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Today’s consumer market is driven by technology innovations. Many 

technologies that were not available a few years ago are quickly being 

adopted into common use. Equipment for these services requires micropro-

cessors inside and can be regarded as embedded systems. Embedded sys-

tems are computer systems that are well hidden inside devices. At the time 

of design, much is known about the operating conditions and requirements. 

Embedded systems are designed to meet these requirements at a minimal 

cost. To improve efficiency and throughput, real-time operating systems 

(RTOSs) can be used. However, RTOSs can create overhead in systems. 

Using hardware accelerators can significantly reduce overhead. In this 

work, we survey the major overhead in embedded systems and identify and 

analyze some of them in detail. We then propose and discuss nanoproces-



sors, as configurable hardware accelerators, to lower this system overhead. 

Our simulation result shows that nanoprocessors can improve system per-

formance at a nominal cost.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Today’s consumer market is driven by technological innovations. 

Many technologies that were not available a few years ago are quickly 

being adapted into common use. These technologies include DVD, GPS, 

streaming multimedia, broadband services like high-speed cable and DSL. 

All equipment for these services require microprocessors inside and can be 

regarded as embedded systems.

Embedded systems are computer systems that are well disguised and 

hidden inside devices. They normally perform specific, well-defined func-

tions, and are thus designed with these functions in mind. This is in con-

trast to a general-purpose computer, which is designed to be highly 

flexible.

Because prior knowledge about performance requirements is avail-

able, embedded systems are designed to meet these requirements at a mini-

mal cost. To improve efficiency and throughput of these systems, real-time 

operating systems (RTOSs) can be used. RTOSs are good for performance; 
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however, they can create additional work for the system. Any work that is 

unrelated to user applications is considered as an overhead and can incur a 

higher cost for the system. Overheads can be significantly reduced by using 

hardware accelerators. In this work, we survey the major overheads in 

embedded systems and identify and analyze some of them in detail. We 

then propose and discuss nanoprocessors, as reconfigurable hardware 

accelerators, to lower overhead. Our simulation results show that using 

nanoprocessors can improve system performance at a minimal cost.

1.2 Background Information

1.2.1 Modern Embedded Systems

The embedded systems market is one of the fastest growing markets 

of this decade. These systems have been deeply “embedded” into daily 

lives in many ways without us being aware of them. Unlike a desktop com-

puter, embedded systems do not take the form of a tower chassis standing 

on a desk. On the contrary, they are well hidden inside many devices, such 

as cell phones, digital cameras, game consoles, MP3 players, PDAs, digital 

TVs, etc. The use of embedded systems has increased tremendously in the 

recent past, and the growing trend is likely to continue in the future.

Embedded systems can take on many different forms, but the compo-

nents inside are somewhat similar across all systems. Most systems include 
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at least one microprocessor as the central processing unit (CPU), along 

with on-chip memory for fast access time. The size of memory can differ 

significantly across systems. In addition, there is normally a hardware 

timer, a watchdog timer, Input/Output (I/O) ports such as UARTs (Univer-

sal Asynchronous Receiver/Transmitter), and sometimes a debugging 

interface. 

Depending on specific application requirements, other components 

can also be found. For instance, if an embedded system is expected to per-

form signal processing tasks, a multiply-and-accumulate (MAC) unit can 

be integrated for that purpose. Embedded systems in cell phones have cel-

lular network communication modules included. Embedded processors that 

form a network are likely to have DMA controllers and network interface 

controllers. In addition, other peripherals such as multimedia cards, wire-

less adapters and infrared ports can also be found in embedded systems. 

Because the embedded applications are becoming more diverse, more 

application-specific hardware components are founded in embedded sys-

tems.

Some of the applications that run on embedded systems are real-time, 

meaning that if the applications do not execute within a fixed amount of 

time, they can result in a catastrophe. For example, in an embedded system 

that is used in airplanes, if an abnormal reading on a sensor is not reported 
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in a timely manner, it could damage the airplane and even put people in 

danger. Because of special requirements of this nature, most embedded 

systems avoid non-deterministic hardware. One good example of this is the 

absence of caches in most embedded systems. Caches operate on locality 

of data access. They can service a very high percentage of data traffic, and 

shorten the average access time. However, no cache can guarantee hits on 

all data accesses, thus it does not change the worst case access time. To 

meet real-time requirements, the worst case scenario must always be con-

sidered. Therefore caches are typically omitted from embedded systems. In 

addition this provides savings in die area and power consumption.

Power consumption is a critical design issue for embedded systems 

that are powered by batteries. The resources available for a system are lim-

ited by power constraints. For instance, embedded systems cannot increase 

system memory size at will due to the increased power consumption from 

memory cells. As a result, embedded system designers are generally mini-

malists. For example, most embedded systems use serial I/O ports instead 

of parallel I/O ports. The advantages of using serial ports are that they 

require fewer output pins, which reduces power consumption. Also they 

are simple to design and can transmit data over a longer distance. Even 

though serial ports can hardly match the bandwidth provided by parallel 

ports, most applications can be satisfied with serial port performance [2].
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In most cases UARTs are used with serial ports. UARTs convert the 

parallel outgoing data from the processor into a serial bit stream and pass it 

to the serial ports. They also perform the serial to parallel conversion for 

incoming data. From the processor perspective, data communication is 

done in bytes. 

1.2.2 Real Time Operating Systems

As the market expands and new services are added, the complexity of 

embedded systems grows. The modern day embedded market has 

expanded from 8-bit microprocessors used 30 years ago to 16-bit and 32-

bit microprocessors common in today’s market. The memory size of micro-

processors is also on the rise to accommodate larger application code foot-

prints. In addition, as the market becomes more competitive, the system 

development time becomes shorter. This combination of increasing com-

plexity and short time to market has led designers to use third party com-

mercial RTOSs. RTOSs offer valuable services to embedded system 

designers and help to save time in the production cycle. The benefits of 

RTOSs translate directly into profits. Thus, an increasing number of 

RTOSs are being used in embedded systems.

Like general operating systems (OSs), RTOSs provide users with 

desirable functionality such as multitasking, interprocess communication 
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(IPC), process scheduling, etc. RTOSs provide efficient algorithms and 

maximum optimization for these services.

Multitasking is arguably the most important feature of an RTOS. By 

allowing several tasks to run simultaneously, tasks can complete faster than 

sequential execution. Often a task runs for a period of time and waits for 

input for a period of time. While one task is waiting, another task can take 

advantage of the idle CPU. By interleaving tasks, an OS can increase pro-

cessor utilization rate, or the amount of time a processor spends doing use-

ful work. By efficient scheduling, an OS can reduces the overall amount of 

time to execute several tasks. 

However, in order to keep track of several tasks at the same time for 

multitasking, the OS becomes more complex. Switching between tasks, 

also called context switching, must be done at least occasionally. A context 

switch is an expensive operation because all information about the current 

task must be saved from the CPU registers, and information about a new 

task must be copied into the CPU registers. 

When a task gives up the CPU, an OS needs a way of finding the next 

available task to take over. This calls for a task scheduler. The task sched-

uler is at the heart of a operating system. There are two classes of schedul-

ing algorithms: static scheduling and dynamic scheduling. Static 

scheduling algorithms assign task priorities at compile time. Throughout 
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execution, a task keeps the same priority with respect to all other tasks. For 

instance, a round-robin scheduler treats all tasks equally, allowing each 

task to execute for a fixed amount of time in a round-robin fashion. The 

static priority-based scheduler always executes the task with the highest 

priority. If a task with lower priority is running, it is interrupted to allow the 

higher-priority task to run first. Dynamic scheduling algorithms, on the 

other hand, take into consideration the runtime characteristics of the task 

when making decisions. Priorities with respect to all other tasks can change 

during execution. Earliest Deadline First (EDF), a dynamic scheduling 

algorithm, makes scheduling decisions based on the deadline value at the 

scheduling instance. Therefore, the order of execution could always be 

changing. The task having the smallest deadline value has the highest pri-

ority and is executed first. More about scheduling is discussed in detail in 

chapter 3.

However, these desirable services of an OS come at a cost. For 

instance, when a context switch occurs, the time spent performing the 

switch is in addition to the time spent executing user tasks. Therefore, con-

text switching is considered an overhead. Depending on application loads, 

context switching can be a huge overhead that prohibits good performance. 

In this study, we investigate hardware means to reduce the overhead 

incurred in the RTOSs.
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1.3 Nanoprocessors

There are many different peripherals existing in embedded proces-

sors. Each brand of processors has a different communication standard for 

on-chip peripherals. This makes migrating application code difficult across 

different embedded platforms. In addition, if an application has specific 

needs, an existing embedded system might not be able to satisfy the needs 

due to limited resources. In the case of a cell phone system, if the module 

that supports the voice encoding and decoding algorithm is not available in 

hardware, then it must be implemented in software. This would mean that 

the algorithm takes longer to execute and can shorten the battery life. 

Further, software OS overhead can create performance bottlenecks for 

embedded systems. Other OS features can be improved. The 90-10 rule of 

software engineering states that 10% of the code accounts for 90% of exe-

cution time [27]. If this code segment can be identified within a system, it 

can be implemented in hardware for faster execution, thereby eliminating 

the performance bottleneck. 

In this work, we propose nanoprocessors as reconfigurable hardware 

components to off-load some of the repetitive tasks an operating system 

performs. Nanoprocessors are designed to increase performance without 

increasing power consumption and die area significantly. They are pro-

posed to be small finite-state machines residing close to a processor. 
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Depending on the application needs, the nanoprocessors can be configured 

for different purposes. If the application requires fast speech encoding, a 

nanoprocessor can be configured as a hardware voice codec. If the applica-

tion requires precise time management, a nanoprocessor can be configured 

to be a hardware timer. Nanoprocessors are peripheral modules that can be 

configured to meet specific application needs.

Programmable I/O devices are reality in today’s technology. Using 

programmable I/O devices allow designers to interface multi-standard 

devices. Since many I/O standards exist and each has a unique set of 

requirement, programmable I/O devices can simplify designs dramatically 

and shorten the time to market. Inspired by the programmable I/O devices, 

the goal of the nanoprocessors is to investigate uses for programmable 

logic other than I/O devices. For instance, in this work, we have identified 

an I/O controller and a hardware scheduler suitable for programmable 

logic.

Since nanoprocessors are envisioned to be on-chip reconfigurable 

peripherals, it is possible to implement the processor and nanoprocessor 

together on a on-chip FPGA. Recently many kinds of on-chip FPGAs have 

been made commercially available. Companies such as Altera, Xilinx, 

Actel, Amtel, and others now provide System-on-Chip (SoC) solutions. 

The on-chip FPGAs include a fixed microprocessor and programmable 
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logic on the same chip. The figure below shows the Altera Excalibur on-

chip FPGA die photo [21]. This particular chip includes an ARM922T 

microprocessor and various amount of programmable logic. Using on-chip 

FPGAs, the nanoprocessors can be realized in the reconfigurable logic. 

More about reconfigurable logic is discussed in Chapter 2.

Figure 1.1: Altera Excalibur EPXA 10 SoC with ARM922T microprocessor. 

There are many uses for nanoprocessors. They can be used to imple-

ment application-specific peripherals, or programmed to target system 

overhead encountered. In this work, we investigate moving two RTOS sub-

systems, which cause performance bottlenecks, viz. I/O ports and task 

scheduler, to nanoprocessors. If there is a large amount of data expected 

from external devices, a nanoprocessor can sit between an I/O port and the 

processor to control I/O traffic. In particular, it can save the external data 

into a specific location in memory. When the buffer is full, the nanoproces-
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sor sends an interrupt to the CPU. Essentially, the nanoprocessor is acting 

as a Direct Memory Access (DMA) controller. As a result, the CPU is only 

interrupted once when the buffer fills up and can spend more time execut-

ing tasks. 

Another performance improvement identified is the task scheduling 

scheme. It is apparent that dynamic scheduling has a significant advantage 

over static scheduling. The major hurdle in implementation is the prohibi-

tive cost of software. Therefore, we propose a nanoprocessor as a hardware 

scheduler. Both static priority scheduling and dynamic EDF scheduling 

schemes are implemented on the scheduler to demonstrate its flexibility. 

Since scheduling is done in hardware, the results are returned much faster.

The rest of the document is organized as follows. Chapter 2 discusses 

RTOSs in detail, identifying bottlenecks for performance. Specifically, the 

I/O overhead and the process scheduling bottleneck are discussed. To elim-

inate bottlenecks, nanoprocessors are proposed. Chapter 3 introduces the 

nanoprocessors from a high-level perspective, discussing possible imple-

mentations using existing technologies. Chapter 4 and 5 introduce two nan-

oprocessors, nanoI/O controller and nanoScheduler, targeting the two 

bottlenecks of an OS. Their designs are explained in detail and their inter-

action with other system blocks is analyzed as well. Chapter 6 gives an 

overview of the simulation environment along with the different bench-
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marks used as workloads. Chapter 7 and 8 present and analyze results for 

the two nanoprocessors. Effects on performance, as well as on die area and 

power consumption are evaluated. Finally, Chapter 9 summarizes the study 

and indicates future work direction.

1.4 Related Work

Others have investigated moving the OS to hardware entirely or mov-

ing partial OS to hardware for efficiency.

A hardware RTOS, called Real-Time Unit, has been developed [11]. It 

provides services such as scheduling, IPC, time management, etc. Since the 

RTU is a hardware component, it decreases the system overhead and can 

improve predictability and response time. In addition, the RTU reduces the 

memory footprint of the OS. However, moving the entire OS to hardware 

makes the system less flexible. Extensions to the OS are difficult to add. 

New chips must be made if extensions are added to the system. For existing 

embedded systems, major hardware changes are required in order to use 

the RTU. On the other hand, the nanoprocessors offer the fast execution 

time in hardware for selected OS services while providing the users the 

flexibility of choosing which service to perform in hardware. The nanopro-

cessors allow most of the OS services to remain in software and avoid the 

upgradability issue.
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Furthermore, many researchers have looked into moving the process 

scheduler to hardware to support a more complex scheduling algorithm. In 

the field of high-speed networks, scheduling at switching nodes is an 

important issue since it directly affect the network throughput. Specifically, 

several priority queue (PQ) architectures exists for finding the highest pri-

ority packet to route. These architectures are binary tree of comparators, 

FIFO priority, shift register, and systolic array[14]. In particular, The shift 

register is the closest implementation to the nanoScheduler, but there are 

still differences. The two implementations differ in that the shift register 

method finds the appropriate location for the new entry in 1 cycle by 

broadcasting to all entries. It then shifts part of the list to insert a new entry. 

This implementation results in fast access time, however, because simula-

taneous operations must be performed for a large list, the power consump-

tion will be high. In general, studies done for network switches do not 

sacrifice performance for power considerations. In contast, the nanoproces-

sor study views the power consumption as important as performance gains.

[13] studied a configurable hardware scheduler for real-time systems. 

The hardware scheduler supports Priority Queue, EDF, and Rate Mono-

tonic scheduling algorithms. The main distinction from nanoScheduler is 

that their scheduler keeps track of multiple queues. In addition, operations 

are performed under a costant overhead since a comparator is used for 
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every element in the ready list. This will cause a dramatic increase in die 

area and power consumption. The power consumption estimate is not pro-

vided with the study, therefore, no comparisons can be made. 

Another study done by [15] proposes a reconfigurable co-processor 

that implements application-specific functionality. The processor is pro-

posed to be implemented on FPGAs. The processor executes custom-

instructions, and require a new assembler to convert user applications into 

custom-instructions. The advantage of the processor is that it provides the 

maximum flexibility to the users. The nanoprocessors investigates opera-

tion sharing on a coarse granularity. An operation is defined as a candidate 

of a nanoprocessor and that operation is entirely moved to hardware. Cus-

tom instructions, on the contrary, shares operations on a finer granularity.

Some work has been done to evaluate the power consumption of 

RTOS functions. Particularly, the study done by [12] shows measurements 

for processing time and energy consumption for various RTOS functions. 

The simulator used is an instruction-level simulation of the Fujitsu SPAR-

Clite processor. The study shows that the particular application program-

ming style can affect the power consumption in the system. In the 

nanoprocesssor study, we assume that the applications are already opti-

mized for low power consumption. The goal of the study is to identify 
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problematic operations in the OS that are inefficient and to move the oper-

ations into hardware to save on power consumption.
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CHAPTER 2

OVERHEADS IN EMBEDDED SYSTEMS

Real time operating systems provide numerous services for today’s 

embedded processing needs. These desirable features come at a cost, creat-

ing overhead in the system. In this section, we identify two major over-

heads and discuss the nature of the problems in detail. 

2.1 High-Overhead Serial Input/Output(I/O) Port

Frequently, embedded systems are used in portable devices, such as 

cell phones, game consoles, measurement equipment like voltage meters, 

etc. These devices operate on batteries, thus often use serial I/O ports 

(along with UARTs) to save on power consumption. However, I/O ports1 

can create unnecessary overhead. Consider the following example. When 

an external device wants to communicate to the CPU, it sends input data 

through an I/O port. A UART converts a serial bit stream on the port side 

into a byte stream on the processor side. This reduces potential OS over-

head by a factor of eight. However, there is still much room for improve-

ment, as data communications are often in packets that are much longer 

1.UARTs and serial I/O ports together are referred as I/O ports.
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than a single byte. With the present arrangement, every time a byte of data 

is available at the I/O port, the CPU is interrupted to save the byte into a 

buffer and then it resumes its original operation. This interruption is expen-

sive since a context switch is involved. Thus the overhead of interrupt han-

dling can be significantly since it includes an interrupt for each byte of 

data.

It is analogous to a merchant who ordered several shipments from dif-

ferent vendors. The shipments can arrive at any time and notices for ship-

ments are sent to the merchant. If there is no storage available at the dock, 

the merchant must go and pick up the shipments as they come in. If the dis-

tance from the merchant and the dock is far, it is easy to imagine a grumpy 

merchant complaining about all the driving involved, not to mention 

expense for gas and wear on his automobile. If he can rent a storage room 

at the dock, shipments can be automatically stored as they come in, and 

would only require the merchant one trip to pick them all up. It is easy to 

see that the merchant would prefer the storage room provided the room is 

not expensive to rent and his shipments are not easily spoiled. The time 

spent on driving is analogous to the time spent in CPU context switching, 

which can be better utilized.
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2.2 Process Scheduling Overhead in Embedded RTOS

Many embedded applications that are also real-time applications, 

have strict time requirements. Therefore, a RTOS that manages these 

tasks2, should behave in a predictable and deterministic manner[4]. The 

predictability requirement also applies to the task scheduler. 

2.2.1 Task Scheduling

The task scheduler determines which task to run and when. Just like a 

predictable program, a deterministic task scheduler should return the result 

within a constant amount of time. Without any prior information, it is diffi-

cult to know the next task to run within a fixed timeframe. Consequently, 

many RTOSs impose certain limitations on tasks to achieve the constant 

process scheduling time requirement. For example, MicroC/OS-II (µCOS) 

requires the maximum number of tasks declared to be less than 64. In addi-

tion, each task must have its own static priority level for a total of 64 task 

priorities3. With this requirement, a static priority-based scheduler always 

runs the task with the highest priority. This way, by knowing exactly how 

2.Tasks, user applications, and processes all indicate the programs running on a
system. Therefore, they are used interchangeably, and indicate the workload of a
system.
3. In reality, most of embedded systems do not have a large number of tasks de-
fined. Thus, the task limit is not a performance bottleneck.
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many tasks exist in a system at any given moment, we can calculate the 

current running task. 

However, static priority scheduling algorithm does not take the task 

runtime characteristics into consideration, and thus may not achieve the 

best possible schedule. Other scheduling algorithms that use task runtime 

characteristics can achieve a better task schedule. However, these schedul-

ing algorithms can incur a higher overhead. In the rest of the chapter, we 

first discuss in detail how static scheduling achieves a constant overhead in 

µCOS, then we discuss the advantages of dynamic scheduling, in particular 

the Earliest Deadline First (EDF) algorithm.

2.2.1.1 Static Scheduling

For optimization, µCOS uses the static priority-based scheduling 

algorithm mentioned above with a 8 x 8 lookup table. Tasks are grouped 

into 8 groups and each group consists of 8 tasks. The ready bits of the tasks 

are stored into the 8 x 8 table, where row numbers indicate group identifi-

ers (IDs), and column numbers indicate task IDs within a group. The algo-

rithm is performed in constant time; first find the row that contains the 

highest priority ready task and then the column for that task in the table. 

Both steps involve a deterministic number of instructions which is fixed at 

compile time. The 8 x 8 table is optimized for 8-bit processors. The same 
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table structure can be easily extended to a 16 x 16 table for 16-bit proces-

sors and systems needing 256 tasks or priority levels. Thus, the table struc-

ture is not only simple and efficient for static priority-based scheduling; it 

is also scalable.

2.2.1.2 Dynamic Scheduling

Static scheduling is simple and efficient, but can fail to produce a 

schedule even when a feasible schedule exists. Consider the following case 

where a static priority scheme would fail. Before describing the situation, 

there are some definitions that need to be presented. Period is the amount 

of time between two consecutive instances of task executions. Runtime is 

the amount of time a task takes to complete one instance of task execution. 

Deadline is the time when a task should complete execution. A task is late 

if it has not completed execution after the deadline has passed. A feasible 

schedule allows the requests from all tasks to be fulfilled before their 
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respective deadlines. With these terms in mind, below is a sketch of a sim-

ple situation where static priority scheme would fail.

Figure 2.1: two tasks with different time requirements. 

For these two tasks, task 1 has a shorter period with a short runtime 

and task 2 has a longer period with longer runtime. Assume that the dead-

line criteria has been relaxed. That is, as long as the task finishes execution 

somewhere within its period, the OS assumes the operation is legitimate. 

The up arrow indicates where the period starts and the down arrow where 

the period ends. For simplicity, these two tasks are created at the same 

time4. Under the static priority scheme, typically the task with the smallest 

period is assigned the highest priority. Once the priorities have been deter-

mined, they are fixed with respect to all other tasks for execution. In this 

case, task 1 is scheduled to execute first. It is not interrupted until comple-

tion. When task 1 is finished, task 2 can start at time 2. At time 5, task 1 

4.Different creation time may move the delay detection to a different period, but
does not change the result. 

task 1:

0 2
Period = 5

runtime=2

0  

task 2:

4
Period = 7

runtime=4
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becomes available to run when its second period starts. It takes over since it 

is the task with a higher priority. When task 1 finishes at time 7, task 2 

resumes execution. However, since task 2 has a deadline of 7, the task is 

late since its execution is not complete at time 7. The following graph illus-

trates the scheduling problem. The solid arrow indicates task 1 deadline, 

the dotted arrow indicate task 2 deadline.

Figure 2.2: running the static priority-base scheduling. 

Note that the problem remains even if task 2 were given the higher 

priority. In this case, task 2 executes first to time 4. Task 1 starts execution 

then, but fails to finish before the end of its period. 

On the other hand, this problem can be entirely avoided if a dynamic 

scheduling scheme is used. For example, the EDF algorithm figures out the 

priorities for tasks at runtime depending on their deadline values. As the 

name suggests, the task with the smallest deadline has the highest priority. 

In the previous example, the deadline is the same as the period. When both 

tasks are initialized at time 0, the EDF algorithm decides that task 1 has a 

T1

0 2 5 7

T2 T1
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higher priority since its period is 5. After task 1 finishes executing at time 

2, task 2 starts execution. At time 5, the period of task 1 expires and starts a 

new period. Therefore, priorities need to be re-evaluated since the run-time 

characteristic of task 1 has changed. At this point in time, task 2 has dead-

line at time 7 and task 1 has deadline at time 10, and thus task 2 continues 

execution. The figure below shows that at every deadline (indicated by 

arrows), the priorities are re-evaluated. For instance right before time 15, 

task 2 is the current task. However, task 1 has a deadline at time 20 and task 

2 has a deadline at time 21. Thus task 1 takes the higher priority and exe-

cutes. As the graph shows, the EDF scheduler can successfully schedule

Figure 2.3: running the EDF scheduling algorithm. 

both tasks. At time 35, the two deadlines coincide and task 1 has a higher 

priority since it has a shorter deadline. The graph repeats itself at every 35 

time units. In fact, numerous studies have shown that dynamic scheduling 

algorithms such as EDF are optimal5 compared to the static priority-based 

5.An optimal scheduling algorithm can achieve the best possible schedule under
the given circumstances, if such schedule exists. That is, an optimal scheduling al-
gorithm can achieve a processor utilization of 100%.

T1
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scheduling algorithms[3]. In the case of two tasks scheduled by the static 

priority scheme, the best utilization rate6 is about 83%. In general with a 

large number of tasks, the static-priority scheme can achieve utilization 

rate of 69%. However, with the EDF algorithm, it is possible to achieve uti-

lization rate of 100%[3].

2.2.2 Overhead of Dynamic Scheduling

Even though an EDF algorithm can achieve higher schedulability, it is 

not commonly used in the real-time embedded operating systems. This is 

because an EDF scheduler is more expensive to maintain. To be able to 

schedule tasks efficiently, more information about the tasks needs to be 

available to the scheduler. Therefore, the storage area requirement 

increases for each task in the system. In addition, the algorithm used in 

EDF is more complex than a static priority scheduling scheme. Thus 

dynamic scheduling algorithms would take longer to execute, and might 

not completed within a constant timeframe. Specifically, EDF sorts the sys-

tem tasks using deadline values which can range freely, making it difficult 

to achieve a constant overhead. Hence, it is extremely hard to match the 

predictable system performance obtained from using static scheduling.

6.Utilization rate is computed as (RUNTIME/PERIOD * 100%).
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In summary, using a dynamic scheduling algorithm may increase the 

processor utilization rate, however, the complexity of a dynamic algorithm 

may also increase the amount of system overhead.
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CHAPTER 3

NANOPROCESSORS AS RECONFIGURABLE LOGIC

Having identified overheads in the RTOSs, we propose nanoproces-

sors as configurable hardware accelerators to reduce the overheads. In this 

chapter, we illustrate the overall system design incorporating the nanopro-

cessors and possible physical implementation using on-chip FPGAs.

3.1 Overall System Design

Embedded processors offer on-chip memory in the form of flash 

memory and/or SRAM, interrupt controllers, on-chip peripherals such as 

hardware timers, watchdog timers and I/O ports. Like on-chip peripherals, 

nanoprocessors are located on the same die as the processor. A processor 

can support a number of nanoprocessors depending on application needs. 

Nanoprocessors can have many uses in a system. For instance, if the sys-

tem expects large amount of external data, a couple of nanoprocessors can 

be configured as I/O controllers. A system that supports signal processing 

unit can configure one nanoprocessor as a MAC unit. In addition, nanopro-

cessors could also be programmed as peripheral or memory controllers. 
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The purpose of nanoprocessors is to provide flexibility and convenience to 

users.

The nanoprocessors are designed to be architecture independent, i.e., 

they should work with most (if not all) microprocessors irrespective of 

microarchitectures (or processor pipeline architectures) and Instruction Set 

Architectures (ISAs). This does not mean that changes can not be made to 

the processors; extensions to the ISA can be added by introducing extra 

instructions. However, no ISA extensions are used in this work. Alterna-

tively, the CPU controls the nanoprocessors through memory-mapped 

ports. In addition, no change is made to the processor microarchitecture. 

This is a desirable feature, making the nanoprocessor concept universal. As 

long as the interface to the system is kept the same, the processor itself can 

be changed without affecting the entire system.

To incorporate nanoprocessors, the system architecture is slightly 

modified. A second memory bus is added to connect the nanoprocessors 

and the main memory. All nanoprocessors share this bus. In addition, all 

nanoprocessors are connected to the peripheral bus to access the interrupt 
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controller. Each nanoprocessor can have a different interrupt. The follow-

ing system block diagram illustrates how nanoprocessors are envisioned.

Figure 3.1: system block diagram with 4 nanoprocessors. 

The interrupt controller multiplexes all peripheral interrupts to the 

processor. Each peripheral uses a different interrupt. The interrupt control-

ler can support up to 32 distinct interrupts. The peripheral interface gasket 

is a simple controller that allows the processor to communicate with the 

peripherals. All on-chip peripherals and I/O ports are connected to the 

peripheral bus. 

A memory segment is allocated for each nanoprocessor. Within each 

memory range, there is at least one control register dedicated for communi-

cation between a nanoprocessor and the CPU. When the CPU wants to 
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send a request to a nanoprocessor, the CPU writes to the appropriate con-

trol register. The nanoprocessor polls on the register for new work. When 

the nanoprocessor completes execution for the request, it can either return 

the results directly or sends an interrupt to inform the CPU. The following 

diagram shows a memory map incorporating nanoprocessors. Even though 

the memory ranges for the nanoprocessors appear to be contiguous in the 

memory map, they might not reside in the main memory. It is possible that 

the memory resides inside the devices.

Figure 3.2: Memory Map incorporating nanoprocessors. 

3.2 Reconfigurable Logic

As mentioned in chapter 1, nanoprocessors can be implemented as 

on-chip FPGAs. On-chip FPGAs are often included in Systems-on-Chips 
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(SoCs). SoCs are embedded systems that are on single chips. They nor-

mally include a microprocessor, memory, programmable logic, I/O, and 

software. The microprocessors used in SoCs can vary, ranging from 32-bit 

processors to 8-bit microcontroller. FPGAs are good to use because they 

are relatively easy and straight forward to program. Integrating FPGAs on 

chip allows the reconfigurable hardware to access main memory with min-

imum latencies. In many SoCs, the on-chip memory is dual-ported; allow-

ing access from the processor and the programmable logic simultaneously. 

Certain on-chip FPGAs also include dedicated memory to service the pro-

grammable logic in addition to the dual-ported memory[20]. In all, incor-

porating on-chip FPGAs with a SoC provides users with both performance 

and flexibility.

The SoC not only has a good performance, but also maintain a low 

power consumption. Studies have shown that power consumption from 

using on-chip FPGAs is comparable to that from using ICs only [22]. For 

several benchmarks, software critical-loops, which are the code that is 

responsible for a large portion of execution time, are moved to on-chip 

FPGAs. As a result, the program executions achieve speedups ranging 

from 1.5 to 3.0. In addition, the measured power consumptions for an 

ASIC-only chip and a combined ASIC and FPGA chip are very similar. 

Consequently, the system can achieve dramatic energy savings by using 
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on-chip FPGAs due to shortened execution time. This study shows that on-

chip FPGAs allow systems to exploit hardware parallelism and still main-

tain a low power consumption level.Therefore, on-chip FPGAs are good 

candidates for implementing nanoprocessors.

In the following chapters, we identify a couple of operating system 

performance bottlenecks, provide solutions using nanoprocessors, and 

present results from our simulation.
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CHAPTER 4

NANOPROCESSOR AS I/O CONTROLLER

The overhead due to the RTOS which were identified in chapter 2 are 

undesirable as they take away processor time from doing application-

related work. However, the services provided by RTOSs can increase the 

system performance and flexibility, thus making them desirable in embed-

ded systems. The purpose of nanoprocessors is to reduce the overhead 

incurred in providing these services. In this chapter, we discuss the detailed 

implementation of a nanoprocessor as I/O controller. Similar to a DMA 

controller, the I/O controller manages data traffic between the I/O ports and 

the memory.

4.1 High-Level Functional Description

Embedded systems support I/O transactions such as reading and writ-

ing to an I/O port. The interface of these transactions exists in the form of 

system library calls. When such transactions are invoked, the CPU is 

involved in transferring data bytes between the memory and the I/O port. In 

the case of reading from an I/O port, the CPU gets a data byte from the I/O 
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port and saves it to the memory. This operation is repeated as many times 

as the requested data size. The figure below illustrates the transaction.

Figure 4.1: System Operation Diagram for I/O Transactions. 

If the request packet size is large, this operation can be inefficient. For 

instance, on our simulator, the time spent moving data between an I/O port 

and the memory can double as the requested data size doubles. The table 

below shows the operation time in cycles for requests of different size.

To reduce the overhead incurred in I/O transactions, we propose using 

a nanoprocessor as an I/O controller, i.e. the nanoI/O controller. It is 

located between the main memory and the I/O ports, directing traffic 

between the two. The CPU issues the nanoI/O controller a command at the 

beginning of the transaction. Upon transaction completion, the nanoI/O 

Request Size in bytes Operation Time in cycles

64 4932

128 7677

256 16260

Table 4.1: I/O Operation Overhead as a Function of the Requested Data Size.

CPU

MEMORY I/O PORT

get byte isave byte i

i = i+1
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controller causes an interrupt and informs the CPU about the end of opera-

tion. The system operation becomes the following:

Figure 4.2: System Operation Diagram for I/O Transactions using the nanoIO 
Controller. 

While the nanoI/O controller moves the I/O data, the CPU is freed to 

operate on other tasks. Our results show that, for tasks that perform much 

I/O data communication, the benefit of nanoI/O controller is significant.

4.2 Design Issues

In this section, we give a specific example of how I/O transactions 

work in the system without the nanoI/O controller. The example below 

demonstrates a request to read from an I/O port.

The I/O read function is implemented as a loop of moving one data 

byte at a time, from the memory-mapped I/O port to the user declared 

nanoI/O 

MEMORY I/O PORT

get byte isave byte i

CPU

controller

i = i+1

read done

for (i = 0; i < requested data size; i++)
Disable IRQ;
*(user buffer + i) = *(I/O port);
Enable IRQ;

{

}
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buffer in the main memory. The interrupt masking calls (Disable/Enable 

IRQ) are used to guarantee data correctness. In the case of several tasks 

sharing an I/O port, data from different streams may become incoherent 

due to interrupts. Since no virtual memory is used in embedded systems, 

the memory management is left to users. It is possible that a user task is 

interrupted while moving data from the I/O port to the user buffer and in 

turn receives corrupted data. To avoid this situation, interrupts are disabled 

for data byte during data movement, as indicated by the IRQ commands in 

the pseudo-code. 

An alternative solution is to disable interrupts before entering the 

loop, as illustrated below in the pseudo-code:

Interrupts are turned off only once under a constant overhead. How-

ever, the amount of time the OS spends in non-preemptive mode grows lin-

early with the amount of data communication. This can potentially disable 

preemption if the data size is large. Also, disabling interrupts for a long 

time can result in increased interrupt latency. Both complications are not 

desirable in RTOSs. For instance, higher priority tasks can not use the sys-

tem if a lower priority task is occupying the CPU to access I/O data. In this 

for (i = 0; i < requested data size; i++)

Disable IRQ;

*(user buffer + i) = *(I/O port);
Enable IRQ;

{

}
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case, the OS can not context switch to a higher priority task if interrupts are 

disabled during I/O operations. It would create a priority inversion prob-

lem.

The first implementation is more desirable than the second implemen-

tation in the sense that interrupts are disabled for a shorter amount of time. 

However, the high overhead incurred in manipulating interrupts can coun-

teract this advantage. On the other hand, the nanoI/O controller performs 

the I/O transaction in hardware and lowers the interrupt overhead, making 

the first implementation feasible. Thus, I/O transactions are implemented 

using the first approach in this work.
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4.3 NanoI/O Controller Interface

The following figure shows the memory configuration of the nano-

processor registers.

Figure 4.3: memory layout for the nanoI/O controller. 

• Function Register is a 1-byte register used for passing function 

request to the nanoI/O controller. The request states originated from the 

processor can include IOread, IOwrite, IOgetInt, IOputInt, and IOinit. 

IOread and IOwrite are requests to read from and write to a specific I/O 

port. IOgetInt and IOputInt are special read and write functions where the 

requested data length is fixed at an integer size. These functions are 

designed for fast data access with a minimum overhead. IOinit registers the 

task to the nanoI/O controller at the first instance of I/O communication 

request. Two request states, IOread_done and IOwrite_done, are allowed 
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only if they are originated from the nanoI/O controller. They are the states 

that signals the CPU the requested I/O transaction is completed. When the 

nanoI/O controller is not in any of the above states, it is in the Idle state. 

These states are discussed in more details in the next section.

• Data register is a 2-byte register holding the request length in the 

cases of IOread and IOwrite. The maximum allowed length is a 16-bit inte-

ger.

• PID register is a 1-byte register holding the task priority for the cur-

rent requesting task. 

• Destination Address register is a 4-byte register holding the 32-bit 

memory address of the user buffer. The address is the destination in the 

cases of IOread and IOgetInt, or the source in the cases of IOwrite and 

IOputInt.

• The input and output port mapping tables are used to store task-to-

port mappings. Each table is 32 bytes. The tables are indexed by the task 

ids, containing 64 entries. Thus each entry is 4-bit long, capable of support-

ing 16 I/O ports. In addition, a task can have different input and output 

ports.

The nanoI/O controller takes a total of 72 bytes. Out of the total stor-

age requirement, 64 bytes are for mapping tables. The size of the mapping 
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tables can be changed to support a different number of I/O ports. The effect 

on die area is quantified in chapter 7.

When the OS issues the nanoI/O controller to read from the I/O port, 

the software writes the command into the control registers shown above. 

Instead of the loop implementation shown in section 4.2, the I/O read func-

tion call becomes:

The above pseudo-code shows that the requesting task asks the 

nanoI/O controller to complete an IOread in hardware. The address of the 

user buffer, the requested data length, and the calling task id are also pro-

vided. The calling task is then blocked waiting for the controller to finish 

execution. During the waiting period, the CPU can execute other tasks. 

When the transaction finishes, the nanoI/O controller raises an interrupt to 

wake up the process that has been waiting for the transaction. The process 

then exits the I/O read call and returns to user code. 

This I/O transaction now operates within a near constant time. The 

time taken to issue the command is constant. The amount of time waiting 

Disable IRQ;
*(NANO_FUNC) = IO_READ;
*(DEST) = user buffer;
*(DATA) = requested data size;

Enable IRQ;

block_self();

*(PID) = task id;

{

}
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for the nanoI/O controller can vary depending on the amount of data 

requested. However, since the reading is handled in hardware, the growth 

in time is much slower compared to that for the original software loop 

implementation. Thus the total execution time for the I/O read using the 

nanoI/O controller is near constant.

Even though the nanoI/O controller is introduced in hardware, the 

interfaces these functions provide to the users are not changed for portabil-

ity reasons. In another word, a user application that calls IOread would not 

know about the existence and the usage of the nanoI/O controller. The 

details about the command issued to the nanoI/O controller are hidden 

within the system call. Each I/O transaction the nanoI/O controller supports 

is discussed in detail in the next section.

4.4 Implementation Details

The nanoI/O controller supports the following I/O transactions, 

IOread, IOwrite, IOgetInt, IOputInt. IOgetInt and IOputInt are special 

cases of IOread and IOwrite, where the requested data size is an integer. 

Since the size is small, the cost of blocking the task outweighs the benefit 

of the performing the function in hardware. Thus for these two transactions 

the CPU doesn’t block the calling task and waits for the result to return. In 

addition, when the task requests I/O transaction for the first time, a special 
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function (IOinit) is called to set up the task-to-port mapping tables for the 

calling task. The state diagram below illustrates the operations among all 

states supported by the nanoI/O controller.

Figure 4.4: State Diagram for the nanoIO Controller. 

Each state is described in detail below:

IOinit: Associates an I/O port with the calling task. There are two 

tables managed by IOinit. One is for input ports and the other is for output 

ports. The maximum number of tasks supported is 64 as defined in the OS. 

Therefore, each table has 64 entries. Each entry in the tables is an I/O port 

number. The input port and the output port for the same task do not have to 

be the same. An IOinit request is accompanied by the desired I/O ports and 

the task id. The nanoI/O controller uses the id to index into the two tables 
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and saves the I/O port at the appropriate entries. Because the operation is 

relatively short and is performed in hardware, the current task does not 

block and waits for the operation to finish.

Figure 4.5: IOinit maps the I/O port(s) into tables. 

IOread: Moves input data from the input port to the main memory. 

The current task issues the request and provides the necessary data such as 

the length to read, the destination buffer address in memory, and the task 

id. The task is then blocked, and another ready task can be executed. The 

nanoI/O controller uses passed-in task id to index into the mapping tables 

for the appropriate input port. When the data of requested size is moved, 

the function register is changed to IOread_done (see below) and an inter-

task id

port C port A

Input Port Mapping Table Output Port Mapping Table
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rupt is raised. This informs the CPU that service is required to the nanoI/O 

controller. 

Figure 4.6: Function Flow Diagram for IOread. 

IOwrite: Moves a list of items, each of a fixed size, from the main 

memory to the output port. The output port is looked up from the output 

mapping table using the task id. Operation is similar to IOread, where the 

requesting task is blocked until the operation is finished. Upon completion, 
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the function register state is changed to IOwrite_done and the same inter-

rupt is raised in a similar manner mentioned above.

Figure 4.7: Function Flow Diagram for IOwrite. 

IOgetInt: Moves a 32-bit integer from the input port to the main 

memory. The input port is looked up in a similar manner as in IOread. This 

function is used in some benchmarks. Because each function call only 

allows one 32-bit element to be returned, the function does not block the 

current task in order to save on context switching cost. The function flow 

diagram is similar to that of the IOread, except only one 32-bit integer is 

read from the input port into the memory.

IOputInt: Moves a 32-bit integer from the main memory to the out-

put port. Similar to IOgetInt, the function does not block the calling task 

and waits for the result to return. The function flow diagram is similar to 
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that of the IOwrite, except only one 32-bit integer is written from the mem-

ory to the output port.

IOread_done: Signals the CPU that IOread function is complete. The 

ISR that services the nanoI/O controller interrupt recognizes this state as an 

indication to wake up the task that has been waiting for the I/O read trans-

action.

IOwrite_done: Signals the CPU that IOwrite function is complete. 

The ISR that services the nanoI/O controller interrupt recognizes this state 

as an indication to wake up the task that has been waiting for the I/O write 

transaction.

The nanoI/O controller has one ISR routine in software. When the 

nanoI/O interrupt occurs, the CPU executes this ISR. The routine looks at 

the function register for the state of the controller and releases the appropri-

ate task.

Figure 4.8: Functional Flow Diagram for the nanoI/O ISR. 
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To summarize, the nanoI/O controller uses 72 bytes of memory to 

manage I/O communications for all tasks. When a task makes an I/O 

request that is longer than 32-bit, the task is blocked while waiting for the 

nanoI/O controller to perform the operation. When the nanoI/O controller 

finishes the request, it interrupts the processor to wake up the calling task. 

By using the nanoI/O controller, the CPU remains free and is able to exe-

cute applications. This results in a reduced system overhead and increases 

system efficiency.
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CHAPTER 5

NANOPROCESSOR AS A TASK SCHEDULER

As discussed in chapter 2, the static priority-based scheduling scheme 

in software offers predictability and simplicity, but sacrifices high proces-

sor utilization rate. A static scheme cannot schedule certain tasks with dif-

ferent runtime characteristics. On the other hand, a dynamic scheduling 

scheme, such as Earliest Deadline First (EDF), can achieve the feasible 

schedule. However, the algorithm itself is more complex than a static prior-

ity-based one and may not achieve a constant overhead. Thus, to imple-

ment such a scheduling algorithm in software would mean much more 

overhead for the operating system. To reduce the overhead created by an 

EDF scheduler, we propose a nanoprocessor as a hardware task scheduler 

(nanoScheduler). The goal is to implement an optimal scheduling algo-

rithm in hardware while keeping the cost of such implementation reason-

able. Hardware implementation is more attractive because it can achieve 

better cycle time and extract more parallelism from the algorithm. The 

nanoScheduler off-loads the scheduling functionality from software to 

hardware. The proposed hardware scheduler implements both static prior-
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ity-based and EDF algorithms. The software can decide which scheduler to 

use based on the prior knowledge about the workload. The major benefit is 

that a system can increase processor utilization rate by supporting an opti-

mal scheduling algorithm as an advanced feature. In this chapter, we first 

discuss the overall system design using a nanoScheduler. Then we analyze 

the architectural design of such a scheduler.

5.1 System Design

Similar to the nanoI/O controller described in chapter 4, the 

nanoScheduler is also treated as an on-chip peripheral. It accesses the main 

memory through the added memory bus. When a context switch occurs, 

instead of executing the software scheduler, the OS issues a request to the 

nanoScheduler and waits for the result. In addition, the nanoScheduler also 

uses memory-mapped ports for communication with the processor.

To lower the complexity of the nanoScheduler, only scheduling ele-

ments in the software are off-loaded to the hardware scheduler. Other func-

tionality such as event management is left in software. To be specific, when 

a task is blocked on a semaphore, the state update is done in hardware. 

However, the semaphore wait queue is still managed in software.
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5.2 High-Level Functional Description

This section discusses the functionality of the nanoScheduler at a high 

level of abstraction. For comparison purpose, we first discuss the software 

task scheduler in the original operating system. Specifically, we itemize the 

steps involved in managing tasks for scheduling. Then, we discuss the OS 

functionality in the presence of the nanoScheduler. By off loading the 

scheduler into hardware, the OS is responsible for less work. We then com-

pare the OS functionality in the presence of the nanoScheduler with that of 

the software scheduler.

5.2.1 Software Scheduler Functionality

The task scheduler is at the heart of an operating system that supports 

multitasking. It affects all aspects of operations. The task state diagram 

shown below illustrates the possible state transitions in µCOS. At any 
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given moment, a task can be in any of the five states. The OS must keep 

track of the state transitions accurately to make a scheduling decision.

Figure 5.1: State Transition Diagram for Tasks in µCOS. 

The OS maintains four structures for tracking tasks. 

• A doubly-linked list of Task Control Blocks (TCBs) called TCB-

List. A TCB is created for each existing task, containing all task informa-

tion such as priority, delay value, task state, stack pointer, stack size, etc. 

The newly created TCB block is inserted at the head of the doubly-linked 

TCBList. 

Figure 5.2: TCBList as a doubly-linked list. 

• A table of pointers to the TCB blocks called TCBPrioTbl. The 

table is indexed by the task priority. Thus there are 63 entries in the TCBP-
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rioTbl. When a task is made the current task, the table is referenced to 

retrieve the TCB block of the task.

Figure 5.3: TCBPrioTbl stores the addresses of the TCBs. 

• A 1-byte register OSRdyGroup to store ready list groups. All tasks 

in µCOS are grouped by priorities (eight tasks per group) in OSRdyGrp. 

The group number is obtained by shifting the task priority 3 positions to the 

right.

• A 64-bit table OSRdyTbl to find ready tasks. Each of the 64 tasks 

in µCOS is represented by a single bit in this table. The bit location indi-

cates the task priority. For instance, bit 26 represents the task with priority 

26. The table is structured as a 8-element array, where each element is a 1-

byte register representing the eight tasks in each group. When a task is 

ready to run, it sets the corresponding bit in both OSRdyTbl and 

OSRdyGrp. For instance, to make task 26 (11010 in binary) ready to run, 

the OS first sets bit 3(= 11010 >> 3) in OSRdyGrp. This bit also corre-

sponds to the row position in OSRdyTbl. The column position in the table 

is the last 3 bits of the task prority (= 11010 & 111). Thus the OS sets 
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OSRdyTbl[3][2] to 1. The diagram below illustrates the relationship 

between OSRdyGrp and OSRdyTbl.

Figure 5.4: Ready List Implementation in µCOS. 

To transition from one task state to another, the OS needs to modify 

the above structures. For instance, when a task is created (transition from 

the Dormant state to the Ready state), the OS must perform the following 

steps:

• Create a new TCB and initialize the TCB parameters.

• Insert the TCB to the head of the TCBList.

• Store the TCB address to the TCBPrioTbl at the location indi-

cated by the task priority.
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• Mark the task as ready to run in OSRdyGrp and OSRdyTbl.

• Schedule the task.

To transition from any other states to the Dormant state, the task 

delete operation is performed. It reverses the create operation. The OS 

must follow the steps below:

• Clear the task bits in OSRdyGrp and OSRdyTbl.

• Remove the task TCB from the TCBPrioTbl.

• Remove the task TCB from TCBList.

• Clear the TCB and mark it as free.

• Schedule the task.

All of the above steps have constant overheads. The TCBList is 

inserted always from the head. Since the TCB address for a particular task 

can be looked up in TCBPrioTbl, the doubly-linked list manipulation 

also has a constant overhead. Task scheduling involves looking up the 

highest priority task in the OSRdyTbl, which has a constant overhead as 

well.

Transition from the Ready state to the Waiting state involves suspend-

ing, delaying, or blocking a task. These operations perform similar steps:

• Look up the task TCB by its priority in TCBPrioTbl.

• Mark the state as suspended, delayed, or blocked depending on the 

operation by modifying the appropriate TCB fields.
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• Clear the OSRdyGrp and OSRdyTbl bits for the task.

• When the task is blocked on an event, the TCB is added to the 

event’s waiting list.

• Except the situation where a task is suspending a lower priority 

task, the OS invokes the task scheduler to run a ready task.

Transitions that involve context switches and interrupts also have con-

stant overheads. During a context switch, the information in the CPU regis-

ters is saved to the current task stack and the new task information is 

copied into the CPU registers. To service an interrupt, the CPU registers are 

saved before user ISR routine is invoked. After user ISR routine finishes, 

the OS invokes the task scheduler. If the interrupted task has the highest 

priority, its state is restored into the CPU registers and execution resumes. 

Thus context switch and interrupt handling have constant overhead as well.

Transition from the Waiting state to the Ready state is split into two 

parts. The first part includes the resuming functions for blocking, suspend-

ing, and delaying functions. The OS performs the steps below:

• Look up the TCB in TCBPrioTbl by the task priority.

• Clear the appropriate TCB state fields depending on the operation.

• When a task is unblocked by an event, the task is removed from the 

event’s waiting list.
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• Set the corresponding bits in OSRdyGrp and OSRdyTbl if the 

task is ready to run.

• Invoke the task scheduler.

As before, these steps all involve constant overheads.

The other part of the transition from Waiting state to Ready state 

includes the timer tick services. µCOS requires a periodic timer for time 

keeping. The timer granularity can be changed. The timer is updated by the 

timer ISR which is invoked at the set granularity. The timer ISR serves two 

purposes:

• Traverse the list of existing TCBs (TCBList) and decrement each 

non-zero delay field. If a delay field reaches zero, the correspond-

ing task is made ready to run by setting the bits in OSRdyGrp and 

OSRdyTbl.

• Increment the global timer variable.

The first purpose of the timer ISR imposes a linear overhead on the 

system. The overhead is proportional to the number of tasks existing in the 

system. This is undesirable since the amount of time to service the timer 

ISR can vary dramatically. If there are many tasks existing in the system, 

the long period of time required for the timer ISR can cause other high pri-

ority tasks to miss deadlines.
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With the exception of the timer tick operation, all other mentioned 

operations have constant overheads. However, under a heavy workload, the 

timer tick operation can dominate the total OS overhead since it is propor-

tional to the workload. Thus nanoScheduler is introduced to off-load part 

of the OS functionality into hardware. Performing some OS functions in 

hardware reduces the total overhead incurred in the OS.

5.2.2 NanoScheduler Functionality

The table below illustrates the partial functionality left in the soft-

ware. The rest of the functionality is done in the nanoScheduler, which is 

discussed in detail in the next section.

Functions
OS Functionality in the 

presence of the 
nanoScheduler

OS Functionality Moved to the 
nanoScheduler

Task Creation •  create TCB
•  store the TCB address to 

TCBPrioTbl

•  insert the task to a TCBList
•  mark the task as ready to run
•  insert the task to a ready list

Task Deletion •  clear TCBPrioTbl entry
•  clear the task TCB

•  remove the task from the TCBList
•  remove the task from the ready 

list

Task Blocking •  add the TCB to the event’s 
waiting list

•  look up the task from the TCBList
•  mark the task state as blocked
•  remove from the ready list

Task Un-
blocking

•  remove the TCB from the 
event’s waiting list

•  look up the task from the TCBList
•  mark the task state as ready
•  insert the task to the ready list

Task 
Suspending

•  none •  look up the task from the TCBList
•  set the task suspend state
•  remove the task from the ready 

list

Table 5.1: Functionality of the OS with the nanoScheduler for handling task state 
transitions. 
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Table 5.1 shows that with the nanoScheduler, the OS performs much 

less operations. Since context switching, interrupt handling, and event 

management are left in the software, the OS still needs to keep the TCBs 

for existing tasks. In addition, the TCBPrioTbl is still needed to lookup a 

TCB address by the task priority. However, since the doubly-linked TCB-

List is used to service timer tick operation, it is eliminated in the soft-

ware. Instead, the nanoScheduler performs the timer tick operation in 

Task Un-
suspending

•  none •  look up the task from the TCBList
•  clear the task suspend state
•  insert the task to the ready list

Task Delaying •  none •  look up the task from the TCBList
•  set the task delay state
•  set the delay amount
•  remove the task from the ready 

list

Task Un-
delaying

•  none •  look up the task from the TCBList
•  clear the task delay state
•  clear the delay amount
•  insert the task to ready list

Task Scheduling •  none •  traverse the ready list to find the 
highest priority task to run

Timer Tick •  update the global timer 
variable

•  traverse the TCBList to decre-
ment each non-zero delay fields. 
I f a delay field reaches zero, the 
corresponding task is made 
ready to run

Context Switch •  same as original OS •  none

Interrupt 
Handling

•  same as original OS •  none

Functions
OS Functionality in the 

presence of the 
nanoScheduler

OS Functionality Moved to the 
nanoScheduler

Table 5.1: Functionality of the OS with the nanoScheduler for handling task state 
transitions. 
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hardware. Similarly, OSRdyGrp and OSRdyTbl are also eliminated from 

the software since task scheduling is now moved to the nanoScheduler.

Using the nanoScheduler greatly simplifies the OS. The most signifi-

cant saving comes from the timer tick operation. Using the nanoScheduler 

reduces the linear overhead to a small constant overhead. The saving is 

amplified when there is a large number of tasks running on the system. To 

be specific, performing the timer tick operation entirely in software incurs 

an overhead of: 

100 cycles + 120 cycles * # of tasks.

It’s easy to see that for 8 tasks in the system, the overhead can exceed 

over 1000 cycles. Furthermore, this overhead is incurred for each timer 

tick. As the granularity of the timer tick reduces, the overhead can burden 

the system significantly. In contrast, using the nanoScheduler keeps the 

timer tick operation under a constant overhead, which is independent of the 

number of tasks in the system. This makes the system scalable and can sup-

port a higher-resolution timer.

In addition, many operations are entirely eliminated, i.e., suspending 

and delaying a task. For other operations, using the nanoScheduler reduces 

the software overhead, i.e., blocking and unblocking a task. Although 

invoking the nanoScheduler adds a small overhead to the system, as our 

simulation results show in chapter 8, the overhead increase due to the 
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nanoScheduler is insignificant compared to the saving achieved in the 

timer tick operation.

With the potential benefits of the nanoScheduler, we examine the task 

structure of the nanoScheduler in the next section.

5.3 NanoScheduler Task Structure

In order to schedule for all tasks created, the nanoScheduler must 

have buffer storage for all tasks. In the case of µCOS, 64 task priorities are 

allowed. The OS uses the lowest task priority for idle task. Therefore, a 

total of 63 tasks are allowed for user applications. Since the idle task is 

scheduled by default and the task states are never changed, the nanoSched-

uler only needs to allocate space for 63 tasks. The task information is 

stored in the main memory as part of the dedicated nanoScheduler memory. 

In addition to the task array, the nanoScheduler also keeps two 1-byte reg-

isters for the total number of existing tasks and the array index for the first 

task element. These two registers are referred to as ListSize and ListHead 

in the remainder of the chapter.

The EDF algorithm is implemented as a singly-linked list in the 

nanoScheduler. An element in the list is a data structure keeping track of 

state information for one task. Thus there are a total of 63 elements in the 

list. Creation in list takes O(N) if N is the size of the list. The linear growth 
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is due to the list traversal required in linked list. Searching is a constant 

time (O(1)) operation if the list only consists of ready tasks. This suggests 

that the nanoScheduler needs to manage multiple lists for tasks with other 

states, i.e., blocked, suspended, delayed, etc. Having multiple linked lists 

can greatly complicate the implementation. Alternatively, the nanoSched-

uler can be implemented in Content Addressable Memory (CAM); achiev-

ing constant time for list operations. However, this would require a 

comparator for each element in the list, which complicates the hardware. 

Further, searching is done in parallel in all elements of CAM, thus power 

consumption would increase as well. On the other hand, if the nanoSched-

uler keeps a single list and adds a status field to distinguish task states, the 

searching of the list can not be performed in constant time anymore. It is 

possible that tasks at the front of the list are blocked and the last element in 

the list is the only task that is ready to run. Thus the worst case searching 

time becomes O(N) as well. In reality, this occurs rarely and searching 

should finish in a relatively short amount of time. However, because a 

RTOS needs to guarantee a deterministic behavior for time-critical applica-

tions, the worst case performance should be assumed at all times. 

Based on these considerations, the nanoScheduler implements a sin-

gle linked-list. Even though the linked-list operation times can be linear, 

the overhead is not significant as long as the number of tasks in the system 
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is small. Since most embedded systems support only a modest number of 

tasks, the linked list implementation does not create performance bottle-

necks, as shown in the performance analysis in chapter 7.

For each task, the nanoScheduler needs to know the task’s period, 

whether it is a periodic task, the deadline of the task, the priority level, and 

some state information (ready, suspend, delay). Therefore, all of these 

fields are present in the data structure for a task. Furthermore, since the 

nanoScheduler is implemented as a singly-linked list, field like next task 

pointer is also needed. The figure below illustrates the structure of the 

linked list along with the two auxiliary registers ListHead and ListSize.

Figure 5.5: NanoScheduler Data Structure. 

The table below explains the fields, their length, and their functional-

ity.
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Field Name
Length 

(bit)
Functionality

Period 16 Specify a task period.

Periodic (P) 1 Indicate whether a task is periodic or 
not.

Deadline 16 Specify a task deadline. It is initially 
set to Period, and is decremented on 
every timer interrupt. When it reaches 
0, it is reset to Period to indicate the 
beginning of a new period.

Task ID 6 Specify the id of the calling task. Since 
there are at most 63 tasks in the list, a 
task ID requires 6 bits.

Ready (R) 1 When set, indicate that the calling task 
is ready to be scheduled. When 
cleared, indicate that the calling task is 
blocked, i.e., by a semaphore call.

Suspend (S) 1 When set, indicate that the calling task 
is suspended. A task can be suspended 
while under states other than ready.

Delay (D) 1 When set, indicate that the calling task 
is delayed. The delay amount is 
specified in the deadline field, and is 
decremented at every timer interrupt 
until reaches 0. Upon reaching 0, the 
scheduler clears the delay flag. A task 
can be delayed while under states other 
than ready.

Next 6 Store the task id of the next task in list. 
Since the list is sorted by deadline 
values, the next task is the one with the 
next smallest deadline values. When 
any task’s period restarts, the next 
fields of all task need to be reordered to 
reflect the change.

Table 5.2: NanoScheduler Data Structure Fields and Their Explanations. 
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In all, each data element requires 48 bits or 6 bytes. The array of 63 

element is statically allocated, making the storage area to be 2976 bits or 

372 bytes. Include ListHead and ListSize registers, the total storage area is 

374 bytes. The array structure and the two auxiliary registers are for 

nanoScheduler use only and should not be accessed by other components 

in the system. Thus they reside in the dedicated memory section as illus-

trated in figure 5.2. 

5.4 NanoScheduler Interface

The processor communicates with the nanoScheduler through mem-

ory-mapped ports. The address map for these ports are given below.

Figure 5.6: Address Map for NanoScheduler Control Registers. 

Function Register

Return Data Register

Periodic register

Task ID register

1 Byte

1 Byte

1 Byte

1 Byte
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ListSize

Task List
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Accessed by the
processor as well

Private Memory
to the scheduler
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In the case of creating a new periodic task that has a period of 144 ms 

and a task id of 5, the processor would write to these registers with the task 

parameter values. To be specific, the processor would include the following 

code:

The above code indicates that the processor writes the task parameters 

to the nanoScheduler registers and tells the nanoScheduler which function 

to execute through the Function Register (FR). After the command is 

issued, the processor waits for the nanoScheduler to respond. The 

nanoScheduler clears the FR when finishes. In the case when the 

nanoScheduler needs to return values, the Data Register is used. The pro-

cessor reads the Data Register after detecting that the nanoScheduler fin-

ished execution.

*Periodic Register = 1;
*Period Register = 144;
*Task ID Register = 5;

while (*Function Register!=0) {};

*Function Register = NanoCreateTask;

{

}

/* inform the nanoScheduler to create a task */

/* leftover OS functionality */
Create_TCB();
Store_TCB_to_Tbl(TCBPrioTbl);
Context_Switch;

Issue command to
the nanoScheduler
to create a new task

perform the left over
OS functionality in
software
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5.5 Implementation Details

The scheduler supports several functions that manipulate task states 

and the linked list. These functions are described below.

• NanoCreateTask(periodic, period, pid): When a task is created, it is 

initialized in the next available data structure in the array (which is indi-

cated by the ListSize register) with ready set, suspend and delay state 

cleared, periodic set to periodic, deadline and period set to period, and 

task-id set to pid. All existing tasks, besides the newly created task, are 

reordered by deadlines to reflect the new element in the list and their next 

fields changed if necessary. The operation essentially inserts the newly cre-

ated task into its appropriate position in the linked list. If there are multiple 

tasks having the same deadline, they are ordered by the existing order in 

the list. In other words, the newly created task is inserted to be the last task 

within the task group that have the same deadline. This function is trig-

gered when FR is 1. It takes one cycle to compare to one task in the list. 

This insertion takes O(N) time where N is the number of tasks. So the max-



74

imum insertion time is 63 cycles. The function flow diagram below illus-

trates the functionality.

Figure 5.7: Function Flow Diagram for NanoCreateTask. 

• NanoDeleteTask(pid): Similarly, when a task is deleted, the OS pro-

vides the task id to the nanoScheduler. The scheduler first traverses the 

array to find the current position of the task. Then the next field of the ele-

ment who precedes the task is modified to skip the current location. Once a 
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In the future function flow
diagrams, this is referred as
ListTraversal (field) where
field is the traversal criteria.

Create a new task
structure at array
position pointed by
ListSize register.

This block updates the next field for
the neighboring tasks of the new
task. ListHead is updated in the case
that the new task has the smallest
deadline. Finally, the total number of
existing tasks in array is incremented.
FR is reset to 0 to inform the 
processor that NanoCreateTask is
done.

Inputs to the function

In this diagram, the field is
deadline.

i > ListSize?
YES

NO



75

task is deleted, it can not be restarted without creating a brand new task 

with a different task id. This function is triggered when FR is 10. The dele-

tion operation also takes O(N) time due the list traversal. The following 

flow diagram illustrates the functionality:

Figure 5.8: Function Flow Diagram for NanoDeleteTask. 

When a task is placed on wait queue, or suspended, or delayed, the 

state information for that task needs to be updated. The OS provides the id 

of the task since it is the only unique parameter to distinguish the current 

task from all other tasks. It then calls the appropriate nanoprocessor func-

tion to perform the operation. The list is traversed from the first task until 
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the matching task is found. Thus, changing state information takes O(N) 

time as well. The specific functions the nanoprocessor supports are: 

• NanoChangeStateWait (pid): changes the task with id pid from 

ready state to wait state. This function is triggered when FR is 3.

Figure 5.9: Function Flow Diagram for NanoChangeStateWait. 

• NanoChangeStateReady(pid): changes the task with id pid from 

wait state to ready state. This function is triggered when FR is 4. The func-

tion flow diagram is similar to figure 5.5, except the ready field is set.

• NanoSuspendTask(pid): suspends the task with id pid by setting the 

suspend flag. This function is triggered when FR is 5. The function flow 

diagram is similar to figure 5.5, except the suspend field is set.

• NanoUnsuspendTask(pid): un-suspends the task with id pid by 

clearing the suspend flag. This function is triggered when FR is 6. The 

function flow diagram is similar to figure 5.5, except the suspend field is 

cleared.
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• NanoTimeDlyTask(pid, delay): delays the task with id pid by delay 

amount and sets the delay flag. The delay amount is specified in terms of 

OS timer ticks. The value is stored in the deadline field. This function is 

triggered when FR is 7.

Figure 5.10: Function Flow Diagram for NanoTimeDlyTask. 

When a task finishes execution, the deadline value indicates the 

remainder of the current period. To prevent the task from executing again 

in the same period, the user task calls NanoTimeDlyTask(pid, 0) to set the 

delay flag after execution, with deadline set to the remainder of the current 

period. This way, the scheduler can guarantee that the task is not scheduled 
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till the beginning of next period. The following graph illustrates the actions 

taken by the scheduler.

Figure 5.11: nanoScheduler’s actions for task management. 

When an aperiodic task tries to set the delay flag after execution, the 

task is deleted rather than delayed. Thus the nanoScheduler is transferred to 

the NanoDeleteTask state.

• NanoResumeTimeDlyTask(pid): un-delays the task with id pid by 

clearing the delay amount and the delay flag. This function is triggered 

when FR is 8.

Figure 5.12: Function Flow Diagram for Resuming Delay Task. 
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• NanoTimeTick(): A timer tick is the unit of time in an OS. Often, 

an OS has a dedicated register that keeps track of time. Without the 

nanoScheduler, updating the timer register would require a special interrupt 

(the timer interrupt) to occur at each timer tick granularity. An ISR is exe-

cuted to service the timer interrupt. Inside of the ISR, global timer register 

is updated along with the list of tasks. All non-zero delay fields are decre-

mented in software. 

When the nanoScheduler is used, the timer ISR makes a call to the 

scheduler instead on every execution. The nanoTimeTick function 

traverses the entire task list to decrement non-zero deadline fields in hard-

ware. When a deadline becomes 0, it is reset to the task period to indicate 

the beginning of a new period. If the delay flag was set, it is cleared to 

make the task ready to run again. However, since the deadline values have 
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changed for some tasks, the list must be reordered, which is indicated by 

the “REORDER=TRUE” statement shown below. 

Figure 5.13: Function Flow Diagram for NanoTimeTick, without reorder operation. 

Since the list is ordered by the task deadlines, the tasks at the head of 

the list always expires first. Thus, after renewing the deadlines, the reorder-

ing operation pushes the tasks at the head of the list back. The renewed 

tasks have their periods equal to their deadlines. In the reordering opera-

tion shown below in figure 5.10, while the head task is renewed (List[List-

Head].period = List[ListHead].deadline), the list is traversed to find an 

appropriate position for the renewed task. Block 1 performs the list tra-

versal; the new task should be inserted between prev and curr pointers. 
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After the new position is found, the operation checks that the new position 

isn’t the same as the original position (List[prev].deadline = List[List-

Head].deadline is not true). Block 2 performs the insertions for all tasks 

that are instances of the same benchmark (these tasks would be renewed 

together since they have the same deadline). The list traversal and the task 

insertion are done as many times as there are renewed benchmarks.

Figure 5.14: Flow Diagram for the List Reordering Operation of the NanoTimeTick 
function. 

• NanoGetHighID(): traverses the linked list to find the first task that 

is ready to run. Since the list is sorted by the deadline values, the task in the 

done = 0;

done = 1?

List[ListHead].period
= List[ListHead].deadline?

d = List[ListHead].deadline;

curr = List[ListHead].next;
prev = ListHead;

List[curr].deadline=d?

prev = curr;
curr = List[curr].next;

YES

NO

NO
or ((List[curr].deadline < d) and 

(List[curr].period != p)) ?

p = List[ListHead].period;

List[prev].deadline
= List[ListHead].deadline?

YES

List[ListHead].deadline
= d?

temp = List[ListHead].next;
List[prev].next = ListHead;
List[ListHead].next = curr;
ListHead = temp;
prev = List[prev].next;

YES

YES

NO

done = 1;

NO

Block 1 (explained below)

Block 2

Reorder List Operation:

(explained below)



82

front of the list has the smallest deadline. The function returns the task id to 

the OS. This function is invoked when FR is 2.

Figure 5.15: Function Flow Diagram for NanoGetHighID. 

Finally, when an OS switches contexts, it executes the task with the 

highest priority. In EDF, the highest priority task is the task having the 

smallest deadline value and is ready to run. Since the list is sorted by dead-

line, the hardware traverses the list starting with the head element. As long 

as an element is not ready to run, the element pointed by the next field is 

examined. The worst case is that all 62 tasks at the front of the list are not 

ready to run and the last task is the only ready task. This case rarely hap-

pens, however, it must be considered. Thus, the searching time also takes 

O(N) or 63 cycles for worst case scenario. 
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Even though the linked list operations take O(N) times to complete, 

the overhead of this operation is still low. This is because the OS has an 

upper bound on the number of tasks supported. Typically, embedded 

RTOSs support a limited number of tasks. Using the nanoScheduler would 

create an overhead of 63 cycles in all list operations for the worst case. 

Smaller overhead can be achieved when the number of tasks in the system 

is low.
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CHAPTER 6

EXPERIMENTAL METHODS

In order to accurately characterize the effect of nanoprocessors on 

real-time embedded processors, a test system is setup in a realistic manner 

to capture the performance behavior. The test system closely resembles 

real-world systems used for developing commercial embedded hardware 

products. To analyze costs effectively, another test system is also setup to 

find estimates of die area increase and additional power consumption for 

the nanoprocessors.

6.1 Performance Simulator

The performance simulator used in this study is the SimBed simula-

tor[24, 25]. SimBed is a cycle-accurate simulator developed to run unmod-

ified RTOSs. The executable of the RTOS coupled with user applications is 

read into the processor simulator. The entire simulation environment 

including user applications, RTOS, and processor simulator executes on the 

workstations in System and Computer Architecture laboratory at the Uni-

versity of Maryland. These workstations are Pentium-III dual processor 
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machines running the Mandrake Linux operating system. The test environ-

ment setup is illustrated as below:

Figure 6.1: Simulation Environment Block Diagram. 

6.1.1 Processor

The particular processor the simulator models in the test environment 

is the Motorola’s M*CORE processor[6][7]. The M*CORE processor is a 

32-bit general-purpose microcontroller designed by Motorola to target 

devices that are battery-powered, thus the processor is designed from the 

ground up with low power consumption in mind. 

The processor is an integer processor conforming to the Reduced 

Instruction Set Computer (RISC) architecture. It offers a 4-stage pipeline 

with fetch, decode, execute, and register writeback stages. Both user mode 

and supervisor mode are supported. Instruction length is fixed at 16 bits 

and most of the instructions can be executed in both modes. A few instruc-

App App App

Host Hardware/Operating System

Simulated Processor Hardware

Real-Time Operating System

SW component
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tions are privileged, being accessed only in supervisor mode. Most of the 

instructions are one cycle operations. Branch instructions and memory 

instructions are executed in two cycles. Memory instructions that involve 

multiple registers take multiple processor cycles to complete. 

The processor has 32 internal registers, 16 of them being general-pur-

pose, accessible in both operating modes, and the rest being the shadow 

registers used only in supervisor mode to lower the overhead for interrupt 

exception processing. In addition, the processor supports one fast interrupt 

and up to 32 unique interrupt sources. 

For the test environment, the processor is set to run at 20MHz. The 

speed of the processor is not impressive for today’s processor world, how-

ever, since the M*CORE is a power conscious processor designed specifi-

cally for embedded applications, performance isn’t the single most 

important issue and can be sacrificed to save on power consumption.

To support multiple interrupt sources and operating systems, extra 

hardware is required in addition to the CPU. The simulation environment 

implements an interrupt handler. Interrupts are vectored to the processor 

through dedicated registers. A hardware timer unit is also included. It gen-

erates a timer interrupt at a predetermined period informing the operating 

system to increment the global timer counter. This is crucial to the OS since 
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some of its features, such as the ability to delay tasks, depends on an accu-

rate global timer.

The simulation system also simulates on-chip memory. In the current 

setup, the memory is fixed at 12 MBytes. The memory bus is a 32-bit bus. 

This memory space is used by both the OS and user applications. Each 

internal peripheral has a dedicated range of memory. The size of the mem-

ory is large for a typical embedded system. This is because no external 

memory is simulated. For simplicity, the RTOS and the user applications 

are assumed to be loaded on chip. The large memory space is needed for 

the OS and user applications.

6.1.2 Operating System

The real-time operating system chosen for the test environment is the 

Micro-C/OS II(µCOS) or MicroController Operating System version 2, 

developed by Jean Labrosse[5]. Specifically, µCOS is a portable, scalable, 

preemptive, real-time multitasking kernel. It supports up to 62 user appli-

cations. It provides several interprocess communication methods such as 

semaphores, message queues, and mailboxes. It also provides task manage-

ment such as task creation, deletion, priority-level changes, task state 

changes, etc. In addition, µCOS provides time management and fixed-size 

memory block management. Moreover, µCOS also comes with hardware-
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dependent code for context switching and interrupt handling. µCOS has 

been used in many commercial embedded products, i.e., cell phones, self 

service stations, and credit card processing units[8].

To understand the proposed hardware, the communication aspect of 

the OS is discussed in detail. Any external devices that wish to communi-

cate with the processor must go through I/O ports. For programming trans-

parency, I/O ports are mapped to particular memory addresses. To access 

the I/O ports, load and store instructions are used. The system can distin-

guish between different ports from the memory address provided. The nan-

oprocessors are treated as memory-mapped on-chip peripherals. 

6.1.2.1 Processor Scheduling

The OS does not have a sense of a task period. The OS simply asks 

for a task to run when it is idle. No check is performed to see if the same 

task has been running twice in a row, or if another task hasn’t run for a 

while. Therefore, the period of a task must be enforced through a user pro-

gram. The user program starts off the task with the highest priority. When 

the task finishes execution, it goes on a wait queue. The user program 

increments a counter for that task at every time tick and wakes up the task 

if the counter reaches the task period. This user program, which is a task 
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itself, has the highest priority in the system (priority of 0) to ensure that it is 

executed at every time tick. This creates unnecessary overhead for the OS.

6.1.3 Benchmarks

The benchmarks used in this study are taken from MediaBench 

suite[9] and MiBench suite[10]. The MediaBench suite primarily consists 

of voice compression/decompression algorithms used commonly in cellu-

lar networks. MiBench suite is a superset of MediaBench and other com-

mercially representative embedded applications. The goal of MiBench is to 

cover a diverse application domain and represent embedded applications 

from different markets. The suite is modeled after the benchmark suite 

developed by the EDN Embedded Microprocessor Benchmark Consortium 

(EEMBC). The MiBench breaks down to six categories: automotive and 

industrial control, consumer devices, networking, security, office automa-

tion, and telecommunications. The telecommunications category overlaps 

with MediaBench. Because M*CORE is a integer processor, we choose 

only the integer benchmarks for this study. We were able to transform some 

of the floating point benchmarks into integer applications without loss of 

generality.
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6.1.3.1 ADPCM

ADPCM, or Adaptive Differential Pulse Code Modulation, is a 

speech compression and decompression algorithm used frequently for 

audio coding. It offers intelligibility at a high compression rate. A common 

implementation of the ADPCM takes 16-bit PCM samples and compress 

them into 4-bit samples, achieving a compression rate of 4:1. There are two 

components to the benchmark. The compression component takes an audio 

file with PCM samples and produce a compressed ADPCM output file of 

the same audio file. The decompression component does the reverse.

6.1.3.2 GSM

GSM is the defined standard protocol for cellular networks in Europe. 

GSM has a codec which compress and decompress audio speech files. In 

the benchmark used in this study, GSM compresses frames of 160 13-bit 

samples into 260 bits achieving a compression rate of 8:1. The quality of 

the algorithm is good enough for reliable speaker recognition which is used 

in many automated telephone systems. Like ADPCM, GSM benchmark 

also takes PCM audio files for compression and produce GSM files for 

transmission over network. Decompression component does the reverse.
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6.1.3.3 Patricia

Patricia is a benchmark which falls in the networking category. A 

Patricia trie is a data structure used in place of a full tree with sparse leaves. 

If a branch only has one leave node, it is collapsed upwards in the trie to 

reduce traversal time. Often, a trie is suitable to represent routing tables in 

a network. The input file into the benchmark is a list of mock IP addresses 

simulating traffic to a highly active web server. The benchmark builds a 

patricia-trie structure using these addresses and outputs short messages 

depending on whether an address is found in the trie.

6.1.3.4 Dijkstra

Dijkstra is a networking algorithm which computes the shortest path 

for a given set of nodes. The benchmark construct a large graph in the form 

of adjacency matrix and compute the shortest path between every pairs of 

nodes repeatedly. The algorithm executes in O(n2) time. The input to the 

benchmark is a cost matrix defining the inter-nodes cost. The output of the 

file is a number of shortest paths between nodes.

6.1.3.5 SHA

Sha, or secure hashing algorithm, is used often in generating digital 

sigatures. It’s used in the famous MD4 and MD5 hashing functions. Sha 
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produces a 160-bit (20 bytes) message digest for a given input. The input 

file is a large ASCII text file from a random article found online.

6.1.3.6 Bitcount

bitcount is a benchmark in the automotive and industrial control cate-

gory, testing the bit manipulation of a processor. The benchmark counts 

bits in an array of integers using 5 different methods. The methods are opti-

mized 1-bit per loop counter, recursive bit count by nibbles or half-bytes, 

non-recursive bit count by nibbles using a table look-up, non-recursive bit 

count by bytes using a table look-up, and shift and count bits. The input 

data is a list of numbers with equal numbers of 1’s and 0’s.

6.1.3.7 G721

G.721 is an international telecommunications standard for digital cod-

ing of analog signals. The standard was defined by the International Tele-

graph and Telephone Consultative Committee (CCITT), which is now part 

of the International Telecommunications Union (ITU). The compression 

and decompression algorithms in G.721 are used in this study.

6.1.3.8 Homemade Benchmark

This benchmark is used for studying the impact on system perfor-

mance from using the hardware scheduler. Each iteration of the benchmark 
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increments a counter 185 times. The benchmark has a well-defined runtime 

of approximately 0.2 ms. This simple benchmark is needed because it pro-

vides a fixed runtime value with no variation. This characteristics makes 

testing schedulers easier.

6.1.4 Tasks

Some of the benchmarks include multiple components. In the simula-

tion environment, each component is treated as an individual task. For 

example, the ADPCM codec has encoder and decoder components. Each 

component by itself is a stand-alone task. In addition, the OS can execute 

multiple copies of a task depending on the configuration. The total number 

of tasks in the system is defined to be the workload of the system. To get a 

uniform workload, multiple instances of the same task are created. This 

workload represents a system that provides a well-defined service to multi-

ple clients. To get a mixed workload, various tasks with different periods 

can be used. In addition, the system can vary the number of instance of 

each task to introduce diversity in the workload. 

6.1.5 Measurements

To evaluate the impact of the nanoprocessors on the system, we mea-

sure performance such as system bandwidth and processor utilization rate. 
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System bandwidth is the maximum number of tasks a system can handle 

when the processor is executing 100% of the time. It is a measure of system 

throughput. Under a fixed workload, we also look into the processor utili-

zation rate. The chosen workload is the maximum sustained workload for 

the original system setup without the nanoprocessors. The processor utili-

zation rate is the breakdown of the processing time that is used in executing 

applications and OS overhead. It is a measure of system efficiency. The 

processor utilization rate for the OS overhead can be broken into several 

categories, such as process scheduling, interrupts, context switching, etc. 

Our results show only the breakdown of the OS overhead including idle 

time. The rest of the processing time is application related.

Two system setups are used; one for the original system, one for the 

system using nanoprocessors. The nanoprocessors are tested one at a time. 

To make a fair comparison, all test parameters are kept the same on the two 

setups. These include the types of tasks, task periods, and simulation time. 

We vary the number of tasks to test the system limits. To measure the pro-

cessor utilization rate, we evaluate both system setups executing the same 

workload within the same simulation time. The processor utilization is bro-

ken up into categories and the results compared.

To measure the system cost, the cost simulation environment is 

described below.
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6.2 Cost Simulator

Because nanoprocessors are envisioned as on-chip peripherals, they 

are modeled as circuitry for cost estimates. To achieve accuracy, the 

Cadence and Synopsys toolsets are used. First the nanoprocessors are mod-

eled in the Verilog Hardware Description Language (HDL) to verify the 

correctness of the design. Then they are synthesized into gate-level sche-

matics for area and power estimates.

Verilog is a high-level language that are used to model hardware com-

ponents. Data types include those that represent native hardware units such 

as registers, wires, buffers, etc. In many ways, Verilog resembles C, provid-

ing users with conditional statements, array structures, loop statements, and 

even some limited file operations. In other ways, Verilog code mimics real 

hardware. There are distinctions between the positive edge and negative 

edge of a signal, edge-triggered vs. level-triggered logic, and the important 

concept of non-blocking assignments. Non-blocking assignments allow 

multiple statements to be evaluated simultaneously within the same clock 

period. 

To measure the impact of nanoprocessors, the nanoprocessors that are 

modeled in C are also implemented in Verilog. The functional correctness 

of the Verilog code is verified through a test driver that tests each nanopro-

cessor’s functionality thoroughly. Files are used to represent the external 
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data arriving at an I/O port. Input files are read into a piece of memory at 

initialization. During the execution, the nanoprocessor code can directly 

access the memory that contains the input files. This direct data access 

takes 1 cycle for each word, thus simulating the special bus connecting 

between the memory and the nanoprocessors.

To provide a reference for the area and power estimates, an M*CORE 

simulator has also been built. The 4-stage pipelined simulator is cycle 

accurate. It includes the register file, an ALU, and vectored interrupt han-

dling. Memory is not included in the simulator. Inside the ALU, a divider 

for signed and unsigned divides is built to reflect the accurate hardware 

cost1. This simulator is not used for performance analysis. It is used to pro-

vide a reference point in area and power estimates.

After the Verilog simulators are built, we use the Synopsys toolset to 

synthesize our HDL design. Synopsys tools allow designers to make the 

first step from a high-level design to realizing it in hardware. The toolset 

translates a high-level HDL program into gate-level schematics and opti-

mizes the design based on area, timing, and power requirements. Since 

these requirements are dependent on the fabrication technology used, a 

technology library is provided. In this work, a 0.25 µm standard cell library 

1.A multiplier is not built because the technology library used for synthesis can
provide a generic multiplier.
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from the Taiwan Semiconductor Manufacturing Company (TSMC) is used. 

The library provides detailed area and delay information for numerous 

gates used in circuitry building. Further, we configure the Synopsys toolset 

to use parameters closely resemble our M*CORE simulation system. These 

parameters for synthesis is outlined below in table. With the library and 

user Verilog code fed into Synopsys, the software optimizes the user design 

based on configuration. To get a consistent result, the same optimization 

parameters are used for the M*CORE and the nanoprocessors.

The area estimates are obtained from the technology library informa-

tion. It is the sum of all cells generated by the Synopsys synthesis toolset. 

There is no unit for area estimates. It is specific to the Synopsys toolset and 

the technology dependent library. The total area is the sum of combina-

tional logic and non-combinational logic. The non-combinational logic 

includes the Flip-Flops used for storage. The combinational logic includes 

Parameter Value

Technology Library Used TSMC Standard Cell Library

Clock Frequency 20MHz

Operation Condition Typical

Wire Load Model Conservative

Max Fan-out for Nets 4

 Table 6.1:Synthesis Conditions
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the gates used to represent the logic. In addition, Synopsys provides other 

information such as total cell counts, etc.

For reference purpose, we obtained the following information from 

simulation. First, we obtained that a NAND gate or a NOR gate has an area 

of 17. Second, to find the Register-Bit-Equivalent (RBE) value, we have 

built a 16 x 16 register file illustrated below.

Figure 6.2: A 16 x 16 register file representation. 

The register file takes a total area of 55952 in Synopsys. Since the 

module contains only 256 bits of memory and the necessary logic involved 

to access the memory, the total area is divided by 256 to get the RBE value 

of 218. Third, from the die photo of a M*CORE processor shown below, 

we estimated that the CPU takes about 15% - 20% of the total die area with 

a small memory size. The ratio is used later in area calculation. This ratio is 

clock

reset

addr bus

data bus

RnW
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in smaller in our simulation since the amount of memory simulated is more 

than that shown on the die photo.

Figure 6.3: M*CORE die photo. 

The power estimates depend heavily on the switching activity within 

the hardware components. For a rough estimate, Synopsys uses a pre-

defined algorithm to compute a hypothetical switching activity. It assumes 

that all input pins to the hardware components have a 0.5 probability of 

switching. The probabilities are cascaded down the logic until the output 

pins. Since the circuits are built with NAND and NOR logics, the table 

below shows the probability of switch for a NAND gate and a NOR gate.

NAND Gate NOR Gate

Switching Activity 0 -> 1 1 -> 0 0 -> 1 1 -> 0

Probability 0.75 0.25 0.25 0.75

 Table 6.2:Switching Probability of a NAND and a NOR gate
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Power consumption is computed based on this switching activity 

model. The power estimate given is broken up into dynamic power and cell 

leakage power. Cell internal power and net switching power make up the 

dynamic power estimate. Cell internal power represents the power con-

sumed in gates and latches. Net switching power represents the power con-

sumed in wires when data is in flight. The sum of the two types is the total 

power consumed for execution. When the hardware component is idle, the 

cell leakage power accounts for the power consumed to maintain the gates 

and latches. The Synopsys environment parameters for power-specific unit 

is listed in the table below.

Parameter Value

Global Voltage 2.5V

Capacitance Unit 1 pf

Time Unit 1 ns

Dynamic Power Unit 1 mW

Cell Leakage Unit 1 nW

 Table 6.3:Power-Specific Unit Parameters
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CHAPTER 7

RESULTS FOR NANOPROCESSOR AS I/O CONTROLLER

In this section, the performance impact of adding the nanoI/O control-

ler is examined in detail. In particular, the system bandwidth and processor 

utilization rate are discussed as the primary measures for performance. The 

area and power consumption of the nanoI/O controller are also evaluated. 

Further tradeoffs between cost and functionality are discussed.

7.1 System Bandwidth Analysis

The system bandwidth is affected dramatically by using the nanoI/O 

controller. The graph below illustrates the performance difference for six 

different benchmarks. The µCOS and multiple instances of a benchmark 

are compiled together and executed by the M*CORE simulator. Every 

instance of the benchmark is an individual task. The number of tasks is var-

ied to see the impact of different workloads on the OS. Because the soft-

ware static scheduler assigns unique priority levels to tasks, the OS 

executes them in a predetermined order. When one task finishes execution 

or is interrupted, the OS context switches to another task. 
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The graph below shows the system bandwidth with and without 

nanoI/O controller. 

Figure 7.1. Maximum System Bandwidth Comparison for 6 benchmarks. The first 
bar of each benchmark shows the maximum sustained workload for the original 
system setup. The second bar shows the maximum sustained workload for the 

system with the nanoI/O controller. 

The horizontal axis represents the six benchmarks and their average. 

The vertical axis represents the maximum number of tasks the system can 

sustain. Without the controller, the OS can handle less than 14 tasks of 

ADPCM DECODE. When there are 14 or more tasks, the OS starts to miss 

task deadlines and drops some tasks from execution schedule. This is the 

point at which the system overloads. It indicates that the system is working 
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at the maximum rate and fails to complete all tasks within allowed time. 

When the nanoI/O controller is used, the system can now handle up to 32 

tasks. When a task makes an I/O request, it is put onto a wait queue while 

the nanoI/O controller fulfills the request. Since the CPU doesn’t have to 

service the request anymore, the CPU is freed and can execute another 

task. 

Similarly, the graph shows that ADPCM ENCODE and SHA both 

have large amount of I/O operations. In the case of ADPCM ENCODE, 

every iteration of the benchmark reads in 295KB PCM samples and pro-

duces a 73KB ADPCM samples at the output port. ADPCM DECODE per-

forms the reverse computation, reading in the ADPCM samples and 

produces the PCM samples. Thus, the encoder and decoder have the same 

amount of IO communications even though the computation portions dif-

fer. Likewise, every iteration of the SHA algorithm reads a 300KB input 

and produces a 20 bytes output message. Therefore, ADPCM codec and 

SHA are regarded as communication intensive benchmarks. 

On average, communication intensive benchmarks have fairly large 

request length. The cost of the nanoI/O controller can be amortized over 

the large data size. An IOread or IOwrite request adds 2 additional context 

switches to the system; one for blocking the current task and one for 

resuming the current task. The overhead is constant for the functions. The 
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overall cost can be reduced by fewer I/O requests with larger access size 

per request. In the case of ADPCM ENCODE, the request sizes are 2000 

bytes for IOread and 500 bytes for IOwrite. ADPCM DECODE requests 

500 bytes for IOread and 2000 bytes for IOwrite. Consequently, they bene-

fit the most from the nanoI/O controller. When the system runs ADPCM 

ENCODE with the nanoI/O controller, the sustained workload increased 

from 12 tasks to 32 tasks, which represents an increase of 167% in system 

bandwidth. Similarly with ADPCM DECODE, the system bandwidth 

increased by 129%. 

In the case of SHA, a single IOread request asks for a buffer of size 

4096 bytes, which is the largest request size of all benchmarks. However, 

the system bandwidth only increased by 100% with SHA. This is because 

only one nanoI/O controller is simulated. When the nanoI/O controller ser-

vices a request, any additional requests from the system must wait until the 

controller finishes the current request. Therefore, using one nanoI/O con-

troller limits the performance gain in this case. Performance can be 

improved by using more nanoI/O controllers. However, when multiple 

controllers are used, synchronization among memory accesses must be 

coordinated.

The graph also shows that less communication intensive benchmarks 

do not benefit as much from the nanoI/O controller. Tasks like the GSM 
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ENCODE and PATRICIA do not see a difference in system bandwidth. 

This is because the overhead created by more context switches outweighs 

the benefit of fast and direct I/O operations. These tasks require the system 

to perform more computation than communication, thus making these 

benchmarks to be computation-intensive benchmarks. All communication 

requests are of small size, average only about 10 bytes of data for each 

request. The amount of time saved for accessing the requested data is not 

enough to balance the additional time spent in context switching. 

To improve the performance, I/O operations with small data size do 

not block the calling task. Since the access size is small, it is better for per-

formance reasons that the system stays idle and waits for the result. Thus, 

functions such as IOgetInt and IOputInt do not block the calling task for a 

4-byte data. 

Similarly optimization can be done in IOread and IOwrite by specify-

ing a threshold for data size. If the total access size is under the threshold, 

the requesting task simply sits idle and waits for the result; otherwise, the 

requesting task blocks on the I/O request. The threshold can be defined at 

system initialization to provide flexibility to the system.

On average, the nanoI/O controller improves the system bandwidth 

from handling 12 tasks to 20 tasks, which is an increase of 67%. To under-
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stand the impact more thoroughly, a breakdown of processor usage is 

analyzed next. 

7.2 Processor Utilization Analysis

The processor usage is broken into categories. The categories of inter-

ests are process scheduling, interrupt handling, I/O communication, and 

interprocess communication (IPC). Process scheduling includes OS func-

tions that are responsible for finding the next ready-to-run task and context 

switching to it. Interrupt handling includes functions that process and 

manipulate interrupts, such as ISRs and interrupt masking routines. As the 

IOread pseudo-code in chapter 4 shows, disable and enable IRQ are inter-

rupt manipulation functions for critical sections. I/O communications 

includes functions for accessing and storing I/O data. IPC includes func-

tions that manage semaphores, message queues, and message boxes. These 

categories are of interests because the nanoI/O controller may impact the 
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execution time spent in these categories. The Idle time represents the 

amount of time the system is available for more work.

Figure 7.2.  Processor Utilization Rate
Breakdown for six benchmarks. The first bar for each benchmark is for the original system
setup running the maximum sustained workload. The second bar is for the system with the
nanoI/O controller running the same workload.

The graph above illustrates the processor usage breakdowns for all 

benchmarks. The workload used is the maximum sustained workload for 

the original setup, that is, 14 tasks for ADPCM DECODE, 12 tasks for 

ADPCM ENCODE, etc. The first bar for each benchmark represents the 

processor utilization rate for the original system without the nanoI/O con-
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troller. The second bar is the same workload running with the nanoI/O con-

troller. All other test parameters are kept the same. 

The system executes other functions that don’t fall under the above 

categories as well. For instance, the time for 14 task initialization takes 

about 30% of total execution time. However, since the nanoI/O controller 

has no impact on the initialization time, it is omitted from the comparison 

graph. In addition, time spent in user applications is unaffected by the 

nanoI/O controller as well. Therefore, the total amount of processor time 

does not sum to 100%.

For ADPCM DECODE, under original setup without the nanoI/O 

controller, the system is overloaded at 14 tasks. It means that the processor 

can not complete execution for the 14 tasks within the periods of some of 

the tasks. Consequently, the processor is never idle in this case. The most 

significant amount of time is used in I/O communications which accounts 

for almost 31% of total execution time. Along with I/O communication, 

interrupt also takes a great deal of processing time, over 11% of total exe-

cution time. As shown in the pseudo-code of IOread, every byte of data 

read is accompanied by a pair of interrupt disable and enable functions. 

Under the situation where multiple tasks share an I/O port, this operation 

ensures that the data being moved by one task is not corrupted by another. 

A similar situation arises in IOwrite as well and the same solution to dis-
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able interrupt is used when data is being written out to a port. Therefore, 

the total number of interrupt masking calls is proportional to the total num-

ber of bytes communicated. 

When nanoI/O controller is used, both the I/O overhead and the inter-

rupt overhead are eliminated. Interrupt masking functions are called only 

once per request, and the overhead of setting up the controller becomes 

constant. Even though the contoller’s response time to request is still pro-

portional to the data size, the operation is performed in hardware and can 

achieve much smaller delay. Thus, the data size has a minimal impact on 

the growth of the response time. As a result, in the case of ADPCM 

DECODE, the processor is idle over 40% of the time with the use of 

nanoI/O controller. The percentage of idle time is approximately the sum of 

I/O communication and interrupt overhead in the original setup. Conse-

quently, the processor can support 18 more tasks as shown earlier.

For GSM ENCODE and PATRICIA, the effect of nanoI/O controller 

is hardly felt. As mentioned in section 6.1, these benchmarks are computa-

tion-intensive. The I/O operations are of frequent access and have small 

access size. This characteristic accumulates the cost of context switching 

and outweighs the benefit of using nanoI/O controller. The graph confirms 

the reasoning. I/O and interrupt are of a small percentage of total processor 

usage, roughly 5% of total execution time combined for GSM ENCODE. 
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Using nanoI/O controller reduces the time down to about 2%. However, 

more time is spent in context switching, process scheduling, and IPC man-

agement. Thus the benefit and cost of using the nanoI/O controller cancel 

each other out in this case. Out of all benchmarks, PATRICIA has the worst 

utilization saving. This is because the benchmarks calls IOgetInt and 

IOputInt for integer inputs. Since these IO functions still block the proces-

sor, little saving is achieved in utilization rate.

From the graph, it’s shown that benchmarks that are communication-

intensive, like ADPCM codec and SHA, benefits a great deal from the 

nanoI/O controller. On the other end of the spectrum, benchmarks like 

GSM codec and PATRICIA are computation-intensive and don’t see a 

great performance boost. To improve utilization rate, these benchmarks can 

combine some I/O operations to achieve a larger request size, thus amortiz-

ing the cost. In any case, it is important to notice that at no time the 

nanoI/O controller lowers the system performance.

7.2.1 Future Optimization

For simplicity reasons, only one nanoI/O controller is simulated and 

one I/O port is shared among all processors. If the controller is servicing a 

request when another one comes in, the later request must wait until the 

earlier request finishes and then takes control of the nanoI/O controller. 
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When this occurs, the waiting task is not swapped out the processor and the 

CPU time is wasted. To get better performance, it’s possible to build a 

request queue in the nanoI/O controller to record the request. The task can 

then be blocked waiting for its request to be fulfilled. The diagram below 

illustrates the idea of the request queue. This will save more processor time 

from being wasted. However, the cost and complexity of the nanoI/O con-

troller will increase due to the management of the queue structure.

Figure 7.3. Possible optimization to improve the processor utilization rate for sin-
gle nanoI/O controller and UART. 

Another possible optimization is to have dedicated I/O ports. Without 

the nanoI/O controller, interrupt masking functions are necessary in the 

case where several tasks share an I/O port. For every byte transferred, ato-

micity must be guaranteed in order to ensure data correctness. However, if 

each task has a designated I/O port (as illustrated below), the interrupt 
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masking functions can be moved to the outside of the loop (as discussed in 

section 4.2). Thus, it would save execution time since time spent in inter-

rupt masking is constant. However, it is still beneficial to use the nanoI/O 

controller since the amount of time spent in I/O operations is not affected 

by the number of I/O ports. In addition, the queue structure can also be use 

here to further improve performance.

Figure 7.4. Configuration for a single nanoI/O controller and multiple UARTs. 

To achieve better processor utilization rate, multiple nanoI/O control-

lers can be used. This eliminates the need to block when one nanoI/O con-

troller is busy. Therefore, as many requests as there are nanoI/O controllers 

can be satisfied simultaneously. Each nanoI/O controller can control one or 

more I/O ports. However, since multiple memory accesses can be gener-

ated concurrently, memory bus synchronization must be done to ensure 

data coherency.
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7.3 NanoI/O Controller Cost

Cost considerations include die area and power consumption. Die 

area directly impacts the manufacturing cost. The additional power con-

sumed by the nanoI/O controller puts more pressure on batteries and can 

shorten battery life. In addition, the nanoI/O controller can generate more 

heat and complicate the cooling mechanism for devices. These concerns 

are as important as performance for embedded system designers. In this 

section, die area and power consumption issues are addressed. Heating 

characteristics is omitted since the study would require setups beyond the 

current simulation environment.

7.3.1 Die Area Analysis

With 72 bytes of total required storage, the nanoI/O controller has a 

reported area of 222947. There is no unit for the area. It is technology 

dependent and can be compared with other hardware component synthe-

sized by the same toolset. However, to get an idea of how much area the 

controller requires, several references are obtained. First, a single NOR or 

NAND gate has an area of 17. Second, a RBE has an area of 218. In addi-

tion, the relative size of the M*CORE CPU is 899096. Thus, the controller 

is about 24.8% of the CPU size. To get a sense of the amount of logic 

involved in implementation, we estimate the number of logic gates used. 
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The area information provided by Synopsys tools includes area informa-

tion for gate cells only. This is the amount of area ASIC gates occupy using 

the specificied technology. Thus gate count is obtained by dividing the gate 

cell area by the area of a NAND gate. Since the nanoprocessors are tar-

geted for FPGA technology and FPGA vendors often provide sizes in units 

of system gates, we would like to find the relationship between ASIC gates 

and FPGA gates. Even though the gate conversion is vendor-specific, the 

general rule of thumb is that FPGA system gates are 2 to 3 times of that in 

ASIC gates [28]. Further, the port-mapping table sizes can be changed to 

measure effects on area. With 64 bytes for both tables, the nanoI/O control-

ler is capable of supporting up to 16 ports. In addition, the input and output 

ports for one task do not have to be the same. If the system do not support 

16 ports, the table sizes can be reduced. For example, the M*CORE system 

studied here support only 2 I/O ports. This would only require 1 bit per 

table entry for both 64-entry tables. This adds to a total of 16 bytes. In typ-

ical embedded systems, 4 to 8 I/O ports are supported. The table below 

summarizes the area cost for different table sizes. The area measures 

obtained in Synopsys are given in the first column. The M*CORE area is 

listed for comparison. The Synopsys estimates are translated into RBE 

counts in second column. To compare to the CPU, the ratios of the area are 

given. To provide a estimate for the logic complexity, a gate count estimate 
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is provided. Furthermore, to get a sense of the needed size of an FPGA to 

implement a nanoI/O controller, estimates in FPGA system cells are pro-

vided assuming 2 FPGA system cells are equivalent to 1 ASIC gate.

7.3.2 Power Consumption Analysis

The power consumption estimates are also obtained for the above 

nanoI/O controller configurations. The amount of power consumed is 

directly related to the switching activities in the circuit. Synopsys provides 

a switching activity input using a probability model, discussed in chapter 6. 

The table below lists the power estimates for the nanoI/O controllers con-

figured in Table 2.

Hardware 
Component

Synopsys 
Area

RBE 
counts

Relative 
Area to 
CPU

Gate 
Count

FGPA 
System 
Cell 
Estimate

MCORE CPU 899096 4124 36224 72448

nanoI/O controller
16 ports

222947 1023 24.8% 6079 12158

nanoI/O controller 
8 ports

191002 876 21.2% 5153 10406

nanoI/O controller 
4 ports

162749 747 18.1% 4446 8892

nanoI/O controller 
2 ports

131230 602 14.6% 3546 7092

Table 7.1: Area Estimate for the nanoI/O Controller
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Even though the nanoI/O controller adds 12% of the CPU dynamic 

power, tasks can execute faster with the nanoI/O controller since the com-

munication component and the computation component of a task can be 

execute in parallel. This implies that the total execution time for a fixed 

number of task can be shortened. Thus, shorter execution time can translate 

into savings in energy consumption.

The nanoI/O controller can improve the system performance by off-

loading the communication requests from user applications. For communi-

cation-intensive benchmarks, the nanoI/O controller can increase the sys-

tem bandwidth dramatically. The nanoI/O controller is affordable as well. 

A nanoI/O controller that supports 16 I/O ports increases the total die area 

by approximately 10%. For systems that support fewer ports, the impact of 

the nanoI/O controller on die area is even smaller. In addition, the nanoI/O 

Hardware Component
Dynamic 
Power (mW)

Cell Leakage 
Power (nW)

M*CORE 25.642 2354.77

nanoI/O controller
16 ports

3.0669 416.56

nanoI/O controller
8 ports

2.5377 359.58

nanoI/O controller 
4 ports

2.0228 302.58

nanoI/O controller
2 ports

1.4996 246.75

Table 7.2: Power Estimates for the nanoI/O controller
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controller does not increase the system power consumption significantly 

and can help saving total energy consumption.
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CHAPTER 8

RESULTS FOR NANOPROCESSOR AS SCHEDULER

This section presents results showing the effect of the nanoScheduler 

on the system performance and cost. First schedulability is studied to show 

that the EDF algorithm is capable of producing a feasible schedule when 

the static priority scheduler fails to do so. Then the performance impact on 

the system is discussed by analyzing the breakdown of processor overhead. 

Lastly, die area cost and power consumption estimate are presented.

8.1 Schedulability Analysis

The hardware scheduler supports both a static priority scheduling 

scheme and an Earliest Deadline First (EDF) scheduling scheme. The per-

formance analysis is done on four setups: static-priority based scheduling 

in software, static-priority in hardware, EDF scheduling in software, and 

EDF in hardware. The tasks and their periods are chosen such that the 

static-priority scheduling scheme would fail and the EDF scheduling 

scheme would succeed. Therefore, the workload is chosen to be a dummy 

task running with a period of 10 ms mixed with the same task running at a 

period of 17 ms. The dummy task increments a counter in a loop. The runt-
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ime of the task is fixed at 45% of the period. For the two tasks that run at 

10 ms and 17 ms, the runtimes are at 4.5 ms and 7.65 ms. The below dia-

gram shows why the static priority scheme would fail.

Figure 8.1. Workload scheduling activity using the static-priority scheduler. 

Under static priority scheduling, task 1 has a smaller period, thus 

becomes the higher priority task. When task 1 runs to completion, it turns 

the OS to task 2. At time 10, task 1 starts a new period and becomes ready 

to run again. Since it has a higher priority, task 1 runs to task completion 

until time 14.5, at which time task 2 resumes execution. When the deadline 

of task 2 expires at time 17, the system notices that task 2 has only exe-

cuted for 7 ms and has not completed its runtime, and thus is late.

In the same situation, the EDF scheduling algorithm can schedule the 

two tasks successfully. Like with static priority algorithm, the task 1 starts 

TASK 1

0 4.5 10

0 105 15 20

TASK 2

Static Priority:

0 5 10 15 17
1 12 2

7.65

(4.5)(4.5) (5.5) (2.5)
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execution at time 0. However, when task 1 is released at 10, the EDF 

scheduler compares the deadline of the two tasks. Task 1 has a deadline at 

time 20, while task 2 has deadline at time 17. The EDF scheduler decides 

that task 2 should have the higher priority and continues executing until 

task completion at approximately time 13. The graph below illustrates the 

Figure 8.2. Workload scheduling activity using the EDF scheduler. 

EDF scheduling activities. The output obtained from our simulation envi-

ronment also verifies that the EDF algorithm achieves the valid schedule 

shown above.
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The next result shows the schedulability study using the two tasks 

mentioned above. We fix one task at 10 ms period, and vary the period of 

the other task to test when the static priority scheduling scheme fails.

The graph shows that varying the period of a task does not change the 

percentage of processor utilization. This is because the runtime is propor-

tional to the task period. When the varying task reaches a period of 7 ms, 

the static priority scheme fails to schedule the two tasks. This is indicated 

by the drop in user application time. On the other hand, the EDF algorithm 

never fails to schedule the two tasks with different periods. As the varying 
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period increases, the downtime of the task also increases. This makes 

scheduling easier. Our result indicates that the system idle time at a larger 

period is slightly longer than the idle time at a smaller period. This implies 

that the scheduling time converges to a lower bound and thus the EDF 

algorithm will not fail in this situation.

8.2 System Bandwidth Analysis

The EDF algorithm is an optimal algorithm, capable of achieving a 

feasible schedule if such a schedule exists. Consequently, by scheduling 

more tasks than a static priority algorithm, the EDF scheduler can help 

increase the system bandwidth. Our next simulation result verifies this by 

running a benchmark similar to the one mentioned above. We study all four 

scheduling schemes; they are static priority scheduling in software, static 

priority scheduling in hardware, EDF scheduling in software, and EDF 

scheduling in hardware. The benchmark increments a counter inside of a 

loop. The benchmark is cloned to multiple tasks. However, the runtime of 

each task is fixed at 0.2 ms. This benchmark has a small runtime to allow 

execution at a high frequency. Further, the runtime is well-defined with lit-

tle variations. This simplifies the performance evaluation process. The first 

10 tasks are running at a period of 3 ms, next 10 tasks are running at a 

period of 4 ms, and the rest is running at a period of 5 ms. Varying the task 
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periods introduces diversity into the workload and makes the workload 

representative of real-world applications. By choosing a benchmark that 

has a short runtime and composing a workload that consists of frequent 

tasks, we were able to execute the scheduler repeatedly. Thus the frequent 

scheduling magnifies the impact of scheduling schemes on system perfor-

mance. The result is shown below.

Figure 8.3. System Bandwidth Comparison using Different Scheduling 
Schemes. 

The result shows that a system with software scheduler can handle up 

to 12 tasks. Any additional tasks would overload the system and are either 

executed late or dropped from the schedule. Note that this does not imply 
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that the scheduler fails to schedule the tasks properly. The system is over-

loaded due to the high overhead software schedulers create. As a result, the 

system is overloaded before the software schedulers actually fail. On the 

other hand, a system running the hardware static priority scheduler can 

handle up to 18 tasks. The static priority scheduler can not manage more 

than 18 tasks. In comparison, the EDF algorithm is able to take advantage 

of the runtime characteristics of the tasks and schedule up to 21 tasks. As a 

result, the algorithm can break up the processor time more efficiently and 

produce an optimal schedule. The hardware static priority scheduler is able 

to increase the system bandwidth by 50%. The dynamic EDF algorithm can 

increase the bandwidth by an additional 19%, achieving a total increase of 

75% of system bandwidth compared to the software schedulers. To under-

stand the performance gain thoroughly, we discuss the processor utilization 

breakdowns in the next section.

8.3 Processor Utilization Analysis

Using the workload described, we obtained processor utilization 

breakdown to demonstrate that the hardware EDF implementation can 

improve system performance significantly. The types of overhead shown 

are system initialization, task management, process scheduling, time man-

agement, interrupt, IPC, user application, and system idle time. Schedul-
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ing, interrupt, and IPC are the same categories discussed in chapter 7. 

System initialization includes functions that create tasks, set up stack 

spaces, and prepare the system for execution. Task management includes 

functions for creating and deleting tasks and changing task states. Time 

management includes functions that maintain the software-kept timer, 

traverse the list of tasks to decrement delay fields, and retrieve and set time 

for users. User application is the amount of the time the system spent exe-

cuting application code. Finally, system idle time is the amount of time the 

system is available for more work.
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The figure below shows the processor utilization breakdown.

Figure 8.4. Processor Utilization Comparison for different scheduling schemes. 

The horizontal axis represents the workload. Each group of bars rep-

resents software static priority scheme, hardware static priority scheme, 

software EDF scheme, and hardware EDF scheme. Each bar is segmented 

into 8 categories showing the percentage of processing time each category 

takes. Beyond 12 tasks, the systems that execute software schedulers are 

overloaded due to the high system overhead. Thus only the processor utili-

zation breakdowns for hardware schedulers are shown after 16 tasks. Simi-

larly, the processor utilization breakdown for the hardware static-priority 
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schedulers is not shown after 18 tasks since the scheduler fails to achieve a 

feasible schedule beyond 18 tasks.

For a given workload, the system initialization time and the user 

application time are not affected by the scheduling schemes. As the number 

of tasks increases, both initialization and user application times grow lin-

early.

The overheads from the software schemes are on average higher than 

the hardware schemes by at least 20%. In the case of software static prior-

ity scheduler (SW SP) executing 8 tasks, the system spends approximately 

25% of total execution time in IPC, interrupt, time management, schedul-

ing, and task management. This is due to the fact that a high priority task 

must be execute to enforce the periods of all user tasks. Recall in chapter 6, 

we discuss the special task that is execute every timer tick. The task incre-

ments a counter for every user task. If the counter matches the specified 

period of a user task, the user task is made ready to run. After the user task 

executes, it is blocked waiting for the next period. This special task that 

manages user tasks is needed because µCOS does not have a sense of peri-

odic tasks. As the workload increases, the overhead due to the special task 

grows linearly. When the system executes 12 tasks, the overhead is nearly 

30%.
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In the case of the software EDF algorithm, the special task is not 

needed. This eliminates the overhead associated with the task. However, 

the time management has increased significantly. The software EDF (SW 

EDF) keeps track of two linked lists. One is for ready tasks and the other is 

for other tasks that are blocked, delayed, or suspended. The deadline values 

are absolute time instead of relative deadlines. Both lists are sorted accord-

ing to the absolute deadline values. On every timer tick, the blocked list is 

traversed to check if any task becomes available to run. If such a task 

exists, it is taken off the blocked list and put into the ready list. When task 

state is changed, the task is taken off the ready list and put into the blocked 

list. The management of the two lists in software contributes to the over-

head seen in time management. As the number of tasks increases in the sys-

tem, the overhead for time management also increases linearly, reaching 

over 25% for a workload of 12 tasks.

For the hardware schedulers, the system overhead is insignificant, 

contributing less than 7% of the total execution time. Furthermore, the sys-

tem overhead stays almost constant as the workload increases. When the 

workload reaches 21 tasks, the overhead has grown from 4% to 7% of total 

execution time.

Our results show that the hardware schedulers are good because they 

reduces the system overhead associated with time management, IPC, inter-
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rupt and task context switching. The EDF algorithm is better than static pri-

ority algorithm because more tasks can be executed, thus improving system 

bandwidth. As a result, the proposed nanoScheduler, as a hardware EDF 

scheduler, has the best performance out of the four schedulers studied.

8.4 Die Area and Power consumption Analysis

As discussed in chapter 5, the 63-task scheduler takes a total storage 

area of 372 bytes. The majority of the total storage area is for storing task 

state information. This can be stored in the main memory. Inside of the 

nanoScheduler, only 2 data structures are needed. They are used for com-

parison operations in list traversal. The table below lists the area estimate 

for a 64 task scheduler. The Synopsys area estimates are provided in the 

first column and the RBE counts in the second column. To make a compar-

ison, area estimate of the M*CORE processor is also included. The gate 

count is provided to estimate the logic complexity. The FPGA system cell 

estimate is provided to show the required size of an FPGA needed to 

implement a nanoScheduler.

Hardware 
Component

Synopsys 
Area

RBE 
counts

Relative 
Area to 
CPU

Gate 
Count

FPGA 
System Cell 
Estimate

M*CORE 899096 4124 36224 72448

64 task 
scheduler

49870 229 6% 1668 3336

Table 8.1: Die Area Estimate for Hardware Scheduler
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The table below provides the power consumption estimates for the 

64-task schedulers. The M*CORE power consumption is provided for ref-

erence.

Since the task scheduler only contains 2 data structures, it has a very 

small impact on both die area and power consumption.

Hardware 
Component

Dynamic 
Power (mW)

Cell Leakage 
Power (nW)

M*CORE 25.642 2354.77

64 task scheduler 0.411 93

Table 8.2: Power Consumption Estimate for Hardware Scheduler
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CHAPTER 9

CONCLUSION

9.1 Summary

In this work, reconfigurable hardware accelerators, nanoprocessors, 

are proposed to specifically assist the processor in reducing overhead 

incurred by embedded systems. Nanoprocessors can be programmed to 

meet application specific requirements. They can be realized using Sys-

tems-on-chip with on-chip FPGAs. In this work, we demonstrate two uses 

for nanoprocessors, to increase system bandwidth and processor utilization 

rate.

Two system performance bottlenecks are identified. In particular, 

high-frequency I/O ports require the CPU to save every data byte that 

comes in from an I/O port. This operation can incur a significant overhead. 

Another performance bottleneck comes from the process scheduler. The 

scheduler returns the next available task for execution. As one of its 

responsibilities, the scheduler must examine every task in the system and 

update delay information on every timer interrupt. This operation also 
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incurs a significant overhead. Furthermore, the overhead increases linearly 

with respect to the number of tasks.

As a result, nanoprocessors are proposed, as hardware accelerators, to 

off-load some of the OS functionality to hardware. In this work, one spe-

cific function defined is the I/O controller. An I/O controller is similar to an 

DMA controller, managing communication traffic from the I/O ports to the 

main memory. The I/O controller operates in parallel as the CPU. Another 

identified nanoprocessor function is the processor scheduling. Since static 

scheduling can not achieve 100% processor utilization rate, an EDF algo-

rithm scheduler which can achieve full processor utilization is imple-

mented in hardware. 

The nanoprocessors are treated as on-chip peripherals. There is a spe-

cial memory bus dedicated for the nanoprocessors use. The nanoprocessors 

also have access to the bus that connects the interrupt controller. The 

nanoI/O controller uses an interrupt to inform the CPU about the results of 

I/O requests. The nanoScheduler does not use the interrupt and returns 

results immediately while the processor is waiting.

From our simulation enviornment, nanoprocessors show a good per-

formance increase. For the nanoI/O controller, both system bandwidth and 

the processor utilization rate increases dramatically for the chosen bench-

marks. For the nanoScheduler, the processor utilization rate is increased 
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because the EDF algorithm can produce a better schedule than the static 

priority-based algorithm. Further, the operating system overhead is also 

reduced by using the hardware scheduler.

Cost of the nanoprocessors are also evaluated. Specifically, die area 

increase and power consumption estimates are studied. A simulation 

enviornment is setup using Verilog HDL. Synthesizable programs are 

obtained using the Synopsys toolset. Area and power estimates are 

obtained from the synthesis results. Area estimates show that the nanoI/O 

controller increases the die area by 10% if the system supports up to 16 

ports. For a smaller number of ports, the nanoI/O controller area is even 

smaller, only reaches 5% of the total die area for a 2-port system. The 

nanoScheduler keeps track of state information for all system tasks. Since 

the task information are stored in the main memory, very little memory is 

required on the nanoScheduler. Thus, the nanoScheduler logic increases 

the total die area only by 1.1%. Together, the nanoprocessors increase the 

total die area by 6%.

Power consumption estimates show that the nanoI/O controller that 

supports 16 ports uses about 3 mW. This is not a significant increase con-

sidering that the M*CORE alone consumes 25 mW without any memory. 

The nanoScheduler consumes 411 uW, which is negligible. However, since 

the memory is now dual-ported, power consumption for the entire will 
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increase. However, other studies have shown that the Systems-on-Chip do 

not require significant amount of extra power. In additon, programmable 

hardware accelerator can help to reduce the total execution time dramati-

cally and thus save on energy consumption.

To conclude, the nanoprocessors as reconfigurable hardware accelera-

tors, are designed to off-load high-overhead tasks from the CPU into hard-

ware. Based on our simulation study, using nanoprocessors as an I/O 

controller and as a hardware scheduler can increase system bandwidth and 

processor utilization rate, and does so while minimizing the die area and 

power consumption increase.

9.2 Future Work

In this work, the simulation enviornment is setup and particular 

implementations of the nanoprocessors are completed. However, the 

implementations can be optimized. For the nanoI/O controller, chapter 7 

outlines several optimizations that could be done to improve system perfor-

mance. For the nanoScheduler, implementations other than the linked-list 

can be explored and compared. Detailed power estimate models can be 

used for the nanoprocessors. The current power estimates are obtained 

from a hypothetic switching activity level. More realistic switching should 

be used in obtaining accurate power consumption. In addition, other areas 
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of the operating system overhead should be investigated and more use of 

the nanoprocessors can be explored.
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