0.0054  

sluDevWithHs -0.0219 ** -0.0218 ** 
sluDevNoHs -0.0106 ** -0.0107 ** 

sluComm -0.0114 ** -0.0113 ** 
sluSubdiv 0.0108  0.0106  

sluPreserved -0.0203 ** -0.0201 ** 
sluOpen 0.0120 ** 0.0117  
sluRoad 0.0069  0.0068 * 

sluProtected -0.0003  -0.0002  
sluExempt -0.0237 ** -0.0235 ** 

devRate 0.0549 ** 0.0544 ** 
popDen 0.1880  0.1873  
numLots 0.0003  0.0003  

reqOpenSpace -0.1365  -0.1344  

Opportunity costs 
class1 0.0114  0.0113  
class2 0.0032  0.0032  
class3 0.0011  0.0011  
class4 0.0010  0.0010  

agriculture -0.0032 * -0.0032  
acres 0.2745 ** 0.2737 ** 

hasHouse -0.9207 ** -0.9196 ** 

Conversion costs 
steep -0.0062 ** -0.0061 ** 

forested -0.0016  -0.0016  
notRoadSuit -0.0050 ** -0.0050 ** 
notSepticSuit -0.0005  -0.0005  
sewerPlanned -0.7655 ** -0.7625 ** 

intRate 0.3237  -0.0823  
Apfo -0.0388  -0.0459  

     
Constant   -4.7333 ** 

** - significant at 10%, * - significant at 5% 
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Results from these baseline hazard specification tests suggest the use of a 

Gompertz parametric baseline may not be inappropriate, but since the focus of this 

analysis is on interpreting the coefficient estimates it is probably best to choose the 

less parametric piecewise model. Should simulation or prediction be important, the 

Gompertz specification likely provides the necessary structure to permit an acceptable 

degree of confidence in the results. The remainder of this chapter will explore both 

the piecewise exponential and the Gompertz baseline hazard specifications.  

5.1.2 Unobserved Heterogeneity   

 

A second distributional assumption is required for each risk to implement the 

dependent competing risks model. This assumption pertains to the distribution of 

unobserved heterogeneity. Unobserved heterogeneity is likely to exist in any study of 

human decision making, and as described in Chapter 3 there are many sources of 

unobserved heterogeneity likely to influence land conversion decisions including 

parcel attributes and landowner attributes. This section will demonstrate the existence 

of unobserved heterogeneity in the conversion hazard and attempt to validate a 

functional form for its distribution.  

Recall from equation (15) that the accepted way of including heterogeneity 

involves a multiplicative term added to the baseline proportional hazard specification 

which follows a known distribution and adds an estimated parameter for the variance 

of this distribution to the models. There are many distributions commonly used to 

represent individual specific unobserved heterogeneity and, as with the baseline 

specification, there is no reason to choose one over the other. The selection of the 
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final specification for unobserved heterogeneity for the dependent competing risk is 

accomplished by investigating several distributions and comparing results with 

nonparametric unobserved heterogeneity. Because it is not possible to validate one 

specification versus another directly, this part of the model selection process involves 

analyzing the sensitivity of parametric results versus the nonparametric alternative in 

the context of the heterogeneity distribution.  

Gamma, Log Normal, and finite mixture distributions are estimated for this 

exercise using both parametric (Gompertz) and semi-parametric (piecewise 

exponential) forms of the baseline hazard suggested from the previous section. These 

distributions are selected for the unobserved heterogeneity parameter because a) the 

Gamma distribution is a popular choice in the existing literature, b) the log normal is 

more general than the Gamma parametric distribution in this context, and c) the finite 

mixture is nonparametric and can mimic many distributions (Weinke, et. Al. 2005; 

van den Berg, Lindeboom, and Ridder 1993).40  In fact, in the case of a single risk 

hazard model the piecewise exponential baseline with a finite mixture heterogeneity 

distribution is the least parametric full information maximum likelihood estimation 

that can be implemented. Recall that adding a distribution for the heterogeneity term 

in these models forms a new class of models referred to as mixed proportional hazard 

models where the ‘mixed’ term refers to the mixture of the baseline distribution and a 

distribution for the unobserved heterogeneity. In the next two paragraphs results from 

the Gamma heterogeneity distribution will be presented though similar arguments can 

be made for the Log Normal heterogeneity distribution. 

                                                 
40 Log normal distributions require numerical integration to evaluate the likelihood function. This is 
accomplished using a Gauss Hermite Quadrature with 24 integration points. 
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Results from the Gompertz baseline model in the presence of unobserved 

heterogeneity are presented in Table 5.3. The estimated heterogeneity parameter (the 

variance of the heterogeneity distribution) is significant in each model suggesting that 

unobserved heterogeneity exists in these data and should be accounted for in the 

competing risks framework. A graphical representation of the influence of 

unobserved heterogeneity on the resulting baseline hazard is presented in Figure 5.4. 

It appears that the model which ignores unobserved heterogeneity may produce a 

negatively biased baseline hazard estimate. Incorporating unobserved heterogeneity 

in the model seems to alleviate negative bias in the baseline hazard as evident in 

Figure 5.4. Figure 5.4 compares the baseline hazards from the model which ignores 

unobserved heterogeneity to a model with Gamma unobserved heterogeneity. The 

baseline hazard which ignores unobserved heterogeneity is less positively duration 

dependent than the Gamma heterogeneity model. However, a comparison of 

coefficient estimates between the parametric and nonparametric unobserved 

heterogeneity models suggests that the distribution of the unobserved heterogeneity 

does not significantly alter parameter estimates.  



 

 82 
 

Table 5.3  Gompertz specification with heterogeneity, Conversion Risk 

Baseline 

specification Gompertz Gompertz Gompertz Gompertz 

Heterogeneity 

specification  Gamma Log Normal 

Finite 

Mixture 

         
Variables         

Options variables 

Easement -0.4855 ** -0.5436 ** -0.6051 ** -0.5015 * 

Variance measure -0.0252 * -0.0282 ** -0.0358 ** -0.0368 ** 

Drift Measure -0.0037  -0.0058  -0.0075  -0.0048  

Development returns 

distDC -0.0103  -0.0097  -0.0116  -0.0117 * 

distBA 0.0054  0.0067  0.0061  0.0063  

sluDevWithHs -0.0222 ** -0.0243 ** -0.0244 ** -0.0234 ** 

sluDevNoHs -0.0114 ** -0.0130 ** -0.0145 ** -0.0134 ** 

sluComm -0.0113 ** -0.0147 ** -0.0159 ** -0.0189 ** 

sluSubdiv 0.0095  0.0104  0.0099  0.0101  

sluPreserved -0.0201 ** -0.0222 ** -0.0224 ** -0.0210 ** 

sluOpen 0.0117  0.0156 ** 0.0177 ** 0.0206 ** 

sluRoad 0.0070 * 0.0088 * 0.0099 * 0.0085 * 

sluProtected -0.0002  0.0010  0.0014  0.0006  

sluExempt -0.0232 ** -0.0244 ** -0.0248 ** -0.0247 ** 

devRate 0.0497 ** 0.0484 ** 0.0447 ** 0.0397 ** 

popDen 0.1735  0.2350  0.2164  0.2264  

numLots 0.0003  0.0008  0.0008  0.0022 ** 

reqOpenSpace -0.1377  -0.1665  -0.1789  -0.1728  

Opportunity costs 

class1 0.0107  0.0109  0.0117  0.0136  

class2 0.0030  0.0024  0.0024  0.0020  

class3 0.0010  0.0006  0.0006  0.0002  

class4 0.0007  -0.0003  -0.0007  -0.0014  

agriculture -0.0032  -0.0032  -0.0032  -0.0023  

Acres 0.2685 ** 0.3082 ** 0.3242 ** 0.2993 ** 

hasHouse -0.9187 ** -0.9975 ** -1.0263 ** -0.9658 ** 

Conversion costs 

steep -0.0060 ** -0.0070 ** -0.0071 ** -0.0069 ** 

forested -0.0015  -0.0016  -0.0018  -0.0012  

notRoadSuit -0.0050 ** -0.0056 ** -0.0057 ** -0.0057 ** 

notSepticSuit -0.0003  -0.0001  -0.0003  -0.0001  

sewerPlanned -0.7178 ** -0.7747 ** -0.8447 ** -0.8935 ** 

intRate -0.1253 ** -0.1256 ** -0.1067 * -0.1063 * 

apfo -0.2014  -0.2148  -0.1246  -0.1273  

         

Constant -4.2134 ** -4.2021 ** -4.1589 ** -6.1146 ** 
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Shape parameter 0.0018  0.0038 ** 0.0019  0.0007  

Heterogeneity 
parameter    .0.4789 ** 0.8384 **   

Fixed point 1       -0.6000  

point 2       2.4612 ** 

Weight 1       -0.8648 ** 

** - significant at 5%, * - significant at 10% 
 
 

As discussed in Chapter 3, the presence of unobserved heterogeneity, when 

excluded from the analysis, often leads to spurious negative duration dependence 

because observations with ‘large’ draws from the unobserved heterogeneity 

distribution will tend to fail early in the study. As time moves forward, the surviving 

observations will be comprised of observations with ‘smaller’ draws from the 

unobserved heterogeneity distribution. In this case smaller draws imply a smaller 

hazard and thus these observations will tend to be in the sample longer. If unobserved 

heterogeneity is not modeled the baseline hazard is likely to exhibit negative duration 

dependence even if the true duration dependence is not negative for any observation 

in the sample. 
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Figure 5.4:  Gompertz baseline hazard - Gamma Heterogeneity - Conversion 

Risk. 

 
 
 

Similar to the Gompertz baseline hazard, the piecewise hazard model 

produces a negatively biased baseline hazard when unobserved heterogeneity is 

ignored. Table 5.4 presents the results from these models and Figure 5.5 displays the 

impact on the semi-parametric baseline hazard when Gamma unobserved 

heterogeneity is introduced. In the piecewise model the heterogeneity parameters are 

also significant, implying that even with some temporal heterogeneity removed by the 

semi-parametric baseline there remains significant individual level unobserved 

heterogeneity in the data. Again, the estimated coefficients are relatively insensitive 

to the choice of parametric unobserved heterogeneity distribution when compared to 

the nonparametric finite mixture distribution.  
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Table 5.4 Piece wise exponential models with Heterogeneity, Conversion Risk 

Baseline 

specification PW Exp  PW Exp  PW Exp  PW Exp   

Variables   Gamma  Log Normal  

Finite 

Mix   

Options variables  

Easement -0.5289 ** -0.6050 ** -0.7247 ** -0.5645 **  

Variance 
measure -0.0265 * -0.0298 ** -0.0358 ** -0.0358 **  

Drift Measure 0.0093  0.0081  -0.0192  -0.0170   

Development Returns  

distDC -0.0111 * -0.0105  -0.0113  -0.0117   

distBA 0.0054  0.0066  0.0062  0.0058   

sluDevWithHs -0.0218 ** -0.0239 ** -0.0262 ** -0.0234 **  

sluDevNoHs -0.0107 ** -0.0122 ** -0.0160 ** -0.0133 **  

sluComm -0.0113 ** -0.0148 ** -0.0184 ** -0.0189 **  

sluSubdiv 0.0106  0.0118  0.0122  0.0107   

sluPreserved -0.0201 ** -0.0221 ** -0.0246 ** -0.0210 **  

sluOpen 0.0117  0.0160 ** 0.0197 ** 0.0209 **  

sluRoad 0.0068 * 0.0088 * 0.0119 * 0.0087 *  

sluProtected -0.0002  0.0012  0.0019  0.0006   

sluExempt -0.0235 ** -0.0246 ** -0.0268 ** -0.0246 **  

devRate 0.0544 ** 0.0535 ** 0.0494 ** 0.0423 **  

popDen 0.1873  0.2534  0.2649  0.2437   

numLots 0.0003  0.0008  0.0014  0.0021 *  

reqOpenSpace -0.1344  -0.1610  -0.1746  -0.1610   

       Opportunity costs  

class1 0.0113  0.0115  0.0113  0.0137   

class2 0.0032  0.0027  0.0022  0.0020   

class3 0.0011  0.0007  0.0004  0.0001   

class4 0.0010  0.0000  -0.0009  -0.0012   

agriculture -0.0032  -0.0032  -0.0036  -0.0023   

acres 0.2737 ** 0.3167 ** 0.3608 ** 0.3072 **  

hasHouse -0.9196 ** -1.0001 ** -1.1322 ** -0.9741 **  

Conversion costs  

steep -0.0061 ** -0.0071 ** -0.0081 ** -0.0070 **  

forested -0.0016  -0.0017  -0.0022  -0.0014   

notRoadSuit -0.0050 ** -0.0056 ** -0.0063 ** -0.0057 **  

notSepticSuit -0.0005  -0.0003  -0.0006  -0.0002   

sewerPlanned -0.7625 ** -0.8351 ** -0.9177 ** -0.9030 **  

intRate -0.0823  -0.0875  -0.1418  -0.1396   

apfo -0.0459  -0.0523  -0.0180  -0.0170   

          

Constant -4.7333 ** -4.7035 ** -4.2616 ** -5.9036 **  

Heterogeneity parameters  
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Heterogeneity 
parameter   0.4883 ** 1.0961 **    

Fixed point 1       -0.6000   

point 2       2.4255 **  

Weight 1       -0.8229 **  

** - significant at 5%, * - significant at 10% 

Based on these results unobserved heterogeneity appears to be present in these 

data, but the functional form of the heterogeneity distribution does not significantly 

impact the resulting coefficient estimates. Based on this fact the log normal 

distribution will be used in the dependent competing risks models because it is more 

tractable than either the Gamma or the finite mixture when correlating across risks 

where a bivariate distribution is required. The analysis, to this point, suggests that it is 

most appropriate to model the conversion hazard using a piecewise exponential 

baseline (8 intervals) and with unobserved heterogeneity in order to determine the 

impact of the preservation program. However, if a fully parametric model is required 

the Gompertz baseline hazard could also be utilized for the competing risks model 

without great reservation. Excluding one short period of intense activity, picked up by 

the piecewise exponential, the Gompertz baseline hazard and the piecewise baseline 

are quite similar. To this point, none of the models account for the second exit state 

available to landowners in this study area, the exit to preservation. This will be 

handled by the dependent competing risks model, but before estimating the 

competing risks model a similar set of distributional assumptions are required for the 

preservation hazard in the single risk context. 
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Figure 5.5:  PW Exp – 8 intervals baseline hazard - Gamma Heterogeneity 

Conversion Risk. 
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5.2 Model Selection - Preservation Risk 

 

Because many of tools necessary to select the functional forms for the 

preservation risk are identical to the conversion risk, and given the detail devoted to 

these in the previous section, this section will briefly describe the preservation hazard 

and justify the restrictions placed on this model. As in the conversion hazard the first 

step is to choose a baseline hazard specification. Fully parametric baseline hazard 

models are estimated and a likelihood ratio test is performed to compare a 

‘memoryless’ baseline hazard versus a monotonic baseline. Unlike the conversion 

hazard case, the null hypothesis of a time invariant baseline hazard (i.e. the 

exponential distribution) is not rejected for these data.41  This suggests an increasing 

or decreasing baseline hazard specification such as the Gompertz or Weibull is not 

necessary.  

As in the conversion hazard, the nonparametric Cox model is used to validate 

that the functional specification of the baseline hazard is not dramatically influencing 

the estimated coefficients. Table 5.5 displays the results from the exponential and the 

Weibull model compared to the Cox model. The estimated coefficients are similar 

across these models and allow the selection of the exponential baseline for the 

preservation hazard to be made with some degree of confidence. 

                                                 
41 The data fail to reject the null hypothesis using a likelihood ratio test, chi-squared (1) = 2.44 at 
0.1183. 
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Table 5.5 Preservation Hazard – Exponential Baseline  

Preservation 
Hazard 
variables Exponential Weibull Cox 

Exp-Log 
Normal 

Heterogeneity 

Funded    2.2576 ** 2.4040 ** ^  1.7175 * 
Acres 0.0656 ** 0.0667 ** 0.0873 ** 0.1258 ** 

distDC 0.0293  -0.0020  0.0019  0.0519  

distBA -0.0049  0.0306  0.0357 * -0.0089  

sluDevWithHs -0.0061  -0.0077  -0.0048  -0.0130  

sluDevNoHs 0.0262 ** 0.0279 ** 0.0197 * 0.0197  

sluComm 0.0110  0.0122  0.0128  0.0006  

sluSubdiv 0.0198  0.0250  0.0126  -0.0078  

sluPreserved 0.0083  0.0064  0.0130  0.0134  

sluOpen -1.5834 * -1.5525  -1.8276  -2.5948  

sluRoad -0.0893 ** -0.0854 ** -0.0925 ** -0.1312 * 

sluProtected -0.0288  -0.0275  -0.0231  -0.0431  

sluExempt 0.0024  0.0024  -0.0003  -0.0017  

class1    -0.0667 ** -0.0644 ** -0.0651 ** -0.0994 ** 

class2    -0.0986 ** -0.0946 ** -0.0919 ** -0.1372 ** 

class3    -0.0959 ** -0.0917 ** -0.0925 ** -0.1305 ** 

class4    -0.0607 ** -0.0584 ** -0.0628 ** -0.0931 ** 

steep     -0.0217  -0.0232  -0.0218  -0.0316  

forested 0.0289  0.0297  0.0254  0.0272  

agriculture 0.0457 * 0.0461 * 0.0401  0.0496  

hasHouse -2.3673 ** -2.3368 ** -2.1688 ** -3.2487 ** 

         

Preservation 
Constant -4.1289  -5.7950 *   -1.2830  

         

Heterogeneity parameter     1.4451 ** 

       

Number of obs   = 257 (2009 observations) 

No. of failures = 59 

 ^ - does not vary over observations thus cancels out of Cox partial likelihood 
** - significant at 5%, * - significant at 10% 
 

Finally, unobserved heterogeneity is incorporated using the log normal 

distribution and the results are presented in the last column of Table 5.5. Once again 

the heterogeneity parameter is significant though not overly influential on the sign or 
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significance of the parameter estimates.42  To complete the assumptions necessary to 

estimate the competing risks model the exponential baseline with log normal 

heterogeneity is assumed an appropriate model. Now the full competing risks models 

can be specified and estimated. 

5.3 Competing Risks Models and Results 

 

In most empirical hazard applications it is common to assume other potential 

exit states are randomly censored, and thus observations that exit via pathways other 

than the transition under study do not impact the failure of interest to the researcher. 

That is, these additional exits are assumed independent of the failure event of interest. 

But in many, if not most, cases the competing events are likely to share common 

causes, so that their event times can rarely be assumed independent. Such correlation 

should be modeled to avoid bias.  

Up to this point, non-random censoring has been assumed by each single risk 

model discussed in this chapter, a modeling strategy that is correct only if exits due to 

preservation are independent of the conversion decision and vice versa. In the 

analysis of the conversion (preservation) risk, a preservation (conversion) decision 

simply causes an observation to drop out of the risk set. Because the attributes that are 

likely to influence preservation are similar to the attributes that influence conversion 

this random censoring assumption is potentially an erroneous one. To address this 

problem the preservation decision is modeled jointly with the conversion decision in a 

true competing risks model.  

                                                 
42 The sample size prevents estimation of a finite mixture distribution for unobserved heterogeneity.  
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The choice of distributions required to estimate the empirical model is made 

based on the exploratory work of the previous sections. A piecewise exponential 

baseline hazard and a Gompertz baseline hazard are considered in turn for the 

conversion risk. An exponential baseline hazard is specified for the preservation risk. 

Both a log normal and a bivariate log normal are considered for the heterogeneity 

distribution. Again, the log normal is selected for tractability and because the single 

conversion risk results were similar between the Gamma, log normal, and the 

(nonparametric) finite mixture distributions of heterogeneity.  

This log normal heterogeneity distribution is incorporated in two forms in the 

dependent competing risks model. First, the univariate heterogeneity distribution 

restricts the heterogeneity parameter to be the same in each risk. This representation 

is consistent with a world where unobservables describe the landowner’s propensity 

to “move” or enter into some new land agreement (be it preservation or 

development). This may be the case where a financial situation requires the 

landowner either to sell the property or to sell an easement (i.e. enroll in the 

preservation program). Second, the bivariate case allows heterogeneity to be present 

in each risk in different degrees and correlates the dependency across risks via a 

jointly estimated correlation parameter. This discussion will focus on the results from 

the bivariate case because the univariate case does not differ dramatically.  

With the distributional assumptions based on the single risk hazards in hand, 

the competing risks model developed in Chapter 3 is estimated and the results are 

reported (see Table 5.6). Before discussing the coefficient estimates it is useful to 

view the resulting baseline hazard estimates for the conversion hazard which this 
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model produces.43  Figure 5.6 displays the conversion hazard using the piecewise 

exponential baseline, where an exponential baseline for the preservation hazard and 

bivariate heterogeneity are implemented.  

Figure 5.6:  Competing Risks Piecewise Exponential Baseline Hazard, 

Conversion Risk. 

 

This semi-parametric baseline function from the competing risks model is similar in 

shape to the estimates from the single case, given in Figure 5.5, but the magnitude is 

amplified. The baseline hazard from the conversion risk with heterogeneity exhibits a 

maximum of approximately .03, while in the competing risks model the maximum is 

closer to .045. Similarly, the minimum value of the baseline is shifted up, from less 

than 0.010 in the single risk case to almost 0.015 in the competing risk case. This 

difference in magnitudes is evident by comparing the difference in median conversion 

                                                 
43 Recall the preservation hazard is constant thus an uninteresting graph of the baseline would result. 
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time by model. In the single risk case the median conversion time from the piecewise 

model with log normal heterogeneity is 33 years while the median conversion time is 

24 years in the competing risks model.  

  Overall, the variables for unobserved heterogeneity within each risk are 

significant, similar to the single risk models. This suggests heterogeneity within risks 

exists and is indicative of the need to model these elements even though this 

application is in a data rich modeling environment and has used a flexible 

econometric specification. However, the correlation between these unobserved 

components is not significant. This could be a consequence of the choice of the 

heterogeneity distribution, which may be incapable of detecting this competing risk 

correlation, or it may suggest that cross risk correlations are adequately captured by 

the variation in the observable data. Unfortunately, these explanations cannot be 

validated.  The competing risks model remains the most realistic model to mimic the 

real world decision process facing landowners in this study and will be utilized to 

discuss the coefficient estimates.  

5.3.1 Competing Risks Results – Discussion of Coefficients 

 

The empirical model developed in Chapter 3 and the data discussion in 

Chapter 4 includes several covariates intended to control for differences in 

development profitability and preservation likelihood across parcels at risk. The 

discussion of the estimated coefficients begins with these covariates, not because 

these explanatory variables are themselves of central importance, but because 
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plausible results in these controls provide support for interpretations with regard to 

the options variables.  

Recalling the discussion in Chapter 4, variables are included in the model if 

they are likely to have a bearing on the returns from development, the construction 

costs of development, and/or the opportunity costs of converting a parcel to 

development. Also included are covariates that might alter the appeal of a parcel as an 

easement sale by the county. Explanatory variables that affect both the returns to 

development, as well as the ranking the county is likely to place on the parcel should 

it be offered for easement sale, include measures of surrounding land uses. Relative to 

the normalized category – developed residential land – several categories of 

surrounding land use have a depressing influence on development. Specifically, 

commercial and institutional neighbors appear to have a depressing effect on 

development likelihood, as does neighboring land that is developable or has been 

preserved – all relative to residential development. Only open space has a (relatively) 

positive effect as a neighbor on development, as do existing roads (that offer road 

frontage valuable for development). As will be explored in the next few chapters, 

these results should not be accepted too literally, as there is an inherent sample 

selection bias lurking in this model. But for now, this is not an important 

consideration, as the description of surrounding land use is included as a control only 

at this point in the analysis.  

Other controls related to parcel location include the recent rate of new home 

construction measured by devRate which is positive and significant. This variable 

varies by block group and serves as a proxy for unobservables which influence the 
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rate of construction and, indirectly, the approval rate of subdivisions in the 

neighborhood of each parcel. The rate of subdivision and thus new construction 

activity may be due to unobservables in the county planning office where 

development approvals may be based in part on some unpublished county 

prerogatives. This measure also proxies for attractive locations of the county based on 

unobservables that developers may perceive, but are not visible to researchers. As 

with other control variables that may relate to the spatial distribution land conversion, 

direct interpretation of this variable as a policy relevant measure is not appropriate 

because this model is not designed to control for selection issues which likely exist in 

placement of new conversions.  See Irwin and Bockstael (2002) for a detailed 

discussion.   

Variables which represent the opportunity costs of development, including 

acreage and the presence of an existing house, are associated with significant 

coefficients. Larger parcels are more likely to convert at a rate of 3-4% more per acre. 

44  The larger parcel is more likely to be a viable agricultural parcel but from the 

developer’s perspective a larger parcel is potentially a more attractive investment 

because the marginal costs are likely decreasing in the number of units, at least in 

construction costs.  Administrative costs are likely to be fixed at least over ranges of 

subdivision project size, contributing to economics of scale even when these 

additional bureaucratic costs are included.   The presence of an existing structure 

significantly delays conversion and is either an opportunity cost, if the structure is 

viable in housing, or a construction cost, if the unit will need renovation or removal 

for the subdivision plan to proceed.  Not surprisingly, the soil classification variables 

                                                 
44 The variable Acres enters the model as observed acres divided by ten. 
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tell us little about the conversion decision, in part because soil quality impacts both 

agricultural returns and cost of development.   

As for other measures related to construction costs, land poorly suited for road 

construction or septic systems is found to impact conversion timing negatively, which 

implies developers may be leaving this land in the sample longer while focusing on 

lands cheaper to convert. a higher value for the percentage of the parcel with very 

steep slopes tends to delay the conversion decision.  Although potentially producing 

views, steep slopes reduce the yield of units per parcel and increase the costs related 

to septic system placement, erosion control, and landscaping.  

As discussed in Chapter 4, variables relating directly to the preservation 

hazard include parcel attributes that define qualification for the easement program. 

These include acreage and land use of the parcel itself, as well as surrounding land 

uses because parcels can qualify or receive preferential treatment based on the land 

uses of neighbors. Many of the estimated coefficients are in line with expectations. 

For example, acreage has a positive and significant effect suggesting larger parcels 

are more likely to preserve. Among the surrounding land uses preservation and 

developable land without a house increase the hazard of preservation.    

Other coefficients exhibit potentially counterintuitive results. For example, the 

percentages of land in good agricultural soil classes are significant and negative.  

However, parcels with very good agricultural soils may represent viable agricultural 

operations with no financial need to encumber the land with a preservation easement. 

The program specific variable for funding is significant and positive as expected. This 
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variable controls for the fact that parcels only enroll in years when funding is 

available.  

Finally, the presence of a house decreases the likelihood of preservation. This 

may seem counterintuitive unless one considers the family lot rules of the easement 

program. Based on the county’s rules, the landowner is allowed one family lot per 50 

acres of preserved land. Consider a landowner who owns 105 acres. He has the 

incentive first to split the land into a large 100 acre parcel and his 5 acre housing lot 

prior to enrollment. At that point, the landowner could enroll the 100 acre parcel in 

the preservation program and retain the option to build two family units instead of 

just one.  Thus it is possible that the nature of family lot allowances on preserved land 

increases the probability the landowner will not preserve the actual land on which an 

existing structure sits, but will take some initial action first, and as a result 

preservations will tend to show up in the data set as largely parcels with no housing 

structures.  

5.3.2 Competing Risks Results – Options Variables  

 

The variables of particular importance to this investigation are those 

associated with options – the two real options variables (drift and variance) and the 

dummy variable denoting the option to sell an easement. As presented in the 

theoretical section, the options pertaining to the fluctuation in housing prices, the drift 

and variance, should delay conversion decisions because the landowner will, in many 

cases, expect the return from waiting to be larger than the return to immediate 

conversion. Compared to a net present value model where conversion takes place 
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when the development return is greater than the conversion cost, the options 

framework requires that development return exceed cost by some margin equivalent 

to the value of the option to develop in the future. In essence, an opportunity cost of 

development today is the foregone returns of development tomorrow at a potentially 

more advantageous price. Thus in areas where the variance in price is large, a 

landowner who includes current volatility into a forecast of the next period’s return 

may delay the conversion decision expecting an even better return in the next period.  

Similarly, for parcels qualified to enroll in a preservation easement, conversion today 

implies forfeiture of both the option to convert in the future and the option to preserve 

in the future. The expected result of a viable second option such as preservation is to 

delay conversion decisions.  

The coefficient related to the variance of the real option is consistently 

negative and significant across model specifications. A one percent increase in the 

price variation implies a 3 percent reduction in the hazard rate of conversion and a 

one standard deviation change in variance implies a 15% reduction. These results 

accord with the comparative statics from the real options literature and suggest that 

price volatility increases the propensity of the landowner to delay conversion 

decisions. The options variable related to the drift is consistently positive though 

never significant.  

The results pertaining to the second option are embodied in the estimated 

coefficient associated with easement eligibility (Easement). This coefficient is 

consistently negative and significant which suggests that preservation eligibility has 

an effect on the development decision and the effect is that of delaying development. 
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The magnitude of this effect is better seen by taking the exponential of the 

coefficient, thus converting the coefficient to a hazard ratio.45  In this case the hazard 

ratios range from 50 percent in the piecewise model to 55 percent in the Gompertz 

model, implying that the rate of conversion for easement eligible parcels is 

approximately 45% to 50% less than what might be expected without an easement 

program.  

The coefficient itself suggests the importance of the easement but the 

reduction in the hazard rate may not be extremely useful to policy makers as the 

connection between the hazard rate and actual time periods is not transparent.  Table 

5.7 reports the predicted median conversion times for censored parcels in the analysis, 

broken down by easement qualification and parcel size. The first three columns 

display the predicted outcome using the piecewise specification for the conversion 

baseline hazard which projects the value from the last interval of the piecewise model 

into the future. This is a potential drawback of the piecewise specification. The results 

presented in the last three columns of Table 5.7 pertain to the Gompertz specification.  

                                                 
45 Strictly speaking, coefficients in unobserved heterogeneity models have the interpretation of hazard 
ratios only at t=0. As time progresses observations that are ‘ more frail’, as defined by the unobserved 
heterogeneity parameter, experience failure and are removed from the surviving population thus 
altering the distribution of unobserved heterogeneity among parcels remaining the sample. This 
complicates the direct interpretation of the coefficients. 
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Table 5.6  Predicted Median Conversion Times (by Parcel size) 

 PW Exp Baseline 

Acres 
Qualify for 
Easement 

Not Qualified for 
Ease Difference 

>100 acres 14.97 7.54 7.43 

75-100 
acres 18.4 9.27 9.13 

50-75 acres 28.95 14.57 14.38 

25-50 acres 55.74 28.07 27.67 

 Gompertz Baseline 

>100 acres 23.15 14.1 9.05 

75-100 
acres 26.14 16.09 10.05 

50-75 acres 35.6 22.65 12.95 

25-50 acres 55.11 37.24 17.87 

Note:  All values in years and all ‘differences’ are significant at 5%. 

 

Comparing the median conversion time across models for large parcels (>100 

acres), the piecewise baseline competing risks model predicts median conversion time 

for the non-qualified parcels to be approximately 7.5 years and for the parcels 

qualified for the easement to be approximately 15 years.  The Gompertz specification 

produces a median conversion time of 14 nonqualified) versus 23 (qualified), for the 

same set of parcels. These large parcels are potentially the most interesting cases 

because they qualify for the easement without additional ‘help’ from adjacent parcels 

and because they yield the largest subdivisions and thus the greatest pressure on 

county services. However, differences in predicted conversion times persist over all 

size classes for both specifications and, range from 7.43 to 27.67 for the piecewise 

baseline model and 9.05 to 17.87 for the Gompertz baseline model.    
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Figures 5.7 and 5.8 display the histograms of predicted median conversion 

times by easement qualification where both graphs are scaled so the sum of the areas 

equals one. The graphs exhibit different shapes, due to the baseline specification, but 

the distributional difference between qualified and non-qualified parcels within each 

graph is apparent. The distribution of qualified parcels is shifted to the right compared 

to those not qualified. These results suggest that the existence of a preservation 

program, and thus the option to preserve, may actually slow development of eligible 

farmland even if that farmland eventually converts to residential use.  
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Figure 5.7:  Predicted Median Conversion Times from Piecewise Bivariate 

Heterogeneity Competing Risks for the Conversion Risk.  
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Figure 5.8:  Predicted Median Conversion Times from Gompertz Bivariate 

Heterogeneity Competing Risks for the Conversion Risk.  
 

 
 

Generally the results of the competing risks models are similar to the models 

which incorporate heterogeneity, as well as to the Cox model. Although the pattern of 

sign and significance is similar, it seems that as restrictions are removed in each step 

of the process, from fully parametric models to heterogeneity models to the 

competing risks models, the coefficient impacts are larger in absolute magnitude. As 

the results pertain to the primary variables of interest, i.e. the options variables, these 

more complicated (and more theoretically correct) estimation techniques lead to the 

same qualitative answers, which provide a comforting level of robustness in the 

conclusions drawn.  
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Table 5.7  Competing risks models 

Baseline spec PW Exp  PW Exp  Gompertz  Gompertz   

Variables 
(conversion 

risk) 

Univariate 
Log 

Normal  

Bivariate 
Log 

Normal  

Univariate 
Log 

Normal  

Bivariate 
Log 

Normal   

Options variables  

Easement -0.6969 ** -0.6860 ** -0.6139 ** -0.5884 **  

Variance 
measure -0.0370 ** -0.0360 ** -0.0372 ** -0.0358 **  

Drift Measure -0.0187  -0.0184  -0.0086  -0.0069   

Development Returns  

distDC -0.0112  -0.0114  -0.0115  -0.0116   

distBA 0.0059  0.0057  0.0060  0.0056   

sluDevWithHs -0.0259 ** -0.0252 ** -0.0252 ** -0.0241 **  

sluDevNoHs -0.0155 ** -0.0149 ** -0.0152 ** -0.0142 **  

sluComm -0.0178 ** -0.0170 ** -0.0167 ** -0.0155 **  

sluSubdiv 0.0117  0.0114  0.0101  0.0099   

sluPreserved -0.0220 ** -0.0222 ** -0.0216 ** -0.0210 **  

sluOpen 0.0192 ** 0.0185 ** 0.0184 ** 0.0172 **  

sluRoad 0.0108 * 0.0105 * 0.0100 * 0.0093 *  

sluProtected 0.0018  0.0016  0.0015  0.0013   

sluExempt -0.0263 ** -0.0257 ** -0.0256 ** -0.0248 **  

devRate 0.0493 ** 0.0486 ** 0.0450 ** 0.0445 **  

popDen 0.2651  0.2514  0.2305  0.2110   

numLots 0.0009  0.0008  0.0007  0.0006   

reqOpenSpace -0.1506  -0.1587  -0.1638  -0.1625   

Opportunity costs  

class1 0.0128  0.0124  0.0126  0.0124   

class2 0.0023  0.0024  0.0023  0.0025   

class3 0.0004  0.0005  0.0005  0.0006   

class4 -0.0010  -0.0008  -0.0010  -0.0007   

agriculture -0.0033  -0.0033  -0.0031  -0.0031   

acres 0.3560 ** 0.3454 ** 0.3361 ** 0.3194 **  

hasHouse -1.1357 ** -1.0890 ** -1.0816 ** -1.0275 **  

Conversion costs  

steep -0.0080 ** -0.0076 ** -0.0075 ** -0.0070 **  

forested -0.0021  -0.0020  -0.0019  -0.0018   

notRoadSuit -0.0062 ** -0.0060 ** -0.0059 ** -0.0057 **  

notSepticSuit -0.0005  -0.0004  -0.0003  -0.0003   

sewerPlanned -0.9012 ** -0.8796 ** -0.8570 ** -0.8299 **  

intRate -0.1403  -0.1384  -0.1071 * -0.1059 *  

Apfo -0.0109  -0.0098  -0.1302  -0.1224   

          

Constant -4.2218 ** -4.1436 ** -4.2109 ** -4.1207 **  
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Table 5.7 Competing Risks Models, continued. 

Baseline spec PW Exp  PW Exp  Gompertz  Gompertz   

Variables 
(preservation 

risk) 

Univariate 
Log 

Normal  

Bivariate 
Log 

Normal  

Univariate 
Log 

Normal  

Bivariate 
Log 

Normal   

Funded 1.9142 ** 1.7686 * 1.7994 * 1.9753 **  

Acres 0.1073 ** 0.1229 ** 0.1231 ** 0.1011 **  

distDC 0.0409  0.0494  0.0497  0.0388   

distBA -0.0096  -0.0096  -0.0095  -0.0091   

sluDevWithHs -0.0140  -0.0145  -0.0149  -0.0128   

sluDevNoHs 0.0166  0.0171  0.0169  0.0181   

sluComm 0.0030  0.0012  0.0015  0.0047   

sluSubdiv 0.0036  -0.0040  -0.0031  0.0061   

sluPreserved 0.0098  0.0125  0.0124  0.0094   

sluOpen -2.9817 * -2.9971  -3.0150  -2.7270 *  

sluRoad -0.1323 ** -0.1420 ** -0.1453 ** -0.1256 **  

sluProtected -0.0369  -0.0416  -0.0412  -0.0358   

sluExempt -0.0087  -0.0060  -0.0068  -0.0070   

class1 -0.0898 ** -0.1002 ** -0.1010 ** -0.0857 **  

class2 -0.1286 ** -0.1395 ** -0.1405 ** -0.1235 **  

class3 -0.1209 ** -0.1322 ** -0.1332 ** -0.1167 **  

class4 -0.0857 ** -0.0947 ** -0.0957 ** -0.0814 **  

Steep -0.0323 * -0.0336  -0.0340  -0.0302 *  

Forested 0.0203  0.0225  0.0219  0.0221   

agriculture 0.0417  0.0455  0.0449  0.0427   

hasHouse -2.9557 ** -3.2433 ** -3.2554 ** -2.8499 **  

          

Preservation 
Constant -0.5404  -0.3136  -0.1851  -1.1328   

Heterogeneity Parameters  

Heterogeneity 
parameter 1 1.0961 ** 1.4016 ** 1.3994 ** 0.9603 **  

Heterogeneity 
parameter 2   0.9865 ** 0.7879 **    

Correlation   0.5318  0.6638     

* - significant at 10%, **   - significant at 5% 
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5.4 Conclusion 

 

Modeling land conversion decisions is fraught with difficulties ranging from 

intensive data requirements to the appropriate choice of model structure. In many 

cases models to describe conversion decisions utilize aggregate data across time or 

space and place inappropriate restrictions on econometric specification.  

The analysis in this dissertation chapter extends the current literature in at 

least two directions. First, it utilizes a spatially and temporally explicit micro-level 

data set to demonstrate how to solve several of the modeling/econometric problems 

that have plagued analysis of these types of behavior for some time. To this author’s 

knowledge this is the first paper to utilize a multi-state model in a land use context 

and the first to consider the impacts of unobserved heterogeneity in the conversion 

timing decision.  

Models which remove parametric restrictions and incorporate individual 

heterogeneity are proposed and estimated. These complex models closely resemble 

the choice set a landowner is faced with in the county under study and may generalize 

to counties with similar programs. Estimation of the dependent competing risks 

model produces coefficient estimates similar to less complicated models with 

nonparametric baseline specifications or multiplicative individual unobserved 

heterogeneity, but the framework for the competing risks model can serve as a 

building block to forecast conversion decisions. At a minimum, the dependent 

competing risks model validates heretofore assumed restrictions on the single risk 
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models such as non-random censoring and the absence of length-biased sampling 

caused by individual unobserved heterogeneity. 

Second, it incorporates real options theory into the development decision 

modeling framework and finds that at least some of the theoretical predictions hold 

up in empirical work. Although there is no consensus in the literature about the 

appropriate form of a land conversion model, this work supports an argument that 

rejects the net present value approach as an adequate representation of land 

conversion. As predicted by real options theory, price volatility is found to slow 

conversion rates in the competing risks models as well as single risk semi–parametric 

baseline models with and without heterogeneity. In addition, the existence of an 

alternative real option (preservation) is found also to slow conversion. 

The primary goal of this work was to determine if an easement option impacts 

conversion decisions, and, if so, to quantify the temporal impact of the option on 

landowners that do not preserve. With each model, from single risk to competing risk, 

negative and significant impacts from the easement option are found. The magnitude 

of the impact on the conversion rate ranges from a 45% to a 50% reduction in the 

conversion hazard. The less parametric and more realistic models produce the largest 

estimated impacts.  

This analysis finds empirical support for the predictions of the theoretical real 

options literature in terms of the effect of high price volatility and that of multiple 

options. However, one should be somewhat cautious in making interpretative 

statements about some of the control variables in these models because, as in many 

land use analyses, there is much correlation among many of these covariates. For 



 

 108 
 

example, the distance measures are likely correlated with the surrounding land use 

measures as well as zoning variables such as number of lots. Additionally, as outlined 

by Irwin (1998) there is ample opportunity for endogeneity in the spatial landscape. It 

is for these reasons that the next chapters of this dissertation will utilize a technique 

specifically designed to account for endogeneity to examine a second question: 

whether preservation has an influence on the development decisions of neighboring 

parcels. 
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6. Measuring the Preservation “Spillover Effect” 
 

Many of the control variables utilized in the hazard models in Chapter 5 are 

generated as a result of policy decisions made by the county in the past, and one may 

be tempted to interpret their respective coefficients as estimated policy impacts. 

However one should be cautious because, as in most land use datasets, there is likely 

correlation among covariates and the potential for selection problems. This chapter 

will examine a policy relevant variable from the hazard model that deals with the 

development response to neighboring preservation activity. On the surface, one would 

expect the coefficient on the surrounding preserved land measure to provide clues 

concerning the development response to neighboring preservation.   But it cannot 

ensure causation and thus does not address the important policy question: “does 

preservation attract development?”  In the subsequent sections will explain the 

potential bias in this interpretation, suggest and implement an alternative estimation 

strategy which deals with the potential biases, and discuss implications and results. 

For convenience, the impact of preservation activity on neighboring parcels is 

referred to as the spillover effect in the remainder of this analysis. 

Chapter 4 introduced the notion of interaction effects in the description of the 

surrounding land use variables. The spillover effect is one such interaction effect. 

Interaction effects arise because surrounding land use has an effect on the value of a 

parcel in a given land use, and thus surrounding land use will also have an effect on 

the likelihood of a parcel being developed. In the presence of these interaction effects, 

policies such as the preservation policy that alter land use decisions can alter the 
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likelihood of development of parcels other than those directly affected by the policy. 

Based on this reasoning surrounding land use measures are included in the hazard 

models, and these potential interaction effects seem to be confirmed by the 

significance of the coefficients from those models.   But these coefficients should not 

be interpreted in the context of a policy evaluation where the interaction effect is the 

pathway which the policy is expected to influence the outcome. The pattern of 

surrounding land uses may arise from interaction effects or from other spatially 

correlated and unobserved exogenous landscape features. It is worth noting that these 

variables are included in the hazard model as predetermined variables because they 

are lagged measures, but the interpretation of these variables as purely interaction 

effects should be made with caution. This issue is especially relevant when the 

surrounding land use is a direct result of a policy, as is the case with the land use in 

preservation. If it is true that preservation deters development, as suggested by the 

negative coefficients on sluPreserved in the hazard model, then this preservation 

program appears to have little downside. But if the opposite is true then the program 

may have the unintended consequence of attracting development and encouraging 

further fragmentation of the landscape.  

There are at least two sources of bias present in the hazard model relating to 

the coefficient on neighboring preservation (sluPreserved) as this coefficient relates 

to a direct policy interpretation.   The first potential form of bias is best described as a 

selection issue. Empirically speaking this may be best explained using terminology 

associated with a controlled experiment. In a controlled experiment subjects are 

assigned to the treatment and the control groups randomly. Thus the impact of the 
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treatment can be estimated by comparing the difference in a measured outcome 

variable between the two groups. In this case the treatment is neighboring a preserved 

parcel and the outcome of interest is the subsequent observed conversion activity. 

When we attempt to deduce treatment impacts using actual outcomes, however, it is 

easy to see that there exists an assignment problem. Parcels are obviously not 

randomly assigned to treatment and control groups and thus in the treatment context 

the act of neighboring a preserved parcel is not an exogenous attribute of a parcel. In 

fact, parcels most likely to be treated have observable attributes that distinguish them 

from those parcels that are not likely to receive the treatment. These same attributes 

are included as covariates in the hazard model of conversion and are shown to be 

significant in the analysis of the conversion decision. So, the hazard models fail to 

account for this selection issue in estimation of the coefficient on surrounding land 

preservation. To evaluate a policy specific outcome, such as the spillover effect, it is 

best to compare “apples to apples”. That is, one needs to compare only similar parcels 

from the treatment and control groups to one another and thus account for this 

selection on observables.  

A second form of bias exists in the hazard models because the surrounding 

land use measure (sluPreserved) includes all preservation activity dating back to 

1980. Therefore, to adequately measure the impact of surrounding preservation 

activity one would need to model conversion decisions starting in 1980. The fact that 

we cannot do this because of data limitations leads to a starting point bias.   As an 

example, consider a parcel that is preserved in 1983 and has two developable 

neighbors, one of which is more suitable for development and does develop in 1988. 
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The preservation status of the first parcel will be present in the data set, but because 

the study period begins in 1990, the development activity will be missed.  Because of 

the inherent sampling problem associated with the starting point bias, the more 

developable the neighboring parcel of this preservation, the more likely it will already 

have been developed by the onset of the study period. The data set used in this 

dissertation will only report that the sole developable neighbor of the preserved parcel 

does not develop and will miss the 1988 conversion. As a result the sample will 

contain a disproportionate number of parcels which neighbor preservation and have 

attributes that tend to decrease the chances they will convert, perhaps ever, creating 

an additional selection issue. By itself, this feature of the data may lead to the 

negative coefficients observed in the hazard models for sluPreserved. 

In order to evaluate the spillover effect of preservation activity the non-

random assignment problem is addressed using a class of estimators called propensity 

score estimators and starting point bias is addressed by reformulating the data to 

evaluate only preservation and conversion activity during the study period. But first 

the source and direction of the spillover effect are discussed in detail.  

6.1 Spillover Effects   

 

The aim of this chapter is to test whether a spillover effect exists between 

preserved parcels and neighboring development decisions. Specifically: does having a 

preserved neighbor alter a parcel’s likelihood of subsequently being developed?  

There are several reasons why a spillover effect may exist between developable 

parcels and preserved neighbors, none of which can be ruled out a priori, and none of 



 

 113 
 

which can be individually identified. On the one hand, a farmer with a neighbor who 

has preserved his land may find it more profitable to remain in farming for all the 

reasons that ‘right to farm’ laws have been instituted. Nuisance complaints from 

equipment noise, manure odors, and chemical releases are less likely to occur, and 

support industries are more likely to survive in the area. On the other hand, 

agricultural enterprises that depend on marketing to the public may find it profitable 

to have residential neighbors. Landscape horticultural enterprises and pick-your-own 

farm operations could possibly benefit from developments close by.  

The effect of a preserved neighbor on the profitability of development is 

equally uncertain. The proximity of services and shopping is often considered an 

advantageous feature for residential development and a greater mass of residential 

development is likely to encourage commercial services in the area. Thus the more 

preserved land in the area the less the critical mass of households and the lower the 

levels of services, ceteris paribus. On the other hand, neighboring land that is 

permanently preserved in open space could provide positive spillovers in terms of 

rural amenities (e.g. scenic views) and low levels of congestion and traffic noise. As 

the likelihood of development depends in part on a) the willingness to pay of 

households for housing in a given location and b) the profitability of the existing 

undeveloped uses (e.g. farming), the relative sizes of the potential spillover effects 

described above may be important in determining where development takes place. 

Testing a hypothesis about these components of the spillover effect is 

surprisingly difficult. Regression-type analyses of land use interactions suffer from 

the sorts of identification problems that Manski (1993, 1995) has found so prevalent 



 

 114 
 

in socio-economic behavior. Irwin (1998) and Irwin and Bockstael (2002) illustrate 

the problems that arise in trying to identify spillover effects between neighboring land 

uses. They suggest that because many of the factors that make development more or 

less profitable are spatially correlated, the empirical finding of more development 

adjacent to existing development is not evidence of a positive interaction effect. Such 

an outcome could easily arise simply because both parcels are characterized by 

similar levels of the factors that affect development profitability, such as commuting 

distance to employment centers, road frontage, suitability of soils for development, 

etc. In testing whether preservation affects neighboring parcels’ likelihood of 

development, these sorts of identification problems will be encountered as well.  

In summary, the spillover effects of preservation on development are likely to 

be both positive and negative. For example, spatial correlation in factors affecting 

development suggests a potential negative relationship between development 

decisions and neighboring preservation. However, positive externalities generated by 

open space in the presence of nearby residential uses suggest a potential positive 

impact of neighboring preservation on development decisions. The estimator 

proposed in the next section attempts to measure the sum total of these spillover 

effects and only if strong positive spillover effects exist between preservation and 

development would one expect to find a positive empirical effect of preservation on 

development decisions.  
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6.2 Propensity Score Matching 

 

The next few subsections will outline the implementation of a propensity 

score estimator and highlight the advantages and drawbacks of the approach. In this 

framework, this analysis wishes to test for, and measure, the treatment effect where 

the observation of interest is a developable parcel, the treatment is the preservation of 

a neighbor, and the outcome of interest is whether the developable parcel is developed 

or not over a specified time period following the preservation action. This is a non-

random selection process because, as has been argued, developable parcels that have 

preserved neighbors are likely to have, on average, different characteristics than 

parcels without such neighbors, and these different characteristics may alter the 

likelihood of development. 

Conventional analyses, such as the hazard model reported in the previous 

chapters, might attempt to control for these characteristics by entering them, together 

with the treatment variable, into a model that seeks to explain the outcome. But 

criticisms of this type of approach are now standard, and include concern over 

reliance on linear or simple functional forms and over failure of the common support 

(cases where treated observations are substantially different from untreated 

observations). Alternatives for improving the rigor of the statistical test include 

procedures that estimate treatment effects by matching treated and untreated 

observations on conditioning variables and excluding observations that are 

measurably different from any treated observation, i.e. not on the common support.  



 

 116 
 

As an example of how the common support issue might arise in this data, 

consider the case where a parcel has attributes that make it highly valued as a 

subdivision and then has a neighbor that enters the preservation program. If a parcel 

with similar attributes but no bordering preservation does not exist in the data set, 

then the counterfactual does not exist and non-parametric identification is not 

possible.  This is referred to as failure of the common support. Evaluation of the 

treatment effect in this case is only possible in the regression context because the 

functional form of the regression equation will estimate a counterfactual in these 

regions of sparse data.  

In essence the regression function imposes a parametric relationship between 

the covariates in the model and the outcome of interest in order to construct this 

counterfactual. Similar to the work of Black and Smith (2004) there is no theoretical 

argument for the functional form of the outcome equations in this land conversion 

context, and thus it is inappropriate to rely on a linear or any other specific functional 

form to predict this counterfactual. The propensity score approach allows the 

researcher to identify these anomalies and use only parcels with counterparts in the 

control group to estimate the treatment effect. To reiterate, propensity score methods 

do not solve this issue, they allow it to be addressed by excluding those observations 

which fail the common support.  

6.2.1 Propensity Score Matching – The Basics 

 

Propensity score-matching estimators were first suggested by Rosenbaum and 

Rubin (1983). Applications of propensity score-matching are now quite prevalent in 
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the literature, especially in labor economics where the evaluation of job training 

programs represents a significant challenge (such as Heckman, Ichimura, and Todd 

1997; Dehejia and Wahba 2002; Lechner 2002; Smith and Todd 2005a). Following 

common notation, Y1 is the outcome under treatment and Y0 is the outcome with no 

treatment. For any parcel, only one of these outcomes can be observed. D = 1 

indicates that the parcel is in the set of parcels that has been treated, and D=0 

indicates it is in the untreated set. Rosenbaum and Rubin (1983) identify a measurable 

quantity of interest, defined by the following equation: 

(23)  ( ) ( ) ( )1|1|1| 0101 =−===−= DYEDYEDYYEATT   

where ATT  is ‘the average treatment on the treated’. This equals the expected value 

of the difference between the treated outcome and the non-treated outcome, for the 

particular group of parcels that happened to get treated. For this analysis this is the 

effect on the likelihood of development of having a newly preserved neighbor, 

averaged over all parcels that were treated. The first term on the right hand side of 

(23) is easily obtained; it is the percentage of treated parcels that develop. The second 

term on the right hand side represents the counterfactual – the outcome a treated 

parcel would have received had it not been treated. Since a parcel can be in only one 

state, treated or control, the matching procedure boils down to an  estimate of 

E(Y0|D=1), which is unobservable.  

Matching estimators pair each treated observation with 1 or more 

observationally similar non-treated observations, using the conditioning variables, Z, 

to identify the similarity. This procedure is justified if it can be argued that 

conditional on these Z's, outcomes are independent of the selection process. That is, if 
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those parcels found in the set D=1 were actually not treated, the expected value of 

their outcomes, once conditioned on the Z's, would not differ from the expected value 

of outcomes in the current group of untreated observations. More precisely, 

conditional mean independence is required, such that: 

(24)    ( ) ( )0,|1,| 00 === DZYEDZYE     

Rosenbaum and Rubin’s (1983) method for resolving the non-random assignment 

problem is based on this idea.   They argue that if treatment is determined by some set 

of covariates, Z, one can establish a control group that is similar in Z relative to the 

treatment group. They formally state this as: 

(25)  ( ) ( ) ( )0,|1,|1,| 0101 =−===− DZYEDZYEDZYYE .   

Direct implementation of equation (25) would be difficult for a large number 

of conditioning variables.46 Yet ensuring that equation (24) holds requires a rich set of 

these variables which should include all variables that influence the probability of 

treatment and outcome of interest. This led to the seminal contribution of Rosenbaum 

and Rubin’s 1983 paper. They proved that instead of conditioning on all K elements 

of the Z vector individually, one can equivalently condition on a one-dimensional 

function of that vector. They show that if outcome Y0 is independent of selection 

when conditioned on the Z's, then it is also independent of selection when conditioned 

on the propensity score which is defined as the probability of selection conditioned on 

the Z's or more formally: 

(26)     ( ) ( )ZDZP |1Pr == .     

 

                                                 
46 This is often called the “curse of dimensionality”. 



 

 119 
 

Rosenbaum and Rubin also require that there be no single Z or combination of 

Z variables that guarantees treatment. Put another way, for any set of Z, the 

probability of treatment must be strictly less than 1, i.e. Pr(D = 1| Z) < 1 for all Z . 

This condition must be true for each treated observation to have the potential of an 

analogue among the untreated. Thus, the impact of being treated is only valid for 

observations within the common support where the distribution of propensity scores 

for treated and control observations overlap.  

Equation (23) can now be rewritten as, 

(27)  ( )( ) ( )( ) ( )( )0,|1,|1,| 0101 =−===−= DZPYEDZPYEDZPYYEATT .  

 

In practice, equation (26) is estimated as a binary probit or logit, with the treatment 

dummy as the dependent variable. Explanatory variables include factors that are 

expected to affect the probability of treatment and those that are expected to affect 

outcomes directly and may be correlated with treatment. This works well in the land 

conversion context because, as discussed in the previous chapters, the variables that 

are expected to influence preservation activity are often the same variables expected 

to impact the conversion decision.  

With these propensity scores in hand, several ways exist to construct the 

counterfactual or the last term in equation (27), including kernel estimates, k-nearest 

neighbor, and caliper based techniques. Based on results from a Monte Carlo study by 

Frölich, kernel estimates will be employed. Kernel estimates use a weighted average 

of all or a subset of control observations to construct the counterfactual for each 

treated observation.  Each treated observation, i, is paired or matched with some 
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group of comparable j non-treated observations using their respective P(Z).  In order 

to match observations, a weight, W(i,j), is constructed from the kernel function, K(·).  

The kernel function used is the Epanechnikov kernel because it combines desirable 

properties from the tricube (i.e. dropping influence from the distribution’s tails) and 

the normal kernels (i.e. weighting close observations, in P(Z), more heavily and 

smoothly diminishing the weight with distance) (Smith and Todd 2005a).47   This 

allows the matching of the outcome of the set of treated parcels to the 'kernel 

weighted' outcome of an appropriate set of the D = 0 control group. This will 

construct the counterfactual and estimate the average treatment effect of the treated, 

TTA
)

.   

Heckman, Ichimura, and Todd (1997) and Smith and Todd (2005a) provide 

the following formal exposition: 
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N1 is the number of treated observations and h is the bandwidth of the kernel. The 

kernel choice, as suggested by DiNardo and Tobias (2001), has less impact on the 

                                                 
47 The Epanechnikov kernel is given by K(z)= 1 – (z/h)

2
 if |z|<=h. 



 

 121 
 

estimated weight, W(i,j), than does the choice of bandwidth (h). More bias and less 

variance are associated with higher values of h, and less bias and more variance are 

associated with lower values of h.  Again following (Frölich 2004), the optimal 

bandwidth is found through the “leave-one-out” method of cross validation.  To 

perform “leave-one-out’ cross validation, one observation at a time is left out of the 

analysis. With a specific bandwidth and kernel the value of the dropped observation is 

predicted. This is done for each observation in the sample, in turn, and the prediction 

errors are collected. Formally, if jy0 is the outcome of the jth observation then the 

prediction error is jj yy 00
ˆ−  where jy0

ˆ is the kernel based estimate of the outcome. 

Finally, the mean squared error is calculated as ( )2

}0{ 00

0

ˆ
1
∑ =∈

−
Dj jj yy

N
 for each 

bandwidth on the grid search, where N0 is the number of observations in the control 

group.48  The “optimal” bandwidth is the one that produces the minimum mean 

squared error.  

The strength of propensity score matching is that it exposes regions in which 

the support of Z does not overlap for treated and untreated observations. For example, 

there may be no untreated observations with propensity scores in the range of high 

values of P(Zi). When this is the case, the matching procedure is defensible only over 

the region of the common support. Treated observations outside the common support 

are dropped from the analysis, and the parameter TTA
)

is an estimate of the treatment 

effect on the treated only over the range of the common support. 

                                                 
48 For kernel matching the bandwidth grid is 0.01 x 1.2g-1 for g = 1,...,29. 
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7. Application of Propensity Score Matching  
 

An important policy impact of any land preservation program is the impact on 

surrounding parcels, what has been described as the spillover effect in this paper. 

Policies that alter land uses produce spillover effects if they positively or negatively 

impact the probability of conversion of neighboring parcels. In this context the 

Howard County farmland preservation program, which enrolls parcels in perpetuity, 

may have the further effect of discouraging development in areas neighboring 

preservation or, conversely, the unintended consequence of attracting development 

into the very areas the county wishes to reduce development pressures. 

Econometrically, the spillover effect is difficult to measure with regression 

techniques because treated parcels, those that neighbor a new preservation, are not 

randomly assigned and thus the treatment is not exogenous but is correlated with 

other measurable parcel attributes. Propensity score estimators address this 

assignment, or selection, problem by predicting the probability of treatment, 

conditional on observables, then matching parcels across treatment and control 

groups by their propensity scores to form an estimate of the treatment effect.  

Using experimental and non-experimental comparison data, Heckman, Ichimura 

and Todd (1997) and Heckman, Ichimura, Smith and Todd (1998) concluded that 

criteria for matching estimators to have a low bias include:  

• The conditioning variables should represent a rich set of factors related to both 

selection and outcome; 
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• The treated and untreated observations should be drawn from the same 

underlying population; 

• The dependent outcome variable should be measured in the same way over 

treatment and control groups. 

 

These conditions arise from the fact that the majority of matching tests have been 

applied to labor market data where treated and untreated samples are often drawn 

from completely different data sources, neither of which have very rich sets of 

individual characteristics. This land use problem poses no obvious biases from these 

sources. Treated and untreated observations are all members of the set of developable 

parcels in Howard County. Outcomes are measured for both groups using the same 

data acquisition and processing procedures, and extensive data (at least relative to 

many labor market studies) are available for each parcel for use as conditioning 

variables. Arguments based on economic theory and institutional knowledge inform 

the choice of conditioning variables in the land use problem.  

It should be noted that the propensity score approach is not a silver bullet and 

comes with its own drawbacks for this land use problem. Posing the hypothesis about 

spillover effects in a treatment effects setting is not straightforward because of the 

dynamic nature of the development and preservation processes and the static nature of 

the propensity score matching tests. The propensity score approach, by design, 

estimates the probability of treatment based on the state of the landscape prior to 

treatment. The outcome, the observed conversion decision, must then be measured 

over a subsequent period of years. The strength of the hazard model in incorporating 
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the dynamic nature of the development environment is missing in the propensity 

score approach. Due to the static nature of the propensity score estimator all time-

varying variables as of the beginning of the study period and to exclude the options 

variables for variance and drift are excluded from the analysis.  

Additionally, the data set is limited to only those parcels in the western part of 

the county because the probability of neighboring a preserved parcel is virtually zero 

for the parcels not in the west. All parcels in this subset of the data are located outside 

the sewer boundary so the variable for sewer planned is dropped from the analysis. 

Also eliminated is the incidence of adequate public facilities ordinances because this 

variable changes from year to year. Covariates with this much variation over time 

cannot be accommodated in the static propensity score framework.   An additional 

variable is added to the analysis - a dummy variable to indicate if the parcel has a 

neighbor that qualifies for an easement (sEasement).  The surrounding land use radii 

are expanded to 400 meters in order to detect development pressure for multiple years 

of conversion decisions. In the hazard model the 100 meter buffer was used because it 

was updateable each year and the conversion decision was analyzed each year not 

aggregated over many years as is necessary in this model. A complete list of data and 

summary statistics for the utilized in the propensity score analysis are given in Table 

7.1.  

Table 7.1  Summary Statistics –Propensity Score Analysis 

Variable Obs. Mean Min Max 

Easement 605 0.3471 0 1 
sEasement 605 0.3851 0 1 

     

distDC 605 50.8241 29.5114 69 

distBA 605 39.1997 23.6942 73 

     



 

 125 
 

sluDevWithHs 605 29.2921 0.3885 80 

sluDevNoHs 605 23.2532 0 88 

sluComm 605 1.3988 0 33 

sluSubdiv 605 7.1199 0 39 

sluPreserved 605 5.7642 0 67 

sluOther 605 2.6145 0 60 

sluOpen 605 0.3343 0 35 

sluRoad 605 4.7551 0 41 

sluProtected 605 5.0918 0 68 

sluExempt 605 1.0852 0 49 

numLots 605 11.0661 3 95 

reqOpenSpace 605 0.7058 0 1 

     

class1 605 3.3490 0 67 

class2 605 53.8708 0 100 

class3 605 25.0245 0 85 

class4 605 13.5739 0 86 

agriculture 605 56.7937 0 100 

acres 605 49.469 4.294 430 

hasHouse 605 0.4893 0 1 

     

steep 605 9.7439 0 99 

forested 605 32.8115 0 100 

notRoadSuit 605 36.1646 0 100 

notSepSuit 605 43.4757 0 100 

 

Two experimental evaluations are implemented. In each the treatment is defined as 

the preservation of a neighbor during the years 1990-1992.49  This particular 

treatment definition was selected in part because a large group of parcels were 

preserved in 1990-1992. The two alternative outcomes are  a) whether the parcel was 

developed during a short run period (from 1992 through 1997) and b) whether the 

parcel was developed during in a longer term period (from 1992 through 2001), both 

following a neighboring preservation action. The observation set includes any parcel 

                                                 
49

 Data on all preservation decisions back to the program’s inception in the early 1980’s are available, 

allowing inclusion of 1990 as well as 1991 preservation decisions in this treatment. Data on 
development decisions are available only from 1991 onwards, however. 
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in the western part of the county that was developable as of 1991. Subsequent 

development decisions during the duration of the study period can then be examined.  

The first step of the procedure is to calculate the propensity score by 

estimating the probability that a parcel is treated as a function of factors that affect the 

likelihood of treatment and factors that affect the outcome (i.e. development). The 

factors that are hypothesized to affect the likelihood of treatment are almost identical 

to those that have already argued should affect the development decision. However, a 

treated parcel is one that has a preserved neighbor, not one that is preserved itself. 

Nonetheless, parcel attributes are identified that are expected to affect preservation 

decisions to determine how they may be reinterpreted as factors affecting treatment. 

Recall that Howard County sets out specific criteria for ranking parcels for easement 

purchases. The county assigns a higher score to the application, 

• the more agricultural or forested land in the vicinity of the parcel; 

• the more active the agricultural operations on the parcel; 

• the more protected land in the area; 

• the larger the parcel size; 

• the fewer acres subject to erosion or drainage problems on the parcel; 

• the greater the proportion of LCC class 1, class 2, and class 3 soils on the 

parcel; 

• and the greater the road frontage;  

Although these criteria are intended to apply to the parcel being considered for 

preservation, many are characteristics that apply to that parcel’s surrounding land use 

or characteristics that are likely to be spatially correlated factors and therefore similar 
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among neighboring parcels. Therefore, there is every reason to expect a selection 

problem. To be more specific, in attempting to measure the effect on parcel A’s 

development decision from having a neighbor, B, preserve, one needs to take into 

account the fact that features of the landscape that make B more likely to preserve 

will be a land use description of the neighborhood of both A and B, as well as 

physical and environmental characteristics of B that are likely not to vary much 

across the neighborhood of A and B. And, what is more, these very features are 

factors likely to affect the probability of development, as well. The variables that 

should help explain the probability of treatment clearly overlap almost exactly with 

the set that affects the development outcome. Fortunately, propensity score matching 

does not require separating out the effects of various explanatory variables on the 

outcome and the likelihood of being treated, but only that the analysis controls for 

them in testing for the treatment effect. Because of this, matching methods for 

estimating treatment effects seem particularly well-suited to deal with this otherwise 

confusing and confounding problem. 

7.1 Results 

 

The results of the initial specifications of the probit estimation are given in 

Table 7.2.50  Interpretation is complicated by the fact that the variables are measured 

for the developable parcel and are included to explain whether that parcel is treated in 

the sense that a neighbor preserves. The probit does not directly estimate the 

probability of preservation but instead the probability of treatment, but these will be 

                                                 
50 The full balanced specification included acres squared and the variable for surrounding land use in a 
developable state without a house squared.  
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similar for variables that are correlated in space. Fortunately, interpretation of net 

effects is not necessary in constructing propensity scores and correlation among 

covariates causes no particular problems. 

Table 7.2  Propensity score estimates 

Variables  Coefficients   

Options variables 

Easement -0.2208  

sEasement 0.6613 ** 

Development Returns 

distDC 0.0200 ** 

distBA 0.0082  

sluDevWithHs 0.0177 ** 

sluDevNoHs 0.0511 ** 

sluComm -0.0167  

sluSubdiv -0.0004  

sluPreserved 0.0057  

sluOpen -0.0087  

sluRoad -0.3657 * 

sluProtected -0.0258  

sluExempt -0.0299 ** 

numLots 0.0109 ** 

reqOpenSpace -0.1532  

Opportunity costs 

class1 -0.0159  

class2 -0.0064  

class3 0.0033  

class4 -0.0090  

agriculture 0.0109 ** 

acres 0.4477  

hasHouse 0.0371  

Conversion costs 

steep -0.0094 * 

forested 0.0093  

notRoadSuit 0.0109  

notSepticSuit -0.0075  

   

Constant -4.2256 ** 

N = 605 Psuedo R2 = 0.308  

      * - significant at 10%, ** - significant at 5% 
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Once having obtained the propensity scores, the common support condition can be 

examined. Figure 7.1 provides the histogram of propensity scores for the treated and 

non-treated groups for both quasi-experiments. The x-axis measures the value of the 

predicted propensity score, calculated from the results of the probit analysis. The y-

axis measures the percent of each sample (treated and non-treated) found in each 

predicted propensity score interval of approximately 5 percentage points. Intervals 

for which there are treated observations but no non-treated observations available for 

controls are intervals over which the common support fails. 

Figure 7.1:  Histogram of propensity scores by treatment group.  

 

 
 

Before calculating the average treatment on the treated, TTA
)

, the outcome 

must be shown to be mean independent of the treatment, conditional on the 
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propensity score. Given the conditional independence assumption set out in (24) 

above, this requires ensuring that the covariates in Z meet this condition, which is 

equivalent to achieving 'balance' between treatments and their controls. In layman’s 

terms, balancing ensures that covariates in Z cannot be used to predict membership in 

the treatment or control group, i.e. the ideal situation of a random assignment has 

been recreated. Several balancing tests exist in the literature. The test used – 

commonly called regression based balancing – is suggested by Smith and Todd 

(2005a) and explained in more detail in Smith and Todd (2005b). The intuition 

behind this test is that after conditioning on P(Z), any further conditioning on the Z 

vector should not provide new information on D, the treatment assignment. In other 

words, the balancing tests evaluate whether covariates in Z are informative of 

treatment assignment after conditioning on the propensity score.51  If differences 

remain, then this suggests the propensity score model is mis-specified. Following 

Dehejia and Wahba (2002), cross products and squares of covariates are added to the 

specification until balancing is achieved.  

Two features of balancing are important to note. First, it may not be possible 

to achieve balancing in some problems. Second, the balancing test does not provide a 

means of selecting conditioning variables; it only assures that any predictive power of 

treatment classification in the selected variables is squeezed out of the set of variables 

that is available. After balancing the covariates in Z, the propensity score calculated 

from Z is no longer informative as to which parcels are in the treatment or control 

                                                 
51 Operationally, each covariate in regressed on the propensity score, the treatment dummy, the 
propensity score squared and cubed, and the propensity score, squared and cubed, interacted with the 
treatment dummy.  The F test of all variables containing the treatment dummy equal to zero provides 
the test statistic. 
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group.  In essence the procedure has recreated a random experiment. The final 

specification passes the balancing test suggested by Smith and Todd, when applied to 

the observations in the common support.52 

The treatment is defined as having a neighbor that preserves in 1990-92, and 

the short run outcome measure is conversion after treatment and before 1997.53  The 

eligible set includes only those developable parcels not treated before 1990 and 

includes 605 observations of which 12 are dropped because of a common support 

violation and 113 remain in the treated set. The remaining developable parcels are in 

the control set. The second quasi-experiment evaluates the outcome over a longer 

time horizon, from 1991 – 2001. In this experiment, fewer parcels drop from the 

common support (only one), because the optimal bandwidth is slightly wider for the 

longer outcome window.   Table 7.3 reports the number of treated and untreated 

observations for each quasi-experiment and the number of observations that fall on 

the common support. 

Table 7.3  Common Support Results  

Conversion Time Lag – 5 years 

 On Support Off Support 

Treated 113 12 
Controls 480 0 

Conversion Time Lag – 10 years 

 On Support Off Support 

Treated 124 1 
Controls 480 0 

 

 

 The results of the matching tests for both quasi-experiments are found in Table 7.4. 

The first column reports information about actual outcomes – specifically the percent 

of treated and untreated parcels that ultimately develop within each specified time 

                                                 
52 Output for the balancing tests is quite lengthy and thus available by request. 
53 Of course, a parcel which converts then is treated is considered in the control group.  
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frame. For example, for the short run timeframe, 12.80% of the sample of parcels 

with neighbors that preserve in 1990-92 developed in the period from 1992 to 1997. 

In contrast, 13.75% of those parcels that were not treated developed between 1992 

and 1997. For the longer outcome timeframe, 19.20% of the sample of parcels treated 

ultimately developed by 2001 and 22.29% of the untreated developed.  

 
Table 7.4  Average Treatment Effects 

Conversion Time Lag – 5 year 

 Unmatched Kernel Estimate 
Treated    12.80            13.27 
Controls -  13.75                          -  4.84 

Difference    -0.95          TTA
)

    8.43** 

   

Conversion Time Lag – 10 years 

 Unmatched Kernel Estimate 
Treated     19.20             19.35 
Controls -  22.29          -  10.78 

Difference     -3.09      TTA
)

     8.57** 
Note: Significance levels based on 1,000 bootstrapped repetitions are: **: 5%, *: 10%.  
The bandwidths are 0.01095 for 5 year lag and 0.0471 for the 10 year lag. 
Kernel estimate is based on the Epanechnikov kernel. 

 

The column marked ‘Kernel Estimate’ reports matching results for the 

Epanechnikov kernel matching algorithm. The first number reports the proportion of 

treated parcels that ultimately develop for the parcels that remain after eliminating 

those treated observations that violate the common support condition. The second 

item in this column reports the mean counterfactual. This is a re-weighted average 

value of the binary outcome, where the weights are defined as in equation (29).  

The difference between the percent of actual treated and untreated parcels that 

subsequently convert is small, in both the short and long run experiments. These 

differences are not statistically different at even the 10% level and suggest  that 
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treated parcels show no greater propensity to develop than do control parcels. 

However, when the matching procedure is employed which involves limiting the 

treated set to those on the common support and comparing these treated parcels only 

with similar control parcels, the difference is much larger (8.43 percent and 8.57 

percent for the short and long term experiment, respectively). This suggests that 

parcels that neighbor preservation were more than three times as likely as their 

control counterparts to develop within the short run period of five years following 

neighboring preservation and almost twice as likely during the ten year period. The 

decline in the difference in treatment effect with the longer time horizon suggests that 

any effect due to neighboring preservation declines with time.54  To determine 

significance of the TTA
)

 estimates, bootstrapped standard errors are calculated with 

1,000 repetitions. In both the short and long term cases, the TTA
)

is significant at the 

5% level.  

Table 7.5 illustrates the ability of the matching estimator to mimic a 

controlled experiment. First compare columns 2 and columns 4 which are the raw 

means of the covariates by treatment status. There are large differences in the acreage 

(acres), amount of land in agriculture (agriculture), percentage of lands with steep 

slopes (steep), surrounding lands in farmsteads (sluDevWithHs, sluDevNoHs), as well 

as easement eligibility of the own parcel and neighbors’ parcels (sEasement). 

Columns 6 and 8, under the heading “After Matching”, display the same variables 

limited to the common support and using the weighted control observations. Notice 

the similarity now between acreage (55 acres for the treated versus 56 acres for 

                                                 
54 More observations are on the common support in the long run outcome measure of 10 years so the 
samples are not identical. 
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controls), percentage of land in agriculture (66% treated versus 68% controls), 

amount of surrounding lands in farmsteads (31% versus 31%), own parcel easement 

eligibility (49% versus 45% for controls), and neighbors’ eligibility (64% versus 63% 

controls). In summary, this table illustrates the power of the matching estimation 

procedure to convert a non-random assignment problem into one that approaches a 

randomized method. It compares treatment and weighted control observations that are 

very similar in observable covariates addressing the selection problems inherent in 

enrollment and the reliance on the functional form of a regression approach to 

evaluate a treatment outcome. 

Table 7.5:  Summary Statistics by Treatment Status (for the 5 year conversion time lag) 

 Before Matching After Matching 

 
Treated 
Parcels 

Untreated 
Parcels 

Treated 
Parcels Untreated Parcels 

   
Common 
Support 

Weighted 
Common Support 

Variable Mean Mean Mean Mean 

Easement 0.5360 0.2979 0.4956 0.4573 

sEasement 0.6800 0.3083 0.6460 0.6324 

     

distDC 54.8163 49.7845 54.5850 54.3459 

distBA 41.1578 38.6898 41.0783 40.2384 

     

sluDevWithHs 32.7515 28.3911 31.6471 31.0966 

sluDevNoHs 31.0519 21.2223 31.3326 31.7939 

sluComm 0.6221 1.6010 0.6871 0.7129 

sluSubdiv 5.6651 7.4987 5.7150 6.1485 

sluPreserved 8.3900 5.0804 8.4643 8.6221 

sluOther 1.3591 2.9414 1.4568 1.5516 

sluOpen 0.0408 0.4108 0.0451 0.0546 

sluRoad 3.3440 5.1226 3.5002 3.7935 

sluProtected 2.2470 5.8327 2.3354 2.0190 

sluExempt 0.2625 1.2995 0.2903 0.2989 

numLots 13.3360 10.4750 12.2832 12.3539 

reqOpenSpace 0.8000 0.6813 0.7788 0.7816 

     

class1 3.4122 3.3325 3.3704 2.9476 

class2 51.8468 54.3978 51.4276 50.7769 
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class3 26.8231 24.5561 26.1902 27.6638 

class4 13.8549 13.5007 14.6862 12.9518 

agriculture 67.4830 54.0100 66.8907 68.4552 

Acres 60.597 46.571 55.794 56.206 

hasHouse 0.4640 0.4958 0.4690 0.4395 

     

Steep 4.5002 11.1094 4.6943 4.8946 

forested 28.1272 34.0313 28.3235 27.1504 

notRoadSuit 35.4083 36.3616 36.1388 36.3186 

notSepSuit 38.4003 44.7975 39.0636 38.9852 

     

Observations  125 480 113 452 

Weighted Number of Observations 113 

Note: 1 – Weighted using the kernel weights from the Epanechnikov kernel. 
 

7.2 Conclusion  

 
Testing the effects of policies and programs on land use decisions is not an 

easy task. This is especially true when the effect being tested is some type of spatial 

interaction. Because the landscape is characterized by so much spatial correlation, it 

is empirically difficult to distinguish between true interactions between outcomes, 

and outcomes that are correlated because they are affected by correlated exogenous 

variables. In other words, it is difficult to provide evidence of causation as opposed to 

correlation. 

Following matching methods developed in the labor literature, propensity 

score matching is used to test for a treatment effect. As pointed out, it is not possible 

to design a quasi-controlled experiment that tests the same hypothesis as is tested in 

the hazard model because the hazard simulates a dynamic process while the matching 

tests are essentially static. In the matching framework, two outcomes are considered, 

one that tests the effect of the preservation actions on subsequent development in the 

short run and a second that allows the effect to be measured in the long run. The 
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propensity score matching method reveals significant effects from treatment. Parcels 

with preserved neighbors are significantly more likely to develop subsequent to their 

neighbor’s preservation than those without such a treatment. However, the difference 

in the calculated treatment effect in the short and long run experiments is very small 

suggesting that the spillover effect occurs quickly and remained stable into the long 

run. The size of the effect is estimated to be about 8.5% - that is developable parcels 

in the western part of Howard County are about 8% more likely to developable if a 

neighbor preserved than a counterpart with no preserving neighbor. 

This chapter provides evidence for the contention that preserved open space is 

likely to induce more neighboring development, holding other things equal. Thus 

preservation programs, if not designed carefully, may actually encourage landscape 

fragmentation by setting in motion a path dependent process that encourages a 

checkerboard pattern of preservation and development. Knowing of the existence of 

this spillover effect may help the public sector design land use policies with a higher 

probability of achieving their stated goals. 
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8. What Does It All Mean? 

 
This dissertation quantifies two outcomes of a voluntary easement program 

designed to preserve farmland in perpetuity. One outcome, an induced delay in 

conversion timing, is unexpected and desirable for a county attempting to control the 

pace of development. The second is an unintended consequence, i.e. a negative 

impact, because it suggests that preserved lands attract development activity. This 

unintended consequence may be unavoidable but should be quantified if one wishes 

to evaluate the true impact of a land preservation program or design a policy to 

minimize this effect.  

A primary goal of this dissertation was to determine if an easement option 

impacts conversion decisions, and, if so, to quantify the temporal impact of the option 

on landowners that do not preserve. The results from complex competing risks 

models which closely mimic the actual decision process suggest that the easement 

program significantly delays the conversion of eligible parcels. This delay is 

estimated at 7 years for parcels that qualify for the program without assistance from 

adjacent parcels and the conversion rate is reduced by over 45% for all easement 

eligible parcels.  

For policy makers the induced delay is important, especially in counties just 

beginning a period of rapid growth. These results suggest that having an alternative 

option to land conversion not only has the direct impact of preserving parcels, but 

also significantly delays the conversion decisions of parcels, eligible to preserve, that 

may ultimately choose not to participate in the program. The resulting delay is 
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important because eligible parcels are larger than average and are capable of 

producing many new housing units. This new housing, in turn, puts pressure on 

schools, roads, utilities, and other infrastructure. These pressures are often ultimately 

alleviated by county public spending on infrastructure, but the delay in conversion 

might allow the county needed time to cope with financial pressures and may, 

additionally, soften speculative housing demand driven by ‘boom’ cycles in housing 

construction. Also, the preservation program may alleviate the need for command and 

control programs to limit conversion rates which are often challenged on legal 

grounds. 

However, not all consequences of an easement program are desirable. While 

qualified parcels may delay conversion decisions, it appears that parcels that neighbor 

a preserved parcel are more likely to develop. These permanently preserved parcels 

create positive spillover effects that make neighboring parcels more attractive to 

development. Spillover effects could arise from the scenic nature of farmland or 

simply from the reduced uncertainty surrounding future land uses which are inherent 

in non-preserved parcels. This spillover effect may exacerbate development into 

agricultural areas and has the potential to produce the undesirable patterns of growth 

many counties are aiming to prevent. Thus being aware of this potential impact in the 

policy design phase may prove crucial to promoting a desirable pattern of growth. 

The number of localities contemplating policies to preserve land is growing 

each year, so the question of generalization of these results is an important one. 

However, the uniqueness of the area under study may complicate broad 

generalization of these findings. The study area, Howard County, Maryland, is unique 
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for several reasons. First, it is a wealthy exurban county and is relatively autonomous 

with regard to land use policy because the reliance on state funds, for schools and 

infrastructure, is less than an average county. Second, the county is under intense 

growth pressure but at the same time has a long history as an agricultural county. 

There is considerable will within the existing population to fund preservation of this 

historical land use. Thus, the key findings of the dissertation may generalize to a 

limited number of areas at this point in time, but as easement programs and farmland 

preservation programs gain in popularity these results will prove useful in many more 

localities. As more counties contemplate and implement incentive based land use 

regulation the need to design policy, forecast outcomes, and evaluate impacts of these 

regulations will grow in importance and the results derived in this dissertation should 

prove useful at each point in this continuum. This work should inform policy makers 

on design issues of future policies and outline methods for researchers to quantify 

impacts which account for many of the inherent problems that are prevalent in land 

use policy analysis. 
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Appendix A:  The easement payout worksheet. 
Figure A.1: Payout formula 
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Appendix B: Data 

Table B.0.1 Data Sources 

Source Label 

1990 Census files(maps or data) Census 

Howard County GIS HC GIS 

Howard County Tax Assessment HC Tax 

Howard County General Plan (1990) HC GP 

Maryland Department of Transportation MDT 

Maryland Department of Planning MDP 

Natural Soils Maps (Natural Resources Conservation 
Services) NRCS 

Soil Survey Geographic Database (NRCS & National 
Cartography and Geospatial Center, NCGC) SSURGO 

 

Table B.2 Variables and Sources 

Variable Source 

Easement HC GIS, HC Tax 

Variance 
measure HC GIS, HC Tax 

Drift measure HC GIS, HC Tax 

distBA MDT  

distDC MDT  

sluDevWithHs HC GIS, HC Tax 

sluDevNoHs HC GIS, HC Tax 

sluComm HC GIS, HC Tax 

sluSubdiv HC GIS, HC Tax 

sluPreserved HC GIS, HC Tax 

sluOpen HC GIS, HC Tax 

sluRoad HC GIS, HC Tax 

sluProtected HC GIS, HC Tax 

sluExempt HC GIS, HC Tax 

devRate HC Tax, Census 

popDen HC Tax, Census 

numLots HC Tax, MDP, HC GP 

reqOpenSpace HC Tax,  HC GP 

class1 NRCS 

class2 NRCS 

class3 NRCS 
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class4 NRCS 

Agriculture MDP 

Acres HC GIS, HC Tax 

hasHouse HC GIS, HC Tax 

Steep NRCS 

Forested MDP 

notRoadSuit SSURGO 

notSepticSuit SSURGO 

sewerPlanned MDP 

intRate US Federal Reserve 

APFO Howard County Council Legislative Record 
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